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Abstract
Recent developments in quantitative feedback theory (QFT) lead to feedforward
design problems with both magnitude and phase constraints. In these cases,
manual feedforward tuning becomes much more challenging and time consum-
ing than the traditional prefilter shaping taking place on the Bode plot. This
article presents a general procedure for the automatic synthesis of such ele-
ments. Feedforward bounds in the complex plane are expressed as constraints
of a linear programming problem in which the Bode real-complex relation is
implicitly considered, ensuring a stable rational solution. The methodology is
successfully tested in a well-known benchmark problem.
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1 INTRODUCTION

Quantitative feedback theory (QFT)1-4 owes its name to the fact that feedback is used in the minimum amount required
to fight the effects of plant uncertainty and unknown disturbances. Deeply rooted in classical control theory, QFT aims
to provide low-order, low-bandwidth feedback controllers fulfilling a set of frequency-domain specifications. By doing so,
QFT leads to designs with minimum cost of feedback, understood as the effect of sensor noise in the system’s actuator
and plant.

This philosophy defines the way in which QFT confronts two-degree-of-freedom (2DOF) problems, that is, problems
in which both feedforward and feedback actions are involved. Unlike inversion-based techniques, in QFT the feedback
element is designed first, and its purpose is to reduce the effect of uncertainty to a level in which a single feedforward
element can handle the whole set of plants, making all of its members meet the specification.1,5

The paradox is that the closer the feedback controller gets to its theoretical optimum,6 the harder it is to find a solu-
tion to the feedforward synthesis problem. However, given that most designers accept certain overdesign in exchange
for low order controllers, the feedforward design usually becomes a trivial task. This is particularly the case in the clas-
sical QFT tracking problem, in which specifications are defined as upper and lower tolerances on the magnitude of the
tracking frequency response. With this kind of specification, the feedforward controller—a prefilter preceding the feed-
back loop—is easily tuned on the Bode plot. All this could explain why only a few articles deal with automated methods
for prefilter shaping.7-9 This contrasts with the considerable effort that has been put into the automatic tuning of QFT
feedback controllers.10-28

Abbreviations: 2DOF, two-degree-of-freedom; QFT, quantitative feedback theory.
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F I G U R E 1 Model matching scheme

The situation has changed somewhat in recent years. There is growing interest in the QFT community for 2DOF
problems involving restrictions both on the magnitude and the phase of the system responses,29 such as the tracking
error problem,30-35 the model matching problem and the measurable disturbance rejection problem.36,37 These specifi-
cations capture time-domain restrictions accurately, reduce the demand for feedback and enable the use of feedforward
decoupling in multivariable systems.35

Despite their benefits, these approaches present a big drawback: the feedforward design must consider both magnitude
and phase, and consequently takes place on the log-polar plot31 rather than on the Bode plot. This represents a major
challenge for the designer, who has to derive a transfer function whose responses at different frequencies have to match
regions which are often very small. It is clear that an automatic feedforward shaping algorithm would be very useful in
this scenario. The purpose of this article is to provide such algorithm.

This article is structured as follows: Section 2 reviews the main QFT problems with magnitude and phase constraints.
Section 3 presents new algorithms to automatically synthesize feedforward elements for them. Section 4 applies the
methodology to a popular benchmark problem. Finally, the conclusions obtained from this research work are explained
in Section 5.

2 QFT SOLUTIONS FOR 2DOF PROBLEMS INVOLVING MAGNITUDE
AND PHASE CONSTRAINTS

For the sake of clarity, dependence on s or i𝜔 is omitted at certain points of the discussion.

2.1 Model matching

The model matching problem seeks to constrain the deviation of the closed-loop tracking response with respect to an ideal
model M(s). The problem assumes the 2DOF structure depicted in Figure 1. The uncertain plant P can be any element of
 = {P (s, q) ∶ q ∈ }, where q is a vector of m real uncertain parameters and  is the set in Rm defined by all its possible
values. The objective is to find some G(s) and F(s) such that

||||M (i𝜔) − P (i𝜔)F (i𝜔)
1 + P (i𝜔)G (i𝜔)

|||| ≤ |B (i𝜔)| (1)

holds for all 𝜔 > 0 and for all P ∈  , where B(s) defines the allowed tolerance. To obtain the QFT bounds associated to
this specification, notice that (1) defines, at each frequency and for given values of M, G, P and B, a set of values of F in
the complex plane. It can be easily found that such set is a circle with center o=M/P and radius r = |B∕P + BG| .

