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Identifying optimal technological portfolios for European power generation towards 

climate change mitigation: a robust portfolio analysis approach 

Abstract 

In this paper, an integrative approach is proposed to link integrated assessment modelling 

results with a novel portfolio analysis framework for robust modelling. The approach is applied 

for identifying optimal technological portfolios for power generation in the EU towards climate 

change mitigation, in a timescale until 2050. The technologies considered include 

photovoltaics, concentrated solar power, wind, nuclear, biomass and carbon capture and 

storage. The proposed approach links data from the Global Change Assessment Model 

(GCAM), namely subsidy curves for emissions reduction and energy security for the six power 

generation technologies until 2050, with other decision support methods, in the aim of 

managing the inherent uncertainty and assessing the robustness of the optimal portfolios. The 

modelling results are then integrated in a bi-objective evaluation model for portfolio analysis. 

The model treats uncertainty stochastically, using a Monte Carlo simulation algorithm and the 

Iterative Trichotomic Approach, and defines specific portfolios of electricity generation 

technologies as the most robust. The results are presented and discussed, mainly in terms of 

highlighting the robustness of the Pareto optimal solutions, which is essential for policymakers 

to be more confident when selecting technology portfolios that feature a high degree of 

uncertainty, regarding their vulnerability to different future developments. By aggregating the 

results to one robust technological portfolio, the proposed approach features the potential to 

subsequently be linked to a deterministic model.  

Keywords: decision support, power generation, technology R&D, portfolio analysis, 

uncertainty, robustness.   
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Introduction 
The EU has set a long-term goal of reducing greenhouse gas (GHG) emissions by 80-95%, 

when compared to 1990 levels, by 2050. Towards achieving this target, the Commission has 

published an Energy Roadmap for 2050 to explore cost-efficient ways to make the European 

economy more climate-friendly and less energy-consuming, while also increasing 

competitiveness and security of supply (EC, 2016a.). It is clear that all main sectors responsible 

for Europe's GHG emissions—power generation, industry, transport, buildings, construction 

and agriculture—need to contribute to this low-carbon transition according to their 

technological and economic potential. In 2015, one quarter of global GHG emissions was 

caused by fossil fuel combustion in power plants (IPCC, 2014), while in Europe emissions of 

fuel combustion by energy industries amounted to 28.2% of total GHG emissions (Eurostat, 

2017). Decarbonising electricity generation is therefore crucial to the efforts towards climate 

change mitigation (Arvesen et al., 2018) and has the potential to almost totally eliminate CO2 

emissions by 2050, by exploiting renewable energy sources (e.g. solar, wind, biomass, etc.), 

using other low-emission alternatives like nuclear power plants, or maturing and diffusing 

carbon capture and storage (CCS) technologies in fossil fuel power stations (EC, 2016b).  

On the basis of the above, the need to secure support for coordinated environmental, climate, 

and energy planning emerges. Particularly, the process of designing technological mixes for 

electricity generation takes on special significance in the context of energy and environmental 

planning. In this process, cost-related parameters are first examined; however, other 

characteristics must also be taken into consideration, including the level of dependence on 

imported resources; the corresponding energy security and efficiency of the territory; and the 

social and environmental impact that the use of the available technologies might entail 

(Valentine, 2011). Thus, energy planning, perceived as a problem of investment selection 

(Awerbuch, 2004), facilitates the long-term design of the electricity generation mix that best 

reconciles security of supply, sustainability (economic, social and environmental) and 

competitiveness (Hickey et al., 2010). What is also important is the diverse nature and uncertain 

potential of energy technologies that currently are or may later be available to mitigate GHG 

emissions (Pugh et al., 2011). The long service life of power generation assets and the high 

level of uncertainty, both stemming from the horizon subject to analysis, strongly impact the 

different variables of the selection problem, which are a synthesis of technological, economic, 

regulatory and environmental variables (deLlano-Paz et al., 2017). This further poses a 

challenge to policymakers trying to invest funds in an optimal electricity generation portfolio 

(Pugh et al., 2011).  

Typically, integrated assessment modelling can prove very valuable to meeting the challenges 

of sustainability (Jakeman and Letcher, 2003) and is widely used to explore potential strategies 

for climate change mitigation and energy planning (Krey, 2014). Integrated assessment models 

https://dx.doi.org/10.1016/j.jup.2019.01.006
http://creativecommons.org/licenses/by-nc-nd/3.0/


This document is the Accepted Manuscript version of a Published Work that appeared in final 

form in:  

Forouli A., Doukas H., Nikas A., Sampedro J., Van de Ven D.-J. 2019. Identifying optimal technological 

portfolios for European power generation towards climate change mitigation: A robust 

portfolio analysis approach. Utilities Policy. 57. 33-42. DOI (10.1016/j.jup.2019.01.006). 

© 2019 Elsevier Ltd. All rights reserved. 

This manuscript version is made available under the CC-BY-NC-ND 3.0 license 

http://creativecommons.org/licenses/by-nc-nd/3.0/ 

 

 

[Type here] 

 

(IAMs) give fruitful insights in the tradeoffs and synergies among policy goals; support the 

identification of important cross-sector interactions; and to some extent consider uncertainty, 

in factors such as population and economic growth, technology development, human behavior, 

and climate change (Shi et al., 2017). As a result, key reports targeted to policymakers and the 

public rely heavily on scenarios produced by IAMs (Arvesen et al., 2018; IPCC, 2014). Despite 

academic researchers having extensively worked on and employed IAM-based approaches for 

the purposes of investigating future energy, land use, and emission pathways at global to 

continental scales (Vuuren et al., 2011), it is important to note that these formalised modelling 

frameworks face considerable difficulties in giving appropriate responses to short-term patterns 

of the power sector (Pietzcker et al., 2017). Furthermore, IAMs typically treat uncertainty 

deterministically, i.e. by means of scenarios (Nikas et al., 2018); Jakeman and Letcher (2003) 

recognise the need for improved techniques of uncertainty and sensitivity analysis as a central 

challenge in the use of IAMs. Last but not least, climate-economy modelling by means of IAMs 

typically excludes policymakers and other stakeholder groups or, limits their participation to 

the extent of partly formulating the assumptions, by which modelling simulations are driven 

(van Vliet et al., 2010). Other weaknesses associated with IAMs are extensively discussed in 

(Doukas et al., 2018). 

