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Packaging materials with desired mechanical and
barrier properties and full chemical recyclability
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Plastics have become indispensable in modern life and the material of choice in packaging
applications, but they have also caused increasing plastic waste accumulation in oceans and
landfills. Although there have been continuous efforts to develop biodegradable plastics, the
mechanical and/or transport properties of these materials still need to be significantly
improved to be suitable for replacing conventional plastic packaging materials. Here
we report a class of biorenewable and degradable plastics, based on copolymers of
y-butyrolactone and its ring-fused derivative, with competitive permeability and elongation at
break compared to commodity polymers and superior mechanical and transport properties to
those of most promising biobased plastics. Importantly, these materials are designed with full
chemical recyclability built into their performance with desired mechanical and barrier
properties, thus representing a circular economy approach to plastic packaging materials.
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lastics are a material of choice in packaging applications

because of their low cost, light weight, and high perfor-

mance, coupled with good processability. It is expected that
by 2050 the plastic packaging production will exceed 250 million
metric tons!. Despite most of plastics employed in the packaging
industry are used for less than a week, the durability, one of
plastics’ greatest assets, is causing tremendous growth of disposed
plastics as polluting waste. This growth, together with the fact
that the vast majority of synthetic polymers are designed for
performance and durability but not for degradability and
recyclability, has brought millions of tons of plastic accumulation
in the oceans and landfills'.

The main requirements for materials to be used in packaging
are a good barrier character to water vapor and oxygen, good
mechanical performance, and transparency; therefore, polymers
have dominated the packaging market. Nowadays, the most
widely used materials are poly(ethylene terephthalate) (PET) and
polyolefins such as polyethylene (PE) and polypropylene (PP).
Even with current practices of recycling, it is estimated that
almost 95% of the plastic packaging materials value is not
retained for subsequent uses after a short single use, representing
an $80-120 billion annual loss to the economy!.

Several approaches have been investigated to address such
plastics packaging waste problems, such as designing highly
selective catalysts and unique chemistries>3 to effectively depo-
lymerize plastic materials into building blocks or monomers for
polymer production, or designing additives for more effectively
recycling mixed PE and isotactic PP materials into equal or
possibly higher value materials*. In a short term, these approa-
ches could be part of the solution to reduce the plastic waste, but
for longer term implementation, questions such as economic
viability of the process must be addressed and appropriate recy-
cling strategies for the upcycled plastics must also be considered.
Another strategy developed in the past two decades to address
the end-of-life issues of packaging materials is the use of
biodegradable polymers such as polylactide (PLA) or poly(3-
hydroxybutyrate) (PHB), arguably the two most successful and
extensively investigated examples. Biodegradable polymers are
excellent alternatives to conventional petroleum-based, non-
degradable plastics, as they are derived from biorenewable sources
and can be enzymatically or hydrolytically degraded, thus leading
to an environmentally closed circular ecosystem. However, the
high permeability in the case of PLA and the poor mechanical
properties in the case of PHB (a brittle material), plus their lack of
high chemical recyclability?, have limited their potential®.

Beside these approaches, the design of plastics with recycl-
ability built into their performance aiming for a fully plastic
circular economy has been considered. With specifically designed
monomers, reaction conditions can be used to select the direction
of the monomer-polymer equilibrium or the closed-loop chemi-
cal cycle. Therefore, chemical recycling presents an attractive
alternative since the polymer waste is employed to obtain the
monomer for virgin polymer reproduction®-!8, thus closing the
loop and recovering the economic value of the post-consumer
material. Recently several chemically recyclable polymers have
been developed, such as polyesters®~!1, polyurethanes!'?, and
polycarbonates!>14. Among these materials those based on poly
(y-butyrolactone) (PyBL) core are highly interesting since they
are obtained using renewable sources and can be fully recycled
back to their monomers’~!!, Moreover, being polyesters these
materials have shown to hydrolytically degrade!® which, in case
of escaping from sorting and collection of plastic that has reached
the end of its life, will not accumulate in the environment.

In this work, we have investigated the potential of polyesters
based on the PyBL core, which are specifically designed with
full chemical recyclability built into their performance, as

potentially fully recyclable plastics for packaging applications.
First we have investigated homopolymers, PyBL, and poly
(trans-hexahydrophthalide) (PT6HP)? for an initial assessment
of the potential of these homopolymers by measuring their
permeability to different gases as well as their mechanical
properties. After these initial investigations, we have specifically
designed a copolymer, PT6HP-co-PyBL, which exhibits excel-
lent barrier and mechanical properties comparable to com-
mercial petroleum-based polymers used in packaging and
superior in certain properties to the two most promising bio-
based polymers to date, PLA and PHB.

