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Summary 

The interest in the clean hydrogen production relies on the fossil origin of the current industrially 

used hydrogen, which is related to green house gases emission, such as CO2. Moreover, the 

energetic use of hydrogen as future clean energy vector will increase its consumption. Thus, it 

requires clean or renewable hydrogen sources. Therefore, this thesis focuses on the clean 

hydrogen production by means of bio-oil or biomass pyrolysis liquids -renewable source- Steam 

Reforming (SR). For that purpose, different catalysts were used in fixed bed reactors. However, 

the handling of bio-oil is difficult, because they are composed of hundreds of molecules, giving 

place to a thermodynamically unstable mixture. Therefore, the hydrogen production experiments 

were not initially performed with bio-oil, but with model compounds. The information collected 

during this thesis was divided into different chapters, which content is summarized in the 

following paragraphs.  

Chapter 1 shows the necessity of changing the current energy system due to its drawbacks. For 

that reason, an alternative energy system based on hydrogen from renewable biomass is 

proposed. Moreover, sustainable hydrogen can substitute the industrially used fossil hydrogen. 

Thereby, the green house gases emissions originated by the current industrial use of hydrogen 

would be mitigated. Therefore, the chapter shows different alternatives to produce hydrogen 

from biomass, focusing into the bio-oil production by means of fast pyrolysis, followed by the 

reforming of those bio-oils. 

Then, Chapter 2 contains the main objectives set at the beginning of the thesis. Thus, different 

feedstocks (from bio-oil model compounds, going through model compound mixtures, to real 

bio-oil) and the catalysts to be used for the hydrogen production process are indicated.  

Chapter 3 describes the materials, and analytical and experimental procedures used for the 

development of the present thesis. Accordingly, catalyst preparation methods, characterization 

techniques, analysis methods and equipment used in the thesis are precisely described. 

Once the interest of the thesis is justified, objectives set and procedures described, Chapter 4 

contains the first experimental results of this work. In this chapter, four nickel based catalysts, 

supported on alumina and alumina modified with CeO2, La2O3 or MgO were prepared. 

Additionally, a commercial catalyst was used for comparative purposes. All catalysts were used 

for hydrogen production from n-butanol by means of SR using a Steam to Carbon (S/C) ratio of 

5.0, at atmospheric pressure and temperatures between 1073 and 873 K. In spite of the partial 

deactivation suffered, Ni/CeO2-Al2O3 catalyst was the most active catalyst in the tested reaction 

conditions. Although those experiments were not enough for identifying the most active catalyst 
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for bio-oil reforming, they were useful for discarding the less suitable catalysts (commercial and 

Ni/MgO-Al2O3 catalysts).  

For Chapter 5 the three most active catalysts of the previous chapter were used for SR of 

m-xylene in the same conditions used for n-butanol reforming. In these conditions, catalysts 

were not significantly deactivated and all catalysts achieved similar yields. Therefore, the three 

catalysts were used in SR of an equimolecular mixture of n-butanol, m-xylene and furfural. 

Activity results showed that Ni/CeO2-Al2O3 catalyst was the most active and deactivation 

resistant. Nevertheless, it was observed that the reaction temperature of 873 K was too low for 

measuring a high activity of the catalysts. The main catalyst deactivation cause was the carbon 

deposition.  

Afterwards, the number of model compounds contained in the synthetic bio-oil was increased. 

Thereby, the results of Chapter 6 were obtained by SR of an equimolecular mixture of 

n-butanol, m-xylene, furfural, m-cresol, syringol and xylose. For these activity tests, the 

operating pressure was increased to 20 bar with the aim of mitigating the operational problems 

due to the presence of xylose. Nevertheless, regardless of the used catalyst, the pressure increase 

was not enough because the reactor was blocked for the seventh hour on stream at 1073 K. In 

view of that, glycerol was added to the mixture with the aim of increasing the durability of the 

reaction system. Thus, an equimolecular mixture of 7 compounds was prepared. In these 

conditions, the reactor was blocked in a similar way than in previous cases, but the reactor 

blockage took place during the ninth hour on stream at 1073 K. Therefore, the incorporation of 

glycerol to the mixture favoured the durability of the reaction system. However, the amount of 

xylose in the mixture was too high for its application in hydrogen production. 

After that, in Chapter 7, a comparison of the catalytic activities during SR of a synthetic 

bio-oil/bio-glycerol mixture with the activities during SR of a real bio-oil was carried out. For 

that purpose, Ni/Al2O3, Ni/CeO2-Al2O3 and Ni/La2O3-Al2O3 catalysts were prepared by wet 

impregnation method. The activity tests for the synthetic bio-oil/bio-glycerol mixture were 

carried out at 1073 and 973 K, while the SR of bio-oil experiments were performed at 1073 K. 

Both series of experiments were carried out at atmospheric pressure, using an S/C ratio of 5.0. 

Among the prepared catalysts, CeO2 containing catalysts achieved the highest hydrogen yields in 

both processes. Therefore, bimetallic catalysts were prepared co-impregnating nickel and 

palladium, platinum or rhodium on the CeO2-Al2O3 support. Rhodium incorporation produced 

the most active and stable catalyst for SR of synthetic bio-oil/bio-glycerol mixture and SR of real 

bio-oil processes. The activity tests with real bio-oil were carried out in the facilities of Imperial 

College London during a six month stage.  



 

5 

In the following section, Chapter 8, commercial silico-aluminates were used as catalyst support. 

Thus, Amorphous silico alumina (ASA), HZSM5 zeolite, mesostructured silica (SBA15) and 

USY zeolite were used. Each material was used to prepare two nickel based catalysts: one 

without support modification and the other with the incorporation of CeO2 on the 

silico-aluminates. All catalysts were used to produce hydrogen from a synthetic 

bio-oil/bio-glycerol mixture using the same operating conditions than for alumina supported 

catalysts. These experiments showed that the CeO2 impregnation was favourable to increase the 

activity of the commercial silico-aluminates supported catalysts. However, the deactivation of 

the catalysts by carbon deposition was again the most important deactivation cause. 

For that reason, when zeolite L supported nickel catalysts were prepared, CeO2 was impregnated 

on them before nickel, as shown in Chapter 9. Zeolite L was prepared featuring different 

morphologies (disc and nanocrystals) with and without cesium or sodium incorporation. 

Prepared catalysts were tested in SR of a synthetic bio-oil/bio-glycerol mixture at atmospheric 

pressure, at 1073 and 973 K using an S/C molar ratio of 5.0. Activity tests showed that the less 

active catalysts in terms of hydrogen production were the ones supported on zeolite L with Na 

ion. On the contrary, the catalysts supported on zeolite L with disc morphology, with or without 

cesium incorporation, were the most active catalysts. This chapter was a collaboration with 

another department of the University of the Basque Country (UPV/EHU). 

To finish with the activity tests, catalysts supported on non-conventional materials, such as 

industrial residues derived materials (Chapter 10) and volcanic materials or minerals (Chapter 

11), were prepared. The aim of using those materials was the preparation of cheaper catalysts. 

Due to the number of selected support materials, in first place, prepared catalysts were used for 

SR of m-xylene. This way, the catalysts that reached highest hydrogen yields were selected to be 

tested in SR of the synthetic bio-oil/bio-glycerol mixture. In both cases, the achieved yields were 

compared with the yields produced by Ni/Al2O3 catalyst. Activity tests showed that the yields 

reached by the non-conventional catalysts were similar to the yields of Ni/Al2O3 catalysts during 

the SR of m-xylene, but clearly lower in the SR of the synthetic bio-oil/bio-glycerol mixture. 

Nonetheless, Ni/Sepiolite T catalyst showed an activity similar o higher than Ni/Al2O3 catalyst 

during m-xylene SR experiment in all tested temperatures and during the SR of the synthetic 

bio-oil/bio-glycerol mixture at 1073 K. For those reasons, it was concluded that non 

conventional supports can be a feasible alternative for catalyst preparation. 
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Finally, Chapter 12 contains the most relevant conclusions derived from the experimental work 

carried out during the elaboration of this thesis and the future work in the direction in which the 

work carried out in this thesis could be continued. 
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Resumen 

El interés en la producción de hidrógeno limpio radica en el origen fósil del hidrógeno que 

actualmente se utiliza en la industria, la cual está asociada a emisiones de gases de efecto 

invernadero, como el CO2. Además, la aplicación energética del hidrógeno como vector 

energético del futuro incrementará su consumo, lo cual requiere fuentes limpias o renovables de 

hidrógeno. Por lo tanto, la presente tesis doctoral se ha centrado en la producción de hidrógeno 

limpio por medio del reformado con vapor de agua (SR) de bio-aceites o líquidos derivados de la 

pirólisis de la biomasa –recurso renovable-. Para ello, se han utilizado diferentes catalizadores en 

reactores de lecho fijo. Sin embargo, el manejo del bio-aceite es complicado ya que está 

compuesto por cientos de moléculas, dando lugar a una mezcla termodinámicamente inestable. 

La información recogida a lo largo de la tesis ha sido dividida en diferentes capítulos, cuyo 

contenido es resumido a continuación. 

El Capítulo 1 muestra la necesidad de cambiar el sistema energético actual debido a sus 

inconvenientes. Por lo tanto, se propone el hidrógeno de origen renovable a partir de biomasa 

como alternativa energética. Además, el hidrógeno de carácter sostenible puede sustituir el 

hidrógeno de origen fósil que se utiliza en la industria. De esta manera, se mitigarían las 

emisiones relacionadas al uso industrial del hidrógeno. Por lo tanto, el capítulo recoge diferentes 

alternativas para la producción de hidrógeno a partir de la biomasa, centrándose en la producción 

de bio-aceites mediante la pirólisis rápida, seguido por el reformado de dichos bio-aceites. 

A continuación, el Capítulo 2 recoge los objetivos principales que se marcaron al inicio de la 

tesis. Así, se establecieron diferentes alimentaciones (desde compuestos modelo de bio-aceites, 

pasando por mezclas de compuestos modelo, hasta llegar a los bio-aceites reales) y tipos de 

catalizadores a emplear para la producción de hidrógeno. También hay que destacar el objetivo 

marcado por el Gobierno Vasco de formar personal investigador, siendo este objetivo alcanzado 

a lo largo de la tesis. 

El Capítulo 3 de la tesis describe los materiales usados y métodos experimentales y analíticos 

seguidos durante el desarrollo de la tesis. Así, se detallan los métodos de preparación de 

catalizadores, las técnicas de caracterización empleadas y los métodos y equipos de análisis 

empleados para la obtención de los resultados que componen esta tesis. 

Una vez justificado el interés, señalados los objetivos y descritos los procedimientos de la tesis, 

el Capítulo 4 recoge los primeros resultados experimentales de este trabajo. En este apartado se 

prepararon cuatro catalizadores de níquel soportados en alúmina y alúmina modificada con 

CeO2, La2O3 o MgO. Además, se utilizó un catalizador comercial con fines comparativos. Todos 
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ellos fueron utilizados para producir hidrógeno a partir de n-butanol mediante SR a utilizando un 

ratio vapor de agua a carbono (S/C) de 5.0, a presión atmosférica y temperaturas entre 1073 y 

873 K. El catalizador Ni/CeO2-Al2O3 fue el más activo en las condiciones de operación 

empleadas, a pesar de que sufrió una desactivación parcial de su actividad. Aunque, estos 

ensayos no fueron suficientes para determinar el catalizador más activo para el reformado de 

bio-aceites, sirvieron para descartar los catalizadores menos idóneos (comercial y 

Ni/MgO-Al2O3). Estos resultados se publicaron en la revista International Journal of Hydrogen 

Energy (2015). 

Para el Capítulo 5 los tres catalizadores más activos del capítulo anterior fueron empleados en el 

reformado con vapor de agua de m-xileno en las mismas condiciones usadas en el reformado de 

n-butanol. En estas condiciones, no se observó una importante desactivación de los catalizadores 

y los rendimientos alcanzados por todos los catalizadores fueron similares. Por lo tanto, los 

catalizadores mencionados se utilizaron para el reformado con vapor de agua de una mezcla 

equimolecular de n-butanol, m-xileno y furfural. Los resultados catalíticos mostraron que el 

catalizador Ni/CeO2-Al2O3 fue el más activo y resistente a la desactivación. No obstante, se 

observó que la temperatura de reacción de 873 K era demasiado baja para medir una alta 

actividad de los catalizadores. La causa principal de desactivación de los catalizadores es la 

deposición de carbono. Estos resultados se publicaron en la revista Bioresource Technology 

(2016). 

Posteriormente, el número de compuestos modelo que formaban el bio-oil sintético fue 

incrementado. Así, los resultados del Capítulo 6 se obtuvieron con el SR de una mezcla 

equimolecular de n-butanol, m-xileno, furfural, m-cresol, syringol y xilosa. Para estos ensayos de 

actividad la presión de reacción fue incrementada a 20 bar con el fin de mitigar los problemas 

operacionales originados debido a la presencia de la xilosa. No obstante, el incremento de 

presión fue insuficiente, ya que el reactor terminó bloqueado para la séptima hora de ensayo a 

1073 K, para cualquiera de los catalizadores. En vista de ello, se incluyó la presencia de glicerol 

en la mezcla con el fin de mejorar la durabilidad del sistema de reacción. Así, se preparó una 

mezcla equimolecular de 7 compuestos. En estas condiciones, el reactor se bloqueo de forma 

similar que en el caso anterior, pero el bloqueo ocurrió durante la novena hora a 1073 K. Por lo 

tanto, la incorporación de glicerol a la mezcla favoreció la durabilidad del sistema. Sin embargo, 

la cantidad de xilosa en la mezcla era demasiado alta para su aplicación en la producción de 

hidrógeno. 

A continuación, en el Capítulo 7, se llevó a cabo una comparación de la actividad de los 

catalizadores en el SR de una mezcla de bio-aceite/bio-glicerol con la actividad en el SR de un 
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bio-aceite real. Para ello, se prepararon los catalizadores Ni/Al2O3, Ni/CeO2-Al2O3 y 

Ni/La2O3-Al2O3 por impregnación húmeda. Los ensayos de SR de la mezcla de 

bio-aceite/bio-glicerol se llevaron a cabo a 1073 y 973 K, mientras que los ensayos de reformado 

de bio-aceite real se llevaron a cabo a 1073 K. La presión de operación para ambos procesos fue 

la atmosférica. Entre los catalizadores preparados, el catalizador con CeO2 alcanzó los mayores 

rendimientos a hidrógeno en ambos procesos. Por lo tanto, los catalizadores bimetálicos se 

prepararon coimpregnado níquel y paladio, platino o rhodio en el soporte CeO2-Al2O3. La 

incorporación de rodio dio lugar al catalizador más activo y estable para los procesos de SR de 

bio-aceite/bio-glicerol y SR de bio-aceite real. Los ensayos de actividad correspondientes al SR 

del bio-oil real se llevaron a cabo en las instalaciones del Imperial College London durante una 

estancia de 6 meses y fueron publicados en la revista International Journal of Hydrogen Energy 

(2018). 

En el siguiente apartado, Capítulo 8, se utilizaron silico-aluminatos comerciales como soportes 

de los catalizadores. Así, se utilizaron una silico-alúmina amorfa (ASA), la zeolita HZSM5, 

sílica mesoestructurada (SBA15) y la zeolita USY. Cada uno de los materiales fue utilizado para 

preparar dos catalizadores de níquel: uno sin modificación del soporte y otro con la 

impregnación de CeO2 en el suporte. Así, se estudió la influencia de la incorporación de CeO2 en 

los silico-aluminatos. Todos estos catalizadores se usaron para producir hidrógeno a partir de la 

mezcla bio-oil/bio-glicerol empleando las mismas condiciones de operación que fueron 

utilizadas con los catalizadores soportados en alúmina. Estos ensayos mostraron que la 

impregnación de CeO2 resultaba favorable para mejorar la actividad de los catalizadores 

soportados en silico-aluminatos comerciales. Sin embargo, la desactivación de los catalizadores 

por la deposición de carbono fue, de nuevo, la causa de desactivación más importante. 

Por esa razón, a la hora de preparar catalizadores de níquel soportados en zeolita L se impregnó 

CeO2 en los mismos antes de la impregnación del níquel, tal y como se muestra en el Capítulo 9. 

La zeolita L estaba preparada con diferentes morfologías (disco y nanocristales) sin 

modificaciones y con incorporaciones de iones cesio o sodio. Los catalizadores preparados 

fueron probados en SR de la mezcla bio-oil/bio-glicerol a presión atmosférica a 1073 y 973 K 

utilizando un ratio molar S/C de 5.0. Los ensayos de actividad mostraron que los catalizadores 

soportados en zeolita L con incorporación de iones Na dieron lugar a los catalizadores menos 

activos en cuanto a la producción de hidrógeno. Por el contrario, los catalizadores soportados en 

la zeolita L con morfología de disco con o sin modificación de Cs fueron los más activos. Este 

capítulo fue una colaboración con otro departamento de la Universidad del País Vasco 

(UPV/EHU).  
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Para terminar con los ensayos de actividad, se prepararon catalizadores suportados en materiales 

no convencionales tales como materiales derivados de residuos industriales (Capítulo 10) 

materiales volcánicos y minerales (Capítulo 11). El objetivo del uso de estos materiales fue la 

preparación de catalizadores más baratos. Debido a la cantidad de materiales seleccionados como 

soportes, en primer lugar los catalizadores preparados fueron utilizados en el SR de m-xileno. 

Así, los catalizadores que alcanzaron mayores rendimientos a hidrógeno fueron seleccionados 

para ser posteriormente utilizados en SR de la mezcla bio-aceite/bio-glicerol. En ambos casos, 

los rendimientos alcanzados fueron comparados con los rendimientos obtenidos con el 

catalizador Ni/Al2O3. Los ensayos de actividad mostraron que los rendimientos alcanzados por 

los catalizadores no-convencionales eran similares a los del catalizador Ni/Al2O3 en el reformado 

de m-xileno, pero claramente inferiores en el reformado de la mezcla bio-aceite/bio-glicerol. 

No obstante, el catalizador Ni/Sepiolite T mostró una actividad similar o superior al catalizador 

Ni/Al2O3 en los ensayos de SR m-xileno en todo el rango de temperaturas y de la mezcla 

bio-aceite/bio-glicerol a 1073 K. Así, se concluyó que el uso de soportes no convencionales 

puede ser una opción viable para la preparación de catalizadores. 

Por último, el Capítulo 12 recoge las conclusiones más relevantes derivadas del trabajo 

experimental de la tesis. 
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Laburpena 

Hidrogeno garbia lortzaren interesa, gaur egun industrial erabiltzen den hidrogenoaren jatorri ez 

berriztagarria da, zein berotegi efektua sortzen duten gases, esaterako CO2, emisioan dago. 

Gainera, hidrogenoaren erabilpen energetikoak etorkizuneko energi bektore gisa bere kontsumoa 

areagotuko du. Horregatik, hidrogeno iturri garbi edota berriztagarriak beharrezkoak dira. Hori 

dela eta, tesi hau bio-olioen edo biomasaren pirolisi likidoetatik -iturri berriztagarria- 

hidrogenoaren lorpenean fokatzen da, lurrun erreformatua (SR) erabiliz. Horretarako, 

katalizatzaile ezberdinak erabili ziren ohantze finkoko erreaktoreetan, Hala ere, bio-olioekin lan 

egitea zaila da ehundaka molekulek osatzen dutelako, termodinamikoki ez egonkorra den 

nahaste bat sortuz. Ondorioz, hidrogeno lorpen entseguan ez ziren hasieratik bio-olioekin egin, 

konposatu eredugarriekin baizik. Tesi honetan jasotako informazioa kapitulo ezberdinetan 

banatu zen, beraietan jasotako informazioa ondorengo parrafoetan laburtua izanik. 

1. kapituluak egungo energi sistemaren aldaketaren beharra erakusten du, sistemak dituen 

desabantailengatik. Arrazoi horregatik, energi sistema alternatibo bat proposatzen da, biomasa 

berriztagarritik datorren hidrogenoan oinarritua. Gainera, hidrogeno jasangarriak industrian 

erabiltzen den hidrogeno fosila ordezka dezake. Horrela, egungo industrian erabiltzen den 

hidrogenoak sortutako berotegi efektuko gasen emisioak gutxitu ditzazke. Horregatik, kapituluak 

biomasatik hidrogenoa lortzeko aukera ezberdinak erakusten ditu, pirolisiaren azkarraren 

bidezko bio-olioen lorpenean eta ondoren bio-olioak erreformatzean fokatuz. 

Ondoren, 2. kapituluak tesiaren hasieren finkatutako helburu nagusiak ditu. Beraz, hidrogenoa 

lortzeko prosezuan sistema elikatzeko erabiliko diren likido ezbedinak (konposatu 

eredugarrietatik hasiz, konposatu eredugarrien nahasteetatik pasatuz, benetako bio-olioetara 

helduz) eta katalizatzaileak aipatuz. 

3. kapituluak tesia aurrera eramateko erabilitako materialak eta prozedura analitiko eta 

experimantalak deskribatzen ditu. Hortaz, tesi honetan erabilitako katalizatzaile prestaketa 

metodoak, karakterizazio teknikak, analisi metodoak eta erabilitako ekipamendua zehatz 

zehazten dira. 

Behin tesiaren interesa justifikatuta, helburuak finkatuta eta prozedurak deskribatuta, 4. 

kapitualuak lehen experimentuen emaitzak jasotzen ditu. Kapitulu hontan, nikelean 

oinarritutako eta aluminan edo CeO2, La2O3 edo MgO-rekin aldatutako aluminan eutsitako lau 

katalizatzaile prestatu ziren. Horretaz gain, katalizatzaile komertzial bat erabili zen konparaketa 

amoekin. Katalizatzaile guztiak n-butanoletik hidrogeno lortzeko erabili ziren SR-aren bidez 5,0-

ko lurrun karbono (S/C) erlazioa, presio atmosferikoa eta 1073 eta 873 K arteko tenperaturak 
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erabiliz. Deaktibazio partzial bat jasan arren, Ni/CeO2-Al2O3 katalizatzailea izan zen 

katalizatzailerik aktiboena aztertutako erreakzio baldintzetan. Experimentu hauek bio-olioen 

erreformaturako katalizatzailerik aktiboena identifikatzeko balio ez arren, katalizatzaile 

ezegokienak (komertziala eta Ni/MgO-Al2O3) alboratzeko baliogarriak izan ziren. 

5. kapitulurako, aurreko kapituluko hiru katalizatzaile aktiboenak m-xilenoaren SR-ean erabili 

ziren, n-butanolaren erreformatua burutu zen baldintza berberetan. Baldintza hoietan, 

katalizatzaileak ez ziren era esanguratsuan desaktibatu eta katalizatzaile guztiek hantzerako 

errendimenduak lortu zituzten. Horregatik, hiru katalizatzaileak n-butanol, m-xileno eta furfural 

mol kopuru berdineko nahaste baten SR-ean erabili ziren. Aktibtate emaitzek Ni/CeO2-Al2O3 

katalizatzailea zela aktiboena eta desaktibazioa ondoen jasaten zuena. Hala ere, 873 K-eko 

erreakzio temperatura katalizatzailen aktibitate altuak lortzeko baxuegia zela ikusi zen. 

Katalizatzaileen desaktibazioaren arrazoi nagusia karbono deposizioa izan zen. 

Ondoren, prestatutako bio-olioaren konposatu eredugarrien kopurua handitu zen. Horrela, 6. 

kapituluko emaitzak n-butanol, m-xileno, furfural, m-cresol, siringol eta xilosaren mol kopuru 

berdineko nahaste baten SR-aren bidez lortu ziren. Aktibitate froga hauentzat, lan presioa 

20 bar-etara igo zen xilosak sortzen dituen lan arazoak direla eta. Hala ere, edozein katalizatzaile 

erabili arren, presio igoera ez zen nahikoa izan zeren eta erreaktorea zazpigarren ordurako 

blokeatu zen 1073 K-etara. Hori ikusita, glizerola gehitu zitzaion nahasteari erreakzio sistemaren 

iraupena luzatzeko. Horrela, 7 konposaturen mol kopuru berdineko nahastea prestatu zen. 

Baldintza horietan, erreaktorea aurreko kasuen antzera blokeatu zen, baina hori 1073 K-etara lan 

eginda, bederatzigarren orduan gertatu zen. Beraz, glizerola nahastera gehitzeak erreakzio 

sistemaren iraupena hobetu zuen. Baina, nahastean zegoen xilosa kopurua altuegia zen hidrogeno 

lorpen aplikazioerako. 

Horren ondoren, 7. kapituluan, bio-olio/bio-glizerol nahaste sintetiko baten SR eta bio-olio 

erreal baten SR-eko aktibitate katalitikoen konparaketa bat burutu zen. Horretarako, Ni/Al2O3, 

Ni/CeO2-Al2O3 eta Ni/La2O3-Al2O3 katalizatzaileak impregnazio humelaren bidez prestatu ziren. 

Bio-olio/bio-glizerol nahaste sintetikoaren aktibitate entseguak 1073 eta 973 K-etan burutu ziren, 

bio-oil errealaren SR experimentuak 1073 K-etan burutu ziren rtean. Experimentu multzo biak 

presio atmosferikoan, 5.0 S/C ratio bat erabiliz. Prestaturiko katalizatzaileen artean, CeO2 zuen 

katalizatzaileak lortu zituen hidrogeno errendimentu handienak prozesu bietan. Hori dela eta, 

katalizatzaile bimetalikoak pestatu zirenean nikela eta paladioa, platinoa edo rodioa batera 

inpregnatu ziren CeO2-Al2O3 oinarrian. Rodio gehitzeak katalizatzaile aktibo eta egonkorrenak 

eman zituen bio-oil/bio-glizerol nahaste sintetikoaren SR eta bio-oil errealaren SR prosezuetan. 
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Bio-oil erreala erabiliz egindako aktibitate entseguak Imperial College London-en instalazioetan 

burutu ziren sei hilabeteko egonaldi baten. 

Hurrengo sekzioan, 8. kapituluan, siliko-aluminatu komertzialak erabili ziren katalizatzaile 

euskarri gisa. Horrela, siliko alumina amorfoa (ASA), HZSM5 zeolita, silika mesoegituratua 

(SBA15) eta USY zeolita erabili ziren. Material bakoitza bi nikel katalizatzaile prestatzeko 

erabili zen: bata oinarri eraldaketa gabe eta bestea siliko-aluminatuetan CeO2 gehituz. 

Katalizatzaile guztiak bio-olio/bio-glizerol nahaste sintetiko batetik hidrogenoa lortzeko erabili 

ziren, alumin euskarridun katalizatzaileentzat erabilitako lan baldintza berdinetan. Experimentu 

hauek CeO2 inpregnazioa siliko-aluminatu komertzialetan oinarritutako katalizatzaileen 

aktibitatea areagotzeko onuragarria zela erakutsi zuten. Hala ere, karbono deposizioaren 

ondorioz katalizatzaileak desaktibatzea izan zen desaktibazio arrazoi nagusia. 

Hori dela eta, L zeolitan eutsitako nikelean oinarritutako katalizatzaileak prestatu zirenean, CeO2 

inpregnatu zen nikelaren aurretik, 9. kapituluan erakusten den bezala. Morfologia ezberdineko 

(disko eta nanokristalak) L zeolita prestatu zen zesio edo sodioa gehituz eta gehitu gabe. 

Prestatutako katalizatzaileak bio-olio/bio-glizerol nahaste sintetikoaren SR prosezuan probatu 

ziren presio atmosferikoan, 1073 eta 973 K-etan 5.0 S/C ratio molarra erabiliz. Aktibitate 

entseguek erakutsi zuten sodiodun L zeolitetan eutsitako katalizatzaileak zirela aktibitate gutxien 

zutenak hidrogenoa lortzearen ikuspuntutik. Bestalde, disko formako L zeolitan eutsitako 

katalitzatzaileak, zesioa gehituta edo gehitu gabe, izan ziren aktiboenak. Kapitlulu hau Euskal 

Herriko Unibertsitatearen (UPV/EHU) beste departamentu batekin egindako elkarlan bat izan 

zen. 

Aktibitate entseguekin bukatzeko, ez ohiko materialetan, industria hondakinetatik datozen 

materialak (10. kapitulua) eta material bolkaniko edota mineraletan (11. kapitulua) eutsitako 

katalizatzaileak prestatu ziren. Material hoiek erabiltzearen arrazoia katalizatzaile merkeagoak 

prestatzea zen. Aukeratutako euskarri kopurua dela eta, lehenik, prestaturiko katalizatzaileak 

m-xilenoaren SR-ean erabili ziren. Era honetan, hidrogeno errendimendu handiena lortu zuten 

katalizatzaileak hautatu ziren bio-olio/bio-glizerol nahaste sintetikoaren SR-erako. Kasu bietan, 

lortutako errendimenduak Ni/Al2O3 katalizatzaileak lortutako errendimenduekin konparatu ziren. 

Experimentuek erakutsi zuten ez ohiko katalizatzaileek Ni/Al2O3 katalizatzailearen antzerako 

errendimentuak lortu zituztela m-xilenoaren SR-ean, baina errendimendu asko baxuagoak 

bio-olio/bio-glizerol nahaste sintetikoaren SR-ean. 

Bestalde, Ni/Sepiolite T katalizatzaileak Ni/Al2O3 katalizatzailearen antzerako aktibitatea edo 

aktibitate altuago izan zuen m-xilenoaren SR experimentuetan saiakuntzak egin ziren tenperatura 
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guztietan eta bio-oil/bio-glizerol nahaste sintetikoaren SR-ean 1073 K-etan. Arrazoi horiengatik, 

ez ohiko euskarriak katalizatzaileak prestatzeko aukera bideragarri bat direla ondorioztatu zen. 

