
University of the Basque Country (UPV/EHU)

Department of Communications Engineering
Faculty of Engineering in Bilbao

NQaS | Networking, Quality and Security Research Group

Thesis submitted for the degree of Doctor of Philosophy

Neural Combinatorial Optimization as an enabler
technology to design real-time Virtual Network

Function placement decision systems

Ruben Solozabal

Supervisors: Dr. Fidel Liberal and Dr. Bego Blanco

October, 2020

(cc) 2021 Rubén Solozabal Ochoa De Retana (cc by-nc 4.0)

Ruben Solozabal

Neural Combinatorial Optimization as an enabler technology to design real-time Virtual Network Function

placement decision systems

Thesis submitted for the degree of Doctor of Philosophy, October, 2020

Supervisors: Dr. Fidel Liberal and Dr. Bego Blanco

University of the Basque Country (UPV/EHU)

NQaS | Networking, Quality and Security Research Group

Faculty of Engineering in Bilbao

Department of Communications Engineering

Plaza Ingeniero Torres Quevedo, 1

48013 - Bilbao

Resumen ejecutivo

El tráfico y el número de servicios ofrecidos a través de la red móvil están experimentando un
aumento exponencial. La creciente demanda conlleva una mejora de recursos en infraestructura
continua para seguir manteniendo una experiencia de usuario satisfactoria. Hasta el momento,
esta demanda ha sido solventada evolucionando el marco tecnológico existente en la red móvil
(3G, 4G), consiguiéndose una mejora en capacidad de red, cobertura, así como en eficiencia de
la misma. Sin embargo, las propuestas de modelo 5G apuntan por un cambio de paradigma, la
siguiente generación de red móvil debe además soportar servicios dispares tales como servicios
de ultra-baja latencia, Internet of Things, aplicaciones de misión crítica, etc.

A fin de dar soporte a servicios con características tan distintas sobre una misma infraestructura, la
red 5G se fundamenta sobre tecnologías de virtualización de red (Network Function Virtualization
-NFV- y Software Defined Networks -SDN-). Esto representa un avance significativo en la industria
de las telecomunicaciones. La virtualización de red otorga una flexibilidad sin precedentes a
la hora de gestionar no solamente los recursos de red sino también los servicios que se ofertan
sobre ella. En este sentido, los despliegues tradicionales realizados con elementos de red físicos
’hard-wired’ dan paso funciones de red virtuales (VNF) capaces de ejecutarse sobre plataformas
de cómputo general. Lo que facilita el despliegue y mantenimiento de los mismos, reduciendo los
costes operativos asociados.

Además, la arquitectura NFV se encarga de monitorizar y garantizar el cumplimiento de los
requerimientos de servicio. Para ello existe una interacción vertical entre los distintos estratos de
la infraestructura con el objetivo de mantener la calidad de servicio acordado. En este sentido, la
flexibilidad que otorga la red permite realizar tareas de optimización a fin de mejorar la eficiencia
de la red. Optimizar los recursos de la infraestructura es vital para la viabilidad de esta solución.
Sin embargo, la obtención de algoritmos capaces de adaptarse al estado de la red supone un reto
tecnológico. En este sentido, uno de los aspectos más relevantes propuestos es la capacidad de
otorgar inteligencia directamente a la red mediante la utilización de Machine Learning.

Objetivo

El objetivo de esta tesis es proponer mecanismos eficientes de despliegue de servicios sobre arqui-
tecturas 5G mediante esquemas NFV. En particular, se han estudiado mecanismos de optimización
en el ámbito del «VNF Placement». La optima colocación de recursos en la infraestructura es
un problema de combinatoria discreta NP-hard en el que se busca una solución que optimice el
despliegue dadas las restricciones vinculadas al tipo de servicio contratado y las características
de la infraestructura. Concretamente, el objetivo perseguido es la minimización del consumo
energético.

Existe una gran variedad de estudios que analizan algoritmos de «VNF Placement» que van desde
métodos exactos (mathematical programming o constraint programming) los cuales suponen un
alto coste computacional además de requerir un elevado tiempo de obtención de soluciones; a

v

algoritmos heurísticos y metaheurísticos utilizados para obtener aproximaciones al problema en
tiempos razonables. Sin embargo, dadas las características particulares del entorno, es necesario
particularizar el estudio y buscar soluciones capaces de adaptase a los requerimientos de sistema.
En este sentido se busca que la solución responda a las peticiones de servicio de forma interactiva,
lo que obliga a utilizar métodos de resolución con tiempos cercanos a real-time. Esto limita
notablemente las alternativas que se pueden utilizar a tal propósito, únicamente siendo viable
entre los métodos de resolución clásicos la utilización de los algoritmos heurísticos constructivos.
Ya que dichos algoritmos garantizan una solución, la cual se construye de forma directa.

Sin embargo, particularizar algoritmos heurísticos para la resolución de problemas de combinato-
ria es una labor tediosa que requiere de una experiencia específica en el ámbito de aplicación.
Además la solución ha de ser capaz de adaptarse al entorno dinámico que supone la infraestruc-
tura. Por tanto, la capacidad para automatizar este proceso es de vital importancia para conseguir
una orquestación inteligente de la red. Para este propósito, parece razonable la utilización de
Machine Learning. En concreto, esta tesis hace uso de Neural Combinatorial Optimization, una
línea de investigación que emplea Reinforcement Learning para aproximar soluciones de forma
rápida a problemas de combinatoria discreta.

La propuesta de solución está alineada con la tendencia de incluir Inteligencia Artificial (AI) en la
gestión y orquestación de la red 5G (e.g., gestión de recursos radio, gestión de movilidad, gestión
de red, gestión de servicios). Se sigue para ello la actividad del Study Group de ITU-T sobre
Machine Learning en Redes Futuras incluyendo 5G.

El potencial de la solución técnica depende de varios factores como: la garantía de cumplimiento
de los acuerdos de servicio (SLA), la capacidad del método para obtener soluciones en un tiempo
delimitado, o la utilización de tiempos de entrenamiento razonables que permitan reevaluar el
modelo cuando se detecte un cambio de la infraestructura.

Desarrollo

La tesis aquí presente hace uso de Machine Learning para afrontar problemas de optimización
combinatoria, en particular, de Neural Combinatorial Optimization (NCO). NCO permite inferir
de forma autónoma un método de resolución para problemas de combinatoria basándose en la ex-
periencia que un agente obtiene interactuando con el problema. La ventaja de esta solución reside
en que una vez el modelo embebe las características del problema, este método permite obtener
soluciones aproximadas de forma rápida, basándose en la extrapolación de comportamientos que
han sido positivos durante el aprendizaje.

En los problemas de combinatoria, las técnicas de aprendizaje supervisado no son aplicables, ya
que dichos métodos requieren el cálculo previo de un número elevado de soluciones optimas,
algo inviable en problemas NP-hard. Por ello, NCO hace uso de Reinforcement Learning para este
propósito. Reinforcement Learning es un tipo de aprendizaje autónomo que explora el problema
y refuerza de forma positiva las combinaciones que resultan en una mayor recompensa. Para lo
cual solamente es necesario definir una función de coste.

Para desarrollar dicho modelo, el problema de «VNF Placement» se modeliza como un proceso de
decisión de Markov (MDP) ante el cual un agente recoge una cadena de servicio y de forma itera-
tiva computa las probabilidades condicionales de posicionamiento para cada elemento basándose
en el aprendizaje previamente adquirido (ver Fig. 0.1). A tal fin, el agente requiere gestionar
secuencias para poder abordar servicios de tamaño variable. Los avances en Sequence Learning
obtenidos recientemente gracias a campos en expansión como Neural Machine Translation han

vi

Acción

Agente

Problema combinatoria

Estado Recompensa

Fig. 0.1.: Esquema para resolución de problemas de combinatoria mediante Reinforcement Learning.

contribuido a la generación de estructuras de redes neuronales que pueden ser aplicadas para
este propósito.

El agente desarrollado construye soluciones al problema de forma incremental. Este método
supone un avance sobre las redes encoder/decoder utilizadas habitualmente en NCO y prove-
nientes de Sequence-to-sequence Learning. En concreto, se formula el problema siguiendo el
framework clásico de un proceso de RL, dónde la solución se compone iterativamente basándose
no solamente en la definición del problema sino también en la evolución de la misma en el
entorno. Esto permite al agente comprobar la evolución de la solución y tomar cada decisión de
placement con una mayor certeza sobre los estados intermedios del problema. Esto supone una
ventaja respecto a los anteriores modelos encoder/decoder, ya que estos recurrían únicamente a
la memoria interna almacenada en decodificación para tal propósito.

En concreto en la tesis se han evaluado dos modelos para generar el agente: (a) un modelo
basado en redes recurrentes (RRN) y (b) un modelo basado completamente en mecanismos de
atención sobre la propia secuencia. En el primer caso se hace uso de redes Long Short-term
Memory (LSTM) para adquirir una representación de la definición del problema. Mientras que en
el segundo caso, se utiliza Transformer network para tratar la secuencia de entrada sin necesidad
de recursión. Sino que se codifica la posición relativa de cada elemento de la secuencia y se
establece un mecanismo de atención que permite a la red focalizar sobre los elementos que más
influyen en cada acción.

En este trabajo se han evaluado técnicas de aprendizaje provenientes de las dos ramas principales
de investigación en Reinforcement Learning: Policy Optimization y Temporal-Difference Learning,
incluyendo la hibridación entre ambas que generan los algoritmos Actor-Critic. En cuanto a la
estrategia seguida en la solución final se trata de un algoritmo Monte-Carlo Policy Gradients with a
self-competing baseline. Los mecanismos basados en Policy Optimization se basan en estimaciones
unbiased pero con alta varianza, algo que dificulta la convergencia del modelo. Para mejorar
este comportamiento se suele añadir una red neuronal de apoyo o «critic» que estima la función
de valor dependiente del estado. En nuestro caso, el algoritmo empleado consigue disminuir
la varianza durante el entrenamiento sin emplear una red neuronal auxiliar. Únicamente la
estocasticidad que presenta la política hasta que converge durante el aprendizaje.

El algoritmo de aprendizaje aquí presentado explota la implementación escogida en el modelo.
En concreto se ha optado por hacer uso de aceleración por GPU tanto para el computo de la
red neuronal como en la evaluación del entorno. Para ello la definición del problema también
se ha vectorizado. El algoritmo propuesto se beneficia de la facilidad que aporta esta solución
para paralelizar el problema y la utiliza para realizar una aproximación en la distribución de
probabilidades de la política, de donde es posible obtener una función de estimación de la
recompensa.

vii

Además, hasta la fecha, Neural Combinatorial Optimization no afrontaba problemas con restric-
ciones, o en caso de hacerlo las restricciones se embebían dentro del modelo mediante el uso
de máscaras que restringiesen el espacio de acciones con el fin de obtener soluciones factibles.
Sin embargo, esto limita de forma explícita los problemas que se pueden afrontar ya que la red
utilizada debe de ser diseñada específicamente para el problema, y además esta técnica no puede
aplicarse a todo tipo de restricciones. En este respecto se decide emplear formulación proveniente
de safe-RL a fin de embeber las restricciones en el algoritmo de aprendizaje, y permitir por tanto
al algoritmo tener constancia de la cuantía de insatisfacción de las restricciones para guiar al
método hacia una política que las minimice.

Con el fin de mejorar los resultados obtenidos, se evalúan diferentes arquitecturas de redes
neuronales y se realiza un estudio de convergencia. La función objetivo en NCO es una función
de muy alta dimensionalidad, no-convexa y con ruido proveniente de aproximar el gran espacio
combinacional con pequeños muestreos del mismo. Con el fin de obtener beneficios en su
optimización se ha avanzado en las siguientes direcciones:

• Aplicación de técnicas de suavizado de la función de coste. En concreto de técnicas de
regularización de la entropía con el fin de mejorar la exploración y poder converger a
mejores políticas. En determinadas circunstancias una política con mayor entropía puede
suavizar la función y llegar por tanto a conectar óptimos locales. Lo que permite obtener
mejores resultados con mayores learning rates.

• Mejorar la estabilidad del aprendizaje evaluando modelos de aprendizaje basados en trust-
region optimization. El uso de un paso de tamaño fijo durante el aprendizaje en vanila Policy
Gradients puede llevar a una degradación en la política y por tanto a un mal rendimiento
de la red. Trust Region Policy Optimization (TRPO) restringe la divergencia con la nueva
distribución que se obtiene en cada iteración en el aprendizaje. También se ha evaluado
Proximal Policy Optimization (PPO) basado en un modelo subrogado de la técnica anterior.

El modelo resultante se ha validado en un problema de optimización combinatoria clásico
como es el Job Shop Scheduling Problem, con el fin de disponer de una referencia contrastada
con las que comparar el desempeño del modelo. Las soluciones obtenidas mediante NCO son
comparadas con las obtenidas por algoritmos heurísticos, metaheurísticos y los principales solvers
de constraint programming en la industria: CPLEX de IBM, Gecode y CP-SAT de Google Or-Tools.
La experimentación realizada en el problema prueba la viabilidad de la propuesta a la hora de
computar soluciones de manera rápida. En particular, se observa que para el rango bajo-medio de
instancias del problema el modelo es capaz de conseguir resultados superiores a los algoritmos
heurísticos evaluados. Sin embargo, a medida que el tamaño de instancia crece esta ventaja se
desvanece. El modelo requiere de una mayor exploración dado el mayor espacio combinacional,
que de no materializarse (debido al mayor tiempo de aprendizaje requerido) acaba resultando en
la inferencia de heurísticas sencillas por parte del agente.

Finalmente, el modelo desarrollado se utiliza para afrontar el problema de «VNF Placement»
donde se comprueba la validez de la solución en un entorno de red virtualizado NFV. En dicho
problema se verifica la versatilidad del modelo a la hora de afrontar diversas restricciones. Los
resultados obtenidos demuestran que ambos modelos propuestos (a) un modelo basado en
redes recurrentes (RRN) y (b) un modelo basado completamente en mecanismos de atención,
son válidos para afrontar el problema. Los resultados obtenidos en ambos son similares, por
lo que se llega a la conclusión de que el codificador secuencial y en general la red neuronal
no supone un límite para el rendimiento del modelo, sino que se ha de buscar mejoras en el
método de aprendizaje. Con respecto a la comparativa de resultados, el modelo NCO muestra

viii

una capacidad para computar soluciones cercanas a los resultados obtenidos por solvers de
constraint programming (aunque en una fracción del tiempo que estos requieren). En particular,
para instancias pequeñas el modelo infiere una política cercana a la óptima; y para modelos de
mayor complejidad, demuestra ser superior a algoritmos genéticos, los cuales son utilizados como
referentes de algoritmos metaheurísticos.

ix

Abstract

The Fifth Generation of the mobile network (5G) represents a breakthrough technology for
the telecommunications industry. 5G provides a unified infrastructure capable of integrating
over the same physical network heterogeneous services with different requirements. This is
achieved thanks to the recent advances in network virtualization, specifically in Network Function
Virtualization (NFV) and Software Defining Networks (SDN) technologies. This cloud-based
architecture not only brings new possibilities to vertical sectors but also entails new challenges
that have to be solved accordingly. In this sense, it enables to automate operations within the
infrastructure, allowing to perform network optimization at operational time (e.g., spectrum
optimization, service optimization, traffic optimization). Nevertheless, designing optimization
algorithms for this purpose entails some difficulties. Solving the underlying Combinatorial
Optimization (CO) problems that these problems present is usually intractable due to their
NP-hard nature. In addition, solutions to these problems are required in close to real-time due to
the tight time requirements on this dynamic environment. For this reason, handwritten heuristic
algorithms have been widely used in the literature for achieving fast approximate solutions on
this context.

However, particularizing heuristics to address CO problems can be a daunting task that requires
expertise. The ability to automate this resolution processes would be of utmost importance
for achieving an intelligent network orchestration. In this sense, Artificial Intelligence (AI)
is envisioned as the key technology for autonomously inferring intelligent solutions to these
problems. Combining AI with network virtualization can truly transform this industry.

Particularly, this Thesis aims at using Neural Combinatorial Optimization (NCO) for inferring
end solutions on CO problems. NCO has proven to be able to learn near optimal solutions on
classical combinatorial problems (e.g., the Traveler Salesman Problem (TSP), Bin Packing Problem
(BPP), Vehicle Routing Problem (VRP)). Specifically, NCO relies on Reinforcement Learning
(RL) to estimate a Neural Network (NN) model that describes the relation between the space of
instances of the problem and the solutions for each of them. In other words, this model for a new
instance is able to infer a solution generalizing from the problem space where it has been trained.
To this end, during the learning process the model takes instances from the learning space, and
uses the reward obtained from evaluating the solution to improve its accuracy.

The work here presented, contributes to the NCO theory in two main directions. First, this work
argues that the performance obtained by sequence-to-sequence models used for NCO in the litera-
ture is improved presenting combinatorial problems as Constrained Markov Decision Processes
(CMDP). Such property can be exploited for building a Markovian model that constructs solutions
incrementally based on interactions with the problem. And second, this formulation enables
to address general constrained combinatorial problems under this framework. In this context,
the model in addition to the reward signal, relies on penalty signals generated from constraint
dissatisfaction that direct the model toward a competitive policy even in highly constrained

xi

environments. This strategy allows to extend the number of problems that can be addressed
using this technology.

The presented approach is validated in the scope of intelligent network management, specif-
ically in the Virtual Network Function (VNF) placement problem. This problem consists of
efficiently mapping a set of network service requests on top of the physical network infrastructure.
Particularly, we seek to obtain the optimal placement for a network service chain considering
the state of the virtual environment, so that a specific resource objective is accomplished, in
this case the minimization of the overall power consumption. Conducted experiments prove the
capability of the proposal for learning competitive solutions when compared to classical heuristic,
metaheuristic, and Constraint Programming (CP) solvers.

xii

Acknowledgement

I would like to thank to Prof. Fidel Liberal and Prof. Bego Blanco for their supervision, without
whom this work would not have been possible. I further thank Prof. Josu Ceberio from the
Department of Computer Science and Artificial Intelligence of the University of the Basque
Country for the guidance and feedback provided throughout this project. And specially, I wish
to convey my gratitude to Prof. Martin Takáč from the Industrial and Systems Engineering
Department of Lehigh University for the encouragement and technical advice given during my
research stay, which really enabled me to progress in this field of knowledge.

Last but not least, I would like to thank to all my colleagues for their support and patience during
the preparation of this Thesis. The multiple discussions and meetings formed a great enrichment
to my research.

xiii

Contents

1 Introduction 1
1.1 Context and motivation of the work . 1
1.2 Background on Combinatorial Optimization . 3

1.2.1 Exact methods . 3
1.2.2 Metaheuristic algorithms . 4
1.2.3 Heuristic algorithms . 5

1.3 Reinforcement Learning for intelligent heuristics 6
1.4 Neural Combinatorial Optimization for 5G network optimization 6
1.5 Thesis objectives . 7
1.6 Thesis structure . 8

2 State-of-the-Art of Neural Combinatorial Optimization 10
2.1 Machine Learning for solving CO problems . 10

2.1.1 Learning Methods . 11
2.1.2 Algorithmic Structures . 11

2.2 Neural Combinatorial Optimization . 13
2.2.1 Background . 13

2.3 Sequence-to-sequence models for NCO . 15
2.3.1 Recurrent Neural Networks . 16
2.3.2 Recurrent sequence-to-sequence models for solving CO problems 18
2.3.3 Transformer network for solving CO problems 20

2.4 Challenges of Neural Combinatorial Optimization 21
2.5 Conclusions . 22

3 Framework for a constrained Markovian NCO model 23
3.1 Baseline Framework . 23
3.2 NCO on a Markovian RL approach . 24
3.3 Aspects to be considered on NCO . 27
3.4 Building blocks of NCO . 28

3.4.1 Learning algorithms . 28
3.4.2 Proposal for a Markovian neural agent 30

3.4.2.1 Recurrent encoder-based attention mechanism 31
3.4.2.2 Transformer encoder-based attention mechanism 32
3.4.2.3 State-based attention mechanism 33

3.4.3 Constraint management in NCO . 34
3.4.3.1 Limitations of Action-masked Networks 34
3.4.3.2 Background on Constrained RL 34
3.4.3.3 Reward constrained policy optimization 35

3.4.4 Optimization algorithms . 39

xv

3.4.4.1 Momentum-based optimizers 40
3.5 Conclusions . 41

4 Proposal for a model building process and experimentation 43
4.1 Motivation for studying the learning process in a toy CO problem 44
4.2 Methodology for improving the learning process 45

4.2.1 Convergence analysis . 45
4.2.2 Enhance exploration strategies in deep RL 46

4.2.2.1 Entropy Regularization . 47
4.2.2.2 Intrinsic Rewards as Exploration Bonuses 50

4.2.3 Monotonic improvements with Trust-region optimization 52
4.2.3.1 Trust Region Policy Optimization 53
4.2.3.2 Proximal Policy Optimization 54
4.2.3.3 Implementing Trust-region optimization using OpenAI framework 55

4.2.4 Improving the model with a self-competing strategy 60
4.2.5 Search strategies . 62

4.3 Proposed framework for addressing NCO . 63
4.4 Experimentation on the Job-shop Scheduling Problem 64

4.4.1 Job-shop Scheduling Problem with limited idle time 64
4.4.2 Particularized models . 64
4.4.3 Learning algorithm: PPO with self-competing baseline 66
4.4.4 Results on the Job Shop Problem . 66

4.5 Conclusions . 70

5 Use-case: Application for 5G real-time placement decision systems 71
5.1 Introduction to Network Function Virtualization 72

5.1.1 Benefits of Network Function Virtualization 73
5.1.2 Description of the ETSI-NFV architecture 73
5.1.3 Network service creation process . 74

5.2 VNF Placement Optimization . 75
5.2.1 Related work on the VNF Placement problem 76
5.2.2 VNF Placement problem formalization 77

5.3 Experimentation details . 80
5.3.1 Model implementation . 81
5.3.2 Performance comparison . 84
5.3.3 Results . 85
5.3.4 Learning and inference times . 88

5.4 Conclusions . 89

6 Discussion 91
6.1 Performance comparison between recurrent and attentional models for NCO . . . 91
6.2 Graph neural networks applied to NCO . 92
6.3 NCO in combination with Tree-Search strategies 92
6.4 RL to enhance Metaheuristic algorithms . 93
6.5 Discussion on the ITU-T approach for introducing ML in 5G 93
6.6 Conclusions . 94

7 Final conclusions, contributions and broader impacts 95

xvi

7.1 Thesis coverage . 95
7.2 Main contributions . 96
7.3 Final conclusions . 97
7.4 Thesis publications . 97
7.5 Future Work . 99
7.6 Broader Impacts . 99

Appendix A Annex: Operations Research 101
A.1 Mathematical Programming (MP) vs Constraint Programming (CP) 101
A.2 Logical Conditions . 102

Appendix B Annex: Reinforcement Learning 103
B.1 Markov Decision Process . 103

B.1.1 Definition . 103
B.1.2 Value Functions . 105
B.1.3 Bellman equations for the Value Functions 105

B.2 Planning by Dynamic Programming . 108
B.2.1 Policy Evaluation . 108
B.2.2 Policy Iteration . 108
B.2.3 Value Iteration . 109

B.3 Model-Free Learning: Value-based Learning . 109
B.3.1 Value-based Prediction . 109
B.3.2 Value-based Control . 112

B.4 Model-Free Learning: Policy-based Learning . 117
B.4.1 Policy Gradients . 117
B.4.2 Baseline . 119

B.5 Actor-Critic methods . 121

Appendix C Annex: Job Shop Problem 124
C.1 Heuristic and metaheuristic algorithms for the Job Shop Problem 124
C.2 Implementation details . 124
C.3 Run times . 125

Bibliography 131

xvii

List of Abbreviations

AC Actor Critic

AI Artificial Intelligence

CO Combinatorial Optimization

CP Constraint Programming

CPU Central Processing Unit

DL Deep Learning

DNN Deep Neural Network

DP Dynamic Programming

FFN Feed-forward Neural Network

GNN Graph Neural Network

GPU Graphics Processing Unit

IS Importance Sampling

JSP Job-Shop Scheduling Problem

MC Monte-Carlo

MCTS Monte-Carlo Tree Search

MDP Markov Decision Process

ML Machine Learning

MP Mathematical Programming

NCO Neural Combinatorial Optimization

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure

NFVO Network Function Virtualization Orchestrator

NLP Natural Language Processing

NN Neural Network

OR Operations Research

PG Policy Gradients

PN Pointer Network

POMDP Partially Observable Markov Decision Process

xix

QoS Quality of Service

RCPO Reward Constrained Policy Optimization

RL Reinforcement Learning

RNN Recurrent Neural Network

SBA Service-Based Architecture

SFC Service Function Chaining

SGD Stochastic Gradient Descent

SL Supervised Learning

SLA Service Level Agreement

TD Temporal-Difference

TPU Tensor Processing Unit

TSP Travelling Salesman Problem

VM Virtual Machine

VNF Virtual Network Function

VNFD Virtual Network Function Descriptor

VNFM Virtual Network Function Manager

VRP Vehicle Routing Problem

xx

1Introduction

„Reinforcement Learning is the science of
decision making.

— David Silver
Head Researcher of Google DeepMind

Contents
1.1 Context and motivation of the work . 1

1.2 Background on Combinatorial Optimization 3

1.2.1 Exact methods . 3

1.2.2 Metaheuristic algorithms . 4

1.2.3 Heuristic algorithms . 5

1.3 Reinforcement Learning for intelligent heuristics 6

1.4 Neural Combinatorial Optimization for 5G network optimization 6

1.5 Thesis objectives . 7

1.6 Thesis structure . 8

1.1 Context and motivation of the work

THe next iteration of the mobile telecommunication network, 5G, is called to introduce a major
transformation within its transition into network virtualization. The facilities in network

automation this infrastructure provides will enhance network efficiency, in addition to providing
network operators the flexibility to quickly react to fluctuations in the traffic demand. In this
framework, real-time decision making systems are envisioned as a key element for achieving
optimal management decisions. Network optimization is pursued at different network stages,
e.g. spectrum optimization, service optimization, traffic optimization. In order to achieve this
objective, fast approximate solutions are required to be obtained on the underlying Combinatorial
Optimization (CO) problems that arise under the different network configurations. The ability to
automate these optimization processes would be of utmost importance for achieving an efficient
network orchestration.

In this regard, one wonders whether the outstanding results that Artificial Intelligence (AI)
has recently obtained in strategic thinking can be applied to intelligent network orchestration.
Particularly, this work seeks to build a model that autonomously learns from the environment
interacting with it, and uses the experience inferred to produce solutions on novel network
scenarios. This ability to generalize intelligent decision would be used for optimizing the network
utilization. To this end, Reinforcement Learning (RL) [108], an specific area of Machine
Learning (ML), is considered. RL is a reward oriented technique whose aim is to explore an
environment and learn from its own experiences how to lead the agent to maximize the return of
its actions.

1

Mathematics

Economics

Computer Science

Neuroscience

Psychology

Engineering

Bounded
Rationality

Machine
Learning

Optimal
control

Operations
Research Conditioning

Reward
system

Reinforcement
Learning

Fig. 1.1.: Applicability of Reinforcement Learning to different fields of study. Recreated from [103].

RL is an increasingly important technology for developing highly-capable decision systems in
complex environments. It has proved to offer a viable path to solving hard sequential decision-
making problems that cannot currently be solved by any other approach. For example, it has
achieved superhuman performance in complex games as Go [105], real-time strategy games as
Starcraft [119] and Dota [19]; but also in other complex domains as controlling robotics [100]
or serving optimized content to users [43]. Although this technology is still far to serve as an
"off-the-shelf" solution, latest RL algorithms are reported to be successfully transferred from one
task to another with no task-specific changes and little to no hyperparameters tuning. This is
the ultimate goal of artificial intelligence, obtaining an General AI capable of adapting to a wide
variety of problems without requiring a specific configuration.

The success achieved in RL has aroused the interest to build models for solving problems of a
wide variety of disciplines. In the end, it is a fundamental science that studies the optimal way to
make decisions. As RL makes almost no assumptions on the problem setting or its structure, it can
be applied in practically all settings, and forces designed algorithms to be adaptive to many kinds
of challenges. As depicted in Fig. 1.1, RL is being used to undertake decision-making problems
that traditionally the different sciences have approached particularizing resolution models to
better suit their goals.

In the particular interest of this Thesis, RL has applicability in Operations Research (OR), specif-
ically for achieving rapid approximations on Combinatorial Optimization (CO) problems. CO
is the science concerned with finding an optimal or close to optimal solution among a finite
collection of possibilities. CO problems are present in a vast number of real applications: e.g.,
computing optimal routes, scheduling problems, supply chain or in the scope of this work,
network optimization. So far, combinatorial problems have been approached from the applied
mathematics and computer science perspective. In that sense, the resolution methods traditionally
used to tackle these problems can be divided into exact methods, that guarantee finding optimal
solutions; and heuristics/metaheristics, that trade off optimality for computational cost. RL
adds a new approach to these problems, by providing a method that autonomously learn
solutions to the problems without requiring any hand-engineering reasoning. This makes
RL a compelling option with the potential to become an important milestone on the path toward
approaching these problems.

2 Chapter 1 Introduction

1.2 Background on Combinatorial Optimization
Combinatorial Optimization (CO) is the science that studies finding the optimal solution from
a finite set of discrete possibilities. An instance of a combinatorial problem is defined by a
set of candidate solutions (i.e. the search space Ω) and an objective function. Solving such a
problem requires finding the solution that maximizes or minimizes the given objective function.
In practice, certain combinatorial problems are considered computationally intractable. In terms
of complexity, these problems are usually NP-hard [41]. Under the assumption that P 6= NP1

there is no algorithm that in a deterministic manner, obtains optimal solutions consistently for all
inputs in a reasonable time.

Historically, combinatorial problems were approached with exact algorithms that guarantee
the optimality of the solution. Conversely, for NP-hard problems exact methods do not run in
polynomial time, and thus, for large instances these methods are no longer a feasible option.
Today, many of the combinatorial problems studied in Operations Research are complex problems
classified, according to the theory of complexity, in this category. Therefore, an algorithm to
efficiently solve them has not been discovered yet. For this reason, an extensive work has
been done in OR to find approximation methods that better suit these problems (see Fig. 1.2).
Nowadays, there are three main approaches to such problems:

- exact methods,
- metaheuristic algorithms,
- and heuristic algorithms.

1.2.1 Exact methods
As mentioned, only for some combinatorial problems it is possible to find efficient exact algorithms.
For example, the Shortest Path Problem, under some assumptions, can be solved by the Dijkstra or
Bellman-Ford algorithms, obtaining optimal solutions in polynomial time. However, this is not the
case for problems classified as NP-hard. For these problems, exact methods have an exponential
computational cost, so that the time to solve the problem grows exponentially with the number
of variables. Several paradigms can be used to obtain exact solutions at least in theory, these are
Mathematical Programming and Constraint Programming. However, in practice, these methods
are executed until a good enough solution is obtained.

Mathematical Programming (MP)

Mathematical Programming (MP) requires that the problem is classified in a well-defined mathe-
matical category such as Linear Programming (LP), Mixed Integer Linear Programming (MIP),
Quadratic Programming (QP), etc. For problems that fall in one of these categories a mathemat-
ical program is formulated. This program consists on a set of decision variables, an objective
function to maximize or minimize, and a set of constraints equations. This paradigm relies on
specific search algorithms that are used depending on the problem classification. Currently, there
are commercial solvers (e.g. IBM Cplex, Gurobi, AMPL, OPL, etc.) that facilitate this resolution
process.

1The complexity class P contains all decision problems that can be solved exactly in polynomial time on a deterministic
machine. The NP class makes reference to "Nondeterministic Polynomial" problems that can be solved exactly in
polynomial time on a nondeterministic machine. It is generally assumed that P 6= NP . An optimization problem X
is NP-hard if there is a NP-complete decision problem Y that can be reduced to X in polynomial time (Garey et al.,
1979) [41].

1.2 Background on Combinatorial Optimization 3

A representative algorithm used in MP is the Simplex algorithm that, although exponential on the
worst case, is routinely used to solve LPs in polynomial time. Other algorithms based on implicit
enumeration as Branch-and-Bound, can be very effective for practical MIP. This method begins by
finding the optimal solution through the relaxation of the problem without the integer constraints
(via standard linear or nonlinear optimization methods). If in this solution, the decision variables
with integer constraints have integer values, then no further work is required. If one or more
integer variables have non-integral solutions, the Branch-and-Bound method chooses one such
variable and branches, creating two new subproblems where the value of that variable is more
tightly constrained. These subproblems are solved and the process is repeated, until a solution
that satisfies all of the integer constraints is found.

Constraint Programming (CP)

Using Constraint Programming (CP) the problem is also expressed in a declarative fashion as in
mathematical programming. However, CP technology is based primarily on computer science
fundamentals, such as logic programming and graph theory. In contrast to MP, which is based on
numerical linear algebra.

CP is used when there are complex logical and arithmetic relationships between decision variables.
E.g., in sequencing or scheduling problems. CP works first reducing the set of possible values of
the decision variables that satisfy all the constraints by using logical, graph-theoretic, arithmetic,
and other arguments. When the deduction of some values from the decision variable’s domain
are not possible, this information is propagated through the constraints perhaps enabling further
deductions. Various search strategies are also used until a value is assigned to every decision
variable, that is, until a solution is found. After a first solution is found, the search proceeds to find
further solutions with better objective values. CP does not provide a lower bound on the solution.
Finally, as in the precious case, there are commercial solvers that abstract the implementation of
this method (e.g., Gecode, IBM Cplex-CP, CP-SAT, etc).

Conclusions on exact methods

MP and CP methods deal with the underlying non-convexity of the optimization problem these
programs present relying on exhaustive search. Both methods use a divide and conquer approach,
where the problem to be solved is recursively split into sub-problems by fixing values of one
variable at a time. The main difference between them lies in how each node of the resulting
problem tree is obtained. MIP usually solves a linear relaxation of the problem and uses the result
to guide search (e.g., in Branch-and-Bound search). Whereas in CP, logical inferences based on
the combinatorial nature of each global constraint are performed.

In practice, it might happen that exact algorithms provide good approximations or even optimal
solutions in polynomial time to intractable problems of large size. However, the opposite
can also happen, exact algorithms may require prohibitive time for addressing small size
instances.

1.2.2 Metaheuristic algorithms
Conversely, metaheuristic algorithms are multi-purpose methods that provide a general definition
on the components of the resolution process and their interactions. Their fundamental is based
on proposing randomly generated solutions. These methods transform existing solutions into
new candidates through methods such as permutation, mutation, crossover, etc. Hoping that the
resulting solution continues satisfying the constraints, but with a better objective value. These
are iterative processes that are repeated until a sufficiently good solution is found. Among the

4 Chapter 1 Introduction

Simplex Branch and Bound Branch and Prune Dijkstra Bellman-Ford

Dynamic ProgrammingGreedySearch

Floyd-Warshall

Algorithms

Integer
Programming

Linear
Programming

Mixed Integer
Programming

Network
models

Constraint
Programming

Modelling Paradigms

Generic OR Problems

Knapsack Travelling Salesman Graph coloring Facility Location

Business Problems

Portfolio Optimization Shortest Path Vehicle Routing Scheduling Supply Chain Optimization

Fig. 1.2.: Four layers of abstractions on Operations Research.

well known metaheuristics we cite: Genetic Algorithms, Local Search, Tabu Search, Simulated
Annealing, Ant Colony Optimization, Swarm Optimization, etc.

Nevertheless, metaheuristics present a mayor drawback. Despite their good results in solving
optimization problems, when the number of restrictions is high and the feasible region of
solutions is small, they tend, in some cases, to be ineffective.

1.2.3 Heuristic algorithms
A practical approach to many intractable problems of large size are heuristic algorithms. These
algorithms are able to produce acceptable solutions using reasonable resources. In practical
terms, they offer a good alternative when it is not required to find the optimum solution, but only
good enough approximation. Heuristics are based on handcrafted rules that exploit some specific
feature of the problem. Therefore, the human experience to code the rules that fit the problem is
key for the results. In this case, the quality of the obtained solutions, that is, the effectiveness of
the algorithm, highly depends on the quality of the rules themselves, hence on the ability of the
engineer that designs them. Heuristics can be used either to directly achieve problem-specific
solutions or to guide search strategies that are specifically designed for the problem.

A possible classification on heuristic algorithms is the following:

- Constructive heuristics: operate iteratively selecting the "best" subset of a given set of
elements. These methods start from an empty set and iteratively add one element to the
solution applying some specific selection criterion. For example, if the selection criterion
is some "local optimality" (e.g., the element providing the best improvement the objective
function), one obtains the so called greedy heuristics. The basic feature of such construction
approaches is the fact that, in principle, the selection made at a certain step influences only
the following steps, that is, no backtracking is applied.

- Approximation algorithms: are heuristic methods able to provide a performance guaran-
tee. With approximation heuristics it is possible to formally prove that, for any instance of
the CO problem, the obtained solution will never be worst than the optimal solution (which
may be unknown) over a specified threshold. E.g., approximation algorithms that provide a
guarantee on the Bin Packing are: Next-fit, First-fit, Best-fit, etc.

1.2 Background on Combinatorial Optimization 5

1.3 Reinforcement Learning for intelligent heuristics
While heuristic algorithms have reached impressive success for some otherwise impossible prob-
lems, they present a major drawback, they lack of a theoretical background. These algorithms
rely on handcrafted rules for making decisions that otherwise would be too expensive to compu-
tationally obtain. Thus, Machine Learning (ML) looks like a natural candidate to automate such
decisions in a more principled way.

In particular, a novel line of research has succeeded tackling combinatorial optimization problems
using Neural Networks (NN) and Reinforcement Learning (RL). This discipline received the
name of Neural Combinatorial Optimization (NCO) [15]. Particularly, NCO automatically
discovers greedy heuristics that produce direct solutions on combinatorial problem without
human intervention [83, 65, 35]. This approach has the potential to be applicable across many
combinatorial optimization tasks only requiring minor hand-engineering to adapt the neural
models. Recent works have proved that this technique is able to learn competitive heuristics
when compared to classical alternatives. Unlike classical heuristics that are typically expressed in
the form of rules that define how to obtain the solutions, NCO interpret these rules as policies
used to make decisions on the problem. NCO parametrizes this policy using a neural network that
is trained to learn intelligent behaviours by means of a RL approach. One of its main benefits, is
that once the model embeds information of the problem, solutions are computed in real-time.
Solutions cannot be proven to be optimal, but they improve as more information from the whole
combinatorial space is evaluated and used to reinforce the agent.

Due to these reasons, NCO is of special concern to build the real-time decision-making systems
envisioned in this Thesis. Many decision-making systems seek to obtain intelligent decisions
in conditions of uncertain or constantly changing environments, and are required to do so in
a limited period of time. To this end, these time-critical systems usually rely on handcrafted
heuristics for this purpose. Even though these heuristics work well, if the problem statement
changes slightly, they need to be revised. For this reason, the recent idea of autonomously learning
competitive heuristics that adapt to the problem without human intervention is gaining attraction
in Operations Research.

1.4 Neural Combinatorial Optimization for 5G network
optimization

In the particular focus of this Thesis, Neural Combinatorial Optimization (NCO) is used for
optimizing the telecommunication network. Due to the growing demand of mobile services, the
current mobile infrastructure is rapidly evolving towards more efficient virtualized architectures.
In this scope, the automation of the network orchestration is one of the key aspects pursued.
Whereas existing fourth-generation (4G) networks are based on a reactive conception, the network
is reconfigured after adverse situations occur and normally it is done throughout handwritten
rules. The 5G network, is called to introduce a major transformation within its transition into
intelligent network management. In this direction, Artificial Intelligence (AI) is envisioned to
allow to the 5G network a proactive and predictive management, enabling a more efficient
network optimization.

In these schema, NCO has a great potential for dealing with problems in which existing solutions
require of hand-engineering, for complex problems for which there is no good solution using

6 Chapter 1 Introduction

traditional approaches, for adaptation to fluctuating environments and in general to notice the
patterns that a human cannot perceive. Due to this reasons, current network management is
envisioned to evolve from complex heuristics that can be hard to maintain, to intelligent systems
capable of automatically learn from previous interactions to predict intelligent decisions.

Specifically, this Thesis seeks to design a real-time decision system to optimize the place-
ment of the Virtual Network Functions (VNF) that compose the virtual services in this
architecture. This work will result in a more efficient network utilization while ensuring the
Service Level Agreements (SLA). This maximizes the mutual benefits between network operators
and service providers.

At the time of this publication, the ITU-T Focus Group on Machine Learning for Future Net-
works including 5G (ITU-FG-ML5G) is actively working to standardize use-cases, data formats
and ML-aware architectures embeddable in the telecommunications networks. The majority
of ML optimization strategies that this study group and in general the scientific community
research on this area fall into supervised learning. Henceforth, the models studied are focused
in regression and classification, approaches that present important implementation drawbacks
in this context. On the other hand, NCO presents a novel approach in which these decision
models can be automated without human intervention. No optimal labels are required to train
the models, instead the model discovers the environment and reacts accordingly. This is of special
importance in these highly dynamic environments in which human intervention is impractical or
has a high cost.

1.5 Thesis objectives
The main purpose of the Thesis can be divided into the following objectives and sub-objectives:

• Define a NCO model for solving combinatorial problems. Particularly, this work focuses
on combinatorial problems that can be represented as sequences. Many combinatorial
problems are classified into this category and have a sequence representation (e.g., the
Traveler Salesman Problem (TSP), Bin Packing Problem (BPP), Vehicle Routing Problem
(VRP)).

– Achieve a comprehensive understanding on the different RL strategies. Different
approaches can be used in RL to perform a model-free learning. In this sense, a study
in the different alternatives is required to validate them in the scope of CO.

– Identify the building blocks for the NCO model. Analyze the different elements
that form the NCO model for further discuss on the best suitable alternative. In this
sense, several aspects need to be considered when addressing CO problems (e.g., high
dimensionality, deterministic behaviour, observability). The aim is to identify how
these premises affect on the different elements of the model.

– Consider constraint management on the NCO framework. So far, existing works
in NCO have built specific agents that ensure feasibility, or have relied on masking
schemes to prevent undesirable solutions. This work aims at presenting an strategy
that allows to apply NCO to general constrained combinatorial problem. Expanding
the problems that can be addressed using this technology.

• Define a methodology for addressing CO problems. In order to consider a suitable
strategy, it is crucial to estimate the learning capabilities of the models, detect the weak

1.5 Thesis objectives 7

points and explore enhance methods to better optimize the model. To this purpose, different
learning strategies need to be studied and benchmarked. This methodology provides a
reference for the learning capabilities of the models and would serve as a baseline from
where to draw conclusions applicable on further problems.

• Select the most suitable learning strategy and validate the solution. Propose a candi-
date architecture and evaluate it in the experimentation. To this end, a classical CO problem
is used. This is because these are well-documented problems in the literature that enable to
benchmark the solution against proven heuristics, metaheuristics and commercial solvers.

• Application of the NCO model to the use-case "real-time VNF placement decision
systems in 5G environments". NCO is aimed at building a real-time decision-making
system in the scope of intelligent systems to orchestrate the 5G network. Particularly,
the VNF placement problem seeks to optimize the placement of service chains within the
virtualized infrastructure envisioned in future communication networks. One of the main
challenges in this technology is the optimal resource placement within the infrastructure.
The placement of the virtualized network functions in the cloud environment and the
network embedding can be formulated as a mathematical optimization problem concerned
with a set of constraints that express the restrictions of the network infrastructure and
the Service Level Agreements (SLAs). The development of real-time decision-making
systems able to serve rapid approximations to that combinatorial problem would be of
utmost importance to optimize the network utilization, and thereby, contribute to the
implantation of intelligent network orchestration.

1.6 Thesis structure
The manuscript is organized as follows:

Chapter 2 — State-of-the-Art of NCO

In this Chapter, the state of the art ML strategies for solving CO problems are presented. The
different learning methods and structures in which ML can be used for addressing CO problems are
reviewed. In the following, NCO is introduced together with the background on this technology.
This is done emphasizing the sequence-to-sequence models that traditionally have been used in
the literature to cope with these problems. Finally, the drawbacks of this setting together with the
challenges that this technology faces are shown.

Chapter 3 — Framework for a constrained Markovian NCO model

This Chapter introduces the formalism used in RL. Here, the Markovian model we argue in this
Thesis is presented. The benefits of the proposed model are remarked when compared to previous
sequence-to-sequence models. Also, an strategy for dealing with constraints is introduced. For
this purpose, reward constraint policy optimization technique is applied to CO problems. This
is done including an analysis on the resulting objective function. Finally, the different learning
algorithms that enhance the proposal as well as an analysis on the different optimization strategies
is included.

Chapter 4 — Proposal for a model building process and experimentation

This Chapter analyzes the learning process in the proposed Markovian model. To this end, we
motivate the use of a toy combinatorial problem in order to extract conclusions on the different
learning strategies. In this sense, a convergence analysis is done, regularization techniques are
applied and also, a self-competing strategy is proposed to improve the convergence on the method.