Results

Mechanical and transport properties of homopolymers. At the
outset, we first investigated the potential of PyBL and PT6HP for
packaging applications. For the details about the synthesis of both
homopolymers see Supplementary Methods and Supplementary
Fig. 1 in Supplementary Information. The packaging materials
must exhibit good barrier properties to atmospheric penetrants
such as water vapor, oxygen, and carbon dioxide, as well as
favorable mechanical performance such as good elongation at
break (see Supplementary Note 1 and Supplementary Egs. 1-3 for
details about permeability measurements). To evaluate their
potential, these two homopolymers were compared under the
same conditions with four commercial polymers widely used in
the packaging industry: PE (low density PE, LDPE), PET, PHB,
and PLA (specifically semicrystalline PLLA), see Supplementary
Table 1 for more details about the materials.

Mechanically, PyBL shows a ductile behavior with an
elongation at break of >350%, (Supplementary Table 2), which
is similar to PET?® and LDPE?l. On the other hand, PT6HP
shows a high tensile strength (39.4 + 2.8 MPa, where 2.8 is the
standard deviation) and Young’s modulus (3100 + 300 MPa), but
low elongation at break (5.1 +0.8%). It is worth noting that this
elongation at break is similar to PLLA?? (3.6 £ 0.5%). In terms
of transport properties, PyBL exhibited a high-water vapor
transmission rate as well as high carbon dioxide and oxygen
permeability values (Fig. 1 and Supplementary Table 3), thus
undesirable for packaging. The poor barrier character of PyBL
can be attributed to several factors, chiefly the low glass transition
temperature (T, = —45 °C).

On the other hand, PT6HP presents an outstanding barrier
character since it shows a low-water vapor transmission rate
(1.30 gmm m~—2 day~!) and low oxygen (0.11 Barrer) and carbon
dioxide (1.1 Barrer) permeability values. These results may arise
from good chain packing of the rings in the main chain and
higher T, (49 °C). These permeability results are similar to those
of PET23(1.49 + 0.11 g mm m—2 day~! for water vapor, 0.09 + 0.0
Barrer for oxygen, and 0.5 Barrer for carbon dioxide) and lower
than LDPE (0.71 +0.12 g mm m~2 day~! for water vapor, 5.42 +
0.18 Barrer for oxygen, and 6.3 Barrer for carbon dioxide)?4,
widely employed in the packaging sector. The values are slightly
higher than highly crystalline PHB (0.5 + 0.08 g mm m~2 day~!
for water vapor and 0.01+0.003 Barrer for oxygen)?2, but
significantly lower than PLLA (5.7 + 0.5 g mm m~2 day for water
vapor, 0.26 +0.01 Barrer for oxygen, and 1.2 Barrer for carbon
dioxide)?>2>. However, PHB, PLLA, and PT6HP present a major
drawback: the lack of ductility (vide supra) that makes these
materials undesirable for packaging applications.

The homopolymers have high transparency, especially PT6HP
(see Supplementary Fig. 2), which is critical in many packaging
applications. Overall, PT6HP showed excellent barrier properties
to different penetrants but poor mechanical properties, while
PyBL has ideal mechanical properties for packaging but poor
barrier properties.
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Fig. 1 Transport and mechanical properties. a Water vapor transmission rate of fully chemically recyclable PT6HP and PyBL homopolymers and
commercially available PET, LDPE and biobased/biodegradable PLLA and PHB. b Oxygen permeability coefficient of PT6HP, PyBL, PET, LDPE, PLLA, and
PHB. ¢ Elongation at break of PT6HP, PyBL, PET, LDPE, PLLA, and PHB. Error bars correspond to the standard deviation (s.d.) of at least four measurements

Designing recyclable plastics for packaging applications. The
above results obtained from the homopolymers provided a critical
insight: combining the excellent barrier properties of PT6HP with
the ductility of PyBL, while maintaining the recyclability should
lead to a suitable chemically recyclable plastic for packaging
applications. Thus, statistical aliphatic copolyesters of yBL and
T6HP should be sought to optimize thermo-mechanical and gas
barrier properties of related materials. However, the largely dif-
ferent reactivity of the two monomers (the thermodynamic
polymerizability of TGHP, AH', = -20 k] mol~!, is much higher
than that of yBL, AH’, = -5.1 kJ mol~!)° makes the synthesis of
random copolymers challenging.