Bukatzeko, 12. kapituluak tesi honen lan experimentaletik ateratako ondorio esanguratsuenak 

jasotzen ditu, baita etorkizunean tesi honetako lanak jarraipena izateko lanak har dezakeen bidea 

ere jasotzen du. 
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ABSTRACT 

The aim of this chapter is to contextualize the work carried out in the current thesis, framed in 

the field of green chemistry and sustainable engineering. In the chapter the necessity of a 

progressive transition from fossil hydrogen to low carbon footprint hydrogen, obtained from 

biomass, is presented. Thus, among different hydrogen production pathways the most promising 

one is selected: fast pyrolysis of bio-oil followed by steam reforming of bio-oil. Afterwards, the 

properties of biomass and the variables to favor the production of bio-oil during the pyrolysis 

process are reviewed. Finally, an study of the state of the art of the bio-oil reforming catalysts 

and processes is carried out. 

1.1. HYDROGEN PRODUCTION FROM BIOMASS 

Fossil fuels (petroleum, natural gas and coal) are widely used due to their easy accessibility and 

availability. Accordingly, they represent the 82 % of primary energy consumption, whereas 

renewable energy sources represent only the 14 % and nuclear resources, the 4 % [1]. In 

addition, except coal, their use will continue increasing in following wears, according to the 

International Energy Outlook 2017, see Figure 1.1. Thus, the world energy consumption is 

predicted to rise a 28 % from 2015 to 2040. In that period, the energy consumption projection for 

the countries that are part of the Organization for Economic Cooperation and Development
1
 

(OECD) increases a 9 %, while in the case of non-OECD countries increases up to 41 % due to 

their economic and population growth [2]. 

However, the use of fossil fuels is related with the greenhouse gases (GHG) and particulate 

matter emissions [3]. Thereby, as the use of fossil fuels is expected to increase, CO2 emissions 

projected to increase in following years, as shown in Figure 1.2. In addition to the above 

mentioned environmental impacts, the concern for the finite nature of the fossil reserves and 

their instability of prices increased the research interest in the development of renewable energy 

technologies [4–7]. 

Unlike fossil fuels, hydrogen presents some benefits as it is abundantly available and it burns 

cleanly, emitting only heat (120.7 KJ/g) and water vapor. Thus, it can play an important role 

reducing greenhouse gases emissions. Due to those facts, hydrogen is considered to be the 

energy carrier of the future [4]. Apart from future energy applications, hydrogen is currently 
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used in petroleum heavy fractions upgrading (e.g. gasoline and diesel productions), chemicals 

production (e.g. methanol and ammonia) and glass, metallurgy, food and electronic industries 

[8,9]. However, hydrogen is nowadays mainly produced from fossil fuels (natural gas, 

petroleum/naphta and coal), which originates large GHG emissions [6].  

 

Figure 1.1. World energy consumption by energy source, IEO 2017 [2]. 

According to the “Technology roadmap: Hydrogen and fuel cells” report, refining, industrial gas 

and chemical industries consume 7.2 exajoules (EJ) of hydrogen per year. That amount of 

hydrogen is obtained from natural gas –methane- steam reforming without CCS (Carbon Capture 

and Storage) (48 %), petroleum refining processes (30 %), coal (18 %) and electrolysis (4 %). 

Therefore, hydrogen production resulted in annual emissions of 500 megatones (Mt) of CO2, 

approximately [10]. 

 

Figure 1.2. Energy related carbon dioxide emissions, IEO 2017 [2]. 
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The current hydrogen production process incorporates a high temperature catalytic reforming 

reactor (1073-1173 K; 15–30 bar), one or two catalytic Water Gas Shift (WGS) reactors 

(473-673 K) and a pressure swing adsorption (PSA) unit. The product gas is usually fed to a PSA 

unit in order to obtain a high-purity (>99.9 vol. %) stream of H2 [11]. Thus, the substitution of 

fossil derived hydrogen by low carbon footprint hydrogen offers a significant potential for 

mitigating carbon emissions for a potential low carbon energy system for the future (Figure 1.3) 

[10]. Therefore, environmental benefits can only be obtained by producing hydrogen from 

renewable energy sources, such as biomass [5,12,13]. The use of sustainably grown biomass will 

result in low net CO2 emissions, as the same amount of carbon released in combustion has been 

recovered from the atmosphere during biomass growth [9,14]. 

 

Figure 1.3. Comparison of the energy system of today and a potential future energy system [10]. 

Biomass has the advantage of being converted in high added value end products (bioenergy and 

biofuels) in solid, liquid or gas phase by means of thermochemical processes [3]. Accordingly, 

biomass is also used to produce transportation fuels (naphta range fuels) to diversify the energy 

supply using renewable resources. This way, the reliance on imported oil and the environmental 

impact can be mitigated. However, to achieve fuel production, bio-oil requires being treated. The 

treatments involve, first, the catalytic hydrotreating/hydrodeoxygenation to stabilize and 

selectively remove oxygen from bio-oil. Then, catalytic hydrocracking is used for a simultaneous 

scission and hydrogenation of aromatics and naphtalenes into lighter aliphatic and aromatic 

molecules [15]. Therefore, the bio-hydrogen production is necessary regardless of it is going to 

be used as a transportation fuel or a reactant in fuel (biomass or fossil fuel derived) upgrading. 
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Hydrogen can be directly obtained from biomass (gasification, high temperature pyrolysis, 

catalytic pyrolysis and biological processes) and by routes in which oxygenated molecules are 

obtained and then catalytically reformed [16], see Figure 1.4. However, although chemical and 

biological biomass conversion processes including fermentation and transesterification have 

been demonstrated at different scales for producing first generation biofuels, they exert market 

pressure on food crops and threaten biodiversity. On the other hand, thermochemical conversion 

processes can be used to produce fuels, chemicals and heat from non food crops with a reduced 

threat to biodiversity and market prices [17]. Accordingly, agricultural residues and 

lingnocellulosic materials are being studied for chemicals and fuels production, as well as new 

biorefinery processes [18]. 

Thus, among the mentioned hydrogen production alternatives, gasification and pyrolysis appear 

to be the most feasible, being the steam reforming of biomass derived bio-oils the most 

promising and economical way for hydrogen production [12,19].  

 

Figure 1.4. Alternatives to produce hydrogen from biomass. 

Biomass gasification is the thermo-chemical conversion of carbonaceous material into a gaseous 

product or synthesis gas that mainly consists of hydrogen (H2) and carbon monoxide (CO), with 

lower amounts of carbon dioxide, water, methane, higher hydrocarbons (C2+), and nitrogen [20]. 

There, the chemical energy of the solid fuel is converted into the chemical and thermal energy of 

the product gas [21]. 

The gasification process is performed in the presence of a gasifying agent (for example air, pure 

oxygen, or steam, or mixtures of these components) at elevated temperatures between 773 and 

1673 K and at atmospheric or elevated pressures, up to 33 bar [20].  
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Nevertheless, even if biomass gasification is technically feasible, it results in a high feedstock 

cost due to the low energy density of biomass. On the contrary, the production of bio-hydrogen 

from bio-oil reforming is a promising process, as during fast pyrolysis many minerals and metals 

are separated as char, converting a bio-oil in a cleaner feedstock [9]. Moreover, fast pyrolysis 

presents less logistic problems than gasification, due to the higher energy density and lower 

volume of bio-oils compared with biomass and biogas. 

In addition, the combination of fast pyrolysis and reforming yields a higher yield of hydrogen 

than gasification does [6]. 

In the current chapter, a thorough review of the most recent advances in bio-oil production and 

its reforming processes for hydrogen production in terms of operational conditions and reactor 

types will be discussed. 

1.2. BIOMASS PYROLYSIS TO PRODUCE BIO-OIL 

By definition, “Bio” means life and biomass is a biological material with a large volume that was 

derived from living organisms, such as plant or animal waste [20,22]. Biomass is composed of 

organic hydrocarbon materials, containing primarily carbon, hydrogen, oxygen, nitrogen, and 

sulfur, although sulfur and nitrogen are present only in insignificant amounts. Biomass also 

contains some inorganic impurities, whose concentration varies from species to species [23]. 

Generally, biomass can be categorized into five basic categories [20]: 

 The first category is the virgin wood that was obtained from forestry or in waste from forest 

products, as wood pellets, woodchips, and sawdust. 

 The second category can be classified as the energy crops, which are the high-yield crops 

grown specifically for energy applications. They can be divided into herbaceous or woody. 

 The third category is the agricultural residues, which includes the bagasse from sugarcane, 

corn husks, coconut shells, and straw. 

 The fourth category is the food waste, which includes animal fat, residues from food and 

drink manufacturing, etc. 

 The fifth category is the industrial waste from manufacturing and industrial processes. 

Among them, lignocellulosic biomass coming from wood, and wood and agricultural residues 

represent the main biomass energy sources [20,24]. Wood and other plant biomass (such as 
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crops, straw and grass) is essentially a composite material constructed from oxygen-containing 

organic polymers [25]. This kind of biomass does not compete with food sources. However, they 

may compete with conventional crops for land use. Thus, energy crops must be growth in a 

marginal land to avoid the competition for land use with food sources [3].  

Lignocellulosic biomass is mainly composed of carbohydrate polymers and oligomers 

(65-75 wt. %), cellulose and hemicellulose, and an aromatic polymer (18-35 wt. %), lignin as 

depicted in Figure 1.5. Minor low-molar-mass extraneous materials mostly organic extractives 

and inorganic minerals are also present in wood (4-10 %):  

 Cellulose is a homopolysaccharide with the general formula (C6H10O5)n (being “n” the 

degree of polymerization). The cellulose linear polymer is formed by the repetition 

β-(1→4)-D-glucopyranose or cellobiose monomer (which is composed of two glucose 

anhydre units). It usually consists of 5000−10000 glucose units linked by dehydration 

between their hydroxylic groups at carbon 1 and carbon 4 reaching a molecular weight of 

10
6
 or more. Cellulose fibers provide wood’s strength and comprise ≈40-50 wt % of dry 

wood [25–28]. The frequent intermolecular hydrogen bonds within the cellulose matrix 

result in a similar orientation of most of the molecules to form micro fibrils. Depending on 

the degree of organization of its structure, cellulose is composed of crystalline (highly 

ordered) and amorphous (randomly distributed) phases [29,30]. 

 Hemicellulose, also known as polyose, is a heteropolysaccharide composed of various 

carbohydrate monomers (glucose, mannose, galactose, xylose, arabinose, 4-O-methyl 

glucuronic acid and galacturonic acid residues) with different linkages and substitutions on 

the primary branches. A variety of hemicelluloses range from 25 to 35 % of the mass of dry 

wood. The molecular weights of hemicelluloses are lower than the cellulose ones [25,26]. 

The degree of polymerization of the chains of hemicelluloses is generally lower than 200 

and, contrary to the cellulose, the hemicelluloses are only constituted by an amorphous 

phase [29]. 

 Lignin is the third major component of wood and counts up to 23-33 % of mass of 

softwoods and 16-25 % of mass in hardwoods. It is the main binder for the agglomeration of 

fibrous cellulosic components while also providing a shield against the rapid microbial or 

fungal destruction of the cellulosic fibers [25,26,31].  

Lignin is a macromolecule, which has a complex three-dimensional structure and consists of 

three major phenylpropanoid units: p-coumaryl, coniferyl, and sinapyl alcohols. However, 
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hardwood and softwood lignin have different structures. “Guaiacyl” lignin, which is found 

predominantly in softwoods, results from the polymerization of a higher fraction of coniferyl 

phenylpropane units. “Guaiacyl-syringyl” lignin, which is typically found in many 

hardwoods, is a copolymer of both the coniferyl and sinapyl phenylpropane units where the 

fraction of sinapyl units is higher than that in softwood lignins [25]. The proportions of the 

monomer units are highly variable and mainly depend on the lignocellulosic species. For 

example, the lignin present in straw and grass has a different structure than that in woods 

[32]. The units are connected by different ether and carbon to carbon linkages [26]. 

 Inorganic minerals are nutrient constituents of biomass. Those nutrients contain important 

amounts of alkali and alkaline earth metals. During the pyrolysis process, inorganic 

minerals, such as sodium, potassium, calcium or magnesium, etc., can act as catalysts 

modifying the thermolysis reaction routes. However, their real effect in the pyrolysis process 

is not clear as reported by Hu et al. [33]. After the pyrolysis process, inorganic components 

can be primarily found in ash [34]. 

 Organic extractives work as intermediates in metabolism, as energy reserves, and as 

defenses against microbial and insect attack [25]. 

 

Figure 1.5. Main biomass components and their main building blocks. 

The proportion of the three main biopolymers varies from one biomass species to another 

[25,32,35–37]. 

To confer hydrolytic stability and structural robustness to the cell walls of the plants, 

lignocellulose has evolved to resist degradation, and this robustness or recalcitrance is 



Chapter 1 

26 

attributable to the crosslinking between the carbohydrate polymers and the aromatic polymer via 

ester and ether linkages [35]. 

From the environmental point of view, plant growth needed to generate biomass feedstocks 

removes atmospheric carbon dioxide, which compensates the increase in atmospheric carbon 

dioxide that results from biomass fuel combustion. In addition, low SOX and NOX emissions are 

generated because plat biomass contains insignificant amounts of sulfur and nitrogen [25]. 

However, the use of biomass as renewable energy source presents some drawbacks. The 

distributed availability and low energy density of biomass is a problem in storage and 

transportation. A possible solution is the local energy densification of biomass via liquefaction 

by fast pyrolysis. It is a fairly simple non-selective biomass liquefaction technique that accepts a 

wide range of lignocellulosic materials such as forestry, agricultural or plantation residues. 

Besides, industrial waste streams from e.g. food/feed, bio-ethanol or bio-diesel production can 

also be used [38,39]. 

1.2.1. Fast pyrolysis for bio-oil production 

Biomass pyrolysis is generally defined as the thermal decomposition of the biomass organic 

matrix in non-oxidizing atmospheres, where the feedstock depolymerizes, vaporizes and 

condenses, resulting in liquid bio-oil, solid biochar, and non-condensable gas products. The 

pyrolysis process can be separated in the following steps [25]: 

1. Heat transfer from a heat source to the material to pyrolyze to supply the energy needed to 

increase its temperature. 

2. Initiation of primary pyrolysis reactions which release volatiles and forms char. 

3. Flow of hot volatiles toward cooler solids, transferring heat from the hot volatiles to the 

unpyrolyzed material. 

4. Condensation of some of the volatiles in the cooler parts of the biomass, followed by 

secondary reactions, where tars can be produced. 

5. Competition between autocatalytic secondary pyrolysis reactions and primary pyrolytic 

reactions. 

6. Further thermal decomposition, reforming, water gas shift reactions, radicals recombination, 

and dehydrations, depending on the residence time and temperature and pressure profile. 

Depending on the heating rate and solid residence time, biomass pyrolysis can be divided into 

[25,36]: 
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 Slow (conventional) pyrolysis: it is characterized by using long residence times (hours or 

days), low heating rate (0.1-1 K/s) and the acceptance of a wide range of particle sizes 

(5-50 mm). In this process, biomass is thermally decomposed under a low heating rate to 

allow repolymerization reactions to maximise solid yields. 

 Fast pyrolysis: it typically involves high heating rates (from 200 K/s to 10
4
 K/s) to 

temperatures up to 923 K. Short residence times (0.5–10 s, typically <2 s) and finely 

grounded biomass (particle sizes of less than 2 mm) are also required. Pyrolysis vapors need 

to be quickly quenched in order to suppress secondary reactions [28]. 

Using the mentioned conditions, fast pyrolysis process converts bulky inhomogeneous biomass 

into a liquid product up to 70 or 80 wt. % of dry feed. This liquid is called pyrolysis oil or bio-oil 

[36,40].  

Bio-oils are known to be a mixture of more than 100 oxygenated compounds: acids, alcohols, 

aldehydes, esters, ketones, sugars, phenols, guaiacols, syringols, furans and multifunctional 

compounds, as well as lignin derived oligomeric materials emulsified with water. But the yield 

and composition of pyrolysis oil depend on, among other factors, feedstock composition, particle 

size, reactor temperature, heating rate and condensation strategy [12,23,40–44]. Different bio-oil 

compositions form different raw biomasses are summarized in Table 1.1. 

Bio-oil has advantages like higher energy density than biomass (bio-oils can contain 7 times the 

energy density of biomass [7]), easy storage, handling and transportation, and flexibility to be 

used either as a renewable liquid fuel or for the production of chemicals [19,45]. However, 

bio-oils have some disadvantages, such as high viscosity, high oxygen content (up to 60 wt. %), 

high acidity (pH of 2-3), thermal instability, corrosiveness, and chemical complexity, and low 

heating value compared with fossil fuels, which set up many obstacles to their application as fuel 

[38,46]. 

Bio-oil is not stable under extended regular storage conditions not to mention under the high-

temperatures often employed in the upgrading steps [47,48]. It undergoes changes in physical 

and chemical properties (increases in viscosity, molecular weight, water content and phase 

separation), a process commonly described as "aging" [46,47,49]. The aging reactions are 

enhanced by elevated temperatures [50].  
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Table 1.1. Structural compounds and chemical composition of biomass and bio-oils produced.. 

Original 

biomass 

Wt. % cellulose, hemicellulose and lignin Biomass composition wt. % * Bio-oil composition wt. % *  

Cellulose Hemicellulose Lignin C H O N Ash C H O N Ash Ref. 

Reed canary 

grass 
43 30 8 45-46 5-6 48-49 0-1 1-6 38-40 7-8 51-54 0-1  [51–53] 

Alfalfa stern    46 6 45 3 8      [54] 

Miscanthus    47 6 46 0.9 5 55 7 36 2 11 [55] 

timothy hay    48 6 46 0.7 3 32 9 59 1  [52] 

Dactylis 

glomerata 
   43 6 49 2 8 37 9 53 2  [51] 

Festuca 

arundinacea 
   42 6 51 2 7 32 10 57 1  [51] 

Lolium perenne    43 6 50 1 6 31 10 59 1  [51] 

Wheat straw 41-48 30-32 6-8 44-47 5-7 47-49 0-1 4-5 61 9 30 1 10 [53,55–57] 

Barley straw    49 5.9 45 0,5 5.8 27 9.0 62,7 1  [52] 

Straw    44-49 5-7 43-49 0-2 5-7 28-59 7-9 31-63 0-2  [51,58] 

Switch grass 45 35 12 44-52 5-7 41-50 0-1 4-9 38-64 7-8 28-54 0-1 113 [28,51,55] 

Willow 50 14 20 47-49 5-6 43-47 0-2 1-3 43-63 5-8 31-50 0-1 9 [51,53,55] 

Beech wood 51 28 20 46-53 5-6 41-48 0-1 0-2 54.2 6.9 38.9  3 
[55,56,59,60

] 

Pine sawdust    45-47 6-7 46-49 0.2 0-1 47-72 6-14 15-45 0-1 1 [31,61,62] 

Pine    48-54 5-7 40-50 0.1 0-1 36-49 4-9 44-56 0.1  
[52,56,63–

65] 

Softwood 40-41 24-27 28-34     0-1      [66,67] 

Hardwood 39-50 33-35 17-20     0-1      [66,67] 

Oak (hardwood)         45 7 48   [64] 
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Poplar 

(hardwood) 
        47 8 45   [64] 

Douglas fir 

sawdust 

(softwood) 

   48 7 45 1 1 47 1 50 1  
[68] 

 

Rubber Wood 

sawdust 

(hardwood) 

   47 7 46 1 1 20 11 69 1 - [69] 

Meranti Wood 

sawdust 

(hardwood) 

   42 6 53 0,1 1,2 15,7 8,2 76 0,1 - [69] 

Stem wood    51 6 43 1 1 55 7 38 1  [70] 

Forest residue    51-52 5-6 42-43 0-1 2-4 41-42 7-8 50-51 0-1  [52] 

Eucaliptus    50-61 5-6 31-44 0.1 0-2 42 8 50 1  [52,71] 

Wood 38 33 25 51-53 4-6 40-41 0-1 2-3 57 7 35 1  [28,58] 

Algae 73 13 8 45-47 7-8 39-41 4-6 26-29 60 7 29 4  [58,72] 

Lignin    66 7 27 1 12 66 8 3 2  [58] 

Corn stover 36 24 18 41-50 5-6 42-43 0-1 4-7      [28,73] 

Corn cob 37 48 9           [57] 

Bamboo 52-55 11-22 21-22           [66,74] 

Rice husk 30-39 25-29 12-21 48 7 45 1 12-16 31-40 8 46-49 0-1 0-1 [57,67,75] 

 

C, H, O and N are expressed in dry ash free basis. 

Ash is expressed in dry basis. 
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García-Pérez et al. [76] reported that the main reactions responsible for bio-oil aging were 

dehydration, esterification of organic acids, reaction between aldehydes, ketones and water to 

form hydrates, acetal formation from aldehydes and alcohols, resin formation from aldehydes 

and phenols, heavy compounds formation from aldehydes and proteins and air oxidation of 

alcohols and aldehydes to form acids. Nolte and Liberatore [77] explained the aging process as 

the polymerization reactions that include reactions between double bonded species, 

esterifications and etherifications, where some of the reactions (e.g. condensation reactions) 

produce water as by product. They mention that phase separation may be due to the increase in 

water content coupled with the loss of surfactant functionalities by the reactions of carboxylic 

acids, alcohols or other polar groups. 

Similarly, Chaala et al. [48] indicated that when bio-oils are heated two main reactions occur: 

polycondensation and polymerization. The polycondensation reactions involve functional groups 

(OH, moving hydrogen, COOH, etc.) whose role is central to form new substances releasing low 

molecular weight compounds, such as water, alcohols, etc. as byproducts. Moreover, when 

molecules contain more than two functional groups three dimensional or ramified molecules can 

be formed, originating networks, responsible for the phase separation. On the other hand, 

polymerization reactions involve unsaturated species (e.g. furan derivatives) that react when the 

pH, temperature and residence times are favorable.  

These findings are in accordance with the results of Meng et al., whose results indicated that 

even if the acids are completely removed from the bio-oil, mild condensations take place in 

bio-oils. Which implies other condensation processes [47]. Therefore, the long-term instability 

needs to be considered during commercial energy use [47,50]  

1.2.2. Pyrolysis reactions 

Biomass pyrolysis is an extremely complex process. It generally goes through a series of 

reactions and can be influenced by many factors. As a result, biomass pyrolysis products are a 

complex combination of different compounds. Additionally, secondary reaction products result 

from cross-reactions of primary pyrolysis products and the original feedstock molecules [25]. 

The primary decomposition reactions in biomass pyrolysis (i.e. the breakdown of cellulose, 

hemicellulose and lignin to lower weight molecules) are endothermic. Further reactions in the 

vapour phase could be endothermic or exothermic. Accordingly, an energy input is required to 

dry, heat the cold biomass feedstock up to the reaction temperature and supply the necessary heat 

for the reactions taking place [38]. 
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Biomass pyrolysis can be divided into four individual stages: moisture evolution, hemicellulose 

decomposition, cellulose decomposition, and lignin decomposition [78]. 

Free water is present in wood and when wood is rapidly heated those water molecules disrupt the 

structure by a steam explosion-like process, prior to the chemical dehydration of the cellulose 

molecules [25].  

1.2.2.1. Hemicellulose pyrolysis 

The difference in the degradation temperature of cellulose and hemicellulose is because the 

crystalline structure of cellulose resists thermal decomposition better than hemicellulose [25,66]. 

Grioui et al. [79] reported a thermal decomposition mechanism and a mechanism of dehydration 

of cellulose during thermal degradation, showing that the main content of bio-oil on aldehydes, 

ketones and furans come from cellulose. 

Regardless of the variety of hemicelluloses their conversion mainly occurs in the range of 

423-623 K [25,28,29]. 

As happens during cellulose pyrolysis, dehydration and breaking of less stable linkages of xylan 

and glucomannans start around 150 ºC originating species as methanol, formic acid and acetic 

acid. Furfural can also be found in this temperature range. But its main depolymerization starts at 

temperatures around 513-543 K. At those temperatures, linkages between monomer units 

become very unstable and a rapid depolymerization occurs. These reactions lead to the formation 

of different anhydrosugars. Then, the pyran rings can be converted to more stable furan rings, 

explaining the formation of 5-hydroxymethylfurfural, 5-methylfurfural and furfural [29]. 

The rapid depolymerization of the hemicelluloses causes the formation of different chemical 

functions and of many unstable intermediaries. These molecules undergo dehydration, 

fragmentation and secondary reactions which lead to the formation of a significant amount of 

H2O, CO2 and CO [25,29].  

1.2.2.2. Cellulose pyrolysis 

When cellulose is pyrolyzed, it starts to depolymerize around 423 K and active cellulose or 

anhydrocellulose intermediaries can be formed. The term active cellulose usually refers to 

intermediaries resulting from a partial depolymerization of the cellulose. On the other hand, 

anhydrocellulose consists of intermediaries formed after dehydration reactions. However, 

whatever the name of the intermediary formed, it results from both reactions, with a 

preponderance depending on the heating rate [29,37].  
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Cellulose depolymerization reactions are faster above 573 K, after the loss of cellulose 

crystallinity (543-573 K), which contributes to the reactivity of cellulose [29]. 

The depolymerization of cellulose leads to oligosaccharides of relatively low molecular units and 

chain breaking continues until sugar level is reached [80]. This process mainly leads to the 

production of an anhydro-monosaccharide known as levoglucosan. Other glucose derived 

anhydrosugars can also be identified [25,29,36,80–82]. Zhang et al. [83] studied three 

endothermic levoglucosan formation mechanisms (free radical mechanism, glucose intermediate 

mechanism, and levoglucosan chain-end mechanism) and concluded that the chain end 

mechanism is the most reasonable pathway. In that mechanism a cellulose chain is 

depolymerized into a levoglucosan-end intermediate and a short cellulose chain, then the 

levoglucosan-end intermediate will be unzipped into a levoglucosan molecule [82,83]. 

Levoglucosan molecule formation can be affected by the presence of alkali metal or alkaline 

earth metal chlorides, which substantially increase in the yield of water soluble low molecular 

weight species [84]. Similar conclusions were reported by Mourant et al. [85] indicating the 

importance of the removal of alkali and alkaline earth metallic species because they increase the 

sugars and lignin derived oligomers yields and decrease the water and light organic compounds 

in bio-oils. The catalytic effect of MgO and CaO produced from the Mg
2+

 and Ca
2+

 ions of 

biomass were also reported by Mettler et al. [86]. 

The additional anhydrosugars, and small amounts of phenolic compounds, can be produced 

either by the primary pyrolysis of cellulose or by the secondary pyrolysis of levoglucosan [81]. 

Then levoglucosan depolymerizes and cellulose units suffer ring openings. This yields volatile 

furans such as 5-hydroxymethylfurfural, 5-methylfurfural, furfural and furfuryl alcohol and light 

species as hydroxyacetone, hydroxyacetaldehyde, formaldehyde, acetic and formic acids, among 

others. Additionally, unstable compounds are also formed which undergo dehydration and 

fragmentation reactions producing high amounts of water, CO and CO2 [27,29,37,80,81]. Wu et 

al. [82] classified cellulose-derived products as esters, aldehydes, ketones, cyclic ketones, furans 

and anhydrosugars on the basis of functional groups. They also reported that the formation of 

low molecular weight products could be attributed to two possible pathways: 

1. the cracking of cellulose units, which will generate low molecular weight products and 

anhydrosugars through competitive pathways. 

2. the decomposition of anhydrosugars and furans. 

The depolymerization of cellulose ends around 673-703 K [28,87]. A simplified scheme of the 

possible cellulose pyrolysis pathway can be found in Figure 1.6. 
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Figure 1.6. Possible cellulose pyrolysis pathway with final product examples. 

1.2.2.3. Lignin pyrolysis 

The decomposition of lignin starts in the range of 518-553 K, as it is more difficult to dehydrate 

than cellulose and hemicellulose, and it finishes around 773 K [25,29]. 

Lignin decomposition starts breaking the most labile linkages (ether bonds) and bonds between 

monomers. Thus, oxygenated compounds as CO, CO2 and H2O and phenolic compounds 

(monomers or oligomers) are originated [29,81].  

For higher temperatures (T>573 K) most of the C–C bonds within and between the alkyl chains 

become unstable and react. Due to that, 1-3 carbon chain molecules can be formed (methane, 

acetic acid or acetaldehyde among others). As a consequence, many of the phenolic compounds 

originated on this temperature range contain a methyl group in the position 1, e.g. p-cresol, or 

also an absence of the alkyl chain in this position, e.g. guaiacol or syringol [29]. Wu et al. [82] 

also grouped the lignin pyrolysis products as phenols, guaiacols and syringols. At 633-673 K 

many ramifications of aromatic rings break, giving place to the highest decomposition of lignin 

and maximum production of phenols. At temperatures higher than 723 K, most of the initial 

bonds between monomers are broken originating products from the short substituents of the 

aromatic rings: –CH3 or –OH [29].  

The decomposition of lignin yields more residual char than the pyrolisis of cellulose does. On 

the other hand, it also yields a liquid product (pyroligneous acid) which typically consists of 

≈20 wt. % of aqueous soluble components (methanol, acetic acid, acetone and water) and 

≈15 wt. % of tar residue (phenolic compounds produced via cleavage of ether and carbon-carbon 
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linkages), calculated on dry lignin basis. Methane, ethane and carbon monoxide are also 

produced as a gas phase that represents ≈10 wt. % of the original lignin [25].  

1.2.2.4. Char formation process 

After depolymerization, responsible for the main release of primary volatiles, the rearrangement 

of the char skeleton in a polycyclic aromatic structure occurs. The volatile compounds released 

by these rearrangement reactions are mostly low-weight incondensable gases [29]. 

Regardless of the origin of the char (cellulose, hemicellulose or lignin decomposition), it 

becomes more aromatic as the reaction temperature is increased. Thus, initial pyran and furan 

rings tend to originate benzene rings, which are predominant around 673 K. Those benzene rings 

are linked with some remaining aliphatic and oxygenated compounds. When reaction 

temperature reaches around 773 K, CO is originated from the conversion of phenol rings. 

