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Abstract: Speech is the most common way of communication among humans. People who cannot
communicate through speech due to partial of total loss of the voice can benefit from Alternative
and Augmentative Communication devices and Text to Speech technology. One problem of using
these technologies is that the included synthetic voices might be impersonal and badly adapted to
the user in terms of age, accent or even gender. In this context, the use of synthetic voices from
voice banking systems is an attractive alternative. New voices can be obtained applying adaptation
techniques using recordings from people with healthy voice (donors) or from the user himself/herself
before losing his/her own voice. In this way, the goal is to offer a wide voice catalog to potential
users. However, as there is no control over the recording or the adaptation processes, some method
to control the final quality of the voice is needed. We present the work developed to automatically
select the best synthetic voices using a set of objective measures and a subjective Mean Opinion Score
evaluation. A prediction algorithm of the MOS has been build which correlates similarly to the most
correlated individual measure.

Keywords: STOI; ESTOI; NISQA; SIIB; speech adaptation; voice banking

1. Introduction

Speech is the most natural method that humans use to communicate with each other.
When, due to an accident or illness, one person loses the ability to speak, technology can
provide solutions to mitigate the impact of his or her disability. Text-to-speech (TTS) systems
are a fundamental component of the so-called alternative and augmentative communication
(AAC) devices, providing a synthetic voice to speak aloud the text that has been introduced
through some kind of input device, such as a keyboard or an eye-gaze-controlled device.
TTS systems have been available in the market for many years already, and nowadays
synthetic voices are not only intelligible, but also have a high level of naturalness. However,
it is often the case that the offered synthetic voices do not suit the user’s preferences in
terms of age, accent or even gender. Commercial voices are in general obtained from
professional speakers, chosen precisely because of his or her pleasant voice, neutral accent
and ability to keep a homogeneous speech style during long recording sessions, conditions
which greatly help to obtain a high quality synthetic voice. Consequently, there are few
(and for many languages, none) commercially available voices corresponding to an old
person or to a child, or voices with regional accents. The orally disabled user must then
use a synthetic voice unmatched to his or her own speaking characteristics. Speech is
a fundamental part of the identity of a person. Synthetic voice customization tries to
keep those hints of personality, nonexistent in a generic or commercial synthetic voice.
Studies such as [1] show our tendency to form an impression on the personality of other
people from their voice (as happens with other features, such as the face, or the color of the
skin). Other studies demonstrate that using personalized voices can facilitate intellectual
development for children with vision shortages [2]. Thus, it is our belief that the use of
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personalized speech can help in reducing the social impact of using an electronic device for
everyday communication.

Until the beginning of the last decade, the technologies applied for voice generation
included concatenative synthesis with unit selection [3] and parametric statistical synthesis
based on Markov models [4]. Concatenative unit selection systems generate voice by
concatenating prerecorded fragments of a natural voice, chosen according to sophisticated
selection criteria that include acoustic, phonetic, prosodic and linguistic aspects. These
techniques produce very natural results in restricted application domains, but by expand-
ing the domain, they obtain results of variable quality [5]. In addition, they have high
memory, storage and processing requirements and reduced or null flexibility to generate
new voices. Statistical–parametric systems create synthetic speech from averaged models
of acoustically similar speech units. Speech is transformed into a series of parameters by
means of a vocoder [6]. Typically, several types of parameters are used: spectral parameters
related to the spectral envelope that include information about the energy in the different
frequency bands; the fundamental frequency which is related to intonation; and finally
some parameters related to the degree of voicing of the source, such as aperiodicities by
bands (STRAIGHT [7] and WORLD [8]) or the maximum voiced frequency (AhoCoder [9]).
Among the advantages of statistical–parametric systems are their consistency, flexibility,
intelligibility and low need for storage. They allow the generation of new voices, using
adaptation or interpolation techniques [10], and they produce a smooth voice of stable
quality, although the use of vocoders reduces its naturalness. Its intelligibility is similar to
that of natural speech and even better in noisy environments [11]. In short, these systems
are very well suited to be used in the context of personalized TTS.

