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Abstract
Aim: Systematic	conservation	planning	 is	vital	 for	allocating	protected	areas	given	
the	spatial	distribution	of	conservation	features,	such	as	species.	Due	to	incomplete	
species	inventories,	species	distribution	models	(SDMs)	are	often	used	for	predicting	
species’	habitat	suitability	and	species’	probability	of	occurrence.	Currently,	SDMs	
mostly	ignore	spatial	dependencies	in	species	and	predictor	data.	Here,	we	provide	a	
comparative	evaluation	of	how	accounting	for	spatial	dependencies,	that	is,	autocor‐
relation,	affects	the	delineation	of	optimized	protected	areas.
Location: Southeast	Australia,	Southeast	U.S.	Continental	Shelf,	Danube	River	Basin.
Methods: We	employ	Bayesian	spatially	explicit	and	non‐spatial	SDMs	for	terrestrial,	
marine	and	freshwater	species,	using	realm‐specific	planning	unit	shapes	(grid,	hexa‐
gon	and	subcatchment,	respectively).	We	then	apply	the	software	gurobi	to	optimize	
conservation	 plans	 based	 on	 species	 targets	 derived	 from	 spatial	 and	 non‐spatial	
SDMs	 (10%–50%	each	 to	 analyse	 sensitivity),	 and	 compare	 the	delineation	of	 the	
plans.
Results: Across	realms	and	irrespective	of	the	planning	unit	shape,	spatially	explicit	
SDMs	(a)	produce	on	average	more	accurate	predictions	in	terms	of	AUC,	TSS,	sensi‐
tivity	 and	 specificity,	 along	with	 a	 higher	 species	 detection	 probability.	 All	 spatial	
optimizations	meet	the	species	conservation	targets.	Spatial	conservation	plans	that	
use	predictions	from	spatially	explicit	SDMs	(b)	are	spatially	substantially	different	
compared	to	those	that	use	non‐spatial	SDM	predictions,	but	(c)	encompass	a	similar	
amount	of	planning	units.	The	overlap	in	the	selection	of	planning	units	is	smallest	for	
conservation	plans	based	on	the	lowest	targets	and	vice	versa.
Main conclusions: Species	distribution	models	are	core	tools	 in	conservation	plan‐
ning.	Not	surprisingly,	accounting	for	the	spatial	characteristics	in	SDMs	has	drastic	
impacts	on	the	delineation	of	optimized	conservation	plans.	We	therefore	encourage	
practitioners	to	consider	spatial	dependencies	in	conservation	features	to	improve	
the	spatial	representation	of	future	protected	areas.
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1  | INTRODUCTION

In	the	light	of	the	ongoing	decline	in	global	biodiversity	(Pimm	et	al.,	
2014),	the	implementation	of	protected	areas	in	the	terrestrial,	ma‐
rine	and	freshwater	realms	is	yet	the	most	widely	used	conservation	
approach	to	 reduce	the	 loss	of	biodiversity.	Consequently,	how	to	
delineate	protected	areas	so	that	they	produce	optimal	outcomes	for	
the	targeted	conservation	features	in	a	cost‐effective	way	has	been	
widely	 covered	 in	 the	 systematic	 conservation	 planning	 literature	
(Barnes,	Glew,	Wyborn,	&	Craigie,	2018;	Margules	&	Pressey,	2000).	
In	 the	past,	 conservation	goals	mainly	 reflected	habitat	or	 species	
representation.	Only	recently	the	focus	has	shifted	towards	consid‐
ering	environmental	and	ecological	processes,	which	are	essential	for	
securing	species	persistence	(e.g.,	Klein	et	al.,	2009).	Such	processes	
shape	the	distribution	and	abundance	of	species	 (Pressey,	Cabeza,	
Watts,	Cowling,	&	Wilson,	2007)	with	connectivity	playing	a	para‐
mount	and	distinct	role	in	terrestrial	(Lockwood,	2010),	marine	(Carr	
et	al.,	2003),	and	freshwater	ecosystems	(Hermoso,	Filipe,	Segurado,	
&	Beja,	2018).	Incorporating	spatial	connectivity	in	the	planning	pro‐
cess	has,	therefore,	 important	implications	for	designing	protected	
areas	(Daigle	et	al.,	2018;	van	Teeffelen,	Cabeza,	&	Moilanen,	2006;	
Weeks,	2017).	This	fact	is	also	reflected	in	the	software	that	is	used	
in	conservation	planning,	such	as	marxan	(Ball,	Possingham,	&	Watts,	
2009)	or	zonation (Lehtomäki	&	Moilanen,	2013).	All	of	them	base,	
among	other	parameters,	the	selection	of	potential	planning	units	on	
algorithms	that	account	for	their	spatial	connectivity.

When	 accounting	 for	 spatial	 connectivity,	 conservation	 plans	
inherently	build	the	protected	areas	based	on	the	spatial	dependen‐
cies	in	the	planning	units	as	well.	For	example,	it	is	vital	to	account	
for	the	spatial	structure	of	the	environment	around	a	given	planning	
unit	for	assessing	its	importance	as	part	of	a	protected	area	(Daigle	
et	al.,	2018;	Weeks,	2017).	However,	this	key	characteristic	of	spatial	
dependency	is	rarely	applied	in	the	underlying	conservation	features	
themselves,	which	provide	the	basis	for	the	conservation	planning.

The	most	widely	used	conservation	feature	in	conservation	plan‐
ning	is	the	geographical	distribution	of	multiple	species,	as	species	
distributions	are	often	best	known	compared	to	other	biodiversity	
facets	 (such	 as	 functional	 or	 phylogenetic	 characteristics	 of	 spe‐
cies;	McGill,	Dornelas,	Gotelli,	&	Magurran,	2015).	However,	species	
point	occurrence	data	alone	are	not	useful	in	systematic	conserva‐
tion	planning,	which	requires	range‐wide	and	seamless	data	of	the	
targeted	 conservation	 features	 (Tulloch	 et	 al.,	 2016).	 This	 is	 likely	
one	of	the	major	challenges	for	conservation	planners—to	overcome	
the	Wallacean	shortfall,	that	is,	to	know	the	full	geographical	distri‐
bution	of	 species	 (Bini,	Diniz‐Filho,	Rangel,	Bastos,	&	Pinto,	2006;	
Meyer,	Weigelt,	&	Kreft,	2016).

Currently,	species	distribution	models	(SDMs)	are	the	main	tools	
used	to	produce	such	range‐wide	species	distribution	data	(Guisan	&	
Thuiller,	2005).	SDMs	assess	habitat	preferences	in	an	environmen‐
tal	envelope	given	the	species	occurrences	and	the	environmental	
predictors	 at	 the	 respective	 locations,	 and	 project	 a	 probabilistic	
habitat	 suitability	 index	 across	 the	 study	 area	 (Elith	 &	 Leathwick,	
2009).