8 Chapter 1 Introduction

The resulting model is evaluated in the classical the Job-shop Scheduling Problem (JSP), and
constrained variants of it. A complete experimentation is performed against different heuristic,
metaheuristic and Constraint Programming (CP) solvers.

Chapter 5 — Use case: Application for 5G real-time placement decision systems

This Chapter presents a use-case for the designed model. This is done in the scope of network
optimization, specifically for optimizing the placement of virtual network functions inside a virtu-
alized 5G infrastructure. For this purpose, the standardized ETSI-NFV architecture is described to
further formulate the optimization problem mathematically. The resolution of this problem is
done following the strategy previously analyzed in Chapter 4. From the results here obtained we
conclude that the analyzed solution is a viable alternative for building real-time decision systems
under the mentioned assumptions.

Chapter 6 — Discussion

In this Chapter different alternative research lines for addressing CO problems are discussed. An
analysis of the different works and future strategies is presented indicating whether the specific
proposal would be a valid option for the use case addressed in this Thesis. Finally, the work of the
ITU-T study group focused in ML applied to 5G is here exposed. An analysis of the different case
of studies this entity is carrying on is done and a motivation for implementing the RL alternative
we argue in this work is suggested.

Chapter 7 — Final conclusions, contributions and broader impacts

This final Chapter summarizes the most important aspects covered in this Thesis. Here, the
contributions and the final conclusions are remarked. This Chapter ends emphasizing the broader
impacts of the NCO technology and the repercussion of this work on the OR community.

1.6 Thesis structure 9

2State-of-the-Art of Neural
Combinatorial Optimization

Contents
2.1 Machine Learning for solving CO problems . 10

2.1.1 Learning Methods . 11

2.1.2 Algorithmic Structures . 11

2.2 Neural Combinatorial Optimization . 13

2.2.1 Background . 13

2.3 Sequence-to-sequence models for NCO . 15

2.3.1 Recurrent Neural Networks . 16

2.3.2 Recurrent sequence-to-sequence models for solving CO problems . . . 18

2.3.3 Transformer network for solving CO problems 20

2.4 Challenges of Neural Combinatorial Optimization 21

2.5 Conclusions . 22

OPERATIONS Research (OR) started during the second world war as an initiative to combine
mathematics and computer science to obtain an advantage on military decisions. Nowadays,

it is widely used in the industry, being specially relevant in sectors such as transportation, supply
chain, energy or finance. As previously analyzed in Section 1.2, several alternatives have been
traditionally used to address CO problems depending on the limitations that the problem imposes
(e.g., computational time, optimality gap, etc). However, not all of them are suitable for building
the real-time decision-making system we seek in this work. Several of the mentioned techniques
are used during the Thesis to perform a benchmark on the results, although not all meet the
tight resolution times that an interactive system requires. This fact restricts the alternatives to
address the problem, only remaining as viable option the use of greedy heuristics. Greedy
heuristic algorithms operate making the locally optimal choice at each stage, and although they
do not provide any guarantee on the solution, represent the best suitable alternative for the
decision-making systems concerned in this Thesis.

However, designing heuristic algorithms for combinatorial optimization can be a daunting task
that requires expertise in the problem. Because of this, the recent idea of automating this process
is an appealing objective in the OR community. Recent attempts at leveraging ML to solve
combinatorial problems have shown the viability of this alternative. Due to this reason, this is the
line of research explored on this work.

2.1 Machine Learning for solving CO problems
This Thesis is focused on researching algorithms that autonomously learn how to address combi-
natorial problems. To this end, Machine Learning (ML) looks like the natural candidate to cope
with such objective. The challenge that ML pursues is to find an algorithm that performs well
on problem instances used in the learning process but also on unseen instances. This is known

10

as generalizing. This ability that ML models have to extrapolate from examples seen during
the training is one of the strengths of this discipline and it can be used to create models that
contribute at different stages on the CO resolution process.

2.1.1 Learning Methods
Usually, two different motivations justify the use of ML to address CO problems. In the first case,
the researcher assumes theoretical or empirical knowledge on the problem and wants to automate
the decision process by approximating the solutions with ML. The second use is motivated by the
fact that a positive behaviour on the problem is unknown and a solution on the problem needs
to be learnt from scratch. Thus, a trial and error reinforcement process is used to explore the
problem and find good behaviours. In greater detail:

- Supervised Learning (SL) strives for learning the decisions that an expert does on the
problem. The function that has to be learnt for making the decisions is called the policy π.
A function that given all available information about the problem, returns the action to be
taken. In SL, the policy function π is learnt using demonstrations on the results. Examples
can be found on the field of MIP [12], assisting on Branch-and-Bound searches [6, 61, 42]
or directly to generalize from previously computed solutions [120].

Decision

Action

Action'
ML

Distance

- Reinforcement Learning (RL) on the other hand, is used to autonomously learn on the
problem. In that case, the model seeks to explore the space of decisions, and learn from
experience the best performing behaviour. This is done through a reward mechanism, a
learning method based on reinforcing the actions that accumulate the higher outcome. E.g.,
in [28] RL is used to support a local search procedure. Search-methods often are guided by
heuristics, here alternatively a policy is learnt to perform the local rewrite of the current
solution based on inherited intuitions.

Decision Action' Reward
ML

It is critical to understand that in SL, the policy is learnt through targets provided by an expert;
whereas in RL, the policy is learnt from a reward signal. In SL, the agent is taught what to do,
whereas in RL, the agent is encouraged to explore the problem and improve its policy to maximize
the returns on the process.

2.1.2 Algorithmic Structures
ML can be incorporated as part of the solution algorithm at several stages on the resolution
process. For example, in the more direct case the ML-model can be trained to obtain complete
solutions, but also it can be used to support traditional OR algorithms. In this section, the different
approaches in which an ML-model can be used throughout OR algorithms are presented:

2.1 Machine Learning for solving CO problems 11

- End-to-end learning: represents the most direct approach to address CO problems. End-
to-end learning seeks to train a model that directly outputs the solution from the problem
definition (see Fig. 2.1). Directly addressing CO problems presents a technical challenge,
as an approximation for the whole combinatorial space is required. Due to this reason, it
has not been until the rise of Deep Learning (DL) that this approach has become a feasible
option [120].

Problem
definition

ML Solution

Fig. 2.1.: The ML model is used to directly obtain complete solutions on the problem.

- Learning to configure OR algorithms: in many cases, using only a ML model to tackle
the problem may not be the most suitable approach. Instead, ML can be used to infer
additional information to take decisions on CO algorithms (e.g., to perform operational
decisions or select the configuration of the hyperparameters). A good selection on these
parameters can dramatically change the performance of the optimization algorithm. Hence,
the OR community is engaged to automate these decisions using ML (see Fig. 2.2). The
idea behind this method is that a good configuration can be inferred for different cluster of
similar problem instances. Examples of this method can be found in [66, 22].

Problem
definition

ML SolutionDecision OR

Fig. 2.2.: The ML model is used to configure an OR algorithm.

- Learning alongside OR algorithms: ML can be also incorporated as part of an OR algo-
rithm. In that case, the ML model is repeatedly called throughout the execution, assisting
in lower level decisions on the problem resolution (see Fig. 2.3). The ML model is used
by the CO algorithm to make intermediate decisions taken during the iterations of the
algorithm. E.g., this is the case of the Branch-and-Bound algorithm for MILPs, where the
task of selecting the branching variable can be performed by a ML model [127].

Problem
definition

OR Solution

ML

State Decision

Fig. 2.3.: ML alongside the optimization algorithms. The ML model can be incorporated into the OR
algorithm to take decisions through the problem resolution.

According to the classification exposed, the model pursued on this Thesis can be categorized
as follows. This Thesis is focused on learning greedy heuristics without relying on human
intervention, to this end, this work seeks to learn a model that obtains direct solutions on the
problem relying only on autonomous explorations. Thus, Reinforcement Learning (RL) is the

12 Chapter 2 State-of-the-Art of Neural Combinatorial Optimization

technology that is required to explore and learn on the problem. Also, to meet the tight time limits
that interactive systems require, an end-to-end learning must be pursued to obtain direct solutions
on the problem. As mentioned, the use of Deep Learning (DL) has brought a great success on this
area. DL is a ML sub-field focused on building large parametric non-linear approximators. DL
excels when applied in high dimensional spaces, for this reason, it offers the perfect match to
build the models necessary for solving CO problems. Currently, there is line of research that joins
DL and RL to obtain direct solutions on CO problems. This technique was introduced in (Bello et
al., 2016) [15] and the authors named this field of study Neural Combinatorial Optimization.

2.2 Neural Combinatorial Optimization
Neural Combinatorial Optimization (NCO) [15] is a recent line of research that combines
Deep Learning (DL) and Reinforcement Learning (RL) to directly infer solutions on combi-
natorial problems. In this framework, the model autonomously learns an heuristic that achieves
rapid approximate solutions on CO problems. To this end, the inferred heuristic generalizes from
instances of the problem space where it has been trained. The effectiveness that NCO has shown
in recent works has motivated us to follow this approach to build the decision-making system
pursued in this Thesis.

Specifically, NCO estimates a neural network model to describe the relation between the space
of instances of the problem X and the solutions for each of them Y . The parameters of the
model are estimated iteratively by means of an RL approach. Particularly, during the learning
process the model takes instances from the problem space, and uses the reward (cost value in our
problem) obtained from evaluating the solution returned by the neural network to improve its
accuracy. A important requirement to apply RL is that evaluating the objective function must not
be time-consuming, a feature that combinatorial problems inherently present.

2.2.1 Background
The use of neural networks for solving combinatorial optimization problems dates back to
(Hopfield et al., 1985) [54]. The authors applied the Hopfield-network for solving instances
of the Traveller Salesman Problem (TSP). Nevertheless, the application of neural networks
on combinatorial problems was limited to small scale problem instances due to the available
computational resources at that time. It has been in the last few years with the rise of DL that
this topic has again attracted the attention of the OR community.

Recently, (Vinyals et al., 2015) [120] trained a Deep Neural Network (DNN) to solve the euclidean
TSP using supervised learning. They proved that a neural network is able to parametrize a
competitive policy also in domains with large action spaces as it is the case of most real-world
combinatorial problems. To this end, they introduced the Pointer Network (PN), a neural
architecture that enables permutations of the input sequence, a requirement for dealing with the
TSP. Despite their positive results, using supervised learning to solve combinatorial problems is
not trivial, as acquiring a training set implies having a large amount of solved instances.

In (Bello et al., 2016) [15] the framework of NCO was presented, and RL was implemented for
the first time to solve combinatorial problems. The authors took the PN introduced by Vinyals
and utilized an actor-critic architecture to solve the TSP problem. That work proved that it is
possible to learn competitive heuristics without human intervention. Although, they had to apply

2.2 Neural Combinatorial Optimization 13

Tab. 2.1.: Relation between the neural network architectures and the structure of the information they are
optimized to process.

Type of NN Information Structure

Fully Connected NN Arbitrary
Convolutional NN Spatial
Recurrent NN Sequential
Graph NN Relational

heavy sampling and searching techniques at interference to improve the solution generated by
the neural network itself.

Using RL, optimal labels are not required to train the model, instead the rewards that the
model obtains from evaluating the solutions are used to optimize the policy. In the original
approach [15], Policy Gradients [108] method was used to perform a stochastic gradient descent
to estimate the parameters of the neural network. Once the agent converges on the learning
process, given an instance of the problem to the model, it immediately returns a solution. This
solution cannot be proven to be optimal, yet is "close" to it in the sense that it follows the policy
that, on average, has obtained the best results.

In (Deudon et al., 2018) [35] the TSP problem was also optimized using the NCO approach.
In this occasion, the Transformer Network [116] was used, a top performance architecture in
Natural Language Processing. In that work, the greedy output of the neural network is hybridized
with a local search to improve the results at inference. Independently, (Kool et al., 2018) [65] also
presented the same architecture, yet with improvements in the decoder as well as in the training
mechanism. This strategy allows them to be competitive without applying search strategies at
inference.

All the works presented so far have major similarities, they are based on sequence-to-sequence
models, architectures originally designed for supervised learning. In these models, the solution
is decoded at once based only on a single interaction with the problem. Conversely, (Nazari et
al., 2018) [83] approached the Vehicle Routing Problem (VRP) as a Markov Decision Process
(MDP). Specifically, they construct the solution in sequence of decisions made interacting with
the environment. Such approach allows to focus on how the environment evolves during the
construction of the solution. Strategy that enables also to deal with stochastic versions of the
problem as the model is able to react to changes in the definition while the solution being
computed. This method is also aligned with [125], work done in the context of Constraint
Satisfaction Problems (CSP), where a value function is learnt using Q-Learning to obtain direct
solutions.

Recently, combinatorial problems with graph representation as the Minimum Vertex Cover or the
Maximum Cut have been also addressed using RL (Khalil et al., 2018) [60]. In this case, Graph
Neural Networks (GNN) are used to embed the structure of the problem (Table 2.1 summarizes
the diffent structures of information neural networks are designed to process) and performs a
Q-learning strategy to incrementally construct the solution. In this occasion, no post-processing
at inference is used. Another example of a problem redesigned to use GNNs is [72]. The authors
address the continuous stochastic job arrival using a fixed length waiting queue to feed a DNN
that schedules the pending individual tasks. In [73], this work is evolved, being the jobs to
directed graphs and uses a GNN under the same assumptions. Showing the benefits of GNN
embedding in terms of problem flexibility and results.

14 Chapter 2 State-of-the-Art of Neural Combinatorial Optimization

Bello et al. (2016)

Google Research

Mirhoseini et al. (2017)

Google Research

Kool et al. (2018)

University of Amsterdam

Deudon et al. (2018)

École polytechnique

(Active Search)

(Active Search)(Local Search)(Sampling)

Khalil et al. (2017)

Georgia Institute of Technology

(Direct GNN)

Generalization

Inference time

State of the Art

10 of 10

Nazari et al. (2018)

Lehigh University

(Beam Search)

Fig. 2.4.: Comparison in terms of generalization and inference time of the most relevant works in NCO. For
the purpose of this Thesis, the better generalization the model presents in the shortest inference
time the better.

A different approach that worth a mention is (Mirhoseini et al., 2017) [80]. In that work, a
resource allocation problem is solved using RL, however the objective it pursues is quite different
than the intended in this Thesis. It seeks to explore the best solution for a single instance of the
problem. This is done overfitting the model to the instance, which implies that the model does
not generalize and has to be retrained for a every single instance. This differs form goal in this
Thesis, that is to infer an heuristic able to generalize solutions from a problem distribution.

Finally, the main works in NCO arranged according to their ability to generalize and the inference
time they require are depicted in Fig. 2.4. The more complex problems the model is able to
generalize in the less inference time, the better. As mentioned, some of these works require some
post-processing at inference, what increases the time to obtain the final solutions. This is also a
variable that has to be taken into consideration on the model selection.

2.3 Sequence-to-sequence models for NCO
Traditionally, sequence-to-sequence models have been the core design used in NCO to address
combinatorial problems. In problems that fit into this category, an instance is defined by a
sequence x that represents the input to the model; similarly, the output corresponds to another
sequence y that defines the solution. E.g., in the TSP problem, a sequence of cities have to
be visited minimizing the distance traveled. An instance of the TSP is therefore defined by
the sequence of cities, and the solution by another sequence indicating the order in which the
cities have to be visited. In this problem, the solution corresponds to a permutation of the input
elements, therefore both sequences have the same length. However, sequence-to-sequence models
are a more powerful tool, they are also able to address sequences of different lengths. E.g., in the
VRP problem, a vehicle has to find the optimal route in order to deliver to a set of customers. In
this case, the vehicle may visit the depot many times, so if the deliveries are not done at once, the
length of the solution would be larger that number of cities.

Sequence-to-sequence models are used in NCO to directly learn a match from an input se-
quence representing an instance of the problem to an output sequence which corresponds
to the solution (see Fig. 2.5). When sequence-to-sequence models are addressed using RL, the
whole solution is evaluated at once on the problem to compute the reward. In ML, these edge

2.3 Sequence-to-sequence models for NCO 15

Fig. 2.5.: Space representation for combinatorial problems. The NCO model generalizes from the instances
x from the problem space X , in order to match them to solutions y in the output space Y . Notice
that the search space for each problem instance Ω, is a subspace of the whole output space the
model covers. This is because the masking scheme limits the search space for each particular
instance of the problem.

cases in which the process only requires of a single interaction to with the problem are called
"bandit problems".

The complexity in sequence-to-sequence models resides in designing a DL model that produces
solutions on the desired problem space Ω. E.g., Pointer Networks were designed as a particular
sequence-to-sequence model to produce permutations, and thus, they are able to cope with
combinatorial problems as the TSP or the Knapsack problem, but no others. Therefore, one of the
major concerns in this research line is to design problem specific models that fit in the problem
definition. In sequence learning, these models can be classified in the following groups:

• Recurrent models: models that seek to transform sequences based on recurrent encoder-
decoder architectures. They use Recurrent Neural Networks (RNNs) as memory cells to
preserve in their hidden internal state a representation of the input from where compute
the output sequences. E.g., the Pointer Network (Vinyals et al., 2017) [120] belong to this
group.

• Transformer models: transform one sequence into another using an encoder-decoder
architecture that relies solely on attention mechanisms. Since these models do not contain
recurrence to preserve the order of the sequence, they develop a positional encoding
mechanisms. E.g., the Transformer network (Vaswani et al., 2017) [116], which is currently
the state-of-the-art model for natural language processing (NLP).

2.3.1 Recurrent Neural Networks
Recurrent Neural Networks (RNNs), in addition to capture the non-linearities and deal with
high dimensions as feedforward networks (FFNs), they preserve the internal state throughout
a feedback loop that connect their past decisions. Adding memory to neural networks has the
purpose of retrieving the information that sequentially feeds the model.

RNNs are formally dynamical systems and therefore, can be described as a set of equations that
describe the state transition and the output equation:

ct = g(ct−1, xt) State transition

ht = f(ct) Output equation

where g : RK ×RI → RK is a state transition function and f : RK → RJ the output function,
xt ∈ RI represents the external inputs, ct ∈ RK the inner states and ht ∈ RJ the output of the
system, with I, J,K ∈ N. The state transition is a mapping from the internal hidden state of the

16 Chapter 2 State-of-the-Art of Neural Combinatorial Optimization

Unfold

Fig. 2.6.: Recurrent Neural Network (RNN) represented as an unfolded dynamical system, with input x,
internal state c and output h.

system ct−1 and the external inputs xt to the next state ct. The output equation computes the
observable output ht out of the current state ct.

Recurrent networks have two sources of input, the present and the recent past, which are
combined to determine the output. That sequential information is preserved in the recurrent
network’s hidden states, which allow embedding inter-temporal dependencies. Theoretically, in
the recurrent framework an event in state ct is explained by a superposition of external inputs
{xt, xt−1, ...} from all the previous time steps.

The technique to train RNNs is called backpropagation through time or BPTT, and is a general-
ization of back-propagation from feed-forward networks (FFN). Conceptually, BPTT works by
unrolling all input timesteps. Each timestep has one input, one copy of the network, and one
output. Errors are then calculated and accumulated for each timestep. The network is rolled back
up and the weights are updated. Spatially, each timestep of the unrolled recurrent neural network
may be seen as an additional layer given the order dependence of the problem, and the internal
state from the previous timestep is taken as an input on the subsequent timestep (see Fig. 2.6).

Vanishing and exploding gradients

Unfortunately, RNNs suffer from a well-know problem called vanishing gradients [52], which
prevents them from being accurate on large dependencies. This is a difficulty that appears in
training Deep Neural Networks with gradient-based learning methods. In such methods, the
parameters are updated proportionally to the partial derivative of the cost function in each
iteration of the training. The problem is that through many-layered networks, the gradient will
be vanishingly small, effectively preventing the weight from changing its value. The further we
move backwards on the model, the bigger or smaller our error signal becomes. This means in the
case of RNN that the network experiences difficulty in memorizing elements from far away in the
sequence and makes predictions based on only the most recent ones.

To solve the vanishing gradients on recurrent neural networks, a particular cell was designed,
the long short-term memory (LSTM) [53]. LSTM cells help to preserve the error that can be
backpropagated through time and layers. By maintaining a more constant error, they allow
recurrent nets to continue to learn over many time steps, thereby opening a channel to link causes
and effects remotely.

A newest and most effective ways to resolve the vanishing gradient problem has recently been
achieved using residual neural networks, or ResNets [49]. ResNets deal with this problem by
utilizing skip connections, or shortcuts to jump over some layers. As hypothesized by the author,
adding skip connection not only allows data to flow between layers easily, it also facilitates the
learning of identity function, thus it is allowed flow without transformations. The network is able

2.3 Sequence-to-sequence models for NCO 17

- hidden state

- memory cell

- forget gate

- input gate

- output gate

- candidate memory cell

Fig. 2.7.: Internal gate structure of a Long Short-term Memory cell (LSTM). RNNs cells can be stacked to
get deeper models, in the figure the l-layer is depicted.

to learn better when having identity mapping by it’s side to use, as learning perturbations with
reference to identity mappings are easier than to learn function as a new one.

Exploding gradients is another common problem that appear when training RNNs. The gradient
of some parameters become saturated on the high end. However, exploding gradients can be
solved relatively easily, clipping the gradients at a predefined threshold [85].

Learning Long-Term Dependencies

As mentioned, LSTMs are one of the most common recurrent cells explicitly designed to avoid the
long-term dependency problem. These cells have the ability to remove or add information to the
cell state, carefully regulating structures called gates. This way they are able to selective forgetting
or remembering information from sequence. Otherwise, information that is critical to the task at
hand, could be overwritten by redundant or irrelevant information. Gates are composed out of a
sigmoid neural net layer and a pointwise multiplication operation. This describes how much of
each component should be let through.

Particularly, an LSTM cell (see Fig. 2.7) has three gates: the input gate (i), the forget gate (f)
and the output gate (o). The input gate controls the extent to which a new value flows into the
cell, the forget gate controls the extent to which a value remains in the cell and the output gate
controls the extent to which the value in the cell is used to compute the output activation of the
LSTM unit. The internal state of LSTM stored in the memory cell vector (c) and the output of the
cell corresponds to the hidden state (h).

2.3.2 Recurrent sequence-to-sequence models for solving CO
problems

The sequence-to-sequence reference model studied in this Thesis is based on a recurrent encoder-
decoder architecture (depicted in Fig. 2.8). This architecture was introduced in Neural Machine
Translation (Sutskever et al. 2014) [107], achieving top scores and relegating previous model
based on statistical translation. This architecture is not exclusive for translation, and as it is
discussed below, it can be used for general sequence transformations. It can be divided in the
following parts:

• An encoder network: consisting of a RNN that processes the input sequence and encodes
its information into a vector that serves as the “context” to the decoder.

• A decoder network: formed by a different RNN trained to predict the output sequence
given the feature vector previously computed on the encoder.

18 Chapter 2 State-of-the-Art of Neural Combinatorial Optimization

...

...

Attention layer

Embed Embed Embed

DNN DNN DNN

...
RNN RNN RNN RNN RNN RNN[]

Fig. 2.8.: Recurrent sequence-to-sequence reference model. It includes a sequential encoder (blue) that
codifies the sequence that represent the input to the model. And a decoder (red) that uses
codification of the instance of the problem to recursively form the solution relying also on its
internal memories.

Recurrent sequence-to-sequence models have been extensively used in NCO to learn heuristics
on the problem upon the basis of generalization [15, 35, 65, 80]. This means that once the
model learns how to interact with the problem, for any instance, it directly computes a solution
generalizing from the instances seeing during the learning process. The model receives an
instance codified as a sequence x = {~x1, ~x2, ..., ~xm} of a variable size m and outputs another
sequence y = {~y1, ~y2, ..., ~yn} of length n indicating the final solution. The main reason for
using sequence models, is because this architecture is able to manage sequences of different sizes
without modifying its internals.

As mentioned, learning heuristics on sequence-to-sequence models is a particular case of a
"bandits problem" [59], as these models directly seek a solution from the whole combinatorial
space. Following this strategy, the model not only presents a large input space, as it has to
generalize from all possible instances of the problem X ; but also a large output space formed by
all possible solutions for each case Y . To effectively learn models on a high dimensional action
space using RL, a particular method shall be used, Policy Optimization (see Annex B.4).

Policy Optimization seeks to directly learn the parameters θ of the stochastic policy πθ(y|x) that,
for a given a instance x ∈ X , assign high probabilities to solutions y ∈ Y with lower costs,
and low probabilities to those with higher costs. This method is an effective technique used
in high dimensional or continuous action spaces [68]. On this premise, Policy optimization
technique shall be used in opposition to value iteration methods, which are not viable in this type
of problems which large solution spaces.

Specifically, in sequence-to-sequence models the policy distribution π is obtained using the chain
rule to factorize the output probability from the decisions taken on the decoding process. The
likelihood of an output yi in the sequence depends not only on the instance x but also on the
previously part of the output sequence y(<i),

πθ(y|x) =
n∏
i=1

πθ(yi | y(<i), x) (2.1)

Finally, the solutions the model produce are evaluated on the problem to obtain the rewards
necessary to reinforce positive solutions and thus, improve the policy. To this end, the cost
function shall to be computed. Notice that for the model, the mathematical description of the
problem is unknown, it remains as a black-box. It is during the interaction with the problem that

2.3 Sequence-to-sequence models for NCO 19

Positional
encoding

...

Embed Embed Embed

Multi-head
attention

Add & Norm

Add & Norm

FFN

Multi-head
attention

Add & Norm

Add & Norm

FFN

Multi-head
attention

Add & Norm

Positional
encoding

Softmax
Output

probabilities

Embed Embed

...

iterate

Ne stack

Nd stack

Fig. 2.9.: The Transformer network uses a self-attention mechanism on both the encoder (blue) and the
decoder (red) to directly focus on elements of the input and output sequence in the decision
making process. This architecture operates iteratively on the decoder, producing one-by-one
the elements of the output sequence. In this process the model has direct access to the input
throughout multi-headed attention layers.

takes place on the learning process that the model improves its policy to solves the underneath
optimization program without even knowing its definition. Subsequently, the problem does not
rely on directly optimizing the optimization program, but on optimizing the policy function that
generalizes a good strategy.

Attention Mechanisms

One side-effect of sequence-to-sequence learning is that performance comes down when complex
relations between sequences need to be learnt. In this sense, attention mechanisms are a useful
technique usually applied on those models that enable the decoder to attend to parts of the
input sequence on each decision. Focusing just on the part of the sequence that has the relevant
information at each step allows to improve the performance. Examples of attention mechanisms
are (Bahdanau et al., 2014) [11], or (Luong et al., 2015) [70].

2.3.3 Transformer network for solving CO problems
Recently, neural networks based solely on attention mechanisms have established state-of-the-art
performance in sequence modeling. The Transformer network (Vaswani et al., 2017) [116] has
set a precedent improving existing results in the BLEU 1 score. The Transformer network operates
also in an encoder-decoder basis but does not codifies information in an auto-regressive manner.
The overall architecture relies on stacked self-attention layers for both encoder and decoder (see
Fig. 2.9).

The model codifies the position of each element on the sequence using a positional encoder. This
is done using sinusoids of different wavelengths to identify the relative position between the
elements of both the input and output sequences. The model uses multi-headed attention layers
to attend over the subsequent positions, which in particular is a scaled dot-product attention
mechanism. These sub-layers are connected using residual connections [124], which improves
the performance allowing to the model to have direct connection between non-contiguous layers.
The output produced is passed from the encoder to the decoder, mapping traditional recurrent
sequence-to-sequence models. Although, this time every step on the decoder process has the
ability to attend directly on every position of the input sequence.

1The BLEU score is an algorithm for evaluating the quality of text which has been machine-translated between languages.

20 Chapter 2 State-of-the-Art of Neural Combinatorial Optimization

As preciously mentioned, this sequence-to-sequence architecture has been used in NCO [35, 65].
Although, as will be seen further on, relying on direct connections benefits when compared to
recurrence, this model still present a "bandit setting" that does not present the best approach on
CO problems.

2.4 Challenges of Neural Combinatorial Optimization
Currently, NCO presents some limitations that narrow the applicability of this technology [17].
The ability to overcome these challenges would be of utmost importance to introduce this method
as an useful alternative in the OR portfolio. In the following, the challenges this technology
presents are discussed.

Lack of initial conditions

Traditionally, sequence-to-sequence models do not consider the initial conditions in the problem.
The input to the model is limited to the instance definition. In case that some initial condition
needs to be incorporated in this "bandits setting" approach, some tricks have to be used for
embedding this information together with the definition of the instance [72]. This present some
limitation, for example, usually the dimensionality of the problem definition does not match the
initial conditions.

The work presented in the following Chapter 3 contributes in this direction presenting a NCO
approach that enables to input the state of the problem (including the initial conditions on the
environment) separately from the definition of the problem instance.

Feasibility management

As already noted, RL models do not give any guarantee in terms of optimality, but neither they
do with respect to feasibility. So far, in the literature NCO has been used to solve combinatorial
problems without dealing with constraints. Existing works overcome this issue building specific
models that ensure feasible solutions, or they rely on masking schemes to avoid exploring actions
that are a priori known to be unfeasible. In both cases, it is the neural model who guarantees
constraint satisfaction. To this end, the neural architectures are designed carefully in order
not to break these restrictions. It is the case for instance of the pointer networks (Vinyals et
al., 2015) [120] and the Sinkhorn layer (Emami and Ranka, 2018) [39], which are complex
architectures designed specifically to compute permutations. Other options as (Nazari et al.,
2018) [83] design an specific masking mechanism for the problem that avoids selecting unfeasible
solutions. In this regard, in the following Chapter 3 the NCO formulation is broaden to include
general constrained combinatorial problems.

Modeling complexity

In ML and in particular in DL, good priors on problems can be used to choose the model that
adapts better to the problem. For instance, it is know that convolutional neural networks (CNN)
will learn and generalize more easily than others alternatives on image data. The problems
studied in CO are different from the ones traditionally addressed in ML, where most successful
applications target natural signals. And therefore, the architectures used to learn good policies
in CO might be very different from what is currently used for other purposes. Currently, deep
learning architectures are evolving to specifically tackling these problems. As pointed, techniques
such as parameter sharing made it possible for neural networks to process sequences with RNNs

2.4 Challenges of Neural Combinatorial Optimization 21

or, more recently, to process graph structured data through GNNs (Khalil et al., 2017) [60].
Structures that are of uttermost importance to represent CO problems.

Scalability

Finally, the scalability is also a challenge that these models currently present. If a model is trained
on instances up to a certain size and the model wants to be tested in larger problem instances, a
challenge exists in terms of generalization. In current models a degradation in the performance is
observed in case the size of the problem is increased beyond the examples seen during training
(e.g., Vinyals et al., 2015 [120]; Bello et al., 2017 [15]; Khalil et al., 2017 [61]; Kool and Welling,
2018 [65]). To tackle this issue, one may retrain the model on larger instances. However, except
for very simple ML models and strong assumptions about the data distribution, it is not possible
to know the computational complexity required to retraining the problem.

2.5 Conclusions
Traditionally, in the literature sequence-to-sequence models have being used in NCO to address
combinatorial problems. To this end, the model is configured in a "bandit setting", where
the agent computes the solution at once based on the instance definition. In this sense, the
neural architectures used for this purpose mostly arise from Natural Language Processing (NLP).
Particularly, in this Chapter recurrent sequence-to-sequence and fully attentional models are
discussed. However, these models were designed first for being applied in SL, and when used
under a RL approach some drawbacks emerge e.g., specific learning methods have to be used, in
this case, for problems with huge or continuous actions spaces.

In addition, the sequence-to-sequence approach discussed in this Chapter presents some technical
drawbacks that limits its implementation on general CO problems. For example, this architecture
does not consider how initial conditions are introduced into the model. This is due to the fact that
the state of the environment is not explicitly considered. Alternatively, one may conclude that
CO problems can be tackled under a classical RL framework. Under this approach, the solution
is iteratively constructed in a series of actions the agent performs taking into account how the
solution evolves on the problem. In this sense, the model benefits from incorporating intermediate
steps on the resolution process. Following this premise, this approach to the problem becomes
more natural and the algorithms used to address CO problems are not restricted regarding the
huge output combinatorial space Ω.

22 Chapter 2 State-of-the-Art of Neural Combinatorial Optimization

3Framework for a constrained
Markovian NCO model

Contents
3.1 Baseline Framework . 23

3.2 NCO on a Markovian RL approach . 24

3.3 Aspects to be considered on NCO . 27

3.4 Building blocks of NCO . 28

3.4.1 Learning algorithms . 28

3.4.2 Proposal for a Markovian neural agent 30

3.4.3 Constraint management in NCO . 34

3.4.4 Optimization algorithms . 39

3.5 Conclusions . 41

AS previously discussed in Chapter 2, Neural Combinatorial Optimization (NCO) enables to
autonomously learn greedy heuristics on combinatorial problems. For that purpose, NCO

has mainly relied on sequence-to-sequence models, presenting the problem in a "bandits setting"
in which the goal is to select the best answer from the whole search space Ω.

This Thesis proposes a different strategy in order to enhance this technology to obtain better
results. Unlike the original NCO proposal, here, the Markov Decision Process (MDP) formulation
in the problem is considered. The solution is therefore iteratively constructed in a series of
decisions taken based on the intermediate states obtained during the resolution process. This
gives to the model a better understanding on how the solution evolves on the problem, and
therefore, improves the quality of the results obtained.

Also, NCO presents some limitations that prevents it from being directly used in constrained
problems (as previously mentioned in the Section 2.4 — Challenges), which severely limits this
technology from being used in real-world problems. So far, NCO has been used in the literature
to solve combinatorial problems without dealing with the feasibility of the solutions [80]. This is
possible in case the neural model guarantees constraint satisfaction. Nevertheless, this cannot
be achieved in many combinatorial problems. In this work, the feasibility problem is addressed
presenting a strategy for applying NCO to virtually any constrained combinatorial problem.

3.1 Baseline Framework
This Chapter presents the baseline framework for addressing NCO problems under a MDP
formulation. This framework evolves from the previous "bandits setting", where policy-based
methods where required to learn on the huge combinatorial space Ω, to a MDP formulation
based on episodic RL interactions (see description in Fig. 3.1). In this context, solutions are
iteratively constructed taking partial decisions on the problem. Unlike in the previous approach,
here decisions are chosen from an action space that it is explorable. This expands the resolution
methods applicable on these problems to value-based and model-based learning strategies.

23

BASELINE FRAMEWORK

1 of 1

Markovian

models

BANDITS SETTING MARKOV DECISION PROCESS

Value-based

Learning

02 04 05 0601

Policy-based

Learning
Model-based

Learning

Post-processing

Inference

Enhance

learning

Policy-based

Learning

AGENT

LEARNING
STRATEGY

ENHANCE
RESULTS

Sequence-to-

sequence models

03 Framework

Fig. 3.1.: Baseline framework. Evolution from a sequence-to-sequence approach used to address CO
problems in a "bandit-setting" to an iterative RL approach based on the Markov Decision Process
(MDP) formulation.

In addition, unlike previous works that aim to reduce the optimality gap performing computations
over the obtained solutions at inference time (e.g., an active search [15], local search [35], a
sampling strategy [65] or a beam search [83]), our work focuses on enhancing the learning
process in order to infer better solutions directly from the neural model. Post-processing strategies
usually add a significant computation time at inference. Hence, they are not a candidate strategy
for the purpose of this Thesis. Conversely, we aim to improve the policy as much as possible in
order to infer better results.

In order to present this approach, in the following section the components that intervene in the
RL schema are defined to further introduce how NCO could benefit form this approach.

3.2 NCO on a Markovian RL approach
RL provides a general approach to learn the optimal behaviour in unknown environments. In RL,
the problem setting makes almost no assumptions about the model or its structure and usually
supposes that the environment is given in the form of a black-box. RL tackles these problems
introducing them on the mathematical basis of MDP (see Annex B.1). In this Thesis, we argue
that combinatorial problems can be defined as decision processes presenting the Markov property
(Definition 3.2.1), and so, are suitable to be addressed using general RL techniques.

Definition 3.2.1 Markov property:
«A model presents the Markov property if the transition function that defines the process depends

solely on previous state and the last chosen action, being independent of all previous history.»

To argument this proposition, let us introduce first the elements that intervene in a RL model:

• The environment corresponds to any kind of dynamical system, e.g. stock market, revenue
management, or as in this case, combinatorial problems. The environment evolves based
on its history of states and the actions performed by the agent. For each interaction at every
time-step t, the system evolves from the current state St to the next state St+1 returning a
reward Rt+1 that serves as an evaluation criteria for the action selection.

24 Chapter 3 Framework for a constrained Markovian NCO model

• The agent represents the controller of the system. The agent uses the state information St
to interact with the environment by performing an action At. In return it retrieves a reward
signal Rt+1, which it is used to improve its policy.

• The Actions influence the development of the environment. Actions can be bounded or
limited by the problem state, and according to the problem setting the actions are the
decisions taken in the resolution process.

• The policy π defines the actions taken by the agent. Instead of pursuing a one-step optimiza-
tion, the policy determines the optimal behaviour with regard to a given overall objective.
According to (Sutton and Barto, 1998) [108] "the policy is the core of a Reinforcement
Learning agent in the sense that it alone is sufficient to determine its behaviour".

• The reward function specifies the overall objective of the Reinforcement Learning problem.
It depicts the immediate reward Rt+1 the agent receives for performing a certain action At
at a given system state St. Consequently, it defines the desirability of an event for the agent.
Generally a simple immediate reward is only of minor interest because high immediate
rewards might lead to low ones in the future. Instead, one is usually interested in the
reward associated to the whole episode.

Action

Agent

Environment

S
ta
te

RewardO
b
se
rv
a
ti
o
n

Fig. 3.2.: Reinforcement Learning schema: An agent iteratively interacts with an environment by carrying
out an action At based on its observed state information Ot, which can be partially observable or
fully observable from the state representation St. In return it retrieves a feedback in form of a
reward Rt+1, which it uses to improve its policy and thereby increase its future sum of rewards.

These elements are all put together in the RL feedback loop depicted in Fig. 3.2. Formally, let
therefore be S ⊆ RI the environmental state space with states St ∈ S , and A ⊆ RJ the control
or action space with control or action parameters At ∈ A(St) (with I, J ∈ N and t = 0, 1...T).
In a general decision process, the current state of the problem is defined by the sequence of
historical states and actions experienced in the episode, the trajectory: τt = A0, S0, ..., At, St.

St+1 = f(τt) (3.1)

If the problem presents the Markov property, then the state at present time-step St contains all
required information for the agent to determine its next action At. Once the state is known, the
history may be thrown away. The state is a sufficient statistic of the future. Decisions made on
the current state St can be optimal. Its decision rule and respectively policy is therefore a direct
mapping from the observed state St to the next action At. The system can then be described by
the following equation,

St+1 = g(St, At) (3.2)

with g : RI × RJ → RI being an arbitrary, non-linear function.

Throughout this Thesis, CO problems are presented in a MDPs approach in which the
sequence of actions that the agent denotes conform the solution to the problem. In other
words, the resolution of these problems is presented as a constructive process in which at

3.2 NCO on a Markovian RL approach 25

each step the agent computes a part of the solution. In this context, the Markov property
is satisfied taking as the state representation the evolution of the partial solution on the
problem environment. E.g., in the Bin Packing problem the representation of the state during
the resolution process can be defined by the state of the bins at a time-step t.

This description of the learning process for CO problems introduces several key assumptions.
Firstly, combinatorial problems are managed in a temporal time-space. However, they do not
have any temporal interpretation, in this case the «time» only represents the order of the elements
that form the solution. Secondly, it is assumed that the problem environment incorporates some
reward function as the indicator of success. This reflects the Reward hypothesis (Hypothesis 1),
also referred to as Reinforcement Learning hypothesis.

Hypothesis 1 Reward hypothesis:
«In RL all goals and purposes can be described as a maximization of the expected value of the
cumulative sum of the received rewards.»

The objective is therefore to solve CO problems by learning a policy π, that for an instance of
the problem, produces the series of actions (conform the solution) that maximizes the objective
function. It basically considers the combinatorial problem as a black-boxed environment the agent
interacts with, receiving as the outcome for each interaction a reward signal. When dealing with
combinatorial problems, it seems natural to think that only at the end of the episode, a reward
equivalent to the evaluation of the complete solution on the cost function would be received.
However, some techniques [60] enable to define intermediate rewards computing the change in
the cost function from evaluating partial solutions. This process will be further detailed, but it
useful to clarify that rewards can be received during the whole interaction. Therefore, during the
learning process the agent gets positive and negative rewards which it uses to optimize its action
selection i.e., the control policy π.

The corresponding reward function is denoted byRt := R(St) : S → R. Generally the particular
immediate reward Rt is not of major interest as a corresponding action might lead to low rewards
in the long run, at the end of the episode. Therefore, the return function is defined as the
accumulated reward over time with a discount factor γ:

Gt
.=
∞∑
k=0

γkRt+k+1 ∀t > 0

The discount factor γ ∈ (0, 1] is used in RL processes with far-away horizon or no horizon to
delimit the present value of future rewards: a reward received k time steps in the future is worth
only γk−1 times what it would be worth if it were received immediately. A γ close to 0 leads
to a "myopic" evaluation, whereas a γ close to 1 leads to "far-sighted" evaluation. This factor is
also used to avoids infinity returns in cyclic Markov processes. In the case of CO problems the
discount factor is not required. These problems are deterministic and the number of steps in an
episode for achieving a solution are finite. This leads to the conclusion that these problems do
not need to fix an horizon in the process, thereof in this Thesis γ = 1, the return Gt corresponds
to the sum of the rewards.

Finally, the policy π is discussed. Unlike in sequence-to-sequence models where the policy is
a direct match between an instance of the problem and a solution; here, in a MDP the policy
represents the probability of selecting an action given a state on resolution process. Therefore, it
establishes a relation between states and actions π : S → A (see Annex B.1.1).

26 Chapter 3 Framework for a constrained Markovian NCO model

Definition 3.2.2 In a Markov Decision Process a stochastic policy π is defined as a probability
distribution over the actions given the states,

π(a|s) .= P(At = a|St = s)

In conclusion, during the learning process the agent discovers the dynamics of the CO problem
interacting with it. The model infers a policy, a plan ahead strategic thinking that constructs the
solution iteratively making a series of actions on the problem. The goal is therefore to learn the
action selection that result in the best outcome for the problem. In this approach, the action space
at every step in the resolution process At → RJ becomes explorable, this will have possible
implications in the resolution method.

Learning of the optimal control policy

The objective is therefore to find the optimal control policy (details in optimal control are available
in Annex B.3). Learn the policy that maximizes the return (in the case of CO problems achieves
the optimal solution). This is equivalent to determining the optimal action selection π∗ : S → A,
which achieves the best action At based on the approximated inner state of the system St,

At = a ∼ π∗(·|St = s) ∀t > 0

3.3 Aspects to be considered on NCO
The challenges to address in RL can be classified according many different factors depending on
the setting utilized and the underlying objective. In the following, the aspects to be considered
when solving CO problems are pointed out. Indicating where the existing methods present
drawbacks or even fail to produce satisfactory results. CO problems here addressed show three
important characteristics:

- high-dimensionality,
- fully observable,
- and deterministic nature.

High-dimensionality

Deep Learning has enabled RL to scale to decision-making problems that were previously in-
tractable. It has allowed to deal with problem with high-dimensional state and action spaces. As
mentioned in Section 2.3.2, combinatorial problems present a high-dimensional observations, as
the model is structured to perform well on any problem sampled from the distribution of instances.
But also, in case of being formulated in a "bandits setting" they present a high-dimensional action-
space, the corresponding to the whole search space Ω. To address CO problems with this setting,
sequence-to-sequence models have been traditionally used, and Policy-based methods were
required on the learning process. This is due to policy-based methods are the ones suitable for
large action spaces (see Annex B.4).

In the case that CO problems are described in a MDP approach, the options to address them widen.
Notice that, under this assumption, although the state space is similarly huge, the action space
becomes explorable. In this proposition, the action space corresponds to the actions available
during each time-step (e.g., in a Bin Packing at each time-step the actions to place an item

3.3 Aspects to be considered on NCO 27

correspond to the number of bins). This extends the available learning algorithms that can be
used to address the problem.

Observability

CO problems are by nature defined as fully observable, st = ot. Under this premise, the agent
can determine the state of the system at all times. For example, in a the Bin Packing, the state of
the system, that is, the position of all items on the bins, is available so that the agent can make an
optimal decision. Fully observable problems can be modeled as a MDP and can be addressed with
memory-less agents, this is opposed to partial observable models or POMDP. In which the agent
requires to rely on memories to complement the observed state ot, as it does not fully represent
the state of the problem st.

Deteministic

CO problems are generally deterministic. This means that the environment that models the
problem behaves the same for similar inputs. However, it comes also natural to this markovian
NCO approach to address stochastic combinatorial problems. E.g., [83] shows how to handle a
stochastic version of the VRP. In this work random customers with random demands appear over
time, during the resolution process. In case a customer changes its demand value or relocates to
a different position, the model can automatically adapt the solution. Using classical heuristics for
VRP, the entire distance matrix must be recalculated and the system must be re-optimized. In
contrast, using NCO framework the model adapts to the new situation, and only one feed-forward
pass of the network is required to update the routes based on the new data.