As a valuable tool in the management of such complex environmental and energy problems 

(Uusitalo et al., 2015), decision support systems have the potential to effectively summarise 

and bring together various, distinct consequences related to alternative planning options 

(Doukas, 2013). As the recent literature suggests, a broadly established approach to meeting 

the challenges associated with the definition of energy plans for a certain territory or region can 

be found in Modern Portfolio Theory (MPT). Typically, the portfolio approach is based on the 

solution of problems with one objective function seeking to minimise either the cost or the risk 

of the portfolio, subject to different constraints, also considering that real electricity generation 

assets can be defined in terms of cost or return and economic risk, for each alternative 

technology (deLlano-Paz et al., 2017). The most exhaustive and complete reviews on the 

application of MPT in energy planning are found in the studies of Delarue et al. (2011) and 

Jano-Ito and Crawford (2017). On more topics related to the principles of portfolio theory, the 

reader is referred to the papers of Awerbuch and Berger (2003), Awerbuch and Yang (2007), 

Elton and Gruber (1997). Furthermore, Lathtinen et al.(2017) and Pérez Odeh et al (2018) give 

a comprehensive review of portfolio-oriented decision analysis methods in environmental 

decision making and portfolio applications in electricity markets respectively.  

It is noteworthy that, given that problems of this particular domain are subject to numerous 

objectives and criteria, the existence of a single optimal solution leading to one particular course 

of action, upon which the decision maker has no influence, is rarely achieved or meaningful. A 

solution to this challenge lies in the identification of a Pareto set of optimal solutions (Hamilton 

et al., 2015). Reaching a set of near-optimal solutions provides a much more fruitful input into 
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the decision making process (Lempert et al., 2016), and is easier to explain than any other 

practical recommendation. Such analysis is crucial as it can provide a measure of confidence 

in the ability to differentiate between different decisions (Jakeman and Letcher, 2003; Weyant, 

2017). Portfolio analysis (PA) is commonly employed in applications with multiple objectives 

and widely supports stochastic treatment of uncertainty. 

In this paper, an integrated approach to linking IAMs with a novel PA approach towards 

providing more fruitful and robust policy recommendations, is developed and presented. The 

proposed approach is applied for the identification of optimal electricity generation portfolios 

in the EU, in the scope of achieving the goal of transforming Europe into a competitive, low-

carbon economy by 2050. 

Initially, the performance of six electricity generation technologies is examined regarding both 

the achieved GHG emissions reduction and the respective energy security as a result of specific 

technological subsidisation. The datasets are obtained from the Global Change Assessment 

Model (GCAM), a partial equilibrium IAM. The initial modelling results are appropriately 

aggregated to be utilised for PA. Subsequently a technological R&D portfolio problem for 

European power generation technologies is modelled and solved with the use of multi-objective 

programming and stochastic uncertainty treatment. The portfolio selection problem focuses on 

an EU-27 level approach, and evaluates different power generation options in a timescale until 

2050. The portfolios are evaluated based on their performance with regard to their contribution 

to the reduction of GHG emissions, and the positive consequences they may induce on energy 

security. To deal with the inherent uncertainty characterising the basic parameters of the model, 

namely GHG emission reduction and energy security, a Monte Carlo simulation is carried out. 

Through this approach, the robustness of the obtained optimal energy technology portfolios can 

be evaluated, by considering that the uncertainty in the model’s parameters is of stochastic 

nature. The robustness of the Pareto optimal solutions is essential for building confidence 

among policymakers, when selecting technological portfolios that feature a high degree of 

uncertainty regarding their vulnerability to probable future developments. By aggregating the 

results to one robust technological portfolio, the proposed approach can potentially be further 

linked to a deterministic model. 

Baker and Solak (2011) have previously used modelling results from the Dynamic Integrated 

Climate-Economy (DICE) model and MiniCAM (older version of the GCAM model) IAMs in 

a stochastic optimisation-oriented PA; while Pugh et al. (2011) aggregated different 

technological scenarios from the GCAM model into one specific scenario and built a Ranked 

ROI-oriented optimal R&D electricity generation portfolio. The present study, however, 

utilises GCAM outputs to evaluate electricity generation technologies by simultaneously 

considering two optimisation criteria, namely maximisation of GHG reduction and energy 
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security, and deals with stochastic uncertainty instead of discrete scenarios to obtain robust 

optimal technological portfolios.  

The paper is organised as follows: the following section contains a detailed description of the 

employed models and methods. The third section proposes an integrated approach to creating 

links between the different models. In the fourth section, the approach is applied in the case 

study, the results and robustness analysis are presented in detail and discussed. Finally, some 

conclusions are presented.  

Methods and models  
The proposed approach is based on a blend of different models and methodological 

frameworks. An overview of the models to be linked in the proposed approach is presented in 

the following figure (Figure 1).  

 

Figure 1: Blend of methods and models to be linked 

The different models and methods are concisely described in the following paragraphs. 

GCAM 

GCAM is a dynamic-recursive, partial equilibrium model with technology-rich representations 

of the economy, the energy, water, agricultural, and land use sectors. It was developed by Joint 

Global Change Research Institute (JGCRI, 2017), a partnership between the Pacific Northwest 

National Laboratory (PNNL) and the University of Maryland. At a timescale of more than 

30 years GCAM and its predecessors (e.g. MiniCAM) have been used in applications 

investigating future emission scenarios and energy technology pathways (Shi et al., 2017). 