Species	distribution	models	are	considered	useful	 in	conserva‐
tion	planning	when	used	within	a	“structured	and	transparent	deci‐
sion‐making	process”	(Guisan	et	al.,	2013).	In	reality,	however,	most	
conservation	 plans	 are	 still	 based	 on	 species’	 surrogates	 such	 as	
habitat	maps,	expert‐derived	species	distributions,	or	connectivity	
surfaces	(Tulloch	et	al.,	2016).	As	reviewed	by	Tulloch	et	al.	(2016),	
SDMs	are	not	yet	widely	used	in	conservation	planning	because	of	
several	constraints:	 (a)	poor	availability	of	species	occurrence	data	
and	 (b)	 respective	predictor	data,	 (c)	uncertainties	associated	with	
the	data	and	(d)	the	wish	to	understand	processes	rather	than	pat‐
terns,	requiring	alternative	and	additional	data.	Here,	(a–c)	are	clearly	
methodological	issues	that	need	to	be	assessed	with	care,	while	(e)	
goes	beyond	the	expectations	towards	SDMs,	since	per	definition,	
they	do	not	deliver	information	on	processes.	Hence,	it	is	key	to	dis‐
tinguish	between	constraints	that	can	be	tackled	(Dormann,	2007;	
Fourcade,	 Besnard,	 &	 Secondi,	 2018;	 Pearson	 &	 Dawson,	 2003),	
and	 those	 that	are	beyond	 the	actual	purpose	of	SDMs	 (Araújo	&	
Peterson,	2012).

Species	 distribution	models	 require	 rigorous	 testing	 for	meth‐
odological	 issues	 and	 statistical	 shortcomings	 (Record,	Fitzpatrick,	
Finley,	Veloz,	&	Ellison,	2013;	Tulloch	et	al.,	2016).	Given	that	spatial	
conservation	plans	incorporate	spatial	information	among	planning	
units,	 it	 is	 obvious	 that	 SDMs	 that	 yield	 the	 conservation	 feature	
data	 should	make	use	of	 the	 same	 information.	However,	 the	 few	
studies	that	modelled	and	used	species	distributions	for	conserva‐
tion	 planning	 are	 typically	 not	 accounting	 for	 such	 spatial	 depen‐
dencies	 (e.g.,	 in	 the	 terrestrial	 (Rondinini	 et	 al.,	 2011),	 freshwater	
(Esselman	&	Allan,	2011)	and	marine	realms	(McGowan	et	al.,	2013),	
but	 see	White,	Schroeger,	Drake,	and	Edwards	 (2014)).	The	disad‐
vantage	 of	 such	 spatially	 implicit	 SDMs	 (hereafter	 referred	 to	 as	
“non‐spatial	SDMs”)	 is	 that	they	do	not	account	for	spatial	depen‐
dence	or	irregular	sampling	intensity	(e.g.,	Latimer,	Wu,	Gelfand,	&	
Silander,	2006),	and	frequently	violate	the	assumption	of	 indepen‐
dent	samples	and	spatial	units	(Araujo,	Pearson,	Thuiller,	&	Erhard,	
2005;	Hampe,	2004).	Assuming	independence	of	spatial	units	means	
that	the	model	is	not	aware	of	the	predicted	habitat	suitability	of	a	
given	species	 in	neighbouring	planning	units.	 In	contrast,	 the	opti‐
mization	 of	 the	 spatial	 conservation	 plan,	 that	 is,	 the	 selection	 of	
planning	 units,	 does	 account	 for	 the	 spatial	 relation	 among	 them,	
favouring	neighbouring	ones	over	those	that	are	far	apart.

In	 contrast,	 spatially	 explicit	 SDMs	 (“spatial	 SDMs”)	 account	
for	the	proximity	and	mobility	(i.e.,	connectivity)	in	species	popula‐
tions.	Hence,	they	provide	more	powerful	 inference	about	species	
distributions	 and	 niche	 relations	 (Latimer	 et	 al.,	 2006;	 De	Marco,	
Diniz‐Filho,	&	Bini,	 2008).	 Incorporating	 the	 assumption	of	 spatial	
dependencies	 in	 the	 data	 has,	 therefore,	 the	 potential	 to	 provide	
more	robust	SDM	predictions	(Guisan	&	Thuiller,	2005;	Record	et	al.,	
2013).	Most	importantly	from	a	conservation	planning	perspective,	
spatial	 SDMs	make	 use	 of	 the	 spatial	 information	 and	 dependen‐
cies	of	 the	species	and	environment	 in	 the	planning	units.	Habitat	
suitability	 predictions	 from	 spatial	 SDMs	 are	 generally	more	 con‐
tiguous	(Domisch,	Wilson,	&	Jetz,	2016)	and	less	patchy	than	those	
derived	from	non‐spatial	SDMs.	The	question	remains,	whether	such	
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contiguous	predictions	have	the	potential	to	maximize	the	manage‐
ment	efficiency	of	spatial	plans.

Species	distribution	models	can	be	made	spatially	explicit	in	nu‐
merous	ways	(see	Dormann,	2007,	for	a	review	of	various	methods).	
Spatial	aspects	are	 included	 in	the	SDM	given	the	spatial	autocor‐
relation	of	species	distributions	 (Besag,	1974;	Record	et	al.,	2013).	
Spatial	 autocorrelation	 is	 a	 common	 phenomenon	 in	 ecology,	 as	
nearby	locations	(given	species	occurrences	and	environmental	pre‐
dictors)	tend	to	be	more	similar	compared	to	those	located	farther	
apart	(Legendre,	1993;	Record	et	al.,	2013).	One	possible	method	to	
add	the	spatial	dimension	in	SDMs	can	be,	for	instance,	through	spa‐
tial	random	effects	(Dormann,	2007).	Spatial	random	effects	can	be	
computationally	demanding.	However,	their	use	may	be	warranted—
or	even	required—when	the	task	is	to	limit	the	false	positive	and	false	
negative	predictions	of	probability	of	occurrence	within	a	spatial	unit	
(Record	et	al.,	2013).	Limiting	false	positive/negative	predictions	is	
crucial	in	conservation	planning,	since	the	over‐	or	underestimation	
of	 suitable	 habitats	 (and	 therefore	 species	 occurrences)	 impacts	

species	protection	itself	and	produces	unnecessary	costs,	that	is,	for	
establishing	protected	areas	in	erroneous	locations	where	the	target	
species	do	not	actually	occur.

Here,	we	analyse	whether	accounting	for	spatial	dependencies	
in	both	steps,	the	spatial	prioritization	process	and	in	the	underlying	
conservation	features	(here:	species),	influences	the	arrangement	of	
potential	protected	areas.	Using	species	survey	data,	we	build	non‐
spatial	and	spatial	SDMs	and	compare	the	resulting	mapped	spatial	
conservation	plans	across	a	 range	of	 conservation	 targets,	 that	 is,	
proportions	of	potential	species	distribution	areas.	We	hypothesize	
that	(a)	spatial	SDMs	would	outperform	non‐spatial	SDMs	in	terms	
of	model	evaluation	scores,	since	spatial	SDMs	account	for	the	 in‐
fluence	of	proximity	in	species	populations;	(b)	this	effect	cascades	
through	 to	 the	 spatial	 conservation	 plans,	 and	 that	 those	 derived	
from	spatial	SDMs	would	differ	significantly	from	the	ones	based	on	
non‐spatial	SDMs.	We	test	these	hypotheses	in	three	case	studies	
covering	 terrestrial,	marine	 and	 the	 freshwater	 realms.	We	 do	 so,	
because	protected	areas	 in	each	 realm	are	 typically	planned	using	

F I G U R E  1  Spatial	arrangement	of	
potential	protected	areas	derived	from	
non‐spatial	and	spatial	SDMs,	as	well	as	
their	overlap	in	the	terrestrial	(a),	marine	
(b)	and	freshwater	realms	(c),	each	using	
a	specific	planning	unit	shape	(grids,	
hexagons,	subcatchments).	Spatial	plans	
were	defined	for	a	20%	conservation	
target	within	a	10%	gap	to	optimality.	
The	inset	shows	the	location	of	the	study	
areas	in	Australia,	US	East	Coast	and	
the	Danube	river	basin.	See	Supporting	
Information	Figures	S3–S5	for	maps	
showing	a	wider	range	of	conservation	
targets
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different	shapes	of	spatial	units	(grids,	hexagons	and	subcatchments,	
respectively),	and	the	planning	unit	shape	has	shown	to	impact	the	
spatial	 pattern	 and	 effectiveness	 of	 protected	 areas	 (Nhancale	 &	
Smith,	2011).