3.4 Building blocks of NCO
So far, the formalism used in RL has been introduced, the MDP model, and briefly the challenges
that this technology faces have been noted. In the following, we will point out the different
components required to build the learning model. In this work, different strategies are evaluated
on the NCO schema to further select the appropriate approach that would be used in the final
solution. The selected strategy would be the base from where to design the models used in the
experimentation. In the following sub-sections, the different components required to build the
learning model are discussed. These components are:

- the learning algorithm,
- the neural agent,
- the strategy for dealing with constraints
- and the optimization algorithm.

3.4.1 Learning algorithms
Classically, there exists two main approaches to address RL problems: methods based on value
functions and methods based on policy optimization. There is also a hybrid actor-critic approach,
which combining both, value functions and policy search, has achieved stat-of-the-art results
in domains as motion control or strategic thinking [81]. In the following these approaches are
explained:

- Value-based methods (Annex B.3.2): estimate the value of being in a given state and use
this information to determine the control policy. The state estimation is done by making
use of the Bellman’s Equations. Most popular Value-based RL algorithms include SARSA-

28 Chapter 3 Framework for a constrained Markovian NCO model

1 of 1

02 04 05 0601

01 of 04 REINFORCEMENT LEARNING ALGORITHMS

REINFORCEMENT LEARNING FOR INTELLIGENT HEURISTICS

DFO/Evolution
Policy Gradients

(Annex B4)

Actor-Critic Methods

Value Iteration
(Annex B2)

Policy Iteration
(Annex B2)

Policy-based Learning Value-based Learning

SARSA (Annex B3)

TD-AC (Annex B5)

A2C (Annex B5)Policy Gradients with
self-competing baseline

(Proposal)

GAE (Annex B5)

Q-Learning (Annex B3)

Model-based Learning

MCTS

MCTS + PI
(Future Research)

Model-Free Learning

03 Framework

Fig. 3.3.: Reinforcement Learning strategies. The different learning algorithms are classified into the major
learning approaches: policy-based learning, value-based-learning and model-based learning. For
each method we indicate whether the algorithm is analyzed on this work (highlighted in red
color).

learning (Annex B.3.2) and Q-learning (Annex B.3.2), which differ in their TD-targets
approximations, that is, the target value to which Q-values are recursively updated by a
step size at each time step.

- Policy-based methods (Annex B.4): in contrast to the Value-based methods, Policy-based
methods directly update the policy without looking at the value estimations. They are
slightly better than value-based methods in the terms of convergence, solving problems with
continuous or high dimensional spaces, and in addition are capable of inferring stochastic
policies. There are several alternatives to optimize these models, however as argued in
Annex B.4, gradient-based methods is the of choice that present better result for most deep
RL algorithms [38].

- Actor-critic methods (Annex B.5): these methods try to reduce the high variance that
policy-based methods suffer. The high variance problem is particularly exasperated in
problems with long horizons or high-dimensional action spaces. To this end, Actor-critic
methods combine value function estimators with an explicit representation of the policy
(see Fig. 3.4). The actor learns a policy by using feedback from the critic (value function)
instead of relying in noisy estimates. In doing so, these methods trade off the variance of
policy gradients with the bias that value-based methods introduce [81].

Action

Environment

State

Reward

Value
function

Policy

TD errorCritic

Actor

Fig. 3.4.: In actor-critic methods, the actor receives the state from the environment and chooses the action
to perform. At the same time, the critic (value function) receives the state and reward resulting
from the previous interaction. The critic uses the Temporal-Difference (TD) error calculated from
this information to update itself and the actor estimator.

3.4 Building blocks of NCO 29

In this Thesis, learning strategies from the described methods will be evaluated on combinatorial
problems. Particularly, the algorithms studied are highlighted in red in Fig. 3.3. The result on
this analysis will described in the following Chapter 4. In addition, we discuss an alternative
model-based strategy that even though it has not been evaluated in this work, it could be a
promising line of research. This alternative combine Monte-carlo Tree Search (MCTS) with Policy
Iteration (Annex B.2) to perform a model-based learning that reduces the breadth on the search
strategy. Further discussion on this strategy is available in Chapter 6.

3.4.2 Proposal for a Markovian neural agent
The second element required for building the model is the neural agent. Particularly, this
section presents the fundamentals of the Markovian agent argued in this Thesis. But first, the
nomenclature used in the model is introduced. Let us represent each instance of the problem as a
static sequence of feature vectors x ∈ X , where X stands for the whole distributions of instances
the model needs to learn an heuristic. The sequence x defines the problem instance and does not
change during the iterative resolution process. Let ~dt be the vector that represents the state of
the environment. ~dt represents the dynamic part of the input and evolves iteratively as partial
decisions are made. The concatenation of those feature vectors at every time-step t represents
the input to our model, the state vector ~st

.= {x, ~dt}, t = 0, 1, ..., T .

This work argues that sequence-to-sequence models compute the solution for combinatorial
problems without interacting with the environment. Those models receive an instance and build
a solution directly based only on the hidden state the decoder stores (Fig. 3.5a). By contrast,
the proposed agents (Fig. 3.5b - 3.5c) present similarities with traditional RL models used for
solving fully observable Markov processes. In those cases, the encoding layers constitute the
major part of the design, since computing the action distribution is directly done by DNNs that do
not require to store or embed any previous information.

Remark 1: This Thesis argues that combinatorial problems can be defined as a fully observable
MDPs. Since the solution is iteratively built interacting with the problem, partial solutions can be
evaluated to give to the agent a reference on how the solution evolves on the problem. In that
perspective, the recurrent decoder used on sequence-to-sequence models can be substituted by a
memory-less DNNs. This benefits the results as accessing the fully observable state of the problem
is more reliable than doing on memories.

As indicated in Chapter 2, recurrent sequence-to-sequence architectures (Sutskever er al.,
2014) [107] compute a mapping from an input sequence x = {~x1, ~x2, ..., ~xm} of a variable
size m to an output sequence y = {~y1, ~y2, ..., ~yn} of different length n. These models use a
RNN to read the input sequence, one element at a time, to obtain large fixed-dimensional vector
representation. Then, another RNN is used to extract the output sequence from that feature
vector (Fig. 3.5a). This model is usually enriched with a differentiable attention mechanism that
allows neural networks to focus on different parts of the input.

The neural model proposed in this work changes the recurrent decoder in favour of a DNN
that iteratively computes the solutions based on the intermediate state of the environment
(Fig. 3.5b - 3.5c) 1. The model can be divided in two main components: an encoding part and a

1This model is aligned with AlphaStar (Vinyals et al., 2019) [117], RL neural model used by DeepMind for competing in
the Starcraft strategic game. The agent uses several network to embed the information from the game state (e.g., a
Transformer network to represent the entities, a ResNet to embed the map, etc.), and multiple DNN to compute the
different actions. Although, in that case due to the game is partially observable an additional LSTM is also required to
remember the sequence of previous states.

30 Chapter 3 Framework for a constrained Markovian NCO model

...

...

Embed Embed Embed

DNN DNN DNN

...
RNN RNN RNN RNN RNN RNN[]

Mask MaskMask
Encoder-based
att. mechanism

...

(a)

Embed Embed Embed

...
RNN RNN RNN []

Encoder-based
att. mechanism

DNN

DNN

Mask

Embed Embed

Stated-based
att. mechanism

...

(b)

DNN

Mask

Embed Embed

Stated-based
att. mechanism

Positional
encoding

...

Embed Embed Embed

Multi-head
attention

Add & Norm

Add & Norm

FFN

Ne stack

Encoder-based
att. mechanism

(c)

Fig. 3.5.: Architecture comparison between a: (a) traditional recurrent sequence-to-sequence model with a
an attention mechanism over the encoder and (b) & (c) our proposed iterative models. On (a), the
hidden state of the decoder is commissioned to store the features of the partial solution. Whereas
on (b) & (c), the model decodes each element on the solution fully observing the intermediate
states on the problem. In particular, (b) preserves the recurrent encoder and (c) substitutes it in
favor of a fully-attentional Transformer encoder.

DNN in charge of computing the output distribution. In Fig. 3.5b, the codification of the instance
of the problem x is similarly done to previous model. It uses recursion to embed the definition of
the problem instance into a single vector. Every element in the input xj in recursively encoded,
we refer to the final encoded vector as ~e = enc(~x1, ~x2, ..., ~xm). This corresponds to the static
part of the input to our model, and does not change during the resolution. Then, the vector ~e is
combined with the state of the environment ~dt to create the state ~st from which a DNN computes
the policy distribution π(at|st). This constitutes therefore, the dynamic part of the model, and it
is evaluated in every interaction t until the whole solution is completed.

Alternatively, in Fig. 3.5c the input sequence is attended using a fully-attentional Transformer
encoder. In this case, the decoder is able to focus on direct parts of the input sequence without
using recursion. This model completely removes recursion from the solution.

3.4.2.1 Recurrent encoder-based attention mechanism
One side-effect of recurrent models is that performance comes down when there are complex
relations between the sequences. To address this issue, usually attentional mechanisms are
implemented. These mechanisms enable to attend on parts of the input sequence at the time,
focusing just on the elements that provide relevant information to the decision. This technique
was introduces in Natural Language Processing (NLP) to weigh the part of the sentence in which
the translation must be focused. Examples of these variants of this encoder-based attention
mechanism are (Bahdanau et al., 2014) [11], or (Luong et al., 2015) [70].

Attention mechanisms operate on recurrent models as follows. The input to the attention layer is
set to the features of the encoder h = {~h1,~h2, ...,~hm} ∈ RF , where m is the number of input

3.4 Building blocks of NCO 31

elements and F is the number of features in each node. The attention layer produces from them a

new set of node features of potentially different cardinality, f : RF → RF
′
. Also, features form

the current state of the decoder ~h′j are extracted to create the attention layer. To transform these
features into higher-level features, a linear transformation is used. To that end, a shared linear

transformation, parametrized by the weight matrices, W1,W2 ∈ RF×F
′
, is applied to every

feature vector from the encoder element i and decoder step j. A self-attention then is performed

on the nodes va : RF × RF
′
→ R to compute the attention coefficients.

vij = v
ᵀ
a · logit(W1hi +W2h

′
j) (3.3)

The resulting vectors vij , indicate the importance of the element j of the decoder, into the input
element i. This formulation allows for each node in the model to attend on every other node,
dropping all structural information. Finally, the softmax function is used to extract the weight of
each element in the attention. This results in the alignment scores,

aij = softmax(vij) =
exp(vij)∑
k exp(vik) (3.4)

The final output of the attention mechanism is the context vector cj , which is created as the
weighed sum of the elements of the input sequence. This is the sum of hidden states of the
encoder hi weighted by alignment scores aij the model computes for each state depending on its
importance. The context vector contain therefore the most relevant features at the decoding step.
Formally, the context vector for the output step j is formally defined as:

cj =
∑
i

aij · hi (3.5)

This formulation can be extrapolated from sequence-to-sequence models (Fig. 3.5a) to the
Markovian model (Fig. 3.5b). To this end, it is only required to substitute the decoder step j with
the iteration t on the resolution process to create the context vector ct at that time-step.

3.4.2.2 Transformer encoder-based attention mechanism
Alternatively, the Transformer encoder can be detached from the Transformer network and be
used to perform the encoding of the input sequence (see Fig. 3.5c). The Transformer encoder
relies on stacked self-attention layers to achieve this task. Therefore, recursion is not required,
and a direct attending over the input sequence is performed at every step.

Since the model does not present recurrence, in order to preserve the order in the sequences,
a positional encoder [44] is used. The positional encoder utilizes sine and cosine functions of
different frequencies to encode the relative distance between different input positions in the
sequence. Thus, the resulting feature vector embeds its relative position in the sequence.

The Transformer encoder is formed by two layers. The first is a multi-headed self-attention
mechanism, and the second a FFN layer. This pattern can be stacked to create deeper models, the
number of stacks is denoted as Ne in Fig. 3.5c. The connections around these elements is done
following a residual layout. This enables the model to skip on demand neural layers that do not
add value in a specific instance.

32 Chapter 3 Framework for a constrained Markovian NCO model

In particular, the attention mechanism is a scaled dot-product attention. This consists in queries
q, keys k and values v, where q ∈ Rdq , k ∈ Rdk and v ∈ Rdv , that are operated to obtain the
attention on the values. Specifically, the dot product of q · k is used to determine the alignment
between the queries and the keys vectors. The result is weighed by the value v to create the
attention vector. Formally each attention head i is defined as,

AttentionHeadi(q, k, v) = softmax(WQ
i q ·W

K
i kt) ·WV

i v (3.6)

where the parameter matrices are WQ
i ∈ Rdmodel×dk , WQ

i ∈ Rdmodel×dk and W
Q
i ∈

Rdmodel×dk .

Instead of performing a single attention, this model proposes to linearly project the queries, keys
and values several times, achieving different attention vectors and concatenating them to obtain
the final representation. This multi-headed method allows to attend different representations at
different locations. Formally,

AttentionMultihead = concat(Head1, ...,Headh) ·WO (3.7)

where WO ∈ Rhdv×dmodel are the parameters of the output linear layer that operates over the
h attention heads.

Relying on a Transformer encoder theoretically presents several advantages when compared to
recurrent encoders. Here, distant items in the sequence can directly affect each other on the
final representation. Also, the attention can be focused on discrete elements independent on its
position on the sequence. However, the Transformer network also presents some drawbacks. The
attention mechanism is dimensioned for the largest sequence, and a masking system invalids the
excess of terms in case of input a shorter sequence. This provokes that the memory this model
requires is large. Several alternatives have been proposed in this sense [32].

3.4.2.3 State-based attention mechanism
Defining the model as Markovian allows to introduce second attention mechanism. In this
case, having access to state representation allows to build an attention mechanism over the
state representation ~dt. The state-based attention mechanism extracts key features from the
current state d̂t in the same way the attentional encoders do over the instance x. The extracted
information is used in combination with the context vector ct as a glimpse mechanism [118]
to introduce key information deeper into the model. Further information will be given in the
particularized models.

3.4 Building blocks of NCO 33

3.4.3 Constraint management in NCO
As advanced in the introduction, currently NCO has been used in the literature to solve combina-
torial problems without dealing with constraints. Existing works build specific models to ensure
feasible solutions [118], or rely on masking schemes [83]. Nevertheless, this cannot be done for
a large number of combinatorial problems. This Thesis proposes a strategy that allows to apply
NCO to any constrained combinatorial problem. Specifically, we argue that actions that lead to
an immediate violation of a constraint should be masked to directly to avoid exploring those
infeasible solutions. And constraints that due to their nature cannot be verified before acting, and
thus cannot be masked, are relaxed and incorporated into the objective function.

3.4.3.1 Limitations of Action-masked Networks
Current models used in NCO have limitations dealing with constraints. For example, Pointer
Networks (PNs) [120] allow to solve problems that require to compute permutations over the
inputs (e.g., the TSP and the Knapsack problem), however they are not directly applicable to
other kind of combinatorial problems. Similar masking schemes over the output distribution can
be applied to restrict the output space in other neural architectures. This is the case for example
of [83], where for solving the VRP, the cities previously visited are masked to avoid selecting
them later in the decision process.

Using masking schemes forces the neural model to produce solutions that are feasible and,
therefore, ensures that the environment can evaluate the quality of the solution (produce a
reward signal). Nevertheless, masking schemes cannot be applied to all constraint problems. Only
in problems in which the validity of solution is verifiable during its construction, this technique
can be used.

In general, combinatorial problems present constraint equations that only at the end of the episode,
when the solution is obtained, their feasibility can be verified. This prevents the use of making
schemes in many situations. To address this issue, we propose to define constrained problems as
Constrained Markov Decision Processes (CMDP) (Altman et al., 1999) [5]. In this framework,
the environment not only provides a reward signal but also penalty signals generated from
constraints dissatisfaction (see Fig. 3.6). This way, constraints can be incorporated as penalty
terms into the objective function and be evaluated along with the policy. Reward constrained
policies guide therefore the agent to achieve feasible solutions.

3.4.3.2 Background on Constrained RL
Multiples approaches have been used in the literature for dealing with restrictions in RL problems.
From a general prospective, different optimization criteria can be pursued: worst-case criteria,
risk-sensitive criteria or a purely constrained criteria. A comprehensive overview of the research
done in this area is given by (Garcia & Fernandez, 2015) [40].

In this sense, one has to assume whether during the learning process, constraints can or cannot
be broken. Imagine that the agent is learning how to drive, one cannot allow to crash the car
for exploring that this is action results in a bad outcome. Classical exploratory behaviours in RL
assume that agent has to explore and learn different actions, and this is done ignoring the risky
actions can potentially end in erroneous states. In principle, it is impossible to completely avoid
these undesirable situations unless external knowledge is introduced. This can be done in two
ways:

34 Chapter 3 Framework for a constrained Markovian NCO model

Action

Agent

Environment

S
ta

te
RewardConstrint

dissatisfaction

signals .

Fig. 3.6: Reinforcement Learning schema with
constraint dissatisfaction indication. The
agent iteratively interacts with an envi-
ronment by carrying out an action At
based on its observed state representa-
tion St at each step. In return it retrieves
in addition to the reward signal Rt+1,
signals that measure constraint dissatis-
faction Cit+1. These signals enable the
agent to measure the incorrectness of the
actions and guide the agent towards fea-
sible policies.

- Forcing external knowledge: one can incorporate external knowledge to provide initial
procedure for the learning or derive a policy using a finite set of previously studied exam-
ples [102]. However, such initialization approaches are not sufficient to prevent dangerous
situations which occur in later exploration.

- Using Safety Layers: additional layers that are added to the policy network to take possible
unsafe actions predicted and output the closest actions that are safe. Is the case for example
of [90, 33] for restricting continous spaces.

Differently, in this work constraints can be breached during the learning, as the model is trained
on a theoretical problem. Because of this, non-maskable constraints are treated as soft-constraints
and incorporated into the objective policy function, this method is known as Reward constrained
policy optimization. The main approaches to such problems are: (i) primal-dual methods [113, 23,
87], (ii) trust-region optimization [2], (iii) manual selection of the penalty coefficients [111].

3.4.3.3 Reward constrained policy optimization
Before introducing the Reward Constrained Policy Optimization (RCPO) method let us start
defining the Constrained Markov Decision Process (CMDP) formulation used in this NCO approach.
A CMDP augments an MDP with constraints that restrict the set of allowable policies for the
model. Specifically, auxiliary cost signals are added Ci : S ×A× S → R mapping transitions to
cost, in the same way rewards do. These constraint dissatisfaction signals in the RCPO method are
incorporated into the policy optimization function to prevent the model from these behaviours.
That is, in the beginning the agent is free to explore any behaviour. As the learning advances the
policy not only optimizes the objective but also the dissatisfaction of the constraints. This result
in a policy that discourages constraints in expectation.

The RCPO method requires a parametrization of the policy, as it is over the objective expected
reward function where the penalty is added. In particular, it resorts to Policy Gradients to learn
the parameters of the stochastic policy πθ(at|st) that, given as input the tuple composed by the
instance of the problem and the state of the environment st = {x, dt}, assigns high probabilities
to actions at that produce solutions with high reward, and low probabilities to those that do
not. In Policy Gradients, the objective function JπR(θ) is defined as the expected reward for the
policy π

JπR(θ) .= E
τ∼πθ

[R(τ)] (3.8)

Non-maskable constraints are incorporate into Policy Gradients objective (3.8) using the Lagrange
relaxation technique. This allows us to shape the objective function, proportionally penalizing

3.4 Building blocks of NCO 35

those policies that lead to infeasibilities. But first, for each constraint signal Ci, we define its
expectation of dissatisfaction associated to the policy π as

JπCi
(θ) .= E

τ∼πθ
[Ci(τ)] (3.9)

The primal problem becomes then to find the policy π∗ that maximizes the expected reward
subject to the satisfactions of the constraints,

max
πθ∼Π

JπR(θ) s.t. JπCi
≤ 0 ∀i (3.10)

In this expression Eq. (3.10), Π denotes the set of all stationary policies. The set of feasible
policies for the CMDP defines therefore as, Πc

.= {π ∼ Π : Jci(π) ≤ 0}.

Using the Lagrange relaxation technique [20], the problem statement in Eq. (3.10) is reformulated
as an unconstrained problem where the unfeasible solutions are penalized. The result is a multi-
objective function defined as

g(λ) = max
θ

JπL(λ, θ) = max
θ

[JπR(θ)−
∑
i

λi · JπCi(θ)] =

= max
θ

[JπR(θ)− Jπξ (θ)]
(3.11)

where JπL(λ, θ) denotes the Lagrangian objective function, g(λ) stands for the Lagrange dual
function, and λ ∈ R+ are the Lagrange multipliers, i.e., the penalty coefficients. Also, in this
equation (3.11) the term Jπξ (θ) is introduced to define the expected penalty, which is computed
as the weighted sum of all expectation of constraint dissatisfaction signals.

It is noteworthy that setting the Lagrange coefficients λi is a multi-objective problem where for
each set of penalty coefficients there exists a different optimal solution, also known as Pareto
optimality [115]. Balance the different coefficients is challenging, selecting the coefficients
is hard as the effect of their values on the overall policy is not straightforward. In practice,
the coefficients are selected through a time consuming hyper-parameter tuning. Moreover, the
interference between the constraints into the objective function may lead to additional plateaus,
as they compete over the policy [97]. This makes even harder and domain dependent its selection.
In this sense, we use prior knowledge on the problem to perform a manual selection of the
penalty coefficients, although the optimal value can also be automatically discovered using other
techniques. E.g., using the Primal-dual algorithms though a multi-timescale learning [113, 21].
In these algorithms the policy update is on a faster time-scale than the multiplier update. Thus,
effectively, this approach iteratively converge to solutions as if the dual problem was solved.

The gradient of the Lagrangian objective function JπL(θ) is derived using the log-likelihood
method. This derivation process is similar as deriving the expected reward, method introduced in
[122]. The resulting gradient equation is

∇θJ
π
L(θ) = Eτ∼πθ(·|s)

[T−1∑
t=0
∇θ log πθ(St, At) · L(St, At)

]
(3.12)

36 Chapter 3 Framework for a constrained Markovian NCO model

where

L(a|s) = R(a|s)− ξ(a|s) =
= R(a|s)−

∑
i

λi · Ci(a|s)

L(a|s) denotes the penalized reward obtained in each iteration, calculated by subtracting to the
reward signal R(a|s) the weighed sum of all the constrained dissatisfaction signals C(a|s).

Remark 2: Dealing with constraints as penalties is key point in highly constrained environments.
Providing bad rewards to unfeasible solutions can flatten the objective function, which leads to
a lack of information to infer a competitive policy. Without this relaxation technique, it would
be near impossible for the agent to achieve a feasible region, as it would not experience enough
positive rewards. The problem of sparse reward is well known in RL [56].

Lastly, the expectation is approximated using Monte-Carlo sampling, where B problem instances
are drawn from the problem distribution x0, x1, . . . , xB−1 ∼ X . This results in the fundamental
gradient equation used in this work.

∇θJ
π
L(θ) ≈ 1

B

B−1∑
b=0
·
T−1∑
t=0
∇θ log πθ(Sbt , A

b
t) · L(Sbt , A

b
t) (3.13)

Intuition on the selection of the Lagrange coefficients

In the following text some intuitions on the selection of the Lagrange multipliers are provided.
Let us refer to the optimal of the primal problem described in Eq. (3.10) as P∗, the maximum
value that the objective function can obtain subject to the satisfaction of the constraints. Using
the Lagrange relaxation technique, this problem is transformed into an unconstrained problem
where unfeasible solutions are penalized, Eq. (3.11). The resulting dual function g(λ) is the
point-wise maximum of the primal with respect to the policy.

The dual function provides an upper bound on the value of the primal, i.e., g(λ) ≥ P∗ ∀λ ∈ R+.
The tighter the bound, the closer the policy obtained is to the optimal solution of the primal
problem. Hence, the dual problem is that of finding the best bound:

D∗ .= min
λ∈R+

g(λ) (3.14)

The dual function is always convex, even though the primal function and the constraints are
non-convex. Due to this property, and the peculiarities of problem addressed, some conclusions
can be extracted. Generally, all the constraint signals Ci are positive definite, in other words, a
feasible solution would be the one in which all those expectation of constraint dissatisfaction
signals were equal to zero. Nevertheless, there might not exist in the whole space of weights θ a
configuration of the neural network that fulfills this requirement. If it exists, the problem has
zero duality gap, 4 = D∗ − P∗ = 0. Strong duality holds because there exists a point that
deletes the penalty term (complementary slackness). Solving the primal problem and the dual
problem would be essentially equivalent.

In general, constraints are not positive definite and thus provide a subsidy when are satisfied that
shapes the dual as depicted in Fig. 3.7a. In that case, there exists an optimal coefficient λ∗ that
provides the best bound.

3.4 Building blocks of NCO 37

(a) (b)

Fig. 3.7.: General dual function representation in cases where: (a) a benefit in the feasible regions exists,
(b) no subsidy is received in the feasible region or a feasible region does not exist.

However, in the scenario here described where there is no subsidy due to the constraints, two
cases occur depending whether a feasible point is proven to exist or not (Fig. 3.7b). In the case
it exists, there will be a λmin at which point we can guarantee that the penalization is large
enough to affirm that the optima of the dual function D∗ corresponds to the optima of the primal
problem P∗. This value is a priory unknown but can be estimated. It might seem that all values
for λ between λmin and∞ are equally valid, but we will clarify this later.

In the case that there is no feasible point for any policy πθ * Πc, there is also no primal optima
P∗. The dual function constantly decreases with λ, as the function is more and more penalized.
The goal is then to find the Lagrange coefficients λ that establish the desired commitment between
the expectation of a penalty JπC and the expectation of reward JπE . To clarify this concept, let
us analyze the extreme values for λ. If λ = 0, then the Lagrangian JπL = JπE , the optimizer is
going to minimize the expected power consumption without paying attention to the constraints.
Similarly, if λ → ∞, by the law of big numbers, the Lagrangian is going to converge to the
penalization function JπC . Therefore, the policy that the agent is going to infer is the one that
achieves by mean fewer misstatements without taking into account the optimality of the solution.
In this case, there is no λ that maximizes the dual function g(λ) to give us a reference point
on what penalization is enough in order to the feasible region, or in this case, the region that
presents a minimum in constraint dissatisfaction, surpassing the rest of the function.

In practice, if the neural network is a good enough approximator, then a weight configuration
exists in which JπC ≈ 0. This gives us an intuition that the region to find the Lagrange coefficients

is λ+
min. Once the penalty coefficients are set, we obtain the Lagrangian function JπL(θ) to

optimize. This Lagrangian is a non-convex function and, therefore, it cannot be guaranteed
that the optimizer is going to achieve the global optima. Normally this function is optimized
until a saddle point or a local optima is reached. A priori, we do not have information on the
convergence point and a fine tune of the λ is going to be needed to set the desired commitment
between optimality and constraint dissatisfaction. Notice that during this fine tuning we move by
following the trajectory that joins the local optima or saddle point achieved during the learning
in the extreme cases (λ = 0 and λ =∞). In theory, we should experience benefits in favor of
the goal we want to achieve by controlling the λ. Yet, in reality, nothing guarantees that during
this procedure a different optimization path with a better or worse performance is achieved.

38 Chapter 3 Framework for a constrained Markovian NCO model

3.4.4 Optimization algorithms
Finally, this Chapter ends outlining the optimization methods that would be required to optimize
the cost function. In this sense, some key aspects are provided on the selected alternatives in
order to align them with the proposal. As mentioned, this Thesis is focused in gradient-based
methods. Although there exists other derivative free optimization and evolutionary alternatives
(e.g., CEM or CMA-ES) that have shown to almost match in performance to PG methods is some
scenarios [95], gradient-based methods are considered the best option to optimizing deep
neural models, not only due to the results but also because of their facility to tune competitive
algorithms.

Stochastic gradient descent (SGD) is the simplest way to maximize the objective function pursued
in policy optimization J(θ). Namely, to find the parameters of the neural network θ ∈ Rd, that
achieves the best performance, SGD computes the gradient of the cost function w.r.t. to the
parameters θ,

θ ← θ + αt∇θJ(θ)

Robbins-Monro [93] proved the converge of this expression under some requirements. These are
related with the value of the step-sizes αt:

∞∑
t=1

αt =∞;
∞∑
t=1

α2
t <∞

E.g., a particular sequence of steps which satisfy these conditions, have the form αt = α/t.
However, in practice a small enough α that does not necessarily decrease during the optimization
process is an equally good option.

However, SGD presents the some challenges:

- Choosing a proper learning rate is difficult. A learning rate that is too small leads to slow
convergence, while a learning rate that is too large can hinder convergence and cause the
loss function to fluctuate around the minimum or even to diverge.

- Additionally, the same learning rate applies to all parameter updates. If the data is sparse
and the features have very different frequencies, one might not want to update all of them
to the same extent, but perform a larger update for rarely occurring features.

- Another key challenge of minimizing highly non-convex error functions common for neural
networks is avoiding plateaus, which makes it notoriously hard for SGD to escape as the
gradient is close to zero in all dimensions.

Gradient descent is a first-order optimization method. It only takes the first order derivatives
of the loss function into account and not the higher ones. This means that it has no clue about
the curvature of the loss function. It can tell whether the loss is declining and how fast, but
cannot differentiate between curves. For this reason, it presents problems navigating where
there is a different second derivative for each direction at a point. The condition number of the
Hessian at a point measures how much the second derivatives differ from each other. When the
Hessian has a poor condition number, gradient performs poorly. This is because in one direction
the gradient increases rapidly, while in another direction does slowly. In these scenarios, SGD
oscillates across the slopes only making negligible progress along one direction towards the local
optimum. This issue can be resolved using information from the Hessian matrix to guide the

3.4 Building blocks of NCO 39

search. Using second-order curvature information to find search directions can help with more
robust convergence for non-convex optimization problems. An alternative for that is the Newton’s
method.

Second-order methods such as Newton’s method can give an ideal step size to move in the
direction of the gradient. Since they have information about the curvature of our loss surface.
Newton’s Method does it by computing the Hessian matrix, which is a matrix of the second
derivatives of the loss function with respect of all combinations of the weights. The Hessian
gives us an estimate of the curvature of loss surface at a point. However, computing the Hessian
requires to compute gradients of the loss function with respect to every combination of weights,
which is of the order of the square of the number of weights present in the neural network.
Though it is time-consuming and no practical to calculate.

As an alternative, quasi-Newton methods gradually build up an approximate Hessian matrix
by using the gradient information from previous iterations. Quasi-Newton methods combine
the speed of Newton’s algorithm with the scalability of first-order methods by incorporating the
curvature information. Two of examples of these methods are the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) or Symmetric Rank 1 (SR1). These methods have shown good performance in
supervised learning [18]. Although the there is a discussion in the deep learning community
on whether these algorithms represent the best alternative. Currently, momentum accelerated
first-order methods are widely used due to the effectiveness they have shown on a wide variety of
environments. In general, momentum-based optimizers are seen as the primary option to deal
with these kind of problems [50].

3.4.4.1 Momentum-based optimizers
As mentioned, a good alternative to improve SGD and accelerate its convergence resides in
including momentum. These momentum-base first-order methods use heuristics to guide the
search based upon the past behavior of gradient. Some of the most relevant implementations in
the community are:

• Momentum [91]: algorithm that accelerates SGD in the relevant direction and dampens
oscillations. This method adds momentum including a fraction of the update vector of the
past time step to the current update vector. The update is performed as follows,

vt = γvt−1 + α∇θJ(θ)
θ ← θ + vt

(3.15)

where the γ term weights the momentum. It increases the step for dimensions whose
gradients point in the same directions and reduces updates for dimensions whose gradients
change directions.

• Nesterov Accelerated Gradient [84]: this method includes an approximation of the next
position of the parameters. This allows to effectively look ahead by calculating the gradient
not w.r.t. to our current parameters θ but w.r.t. the approximate future position of them:

vt = γvt−1 + α∇θJ(θ + γvt−1)
θ ← θ + vt

(3.16)

40 Chapter 3 Framework for a constrained Markovian NCO model

Nesterov accelerated gradient first makes a big jump in the direction of the previous
accumulated gradient, measures the gradient and then makes a correction. This anticipatory
update prevents it from a too fast approximation and results in increased responsiveness,
which has significantly increased the performance, specifically in recurrent models [16].

Momentum accelerated methods suffer from a well-known problem. In case the momentum
acquired is too large, they are likely to miss the local minima. As an alternative, adaptive
learning rate can be applied to momentum methods to modify the learning rate to the parameters,
performing smaller updates (i.e. low learning rates) for parameters associated with frequently
occurring features, and larger updates (i.e. high learning rates) for parameters associated with
infrequent features. For this reason, it is well-suited for dealing with sparse data. An adaptive
learning rate is used in the following methods:

• Adaptive Gradients (AdaGrad): provides a simple approach for changing the learning
rate over time. This method uses a different learning rate for every parameter θi at every
time step t. To this end, the learning rate is adjusted dividing it by the sum of the squares
of the gradients w.r.t. θi obtained up to the time step t.

Adagrad’s main weakness is that this method monotonically decreases the learning rate.
Since the learning rate is divided by a positive increasing term, the accumulated gradients, it
keeps diminishing during the training. This causes the learning rate to shrink and eventually
become infinitesimally small, at which point the algorithm is no longer able to acquire
additional knowledge.

• Root Mean Squared Propagation (RMSprop): very close to Adagrad, except for the fact
that it does not retain the sum of the gradients, but instead computes an exponentially
decaying average. RMSprop instead of inefficiently storing the previous squared gradients,
it computes a decaying average of all past squared gradients. The running average at time
step t then depends only on the previous average of the current gradient.

• Adaptive Moment Estimation (Adam) [63]: this adaptive moment estimation method is
simply a combination of Momentum and RMSProp. Adam in addition to computing the
exponentially decaying average of past squared gradients like RMSprop, it also keeps an
exponentially decaying average over the past gradients, similar to Momentum.

In general, adaptive momentum gradient descent optimization methods outperform their coun-
terparts in a wide variety of environments. However, they are highly sensitive to hyperparameter
configuration.

3.5 Conclusions
This Chapter argues that CO problems present the Markov property, and so, are suitable to be
addressed using traditional RL techniques. This approach benefits the results as accessing the
fully observable state of the environment is more reliable than doing on memories as previous
models do. In this sense, two different neural agent are proposed. Both models encode the
instance of the problem, extract the features from the definition and then incorporate the state
of the environment in order to perform an iterative resolution process in which the solution is
constructed based on the action the model performs at each time-step. Particularly in the first
case, a RNN is used to encode the input sequence that defines the problem description and in
the second case, a Transformer encoder is used to build a fully-attentional model that removes
recursion from the solution. This is aligned with the trend in the RL community which affirms

3.5 Conclusions 41

that establishing non-direct relations in the agent (as occurs with recursion) hampers the learning
process.

Also, a methodology for handling constraints is introduced here. To this end, the Constrained
Markov Decision Process (CMDP) formulation of the model is used to incorporate penalty
signals into the model indicating the constraint dissatisfaction levels. We conclude that ac-
tions that lead to an immediate violation of a constraint should be masked to directly avoid
exploring those infeasible solutions. However, due to their nature, not all constraints can be
verified before acting, and thus, cannot be masked. To that end, we propose dealing with
non-maskable constraints by incorporating them into the Policy Optimization objective via
Lagrange multipliers. Accordingly, some intuitions in the selection of the penalty coefficients
are provided.

Finally, this Chapter ends outlining that momentum based optimizers are the best option for opti-
mizing NCO models. An extensive literature has been revised including first order, second order
and quasi-Newton methods to conclude that first order with momentum, and particularly, adaptive
momentum alternatives are the best suitable option in these high-variance environments.

42 Chapter 3 Framework for a constrained Markovian NCO model

4Proposal for a model building
process and experimentation

„"If a machine is expected to be infallible, it cannot also
be intelligent."

— Alan Turing

Contents
4.1 Motivation for studying the learning process in a toy CO problem 44

4.2 Methodology for improving the learning process 45

4.2.1 Convergence analysis . 45

4.2.2 Enhance exploration strategies in deep RL 46

4.2.3 Monotonic improvements with Trust-region optimization 52

4.2.4 Improving the model with a self-competing strategy 60

4.2.5 Search strategies . 62

4.3 Proposed framework for addressing NCO . 63

4.4 Experimentation on the Job-shop Scheduling Problem 64

4.4.1 Job-shop Scheduling Problem with limited idle time 64

4.4.2 Particularized models . 64

4.4.3 Learning algorithm: PPO with self-competing baseline 66

4.4.4 Results on the Job Shop Problem . 66

4.5 Conclusions . 70

SO far in this Thesis, the baseline framework for building a Markovian NCO model has been
discussed. This includes the different learning algorithms (Sec. 3.4.1), the neural model

that constitutes the agent (Sec. 3.4.2), the methodology for addressing constraints (Sec. 3.4.3)
and the optimization algorithms (Sec. 3.4.4). In this Chapter, these ideas are all put together to
construct a proof-of-concept from where to draw an analysis. To this end, a toy combinatorial
problem is used for testing the different alternatives. In this scenario, optimal solutions can be
computed, and therefore a performance comparison against the optima can be obtained. But also,
the learning procedure is much faster. During the analysis several experiments are drawn to tune
the different alternatives. Relying on a reduce model significantly decreases the learning time
(which can be very time-consuming) and enables to perform broader comparisons to lead better
conclusions. The outcome extracted here would be of utmost interest to extrapolate behaviours
applicable to further models.

Finally, a complete experimentation is performed in a well-known combinatorial problem, the
Job-shop Scheduling Problem (JSP). This problem has been largely studied in the literature and
there exists an extensive background of algorithms to solve it. In particular, the experimentation
is done for different orders of the problem, comparing the solutions against well-documented
heuristics, metaheuristics and constraint solvers. As argued, the presented RL model produces

43

fast intuitions on the problem, therefore note that a fair comparison can only be done against
greedy heuristics. Although other resolution methods are also included in the experimentation to
have a wider view on the results.

4.1 Motivation for studying the learning process in a
toy CO problem

In this section, experiments to study the learning process on constrained combinatorial problems
are conducted. To this end, a toy CO problem is used to draw general conclusions on the different
learning approaches. Specifically, a small size Bin-packing problem is used to this end. In order
to implement this neural model, tensor oriented libraries are required (e.g., Tensorflow [1] or
PyTorch [86]). Neural networks are function approximators composed of differentiable operations.
Hence, to train these models, automatic differentiation libraries that efficiently compute the
backpropagation algorithm are required. The resulting learning process is depicted in Fig. 4.1.
Here, for each iteration, the approximation obtained on the batch for the expected reward JπR,
baseline estimator b, penalization Jπξ , and Lagrangian JπL are depicted. As shown in this example,
at the beginning of the learning process, the agent generates random solutions, obtaining high
penalty for those actions. Therefore, at the start, the agent only focuses on constraint satisfaction
and ignores the underlying objective of the problem. As the learning progresses, the agent
improves its policy correcting its weights θ via gradient descent to minimize the Lagrangian
objective function (Eq. 3.13). This process continues until the model converges. At that point,
the performance of the model does not improve no-matter how long the learning process is
extended.

As mentioned, this analysis is done in a small toy combinatorial problem in which it is viable
to compute for all instances the optimal solution. In the particular case exposed, the objective
function is set following the indications on the selection on the Lagrange multipliers stated in
Section 3.4.3.3, and we verify that the penalty coefficients are high enough to not participate
on the optimal solution. Under this circumstances, the optimal expected penalty Jπ∗ξ = 0. In
that case, and as Fig. 4.1 depicts, the model achieves close to optimal results, but the model still
presents an optimality gap that remains no matter for how long the model is trained.

0 25000 50000 75000 100000 125000 150000 175000 200000

0

2

4

6

Si
gn
al
s Reward

Baseline
Penalty
Lagrangian

0 25000 50000 75000 100000 125000 150000 175000 200000

−10

−5

0 25000 50000 75000 100000 125000 150000 175000 200000

0

2

4

k
∇
θ
J
L
(θ
)k

0 25000 50000 75000 100000 125000 150000 175000 200000

0

1

2

E
nt
ro
py
H
(π

θ
)

0 25000 50000 75000 100000 125000 150000 175000 200000

Step

0.0

0.5

1.0

E
nt
ro
py

re
g.

fa
ct
or

Lo
ss

0

Fig. 4.1.: Learning process on a toy combinatorial optimization problem; the immediate reward, penaly,
Lagrangian and baseline estimator are depicted. Below, the convergence of the objective function
is shown. This objective function maximizes to zero when the policy term becomes deterministic,
at that point the policy stays constant and the learning process is concluded.

44 Chapter 4 Proposal for a model building process and experimentation

Even though this toy problem represents a small environment in which all the optimal solutions
are explored for all instances. The model does not infer a policy to optimally selects the best
solution for each instance. Note that exploring the optimal solution does not mean to learn it.
These systems do not rely on memory, a positive exploration is only used to correct the policy
πθ in the right direction. One might think that is due to the non-linear apporximator used to
infer the policy (the neural agent) is not complex enough to infer the optimal behaviour. In this
scenario, the neural network has to embed for all instances of the problem the right solution.
However, this is disproved. After computing the optimal labels and training the model performing
a supervised learning procedure, the agent is capable of overfitting the whole space of solutions.
Then, we conclude that in this case the neural agent does not represent an obstacle to achieve
the optimal behavior, but the RL learning algorithm limits the policy achieved.

This experiment lead us to the next question, what enhance learning methods could be applied
to improve the results achieved, and therefore reduce the optimality gap? And ultimately, it
is possible using RL to learn the optimal policy π∗ even for simple CO problems with a small
combinatorial space? These questions will be answered during the analysis performed in the
following sub-sections.

4.2 Methodology for improving the learning process
In order to improve the results achieved in the previous experiment, and therefore reduce the
optimalily gap, several techniques can be applied. In this sense, in the following sub-sections
these strategies are evaluated:

- perform a convergence analysis,
- enhance exploration with entropy regularization,
- reduce policy degradation with trust-region optimization,
- and evaluate search strategies at inference.

4.2.1 Convergence analysis
One of the key aspects to analyze in policy optimization methods is the convergence. In policy
optimization methods, a loss function J(θ) is defined and numerical optimization is used to find
the satisfactory parameters θ that optimize the model. Policy optimization methods present local
convergence and the challenge of minimizing these highly non-convex functions is avoiding get-
ting trapped in their numerous local suboptima. To this end, knowing if the learning mechanism
converges to a local minimum or stays in a saddle point during the optimization process is key to
apply different optimization techniques in the model.

To find information about the convergence of the model, the second derivative is used. One can
think of the second derivative as a measure of the curvature. When functions have multiple input
dimensions, there are many second derivatives, which are collected together into a matrix called
the Hessian matrix H . Anywhere that the second partial derivatives are continous, implies that
the Hessian matrix is symmetric at that point. Because of the Hessian matrix is real and symmetric,
it can be decomposed it into a set of real eigenvalues and an orthogonal basis of eigenvectors.
The second derivative in a specific direction represented by the vector d is therefore given by
d>Hd. When d is an eigenvector of the Hessian H, the second derivative in that direction is
given by the corresponding eigenvalue.

4.2 Methodology for improving the learning process 45

0 500 1000 1500 2000 2500 3000 3500 4000

−0.2

−0.1

0.0

L
in

ea
r

sc
al

e

0 500 1000 1500 2000 2500 3000 3500 4000

Eigenvalues of the Hessian of JL(θ)

−30

−20

−10

0

L
og

-r
ec

ti
fi

ed
sc

al
e

Fig. 4.2.: Eigenvalues of the Hessian of the policy network πθ. The eigenvalues are presented in a linear
scale and also in a rectified logarithmic scale. Results consistently show both positive and negative
eigenvalues on trained models.

Numerical optimization theory state that in these multidimensional functions the eigendecompo-
sition of the Hessian matrix can be used to determine whether a critical point is a local maximum,
a local minimum, or a saddle point. At that critical point where ∇θJ(θ) = 0, the following
deductions can be done:

- If the Hessian is positive definite (e.g., all eigenvalues are positive) at the critical point,
then it is a local minimum of function.

- Similarly, if the Hessian is negative definite (e.g., if all eigenvalues are negative), then this
point is a local maximum of function.

- If the Hessian has positive and negative eigenvalues, it is a saddle point of function.
- If any of the eigenvalues are zero, the test is inconclusive. This is because the univariate

second derivative in the cross section corresponding to the zero eigenvalue is inconclusive.

This analysis has previously arisen in the literature [34]. By and large, there is a consensus that
in general, deep models do not achieve a local minima but saddle points. In this work, this is
empirically verified. Even relying on a small neural network to address this toy CO problem, and
the learning process is perpetuated until the gradient vanishes, the eigenvalues of the Hessian
do not achieve positive values for all directions (depicted in Fig. 4.2). Instead, plateaus and
ultimately saddle points are more likely to occur. For this reason, and to avoid from getting
stuck on these flat regions, momentum accelerated optimizers are key to improve the training on
these models.

4.2.2 Enhance exploration strategies in deep RL
Another technique that can be applied to improve the results is enhancing the exploration.
Several classic exploration techniques are embedded into RL algorithms (e.g., epsilon-greedy,
upper confidence bounds, Boltzmann exploration, Thompson sampling). In this Section, enhance
exploration strategies that can be applied specifically in deep RL models are considered. The
following alternatives are evaluated when neural networks are used for function approximation:

- Entropy Regularization: this method adds an entropy term into the loss function, encour-
aging the policy to preserve stochasticity.