All points inside such circle are valid solutions F to (1) for a given plant P ∈  . Thus, there exists a common solution
F for two plants Pu,Pv ∈  if their corresponding circles intersect, that is, if

1|B| ||||M
Pu

− M
Pv

|||| ≤ |||| 1
Pu

+ G
|||| + |||| 1

Pv
+ G

|||| . (2)

Equation (2) defines an ellipse in the complex plane of G. All points outside that ellipse are valid controllers G for the two
given plants. Thus, if (2) is applied to any possible pair of plants in  , a family of ellipses is found. The envelope of such
family, once multiplied by the nominal plant, constitutes the QFT bound at the considered frequency.35 If L0(i𝜔) meets
such bound, there exists a nonempty intersection  (𝜔) among the circles with center o and radius r defined by each one
of the plants in  .
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F I G U R E 2 2DOF disturbance rejection scheme

These bounds are generated only for a discrete set of design frequencies ΩG. In the loop-shaping stage, the controller
G(s) is tuned until the nominal open-loop response L0(i𝜔) = G(i𝜔)P0(i𝜔)meets the bounds, which means that (2) becomes
true for all 𝜔 ∈ ΩG.

The feedforward design stage consists in finding a stable rational function F(s) such that F (i𝜔) ∈  (𝜔) for all 𝜔. Since
this tuning involves both the magnitude and the phase of F(s), it takes place on the Nichols plot.31 Once such an F(s) is
found, (1) is guaranteed at the design frequencies for all P ∈  . But if the frequencies in ΩG have been adequately chosen,
we can expect the specification to be met for all 𝜔 > 0.

When the model matching problem is framed in the canonical QFT structure with a prefilter preceding the loop, it is
known as the tracking error problem.34 Its bounds are also given by (2), and the circles of valid prefilters for each plant
have center o=M/T and radius r = |B∕T|, where T denotes the system’s complementary sensitivity function.

2.2 Rejection of measurable disturbances

The procedure can be replicated with little change in the control scheme shown in Figure 2, in which a feedback controller
G(s) and a feedforward controller F(s) fight the effects of a measurable disturbance on the system output.

In this case, constraining the error is the same as constraining the output, so the specification is given by

||||D (i𝜔) + P (i𝜔)F (i𝜔)
1 + P (i𝜔)G (i𝜔)

|||| ≤ |B (i𝜔)| , (3)

and the circle of valid feedforward elements F for each plant at a given frequency has now center o=−D/P and radius
r = |B∕P + BG|.

Assuming that the uncertain parameters in q define both the plant dynamics P(s) and the disturbance dynamics D(s),
there exists a region  of solutions to (3) at a given frequency and for all q ∈  if

1|B| ||||Du

Pu
− Dv

Pv

|||| ≤ |||| 1
Pu

+ G
|||| + |||| 1

Pv
+ G

|||| , (4)

where Pu, Du, Pv, Dv are defined by any possible pair qu, qv ∈ . Like in the tracking error case, this defines a family of
ellipses whose envelope, once multiplied by the nominal plant, shapes the QFT bound to be met by L0(i𝜔).36

Once again, the feedforward synthesis problem consists in finding a stable rational F(s) such that F (i𝜔) ∈  (𝜔) for
all 𝜔.

3 AUTOMATED FEEDFORWARD SYNTHESIS

3.1 Intersection algorithm

The first step toward an automatic tuning of feedforward elements for the tracking error problem and the measurable
disturbance rejection problem is to find the intersection  of the circles defined by each q ∈ . This intersection consists
in a convex region enclosed by a set of connected circle arcs, which can be found using the algorithm presented in Table 1.
Figure 3 shows an example in which the uncertain plant includes four elements.
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T A B L E 1 Algorithm to find the boundary of 
Step Operation

1 Remove all circles containing smaller ones.

2 Find the intersection points
{

pij
}

among the remaining circles. Looking at the circles as clockwise paths, index i denotes the
circle leaving the intersection region, and j defines the one entering it.

3 The subset of points
{

pab, pbc, …
}
∈
{

pij
}

such that ||ok − pij|| < rk ∀k≠ i, k≠ j, are the vertices of  . Arrange them so that
each j index is equal to the next point’s i index.

4 Each pair of consecutive points (pij, pjk) in the previous subset defines an arc p̂ijpjk of the circle cj with central angle (angle
between two radii meeting at the center of a circle) 𝜃j.

5 The boundary of  is formed by all the arcs defined by consecutive elements in
{

pab, pbc, …
}

. Thus, 𝜃b + 𝜃c + … + 𝜃a ≤ 2𝜋.