Methane is also produced in the range of 773-873 K due to the reduction of methyl groups in the 

residue. In accordance, due to the rearrangement of the aromatic rings in a polycyclic structure, 

hydrogen is also produced [29]. Therefore, the gas yield is increased at temperatures higher than 

773 K [31]. 

As a consequence of the reactions involving the last oxygenated organic groups, conversion at 

temperatures higher than 1073 K results in the deoxygenation of most of the aromatic rings of 

the volatile compounds and of the residue [29]. An increase of the pyrolysis temperature up to 

gasification temperatures favors the formation of porous carbonaceous solids or char [88]. 

The inorganic materials or minerals present in the biomass act as catalyst during the pyrolysis 

process promoting the char formation. Finally, they end up as pyrolysis ash [29]. 

It can be seen that the organic compounds become more stable with the increase in temperature. 

Therefore, the temperature is the key factor for tar production [89,90] and to maximize the 

production of condensable products that will form the bio-oil. 

There is a debate regarding the interactions [82] or negligible interactions [37], among others, of 

cellulose, hemicellulose and lignin during pyrolysis as reported by Zhang et al. [91] and Hilbers 

et al. [92], who mentioned the few information about these interactions, among others. On the 

contrary, Shen et al. [27] stated that the interactions among the main chemical components of 

lignocellulosic biomass are remarkably evidenced, regarding the differences between the 

estimated yields and the experimental data. 
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1.2.3. Influence of the pretreatment of raw biomass and pyrolysis 

parameters on bio-oil production 

The structural combination of the components generally differs from biomass to biomass, which 

makes the interactions among components to change with biomass types, and subsequently, this 

affects the pyrolysis performance. In addition, the minerals or inorganic matter in the 

composition of biomass also affect the pyrolysis process due to their catalytic effect [36]. 

Another parameter that affects the pyrolysis performance is the biomass pretreatment. Biomass 

feedstocks usually require some pretreatment before pyrolysis to improve the pyrolysis 

efficiency (bio-oil yield and its characteristics), improving the material accessibility. The rate of 

accessibility depends on the crystallinity of cellulose, the disruption of hemicellulose, the 

porosity of the material, the lignin protection and the association of cellulose–hemicellulose–

lignin [78,93]. Pretreatments can be divided into five categories [36]: 

1. Physical: milling or grinding and extrusion. 

Biomass particles are heated by radiation of the reactor wall (in some reactor configurations 

also by convection of the fluidizing material). The particle heating starts on the surface and 

transfers heat by conduction within it. Thus, it approaches to the center of the particle, but 

the heating rate decreases severely due to the low thermal conductivity of biomass. So, the 

heating rate of a biomass particle is closely related to its particle size. Accordingly, although 

the final temperature of the particle is uniform, the heating rate varies radially. Thus, the 

temperature gradient is higher for bigger particles, which affects the products (gas, tar and 

char) distribution [36,38,94]. Accordingly, Shen et al. [95] concluded that the yield of bio-

oil decreased as the average biomass particle size was increased from 0.3 to about 1.5 mm. 

But further increases in biomass particle size did not result in any further decreases in the 

bio-oil yield. However, particle size reduction can be costly and significantly increase the 

overall cost of the biomass pyrolysis operation [36]. 

Extrusion or pelletization of biomass under high pressure produces biomass pellets which 

generally take the shape of small cylinders, increasing the volumetric energy density of 

biomass, while decreasing the moisture content [36]. This pretreatment can be used to mix 

different types of biomass to obtain more adequate biomass samples for pyrolysis. 

It is obvious that the raw forms of biomass are highly variable. So the preprocessing 

operations, such as grinding and pelletization, render materials denser and more uniform in 
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physical characteristics. This is important, not only for handling considerations, but also 

because of their subsequent impact upon bio-oil yield and quality [28]. 

2. Thermal: drying, torrefaction, steam explosion, hot water extraction and 

ultrasound/microwave irradiation. 

Biomass drying prior to pyrolysis increases the energy efficiency of the pyrolysis process 

and improves the quality of the bio-oil products [36]. Drying can be non-reactive 

(323-423 K), reactive (423-473 K) or destructive thermochemical conversion, as torrefaction 

[28]. 

Torrefaction is a mild pyrolysis process at temperatures ranging from 493 to 623 K for from 

5 to 60 minutes. There, biomass loses mass and gets enriched in carbon due to volatiles 

release. Additionally, torrefaction improves grindability, increases hydrophobicity and 

reduces biological and thermal degradation, which improves storage and transportation 

properties [28,36,96,97]. The heat required by the torrefaction reactor and for biomass 

drying can be supplied by combusting this gas, a mode known as autothermal operation 

when external fuel is not needed [97]. 

Steam explosion consists on the exposure of biomass to saturated steam at generally 

1.5-5 MPa and 423–533 K for seconds to minutes in a sealed vessel followed by a sudden 

depressurisation to ‘explode’ the biomass structure [36,98]. In this process, lignin 

depolymerizes into low molecular weight products and partially breaks down hemicelluloses 

[28]. However, the steam explosion pretreatment reduced the bio-oil yield as indicated in the 

work published by Wang et al. [78].  

The hot water extraction uses hot water at a moderate temperature (433 K) without adding 

acids or bases. This pretreatment selectively solubilizes the hemicellulose fraction [99], 

which decreases the acetic acid content and stabilizes bio-oil [36]. 

Ultrasound method utilizes cavitation to enhance heat and mass transfer during 

fractionation. Several parameters in the ultrasound process such as frequency, particle size 

and stirring also influence the results of lignocellulosic material pretreatment [93]. These 

physical and chemical effects of ultrasound pretreatment can increase the accessibility to 

cellulose fibers [100]. 

Microwave irradiation could change the structure of cellulose, degrade lignin and 

hemicellulose. Cellulosic breakdown mainly occurs through molecular collision due to 

dielectric polarization and, during microwave heating process, energy transfer occurs 
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through the interaction of molecules or atoms. Compared with conventional heating 

methods, a more uniform temperature distribution can be achieved and the undesired 

secondary reactions may be avoided. As a result, better control of the process and more 

desired products will be obtained [36,100]. 

3. Chemical: treatment with acids, bases and ionic liquids. 

Biomass can be pretreated with water or acids with the aim of removing the dirt and 

minerals from biomass surface and matrix, respectively. That removal reduces the ash 

content during pyrolysis, and, in consequence, its mentioned effects on the pyrolysis process 

and in the produced bio-oil [28,36]. In addition, acid or basic solutions can be used for the 

removal of lignin and hemicellulose, which is affected by the pH [36,93]. However, if 

washing conditions become extreme hemicellulose and then cellulose can be lost through 

hydrolysis. Thus, the liquid yield and quality are reduced. Moreover, the acid used for 

washing should be removed as completely as possible and recovered or disposed. Then 

biomass needs to be dried. Therefore, washing is not often considered a viable possibility 

[101]. According to the results published by Wang et al. [78], the alkali pretreatment 

reduced the bio-oil yield, while the biomass pretreatment with 0.5 and 1 % of H2SO4 

achieved the highest hydrogen yields. 

Ionic liquids are some of the most promising green chemicals which can solubilize plant cell 

wall effectively at mild temperatures. They are also known as “designer solvents” due to 

immeasurable cation and anion combinations, where the nature of cation and anion affects 

the solubility of biomass fraction and water interaction [36,93]. These liquids can be easily 

recovered after their use, which can overcome cost problems in industrial application [93]. 

4. Biological: Fungal, microbial consortium and enzymes. 

Biological pretreatment is the most expensive pretreatment method because of the high cost 

of certain microorganisms [93]. They are also slower but less energy consuming and a lower 

environmental footprint is achieved than with physical and chemical pretreatments [36]. In 

this kind of pretreatment, microorganisms such as brown, white, and soft-rot fungi are used 

to degrade lignin and hemicellulose in waste materials. Brown rots mainly attack cellulose, 

whereas white and soft rots attack both cellulose and lignin [98]. Microbial consortium and 

enzymes are also used for pretreating lignocellulosic biomass and lignin prior to its pyrolysis 

[36]. However, the complex linkage of cellulose, hemicellulose and lignin requires the 

combination of biological pretreatment with physical and chemical pretreatments [93]. 
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5. Combination of above mentioned pretreatments. 

Finally, it is worth mentioning that apart from the feedstock type, pyrolysis conditions such as 

reaction atmosphere, reaction temperature, particle size and heating rate, vapors retention time 

and the presence of a catalyst can greatly vary the yields and physical-chemical nature of bio-oils 

[28,36,38]. 

 Biomass pyrolysis is typically carried out an under inert atmosphere. Other gases can be also 

introduced to modify the pyrolysis process. For instance, steam can weakly oxidize the 

biomass and generate partial gasification [36]. Additionally, steam can be absorbed on the 

char surface and inhibit the adsorption of tar. This highly prevents the secondary cracking 

reactions in the gas phase, as it only causes mild cracking of the largest tar molecules. Thus, 

steam affects the quantity and quality of the bio-oil [102]. 

 Reaction temperature greatly influences the product distribution during pyrolysis. As 

described above, as part of the degradation of cellulose, hemicellulose and lignin and further 

charring process, at temperatures higher than 873 K gas and char production is favored. As a 

consequence, fast pyrolysis process is usually carried out at temperatures around 773 K 

[28,101]. 

 The residence time of the gases also affects the final product distribution. Therefore, gases 

should be quickly cooled down (typically residence time is less than 2 s) to reduce the 

progression of secondary reactions, which reduce the yield of condensable vapors 

[36,94,101]. 

 The presence of a suitable heterogeneous catalyst during fast pyrolysis (catalytic fast 

pyrolysis: CFP) can improve the quality of the produced bio-oil. The improvement takes 

place as the intermediate pyrolysis oxygenates react on the acid sites of the catalysts, 

typically zeolites [59,103,104], to produce single ring aromatic compounds, naphthalenes, 

polycyclic aromatic hydrocarbons (PAHs) and/or coke. Thus, the design of a suitable 

catalyst can be crucial for improving yields to valuable chemicals. This process is of interest 

when the increase of the compatibility of bio-oils and crude oil based refinery feedstocks or 

the increase of the yield of high octane liquid hydrocarbons (e.g. benzene, toluene and 

xylenes) is desired [38,59,105]. 

 

 



Introduction and state of the art 

39 

1.2.4. Pyrolysis reactors 

The most important element of the fast pyrolysis process is the reactor [25,106]. It probably 

represents about the 10-15 % of the total capital cost of an integrated system [106]. Bio-oil 

production by biomass fast pyrolysis has been extensively reported in literature using different 

reactors: drop tube reactors [60,107,108], fluidized bed reactors [51,54,61], ablative pyrolysis 

reactors [70], screw or auger reactors [109], vacuum pyrolysis reactors [110] or rotating cone 

[67], among others. Schematic figures of mentioned pyrolysis reactors can be found in Figure 

1.7. 

1.2.4.1. Drop tube reactor 

A drop tube reactor is composed of three main parts: the injection system, the reaction zone and 

the collecting system [60,111]. 

The particle feeding system consists of a silo with a metering screw [107], or injection system 

(syringe, syringe pump and rotating brush) that allows injecting pulverized solid fuels [60] which 

provides continuous particle feeding from the top of the reactor. The fed material is mixed with a 

carrier gas (e.g. argon or nitrogen to obtain inert atmospheres [107] with the aim of aiding 

aerosol dispersion of the fed particles [112] and controlling the residence time of the gases. 

Reaction system temperatures above 1273 K can be achieved in the reactor wall [60,107,111]. 

Due to the thermal conditions, particles are heated up rapidly by radiation and convection with 

maximum heating rates in the order of 10
4
-10

5
 K/s [60,107,112].  

The collecting systems are designed to quench and cool down the particles and flue gases very 

rapidly to avoid further reactions [60,111], and are placed at the bottom of the reactor [108,112]. 

This kind of reactors are designed for short residence times (<2s) [107]. 

1.2.4.2. Bubbling fluid beds 

The early work on fluid beds was carried out at the University of Waterloo in Canada, pioneering 

the science of fast pyrolysis and establishing a clear lead in this area for many years [101,106]. 

Bubbling fluid bed or fluidized beds are characterized by being a well understood technology 

with a simple operation and good temperature control and heat transfer from high density solids 

(usually sand) to biomass particles [25,101]. 

With the aim of achieving short residence times, shallow bed depths and/or high gas flow rates 

are necessary. Shallow fluid beds can be readily scaled up, but in large sizes the low bed height-



Chapter 1 

40 

to-diameter ratio causes radial temperature and concentration gradients to develop in the fluid 

bed, and special design methods are needed to alleviate the processing problems that can result. 

The high gas-to-biomass fed ratio also results in lower thermal efficiency, because of the 

required cooling of the recirculating gas stream in the bio-oil condensation units and the 

necessity to reheat this gas as the fluidizing and heat source agent for the pyrolyzer [113]. In 

addition, the large inert gas flow rates result in relatively large equipment thus increasing cost 

[101]. 

The byproduct char is typically about 15 wt.% of the products but about 25% of the energy of the 

biomass feed. It can be used within the process to provide the process heat requirements by 

combustion or it can be separated and exported, in which case an alternative fuel is required 

[101]. Char acts as an effective vapor cracking catalyst at fast pyrolysis reaction temperatures. 

Therefore, rapid and effective char separation is important. This is usually achieved by ejection 

followed by separation in one or more cyclone separators. Thus, careful design of sand and 

biomass/char hydrodynamics is important [25,106]. 

1.2.4.3. Circulating fluid beds and transported beds 

Circulating fluid bed (CFB) and transported bed reactor systems have many of the features of 

bubbling beds, except that the residence time of the biomass char is almost the same as for 

vapors and gas. Because of the higher gas velocities used in this system, char is more attrited. 

Due to that, higher char contents in bio-oils can be found, unless more extensive char removal is 

included [25,101]. Small particle sizes or recycling of partially reacted feed is necessary due to 

the low residence times [113]. 

Heat transfer is a mixture of conduction and convection in the riser [101]. However, it is not 

particularly high because it mainly depends on gas-solid convective transfer. Besides, if a CFB 

common twin bed reactor type is used, with the second vessel to reheat the circulating solids by 

char combustion, there is a strong likelihood of ash carryover into the pyrolyzer, and ash buildup 

in the circulating solids [113]. Accordingly, there is not char output, unless an alternative heating 

source is used [101]. 

1.2.4.4. Rotating cone 

The rotating cone reactor was invented at the University of Twente and developed by BTG. It 

operates as a transported bed reactor, but with transport effectuated by the heat carrier centrifugal 

forces in a rotating cone [101,114]. This reactor design avoids the need for a carrier gas which 

reduces the cost and products are obtained in high concentrations [67]. It is also characterized by 
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its compactness. Biomass particles are heated rapidly by the combination of both gas and solid 

phase convection [115]. Residence times within several seconds are achieved in the cone 

[67,114]. 

Biomass is fed with preheated sand near the center of the bottom plate, where there are 

thoroughly mixed. Then, due to the centrifugal forces originated by the rotating action of the 

cone, particles are moved upward in a spiral way. The thermal degradation of the biomass 

particles starts when they enter in the reactor. Gaseous products are removed at the bottom of the 

reactor [115,116]. Char and sand drop into a fluid bed surrounding the cone. There, they are 

lifted to a separate fluid bed combustor (where a carrier gas is required) to burn the char to heat 

the sand. Afterwards, char is sent back to the rotating cone. Therefore, this reactor design does 

not produce char as byproduct, unless an alternative heating source is used. The liquid yields 

achieved are typically the 60-70 % on dry feed [101].  

1.2.4.5. Ablative pyrolysis 

Ablative pyrolysis transfers heat from the hot reactor wall to "melt" biomass under pressure to 

enhance the heat transfer. Because of that design, the reaction rate is strongly influenced by the 

temperature of the reactor surface, the shear forces that reduce particle size and increase surface 

area and the relative velocity of the biomass and the heat exchange surface [25,101]. This 

pyrolysis system accepts larger particle sizes compared with other pyrolysis processes [106]. 

When the biomass is moved away a residual oil film is formed. It acts as lubrication for biomass 

particles and vaporizes to a product similar to the one obtained in fluid bed systems [25,101]. 

The char produced by ablative pyrolysis is a fine powder that can be separated using cyclones or 

hot vapor filters [101]. 

During the ablative pyrolysis, there are no inert gas requirements, which reduce the equipment. It 

also makes the collection of the vapors more efficient as the partial pressure of condensable 

vapors is higher [101]. 

1.2.4.6. Vacuum pyrolysis 

Vacuum pyrolysis was developed by the University of Laval and Pyrovac. In this pyrolysis 

system, the vapor residence time is comparable to other pyrolysis systems but the heat transfer to 

and through the solid biomass is slower [25,101].  

The process operates at around 723 K and reduced pressure. In those conditions, the bio-oil yield 

is lower and the produced char amount is higher than in other pyrolysis methods. Its main 
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advantage is that the process does not need a carrier gas, accepts larger particles and the liquid 

products contain less char compared with other pyrolysis reactors. However, due to the high 

vacuum requirements, the process is complex and costly [25,101,106]. 

1.2.4.7. Screw or Auger reactors 

This kind of reactors move biomass mechanically through a hot reactor. Due to that, the 

residence times are longer (from 5 to 30 s depending on the design and size of the reactor), the 

liquid yields are lower and often phase separated and char yields are higher than in fluid beds 

[101].  

Screw reactors are suitable to pyrolyze materials difficult to handle or feed, or are heterogeneous 

[101]. In addition, they do not need carrier gas and operate continuously [25]. 

Biomass is heated in a cylindrical heated tube. The length of the heated zone of the tube can be 

modified to extend or reduce the residence time before the cooling of the vapors [25]. At the end 

of the tube, char is collected and vapors are conducted to a cooling system to obtain the liquid 

products [109]. 

The above mentioned systems are all designed to optimize liquid yields from the pyrolysis of 

lignocellulosic biomass. Nevertheless, Bridgwater reported an increase in the pyrolytic activities 

on fixed bed and related systems, which are unlikely to give high liquid yields but are likely to 

give phase separated liquids [101]. Despite the distinct differences in design and execution of 

these different methods, they share several key features that allow for the maximum liquid 

yields: rapid heating rates, high heat transfer rates to the biomass, precise control of the reactor 

temperature, the rapid removal of the pyrolysis vapors from the reactor and rapid cooling of 

these vapors [31]. 

Although some characteristics of several pyrolysis reactors are described above, there is no 

obvious best technology. Thus, fluid beds offer robust and scalable reactors, but the problem of 

heat transfer at large-scales is not yet solved. On the contrary, circulating fluid beds and 

transported beds may overcome the heat transfer problem but scaling is not yet proven and there 

is an added problem of char attrition. 

On the other hand, intensive mechanical devices such as ablative and rotating cone reactors offer 

advantages of compactness and absence of fluidizing gas, but may suffer from scaling problems 

and problems associated with moving parts at high temperature (www.pyne.co.uk). 
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Regarding the operational fast pyrolysis plants [117,118], most of the operational fast pyrolysis 

plants are based on fluid bed technology. However, there are also ablative, auger, centrifugal or 

rotating cone fast pyrolysis systems. Among them, bubbling and fluidized bed reactors [119] and 

rotating cone reactor [120] can be applied for commercial-scale. 

 

Figure 1.7. Schemes of different pyrolysis reactors: (a) bubbling fluid bed with a char combustor (dotted line) for a 

transported fluid bed, (b) rotatory cone, (c) auger reactor, (d) drop tube reactor, (e) vacuum reactor, (f) ablative 

reactor. 

1.3. BIO-OIL REFORMING PROCESSES 

1.3.1. Bio-oil reforming reactions 

The most widely used hydrogen production process is the steam reforming process [121]. That 

could be because it provides the highest hydrogen yield. Nevertheless, it is a highly endothermic 

process, and therefore, it requires external heat input [64]. 

Bio-oil steam reforming process is a complex reaction network because of the multitude of 

components present in bio-oils. However, the overall steam reforming process of a generic 

bio-oil (CnHmOk) can be described as [41,122]: 

Complete bio-oil SR:CnHmOk + (2n – k) H2O ↔nCO2 + (2n + m/2 – k) H2 (1) 



Chapter 1 

44 

The above mentioned reaction is the sum of the bio-oil steam reforming and the Water Gas Shift 

(WGS) reactions [41,122]: 

Bio-oil SR: CnHmOk + (n – k) H2O ↔ nCO + (n + m/2 - k) H2 (2) 

WGS: CO + H2O ↔ CO2 + H2 (3) 

In the reforming process, the amount of moles produced is higher than the amount of reactant 

compound moles. Thus, pressure has a negative effect on hydrogen production. Accordingly, 

maximum hydrogen yields are achieved at atmospheric pressure. However, as it is necessary to 

obtain hydrogen at certain pressure, temperatures higher than 1100 K are required. Under those 

conditions, the penalty in hydrogen content is minimal as the effect of high pressure and 

temperature are insignificant [122]. However, experimental hydrogen yield is always lower than 

the stoichiometric maximum, because of three main undesirable products: CO, CH4 and coke [5].  

CO is a product of the bio-oil SR reaction (2), but it can also be produced as a result of the 

reverse WGS (rWGS) reaction. WGS reaction is an exothermic reaction, so accordingly, at high 

reaction temperatures its reverse reaction is favored, producing CO while hydrogen is consumed 

[5]: 

rWGS: CO2 + H2 ↔ CO + H2O (4) 

On the other hand, methane can be produced by methanation reactions, which can be carried out 

as a combination of CO or CO2 with hydrogen, or the reverse of the methane SR [5,123]: 

Methanation of CO: CO + 3 H2 ↔ CH4 + H2O (5) 

Methanation of CO2: CO2 + 4 H2↔CH4 + 2 H2O (6) 

The CO methanation (ΔH = −206 kJ mol
−1

) and CO2 methanation (or Sabatier reaction, ΔH = 

−165 kJ mol
−1

) are highly exothermic reactions [124–126]. They are favored at low 

temperatures. Accordingly, industrially, these processes are carried out in the range of 

623-723 K, because at higher temperatures the methanation reactions are discouraged. 

Meanwhile, lower temperatures make reaction rates unacceptable industrially [127].  

Accordingly, for temperatures lower than 773 K the thermodynamically favored products are 

CO2 and CH4, while the fraction of CO and H2 increase at the expense of CO2 and CH4 as the 

temperature increases. At temperatures above 1073 K, the WGS shifts toward CO and H2O. 

Thus, the highest yield of H2 is obtained at temperatures between 873 and 1073 K [128]. 
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At the same time, bio-oil contains many thermally unstable molecules in its complex oxygenated 

compound mixture. Thus, the thermal decomposition or cracking of the unstable compounds 

competes with the SR reaction [5,122]: 

Cracking: CnHmOk→ CXHYOZ + gas (H2, CO, CO2, CH4 ...)+ C (s) (7) 

However, carbon deposition can occur by other routes as the Boudouard reaction and CO and 

CH4 decomposition. But ethane or other olefins may also lead to carbon deposition if they are 

formed as intermediates [128]: 

Boudouard: 2 CO → C (s) + CO2 (8) 

CO decomposition: CO + H2 ↔ C (s) + H2O (9) 

CH4 decomposition: CH4 ↔ C (s)  + 2H2 (10) 

Ethene polymerization: n C2H4 → C (s) (11) 

The above mentioned reactions lead not only to lower hydrogen yield, but it also causes severe 

catalytic deactivation by coking the catalyst surface and it may also cause the reactor blockage 

[5,122]. These particular characteristics are highly problematic for steam reforming. Therefore, 

high reaction temperatures and steam-to-carbon (S/C) ratios have typically been applied in order 

to avoid rapid catalyst deactivation [129]. 

One suggested method of alleviating catalyst deactivation is the addition of small amounts of 

oxygen into to the steam reforming process. This technique, which is referred to as oxidative 

steam reforming (OSR), would promote the gasification of coke precursors on the catalyst 

surface at an optimal situation. The overall reaction equation for oxidative steam reforming of 

oxygenates, which also includes the WGS reaction is presented in equation (12). In situations 

where no external oxygen is added, the term p is equal to 0 [129]. 

OSR reaction:CnHmOk + p O2 + (2n - k - 2p) H2O → n CO2 + (2n + m/2 – k – 2p) H2(12) 

Autothermal reforming (ATR), as well as OSR, combines the steam reforming and partial 

oxidation (POX) processes [130–132]. However, in ATR the global process is almost thermally 

neutral or slightly exothermic, as the heat produced in the partial oxidation (POX) is absorbed by 

the SR reaction [131]. Thus, a better heat exchange efficiency and temperature control are 

achieved, reducing hot spots in the catalysts [130]. ATR is also characterized by a short start-up 

and shutdown response time, compact size of the reactors, lower operational temperatures and 

higher energy efficiency than SR or POX [130,132]. 
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POX reaction: CnHmOk + (n/2 - k) O2 → n CO + m/2 H2 (13) 

However, in reality, it is to be expected that the oxygen will also take part in the oxidation of 

gaseous compounds, e.g. hydrogen and carbon monoxide. Although these oxidation reactions 

potentially decrease the yield of hydrogen, their exothermic nature and the consequent heat 

release helps to meet the energy demands of the endothermic steam reforming reactions 

[64,129]. Accordingly, the oxygen addition to a bio-oil reforming process results in a varying 

influence [129]. 

Table 1.2. Summary of different bio-oil reforming processes. 

Feed Process* Catalyst T (K) Reactor Ref. 

Acetic acid 

SR Ni 773-1073 Fixed bed [135] 

SR Ni 773-873 Fixed bed [136] 

SR Ni-Co 923 Fixed bed [137] 

SR Ni and Co 873-1073 Fixed bed [138] 

SR Ni-Co 873 Fixed bed [139] 

SR Ni 823-1023 Fixed bed [140] 

SR Ni 973 Fixed bed [141] 

SR Ni 773-1073 Fixed bed [142] 

SESR Pd-Ni-Co 748-998 Fluidized bed [134] 

SESR Pd-Ni-Co 798-1048 Fixed bed [11] 

SESR Pd-Ni-Co 748-948 Fluidized bed [143] 

Acetone 
SESR Pd-Ni-Co 748-998 Fluidized bed [134] 

SR Ni 973 Fixed bed [141] 

Acetol 
SR Ni 773-1073 Fixed bed [142] 

SR Ni 823-1023 Fixed bed [144] 

Bio-oil 

SR 

La1-xKxMnO3 

perovskite-type 

catalysts 

873-1073 Fixed bed [62] 

CLSR Iron ore (OC) 1123-1273 Dual fluidized beds [145] 

CLSR Iron based OC 1123-1273 Fixed bed [146] 

SESR Ni-Co 923-1123 Fixed bed [147] 

SR Ni 973-1073 Fixed bed [148] 

ATR Pt 1073-1123 Fixed bed [64] 

SR Ni 873-1173 Fixed bed [149] 

Bio-oil/ ethanol 

mixture 
SR Ni 973 Fluidized bed [150] 

Bio-oil aqueous 

fraction 

OSR Ni 923 Fixed bed [129] 

SR Ni-Mo 973-1073 Fixed bed [151] 

SR Ni-Co 923 Fixed bed [137] 
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SR Ni/Al 923 Fixed bed [65] 

SR Ni 873-1173 Fixed bed [152] 

n-butanol 

SR Ni 873-1073 Fixed bed [153] 

SR Rh 773-973 Fixed bed [154] 

SR Rh 773-973 FIxed bed [155] 

ATR Rh 773-973 Fixed bed [155] 

SR Ni 823-1023 Fixed bed [144] 

1-butene SR Rh 773-973 FIxed bed [154] 

Butyraldehyde SR Rh 773-973 Fixed bed [154] 

m-cresol SR Ni 873-1073 Fixed bed [133] 

Ethanol 

CLSR Ni 923 Fixed bed [121] 

OSR Ni 873 Fixed bed [123] 

OSR Rh-Ni 873 Fixed bed [123] 

SR Ni 973 Fixed bed [141] 

SR Ni 773 Fixed bed [156] 

SR Ni 773 Fixed bed [157] 

Ethylene glycol 

SR Rh 898-998 Microreactors [158] 

OSR Rh 898-998 Microreactors [158] 

SR Rh 898-998 Microreactors [159] 

OSR Rh 898-998 Microreactors [159] 

SR Ni and Ni-Co 773-1073 Fixed bed [160] 

SR Rh, Ni and Co 773 Fixed bed [161] 

Furfural 

SR Ni 673-873 Fixed bed [162] 

SR Ni 673-1073 Fixed bed [128] 

OSR Ni 673-1073 Fixed bed [128] 

SR Ni-Co 923 Fixed bed [137] 

Guaiacol SR Ni-Co 923 Fixed bed [137] 

Phenol 

SR Ni 773-1073 Fixed bed [135] 

SR Ni 973 Fixed bed [141] 

SR Ni-Co 923 Fixed bed [137] 

SR Ni 773-1073 Fixed bed [142] 

m-xylene SR Ni 873-1073 Fixed bed [163] 

Model 

compounds 

mixtures 

SESR Pd-Ni-Co 748-948 Fluidized bed [134] 

DR Ni 773-1073 Fixed bed [164] 

SR Ni 973 FIxed bed [141] 

SR Ni 673-1073 Fixed bed [165] 

SR Ni 873-1073 Fixed bed [163] 

* Autothermal Reforming (ATR), Chemical Looping Steam Reforming (CLSR), Dry Reforming (DR), Oxidative 

Steam Reforming (OSR), Sorption Enhanced Steam Reforming, (SESR) and Steam Reforming (SR). 
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Due to the above mentioned complex reaction network, in recent years the reforming of bio-oil 

model compounds (acetic acid, ethanol, ethylene glycol, n-butanol, furfural, and its mixtures) 

have been widely reported [133] to obtain a better understanding of the bio-oil reforming process 

and ensure an appropriate operating conditions for the hydrogen productions process [128,134]. 