- Noise-based Exploration: alternatively this method enhances exploration adding noise
into the observation, action or even the state space.

46 Chapter 4 Proposal for a model building process and experimentation

- Intrinsic Rewards: in addition to the previous approaches and with a particular interest for
solving hard-exploration problems is to augment the environment reward with an additional
bonus signal to encourage exploration.

In this Thesis, the Entropy Regularization technique and Intrinsic exploration bonuses are evalu-
ated on the scope of CO problems.

4.2.2.1 Entropy Regularization
As mentioned, Entropy Regularization [4, 129] can be applied to improve the results in policy
optimization methods. One might wrongly think that the longer the model is trained the better
is the performance. However, policy optimization methods (e.g., PG or AC) rely on a "learning
window" to define their policy. These methods begin the learning process with a stochastic
policy, which is used to perform exploration (Annex B.4), and it is during the learning process
that the policy converges to a deterministic one. At that point, the learning window closes and
the performance of the model stays constant no matter for how long the learning procedure
continues. Hence, if during the learning process the model does not sample a large number of
diverse state-action pairs, it may converge to a poor policy.

A technique to extend the learning window, and therefore catch more information from the
problem is Entropy Regularization. This technique prevents policies from becoming deterministic
too quickly encouraging the selection of stochastic policies. In this framework, a new entropy-
augmented objective is optimized Jβ(θ), which is more preferred with stochastic behaviours. To
achieve this goal, along with the environment reward, the agent gets a bonus proportional to the
entropy of the policy at each time-step. The RL problem under this description stands to optimize
the following equation

Jβ(θ) = Eτ∼πθ [Rβt+1] = Eτ∼πθ [Rt+1 + βHπ(St = s)] (4.1)

being the entropy of the policy Hπ obtained as

Hπθ (St = s) .= Ea∼π(·|s)[log πθ(At|St)]

The gradient of the entropy-augmented objective is calculated as follows,

∇θJ
β(θ) = ∇θEτ∼πθ [Rβ(τ)] =

= Eτ∼πθ

[T−1∑
t=0
∇θ log πθ(At|St) ·Q

β
πθ

(St, At) + β∇θHπθ (St)
]

≈ Eτ∼πθ

[T−1∑
t=0
∇θ log πθ(At|St) ·Qπθ (St, At) + β∇θHπθ (St)

] (4.2)

whereQβπθ is the expected discounted sum of entropy-augmented rewards. Which for the purpose
of the method can be approximated by the action-value function.

In this equation, the hyperparameter β regulates the trade-off between the importance of the
entropy term against the environment’s reward. When β is high, large entropy levels are added
to the policy, causing the policy to be more stochastic; on the contrary, with low values of β, the
policy is preferred with deterministic behaviours. The entropy term can be added directly to the

4.2 Methodology for improving the learning process 47

loss function weighed with the β parameter or it can be included shaped by a decay function
ψβ(t). In the first case the entropy term is present during the whole learning process, which
prevents the policy from being completely deterministic. Alternatively, the second option uses
a decay function to ensure that the entropy term vanishes and ultimately the policy becomes
deterministic.

The shape of the decay function is relevant for the performance of the model. Its selection
indicates the way in that the entropy term impacts during the learning process, and ultimately
determines for how long the learning window stays opened. In the experimentation the following
entropy augmented objective has been tested,

∇θJ(θ) = Eτ∼πθ

[T−1∑
t=0
∇θ log πθ(At|St) ·Qπθ (St, At) + ψβ(t) · ∇θHπθ (St = s)

]
(4.3)

with the following decay functions ψβ(t) to shape the decay of the entropy term Hπθ :

- (a) Linear decay
- (b) Exponential decay
- (c) Inverse decay

The results of the analysis are depicted in Fig. 4.3. As can be observed, the different decay
functions (a)(b)(c), produce different convergence patterns, this is captured in the entropy
term. We conclude from the experiment that the policy convergence when the entropy factor
decreases below a threshold, in the example this occurs for a value of ψβ(t) ≈ 0.3. Before getting
this value the entropy added to the system is excessive, which prevents the model from learning
good behaviors. Once the entropy function decreases below this threshold, the agent is able to
infer some positive policies and begins to converge towards them.

As mentioned, the aim of this method is to preserve during the convergence process higher levels
of exploration than policy optimization naturally would. In this sense, the longer acceptable
levels of entropy are maintained, the better is the exploration for the final outcome. Particularly,
from this experiment we observe that the regularization effect experienced is more prominent
using an inverse decay function (c), as this function rapidly declines surpassing the threshold
but then it maintains for a long period suitable levels of entropy. Finally, the effect of entropy
regularization can be also observed in the norm of the gradient of the loss function ‖∇θJ(θ)‖.
This function acquires large values during the convergence process indicating that the model is
enhancing exploratory behaviors.

48 Chapter 4 Proposal for a model building process and experimentation

0
2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

1
5
0
0
0
0

1
7
5
0
0
0

2
0
0
0
0
0

0246

Signals

R
ew
ar
d

B
as
el
in
e

P
en
al
ty

La
gr
an
gi
an

0
2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

1
5
0
0
0
0

1
7
5
0
0
0

2
0
0
0
0
0

−
1
0

−
50

0
2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

1
5
0
0
0
0

1
7
5
0
0
0

2
0
0
0
0
0

0
.0

0
.5

1
.0

1
.5

k∇θJL(θ)k

0
2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

1
5
0
0
0
0

1
7
5
0
0
0

2
0
0
0
0
0

012

EntropyH(πθ)

0
2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

1
5
0
0
0
0

1
7
5
0
0
0

2
0
0
0
0
0

St
ep

0
.0

0
.5

1
.0

Entropyreg.factorLoss

(a
)

Li
ne

ar
de

ca
y

0
2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

1
5
0
0
0
0

1
7
5
0
0
0

2
0
0
0
0
0

0246

Signals

R
ew
ar
d

B
as
el
in
e

P
en
al
ty

La
gr
an
gi
an

0
2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

1
5
0
0
0
0

1
7
5
0
0
0

2
0
0
0
0
0

−
1
0

−
5

0
2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

1
5
0
0
0
0

1
7
5
0
0
0

2
0
0
0
0
0

024 k∇θJL(θ)k

0
2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

1
5
0
0
0
0

1
7
5
0
0
0

2
0
0
0
0
0

012

EntropyH(πθ)

0
2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

1
5
0
0
0
0

1
7
5
0
0
0

2
0
0
0
0
0

St
ep

0
.0

0
.5

1
.0

Entropyreg.factorLoss

0

(b
)

Ex
po

ne
nt

ia
ld

ec
ay

0
2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

1
5
0
0
0
0

1
7
5
0
0
0

2
0
0
0
0
0

0246

Signals

R
ew
ar
d

B
as
el
in
e

P
en
al
ty

La
gr
an
gi
an

0
2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

1
5
0
0
0
0

1
7
5
0
0
0

2
0
0
0
0
0

−
1
0

−
50

0
2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

1
5
0
0
0
0

1
7
5
0
0
0

2
0
0
0
0
0

0
.0

0
.5

1
.0

1
.5

k∇θJL(θ)k

0
2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

1
5
0
0
0
0

1
7
5
0
0
0

2
0
0
0
0
0

012

EntropyH(πθ)

0
2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

1
5
0
0
0
0

1
7
5
0
0
0

2
0
0
0
0
0

St
ep

0
.2
5

0
.5
0

0
.7
5

1
.0
0

Entropyreg.factor
Loss

(c
)

In
ve

rs
e

de
ca

y

Fi
g.

4.
3.

:
C

om
pa

ri
so

n
on

th
e

le
ar

ni
ng

pe
rf

or
m

an
ce

of
di

ff
er

en
t

en
tr

op
y

re
gu

la
ri

za
ti

on
de

ca
y

fu
nc

ti
on

s:
(a

)
Li

ne
ar

de
ca

y,
(b

)
Ex

po
ne

nt
ia

ld
ec

ay
an

d
(c

)
In

ve
rs

e
de

ca
y.

4.2 Methodology for improving the learning process 49

4.2.2.2 Intrinsic Rewards as Exploration Bonuses
The exploratory behaviour of the model can be also increased using exploration bonuses. Tradi-
tional RL algorithms perform well in scenarios with dense rewards. However, they struggle with
sparse rewards or for the interest of this Thesis, when we look for the optimal solution in high
combinatorial spaces. To overcome these difficulties, Intrinsic Rewards build an auto-regulated
mechanism that encourages the agent to explore novel states without any external supervision,
just curiosity. To promote exploration this technique gives additional rewards on novel strategies.
In this framework, the reward is formed of two terms: an extrinsic reward re obtained directly
from the environment and a synthetic intrinsic reward ri built to encourage exploration. For-
mally, rt = ret + ηrit, where η is a hyperparameter adjusting the balance between exploitation
and exploration.

Most formulations of Intrinsic Rewards techniques fall into two main categories: 1) directly
encourage the agent to explore novel states or, 2) encourage the agent to reduce the error
predicting the consequences of it’s actions (i.e., its knowledge about the environment). In the
first case the model counts how many times a state has been encountered and assigns a bonus
accordingly. This bonus guides the agent’s behavior to prefer rarely visited states over common
states. This is known as the Count-based Exploration method. However, this method does not
scale well. A different approach to make this strategy possible on high-dimensional spaces is to
map states into hash codes so that states become trackable [112]. Alternatively, in the second
scenario, intrinsic exploration bonuses are rewarded to improve the agent’s knowledge about
the environment. The agent’s familiarity with the environment dynamics is estimated through a
prediction model. In such case, curiosity is defined as the error in the ability the agent presents
to predict the consequences of its own behaviour. In other words, the more novel a state is
(measured using the prediction capabilities of the agent), the bigger the error to predict the state
would present. This error is used to derive an intrinsic reward that motivates the agent to keep
exploration. This self curiosity-driven RL strategy is known as Prediction-based Exploration,
and it has achieved great success in otherwise unapproachable problems.

Several techniques can be applied to predict the model dynamics. This work, distinguish two
main approaches: approximating the forward dynamics or the inverse dynamics.

Forward Dynamics

Learning a predictor of the forward dynamics prediction model is the most common way to
approximate how much knowledge the model obtains about the environment. This method
captures the capability the agent presents for predicting the consequence of its own behavior.
Particularly, it predicts the feature representation of the next state φ̂(st+1) based on current state
st and the action at taken by the agent. Formally, φ̂(st+1) = f(φ(st), at). The full picture of
the model can be observed in Fig. 4.4.

Policy

Environment Features

Predictor

Fig. 4.4.: A predictor based on the forward dynamics of the model is used to estimate the novelty of states
from where to derive an intrinsic reward.

50 Chapter 4 Proposal for a model building process and experimentation

The motivation for this method is that given a new state, if similar states have been visited
many times in the past, the prediction should be easier and thus the model should present lower
prediction error. The exploration bonus is therefore computed as the error between the predicted
states,

rit = η

2‖φ̂(st+1)− φ(st+1)‖22 (4.4)

Predicting the forward dynamics presents an unintended feature. In case the environment is
highly stochastic, the model receives high intrinsic rewards even though when the state is visited
multiple times. This is due to the inability the model presents to predict the results in such cases.
Fortunately, CO problems here addressed are deterministic by definition (as argued in Sec. 3.3).
Hence, forward dynamics can be applied to estimate the novelty of states.

Inverse Dynamics

Alternatively, the inverse dynamics of the model can also be used to predict the knowledge about
the environment. Predicting the forward dynamics is not easy, especially considering that some
factors in the environment cannot be controlled by the agent. A good state feature space should
exclude such factors because they cannot influence the agent’s behavior and thus the agent has
no incentive for learning them. Alternatively, using the inverse dynamics an embedding network
is used to predict the action taken by the agent to move from state st to st+1. In that case, the
agent will not receive rewards for reaching states that are inherently unpredictable.

As mentioned, currently the RL community has had great result using Prediction-based exploration
to solve sparse environments previously intractable e.g. in the famous Sokoban and Montezuma’s
revenge games. State-of-the-art works in this field [26, 25, 10] have achieved for the first time
positive results in these environments combining long-term predictions with short-term memory
models to estimate the novelty of states. Particularly, these works rely on a memory-based short
term module to prevent the agent from exploring the same state numerous times inside a episode;
and a life-long predictor module that discourage states visited many times across episodes.

In the experimentation, we test a predictor based on the forward dynamics of the problem.
This predictor is trained using supervised learning on the current states the model achieves.
Building a forward predictor is relatively easy using the features the agent extracts. And as

0 200 400 600 800 1000

10 6

10 4

10 2

100

Te
st

in
g

er
ro

r

PG+baseline
PG+baseline+entropy
PG+baseline+entropy+curiosity

0 200 400 600 800 1000
Step

10 1

100

||
(s

t+
1)

(s
t+

1)
|| 2

Fig. 4.5.: On top, the testing error experienced on the reference problem without additional exploration
techniques, with entropy regularization and curiosity-driven RL based on predicting the forward
dynamics of the problem. On the bottom, the prediction error experienced during the learning.

4.2 Methodology for improving the learning process 51

mentioned, in deterministic CO problems, this forward predictor is enough to address the model
exploration. The results obtained are depicted in Fig. 4.5. The predictor learns relatively fast a
good approximation on the dynamics of the problem. However, we observe that the curiosity-
driven mechanism does not adds any benefit to the model. In the scenario of CO problems,
the effect of Entropy Regularization specially in the long run of the learning is much more
considerable than Intrinsic Rewards exploration bonuses. Due to this reason, only Entropy
regularization will be considered as the main exploration method in this work.

4.2.3 Monotonic improvements with Trust-region optimization
Another technique to improve the convergence in policy optimization methods is Trust-region
optimization. In RL, tuning the hyper-parameters correctly is key to obtain the best results on the
model. However, during this process some phenomena could arise that prevents it from continuing
the learning progression. In particular, in Policy Gradients one of the most relevant occurrences is
policy degradation. This phenomena can be observed in Fig. 4.6. In this example, the objective
function is unstable throughout the learning process, it does not decrease monotonically. This
occurs fundamentally due to the presence of large optimization steps done over noise gradient
estimations. This noise may be due to different factors ranging from stochastic transitions to
exploratory actions. If an update in the policy is large enough, specially in the wrong direction,
this can conduct to a degradation in the policy the method does not recover from.

0 25000 50000 75000 100000 125000 150000 175000 200000

Step

0

1

2

3

4

Si
gn
al
s

Reward
Penalty
Lagrangian

Fig. 4.6.: Example of vanilla-PG presenting performance degradation in the policy learning process. In this
picture the red line represents the optimal expected Lagrangian J∗L computed analytically. As
observed, the degradation prevents the model from converging towards a good policy, turning
the learning process unstable.

Although the vanilla implementation of Policy Gradients method has been extensively used
in NCO, particularly the Monte-carlo Policy Gradients method (also known as the Reinforce
algorithm) [80], the mentioned limitation is likely to occur on this method. As the objective
function LPG is estimated using the empirical average Êπ over a finite batch of samples, from
which the optimization algorithm (e.g., stochastic gradient descent (SGD)) performs a step in the
convergence. This method often conducts to policy updates in the wrong direction, producing a
degradation in the policy. Normally, the optimizer recovers from these wrong updates, but if a
change in the learning step is too large, this method might not recover and present a collapse in
the performance. This makes difficult to choose a correct learning step-size.

Alternatively, Trust-region optimization can be applied to guarantee that the update in the policy
is fitted to the objective function. Trust-region optimization is a well known optimization method
that is used in case of having an approximation to the function that is accurate locally but
inaccurate far away from the optimization point. This method guarantees that the update stays
on the local region, where the approximation is trustworthy. To this end, this technique presents

52 Chapter 4 Proposal for a model building process and experimentation

an constrained optimization sub-problem that has to be solved at each optimization step. Two of
the most common adaptations of trust-region optimization to PG are analyzed in the solution,
these are Trust Region Policy Optimization and Proximal Policy Optimization.

4.2.3.1 Trust Region Policy Optimization
In Trust Region Policy Optimization (TRPO) [98] a surrogate of the PG objective function is
maximized subject to a constraint on the size of the policy update. Specifically, this method
rewrites the objective function LPG in terms of the change on the policy distribution that the
model experience during a learning step. This formulation yields to a resolution process that
enables to compute rapid approximations on the trust-region optimization problem.

Particularly, TRPO uses Importance Sampling (IS) (discussed in Annex B.3.2) to obtain this
surrogate objective. This technique allows to estimate a policy distribution, relying on samples
generated from a different policy. Here, it is used to estimate the objective function under the
current policy πθ using the policy before the update πθold

. This allows to define the objective in

terms of the difference on the policy update, which is key to this method. The surrogate objective
function is obtained as follows,

∇θL
PG(θ) = Es,a∼πθ

[
∇θlogπθ(At|St) · Aπ(St, At)

]
=

= Es,a∼πθ

[∇θπθ(At|St)
πθ(At|St)

· Aπ(St, At)
]

=

= Es,a∼πθold

[∇θπθ(At|St)
πθold

(At|St)
· Aπ(St, At)

]∣∣∣∣∣∣
θ=θold

= ∇θL
IS(θ)

∣∣∣
θ=θold

(4.5)

Therefore, the surrogate loss function obtained using importance sampling results in the following
equation,

LIS(θ) = E
[
πθ(At|St)

πθold
(At|St)

· Aπ(St, At)
]∣∣∣∣∣∣
θ=θold

(4.6)

The resulting objective function LIS is constrained to guarantee that the update in the policy
belongs to the trust region. In particular, TRPO uses the KL divergence to restrict the distance in
the policy update. The constraint equation limits the update in the policy distribution to a value
δ, that the method configure as an hyperparameter. Formally,

max
θ

Es,a∼πθold

[∇θπθ(At|St)
πθold

(At|St)
· Aπ(St, At)

]
s.t.

Es,a∼πθold
[KL(πθold

, πθ)] ≤ δ

(4.7)

4.2 Methodology for improving the learning process 53

This optimization problem is relaxed using the Lagrange multipliers method. This follows from
the fact that a the KL penalized surrogate objective forms a lower bound (i.e., a pessimistic bound)
on the performance of the policy π. The penalized objective function states as follows,

max
θ

Es,a∼πθold

[∇θπθ(At|St)
πθold

(At|St)
· Aπ(St, At)

]
− βEs,a∼πθold

[KL(πθold
, πθ)] (4.8)

This non-linear equation is solved using numerical optimization methods. In particular, this
problem is efficiently solved approximating it into a well-known expression that uses an affine
approximation to the objective and a quadratic approximation to the penalty term. The resulting
quadratic program corresponds to the computation of the natural gradient [57, 89]. Nevertheless,
its resolution involves the computation of the Fisser Information Matrix, which is intractable to
obtain it analytically when large function neural models are used. TRPO avoids this computation
approximating the solution using the conjugate gradient. This method succeed in reducing the
drops in performance that the policy experience during the learning. However, its implementation
is mathematically complex, due to this reason other simpler alternatives are used.

4.2.3.2 Proximal Policy Optimization
On the other hand, Proximal Policy Optimization (PPO) [100] has demonstrated to obtain
similar if not slightly better results that TRPO with a much simpler implementation. PPO does not
use a penalty because it is hard to choose a single value of β that performs well across different
problems or even within a single problem, where the characteristics change over the course
of learning. Hence, to achieve the goal of a first-order algorithm that emulates the monotonic
improvement of TRPO, experiments have shown that it is not enough to simply choose a fixed
penalty coefficient β and optimize the penalized objective equation.

In their work [100], the authors introduce two different alternatives to TPPO:

- PPO-Penalty: that approximately solves a KL-constrained update like TRPO, but penalizes
the KL-divergence in the objective function instead of making it a hard constraint, and
automatically adjusts the penalty coefficient over the training in order to be appropriately
scaled.

- PPO-Clip: that instead of dealing with the constraint, it relies on specialized clipping in the
objective function to remove incentives for the new policy to get far from the old policy.

This Thesis resort in the last option PPO-Clip, to limit the objective from an excessively large
policy update. To this end, this technique establishes a maximum in the distance that the ratio
between the target policy and the previous policy can have. The main objective PPO-Clip is
defined in the following expression:

LCLIP(θ) = Es,a∼πθ

[∇θπθ(At|St)
πθold

(At|St)
· Aπ(St, At)

]
= Es,a∼πθ [ψ(θ) · Aπ(St, At)] ≈

≈ Es,a∼πθ
[
CLIP(ψ(θ)(1− ε, 1 + ε)) · Aπ(St, At)

] (4.9)

where ψ denote the probability ratio and ε the clipping range hyperparameter. PPO modifies the
surrogate objective by clipping the probability ratio, which removes the incentive for moving ψ

54 Chapter 4 Proposal for a model building process and experimentation

outside of the interval [1− ε, 1 + ε]. Finally, it takes the minimum of the clipped and unclipped
objective, so the final objective is a lower bound (i.e., a pessimistic bound) on the objective.

PPO in its clipped objective variant is extremely easy to apply over the PG algorithm. In
addition, it outperforms TRPO is some environments [100]. Due to this reason, this method
is gaining popularity in the community and it is the learning algorithm, among others, that
conform the final solution on our proposal.

4.2.3.3 Implementing Trust-region optimization using OpenAI framework
As mentioned, Trust-region optimization can be applied to prevent that the update is fitted to
the objective function, and thus avoid large updates that collapse the performance. Trust-region
optimization is a well known technique that is used in case of having an approximation to the
function that it is only accurate locally. As this method guarantees that the updates stay on the
local region, where the approximation is reliable.

There are two tightly linked algorithms that employ trust-region optimization: Trust-Region Policy
Optimization (TRPO) and Proximal Policy Optimization (PPO). In this section, a performance
comparison between the mentioned RL algorithms is done to test their ability to prevent policy
degradation. To facilitate this process a RL framework is used. RL frameworks provide tested
high-quality implementations of state-of-the-art RL algorithms. Specifically, OpenAI baselines
RL framework [36] is used for this purpose, as it includes a well documented implementations
of the referenced methods. In particular, OpenAI is a TensorFlow-based framework that provides
a complete package for training models compatible with the OpenAI Gym interface [24].

Using the OpenAI framework, implementations of TRPO (Sec. 4.2.3.1), PPO (Sec. 4.2.3.2),
Advantage Actor-Critic (A2C)(Annex B.5) and DQN (Annex B.3.2) algorithms are tested in this
simple toy CO problem. The comparison in the learning process between these methods is shown
in Fig. 4.9 and the configuration parameters in Tab. 4.1. The results show that PPO behaves
better in this CO problem. Overall, we observe that policy-based methods (PPO, TRPO, A2C)
perform better in this kind of problems, whereas it is challenging for value-based methods (DQN)
to approximate a value function in this context. Hence, we would particularize the solution for
policy-based algorithms.

Analyzing the resulting learning process (see Fig. 4.7), one observes that using PPO the degrada-
tion in the policy becomes to almost negligible. The performance losses derived from aggressive
updates in the policy disappear. We conclude therefore that PPO significantly reduces the per-
formance degradation experienced in the previously used vanilla PG algorithm. This enables a
monotonic optimization process that leads to a optimization and ultimately to a improvement in
the behaviour achieved. All in all, this method reduces significantly the testing error previously
experienced (in this test approximately in a couple of orders of magnitude). However, a residual
testing error is still present in our search for the optimal policy.

Details on the OpenAI model implementation and learning process

OpenAI baselines is a reference framework in the RL community that contributes with quality
implementations of RL algorithms. However, this software emphasizes being compact rather than
comprehensive and easy to integrate. Due to this reason, a branch of this framework arose from
the academia with the purpose of unifying the code and facilitate its utilization, this is Stable
baselines [51].

4.2 Methodology for improving the learning process 55

0 25000 50000 75000 100000 125000 150000 175000 200000

0

1

2

3

S
ig

n
al

s

Reward

Penalty

Lagrangian

0 25000 50000 75000 100000 125000 150000 175000 200000

Step

10−3

10−2

10−1

100
T

es
ti

n
g

er
ro

r
Error

Fig. 4.7.: Learning process on the PPO implementation. In this picture the red line represents the optimal
Lagrangian J∗L computed analytically. As observed, the performance of the model increases
monotonically, the optimization process obtains better policies and the testing error improves.

Creating a custom environment in Stable baselines requires to satisfy some technical specifications,
but once the problem is integrated in the framework, models can be trained seamlessly with the
different learning algorithms the software provides. In particular, this framework works with
environments compatible with the OpenAI Gym interface 1. In addition to lay out this specific
interface, in case of requiring an specific neural agent not included in the framework, it shall
be designed. As it is the case of the model-specific agent we pursue. However, this framework
imposes some restrictions in this sense, e.g., the definition of the loss function shall be unique for
the model. To address this issue, complex agents as actor-critic architectures are required to be
built over a multi-headed neural network (depicted in Fig. 4.8).

This multi-headed network partially shares the weights of the actor and critic networks. That is to
say, both agents share the state representation, although they rely on separate heads to produce
the policy and the value functions respectively. This is justified as first layers correspond to basic
features extraction, features that are likely to be the same for the policy and value approximators.
Leaving to the last layers the ability to produce the specific results that each head requires. Here,
the implementation of the loss function is done weighing the policy gradients loss in the actor
together with the loss on the value function estimator or critic. This requires of an additional
hyperparameter ν that estimates the weight of each model on the final loss function. As entropy
regularization is used to improve the exploration in this test then an entropy loss term is also
included. This results in the following formula,

loss = PGloss + β ·Hloss + ν · VF loss (4.10)

Although this technique reduces the number of training parameters, the resulting multi-
criteria objective results in additional plateaus, and in the end, a harder function to opti-
mize.

Lastly, the evolution of relevant learning indicators on the PPO algorithm are included in Fig. 4.10.
Understanding these internal indicators is key to control the evolution of the learning process
and perform a correct tuning of the hyperparameters. Unlike in ML, where some grid search
methods are commonly used for this purpose, in RL training a model generally last a much longer

1An OpenAI Gym blueprint can be found in: https://github.com/rubensolozabal/OpenAI-Gym-demo-environment

56 Chapter 4 Proposal for a model building process and experimentation

Fig. 4.8: Actor-critic agent embedded in a multi-
headed network. In the model, both
the static definition of the CO problem
x and the dynamic state of the envi-
ronment dt are concatenated to create
the state vector ~st from where the pol-
icy π(~at|~st) and value estimator v̂(~st)
heads are computed sharing the neural
network.

period of time. Due to this reason, search methods are not a viable option and the selection of
the hyperparameters relies on the expertise of the engineers.

Analyzing these learning indicators, some conclusions can be drawn to identify if the learn-
ing process is well under way. First, observing the policy gradients loss (policy_gradient_loss)
and value function loss (value_function_loss) one can evaluate the convergence on both ap-
proximators, the actor and the critic. Also, as this model uses entropy regularization, one can
control the amount of entropy added throughout the leaning. This is done via the entropy
coefficient β. The amount of entropy added to the model can be observed in the entropy loss
function (entropy_loss). Another signal that it is important to monitor is the KL divergence of
the policy (approximate_kullback_leibler). Ensuring that the model does not present spikes in
this indicator is key to prevent policy degradation. In PPO this behaviour is controlled using the
clipping-range parameter ε. The strength in which the clipping is actuating over the loss function
is reflected in the clipping factor function (clip_factor). E.g., large values of the clipping factor in-
dicates that the model is consistently reducing the size of the updates, in those cases it is desirable
to directly decrease the learning step. Finally, monitoring the norm of the gradients (grad_norm)
is also important as it helps to identify the progression in the convergence of the model. In this
case, the norm of the gradients is also clipped to a max value. Gradient clipping is a technique
that prevents large gradients and enhances the convergence [128].

4.2 Methodology for improving the learning process 57

PPO@lr=0.0001, Adam, cliprange=0.2, cliprange_vf=None

Step

R
e
w

a
rd

TRPO@lr=0.0001, Adam, max_kl=0.01

A2C@lr=0.0001, RMSProp
DQN@lr=0.0001, Adam

Fig. 4.9.: Performance comparison between PPO, TRPO, A2C and DQN in a demo combinatorial problem built on OpenAI Stable Baselines framework.

Tab. 4.1.: Hyperparameter configuration.

PPO TRPO A2C DQN Description

gamma 1 1 1 1 Discount factor.
batch_size 128 128 128 128 The number of steps to run for each batch per update.
ent_coef 0.01 0 0.01 - Entropy coefficient for the loss calculation.
learning_rate 1E-04 - 1E-04 1E-04 The learning rate.
vf_coef 0.5 0 0.5 - Value function coefficient for the loss calculation.
max_grad_norm 0.5 - 0.5 - The maximum value for the gradient clipping.
lamda 1 1 1 - Factor for trade-off of bias vs variance for Generalized Advantage Estimator.
cliprange 0.2 - - - Clipping parameter for the policy estimator.
cliprange_vf 0 - - - Clipping parameter for the value function.
max_kl - 0.01 - - The maximum value for the gradient clipping.
conjugate_iters - 10 - - The number of iterations for the conjugate gradient calculation.
optimizer Adam Adam RMSprop Adam Optimization algorithm.
beta1_optimizer 0.9 0.9 - 0.9 Exponential decay rate for the first moment estimates.
beta2_optimizer 0.99 0.99 0.99 0.99 Exponential decay rate for the second moment estimates.
momentum - - 0 - RMSProp momentum parameter.
prioritize replay - - - False If True prioritized replay buffer will be used.
exploration prob. - - - 1 ->0.02 Probability of random action exploration.

58
C

hapter4
Proposalfora

m
odelbuilding

process
and

experim
entation

Fi
g.

4.
10

.:
Le

ar
ni

ng
ke

y
in

di
ca

to
rs

ex
tr

ac
te

d
fr

om
th

e
O

pe
nA

I
fr

am
ew

or
k

on
th

e
PP

O
im

pl
em

en
ta

ti
on

.
A

na
ly

zi
ng

th
e

ev
ol

ut
io

n
of

th
e

in
te

rn
al

pa
ra

m
et

er
s

of
th

e
m

od
el

is
of

ut
m

os
t

im
po

rt
an

ce
to

co
nt

ro
lt

he
le

ar
ni

ng
pr

oc
es

s
an

d
en

su
re

a
go

od
re

su
lt

.

4.2 Methodology for improving the learning process 59

4.2.4 Improving the model with a self-competing strategy
Despite the positive results obtained in the OpenAI implementation, RL frameworks present some
limitations. RL frameworks in general put compatibility above performance. In this direction,
these frameworks usually build a common interface to communicate with the different CPU-
oriented environments the user integrates. However, this CPU-oriented strategy in the problem
description is not the most efficient approach. Alternatively, a fully-vectorized implementation
can be built to benefit from tensor-oriented hardware and thus, accelerate the learning process.
In addition, this approach will allow us to raise a novel learning strategy, a self-competing scheme
in which the model competes against itself to improve its policy by promoting the best results it
obtains.

Benefits of a fully-vectorized implementation

In this occasion, a fully-vectorized implementation of the problem is built, and thus, high-level RL
frameworks are not required. Commonly, due to the computational effort that backpropagation
requires, the agent is coded using an automatic differentiation library compatible with GPU or
TPU hardware that accelerates these tensor operations, whereas the environment generally runs
on the CPU. As RL consists in a constant iteration between an agent and the environment, the
execution cycle repeatedly involves a context switch between the CPU and GPU/TPU units
(see Fig. 4.11). This context switch is usually synchronous, which means that while one module is
operating, the other needs to wait for the results to continue. This architecture is commonly used
in RL frameworks due to the ease of integration, as only a suitable interface in the environment is
required to integrate them into the model. However, and despite all major RL frameworks try to
alleviate this phenomena including paralization via CPU threads, this approach severely slows
down the learning process.

As an alternative, here, the complete model (agent and environment) is built in a fully-vectorized
implementation that runs on tensor accelerated hardware. Building CO problems as tensor-
oriented operations is not straightforward and even in some frameworks this cannot be done.
E.g., TensorFlow before the Eager 2 execution was integrated, the graph of tensors was fixed in
execution and operations could not be modified in operational time. This made very difficult to
include conditional operations on the model and thus was a non-viable framework to integrate
complex environments. It was with PyTorch [86], and later with TensorFlow 2.0, that dynamic
computational graphs were included, turning full-vectorization into a viable option.

Vectorized ImplementationRL Framework

Fig. 4.11.: Hardware implementation of the RL model. On the left, the traditional approach that combines
the usage of CPU and GPU to compute the model. On the right, a fully-vectorized implementation
that benefits from tensor-accelerated hardware in both, the agent and the environment.

2TensorFlow Eager execution implements imperative programming, this enables to evaluate operations immediately
without building operational graphs.

60 Chapter 4 Proposal for a model building process and experimentation

Self-competing baseline estimator model

One can benefit from this fully-vectorized implementation to integrate variance reductions
techniques without requiring an additional estimator. As mentioned, due to the performance
observed in the experimentation (Sec. 4.2.3), PG-based methods are the selected option to
address the problems ahead. Particularly, the PPO algorithm is the one that presents the best
trade-off between performance and implementation complexity. And thus, it is the selected
learning algorithm. In PG-based methods, the variance of the gradient computation is sometimes
excessive. This is because complete trajectories are used to compute the return (see Annex B.4.1).
This variance in the results produce a slow and unreliable convergence on the optimization
process. Due to this reason, there has been much effort devoted to develop variance reduction
techniques that mitigate this effect.

A common method to reduce the variance is to introduce a baseline function b→ R in the reward
term. This reduces the variation in the returns while still maintains an unbiased estimator. The
proof on why the inclusion of the baseline b term does not introduce bias in the gradient and
reduces the variance can be found in Annex B.4.2.

In short, the baseline b estimates the reward the model achieves for a problem instance s, so
that the current result obtained for the instance Lπ(a|s) can be compared to the performance
of the policy π. The baseline is usually build as an estimator that can be as simple as a moving
average b(s) = M with decay β, where M equals Lπ in the first iteration, and updates as
M ← γM + (1− γ)Lπ in the following ones. A popular alternative is the use of a learnt value
function or «critic» v̂(s, θφ), where the parameters θφ are learnt from observations [47]. The
baseline performs in the following way, the advantage function Lπ(a|s)− b(s) is positive if the
sampled solution is better that the baseline, causing these actions to be reinforced, and vice-versa.
Here, a new baseline is proposed based on estimations over the current stochastic policy.
This method allows to not rely on an additional estimator for computing the baseline.

In this approach, the learning batch B is increased introducing N times every instance of the
problem. Since during the learning process the policy is stochastic, for every instance it obtains
N different solutions. This creates a reward distribution QNj that is used to estimate the current
performance of the model on the instance xj . In particular, the baseline estimator b(s) is selected
as the quantile (e.g.: a = 0.1) of the obtained distribution. The baseline is therefore calculated
as

b(sj) = {qj : Pr(QNj ≤ qj) = a} (4.11)

This model presents several benefits. First, as it is a fully-vectorized implementation, the size
of the learning batch can be increased without a affecting the learning time. This is due to any

Fig. 4.12: Temporal histogram of the normalized
advantage estimator. The advantage es-
timator is continuously controlled dur-
ing the learning process in mean and
std in order to provide an stable learn-
ing reference. That means that half of
the samples would provide a positive
impact on the policy in a normalized
amplitude, whereas the other half of the
samples would have a negative reper-
cussion.

4.2 Methodology for improving the learning process 61

part of the execution cycle is computed sequentially. Increasing the size of the batch reduces the
variance and improves the convergence, although the amount of memory required to execute
the graph also increases. In addition, this model do not require to build a secondary network to
estimate the baseline, which results in a simpler implantation.

The results using this model are depicted in Fig. 4.13. As mentioned, for an instance of the
problem N solutions are obtained in parallel, and from all of them the one with the best result is
selected. The figure represents the testing error of the solution with less error, but also the mean
and maximum error achieved in the distribution. Furthermore, an optimality study is made. The
percentage of the N solutions for each instance of the batch that achieve the optima is depicted.
Although this method improves the results obtained, as can be seen, at the end of the learning
process, there are still instances in which none of the N solutions achieve the optima.

A conclusion on why these models do not achieve the optima for all cases even in small com-
binatorial problems is the following one. For RL models it is asymptotically difficult to update
the weights in the right direction as the policy closes to the optimal behaviour. The closer to
the optima the model is, the weaker the impulses to improve the policy are. All the techniques
seen so far help to improve the model, which is beneficial specially when the problem scales
up, as it will be discussed in the experimentation. But an optimal solution for all instances is
asymptotically difficult to be achieved.

0 250 500 750 1000 1250 1500 1750

10−6

10−4

10−2

100

T
es

ti
n

g
er

ro
r

Max error

Mean error

Min error

0 250 500 750 1000 1250 1500 1750

Step

0.0

0.2

0.4

0.6

0.8

1.0

O
p

ti
m

al
it

y
ra

ti
o

fo
r

b
at

ch
sa

m
p

le
s

(%
)

Fig. 4.13.: Testing error and optimality ratio for the Self-competing baseline based on multiple estimations
for each instance of the problem.

4.2.5 Search strategies
As argued in (Bello et al., 2016)[15], the bare results obtained from the agent can be improved
applying search methods at inference. As evaluating the solutions in these problems is inexpensive,
the agent can simulate a search procedure at inference time by considering multiple candidate
solutions and selecting the best one. Some common techniques are: a greedy inference over
multiple trained models, the sampling technique and the beam search. In the first one, multiple
models are learnt, and at inference time the greedy output from every model is evaluated to select
the best one. Another alternative is sampling, which consists in improving the exploration at
inference using a temperature hyperparameter T to control the sparsity of the output distribution.

62 Chapter 4 Proposal for a model building process and experimentation

In this case, multiple samples are taken and the best of them is selected as the output. This
method is used to prevent the model from being overconfident, allowing to evaluate at inference
proximal policies. Lastly, beam search is an strategy that has obtained good results in natural
language processing. It explores the solutions by expanding the most promising paths in a limited
set.

Although search strategies improve the performance of the model, they add a significant cu-
mulative time to the inference process [15]. This makes these solutions incompatible with the
real-time decision-making system pursued in this work. Due to this reason, the results given in
the experimentation are the bare solutions the model achieves and none search strategy
is used to improve the results at inference.

4.3 Proposed framework for addressing NCO
During the building process carried out on in this Chapter, the different components that form
the model have been settled. Here, these components are all put together to define the learning
framework to be used in the experimentation.

Starting with the learning algorithm, the analysis performed in Sec. 4.2.3 has revealed that PPO
represents a good strategy due to the positive trade-off that presents between the results obtained
and the complexity to be implemented. This learning algorithm is going to benefit from the
self-competing strategy used in the fully-vectorized implementation of the model we envision
(Sec. 4.2.4). This self-competing strategy accelerates the learning process while reduces the
variance. Regarding the neural agent, the Markovian models discussed in Sec. 3.4.2 are used.
These alternatives utilize different encoding strategies to embed the instance of the problem
(recurrence or fully-attention layers). A comparison between both options is going to be carried
out on the experimentation. Finally, the proposed framework avoids the use of post-processing
methods to improve the solutions at inference time, in favour of enhancing learning strategies
that focus on improving the performance of the model itself. The following strategies are going
to be considered: entropy regularization (Sec. 4.2.3) and the sampling strategy intrinsic in the
self-competing strategy (Sec. 4.2.5). On this framework, adaptive momentum optimizers are
used to perform a PG-based learning. The overall picture can be observed in Fig. 4.14.

1 of 1

Post-processing

Inference
Trust region

Policy-based

Learning

Sequence-to-

sequence models

Markovian agent

with RNN

encoder

Markovian agent

with Transformer

ecoder

Entropy reg.

Fully-vectorized implementation

PPO with self-

competing

baseline

02 03 05 0601 04 Proposal

AGENT

LEARNING
STRATEGY

ENHANCE
RESULTS

BANDITS SETTING MARKOV DECISION PROCESS

Sampling

Fig. 4.14.: Testing error and optimality ratio for the Self-competing baseline based on multiple estimations
for each instance of the problem.

4.3 Proposed framework for addressing NCO 63

4.4 Experimentation on the Job-shop Scheduling
Problem

In order to validate the proposed framework, we optimize a classical and well-known constrained
combinatorial problem, the Job-shop Scheduling Problem (JSP) [41, 27]. For this problem,
there exist a huge number of variants in the literature. For the sake of evaluating the potential of
the proposed model, we select a variant that presents both types of constraints we argue in this
Thesis: constraints that can be embedded into the model, and constraints that need to be relaxed
and incorporated into the objective function.

4.4.1 Job-shop Scheduling Problem with limited idle time
In the Job Shop Problem (JSP) there exist a number of n jobs J = {J0, J1...Jn−1} and a set m
machines M = {M0,M1...Mm−1}. Within every job Ji there is a number of operations Oi that
need to be processed in an specific order Oi = {Oi,0, Oi,1...Oi,m−1}. For each operation Oi,j ,
the machine Mi,j and the duration time Di,j associated are defined. The aim in this problem
consist of assigning the jobs to the machines such that the total length of the operations period is
minimized. This objective is also known as the makespan. The classical JSP presents two types of
constraints:

• Precedence constraints: specify that for every two consecutive operations in a job, the first
one must be completed before the second one can be scheduled.

• No overlap constraints: these constraints arise from the fact that a machine can only work
in one operation at a time.

These constraints can be managed via a masking scheme, so we implement them as hard-
constraints in our model. In order to include non-maskeable restrictions, the JSP variant with
limited idle time was considered. Under that constraint, for any machine, the period between
finishing an operation and starting the next operation (idle time) cannot cannot exceed a certain
threshold Tth. This constraint arises naturally in real context, as the aim is usually to maximize
the productivity of the machinery.

In the JSP with limited idle time, the objective function (makespan) can be penalized by the sum
of all intervals in which the idle time between operations exceed the threshold Tth. Hence, the
function to minimize is defined as

L = maxMi + λ
∑
i,j

((tstartOi,j
− tendOi,j−1

)− Tth)+ (4.12)

whereMi denotes the time until the job Ji is finished, and tstartOi,j
, tendOi,j

the start and ending

time scheduled for the operations.

4.4.2 Particularized models
Two different models are proposed for addressing the JSP problem: (a) a recurrent encoder-based
model and (b) a fully-attentional model. These are depicted in Fig. 4.15-4.16 respectively. The first
model (a) uses recursion to encode the information of the sequence of operations that compose
each job, yet the solution is iteratively computed. The second one (b) is a fully-attentional model
based on a Transformer encoder. In both cases, at each time-step t, the models compute a binary

64 Chapter 4 Proposal for a model building process and experimentation

6 2 2

3

7

9

3

3

3

0

3
2

0

2 1

2 1

0

1

1

0

3

2

LSTM
...

...

DNN

State-based

Masked Bernoulli

DNN

attention

0/1

it=(2,1,3,3)

...

...

Job0

Job1

Job2

Job3

Machine

Duration

0/1 0/1 0/1

indices

LSTM LSTM

...

1

4
0
1

Mach0

Mach1

Mach2

Mach3

0

1
3
4

Job0

Job1

Job2

Job3

tready tfinish

Context
vector

...

Embed Embed Embed Embed Embed

Fig. 4.15.: Neural model particularized for the JSP problem. The model is formed by a single LSTM encoder
that operates over the sequence of operations for each job. The resulting vector that describes the
combinatorial problem is combined with the state of the environment to decide the operations
to be scheduled at each time-step t.

action deciding whether the next operation for each job is scheduled. To this end, the model
stores an index vector it pointing at the operations that are required to be scheduled next. Notice
that the operations for a job must be assigned in an specific order, that is an operation cannot be
scheduled until the previous one has finished. This procedure is repeated until all operations are
assigned.

As introduced, an instance of the JSP problem is defined by the machine assignment Mij and
the time duration Dij matrices. For each operation Oij , these values are concatenated to create
the input static feature vector, denoted as xij . This vector is embedded and further encoded. In
the case of using a recurrent encoder, the codification process is configured backwards for this
problem and it produces for each operation a representation of the remaining operations until the
job is completed. We refer to this vector as eij = enc(xij , .., xim) ∀i. Whereas, the Transformer
encoder does not use recursion to embed the sequence of operations. It relies on a positional
encoder and a self-attention mechanism to provide direct access on the input to the decoder.

The state of the environment is defined by the state of the machines and the operations currently
being process at the decision time. We represent the state using two vectors: the first one,
indicates the number of time units until the machines are released; and the second one, the time
left for the previous operation to finish. Those vectors constitute the dynamic part of the input dt,
and are recomputed at each time-step t.

Both parts, the static and the dynamic state, are concatenated to create the input st = (x, dt)
from where the DNN computes the output probability distribution (depicted in red in Fig. 4.15 -
4.16). In this example, the output corresponds to a Bernoulli distribution, that indicates for each
job whether the current operation (pointed by it) should be scheduled. Nevertheless, not every
action can be selected at any time. Actions that lead to an infeasibility in the precedence or no
overlap constraint are masked. This is achieved forcing to zero the probability of scheduling the
operation. In order to build the mask, the required information indicating whether the previous
operation has finished or a machine is free to use, this can easily be gathered from the state
vector dt.