F I G U R E 3 An example of region  given by the intersection
of 4 circles at a given frequency 𝜔, where 𝜎 denotes the position of
the centroid and two of the central angles are shown as well [Colour
figure can be viewed at wileyonlinelibrary.com]

3.2 Automatic selection of design frequencies

Once the intersection region  is found at all frequencies, the most appropriate way to automatically derive the feedfor-
ward controller seems to consist in (i) finding the centroid of the intersection region at each design frequency, and (ii)
using an existing algorithm to derive a stable rational F(s) fitting them. However, such an F(s) does not exist in general.
The reason is that the frequency response of a stable rational F(s), written as

F (i𝜔) = 𝛼 (𝜔) + i𝛽 (𝜔) (5)

must comply with Bode’s real-imaginary parts relationship,38 which links the imaginary part at certain frequency 𝜔k with
the real part at all frequencies. More specifically, the relationship states that

𝛽 (𝜔k) =
2𝜔k

𝜋 ∫
∞

0

𝛼 (𝜔) − 𝛼 (𝜔k)
𝜔2 − 𝜔2

k

d𝜔, (6)

which is a weighted integral of 𝛼 (𝜔) − 𝛼 (𝜔k).
In general, the frequency response defined by the centroids does not meet such requirement, so it cannot be fit by

a stable rational F(s). As a consequence, the problem is to find a frequency response F (i𝜔) such that F (i𝜔) ∈  (𝜔)
for all 𝜔, while obeying condition (6). If such a response is found, obtaining some F(s) fitting it becomes relatively
straightforward.

In the same way as for the loop-shaping stage, these conditions are translated to a discrete set of design frequencies
ΩF , in order to numerically compute Bode’s integral (6). Whereas the frequencies used to design the feedback controller
ΩG are known, a first approximation to ΩF would be ΩF = ΩG. But, depending on the curvature of the actual 𝛼 (𝜔), the
discretization given by ΩG may not provide an acceptable approximation to Bode’s real-imaginary relationship.

http://wileyonlinelibrary.com
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To solve this problem, an algorithm to define a convenient set of design frequencies ΩF for F(s) is given next:

1. ΩF is initialized as ΩF = ΩG.
2. A new logarithmically spaced frequency set Ωcont is created covering the same range as ΩG, but with a finer spacing

among elements to capture the continuous behavior of the centroids. The algorithm to find intersections, described
in Section 3.1, is applied to the whole set Ωcont, and the centroids are computed as well. Behaviour of these cen-
troids with respect to frequency acts as a good estimator of the difficulty of the feedforward design problem: when
the allowed regions  are small—something that can be caused by great uncertainty, insufficient feedback or tight
design specifications—the plot of the centroids tends to present sharper changes. In these cases, usually a high-order
feedforward controller will be required. Conversely, when there is an excess of feedback for the given uncertainty and
specifications, the centroids tend to evolve smoothly with frequency, and probably a low-order feedforward element
will be enough.

3. The integral ∫ 𝜔i+1
𝜔i

𝛼 (𝜔) d log (𝜔) is computed for each interval (𝜔i, 𝜔i+1) ∈ ΩF , using all the frequencies of Ωcont inside
it for the numerical integration. The result is compared with the value obtained disregarding the inner frequencies. If
the difference is greater than a certain threshold, a new frequency is introduced at the geometric mean of the endpoints
(𝜔i, 𝜔i+1), and the comparison is repeated for each of the resulting pairs. Given that the Bode’s integral (6) is just a
weighted integral of the real part 𝛼 (𝜔), this procedure ensures thatΩF has enough frequencies to compute it accurately.

As a result, once the set of design frequencies ΩF is fixed, numerical integration methods can be used to approximate
(6) by a linear relation between the imaginary part of F(i𝜔) at some frequency𝜔k ∈ ΩF and the real parts at all frequencies
in such set, that is,

𝛽 (𝜔k) ≈ bk1𝛼 (𝜔1) + bk2𝛼 (𝜔2) + … + bkk𝛼 (𝜔k) + … bkn𝛼 (𝜔n) . (7)

Coefficients bk1, … , bkn capture the numerical evaluation of the integral and depend only on the set of chosen frequencies.
The Appendix shows how to obtain them using the trapezoidal rule.

3.3 Feasibility study

Up to this point, and due to the fact that bounds of intersections  (𝜔k) are nonlinear, feedforward synthesis implies
solving for the feasibility region of a nonlinear programming problem. But, if regions  (𝜔k) are approximated by convex
polygons, the program becomes linear.