In more recent years, within the framework of parametric statistical synthesis, Markov
models have been replaced by deep neural networks (DNNs) [12] with very good results
in terms of quality of synthetic speech. DNNs can overcome some of the limitations of
Gaussian models in representing the complex non-linear relationships that exist between
the acoustic parameters of speech generation and the symbolic representation of speech.
In [13], a very complete review of different possible strategies to use deep networks in the
generation of the acoustic parameters of speech can be found.

Finally, more recently, DNNs are used not only for signal generation, but to carry out
the entire TTS conversion chain. Deep Voice [14] was the first of these systems in which
each stage of the TTS system was implemented using neural networks. Progressively, more
and more end-to-end systems were devised (Deep Voice 2 [15], Deep Voice 3 [16] and
Char2Wav [17]). Finally, totally end-to-end architectures have also been proposed, such as
Tacotron [18], Tacotron 2 [19] and ClariNet [20] that generate spectrograms starting from
the text. Subsequently, these spectrograms are converted into speech using WaveNet [21] or
the Griffin–Lim algorithm [22]. These end-to-end systems are providing very good results
in terms of the quality of the synthetic voice generated.

However, the amount of data required to build a robust TTS system based on neural
networks is enormous. Although experiments have been performed to adapt voices and
build systems with smaller amounts of data [23], in general, it has not been possible to
produce quality voices with amounts of data comparable to those used in the production
of personalized voices in parametric–statistical systems. To generate custom voices using
DNNs, it is possible to embed the identity of the speaker in the model so that synthetic
voices are generated with the characteristics of the voice of different speakers using only a
few minutes of each voice. These representations of the speaker’s voice (speaker embed-
ding) have already been successfully used to generate different voices in Tacotron-based
systems [15] but they only allow generating speech for those speakers seen during train-
ing. With the goal to generate quality synthetic voices for any speaker, strategies such
as VoiceLoop [24] are more appropriate: it proposes an architecture based on a fixed-size
buffer that can generate voice from speakers not seen in training. Another strategy suitable
to generate voices for speakers not seen during training is knowledge transfer as proposed
in [25]. In any case, in these strategies, there are quality differences in the results obtained
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for speakers seen and not seen during the training [26] so that there are still important
challenges to solve in order to generate the voice of any speaker.

In the work described here, the synthesis is based on a parametric statistical TTS
system using adaptation techniques to obtain new voices with a small amount of recordings
from a new speaker [9,27] and an average voice obtained with high quality recordings
from professional speakers. This system has been implemented in a publicly available
website [28], which allows users to record his or her own voice and download the resulting
personalized synthetic voice to his or her device. At the same time, the synthetic voice
remains in the system and is made available to orally disabled users through a ’Voice Bank’
which acts as a repository of donated synthetic voices. The whole process is unsupervised
and fully automated, which leads to a wide variability in the final quality of the synthetic
voices. Indeed, the quality of the synthetic voice will strongly depend on the personal traits
of the speaker or voice donor (speaking speed variability, degree of articulation, existence
of a pathology in his or her voice, age, smoking habits, etc.). Another important factor is
the similarity of the speaker’s regional accent to that of the average voice. The acoustic
conditions of the recording place as well as the recording equipment also play an important
role and the best results are obtained when the recordings are performed in a professional
environment. All these factors are of extreme importance, and lead to the fact that not all
donors’ synthetic voices are finally useful.

In this work, we describe a strategy to automatically select the synthetic voices with
the best possible quality among thousands of donors’ synthetic voices. The selected voices
are candidates to populate the voice bank in an unsupervised manner. We extend the initial
work described in [29] by evaluating four objective measures: short time objective intelligi-
bility (STOI), enhanced short time objective intelligibility (ESTOI), non-intrusive speech
quality assessment (NISQA) and speech intelligibility in bits (SIIB). A MOS evaluation is
performed to validate the measures’ scores. Using linear regression, the measures are also
combined to produce an estimated MOS.