Finally, the model presents a double attention mechanism: one on the operations to be scheduled,
and another over the state representation. The first one, corresponds to the context vector ct. In

4.4 Experimentation on the Job-shop Scheduling Problem 65

6 2 2

3

7

9

3

3

3

0

3
2

0

2 1

2 1

0

1

1

0

3

2

...

State-based

Masked Bernoulli

DNN

attention

0/1

it=(2,1,3,3)

...

...

Job0

Job1

Job2

Job3

Machine

Duration

0/1 0/1 0/1

indices

...

1

4
0
1

Mach0

Mach1

Mach2

Mach3

0

1
3
4

Job0

Job1

Job2

Job3

tready tfinish

Context
vector

Positional
encoding

Embed Embed Embed

Multi-head
attention

Add & Norm

Add & Norm

FFN

Ne stack

Embed Embed

...

Fig. 4.16.: Fully-attentional model particularized for the JSP problem. The model uses a Transformer
encoder to directly attend over the sequence of operations for each job. The self-attention
mechanism is combined with the state of the environment to decide the operations to be
scheduled at each time-step t.

the case of the recurrent model (a), this vector gathers from eij the indices pointed by the vector
it. It acts, as a glimpse on the operations yet to be scheduled in each job. In the fully-attentional
model (b), the context vector is an attention vector that introduces the current operation it into
the attention mechanism. The second attention vector corresponds to glimpse on the time for the
previous operation to finish d̂t. This vector is introduced deeper into the model to enhance the
feature extraction on which the solution is computed.

4.4.3 Learning algorithm: PPO with self-competing baseline
In regard with the learning method used to implement the reward constrained policy optimization,
it is a PPO with self-competing baseline. Particularly, a Monte-Carlo Policy Gradients with PPO
clipping. This includes the self-competing baseline described in Section 4.2.4. As argued in
this work, a single agent is employed to learn a policy πθ that acts as an heuristic for solving
constrained combinatorial problems. In the learning process a set ofB instances are sampled from
the problem distribution S. The set is computed N times to estimate the objective distribution
the policy presents for each instance. This procedure allows to generate a baselines estimator
relying on the different results that the stochastic policy produces during the learning process. A
critic network is not required to produce a low-variance estimation of the reward. We call to this
method self-competing baseline, as the model reinforces the best solutions the stochastic policy
gets. The learning algorithm is described in Algorithm 1.

4.4.4 Results on the Job Shop Problem
In this section, we present the experimental study on the classical Job Shop Problem (λ = 0)
and also on the limited idle time variant (λ > 0). The results obtained on our framework are
compared with a Generic Algorithm (GA) [29] and the solver CP-SAT from OR-Tools [88]. In
addition, in the case of the classic JSP results are also compared with some well-know heuristics:
the Shortest Processing Time (SPT), Longest Processing Time (LPT), First-come-first-served (FCFS)
and Least Work Remaining (LWR) [71].

In the experimentation, two different encoding mechanisms are used: LSTM neural networks
in the recurrent encoder and the Transformer encoder of [116] in the fully-attentional model.
The learning algorithm has previously been presented (Sec. 4.4.3) and the objective function is

66 Chapter 4 Proposal for a model building process and experimentation

Algorithm 1 PPO with self-competing baseline
1: Initialize the actor network with random weights θ
2: for episode = 1,2,... do
3: Sample problem instance xj ∈ X for the batch j ∈ {1, .., B}
4: for j = 1,...,B do
5: for n = 1,...,N do
6: Initialize step counter: t← 0
7: repeat
8: Sample action ajn

t from the output distribution πθ(·|sjn
t)

9: Observe the state djn
t

10: Create the input for the next step sjn
t+1 = {xj , djn

t }
11: t← t+ 1
12: until termination condition is satisfied
13: Compute the objective function once the solution is obtained L(yjn |sj)
14: end for
15: Create the objective distribution Qj with the N samples obtained for the problem instance sj

16: Compute the baseline: b(sj) = {qj : Pr(Qj ≤ qj) = a}
17: end for
18: Compute the gradient: gθ = 1/(B ·N) ·

∑B

j=1

∑N

n=1 clip(L(yjn)− b(sj), ε) · ∇θ log πθ(yjn |sj)
19: Update the weights: θ ← Adam(θ, gθ)
20: end for

optimized using the Adam optimizer. Further details the implementation hyperparameters can be
found in Appendix C.

In regard with the decoding mechanisms, a greedy and a sampling technique are tested. In the
greedy approach, the solution is directly obtained from the model, whereas in the sampling
method, multiple solutions are computed from the stochastic policy, and the best one is selected.
This latter method comes natural within the self-competing strategy proposed and it does without
adding overhead to the model. These instances are referenced as RL_S for the recurrent model and
RL_T for the attentional model, followed by the number of solutions taken in the experiment.

As mentioned, the results of the model are compared with those obtained by OR-Tools. For small
size instances, the solver is able to compute the optimal solution. However, for larger instances
or when the number of restrictions is higher, as it is the case of the limited idle time variant,
computing the optimal solution becomes intractable. In those cases, we limited the execution time
up to one hour, and the solutions obtained are only considered as near-optimal approximations.
Also, a GA is tested to provide a vision on how metaheuristics perform in the problem.

The results are summarized in Tab. 4.2. It introduces the average objective, the standard deviation
and the mean computation time obtained by the different methods for the classic JSP (λ = 0)
and the JSP with limited idle time (λ = 1). Performance measures were averaged on a set of 50
instances for each problem size3.

We observe that in the classic JSP, the recurrent model is competitive in terms on the quality of
the solution when compared to heuristics and the GA, specially for small and medium problems
instances (JSP10x10 and JSP15x15). Moreover, the variance obtained in the model is considerable
low during the tests. We conclude, therefore, that the model is robust in the sense that the results
are consistent in performance. It can also be observed that the sampling technique RL_S(40)
provides a reasonable tradeoff between the computational cost and the improvement in the results.
It is therefore, sampling size we used hereof. On the other hand, the attentional model is not a
viable alternative on this problem. Due to the large state representation the problem requires,

3The size of the JSP is defined by the number of jobs n and the number of machines m. We therefore denote the
problems as JSP nxm.

4.4 Experimentation on the Job-shop Scheduling Problem 67

Tab. 4.2.: Average objective, standard deviation and mean computing time for instances of the classic JSP
(λ = 0) and JSP with limited idle time (λ = 1). The size of the instance is denoted by the number
of jobs n and the number of machines m: JSP nxm.

Method JSP10x10 JSP15x15 JSP20x20 JSP25x25

(λ = 0) mean std time mean std time mean std time mean std time

SPT 99.9 9.1 0.005s 153.2 10.5 0.012s 198.3 9.3 0.022s 252.9 13.2 0.045s
LPT 107.8 9.7 0.005s 163.9 10.9 0.012s 218.8 13.7 0.023s 278.2 17.2 0.050s
FCFS 107.1 10.0 0.005s 163.2 13.7 0.012s 219.3 13.1 0.023s 276.9 14.7 0.051s
LWR 113.9 14.1 0.037s 174.8 12.6 0.123s 227.3 12.7 0.279s 287.2 18.0 0.598s
GA_P(300) 96.4 5.2 55.80s 169.4 6.7 165.8s 254.3 7.2 303.9s 338.2 7.6 586.0s
RL_S(1) 101.3 8.5 0.83s 161.9 11.9 2.15s 216.2 14.4 3.56s 277.2 17.3 5.16s
RL_S(40) 91.9 5.8 1.04s 143.6 6.4 2.31s 196.9 7.7 4.38s 249.3 7.7 6.38s
RL_S(100) 90.7 5.4 1.17s 142.1 6.6 2.65s 193.6 8.0 4.52s 244.5 8.1 7.04s
RL_T(40) 92.2 9.3 1.61s - - - - - - - - -
OR-Tools 81.5 4.6 0.082s 118.8 4.4 61.22s 156.2 4.5 1h(*) 195.4 4.9 1h(*)

(λ = 1) mean std time mean std time mean std time mean std time

GA_P(300) 343.7 45.5 91.6s 1117.0 39.0 257.3s 2476.0 62.6 578.4s 4453.2 111.7 1079s
RL_S(40) 348.1 36.6 1.36s 860.2 65.4 3.12s 1573.0 112.7 5.18s 2745.0 173.1 7.75s
OR-Tools 221.4 18.4 1h(*) 593.5 19.9 1h(*) 1221.0 50.9 1h(*) 2075.0 101.2 1h(*)

(*) The result is not optimal, the execution has been forced to end after the indicated time.

SPT LP
T

FC
FS

LW
R GA

RL_
S(4

0)
0

10

20

30

40

50

60

70

80

O
p
ti

m
a
lit

y
 g

a
p
 (

in
 p

e
rc

e
n
t)

(a) JSP 10x10

SPT LP
T

FC
FS

LW
R GA

0

10

20

30

40

50

60

70

80

O
p
ti

m
a
lit

y
 g

a
p
 (

in
 p

e
rc

e
n
t)

RL_
S(4

0)

(b) JSP 15x15

Fig. 4.17.: Comparison of the distance to the optimal solution in the classic JSP (λ = 0) between: different
heuristics, a metaheuristic GA and our RL approach with sampling applied.

the Transformer encoder becomes a very memory consuming part on the model. The memory
demanded is so large we could not evaluate the model for instances larger than JSP10x10. Hence,
this alternative is not further considered.

Fig. 4.17 shows the optimality gap for the instances in which the optimal solution can be obtained
in a reasonable time: JSP10x10 and JSP15x15. The optimality gap is defined as the difference (in
percent) between the solution obtained and the optimum. According to the results, the RL_S(40)
outperforms the rest of the heuristics and metaheuristics. However, it presents a difference in
performance when compare to the solver that goes from a 11.2% in the JSP10x10 up to 27.5% in
the JSP25x25 (see Tab. 4.2).

Despite the solver performs better than the RL model, the time required in each case are totally
different, and thus, carrying out a fair comparison is tricky. For this reason, we perform a
comparison taking into account the time required to compute the solution in both cases. We
observe in the classical JSP (λ = 0), the solver outperforms the other alternatives, and it does
in a competitive computational time. Nevertheless, the situation is reversed when the limited
idle-time variant is considered. Despite this problem adds no much complexity, the computation
time required by OR-Tools increases significantly. In this case, a slight increase in the number of

68 Chapter 4 Proposal for a model building process and experimentation

100 101 102 103

time (s)

0

500

1000

1500

2000

2500

3000

M
ea

n
ob

je
ct

iv
e

(a
bs

ol
ut

e
va

lu
e)

OR-Tools JSP10x10
RL_S(40) JSP10x10
OR-Tools JSP15x15
RL_S(40) JSP15x15
OR-Tools JSP20x20
RL_S(40) JSP20x20

Fig. 4.18.: Mean objective value in function of the time obtained by OR-Tools for the JSP with limited idle
time (λ = 1). The performance of the RL model is depicted in dashed line. The intersections
between both representations are highlighted to indicate the time required for the solver to
match the RL model.

constraints in the problem is enough to prevent the solver from getting good approximations in
the short time. For this reason, we aim to calculate the time required by the solver to achieve a
solution comparable with that of the RL model. The results obtained are depicted in Fig. 4.18. In
essence, for problem instances larger than JSP15x15, the time required by the solver to match
the performance of the RL model is orders of magnitude higher than the inference time. This
shows that although the solver ends up achieving better results, the time they require to operate
is non-comparable.

Hence, several conclusions can be extracted from this experiment. Firstly, we observe that for
small size instances of the problem, the CP solver achieves a close to optimal solution in a short
period of time (comparable to the inference time). In that case, the CP solver behaves better than
the heuristics and the NCO model. However, when the size of the problem increases the solver
is not a viable solution as it requires exponentially larger response times to obtain competitive
solutions. In that case, heuristics represent a better option. Particularly, for low to medium
size instances, the NCO model is capable of inferring a better heuristic that the classical
references studied. In this range, the NCO model represents the best alternative. We find
this optimal spot around the instances JSP10x10-15x15 in the problem. However, or larger
sizes this advantage fades and the policy performs similar to the classical heuristics. The
summary of the competitiveness of the different strategies is depicted in Fig. 4.19.

Finally, regarding the idle-time constrained variant or other complex versions of the problem it is
hard to find heuristics that specifically suits the definition, thus in these scenarios NCO presents
an major advantage over the alternatives.

RESULTS ON THE JOB-SHOP SCHEDULING PROBLEM

1 of 1

02 03 05 0601

CP solver
Complex

04 Proposal

NCO Heuristics
Simple

Fig. 4.19.: Competitiveness of the different OR strategies for addressing CO problems in close to real-time.
NCO represents the best strategy in the low to medium range of the problems, where it achieves
a better behaviour than classical heuristics.

4.4 Experimentation on the Job-shop Scheduling Problem 69

4.5 Conclusions
In this Chapter, the learning process in a toy CO problem is analyzed. Several experiments are
conducted in this problem to draw conclusions applicable in the experimentation. In this scenario,
an optimality gap is observed in the model performance. Even in this environment where the
combinatorial space is small and the number of instances that form the input combinations
is limited, the model does not achieve the optima solution for all cases. After performing a
supervised learning using the optimal labels, the model perfectly overfits the whole space. Then,
we conclude that the neural agent is complex enough to embed the optimal behavior, however the
learning algorithm is not extracting enough information from the problem. In order to improve
the policy that the agent infers, different strategies are evaluated: a numerical optimization is
used to determine the convergence achieved, entropy regularization is used to extend the learning
period and PPO technique is used to avoid degradation in the policy previously experienced in
vanilla PG, allowing a better convergence on the model. After applying these techniques we
manage to reduce the optimality gap, however the error still exists. We empirically determine
that for RL it is asymptotically difficult to update the policy in the right direction as the policy gets
closer to the optimal behaviour. The closer to the optima is the model, the weaker the impulses
to improve the policy are. However, this drawback does not affect the purpose of this Thesis,
as optimal solutions are not required. Instead good enough solutions in a reasonable time are
sought.

Also, after testing different neural architectures and RL techniques, we conclude that a custom
fully-vectorized implementation of the model would significantly reduce the learning time. In
this sense, this fully-vectorized implementation allows us to perform a new learning method
that benefits from the features of our implementation. We name this method a self-competing
strategy, and it is able to estimate a state-dependent baseline b(s) without requiring and additional
estimator or critic, just creating a reward distribution from the policy itself. This method comes
at almost no time cost, as the operations required are executed in parallel.

Finally, the proposed learning framework is tested in a classical combinatorial problem, the Job-
shop Scheduling problem (JSP) and the constrained no idle-time variant. Conducted experiments
prove that there exists a range of problem sizes where the proposed solution is superior for
computing rapid solutions when compared to classical heuristic, metaheuristic, and Constraint
Programming (CP) solvers. Particularly, we observe that the recurrent NCO model in the low
to medium range of problem sizes infers a policy that outperforms the classical handwritten
heuristics. However, for larger problem sizes this advantage fades and the policy performs similar
to classical algorithms. For other variants as the JSP without idle-time constraints or other
complex versions of this problem it is hard to find heuristics that specifically suit the definition,
thus in these cases NCO presents a major alternative. On the other hand, we also conclude
that the attentional model is not a viable alternative in this scenario. Due to the large state
representation required in this problem, the memory the model demands is excessive.

70 Chapter 4 Proposal for a model building process and experimentation

5Use-case: Application for 5G
real-time placement decision
systems

„"In God we trust. All others must bring data."

— W. Edwards Deming

Contents
5.1 Introduction to Network Function Virtualization 72

5.1.1 Benefits of Network Function Virtualization 73

5.1.2 Description of the ETSI-NFV architecture 73

5.1.3 Network service creation process . 74

5.2 VNF Placement Optimization . 75

5.2.1 Related work on the VNF Placement problem 76

5.2.2 VNF Placement problem formalization 77

5.3 Experimentation details . 80

5.3.1 Model implementation . 81

5.3.2 Performance comparison . 84

5.3.3 Results . 85

5.3.4 Learning and inference times . 88

5.4 Conclusions . 89

THE main objective of the 5G technology is to provide a unified infrastructure able to meet the
growing demand of services with heterogeneous requirements that currently the telecom-

munication network is beginning to experience. According to ITU-R, 5G is envisioned to provide:
enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and
ultra-reliable low-latency communications (URLLC). The next iteration of the mobile network
is required to cost-effectively embrace those services of different nature. To fulfill these require-
ments, and as it will be discussed in this Chapter, network virtualization technologies would be of
utmost importance.

5G is called to introduce a major transformation in communication networks within its transition
into cloud native architectures. The next iteration of the mobile network leverages on Network
Function Virtualization (NFV) and Software Defined Networks (SDN) technologies to introduce
unique network capabilities that will drive innovative applications. In this framework, traditional
network functions deployed over dedicated equipment are evolved to software implementations
that run on general-purpose hardware.

One of the main challenges of deploying NFV is the optimal resource placement within
the infrastructure. The Virtual Network Function (VNF) placement and network embedding
can be formulated as a mathematical optimization problem concerned with a set of constraints

71

that express the restrictions on the network infrastructure and the service level agreements
(SLA). The development of real-time decision-making systems enables to compute rapid
approximations to that combinatorial problem would be of utmost importance to optimize
the network usage, and thereby, to contribute to the implantation of NFV in the next generation
mobile network.

5.1 Introduction to Network Function Virtualization
Traditionally, telecommunication networks were based on proprietary ’hard-wired’ equipment.
However, this reliance on physical infrastructure presents many drawbacks: deployments have
high capital & operational expenditures, but also updating functionality cannot be done in a
simple way. In addition, hardware lifecycles are becoming shorter as technology innovation
accelerates, therefore, this reliance on dedicated equipment is inhibiting the roll out of new
network services and it is constraining innovation. As a result, Network Function Virtualization
(NFV) has emerged from the industry, promising to transform the way that network operators
design, manage and deploy network infrastructure thanks to the current advances in virtualization
technologies.

In this paradigm, virtualization is used to decouple physical network equipment from the functions
that run on them. Hence, NFV offloads network functions to software implementations that run
on top industry-standard hardware. Virtualization provides the modularity and isolation for each
function, so that they can operate independently inside a general purpose environment. This
results is a more efficient, scalable, and automated network infrastructure. The adoption of this
technology gives also to Mobile Network Operators (MNO) flexibility in the life-cycle management
of the services (e.g., creation, deletion, horizontal or vertical scaling operations), and also enables
them to relocate, scale and instantiate VNFs at different physical network locations without
requiring hardware modifications. Services may be located in datacentres, network nodes or even
in the end user premises in a seamless manner.

As mentioned, NFV is a paradigm that facilitates the dynamic provisioning of network services
(NSs). In this architecture NSs are created connecting or chaining together individual VNFs
through the infrastructure. Services are orchestrated as a whole entity, and resources dedicated to
them are adapted to meet the fluctuations of the traffic. This architecture guarantees therefore an
efficient provisioning of the services and meet the Service Level Agreements (SLA), while keeps
the operational costs low thanks to the reutilization and sharing of the resources.

Network Functions Virtualization (NFV) is highly complementary to Software Defined Networking
(SDN), but not dependent on it. SDN complements NFV by offering programmatic access to the
abstracted network resources and full programmability of forwarding capabilities. SDN control
capabilities are used to implement dynamic traffic steering policies so that flows are dynamically
routed along a path traversing the VNF instances composing a given network service. NFV and
SDN technologies together introduce a level of flexibility in network service provisioning key for
coping with requirements of the complex and unpredictable traffic patterns in modern networking
system.

In this context, an appropriate orchestration mechanism is required to support such operational
flexibility and gain responsiveness. This must be done in order to guarantee the target operating
margins. Therefore, orchestration mechanisms should account for both business value and
customer experience respectively: (i) cost-effectively controlling the resource utilization, to

72 Chapter 5 Use-case: Application for 5G real-time placement decision systems

achieve the target range of operating margins; and (ii) fulfilling of Quality of Service (QoS)
objectives specified in the Service Level Agreement (SLA) between a customer and a service
provider, which are typically expressed as technical performance metrics.

5.1.1 Benefits of Network Function Virtualization
NFV presents an opportunity, through the flexibility afforded by software appliances operating
in an open and standardised infrastructure, to rapidly align management and orchestration
to well defined standards. The application of NFV brings many benefits to network operators,
contributing to a dramatic change in the telecommunications industry [121]. The benefits of this
architecture are summarized as follows:

- Reduced equipment costs through consolidating equipment and exploiting the economies
of scale of the IT industry. As it enables a wide variety of ecosystems and encourages
openness.

- Accelerated Time-to-Market. NFV reduces the time required to deploy new services. In
addition, it lowers the risks associated with rolling out the market opportunities.

- Target service based on geography or customer-based. Service velocity is improved by
provisioning remotely in software without requiring hardware installation. In addition,
services can be scaled up/down as required in specific locations, even close to the use
(Multi-Access Edge Computing — MEC).

- Optimizing network configuration and topology in near real time based on the actual
traffic patterns and service demand. For example, optimization of the location and assign-
ment of resources to network functions automatically and in near real time could provide
resiliency to changes in the network.

- Supporting multi-tenancy thereby allowing network operators to provide tailored services
and connectivity for multiple users, all co-existing on the same hardware with appropriate
secure separation of administrative domains.

- Reduced energy consumption by exploiting power management features in standard
servers and storage, as well as workload consolidation and location optimization.

5.1.2 Description of the ETSI-NFV architecture
In order to standardize the NFV technology, in 2012, seven of the world’s leading telecom net-
work operators created a specification group, the European Telecommunication Standardization
Institute (ETSI) Industry Specification Group (ISG) on Network Functions Virtualization (ETSI
ISG NFV). As a result of this engagement, currently major Mobile Network Operators (MNO) are
involved in the development of this technology.

So far, the ETSI ISG NFV has developed over 100 different reports and specifications for the virtu-
alization of network functions. NFV publications describe and specify virtualization requirements,
architecture framework, functional components and their interfaces, as well as the protocols and
the APIs for these interfaces. In addition, the ISG NFV also studies VNF performance, reliability,
resiliency and security challenges linked to virtualization.

The ETSI-NFV reference architecture1, which is depicted in Fig. 5.1, consists of three main
elements:

1The reference NFV architecture is defined in the standard ETSI GS NFV 002.

5.1 Introduction to Network Function Virtualization 73

VNF 1 VNF 2 VNF 3

VNF
Manager(s)

Orchestrator

Fig. 5.1.: ETSI-NFV reference architecture. The different components that form the architecture are
depicted together with the standardized interfaces that interconnect them.

- Virtualized Network Functions (VNFs) are the software implementations of the network
functions that are deployed on a network virtualization infrastructure. As described, VNFs
can be interconnected to compose a Network Service (NS).

- NFV Infrastructure (NFVI) is the hardware and virtualization software that build the
environment where VNFs are deployed. The NFVI can distributed in several Points of
Presence (NFVI-PoP).

- NFV Management and Orchestration (NFV MANO) is the architectural framework that
covers the orchestration and life-cycle management of physical and software resources that
support the infrastructure virtualization and the deployed services.

NFV Management and Orchestration

The NFV Management and Orchestration (NFV MANO) is an architectural framework that
coordinates network resources and the allocated services within the infrastructure. As such, the
automatization that it provides is crucial for ensuring rapid, reliable network operation at scale.
An essential characteristic for an effective orchestrator is to facilitate the onboarding of the NSs.
With the NFV MANO architecture, this is straightforward and can be performed by the service
provider without the involvement of the network supplier. Other key challenge MANO addresses
are operational issues to enable scalability and security in multitenant scenarios.

The NFV MANO architecture consists on three major functional blocks:

- The Virtual Infrastructure Manager (VIM), responsible of controlling and managing the
NFVI compute, storage, and network resources within the operator’s infrastructure domain.

- The VNF Manager (VNFM) is the entity in charge of the life-cycle management of the VNFs,
from deployment to termination, keeping track of their status to adjust their configuration
if needed.

- The NFV Orchestrator (NFVO) is the entity in charge of Network Service (NS) life-cycle
management: creation, termination, monitoring, scaling, etc., via coordination between the
NFV MANO elements, such as the VIM and VNFM.

5.1.3 Network service creation process
The adoption of virtualization technologies in networking is promoting a radical innovation in
the way network services are delivered. In the NFV framework, a virtualized Network Service

74 Chapter 5 Use-case: Application for 5G real-time placement decision systems

(NS) is created interconnecting individual VNFs. The composition of the ordered set of VNFs to
be deployed in order to provide a service is referred to as a Forward Graph.

To deploy a NS on the NFVI, the following steps are involved. In this procedure, the role of the
NFVO in is to automate the creation process. The orchestrator generates instructions to control
the VIM. That is, the NFVO receives a network service descriptor together with the instantiation
parameters and transform it into a deployable template 2 the VIM uses to create the underlying
VNFs, virtual networks and virtual links.

During the NS creation, the underlying virtual machines (VM) are instantiated and the network
configuration occurs. In this process the connections between VNFs are created. Based on the VNF
Forward Graph Descriptor (VNFFGD) included in the NS Descriptor (NSD), the VIM communicates
the SDN controller the flows to create between VNFs. However, the service function chaining
(SFC) instead of relying on conventional routing methods that route the packets using destination
IP address, it creates traffic flows that emulate a series of physical network devices with cables
linking them together inside the infrastructure. Being during runtime that the SDN Contoller
establishes the path for the data packets. In simple words, before departing from a port the data
packet asks the SDN controller about the destination and the controller determines it. Indeed,
SDN control capabilities may be used to implement dynamic traffic steering policies so that flows
are dynamically routed along a path traversing the VNF instances composing a given network
service.

5.2 VNF Placement Optimization
NFV is not limited to datacentres, but also the network nodes or even the end user premises can
be used as part of this infrastructure. In particular, Multi-access Edge Computing (MEC) is the
technology that allows to extend cloud computing capabilities to the edge of cellular networks.
Thereby, MEC provides storage and computational resources all the way to the edge. This allows
to the operator to distribute services, and in addition enables application developers and content
providers to place services closer to the end-user.

In this scenario, where network services can be distributed along the telecommunication network,
even in the end-user premises, the optimization of service deployment is one of the most
challenging tasks in orchestration. Optimizing the placement of services is of utmost importance
to fulfill the efficient utilization of the expected virtualized network. In this sense, this Thesis
seeks to build a real-time decision-making system that interacting with the NFVO could
orchestrate intelligent deployments.

Specifically the challenge addressed in this Chapter is known as the VNF Placement problem and
is one of the core NFV Resource Allocation problems, together with the VNF Chaining Composition
and VNF Scheduling problems. The VNF placement addresses a key problem in dynamic VNF
chain provisioning in a cloud environments. It consists on efficiently mapping a set of network
service requests on top of the physical network infrastructure. Particularly, it seeks to obtain
the optimal placement for a NS chain considering the state of the virtual environment, such
that a specific resource objective is accomplished (e.g., maximization of the remaining resources,
minimization of the overall power consumption, optimization of a specific QoS metric, etc.).
Besides, specific aspects of NFV, such as forwarding latency, ingress/egress bitrate and flow
chaining, have to be taken into account.

2In the ETSI-NFV standard, the service templates follow the TOSCA Oasis specification. The service template describes
what is needed to be preserved across deployments to enable interoperablity between cloud providers.

5.2 VNF Placement Optimization 75

Tab. 5.1.: Update frequency at the different stages of the mobile telecommunication network.

Domain Parameter type Network entities Update frequency
Network design Deployment parameters RAN, Core Montly
Network optimization Network parameters Cells Weekly/Hourly
RAN optimization L1 to L3 parameters Radio Seconds

The VNF placement can be formalized as a CO problem, a constrained maximization or minimiza-
tion program in which the constraints model natural or imposed restrictions on the deployment.
In this case, constraints are imposed by the network infrastructure and the Service Level Agree-
ments negotiated for the services to be allocated. This problem has been expressed as NP-hard;
therefore, it is only tractable to exactly solve it for small instances.

In the envisioned scenario, this problem has to be solved for every new service deployment.
Service petitions are required to be executed within a limited time. Due to this reason, fast
approximate solutions are expected to the problem. However, the network definition does not
vary so often in the infrastructure, it takes days or even weeks between network optimization
events occur (see Tab. 5.1). One can benefit from this and build a model adapted to the specific
network conditions at the moment. In this regard, updates on the model are required at every
change in the network infrastructure. Namely, a new learning process has to be performed to
adapt the model to the new conditions on the interval.

5.2.1 Related work on the VNF Placement problem
The VNF Placement problem has raised a considerable interest in the research community. Several
previous works in the literature have undertake this problem, e.g. [3, 13] provide a good
definition of the problem. As it is an NP-hard optimization problem, run-times to optimally solve
it are unaffordable for large instances. For this reason, this problem has been tackled by applying
the following alternatives:

- Optimal solutions has been achieved for small problem instances. For example, using
MIP [82] [48] or analytically solving the Bellman equation on the problem described as a
Markov Decision Process (MDP)[101].

- Another alternative is the heuristic approach that, despite not guaranteeing convergence to
local optima, is able to obtain competitive solutions in reasonable computational times. For
instance, see the work in [92] and [30].

- Finally, as an extension to heuristic approaches, metaheuristics provide a high-level problem-
independent algorithmic framework that sets the guidelines to develop optimization algo-
rithms. These approaches find near-optimal solutions by iteratively improving intermediate
solutions with regard to a given measure of quality [76].

Based on the previous alternatives, different objectives have been addressed when optimizing the
VFN Placement. Minimizing the number of virtual network function instances mapped on top of
the infrastructure [69], or maximizing the number of successfully embedded service requests [92]
are a couple of these objectives. Other works deal with power-based placement proposals. For
example, minimizing the power consumption via a genetic algorithm approach [62] or providing
robustness to unknown or imprecisely formulated resource demand variations [74], are some of
these works.

76 Chapter 5 Use-case: Application for 5G real-time placement decision systems

Solving the VNF Placement problem with Reinforcement Learning

In addition to the previous references, ML has become a promising research line for solving
problems of this nature. In particular, the recent idea of learning placement heuristic without
human intervention has gain attraction in the community. To that end, Reinforcement Learning
has been used in the literature. This technique learns though interaction with the problem how to
exploit the problem characteristics to infer placement decisions. Is the case for example of [77],
that uses Q-learning to control the resources allocated as part of the NFV management system.
In [78], the author also employs a Deep Neural Network (DNN) to make resource reallocation
decisions based on his previous work. [126] utilize for the first time, historical network request
data and policy-based RL to optimize node mapping. They use an embedding representation of
the node and links which, at each time step, are updated with changing features of the network
attributes. This network embedding is passed through a Convolutional Neural Network (CNN) to
select the substrate node that maximizes the long-term revenue. However, these works present a
major concern. They do not include a comparison on the results against other resolution methods,
in essence, they lack of an optimality study.

5.2.2 VNF Placement problem formalization
This Thesis follows this novel research line of using NCO to obtain the optimal workload allo-
cations. Particularly, the objective pursued is the minimization of the power consumption of
the infrastructure. With the global climate change leading our concerns these days, the power
consumption of datacenters has become a key issue. Also, the main provisioning cost of VNF
instances is due to power consumption to operate servers and cooling facilities. Which is largely
decided by the numbers and the types of VMs running different VNFs. Therefore, the optimiza-
tion of the power consumption that this Thesis pursues is a goal that not only benefits to the
infrastructure providers but also the environment.

Nonetheless, there is not a single definition of the VNF Placement problem throughout the
literature. And the way in that the problem is defined is key for the selection of the resolution
method. In the more general case, the problem can be seen as a graph allocation problem. In that
case, the network service can be defined as a directional graph in which each node represents a
VNF instance and the edges, the traffic flow between entities. In the same way, the infrastructure
can be also represented by a graph. In this occasion, the nodes stand for the computing hosts and
the edges for the interconnect capabilities. However, addressing this graph allocation problem
using ML is not trivial. In the literature mentioned above, several assumptions are done on the
resolution. Mainly, the deep learning models used are limited to fixed input sizes, narrowing their
applicability to real scenarios; they heavily rely on other algorithms to reinterpretate the output
of the model, or even parts of the solution are computed externally to the model. Due to this
reasons, we look for a trade-off between the definition of the problem to solve, the applicability
of the solution on real scenarios and the quality on the solutions obtained.

This Thesis is focused on obtaining a model that by its own computes a complete solution to the
problem. Therefore, this problem is formulated using NCO approach that recently has obtained
outstanding results addressing these problem. To this end, two main assumptions are made,
instead of addressing the problem as a graph problem, it has been loosen to a sequence
problem. This implies that the service are treated in its simplest form, which correspond
to a linear sequence of VNFs and the infrastructure is reduced to a start topology to not
deal directly with path in addition to node selection. We refer to this problem as the VNF
chain embedding problem or VNF-CE.

5.2 VNF Placement Optimization 77

h1

h2

h3

h4

h5

b1 – bandwidth

a12 – cpu
a22 – ram
a32 – disk

a11 – cpu
a21 – ram
a31 – disk

a15 – cpu
a25 – ram
a35 – disk

a14 – cpu
a24 – ram
a34 – disk

(b2)

(b3)

(b4)

(b5)

x

Vnf1

Vnf4 Vnf1 Vnf2 Vnf5

Vnf2 Vnf3

Vnf2

Vnf1

Vnf2

Vnf4
Vnf3

Vnf1

Vnf5

1

x 2

Fig. 5.2.: Example of network service allocation over a virtualized environment. It depicts an environment
in which the service chains, denoted as x1 and x2, are optimally placed in a total of five hosts
(from h1 to h5). Each host has its own capacities for a1h computation , a2h memory and a3h
disk capacities. Regarding the network, each host is connected to a common switch through a
dedicated link i, associated to its capacity bound bi.

Mathematical formalization of the VNF-CE problem

Let us start with the mathematical formalization of the VNF-CE problem. Consider a list of network
services that have to be optimally placed in a set of host servers h ∈ H , and each of those host
servers relies on a limited amount of available resources r ∈ R, in terms of computing, storage
and connection capabilities. As previously mentioned, the host servers are interconnected through
a star topology using their own link connections i ∈ L (see Fig. 5.2). Link attributes as bandwidth
or propagation delay are also considered. The final purpose of this problem is to discover the
optimal placement for a given service chain that minimizes the total power consumption
of the infrastructure. This solution is subject to complying with the restrictions associated
to the availability of virtual resources and link capacities, as well as the latency thresholds
that each service imposes.

In order to formulate the problem, we take the nomenclature proposed by (Marotta et al., 2017)
[74]. Let us denote as {h1, h2, . . . , hn} the set of host servers H , and let V be the set of VNFs
available in the repository. So, a network service consists of an array of m ∈ {1, . . . ,M} virtual
network functions that compose a service chain x = (x1, x2, . . . , xm). Each element x in the
service corresponds to a VNF v ∈ V , and the combinatorial space of all services is denoted
as X .

The problem consists of finding the optimal set of placements denoted as w ∈ {0, 1}m×n, where
wxh stands for a boolean status variable that describes whether the function x is placed in host
h ∈ H or not (1 in the positive case, and 0 in the negative). Then, the search space in which the
solution for the problem needs to be found is Ω = {w ∈ {0, 1}m×n s.t.

∑
h wxh = 1 ∀x}.

The restriction in Ω states that a function can only be placed in one host at a time.

Prior to presenting the problem cost and restriction functions, a summary of the decision variables
and parameters of the problem is presented in Table 5.2. As stated previously, the set of variables
to optimize are those that define the placement w. To support the problem description, auxiliary
variables are presented. This is the case of the server activation variables kh ∈ {0, 1}, which
indicate 1 if the server is executing any VNF, and powered off otherwise; and link activation
variables gi ∈ {0, 1}, which are equal to 1 if the link i is carrying traffic and 0 otherwise.

78 Chapter 5 Use-case: Application for 5G real-time placement decision systems

Tab. 5.2.: Problem formalization variables.

H set of hosts

L set of links

V set of VNFs

S set of NS chains

R set of resources

P set of placements

arh amount of resources r available in host h

rrv amount of resources r requested by VNF v

Wmin
h idle power consumption of host h

W cpu
h power consumption of each cpu in host h

Wnet power consumption per bandwidth unit on links

bi bandwidth of the link i

bv bandwidth demanded by VNF v

cv computation time of VNF v

li latency on the link i

lx maximum latency allowed on the service chain x

wxh binary placement variable for function x in host h

kh binary activation variable for host h

gi binary activation variable for link i

In relation to the power consumption, the host servers are characterized by a linear power profile
that grows in proportion to the computing utilization. Each server activated (ki = 1) consumes
a minimum power Wmin

h , and its power increases with the sum of the CPU demanded by the

VNFs assigned to the server. Each cpu in use consumes W cpu
h watts. Regarding links, they also

have an energy cost associated. This is calculated multiplying the cost per bandwidth utilization,
denoted as Wnet, by the bandwidth utilized in each link. The available resources, r ∈ R, that
each server h owns are denoted as arh. The amount of resources r needed by VNF v is indicated
in rrv . With regard to the network connection, if consecutive VNFs in the chain are placed in
the same server h, they are internally interconnected and therefore there is no link usage. This
networking condition makes this problem non-linear. In this sense, the bandwidth occupied
for data transfer of the element x related to the VNF v and expressed as bx, is 0 if placed in a
same host as the previous one or bv otherwise. In the same way, lx represents the latency the
element x generates in the link i. And cv the computational time required by VNF v. Finally, the
maximum bandwidth allowed in link i is represented as bi. And the maximum latency allowed
for each service chain x is denoted as lx.

bx =

bv, if px−1 6= px

0, otherwise
lx =

li, if px−1 6= px

0, otherwise

5.2 VNF Placement Optimization 79

Tab. 5.3.: VNF-CE problem equations.

arg min
w∈Ω

(∑
h[W cpu

h ·
∑
x(wxh ·rrv)+Wmin

h ·kh]+
∑
iWnet ·

∑
x(wxh ·bx)

)
(5.1)

s.t. ∑
xwxh · rrv ≤ kh · arh ∀ h ∈ H , r ∈ R (5.2)

∑
xwxh · bx ≤ gi · bi ∀ i ∈ L (5.3)

∑
h
∑
xcv · wxh +

∑
i
∑
xlx · wxh ≤ lx ∀ h ∈ H , i ∈ L (5.4)

The cost function to optimize is presented in Eq. (5.1). It represents the power consumption,
and it is calculated as the sum of the power consumption related to the activated servers and the
aggregated cost of the active links. The constraint in Eq (5.2) determines that the total resources
used in a server must not exceed the available ones arh in active servers. Therefore, it sets a
link between server activation variables kh and allocation variables wxh; only the servers that
host some VNF are active. Then, the capacity constraints for bandwidth are defined in Eq. (5.3).
It uses link status variables gi in the same way as host activation ones. They link the boolean
status of links to the status of the node activation variables: if a link is used, then its end-nodes
must be activated; if a node is not activated, then neither is the associated link. Finally, the
constraints in Eq. (5.4) express the latency requirement for a network service x, establishing
that the aggregation of the latency over the links used in the networking and the latency due to
computation time must meet the latency limit lx for the service.

For the sake of illustrating the problem, an example is depicted in Fig. 5.2. Here, an equivalent
representation for the placement is introduced: px = (p1, p2, . . . , pm) where p ∈ H . This
notation will be especially useful for simplifying the formulation of the RL equations that will
be described hereafter. To continue, each server is connected to a common switch through a
dedicated link i. The objective is to place the service chains (denoted as x1 and x2) minimizing
the overall cost function. In this example, the placement vectors computed for each service are
px1 = (h1, h3, h3, h4) and px2 = (h2, h5, h4).

5.3 Experimentation details
In the experimentation three different environments with 10, 20 and 50 host servers are tested.
Resources in those environments are initially occupied following a uniform distribution. In
these environments, a service chain of m = {5, 7, 9, 11} elements is required to be allocated
minimizing Eq. 5.1. The VNFs that conform the chain are chosen from a dictionary V of 10, 20 and
50 elements respectively. We refer to these problems as VNF-CE10, VNF-CE20 and VNF-CE50.

The description of the hosts and the VNF Dictionary used as a reference to build the evaluation
environments are the following:

80 Chapter 5 Use-case: Application for 5G real-time placement decision systems

Host Types

No. CPUs [4, 6, 8, 12, 16]
Link BW (Mbps) [400, 600, 800, 1000]
Link Latency (ms) [5, 10, 15, 20, 25]

VNFD Types

No. CPUs required [1, 2, 4, 6]
Bw required (Mbps) [10, 20, 40, 60, 100]
Processing latency (ms) [10, 20, 40, 60, 100]

To address this problem we evaluate two alternatives based on the Markovian model introduced
in Section 3.4.2. The first model (a) uses RNNs to encode the service request, whereas the second
one (b) is based on a fully-attentional architecture. The operations in both cases behaves as
follows, a network service x formed by a sequence of VNFs, each one represented by its specific
features, is embedded and encoded. This step differs depending on the model used. In (a) the
encoding process is recurrent i.e., the encoder iteratively operates over the input; whereas in (b),
the Transformer encoder directly access the input representation to encode the input information
with the relative position on the chain. The resulting vector represents the static part of out input,
and it is combined with the state of the environment dt to feed the FFN that iteratively decides
the server in which each VNF in the chain is going to be located.

In this problem, due to the complex relations between the constraints for physical resources (i.e.,
server capabilities [Eq. 5.2] and link capabilities [Eq. 5.3]), it is hard to address them using a
masking scheme. Also, the restrictions associated to the whole service (i.e., the end-to-end service
latency [Eq. 5.3]) cannot be checked until the complete solution is computed. Therefore, all these
constraints are relaxed and introduced as penalty terms into the objective function.

The parameters related to power consumption in the environment are the following:

Wmin
h 200 (watt)

W
cpu
h 100 (watt)

Wnet 0.1 (watt / mbps)

Lastly, the Lagrange multipliers hand-selected to penalize the different constraint functions are
presented below:

λoccupacy 1
λbandwidth 0.01
λlatency 0.01

5.3.1 Model implementation
The neural architecture used in the VNF-CE problem presents some peculiarities. In this problem,
the model operates on a single sequence that represents a single service request at a time. The
procedure iterates placing at each step t each element in the chain, until the whole service is
completed. Therefore, the number of decisions to be made is equal to the number of VNFs in the
service m. This direct relation between the input and the output enables to train a model that
performs specially well on this problem.

5.3 Experimentation details 81

batch (b)

host (h)
features (f)

[b, h, f]

[]

batch (b)

service (s)

[b, s, f] []
features (f)

[b, h, e]

[b, s, e]

batch (b)

host (h)

occupancy (o)

[b, h, o]

normalization &
embbeding (e)

normalization &
embbeding (e)

[b, e]

LSTM [b, c]

[b, h]

[]

context

concatenation

serial

de-serial

[b, s, h]

[b, 1, h]
[b, 1, e]

FFN

[b, h, e'] [b, h, s] [] [b, h]

glimpse mechanism

FFN

selector
x

VECTORIZED ENVIRONMENT

Host features

Host occupancy

VNF features

Fig. 5.3.: Recurrent neural agent for solving the VNF-CE problem. The service chain x represents the static
part of the model, as the features of the service do not change during the problem resolution.
These features are sequentially serialized and encoded using a RNN. The result is concatenated
though the context vector ct with the host environment dt, which dynamically changes its features
at each VNF is placed on the infrastructure. Finally a memory-less FFN is in charge of computing
the policy distribution over the actions.

batch (b)

host (h)
features (f)

[b, h, f]

[]

batch (b)

service (s)

[b, s, f] []
features (f)

[b, h, e]

[b, s, e]

batch (b)

host (h)

occupancy (o)

[b, h, o]

normalization &
embbeding (e)

normalization &
embbeding (e)

[]

context

concatenation

[b, 1, e]

FFN

[b, h, e] [b, h, e] [] [b, h]

glimpse mechanism

FFN

selector
x

VECTORIZED ENVIRONMENT

Host features

Host occupancy

VNF features
Positional
encoding

Multi-head
attention

Add & Norm

FFN

Ne stack

Add & Norm

[b, s, e]

Fig. 5.4.: Fully-attentional agent for solving the VNF-CE problem. The service chain x is self-attended using
a multi-headed Trasnsformer encoder. In doing so, the decoder receives a direct representation
on the input sequence without using recursion. The attention vector is concatenated with the
host environment dt, which dynamically changes its features at each VNF is placed on the
infrastructure, to create the context vector ct. Vector from which a memory-less FFN decoder
computes the policy distribution over the actions.

82 Chapter 5 Use-case: Application for 5G real-time placement decision systems

Host features

VNF features

cpu bw lat

cpu bw lat

Distributed representation

Host occupancy
cpu bw lat

Normalization &
embedding

Fig. 5.5.: The state of the problem is gathered in three tensors: the host feature tensor, the host occupancy
tensor and the VNF feature tensor. These features are normalized and embedded to provide a
representation that enriches the feature extraction on the model.