GCAM is one of the four models chosen to develop the Representative Concentration Pathways 

(van Vuuren et al., 2011) of the IPCC’s 5th Assessment Report (IPCC, 2015) and has 

participated in almost all of major climate/energy assessment over the last years. It connects 

socioeconomics, energy, land use and climate modules and it is meant to represent the 

consequences of climate change mitigation policies, including carbon taxes, carbon trading, 

regulations and accelerated deployment of energy technology (JGCRI, 2017). Representative 
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applications of the GCAM model include those of Collins et al., 2015; Ebi et al., 2014 and 

Fisher et al., 2014. 

The energy system in GCAM includes primary energy resource production, energy 

transformation and the use of final energy forms to deliver energy services. The model 

distinguishes between depletable and renewable resources. Depletable resources include fossil 

fuels such as oil (both conventional and unconventional), gas and coal, and uranium (for nuclear 

power); renewable resources include different types of biomass (purpose-grown, municipal 

waste and residue), wind (on- and off-shore), geothermal energy, hydropower, rooftop areas 

for solar photovoltaic (PV) equipment and non-rooftop solar, including Concentrated Solar 

Power (CSP). Regarding the land-use module, the model is divided in 283 agro-ecological 

zones (Monfreda et al., 2008), which are divided in arable (crops) and non-arable (desert or 

urban) land categories. GCAM also tracks an important number of GHGs like CO2 (both FFI 

and land-use) or methane (CH4) and the most hazardous air pollutants such as organic and black 

carbon (OC and BC), sulphur dioxide (SO2) or nitrogen oxides (NOx).  

For the purposes of this study, the GCAM 4.3 version is used, providing results on a regional 

level, by examining Europe as a whole instead of individually modelling each European 

country. There exist other models designed to focus exclusively on the European energy 

system, such as PRIMES (E3MLab, 2014) and JRC-EU-TIMES (Joint Research Centre, 2013). 

In comparison to these bottom-up energy system models with disaggregation at the European 

country level, GCAM is a partial equilibrium model covering the entire European region and 

the entire economy, featuring both bottom-up and top-down approaches (Urban et al., 2007) as 

well as representing both endogenous and induced technological progress (Nikas et al., 2018). 

Last but not least, there have been applications in the literature featuring stochastic uncertainty 

assessment by means of Monte Carlo analyses at the regional or global level (e.g. Scott et al., 

1999), as well as applications integrating the model with PA approaches (e.g. Pugh et al., 2011; 

Baker and Solak, 2011). All of these reasons constitute the background of our choice to use the 

GCAM model.  

Portfolio Analysis  

Multi-objective optimisation 

Unlike single-objective optimisation, where the optimal solution of the problem is usually 

unique, the optimal solution in multi-objective optimisation is a set of performances across the 

various objective functions, between which there emerge conflicts. Multi-objective 

optimisation can be described in mathematical terms as follows (minimisation): 

min 𝑦 =  [𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑛(𝑥)]  𝑠. 𝑡𝑜. 𝑥 ∈  𝛺 (1) 
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Where 𝛺 is the feasible solution area and 𝑓1(𝑥), …, 𝑓𝑛(𝑥) are 𝑛 objective functions having 

conflict with each other.  

Pareto dominance 

According to Eq. (1), 𝑥∗ dominates another solution 𝑥 (denoted by 𝑥∗ > 𝑥), if the following 

two conditions are satisfied: 

∀𝐼 ∈  {1, 2, … , 𝑛} , 𝑓𝑖 (𝑥∗) ≤  𝑓𝑖 (𝑥) 

∃ 𝑘 ∈ {1, 2, . . . , 𝑛}  𝑓𝑘 (𝑥∗)  <  𝑓𝑘 (𝑥) 

 

(2) 

 

Where 𝑥, 𝑥∗  ∈  𝛺 

In other words, this definition says that 𝑥∗ is Pareto dominant if there exists no feasible vector 

𝑥 which would decrease some criterion without causing a simultaneous increase in at least one 

other criterion (assuming minimisation). 

It must be noted that, in case of maximisation in the objective functions, only a change in the 

direction of the inequalities is required. 

Pareto optimal and Pareto optimal set 

A solution 𝑥∗ is non-dominated and is Pareto optimal if 

∄𝑥 ∈ 𝛺 ∶ 𝑥 > 𝑥∗ (3) 

 

The set of all Pareto optimal solutions is a Pareto optimal set (𝑃𝑆). 

Pareto optimal front 

Pareto optimal front (𝑃𝐹) is the set consisting of objective function vectors related to the Pareto 

optimal set. 

𝑃𝐹 =  {𝑦 = [𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑛(𝑥)]𝑇|𝑥 ∈ 𝑃𝑆} 

 

(4) 

 

The shape of the Pareto front indicates the nature of the trade-off between the different objective 

functions.  

Therefore, multi-objective optimisation is an approach to finding Pareto optimal solutions and 

obtaining the Pareto optimal front. A proper multi-objective solution method should lead to the 

Pareto optimal set and also solutions with appropriate diversity (Chiandussi et al., 2012; Rayat 

et al., 2017). 
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The AUGMECON2 method 

AUGMECON2 (Mavrotas and Florios, 2013), a new version of the AUGMECON method 

(Mavrotas, 2009), is a general purpose method, which constitutes an especially suitable method 

for Multi-Objective Integer Programming (MOIP) problems.  

AUCMECON is an improvement of the original ε-constraint method, which is—along with the 

weighting method—one of the two most popular methods for generating representations of the 

Pareto front. As described in Mavrotas, 2009, the ε-constraint method has certain advantages 

in relation to the weighting method, especially in the presence of discrete variables (Mixed 

Integer or Pure Integer problems). The ε-constraint approach, first introduced by Haimes, et al. 