2  | METHODS

2.1 | General workflow of the analysis

Our	aim	is	to	test	whether,	and	if	so,	how	the	addition	of	spatial	in‐
formation	in	the	SDMs	leads	to	different	species	habitat	suitability	
predictions,	and	hence	to	different	spatial	conservation	plans.	The	
analysis	is	divided	into	five	stages:	(a)	preparing	the	data	and	aggre‐
gating	it	into	spatial	units;	(b)	testing	the	degree	of	spatial	autocor‐
relation	 in	 the	 species	data	 to	 see	whether	adding	 spatial	 random	
effects	 in	 the	SDMs	 is	warranted;	 (c)	 running	 two	SDMs	 for	 each	
species,	one	that	does	not	use	the	spatial	 information	 (non‐spatial	
SDM)	and	another	one	that	takes	advantages	of	the	spatial	informa‐
tion	via	the	spatial	random	effects	(spatial	SDM);	(d)	using	the	out‐
puts	from	the	spatial	and	the	non‐spatial	SDMs	as	separate	inputs	
to	calculate	spatially	optimized	conservation	plans	with	varying	con‐
servation	targets;	and,	finally,	(e)	comparing	the	spatial	conservation	
plans	derived	from	the	non‐spatial	and	the	spatial	SDMs.	As	the	non‐
spatial	and	spatial	SDMs	are,	except	for	the	spatial	random	effects,	
identical,	this	allows	us	to	single	out	the	effect	that	the	spatial	infor‐
mation	in	SDMs	has	on	the	subsequent	spatial	conservation	plans.

2.2 | Study areas and species data

The	terrestrial	case	study	 (Figure	1a)	comprised	survey	data	of	33	
Eucalyptus	 species	 in	Eastern	Australia	derived	 from	Fithian,	Elith,	
Hastie,	and	Keith	(2015).	This	dataset	encompasses	species	detec‐
tions/non‐detections	sampled	annually	 from	1970	to	2013	as	well	
as	environmental	data	covering	climate	and	topography	and	deriva‐
tives	 thereof	 (Fithian	et	 al.	2015).	Environmental	data	 layers	were	
re‐sampled	from	the	original	250‐m	spatial	resolution	by	factor	20	to	
obtain	a	grid	with	the	individual	squares	sizing	0.05°	(approximately	
25	km2),	using	the	raster	package	in	R	(Hijmans	&	van	Etten,	2018;	
R‐Core‐Team,	2018).	This	yielded	7,763	grid	cells	that	were	used	for	
all	subsequent	analyses.

The	marine	case	study	(Figure	1b)	consisted	of	monitoring	data	
of	53	reef	fish	species	in	the	Southeast	U.S.	Continental	Shelf	re‐
gion.	 Fish	 detections	 and	 non‐detections	 were	 derived	 from	 the	
Southeast	Reef	Fish	Survey	 (SERFS)	 that	was	conducted	annually	
from	 1990	 to	 2013	 (Bacheler	 et	 al.,	 2014;	 SEAMAP‐SA,	 2017).	
Environmental	data	on	ocean	 topography,	currents,	nutrients	and	
light	 were	 obtained	 from	 the	 Bio‐Oracle	 (approx.	 9	km	 spatial	
grain	 at	 the	 Equator,	 Tyberghein	 et	 al.,	 2012;	 Assis	 et	 al.,	 2018)	
and marsPeC	 datasets	 (approx.	 1	km,	 Sbrocco	 &	 Barber,	 2013).	
All	environmental	data	were	harmonized	to	7,123	hexagonal	grids	
of	approx.	19	km2,	and	the	species	data	were	summarized	for	each	
hexagonal	 grid	 cell	 (created	 using	 the	 R‐package	 sP;	 Pebesma	 &	
Bivand,	2005;	Bivand,	Pebesma,	&	Gomez‐Rubio,	2013).

The	 freshwater	 case	 study	 (Figure	 1c)	 was	 based	 on	 detec‐
tion/non‐detection	 data	 of	 85	 fish	 species	 across	 the	 Danube	
river	 basin.	 Fish	 survey	 data	were	 derived	 from	 the	 EFI+	 and	 the	
BioFresh	project	databases,	sampled	during	1955–2007	(Schinegger,	
Pletterbauer,	Melcher,	&	Schmutz,	2016;	Zupancic,	2015).	We	used	
the	HydroBASIN	dataset	(Lehner	&	Grill,	2013)	and	selected	all	level	
12	subcatchments	draining	into	the	Black	Sea,	comprising	of	7,376	
subcatchments	with	an	average	size	of	108	km2.	We	then	extracted	
climatic	 (Hijmans,	 Cameron,	 Parra,	 Jones,	 &	 Jarvis,	 2005),	 topo‐
graphic	 (Amatulli	et	al.,	2018)	and	 land	cover	variables	 (Tuanmu	&	
Jetz,	2014,	all	at	~1	km	spatial	grain),	as	well	as	the	number	of	dams	
(Lehner	et	al.,	2011)	for	each	subcatchment,	the	latter	representing	
a	proxy	for	human	impact	besides	land	use.

Species	data,	 including	 species	detections,	non‐detections	and	
sampling	 dates,	 were	 aggregated	 to	 the	 planning	 units.	 Within	
each	planning	unit,	environmental	data	were	aggregated	using	var‐
ious	 techniques	 (e.g.,	 average,	 standard	 deviation;	 see	 Supporting	
Information	 Table	 S1).	 In	 the	 freshwater	 realm,	 we	 summed	 the	
precipitation	 across	 each	 subcatchment	 and	 routed	 the	 upstream	
accumulated	precipitation	along	the	hydrography	to	mimic	 run‐off	
(Domisch,	Amatulli,	&	Jetz,	2015).

From	a	large	set	of	layers	per	case	study,	we	selected	those	that	
are	meaningful	from	an	ecological	perspective	to	describe	the	distri‐
bution	of	the	species.	The	decision	regarding	the	choice	of	predic‐
tors	was	based	on	a	mixture	of	expert	knowledge,	data	availability	
and	on	preliminary	model	runs:	For	each	realm,	we	did	multiple	pre‐
liminary	model	runs	where	we	tested	which	set	of	predictors	yields	
the	 highest	model	 evaluation	 scores.	Hence,	we	 aimed	 to	 get	 the	
best‐possible	model	predictions	for	each	realm.	The	set	of	predictors	
among	realms	is	different	as	each	realm	needs	to	take	realm‐specific	
characteristics	 into	 account.	 Highly	 intercorrelated	 environmental	
predictors	were	omitted	(i.e.,	where	Pearson's	correlation	tests	be‐
tween	different	predictors	yielded	a	correlation	coefficient	>0.7	or	
<−0.7)	(Dormann	et	al.,	2013,	see	Supporting	Information	Figure	S1	
for	all	predictors	used).	All	(continuous)	predictors	were	centred	(so	
all	predictors	have	a	mean	of	0)	and	scaled	by	dividing	by	their	stan‐
dard	deviations.	The	final	number	of	predictors	was	13,	11	and	8	for	
SDMs	in	the	terrestrial,	marine	and	freshwater	realms,	respectively.