Different types of catalysts have been employed to synthesize
the copolymers. Common organic bases employed in ring-
opening polymerization (ROP) reactions such as 1,8-diazabicy-
cloundec-7-ene (DBU) and 1,5,7-triazabicicyclodec-5-ene (TBD)
did not lead to copolymerization; instead, T6HP was isomerized
to its cis isomer that is not polymerizable (Supplementary
Table 4). Strong organic acids such as trifluoromethanesulfonic
acid promoted polymerization, but the required long reaction
time and high catalyst loading, plus the low monomer
conversions achieved, make this catalyst not suitable for the
copolymerization. To avoid the isomerization and also obtain
higher conversions, coordination-insertion ROP catalysts such as
La, Y, and Zn complexes were employed?6-?7 (Supplementary
Fig. 1 and Supplementary Table 5). The yttrium -catalyst
supported by the tetradentate amino-bisphenolate ligand devel-
oped by Carpentier et al.2¢ showed the best results in terms of
high molecular weights and good incorporations of both
monomers in the copolymers.

Using this catalyst, copolymers with up to 27 mol% yBL were
synthetized at room temperature, in bulk and a monomer/catalyst

ratio of 1000/1. In all cases, high molecular weight copolymers
were obtained with M, values up to 347 kDa measured by gel-
permeation chromatography (GPC) for the copolymer with 7%
yBL incorporation. The incorporation of higher amounts of GBL
led to lower molecular weights of 190kDa and 52.0kDa for
copolymers with 18% yBL and 27% YBL incorporation,
respectively. All the copolymers had a relatively low dispersity
with D ~ 1.5 (Supplementary Table 6). The obtained molecular
weights of the homopolymers are similar to those reported
previously in literature’~>!1. In the case of copolymers the
incorporation of yBL decreases the molecular weight, which is
related to the nature of yBL since for the PyBL homopolymer low
molecular weights are obtained.

The copolymer composition and the randomness of the
copolymers were analyzed by NMR spectroscopy (see Supple-
mentary Note 2 for further details). The compositions of the
copolymers varying from 7 to 27% yBL incorporations can be
readily calculated by focusing on the a-methylene proton signal at
238 ppm for yBL units in the copolymers (Supplementary
Figs. 3-12).

The randomness of the copolymers was confirmed by 13C
NMR analysis. Specifically, in the 60-70 ppm region four signals
can be distinguished: 67.4 ppm for the a-carbon next to the
carbonyl (CH,COO) corresponding to yBL-T6HP dyad (the
underline denotes the analyzed nucleus in that unit) and 67.1
ppm for the carbon of T6HP-T6HP dyad. In the PyBL units the
carbon of the methylene next to the carbonyl (CH,COO)
appeared at 63.5 ppm, which corresponds to yBL-yBL dyad and
at 63.3 ppm that corresponds to the carbon of yBL-T6HP dyad.
From these signals and employing the corresponding equation
(see Supplementary Egs. 4-6) the randomness character (1)
can be calculated with values close to 1 in all cases, thus
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confirming the random character of the copolymers (Supple-
mentary Table 7).

The random character of the copolymer has been further
confirmed by differential scanning calorimetry (DSC) analysis. As
expected in all cases a single T, was observed and the value of the
T, is between the Ty’s of the two homopolymers (Supplementary
Table 8). Thus, while PT6HP and PyBL exhibit a T, of 49 °C and
—45 °C, respectively, the copolymers with 18 and 27% of yBL
incorporation possess a T of 34 °C and 24 °C, respectively, which
makes these copolymers interesting candidates for packaging
since it is envisaged that the ductility of the copolymers will be
enhanced.

While the incorporation of only 7% yBL did not lead to any
significant improvement in the mechanical properties, the
incorporation of 18 and 27% of yBL led to a drastic improvement
in ductility: the elongation at break was increased considerably to
149% and 436%, respectively, without a significant loss in Young’s
modulus (Supplementary Table 2). Therefore, these two copoly-
mers exhibit a much better ductility than PLLA and PHB, being
similar to PET?? and LDPE?l.

Next, the water vapor transmission rate, carbon dioxide, and
oxygen permeabilities of these copolymers have been evaluated
(Fig. 2 and Supplementary Table 3). The incorporation of 7% of

O o

- Chemically recyclable T6HP-y-BL copolymer

S .

yBL led to a WVTR value of 1.14 g mm m~2 day!, thus lower
than PET (1.49 gmm m~2day~!) and PLLA (5.7 gmm m~2 day
~1). Copolymers with 18 and 27% yBL incorporations also gave
great WVTR values of 1.43 and 1.83 gmm m~—2day 1, respec-
tively. These values are similar to PET and three to five times
smaller than PLLA, thus possessing a much better barrier
character to water vapor as compared with PLLA.