(1971), generates efficient solutions by converting all but one objective functions into 

constraints of the model (Haimes et al., 1971). The augmented ε-constraint approach 

(AUGMECON) developed by Mavrotas (2009) can be used in order to remove weakly efficient 

solutions generated when applying the classical ε-constraint approach. (Hombach and Walther, 

2015). AUGMECON is extended by Mavrotas and Florios (2013) in AUGMECON2 method, 

which in the case of MOIP and 0–1 Multiciteria Ordered Median Problems (MOMP) problems 

(i.e. MOIP problems with only 0–1 variables as integer variables, which constitute the vast 

majority of MOIP problems), can be used to produce the exact (or complete) Pareto set, i.e. all 

the Pareto optimal solutions (Mavrotas and Florios, 2013). For calculating the exact Pareto set 

in MOIP problems with integer objective function coefficients, the AUGMECON2 method has 

been coded in the General Algebraic Modeling System (GAMS). 

In the literature, several versions of the ε-constraint method have appeared trying to improve 

its performance or adapt it to a specific type of problems like MOIP problems (Keshavarz and 

Toloo, 2015; Mazidi et al., 2016). The technical novelties of the AUGMECON 2 method are: 

(a) construction of the payoff matrix in order to calculate the ranges of every objective 

functions; (b) avoidance of weakly Pareto optimal solutions by transforming the objective 

function constraints to equalities, by explicitly incorporating the appropriate slack (for 

minimisation objectives) or surplus (for maximisation objectives) variables; (c) early exit from 

the loops in order to treat the case of infeasibilities; and (d) less computational time (Xidonas 

et al., 2016b). These improvements are more effective when the problem contains discrete 

variables and the feasible region is non-convex (Mavrotas and Florios, 2013).  

In the following, the augmented ε-constrained method (AUGMECON 2) developed by 

Mavrotas (2009) is implemented in order to solve the bi-objective optimisation model of 

technological R&D selection. Thus, all efficient solutions are obtained and the calculation of 

weakly efficient solutions is avoided.  
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Robustness Analysis 

Monte Carlo simulation  

As already outlined, it is true that several uncertain factors (costs, demand function, prices, 

system operation, regulatory measures, etc.) are present in electricity markets, affecting the 

agents participating in them. The risks affect different elements in the form of uncertainty and 

variability, including financial and regulatory aspects; issues related to climate change; societal 

acceptance of certain technologies; conditioning factors related to energy security; and 

transaction costs (Jano-Ito and Crawford-Brown, 2017). Various methods have been proposed 

for dealing with this uncertainty, the most common ones being fuzzy programming, chance-

constrained programming, robust programming, and stochastic programming (Mavrotas and 

Pechak, 2013).  

In this work, the implied uncertainty is considered as being of stochastic nature. Each uncertain 

parameter is characterised by a probability distribution. Using Monte Carlo simulation, various 

probability distributions for uncertain parameters can be contemplated. Subsequently, a Monte 

Carlo simulation samples the values from these distributions, and the Mathematical 

Programming (MP) models with the sampled values are solved. This process is repeated 𝑇 times 

(with 𝑇 being a large number, for example 𝑇=1,000) in order to have an adequate sample for 

drawing robust conclusions. This pair of sampling and optimisation is the core of calculations. 

For example, if the number of Monte Carlo simulations is set to 1,000, then 1,000 sampling and 

optimisation runs will be carried out. The output of this process will be 1,000 different Pareto 

fronts of optimal portfolios, based on the sampling of the model’s parameters.  

Iterative Trichotomic Approach  

In order to build robust optimal portfolios, this study uses the main idea of the iterative 

trichotomic approach (ITA) (Mavrotas and Pechak 2013). The trichotomic approach was first 

introduced in integer programming, to deal with uncertainty in single objective problems of 

project portfolio selection. Xidonas et al. extend the applicability of ITA to the case of multi-

objective optimisation (Xidonas et al., 2016a). The difference with the original ITA of Mavrotas 

is that the “multiobjective” version of ITA provides information about the degree of certainty 

for inclusion of a specific portfolio in the final Pareto set, expanding thus its application area 

from project level to portfolio level.  

This study properly links the implementation of ITA in a bi-objective model to provide Pareto 

Optimal Portfolios (POPs), among which the most preferred one is selected by the decision 

makers. In this way, the decision makers’ selection is supported by specific indicators on the 

degree of certainty regarding the portfolios’ Pareto optimality. As described in the above 

section, uncertainty is incorporated using probability distributions for R&D technologies’ 

performance, which is the major driver of the optimisation. Each Monte Carlo sampling 

https://dx.doi.org/10.1016/j.jup.2019.01.006
http://creativecommons.org/licenses/by-nc-nd/3.0/


This document is the Accepted Manuscript version of a Published Work that appeared in final 

form in:  

Forouli A., Doukas H., Nikas A., Sampedro J., Van de Ven D.-J. 2019. Identifying optimal technological 

portfolios for European power generation towards climate change mitigation: A robust 

portfolio analysis approach. Utilities Policy. 57. 33-42. DOI (10.1016/j.jup.2019.01.006). 

© 2019 Elsevier Ltd. All rights reserved. 

This manuscript version is made available under the CC-BY-NC-ND 3.0 license 

http://creativecommons.org/licenses/by-nc-nd/3.0/ 

 

 

[Type here] 

 

provides a Pareto of optimal portfolios. The ITA approach proposes an “iterative” process 

developed in a series of computation round. In each computation round all POPs 𝑝 are allocated 

in three sets: the green set (𝐺), the red set (𝑅) and the grey set (𝑌). Eventually, in each round, 

ITA divides the optimal portfolios in the three subsets (𝐺, 𝑅, 𝑌) depending on their degree of 

participation in the 𝑇 generated Pareto sets. The green set includes the portfolios 𝑝 that are 

present in all Pareto sets (𝑃𝑆1, . . . , 𝑃𝑆𝑇) of the computation round, the red set includes the 

portfolios that were produced in the initial computational round but are not present in any of 𝑇 

Pareto sets in current computational round and the grey set includes portfolios that are present 

in some of 𝑇 Pareto sets. In the first round (round with maximum uncertainty), a maximum 

number of portfolios is generated as candidate final POPs. The first round results only in green 

and grey sets, as there is no portfolio to be excluded (red set) from the Pareto set. In subsequent 

rounds some of these initial optimal portfolios are not present anymore in any of the 𝑇 Pareto 

sets, so they join the red set. Along this process, the uncertainty of the model’s parameters 

(objective functions’ coefficients) is reduced (e.g. by reducing the standard deviation of a 

normal probability distribution or shrinking the interval of a uniform probability distribution). 