2.3 | Defining spatial connectivity

Regarding	spatial	SDMs,	the	connectivity	among	planning	units	for	
the	 terrestrial	 and	 marine	 realms	 was	 computed	 from	 a	 polygon	
shapefile	using	the	R‐package	sPdeP	(using	the	queen's	move;	Bivand,	
Hauke,	&	Kossowski,	2013;	Bivand	&	Piras,	2015).	This	procedure	
identifies	all	first‐order	neighbours	of	each	focal	planning	unit,	that	
is,	 those	 planning	 units	 that	 are	 directly	 adjacent	 and	 connected.	
In	the	freshwater	realm,	it	is	crucial	to	account	for	the	longitudinal	
connectivity	 among	 planning	 units	 (Abell,	 Allan,	 &	 Lehner,	 2007;	
Hermoso,	 Linke,	 Prenda,	 &	 Possingham,	 2011).	 Hence,	 the	 spatial	
connectivity	was	defined	as	all	upstream	subcatchments	connected	
within	 a	 100	km	 (as‐the‐fish‐swims)	 distance	 of	 a	 given	 subcatch‐
ment.	This	distance	was	chosen	as	a	trade‐off	between	hydrological	
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connectivity	 (which	 can	 exceed	 100	km)	 and	 the	 computational	
demand	and	time	for	calculating	SDMs	and	spatial	plans.	Note	that	
with	this	information,	full	connectivity	matrices	(range‐wide	and	up/
downstream)	are	built	within	SDMs	and	the	spatial	prioritization.	In	
other	words,	 each	planning	unit	 “knows”	which	planning	units	 are	
connected	to	it.

2.4 | Detecting spatial autocorrelation

We	 first	 assessed	 the	 degree	 of	 spatial	 autocorrelation	 in	 species	
occurrences	among	planning	units	(where	occurrences	were	aggre‐
gated	within	planning	units).	Here,	we	used	the	Monte	Carlo	simu‐
lation	method	and	calculated	Moran's	 I	and	the	associated	p‐value	
for	each	species	 (at	α	=	0.05),	using	 the	R‐package	 sPdeP	 (with	999	
permutations).	Spatial	weights	were	kept	identical	to	the	connectiv‐
ity	definition	of	planning	unit	above,	specifying	proportional	weights	
to	the	connected	planning	unit	(row	standardization).

2.5 | Species distribution modelling

We	ran	Bayesian	occupancy	models	for	predicting	the	habitat	suitability	
of	species	in	each	realm.	Our	aim	was	to	minimize	the	methodological	
shortcomings	in	SDMs	that	could	be	ported	to	the	spatial	prioritization.	
Hence,	we	refrained	from	artificial	pseudo‐absences	to	draw	species	
non‐detections,	but	used	survey	data	with	repeated	visits	to	account	
for	the	detection	probability	of	species	at	given	sites.	Specifically,	we	
ran	 zero‐inflated	 binomial	 SDMs	 in	 a	 Bayesian	 framework	 using	 the	
hsdm	R‐package	(Vieilledent	et	al.,	2014)	with	“hSDM.ZIB”	and	“hSDM.
ZIB.iCAR”	functions	for	the	non‐spatial	and	spatial	SDMs,	respectively.	
These	functions	integrate	two	processes,	a	Bernoulli	suitability	and	a	
Binomial	observability	process,	 into	a	hierarchical	zero‐inflated	bino‐
mial	model.	The	Bernoulli	suitability	process	uses	species	point	records	
and	environmental	 predictors	 as	 the	 response	 and	explanatory	 vari‐
ables,	respectively	(Vieilledent	et	al.,	2014):

where zi	is	a	random	variable	describing	the	binary	habitat	suitabil‐
ity	 at	 planning	unit i,	which	 follows	 a	Bernoulli	 distribution	of	 pa‐
rameter	θi;	that	is,	the	probability	that	the	habitat	is	suitable	in	the	
planning	uniti. θi	is	expressed	as	a	linear	model	combining	the	matrix	
of	environmental	predictors	Xi	and	parameters	β	using	a	 logit	 link	
function.

In	the	spatial	models,	Equation	2	is	extended	by	an	intrinsic	con‐
ditional	autoregressive	model	(iCAR)	in	the	suitability	process:

where ρi	 is	 the	 spatial	 random	 effect	 of	 the	 planning	 uniti. ρi ac‐
counts	for	the	spatial	autocorrelation	of	the	presence	probabilities	

variability	 in	 suitability	 that	 is	not	explained	by	 the	environmental	
variables:

where μi	is	the	mean	of	ρi	in	the	neighbourhood	of	i,	Vρ	is	the	variance	
of	 the	 spatial	 random	effects,	 and	ni	 is	 the	number	of	 neighbours	
for	 the	planning	uniti	 (see	also	Latimer	et	al.,	2006,	 for	 the	formal	
description	of	 the	 iCAR).	 Thus,	we	 assume	 that	 in	 addition	 to	 the	
environmental	characteristics	within	the	planning	units,	the	species’	
occurrence	probabilities	also	depend	on	the	occurrence	probabilities	
of	the	neighbouring	planning	unit	 (Vieilledent	et	al.,	2014).	A	plan‐
ning	 unit	 with	 “poor”	 environmental	 conditions	 next	 to	 planning	
units	with	“good”	environmental	conditions	will	result	in	higher	es‐
timated	suitability,	than	if	its	neighbours	also	show	“poor”	environ‐
mental	conditions	(Domisch	et	al.,	2016).

Regarding	the	observability	process,	we	counted	the	number	
of	repeat	surveys	within	each	planning	unit;	that	is,	we	aggregated	
the	surveys	over	time,	yielding	the	information	on	how	often	each	
planning	unit	was	visited.	The	model	then	estimates	the	probabil‐
ity	of	observation	given	 the	species	presence	 in	a	planning	unit,	
where	we	assume	that,	if	the	species	was	observed	at	least	once	
during	multiple	visits	in	a	given	planning	unit,	the	habitat	is	suitable	
and	the	absence	of	the	species	during	other	visits	in	the	planning	
unit	 is	 due	 to	 imperfect	detection.	For	 instance,	 a	 given	 species	
was	observed	once	in	planning	units	A	and	B.	Planning	unit	A	was	
visited	once,	yielding	a	detection	probability	of	1,	whereas	B	was	
visited	 10	 times	 (yielding	 a	 detection	 probability	 of	 1/10	=	0.1).	
In	 combination	 with	 the	 suitability	 process	 (i.e.,	 environmental	
conditions)	and	the	spatial	autocorrelation	(i.e.,	the	spatial	neigh‐
bourhood	information),	the	observability	information	yields	more	
robust	estimates	in	unsampled	locations,	that	is,	whether	a	species	
actually	occurs	there	but	was	not	detected,	or	if	it	is	actually	not	
present	(and	hence	not	detected).	The	probability	of	observing	the	
species	(δρ)	was	specified	as:

where yi	 is	a	vector	of	 the	 total	number	of	observed	presences	 in	
planning	uniti. zi	is	the	binary	habitat	suitability	in	planning	uniti	from	
the	suitability	process	(Equation	1),	and	ti	denotes	the	total	number	
of	 visits	within	 the	planning	uniti,	 including	 the	non‐detections	 as	
described	above.	yi	follows	a	binomial	distribution	of	the	combina‐
tion	of	the	habitat	suitability	zi	at	planning	uniti	and	the	parameters	
δi and ti.	In	other	words,	δi	is	the	probability	of	observing	a	species	in	
a	location,	if	it	was	actually	present.	We	estimate	only	the	intercept	
(γ0)	using	a	logit	link	function	and	assume	a	spatially	constant	detec‐
tion	probability	(due	to	the	relatively	small	occurrence	datasets	and	
limited	spatial	replication	needed	to	understand	the	role	of	covari‐
ates	in	variable	detection	probabilities).