The complete description of the model, highlighting the dimensionality of the tensors, is depicted
in Fig. 5.3 for (a) the recurrent model and in Fig. 5.4 for (b) the fully-attentional model. In both
cases three tensors are used to define the state of the problem: the host feature tensor, the host
occupancy tensor and the VNF feature tensor (see in Fig. 5.5). The host features tensor defines
the infrastructure, the maximum capacity of the host and links that conform the network. The
occupancy tensor, the usage of the physical resources. And finally the VNF feature tensor, the
service characteristics. In the two first cases, the tensors are merged to define the state of the
infrastructure and create dynamic occupancy tensor dt. The last VNF feature tensor x is configured
at the beginning of the resolution process and it maintains static. The procedure operates as
follows, in (a) the service x is serialized and encoded backwards, thus the representation of the
remaining elements to be placed in the infrastructure at every step is obtained. For every element
xj in the chain we refer to its encoded vector as ej = enc(xj , .., xm) ∀j. This procedure is
computed once and stored to be used during the resolution of the instance. Alternatively, in
(b) computing the feature vector is not required as at every step in the decoding process the
model attends directly over the input. As mentioned, the iteration with the problem has a fixed
number of steps. In this sense, the context mechanism ct that operates over the encoded sequence,
works synchronously with the decoding mechanism. The context vector ct increments iteratively
pointing at the element in the chain to be placed i.e., it points at the same position over the input,
the decoder is working on the output. At every step t, the context is created concatenating the
VNF to be placed xj together with the features of the remaining chain ej . Likewise, it is joined to
the state of the problem dt to create the input for the decoder (st

.= {ct, dt}, t = 1, ..,m).

The decoder is formed of a memory-less FFN supported by a glimpse mechanism attached to the
state representation. Here, the information of the occupancy on the hosts dt is used to introduce
this key information deeper into the model. In particular, it is used to support the final selection
for the host.

Finally, it is important to remark that the model is completely implemented over tensor operations.
This enables to execute the complete model on the GPU unit and significantly accelerate the
computation of the learning process. To this end, the problem description has to be specifically
implemented as tensor operations. This cannot be done a directly using linear operations, but
conditional operations has to be included to represent the non-linearities. This is possible in the
case of using PyTorch, as this framework interprets the tensor operations in execution time.

Hyperparameters

This section provides the details on the neural model particularized for the VNF-CE. With regard
to (a), given the relatively small length of the input sequences m = {5, 7, 9, 11}, the LSTM
encoder only requires of a single layer of hidden size 16 to code the information of the NS. On
the other hand, the Transformer encoder is formed by Ne = 2 stacked self-attentional sub-layers.
Each of them with 2 heads in the multi-headed product-based attention layer. The complexity of

5.3 Experimentation details 83

the neural model needs to be sufficiently large to embed the features of the problem. Yet, once
this requirement is satisfied, increasing its complexity does not result in better performance. Prior
to the encoding, both sources are normalized and embedded single linear layers with a vector
size of 64 in both cases. Normalizing the input vectors and embedding them in a higher feature
space yields to superior solutions.

In regard with the decoder, the DNN used consists on multiple dense layers with a ReLU activation.
The variables are initialized with Xavier initialization [46]. The batch size is 800, and it is
formed by 20 different instances introduced 40 times each, following the self-competing baseline
introduced in Sec. 4.2.4. The optimizer is Adam with a learning rate of 5 · 10−4. The change
in the policy distribution is clipped at 0.2 using the PPO technique. The gradients are clipped
to the norm by a value of 1, and a dropout with a probability of 0.1 is used in both the LSTM
encoder and the Transformer encoder. A complete summary of the hyperparameters is available
in Table 5.4.

Tab. 5.4.: Summary of the hyperparameters.

Hyperparameter Value
Learning rate 0.0005
Batch size 800
Instances per batch 20
No. of rep. per instance (N) 40
PPO Clipping factor 0.2
Entropy coefficient 0.01
Embedding size 64
Gradient clipped by norm 1
.......................................
No. LSTM layers 1
LSTM hidden size 16
Dropout LSTM 0.1
.......................................
No. Transformer layers 2
No. heads in the self-attention 2
Dropout Transformer 0.1

5.3.2 Performance comparison
In order to perform a comparison, other classical alternatives are evaluated. In particular, due to
the specific networking conditions assumed in this problem, it is hard to find heuristics that fit
this exact problem statement. This fact has no impact on the RL approach, as it treats the problem
as a black-box. After weighing the alternatives, the comparison is conducted using a Genetic
Algorithm (GA) [8], as it gives a good representation on the performance of metaheuristics, and
a constraint solver (CP). In regard with this last, the non-linearities on the problem lead to if-else
statements that come natural to CP engines. Alternatively, these if-else statements can be relaxed
and transformed into linear constraints, which would allow to also use MP for its resolution.
Mayor MP solvers include conditional statements (see Annex A.2). Although, in the case the
problem presents complex relation between constraints, generally CP represents a better option.
Due to this reason, the IBM CPLEX-CP solver [55] is used on this problem.

With regard to the GA, the hyperparameter settings are a population of 600 individuals, a
crossover rate of 0.8 and a mutation rate of 0.3. The selection mechanism is a tournament done
over the best of 3. The algorithm runs 50 generations before stopping (enough iterations to
converge in the different problems included in the study).

84 Chapter 5 Use-case: Application for 5G real-time placement decision systems

Tab. 5.5.: Average objective, standard deviation and mean computing time for instances of the VNF-CE
problem. The recurrent model (a) is depicted as RL_S and the fully attentional model (b) as RL_T.
The size of the instance is denoted by the number of hosts in the infrastructure and the length of
the service chain m.

Method m=5 m=7 m=9 m=11

(VNF-CE10) mean std time mean std time mean std time mean std time

GA_P(600) 1.627 0.64 1.51s 3.118 1.88 1.72s 4.544 3.32 2.14s 4.959 2.42 2.38s
RL_S(1) 2.040 1.21 0.024s 3.751 2.40 0.030s 5.422 3.91 0.036s 6.045 3.07 0.038s
RL_S(40) 1.630 0.64 0.036s 3.158 1.86 0.042s 4.605 3.56 0.044s 4.932 2.45 0.050s
RL_S(100) 1.619 0.63 0.050s 3.139 1.84 0.063s 4.554 3.47 0.812s 4.834 2.38 0.096s
RL_T(1) 1.962 0.97 0.027s 3.828 2.26 0.032s 5.604 4.07 0.036s 6.473 3.31 0.038s
RL_T(40) 1.623 0.64 0.045s 3.142 1.86 0.044s 4.574 3.51 0.068s 4.943 2.48 0.077s
RL_T(100) 1.619 0.63 0.088s 3.146 1.85 0.12s 4.540 3.46 0.172s 4.872 2.40 0.206s
CPLEX-CP 1.615 0.62 0.264s 3.086 1.83 1.73s 4.418 3.27 98.1s 4.720 2.31 574.8s

(VNF-CE20)

GA_P(600) 2.010 0.56 1.67s 2.857 0.58 1.84s 3.915 1.14 1.97s 4.545 0.93 2.25s
RL_S(1) 2.446 0.83 0.029s 3.243 0.93 0.030s 4.368 1.48 0.036s 4.874 1.25 0.038s
RL_S(40) 2.009 0.59 0.041s 2.798 0.59 0.053s 3.852 1.19 0.060s 4.306 0.89 0.065s
RL_S(100) 2.003 0.58 0.051s 2.786 0.58 0.078s 3.801 1.16 0.084s 4.300 0.89 0.092s
RL_T(1) 2.208 0.70 0.027s 2.980 0.68 0.030s 4.168 1.55 0.033s 5.136 1.57 0.038s
RL_T(40) 2.005 0.58 0.044s 2.798 0.62 0.061s 3.863 1.22 0.064s 4.386 1.00 0.062s
RL_T(100) 2.003 0.58 0.115s 2.776 0.57 0.156s 3.797 1.17 0.145s 4.313 0.90 0.124s
CPLEX-CP 1.986 0.57 3.92s 2.770 0.57 444.6s 3.745 1.11 1h(*) 4.263 0.86 1h(*)

(VNF-CE50)

GA_P(600) 2.070 0.49 4.78s 2.936 0.57 2.63s 3.780 0.79 2.61s 4.750 0.78 2.80s
RL_S(1) 2.290 0.66 0.030s 3.024 0.82 0.032s 3.776 0.96 0.036s 4.650 0.82 0.037s
RL_S(40) 2.002 0.49 0.039s 2.799 0.58 0.050s 3.511 0.78 0.053s 4.380 0.68 0.061s
RL_S(100) 2.002 0.49 0.064s 2.797 0.58 0.075s 3.515 0.79 0.083s 4.370 0.67 0.094s
RL_T(1) 2.301 0.74 0.027s 3.185 0.99 0.030s 3.800 0.80 0.038s 4.777 1.01 0.039s
RL_T(40) 2.007 0.48 0.064s 2.810 0.57 0.056s 3.550 0.76 0.058s 4.365 0.69 0.067s
RL_T(100) 2.002 0.48 0.149s 2.803 0.58 0.114s 3.537 0.75 0.108s 4.369 0.68 0.121s
CPLEX-CP 1.998 0.49 383.2s 2.775 0.57 1h(*) 3.501 0.77 1h(*) 4.310 0.69 1h(*)

(*) The result is not optimal, the execution has been forced to end after the indicated time.

Finally, it is worth mentioning that towards seeking a fair comparison, the constraint solver and
also the metaheuristic algorithm deal with the same problem statement as the RL model. This is,
the relaxed variant where the occupancy, networking and latency constraints are introduced into
the objective function using the Lagrange multipliers.

5.3.3 Results
The results on the VNF-CE problem are summarized in Table 5.5. Particularly, the average
objective, standard deviation and mean computing time for the different instances of the problem
is noted. Regarding the resolution methods, the recurrent model (a) is referenced as RL_S and
the fully attentional model (b) as RL_T, followed by the number of the repetitions per instance
N in brackets. E.g., RL_S(40) indicates that the recurrent model (a) has been used with a
self-competing breadth of N = 40.

This problem presents some features that benefit the learning process when compared to the
previous JSP and this is reflected in the results. In this case, services are synchronously placed
one at a time, the model selects the "n" element in the chain and places it. Also, the output
is a categorical distribution over the hosts in the infrastructure (instead of binary scheduling
decisions). These factors make it easier for the model to extract features from the problem
definition and perform better decisions. This also benefits in a lower number of parameters of the
neural network and faster learning times.

5.3 Experimentation details 85

VNF-CE10 VNF-CE20 VNF-CE50
0

10

20

30

40

50

60
Op

tim
al

ity
 g

ap
 (i

n
pe

rc
en

t)
GA_P(600)
RL_S(40)

(a)

VNF-CE10 VNF-CE20 VNF-CE50

100

101

102

103

Ti
m

e
(s

ec
on

ds
)

CPLEX-CP
GA_P(600)

(b)

Fig. 5.6.: Optimality gap (a) and inference computational time (b) for the VNF-CE problem. The optimal
solution is obtained for a problem with small service lengths m = 5, this is done using a constraint
programming solver. The RL_S(40) model is compared in performance and computational time
against a genetic algorithm and the constrain solver itsef. The results show that the RL model
obtains competitive solutions in shorter inference time.

From the obtained results we conclude that in this problem the NCO model achieves close to
optimal solutions. In this scenario, and as previously discussed, the CP solver is competitive only
when the size of the problem is not large and the complexity for achieving optimal placements is
low. For larger instances of the problem, the CP solver does not represent a competitive alternative
due to the high computational time it requires. In that case, the NCO model becomes a more
suitable alternative. In this sense, it achieves even better results that the GA. Despite this problem
represents a good scenario for metaheuristcs, as getting feasible solutions is not particularly
difficult, the NCO model gets better solutions in value and it achieves them in a fraction of the
time. Particularly, we observe that both the recurrent model (a) and the attentional model
(b) achieve very similar results. Hence, we deduce that both models represent a are good
alternative for embedding the required sequences. Finally, it can be also concluded that a self-
competing breadth of N = 40 provides a reasonable tradeoff between computation and
performance.

A more exhaust comparison on the small instance m = 5 of the VNF-CE problem is depicted
in Fig. 5.6. In that case, the optimal solution can be obtained using the CPLEX-CP solver in
reasonable times, so that an optimality gap comparison can be performed. As Fig. 5.6a shows,
the RL model consistently predicts close to the optimal solutions. In this scenario, the model is
able to extract positive behaviours from the whole combinatorial space and infer a policy
that almost suits perfectly on the problem instances. Although, as argued in Chapter 4, the
optima for all cases cannot be achieved using bare RL. On these small instances on the problem
the NCO model gets similar performance than the GA. Although, as depicted in Fig. 5.6b, the
times each alternative requires are quite different. The computational time on the GA, although
it does not grow exponentially with the size of the problem as occurs with the CPLEX-CP solver,
is sufficiently large to surpass the time threshold required on the solution. In this sense, only
heuristics (handwritten or autonomously learnt on the problem) represent a viable alternative.

86 Chapter 5 Use-case: Application for 5G real-time placement decision systems

Host
1

Host
2

Host
3

Host
4

Host
5

Host
6

Host
7

Host
8

Host
9

Host
10

VNF1

VNF2

VNF3

VNF4

VNF5

0.00 0.07 0.00 0.26 0.39 0.09 0.02 0.01 0.15 0.01

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.00 0.95 0.00 0.00 0.00 0.03 0.00

0.00 0.26 0.02 0.00 0.00 0.01 0.00 0.00 0.71 0.00

0.00 0.00 0.00 0.07 0.91 0.00 0.00 0.00 0.01 0.00

(a) n = 0

Host
1

Host
2

Host
3

Host
4

Host
5

Host
6

Host
7

Host
8

Host
9

Host
10

VNF1

VNF2

VNF3

VNF4

VNF5

0.00 0.07 0.00 0.26 0.39 0.09 0.02 0.01 0.15 0.01

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.06 0.00 0.84 0.01 0.00 0.00 0.00 0.08 0.00

0.00 0.22 0.03 0.00 0.02 0.02 0.00 0.00 0.71 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

(b) n = 1

...

Host
1

Host
2

Host
3

Host
4

Host
5

Host
6

Host
7

Host
8

Host
9

Host
10

VNF1

VNF2

VNF3

VNF4

VNF5

0.00 0.07 0.00 0.26 0.39 0.09 0.02 0.01 0.15 0.01

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.00 0.95 0.00 0.00 0.00 0.03 0.00

0.00 0.26 0.02 0.00 0.00 0.01 0.00 0.00 0.71 0.00

0.00 0.00 0.00 0.08 0.47 0.03 0.00 0.00 0.42 0.00

(c) n∗ - best attempt

Host
1

Host
2

Host
3

Host
4

Host
5

Host
6

Host
7

Host
8

Host
9

Host
10

VNF1

VNF2

VNF3

VNF4

VNF5

0.00 0.07 0.00 0.26 0.39 0.09 0.02 0.01 0.15 0.01

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.00 0.95 0.00 0.00 0.00 0.03 0.00

0.00 0.26 0.02 0.00 0.00 0.01 0.00 0.00 0.71 0.00

0.00 0.00 0.00 0.08 0.47 0.03 0.00 0.00 0.42 0.00

(d) n = N − 1

Fig. 5.7.: Action probability distribution of the N = 40 solutions inferred following the self-competing
strategy on a testing VNF-CE10 problem example with a m = 5 service request. The particular
action sampled from the distribution in each case is marked in a red box.

Fig. 5.8.: The t-SNE dimensionality reduction technique is used to plot the combinatorial space (Ω) on a
VNF-CE10 problem example. The possible solutions on the problem are colored indicating the
cost obtained on each placement. Warmer colors represent a smaller cost, while cooler colors a
higher operational cost. The N solutions the model obtains are overlapped using red dots; the
best attempt n∗ is indicated using a blue dot.

5.3 Experimentation details 87

Host
1

Host
2

Host
3

Host
4

Host
5

Host
6

Host
7

Host
8

Host
9

Host
10

VNF1

VNF2

VNF3

VNF4

VNF5

0.00 0.07 0.00 0.26 0.39 0.09 0.02 0.01 0.15 0.01

0.00 0.07 0.00 0.23 0.33 0.20 0.00 0.00 0.18 0.00

0.00 0.04 0.00 0.35 0.55 0.00 0.00 0.00 0.06 0.00

0.00 0.16 0.02 0.25 0.18 0.01 0.00 0.00 0.38 0.00

0.00 0.00 0.00 0.09 0.63 0.02 0.01 0.00 0.23 0.01

Fig. 5.9.: This figure depicts the average probability distribution computed on the N = 40 inferences ob-
tained on the testing VNF-CE10 problem instance. This artificially created probability distribution
gives an idea on the breadth experienced during the sampling. The best attempt n∗ is marked
using red boxes.

Regarding the self-competing strategy, this method computes N possible solutions on each
problem instance in order to estimate the performance of the policy and build an unbiased
baseline estimator. In Fig. 5.7 the N = 40 solutions the RL_S(40) model obtains on a testing
VNF-CE10 problem instance with a m = 5 service request is depicted. This heatmap plots the
output probability distributions the policy observes at each state on the resolution process. For
each of the N parallel episodes the model experiences upon the same instance, this picture tracks
the action probability distribution the model gets over the action space (the hosts where to place
each VNF). At every step on the resolution process the model defines its actions sampling over
this probability distribution. The particular actions the agent takes are highlighted using a red
box.

As observed, this learning strategy obtains an action probability distribution that it is not deter-
ministic. Otherwise, the model would experience the same result on the N episodes and would
not experience any benefit from this strategy. The model optimizes the breadth of the action
distribution according to the number of samples performed. In this example, N = 40, hence the
model produces a narrow the probability distribution over a few hosts from where the solutions
would be sampled.

Also, the t-SNE dimensionality reduction technique can be used to picture the combinatorial
space (Ω) on this problem example (see Fig. 5.8). To this end, all the possible solutions are
computed on the problem. The t-SNE depicts close in space, combinations that do not differ much
in the host selection. In addition, the solutions are colored. Warmer colors represent placements
with low energy consumption whereas cooler colors represent placement decisions with high
cost. As can be observed, this represents a high non-convex space where slight differences in
the combination can produce a complete different cost. Over this combinatorial space, the N
solutions the model computes are marked in red. In addition, the best attempt n∗ obtained in the
sampling is indicated using a blue mark.

Finally, in order to get an idea on the breadth of the search, we average the output distributions
experienced during the sampling. This is depicted in Fig. 5.9. This artificially created probability
distribution summarizes the host explored on the different sampled solutions.

5.3.4 Learning and inference times
As mentioned, the run times in the VNF-CE problem are considerably shorter than the presented
in the JSP example. This is due two main factors: first, the size of the sequences, which determine

88 Chapter 5 Use-case: Application for 5G real-time placement decision systems

VNF-CE10 VNF-CE20 VNF-CE50
0

200

400

600

800

1000

1200

1400

Le
ar

ni
ng

 ti
m

e
(s

ec
on

ds
)

m=5
m=7
m=9
m=11

(a) Recurrent model

VNF-CE10 VNF-CE20 VNF-CE50
0

250

500

750

1000

1250

1500

Le
ar

ni
ng

 ti
m

e
(s

ec
on

ds
)

m=5
m=7
m=9
m=11

(b) Attentional model

Fig. 5.10.: Learning time for (a) the recurrent model RL_S(40) and (b) the attentional model RL_T(40) on
instances of the VNF-CE problem with service chains of different lengths m.

the number of iterations the model needs to perform to get the solutions, is much shorter in the
VNF-CE; and secondly, the number of parameters used in the neural model is considerably lower.
As a result, the computational time required to perform a single episode (compute a solution
on the problem) is fast enough to achieve the real-time interaction pursued in this work (see
Table 5.5).

In regard with the time required to learn the model, this is depicted in Fig. 5.10. As observed,
the learning time is proportional to the number of operations, which grows with the number of
hosts and the length of the services placed on the infrastructure. The learning intervals obtained
are in the order of minutes for the scenarios studies. This meets the requirements advanced in
Sec. 5.2. As mentioned, the network optimization cycles operate hourly/daily/weekly changing
the network definition. In this scenario, the NCO model needs to be particularized for the network
state, hence a new learn process is required at that frequency in order to adapt the model to
the new situation. The learning times observed in both models are not excessive and made this
method a suitable option for network optimization. Although we would like to stress that in this
respect the recurrent model is preferred, as the learing time do not increase do severely with the
complexity of the problem as the attentional model does.

5.4 Conclusions
In this Chapter a use-case for the NCO framework argued in this Thesis is presented. In particular,
this is done within the scope of intelligent systems to orchestrate the 5G network. Here, the Virtual
Network Function placement problem is addressed. The goal is to optimize at operational time
the deployment of services within the infrastructure. To this end, the problem is mathematically
formalized and subsequently solved.

In order to validate the NCO model a complete experimentation in this problem is conducted. The
NCO model is benchmarked against metaheuristic algorithms and constraint programming solvers
to disclose the best alternative on the problem. In this particular case, designing handwritten
heuristics is not straightforward, thus heuristics are not introduced in the comparison. From the
results obtained in the experimentation, we conclude that both NCO models, the recursive and
the attetional, represent a good alternative for the problem. Particularly, they outperforms
their counterparts when rapid solutions need to be obtained. In this case, NCO outperforms
the GA, used as a reference for metaheuristics, achieving better solutions in a fraction of the time.
And the CPLEX-CP constrained programming solver does not represent a viable option when the

5.4 Conclusions 89

problem scales up in size. In addition, the inference time the NCO model achieves match the
real-time requirements on the problem.

This Chapter also provides an insight on how the neural model produces solutions on the VNF-CE
problem. A breakdown on the decoding process on this example is presented to get a better idea
on the self-competing strategy. To this end, the output probability distribution from where the
different solutions are sampled is analyzed. This gives a perspective on the breadth of the search
the method produces on the combinatorial space (Ω).

After verification, we infer that the time required to learn the model is suitable for the desired
goal. As mentioned, the network optimization cycles operate hourly/daily/weekly changing the
network definition. In this scenario, the NCO model needs to perform a new learning process in
order to adapt to the new network situation. The learning times observed in this experiment are
not excessive and make this method a suitable option for network optimization.

90 Chapter 5 Use-case: Application for 5G real-time placement decision systems

6Discussion

Contents
6.1 Performance comparison between recurrent and attentional models for NCO . 91

6.2 Graph neural networks applied to NCO . 92

6.3 NCO in combination with Tree-Search strategies 92

6.4 RL to enhance Metaheuristic algorithms . 93

6.5 Discussion on the ITU-T approach for introducing ML in 5G 93

6.6 Conclusions . 94

Despite the NCO research line in which this Thesis is focused, other alternatives studied in the
community are here presented. In this Chapter, different approaches to the problem are discussed,
arguing their validity for the specific aim purposed, building real-time decision making systems
to optimize network deployments.

Finally, the work of the ITU-T study group focused in ML applied to 5G networks is here exposed.
An analysis of the different case of studies this entity is carrying on is done and a motivation for
implementing the RL alternative developed in this work is suggested.

6.1 Performance comparison between recurrent and
attentional models for NCO

In the literature the Transformer network [116] has become the new standard for building
sequential NLP models. Also, this architecture has shown better performance when compared
to recurrent sequence-to-sequence models for solving combinatorial problems [65, 35]. These
referenced works decline the use of RNNs in favour of attention mechanisms. This is because RNNs
are complex cells whose implementation usually degrade the representation of the individual
elements, specially the distant ones. Until recently, recurrent cells were the best alternative for
dealing with dynamic length sequences, both preserving the order of the elements in the chain
or for building set-aware models that are invariant to the order [118]. Transformer networks
instead use a positional encoding mechanism that allows to build an attentional model over them
without requiring recursion.

In our experience, we have achieved similar performance using both alternatives: recurrent
and attentional models. Although the setup used on the experimentation was different from
the presented on the previous references, i.e. not the whole Transformer network is used. In
our Markovian model, sequence embedding is only required in the encoder, where it is used
to extract the features from the problem instance definition. This differs from the sequence-to-
sequence models, where sequences have a bigger relevance on the model (both in encoder and
decoder). During the validation on the VNF-CE problem we have observed that both recurrent and
attentional encoders give a fair representation of the problem definition. Therefore, we conclude
other parts of the model (e.g., using attention on the decoder) or a better hyper-parameter tuning
have a bigger impact on the model performance. Differently, in the JSP the Transformer encoder

91

attends over a much larger representation, this increases significantly the memory this model
requires. Hence, we dismiss this alternative.

6.2 Graph neural networks applied to NCO
Numerous combinatorial problems over different disciplines (social networks, transportation,
telecommunications, etc.) are represented as graphs. In fact, of Karp’s 21 problems [58], 10 of
them are graph optimization problems while most of the other 11 problems also can be formulated
as graphs. Graphs embedding throughout Graph Neural Netwoks (GNNs) has been pursued for
long [96]; however, until recently this technology has not been applied to combinatorial problems.
In particular, (khalil et al., 2017) [60] uses a graph embedding strategy [31] for exploiting the
structure of these problems in order to learn an heuristic. As they argue, sequence architectures
used e.g., for solving the TSP [120, 15] are generic structure that even though can be applied
for addressing these problems, are generic and are not effective reflecting the structure of graph
problems.

In our case, the natural representation for the VNF Placement problem is also a graph G(V,E).
Where the servers in the infrastructure are represented by nodes V and the edges E model the
link interconnections. However, graph representation using neural networks is a technology
still in its early days. For this reason, a simplification on the network interconnection has been
established. This way, the VNF-CE can be formulated a sequence problem, and thus knowledge
mainly developed in the NLP community can be applied to it.

6.3 NCO in combination with Tree-Search strategies
NCO has achieved competitive results in many different CO problems. However, these models
heavily rely on the condition that positive rewards can be obtained from an initial random
policy and enough exploration on the environment. This strategy is valid for numerous domains,
although it struggles in some scenarios: e.g., in environments with sparse rewards as occurs
in the famous Sokoban and Montezuma’s revenge games; or for the interest of this Thesis, for
achieving optimal decisions for the whole combinatorial space, as this is asymptotically difficult.
To overcome these difficulties, RL has been successfully combined with search strategies to expand
the exploration and improve the action selection.

In particular, excellent results have been obtained combining Policy Iteration (Annex B.2.2) with
Monte Carlo Tree Search (MCTS) to learn tabula rasa through self-play [105]. In this approach, a
neural network is used to provide a policy πθ(·|s) and a estimate state value function v̂θ(s) for
every state s. This method performs a tree search focusing on moves the policy indicates to guide
the search strategy. Namely, the policy is used to reduce the breadth and the value function is
used to reduce the depth in the MCTS. Examples of this method are AlphaZero [105] and Expert
Iteration [7].

We believe that harnessing search strategies will also lead to better RL approaches for com-
binatorial optimization. Support the model on a tree search helps to improve the exploration
and to convergence the model to better behaviours. This strategy positions between the full
backups explored in dynamic programming and traditional RL methods based on single backups
(see Fig. B.3.1). Thus, this method works smarter not harder as reduces the width of bare tree
searches and improves the results. E.g., the state-of-the-art Chess engine Stockfish evaluate up to

92 Chapter 6 Discussion

60 million moves, whereas AlphaZero achieves better results only evaluating around 60 thousand
on the decision tree [104]. Other examples that use this technique can be found for solving the
Rubik’s Cube [75] or for dealing with Bin Packing problems [67]. In conclusion, this seems a
promising strategy for approaching combinatorial problems. And although at inference results
can take longer time to be obtained, the depth of the search can be tuned to be in accordance
with the time available to achieve the solution.

6.4 RL to enhance Metaheuristic algorithms
A different approach explored in the literature for the purpose of this Thesis rather than inferring
greedy heuristics, is in the usage of RL in combination with metaheuristic algorithms (previously
introduced in Section 2.1.2). For example, [28] proposes to learn a RL model to support a local
search procedure. An iterative process in which an existing solution is improved by rewriting local
parts of the solution. Although, when metaheuristics are used to deal with highly constrained
problems they present some concerns. In this case, paraphrasing their authors: "this formulation
is especially suitable for problems with the following properties: a feasible solution is easy to
find; and the search space has well-behaved local structure". In this case, a local search strategy
struggles in constrained environments, as if the rewriting mechanism achieves an unfeasible
solution, it discard the solution and repeats the process. This is a drawback that repeats on
metaheuristic algorithms. Therefore, this approach does not guarantee a rapid solution.
Unlike NCO, which learns a greedy heuristic that provides rapid approximations obtaining near
feasible near optimal solutions even in highly constrained environments.

6.5 Discussion on the ITU-T approach for introducing
ML in 5G

Currently, the ITU-T Focus Group on Machine Learning for Future Networks including 5G (ITU-FG-
ML5G) is working in integrating an ML-aware architecture in the telecommunications network1.
In their resulting works, this group envisions an ML-based schema conformed by pipelines that
are integrated in the 5G service-based architecture (SBA). Different nodes collect data from
different origins, pre-process it, distribute them into ML-models, and redirects the output to the
corresponding sinks in order to take the necessary decisions. These pipelines are distributed
over the network, can be place on the user premises or on the core network. Finally, a ML
Function Orchestrator (MLFO) aligned with the NFV MANO architecture (Sec. 5.1), manages the
ML pipelines, being also responsible of selecting the ML models based on the needs of the ML
applications.

One of the major concerns, is that although this architecture is not exclusive of supervised
learning, all the practical cases discussed so far belong to this case [64, 94]. Supervised learning
is used to train the models in different scenarios using optimal labels obtained from simulated
environments. For later, deploy the different models prepared for different network conditions
into this ML-aware architecture. In this schema, it is the MLFO’s decision to selects the most
suitable model in each scenario. These supervised models are focused on performing regression

1The ITU-FG-ML5G work is aligned with the ITU-T standards for providing the architectural framework for the integration
of machine learning into 5G (ITU-T Y.3172), the framework for evaluating intelligence levels across different parts of
the network (ITU-T Y.3173), and the framework for data handling (ITU-T Y.3174).

6.4 RL to enhance Metaheuristic algorithms 93

and classification techniques. Henceforth, the ability they have to generalize from simulations to
the real implementation is key for the success of the solution.

Alternatively, we propose using RL for this purpose. In this setup the model learns to adapts on a
real scenario, discovering by itself how to act in it. This is a viable option as not optimal label
for each specific case are required for training the model. It is the model who interacts with the
environment and discovers by itself how to act accordingly.

6.6 Conclusions
In this Chapter, different alternatives to NCO are discussed. Despite the Markovian NCO model,
which aims at inferring end solutions on sequence CO problems, other alternatives can be used
in that sense. Here, we argue different neural model for NCO but also expose other strategies
that relying on RL can also be applied to address these problems. It is the case for example
of metaheuristics supported by RL or in our vision a very promising strategy that mixes Policy
Iteration with MCTS to perform a model-based learning. Particularly, this last strategy has had
excellent results in strategic thinking and thus we believe that could benefit CO problems. This
is because this technique relies on a decision tree, which enables to perform simulations on the
future actions. This is a great step forward when compared to classical RL strategies in which
decisions are taken without this prediction analysis.

Finally, the work of the ITU-T study group FG-ML5G is also analyzed. After studying the different
case of studies these entity is carrying on, one observes that the vast majority of their proposals
are models based on supervised learning. The different examples in which the study group is
focused on (e.g., link adaptation optimization, channel prediction,...) are oriented on regression
and classification. Models that are pre-trained from simulated network conditions, and whose
ability to generalize is key for achieving a good performance in a real scenario. Here, we suggest
to use models that based on the current state of the network an RL-based learning could be done
to discover at each time a good heuristic to rely on for optimizing the network.

94 Chapter 6 Discussion

7Final conclusions, contributions and
broader impacts

Contents
7.1 Thesis coverage . 95

7.2 Main contributions . 96

7.3 Final conclusions . 97

7.4 Thesis publications . 97

7.5 Future Work . 99

7.6 Broader Impacts . 99

Finally, a summary of the most important aspects covered in this Thesis together with the final
conclusions are here presented. This Chapter ends emphasizing the broader impacts of NCO and
the repercussion of this work on the OR industry.

7.1 Thesis coverage
This Thesis gives a step forward in the use of RL for addressing combinatorial problems. It
contributes directly to the NCO theory, but also to the research community in the form of
conclusions that lead to a better understanding on the technology and results useful for further
comparisons. In the following, the coverage of this Thesis is summarized.

• This Thesis covers the use of NCO for solving CO problems that can be expressed
as sequences. To this end, different neural architectures and RL strategies applied to
sequence models are evaluated. These include Recurrent Neural Networks (RNN) and
fully-attentional models as the novel Transformer network. In order to implement these
neural models, tensor oriented libraries are used, specifically Tensorflow and PyTorch. Also,
a study on the different learning strategies that can be applied to CO is conducted on this
work. This includes policy-based and model-based learning strategies.

• This work also covers the constraint management within the NCO framework. Ex-
isting works do not deal with constraints, they build specific models to ensure feasible
solutions or rely on masking schemes to avoid unfeasible actions. We argue that actions that
lead to an immediate violation of a constraint should be masked to directly avoid exploring
those infeasible solutions. However, due to their nature, not all constraints can be verified
before acting, and thus, cannot be masked. This work covers this gap in the literature and
proposes to apply Reward constrained policy optimization technique into NCO to soften these
constraints and incorporate them into the objective function.

• A methodology for addressing CO problems is also defined. To this end, a toy reference
combinatorial problem is used to explore the learning capabilities of the model. This study
inquires in the different challenges that come along when solving CO problems using RL
and paves the way towards optimizing the learning process. In this sense, different methods

95

to enhance the results are tested. Specifically, this work emphasizes the importance of
trust-region optimization to avoid performance degradation and entropy regularization to
extend the learning process and gain a better convergence on the process.

• Also, due to the importance observed in the selection of the hyperparameter for the outcome
of the model, we conclude that a full-vectorization of the problem is required to reduce the
learning times and therefore better fine-tuning the model. We contribute in this direction
designing a self-competing algorithm (Algorithm 1) that benefits from this tensor-based
implementation in two aspects: first, reducing the complexity of the model, as it does not
require a critic estimator to predict the performance of the policy network, this information
is extracted from the current policy distribution; and second, enhancing the exploration
and selection of the solution as it operates as a breadth search strategy.

• Finally, the proposed approach is validated in the Job Scheduling Problem (JSP), a
reference CO problem where a complete set of heuristics are available for comparison.
And ultimately, in the VNF chain embedding problem (VNF-CE), a problem present in
today’s telecommunication infrastructure. Conducted experiments prove that there exists
an optimal range where the proposed solution is superior for computing rapid solutions
when compared to classical heuristics, metaheuristics, and Constraint Programming (CP)
solvers. Particularly, in the low to medium range of the problem sizes, the NCO model
infers a heuristic behaviour that outperforms classical handwritten heuristics. However for
larger size problems this advantage fades and the policy performs similar to the classical
algorithms.

7.2 Main contributions
The contributions here presented fall into two main categories. Firstly, this work argues that the
performance obtained by sequence-to-sequence models used for NCO in the literature is improved
raising combinatorial problems as Constrained Markov Decision Processes (CMDP), such property
can be exploited for building a Markovian model that computes the solutions incrementally based
on interactions with the problem. This benefits the model as relying on the immediate states
during the resolution gives to the model a better understanding on how the solution evolves in
the problem, and therefore, improves the quality of the results. It is better for the model to act
based on the actual representation of the problem rather than doing on memories as previous
models did. Secondly, this work presents an strategy to extend NCO to constrained combinatorial
problems. Specifically, it is argued that masking schemes shall be used to deal with the constraints
if the problem formulation allows its implementation. Namely, it is beneficial for the model to
mask actions that lead to an immediate violation of a constraint to directly avoid exploring those
infeasible solutions. However, due to the nature of combinatorial problems, not all constraints can
be verified before acting, and thus, cannot be masked. To that end, this work proposes dealing
with non-maskable constraints by incorporating them into the optimization objective. Conducted
experiments prove that this contribution allows to efficiently apply NCO to general constrained
combinatorial problems.

This work also contributes providing a methodology for addressing CO problems. In order to
achieve an optimal learning strategy, a procedure for building the model is proposed. To this end,
it is crucial to estimate the learning capabilities of the models, detect any possible flaw on the
learning process and use enhance learning methods to address these issues. This methodology

96 Chapter 7 Final conclusions, contributions and broader impacts

serves as a reference strategy to apply when addressing any other CO problem and gives a hint
on the possible drawbacks that may appear and provides an intuition on how to solve them.

7.3 Final conclusions
Combinatorial optimization is being solved by thousands of companies around the world every
single day. In some instances, they can wait for hours to obtain sufficiently good solutions, but
more and more industrial players rely on the ability to get fast (sometimes in real-time) high
accurate solutions.

Through the experimentation presented in this work, it is proved that NCO is capable of
computing near-feasible near-optimal solutions with rapid inference times, outperforming
traditional OR approaches under the presented circumstances. The inference time obtained
in NCO models is only comparable to greedy heuristics. As metaheuristics and CP solvers require
much larger times to obtain a solution, and thus, are non-compatible with the real-time decision
making system seek in this work. Particularly, the model here presented demonstrates that for
small to medium size CO problems, the policies achieved are competitive when compared to the
alternatives. In this sense, obtaining better solutions quicker without human intervention
can significantly reduce costs and make industry players more competitive.

This approach is validated performing a complete experimentation in a classical combinatorial
problems, the JSP and constrained variants of it. But also in a real scenario, in this sense
NCO is used for building a real-time decision-making system that optimizes the placement
of virtual network functions on a 5G deployment. This use-case proves that the proposed
architecture presents the required versatility for being applied in real-world problems. This
experiment evidence that NCO is competitive in the results, that the inference times obtained are
within the expected limits and that the leaning process matches the requirements for being used
in network optimization.

7.4 Thesis publications
This Thesis has result in numerous publications. This section resumes the journal articles as well
as conferences and congresses this work has been presented.

Publications
- Solozabal, R., Ceberio, J., Sanchoyerto, A., Zabala, L., Blanco, B., & Liberal, F. (2019). Virtual Network

Function Placement Optimization With Deep Reinforcement Learning. IEEE Journal on Selected Areas
in Communications, 38(2), 292-303.

- Solozabal, R., Blanco, B., Fajardo, J. O., Taboada, I., Liberal, F., Jimeno, E., & Lloreda, J. G. (2017,
August). Design of virtual infrastructure manager with novel VNF placement features for edge clouds
in 5G. In International Conference on Engineering Applications of Neural Networks (pp. 669-679).
Springer.

- Solozabal, R., Sanchoyerto, A., Atxutegi, E., Blanco, B., Fajardo, J. O., & Liberal, F. (2018). Exploitation
of mobile edge computing in 5G distributed mission-critical push-to-talk service deployment. IEEE
Access, 6, 37665-37675.

7.3 Final conclusions 97

- Solozabal, R. et al., (2018, May). Providing mission-critical services over 5G Radio Access Network.
In IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 520-530).
Springer.

- Solozabal, R., Fajardo, J. O., Blanco, B., & Liberal, F. (2018). Quality of Service (QoS) oriented
management system in 5G cloud enabled RAN. XIII Jornadas de Ingeniería telemática (JITEL 2017).
Libro de actas, 170-175.

- Kourtis, M. A. et al., (2019). A cloud-enabled small cell architecture in 5G networks for broad-
cast/multicast services. IEEE Transactions on Broadcasting, 65(2), 414-424.

- Sanchoyerto, A., Solozabal, R., Blanco, B., & Liberal, F. (2019). Analysis of the Impact of the Evolution
Toward 5G Architectures on Mission Critical Push-to-Talk Services. IEEE Access, 7, 115052-115061.

- Carreras, A. et al., (2019). Impact of front-haul delays in non-ideal cloud radio access networks.
Wireless Personal Communications, 106(4), 2005-2022.

- Zabala, L., Solozabal, R., Ferro, A., & Blanco, B. (2018, November). Model of a Virtual Firewall Based
on Stochastic Petri Nets. In 2018 IEEE 17th International Symposium on Network Computing and
Applications (NCA) (pp. 1-4). IEEE.

- Spada, M. R., Pérez-Romero, J., Sanchoyerto, A., Solozabal, R., Kourtis, M. A., & Riccobene, V. (2019,
June). Management of mission critical public safety applications: the 5G ESSENCE Project. In 2019
European Conference on Networks and Communications (EuCNC) (pp. 155-160). IEEE.

- Blanco, B. et al., (2020, June). Intelligent Orchestration of End-to-End Network Slices for the
Allocation of Mission Critical Services over NFV Architectures. In IFIP International Conference on
Artificial Intelligence Applications and Innovations (pp. 74-83). Springer.

- Pérez-Romero, J. et al., (2019, December). Supporting Mission Critical Services through Radio Access
Network Slicing. In 2019 International Conference on Information and Communication Technologies for
Disaster Management (ICT-DM) (pp. 1-8). IEEE.

- Sanchoyerto, A. et al., (2019, May). Orchestration of Mission-Critical Services over an NFV Architec-
ture. In IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 70-77).
Springer.

- Zabala, L., Ferro, A., Solozabal, R., & Blanco, B. (2018, October). Performance Analysis of a Network
Sensor’s Packet Processing System using Generalized Stochastic Petri Nets. In Proceedings of the 15th
ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous
Networks (pp. 63-70).

Conferences and congresses
The work here presented has been exposed in the following conferences and congresses:

- Modelling and Optimization: Theory and Application (MOPTA)
Combinatorial optimization with Deep Reinforcement Learning.
Lehigh University, PA (USA), 2019.

- Artificial Intelligence Applications and Innovations (AIAI)
Providing mission-critical services over 5G Radio Access Network.
Rodhes (Greece), 2018.

- Engineering Applications of Neural Networks (EANN)
Design of Virtual Infrastructure Manager with novel VNF placement features for edge clouds in 5G.
Athens (Greece), 2017.

98 Chapter 7 Final conclusions, contributions and broader impacts

7.5 Future Work
Many different model variants, tests, and experiments have been left to future researches. This
Section concerns a deeper analysis of particular mechanisms and proposals to try on this methods.
These can be summarized in the following ideas:

• This Thesis has been mainly focused on the use of NCO for solving CO problems that can be
defined as sequences, and most of the neural architects used in the experimentation where
obtained from the NLP literature of adapted from it, leaving the study other architecture
outside the scope of the Thesis. Although, several of the well-known CO problems in
the literature can be addressed using this sequential approach (e.g., TSP, VRP, JSP), this
representation is not the most suitable one for addressing problems with more complex
relations. From our perspective, exploring more natural representations could provide
significant benefits to NCO. In this sense, GNNs could be used to extend this theory to
graph-oriented problems (see Sec. 6.2). This representation treats graph problems in
their natural structure, extending the problems that can be addresses using this technology.
Although GNNs are a promising technique for addressing problem representations otherwise
impossible, these are complex structures require further research for being competitive.

• Improvements on the results can be also obtained researching additional learning strategies.
New approaches in this direction can be induced from techniques such as the hybridization
of RL with tree-search strategies (previously discussed in Sec. 6.3). NCO could benefit
from this approach to perform a better exploration that could lead to better solutions. Also,
following this strategy the action selection is improved as tree-strategies allow to focus
on best option explored during the inference on the tree. However, implementing this
learning strategy implies fundamental changes over the methods addressed in this Thesis.
In that sense, implementations as OpenGo [114] (open source code inspired in DeepMind’s
AlphaGoZero) can be used to facilitate that process.

• Lastly, recent advances in exploration techniques have proved that RL can be used to address
environments difficult to explore. Recent works as Random Network Destilation [26], Never
Give Up [10] or lastly Agent57 [9] have achieved remarkable results in Atari games where
previous approaches were unable to operate. Specifically, Agent57 has been the first
general AI capable of outperforming human in the whole Atari benchmark. In this sense and
although this curiosity-driven strategy has also been tested in this work with negative results,
further studies can be carried on to extrapolate these advance exploration techniques to CO
problems.

7.6 Broader Impacts
We want to stress that this is the first step in NCO towards much complicated problem settings
(i.e., stochastic problems or partially observable problems, to name a few) that both academicians
and, more importantly, industrial partners would seek to solve using this technology. Addressing
these problems is very complicated using traditional OR techniques. While for NCO, these
problems come natural to the method. From the NCO perspective addressing these problems is
straightforward, the model is able to learn patterns either in static environments (as demonstrated
in this work) or stochastic problems where there exists input distribution and the model needs to
react based on a probabilistic approach. In both cases, the model seeks to learn a behaviour that

7.5 Future Work 99

statistically fits well on the problem, which is unknown for the agent and treated as a black-box.
Due to this reason NCO is envisioned as a breakthrough technology that would allow to address
CO problems today intractable.

100 Chapter 7 Final conclusions, contributions and broader impacts

AAnnex: Operations Research

This Appendix A discusses further details on the conceptual differences between the exact
resolution methods in OR described in this work: Mathematical Programming and Constraint
Programming.

A.1 Mathematical Programming (MP) vs Constraint
Programming (CP)

The model-and-run of MP optimizers

On one side, Mathematical Programming relies on applied mathematics to relax the problem and
guide the tree search (e.g., "Branch and Bound"). In short, these are the concepts on which MP
works:

• Relaxation. MP optimizers require to classify the problem into a well-defined mathematical
category e.g., Linear Programming (LP), Mixed Integer Quadratic Programming (MIQP).
This is due to the fact that MP, in the context of discrete optimization, uses relaxations
techniques and cutting-planes strategies that require a mathematical knowledge on the
problem.

• Lower bound and optimality gap. A mathematical programming engine will use different
techniques such as a lower bound proof provided by cuts and linear relaxation to estimate
the optimality gap.