As the uncertainty is reduced, more portfolios from the grey set move to the green one (appear 

in all Pareto sets). Eventually, and as uncertainty gradually decreases, each one of the initial 

POPs is characterised as red or green, resulting in obtaining the final Pareto set. 

Proposed integrated approach 
Each of the above described models has certain concrete advantages in supporting decision 

making in environmental and energy planning as well as climate policy. This paper makes an 

endeavor to synthesise these models in an integrated approach and provide stakeholders with a 

fully featured, robust decision support framework. The first step features the formulation of the 

PA model, in the aim of supporting policymakers by providing them with a set of optimal 

alternatives (Pareto set), instead of one optimal solution, which is rarely the case in this problem 

domain. To formulate the bi-objective problem, suitable objective functions (optimisation 

criteria) and constraints must be first defined. An appropriate programming method is selected 

to carry out the multi-objective optimisation, resulting in a Pareto optimal set of efficient 

portfolios. Here the AUGMECON2 method is suggested for the multi-objective modelling part. 

The second step requires the application of the GCAM model (or any similar IAM) in order to 

extract key quantitative information on the climate-energy bi-objective problem to be solved. 

The outputs of the IAM can be inserted as parameters in the bi-objective model (e.g. as 

objective function coefficients, constraints, etc.). This second step ensures that the information 

arising from the GCAM model is further utilised and exploited to give even more concrete and 

concise insights for decision making. In the next step, the optimisation process is enhanced with 

robustness features. The selected method of multi–objective modelling, namely the 

AUGMECON2 method, supports incorporation of stochastic uncertainty by appropriately 
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applying Monte Carlo simulation and the ITA technique. Finally, these three discrete steps lead 

to a specific, well-defined set of robust optimal portfolios from which the most preferable can 

be selected by the decision makers and could subsequently be used by a linked deterministic 

model. This kind of information is highly important for the decision makers when selecting 

technological portfolios that feature a high degree of uncertainty regarding their Pareto 

optimality. The proposed approach is summarised in concrete steps in the following figure 

(Figure 2).  

 

 

Figure 2: Proposed approach steps  

The expected added value of the proposed integration orbits around the gap between the output 

of formalised modelling frameworks and the actual policy questions that these are asked to help 

answer. The integrated assessment modelling component, in this implementation of the GCAM 

model, helps represent and evaluate the behaviour and interactions of the energy system with 

fossil fuel emissions, also providing insights into the resulting energy security associated with 

different power generation technologies and respective subsidy levels. However, the modelling 

outcomes cover the contributions and effects of individual electricity generation technologies, 

while decision makers must essentially evaluate the technological energy mix as a whole. 

Through the implementation of the PA module, the data resulting from the GCAM model are 

further evaluated in the form of portfolios, based on multiple optimisation criteria. This enables 

policymakers to select over a range of optimal portfolios, as generated in the Pareto Front, 

depending on the levels of the two optimisation criteria that better fulfill their needs. 

https://dx.doi.org/10.1016/j.jup.2019.01.006
http://creativecommons.org/licenses/by-nc-nd/3.0/


This document is the Accepted Manuscript version of a Published Work that appeared in final 

form in:  

Forouli A., Doukas H., Nikas A., Sampedro J., Van de Ven D.-J. 2019. Identifying optimal technological 

portfolios for European power generation towards climate change mitigation: A robust 

portfolio analysis approach. Utilities Policy. 57. 33-42. DOI (10.1016/j.jup.2019.01.006). 

© 2019 Elsevier Ltd. All rights reserved. 

This manuscript version is made available under the CC-BY-NC-ND 3.0 license 

http://creativecommons.org/licenses/by-nc-nd/3.0/ 

 

 

[Type here] 

 

Furthermore, given the need for robust decision making, cultivated by the uncertain dynamics 

of the energy market and long-term future developments, the proposed approach eventually 

attempts to evaluate the resulting technological R&D portfolios in light of uncertainty. This is 

done by assessing the impact of stochastic uncertainty in the optimal portfolios resulting from 

the PA component. 

Application Results and Discussion 

Step 1 – Problem Formulation 

This paper suggests an integrated approach to evaluate the performance of electricity generation 

technologies on an EU-27 level and in a timescale until 2050. To achieve this, a bi-objective 

programming mοdel for PA under uncertainty is utilised so that numerical results provided by 

the GCAM model can be appropriately aggregated.  

The analysis particularly focuses on six low-carbon generation technologies (𝑖 = 1 … 6), 

namely T1: photovoltaics (PV), T2: concentrated solar power (CSP), T3: wind, T4: nuclear, 

T5: biomass and T6: carbon capture and storage (CCS). We focus on these six technologies as 

they are, compared to conventional technologies, highly relevant for subsidisation in the near 

future towards reducing CO2 emissions at the EU level. Furthermore, geothermal or other 

technologies with smaller potential, however relevant, are not included to avoid complicating 

the portfolio analysis.  

Input from the GCAM model provides ten different subsidy values (𝑗 = 1 … 10), calculated as 

a multiplication of the unitary subsidies ($/GJ of electricity output, from 10 to 100% of the 

LCOE in 2010) with the electricity consumption of the analysed technology in 2050. Stemming 

from the fact that the short-term impact of policies promoting new technologies is considerably 

reduced by the installed power capacity in the base years of the analysis, the robust portfolio 

analysis is applied in the results until 2050 so that the effects of the technologies can be clearly 

visible. 