Additionally, bio-oil aqueous fraction and real bio-oil reforming processes have also been 

reported. Table 1.2 summarizes several reforming processes presented in the literature. 

1.3.2. Bio-oil reforming catalysts 

A reforming catalyst must catalyze the cleavage of C-C, C-H and O-H bonds and recombine the 

products in H2, CO2 and CO [166], keeping the activity and selectivity as long as possible [167]. 

They are typically based on nickel, cobalt and copper, being iron also employed in some cases 

[167] because of their low prices in comparison with highly active noble metals [168]. 

1.3.2.1. Non noble metals based catalysts 

Nickel based catalysts are extensively used in industrial chemical reaction processes [136,169], 

e.g. in the petroleum industry for methane and naphta steam reforming [170]. Nickel is known to 

be a low cost non noble metal with high selectivity and carbon-carbon and carbon hydrogen 

bond cleavage activity to produce hydrogen or syngas [136,160,166,169,171]. Accordingly, 

nickel based catalysts [65,135,136,138,141,144,149,153,160,162–164] are also widely used for 

bio-oil reforming due to the high activity of nickel in the decomposition of oxygenated 

compounds [142].  

Cobalt based catalysts [138,172] are also considered adequate low cost catalysts for bio-oil 

production due to its C-C bond breakage capacity [169,172]. Additionally, Nabgan et al. reported 

that compared with nickel based catalysts, cobalt based catalysts produce higher amounts of H2 

and CO2, whereas less ethylene is produced [169]. 

Catalysts in which copper is the active metal can also be interesting for producing hydrogen from 

oxygenated molecules from fossil or biomass fuels, such as methanol or related C1 molecules, 

and the WGS reaction [167]. 

Moreover, the combination of two non noble metals in a catalyst [137,139,147,151] is usual, to 

induce changes in catalysts activity, mainly affecting carbon-carbon bond scission [173]. 
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1.3.2.2. Noble metals based catalysts 

On the other hand, noble metals (Pd, Pt, Rh or Ru, among others) [64,154,155,158,159] are also 

used for bio-oil reforming purposes due to their higher specific activity, compared with non 

noble metals, for breaking carbon-carbon bonds [160] and their capacity for limiting carbon 

deposition [174,175]. Among them, rhodium is known to be one of the most active reforming 

catalysts for all kind of fuels [158], whereas Pt based catalysts are reported to be not as active as 

ruthenium, palladium or rhodium [174]. In any case, small metallic contents of palladium and 

platinum nanoparticles are known to be suitable metals for hydrogen production [176]. However, 

its low availability and high prices compared with non noble metals [160,177,178] limit their 

scaling up and industrial application [166,171]. Thereby, to avoid or limit the loading of noble 

metals on catalysts is considered a relevant issue [174]. Accordingly, the noble metal loadings on 

catalysts are usually low (<1 wt%) to reduce and improve reforming economics [89]. 

Additionally, small amounts of noble metals can be added to non noble catalytic formulations to 

improve catalysts stability [178], as the catalysts used in [123,134,143], among others. 

Accordingly, bimetallic catalysts are widely reported for reforming processes. The benefits of 

small amounts of palladium, platinum, rhodium, iridium and ruthenium on Co/Al2O3 catalysts 

were reported by Cai et al. [172]. 

Even if the carbon-carbon bond cleavage capacity, activity and selectivity of nickel and cobalt 

based catalysts are considered to be comparable to noble metals, but with a significantly lower 

price, they also have drawbacks [179,180]. The main ones can be summarized as sintering and 

carbon formation, leading to the deactivation of the catalyst [166,179–181], which are the main 

issues for all reforming catalysts. Catalyst deactivation by encapsulating and filamentous coke is 

a complex mechanism that evolves with time on stream and depends on the reaction conditions 

[177]. Marinho et al. [181] reported that carbon formation is also influenced by nickel particle 

size, being more difficult to nucleate carbon in small particles. They also reported a critical 

ensemble size of 6-7 carbon atoms, below which carbon formation does not take place [181]. 

The formation of carbon species starts with the formation of nickel carbide phases, as bulk or 

carbide type shell at the surface of nickel particles [167]. Therefore, the development of catalysts 

with high stability and carbon deposition resistance is a task worth to be pursued. However, 

according to Liu et al. [180] the mentioned drawbacks can be faced by three different 

approaches: Formation of active metal nanoparticles to mitigate bulk effects; selection of a 

suitable support to influence the catalysts chemistry; and incorporate other (noble or non-noble) 

metals, or add promoters with have positive effects on reactivity. Similar alternatives were 
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proposed by Marinho et al. [181], which listed the approaches as: controlling the crystallite size 

of nickel and using redox supports. In that work, they state that the nucleation rate of carbon is 

related to the particle size of nickel.  

Anjaneyulu et al. [173] reported that the benefits of the catalytic and adsorptive properties due to 

the addition of a second metal can be due to geometric (covering part of the host metal) and/or 

electronic (via metal alloying) effects, increase of the metal reducibility, inhibition of metal 

sintering and the prevention of metal oxidation by the feed. 

An increase of the reaction temperature can also be used to reduce catalysts coking, by carbon 

gasification. But, it may also originate active metal sintering [177]. Thus, supports play a key 

role in reforming experiments [182] and a suitable support can limit the drawbacks of using a 

non noble metal based catalyst [179]. 

1.3.2.3. Conventional supports 

Regarding the supports used for reforming catalysts, alumina supported catalysts are the most 

common ones. Its physical and chemical properties such as good mechanical strength and 

thermal stability, its controllable textural properties [136] and low price make alumina a suitable 

support. However, Ni/Al2O3 catalyst tends to deactivate due to the coke formation on the acidic 

sites of the support. Therefore, different support modifications with basic additives or promoters 

have been studied to enhance catalytic activity and stability [136,171]. The catalytic performance 

improvement by means of basic supports is achieved getting a higher dispersed active metal 

[168] and neutralizing the acidity of alumina [136,167], which is in accordance with the 

conclusions of Song et al. [183]. Additionally, basic and alkaline earth additives (MgO, CaO or 

ZrO2, among others) have the capacity of favoring the water adsorption and OH mobility on the 

surface, which accelerates the oxidation, reducing coke deposits [136,171,184]. CeO2 addition is 

also reported to be able to reduce the carbon formation and avoid sintering of catalysts active 

phases [185]. 

Accordingly, MgO and ZrO2 are known to provide low concentration of acidic sites and to 

increase oxygen vacancies in catalysts composition [183,184,186]. Moreover, sintering 

resistance properties are also attributed to MgO promotion as concluded by Nogueira et al. [136], 

and an enhanced water adsorption capacity of the Ni/Al2O3 catalyst by ZrO2 addition by Song et 

al. [183]. 

Lanthanum species on alumina support are reported to enhance the catalytic and thermal stability 

due to the interaction of surface La2O3 with oxygen to remove carbon [171,185]. 
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Song et al. [171] concluded that a strontium promotion up to 6 wt. % is beneficial for nickel 

catalysts, as it provides high nickel dispersion and suppresses the ethylene byproduct formation. 

However, higher strontium content is reported to be ineffective for hydrogen production. The 

addition of Ce and SrO promoters was also concluded to be effective for increasing the catalytic 

activity, stability and carbon resistance of Ni/Al2O3 catalysts by Jiao et al. [187].  

Cerium oxide is another widely used common support or support modifier [180] due to its high 

oxygen storage and mobility capacity (due to their ability to reversibly change oxidation states 

between Ce
4+

and Ce
3+

), which promotes CO oxidation and may activate the WGS reaction 

[121,179,181,188]. 

CeO2 supports take place in the dissociative adsorption of H2O near the metallic particles and 

transfer the oxygen to coked metal, which accelerates the carbon removal from the metal [181]. 

Accordingly, Roy et al. [188] concluded that the nickel doping increases the oxygen vacancy in 

the CeO2 lattice, which enhances de oxidation capacity of the Ni/CeO2 catalyst compared to 

Ni/Al2O3. It is also reported that CeO2 promotes a high dispersion of active sites. However, it has 

a lower surface area than other materials, which limits the number of active sites available for the 

reaction [182]. Marinho et al. [181] reported that doping ceria with silica improves the oxygen 

mobility, and additionally, inhibits the sintering of CeO2 particles. Cifuentes et al. [182] also 

reported the benefits of mixing SiO2 and CeO2. According to them, the benefits arise from the 

higher surface area and larger average pore size of silica. That gives place to a better dispersion 

and stabilization of metals, exploiting the advantages of both materials [182]. 

Cai et al. [189] reported that the insertion of Zr
4+

 into the CeO2 structure distorts the ceria 

fluorite lattice improving its oxygen storage capacity, thermal stability, sintering resistance and 

redox capacity, facilitating its oxygen mobility. 

1.3.2.4. Non conventional supports 

On the other hand, there is an increasing interest in using naturally occurring non conventional 

supports, such as olivine [133,190–192] and sepiolite [151,162]. These materials present good 

activity at high temperatures. Additionally, they have the advantage of being inexpensive, 

non-toxic and abundant [192]. Nevertheless, the advantages of this materials do not arise only 

from their price and availability, but also from their composition. Olivine is an iron and 

magnesium silicate ((Mg,Fe)2SiO4) [192], while sepiolite is a magnesium silicate [151].  

The use of natural clay minerals as supports is also attracting increasing interest due to their 

broad pore distributions (meso and macro type pores), thermal stability, low cost, and 
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environmental compatibility [193–195]. Among the clay materials, montmorillonite is one of the 

most used ones. Montmorillonite is a kind of natural 2:1 phyllosilicate layered clay mineral with 

high cation exchange capacity and anti sintering properties [194,196] apart from the high pore 

volume and elevated surface area [176]. It is also reported that the phyllosilicate content in 

montmorillonite could improve WGS and weaken methanation reaction [196]. Due to their 

layered structure, clay materials properties can be tailored by adding chemicals or metal oxide 

precursors into the gap between adjacent layers [193,197]. That fact makes them ideal platforms 

to support catalytic active phases [198]. Additionally, montmorillonite could accommodate and 

stabilize metal nanoparticles even under harsh conditions due to the confinement effect provided 

by the lamellar structure, the strong metal-support interactions and cation exchange capacity 

[196]. 

Perovskite type oxides as well are becoming largely investigated for reforming  because different 

metals (usually alkaline or alkaline earth metal cations) can be substituted into their structure. 

Those substitutions are used for tailoring their characteristics by producing structural defects 

(typically oxygen defects) which could favor the chemisorption of reactants of other oxygen 

transport involving catalytic steps [130]. Moreover, the reduction of this kind of material 

provides thermally stable and highly dispersed metallic particles. On the contrary, the removal of 

a metal form the perovskite structure requires high reduction temperatures, which gives place to 

big nickel particles, limiting the effectiveness of this strategy. However, in order to avoid large 

particles, perovskite type oxides can be deposited over high surface area supports [181].  

In accordance with these findings, the use of clay or perovskite like supports can be used to 

prevent active metal sintering, as well as to achieve high metal dispersions. 

1.3.3. Reaction systems 

Different reaction systems have been reported for bio-oil steam reforming processes. Among 

them, the most used one is the fixed bed reactor, as indicated in Table 1.2. Fixed bed reactors are 

commonly used because of their simple construction and low catalyst loading. However, the 

catalyst usually shows and age distribution (spatial age distribution) along the bed. In addition, 

the time-evolution coke distribution can be depicted as “cigar burn” [199]. Thereby, this kind of 

reactor is characterized by the formation of carbonaceous deposits in the upper layer of the 

catalytic bed and in the reactor freeboard [134]. 
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Figure 1.8. Schematic representation of different reforming reactor configurations: Fixed bed reactor (left), 

fluidized bed reactor (middle) and membrane reactor (right). 

Fluidized bed reactors are also reported for reforming processes. These kinds of reactors provide 

a better heat and mass transfer than fixed bed reactors, in order to maintain an isothermal 

operation [200]. Therefore, the temperature is more uniform due to the use of internal heat 

carriers, such as solid catalysts [201]. Moreover, the permanent circulation of the catalyst favors 

the burning the carbon generated on the catalyst in the oxygen-rich zone of the catalyst bed 

[200,201]. Fluid bed reactors are also used in processes where catalysts need to be continuously 

regenerated, as Chemical Looping processes [134]. 

On the other hand, several reforming tests are reported in microreactors. These reaction systems 

are characterized by high surface/volume ratio. That fact allows increasing the space velocity of 

the process, achieving higher selectivities to desired products. In addition, the heat and mass 

transfer resistances are reduced, so they can be heated more efficiently [158,202]. 

Catalytic membrane reactors have also been proposed and tested for bio-oil model compounds, 

as ethanol [203]. The aim of this kind of reactors is to achieve an integrated process of reaction 

plus separation. Accordingly, hydrogen rich streams can be produced at theoretically infinite H2 

selectivities. A schematic representation of this kind of reactors can be found in Figure 1.8. 

1.3.4. Reforming process intensifications 

1.3.4.1. Sorption enhanced steam reforming 

Sorption enhanced steam reforming (SESR) processes integrate the reforming reaction and the 

selective separation of CO2 from the gaseous phase in a single operation unit. Thus, SR, WGS 
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and CO2 capture reaction take place simultaneously under moderate temperature and pressure 

conditions. The in situ CO2 removal favors the displacement of the reforming and WGS 

equilibriums towards higher hydrogen production [134,143,204]. Moreover, CO2 removal could 

also produce a more stable thermal process [205].  

The sorbent selection depends on its capability to adsorb CO2 at reaction conditions [206]. 

Sorbents can be natural or synthetic, but both of them utilize calcium oxide as the active sorption 

player [167,205]. 

Natural CaO based adsorbents, e.g. limestone and dolomite, are considered ideal candidates for 

sorption enhanced reforming processes (SERP) because they are able to react at low CO2 partial 

pressures at moderate temperatures with fast kinetics [134]. The adsorption reaction taking place 

is the following [134,204,206]: 

 CaO (s) + CO2 (g) ↔ CaCO (s) ΔH
0 

= -178 kJ/mol 

Additionally, natural CaO based adsorbents are inexpensive and abundant. However, both 

natural and synthetic adsorbents suffer from a decay in CO2 capture capacity after several cycles 

of carbonation and regeneration [134,206]. Therefore, the development of highly active and 

stable adsorbents, with high reversibility (from CaO to CaCO3 and vice versa) are the most 

challenging aspects of this process [167]. That drawback can be mitigated blending CaO with 

refractory materials, such as MgO or ZrO. These synthetic adsorbents improve the mechanical 

properties of the material and prevent the pore closure during the regeneration process [206]. 

There are two main alternatives to employ the catalyst and sorbent in the rector. On the one 

hand, catalyst and adsorbent are located in different particles. Then, they are homogeneously 

mixed to be placed in the reactor or they can be used as multi-section packs [204]. On the other 

hand, catalyst and sorbent are part of the same particle (hybrid or bifunctional catalyst). This 

alternative can reduce the mass transfer limitations and improve the efficiency of the adsorptive 

sites. However, the stability of this kind of systems is an issue to be addressed [204]. 

Although the SERP need not a separate purification stage, the adsorbent regeneration originates 

an additional cost. Nevertheless, that cost should be weighed against the lower energy supply 

requirements due to the heat supplied by the carbonation reaction [143], the lower capital cost 

and reduced footprint resulting from the use of this technology [206].  
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1.3.4.2. Chemical looping 

As it is not possible to avoid completely catalysts coking, reaction-regeneration cycles would be 

necessary for a large scale hydrogen production operation. Therefore, the regenerability of the 

catalyst is a key factor for a reproducible catalytic behavior [177]. With the aim of avoiding 

deactivation problems, chemical looping reforming (CLR) processes have been proposed. The 

chemical looping process has two main benefits: the production of syngas without nitrogen 

dilution, which avoids the necessity of the gas separation, and the production of high purity 

hydrogen [207].  

In this process, two reactors are involved with an active metal oxide circulating between the 

reactors, as depicted in Figure 1.9. In one reactor, the reformer (fuel reactor), a reforming process 

is carried out, while in the other, the regenerator (Air reactor), the oxygen carrier (OC) catalyst is 

regenerated [207–209], in a similar way as in a Fluid Catalytic Cracking (FCC) unit [210]. It can 

also be carried out in a fixed bed reactor by a cyclic two step process, alternating air feed and 

reforming steps [194]. 

Regardless of the reaction system, the carbon deposited on the catalyst and the oxygen carrier 

reduced during the reaction step can be oxidized in the air feed step. The reduction and 

reforming reaction are endothermic, while the oxidation reaction is exothermic. Thus, heat 

generated in the oxidation process is deposited on the ceramic matrix of the catalyst. Then, the 

heat generated during the catalyst regeneration would be used in the reforming process 

[194,211]. Therefore, the heat balance of the process is important because the heat generated 

during the oxidation should be high enough to provide the heat needed in the reforming reactor, 

without external energy sources [211]. 

The reactions taking place in the chemical looping steam reforming process, apart from the 

steam reforming, WGS, CO oxidation (CO + MeO ↔ CO2 + Me) and decomposition reactions, 

can be described as follows for the methane CLSR [207,208,212]: 

 MexOy + δ CH4 → MexOy-δ + δ (2 H2 + CO) (1) 

Due to the presence of steam in the reforming reactor, the oxygen carrier can be oxidized 

producing more hydrogen [208,212]: 

 MexOy-δ + δ H2O → MexOy + δ H2 (2) 

Then, in the regeneration reaction the oxygen carrier is reoxidized [207,208]: 

 MexOy-δ + O2 → MexOy (3) 



Chapter 1 

56 

 

Figure 1.9. Chemical looping steam reforming reactors setup. 

A suitable OC for this process should be characterized by a sufficient oxygen transport capacity, 

high catalytic reactivity, a negligible coke deposition and an excellent sintering resistance 

[194,208,211,212]. Due to their properties, first row transition metals (Ni, Cu, Fe, Co and Mn) 

are considered as good oxygen carriers [194,207,211]. But, in order to improve the performance 

of the mentioned oxygen carriers, they are incorporated in a support material [207,211]. As it 

happens with the oxygen carrier metals, the supports used in this process are similar to the 

supports used for conventional reforming processes: Al2O3, SiO2, ZrO2, CeO2, perovskites, 

montmorillonite, etc. 

1.3.4.3. Sorption enhanced chemical looping 

The combination of the two previously mentioned hydrogen production methods, the sorption 

enhanced steam reforming and the chemical looping, has also received a lot of interest. Such 

combination of procedures is potentially able to improve the hydrogen production and energy 

consumption. In addition, as mentioned before, the necessity of an air or hydrogen gas separation 

unit is avoided [213–215]. The sorption enhanced chemical looping reforming process requires 

three reactors interconnected in series, as indicated in Figure 1.10. In the first reactor, the reformer 

or fuel reactor, reforming reactions with lattice oxygen form OC (and steam), WGS reaction and 

CO2 sorption take place simultaneously [213–215]. Thus, a highly concentrated hydrogen, 

reduced OC and calcium carbonate are obtained and separated in solid and gases by means of 

cyclones. CaCO3 could be regenerated at high temperatures producing a pure CO2 stream 

[213,216] adsorbent regenerator: 
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CaCO3 (s) → CO2 (g) + CaO (s) 

The reduced oxygen carrier could be reoxidized in a third reactor with an air stream as 

previously described [213]. In order to simplify the process, the calcination and oxidation 

reactors could be replaced by a single reactor where the OC can be reoxidized and the sorbent 

regenerated. For that purpose, a diluted flow of oxygen should be fed to the reactor as sweep gas 

[213]. 

 

Figure 1.10. Sorption enhanced chemical looping reforming reactors setup. 

However, the reduction of the CO2 sorption capacity during cyclic operations remains being a 

challenge for the sorption enhanced chemical looping process. Therefore, numerous studies are 

being carried out to improve the resistance of calcium based sorbents [213]. 

1.4. FUTURE PROSPECTS 

Hydrogen is a molecule which currently has several industrial applications, such as petroleum 

fractions upgrading, chemicals production and in the glass, metallurgy, food and electronic 

industries. In addition, it is considered a future clean energy carrier. Accordingly, a sustainable 

hydrogen production, instead of the current fossil fuel derived hydrogen, should be achieved. 

One of those processes is the biomass fast pyrolysis and further bio-oils reforming.  

Bio-oil production from biomass is a feasible energy densification process. Accordingly, there 

are commercial scale reactors (fluid beds and rotating cone). Afterwards, the bio-oil conversion 

into hydrogen also seems to be feasible according to the literature. However, there are several 

challenges to face. 
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First of all, biomass is a scattered resource. So, for centralized applications, it will require the 

transportation of biomass, or a decentralized densification for an easier and cheaper 

transportation. Once biomass is converted into bio-oil, it can be transported using pipelines 

instead of truck, which can help reducing the transportation costs. However, the use of pipelines 

to move bio-oil for distances longer than 100 km, bio-oil needs to be heated at booster stations. 

This fact will increase the transportation costs [7]. 

Secondly, there is a wide variability in the chemical composition of the raw biomass and 

consequently, in the produced bio-oils (Table 1.1). Therefore, the biomass to be fed to the 

systems could require being a mixture of different types of biomass to achieve the bio-oil 

requirements for a further hydrogen production. 

Thirdly, bio-oil reforming originates important amounts of coke on the catalysts, leading to the 

deactivation. The deactivation can be avoided increasing the steam to carbon ratio, oxygen to 

carbon ratio and/or reaction temperature. However, an increase in the steam to carbon ratio 

and/or reaction temperature will increase the energy requirements of the process. On the 

contrary, an increase of the oxygen to carbon ratio could reduce the energy demand as during the 

bio-oil partial oxidation reaction, an exothermic reaction, is favored. But, the increase in oxygen 

could lead to catalyst deactivation. 

Last but not least, hydrogen produced in the reforming process can be not pure enough for the 

desired application and it may require further purification, originating additional costs. In this 

sense, different reactor designs (membrane reactors or microreactors) or innovative reforming 

processes (SESR, CLR or a combination of both of them) are proposed in the literature. 

Nevertheless, the mentioned reactors and processes are not extensively tested with real bio-oils, 

up to date. So, the applicability of this reactors and processes with real bio-oil, even if promising, 

remains uncertain. 

Therefore, all the previously mentioned challenges should be addressed before to scale up the 

hydrogen production process from biomass via fast pyrolysis and reforming from the 

laboratories up to the industrial scale. 
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This Ph.D. thesis studies an alternative to produce green hydrogen. Apart from that, the thesis 

also has technological and academic objectives. Accordingly, the first chapter of the present PhD 

thesis showed that the sustainable hydrogen production from biomass is a promising alternative. 

The most feasible hydrogen production pathway is the fast pyrolysis of biomass for bio-oil 

production, followed by the steam reforming of bio-oil. 

Thereby, the main objective of the current Ph.D. thesis is the development of new catalytic 

formulations for the hydrogen production from biomass derived bio-oils using fixed bed 

reactors.  

A reforming catalyst must promote breaking of C-C, C-H and O-H bonds and production of H2, 

while being resistant to deactivation, which is typically due to carbon deposition. Therefore, a 

reforming catalyst should present high and stable activity towards hydrogen; high ability to 

remove carbon and/or other carbonaceous species that cause deactivation from the catalyst 

surface; and should maintain those properties regardless of the variations on the reaction 

temperature that can take place in an industrial process. 

Accordingly, Ni-based catalysts will be prepared as nickel presents high activity in bond 

breaking and water gas shift reaction, favouring hydrogen production. In addition, Ni-based 

catalysts are cheaper than those containing noble metals. Nevertheless, Ni catalysts are prone to 

form carbon deposits and suffer from sintering during steam reforming (SR) reactions. 

Therefore, different support materials, such as alumina, silico-aluminates and non-conventional 

materials, will be studied for reforming applications. Moreover, the effect of support materials 

modifications will also be studied. 

The selected reforming process was the steam reforming (SR) process for two main reasons. On 

the one hand, SR process provides the highest hydrogen yield in comparison with all other 

reforming processes. On the other hand, the high amounts of carbon produced during bio-oil 

reforming processes tend to deactivate the catalysts. Therefore, it is expected that the addition of 

steam to the reaction will favour the gasification of the deposited carbon reducing the negative 

effects on the catalytic activity. On the contrary, the increase of the Steam to Carbon (S/C) molar 

ratio increases the energy requirements of the process. Therefore, in order to work in favourable 

reforming conditions without highly increasing the energy consumption, an S/C molar ratio of 

5.0 was selected. 

In order to satisfy the goal of this Ph.D. thesis the following partial objectives were established 

using different feedstocks and catalyst support materials: 
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 Steam reforming of bio-oil model compound, model compound mixtures and real 

bio-oil. Alumina supported nickel catalysts will be prepared by wet impregnation method to 

fulfill the first section of the thesis. An unmodified Ni/Al2O3 catalyst and catalysts with 

CeO2, La2O3 or MgO modification will be prepared to study the effect of the support 

modification in the activity. Support modification with CeO2 provides the catalyst with 

ability for oxygen storage and release, reducing the amount of carbon formed on the catalyst 

surface, and produces a better metal dispersion. Similarly, lanthanum oxides improve the 

metal dispersion and sintering resistance, enhancing catalyst stability. On the other hand, 

MgO improves catalysts strength and enhances steam adsorption, facilitating coke 

gasification and stabilizing nickel phases preventing their sintering. Catalysts will be first 

tested under SR of n-butanol. In those conditions, a commercial catalyst will also be tested 

for comparison purposes. Afterwards, the most active catalyst will be tested under SR of 

m-xylene using the same conditions than for n-butanol. 

Then, model compound mixtures will be used as hydrogen source. Thus, model compounds 

such as furfural, m-cresol, syringol and xylose will be progressively incorporated to the 

reaction mixture. Equimolecular mixtures will be prepared with the aim of having the same 

concentration of all model compounds in order to compare the reactivity of each kind of 

compound when they compete for active sites on the catalyst surface. However, the presence 

of sugars, like xylose, in the reactant mixture can produce the blockage of the pipelines and 

the reactor. In case that happens, the effect of the addition of glycerol to the reaction mixture 

will also be studied with the aim of mitigating the reactor and pipelines blockage. 

Next, catalysts will be tested in SR of real bio-oil to correlate those activities achieved 

during the synthetic bio-oil SR. The most active catalyst will be then promoted with low 

amounts of palladium, platinum or rhodium for increasing the activity and/or stability of the 

monometallic catalyst. 

 Silico-aluminates supported catalysts for SR of synthetic bio-oil. Different commercial 

silico-aluminates (Amophous silico alumina (ASA), mesostructured silica (SBA15) and 

HZSM5 and USY zeolites) will be used to prepare nickel based catalysts with and without 

support modification. The support modification oxide will be selected depending on the 

results obtained with alumina supported catalysts. The activities of the prepared catalysts 

will be evaluated in SR of the synthetic bio-oil. 

 Study of the feasibility of non conventional materials as catalyst support. With the aim 

of reducing the cost of the catalyst support materials, non conventional materials will be 
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used to prepare nickel based catalysts. For that purpose, several volcanic materials, minerals 

and industrial residues derived materials will be used. For a first screening, catalysts will be 

tested in SR of a bio-oil model compound. The activities of the non conventional materials 

will be compared with the results obtained with Ni/Al2O3 catalyst. 

Afterwards, the most active catalysts will be tested in SR of the synthetic bio-oil in the same 

conditions in which alumina and silico-aluminates supported catalysts were tested. 

Measured activity results, will also be compared with the results obtained with Ni/Al2O3 

catalyst. 

For comparison purposes, when the bio-oil model compound or model compounds mixtures are 

modified, the liquid feeding flows will be modified with the aim of keeping constant the weight 

hourly space velocity (WHSV). When real bio-oil is used, the feeding flows will also be 

corrected. 

All prepared catalysts will be characterized by different techniques before and after their activity 

being tested. Accordingly, fresh calcined catalysts will be tested by N2 adsorption-desorption 

isotherms, temperature programmed reduction (TPR), hydrogen or CO chemisorption and 

temperature programmed ammonia desorption (NH3-TPD). Then, reduced and used catalysts 

will be analyzed by X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy 

(XPS). Finally, used catalysts will also be analyzed by thermogravimetric analyses (TGA-TPO). 
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ABSTRACT 

The experimental procedures followed during the elaboration of this Ph.D thesis are described in 

detail in this chapter to avoid repetition. For the same reason, the procedures of the used catalyst 

characterization techniques are also detailed in this section. Therefore, in the following chapters, 

references to the corresponding section of this chapter are made. 

3.1. CATALYST PREPARATION 

Materials used during catalysts preparation are summarized in Table 3.1¡Error! No se encuentra el 

origen de la referencia.. Materials were separated into metal precursors used for support 

modifications or active metal impregnation and supports, separated in conventional and non 

conventional catalyst supports depending on their origin. Accordingly, conventional supports are 

considered the ones that are reported for catalytic applications, even if they are commercially 

available or prepared in the laboratory. On the contrary, materials classified as 

non-conventionals are the ones that are not widely reported as catalytic supports in literature. 

All catalyst used in this thesis were prepared following the wet impregnation (WI) methodology, 

as described in the following sections. 

3.1.1. Alumina supported catalyst preparation 

Alumina supported catalyst preparation process started by manually milling and sieving alumina 

pellets to obtain alumina particles with a diameter in the range from 0.42 to 0.50 mm. Then, 

support materials were calcinated. The calcinations consisted of heating up alumina particles 

from 473 to 973 K in 3 hours and maintaining them at 973 K for 4 hours. Afterwards, they were 

freely cooled down to room temperature. 