The rest of the article is structured as follows: in Section 2, we explain the purpose
and characteristics of the developed voice bank. Section 3 describes the objective measures
used in the analysis. The proposed method to score the voices is described in Section 4,
and the experiments performed are presented in Section 5. Finally, in Section 6, the main
conclusions of this work are drawn.

2. Voice Banking and Personalized Synthetic Voices

Voice banking is an alternative to provide people with speech difficulties with a
personalized synthetic voice. In order to do that, the person has to record a number of
sentences. Using those sentences, a synthetic voice with similarity to the recordings will
be provided. Voice banking differs from message banking in that the last one just stores
the recorded sentences to be played back when needed exactly as recorded. The recorded
sentences will usually include expressions in which tone and emotion are of importance,
as can be saying ’I love you’, reading a bed-time story or even laughing. Instead, voice
banking uses the recorded sentences to obtain a synthetic voice that can be used within a
TTS system or more generally by an AAC device in daily communication. There are several
voice banking providers for English (see Ref. [30–35]). In general, it is required that the
person performs the recordings before the first symptoms of the disease are noticeable in
the voice, because as commented in the introduction, this can condition the final quality of
the synthetic voice. If this has already happened, some providers also offer the possibility
to repair the synthetic voice, applying model surgery techniques [36–38]. On the other
hand, the cited systems also differ in the number of sentences needed to be recorded (from
a few hundred to several thousands) as well as on the operating systems, browsers or
applications where the final user will be able to install it. Indeed, some AACs software
providers do not allow the use of external voices, so some voice-banking providers also
offer compatibility with the most popular commercial AACs software. Finally, also the cost
of the provided services varies from one provider to another.
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When it is impossible or very difficult for the user to make the recordings, normally
because the disease already affects his or her speech, they can choose a voice donor to make
the recordings for them. The donors are usually chosen from close family members or
friends. In Ref. [31], they recommend to provide two donors and offer a final synthetic voice
with mixed characteristics. In Ref. [32], a voice selected by the provider is offered to the user
among a set of thousands of voices, with characteristics similar to the provided recordings.

To the best of our knowledge, the web-based voice-banking service in Ref. [28] is the
only one provided for Spanish. In this portal, also Basque is offered, although the number
of users is comparatively very small.

This portal offers the possibility of obtaining a personalized synthetic voice in Spanish
and Basque. It makes use of a statistical synthesis engine based on hidden Markov models
(HMMs) [4]. Each user must record a total of 100 phonetically balanced sentences in
the selected language [27]. These are parameterized using ahocoder [9], a high-quality
vocoder that extracts Mel-cepstral coefficients (MCEP) of order 39, log- f0 and maximum
voiced frequency. These data are then used to adapt an average voice using state-of-the-art
adaptation techniques [39] based on Constrained maximum likelihood linear regression
plus maximum a posteriori adaptation (CMLLR+MAP). For Spanish, the average voice
was obtained with the subset ’phonetic’ from the Albayzin [40] database. It consists of
6800 sentences from 204 different speakers in which each one has recorded 160, 50 or
25 sentences. For Basque, the average voice was obtained using the database described
in [41]. This consists of two speakers (one female and one male) with four hours or speech
each. Currently, our voice bank has almost 9000 registered users.

3. Objective Measures Overview

In this section, we briefly describe the selected objective measures: two intrusive
objective measures typically used in speech enhancement, STOI [42] and ESTOI [43];
one also intrusive intelligibility measure based on information theory, SIIB [44]; and one
measure based on NISQA that estimates the mean opinion score (MOS) of the naturalness
of synthetic speech [45].

3.1. STOI and ESTOI

In the field of measuring the intelligibility of speech, several algorithms have been
proposed with the aim of replacing expensive subjective listening tests. Among them,
STOI [42] has proven to be good for evaluating intelligibility in signals to which time-
frequency weighting is applied. The method requires both the signal to be evaluated and a
clean time-aligned reference. It calculates the time frequency (TF) representation of both
signals with a discrete Fourier transform (DFT) of the windowed frames and, using a one-
third octave analysis, it groups the bins of the DFT into 15 bands and computes the norm of
each one, which is called the TF-unit. It uses an intermediate measure of intelligibility for
each TF-unit, which depends on N consecutive TF-units of both the signal to be evaluated
and the reference. Typically the value of N is such that the intermediate measure depends
on speech information from the last ≈ 400 ms. To calculate the global intelligibility measure,
the average of the intermediate intelligibility measurements between frames and frequency
bands is computed. This operation implies an independent contribution to the global
measure of each band.