(1)zi∼Bernoulli(�i)

(2)logit (�i)=Xi�

(3)logit (�i)=Xi�+�i

(4)�i∼Normal(��V�∕ni)

(5)yi∼Binomial(zi×�iti)

(6)logit(�i)= �0
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We	ran	three	Markov	chain	Monte	Carlo	(MCMC)	simulations	
with	200,000	iterations	each,	a	burn‐in	phase	of	50,000	iterations	
and	a	thinning	interval	of	10.	Model	convergence	was	assessed	by	
the	multivariate	potential	scale	reduction	factor	(MPSRF;	Brooks	
&	Gelman,	1998).	For	the	suitability	process,	we	used	the	coeffi‐
cients	from	an	initial,	non‐spatial	generalized	linear	model	 (GLM)	
as	 initial	values,	and	both	suitability	and	observability	processes	
used	uninformative	priors	centred	at	zero	with	a	fixed	large	vari‐
ance	of	100	(Domisch	et	al.,	2016).	The	prior	distribution	for	the	
variance	of	 the	spatial	 random	effects	 followed	a	uniform	distri‐
bution,	that	is,	a	flat	prior	where	the	upper	bound	of	the	variance	
is	set	to	10.

Species	data	were	split	into	training	(70%)	and	validation	(30%)	
sets,	and	model	performance	for	each	species	was	evaluated	using	
the	area	under	curve	(AUC),	true	skill	statistic	(TSS),	sensitivity	and	
specificity	(true	positive	and	negative	predictions,	respectively)	and	
the	deviance	information	criterion	(DIC).	Note	that	the	non‐spatial	
SDMs	did	not	have	any	pre‐defined	spatial	configuration	during	the	
SDM	calibration	and	prediction;	that	is,	each	planning	unit	was	con‐
sidered	independent	of	each	other	in	the	SDMs,	while	all	other	data	
were	 kept	 constant	 (i.e.,	 identical	 random	 seed	 in	 the	 SDMs,	 and	
identical	predictors	and	species	data	 including	the	subsets	for	val‐
idation).	The	spatial	prioritization	was	undertaken	using	the	realm‐
specific	 spatial	 connectivity	 as	 described	 above,	 for	 predictions	
derived	from	both	non‐spatial	and	spatial	SDMs.

2.6 | Spatial prioritization

We	transformed	the	predictive	posterior	mean	probability	maps	from	
SDMs	into	a	semi‐binary	scheme	using	TSS	as	a	threshold	(Allouche,	
Tsoar,	&	Kadmon,	2006),	where	all	values	below	the	threshold	were	
converted	 to	 zero	 and	 values	 above	 the	 threshold	 retained	 their	
original	values.	This	overcomes	the	problem	of	inflating	the	spatial	
prioritization	with	many	planning	units	 having	 low	probabilities	of	
occurrence	 (e.g.,	 10	planning	units	with	probabilistic	 values	of	0.1	
would	equal	one	planning	unit	having	a	value	of	1).	Simultaneously,	
this	procedure	 retained	 the	 information	of	varying	probabilities	of	
occurrence	 (as	 recommended	by	Tulloch	et	al.,	2016)	above	a	cer‐
tain	level	of	confidence	as	given	by	TSS	(i.e.,	within	the	range	of	the	
predicted	 “presence”	 of	 a	 species).	 We	 refrained	 from	 locking‐in	
any	current,	already	established	protected	areas	as	this	would	have	
decreased	the	flexibility	in	selecting	protected	areas	given	only	the	
conservation	features,	which	was	the	aim	of	this	study.

To	create	the	boundary	files	(describing	the	spatial	connectivity)	
for	 the	 terrestrial	 and	marine	case	 studies,	we	used	 the	QMarxan	
toolbox	 in	 QGIS	 (QGIS‐Development‐Team,	 2017).	 For	 the	 fresh‐
water	 realm,	we	 applied	 an	 inverse‐distance	 connectivity	 penalty,	
where	subcatchments	 located	closer	to	a	given	focal	planning	unit	
would	get	 a	higher	penalty	 if	 not	 chosen	as	part	of	 the	protected	
area	(opposed	to	those	planning	units	located	more	distant,	as	pro‐
posed	by	Hermoso	et	al.	2011).

We	 first	 calibrated	 the	 boundary	 length	 modifier	 (BLM)	 for	
our	analyses.	The	BLM	 is	dimensionless	and	balances	 the	spatial	

aggregation	 and	 patchiness	 of	 spatial	 plans.	 For	 the	 BLM	 cali‐
bration,	we	used	 the	 software	marxan	 v.2.43v	 (Ball	 et	 al.,	 2009)	
within	 the	 R‐package	marxan	 (Hanson	 &	Watts,	 2015).	We	 cre‐
ated	all	necessary	input	files	in	base	R,	except	the	“input.dat”	file,	
where	for	convenience,	we	used	the	marxan	R‐package.	We	then	
calibrated	 the	 BLM	 following	 the	 recommendations	 by	 Ardron,	
Possingham,	 and	Klein	 (2008).	 First,	we	 ran	marxan	with	 a	 fixed	
species	penalty	 factor	of	10,	and	BLM	values	set	 to	0,	0.00001,	
0.0001,	 0.001,	 0.01,	 0.1,	 1,	 10,	 100,	 1,000,	 10,000,	 100,000	 to	
approximate	the	range	of	the	optimal	BLM	value.	We	plotted	the	
connectivity	against	the	BLM	(Supporting	Information	Figure	S6)	
and	identified	the	elbow,	that	is,	the	point	from	where	an	increase	
in	the	compactness	(higher	BLM	values)	has	no	major	effect	on	the	
connectivity	 in	 spatial	plans	anymore.	Similarly,	we	also	mapped	
the	 spatial	 plans	 to	 visually	 confirm	 the	 increasing	 compactness	
derived	from	increasing	BLM	values.	In	a	second	step,	we	repeated	
the	 previous	 analyses	 and	 maps	 with	 setting	 the	 BLM	 ranging	
within	 the	 approximate	 BLM	 value	 (e.g.,	 between	 10	 and	 100).	
Again,	we	ran	sensitivity	runs	within	increments	of	10	and	identi‐
fied	the	BLM	to	35,	20,	0.15	for	the	terrestrial,	marine	and	fresh‐
water	realms,	respectively	(Supporting	Information	Figure	S6).