Vertices of complex polygons are obtained by splitting each arc p̂ijpjk in the boundary into a number nj of equally sized
arcs with central angle 𝜃j

nj
smaller than certain parameter 𝜃max (see Figure 4). This way, the area missed by the polygonal

approximation along each arc is

Aej =
r2

j

2

[
𝜃j − nj sin

(
𝜃j

nj

)]
, (8)

and the overall relative error is simply the sum of the areas missed in each arc divided by the total area of the intersection:

e =
∑

Aej

A
. (9)

If the chosen 𝜃max leads to an error e above certain tolerance emax, we must repeatedly increase in one unit the nj of
the arc in which such increment gives a lower e until e< emax.

After the split, condition F (i𝜔k) ∈  (𝜔k) is replaced by the set of nk linear inequalities

⎡⎢⎢⎢⎢⎢⎣

ak
1 bk

1

ak
2 bk

2

⋮ ⋮

ak
nk

bk
nk

⎤⎥⎥⎥⎥⎥⎦
[
𝛼 (𝜔k)
𝛽 (𝜔k)

]
≤
⎡⎢⎢⎢⎢⎢⎣

ck
1

ck
2

⋮

ck
nk

⎤⎥⎥⎥⎥⎥⎦
, (10)
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F I G U R E 4 Approximation of  by a convex polygon [Colour
figure can be viewed at wileyonlinelibrary.com]

where coefficients ak
i , bk

i and ck
i are easily determined by the coordinates of each two consecutive vertices in the polygon

(Figure 4).
Replacing (7) in (10), dependence on the imaginary parts is eliminated, leading to

⎡⎢⎢⎢⎢⎢⎣

bk
1bk1 bk

1bk2 … ak
1 + bk

1bkk … bk
1bkn

bk
2bk1 bk

2bk2 … ak
2 + bk

2bkk … bk
2bkn

⋮ ⋮ ⋱ ⋮ ⋱ ⋮

bk
nk

bk1 bk
nk

bk2 … ak
nk
+ bk

nk
bkk … bk

nk
bkn

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼 (𝜔1)
𝛼 (𝜔2)
⋮

𝛼 (𝜔k)
⋮

𝛼 (𝜔n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤
⎡⎢⎢⎢⎢⎢⎣

ck
1

ck
2

⋮

ck
nk

⎤⎥⎥⎥⎥⎥⎦
, (11)

or, in short notation,

Ak𝜶 ≤ ck. (12)

Repeating the process for all 𝜔k ∈ ΩF , we reach

⎡⎢⎢⎢⎢⎢⎣

A1

A2

⋮

An

⎤⎥⎥⎥⎥⎥⎦
𝜶 ≤

⎡⎢⎢⎢⎢⎢⎣

c1

c2

⋮

cn

⎤⎥⎥⎥⎥⎥⎦
, (13)

which constitute the constraints of the linear programming problem to solve. Since any solution to the problem is accept-
able, that is, we only care about feasibility, 0T𝜶 can be used as its cost function. If a compatible vector of real parts 𝜶 is
found, the corresponding imaginary parts 𝜷 are obtained by direct application of (7). On the other hand, we can say that
if the linear programming problem is not feasible for a densely populated ΩF and a convenient 𝜃max, there is no stable
rational solution F(s) to the feedforward synthesis problem. In those cases, we must go back to the loop-shaping stage
and introduce more feedback on the set of frequencies at which the regions  are too small. If this is impossible to do due
to feedback restrictions such as sensor noise amplification, then the specifications should be relaxed.

Additionally, linear constraints given by (13) can be used in a quadratic optimization problem to obtain the closest
solution to the centroid of  (𝜔k), which could be considered the ideal response of the prefilter. However, this will only
make a difference when  (𝜔k) is too big. In those cases, the designer should consider reducing the open-loop gain of the
feedback controller, or alternatively, tightening the specification at 𝜔k.

The presented approach is similar to that of References 39 and 40, where convex optimization is used to synthesize
a feedback controller meeting the QFT bounds. Apart from the fact that the present work deals with feedforward con-
trollers, the main difference with respect to those approaches lies on the Bode relation used as a constraint. Here, the
real-imaginary integral is preferred over the gain-phase integral, because it is not limited to minimum-phase systems,

http://wileyonlinelibrary.com
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and also because it does not involve numerical integration of hyperbolic cotangents, which may not be very accurate at
certain frequencies. Besides, in (13), only the real parts of the response must be found, which implies that the number of
variables is reduced to a half with respect to the mentioned articles. Also, the Bode relation is implicitly considered, so
the associated restrictions are removed from the problem.