The copolymers showed an excellent to moderate oxygen and
carbon dioxide barrier character. In fact, the copolymer with 7%
yBL incorporation exhibited an outstanding barrier character to
oxygen with a low value of 0.15 Barrer. Copolymers with 18%
yBL and 27% yBL incorporation gave oxygen permeability values
of 0.27 and 0.45 Barrer, respectively, which are similar to PLLA
and slightly higher than PET. It is worth noting that the oxygen
permeability of these materials is 12-36 times smaller than LDPE,
which makes these materials competitive with commodity
polymers that are widely employed nowadays.

The permeability to carbon dioxide is moderate with perme-
ability values of 1.0, 1.5, and 1.3 Barrer, respectively, for the three
copolymers. These values are similar to PLLA (1.2 Barrer) and at
least four times smaller than LDPE?8 (6.3 Barrer). Therefore,
these copolymers are good candidates to substitute PLLA
and LDPE.
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Fig. 2 Synthesis of copolymers and their properties. a Schematic representation of copolymerization of T6HP and yBL. b Water vapor transmission rate of
chemically recyclable copolymers and commercially available PET, LDPE and biobased/biodegradable PLLA and PHB. ¢ Oxygen permeability coefficient of
PT6HP, PyBL, PET, LDPE, PLLA, and PHB. d Elongation at break of PT6HP, PyBL, PET, LDPE, PLLA, and PHB. Error bars correspond to the standard deviation

(s.d.) of at least four measurements
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Fig. 3 Chemical recyclability of copolymers. a Closed loop of chemically recyclable polymers. b TH NMR spectra (C;Dg) of starting yBL (top) and T6HP
(second from top) comonomers as comparison, a mixture of the recycled comonomers after depolymerization (third from top), and the copolymer (27%

yBL incorporation) before chemolysis (bottom)

Overall, the copolymers showed ductility and barrier proper-
ties suitable for packaging applications, and they can be readily
tuned by changing the copolymer composition to obtain
materials suitable for each specific application. For example,
the copolymer with 18% yBL incorporation showed good
ductility and an outstanding barrier character to water vapor
and moderate permeability to oxygen. Noteworthy is that this
material possesses much better ductility and water barrier
character relative to PLLA and LDPE, and the barrier character
is similar to commercial PET.

Full chemical recyclability of copolymers. As both the homo-
polymers of constituent comonomers, T6HP and yBL, exhibit full
chemical recyclability”?, we hypothesized that the copolymer
consisting of these two monomers should also be completely
recyclable by either thermolysis or catalyzed processes (chemo-
lysis). Accordingly, the chemical recyclability of copolymer
PT6HP-co-PyBL was investigated by chemolysis. The copolymer
was heated at 120°C for 60h in the presence of a catalytic
amount of ZnCl, (2 mol%), cleanly recovering the two original
monomers, T6HP and yBL in pure state (Fig. 3), therefore
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demonstrating the full chemical recyclability of the copolymer.
The same depolymerization experiment was also done to a
copolymer film, also achieving a full recovery of the comonomers
(see the Supplementary Fig. 13).

Discussion

Copolymers with excellent barrier and mechanical properties
have been designed with chemical recyclability built into their
performance as fully recyclable packaging materials. The results
showed that with judiciously designed copolymer structures, it is
possible to create chemically recyclable polymers that exhibit
quantitative chemical recyclability and barrier properties com-
parable to petroleum-based PET and superior to biobased PLLA.
These copolymers represent a promising class of materials that
could be implemented in packaging applications with a closed-
loop lifecycle through either their degradability or chemical
recyclability, contributing toward the overarching goal of elim-
inating or diminishing plastic pollution.

Methods

Synthesis of copolymers. The general procedure for T6HP homopolymerizations
and copolymerizations is described below. The reaction was carried out in 25 mL
reactors at 25 °C in the glovebox under inert atmosphere. The catalyst was added to
vigorously stirring monomers. After the adequate period of time, the reaction was
stopped by immersing the reactor in liquid nitrogen and adding chloroform
acidified with HCI (5%). The mixture was dissolved in chloroform and precipitated
in excess cold methanol. The polymer was dissolved again in chloroform and
precipitated in methanol three times to purify thoroughly and remove any catalyst
and monomer residues. The isolated samples by filtration were dried in an oven
under vacuum at 60 °C for 3 days until a constant weight was achieved.