The problem is solved according to two optimisation criteria. The first objective function seeks 

to maximise the reduction of GHG emissions corresponding to specific budget investment:  

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑍2 = ∑ ∑ 𝐺𝐻𝐺𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑖, 𝑗) ∗ 𝐵(𝑖, 𝑗) 

10

𝑗=1

6

𝑖=1

 

Where 𝐺𝐻𝐺𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑖, 𝑗) is the emissions reduction achieved by the 𝑖th technology under 

budget option 𝑗.  

The second objective is to maximise the system’s energy security again in relation to the 

allocated budget.  
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𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑍1 = ∑ ∑ 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 (𝑖, 𝑗) ∗ 𝐵(𝑖, 𝑗) 

10

𝑗=1

6

𝑖=1

 

Where 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 (𝑖, 𝑗) is the contribution to energy security of technology 𝑖 under budget option 

𝑗.  

The objective functions’ coefficients, namely emissions reduction (𝐺𝐻𝐺𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑖, 𝑗)) and 

energy security (𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 (𝑖, 𝑗)) are collected as an outcome of the GCAM model. The 

decision variables of the model are binary. The binary variables 𝐵𝑖, 𝑗 represent the existence of 

the “𝑖 technology and 𝑗 subsidy” options corresponding to the specific technology selection 

((𝐵𝑖, 𝑗  =  1) or not (𝐵𝑖, 𝑗 =  0)).  

The model also incorporates five specific constraints.  

1. First of all, a budget constraint is used in order to secure that the cumulative cost of 

approved applications does not exceed a previously defined, overall budget. 

∑ ∑ 𝑆𝑢𝑏𝑠𝑖𝑑𝑦 (𝑖, 𝑗) ∗ 𝐵(𝑖, 𝑗) ≤ 𝑚𝑎𝑥𝐵𝑢𝑑𝑔𝑒𝑡 

10

𝑗=1

6

𝑖=1

 

Where 𝑚𝑎𝑥𝐵𝑢𝑑𝑔𝑒𝑡 is the total available budget and 𝑆𝑢𝑏𝑠𝑖𝑑𝑦 (𝑖, 𝑗) the 𝑗th cost option 

of technology 𝑖. In the specific application, the available budget is set equal to 35% of 

the maximum cost of all six technologies. 

2. This application also defines a minimum bound of emissions reduction to be achieved 

by the portfolio.  

∑ ∑ 𝐺𝐻𝐺𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑖, 𝑗) ∗ 𝐵(𝑖, 𝑗) ≥ 𝑚𝑖𝑛𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 

10

𝑗=1

6

𝑖=1

 

Where 𝑚𝑖𝑛𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 is the minimum required reduction of GHG emissions and 

𝐺𝐻𝐺𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑖, 𝑗) the emissions reduction when selecting the 𝑗th cost option of 

technology 𝑖. The emission reduction target is set equal to 40% of the emissions 

reduction that would be achieved if all technologies were subsidised at 100% of their 

total cost.  

3. Specific bounds are imposed to control the distribution of budget across the energy 

generation technologies, and with a focus on specific energy sources. In particular, it 

is considered preferable that nuclear projects not dominate a portfolio, as such projects 

are not supported in several countries of the EU. This condition is expressed with the 

https://dx.doi.org/10.1016/j.jup.2019.01.006
http://creativecommons.org/licenses/by-nc-nd/3.0/


This document is the Accepted Manuscript version of a Published Work that appeared in final 

form in:  

Forouli A., Doukas H., Nikas A., Sampedro J., Van de Ven D.-J. 2019. Identifying optimal technological 

portfolios for European power generation towards climate change mitigation: A robust 

portfolio analysis approach. Utilities Policy. 57. 33-42. DOI (10.1016/j.jup.2019.01.006). 

© 2019 Elsevier Ltd. All rights reserved. 

This manuscript version is made available under the CC-BY-NC-ND 3.0 license 

http://creativecommons.org/licenses/by-nc-nd/3.0/ 

 

 

[Type here] 

 

following constraint, defined as “nuclear energy is not allowed to be receive more than 

30% of the total available budget”: 

𝑆𝑢𝑏𝑠𝑖𝑑𝑦(𝑁𝑢𝑐𝑙𝑒𝑎𝑟, 𝑗) ∗ 𝐵(𝑁𝑢𝑐𝑙𝑒𝑎𝑟, 𝑗) < 0.3 ∗ 𝑚𝑎𝑥𝐵𝑢𝑑𝑔𝑒𝑡, ∀ 𝑗 = 1 … 10 

4. The next constraint allows for the determination of specific energy technology 

preferences. Through this particular constraint wind and photovoltaic energy are 

preferred as dominant technological sources, and the allocation of budget in such 

generation technologies “must thus collectively equal to more than 40% of the total 

available budget”.  

𝑆𝑢𝑏𝑠𝑖𝑑𝑦(𝑃𝑉, 𝑗) ∗ 𝐵(𝑃𝑉, 𝑗) + 𝑆𝑢𝑏𝑠𝑖𝑑𝑦(𝑤𝑖𝑛𝑑, 𝑗) ∗ 𝐵(𝑤𝑖𝑛𝑑, 𝑗) ≥ 0.4 𝑚𝑎𝑥𝐵𝑢𝑑𝑔𝑒𝑡, ∀ 𝑗 = 1 … 10 

5. In order to assure that only one budget option is allocated per technology, the following 

constraint is added.  

∑ 𝐵(𝑖, 𝑗) 

10

𝑗=1

≤ 1, ∀ 𝑖 = 1 … 6 

The constraint guarantees that, in the case of purchasing a new technology with a 

certain amount of budget, purchasing the same technology with another amount of 

budget is not possible. 

Table 1: Problem Definition - overview 

Decision Variables Description 

𝑩𝒊, 𝒋 

If 𝐵𝑖, 𝑗 =1 the pair “𝑖 technology and 𝑗 

subsidy” is approved.  

Otherwise if 𝐵𝑖, 𝑗 =0 the corresponding 

technology-subsidy pair is rejected. 