We	 then	 used	 the	 gurobi oPtimizer	 7.5	 software	 (Gurobi	
Optimization,	2017)	to	find	optimal	conservation	planning	solutions	
based	on	integer	linear	programming	(ILP)	within	the	R‐package	Pri-
oritizr	 (Hanson	et	 al.,	 2017).	 ILP	has	 shown	 to	out‐compete	 tradi‐
tional	 simulated	 annealing	 tools	 (e.g.,	Marxan,	 Ball	 et	 al.,	 2009)	 in	
terms	of	time	and	accuracy	(Beyer,	Dujardin,	Watts,	&	Possingham,	
2016),	using	the	same	input	files	as	marxan.	We	varied	the	conser‐
vation	target	for	all	species	in	the	spatial	plans,	ranging	from	10%	to	
50%	in	5%	increments.	For	 instance,	a	conservation	target	of	20%	
means	that	for	each	species	20%	of	its	suitable	habitat	(as	given	by	
the	SDM	predictions)	are	required	in	this	specific	spatial	plan.

For	each	run,	we	allowed	a	10%	gap	to	optimality	 in	the	spatial	
plans	 (as	 trade‐off	 between	 optimality,	 and	 the	 time	 the	 optimizer	
takes	to	converge).	To	rule	out	the	effect	of	the	planning	unit	 itself	
(cost,	i.e.,	area	of	the	planning	unit),	we	set	a	constant	value	of	1	as	the	
cost	of	each	planning	unit.	Likewise,	we	set	no	weights	for	single	spe‐
cies.	This	means	that	only	the	conservation	features,	that	is,	the	prob‐
abilistic	information	on	species	habitat	suitability	and	the	connectivity	
penalty	(set	by	the	BLM),	were	decisive	to	the	objective	function	that	
was	set	to	minimize	the	total	number	of	planning	units	to	be	part	of	
the	 selected	 spatial	 plan	 (Game	&	Grantham,	2008).	Note	 that	 op‐
posed	to,	for	example,	marxan,	gurobi	provides	one	optimal	solution	
and	hence	requires	that	all	species	meet	the	conservation	target.

2.7 | Statistical analyses

For	 each	 realm	 and	model	 type,	 we	 compared	model	 accuracy	
given	the	model	evaluation	scores,	the	estimated	detection	prob‐
ability,	the	range	size	estimates	of	model	outputs	considering	all	
planning	units	 that	had	a	probability	value	above	 the	 threshold	
(equal	to	binary	predictions),	and	the	summed	probability	of	habi‐
tat	 suitability	 across	 all	 species	 within	 each	 planning	 unit	 as	 a	
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proxy	for	species	richness	(Mateo,	Felicísimo,	Pottier,	Guisan,	&	
Muñoz,	2012).	For	each	conservation	target	run	(10%–50%)	de‐
rived	from	spatial	and	non‐spatial	SDMs,	we	(a)	assessed	whether	
species	were	covered	by	the	spatial	plans,	(b)	counted	the	relative	
number	of	planning	units	needed	to	fulfil	the	given	target	of	the	
spatial	plan	and	(c)	compared	the	spatial	overlap	of	spatial	plans	
by	assessing	the	percentage	of	overlapping	spatial	units.

3  | RESULTS

3.1 | Spatial autocorrelation

Across	 the	 terrestrial,	 marine	 and	 freshwater	 realms,	 all	 but	
three	of	the	171	modelled	species	showed	a	significantly	positive	
spatial	autocorrelation	 (α	>	0.05	for	the	freshwater	fish	species	
White‐eye	 bream	 [Ballerus sapa],	 sunbleak	 [Leucaspius deline-
ates]	 and	 brown	 trout	 [Salmo trutta lacustris],	 see	 Supporting	
Information	 Table	 S2).	 Species	 occurrences	 across	 planning	
units	were	hence	non‐randomly	distributed,	warranting	the	use	
of	 spatial	 random	 effects	 within	 SDMs	 to	 account	 for	 spatial	
autocorrelation.

3.2 | Model performance

The	SDM	performance	indicators	AUC,	TSS,	sensitivity	and	specific‐
ity	were	on	average	consistently	higher	for	the	spatial	SDMs	than	for	

the	counter‐parts	(Figure	2).	DIC	was	on	average	lower	for	the	spa‐
tial	SDMs	in	the	terrestrial	and	freshwater	realm,	but	higher	in	the	
marine	realm	(marine	non‐spatial	vs.	spatial	SDMs;	DIC:	515	±	485	
vs.	534	±	596,	mean	±	SD).	All	 chains	of	 the	SDMs	converged	suc‐
cessfully	yielding	a	MPSRF	value	of	0.999.	The	detection	probability	
across	realms	was	on	average	consistently	higher	in	the	spatial	than	
in	the	non‐spatial	SDMs	(Figure	2f,l,r).

3.3 | Range size estimates

Spatial	 SDMs	 yielded	 generally	 more	 compact	 and	 less	 dispersed	
habitat	 suitability	 estimates	 (see	 exemplary	 maps	 in	 Supporting	
Information	Figure	S1),	and	this	effect	is	also	mirrored	in	the	range	
size	estimates.	Range	size	estimates	derived	from	spatial	SDMs	were	
significantly	 lower	 in	 the	 freshwater	 and	 terrestrial	 realms	 than	 in	
the	non‐spatial	models.	This	means	that	the	predictions	derived	from	
spatial	 SDMs	were	more	 restrictive	 and	 species'	 suitable	 habitats	
were	predicted	to	occur	in	less	planning	units	than	in	the	non‐spa‐
tial	SDMs	(see	exemplary	maps	in	Supporting	Information	Figure	S1;	
non‐spatial	vs.	spatial	SDMs	in	the	terrestrial	realm:	1,278	±	750	vs.	
1,057	±	690	planning	units,	paired	t‐test:	t	=	2.95,	df	=	32,	p	=	0.006;	
freshwater:	 2,874	±	1,491	 and	 2,532	±	1,409	 planning	 units,	
mean	±	SD,	paired	t‐test:	t	=	2.0493,	df =	84,	p	=	0.044).	In	the	marine	
realm,	no	significant	difference	in	range	size	estimates	was	observed	
(non‐spatial	vs.	spatial	SDMs:	2,698	±	1,564	and	2,628	±	1,500	plan‐
ning	units,	paired	t‐test:	t	=	0.783,	df =	52,	p	=	0.436).

F I G U R E  2  Model	evaluation	scores	representing	AUC,	TSS,	sensitivity,	specificity	and	DIC,	as	well	as	the	estimated	detection	probability,	
summarized	across	33	terrestrial	(a–f),	53	marine	(g–l)	and	85	freshwater	species	(m–r)	derived	from	non‐spatial	(blue)	and	spatial	SDMs	
(green).	Bars	represent	median	values	and	boxes	the	1st	and	3rd	quartiles,	respectively

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)
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3.4 | Summed probabilities of habitat suitability

Across	realms,	spatial	SDMs	produced	on	average	a	lower	summed	
habitat	 suitability	 across	 planning	 units	 (i.e.,	 a	 proxy	 for	 species	
richness),	than	predicted	by	non‐spatial	SDMs	(non‐spatial	vs.	spa‐
tial	SDMs	in	the	terrestrial	realm:	3.00	±	1.28	vs.	2.37	±	1.00	plan‐
ning	 units,	 paired	 t‐test:	 t	=	61.845,	 df =	7,762,	 p < 0.001; marine: 
12.27	±	3.01	 vs.	 11.79	±	2.97	 planning	 units,	 mean	±	SD,	 paired	
t‐test:	 t	=	28.458,	 df	=	7,122,	 p	<	0.001;	 freshwater:	 21.36	±	11.91	
vs.	16.50	±	9.48	planning	units,	paired	t‐test:	t	=	46.057,	df =	7,375,	
p	<	0.001).	See	Supporting	Information	Figure	S2	for	a	spatial	rep‐
resentation	of	the	differences	in	summed	probabilities	among	non‐
spatial	and	spatial	SDMs.