Synthesis of homopolymers. The synthesis of PT6HP homopolymer was per-
formed in the same way as the copolymers, see above. The synthesis of PyBL was
performed in 50-mL flame-dried Schlenk tubes interfaced to the dual-manifold
Schlenk line using an external cooling bath. The reactor was charged with a pre-
determined amount of the yttrium catalyst and THF in the glovebox. The reactor
was sealed, taken out of glovebox, and then immersed in a —40 °C cooling bath.
After equilibration at the desired polymerization temperature for 10 min, the
polymerization was initiated by rapid addition of monomer (17.2 g) via a gastight
syringe ([YBL] = 10 mol L~1). After 12 h, the polymerization was quenched by
addition of 30 mL of benzoic acid/CHCl; (10 mg mL~1). The quenched mixture
was then precipitated into 1000 mL of cold methanol, filtered, washed with
methanol to remove unreacted monomer, and dried in a vacuum oven at room
temperature to a constant weight; M, = 42.2 kg mol~!, B = 1.90.

Depolymerization procedure. A sealed J. Young type NMR tube was charged with
PT6HP-co-PyBL copolymer (23 mg), ZnCl, (2%), and deuterated toluene (0.6 mL)
in a glovebox, under inert atmosphere. The NMR tube was sealed with a Teflon
valve and taken out of the glovebox. The tube was immersed in a bath at 120 °C for
60 h and analyzed by NMR. Depolymerization of a copolymer film was also per-
formed, following a similar procedure but using a Schlenk tube (see Supplementary
Fig. 13).

Spectroscopic characterization. NMR spectra were recorded on a Varian Inova
400 MHz (FT 400 MHz, 'H; 100 MHz, 13C) or a 500 MHz spectrometer.

Molecular weight measurements. The molecular weight was measured
employing GPC and depending on the samples and their solubility three different
instruments were used.

A GPC instrument coupled with multi-angle light scattering employing an
Agilent HPLC was fitted with one guard column and three gel permeation columns
(PLgel 5 um MIXED-C). The differential refractometer (TrEX) and light scattering
detector (miniDAWN TREOS) employed are from Wyatt Technology. THF was
used as eluent at a flow rate of 1.0 mL min~!. This equipment was employed for
PT6HP-co-PyBL copolymers.

A Waters University 1500 GPC with one guard column and two columns
(PLgel 5 um mixed-C) was used for the measurements carried out at 40 °C and a
flow rate of 1.0 mL min—! using DMF as eluent. This equipment was employed to
measure PyBL homopolymer.

A GPC instrument consisting of an Agilent HPLC system with one guard
column and two columns (PLgel 5 um mixed-C) was coupled with a Wyatt DAWN
HELEOS II multi (18)-angle light scattering detector and a Wyatt Optilab Trex dRI
detector. The measurements were performed at 40 °C employing chloroform as
eluent. PT6HP was measured employing this equipment.

Differential scanning calorimetry (DSC). The characterization of the thermal
properties was carried out by a differential scanning calorimeter from TA
Instrument, model Q2000 V24. Approximately 3 mg sample was encapsulated in
aluminum hermetic pans. A heating scan was performed from —80 °C to 200 °C at

10 °C min~! heating rate, and the cooling rate was 10 °C min~1.

Tensile tests. The mechanical properties were measured employing an Instron
5565 testing machine. The measurements were performed at 22 °C and a crosshead
displacement rate of 5 mm min~!, except for the copolymer containing 27% yBL
the crosshead displacement rate was 50 mm min—1. The specimens were cut
according to ASTM D638 type 5 and they had a thickness of 40-80 um. At least five
specimens were tested for each reported value.

Permeability measurements. Water vapor transmission rate was measured in a
permeation cell at 25 °C according to ASTM E96-95 method. The cell, made of
polytetrafluoroethylene, was partially filled with water and a polymeric membrane
was placed above sealing its top. The measurements were performed in a Sartorius
BP 210 D balance with 10~ g readability and the mass loss was recorded in a
computer. The reported values are at least the average of five measurements.

Oxygen permeability was measured by a Mocon OX-TRAN 2/21 MH
equipment at 1 atm, 23 °C, and 0% relative humidity.

Carbon dioxide sorption was measured employing a Hiden IGA-2
electrobalance. The measurements were performed in the range of 1-20 bar and at
25 °C. After the adequate data treatment of the sorption kinetics, solubility, S, and
diffusion coefficients, D, can be determined and, therefore, permeability, P, can be
estimated.

Data availability
The authors declare that the data supporting the findings of this study are provided in the
main article and the Supplementary Information.
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