Once the support material was at room temperature, a measured amount of material was 

weighted and mixed with 10 mL of deionized water per gram of alumina in a round shaped 

evaporating flask. Then, a calculated amount of metal precursor (Ce, La or Mg precursor) was 

weighted and added to the evaporating flask. The flask was placed in a rotatory evaporator and 

stirred overnight at 90 rpm. The following day the water of the evaporating flask was removed 

with the aid of a vacuum pump operating at 150 mbar and a water bath at 338 K. 

When the material on the evaporating flask was dry, it was taken out of the flask and completely 

dried in an oven at 378 K for 1 hour and then calcined in the above mentioned conditions. 
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Then, a measured amount of modified support or bare alumina were weighted and mixed with 

10 mL of deionized water per gram of support in a round shaped evaporating flask. Then, a 

calculated amount of nickel precursor was incorporated into the flask to prepare monometallic 

catalysts. In the case of bimetallic catalysts measured amounts of nickel and noble metal 

(palladium, platinum or rhodium) precursor salts were added to the evaporating flask. Then the 

flask was placed in a rotatory evaporator to be stirred overnight at 90 rpm. The following day the 

mixture was dried with the aid of a vacuum pump working at 150 mbar and a water bath at 

338 K, and then in an oven at 378 K for an hour. Finally, catalysts were calcined in the above 

mentioned conditions. 

Table 3.1. Materials used to prepare the catalysts used in the thesis with their supplier and nomenclature in 

following chapters in brackets. 

Metal precursors 
Supports 

Conventionals Non conventionals 

Cesium (III) nitrate hexahydrate
I
 

Lanthanum (III) nitrate hexahydrate
I
 

Magnesium nitrate hexahydrate
I
 

 

Nickel (II) nitrate hexahydrate
II
 

 

Palladium (II) nitrate dihydrate
III

 

Tetraammineplatinum (II) chloride hydrate
III

 

Rhodium (III) nitrate hydrate
II
 

γ-Alumina
I
 

 

HZSM5
VIII

 

USY
IV

 

SBA15
II
 

ASA
VII

 

 

Nanozeolite L (NL) 

Nanozeolite L Cs
+
 (NLCs) 

Nanozeolite L Na
+
 (NLNa) 

Zeolite L disc (DL) 

Zeolite L disc Cs
+
 (DLCs) 

Zeolite L disc Na
+
 (DLNa) 

Volcanic lava (Lava) 

Volcanic ashes (Ashes) 

Lapilli I (GL) 

Lapilli II (RL) 

 

Waelz Oxide
V
 (WO) 

Double Leached WO
V
 (DLWO) 

Paval I
V
 (P20) 

Paval II
V
 (P26) 

Paval III
V
 (PAFS) 

Sewage sludge ashes
IX

 (SSA) 

 

Atapulgite
 X

 

Estevensite-kerolite
X
 (EK)

 
 

Olivine
VI

 

Sepiolite I
X
 (Sepiolite S) 

Sepiolite II (Sepiolite T) 

Commercial products from: 

I
Alfa Aesar 

II
Sigma Aldrich 

II
Fluka 

IV
ACS materials 

Materials kindly provided by: 

V
Befesa 

VI
Ilarduya 

VII
Shell 

 

VIII
Zeolyst 

IX
Consorcio de aguas 

X
Sepiolsa 
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3.1.2. Non conventional materials supported catalyst preparation 

The monometallic catalysts supported on non conventional materials were prepared by sieving 

the support materials to obtain support particles from 0.42 to 0.50 mm. In these cases, due to the 

abundance and wide particle size distribution of the materials, a initial milling was not needed. 

Even if most of the supports were originated at temperatures higher than the calcination 

temperature (973 K), support materials were calcined, nickel impregnated on the supports and 

calcined again as described for alumina supported catalysts. 

3.1.3. Silico-aluminates supported catalyst preparation 

Silico-aluminates supported catalysts were also prepared by the wet impregnation method, but 

with some modifications from the above mentioned process. Due to their properties and the 

available amount of the silico-aluminate materials, they were not sieved before calcination. The 

calcination process of the silico-aluminates was carried out from 333 K to 873 K with a heating 

ramp of 3 K/min. Zeolites were maintained at 873 K before being cooled down to room 

temperature. 

Then, CeO2 was incorporated on silico-aluminate supports, following the same impregnation 

process detailed for alumina supported catalysts. CeO2-containing supports were calcined at 

873 K as described in the above paragraph. 

Afterwards, nickel was incorporated to CeO2 modified and unmodified zeolites, with the process 

to impregnate nickel on alumina supports. Nickel was stabilized on the supports by means of a 

calcination at 873 K for 4 hours. 

3.2. CATALYST CHARACTERIZATION 

Catalysts were characterized by different techniques in order to get the complete picture of them 

as possible. Textural properties, chemical composition and reducibility of calcined catalysts; 

acidity, crystallography, surface chemical composition and oxidation state of the elements of 

reduced and used catalysts; and, carbon content on the used catalysts were determined. 

3.2.1. Textural properties 

Fresh calcined supports and catalysts textural properties (surface area, pore volume and pore size 

distribution) were analyzed by means of an Autosorb 1C-TCD apparatus. Before obtaining the 
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adsorption-desorption isotherms at 77 K catalysts or supports were outgassed at 573 K for 24 

hours.  

Surface area was calculated using the Brunauer, Emmett and Teller (BET) method. On the other 

hand, Barret-Joyner-Halenda (BJH) method was applied to evaluate the pore size distribution. 

3.2.2. Chemical composition 

The chemical composition of the catalysts was determined by two techniques. On the one hand, 

the content of the impregnated metals (Ni, Ce, La and Mg) was measured by Inductively 

Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). On the other hand, the 

determination of support materials chemical composition was carried out using the X-ray 

fluorescence. 

3.2.2.1. Inductively Coupled Plasma-Optical Emission Spectroscopy 

(ICP-OES) 

The chemical compositions determined by Inductively Coupled Plasma- Optical Emission 

Spectroscopy. A Perkin Elmer 2000-DV equipment was used to determine the metallic elements 

present in catalysts.  

Before the measurements, 50 mg of catalyst were disaggregated using different solutions 

(described below) with the aid of a microwave digester: 

 The first solution was used to digest alumina and silico-aluminates supported catalysts, 

which did not contain cerium. Those catalysts were digested in a solution of 2, 3 and 

3 mL of HCl, HNO3 and HF, respectively [1]. 

 A second solution was necessary to determine the cerium content of the catalysts because 

cerium forms the CeF2 precipitate, avoiding the detection of cerium [1,2]. For that 

purpose, a solution prepared by mixing HNO3 and H2O2 was used in a proportion of 2 to 

8 mL, respectively. 

 Finally, for the non conventional supports (volcanic materials, minerals and industrial 

residues derived materials) containing catalysts two microwave digestions were carried 

out. First, a digestion was performed with a mixture of 4 mL of H3PO4 and 4 mL of 

H2SO4. Then, 5 mL of HF were added to the solution and the new mixture was digested 

again. The process was modified from the work of Fiore et al. [3]. 

The weighted amount of catalyst and the selected liquid solution were added to microwave 

flasks, which were properly closed and placed in the microwave digester. The digestion process 
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consisted of a heating ramp from room temperature to 453 K in 10 minutes. Samples were kept 

at that temperature for 30 minutes and then cooled down to room temperature. Afterwards, the 

content of the flasks was filtered and diluted in 100 mL volumetric flasks with deionized water 

to obtain results in the detection range of the ICP-OES apparatus. 

3.2.2.2. X-ray fluorescence (XRF) 

For the XRF analyses, a powder sample was mixed with Spectromelt A12 (Merck, ref nº. 11802) 

to prepare a borated glass pearl by means of an inductive micro-oven. The flux and the sample 

powder were mixed in a weight proportion of 20 to 1. 

Axios model PANalytical wavelength dispersive X-ray fluorescence sequential spectrometer was 

used for the analyses. It was equipped with a Rh tube and 3 detectors: gas flow, scintillation and 

Xe sealed. All experiments were carried out under vacuum conditions. 

Loss of ignition (LOI) value was obtained by calcination. For that purpose, part of the samples 

were calcined at 1323 K for 1 hour. 

3.2.3. Temperature programmed reduction (TPR) 

Catalysts reducibility was evaluated by TPR. Initially, TPR experiments were performed in an 

Autosorb 1C-TCD apparatus, equipped with a thermal conductivity detector (TCD). Then, TPR 

analyses were carried out in AutoChem II 2920 apparatus, equipped with a TCD. 

In both cases, a continuous flow of 5 % of H2/Ar (40 mL/min) was passed over an amount 

calcined catalyst depending on the equipment. When Autosorb was used 300 mg of catalyst were 

used, while 10 mg were used with AutoChem. The temperature was increased from 323 to 

1273 K at a heating rate of 10 K/min.  

3.2.4. Metal dispersion 

3.2.4.1. H2 chemisorption 

The dispersion of the active metal was determined by hydrogen pulse chemisorption. An 

Autosorb 1C-TCD device was used for the measurements. For that purpose, samples were 

reduced for two hours at 1073 K with 40 NmL/min of pure H2 before the chemisorption. A 

stoichiometry of H/Ni = 2 was assumed. 
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3.2.4.2. CO chemisorption 

The metal dispersion was measured by CO pulse chemisorption using an AutoChem II 2920 

apparatus equipped with a TCD detector. The analysis started by heating the catalysts sample 

from room temperature to 1073 K at 10 K/min under 40 mL/min of 5 % H2/Ar flow. Then, the 

sample was kept under 50 mL/min of helium for 30 minutes and cooled down to 308 K. Finally, 

when the detection baseline was stable, a pulse of 0.01778 mL of 5 % CO/He was dosed to the 

catalysts. The dosage was repeated every 2 minutes until equal peaks were detected or 20 

dosages were carried out. 

3.2.5. Temperature programmed ammonia desorption (NH3-TPD) 

Ammonia TPD measurements were also carried out in AutoChem II 2920 apparatus, equipped 

with a TCD. For those analyses, 10 mg of calcined catalyst were heated up from room 

temperature to 1073 K at a heating rate of 10 K/min and maintained at that temperature for 1 

hour. The sample heating and maintenance at 1073 K was carried out under a continuous flow of 

25 mL/min of 5 % of hydrogen in Ar. Then, the sample was cooled down to 373 K under an inert 

atmosphere, where 10 % NH3/He (25 mL/min) were passed through the catalyst for 30 minutes. 

Afterwards, 50 mL/min of helium were used to remove the physisorbed NH3. Finally, when the 

detection baseline was stable, the temperature of the sample was heated up from 423 K to 

1173 K to record the ammonia desorption. 

3.2.6. X-ray diffraction (XRD) 

Catalysts XRD patterns were obtained by a Philips X'pert Pro automatic diffractometer operating 

at 40 kV and 40 mA in a theta-theta configuration. It is equipped with a secondary 

monochromator with Cu-Kα radiation (λ=1.5418 Å) and a PIXcel solid state detector. A fixed 

divergence antiscattering slit giving a constant volume of sample illumination was used. 

Data were collected from 10º to 80º 2 theta (θ) angle at a step size of 0.026 and time per step of 

625 s at room temperature.  

3.2.7. X-ray photoelectron spectroscopy (XPS) 

A Specs (Berlin, Germany) system equipped with a Phiobos 150 1D-DLD analyzer and an 

Al-Kα (1486.6 eV) monochromatic radiation source was used to perform XPS analyses. Present 

elements initial analysis was performed and a detailed analysis of the present elements was 

carried out with electrons output angle of 90º. 
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3.2.8. Scanning electron microscopy (SEM) 

A JEOL JSM 6400 apparatus with a W filament was used to obtain SEM images of some of the 

used catalysts. The morphology of the surface was studied using the information of secondary 

electron detectors. SEM images were used to determine the carbon structure of the catalysts. 

3.2.9. Temperature programmed oxidation (TGA-TPO) 

The amount of carbon on used catalysts was determined by Temperature Programmed Oxidation. 

For that purpose, a Mettler Toledo TGA/SDTA851 thermogravimetric analyzer was used. In 

each analysis, the weight loss of 30 mg of sample was recorded while heating it up from 303 to 

1223 K at 10 K/min under a flow of 100 mL/min of an oxidant atmosphere (synthetic air: 79 % 

N2 and 21 % O2) 

3.3. TEST METHODOLOGY 

The catalytic activity experiments carried out during this thesis can be separated into two groups. 

The first group of the experiments, in which model compounds or model compound mixtures 

were steam reformed, was performed at the Faculty of Engineering of Bilbao. The second group 

of experiments, in which the steam reforming of a real bio-oil was studied, was performed at 

Imperial College London facilities. 

3.3.1. Steam reforming of single model compound or model compound 

mixtures 

The activity tests carried out at the Faculty of Engineering of Bilbao were performed in a 

Microactivity Reference (PID Eng&Tech) bench scale plant (see Figure 3.1). The bench scale 

plant is composed by a feeding section, where liquid model compounds and gases (H2 and N2) 

were fed by means of two liquid pumps (Gilson) and two Mass Flow Controllers (Bronkhorst), 

respectively. Two liquid pumps were needed as water and bio-oil representative model 

compounds were immiscible in the desired proportion. Gases and/or liquids conducted through a 

reaction section, where they were heated up, to the reactor where the catalyst is placed. The 

reactor was heated up by means of an electric furnace. Afterwards, reaction products were 

directed to a separation section, where a partial condenser separated gases and liquids for their 

analysis in two gas chromatographs (GC). 
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Figure 3.1. Image of the Microactivity Reference bench scale plant (left) and its scheme (right). 

A stainless steel reactor was used as a reactor (9 mm i.d. and 300 mm long). It was filled with 

catalyst and inert material, SiC, provided by Navarro SiC) to perform the activity tests. For each 

test, a catalytic bed composed of 0.4 g of catalyst (0.42<dp<0.50 mm) were weighted and mixed 

with 3.6 g of inert material, SiC (0.50<dp<1.0 mm). The reason for mixing the catalyst and inert 

material was the avoidance of temperature gradients in the catalytic bed. In addition, as a reactor 

with an internal diameter 10 times bigger than the catalyst particles was used, the bypassing near 

the reactor wall was avoided [4]. Then, the catalytic bed was placed in the center of the reactor 

using a SiC (1.0<dp<3.0 mm) as filler material. Catalysts were in situ reduced at 1073 K with a 

mixture of 45 mL/min of H2 and 180 mL/min of N2 for four hours before the activity tests. 

  

Figure 3.2. Image of a GC6890N (left), the scheme of the online connected GC (center) and the offline connected 

GC (right). 
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Water and bio-oil flows were adjusted to maintain a steam to carbon (S/C) ratio of 5.0 in all 

experiments. During the experiments, hourly gas and liquid samples were collected: 

 Gas flows were measured and compositions determined using a flow meter and an online 

connected gas chromatograph. 

 Liquid samples were weighted and offline analyzed to determine their composition. 

Two GC6890N gas chromatographs were used to analyze gases and liquids, both of them with 

FID (Flame Ionization Detector) and TCD (Thermal Conductivity Detector), see Figure 3.2. Two 

different chromatograph configurations were used. The sampling with the online connected GC 

was carried out by an injection valve (6 way valve), which injected the sample collected in a 

loop. The entire sample went through the first column (HP Plot Q), but the access to the second 

column (HP Plot Molsieve) was controlled by an additional 6 way valve. The action of the valve 

allowed only the entrance of H2, O2, N2, CH4 and CO into the second column for their 

separation. Finally, gases reached the detectors were their concentrations were measured. 

The offline connected GC used an autosampler (Figure 3.2). Therefore, the injections were 

carried out by means of a syringe. The injected sample was split and a portion introduced in the 

column (Metawax). Thus, the concentrations of the molecules of the sample were determined by 

two detectors. 

The model compounds used for the experiments were the following: 

 n-butanol (99.5%, Sigma Aldrich) 

 m-xylene: (≥99 %, Sigma Aldrich) 

 Furfural: (≥99 %, Sigma Aldrich) 

 m-cresol: (≥99 %, Merck) 

 Xylose: (≥99 %, Sigma Aldrich) 

 Syringol: (≥98 %, Sigma Aldrich) 

 Glycerol: (≥99 %, Panreac) 

Thus, the main reactions with the model compounds used in this work are: 

(1) n-butanol SR C4H10O + 3 H2O ↔ 4 CO + 8 H2 ΔH
0
 =558 KJ/mol 

(2) m-xylene SR C8H10 + 8 H2O ↔ 8 CO + 13 H2 ΔH
0
 =1031 KJ/mol 

(3) Furfural SR C5H4O2 + 3 H2O ↔ 5 CO + 5 H2 ΔH
0
 =322 KJ/mol 

(4) m-cresol SR C7H8O + 6 H2O ↔ 7 CO + 10 H2 ΔH
0
 =808 KJ/mol 



Chapter 3 

98 

(5) Xylose SR C5H10O5 → 5 CO + 5 H2 ΔH
0
 > 0 KJ/mol 

(6) Syringol SR C8H10O3 + 5 H2O↔ 8 CO + 10 H2 ΔH
0
 > 0 KJ/mol 

(7) Glycerol cracking C3H8O3 → 3 CO + 4 H2 ΔH
0 

=244 KJ/mol 

(8) Water Gas Shift (WGS)CO + H2O ↔ CO2 + H2 ΔH
0 

= -41 KJ/mol 

3.3.2. Real bio-oil Steam Reforming 

The activity tests carried out at Imperial College London were performed in a bench scale plant 

as shown in Figure 3.3. As happened with the Microactivity Reference bench scale plant, this 

plant could also be divided into three main sections: feeding, reaction and separation sections. 

The feeding section was composed of two Mass Flow Controllers (Bronkhorst) for feeding 

hydrogen and nitrogen to the reactor and two syringe pumps (KD Scientific) for bio-oil and 

water feeding. The reactants were conducted to the reactor heated by means of electric current 

going through the two copper electrodes which held the reactor. Finally, the reaction products 

were cooled down in two U shaped condensers to separate them into gases and liquids [5,6]. 

Gas products were online analyzed by an MGA 3000 Multigas analyzer (ADC) for CO, CO2 and 

CH4 and a K1550 Series Hydrogen analyzer (Hytech Instruments) connected in series. Liquid 

products were collected at the end of the experiment and analyzed by a GC-MS.  

 

Figure 3.3. Scheme of the bench scale plant used for real bio-oil steam reforming. 

The reactor used for the experiments was a stainless steel reactor 12 mm i.d. and 300 mm long). 

A mixture of 0.4 g of catalysts (0.42<dp<0.50 mm) and 1.8 g of SiC (0.50<dp<1.0 mm) was 
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used as a catalytic bed, which was located in the middle of the reactor by means of a wire mesh 

supported on the thermocouple. Thus, the rest of the reactor remained unfilled. 

The bio-oil (CAS number 1207 435-39-9) used in the experiments was provided by Biomass 

Technology Group (BTG, Netherlands). The composition of the bio-oil can be expressed as 

C2.7H6.7O3.7. Additional bio-oil properties are summarized in [7]. Thus, according to the chemical 

formula of the bio-oil, the complete SR reaction can be expressed as: 

C2.7H6.7O3.7 + 1.7 H2O ↔ 2.7 CO2 + 2.1 H2 

3.3.3. Measured parameters 

The mentioned analysis equipment allowed determining different parameter when sampling. The 

most important parameters were the following: 

Bio-oil conversion:          
   -                 

   -      
      

Hydrogen yield:      
  
   

                 
         

Carbon dioxide yield:       
   

   

       
      

Carbon monoxide yield:      
     

       
      

Methane yield:       
   

   

       
      

Hydrocarbon yield:      
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ABSTRACT 

In this study, the steam reforming (SR) of a bio-oil model compound like -n-butanol- was 

selected for hydrogen production. Modified supports and catalysts were prepared by wet 

impregnation method, and tested and compared with a commercial one, in the n-butanol SR 

process at steam to carbon (S/C) ratio of 5.0 in a fixed bed reactor. Tests were carried out at 

different temperatures and atmospheric pressure. Afterwards, the modified support of the most 

active catalyst and bare alumina support were tested at the two higher temperatures in order to 

study the effect of the active metal and modifier. Fresh and used catalysts were characterized and 

correlated with the obtained activity results. Between all tested catalysts the Ni/CeO2-Al2O3 

provided the highest hydrogen yield, but it also showed deactivation signs. 

4.1. EXPERIMENTAL 

4.1.1. Catalyst preparation 

For this first stage of the thesis, four alumina supported catalysts were prepared (Ni/Al2O3, 

Ni/CeO2-Al2O3, Ni/La2O3-Al2O3 and Ni/MgO-Al2O3) by Wet Impregnation (WI) method 

described in section 3.1.1. of Chapter 3.  

Catalysts were prepared to reach a content of 13, 10, 6 and 3 wt.% of Ni, CeO2, La2O3 and MgO, 

respectively. Those values were based on Sánchez-Sánchez et al. [1] because of the high 

hydrogen yield and stability during the SR of ethanol achieved.Additionally, a commercial 

Ni/α-Al2O3 catalyst was also tested for comparison purposes. 

4.1.2. Catalyst characterization 

Prepared catalysts were characterized by N2 adsorption-desorption isotherms, Temperature 

programmed reduction (TPR), Inductively Coupled Plasma-Optical Emission Spectroscopy 

(ICP-OES), Temperature programmed desorption of ammonia (NH3-TPD), H2 chemisorption, 

X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). 

4.1.3. Tests methodology 

Catalysts were tested at temperatures from 1073 to 873 K. Tests started at 1073 K and the 

temperature was cooled down 100 K every 4 hours. Then, after the 4 hours at 873 K, the reaction 

temperature was heated up to 1073 K and maintained for 2 hours. All the experiments were 

carried out at atmospheric pressure, at a Steam to Carbon (S/C) ratio of 5.0 and a weight hourly 
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space velocity (WHSV) of 21 h
-1

. Hourly samples were taken and liquid and gas products 

analyzed and quantified by gas chromatography as depicted in Figure 4.1. 

 

Figure 4.1. Reaction temperature profile followed during the SR experiments. Green dots indicate the sampling 

moments. 

The rationale behind finishing the experiments at the same conditions that were set up at the 

beginning of the experiment was to discern whether catalysts were deactivated by comparing the 

measured parameters obtained at the beginning and the end of the experiment. 

4.2. RESULTS AND DISCUSSION 

4.2.1. Fresh and reduced catalyst characterization 

4.2.1.1. Textural properties 

The textural properties of support materials and catalysts are summarized in Table 4.1. Catalysts 

textural properties show a decrease in the measured surface area and pore volume when support 

modifiers and nickel were incorporated, while average pore sizes remain approximately constant, 

because of the alumina pore blocking with modifiers and nickel. 

In the case of the commercial catalyst, measured textural properties were completely different 

from the prepared ones, which can be explained because the alumina used in the commercial 

catalyst was alpha alumina, and the rest of the catalysts were prepared using gamma alumina. 
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Table 4.1. Textural properties of calcined supports (left) and their corresponding catalysts (right). 

Support SBET VP PD  Catalyst SBET VP PD 

Al2O3 202 0.81 77  Ni/Al2O3 147 0.55 72 

CeO2-Al2O3 145 0.61 80  Ni/CeO2-Al2O3 127 0.49 78 

La2O3-Al2O3 179 0.71 76  Ni/La2O3-Al2O3 139 0.56 78 

MgO-Al2O3 179 0.72 77  Ni/MgO-Al2O3 145 0.59 78 

     Commercial 22 0.09 170 

SBET: BET surface area (m
2
/g) 

VP: Pore volume (cm
3
/g) 

PD: Average pore size (Å) 

     

4.2.1.2. Chemical composition 

Catalysts elemental composition was determined by ICP-OES and it is summarized in Table 4.2. 

Measurements indicated that the nickel content of the catalysts was close to the desired values. 

Similarly, the content of support modifier oxides (CeO2, La2O3 and MgO) achieved their 

corresponding nominal values. 

Table 4.2. Chemical composition of the catalysts. 

 Chemical composition (wt. %) 

Catalyst Ni CeO2 La2O3 MgO 

Commercial 12.4 - - - 

Ni/Al2O3 13.9 - - - 

Ni/CeO2-Al2O3 13.7 10.9 - - 

Ni/La2O3-Al2O3 12.9 - 5.7 - 

Ni/MgO-Al2O3 13.1 - - 2.9 

Nominal values (wt. %): Ni=13.0; CeO2=10.0; La2O3=6.0; MgO=3.0. 

4.2.1.3. Temperature programmed reduction (TPR) 

The TPR profiles of the catalysts and supports are shown in Figure 4.2. Commercial catalyst 

TPR profile shows four small reduction peaks around 775, 900, 1050 and 1150 K. Prepared 

catalysts only showed a broad peak from 775 to 1300 K, with a maximum around 1100-1150 K. 

Those peaks could be related with the reduction of NiO with moderate interaction with the 

surface, reduced around 873 K, while reduction peaks at higher temperatures than 1073 K could 

be related with complex NiOx with strong interactions with support. Finally, reduction peak 

around 1173 K is related to the reduction of NiAl2O4 [2]. 
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Figure 4.2. TPR profiles of the fresh calcined catalysts and supports. 

In the case of supports, only CeO2-Al2O3 showed reduction peaks, at 800 K and at 1175 K, 

which are corresponded to surface ceria reduction and bulk ceria reduction, respectively [3]. 

4.2.1.4. H2 chemisorption 

Low nickel dispersion was observed in all catalysts (see Table 4.3), which is related to the low 

active metal surface area and high crystal sizes. Interestingly, the catalyst with the higher amount 

of modifier, ceria, presented the higher metal surface area and dispersion. 

Table 4.3. Nickel dispersion and nickel crystal size results of the catalysts. 

 H2 Chemisorption XRD 

Catalyst SMe DMe Ni size Ni size  

Commercial - - - 20 

Ni/Al2O3 4.3 4.7 22 5 

Ni/CeO2-Al2O3 4.4 4.9 21 5 

Ni/La2O3-Al2O3 3.9 4.5 22 5 

Ni/MgO-Al2O3 3.8 4.4 23 5 

SMe: Active metal surface area (m
2
/g). 

DMe: Active metal dispersion (W) 

Ni size: Average nickel particle size (nm). 

4.2.1.5. X-ray diffraction (XRD) 

XRD measurements were made for all reduced catalysts (see Figure 4.3) in order to determine 

the crystal sizes of different metal or metal oxides present using the Scherrer’s equation (see 

Table 4.3). The analysis measured nickel peaks (Powder Diffraction File, PDF: 00-001-1260) 

600 800 1000 1200

Temperature (K)

H
2
 c

o
n
s
u
m

p
ti
o
n
 (

a
.u

.)

Commercial

Ni/Al
2
O

3

Ni/CeO
2
-Al

2
O

3

Ni/La
2
O

3
-Al

2
O

3

Ni/MgO-Al
2
O

3

CeO
2
-Al

2
O

3

La
2
O

3
-Al

2
O

3



Hydrogen production from n-butanol over alumina and modified alumina nickel catalysts 

109 

with an average size of 5 nm in all prepared catalysts and 20 nm in the case of the commercial 

catalyst.  

 

Figure 4.3. XRD patterns of reduced alumina supported catalysts. 

CeO2 crystals with an average size of 10 nm were also measured (PDF: 01-075-0151). It was not 

possible to measure any crystal of lanthana or magnesia. However, its presence was confirmed 

by the ICP-AES and XPS. 

4.2.1.6. X-ray photoelectron spectroscopy (XPS) 

The main nickel specie on the surface was Ni
2+

, as nickel aluminate (855.4 eV) and their 

corresponding satellite peak (861.0 eV) [4], see Figure 4.4. However, the presence of metallic 

nickel was measured (852.7 eV) [5] in all catalysts, obtaining a Ni
2+

/Ni ratio of 7.5, 

approximately. 

In the case of Ni/La2O3-Al2O3 catalysts, nickel is interfered with lanthana. Therefore, 

disclaiming between oxidation states was not possible, because the signal of metallic nickel is 

interfered with Auger signal of lanthana. However, taking into account the results of 

Ni/MgO-Al2O3 for nickel 2p 1/2 electron, and comparing it with Ni/La2O3-Al2O3 catalysts, it is 

possible to observe how lanthana containing catalysts shows the satellite peak corresponding to 

the nickel aluminate around 880 eV, while the peaks corresponding to metallic nickel (869.6 eV) 

[6] and nickel aluminate are obtained as a single peak, around 872 eV. 

Cerium was determined as metallic cerium and as CeO2 according to the binding energies of the 

3d 5/2 electron, at 884.2 [7] and 901.9 eV [8], respectively. In the case of lanthanum (836.2 eV) 

[7] and magnesium (48.4 eV) [9], both were measured as metallic elements. 
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Nickel aluminates measured during XPS technique could be due to the surface oxidation of the 

catalysts, during the sample manipulation. 

 

Figure 4.4. Nickel 2p 3/2 electron patterns of reduced catalysts for Ni/Al2O3, Ni/CeO2-Al2O3 and Ni/MgO-Al2O3 

catalysts (left). Comparison of the Ni 2p 1/2 electron pattern for Ni/MgO-Al2O3 and Ni/La2O3-Al2O3 catalysts 

(right). 

4.2.2. Activity results 

Catalysts were tested in nbutanol SR process at S/C=5.0 and the results are shown in Figure 4.5. 

All tests showed almost complete n-butanol conversion in all tested conditions, as predicted by 

equilibrium calculations. 

The main reason for the lower experimental hydrogen yield results can be explained by the high 

methane yield results obtained at 1073 and 973 K. At 873 K the methane selectivities were lower 

than the equilibrium ones, but in these reaction conditions the presence of hydrocarbons became 

important, which explains the low hydrogen yields in comparison with the results at higher 

temperatures. 