3.5 | Spatial similarity of spatial plans

All	 species	 targets	 across	 SDM	 types	 and	 spatial	 conservation	
plans	were	met	 in	all	 spatial	prioritization	 runs	 (data	 shown	 in	 the	
Pangaea	repository).	The	degree	of	spatial	overlap	of	potential	pro‐
tected	areas	derived	from	spatial	and	non‐spatial	SDMs	was	target‐
dependent.	 The	 overlap	was	 lowest	 for	 the	 smallest	 conservation	
target	(10%)	with	the	per	cent	overlap	ranging	from	1%	to	2%,	and	
increased	up	to	a	maximum	of	30%	to	39%	for	a	conservation	tar‐
get	of	50%	(Figure	3a,	and	Supporting	Information	Figures	S3–S5).	
The	 number	 of	 required	 planning	 units	 increased	 linearly	with	 in‐
creasing	 conservation	 targets:	 the	 higher	 the	 conservation	 target,	
the	higher	the	required	amount	of	planning	units	to	meet	the	given	
target	(Figure	3a).

The	relative	difference	in	the	number	of	planning	units	needed	
for	 a	 given	 solution	 between	 spatial	 and	 non‐spatial	 SDMs	 was	
within	a	margin	of	5%	(Figure	3b).	No	significant	differences	in	the	
number	 of	 planning	 units	 between	 spatial	 and	 non‐spatial	models	
across	conservation	targets	could	be	observed.

4  | DISCUSSION

Incorporating	 connectivity	 has	 been	 successfully	 adopted	 in	 sys‐
tematic	 conservation	 planning	 for	 building	 species	 migration	 and	
movement	corridors	(Margules	&	Pressey,	2000).	Yet,	this	concept	
has	been	largely	neglected	in	the	underlying	conservation	features	
(e.g.,	species)	that	are	used	in	the	spatial	planning.	Our	study	pro‐
vides	a	non‐exhaustive	comparison,	shedding	light	on	the	effects	of	
non‐spatial	versus	spatially	explicit	conservation	features	in	system‐
atic	conservation	planning.	We	show	that	 (a)	spatially	explicit	pre‐
dictions	of	species’	probabilistic	habitat	suitability	outperform	those	
derived	from	non‐spatial	SDMs	across	the	three	realms,	each	with	a	
specific	landscape	configuration	and	consequently	distinct	species	
dispersal	 and	 connectivity	 characteristics.	 Moreover,	 (b)	 spatially	
explicit	 predictions	 provide	 lower	 range	 size	 estimates,	 indicating	
less	dispersed	habitat	 suitability	predictions.	This	 effect	 cascades	
into	the	conservation	planning	as	(c)	the	spatial	arrangement	of	spa‐
tial	conservation	plans	differs	fundamentally	between	those	derived	
from	non‐spatial	and	spatial	model	predictions.	Simultaneously,	(d)	
both	spatial	and	non‐spatial	approaches	require	a	similar	number	of	
planning	units	for	delineating	potential	protected	areas.

Spatial	 SDMs	 yielded	 habitat	 suitability	 predictions	 that	 were	
on	 average	 more	 accurate	 given	 their	 better	 model	 performance	
(Figure	2),	 than	 those	derived	 from	non‐spatial	 SDMs.	This	pattern	
is	in	line	with	previous	findings	from	Record	et	al.	(2013)	due	to	three	
well‐known	factors	(reviewed	by	Dormann,	2007):	(a)	distance‐related	
dispersal	or	species	interactions,	(b)	non‐linear	species–environment	
relationships	 and	 (c)	 spatially	 structured	 environmental	 predictors	
causing	spatial	structuring	in	the	response,	that	is,	the	modelled	spe‐
cies’	habitat	suitability	(Besag,	1974).	In	addition,	Crase,	Liedloff,	Vesk,	
Fukuda,	and	Wintle	(2014)	showed	that	if	such	induced	spatial	auto‐
correlation	in	species	distributions	is	not	accounted	for,	model	predic‐
tions	are	likely	to	remain	inaccurate.	Contrary	to	Thibaud,	Petitpierre,	

F I G U R E  3   (a)	Spatial	overlap	in	potential	protected	areas	based	on	spatial	and	non‐spatial	SDMs,	along	a	conservation	target	of	10%–
50%	in	the	terrestrial,	marine	and	freshwater	realm.	Please	see	Supporting	Information	Figures	S3–S5	for	the	mapped	spatial	plans	of	each	
conservation	target.	(b)	Relative	number	of	planning	units	required	for	reaching	the	solution	in	spatial	plans	for	the	different	realms	with	
conservation	targets	ranging	from	10%–50%	in	the	terrestrial,	marine	and	freshwater	realms.	Points	and	triangles	along	solid	and	dotted	
lines	represent	spatial	plans	derived	from	non‐spatial	and	spatial	SDMs,	respectively
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Broennimann,	 Davison,	 and	 Guisan	 (2014),	 who	 found	 that	 spatial	
autocorrelation	itself	has	only	a	minor	relative	effect	on	model	pre‐
diction	accuracy	(compared	to	the	choice	of	predictors,	sample	sizes,	
sampling	designs	and	modelling	technique),	our	analyses	reveal	that	
accounting	for	spatial	autocorrelation	leads	to	a	substantial	improve‐
ment	of	model	outputs	(given	that	all	other	data	were	kept	constant).	
This	 effect	 cascades	 into	 the	 resulting	 spatial	 plans:	 Those	derived	
from	spatial	SDM	predictions	are	likely	to	provide	a	better	representa‐
tion	of	areas	needed	to	potentially	protect,	than	spatial	conservation	
plans	derived	from	non‐spatial	SDM	predictions.	 In	addition,	spatial	
SDMs	yielded,	on	average,	a	slightly	higher	detection	probability	and	
thus	 reduced	 the	potential	 false	 absences	 caused	by	 the	 imperfect	
detection	 of	 species	 (MacKenzie	 et	 al.,	 2017).	 Reducing	 the	 risk	 of	
overlooking	species	is	therefore	crucial	for	an	effective	conservation	
planning	(Petitot,	Manceau,	Geniez,	&	Besnard,	2014).