The model-and-run of CP optimizers

On the other hand, Constraint Programming aims to solve CO from a different perspective. A CP
engine does not make any assumption on the mathematical properties of the problem. CP uses
logical inferences to optimize the search procedure. This allows the method to address difficult
allocation, sequencing and scheduling problems otherwise intractable.

These are the concepts on which CP generates workable solutions on CO problems arising from
such complexity:

• Aggressive elimination on the search tree. Domain reduction is extensively used to
reduce the search on the decisions. Every reduction makes the problem easier since the
optimizer propagates the results of the decision throughout the model.

• Rapidly traversing the decision tree. The concept of systematically exploring a decision
tree for efficient solutions relates to domain reduction. This approach gives to the model
the ability to move flexibly throughout the search space and rapidly to backtrack when early
choices turn out to be dead ends.

• Adaptive Search. The default search consists of several search techniques that are dynam-
ically changed during the search to adapt the problem. The different search techniques
include but are not restricted to Large Neighborhood Search and Genetic Algorithms.

101

• Discrete. It should be noted that CP supports only discrete decision variables (integer or
boolean), while a mathematical programming model supports either discrete or continuous
decision variables.

• Proof of optimality. Lastly, note that a constraint programming engine proves optimality
by showing that no better solution than the current one can be found.

A.2 Logical Conditions
Logical conditions, and specifically if-else statements, under certain circumstances can be for-
mulated into a mathematical program using big-M methods. To achieve this, conditionals are
transformed into dual constraint equations that compare the result against a big enough constant.
These transformations rely on highly constrained equations using big numbers to ensure its
satisfiability. However, this strategy presents some drawbacks. Big constant on the resolution
may cause sparse resolution matrices, which in the end delay the resolution process. Due to this
reasons, many modern MP solvers have indicator constraints, which facilitates this process as
one can write implications directly without big-M constraints 1, instead the solver choose an
appropriate one.

Despite that, in the case the problem presents numerous or complex logical conditions, generally
using constraint programming is a more recommended approach.

1The IBM CPLEX-MP solver includes the if-then statement as part of its API.

102 Chapter A Annex: Operations Research

BAnnex: Reinforcement Learning

„"Just as electricity transformed almost everything 100
years ago, today I actually have a hard time thinking of
an industry that I do not think AI will transform in the
next several years."

— Andrew Ng
Co-founder of Coursera

This Appendix B, provides a mathematical introduction on Reinforcement Learning. Particularly,
(1) defines the Bellman equations for Markov Decision Processes, in (2) the Bellman equations
are solved using Dynamic Programming; this leads to model-free learning where (3) Value-based
learning, (4) Policy-based learning and finally, (5) Actor-Critic methods are covered.

B.1 Markov Decision Process

B.1.1 Definition
The mathematical basis for Reinforcement Learning (RL) is the Markov Decision Process (MDP)
formulation. An MDP describes the iteration with a controllable dynamical system. It formalizes a
decision process with an environment in which by definition all states satisfy the Markov property.
An MDP is defined by a tuple < S,A,P ,R >, formed by the representational spaces and the
one-step dynamics of the environment. Formally:

• S is the state space.
• A is the action space.
• P is the state transition probability matrix P(s′|s, a) : S ×A× S → [0, 1], which defines

the probability of reaching state s′ ∈ S from being in state s ∈ S and applying the action
a ∈ A.

P(s′|s, a) = P(St+1 = s′|St = s, At = a)

• R is the reward function,R(s, a) : S ×A → R, denotes the immediate reward for being
in state s ∈ S and doing action a ∈ A.

Rt+1 = R(St = s, At = a)

Given a controllable MDP, the dynamics of the decision process operates in the following way.
Being in an arbitrary state s ∈ S at time step t, the agent chooses an action from the action
space a ∈ A(s). The actions available at the moment t may depend on the current state St, or in
other words, the actions available may be a subset of the whole action space A(St) ⊆ A. Due to
the interaction with the environment, the system evolves to the next state s′ ∈ S according to
the transition function P(s′|s, a). As a result, the environment returns a one-step reward Rt+1.
This process is repeated until a terminal state is reached. The generated sequence of states and
actions created until the episode is ended is called the trajectory.

103

As mentioned, in an MDP all states present the Markov property. This property states that the
state transition on the system only depends on the current system state St and the action At
selected. Consequently, the transition dynamics are independent of the past trajectory, i.e. the
previous states and actions. The current state captures all the information from the history.

Definition B.1.1 Markov property:
A stochastic decision process with states St ∈ S, actions At ∈ A and a transition function P is
called Markovian if for every t ∈ N satisfies that

P(St+1|At, St) = P(St+1|At, St, At−1, St−1, ..., A0, S0)

MDPs are classified according to several criteria. Depending on whether the state space S and
action spaces A are discrete or continuous, the MDP is classified as discrete or continuous. With
regard to the transition function P(s′|s, a), an MDP is classified as deterministic if there is no
randomness in the transition process, and stochastic otherwise. Also, the reward function can be
stochastic, in that case, the reward does not only depend on the state St but also in the stocasticity
of the reward process itself. Due to this stocasticity in the reward, defining the mean expected
reward is useful to further down formalize the equations that define the Markov process.

R̄(s, a) .= E[Rt+1|St = s, At = a]

However, the particular immediate reward is not of major interest in the process, as an action that
produces high immediate reward might lead to lower rewards in the long run. In an MDP the goal
is to maximize the cumulative reward obtained during the episode. This return or accumulated
reward over time is usually defined with a discount factor γ ∈ [0, 1], which avoids to produce
infinity loop returns in processes are able to run indefinitely. The cumulative return obtained at
every time step in the trajectory is defined as

Gt
.= Rt+1 + γRt+2 + · · ·+ γT−1RT =

∞∑
k=0

γkRt+k+1 ∀t > 0

In this scenario, the ultimate objective is to find the policy π that leads to the maximum return
Gt. The policy defines the behaviour of the agent, it represents the decision rules that determine
how the agent acts in the environment. In an MDP, due to the Markov property, the agent only
requires of the current state to act accordingly. Therefore, the policy can be established as a
relation between the state and the action spaces π : S → A. This rule for choosing an action by
given the current state St, in general case is stochastic and can be viewed as a distribution over
the actions A(St).

Definition B.1.2 In a Markov Decision Process a stochastic policy π is defined as a probability
distribution over the actions given the states,

π(a|s) .= P(At = a|St = s)

104 Chapter B Annex: Reinforcement Learning

B.1.2 Value Functions
A common method for solving an MDP is though the definition of the value functions. The value
functions estimate the value (expected return) of being in a given state and follow a predefined
policy π. There are two different types of value functions: state-value function that only consider
the state s, and action-value functions that indicate the quality of taking an action a on a given
state s. They are formally defined as:

Definition B.1.3 The state-value function vπ(s) : S → R of an MDP is defined as the expected
return starting from state s ∈ S and following the policy π:

vπ(s) .= Eπ[Gt|St = s]

Definition B.1.4 The action-value function qπ(s, a) : S × A → R of an MDP is defined as the
expected return starting from state s ∈ S and taking action a ∈ A(s) following the policy π:

qπ(s, a) .= Ea∼π[Gt|St = s, At = a]

B.1.3 Bellman equations for the Value Functions
A convenient way to address the resolution of the value functions is using Dynamic Programming
(DP). The term DP refers to a group of algorithms, that exploit the sequential property of multi-
state decision processes to address their resolution. Particularly, Bellman proved that a dynamic
optimization problem in discrete time can be stated in a recursive manner by writing down
the relationship between the value function in one period and the value function in the next
period. The relationship between these functions at consecutive time-steps is called the "Bellman
equation".

Bellman expectation equations

To obtain the Bellman equations for the expected value functions, it is required to decompose
the dynamics of the model into the relation of consecutive states. In the case of the state-value
function vπ(s), it can be expressed as the expectation of the immediate reward obtained in an
interaction plus the discounted value function of the next state. Formally,

vπ(s) = Eπ[Gt|St = s]
= Eπ[Rt+1 + γRt+2 + γ2Rt+2 + · · · |St = s]
= Eπ[Rt+1 + γ(Rt+2 + γRt+3 + · · ·)|St = s]
= Eπ[Rt+1 + γGt+1|St = s]
= Eπ[Rt+1 + γvπ(St + 1)|St = s]

(B.1)

The action-value function qπ(s, a) is similarly decomposed,

qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1)|St = s, At = a] (B.2)

Following this procedure, the Bellman decomposition is extended to the whole one time-step
dynamics of the problem. To that end, first the relation between state and action value functions is
defined to further obtain the Bellman equations in their recursive form. The Bellman expectation

B.1 Markov Decision Process 105

equation for the state-value function vπ obtained from the action-value function qπ is defined
as

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a) (B.3)

Similarly, the Bellman expectation equation for qπ defined from the state-value function vπ is
expressed as follows,

qπ(s, a) = R̄(s, a) + γ
∑
s′∈S

P(s′|s, a) · vπ(s′)

(B.4)

Finally, the Bellman expectation equations are derived by recalling the interconnection between
the state (B.3) and action-value functions (B.4) in a recursive manner,

vπ(s) =
∑
a∈A

π(a|s)
(
R̄(s, a) + γ

∑
s′∈S

P(s′|s, a) · vπ(s′)
)

(B.5)

qπ(s, a) = R̄(s, a) + γ
∑
s′∈S

P(s′|s, a)
∑
a′∈A

π(a′|s′) · qπ(s′, a′) (B.6)

This equations define a linear system that can be analytically solved. Nevertheless, this is not
practical for large MDPs, as the complexity increases exponentially with the number of states. In
those cases, DP shall be used to solve the Bellman expectation equation.

Optimal Value Functions

It is worth noting that the value functions take different values according to the different policies.
In this end, the optimal value function is the one that yields the maximum value compared to all
other value functions. Mathematically the optimal value functions are expressed in the following
form:

106 Chapter B Annex: Reinforcement Learning

Definition B.1.5 The optimal state-value function v∗(s) is defined as the maximum state-value
function over all policies:

v∗(s) = max
π

vπ(s) ∀s ∈ S (B.7)

Definition B.1.6 The optimal action-value function q∗(s, a) is defined as the maximum action-value
function over all policies:

q∗(s, a) = max
π

qπ(s, a) ∀s ∈ S, a ∈ A (B.8)

Optimal Policy

Achieving the best policy is the ultimate goal in solving an MDP. A policy π is defined to be better
than or equal to a policy π′ if its expected return is greater than or equal to that of π′ for all
states. In other words,

π ≥ π′ ⇐⇒ vπ(s) ≥ vπ′(s) ∀s ∈ S

For all MDPs there is always at least one policy that yields to the maximum reward when compared
to all other policies, the optimal policy, denoted as π∗. The optimal policy π∗ can be directly
obtained from the optimal action-value function q∗(s, a). Therefore, the optimal action-value
function q∗(s, a) embeds the optimal behaviour on the MDP, and obtaining it is equivalent to
solving the MDP. Once the optimal action-value function is computed, obtaining the optimal
policy π∗ is direct, it is achieved maximizing over q∗(s, a):

π∗(a|s) =
{

1 if a = arg maxa∈A q∗(s, a)
0 otherwise

The Bellman optimality equations

Finally, the Bellman equations are also obtained for the optimal value functions, these are the
Bellman optimality equations. The formulation of these equations is derive from the relation
between the optimal value functions, that it is expressed as

v∗(s) = max
a

q∗(s, a) (B.9)

The Bellman optimality equations are non-linear equations that have no closed form solution, thus
these equations are usually addressed using DP. To this end, the optimization problem is divided
into a sequence of simpler subproblems, as Bellman’s “principle of optimality” prescribes

Theorem B.1.1 Principle of Optimality: Let assume an optimal action sequence {A∗0, A
∗
1, A
∗
2, ...}

resulting from an optimal policy π∗. Consider the sub-problem whereby one is at St at time t and
wishes to maximize the return from time t. Then the truncated action sequence {A∗t , A

∗
t+1, A

∗
t+2, ...}

is also optimal for the subproblem.

The Principle of optimality can be resumed in the fact that every optimal policy consists only of
optimal sub-policies. This allows to break this decision problem into a sequence of subproblems
that form the basis for DP. An MDP satisfy this principle (B.1.1), and it is the Bellman equation
that indicates how to break down the optimal value function into the following steps: the optimal
behaviour on the next time-step, followed by the optimal behaviour in the remaining trajectory.

B.1 Markov Decision Process 107

Recalling equation (B.9), the Bellman optimality equations is obtained substituting from the
optimal value functions,

v∗(s) = max
a

(
R̄(s, a) + γ

∑
s′∈S

P(s′|s, a) · v∗(s′)
)

(B.10)

q∗(s, a) = R̄(s, a) + γ
∑
s′∈S

P(s′|s, a) max
a′

q∗(s′, a′) (B.11)

B.2 Planning by Dynamic Programming
This section details model-base planning on MDPs. Planning assumes the full knowledge of the
model, namely the tuple < S,A,P ,R > that determines the dynamics on the problem. In this
sense, MDPs can be solved for:

- Prediction: given an MDP and a policy π, output the value function vπ related to the
model. For model prediction, the Policy Evaluation method is presented.

- Or optimal control: given an MDP model, obtain the optimal value function v∗, and
therefore the optimal policy π∗. For optimal control Policy Iteration and Value Iteration
methods are introduced.

B.2.1 Policy Evaluation
Policy evaluation is a model prediction technique. Based on an MDP model and a policy π, it
judges how good is the given policy π. In other words, it computes the reward that it is expected
to be obtained in the model following the given policy bahaviour. Policy evaluation uses the
Bellman expectation equation to calculate the state-value function vπ . For this purpose, it turns
the Bellman expectation equation into an iterative update,

v0 → v1 → · · · vk · · · → vπ

vk+1(s) =
∑
a∈A

π(a|s)
(
R̄(s, a) + γ

∑
s′∈S

P(s′|s, a) · vk(s′)
)

(B.12)

Policy evaluation operates as follows, it starts with an arbitrary function v0 (e.g., all zeros) and
proceeds updating it using DP. At each iteration k the value function is updated vk+1(s) based
on the successor states vk(s′). There are several techniques to proceed in the updates, the
simplest one uses synchronous backups, which consider all states s ∈ S at every evaluation. This
technique is proven to converge to the true value function vπ .

B.2.2 Policy Iteration
Related with optimal control, Policy iteration is the simplest technique to achieve the optimal
behaviour. This method obtains the optimal policy for an the MDP though iterative improvements
on the policy. This process consists in the following steps:

- Policy evaluation: in which the Policy evaluation technique is used to obtain the value
functions for the current policy π.

108 Chapter B Annex: Reinforcement Learning

- Policy improvement: in which the policy is improved by acting greedly on the resulted
value function. Formally, the policy update is expressed as follows,

π′(s) = arg max
a∈A

qπ(s, a) (B.13)

This process is repeated iteratively to improve the policy until the Bellman optimality equation
is satisfied, then the optimal value function is obtained vπ(s) = v∗(s) ∀s ∈ S. It can
be demonstrated that Policy Iteration method converges the to optimal policy π∗ after enough
iterations, although this process can be slow. To accelerated the convergence, instead of evaluating
the complete policy at every update, the improvements over the estimations on the value functions
can be applied more frequently. In the extreme case, a single iteration can be used to evaluate
the policy, which results in the Value iteration method.

B.2.3 Value Iteration
As mentioned, the Value iteration approach updates the Bellman optimality equations at every
evaluation step. Unlike Policy iteration, this method does not required to explicitly declare a
policy, instead it directly optimizes the value function. Value iteration operates in the following
way,

v1 → v2 → · · · vk · · · → v∗

vk+1(s)← max
a
R̄(s, a) + γ

∑
s′∈S

P(s′|s, a) · vk(s′) (B.14)

B.3 Model-Free Learning: Value-based Learning
In model-free learning, opposed to model-based planning, the dynamics that define the model
< S,A,P ,R > are not available. In this case, the agent discovers the model interacting with it,
sampling trajectories from the environment. Model-free learning can be also applied for:

- Prediction: to discover how a policy π behaves in an unknown MDP. The goal is to discover
the value functions vπ or qπ .

- Or optimal control: to achieve the optimal policy π∗ only relying on the interaction with
the problem.

B.3.1 Value-based Prediction
As mentioned, model-free prediction uses episodes of experiences on the model to evaluate a
certain policy π. Depending on whether the complete or partial episodes are used to perform the
evaluation, model-free learning can be classified in:

- Monte-carlo learning: which learns form complete episodes from experience.
- Or Temporal difference learning: performs updates based on single step backups.

Monte-Carlo Learning

Monte-Carlo (MC) learning operates over complete episodes of experience. Therefore, this
method is only applicable to episodic MDPs, as episodes must terminate. To obtain the value
functions, enough episodes under the policy π need to be collected,

B.3 Model-Free Learning: Value-based Learning 109

τπ : {S0, A0, R1, · · · , ST−1, AT−1, RT , ST } ∼ π

The underlying idea behind this method is to estimate of the value functions using the empirical
return observed during the experiences. Thus, computing the Bellman expectation equation is
avoided.

Gt = Rt+1 + γRt+2 + · · ·+ γT−1RT =⇒ vπ(s) = Eτ∼π[Gt|St = s]

In particular, for every state s, this method counts the number of visits N(s) on the state and
the cumulative returns obtained from the visits S(s) ← S(s) + Gt. Then, the value function
is estimated averaging them, V (s) = S(s)/N(s). By the law of large numbers, the estimated
state value converges to the true value function as the number of visits to the state increases,
V (s)→ vπ(s) as N(s)→∞.

Alternatively, this average operation can be computed in an additive way. In that case, the
estimated value function V (s) is updated after each episode τ adding to the previous value the
error term resulting from the current estimation. However, as tracking the number of number of
visits produced at every state is not convenient or in some cases it cannot be done due to the size
of the state space S, this operation is usually substituted by updates performed with a learning
rate α. Particularly, this results in computing the running mean (i.e. old episodes are forgotten in
favor of the recent ones), which facilitates the computation.

V (St)← V (St) + 1
N(St)

(Gt − V (St)) ≈ V (St) + α(Gt − V (St)) (B.15)

Temporal-Difference Learning

Temporal difference (TD) learning extends the use of model-free learning to non-episodic models,
allowing to learn from incomplete episodes. This is done using bootstrapping, a technique that
completes partial trajectories with an estimation of the onward return on the remaining episode.
In particular, it updates the value function V (St) towards partial estimations as seen in the
Bellman equations. I.e., it uses the one-step estimated return Rt+1 + γV (St+1) instead of the
current return Gt that MC learning obtains from complete episodes (Eq. B.15). Due to this reason,
it is said that TD learning exploits the Markov property.

V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St)) (B.16)

where
- Rt+1 + γV (St+1) is the TD target,
- and Rt+1 + γV (St+1)− V (St) is the TD error, also represented as δt.

The Bias/Variance trade-off: TD learning reduces the variance in the estimations when com-
pared to MC learning. This is because in MC learning the variance is produced over the whole
trajectory, whereas in TD learning only the stochasticity on the immediate step is included on the
model. Due to this lower variance, TD learning is more efficient that MC learning. However, the
TD target is an biased estimator of vπ(s), which usually results in worst convergence properties.

110 Chapter B Annex: Reinforcement Learning

Dynamic
Programming

Exhaustive
search

MC LearningTD Learning

Full
backups

Sample
backups

Shallow
backups

Deep
backups

...

...

Fig. B.1: Comparison on RL methods. Two
dimensions of RL algorithms, based
on the backups used to learn or con-
struct a policy are depicted. At the
extremes: dynamic programming, ex-
haustive search, TD learning and Monte
Carlo approaches. Bootstrapping ex-
tends from TD learning to n-step TD
learning methods, with Monte Carlo ap-
proaches not relying on bootstrapping
at all. Another possible dimension is the
width of the backups, from TD learning
and MC learning sample actions to tra-
ditional tree searches performed on a
wider breadth. Recreated from [108].

The different techniques to perform backups in an MDP are summarized in Fig.B.3.1. The vertical
axes represent the width of the backups. As observed, traditional DP or exhaustive search methods
used full-width backups whereas RL methods are based on sampling trajectories. On the other
hand, the backups that MC learning uses are deep, whereas TD learning only require shallow
single-steps estimations.

Temporal-Difference (λ)

In order to control the bias/variance trade-off in the backups there exists several alternatives. A
well-known approach is Temporal Difference (λ) or TD(λ). TD(λ) extends the idea of temporal
difference further on multiple step backups, applying the bootstrapping concept to multiple steps
in the trajectory. Particular cases of this technique are TD(0) and MC learning, which represent
the extreme cases in the depth for this technique.

n=1 TD(0) G
(1)
t = Rt+1 + γV (St+1)

n=2 G
(2)
t = Rt+1 + γRt+2 + γ2V (St+2)

...
...

n =∞ MC G
(∞)
t = Rt+1 + γRt+2 + · · ·+ γT−1RT

The n-step return is defined as,

G
(n)
t

.= Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnV (St+n) (B.17)

The value function estimation using n-step TD learning is therefore obtained computing,

V (St)← V (St) + α(G(n)
t − V (St)) (B.18)

However, selecting the value of n is not trivial, as different values of it usually lead to significant
different solutions. The solve to this problem, TD(λ) averages the n-steps returns over different
steps, making it a more robust method to the choice of the λ parameter, as it combines information
from several setups.

B.3 Model-Free Learning: Value-based Learning 111

The λ return, Gλt , combines all n-step returns G
(n)
t using a geometric weighed average over the

n returns with a decay factor (1− λ) · λn−1,

G
(λ)
t

.= (1− λ)
∞∑
n=1

λn−1G(n)
t (B.19)

Finally, the updates in the value function are performed as follows,

V (St)← V (St) + α(G(λ)
t − V (St)) (B.20)

B.3.2 Value-based Control
Model-free control studies how to obtain the optimal policy π∗ in an unknown MDP. To this end,
the agent uses the trajectories sampled from the environment not only to explore it but also to
improve its policy π.

In model-free control the agent faces a new dilemma, the exploration-exploitation trade-off.
In the context of RL, this represents the trade-off between the need to obtain new knowledge
from the environment and the need to exploit the acquired knowledge to improve performance
of the model. I.e., exploration looks for the selection of actions that even though are not optimal
according to the knowledge of the agent, may lead to better results; and exploitation, to enact
the execution of actions that are optimal according to agent’s current best estimate of the optimal
policy π∗. During the training phase, the exploration is required to discover more about the
optimal strategy, but the exploitation is also required to strengthen the policy π.

According to the experiences used to improve the policy π, there are two distinguished ways to
approach optimal control:

- On-policy learning: the policy π is improved based on experience sampled from the same
policy.

- Off-policy learning: the process is able to improve the policy π using experiences of a
different policy µ.

On-policy Monte-Carlo Control

Monte-Carlo control uses Policy Iteration method (Annex B.2.2) to perform an iterative process
in which the policy is improved. This iterative process consist in a:

- Monte-Carlo Policy Evaluation,
- followed by a ε-greedy Policy Improvement.

To this end, the policy π is evaluated using Monte-Carlo Policy evaluation. As mentioned, this
strategy uses the whole trajectory to perform estimations over the value function. In this case,
the action-value function Qπ is used as it enables to directly perform the Policy Improvement,

Qπ(St, At)← Qπ(St, At) + α(Gt −Qπ(St, At)) (B.21)

Once the value function Qπ is known, Policy Improvement is applied. Unlike in model-
based learning where the improvement is done acting greedily over the action-value function,
π′(s) = arg maxa∈A qπ(s, a), this cannot be applied in model-free learning. This is because
the dynamics of the model are unknown and relying in non-representative explorations could

112 Chapter B Annex: Reinforcement Learning

Algorithm 2 Sarsa Algorithm

1: procedure
2: Initialize Q(s, a), ∀s ∈ S, a ∈ A(s) arbitrarily.
3: repeat(for each episode):
4: Set s to the initial state
5: for each step in the episode do
6: Take a and observe the reward r ∼ R(s, a) and next state s′

7: Choose a′ from s′ using the policy derived from Q(e.g ε-greedy)
8: Q(s, a)← Q(s, a) + α(r + γQ(s′, a′)−Q(s, a))
9: Update s← s′ and a← a′

10: end for
11: until convergence
12: end procedure

lead to improvements in the policy that represent the best current performance instead of the
optimal policy. Here, due to the exploration-exploitation dilemma, there is the need to obtain
new knowledge from the model and use that knowledge to improve the policy. The goal of Rein-
forcement Learning can be seen as finding the right balance between exploration and exploitation
to discover capable policies.

In order to incorporate exploration in the learning process, this method uses the ε-greedy Policy
Improvement method. This simple technique relies in an ε-greedy action selection to perform
exploration. This means that with a probability ε the agent chooses an arbitrary action and with
probability (1− ε), it acts greedy over the action-value function Q.

π(a|s) =
{

1− ε then π′(s) = arg maxa∈A Qπ(s, a)
ε otherwise

ε-greedy Policy Improvement presents asymptotic convergence to the best optimal policy only
if the GLIE property is satisfied. For this method to be GLIE, the ε has to reduce proportionally
to the number of steps εk ∝ 1/k. In that case, it can be proven that it converges to the optimal
action-value function, Q(s, a)→ q∗(s, a).

Definition B.3.1 A learning policy is called GLIE (Greedy in the Limit with Infinite Exploration) if
it satisfies the following two properties:

- All state-action pairs are explored infinitely many times: limk→∞Nk(s, a) =∞
- The policy converges on a greedy policy:

limk→∞πk(s, a) = 1(a = arg maxa′∈AQk(s, a′))

On-policy Temporal-Difference Control

As previously introduced in model-based learning, Temporal-difference (TD) learning presents
several advantages over Monte-Carlo (MC) learning. Due to the bootstrapping technique, TD
learning achieves lower variance and gains efficiency in the learning process. In this section, TD
learning is applied for optimal on-policy control, this is the Sarsa algorithm (see Algorithm 2).

In the Sarsa algorithm, the value function is updated towards the estimation of the TD target.
And the exploration is an ε-greedy action selection that it is combined with the improvement step.
Formally, the Sarsa algorithm iterates over the following steps,

B.3 Model-Free Learning: Value-based Learning 113

- Policy evaluation: TD Policy evaluation over the action-value function Q.

Q(s, a)← Q(s, a) + α(R + γQ(s′, a′)−Q(s, a))

- Policy improvement: ε-greedy policy improvement.

This procedure can be extended for n-steps backups, as discussed in TD(λ). This results in the
Sarsa (λ) algorithm. To this purpose, first the n-step Q-return shall to be defined,

Q
(n)
t = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnQ(St+n, At+n) (B.22)

Following the same procedure as in Sec. B.3.1, theQ(λ) return is defined arithmetically combining

all n-step Q-returns Q
(n)
t to obtain a model that convenient account of all different n values.

Q
(λ)
t = (1− λ)

∞∑
n=1

λn−1Q(n)
t (B.23)

Q(St, At)← Q(St, At) + α(Q(λ)
t −Q(St, At)) (B.24)

TD(λ) improves the convergence, however it still partially suffers from some of the same dis-
advantages of MC-learning. E.g. the updates cannot be performed until the n-steps backups in
the future are computed, which delays the updates. To solve this issue, a variant of TD(λ) exist
that only relies in past backups. This algorithm is the Backward-view TD (λ) and it enables to
perform online updates at every step t.

When relying on the past events a new dilemma surges, the credit assignment problem [79]. This
problem arise from the impossibility to determine the past actions that had led to the current
outcome. E.g., are frequent actions responsible of the current reward or just recent ones? To
solve this issue a technique called Eligibility traces assigns credit to both, recent and frequent
events dynamically during the roll-outs. Eligibility traces increases the credit to state-action pairs
when they are visited, and decrease them exponentially when the agent does not. Thus, this
method updates the value function Q(s, a) for every state s and action a in proportion not only
to the TD-error δt but also its frequency, this is the eligibility trace Et(s, a).

E0(s, a) = 0
Et(s, a) = γλEt−1(s, a) + 1(St = s, At = a)

(B.25)

The eligibility traces are stored for every recent state-action pair visited. Finally, the way this term
is included in the update of the value function is weighing the TD-error,

δt = Rt+1 + γQ(St+1, At+1)−Q(St, At) (B.26)

Q(s, a)← Q(s, a) + αδtEt(s, a) (B.27)

114 Chapter B Annex: Reinforcement Learning

Algorithm 3 Sarsa (λ) Algorithm

1: procedure
2: Initialize Q(s, a), ∀s ∈ S, a ∈ A(s) arbitrarily
3: repeat(for each episode):
4: Initialize the eligibility trace E(s, a) = 0, ∀s ∈ S, a ∈ A(s)
5: Set s to the initial state
6: for each step in the episode do
7: Take a and observe the reward r ∼ R(s, a) and next state s′

8: Choose a′ from s′ using the policy derived from Q(e.g ε-greedy)
9: Compute the TD-error: δ ← r + γQ(s′, a′)−Q(s, a)

10: Update the eligibility trace: E(s, a)← E(s, a) + 1
11: for all s ∈ S, a ∈ A(s) do
12: Q(s, a)← Q(s, a) + αδE(s, a)
13: E(s, a)← γλE(s, a)
14: end for
15: Update s← s′ and a← a′

16: end for
17: until convergence
18: end procedure

Off-policy Temporal-Difference Control

Algorithms that are characterized as off-policy perform updates using a separate behavior policy
µ, independent of the policy being improved π. This is, the behavior policy µ is used to simulate
trajectories over other policy without the need of executing them. A benefit of this technique
is for example operate with a separately behavior policy, whereas the estimation policy can be
deterministic.

To perform off-policy learning using estimations over the target policy π using a different policy
distribution µ a common technique employed in statistics is Importance Sampling (IS).

Definition B.3.2 Importance Sampling (IS) technique estimates the expected value of a functionf(x)
from data distribution P (x), relying on samples of a different distribution Q(x).

Ex∼P [f(x)]) =
∑

P (x)f(x)

=
∑

Q(x)P (x)
Q(x)f(x)

= Ex∼Q[P (x)
Q(x)f(x)]

(B.28)

For the purpose of RL, importance sampling can be applied to estimate the total return generated
by the target policy π using the actual return obtained over a different distribution µ. This is
achieved as follows,

G
π/µ
t = π(At|St)

µ(At|St)
π(At+1|St+1)
µ(At+1|St+1) · · ·

π(AT |ST)
µ(AT |ST)Gt (B.29)

However, a major problem of IS is that it dramatically increases variance. Because of this reason,
IS is commonly used for off-Policy TD-learning, as it is only required to estimate a single correction
in over the TD-error of the next step. For this method to work, policies need to be similar. Formally,

V (St)← V (St) + α

(
π(At|St)
µ(At|St)

(Rt+1 + γV (St+1))− V (St)
)

(B.30)

B.3 Model-Free Learning: Value-based Learning 115

Algorithm 4 Q-Learning Algorithm

1: procedure
2: Initialize Q(s, a), ∀s ∈ S, a ∈ A(s) arbitrarily, and Q(terminating state, ·) = 0
3: repeat(for each episode):
4: Set s to the initial state
5: for each step in the episode do
6: Choose a from s using policy derived from Q(e.g ε-greedy)
7: Take a and observe the reward r ∼ R(s, a) and next state s′

8: Q(s, a)← Q(s, a) + α(r + γmaxaQ(S′, a)−Q(s, a))
9: Update s← s′

10: end for
11: until convergence
12: end procedure

A well-know algorithm that uses off-policy TD learning achieving outstanding results is Q-learning
(Algorithm 4). Unlike off-policy TD-learning, Q-learning updates the Q-values without requiring of
IS. Q-learning uses a target policy π is greedily w.r.t. Q(s,a), π(St+1) = arg maxa′ Q(St+1, a′),
and the behaviour policy µ is used to perform the exploration, e.g., ε-greedily. Q-learning learns
therefore a greedy behaviour from an stochastic exploratory policy.

The Q-Learning target then simplifies:

Qtarget = Rt+1 + γQ(St+1, a
′)

= Rt+1 + γQ(St+1, arg max
a′

Q(St+1, a
′))

= Rt+1 + max
a′

γQ(St+1, a
′)

(B.31)

The Q-learning control algorithm is proved to converge to the optimal action-value function:
Q(s, a)→ q∗(s, a). The update operates as follows,

Q(St, At)← Q(St, At) + α(R + γmax
a′

Q(S′, a′)−Q(St, At)) (B.32)

116 Chapter B Annex: Reinforcement Learning

B.4 Model-Free Learning: Policy-based Learning
In contrast to value-based methods, policy optimization does not need to estimate a value function,
but directly search for an optimal policy π∗. To this end, the policy is directly parameterized
by θ ∈ RN , and the goal is to optimize it πθ for achieving the maximum expected reward Jπ .
Formally,

max
θ

Jπ(θ) = max
θ

E[
T∑
t=0

R(St, At)|πθ] (B.33)

Policy optimization methods directly output the parameters for a probability distribution; for
continuous actions, this could be the mean and standard deviations of Gaussian distributions,
whilst for discrete actions this could be the individual probabilities of a multinomial distribution.
This method relies on the stochasticity of the policy πθ(a|s) to perform exploration. In order to
act, it samples actions from the output distribution and based on the result obtained, the model
directly optimize its policy. The goal in policy optimization is to explore diverse behaviours and
foster the model to converge towards the positive ones.

Policy optimization present some advantages when compared to value-base methods. They have
a better convergence, as the policy is directly optimized. Also, they are compatible with in
high-dimensional or continuous action spaces. And finally, can converge to stochastic policies. On
the other hand, these methods typically converge to a local rather than a global optimum. Also
present higher variance and are less sample-efficient. Policy optimization algorithms are on-policy
by design. Consequently, samples collected on previous update iterations become useless for
further steps on the learning process. This is the key reason why policy gradient algorithms are
usually less sample-efficient than value-based methods.

To directly optimize the objective function Jπ(θ), several approaches have been used in the
literature. These can be classified into: gradient-free methods (e.g., cross entropy method [109],
genetic algorithms [106], etc) and gradient-based methods (gradient descent, conjugate gradient,
quasi-newton methods, etc). However, as gradient-free optimization are only effective in low-
dimensional parameter spaces, this makes gradient-based training the method of choice for most
deep RL algorithms [38].

B.4.1 Policy Gradients
Policy Gradients (PG) algorith, provides a strong learning mechanism on how to optimize the
parameterized policy πθ. In order to estimate the expected return Jπ , this method averages
over multiple sampled trajectories executed over the current policy. Thus, sampling induces this
problem into a stochastic approximation process.

Let us denote τ the trajectory of state-action sequences that conform an episode of length T ,

τπ : {S0, A0, R1, · · · , ST−1, AT−1, RT , ST } ∼ π

and R(τ) the reward obtained in the trajectory τ ,

R(τ) =
T−1∑
t=0

γtRt+1 (B.34)

B.4 Model-Free Learning: Policy-based Learning 117

The goal in policy optimization is to find the parameters θ that maximize the expected accumulated
reward the agent achieves over all possible trajectories,

max
θ

J(θ) = max
θ

E[R(τ)] = max
θ

∑
τ
P(τ |θ) ·R(τ) (B.35)

To optimize this objective, PG performs a gradient ascent on the policy parameters: θ ←
θ + α∇θJ(θ). However, this is not directly computed, as the expression above depends on the
dynamics of the model (which are unknown). In particular, P(τ) represents the probability of
performing a trajectory given a policy behaviour. PG decouples the gradient on this objective
function from the environment dynamics, enabling a model-free learning. To achieve this, this
method uses the "log-derivative" trick to insert the gradient into the expectation equation (B.35).
Taking the gradient of Jπ w.r.t. θ,

∇θJ(θ) = ∇θ
∑
θ

P(τ |θ) ·R(τ)

=
∑
τ
∇θP(τ |θ) ·R(τ)

=
∑
τ
P(τ |θ) · ∇θP(τ |θ)

P(τ |θ) ·R(τ)

=
∑
τ
P(τ |θ) · ∇θ logP(τ |θ) ·R(τ)

(B.36)

In order to compute the gradient on the probability of the trajectory P(τ), the path is decomposed
into a chain of probabilities by the MDP assumption, whereby the next action only depends on the
current state, and the next state only depends on the current state and action. Explicitly, taking
gradients on this expression, the dynamics term removes from the equation.

∇θ logP(τ |θ) = ∇θ
[T−1∏
t=0
P(St+1|St, At) · πθ(At|St)

]

= ∇θ
[T−1∑
t=0

logP(St+1|St, At) +
T∑
t=0

log πθ(At|St)
]

= ∇θ
T−1∑
t=0

log πθ(At|St)

=
T−1∑
t=0
∇θ log πθ(At|St)

(B.37)

Finally, substituting the gradient on the trajectory into Eq. (B.36) the objective simplifies in the
following expression (B.38). It is worth to mentioned that this equation is still an unbiased
estimator of the original objective (B.35).

∇θEτ∼πθ [R(τ)] = Eτ∼πθ

[(T−1∑
t=0
∇θ log πθ(At|St)

)
·R(τ)

]
(B.38)

Intuitively, PG work in the following way, it increases the likeliness of paths that achieve positive
reward and decrease the probability of paths with negative reward.

118 Chapter B Annex: Reinforcement Learning

B.4.2 Baseline
In PG method, the variance of the gradient estimations is sometimes excessive. This is because
complete trajectories are used to perform this estimation. E.g., after one training batch one may
exhibit a wide range of results for a trajectory: much better performance, equal performance, or
worse performance. This variance in the results produce a slow and unreliable convergence on
the optimization process. Due to this reason, there has been so much effort devoted to develop
variance reduction techniques that mitigate this effect.

A common method to reduce the variance of the above expression is to introduce a baseline
function b → R in the reward term. This reduces the difference in the rewards while still
maintains an unbiased estimator, as argued in (Williams et al., 1992) [122].

∇θEτ∼πθ [R(τ)] = Eτ∼πθ

[(T−1∑
t=0
∇θ log πθ(At|St)

)
· (R(τ)− b)

]
(B.39)

To demonstrate that with the inclusion of the baseline b, the gradient estimate remains unbiased,
let us distribute and rearrange the equation to get

∇θEτ∼πθ [R(τ)] = Eτ∼πθ

[T−1∑
t=0
∇θ log πθ(At|St)·R(τ)−

T−1∑
t=0
∇θ log πθ(At|St)·b

]
(B.40)

Due to the linearity of the expectation, the baseline term can be isolated. In the following,
we demonstrate that the baseline term b does not modifies the gradient. This justifies that its
inclusion does not cause bias to the original equation.

Eτ∼πθ [∇θ logP(τ |θ) · b] =
∑
τ
P(τ |θ) · ∇θ logP(τ |θ) · b

=
∑
τ
P(τ |θ)∇θP(τ |θ)

P(τ |θ) · b

=
∑
τ
∇θP(τ |θ) · b

= ∇θ
(∑

τ
P(τ |θ) · b

)
= b× 0

(B.41)

The last thing to cover is why the introduction of the baseline reduces variance. To this purpose,
let us analyze the variance,

Var
(T−1∑
t=0
∇θ log πθ(At|St) · (R(τ)− b)

)
≈

≈
T−1∑
t=0

Eτ∼πθ

[(
∇θ log πθ(At|St) · (R(τ)− b)

)2]
≈

≈
T−1∑
t=0

Eτ∼πθ

[(
∇θ log πθ(At|St)

)2]
Eτ∼πθ

[(
R(τ)− b

)2]
(B.42)

The optimization of the variance is a least squares problem, whose optimal solution occurs for
the baseline b taking the value of R(τ). However, this exact value cannot be determined a priory.
For to this reason, it is usually approximated to the expected return, b ≈ E[R(τ)].

B.4 Model-Free Learning: Policy-based Learning 119

Causality principle

The causality principle defines that future actions do not change past decision. In other words,
present actions only impact the future. This can also be reflected into the objective function.
In addition, removing the terms that do not depend on the current action from the objective
equation helps to lower its variance. Thus, the causality principle is commonly used to define the
objective function.

The causality principle empirically works well combined with the decay factor. The effect of both
combined implies that an action at a time-step t, does only present an impact at the current
time-step and decays several time-steps later. Thus, the gradient on the objective can be rewritten
as,

∇θEτ∼πθ [R(τ)] = Eτ∼πθ

[(T−1∑
t=0
∇θ log πθ(At|St)

)
· (R(τ)− b)

]

=Eτ∼πθ

[(T−1∑
t=0
∇θ log πθ(At|St)

)
·
((T−1∑

t=0
γtRt+1

)
− b
)]

=Eτ∼πθ

[T−1∑
t=0
∇θ log πθ(At|St) ·

((t−1∑
t′=0

γt
′−tRt′+1 +

T−1∑
t′=t

γt
′−tRt′+1

)
− b
)]

≈Eτ∼πθ

[T−1∑
t=0
∇θ log πθ(At|St) ·

((T−1∑
t′=t

γt
′−tRt′+1

)
− b
)]

=Eτ∼πθ

[T−1∑
t=0
∇θ log πθ(At|St) · (Gt − b)

]

(B.43)

In this case, the optimal baseline can be approximated by the state-dependent expected return
b(St) : S → R, which results in the expected value function for every state vπ(St).

b(St) = E(Rt+1 + γRt+2 + · · ·+ γT−1RT) = Eπ[Gt|St] = vπ(St) (B.44)

The resulting equation increases the probability of an action proportionally to how much the
returns at each time-step is better than the expected value function under the current policy.
In order to implement this method, the state dependent baseline can be approximated using a
separate function approximator V πφ (St), with parameters φ.

∇θEτ∼πθ [R(τ)] = Eτ∼πθ

[T−1∑
t=0
∇θ log πθ(At|St) · (Gt − vπ(St))

]

≈ Eτ∼πθ

[T−1∑
t=0
∇θ log πθ(At|St) · (Gt − V πφ (St))

] (B.45)

Notice that to learn the value function approximator V πφ (St), the optimal labels are obtained at
the end of the episode. Thus, supervised learning techniques can be used for achieving the Policy
evaluation (e.g., a common technique is to optimize the Mean Square Error). The implementation
of this technique can be seen in greater detail in Algorithm 5.

120 Chapter B Annex: Reinforcement Learning

Algorithm 5 Vanilla Policy Gradients with state-dependent baseline

1: procedure
2: Initialize the policy parameters θ0 and the value function parameters φ0.
3: repeat(for iteration=1,2,...):
4: Collect a batch of B trajectories by executing the current policy: τπ
5: for each step t in the episode do
6: Compute the return Gt and
7: the advantage estimate At = Gt − Vφ(St)
8: end for
9: Estimate gradient: ĝθ = 1/B ·

∑B

b=1

∑T

t=1(G(b)
t − V

(b)
φ (St)) · ∇θ log πθ(A(b)

t |S
(b)
t)

10: Update the policy: θ ← θ + αĝθ
11: Update baseline by minimizing: Lφ = 1/B ·

∑B

b=1

∑T

t=1 ‖G
(b)
t − V

(b)
φ (St)‖2

12: until convergence
13: end procedure

B.5 Actor-Critic methods
Actor-critic (AC) methods combine the benefits of direct policy optimization with value function
approximation in order to take advantage from both learning strategies. In particular, these
methods have a separate structure to explicitly represent the policy independent of the return
estimator. This architecture enables them to compute updates in the policy based on estimations
done over incomplete roll-outs, which speeds up the learning process.

In AC methods, the policy structure is known as the actor, because it is the one that select actions;
and the estimated value function is known as the critic, because it evaluates the actions made
by the actor. The learning process is always on-policy, the critic must learn about and critique
whatever policy is currently being followed by the actor. This is, the critic estimates the return
and the actor uses it to weight the action distribution.

In order to build these models, usually two independent function approximators are used: the
policy πθ function for representing the actor, and a value function estimator (usually V πφ (s) or

Qπφ(s, a), depending on the variant) with the parameters φ for the critic.

Q Actor-Critic (QAC)

AC extends the idea of estimating the return using a value function instead of relying on the
empirical return Gt obtained at the end of the episode. In the case of Q Actor-critic or QAC, the
critic estimates the action-value function to obtain a representation on the average return the
actor obtains under its policy, Qπ(s, a) = Eτ∼πθ [Gt|St = s, At = a]. Relying on the average
return instead on a single trajectory reduces the variance experienced in PG. However, it also
turns ACs into a biased estimator, as they rely on function approximators for this purpose.

∇θEτ∼πθ [R(τ)] = Eτ∼πθ

[T−1∑
t=0
∇θ log πθ(At|St) ·Qπ(St, At)

]
(B.46)

The critic uses policy evaluation to estimate the value function under the policy. In this case, it is
done using MC learning. The resulting signal drives the learning process of both agents, the actor
and the critic itself.