Commercial and Ni/La2O3-Al2O3 followed the behavior of the equilibrium hydrogen yield 

values, showing higher hydrogen yields at 973 K than at 1073 K. However, the experimental 

values are much lower than the equilibrium. The rest of the catalysts showed lower hydrogen 

yields when the reaction temperature was reduced. It is also observed that for lower reaction 

temperature lower CO2 selectivities were measured which could be due to the slower kinetics of 

WGS reaction when reaction temperature was decreased. 
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The comparison of the commercial and prepared Ni/Al2O3 catalyst shows higher hydrogen yields 

in the case of the prepared catalysts, except at 973 K where commercial catalysts provided a 

higher CO2 yield. At 873 K commercial catalyst also showed higher CO2 yield. However, 

comparing CO and CO2 yields at 973 and 873 K, it is observed that the difference between CO 

yields is maintained, while CO2 yields difference is reduced. Therefore, although WGS reaction 

seems to be favored in case of the commercial catalyst, the Ni/Al2O3 catalyst improved the 

hydrogen production through SR reaction. Besides, at 873 K commercial catalyst gave as result 

higher hydrocarbon yield, obtaining lower hydrogen yield. Lanthana containing catalysts showed 

a behavior similar to the commercial catalyst in relation to all parameters. 

 

Figure 4.5. Parameters measured during the SR of n-butanol. (a) Conversion, (b) CH4, (c) hydrocarbon, (d) H2, (e) 

CO and (f) CO2 yields. Experiments were carried out in the following steps: 1073 K for 4 h (left set for each 

species), followed by 973 K for 4 h (centre left), 4 h at 873 K (centre right) and 1073 K for 2 h (right). Values 

shown are the average over the last 2 h at each step. 

Ni/CeO2-Al2O3 catalyst showed the highest hydrogen yield during the first three reaction 

temperatures, reaching equilibrium hydrogen yields at 1073 and 973 K. At 873 K hydrogen yield 

is lower than the value corresponding to the equilibrium, but it is the higher than the rest of the 

catalysts. In case of the other hydrogen containing species in gas phase Ni/CeO2-Al2O3 catalyst 

showed low methane yields, compared with the rest of the catalysts, except at 873 K. 
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Nevertheless, the effect of the high methane yield to produce hydrogen is diminished due to the 

low hydrocarbon yield at that temperature. 

Ni/CeO2-Al2O3 catalyst is the one which showed the highest CO2 yields in almost all the 

experimental conditions. Furthermore, support modification with CeO2 favors WGS reaction, 

especially at 973 and 873 K. Unfortunately, this catalyst showed clear deactivation signs which 

can be observed in the reduction of the hydrogen yield and CO2 yield, and the increment in CO 

and CH4 yields. 

Ni/MgO-Al2O3 catalyst showed the lowest hydrogen yield for all the activity tests. This catalyst 

showed the lowest CO2 yield, and therefore, very high CO yield. It also obtained high 

hydrocarbon yield. All those reasons explain the low hydrogen yield measured for this catalyst. 

Besides, this catalyst also showed deactivation signs.  

 

Figure 4.6. Parameters measured during the SR of n-butanol with supports. (a) Conversion, (b) CH4, (c) 

hydrocarbon, (d) H2, (e) CO and (f) CO2 yields. Experiments were carried out in the following steps: 1073 K for 4 h 

(left set for each species), followed by 973 K for 3 h (right). Values shown are the average over the last 2 h at each 

step. 

As shown in Figure 4.6, blank test was the only one in which complete conversion of n-butanol 

was not reached, especially at 973 K. In the case of the hydrogen yield, activity tests carried out 
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hydrogen yield reached with both supports was also similar, and the lower reaction temperature 

was the lower hydrogen yield was measured (20 and 5% at 1073 and 973 K, respectively). Thus, 

the influence of CeO2 is not noticed without nickel. 

The low hydrogen yields obtained during the activity tests with catalyst supports can be 

attributed to that the cracking of during those tests n-butanol molecules only lost a small fraction. 

Thus, hydrogen atoms were maintained in the hydrocarbon structure which gave as result the 

high hydrocarbon yields in the gas phase. 

Besides, during the experiments with supports low CO and even lower CO2 yields were 

measured because main carbon species in gas phase were hydrocarbons. According to this data, 

the WGS reaction is poorly carried out with supports, which also leads to low hydrogen yields 

measurements during the tests. However, in both reaction conditions CeO2-Al2O3 support 

showed lower CO yields and higher CO2 yields than Al2O3. 

Therefore, those results made evident the necessity of a metallic catalyst to carry out the SR 

process to obtain high hydrogen yields, by means of its capacity to break O-H, C-C and C-H 

bonds [11]. That effect is even better seen at 973 K, where the yield to hydrocarbons is higher 

than 80%. 

4.2.3. Used catalyst characterization 

XRD results for used catalysts showed a sintering effect during the activity tests, measuring 

higher average crystals sizes for nickel and ceria of 20 and 150 nm, respectively. Graphite was 

also measured during the analysis, with an average size of 2 nm. Nevertheless, nickel remained 

as metal after the tests. Lanthana and magnesia crystals were unmeasurable. 

XPS technique showed a catalyst surface covering from 62 to 93% with different carbon species 

(Figure 4.7), which were measured for the spectra of C 1s core electron. However, the only 

Ni/CeO2-Al2O3 and Ni/MgO-Al2O3 catalysts showed deactivation signs were. This behavior 

indicates that despite the nickel surface species were covered with coke, nickel located inside the 

catalyst pores was active enough to maintain the initial catalytic activity after the tests in these 

conditions. 

The decomposition of the carbon signal for the samples showed a dominant peak around 

284.5 eV, attributed to graphitic carbon [10]. At 285.3 eV, carbon corresponding to the C-C 

binding was measured, in hydrocarbon structure [11]. Commercial and Ni/CeO2-Al2O3 showed a 

peak corresponding with C-Si binding around 283 eV [12]. 
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According to this characterization, coke deposition was identified as one of the deactivation 

causes for nickel based catalysts. Carbon deposits result of the Bourdouard reaction (2 CO ↔ 

CO2 + C) and methane and ethylene decomposition [13].  

 

Figure 4.7. Used catalysts carbon determination by XPS. 

4.3. CONCLUSIONS 

During the activity tests complete n-butanol conversions and high hydrogen yields were 

measured at S/C=5.0. However, hydrogen yield was reduced when reaction temperature was 

reduced because WGS reaction was less promoted and higher amounts of hydrocarbons were 

obtained in the product gases. The maximum hydrogen yield was reached with Ni/CeO2-Al2O3 

catalyst at 1073 K. 

Tests carried out with catalysts supports showed that the effect of the cerium oxide is noticed 

after nickel impregnation. On the other hand, despite the complete conversions reached using 

only supports, it was evident the necessity of a component able to break the bond, as nickel, in 

the catalyst to increase the hydrogen yield. 

Although Ni/CeO2-Al2O3 catalyst reached the highest hydrogen yield during the first three 

reaction stages, it also was deactivated, as well as the Ni/MgO-Al2O3 catalysts, in the final stage 

at 1073 K due to metal sintering and coke deposition. 
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The sintering of the support modifier oxide was more important than the sintering of the nickel, 

as all prepared catalysts showed nickel sintering, but only two of them showed deactivation 

signs.  
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ABSTRACT 

In the present work m-xylene and an equimolecular mixture of m-xylene, 1-butanol and furfural, 

all of them bio-oil model compounds, were studied in steam reforming (SR) conditions. Three 

different nickel catalysts, which showed to be active in 1-butanol SR (Ni/Al2O3, Ni/CeO2-Al2O3 

and Ni/La2O3-Al2O3), were tested and compared with thermodynamic equilibrium values. Tests 

were carried out at temperatures from 1073 to 873 K at atmospheric pressure with a steam to 

carbon ratio (S/C) of 5.0. Despite the different bio-oils fed, the amount of moles going through 

the catalytic bed was kept constant in order to obtain comparable results. After their use, 

catalysts were characterized by different techniques and those values were correlated with the 

activity results. All catalysts were deactivated during the SR of the mixture, mainly by coking. 

The highest hydrogen yields were obtained with Ni/Al2O3 and Ni/CeO2-Al2O3 catalysts in the SR 

of m-xylene and SR of the mixture, respectively. 

5.1. EXPERIMENTAL 

5.1.1. Catalyst preparation and characterization 

The preparation of the catalysts and their characterization before being used (N2 adsorption-

desorption isotherms, chemical composition, Temperature programmed reduction of the calcined 

catalysts and X-ray diffraction and X-ray photoelectron spectroscopy of the reduced catalysts) 

are contained in the previous chapter, extracted from our previous work [1]. For the present work 

catalysts were characterized after their use by several techniques: X-ray diffraction (XRD) and 

X-ray photoelectron spectroscopy (XPS) techniques, and Temperature programmed oxidation 

(TGA-TPO). 

5.1.2. Tests methodology 

The reactor was placed in a Microactivity Reference bench scale plant (PID Eng&Tech). Prior to 

the activity tests a mixture of 45 mL of H2 and 180 mL of N2 were passed through the catalytic 

bed at 1073 K during 4 hours to obtain metallic nickel in the catalysts. 

Bio-oil model compound or the mixture of compounds and deionised water were fed separately 

to the reactor due to the immiscibility of the liquids.  
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Figure 5.1. Reaction temperature profile followed during the SR experiments. Green dots indicate the sampling 

moments. 

Reaction temperatures ranged from 1073 to 973 K for four hours at each temperature (see Figure 

5.1) and at atmospheric pressure. That temperature range was selected because, as predicted by 

thermodynamics, highest hydrogen yields are obtained within this interval [2]. Afterwards, the 

reactor was heated up to 1073 K to compare the initial and final activity results. A Weight 

Hourly Space Velocity (WHSV) of 21 h-1 was used in all tests. 

5.2. RESULTS AND DISCUSSION 

5.2.1. Activity results 

5.2.1.1. Steam Reforming of m-xylene at S/C = 5.0 

Complete conversion was obtained regardless of the reaction temperature and catalyst used when 

m-xylene SR was studied. However, the catalytic performance resulted in different hydrogen and 

carbon species yields, as summarized in Figure 5.2. 

Catalysts achieved similar hydrogen yields, around 80 %, at 1073 K, which are close to the 

equilibrium values, as happened with CO and CO2 yields. The presence of methane and some 

light hydrocarbons in the product stream can explain hydrogen yields lower than equilibrium. 

When reaction temperature was cooled down to 973 K, the difference between equilibrium and 

experimental hydrogen yields increased. This behavior was attributed both to the kinetic effect of 

a low temperature in the reaction rate and to the fact that the main reaction is highly 

endothermic. Accordingly, undesired reaction products yield, especially hydrocarbons, showed 
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higher values than at 1073 K, showing a slight reduction of the reforming capacities of the 

catalyst in the case of Ni/CeO2-Al2O3 and Ni/La2O3-Al2O3 catalysts. 

In those conditions, Ni/Al2O3 catalysts showed a hydrogen yield slightly higher than the yield 

achieved at 1073 K, as thermodynamic equilibrium predicts, due to its higher performance in the 

WGS reaction, probably due to the lower amount of coke present onto its surface (Table 5.1). On 

the other hand, tests with support modified catalysts resulted in hydrogen yields lower than the 

obtained at 1073 K, indicating the reduction of reforming and WGS capacities.  

 

Figure 5.2. Parameters measured during the SR of m-xylene. (a) Conversion, (b) CH4, (c) hydrocarbon, (d) H2, (e) 

CO and (f) CO2 yields. Experiments were carried out in the following steps: 1073 K for 4 h (left set for each 

species), followed by 973 K for 4 h (centre left), 4 h at 873 K (centre right) and 1073 K for 2 h (right). Values 

shown are the average over the last 2 h at each step. 

At 873 K, the reduction of catalysts capacity to carry out the WGS reaction was evident, as 

showed the high CO and low CO2 yields, despite the fact that WGS reaction should be 

thermodynamically favored. In addition, the presence of hydrocarbons in product gases became 

important, indicating catalysts started losing their hydrocarbon reforming capacities probably 

due to a slower kinetics, as a result of the lower temperature and promoted by the presence coke. 

In consequence, the measured hydrogen yields were low in comparison with previous reaction 

temperatures. 
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Nevertheless, Ni/La2O3-Al2O3 catalyst was able to reform more hydrocarbons, as well as to 

produce more CO2, than any other catalyst. Therefore, it achieved the highest hydrogen yields 

during the reaction at 873 K. 

Activity tests were finished with a final reaction period at 1073 K to compare initial and final 

activities of the catalysts, in order to determine if catalysts were or were not deactivated. Thus, 

there were not important differences between the initial and final activities, showing that 

catalysts were stable at the studied reaction conditions. 

5.2.1.2. Steam Reforming of an equimolecular mixture of n-butanol, 

m-xylene and furfural at S/C = 5.0 

A synthetic bio-oil was prepared as an equimolar mixture of m-xylene, 1-butanol and furfural 

with the aim of studying the combined effect of the different model compounds on the catalysts. 

An equimolecular mixture was prepared with the aim of having the same concentration of all 

model compounds in order to compare the reactivity of each kind of compound when they 

compete for active sites on the catalyst surface. 

The liquid flow fed to the reactor was adjusted to maintain constant the amount of moles going 

through the catalytic bed per unit of time as in the case of m-xylene SR. 

Figure 5.3 shows the conversion and yields measured with different catalysts tested in the SR of 

the mixture. During the reaction at 1073 and 973 K all catalysts converted completely the bio-oil. 

However, at 873 K conversion was drastically reduced.  As in the case of m-xylene reforming, a 

low temperature results in a low reaction rate and some catalysts deactivation, probably due to 

the difficulty to remove the amount of coke formed at this temperature. As a result, catalysts 

were not able to completely break the organic structure of the model compounds, as indicated by 

the unreacted 1-butanol, m-xylene and furfural collected as liquid products. 

Catalysts deactivation was confirmed when the reaction temperature was set up again at 1073 K. 

There initial complete conversions were not reached, although conversions were higher than at 

873 K. 

Among the fed model compounds, m-xylene showed to be the more stable, and then the most 

refractory to steam reforming, as it was the main component of the liquid product when complete 

conversion was not achieved. 

Regarding the hydrogen yields, at the two highest reaction temperatures, high hydrogen yields 

were measured, as equilibrium calculation predicted. Nevertheless, at 973 K hydrogen yields 
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were lower than at 1073 K, mainly due to the presence of hydrocarbons at 973 K and a lower 

WGS reaction performance of Ni/Al2O3 and Ni/La2O3-Al2O3 catalysts. That behavior could be 

explained by the oxygen storage and mobility provided by ceria lattice [3], which increases 

active oxygen species on the nickel surface favoring the hydrogen production and inhibiting coke 

formation by means of an enhanced water adsorption and effective gasification [4]. 

 

Figure 5.3. Parameters measured during the SR of the equimolecular mixture of n-butanol, m-xylene and furfural. 

(a) Conversion, (b) CH4, (c) hydrocarbon, (d) H2, (e) CO and (f) CO2 yields. Experiments were carried out in the 

following steps: 1073 K for 4 h (left set for each species), followed by 973 K for 4 h (centre left), 4 h at 873 K 

(centre right) and 1073 K for 2 h (right). Values shown are the average over the last 2 h at each step. 

At 873 K, conversions were very low, and in consequence, product yields were also low. 

Accordingly, the maximum hydrogen yield was around 20% for Ni/CeO2-Al2O3 catalyst which 

produced some CO and CO2, again due to the oxygen storage and mobility capacity. 

On the contrary, Ni/Al2O3 and Ni/La2O3-Al2O3 catalysts showed low hydrogen yields. Among 

them, bare alumina supported catalyst achieved the lowest conversion at 873 K and the lowest 

carbon species yields (CO, CO2, CH4 and hydrocarbon). 

The catalysts with the support modified with La2O3 converted a higher amount of model 

compounds than alumina supported catalyst, as hydrocarbon yields show. But, it was not able to 

convert them to reforming products as Ni/CeO2-Al2O3 catalyst did.  
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Then, when the reaction temperature was increased to the initial conditions (1073 K), hydrogen 

yields not only did not achieve initial values, but they remained as low as the ones at 873 K. 

Then, the main bio-oil conversion route could be assigned as cracking due to the high 

hydrocarbon yields corroborated. 

In these conditions, CeO2 containing catalyst was the only one achieving a hydrogen yield higher 

than the one obtained at 873 K. This increase was probably originated by a higher bio-oil 

reforming ability, as CO and CO2 yields show. 

Regarding Ni/Al2O3 and Ni/La2O3-Al2O3 catalysts, they also increased their CO yield with the 

temperature increase. But their CO2 yield was even lower than at 873 K. 

According to these results, Ni/CeO2-Al2O3 catalyst showed to be the most effective catalyst for 

bio-oil SR among the studied catalysts. Its oxygen storage and mobility capacity showed to be 

important during the reforming of oxygenated bio-oil model compounds (as it was not evident in 

m-xylene SR), even though it was also deactivated. 

5.2.2. Used catalyst characterization 

The comparison of the XRD patterns of reduced and used catalysts showed different peaks 

depending on the process. Catalysts tested with m-xylene showed metallic nickel peaks (2θ = 44º 

and 52º), as happens in the reduced counterparts. The use of the equation of Scherrer indicated 

that the lowest nickel crystal size was estimated for Ni/La2O3-Al2O3 catalyst, around 30 nm. 

Nickel peaks for the catalysts used with the mixture of model compounds were too low to 

estimate the crystal size. That fact was related to the presence of a carbon peak (2θ ≈ 26,6º) in 

the patterns of the catalysts tested with the mixture of model compounds [5–7]. 

Accordingly, XPS patterns of catalysts tested in m-xylene SR showed the same nickel species 

that were identified in reduced catalysts, such as metallic nickel (~856 eV) and nickel aluminate 

(~855 eV) and the corresponding satellite peak (~861 eV). Apart from that, an important amount 

of carbon on all catalysts surface was also recorded. However, nickel was not detected on the 

surface of the catalysts tested with the mixture because they were almost completely covered by 

carbon deposits. 

XPS patterns also showed that regardless of the fed bio-oil, the main carbon species present in 

the catalysts surface are the same for all catalysts, being the most abundant the graphitic carbon 

(284.6 eV) [1,8]. 
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TGA patterns of used catalysts (Figure 5.4) showed two main weight losses looking at the 

derivative (d(wt%)/dT). Below 625 K there are small weight losses or increases, which are more 

evident for catalysts a, b and c. Losses ranging up to around 475 K were attributed to water and 

organic compounds removal from the catalysts [9]. Then, around 575 K, except case b, catalysts 

showed a weight increment due to the oxidation of nickel [10]. According to these results, 

metallic nickel was present in deactivated catalysts, and therefore, when the multicomponent 

bio-oil was fed the main deactivation cause was carbon deposition, which covered nickel active 

sites. 

 

Figure 5.4. TGA profiles of used catalysts. SR of m-xylene: Ni/Al2O3 (a), Ni/CeO2-Al2O3 (b) and Ni/La2O3-Al2O3 

(c). SR of the mixture Ni/Al2O3 (d), Ni/CeO2-Al2O3 (e) and Ni/La2O3-Al2O3 (f). 

Above 625 K only weight loss took place, which is related with the oxidation of carbon [11]. 

Between 625 and 775 K the oxidation of filamentous carbon occurs, while at temperatures above 

775 K the oxidation of carbon with different degrees of graphitization takes place [11,12].  

The weight losses of the catalysts tested in m-xylene SR ended at temperatures lower than 

1075 K. On the contrary, the samples tested with the bio-oil showed weight losses up to 1175 K, 

approximately. In addition, the weight losses at temperatures below 775 K for the catalysts tested 

in the mixture were less important than for the catalysts tested with m-xylene. Thus, during the 

tests with the mixture a higher amount of graphitic carbon was formed, justifying the 
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deactivation of the catalysts. Moreover, as the graphitic carbon needed higher temperatures than 

the last reaction temperature (1073 K) to be gasified, catalysts were not able to recover their 

initial activities. 

Taking into account the weight losses related to carbon oxidation, carbon grams per gram of 

catalyst were calculated and summarized in Table 5.1. There, it can be observed that carbon 

amounts on the catalysts are approximately doubled when the mixture was tested, even though 

the carbon amount fed to the reactor was approximately the same. 

Table 5.1. Grams of carbon per gram of catalyst measured on catalysts used in SR of m-xylene and SR of an 

equimolar mixture of m-xylene, n-butanol and furfural. 

 g C/g catalysts 

 SR of m-xylene SR of the mixture 

Ni/Al2O3 0.28 0.53 

Ni/CeO2-Al2O3 0.38 0.70 

Ni/La2O3-Al2O3 0.36 0.63 

 

The main cause of the increment in the carbon amount present in the catalysts was identified as 

the presence of furfural in the mixture. This compound, which is usually present in bio-oils, is 

known to be a very reactive molecule with a high tendency to produce coke in reforming 

processes [13]. This statement was reinforced by the catalytic behavior of the same catalysts in 

1-butanol and m-xylene SR processes, where deactivation was not significant. 

5.3. CONCLUSIONS 

Despite different catalytic behavior observed during activity tests with different bio-oil model 

compounds, the high hydrogen yields at 973 and 1073 K evidenced that bio-oils can be feasible 

feedstocks for hydrogen production. 

The less favorable reaction temperature was 600ºC, especially for the synthetic bio-oil where 

carbon deposition deactivated the catalysts. It has been proved that oxygenated compounds 

promoted coke deposition, although a non-oxygenated compound was present (m-xylene 33 

mol%, considered a solvent). 

Ni/CeO2-Al2O3 showed to be the most adequate catalyst, Ce addition maintained an acceptable 

hydrogen yield, even when catalyst surface was covered by a considerable amount of graphitic 

carbon. 
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ABSTRACT 

Herein, a synthetic bio-oil was prepared as an equimolecular mixture of n-butanol, m-xylene, 

furfural, m-cresol, syringol and xylose. Then, the three catalysts used in previous chapters were 

tested under Steam Reforming (SR) conditions at 20 bar and at a Steam to Carbon (S/C) molar 

ratio of 5.0. It was tried to perform the experiments at different temperatures, as in previous 

chapters. However, the reactor was blocked before finishing the established period. Thereby, the 

reaction experiments were carried out at 1073 K for 7 hours, because the reactor was blocked in 

that period. In addition, different reaction configurations were studied with the aim of avoiding 

the reactor blockage, but reactors were equally blocked. In 7 hours of reaction significant 

differences were not observed in the activity results. Afterwards, glycerol was incorporated to 

the reaction mixture to produce an equimolecular bio-oil/bio-glycerol mixture with the aim of 

increasing the durability of the reaction system. As happened in previous conditions, the reactors 

were also blocked. Nevertheless, the glycerol incorporation was favorable as the durability of the 

reaction system was increased up to 9 hours, even if the activity results of different catalysts 

were similar. 

6.1. EXPERIMENTAL 

6.1.1. Catalyst preparation and characterization 

The preparation of the catalysts and their characterization before being used (N2 adsorption-

desorption isotherms, chemical composition, Temperature programmed reduction of the calcined 

catalysts and X-ray diffraction and X-ray photoelectron spectroscopy of the reduced catalysts) 

are contained in the previous chapter, extracted from our previous work [1]. For the present work 

catalysts were characterized after their use by several techniques:  X-ray diffraction (XRD) and 

X-ray photoelectron spectroscopy (XPS) techniques, and thermogravimetric analysis (TGA). 

6.1.2. Tests methodology 

Activity tests were carried out in a Microactivity Reference bench scale plant (PID Eng&Tech), 

which was modified to perform the experiments with different reactor configurations: up-flow or 

down-flow system. 

Before the activity tests, the reactor was placed in the bench scale plant and the catalysts was 

reduced at 1073 K for 4 hours. The reduction was carried out using a mixture of 45 mL of H2 and 

180 mL of N2. 
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Before carrying out the activity tests, the flows of the liquid pumps (synthetic bio-oil and water 

or glycerol-water mixture) with the aim of keeping constant the Weight Hourly Space Velocity 

(WHSV) of 21 h
-1

, used in previous reaction conditions. 

6.2. RESULTS AND DISCUSSION 

6.2.1. Activity results 

6.2.1.1. Steam Reforming of n-butanol, m-xylene, furfural, m-cresol, 

syringol and xylose at S/C = 5.0 

Previous experience in SR of xylose at atmospheric pressure showed xylose tended to form a 

high viscosity compound, like caramel, before reaching the reactor. That high viscosity 

compound blocked the pipelines which gave access to the reactor, and thus the experiments had 

to be shut down shortly after the beginning. For that reason, when a mixture of n-butanol, 

m-xylene, furfural, m-cresol, xylose and syringol was fed to the reactor, it was decided to 

increase the reaction pressure to 20 bar. That decision was taken with the aim of limiting the 

pipelines clogging with the xylose derived compound and allowing molecules to reach the 

catalytic bed. 

The operational pressure increase avoided the pipeline clogging, but the problem was not solved. 

The reactor entrance was completely blocked anyway before 8 hours of operation, while 

blocking evidences were detected after 5 hours on stream. The reactor blocking problem was not 

softened by reducing the reaction temperature from 1073 to 973 K after the first 4 hours on 

stream, as in previous experiments. Thus, it was decided to operate only at 1073 K and the 

results summarized in Table 6.1. 

Table 6.1. Comparison of the activity parameters during the experiments. 

 

Hours on stream 

1-5 6-7 

Gas flow (mL/min) ≈70 30-25 

Hydrogen yield (%) 60-55 25-20 

Hydrocarbon yield (%) 2-1 5-1 
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Figure 6.1. Parameters measured during the SR of n-butanol, m-xylene, furfural, m-cresol, syringol and xylose with 

alumina supported catalysts during the first 5 hours of reaction at 20 bar. Values shown are average over the last 2 h. 

 

 

Figure 6.2. Reactor after being used in SR of the equimolecular mixture of n-butanol, m-xylene, furfural, m-cresol, 

xylose and glycerol with different reactor configurations: (top left) Up-flow reactor filled with SiC, (top right) 

down-flow reactor filled with SiC and (bottom) down-flow reactor without SiC in the reactor entrance. 
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Table 6.1 shows that initially high amount of gas products were produced, around 70 mL/min. 

Thus, hydrogen yields in the range of 55-60 % and low hydrocarbon yields were produced (see 

Figure 6.1). However, in the two following hours, the amount of produced gas was 

approximately halved as was the hydrogen yield. That gas production reduction could represent 

catalyst deactivation if unconverted molecules were present in liquid products or if the 

hydrocarbon yield would have increased, meaning catalysts lose reforming capacity. 

Nevertheless, what happened during the 6
th

 and 7
th

 hours on stream was a reduction in the 

amount of reactants that reached the catalyst.  

During the first five hours of experiment, the three tested catalysts reached similar activity 

values. The model compound mixture was completely converted by Ni/Al2O3, Ni/CeO2-Al2O3·or 

Ni/La2O3-Al2O3 catalysts as equilibrium calculation predicted. Regarding the hydrogen yield, 

three catalysts produced a similar value, in the 55-60 % range. Accordingly, the CO, CO2 and 

hydrocarbon yields were similar for all tested catalysts. Nevertheless, the experimental hydrogen 

yield values were far from the equilibrium H2 yield, which is over 80 %. That difference is 

mainly caused by the presence of hydrocarbons and due to the formation of the polymer that 

ended up blocking the reactor. 

In order to overcome reactor clogging problems, different reactor configurations were tested. 

Initially, a down-flow reactor, filled with SiC below and above the catalytic bed was used. This 

reaction system gave place of a plug at the entrance of the reactor as shown in ¡Error! No se 

encuentra el origen de la referencia. (top left). Afterwards, a SiC filled reactor was tested in an 

up-flow reaction system, but a similar result was achieved (see Figure 6.2 (top right)). Finally, a 

down-flow reactor was used, but the SiC was only placed under the catalytic bed to hold it in 

place. This configuration provided a higher diameter for the model compounds to be cracked 

without blocking the pathway to the catalytic bed. However, the reactor ended up blocked 

anyway by carbonaceous clusters on the catalytic bed (Figure 6.2 (bottom)). 

6.2.1.2. Steam Reforming of n-butanol, m-xylene, furfural, m-cresol, 

syringol, xylose and glycerol at S/C = 5.0 

Due to the operational problems of a multicomponent synthetic bio-oil steam reforming process, 

it was decided to add a low amount of glycerol to the mixture. The addition of glycerol was 

made in such amount that the resultant bio-oil/bio-glycerol mixture contained an equimolecular 

amount of n-butanol, m-xylene, furfural, m-cresol, xylose, syringol and glycerol. 
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Glycerol was selected because it is a byproduct of the biodiesel industry, which constitutes about 

the 10 wt. % of the total produced biodiesel weight [2–4]. Nevertheless, it lacks the purity 

required for a further use in food, pharmaceutical or cosmetic industries [3,5], due to its content 

on soap, methanol and water limiting the refining [2]. For those reasons alternative disposal 

methods [5] or alternatives to add more value to low-cost glycerol directly [2] are being sought. 

Among the alternatives, the hydrogen production from glycerol SR is an attractive alternative as 

glycerol and its impurities are potential hydrogen sources [3,4]. Accordingly, glycerol SR 

process has been widely studied [6–10]. Thus, the glycerol reforming is a well known 

technology. On the other hand, bio-oil/bio-glycerol blends have been proposed as a stable liquid 

mixture with suitable rheological and fuel properties [11].  

Table 6.2. Comparison of the activity parameters during the experiments. 

 

Hours on stream 

1-5 6-8 9 

Gas flow (mL/min)  75-65 55-40 35-5 

Hydrogen yield (%)  65-55 45-35 25-1 

Hydrocarbon yield (%)  <10 10-5 6-1 

 

The addition of glycerol to the reactant mixture increased the duration of the experiments, 

reaching up to 9 hours before clogging the reactor as indicated in Table 6.2. During the first 5 

hours on stream, the activity values were quite high, as happened in the tests without glycerol. 