The authors have also tested the implementation of cubic splines to approximate the frequency response of the func-
tion to shape, as in Reference 39. While in general it is true that the number of frequencies required to compute Bode’s
integral is lower, the use of splines does not prevent the need for a relatively large number of design frequencies in regions
where sharp changes in the feedforward frequency response are required. For this reason, it is judged that the the benefits
of splines are not enough to justify the increased complexity over the linear approximation.

3.4 Transfer function fitting

Once a feasible solution is obtained, transfer functions fitting the points𝜶 + i𝜷 can be derived with thefitfrd algorithm,
as given by Matlab or Octave packages. Although fitfrd by itself does not guarantee stable results, the fact that the
points to fit meet Bode’s relationship leads to a stable F(s).

Solutions given by fitfrd evidently depend on the order nF and the relative degree eF of F(s), but these parame-
ters can be deduced in the following manner: the relative degree eF is directly deduced considering the corresponding
specification in the high frequency range, that is, when L(i𝜔) → 0. Depending on the problem considered, it is given by
eF = eM − eP in the model matching problem (1) and by eF = eD − eP in the disturbance rejection problem (3). Regarding
low frequency behavior, F(s) presents as many derivatives as integrators in P(s), tF =−tP, where tP is the type number of
P(s).

Besides these conditions, high frequency phase angle asymptote—𝜙∞—of the feasible𝜶 + i𝜷 fixes the number of zeros
of F(s) with positive real part, and consequently its minimum order must be at least

nF ≥ tP + 1
2

(
−𝜙∞

90o + eF

)
. (14)

As a result, the number of independent parameters in F(s) is 2 ⋅nF + 1− eF − tP. But as the order nF of F(s) remains
still open, optimum F(s) will be the lowest order whose frequency response fulfills the original specification F (i𝜔) ∈
 (𝜔), ∀𝜔 ∈ ΩF .

In this respect, if the solution of the problem relies only on fitfrd, there is a risk of overfitting F(s), because the
tendency is to increase the order nF until all frequency responses satisfy the intersections.

Even though fitfrd has a very efficient algorithm, its objective is to obtain a transfer function optimally fitting a
given frequency response, not to ensure that all points lie inside regions.

3.5 Fine tuning of the transfer function

The transfer function obtained by fitfrd does not guarantee that its frequency response lies inside all the intersections
 (𝜔), ∀𝜔 ∈ ΩF but, in general, the obtained results are good enough from a practical point of view. However, it is possible
to fine tune the feedforward term, F(s), if, once validated the solution given by fitfrd, the results are judged not as good
as they might be.

This final adjustment is obtained finding the minimum of a scalar function of several variables, starting at the initial
estimate given by fitfrd, as is described in the next sections.

3.5.1 Method to evaluate a point with respect to an intersection

The objective of the method is to define a scalar measure that evaluates the frequency response F (i𝜔k) with respect to the
intersection  (𝜔k). The main steps of the method are the following:

1. The relative vector vk = F (i𝜔k) − 𝜎k, together with 𝜎k, defines the parametric line (x + iy) = 𝜎k + 𝜆vk on the complex
plane.
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F I G U R E 5 Evaluation of two points with respect to the same intersection
[Colour figure can be viewed at wileyonlinelibrary.com]

2. Compute the intersection (𝜆 > 0) of the parametric line with the bound of the intersection area.

• If 𝜆 < 1 the frequency response is outside the intersection, as 𝛼1 (𝜔k) + i𝛽1 (𝜔k) in Figure 5.
• If 𝜆 > 1 the frequency response is inside, as 𝛼2 (𝜔k) + i𝛽2 (𝜔k) in Figure 5.
• If 𝜆 = 1 the frequency response is exactly on the bound.

3. The output value is 𝜇 = 1∕𝜆, so 𝜇 ≤ 1 implies that the frequency response lies inside the intersection.

The measure 𝜇k = 𝜇 ( (𝜔k) ,F (i𝜔k)) is independent of the size or shape of each intersection, and therefore is very
appropriate for optimization purposes.

3.5.2 Definition of the optimization problem

The objective function has been defined as a performance indicator of F (i𝜔) with respect to whole set  (𝜔k) as follows:

f0 ∶
n∑

k=1
𝜇2

k + (A − 1)
n∑

k = 1
𝜇k > a

(𝜇k − a
1 − a

)4
, (15)

where A= 100 is the value of the function when the frequency response is on the bound and a= 0.98 is the threshold
to activate the fourth order terms. This formulation penalizes especially frequency responses lying outside intersections,
and with these values, one point lying outside its region at distance 𝜇 = 1.01 penalizes more than 500 points at distance
𝜇 = 0.98. Since when fine tuning is applied, most points F (i𝜔) already lie inside their corresponding  (𝜔k), and those
which do not are close to the boundary, its net effect is simply to push slightly the responses inward.