We	found	only	a	minor	overlap	of	potential	protected	areas	based	
on	spatial	and	non‐spatial	SDMs	for	the	commonly	applied	conservation	
targets	of	10%–20%	(e.g.,	the	global	target	of	17%	set	by	the	Convention	
on	Biological	Diversity,	CBD,	2010;	Veach,	Minin,	Pouzols,	&	Moilanen,	
2017).	Interestingly,	spatial	plans,	regardless	of	the	modelling	approach,	
required	a	similar	amount	of	planning	units.	On	average,	spatial	SDMs	
predicted	a	lower	range	size	per	species	and,	therefore,	a	lower	number	
of	species	predicted	to	have	a	suitable	habitat	per	planning	unit.	Hence,	
spatial	 plans	 using	 predictions	 from	 spatial	 SDMs	 require—relatively	
speaking—more	planning	units	(e.g.,	assuming	that	non‐spatial	and	spa‐
tial	SDMs	would	predict	a	suitable	habitat	of	a	species	into	100	and	90	
planning	units,	respectively,	the	spatial	plans	should	cover	theoretically	
20	and	18	planning	units	given	a	target	of	20%).	This	is	likely	to	derive	
due	to	the,	on	average,	lower	summed	probability	of	suitable	habitats	
per	planning	unit	in	spatial	SDM	predictions	(i.e.,	species	richness	sensu	
Mateo	et	al.,	2012).	Consequently,	 the	optimizer	 (gurobi,	 in	our	case)	
had	to	choose	from	a	smaller	pool	of	available	planning	units.	Hence,	
the	optimizer	is	forced	to	seek	additional	planning	units	that	lead	to	a	
remarkably	different	spatial	arrangement	of	spatial	conservation	plans	
(Figures	1	and	3a).	While	we	did	not	explicitly	test	for	differences	among	
realms,	 this	pattern	was	similar	across	different	 landscape	configura‐
tions	and	planning	unit	shapes.	Broadening	the	perspective,	non‐spatial	
SDMs	tend	to	create	artificial	species	“hot	spots”	by	predicting	a	higher	
species	richness	per	planning	unit,	and	the	derived	spatial	plans	would	
take	advantage	of	the	umbrella	effect,	that	is,	where	the	conservation	
of	a	species	confers	protection	to	a	larger	number	of	co‐occurring	spe‐
cies	(Roberge	&	Angelstam,	2004).	In	our	study,	however,	this	pattern	
does	not	depict	the	best‐possible	outcome	given	the	lower	model	eval‐
uation	scores.	In	turn,	spatially	explicit	SDMs	have	the	potential,	though	
not	reducing	the	quantity	of	protected	areas,	to	increase	their	quality	
(Barnes	et	al.,	2018).

We	acknowledge	that	a	10%	gap	to	optimality,	as	we	used	it	here,	
can	introduce	noise	in	the	spatial	arrangement	of	potential	protected	
areas	(e.g.,	Figure	3a).	Even	with	this	noise,	however,	differences	in	
spatial	plans	were	distinct	in	our	study.	While	a	more	stringent	gap	
(e.g.,	0.5%,	Beyer	et	al.,	2016)	could	yield	more	accurate	spatial	plans,	
we	intended	to	balance	uncertainties	in	the	spatial	plans	with	those	
most	 probably	 apparent	 in	 the	 underlying	 data	 (note	 that	 due	 to	

computational	reasons,	we	only	extracted	the	mean	posterior	prob‐
ability	of	SDMs).	In	other	words,	species	and	environmental	data,	as	
well	as	the	aggregation	of	data	into	planning	units,	potentially	lead	
to	a	certain	level	of	uncertainty	in	the	habitat	suitability	predictions	
in	our	study	(Beale	&	Lennon,	2012).	Hence,	spatial	plans	should	be	
given	flexibility	to	accommodate	such	uncertainties	in	terms	of	the	
selection	of	spatial	units	during	the	spatial	prioritization.

We	singled	out	the	effect	of	spatial	autocorrelation	in	conserva‐
tion	features	to	explore	the	effect	of	the	connectivity	among	planning	
units	on	the	subsequent	spatial	conservation	planning.	We	encourage	
future	studies	to	further	explore	these	effects	using	“real‐world”	ex‐
ercises,	where	 the	current	and	already	established	protected	areas	
could	be	locked‐in	during	the	spatial	prioritization	along	with	various	
costs	for	the	planning	units.	This	would	decrease	the	flexibility	in	the	
selection	of	protected	areas,	and	given	the	low	overlap	between	non‐
spatial	and	spatial	conservation	features,	the	impact	on	the	outcome	
remains	to	be	seen.	Similarly,	the	degree	of	fragmentation	(Cabeza,	
2003)	and	the	minimum	patch	size	depend	on	the	available	area	and	
financial	resources	(as	a	large	amount	of	small	patches	are	more	ex‐
pensive	to	manage	(Smith,	Minin,	Linke,	Segan,	&	Possingham,	2010)).	
Likewise,	the	implementation	of	various	cost	measures,	such	as	area,	
land	price	or	human	influence,	could	be	added	in	the	analyses—a	topic	
that	was	however	beyond	the	scope	of	our	study.	Hence,	testing	spa‐
tial	plans	and	with	these	additions	and	interactions	has	the	potential	
to	further	reveal	differences	stemming	from	non‐spatial	and	spatially	
explicit	 modelled	 conservation	 features.	 In	 our	 study,	 the	 species	
data	 were	 contingent	 on	 publicly	 available	 survey	 data	 across	 the	
three	 realms,	 and	 hence,	 the	 species	 can	 be	 considered	 generalist	
species.	Rare	species	are	considered	particularly	important	for	spa‐
tial	planning;	however,	such	data	were	not	publicly	available	for	our	
study.	It	remains	therefore	to	be	seen	whether	SDMs	of	rare	species	
would	yield	similar	differences	in	spatial	plans	as	shown	in	our	study.

We	note	that	by	accounting	for	species’	observability	by	employ‐
ing	a	hierarchical	SDM,	we	aimed	to	limit	the	shortcomings	of	SDMs	
that	 else	 do	 not	 account	 for	 the	 fact	 that	 species	might	 be	 over‐
looked	 during	 the	 sampling.	 Regarding	 the	 addition	 of	 the	 spatial	
information	in	SDMs,	we	want	to	highlight	that	instead	of	running	hi‐
erarchical	Bayesian	models,	other	SDM	techniques	could	be	equally	
used,	such	as	Generalized	Linear	Mixed	Models	using	spatial	random	
effects,	or	other	SDMs	algorithms	that	use	spatial	eigenvectors	as	a	
covariate	containing	 information	about	 the	spatial	structure	 in	 the	
study	area	(see	Dormann,	2007,	for	a	review	on	various	methods).

5  | CONCLUSIONS

Employing	SDMs	that	account	 for	spatial	dependencies	 in	conserva‐
tion	features	provide	a	promising	way	forward	to	increase	the	quality	
of	protected	areas,	however	without	increasing	the	area	(and	possibly	
costs)	 needed.	 They	 yield	 fundamentally	 different	 spatial	 conserva‐
tion	plans	given	more	accurate	species	habitat	suitability	predictions,	
compared	to	SDMs	that	ignore	such	spatial	dependencies.	This	high‐
lights	the	importance	of	using	best‐possible	modelling	practices	sensu	
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Dormann	(2007)	and	Guisan	et	al.	(2013),	which	is	needed	for	a	wider	
acceptance	of	SDMs	in	systematic	conservation	planning	(Tulloch	et	al.,	
2016).	Hence,	we	encourage	modellers	and	practitioners	to	carefully	
assess	the	possibilities	in	adding	spatial	SDMs	to	their	systematic	con‐
servation	planning	to	derive	sufficient	options	for	choosing	the	optimal	
spatial	arrangement	of	protected	areas.
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