One evolution of STOI is ESTOI [43], which unlike STOI does not assume independence
between frequency bands. This feature allows to better capture the effect of time-modulated
noise maskers. Both STOI and ESTOI evaluate the signals between 0 and 1.

The success of these measures has led to propose their use in several areas. STOI
has proven to predict intelligibility quite accurately in mobile phone output [46]; noisy
speech processed by ideal time-frequency masking and single channel speech enhancement
algorithms [47]; and speech processed by cochlear implants [48]. Additionally, it is also
robust against different types of languages, such as Mandarin [49], Danish [47] or Dutch [50].
STOI has been also used to evaluate synthetic speech, showing high correlation with
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MOS [51,52]. In Ref. [53], it was used to evaluate the intelligibility of dysarthric speech.
In this case, as a time-aligned reference signal was not available, so an utterance-dependent
reference signal was generated from several healthy speakers and then dynamic time
warping (DTW) was used to align the pathological signal and the reference signal.

3.2. SIIB

SIIB [44] estimates the amount of information shared between a talker and a listener
in bits per second. This measure is motivated by information theory, and suggests that
the speech process can be understood as the transmission of a message from a talker to
a listener. The message {M} can be thought of as a sequence of sentences or phonemes.
The talker encodes the message into a speech signal {X} and sends the signal through a
communication channel that may distort it and create a degraded speech signal {Y}. So,
the whole communication process is described by a Markov chain:

{M} → {X} → {Y} (1)

where {M} → {X} is the speech production channel and {X} → {Y} in the environmen-
tal channel.

This metric is based on the assumption that intelligibility is a function of the mutual
information rate between the message {M} and the degraded speech {Y}, so it needs the
signal before the distortion as reference. The authors state that this measure works better
in general conditions than other measures designed with a heuristic motivation and with
an specific distortion or dataset in mind. SIIB estimates the intelligibility in an open scale,
where an optimal signal obtains a score between 150 and 180 b/s.

3.3. NISQA-TTS

An important aspect to evaluate in synthetic voices is naturalness. In [45], a method
based on NISQA [54] is proposed to measure the naturalness of synthetic voices without
the need for a reference signal. The proposed prediction model is based on a convolutional
neural network long short-term memory (CNN-LSTM) network architecture. It was trained
using 16 databases with 12 different languages, so it is language independent and can be
used to evaluate naturalness in any TTS. The model is publicly available at [55], so it can
be used directly. As it estimates the naturalness in a MOS scale, its estimations can vary
between 1 and 5. For the rest of the paper, this method will be referred to simply as NISQA.

4. Proposed Methodology

In this section, we describe the method followed to obtain the objective measures. For
STOI, ESTOI and SIIB, the original recordings for each speaker are used as clean references
and aligned with the corresponding synthetic sentences. To obtain the NISQA score, no
processing of the synthetic signals is required.

4.1. STOI-ESTOI

To perform the alignment of the synthetic and reference signals, the first step is to
obtain the phonetic segmentation of the recordings. This is done by forced alignment using
Montreal forced aligner (MFA) [56]. This step will also provide the actual positions for
the pauses made by the speaker during the recordings, and the synthetic signals will be
generated using this information, thus with pauses at the same locations. In this way,
a parallel corpus of recordings and synthetic signals is available. However, the signals
will have different durations; therefore it will be necessary to align them. To do this,
although they could be aligned at sentence level, in our system, we perform an alignment
with DTW at the phoneme level. For the alignment, the cepstral distances between reference
and ‘target’ are calculated. The cepstral coefficients for the synthetic signals are obtained
directly from the adapted voice model, while for the reference signals, they must be
calculated. These cepstral coefficients were obtained using Ahocoder [9]. Additionally, it
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was necessary to synchronize the different frame rates used by the synthesis system and
STOI/ESTOI algorithms.