The optimization variables are the numerator and denominator coefficients of F (i𝜔), whose structure and initial
values are taken from the results of fitfrd, which provides great reliability to the process. The algorithm used to find
the minimum is the Nelder-Mead simplex algorithm that is provided by Matlab—fminsearch—or Octave—fmins—.

4 DESIGN EXAMPLE: THE ACC’92 BENCHMARK PROBLEM

In this section, the feedforward design algorithm presented above is applied to the ACC’92 benchmark problem,41 and
in particular to the tracking challenge presented in Reference 42. The benchmark considers the two-mass-spring plant
defined in Figure 6, where the force u(t) is the control input and the position x2(t) of the mass m2 is the measured output.
The transfer function relating them is

P(s) = X2(s)
U(s)

= k

m1s2
[

m2s2 +
(

1 + m2
m1

)
k
] , (16)

http://wileyonlinelibrary.com
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F I G U R E 6 Two-mass-spring system

where m1 = 1, m2 = 1 and k∈ [0.5, 2]. The objective is to define a feedback/feedforward controller for a unit-step output
command tracking. Both the settling time and the overshoot must be minimized, and the control action must satisfy
|u|≤ 1.

4.1 Model matching solution

The present solution builds upon the work presented in Reference 43, where the problem was solved using the classical
approach, but with the novelty of choosing high order Bessel filters as tolerances, in order to ensure a smooth control
action. In this case, a model matching solution is pursued, in which the model to match is

M(s) = H7 (s, 1.59) , (17)

where Hn (s, 𝜔0) denotes a Bessel filter with order n and cutoff frequency 𝜔0. This filter was defined in Reference 43 as the
one providing the fastest response which does not imply a violation of |u|≤ 1 by any member of the uncertain plant set.

The error tolerance B(s) defining a region of acceptable responses around the ideal one is given by

B(s) = 0.27s
(4) (0.6) (0.7, 1.1) (0.4, 2) (0.4, 3)

, (18)

where the short notation (p) for (s∕p + 1) and (𝜁, 𝜔n) for
(

s2∕𝜔2
n + 2𝜁s∕𝜔n + 1

)
is used. The feedback controller bounds are

generated using the method of Reference 36. These bounds are combined with stability bounds arising from the condition|T (i𝜔)| < 1.93, which ensures a of robust phase margin of at least 30◦. After proper loop-shaping—see Figure 7—, the
obtained controller is

G(s) = 0.7 (1.4) (0.5, 0.42) (0.5, 1) (0.75, 7) (0.6, 24)
(3.6) (20)3 (0.6, 1.2) (0.5, 32)3 , (19)

which presents feedback savings over the solution43 at most frequencies.

4.1.1 Feedforward design

For the feedforward design stage, the procedure described in Section 3 is applied. First, considering that the loop-shaping
of the controller G(s) has been done with a set ΩG of 15 frequencies between 0.01 and 100 rad/s, a set Ωcont of 1000
frequencies logarithmically spaced has been created, including the frequencies in ΩG. Comparison among integrals has
been done with a threshold of 1% with respect to the width of each interval. Figure 8 shows the outcome of the process
for the present example: a total of 28 frequencies are added to the original set, resulting in a total of 43.

Second, matrices of the linear program have been constructed choosing a maximum angle of 𝜃max = 5◦ for the
polygonal approximation of the intersection regions, and a feasible solution has been obtained, 𝜶 + i𝜷.

Next, prior to calling to fitfrd, parameters of F (s) have been defined: Relative degree, eF = eM − eP = 7− 4= 3; Low
frequency asymptote, s2, or tF =−2; High frequency phase angle asymptote of the feasible solution, 𝜙∞ = −630◦ (which
implies the presence of two non-minimum phase zeros); Minimum order—following (14)—, nF ≥ 7. Choosing an order
of 7 the obtained feedforward controller is

F0(s) =
1.1899 ⋅ 10−3 (−0.9756, 0.0242) (−0.0948, 1.1779)

(0.4863) (0.5123, 1.1263) (0.4124, 1.9722) (0.4259, 2.1434)
, (20)
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F I G U R E 7 Loop-shaping of the controller G(s)

F I G U R E 8 Set ΩF of design frequencies for the
feedforward

where the very low-frequency zeros arise as a consequence of the limited range of frequencies considered in the design.
Therefore, they can be replaced by derivative elements to obtain

F(s) = 2.0287s2 (−0.0948, 1.1779)
(0.4863) (0.5123, 1.1263) (0.4124, 1.9722) (0.4259, 2.1434)

. (21)

Even though F (i𝜔) fits remarkably to the feasible points—as Figure 9(A) shows—, there are three intersections
that remain unfulfilled. In other words, the feedforward response meets the error specification at 93% (40/43) of the
frequencies, as portrayed by Figure 9(B).