B.5 Actor-Critic methods 121

Algorithm 6 Q Actor-Critic (QAC)

1: procedure
2: Initialize the parameters of the actor θ and the critic φ.
3: repeat(for each episode):
4: Initialize s to the initial state and sample a ∼ πθ(a|s)
5: for each step in the episode do
6: Take a and observe the reward r ∼ R(s, a) and next state s′

7: Then sample the next action a′ ∼ πθ(·|s′)
8: Update the policy parameters: θ ← θ + α∇θ log πθ(a|s)Qφ(s, a)
9: Compute the TD-error: δ ← r +Qφ(s′, a′)−Qφ(s, a)

10: and use it to update the critic: φ← φ+ βδ∇φQφ(s, a)
11: Update s← s′ and a← a′

12: end for
13: until convergence
14: end procedure

Advantage Actor-Critic (A2C)

The baseline technique can also be used in AC methods to reduce the variance. As mentioned,
usually the state value function V π(s) is used as the baseline estimator. This it is subtracted from
the Qπ(s, a) function. Intuitively, this gives a new quantity that indicates how much better is a
certain action at that state compared to the average. This quantity is the advantage function and
is defined as Aπ(s, a) = Qπ(s, a)− V π(s). This leads to the A2C algorithm with the gradient
update,

∇θEτ∼πθ [R(τ)] = Eτ∼πθ

[T−1∑
t=0
∇θ log πθ(At|St) · (Qπ(St, At)− V π(St))

]

= Eτ∼πθ

[T−1∑
t=0
∇θ log πθ(At|St) · Aπ(St, At)

] (B.47)

A2C method uses the critic to estimate the advantage directly, instead of both value functions
separately.

TD Actor-Critic

The advantage can be also approximated by the TD error. Incorporating TD-learning to the
valued function estimation may be helpful especially if one want to update the policy after each
transition. Formally,

Aπ(St, At) = Rt+1 + γV π(St+1)− V π(St) = δ(St, At)

∇θEτ∼πθ [R(τ)] = Eτ∼πθ

[T−1∑
t=0
∇θ log πθ(At|St) · (Rt+1 + γV π(St+1)− V π(St))

]

= Eτ∼πθ

[T−1∑
t=0
∇θ log πθ(At|St) · δt(St, At)

]
(B.48)

122 Chapter B Annex: Reinforcement Learning

Generalized Advanced Estimator (GAE)

Actor-Critic is an on-policy algorithm by design, hence bootstrapping to multiple-steps can be
performed. Instead of relying in a single time-step approximations (N = 1) as previously
shown in TD Actor-critic, when the approximation is built over multiple N steps, the trade-off
between bias and variance can be controlled (see Sec. B.3.1). However, performing an advantage
estimation using N steps of interaction after given state-action pair presents also some difficulties.
Usually, finding a good value for N as hyperparameter is difficult as its «optimal» value may
change throughout the learning process.

A
(1)
t = Rt+1 + γV π(St+1)− V π(St)

A
(2)
t = Rt+1 + γRt+2 + γ2V π(St+2)− V π(St)
...

A
(∞)
t = Rt+1 + γRt+2 + γ2Rt+3 + ...− V π(St)

(B.49)

In Generalized Advantage Estimation (GAE) [99] it is proposed to use TD-(λ) to ensemble out
of different n-step advantage estimators to smooth the weight of the different steps in the final
solution and thus, facilitate the selection of the λ hyperparameter. The GAE advantage estimator
defines as,

AGAE(γ,λ)(St, At) = (1− λ)(A(1)
t + λA

(2)
t + λ2A(3)

t + ...) =
∞∑
l=0

(γλ)l · δ(St+l, At+l)

The GAE method constructs the advantage as an exponentially-decayed sum of the residual terms.
The above formula describes the estimator GAE (γ, λ) for λ ∈ [0, 1] where adjusting λ allows
an smooth control over bias-variance trade-off: λ→ 0 corresponds to Actor-Critic with higher
bias and lower variance while λ → 1 corresponds to a Monte-Carlo PG with no bias and high
variance.

Lastly, γ is the discount factor, and it also adjusts the bias-variance tradeoff but in a different way.
Controlling the importance of the current state over future states. Henceforth, both parameters γ
and λ, control different mechanisms that in the end contribute to the same behaviour.

AGAE(γ,0)(St, At) = δ(St, At)

AGAE(γ,1)(St, At) =
∞∑
l=0

γl · δ(St+l, At+l) =
∞∑
l=0

γlRt+1+l − V (St+l) = Gt − V (St)

(B.50)

Finally, the gradient update is expressed as:

∇θEτ∼πθ [R(τ)] = Eτ∼πθ

[T−1∑
t=0
∇θ log πθ(At|St) · AGAE(γ,λ)(St, At)

]
(B.51)

B.5 Actor-Critic methods 123

CAnnex: Job Shop Problem

In this appendix C, supplementary information on the Job Shop Scheduling Problem (JSP) is
presented. Particularly, (1) details on the heuristic and metaheuristic algorithms included in the
experimental study, (2) specifications on the implementation of the RL architectures for the JSP,
and (3) running times of the learning process are introduced.

C.1 Heuristic and metaheuristic algorithms for the Job
Shop Problem

Conducted experimental study in Section 5, compared the performance of the proposed model
with some of the most representative heuristics and metaheuristics for the JSP in the literature.
In the following, we present a summary of the four heuristics algorithms included, yet more
information about them can be found in [71].

• Shortest Processing Time (SPT): it is one of the most used heuristics for solving the
JSP problem. At each iteration, it selects the job with the least processing time from the
competing list and schedules it ahead of the others. With illustrative purposes, let us
considerate that two operations of different jobs are competing at a time-step for the same
machine to be released. In that case, the operation with the shortest processing time will be
scheduled first.

• Longest Processing Time (LPT): it follows the opposite rule of the SPT heuristic. The
operation with the longest processing time is scheduled ahead of the competitors.

• First-Come-First-Served (FCFS): this rule schedules the jobs simply in the order of job
arrival. There is no consideration on the processing time or any other information.

• Least Work Remaining (LWR): it is also an extension of SPT, this rule dictates the operation
to be scheduled according to the processing time remaining before the job is completed.
The less work remaining in a job, the earlier it is scheduled.

In addition to the classical heuristic algorithms exposed above, a metaheuristic, particularly, a
Genetic Algorithm (GA) [8] has been included in the experimental study. The implementation
corresponds to [123]. Regarding the hyperparameter setting, a population of 300 individuals,
a crossover rate of 0.8 and a mutation rate of 0.3 were set. Finally, the algorithm was run 500
generations before stopping (enough iterations to converge in the different problems included in
the study).

C.2 Implementation details
This appendix complements the details on the neural model introduced in Section 5.1.1. The
proposed model presents two different input sources: the instance of the problem s, which is
defined by the M and D feature matrices, and the state of the environment dt, represented by
the state of the machines and the time for the previous operations to finish. In order to embed

124

0 10 20 30 40 50

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Co
st

 fu
nc

tio
n

cxbp05_mutpb01
cxbp05_mutpb02
cxbp05_mutpb03
cxbp05_mutpb04
cxbp05_mutpb05

0 10 20 30 40 50
Generations

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0
cxbp07_mutpb01
cxbp07_mutpb02
cxbp07_mutpb03
cxbp07_mutpb04
cxbp07_mutpb05

0 10 20 30 40 50

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0
cxbp09_mutpb01
cxbp09_mutpb02
cxbp09_mutpb03
cxbp09_mutpb04
cxbp09_mutpb05

Fig. C.1.: Tuning process in the Genetic Algorithm.

both sources, single linear layers with a vector size of 64 are utilized. We find that normalizing
the input vectors and embedding them in a higher feature space yields to superior solutions.

In regard with the details on the architecture, the RNN encoder used to codify the sequences of
operations for each job is a single LSTM [45] layer with a hidden state size of 64. Specifically, it is
a unidirectional encoder working backwards. This manner, the encoder outputs the codification
of the remaining operations for a job, starting at every point in the sequence. This procedure
is computed once and stored to be used during the interaction with the environment. In that
process, an index vector it points at the current operation to be scheduled and the feature vector
eij is gathered for each job to create the context vector ct.

Lastly, the DNN decoder consists in multiple dense layers with a ReLU activation. The variables are
initialized with Xavier initialization [46]. The batch size is 800, and it is formed by 20 different
instances introduced 40 times each. This is done to perform the Reinforce with self-competing
baseline described in this work (more detailed information available in Appendix 4.4.3). The
optimizer is Adam [63] with a learning rate of 5 · 10−4. The gradients are clipped to the norm
by a value of 1, and a dropout with a probability of 0.1 is used in the LSTM encoder.

C.3 Run times
The code for the RL model proposed in the work is implemented in PyTorch1 [86]. The model
entirely run on a GPU, i.e. both the environment and the agent are implemented as tensor
operations. This allows to fully parallelize the process, executing the whole batch operations
at once. Even though current RL frameworks (e.g. OpenAI baselines [37]) allow to execute
the environment in parallel threads using multiple CPUs, this approach permits to significantly
reduce the learning time. In order to train the model a single GPU (2080Ti) was used. The times
required to perform a single epoch are described below:

Tab. C.1.: Computation time per epoch required by the RL model in the JSP problem.

JSP10x10 JSP15x15 JSP20x20 JSP25x25

λ = 0 2.2s 4.7s 7.8s 11.5s
λ = 1 2.5s 5.4s 9.9s 12.7s

The datasets used in the experimentation are included along the code. The instances have been
created following the OR-Library [14] format2. For every instance, there is a heading that
indicates the number of jobs n and the number of machines m. Then, there is a one line for each

1Code will be available in: (Link)
2Taillard instances for scheduling problems[110]: (Link)

C.3 Run times 125

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html

0 5 10 15 20 25 30
time

Machine3

Machine2

Machine1

Machine0

(a) 4x4 OR-Tools Makespan=24

0 5 10 15 20 25 30
time

Machine3

Machine2

Machine1

Machine0

(b) 4x4 GA Makespan=24

0 5 10 15 20 25 30
time

Machine3

Machine2

Machine1

Machine0

(c) 4x4 RL Makespan=24

0 20 40 60 80
time

Machine9

Machine8

Machine7

Machine6

Machine5

Machine4

Machine3

Machine2

Machine1

Machine0

(d) 10x10 OR-Tools Makespan=80

0 20 40 60 80 100
time

Machine9

Machine8

Machine7

Machine6

Machine5

Machine4

Machine3

Machine2

Machine1

Machine0

(e) 10x10 GA Makespan=92

0 20 40 60 80
time

Machine9

Machine8

Machine7

Machine6

Machine5

Machine4

Machine3

Machine2

Machine1

Machine0

(f) 10x10 RL Makespan=87

0 20 40 60 80 100 120
time

Machine14

Machine13

Machine12

Machine11

Machine10

Machine9

Machine8

Machine7

Machine6

Machine5

Machine4

Machine3

Machine2

Machine1

Machine0

(g) 15x15 OR-Tools Makespan=121

0 20 40 60 80 100 120 140 160
time

Machine14

Machine13

Machine12

Machine11

Machine10

Machine9

Machine8

Machine7

Machine6

Machine5

Machine4

Machine3

Machine2

Machine1

Machine0

(h) 15x15 GA Makespan=168

0 20 40 60 80 100 120 140
time

Machine14

Machine13

Machine12

Machine11

Machine10

Machine9

Machine8

Machine7

Machine6

Machine5

Machine4

Machine3

Machine2

Machine1

Machine0

(i) 15x15 RL Makespan=139

Fig. C.2.: Example solutions for the classic JSP (λ = 0) problem, Gantt diagrams. On the left, the optimal
solutions computed with OR-Tools; on the center, the result of the Genetic Algorithm and on the
right, the results obtained by the RL model with a sampling technique.

job, listing the machine number and processing time for each operation. The results provided in
the experimentation are obtained after performing a training of 4000 epochs on those datasets.

Finally, to visualize the results obtained by the different alternatives, a comparison of the solutions
presented as Gantt diagrams is also included. This is done for the classic JSP (Figure C.2) and
for the no idle time variant (Figure C.3). Although in the figures a strategy cannot be seen at a
glance, the RL model infers a competitive policy. This policy cannot be predicted, and guarantees
in the results cannot be given. Yet a consistency in the results is observed.

126 Chapter C Annex: Job Shop Problem

0 5 10 15 20 25 30 35
time

Machine3

Machine2

Machine1

Machine0

(a) 4x4 OR-Tools Objective=33

0 5 10 15 20 25 30 35
time

Machine3

Machine2

Machine1

Machine0

(b) 4x4 GA Objective=33

0 5 10 15 20 25 30 35
time

Machine3

Machine2

Machine1

Machine0

(c) 4x4 RL Objective=45

0 20 40 60 80
time

Machine9

Machine8

Machine7

Machine6

Machine5

Machine4

Machine3

Machine2

Machine1

Machine0

(d) 10x10 OR-Tools1H(∗)
Obj=236

0 20 40 60 80 100
time

Machine9

Machine8

Machine7

Machine6

Machine5

Machine4

Machine3

Machine2

Machine1

Machine0

(e) 10x10 GA Objective=318

0 20 40 60 80 100
time

Machine9

Machine8

Machine7

Machine6

Machine5

Machine4

Machine3

Machine2

Machine1

Machine0

(f) 10x10 RL Objective=392

0 20 40 60 80 100 120 140
time

Machine14

Machine13

Machine12

Machine11

Machine10

Machine9

Machine8

Machine7

Machine6

Machine5

Machine4

Machine3

Machine2

Machine1

Machine0

(g) 15x15 OR-Tools1H(∗)
Obj=588

0 25 50 75 100 125 150 175
time

Machine14

Machine13

Machine12

Machine11

Machine10

Machine9

Machine8

Machine7

Machine6

Machine5

Machine4

Machine3

Machine2

Machine1

Machine0

(h) 15x15 GA Objective=1067

0 20 40 60 80 100 120 140 160
time

Machine14

Machine13

Machine12

Machine11

Machine10

Machine9

Machine8

Machine7

Machine6

Machine5

Machine4

Machine3

Machine2

Machine1

Machine0

(i) 15x15 RL Objective=868

Fig. C.3.: Example solutions for the JSP with limited idle time (λ = 1) problem, Gantt diagrams. On the
left, the solutions computed with OR-Tools; on the center, the result of the Genetic Algorithm
and on the right, the results obtained by the RL model with a sampling technique.

C.3 Run times 127

Notation summary

x ∈ X Problem space

y ∈ Y Combinatorial space

s ∈ S States

a ∈ A Actions

r ∈ R Rewards signal

c ∈ C Constraint dissatisfaction signal

G Episodic return

P(s′|s, a) Transition probability distribution

π(a|s) Stochastic policy

π∗(a|s) Optimal policy

V π(s) State-value function following the policy π

Qπ(s, a) Action-value function following the policy π

V ∗(s) Optimal state-value function

Q∗(s, a) Optimal action-value function

A(s, a) Advantage function

b(s) Baseline function

α Learning rate

γ Discount factor

λ Lagrange multiplier

β Entropy regularization parameter

ε PPO clipping parameter

η Intrinsic reward parameter

ν Value function loss parameter

129

Bibliography

[1]Martín Abadi, Paul Barham, Jianmin Chen, et al. „Tensorflow: A system for large-scale machine
learning“. In: 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
16). 2016, pp. 265–283 (cit. on p. 44).

[2]Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. „Constrained policy optimization“. In:
arXiv preprint arXiv:1705.10528 (2017) (cit. on p. 35).

[3]Bernardetta Addis, Dallal Belabed, Mathieu Bouet, and Stefano Secci. „Virtual Network Functions
placement and routing optimization“. In: CloudNet. 2015, pp. 171–177 (cit. on p. 76).

[4]Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. „Understanding the
impact of entropy on policy optimization“. In: arXiv preprint arXiv:1811.11214 (2018) (cit. on p. 47).

[5]Eitan Altman. Constrained Markov decision processes. Vol. 7. CRC Press, 1999 (cit. on p. 34).

[6]Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. „A supervised machine learning
approach to variable branching in branch-and-bound“. In: IN ECML. Citeseer. 2014 (cit. on p. 11).

[7]Thomas Anthony, Zheng Tian, and David Barber. „Thinking fast and slow with deep learning and tree
search“. In: Advances in Neural Information Processing Systems. 2017, pp. 5360–5370 (cit. on p. 92).

[8]Thomas Bäck, David B Fogel, and Zbigniew Michalewicz. Handbook of evolutionary computation. CRC
Press, 1997 (cit. on pp. 84, 124).

[9]Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, et al. „Agent57: Outperforming the atari
human benchmark“. In: arXiv preprint arXiv:2003.13350 (2020) (cit. on p. 99).

[10]Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, et al. „Never Give Up: Learning
Directed Exploration Strategies“. In: arXiv preprint arXiv:2002.06038 (2020) (cit. on pp. 51, 99).

[11]Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. „Neural Machine Translation by jointly
learning to align and translate“. In: arXiv:1409.0473 (2014) (cit. on pp. 20, 31).

[12]Radu Baltean-Lugojan, Pierre Bonami, Ruth Misener, and Andrea Tramontani. „Selecting cutting
planes for quadratic semidefinite outer-approximation via trained neural networks“. In: (2018) (cit. on
p. 11).

[13]Md Faizul Bari, Shihabur Rahman Chowdhury, Reaz Ahmed, and Raouf Boutaba. „On orchestrating
Virtual Network Functions“. In: CNSM. 2015, pp. 50–56 (cit. on p. 76).

[14]John E Beasley. „OR-Library: distributing test problems by electronic mail“. In: Journal of the opera-
tional research society 41.11 (1990), pp. 1069–1072 (cit. on p. 125).

[15]Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. „Neural Combinatorial
Optimization with Reinforcement Learning“. In: arXiv:1611.09940 (2016) (cit. on pp. 6, 13, 14, 19,
22, 24, 62, 63, 92).

[16]Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. „Advances in optimizing
recurrent networks“. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
IEEE. 2013, pp. 8624–8628 (cit. on p. 41).

131

[17]Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. „Machine Learning for Combinatorial Opti-
mization: a Methodological Tour d’Horizon“. In: arXiv preprint arXiv:1811.06128 (2018) (cit. on
p. 21).

[18]Albert S Berahas, Majid Jahani, and Martin Takáč. „Quasi-newton methods for deep learning: Forget
the past, just sample“. In: arXiv preprint arXiv:1901.09997 (2019) (cit. on p. 40).

[19]Christopher Berner, Greg Brockman, Brooke Chan, et al. „Dota 2 with Large Scale Deep Reinforcement
Learning“. In: arXiv preprint arXiv:1912.06680 (2019) (cit. on p. 2).

[20]Dimitri P Bertsekas. „Nonlinear Programming“. In: Journal of the Operational Research Society 48.3
(1997), pp. 334–334 (cit. on p. 36).

[21]Shalabh Bhatnagar and K Lakshmanan. „An online actor–critic algorithm with function approximation
for constrained markov decision processes“. In: Journal of Optimization Theory and Applications 153.3
(2012), pp. 688–708 (cit. on p. 36).

[22]Pierre Bonami, Andrea Lodi, and Giulia Zarpellon. „Learning a classification of mixed-integer quadratic
programming problems“. In: International Conference on the Integration of Constraint Programming,
Artificial Intelligence, and Operations Research. Springer. 2018, pp. 595–604 (cit. on p. 12).

[23]Vivek S Borkar. „An actor-critic algorithm for constrained Markov decision processes“. In: Systems &
control letters 54.3 (2005), pp. 207–213 (cit. on p. 35).

[24]Greg Brockman, Vicki Cheung, Ludwig Pettersson, et al. „Openai gym“. In: arXiv preprint arXiv:1606.01540
(2016) (cit. on p. 55).

[25]Yuri Burda, Harri Edwards, Deepak Pathak, et al. „Large-scale study of curiosity-driven learning“. In:
arXiv preprint arXiv:1808.04355 (2018) (cit. on p. 51).

[26]Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. „Exploration by random network
distillation“. In: arXiv preprint arXiv:1810.12894 (2018) (cit. on pp. 51, 99).

[27]Imran Ali Chaudhry and Abid Ali Khan. „A research survey: review of flexible job shop scheduling
techniques“. In: International Transactions in Operational Research 23.3 (2016), pp. 551–591 (cit. on
p. 64).

[28]Xinyun Chen and Yuandong Tian. „Learning to perform local rewriting for combinatorial optimization“.
In: Advances in Neural Information Processing Systems. 2019, pp. 6278–6289 (cit. on pp. 11, 93).

[29]Runwei Cheng, Mitsuo Gen, and Yasuhiro Tsujimura. „A tutorial survey of job-shop scheduling
problems using genetic algorithms—I. Representation“. In: Computers & industrial engineering 30.4
(1996), pp. 983–997 (cit. on p. 66).

[30]Rami Cohen, Liane Lewin-Eytan, Joseph Seffi Naor, and Danny Raz. „Near optimal placement of
Virtual Network Functions“. In: INFOCOM. IEEE. 2015, pp. 1346–1354 (cit. on p. 76).

[31]Hanjun Dai, Bo Dai, and Le Song. „Discriminative embeddings of latent variable models for structured
data“. In: International conference on machine learning. 2016, pp. 2702–2711 (cit. on p. 92).

[32]Zihang Dai, Zhilin Yang, Yiming Yang, et al. „Transformer-xl: Attentive language models beyond a
fixed-length context“. In: arXiv preprint arXiv:1901.02860 (2019) (cit. on p. 33).

[33]Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, et al. „Safe exploration in continuous action
spaces“. In: arXiv preprint arXiv:1801.08757 (2018) (cit. on p. 35).

[34]Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, et al. „Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization“. In: Advances in neural information processing
systems. 2014, pp. 2933–2941 (cit. on p. 46).

[35]Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin Rousseau.
„Learning heuristics for the TSP by Policy Gradient“. In: Inter. Conf. on the integration of CP, AI, and
OP. Springer. 2018, pp. 170–181 (cit. on pp. 6, 14, 19, 21, 24, 91).

132 Bibliography

[36]Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, et al. OpenAI Baselines. https://github.com/
openai/baselines. 2017 (cit. on p. 55).

[37]Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, et al. Openai baselines. 2017 (cit. on p. 125).

[38]Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. „Benchmarking deep rein-
forcement learning for continuous control“. In: International Conference on Machine Learning. 2016,
pp. 1329–1338 (cit. on pp. 29, 117).

[39]Patrick Emami and Sanjay Ranka. „Learning permutations with sinkhorn policy gradient“. In: arXiv
preprint arXiv:1805.07010 (2018) (cit. on p. 21).

[40]Javier Garcıa and Fernando Fernández. „A comprehensive survey on safe reinforcement learning“. In:
Journal of Machine Learning Research 16.1 (2015), pp. 1437–1480 (cit. on p. 34).

[41]Michael R Garey, David S Johnson, and Ravi Sethi. „The complexity of flowshop and jobshop
scheduling“. In: Mathematics of operations research 1.2 (1976), pp. 117–129 (cit. on pp. 3, 64).

[42]Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. „Exact combinatorial
optimization with graph convolutional neural networks“. In: Advances in Neural Information Processing
Systems. 2019, pp. 15554–15566 (cit. on p. 11).

[43]Jason Gauci, Edoardo Conti, Yitao Liang, et al. „Horizon: Facebook’s open source applied reinforcement
learning platform“. In: arXiv preprint arXiv:1811.00260 (2018) (cit. on p. 2).

[44]Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. „Convolutional
sequence to sequence learning“. In: arXiv preprint arXiv:1705.03122 (2017) (cit. on p. 32).

[45]Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. „Learning to forget: Continual prediction with
LSTM“. In: (1999) (cit. on p. 125).

[46]Xavier Glorot and Yoshua Bengio. „Understanding the difficulty of training deep feedforward neural
networks“. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics.
2010, pp. 249–256 (cit. on pp. 84, 125).

[47]Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. „A survey of actor-critic
reinforcement learning: Standard and natural policy gradients“. In: IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 42.6 (2012), pp. 1291–1307 (cit. on p. 61).

[48]Abhishek Gupta, M Farhan Habib, Pulak Chowdhury, Massimo Tornatore, and Biswanath Mukherjee.
„On service chaining using Virtual Network Functions in network-enabled cloud systems“. In: ANTS.
2015 (cit. on p. 76).

[49]Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. „Deep residual learning for image recogni-
tion“. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–
778 (cit. on p. 17).

[50]Peter Henderson, Joshua Romoff, and Joelle Pineau. „Where did my optimum go?: An empirical anal-
ysis of gradient descent optimization in policy gradient methods“. In: arXiv preprint arXiv:1810.02525
(2018) (cit. on p. 40).

[51]Ashley Hill, Antonin Raffin, Maximilian Ernestus, et al. Stable Baselines. https://github.com/hill-
a/stable-baselines. 2018 (cit. on p. 55).

[52]Sepp Hochreiter. „Untersuchungen zu dynamischen neuronalen Netzen“. In: Diploma, Technische
Universität München 91.1 (1991) (cit. on p. 17).

[53]Sepp Hochreiter and Jürgen Schmidhuber. „Long short-term memory“. In: Neural computation 9.8
(1997), pp. 1735–1780 (cit. on p. 17).

[54]John J Hopfield and David W Tank. „“Neural” computation of decisions in optimization problems“. In:
Biological cybernetics 52.3 (1985), pp. 141–152 (cit. on p. 13).

[55]IBM ILOG. „Cplex optimization studio“. In: URL: http://www-01. ibm. com/software/commerce/optimization/cplex-
optimizer (2014) (cit. on p. 84).

Bibliography 133

https://github.com/openai/baselines
https://github.com/openai/baselines
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

[56]Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, et al. „Reinforcement learning with
unsupervised auxiliary tasks“. In: arXiv preprint arXiv:1611.05397 (2016) (cit. on p. 37).

[57]Sham M Kakade. „A natural policy gradient“. In: Advances in neural information processing systems.
2002, pp. 1531–1538 (cit. on p. 54).

[58]Richard M Karp. „Reducibility among combinatorial problems“. In: Complexity of computer computa-
tions. Springer, 1972, pp. 85–103 (cit. on p. 92).

[59]Michael N Katehakis and Arthur F Veinott Jr. „The multi-armed bandit problem: decomposition and
computation“. In: Mathematics of Operations Research 12.2 (1987), pp. 262–268 (cit. on p. 19).

[60]Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. „Learning combinatorial optimiza-
tion algorithms over graphs“. In: Advances in Neural Information Processing Systems. 2017, pp. 6348–
6358 (cit. on pp. 14, 22, 26, 92).

[61]Elias Boutros Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. „Learning to
branch in mixed integer programming“. In: Thirtieth AAAI Conference on Artificial Intelligence. 2016
(cit. on pp. 11, 22).

[62]Sanghyeok Kim, Sungyoung Park, Youngjae Kim, Siri Kim, and Kwonyong Lee. „VNF-EQ: dynamic
placement of Virtual Network Functions for energy efficiency and QoS guarantee in NFV“. In: Cluster
Comp. 20.3 (2017), pp. 2107–2117 (cit. on p. 76).

[63]Diederik P Kingma and Jimmy Ba. „Adam: A method for stochastic optimization“. In: arXiv preprint
arXiv:1412.6980 (2014) (cit. on pp. 41, 125).

[64]Aldebaro Klautau, Nuria González-Prelcic, and Robert W Heath. „LIDAR data for deep learning-based
mmWave beam-selection“. In: IEEE Wireless Communications Letters 8.3 (2019), pp. 909–912 (cit. on
p. 93).

[65]Wouter Kool, Herke Van Hoof, and Max Welling. „Attention, learn to solve routing problems!“ In:
arXiv preprint arXiv:1803.08475 (2018) (cit. on pp. 6, 14, 19, 21, 22, 24, 91).

[66]Markus Kruber, Marco E Lübbecke, and Axel Parmentier. „Learning when to use a decomposition“.
In: International Conference on AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems. Springer. 2017, pp. 202–210 (cit. on p. 12).

[67]Alexandre Laterre, Yunguan Fu, Mohamed Khalil Jabri, et al. „Ranked reward: Enabling self-play
reinforcement learning for combinatorial optimization“. In: arXiv preprint arXiv:1807.01672 (2018)
(cit. on p. 93).

[68]Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, et al. „Continuous control with deep rein-
forcement learning“. In: arXiv preprint arXiv:1509.02971 (2015) (cit. on p. 19).

[69]Marcelo Caggiani Luizelli, Leonardo Richter Bays, Luciana Salete Buriol, Marinho Pilla Barcellos, and
Luciano Paschoal Gaspary. „Piecing together the NFV provisioning puzzle: Efficient placement and
chaining of Virtual Network Functions“. In: Inter. Symp. on Integrated Net. Mgmt. 2015, pp. 98–106
(cit. on p. 76).

[70]Minh-Thang Luong, Hieu Pham, and Christopher D Manning. „Effective approaches to attention-based
neural machine translation“. In: arXiv preprint arXiv:1508.04025 (2015) (cit. on pp. 20, 31).

[71]Brian Mahadevan. „Operations management“. In: Theory And Practice 5 (2010) (cit. on pp. 66, 124).

[72]Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. „Resource management
with deep reinforcement learning“. In: Proceedings of the 15th ACM Workshop on Hot Topics in Networks.
2016, pp. 50–56 (cit. on pp. 14, 21).

[73]Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad
Alizadeh. „Learning scheduling algorithms for data processing clusters“. In: Proceedings of the ACM
Special Interest Group on Data Communication. 2019, pp. 270–288 (cit. on p. 14).

134 Bibliography

[74]Antonio Marotta, Fabio D’Andreagiovanni, Andreas Kassler, and Enrica Zola. „On the energy cost of
robustness for green Virtual Network Function placement in 5G virtualized infrastructures“. In: Comp.
Net. 125 (2017), pp. 64–75 (cit. on pp. 76, 78).

[75]Stephen McAleer, Forest Agostinelli, Alexander Shmakov, and Pierre Baldi. „Solving the Rubik’s Cube
Without Human Knowledge“. In: arXiv preprint arXiv:1805.07470 (2018) (cit. on p. 93).

[76]Rashid Mijumbi. „Placement and scheduling of functions in Network Function Virtualization“. In:
arXiv:1512.00217 (2015) (cit. on p. 76).

[77]Rashid Mijumbi, Juan-Luis Gorricho, Joan Serrat, et al. „Design and evaluation of learning algorithms
for dynamic resource management in Virtual Networks“. In: NOMS. 2014, pp. 1–9 (cit. on p. 77).

[78]Rashid Mijumbi, Juan-Luis Gorricho, Joan Serrat, et al. „Neural Network-based autonomous allocation
of resources in Virtual Networks“. In: EuCNC. 2014, pp. 1–6 (cit. on p. 77).

[79]Marvin Minsky. „Steps toward artificial intelligence“. In: Proceedings of the IRE 49.1 (1961), pp. 8–30
(cit. on p. 114).

[80]Azalia Mirhoseini, Hieu Pham, Quoc V Le, et al. „Device placement optimization with Reinforcement
Learning“. In: ICML, Volume 70. 2017, pp. 2430–2439 (cit. on pp. 15, 19, 23, 52).

[81]Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, et al. „Asynchronous methods for deep
reinforcement learning“. In: International conference on machine learning. 2016, pp. 1928–1937
(cit. on pp. 28, 29).

[82]Hendrik Moens and Filip De Turck. „VNF-P: A model for efficient placement of Virtualized Network
Functions“. In: CNSM). 2014, pp. 418–423 (cit. on p. 76).

[83]Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. „Reinforcement
Learning for Solving the Vehicle Routing Problem“. In: Advances in NIPS. 2018, pp. 9839–9849 (cit. on
pp. 6, 14, 21, 24, 28, 34).

[84]Yurii E Nesterov. „A method for solving the convex programming problem with convergence rate O
(1/kˆ 2)“. In: Dokl. akad. nauk Sssr. Vol. 269. 1983, pp. 543–547 (cit. on p. 40).

[85]Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. „On the difficulty of training recurrent neural
networks“. In: International conference on machine learning. 2013, pp. 1310–1318 (cit. on p. 18).

[86]Adam Paszke, Sam Gross, Soumith Chintala, et al. „Automatic differentiation in pytorch“. In: (2017)
(cit. on pp. 44, 60, 125).

[87]Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. „Constrained Rein-
forcement Learning Has Zero Duality Gap“. In: Advances in Neural Information Processing Systems.
2019, pp. 7553–7563 (cit. on p. 35).

[88]Laurent Perron and Vincent Furnon. OR-Tools. Version 7.2. Google, July 19, 2019 (cit. on p. 66).

[89]Jan Peters and Stefan Schaal. „Natural actor-critic“. In: Neurocomputing 71.7-9 (2008), pp. 1180–1190
(cit. on p. 54).

[90]Tu-Hoa Pham, Giovanni De Magistris, and Ryuki Tachibana. „Optlayer-practical constrained optimiza-
tion for deep reinforcement learning in the real world“. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2018, pp. 6236–6243 (cit. on p. 35).

[91]Ning Qian. „On the momentum term in gradient descent learning algorithms“. In: Neural networks
12.1 (1999), pp. 145–151 (cit. on p. 40).

[92]Roberto Riggio, Abbas Bradai, Tinku Rasheed, et al. „Virtual Network Functions orchestration in
wireless networks“. In: CNSM. 2015, pp. 108–116 (cit. on p. 76).

[93]Herbert Robbins and Sutton Monro. „A stochastic approximation method“. In: The annals of mathe-
matical statistics (1951), pp. 400–407 (cit. on p. 39).

Bibliography 135

[94]Krzysztof Rusek, José Suárez-Varela, Albert Mestres, Pere Barlet-Ros, and Albert Cabellos-Aparicio.
„Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN“.
In: Proceedings of the 2019 ACM Symposium on SDN Research. 2019, pp. 140–151 (cit. on p. 93).

[95]Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. „Evolution strategies as a
scalable alternative to reinforcement learning“. In: arXiv preprint arXiv:1703.03864 (2017) (cit. on
p. 39).

[96]Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. „The
graph neural network model“. In: IEEE Transactions on Neural Networks 20.1 (2008), pp. 61–80
(cit. on p. 92).

[97]Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. „Ray interference: a source of
plateaus in deep reinforcement learning“. In: arXiv preprint arXiv:1904.11455 (2019) (cit. on p. 36).

[98]John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. „Trust region policy
optimization“. In: International conference on machine learning. 2015, pp. 1889–1897 (cit. on p. 53).

[99]John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. „High-dimensional
continuous control using generalized advantage estimation“. In: arXiv preprint arXiv:1506.02438
(2015) (cit. on p. 123).

[100]John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. „Proximal policy
optimization algorithms“. In: arXiv preprint arXiv:1707.06347 (2017) (cit. on pp. 2, 54, 55).

[101]Mark Shifrin, Erez Biton, and Omer Gurewitz. „Optimal control of VNF deployment and scheduling“.
In: 2016 IEEE International Conference on the Science of Electrical Engineering (ICSEE). IEEE. 2016,
pp. 1–5 (cit. on p. 76).

[102]Nils T Siebel and Gerald Sommer. „Evolutionary reinforcement learning of artificial neural networks“.
In: International Journal of Hybrid Intelligent Systems 4.3 (2007), pp. 171–183 (cit. on p. 35).

[103]David Silver. Lecture notes in Reinforcement Learning. 2015 (cit. on p. 2).

[104]David Silver, Thomas Hubert, Julian Schrittwieser, et al. „A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play“. In: Science 362.6419 (2018), pp. 1140–1144
(cit. on p. 93).

[105]David Silver, Thomas Hubert, Julian Schrittwieser, et al. „Mastering chess and shogi by self-play with
a general reinforcement learning algorithm“. In: arXiv preprint arXiv:1712.01815 (2017) (cit. on
pp. 2, 92).

[106]Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, et al. „Deep neuroevolution: Genetic
algorithms are a competitive alternative for training deep neural networks for reinforcement learning“.
In: arXiv preprint arXiv:1712.06567 (2017) (cit. on p. 117).

[107]Ilya Sutskever, Oriol Vinyals, and Quoc V Le. „Sequence to sequence Learning with Neural Networks“.
In: Advances in NIPS. 2014, pp. 3104–3112 (cit. on pp. 18, 30).

[108]Richard S Sutton, Andrew G Barto, et al. Introduction to Reinforcement Learning. Vol. 135. MIT press
Cambridge, 1998 (cit. on pp. 1, 14, 25, 111).

[109]István Szita and András Lörincz. „Learning Tetris using the noisy cross-entropy method“. In: Neural
computation 18.12 (2006), pp. 2936–2941 (cit. on p. 117).

[110]Eric Taillard. „Benchmarks for basic scheduling problems“. In: european journal of operational research
64.2 (1993), pp. 278–285 (cit. on p. 125).

[111]Aviv Tamar and Shie Mannor. „Variance adjusted actor critic algorithms“. In: arXiv preprint arXiv:1310.3697
(2013) (cit. on p. 35).

[112]Haoran Tang, Rein Houthooft, Davis Foote, et al. „# exploration: A study of count-based exploration for
deep reinforcement learning“. In: Advances in neural information processing systems. 2017, pp. 2753–
2762 (cit. on p. 50).

136 Bibliography

[113]Chen Tessler, Daniel J Mankowitz, and Shie Mannor. „Reward Constrained Policy Optimization“. In:
arXiv:1805.11074 (2018) (cit. on pp. 35, 36).

[114]Yuandong Tian, Jerry Ma, Qucheng Gong, et al. „Elf opengo: An analysis and open reimplementation
of alphazero“. In: arXiv preprint arXiv:1902.04522 (2019) (cit. on p. 99).

[115]Kristof Van Moffaert and Ann Nowé. „Multi-objective reinforcement learning using sets of pareto
dominating policies“. In: The Journal of Machine Learning Research 15.1 (2014), pp. 3483–3512
(cit. on p. 36).

[116]Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. „Attention is all you need“. In: Advances in neural
information processing systems. 2017, pp. 5998–6008 (cit. on pp. 14, 16, 20, 66, 91).

[117]Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, et al. „Grandmaster level in StarCraft II using
multi-agent reinforcement learning“. In: Nature 575.7782 (2019), pp. 350–354 (cit. on p. 30).

[118]Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. „Order matters: Sequence to sequence for sets“.
In: arXiv preprint arXiv:1511.06391 (2015) (cit. on pp. 33, 34, 91).

[119]Oriol Vinyals, Timo Ewalds, Sergey Bartunov, et al. „Starcraft ii: A new challenge for reinforcement
learning“. In: arXiv preprint arXiv:1708.04782 (2017) (cit. on p. 2).

[120]Vinyals, Oriol and Fortunato, Meire and Jaitly, Navdeep. „Pointer Networks“. In: Advances in NIPS.
2015, pp. 2692–2700 (cit. on pp. 11–13, 16, 21, 22, 34, 92).

[121]Network Functions Virtualisation. „An introduction, benefits, enablers, challenges & call for action“.
In: White Paper, SDN and OpenFlow World Congress. 2012 (cit. on p. 73).

[122]Ronald J Williams. „Simple statistical gradient-following algorithms for connectionist Reinforcement
Learning“. In: Machine learning 8.3-4 (1992), pp. 229–256 (cit. on pp. 36, 119).

[124]Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. „Aggregated residual trans-
formations for deep neural networks“. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2017, pp. 1492–1500 (cit. on p. 20).

[125]Yuehua Xu, David Stern, and Horst Samulowitz. „Learning adaptation to solve constraint satisfaction
problems“. In: Proceedings of Learning and Intelligent Optimization (LION) (2009) (cit. on p. 14).

[126]Haipeng Yao, Bo Zhang, Peiying Zhang, et al. „RDAM: A Reinforcement Learning Based Dynamic
Attribute Matrix Representation for Virtual Network Embedding“. In: Trans. on Emerging Topics in
Comp. (2018) (cit. on p. 77).

[127]Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. „Parameterizing Branch-and-Bound
Search Trees to Learn Branching Policies“. In: arXiv preprint arXiv:2002.05120 (2020) (cit. on p. 12).

[128]Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. „Why Gradient Clipping Accelerates Train-
ing: A Theoretical Justification for Adaptivity“. In: International Conference on Learning Representations.
2019 (cit. on p. 57).

[129]Brian D Ziebart. „Modeling purposeful adaptive behavior with the principle of maximum causal
entropy“. In: (2010) (cit. on p. 47).

Websites
[123]Wurmen. Genetic Algorithm for Job Shop Scheduling. URL: https://github.com/wurmen/Genetic-

Algorithm-for-Job-Shop-Scheduling-and-NSGA-II (cit. on p. 124).

Websites 137

https://github.com/wurmen/Genetic-Algorithm-for-Job-Shop-Scheduling-and-NSGA-II
https://github.com/wurmen/Genetic-Algorithm-for-Job-Shop-Scheduling-and-NSGA-II

Declaration

Herewith I acknowledge that I have completed this work solely and only with the help of the
mentioned references.

Bilbao, October, 2020

Ruben Solozabal

140 Bibliography

	Cover
	Titlepage
	Resumen ejecutivo
	Abstract
	Acknowledgement
	List of Abbreviations
	1 Introduction
	1.1 Context and motivation of the work
	1.2 Background on Combinatorial Optimization
	1.2.1 Exact methods
	1.2.2 Metaheuristic algorithms
	1.2.3 Heuristic algorithms

	1.3 Reinforcement Learning for intelligent heuristics
	1.4 Neural Combinatorial Optimization for 5G network optimization
	1.5 Thesis objectives
	1.6 Thesis structure

	2 State-of-the-Art of Neural Combinatorial Optimization
	2.1 Machine Learning for solving CO problems
	2.1.1 Learning Methods
	2.1.2 Algorithmic Structures

	2.2 Neural Combinatorial Optimization
	2.2.1 Background

	2.3 Sequence-to-sequence models for NCO
	2.3.1 Recurrent Neural Networks
	2.3.2 Recurrent sequence-to-sequence models for solving CO problems
	2.3.3 Transformer network for solving CO problems

	2.4 Challenges of Neural Combinatorial Optimization
	2.5 Conclusions

	3 Framework for a constrained Markovian NCO model
	3.1 Baseline Framework
	3.2 NCO on a Markovian RL approach
	3.3 Aspects to be considered on NCO
	3.4 Building blocks of NCO
	3.4.1 Learning algorithms
	3.4.2 Proposal for a Markovian neural agent
	3.4.2.1 Recurrent encoder-based attention mechanism
	3.4.2.2 Transformer encoder-based attention mechanism
	3.4.2.3 State-based attention mechanism

	3.4.3 Constraint management in NCO
	3.4.3.1 Limitations of Action-masked Networks
	3.4.3.2 Background on Constrained RL
	3.4.3.3 Reward constrained policy optimization

	3.4.4 Optimization algorithms
	3.4.4.1 Momentum-based optimizers

	3.5 Conclusions

	4 Proposal for a model building process and experimentation
	4.1 Motivation for studying the learning process in a toy CO problem
	4.2 Methodology for improving the learning process
	4.2.1 Convergence analysis
	4.2.2 Enhance exploration strategies in deep RL
	4.2.2.1 Entropy Regularization
	4.2.2.2 Intrinsic Rewards as Exploration Bonuses

	4.2.3 Monotonic improvements with Trust-region optimization
	4.2.3.1 Trust Region Policy Optimization
	4.2.3.2 Proximal Policy Optimization
	4.2.3.3 Implementing Trust-region optimization using OpenAI framework

	4.2.4 Improving the model with a self-competing strategy
	4.2.5 Search strategies

	4.3 Proposed framework for addressing NCO
	4.4 Experimentation on the Job-shop Scheduling Problem
	4.4.1 Job-shop Scheduling Problem with limited idle time
	4.4.2 Particularized models
	4.4.3 Learning algorithm: PPO with self-competing baseline
	4.4.4 Results on the Job Shop Problem

	4.5 Conclusions

	5 Use-case: Application for 5G real-time placement decision systems
	5.1 Introduction to Network Function Virtualization
	5.1.1 Benefits of Network Function Virtualization
	5.1.2 Description of the ETSI-NFV architecture
	5.1.3 Network service creation process

	5.2 VNF Placement Optimization
	5.2.1 Related work on the VNF Placement problem
	5.2.2 VNF Placement problem formalization

	5.3 Experimentation details
	5.3.1 Model implementation
	5.3.2 Performance comparison
	5.3.3 Results
	5.3.4 Learning and inference times

	5.4 Conclusions

	6 Discussion
	6.1 Performance comparison between recurrent and attentional models for NCO
	6.2 Graph neural networks applied to NCO
	6.3 NCO in combination with Tree-Search strategies
	6.4 RL to enhance Metaheuristic algorithms
	6.5 Discussion on the ITU-T approach for introducing ML in 5G
	6.6 Conclusions

	7 Final conclusions, contributions and broader impacts
	7.1 Thesis coverage
	7.2 Main contributions
	7.3 Final conclusions
	7.4 Thesis publications
	7.5 Future Work
	7.6 Broader Impacts

	Appendix A Annex: Operations Research
	A.1 Mathematical Programming (MP) vs Constraint Programming (CP)
	A.2 Logical Conditions

	Appendix B Annex: Reinforcement Learning
	B.1 Markov Decision Process
	B.1.1 Definition
	B.1.2 Value Functions
	B.1.3 Bellman equations for the Value Functions

	B.2 Planning by Dynamic Programming
	B.2.1 Policy Evaluation
	B.2.2 Policy Iteration
	B.2.3 Value Iteration

	B.3 Model-Free Learning: Value-based Learning
	B.3.1 Value-based Prediction
	B.3.2 Value-based Control

	B.4 Model-Free Learning: Policy-based Learning
	B.4.1 Policy Gradients
	B.4.2 Baseline

	B.5 Actor-Critic methods

	Appendix C Annex: Job Shop Problem
	C.1 Heuristic and metaheuristic algorithms for the Job Shop Problem
	C.2 Implementation details
	C.3 Run times

	Notation summary
	Bibliography
	Declaration