After these steps, a score can be obtained with the STOI and ESTOI algorithms for
each sentence. The final score for each speaker is the average of the scores obtained for all
available sentences.

4.2. SIIB

The SIIB measure also needs a clean time-aligned reference. For this reason, we used a
similar approach as with STOI–ESTOI. Thus, the same alignment was used and again the
frame rate of the synthesis system and the one used in SIIB algorithm were synchronized.
As SIIB authors warn that the score is not reliable for sentences shorter than 20 s, we
concatenate several sentences after DTW to ensure that all the stimuli to be evaluated are
long enough.

Finally, the SIIB score is obtained as the average score of all concatenated bunches.

4.3. NISQA

As this measurement does not require any reference, to calculate the donor’s NISQA
score, the score of all the previously generated synthetic sentences is calculated and
averaged.

5. Experiments

In this section, we describe the details of the experiments performed to score the
donors’ voices. In order to establish an upper limit for the scores, several synthetic voices,
obtained using similar synthesis techniques but generated from high quality professional
recordings, are also included in the scoring process. We call these voices ’Standard HTS
voices’ and the obtained scores are described first in this section. Then the scores for all
donors’ voices are obtained, and the best of each objective measure are selected as potential
good quality voices. Finally, the MOS evaluation to find the combination of objective
measures that brings the best results is described.

5.1. Evaluation of Standard HTS Voices

In order to set an upper limit for the scores, we obtained the scores of the four objective
measures for several high quality synthetic voices. These voices were trained using about
four hours of high quality recordings from professional speakers. The training was a
standard HTS training [57]. Six synthetic voices were used for this evaluation, obtained
from three professional speakers—two females and one male—each speaker recorded both
in Spanish (ES) and Basque (EU). The objective measures are language independent, so
the language should not affect the results. The same sentences used to train the voices
were used to obtain the scores because no other recordings were available from the same
speakers. The number of available sentences for each speaker is shown in Table 1.

Table 1. Standard HTS voices training corpus.

Voice Speaker Language Gender # of Sentences

F1-ES F1 ES F 3994
F1-EU F1 EU F 3797
F2-ES F2 ES F 3712
F2-EU F2 EU F 3831
M1-ES M1 ES M 3995
M1-EU M1 EU M 3799

Using the six synthetic voices, the objective measures were computed by averaging
the scores obtained over all the sentences. Notice that except for NISQA, the original
recordings are used as reference to calculate the score. The mean values and the standard
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deviations obtained for all the voices and for each measure are shown in Figure 1. As it can
be seen, the synthetic voices obtain similar scores for a given measure, without significant
differences among them. However, we can find some exceptions: for STOI and ESTOI, voice
M1-ES stands out for its high scores; for SIIB, there are no significant differences; and finally
for NISQA voice F2-ES has significantly higher score than the others, and M1-ES has the
lowest score. When looking at the data from the language perspective, it is remarkable that
the two voices from speaker M1 obtain significantly different values for the two languages,
showing lower scores for Spanish (ES) than for Basque (EU) only in NISQA, and the other
way round for STOI and ESTOI.

Figure 1. Mean values and standard deviation obtained for the objective measures for the Standard
HTS voices.

5.2. Objective Evaluation of the Donors’ Voices

The four objective measures were computed for the adapted synthetic voices available
in the voice bank [58]. To simplify the subjective evaluation (described in Section 5.3) only
Spanish was considered in the evaluation of donors’ voices. A total of 1090 donors’ voices
was used. As the adaptation is performed using 100 recorded sentences from the donor,
the same set of sentences was synthesized with each synthetic voice, and the original
recordings were used as reference.

Table 2 shows the first five candidate voices ranked by each scoring algorithm (the
speakers were arbitrarily named). Only the first five positions are shown for clarity reasons.
As it can be seen in the table, 5 voices (out of the 20 possible candidates) obtained the best
scores for more than one measure, so there are finally 15 final voice candidates occupying
the first 5 positions. Indeed, the only measure that shows a unique set of voices (i.e., it
has chosen five voices different from those chosen by the other measures in the first five
positions) is SIIB. The other three measures share some voices among them.