If parameters of the feedforward obtained by fitfrd (21) are taken as a starting for the nonlinear optimization, the
final feedforward fulfills all intersections and the obtained transfer function is the following:

Ffinal(s) =
1.5850s2 (−0.1340, 1.1943)

(2.4567) (0.6707, 0.7251) (0.3449, 1.3798) (0.2335, 2.2836)
. (22)

Figure 10(A) shows that the final feedforward has a frequency response that lies inside all intersections for the whole
spectrum, as 𝜇 < 1 for all frequencies. Equivalently Figure 10(B) presents tracking error frequency responses for 10 values
of k covering the uncertainty range.

Finally, the time-domain results are shown in Figure 11. Notice that the responses of M(s)+B(s) and M(s)−B(s) define
time-domain tolerances that are approximately, but not exactly respected by the system. The slightly loose translation of
time-domain restrictions into frequency domain tolerances is shared by all QFT techniques. In fact, the use of specifica-
tions capturing magnitude and phase, as in this work, contribute to tighten the ties between both worlds. On the other
hand, the fact that the control action is well inside its tolerances suggests that a faster step response could have been
obtained. To do so, the process followed in Reference 43 to obtain a model to match should be revised.
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F I G U R E 9 Validation of
fitfrd: (A) F (i𝜔) against the feasible
solution. (B) Detail of the failed three
intersections [Colour figure can be
viewed at wileyonlinelibrary.com]

(A) (B)

F I G U R E 10 Effect of the fine
tuning of F(s): (A) Lowering of 𝜇 at all
frequencies. (B) Final frequency
response, Dashed black: tracking error
tolerance. Solid gray: actual frequency
responses

(A)

(B)

F I G U R E 11 Time domain results
for a unit step reference: (A) output, (B)
control input. Solid black: ideal response.
Dashed black: tolerances. Solid gray:
responses for 10 values of k covering the
uncertainty range

(A) (B)

http://wileyonlinelibrary.com
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F I G U R E 12 Feedforward shaping: regions to
match and F(i𝜔) [Colour figure can be viewed at
wileyonlinelibrary.com]

The whole design process has been implemented in Matlab© 2020a and the execution times on a i7-9700 processor are
the following: Automatic selection of design frequencies, 0.01 s; Solution to the linear feasibility problem, 0.9 s; Transfer
function fitting, 0.36 s; Nonlinear optimization, 8.4 s.

The most eloquent illustration of the benefits of the proposed technique is presented in Figure 12. The Figure shows
the feedforward bounds for the problem, generated as described in References 31 and 36, as well as the frequency
response of (21), meeting all of them. It is easy to see how hard this would be to achieve if F(s) had to be manually
shaped.

5 CONCLUSION

This work has presented an automatic feedforward shaping algorithm for QFT problems involving restrictions both on
the magnitude and the phase of system responses, where manual synthesis is harder than in traditional QFT.

It has been shown that the feedforward frequency response must lie inside the intersections of families of circles on the
complex plane. Besides, such response must obey Bode’s real-imaginary integral to ensure that the feedforward controller
is rational and stable. The integral has been discretized for a given set of design frequencies and, as a result, imaginary
parts of any realizable prefilter are written as linear functions of real ones, with coefficients explicitly defined. Under these
conditions, feedforward synthesis is still a nonlinear programming problem. But if the intersections are approximated by
convex polygons, the problem becomes linear.

Fitting to the solution of the feasibility problem does not guarantee that its frequency response lies inside all the inter-
sections but, in general, the obtained results are good enough from a practical point of view. However, if once validated
the solution given by fitfrd, the results are judged not as good as they might be, a second optimization step can provide
a fine tuning of the transfer function, in order to improve the fulfillment of intersections, no matter their area or shape.

All technical aspects of this method have been given in detail, and practical remarks of the problem formulation have
also been discussed.