But from that point differences arise. When glycerol was added to the reactants, from 6
th

 to 8
th

 

hours gas flows in the range of 40 to 55 mL/min were measured, while for the tests without 

glycerol, for the 6
th

 and 7
th

 hour gas flows lower than 30 mL/min were produced. For the 

experiments with glycerol addition, it was in the 9
th

 hour when gas flows lower than 30 mL/min 

were measured. Accordingly, the mixture of bio-oil with bio-glycerol could be a potential 

alternative for increasing the durability of the hydrogen production process from biomass. 

As happened in the previous section, the reactor clogging was the justification of the lower gas 

production. That fact was supported by the reduction of the hydrocarbon yield with the reduction 

of the produced gas flow, while the conversion values remained close to initial values. Due to the 

clogging of the reactor entrance, the amount of molecules reaching the catalytic bed were lower 

than initially. Thus, it was easier for the catalysts to maintain high conversion values. 
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Figure 6.3. Parameters measured during the SR of n-butanol, m-xylene, furfural, m-cresol, syringol, xylose and 

glycerol with alumina supported catalysts during the first 5 hours of reaction at 20 bar. Values shown are average 

over the last 2 h. 

During the first five hours of reaction, slight differences were observed in the activities of the 

catalysts, see Figure 6.3. On the one hand, Ni/La2O3-Al2O3 catalyst was the only catalyst able to 

completely convert the feed, as thermodynamic calculations predict. Nevertheless, Ni/Al2O3 and 

Ni/CeO2-Al2O3 catalysts converted more than 95 % of the model compounds fed. The 

incomplete conversion was caused by the presence of mainly m-cresol on the liquid products. 

Regarding the gas products, Ni/La2O3-Al2O3 catalyst achieved the highest hydrogen yield 

reaching a 65 %, followed by Ni/CeO2-Al2O3 and Ni/Al2O3 catalysts, respectively. That 

difference was attributed to the increasing hydrocarbon yield from Ni/La2O3-Al2O3 to Ni/Al2O3 

catalyst. Nonetheless, the hydrogen yields were again far from the equilibrium value (over 

70 %). The difference between those values, the experimental and theoretical hydrogen yield, 

was attributed to the presence of hydrocarbons among the gas products as well as the coking on 

the catalysts. 

6.2.2. Used catalyst characterization 

The XRD patterns of catalysts used for SR of n-butanol, m-xylene, furfural, m-cresol, xylose and 

syringol are shown in Figure 6.4. The profiles of the catalysts used in SR of n-butanol, m-xylene, 
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furfural, m-cresol, xylose, syringol and glycerol are not shown as they are very similar for the 

ones obtained for the mixture without glycerol 

The profiles contained in Figure 6.4 do not show any peak corresponding to nickel, not in 

reduced state nor oxidized, probably because nickel was covered by carbon. Therefore, it was not 

possible to estimate an average nickel crystallite size for used catalysts. 

As happened for catalysts used for SR in previous chapters, Ni/Al2O3 catalysts used in n-butanol, 

m-xylene, furfural, m-cresol, xylose and syringol SR presented a peak around 27 2 theta degrees, 

due to the presence of graphitic carbon on the catalysts [12–14] 

 

Figure 6.4. XRD patterns of catalysts used in n-butanol, m-xylene and furfural, m-cresol, xylose and syringol SR. 

Additionally, the peaks located around 35, 60 and 68 2 theta degrees are attributed to the 

presence of SiC on the analyzed samples, caused by an ineffective sieving to separate SiC. 

Regarding the species present in the surface of the catalysts, carbon was the most abundant. 

Carbon was mainly present with a binding energy of 284.6 eV, attributed to graphitic carbon 

[15], which is in good agreement with the diffraction peak around 27 2 theta degrees. In addition, 

the following most abundant carbon specie on catalyst surface was arbon in hydrocarbon 

structure (C-C) with a binding energy 285.5 eV [16]. 

The addition of glycerol produced a decrease in the amount of carbon in comparison with the 

catalysts tested in SR of the synthetic bio-oil without glycerol addition even if the reaction period 

was increased, as showed in Figure 6.5. 

The weight loss derivatives are characterized by an initial weight loss below 400 K due to the 

removal of water contained by the catalysts [17]. Then, at around 500 K some catalysts presented 
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an additional weight loss due to the removal of volatile species such as reactants, product and/or 

reaction intermediates [18]. 

 

Figure 6.5. TGA-TPO profiles of catalyst used in SR of n-butanol, m-xylene and furfural, m-cresol, xylose and 

syringol (top row); and catalysts used in SR of n-butanol, m-xylene and furfural, m-cresol, xylose, syringol and 

glycerol (bottom row). 

Afterwards, around 600 K nickel was oxidised [17,19], and therefore a weight increases of 

different intensities were recorded. That happened once nickel was exposed after removing the 

volatile species which were covering nickel sites. Therefore, the oxidation of nickel was not a 

deactivation cause, but the nickel active sites coverage should be taken into account for 

experiments in which reactor is not blocked. 

The main weight losses occurred from 600 to 1100 K, approximately, caused by the combustion 

of the carbon present on the catalysts [7,20]. Those broad peaks can be separated into two 

different peaks. The first peak, from 600 to 800 K, approximately, was caused by the oxidation 

of filamentous carbon associated with nickel particles [7,18,21], while the second peak, which 

happens above 800 K, was caused by the oxidation of graphitic carbon [7,21]. 
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6.3. CONCLUSIONS 

In this chapter a six component synthetic bio-oil was prepared as an equimolecular mixture of 

n-butanol, m-xylene, furfural, m-cresol, syringol and xilose. Then, the synthetic bio-oil was used 

for hydrogen production by mean of the SR process. 

The presence of sugars in the liquid to be reformed produces pipelines clogging. In order to 

overcome that issue, the operational pressure was increased from atmospheric pressure to 20 bar. 

However, the pressure increase did not solve the pipeline clogging issue. It only moved the 

clogging to the entrance of the reactor when the reaction was carried out at 1073 or 973 K. Thus, 

the reactor ended clogged before 8 hours on stream. 

With the aim of overcoming the problem, a small amount of glycerol was included in the bio-oil 

model compound mixture. Thus, an equimolecular mixture of n-butanol, m-xylene, furfural, 

m-cresol, xylose, syringol and glycerol was prepared. This mixture increased the durability of 

the reaction system over 9 hours on stream. Therefore, the mixture of bio-oil and bio-glycerol 

could be an alternative to solve the instability issues of bio-oil. 

In all tested processes, a high amount of carbon was present on the catalysts after their use. It 

was mainly present as graphite as the XPS and TGA-TPO results showed.  
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ABSTRACT 

Catalysts based on Ni supported on alumina were studied for steam reforming (SR) of a synthetic 

bio-oil/bio-glycerol mixture and a real bio-oil. Catalyst tests were carried out in a continuous 

fixed bed reactor at atmospheric pressure and steam to carbon (S/C) ratio of 5.0. In the case of 

experiments with the bio-oil/bio-glycerol mixture the initial temperature was 1073 K, then it was 

successively changed to 973 K and 1073 K again to assess catalyst deactivation. Experiments 

with the bio-oil sample were run at 1073 K. First, the effect of modifications to the alumina 

support with CeO2 and La2O3 was studied in monometallic catalysts. Ni/CeO2-Al2O3 was 

identified as the catalyst more resistant to deactivation, likely due to its higher oxygen mobility, 

and selected for further tests. Then, bimetallic catalysts were produced by impregnation of noble 

metals (Pd, Pt or Rh) on the Ni catalyst supported on CeO2-Al2O3. Co-impregnation of Rh and 

Ni on the CeO2-Al2O3 support represented a further improvement in the catalytic activity and 

stability respect to the monometallic catalyst, leading to stable gas compositions close to 

thermodynamic equilibrium due to the favourable Rh-Ni interactions. Rh-Ni/CeO2-Al2O3 is 

therefore a promising catalyst to produce a hydrogen-rich gas from bio-oil SR. 

7.1. EXPERIMENTAL 

7.1.1. Catalyst preparation 

The monometallic and bimetallic catalysts used for the completion of this chapter were prepared 

following the Wet Impregnation (WI) procedure described in section 3.1.1. of Chapter 3. 

Catalysts were prepared with the aim of achieving a 10 and 6 wt. % of CeO2 and La2O3 for 

alumina support modification, based on our previous works [1,2]. Regarding the active metal 

impregnation a nickel content of 13 wt. % was selected, also based on our previous works. 

Finally, a value of 1 wt. % of noble metal (platinum, palladium or rhodium) was selected for 

bimetallic catalyst preparation. 

7.1.2. Catalyst characterization 

Prepared catalysts were characterized by N2 adsorption-desorption isotherms, Temperature 

programmed reduction (TPR), Inductively Coupled Plasma-Optical Emission Spectroscopy 

(ICP-OES), Temperature programmed desorption of ammonia (NH3-TPD), CO chemisorption, 

X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Temperature 

programmed oxidation (TGA-TPO). 
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7.1.3. Tests methodology 

The SR experiments using the synthetic bio-oil/bio-glycerol mixture were performed at 

atmospheric pressure, S/C molar ratio of 5.0 and different temperatures. Experiments started at 

1073 K for 5 hours. After that period, the reaction temperature was decreased to 973 K for 

another 5 hours on stream. Finally, the reaction temperature was again set up at 1073 K to 

compare initial and final catalytic activities to discern whether catalyst deactivation occurred. 

The temperature profile of the experiments using a synthetic bio-oil/bio-glycerol mixture is 

indicated in Figure 7.1. 

 

Figure 7.1. Reaction temperature profile followed during the SR experiments. Green dots indicate the sampling 

moments. 

In comparison with the experiments performed for previous chapters, the reaction period at 

873 K was removed. That decision was taken considering the low activities catalysts achieved 

when an equimolecular mixture of n-butanol, m-xylene and furfural was used to produce 

hydrogen by SR. On the other hand, the time on stream in the first two reaction stages was 

increased an hour. 

Regarding the experiments with real bio-oil, the experiments were also carried out at 1073 K for 

3 hours because most of the catalysts were deactivated before that period. Nevertheless, the 

sampling time was modified from a sample every hour to a sample every 10 minutes as indicated 

in Figure 7.2. That modification was possible because the gas analysis devices needed less time 

to determine the composition of the gas products. Thus, the deactivation of the catalysts was 

more accurately followed. 
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Figure 7.2. Reaction temperature profile followed during the SR experiments. Green dots indicate the sampling 

moments. 

Due to the multicomponent nature of the bio-oil, it was analyzed by gas chromatography – mass 

spectroscopy (GC-MS). The analysis allowed identifying different molecules which are 

summarized in Table 7.1. 

Table 7.1. Molecules identified in the bio-oil by GC-MS. 

Compound Formula 

Acetic acid C2H4O2 

2-Acetylfuran C6H6O2 

4-Allyl-2,6-dimethoxyphenol C11H14O3 

2-methyl-2-cyclopenten-1-one C6H8O 

Syringaldehyde C9H10O4 

Ethyl vynil ketone C5H8O 

4-methyldibenzofuran C13H10O 

4-methylcyclohexane C7H12O 

3-phenyltoluene C13H12 

Guaiacol acetate C9H10O3 

Diphenyl ether C12H10O 

1,2-dimethoxybenzene C8H10O2 

2,4-dimethoxyphenol C8H10O3 

Vanillic acid C8H8O4 

Vanillin C8H8O3 

2,5-Dimethoxybenzoic acid C9H10O4 
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7.2. RESULTS AND DISCUSSION 

7.2.1. Fresh and reduced catalysts characterization 

7.2.1.1. Catalyst textural properties 

The textural properties and chemical compositions of the catalysts are summarized in Table 7.2. 

The Ni/Al2O3 catalyst presented the larger surface area. Then, as support modifiers (CeO2 and 

La2O3) and promoters (Pd, Pt or Rh) were incorporated, the surface area values slightly 

decreased. The incorporation of CeO2 and La2O3 did not affect the pore volume in comparison 

with Ni/Al2O3, while the average pore size slightly increased. Co-impregnation of noble metals 

and Ni on the CeO2-Al2O3 support led to a decrease in pore volume and pore size, while surface 

area remained almost constant. 

Table 7.2. Catalyst textural properties. 

 
Textural properties 

Catalyst SBET VP dP 

Ni/Al2O3 134 0.37 109 

Ni/CeO2-Al2O3 120 0.36 115 

Ni/La2O3-Al2O3 125 0.37 111 

Pd-Ni/CeO2-Al2O3 118 0.30 98 

Pt-Ni/CeO2-Al2O3 122 0.29 92 

Rh-Ni/CeO2-Al2O3 124 0.32 100 

SBET: Surface area (m
2
/g) 

VP: Pore volume (cm
3
/g) 

dP: Average pore size (Å). 

7.2.1.2. Chemical composition 

The measurement of Pd, Pt, Rh and Ni content by ICP-OES showed that target values of 

Pd = 1 wt. %, Pt = 1 wt. %, Rh = 1 wt. %, and Ni = 13 wt. % were achieved during preparation 

of the catalysts, see Table 7.3. Similarly, the measurement of La2O3 content in Ni/La2O3-Al2O3 

catalyst was close to the nominal value of 6 wt. %. The amounts of CeO2 measured were lower 

than the target value, but similar among all CeO2-containing catalysts.  

The atomic percentages of elements present in the bimetallic catalysts obtained from ICP-OES 

were used to calculate atomic ratios. Those ratios were compared with atomic ratios obtained 

from XPS analysis (Table 7.4), which is representative of surface composition. This comparison 

between bulk (ICP) and surface (XPS) ratios produced the same Ce/Al ratios for bimetallic 

catalysts. Ni/Al ratios were similar for Rh- and Pt-promoted catalysts while they showed a 
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slightly larger difference in the case of Pd-Ni/CeO2-Al2O3. Although Ni/Al ICP-OES ratios were 

slightly higher than those measured by XPS, the difference is small and it can be considered that 

both nickel and ceria were well dispersed [4]. 

Table 7.3. Catalyst metal content determined by ICP-OES. 

 
Chemical composition* 

Catalyst Pd Pt Rh Ni CeO2 La2O3 

Ni/Al2O3    13.3   

Ni/CeO2-Al2O3    11.7 8.7  

Ni/La2O3-Al2O3    13.3  6.5 

Pd-Ni/CeO2-Al2O3 1.0   13.0 8.3  

Pt-Ni/CeO2-Al2O3  1.2  13.9 8.0  

Rh-Ni/CeO2-Al2O3   1.2 13.7 8.2  

*Chemical composition expressed as wt. %. 

 

Regarding noble metal ratios, Pd-Ni/CeO2-Al2O3 showed a much higher Pd/Al ratio for XPS 

than ICP-OES, indicating that Pd accumulated on the surface [5]. On the other hand, the Pt 

content on the surface for Pt-Ni/CeO2-Al2O3 catalyst was not measurable as its signal was close 

to the background. Therefore, as the presence of Pt on the catalyst was confirmed by ICP and 

TPR techniques, it was concluded that Pt was located inside the porous structure of the support. 

Rh-Ni/CeO2-Al2O3 catalyst showed similar Rh/Al ratios by both techniques, a signal of good 

dispersion of the noble metal over the catalyst. Accordingly, the metal dispersion measured by 

CO chemisorption presented values higher than 1.5 % for all cases as showed in Table 7.5. 

However, the coimpregnation of nickel and a small amount of noble metal did not provoke an 

important variation in the metallic dispersion value. 

Table 7.4. Comparison of atomic ratios calculated by ICP-OES and XPS. 

 
ICP-OES/XPS 

Catalyst NM/Al Ni/Al Ce/Al 

Pd-Ni/CeO2-Al2O3 0.006/0.049 0.15/0.10 0.03/0.03 

Pt-Ni/CeO2-Al2O3 0.004/- 0.16/0.13 0.03/0.03 

Rh-Ni/CeO2-Al2O3 0.008/0.015 0.17/0.14 0.03/0.03 

NM: Noble metal: Palladium, Platinum or Rhodium 

7.2.1.3. Temperature programmed reduction (TPR) 

The reducibility of the catalysts was evaluated by TPR (Figure 7.3). Monometallic catalysts had 

a broad reduction peak from 850 to 1100 K. Deconvolution (not shown) indicated that this peak 
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contains the contribution from three peaks. The lower temperature one, whose maximum takes 

place at around 873 K, can be attributed to NiO particles moderately interacting with alumina 

support [1]. The other two contributing peaks, with maximums at temperatures higher than 

963 K, are attributed to the formation of nickel aluminates (spinel) [6,7].  

 

Figure 7.11.  

Figure 7.3. TPR profiles of the catalysts. 

In bimetallic catalysts, this Ni reduction peak was observed to cover a broader temperature 

range, roughly from 750 to 1200 K. In addition, all bimetallic catalysts produced a peak with a 

maximum at 675 K, probably due to the reduction of free/bulk NiO or NiO with low interaction 

with the surface of the support [8,9]. Therefore, the impregnation of a noble metal affected the 

reducibility of the catalysts, as part of the nickel did not presented a strong interaction with the 

support. An additional reduction peak in the TPR of each catalyst was observed at temperatures 

close to 400 K. This was originated in the complete reduction of the noble metal oxide [10–13]. 

CeO2 and La2O3 reduction peaks did not significantly modify the reducibility of the catalysts, as 

happened for the catalysts prepared in the works or García-García et al. [14] and Bizkarra et al. 

[1]. In addition, as happened in our previous work [1], the reduction of CeO2 in ceria containing 

catalysts was not observed.  

7.2.1.4. Ammonia TPD (NH3-TPD) 

Ammonia TPD profiles of the catalysts are shown in Figure 7.4 and the quantitative results are 

summarized in Table 7.5. All catalysts showed similar acidity distribution between mild, 

medium and strong acid centres. Ammonia desorption profiles from all catalysts showed a main 
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desorption peak around 600 K, which is attributed to medium-strength acidic centres. These 

medium-strength acidity centres accounted for between 55-60 % of the catalyst total acidity. 

Mild and strong acid centres of the catalysts represented the 25-30 and 15-20 % of the total 

acidity, respectively. In terms of total acidity, Ni/Al2O3 catalyst was at the lower end while 

Rh-Ni/CeO2-Al2O3 catalyst was at the higher end of the range. 

 

Figure 7.12.  

Figure 7.4. NH3-TPD profiles of the catalysts. 

The modification of the support with CeO2 or La2O3 resulted in an increase in the total acidity, 

affecting the three types of acidity. That increase was higher when La2O3 was incorporated. The 

incorporation of a noble metal to the CeO2 modified support caused different effects. On the one 

hand, the incorporation of palladium did not produce a significant modification in the acidity. On 

the other hand, when platinum was incorporated, the acidity was displaced towards mild acidity, 

whereas rhodium provoked a remarkable increase in mild and medium acidities. 

Similar NH3-TPD profile for γ-Al2O3 support was measured by Dai et al. [15]. In that work, 

desorption peaks presented maximums around 400 and 600 K, which were attributed to weak 

and strong acidic positions. Choong et al. [16] also reported a NH3-TPD profile of γ-Al2O3, 

which presented a maximum around 423 K and a tail up to 773 K due to the desorption of NH3 

from Lewis acid sites with different strengths. Accordingly, the acidity measured in the catalysts 

prepared for the mentioned work can be attributed to Lewis acid sites. However, the catalysts 

prepared in the present work contained a lower proportion of weak acid sites. 
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Table 7.5. NH3-TPD quantitative results, CO chemisorption results and crystal sizes estimated from XRD using 

Scherrer’s equation. 

 Acidity (μmol NH3/g) CO chemisorption XRD 

Mild Medium Strong SMe DMe Ni size 
CeO2 

size 

Ni/Al2O3 145 (26 %) 324 (59 %) 80 (15 %) 1.4 1.6 10 - 

Ni/CeO2-Al2O3 162 (26 %) 343 (56 %) 110 (18 %) 1.3 1.7 5 10 

Ni/La2O3-Al2O3 171 (26 %) 378 (56 %) 121 (18 %) 1.6 1.9 10 - 

Pd-Ni/CeO2-Al2O3 162 (25 %) 365 (57 %) 109 (17 %) 1.3 1.5 5 5 

Pt-Ni/CeO2-Al2O3 194 (32 %) 330 (54 %) 89 (15 %) 1.9 1.9 5 5 

Rh-Ni/CeO2-Al2O3 221 (30 %) 401 (55 %) 111 (15 %) 2.0 2.0 5 10 

Mild acidity: 423-573 K, Medium acidity: 573-773 K, Strong acidity: >773 K 

SMe: Active metal surface area (m
2
/g). 

DMe: Active metal dispersion (%) 

Ni size: Average nickel particle size (nm). 

7.2.1.5. X-ray diffraction (XRD) 

XRD analyses of the reduced catalysts are presented in Figure 7.5. Ni, CeO2 and Al2O3 crystals 

were identified. However, reflections due to La2O3, Pt, Pd or Rh crystals were not observed due 

to their small crystallite size, showing a good distribution over the catalyst. Ni crystals presented 

the most intense peaks for all catalysts, detected at 45 and 52 degrees. The Ni peak obtained at 

45 degrees was used to estimate the average crystal size, which varied in the range of 5-10 nm 

for all catalysts (see Table 7.5). The biggest crystallite sizes were estimated for, Ni/Al2O3 and 

Ni/La2O3-Al2O3 catalysts, which presented additional peaks at 43 and 63 degrees due to the 

presence of NiO crystallites, consistent with the lower reducibility of these two catalysts as 

observed by TPR. Interestingly, the impregnation of CeO2 in the catalysts originated a decrease 

in the estimated crystallite size. Ceria peaks were mainly detected at 29, 33 and, in some cases, at 

56 degrees. CeO2 crystal sizes of between 5 and 10 nm were estimated using the peak at 29 

degrees, being the larger crystals those from Ni/CeO2-Al2O3 and Rh-Ni/CeO2-Al2O3 catalysts. 

Accordingly, the incorporation of a noble metal did not affect the nickel crystallite size nor the 

CeO2 crystallite size, except Rh-Ni/CeO2-Al2O3, which gave place to CeO2 crystallites of the 

same size of Ni/CeO2-Al2O3 catalyst. Nickel and ceria peaks identified in the catalysts are in 

good agreement with the ones identified in [1]. Similarly, in that work peaks corresponding to 

lanthanum or La2O3 were not recorded. 
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Figure 7.5. XRD diffractograms of the reduced catalysts. 

7.2.2. Activity results 

7.2.2.1. Monometallic catalysts 

Conversion and yields obtained with monometallic catalysts in the SR of the synthetic 

bio-oil/bio-glycerol mixture are summarized in Figure 7.6, where experimental results are 

compared with the corresponding thermodynamic equilibrium values. Each experiment 

comprised three successive steps at 1073 K, 973 K and 1073 K, and the values given represent 

the average of the last 2 hours at each step. According to equilibrium calculations, no significant 

amounts of methane or higher hydrocarbons were expected at either temperature. Complete 

conversions with monometallic catalysts were achieved in all stages, as predicted by equilibrium, 

but gas yields differed from equilibrium values. During the first stage (at 1073 K), the three 

catalysts produced hydrogen yields in the range of the 75-80 %. Hydrogen yield was close to the 

equilibrium value but did not reach it due to the presence of CH4 and hydrocarbons in the 

products. CO and CO2 yields were also similar for all catalysts and slightly below the 

equilibrium predictions.  

In the second step, when reaction temperature was reduced to 973 K, the distribution of the gas 

product changed and less hydrogen was produced, although conversion remained at 100 %. 

Ni/Al2O3 and Ni/CeO2-Al2O3 catalysts were able to reach H2 yields in the range of 60-65 %, 

whereas Ni/La2O3-Al2O3 catalyst produced H2 yields around 55-60 %. All catalysts showed an 

increase in CO yield, with CO yields being nearly double than those obtained in the first step 

despite a slight decrease in the thermodynamic prediction due to the drop in temperature from 
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1073 to 973 K, which was attributed to slower kinetics due to the lower temperature, because 

WGS reaction is more thermodynamically favoured at 973 K than at 1073 K. 

 

Figure 7.6. Parameters measured during the SR of the synthetic bio-oil/bio-glycerol mixture with monometallic 

catalysts. (a) Conversion, (b) CH4, (c) hydrocarbons, (d) H2, (e) CO and (f) CO2 yields. Experiments were carried 

out in the following steps: 1073 K for 5 h (left set for each species), followed by 973 K for 5 h (centre) and 1073 K 

for 2 h (right). Values shown are the average over the last 2 h at each step. 

A decrease in CO2 yield respect to both the first step and the equilibrium analysis was also 

observed. These points at the WGS reaction proceeding to a smaller extent than in the first step. 

Even though catalysts were able to reform the model compounds, yields of CH4 and higher 

hydrocarbons increased in the second step, showing that the SR reaction proceeded to a lesser 

extent. These trends were attributed to catalyst deactivation with time on stream, which was 

confirmed in the third step. As reaction temperature was increased back to 1073 K, there were 

little differences with the results obtained at 973 K and yields did not reach the values from the 

first step, also at 1073 K. CeO2- and La2O3-containing catalysts produced even more 

hydrocarbons in the third than in the second step. On the other hand, Ni/Al2O3 catalyst kept 

practically the same hydrogen yield as in the experiment at 973 K.  

After completing the study with the simulated mixture, monometallic catalysts from the same 

batch were tested with real bio-oil at 1073 K and atmospheric pressure (Figure 7.7). In these 

experiments deactivation of the catalysts took place much faster, since the SR of real bio-oil 
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involves harsher reaction conditions for the catalysts, producing larger amounts of carbon 

deposits as shown in Section 3.3. Initially, high hydrogen yields were produced, but they quickly 

decayed to finally reach only 35 % hydrogen yield. The deactivation of the catalysts produced at 

the end of the experiments H2, CO, CO2 and CH4 yields almost equal to the blank test (not 

shown). 

 

Figure 7.7. Hydrogen, carbon monoxide, carbon dioxide and methane yields produced during bio-oil SR at 1073 K 

and atmospheric pressure with (a) Ni/Al2O3, (b) Ni/CeO2-Al2O3 and (c) Ni/La2O3-Al2O3 as catalysts. 

Ni/CeO2-Al2O3 maintained the initial activity for longer before deactivation started, which may 

have been due to its properties regarding higher oxygen mobility produced by the incorporation 

of ceria. On the contrary, bare alumina-supported catalyst presented the quicker deactivation 

since the catalyst was not able to either prevent or remove carbon from the surface. Following 

the results shown above, Ni/CeO2-Al2O3 was selected as the most promising catalyst to be 

further enhanced by promotion with noble metals. 

7.2.2.2. Bimetallic catalysts 

Bimetallic catalysts were tested in the SR of synthetic bio-oil/bio-glycerol mixture in identical 

conditions to those used for monometallic catalysts. The conversion and yields obtained in each 

of the three steps as well as thermodynamic equilibrium predictions are shown in Figure 7.8. 

Same as in the case of monometallic catalysts, bimetallic catalysts achieved complete 

conversions and high hydrogen yields in the first step at 1073 K. Again, H2 yields were high 

although lower than equilibrium values and there was certain content of methane and 

hydrocarbons in the gas products. 

After decreasing the reaction temperature to 973 K in the second step, the conversion achieved 

by Pd-containing catalyst dropped to 80 %, while Pt-promoted and Rh-promoted catalysts 
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maintained conversions close to 100 %. Consequently, the Pd-promoted bimetallic catalyst 

showed a reduction in hydrogen yield to values close to 20 %. This decrease in yield was due to 

the poor activity shown in the SR of the model bio-oil and the significant amount of higher 

hydrocarbons produced, whose yield was near 10%. It seems that the WGS reaction also had a 

limited performance, as CO2 yields were much lower than for equilibrium. These trends indicate 

that the reforming capacity of the catalyst was reduced, and this catalyst showed significantly 

faster deactivation than Pt-Ni/CeO2-Al2O3 and Rh-Ni/CeO2-Al2O3. This finding is consistent 

with the poor Pd dispersion shown by XPS results. 

 

Figure 7.8. Parameters measured during the SR of the synthetic bio-oil/bio-glycerol mixture with bimetallic 

catalysts. (a) Conversion, (b) CH4, (c) hydrocarbons, (d) H2, (e) CO and (f) CO2 yields. Experiments were carried 

out in the following steps: 1073 K for 5 h (left set for each species), followed by 973 K for 5 h (centre) and 1073 K 

for 2 h (right). Values shown are the average over the last 2 h at each step. 

In the case of Pt-Ni/CeO2-Al2O3 catalyst, although it achieved almost complete conversion in the 

second step, similar trends to those from Pd-Ni/CeO2-Al2O3 were observed, with relatively high 

higher hydrocarbon yields and hydrogen and CO2 yields considerably below equilibrium values. 

However, it is clear that in comparison with the Pd-Ni/CeO2-Al2O3 catalyst, Pt-Ni/CeO2-Al2O3 

produced significantly more CO2 and hydrogen and less hydrocarbons, pointing at higher SR and 

WGSR activity.  
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On the other hand, Rh-Ni/CeO2-Al2O3, in addition to being able to keep complete conversion in 

the second step, also maintained hydrogen and the carbon-containing products close to the 

equilibrium values at 973 K. Thus, it achieved a slightly higher hydrogen yield than in the first 

step at 1073 K, in line with the increase in hydrogen yield predicted by thermodynamic 

calculations. Nonetheless, the hydrogen yield did not achieve the equilibrium value due to the 

presence of the small amounts of methane and hydrocarbons in the gas products. 

Similarly, when reaction temperature was increased up to 1073 K in the third step, the use of Pd- 

and Pt-promoted catalysts led to further reductions in hydrogen yield in comparison with the 

previous steps with increases in the amount of methane and higher hydrocarbons produced. In 

addition, Pd-Ni/CeO2-Al2O3 catalyst was not able to recover the initial conversion, which also 

affected the hydrogen yield. On the contrary, Rh-Ni/CeO2-Al2O3 catalyst did not show signs of 

deactivation and it recovered the conversion and yields achieved in the first step at 1073 K. 