Objective Functions  Description 

𝒎𝒂𝒙𝒊𝒎𝒊𝒔𝒆 𝒁𝟏 
maximise the reduction of GHG emissions 

corresponding to specific subsidy  

𝒎𝒂𝒙𝒊𝒎𝒊𝒔𝒆 𝒁𝟐 
maximise the system’s energy security 

corresponding to specific subsidy  

Constraints Description 

Budget constraint Overall implementation cost must be less 

than 35% of maximum (i.e. if all 

technologies were subsidised at 100%). 
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Emissions reduction target Overall emissions reduction must be greater 

than 40% of maximum (i.e. if all 

technologies were subsidised at 100%). 

Nuclear constraint Participation of Nuclear power cannot be 

greater than 30%. 

Wind and PV dominance  More than 40% of the total available budget 

must be allocated to wind and PV energy. 

Unique subsidy constraint One budget option can be allocated per 

technology. 

 

Stemming from the above analysis it is important to highlight that the contribution of each 

technology in energy security and emission reduction is linked with a certain implementation 

cost (variable j). By that, and considering 1) the overall maximum budget constraint which the 

implementation cost of all technologies must not exceed and 2) the two objective functions 

aiming to achieve the maximum of energy security and emissions reduction, the model 

identifies the alternatives (portfolios of technologies) that give the maximum contribution to 

energy security and emission reduction, with a minimum of budget investment, thus also 

featuring the inherent notion of “cost-effectiveness”. 

Step 2 – Input Data  

The study makes use of GCAM in order to quantify the GHG reduction benefits and the 

contribution of individual technologies to EU’s energy security, for different budget options 

(subsidies). As required in the previous step, ten subsidy levels are defined and their individual 

interaction to GHG reduction and contribution to energy security is assessed for each of the six 

technologies, based on the GCAM model.  

For calculating the subsidy, the unitary subsidies ($/energy unit, from 10 to 100% of the energy 

technology Levelised Cost of Energy - LCOE) are multiplied with electricity consumption of 

the examined technology in 2050. LCOE is calculated from a mixed set of data on capital and 

maintenance costs, efficiency, capacity factors, etc. The modelling assumptions used in this 

application are documented in Muratori et al. (2017). The subsidisation procedure to the EU-

27 region is applied in the period from 2020 to 2050 by adding up the results for EU12 and 

EU15, which are the two EU regions predefined in the GCAM 4.3 model. 

Energy security is calculated as the energy produced in the region divided by the total energy 

consumed in the region. Energy consumption data for the base years (up to 2010) is provided 

by the International Energy Agency (IEA) and simulated by the GCAM model until 2050.  

EU-27 future fossil fuel production has been taken from the estimates of IEA. Biomass local 

production and consumption are also extracted from the model. Finally, it is assumed that all 
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of the renewable (solar, wind, geothermal and hydropower) and nuclear energy is produced and 

consumed inside the region. 

Table 2: Maximum contributions per technology  

Technology Maximum Energy Security Maximum GHG emissions reduction 

PV 80.9% 510.86 MTC 

CSP 53.2% 93.20 MTC 

Wind 70.0% 296.55 MTC 

Nuclear 95.1% 730.20 MTC 

Biomass 48.6% 322.08 MTC 

CCS 48.0% 157.93 MTC 

 

The most interesting finding of this step is that, as expected, the subsidisation of different clean 

energy sources would result in positive and substantial emission reductions. However, the 

features of each technology (such as cost, intermittency or lifetime) cause CO2 reduction paths 

to differ among the technologies. 

Considering the assumption that renewable and nuclear energy is produced and consumed 

within the region, subsidising those sources benefits energy security. Nevertheless, energy 

security decreases when the budget is spent on CCS and biomass. This is consistent because 

supplies of fossil and bio-energy are limited, so the region should import these resources from 

abroad if regional demand increases. Consequently, although subsidising CCS or biomass 

would entail significant CO2 reductions per unit of subsidy, it might also result in energy 

security related problems. 

Step 3 - Uncertainty Management and Robustness Assessment 

After selecting the input data the PA model as described in Step 1 is run, resulting in a set of 

optimal portfolios, i.e. the Pareto Front, the robustness of which is assessed in this step. The 

Pareto Front is illustrated in Figure 3, in which the most robust portfolios are further 

highlighted. This is easier to understand when considering that Figure 3 corresponds to the 6th 

round of the ITA implementation, where a standard deviation of σ =0% is reflected, 

corresponding to the Pareto Front when no uncertainty is considered, as described below. 
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Figure 3: Final Pareto front of robust portfolios 

The uncertainty characterising the estimation of technology performance, in reducing GHG 

emissions as well as contributing to energy security, is expressed by introducing normal 

distributions for relevant technologies’ values. Specifically, the mean value for the normal 

distributions is set equal to the estimated values as obtained from the runs of the GCAM model, 

and the standard deviation of the iterations equal to 5%, 4%, 3%, 2%, 1%, and 0% 

corresponding to six ITA rounds. The whole process (model building, random sampling, Pareto 

set generation) is implemented within the GAMS platform. 1,000 Monte Carlo iterations are 

performed for each ITA computation round. It must be noted that, in the specific application, a 

94% acceptance threshold for the green set is determined (if a portfolio is present in 94% of 

Pareto sets i.e. in 940 out of 1,000). 

The results of multi-objective ITA are shown in Table 3. There are in total 842 POPs that 

participate in 1,000 Pareto sets of the initial round. At subsequent iterations, the standard 

deviation of sampling distributions is reduced as shown in the first column of Table 3. 

Eventually, on the last round the final Pareto set is obtained; this comprises 16 POPs of R&D 

electricity generation technologies. The additional information that ITA gives is that it reveals 

which of these 16 portfolios can be considered more certain than others. The degree of certainty 

for each portfolio is directly related to the corresponding round that it enters the green set (the 

earlier the portfolio enters the green set, the more certain the decision makers is about its Pareto 

optimality). 