The proposed method has been tested on the ACC’92 benchmark problem. Feedforward controllers that have been
automatically obtained meet the design requirements, validating the developed algorithms.
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APPENDIX

Let us begin by dividing the integral in (6) into

∫
∞

0
f (𝜔) d𝜔 = ∫

𝜔1

0
f (𝜔) d𝜔 + ∫

𝜔n

𝜔1

𝜔f (𝜔) d𝜔
𝜔

+ ∫
∞

𝜔n

f (𝜔) d𝜔 (A1)

where

f (𝜔) =
𝛼 (𝜔) − 𝛼 (𝜔k)

𝜔2 − 𝜔2
k

. (A2)
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If 𝜔1 is a low enough frequency and F(s) has no integrators—as in the case of feedforward elements—, we can assume
that 𝛼(𝜔) ≈ 𝛼(𝜔1) for all 𝜔 ∈ [0, 𝜔1]. Therefore, the first term in (A1) can be approximated by

∫
𝜔1

0
f (𝜔) d𝜔 ≈ [𝛼 (𝜔1) − 𝛼 (𝜔k)]∫

𝜔1

0

d𝜔
𝜔2 − 𝜔2

k

. (A3)

Similarly, if 𝜔n is high enough and F(s) is proper, we can assume that 𝛼(𝜔) ≈ 𝛼(𝜔n) for all 𝜔 ∈ [𝜔n,∞]. As a
consequence, the third term in (A1) can be approximated by

∫
∞

𝜔n

f (𝜔) d𝜔 ≈ [𝛼 (𝜔n) − 𝛼 (𝜔k)]∫
∞

𝜔n

d𝜔
𝜔2 − 𝜔2

k

. (A4)

In both cases, we can use the result

∫
b

a

1
𝜔2 − 𝜔2

k

d𝜔 = 1
2𝜔k

[
ln

(
b − 𝜔k

a − 𝜔k

)
+ ln

(
a + 𝜔k

b + 𝜔k

)]
, (A5)

which is defined as long as 𝜔k < a or 𝜔k > b. Thus, we find that for all 𝜔k ∈ ΩF

∫
𝜔1

0
f (𝜔) d𝜔 ≈

⎧⎪⎨⎪⎩
0 𝜔k = 𝜔1
𝛼(𝜔1)−𝛼(𝜔k)

2𝜔k
ln

(
𝜔k−𝜔1
𝜔k+𝜔1

)
𝜔k > 𝜔1

, (A6)

and

∫
∞

𝜔n

f (𝜔) d𝜔 ≈
⎧⎪⎨⎪⎩

𝛼(𝜔n)−𝛼(𝜔k)
2𝜔k

ln
(

𝜔n+𝜔k
𝜔n−𝜔k

)
𝜔k < 𝜔n

0 𝜔k = 𝜔n

. (A7)

On the other hand, the second term in (A1) can be approximated by

∫
𝜔n

𝜔1

𝜔f (𝜔) d𝜔
𝜔

≈
n−1∑
i=1

𝜔if (𝜔i) + 𝜔i+1f (𝜔i+1)
2

[ln𝜔i+1 − ln𝜔i] , (A8)

which can be expanded and rearranged to yield

∫
𝜔n

𝜔1

𝜔f (𝜔) d𝜔
𝜔

≈ 1
2

n∑
i=1

aki𝛼 (𝜔i) , (A9)

where

ak1 = 𝜔1
ln𝜔2 − ln𝜔1

𝜔2
1 − 𝜔2

k

,

akn = 𝜔n
ln𝜔n − ln𝜔n−1

𝜔2
n − 𝜔2

k

,

aki = 𝜔i
ln𝜔i+1 − ln𝜔i−1

𝜔2
i − 𝜔2

k

for i > 1, i < n, i ≠ k,

and

akk = −
∑
i≠k

aki.
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Taking (A6), (A7), and (A9) to (A1), and then to (6), we obtain the linear approximation

𝛽 (𝜔k) ≈
n∑

i=1
bki𝛼 (𝜔i) ,

where the coefficients are defined by

bk1 = 1
𝜋

ln𝜔2 − ln𝜔1
𝜔1
𝜔k

− 𝜔k
𝜔1

+ 1
𝜋

ln
(
𝜔k − 𝜔1

𝜔k + 𝜔1

)
for k > 1,

bkn = 1
𝜋

ln𝜔n − ln𝜔n−1
𝜔n
𝜔k

− 𝜔k
𝜔n

+ 1
𝜋

ln
(
𝜔n + 𝜔k

𝜔n − 𝜔k

)
for k < n,

bki =
1
𝜋

ln𝜔i+1 − ln𝜔i−1
𝜔i
𝜔k

− 𝜔k
𝜔i

for i > 1, i < n, i ≠ k,

and

bkk = −
∑
i≠k

bki.