Considering that there is overlapping in the ranked voices, we also computed the
correlation coefficient ρ between the scores obtained for the different measures. The results
in Table 3 show that although STOI and ESTOI are highly correlated, this is not the case
for the other measures. The fact that STOI and ESTOI use a similar approach to estimate
intelligibility explains the high correlation between them. Additionally, considering that
NISQA measures naturalness and not intelligibility, a low correlation of this measure with
the other measures can be expected. SIIB, a measure of intelligibility, does not correlate
with any other measure, as corroborated by the selected set of speakers.
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Table 2. Best voices sorted by objective measure.

- STOI ESTOI SIIB NISQA

1st SPK01 SPK02 SPK03 SPK04
2nd SPK04 SPK04 SPK05 SPK06
3rd SPK07 SPK08 SPK09 SPK02
4th SPK02 SPK10 SPK11 SPK12
5th SPK10 SPK13 SPK14 SPK15

Table 3. Correlation ρ between different objective measures.

- STOI ESTOI SIIB

ESTOI 0.912 - -
SIIB 0.363 0.292 -

NISQA 0.449 0.476 0.258

5.3. MOS Evaluation

We performed an evaluation to determine which are the objective measures that lead
to the best speakers according to people’s preferences. For each measure, we selected the
5 best ranked synthetic voices, i.e., the 15 voices shown in Table 2. Then, 10 synthetic
sentences from the corpus used to compute the objective scores were selected for each
voice (some samples used in the evaluation can be found at https://aholab.ehu.eus/users/
agustin/demos/mdpi21/ accessed on 10 February 2022). Each participant scored the
quality of 5 randomly selected sentences per donor’s voice in a MOS scale (a total of
75 sentences). The participants were asked to score the sentences from 1 to 5 according to
how suitable they found the voice to be used as a communication voice by people with
speech impairments. A total of 25 people took part in the evaluation.

Figure 2 shows the MOS scores obtained by each voice, together with the 95% confi-
dence interval. The voices are ordered left-to-right from the highest to the lowest MOS.
For each voice, the measure (STOI, ESTOI, SIIB or NISQA) with that voice among the best
five is also shown. For example, SPK02 was among the first five positions for STOI, ESTOI,
and NISQA.

Figure 2. MOS results with 95% confidence interval.

https://aholab.ehu.eus/users/agustin/demos/mdpi21/
https://aholab.ehu.eus/users/agustin/demos/mdpi21/
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As it can be seen, the best voices according to MOS are selected by different objective
measures. Table 4 shows how the scores obtained by the objective measures correlate with
the evaluated MOS. The most correlated measure is ESTOI, which has its selected best
voices among the top seven positions in Figure 2. It is followed by STOI with its 5 selected
voices among the 13 top positions, NISQA with its 5 selected voices among the top 14, and
finally SIIB among the top 15.

Table 4. Correlations between MOS and objective measures.

STOI ESTOI NISQA SIIB

0.452 0.584 0.356 −0.199

Considering that each objective measure uses different criteria, we have investigated
whether a combination of the measures can produce a better estimation than the individual
measures. The method and results are described in the next subsection.

5.4. MOS Prediction

Using the available objective measures and the MOS scores obtained in the subjective
evaluation, we have built an estimator of the MOS based on linear regression. This predictor
may then be applied to the thousands of synthetic voices from the voice bank in order
to automatically select the ones with best MOS estimations to populate the voice catalog
offered to the voice bank users.

To be able to estimate the prediction ability of the linear regression a leave-one-out
strategy was applied: 15 different linear regression polynomials were built using in each
case data from 14 speakers to train and the remaining 1 to test. SIIB presents a special
difficulty in being included in the regression, as it is not possible to obtain one SIIB value
per sentence due to its minimum length requirement of 20 s to be reliably calculated.
As commented in Section 4.2, several sentences were concatenated to be able to reliably
calculate SIIB, and consequently there is no available value for each sentence. Taking
this issue into account, and considering also that SIIB correlates negatively with the MOS
obtained in the subjective evaluation and that three of the five voices selected according to
this measure have less than 3 in MOS, we decided not to include SIIB in the regression.