Table 3: ITA results  

  Green Red Grey 

𝝈 = 𝟓% Round 1 0 0 842 
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𝝈 = 𝟒% Round 2 0 321 521 

𝝈 = 𝟑% Round 3 1 546 295 

𝝈 = 𝟐% Round 4 2 704 136 

𝝈 = 𝟏% Round 5 3 779 60 

𝝈 = 𝟎% Round 6 16 826 0 

 

The final set of the 16 POPs with the most robust portfolios illustrated by bubbles of greater 

size is shown in Figure 3 and further elaborated in Figure 4.  
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Figure 4: Technology contribution in the 16 robust portfolios 

The portfolio that corresponds to the maximum robustness exhibits energy security of 63.82% 

and emission reduction of 1,345.8 MTC and is further elaborated in Table 4. It is noteworthy 

that CCS and biomass shares in the portfolio budget are rather small, despite featuring high 

contribution to emissions reduction; regardless of the capacity to invest more, larger 

investments in these technologies would negatively affect the energy security-emissions 

reduction tradeoff. The second and third most robust portfolios involve subsidies for CSP 

energy in a significantly lesser amount, while subsidies in biomass and CCS-equipped plants 

are doubled. However, contribution of PV, wind and nuclear in the investment mix appears to 

be consistent among the robust portfolios. The final Pareto Front also indicates a reduction on 

energy security among the robust portfolios. This is justified by the fact that, as biomass is more 

likely to be imported, larger investments in this technology would have a negative impact on 

energy security. The same applies for combustible resources and, thus, CCS technologies. 

Table 4: Technologies participation in robust portfolios  

Technology 

Contribution to 

portfolio’s total 

energy security  

Contribution to 

portfolio’s total 

emissions reduction 

Share of total 

portfolio budget 

Portfolio 1 

PV 18.80% 13.91% 36.41% 

CSP 14.83% 5.03% 11.61% 

Wind 19.98% 22.53% 18.49% 

Nuclear 22.25% 36.79% 25.81% 

Biomass 11.60% 12.10% 5.16% 

CCS 12.54% 9.64% 2.52% 

Ranges of the technologies’ contributions in robust portfolios 1-16 

PV 18.56% - 19.20% 13.71% - 17.05% 36.41% - 39.19% 

CSP 13.78% - 14.83% 2.59% - 6.16% 4.36% - 12.51% 

Wind 19.72% - 20.40% 22.20% - 27.60% 18.49% - 19.92% 

Nuclear 21.96% - 22.72% 36.25% - 45.06% 25.81% - 27.79% 

Biomass 11.52% - 12.55% 0.85% - 14.09% 0.13% - 9.89% 

CCS 12.27% - 12.67% 3.21% - 11.44% 0.45% - 4.87% 

 

Conclusion 
This paper links two models used to explore potential strategies of climate change mitigation 

and energy planning, namely an IAM with a robust PA model. The application particularly 

focuses on the evaluation of EU-27 electricity generation options in a long-term perspective 
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(2050). The analysis properly integrates the GCAM model results into a portfolio generation 

model, while also treating exogenous uncertainty stochastically. The outcome of the proposed 

approach is a set of optimal electricity generation portfolios, among which the most robust is 

selected.  

The results give an indication on how subsidisation among the energy generation technologies 

should be allocated. The analysis shows that technologies like PV, wind and nuclear energy 

must be prioritised and subsidised; while investments in biomass, CCS and CSP appear to 

contribute less to EU’s power generation mix, when considering the given time horizon and 

both of the problem’s objectives, i.e. overall GHG emissions reduction and energy security 

maximisation. Further analysis of the inherent stochastic uncertainty indicates that the three 

technologies with the largest shares in the portfolio budget also appear to be the most robust, 

in the context of this particular problem. Policymakers are therefore provided with clear 

recommendations regarding PV, wind and nuclear, as well as flexibility to select among 

different options in CCS, CSP and biomass. 

It is important to note that the calculated outputs of this analysis are strongly dependent on the 

modelling assumptions; the results should be carefully interpreted, while taking into 

consideration the assumptions outlined and referred to in the “Input Data” section. For instance, 

introducing other power generating (e.g. geothermal) or energy efficiency technologies, with 

substantial potential relevant for the European region, could have an impact on the resulting 

subsidisation portfolios and therefore constitute an interesting future direction of the proposed 

research. 

Further prospects towards enriching the proposed methodological framework potentially 

include integrating the PA model with other climate-economy models, which cover a complete 

set of relevant emissions and a different level of granularity from the GCAM model. This can 

be extended to the assumed economic approach of the linked IAM, by additionally integrating 

the PA component with general equilibrium or macroeconometric models, and shifting the 

focus from aspects that partial equilibrium modelling highlights, thus maximising the 

robustness of the framework’s findings. It is also interesting to use nationally disaggregated 

data and proceed to carrying out country-level analyses based on the methodological framework 

developed and presented in this study, either with GCAM or with other climate-economy 

modelling frameworks like the PRIMES or JRC-EU-TIMES models for modelling on European 

countries. 

Finally it should be noted that, although the proposed methodological framework is in the 

context of emerging scientific paradigms in support of climate policymaking that highlight the 

need to reduce or help understand uncertainty (Doukas et al., 2018), by providing information 

on the level of certainty associated with resulting policy options thereby maximising the 
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robustness of the results and adding value for policymakers, the latter are not actively involved 

in the study. There is huge potential in involving both policymakers and other stakeholder 

groups in policy analysis, in order to understand the motives and strategies of all actors relevant 

in the required transformations (Turnheim et al., 2015), as well as exploit their expertise to 

bridge knowledge gaps and further reduce the various uncertainties in this domain (Nikas et al., 

2017). In this respect, it would be interesting to work with stakeholders and decision makers in 

climate action, by expanding the method to some other regions and/or technologies, or 

eliminating any of the used ones; as well as to better incorporate real-world context in the 

modelling assumptions, constraints and parameters of the modelling exercise.  
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