Each regression polynomial was evaluated over the 10 sentences from the speaker
not included in the training set. The mean value of the predicted MOS together with the
corresponding 95% confidence interval are shown in Figure 3.

We can see that the prediction is accurate with no significant differences for 8 out of
the 15 evaluated voices (voices SPK06, SPK12, SPK10, SPK02, SPK13, SPK09, SPK03, and
SPK11). For voices SPK08, SPK05 and SPK07, the MOS was underestimated, while for
SPK01 and SPK15, it was overestimated.

The correlation between the predicted MOS and the actual MOS obtained in the
evaluation is ρ = 0.546. Therefore, it is higher than the correlation obtained with all
objective measures individually (see Table 4), except for ESTOI, which has a slightly higher
correlation. This suggests that although using only ESTOI can produce a useful first
selection, combining it with other objective measures can help in considering other high-
quality voices that would otherwise be left out. Applying a suitable threshold over the
predicted MOS (higher than 3.5 for instance) removes most of the poor quality voices and
would populate the synthetic voice catalog mostly with voices of acceptable quality.
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Figure 3. Actual MOS vs. predicted MOS, mean and 95% confidence interval.

6. Conclusions and Future Work

The investigation of methods to objectively evaluate synthetic voices has gained
increased interest in the last years. Data-driven methods using deep neural networks
have also gained popularity. In this paper, we describe the experiments developed with
the aim of finding a method to select the best synthetic voices among a high number of
voices of unknown quality with a reduced set of sentences. Using several existing objective
measures of intelligibility and naturalness to rank the voices, we analyzed the performance
of each measure in relation to the ranking obtained with a MOS evaluation. The evaluated
measures were STOI, ESTOI, NISQA and SIIB as described in the paper.

The evaluated synthetic voices were obtained with statistical parametric synthesis
methods based on HMMs. The selected objective measures, however, were designed to
be applied in applications such as evaluation of speech in noise, speech enhancement
algorithms and others. In general, a reference signal is needed to obtain the measure (i.e.,
they are intrusive measures), which is not directly available in TTS. The non-intrusive
method NISQA was developed using data extracted from challenges where the participants
competed with very high quality synthetic voices, while the quality of the voices here
presented can be described as being of low-to-medium quality. On the other hand, some
measures aim at evaluating naturalness (NISQA), while others (STOI, ESTOI and SIIB)
are designed to measure intelligibility. Additionally, some measures (SIIB) need several
sentences of speech to be reliably obtained. The decision of which is the most suitable
measure is not straightforward, and this was the main motivation of the work presented in
this paper.

The first conclusion that can be drawn from the experiments is that each measure
provides a different set of best voices candidates. The measure that best correlates with the
performed MOS evaluation scores is ESTOI. To test if a combination of measures would
provide a better result than a single measure, a simple linear regression algorithm was built
to predict MOS, considering all the individual measures, except SIIB. The correlation with
actual MOS scores is slightly smaller than the one obtained by ESTOI, but higher than the
one obtained with the rest of individual measures. A more elaborate prediction algorithm
could provide more accurate results and is left for future work.

One limitation of the work is the fact that only those voices automatically selected
and ranked by the objective measures were evaluated with a MOS evaluation. In addition,
we arbitrarily set a boundary on the top five positions, in order to limit the number of
candidates to be subjectively evaluated. It is of course possible that voices which are further



Appl. Sci. 2022, 12, 2473 11 of 13

away from that boundary could obtain better MOS scores. However, adding more positions
would have increased the number of voices to evaluate, which in turns requires a higher
number of participants. A crowd sourcing based evaluation could help with this issue. We
plan to use such a technique to check the performance of the predictor over the entire set of
available voices.

The voice bank portal is being updated to use neural network based synthesis tech-
niques. The developed method can then be applied to the new obtained adapted voices so
a new catalog is generated.
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