Therefore, the impregnation of Rh as a second metal on the catalyst was beneficial for the SR of 

bio-oil/bio-glycerol mixture, enhancing the resistance to deactivation observed in the 

Ni/CeO2-Al2O3.  

 

Figure 7.9. Hydrogen, carbon monoxide, carbon dioxide and methane yields produced during bio-oil SR at 1073 K 

and atmospheric pressure with (a) Pd-Ni/CeO2-Al2O3, (b) Pt-Ni/CeO2-Al2O3 and (c) Rh-Ni/CeO2-Al2O3 as catalysts. 

Next, the bimetallic catalysts were tested with real bio-oil and two different trends were observed 

depending on the catalyst (Figure 7.9). Pd- and Pt-containing catalysts showed relatively high 

initial activities (H2 yield ≈ 70 %) but they were quickly deactivated, as indicated by the decrease 

in yields of hydrogen, carbon monoxide and carbon dioxide Thus, at the end of the experiment 

they completely deactivated and produced as low hydrogen as the blank test. On the other hand, 

the Rh-promoted catalyst, although it initially produced a smaller amount of hydrogen (~60 %) 

than the other bimetallic catalysts and Ni/CeO2-Al2O3, maintained the activity during the three-
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hour long experiment without showing deactivation signs. This is in contrast with the decline in 

activity shown by Ni/CeO2-Al2O3, for which the hydrogen yield constantly declined over the 

three-hour run. It has been reported [17] that the addition of Rh to the Ni catalyst hinders the 

diffusion of both C and O in the metal, but it affects more the C diffusion rate. Therefore, the 

relative rate of formation of C-C bonds respect to that of C-O bonds is decreased, favoring the 

oxidation of C instead of the formation of deposits. In summary, the high activity and resistance 

to deactivation of the Rh-Ni/CeO2-Al2O3 make it a promising catalyst for bio-oil SR.  

Liquid products obtained during activity tests with the model compound mixture were analyzed 

by GC-MS. In the case of Pd-Ni/CeO2-Al2O3, which was unable to completely convert the 

synthetic bio-oil and bio-glycerol mixture, some compounds resulting from cracking reactions 

were identified along with molecules present in the feed. Among them, the most abundant were 

aromatic compounds such as butanal, benzofuran, butyrolactone, naphthalene, toluene and 

phenol with and without substituents. On the other hand, as Rh-Ni/CeO2-Al2O3 reached complete 

conversion, the liquid collected from SR of the synthetic bio-oil/bio-glycerol mixture contained 

only water and water. In the case of Pt-Ni/CeO2-Al2O3, conversion was close but not exactly 

100 % and some of the species in the feed were observed in the liquid products.  

Table 7.6. Molecules identified by GC-MS that are present in all liquid products from real bio-oil SR. 

Compound Formula Area (%) 

Acetaldehyde C2H4O 1-2 

Acetic acid C2H4O2 30-40 

Propanoic acid C3H6O2 0-3 

Acetone C3H6O 6-10 

Phenol C6H6O 6-8 

p-cresol C7H8O 3-5 

hydroxyacetone C3H6O2 1-6 

2-cyclopentenone C5H6O 1-3 

 

In the liquids collected from the SR of the real bio-oil with all catalysts, the nature of the original 

bio-oil and the liquid products was different, with most of the species in the feed (Table 7.1) not 

detected in the products from the experiments. This observation is supported by the fact that the 

original bio-oil would suffer from phase separation with water addition while the liquid products 

formed a single liquid phase with water. Table 7.6 summarizes only the most abundant products 

since a large number of compounds resulting from cracking processes were identified. Among 

them, phenol and phenol-containing molecules were the main products, apart from acetic acid. 

The presence of phenolic molecules in all of the analyzed liquids products can be explained by 
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the fact that phenol needs high S/C ratios to be reformed avoiding extensive coking (S/C>10) 

[18].  

7.2.3. Spent catalyst characterization 

The comparison of the TGA-TPO profiles of the catalysts used with synthetic and real bio-oil 

showed two different patterns (¡Error! No se encuentra el origen de la referencia.). On the one 

hand, catalysts used in synthetic bio-oil/bio-glycerol SR (blue line) presented mainly two weight 

loss peaks. The first peak (below 400 K) was attributed to the evaporation of water [19]. The 

second peak was broad, starting around 600 K and ending close to 1100 K, and was attributed to 

the oxidation of carbon present on the catalysts [20,21]. The oxidation of carbon with different 

degrees of graphitization took place above 800 K while the oxidation of filamentous carbon 

associated to nickel particles appeared between 573 and 800 K [20,22,23]. Nevertheless, the 

carbon present in these catalysts did not completely deactivate them. 

 

Figure 7.10. Weight loss profiles (dotted lines) and their derivatives (continuous lines) for catalysts tested in the SR 

of synthetic bio-oil (blue) and real bio-oil (green). Arrows show the shift in Ni oxidation temperatures. 

On the other hand, for catalysts tested in SR of real bio-oil the main weight loss occurred below 

600 K with two main contributions. The low-temperature contribution was attributed to the 

removal of water and volatile species such as reactants, products and reaction intermediates from 

the catalysts [23]. The higher temperature weight loss contribution can be due to the combustion 
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of amorphous coke. It has been reported that encapsulation of nickel particles can take place 

[21], originated by the condensation of carbonaceous species over nickel sites [24]. This 

encapsulation may prevent the increase of filamentous or graphitic carbon on the catalysts, as 

they require the presence of metallic centres to be formed [25]. In experiments with model 

compounds the more uniform structures in the feed may have favoured the formation of more 

regular (graphitic) structures on the catalysts. 

There were similarities in the TGA-TPO profiles of the catalysts. All of them, with the only 

exception of Pd-Ni/CeO2-Al2O3, presented a weight increase peak attributed to Ni oxidation. 

This was reported to take place around 600 K [19], which fits with the TPO profiles of the 

catalysts used in SR of the synthetic mixture. Nevertheless, the oxidation peaks for the catalysts 

tested in SR of real bio-oil are displaced to higher temperatures (marked by arrows in Figure 

7.10). Nickel particles were not oxidized until the carbon covering them was removed. The only 

catalyst in which this oxidation displacement does not occur is Rh-Ni/CeO2-Al2O3 catalyst, 

indicating that this catalyst had nickel sites available for reaction, in agreement with its sustained 

activity. 

7.3. CONCLUSIONS 

In this work alumina support was used to prepare nickel-based catalysts. These catalysts were 

tested in the steam reforming of a synthetic bio-oil/bio-glycerol mixture and a real bio-oil. The 

study of the effect of support modifications showed that the incorporation of CeO2 leads to a 

more effective catalyst than that of La2O3. This was especially clear during real bio-oil SR, 

where Ni/CeO2-Al2O3 catalyst maintained the high initial hydrogen yield for longer. This initial 

stability could be attributed to the CeO2 particles which provided the catalyst with oxygen 

mobility properties, temporally avoiding the deactivation of the catalyst. 

Ni/CeO2-Al2O3, which was the most effective monometallic catalyst, was impregnated with Pd, 

Pt and Rh to prepare bimetallic catalysts. These bimetallic catalysts were tested in the same 

conditions as monometallic catalysts. The tests highlighted the benefits of the impregnation of a 

small amount of Rh on the Ni-based catalyst to improve its catalytic activity and stability, which 

could be related to Rh favouring carbon oxidation over C-C bond formation. Therefore, a highly 

active and deactivation resistant catalyst was produced, leading to complete conversions and 

hydrogen yield close to equilibrium predictions for the SR of the synthetic bio-oil/bio-glycerol 

mixture. Rh-Ni/CeO2-Al2O3 was also resistant to deactivation in the SR of a real bio-oil.  
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Catalyst deactivation was due to carbon deposition. Carbon deposited in real bio-oil experiments 

was amorphous and was likely to result in Ni encapsulation while synthetic bio-oil/bio-glycerol 

SR produced deposits of a more graphitic nature due to its more uniform structures. Despite 

carbonaceous deposition, Ni sites in Rh-Ni/CeO2-Al2O3 remained relatively free from carbon 

deposits, as shown by the temperature at which Ni is oxidised, highlighting the role of Rh in 

preventing deposition. 

Therefore, future efforts in catalyst development should be focused on increasing the coke 

resistance of the catalyst at low temperatures or, at least, on improving the ability of the catalyst 

to remove the coke formed at low temperatures, when the higher operating temperature is 

restored. 
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ABSTRACT 

Herein, commercial silico-aluminates, such as amorphous silico alumina (ASA), HZSM5 zeolite, 

mesostructured silica (SBA15) and ultra stable Y zeolite (USY), were used as catalyst support. 

Each support was used to prepare two nickel based catalysts, one with CeO2 support 

modification and another one without support modification. Thus, the effect of CeO2 

impregnation on the catalysts for hydrogen production from a synthetic bio-oil/bio-glycerol 

mixture was studied. Activity tests were carried out at 1073 and 973 K at atmospheric pressure at 

a Steam to Carbon (S/C) molar ratio of 5.0. The experimental results showed that the effect of 

CeO2 on the catalysts was beneficial for hydrogen production. That beneficial effect was 

especially visible for HZSM5 and USY supported catalysts, which were the ones with the 

highest surface area values. Interestingly, the catalysts supported on those supports contained the 

lowest amounts of carbon after the reaction. 

8.1. EXPERIMENTAL 

8.1.1. Catalyst preparation 

The catalysts prepared for this chapter were supported on commercial silico aluminates such as 

ASA, HZSM5 zeolite, mesostructured SBA15 and USY zeolite. From each support two catalysts 

were prepared by wet impregnation (WI), one with CeO2 modification and the other without 

CeO2 modification, as described in Chapter 3. The modification of the supports with CeO2 was 

considered after observing the beneficial effect of ceria for alumina supported and nickel based 

catalysts for the steam reforming of bio-oil. 

8.1.2. Catalyst characterization 

Prepared catalysts were characterized by N2 adsorption-desorption isotherms, Temperature 

programmed reduction (TPR), Inductively Coupled Plasma-Optical Emission Spectroscopy 

(ICP-OES), CO chemisorptions, Temperature programmed desorption of ammonia (NH3-TPD), 

X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Temperature 

programmed oxidation (TGA-TPO). 

8.1.3. Tests methodology 

Catalysts were tested at 1073 and 973 K for 5 hours at each temperature. Then, the reaction 

temperature was heated up to 1073 K and maintained for 2 hours with the aim of comparing 
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initial and final activity results to check whether catalyst deactivation occurred. The reaction 

temperature profile of the experiment is shown in Figure 8.1. 

 

Figure 8.1. Reaction temperature profile followed during the SR experiments. Green dots indicate the sampling 

moments. 

Experiments were performed at atmospheric pressure and an S/C molar ratio of 5.0. During the 

experiments, samples were taken every hour and liquid and gas products analyzed using two gas 

chromatographs. 

8.2. RESULTS AND DISCUSSION 

8.2.1. Fresh and reduced catalysts characterization 

8.2.1.1. Catalyst textural properties and chemical composition 

The textural properties of the catalysts supported on commercial silico-alumiantes are 

summarized in Table 8.1. Ni/USY catalyst achieved the highest surface area value among 

commercial materials supported catalysts, being Ni/ASA the catalyst with the lowest surface 

area. 

The incorporation of CeO2 on commercial materials supported catalysts produced a decrease in 

the surface area value of the catalysts due to decreases in pore volume and average pore size 

values. That effect is attributed to the pore blockage produced by CeO2 crystals on the support 

material structure.  
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Table 8.1. Textural properties and chemical composition of calcined commercial silico-aluminates supported 

catalysts. 

Catalyst SBET VP PD 
Ni 

content 

CeO2 

content 

Ni/ASA 237 0.40 66 12.7 - 

Ni/CeO2-ASA 193 0.27 55 9.2 7.0 

Ni/HZSM5 279 0.18 39 13.9 - 

Ni/CeO2-HZSM5 263 0.14 34 14.0 9.1 

Ni/SBA15 274 0.23 39 12.5 - 

Ni/CeO2-SBA15 183 0.14 30 11.8 6.5 

Ni/USY 412 0.15 30 12.1 - 

Ni/CeO2-USY 364 0.15 33 13.4 6.6 

SBET: BET surface area (m
2
/g);  

VP: Pore volume (cm
3
/g). 

PD: Average pore size (Å). 

Nominal values (wt. %): Ni=13.0; CeO2=10.0. 

  

 

The content of nickel on the catalysts was close to the nominal value of 13 wt. % for most of the 

catalysts. However, Ni/CeO2-ASA catalyst only reached a 9.2 wt. % of nickel on its 

composition. On the other hand, the content of CeO2 on the catalysts was much lower than the 

nominal value. Ni/CeO2-HZSM5 was the only catalyst that achieved a value close to the nominal 

with a 9.1. The rest of the catalysts presented CeO2 contents between 6 and 7 wt. %. 

Accordingly, the differences among the nominal and real ceria content could be attributed to 

impurities on the cerium precursor salt. 

8.2.1.2. Temperature programmed reduction (TPR) 

The reducibility of the prepared catalysts was evaluated by TPR and the obtained profiles are 

summarized in Figure 8.2. 

The impregnation of CeO2 on commercial silico-aluminates did not affect the reducibility of the 

catalysts. Thus, the only catalyst that slightly modified its TPR profile with CeO2 impregnation 

was Ni/HZSM5 catalyst. Nevertheless, the change of support greatly influenced the reducibility 

of the catalysts. Accordingly, the reduction peaks of the catalysts were produced from 525 to 

975 K. 

Ni/HZSM5 and Ni/CeO2-HZSM5 catalysts produced originated the reduction peaks at the lowest 

temperatures, 530 and 600 K, approximately. The reduction peak with the maximum around 530 



Chapter 8 

178 

was attributed to the reduction of the Ni precursor to Ni in its lowest oxidizing state [1], while 

the peak at 600K could be produced by easily reducible nickel species [2]. 

SBA15 supported catalysts also originated a reduction peak around 600 K, but they also 

produced an additional reduction peak with a maximum around 750 K. This last reduction peak 

was attributed to the reduction of nickel located in the channeled structure with medium 

interactions with the support material [3]. Similar profiles were observed for amorphous 

silico-alumina supported catalysts. However, the reduction profiles of ASA supported catalysts 

did not present two different peaks, but a single broad peak. 

 

Figure 8.2. TPR profiles of commercial silico-aluminates supported catalysts. 

The catalysts that produced reduction peaks at the highest temperatures were USY supported 

ones with maximums around 600 K and 850 K. The peak at low temperature was produced by 

easily reducible nickel species [2]. 

8.2.1.3. Ammonia TPD (NH3-TPD) 

Ammonia desorption profiles of reduced catalysts are summarized in Figure 8.3 and their 

quantitative results are shown in Table 8.2¡Error! No se encuentra el origen de la referencia.. 

The ammonia desorption profiles of the commercial silico-aluminates supported catalyst 

presented their maximum desorption peaks in the range from 550 to 650 K. For those catalysts, 

the desorption peaks ended at temperatures around 750 K. Nevertheless, SBA15 supported 

catalysts presented almost flat ammonia desorption profiles, indicating that those catalysts were 

the less acidic. However, despite the different profiles obtained, the acidity distribution for all 
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catalyst contained similarities: the most abundant acidity was medium strength acidity for all 

catalysts, which represented the 50-60 % of the total acidity, followed by mild acidity (30-40 %). 

 

Figure 8.3. Ammonia TPD profiles of the commercial silico-aluminates supported catalysts. 

 

Table 8.2. Quantitative NH3-TPD results for commercial silico-aluminates supported catalysts.  

 Acidity (μmol NH3/g) 

Mild Medium Strong 

Ni/ASA  168 (32 %) 323 (52 %) 27 (6 %) 

Ni/CeO2-ASA  182 (34 %) 316 (58 %) 45 (8 %) 

Ni/HZSM5  191 (36 %) 311 (58 %) 34 (6 %) 

Ni/CeO2-HZSM5  163 (39 %) 227 (54 %) 29 (7 %) 

Ni/SBA15  45 (40 %) 66 (58 %) 2 (2 %) 

Ni/CeO2-SBA15  44 (33 %) 69 (52 %) 19 (15 %) 

Ni/USY  229 (45 %) 246 (49 %) 31 (6 %) 

Ni/CeO2-USY  176 (39 %) 238 (53 %) 38 (8 %) 

Mild acidity: 423-573ºC, Medium acidity: 573-773ºC, Strong acidity: >773ºC 

8.2.1.4. CO chemisorption 

CO chemisorption results were used to evaluate the dispersion of nickel in the catalysts (see 

Table 8.3). Low nickel dispersion values were obtained for all commercial silico-aluminates 

supported catalyst. Thus, all dispersion values were lower than 0.5 %. 

400 500 600 700 800 900 1000

S
ig

n
a
l 
(a

. 
u
.)

T (K)

Ni/CeO
2
-SBA15

Ni/SBA15

Ni/CeO
2
-ASA

Ni/ASA

Ni/CeO
2
-HZSM5

Ni/HZSM5

Ni/CeO
2
-USY

Ni/USY



Chapter 8 

180 

Table 8.3. CO chemisorptions results and nickel crystallite sizes estimated from XRD patterns using Scherrer’s 

equation. 

 CO Chemisorption XRD 

Catalyst SMe DMe Ni size Ni size  

Ni/ASA  0.19 0.23 477 20 

Ni/CeO2-ASA  0.19 0.31 327 20 

Ni/HZSM5  0.43 0.46 220 45 

Ni/CeO2-HZSM5  0.21 0.22 467 60 

Ni/SBA15  0.10 0.12 876 20 

Ni/CeO2-SBA15  0.13 0.17 590 25 

Ni/USY  0.31 0.38 264 20 

Ni/CeO2-USY  0.17 0.18 543 20 

SMe: Active metal surface area (m
2
/g). 

DMe: Active metal dispersion (%) 

Ni size: Average nickel particle size (nm). 

 

 

Among commercial silico-aluminates supported catalysts, Ni/HZSM5 and Ni/USY catalysts 

contained nickel with the highest dispersion, 0.46 and 0.38 %. Accordingly, those two catalysts 

contained the highest nickel surface area (0.43 and 0.31 m
2
/g, respectively) and lowest active 

nickel particle sizes (220 and 264 nm, respectively). Ni/ASA and Ni/SBA15 presented nickel 

dispersions below 0.25 %. Thus, their nickel surface areas were below 0.2 m
2
/g and nickel 

particle sizes were higher than 450 nm. 

Interestingly, the incorporation of CeO2 on the catalysts, reduced the nickel dispersion value for 

the catalysts with the higher dispersion (Ni/HZSM5 and Ni/USY). On the contrary, Ni/ASA and 

Ni/SBA15 catalysts increased approximately a 50 % of the dispersion value of the catalysts 

without CeO2. 

8.2.1.5. X-ray diffraction (XRD) 

Reduced catalysts were analyzed by XRD technique to determine the crystallographic structures 

present in the catalysts. The profiles obtained for reduced commercial silico-aluminates 

supported catalysts are collected in Figure 8.4.  

At 2 theta degrees in the range from 10 to 40 catalysts supported on USY and HZSM5 were the 

ones that produced diffraction peaks. In those cases, those peaks are due to structures due to 

support materials, a silico-aluminate structure. Ni/SBA15 catalyst showed a broad peak with a 

maximum at 20 2 theta degrees meaning that at least a part of the support contains an amorphous 

structure. At higher degrees, all catalysts produced metallic nickel peaks at 44 and 52 2 theta 
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degrees. However, some small diffraction peaks attributed to NiO were also present at 43.5 

degrees. However, according to the catalysts were reduced a temperature high enough to 

completely reduce the nickel contained on them, those NiO crystals could be originated by 

reoxidation of the metallic nickel. 

By means of the Scherrer’s equation, an average nickel crystal size was estimated, summarized 

in Table 8.3. The average nickel crystal size is between 20-25 nm. For the catalysts supported on 

HZSM5, bigger crystals were estimated, 45 nm for Ni/HZSM5 and 60 nm for Ni/CeO2-Al2O3. 

The comparison nickel crystallite sized on the catalysts with and without CeO2 incorporation did 

not broadly differ. Thereby, CeO2 incorporation in the catalysts did not affect the nickel 

crystallite size. 

 

Figure 8.4. XRD patterns of reduced commercial silico-aluminates supported catalysts. 

The comparison of the nickel particle sizes calculated from CO chemisorption results and 

estimated by Scherrer's equation showed that the values from CO chemisorption experiments 

were much higher. That fact was caused because the nickel particles present in the catalysts are 

policrystalline particles, and therefore, XRD experiments identifies those structures with the 

same crystalline arrangement as individual nickel particles. 

8.2.1.6. X-ray photoelectron spectroscopy (XPS) 

The abundance of different metallic constituents on the surface of the catalysts was measured by 

XPS. Those results were used to calculate different ratios, which are shown in Table 8.4. 
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The atomic Si/Al ratios showed that HZSM5 supported catalysts did not have alumina atoms in 

the external surface. Thus, alumina atoms could be covered by nickel or cerium atoms. 

Nevertheless, the binding energy (BE) of oxygen, nickel or cerium did not indicate an interaction 

between those atoms and alumina due to the low interactions, also mentioned in TPR results. 

ASA and USY supported catalysts showed a Si/Al atomic ratio around 1 for catalysts without 

CeO2. For ceria containing catalysts, the Si/Al atomic ratio was lower. Thus, ceria could be 

covering more silicon sites than aluminium sites. 

Table 8.4. Comparison of the surface atomic ratios measured by XPS and the bulk atomic ratios measured by 

ICP-OES. 

 XPS atomic ratios 

 Si/Al Ni/(Si+Al) Ce/(Si+Al) Ni/Ce 

Ni/ASA  0.91 0.06 -  

Ni/CeO2-ASA  0.69 0.05 0.04 1.23/1.61* 

Ni/HZSM5  ∞ 0.06 -  

Ni/CeO2-HZSM5  ∞ 0.09 0.06 1.42/1.89* 

Ni/SBA15  ∞ 0.03 -  

Ni/CeO2-SBA15  ∞ 0.04 0.03 1.31/2.23* 

Ni/USY  1.28 0.14 -  

Ni/CeO2-USY  0.50 0.16 0.04 4.28/2.49* 

*Bulk Ni/Ce atomic ratio calculated from ICP-OES results. 

 

The surface Si/Al atomic ratio for the catalysts without exchange and cesium exchanged 

catalysts was higher than for ASA and USY supported catalysts.  

Surface Ni/(Si+Al) and Ce/(Si+Al) ratios were also calculated for the catalysts. Ce/(Si+Al) ratios 

showed a lower variability among the catalysts. Thus, the value for that ratio was close to 0.05 

for most of the catalysts. Ni/(Si+Al) ratio was below 0.1 all catalysts with the exception of USY 

supported catalysts. For that catalysts, the ratio was around 0.15. 

The XPS patterns of nickel 2p 3/2 and 2p 1/2 electron lines and cerium 3d electron lines for 

commercial silico-aluminates supported materials are shown in Figure 8.5. The binding energies 

measured in those figures for nickel and cerium were attributed to oxidized species. 

The nickel 2p electron lines for catalysts in Figure 8.5 contain the maximums at binding energies 

(BE) of 2p 3/2 electron line around 854 eV [4] and the corresponding satellite peak 860 eV [5] 

which are originated by the presence of NiO. Accordingly, binding energies of the 2p 1/2 nickel 

electron lines were obtained at 872 eV [6,7] and their corresponding satellite peak at 879 eV [6]. 
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However, the binding energies for the Ni 2p 3/2 electron lines for Ni/HZSM5 and Ni/USY 

catalysts were displaced at a bit higher BE values, around 856 [8] and 862 eV [6], also due to the 

presence of NiO. 

  

Figure 8.13.  

Figure 8.5. XPS patterns of nickel 2p and cerium 3d lines for commercial silico-aluminates supported catalysts. 

The binding energies due to cerium around 881 [9] and 886 eV [10] were attributed to the Ce 3d 

5/2 electrons. Then, the peaks close to 900 and 905 eV were attributed to Ce 3d electron lines 

originated by the presence of CeO2 [11]. Finally, the peak at the highest BE value, around 

917 eV were attributed to the presence of CeO2 [11,12]. 

In order to compare the surface and bulk atomic ratios, calculated respectively from XPS and 

ICP-OES results, the Ni/Ce ratio was used. In general, higher Ni/Ce atomic ratios were measured 

in bulk material than on the catalysts surface. Thus, nickel is distributed in all the structure of the 

catalysts. However, the Ni/Ce atomic ratio for Ni/CeO2-USY catalyst was much higher in the 

surface than in bulk due to the high nickel concentration in the surface rather than a low cerium 

concentration in the surface as the high Ni/(Si+Al) ratio indicates. Therefore, nickel is 

accumulated on the surface [13]. 
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8.2.2. Activity results 

The activity results produced by the silico-alumina supported nickel catalysts are resumed in 

Figure 8.6. 

At 1073 K most of the catalysts converted completely the reaction mixture. Thus, high hydrogen 

yields were measured for the catalysts (~60-70 %). Those hydrogen yields are lower than the 

values predicted by equilibrium. That mainly happens due to the fact that catalysts were not able 

to produce as much CO2 as equilibrium predicts, so the CO yield is much higher than its 

equilibrium value. But, it is also due to the presence of CH4 and hydrocarbons among the 

products. 

The exception was Ni/ASA catalyst, which did not achieve a complete conversion. Accordingly, 

due to the lower reaction capacity than the rest of the catalysts, it produced the highest methane 

and hydrocarbon yields and the lowest hydrogen yield, 30 % approximately. 

 

Figure 8.6. Parameters measured during the SR of the synthetic bio-oil/bio-glycerol mixture. (a) Conversion, (b) 

CH4, (c) hydrocarbon, (d) H2, (e) CO and (f) CO2 yields. Experiments were carried out in the following steps: 

1073 K for 5 h (left set for each species), followed by 973 K for 5 h (centre) and 1073 K for 2 h (right). Values 

shown are the average over the last 2 h at each step. 

At that reaction temperature, there were not important differences among the hydrogen yields 

produced by the catalysts supported on different silico-aluminates. But, the modification of the 
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support with CeO2 slightly increased the hydrogen yields, except for SBA15 supported catalysts, 

due to a higher WGS reaction performance. 

A reduction of the reaction temperature to 973 K caused an important drop in the conversion, 

being Ni/HZSM5, Ni/CeO2-HZSM5 and Ni/CeO2-USY catalysts the only ones that converted 

more than the 70 % of the liquid fed. So, the reforming chain breaking capacities of the catalysts 

were reduced as the decrease of methane, carbon monoxide and carbon dioxide yields and the 

increase of the hydrocarbons yield support. Accordingly, Ni/HZSM5, Ni/CeO2-HZSM5 and 

Ni/CeO2-USY catalysts were the only ones whose hydrogen yield was higher than 30 %. Among 

them, Ni/CeO2-HZSM5 and Ni/CeO2-USY were the ones that produced the highest H2 yields, 

respectively. Interestingly, these two catalysts increased their CO yield from the previous 

reaction temperature. So, even if their WGS reaction performance was limited, their reforming 

capacities were still the highest. For the rest of the catalysts, hydrogen yields were lower than 

20 %. Thus, the activity results obtained at 973 K indicate that catalysts were probably 

deactivated. In order to confirm that hypothesis, the reaction temperature was heated up to 

1073 K to compare the final activity results with the initial results. 

The return to 1073 K produced an increase in conversion for all catalysts, but did not reach the 

initial complete conversion values. The increase in conversion originated an increase of CH4, CO 

and CO2, but the increase was especially important for hydrocarbons yield. Accordingly, the 

hydrogen yields of the catalysts slightly increased but the deactivation of the catalysts was 

evidenced. In this reaction conditions, Ni/CeO2-HZSM5, Ni/CeO2-USY and Ni/HZSM5 were 

again the catalysts that produced the highest hydrogen yields. 

8.2.3. Spent catalyst characterization 

Due to the experience with alumina supported catalysts, where used catalysts contained such a 

high carbon content that XRD and XPS techniques did not provide meaningful information, the 

catalysts used in this section were only characterized by TGA-TPO. 

8.2.3.1. TGA-TPO 

The oxidation experiments of the used catalysts prepared with commercial silico-aluminates are 

summarized in Figure 8.7. All CeO2 containing catalysts lost a bit more weight than their 

homologous unmodified catalysts. Among the studied catalysts, HZSM5 and USY supported 

catalysts were the ones that lost less weight. Interestingly, those catalyst families were the most 

active and the less deactivated ones. 
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ASA and SBA15 supported catalyst profiles started with a weight loss below 600 K, which could 

be attributed to the removal of humidity and volatile species such as reactants, products and 

reaction intermediates from the catalysts [14]. Afterwards, around 600 K, most of the catalysts 

produced a weight increase due to the oxidation of metallic nickel present in the catalysts, which 

occurred around 600 K [15]. Afterwards, from 700 to 1100 K the main weight loss of the 

oxidation processes occurred. Those weight losses were produced by the oxidation and removal 

of the carbon species contained in the catalysts. 

 

Figure 8.7. TGA-TPO profiles of used commercial silico-aluminates supported catalysts. 

The weight loss that takes place from 573 to 800 K is usually attributed to the oxidation of 

filamentous carbon associated to nickel particles, while above 800 K the oxidation of carbon 

with different degrees of graphitization occurs [14,16,17]. Among those two kinds of 

carbonaceous structures, filamentous carbon does not completely deactivate the catalysts, while 

graphitic carbon does. 

As it can be observed in Figure 8.7 the most important weight losses occurred at temperatures 

above 800 K, with the maximum of the weight loss taking place around 1000 K. Therefore, the 

main carbon specie present in the catalysts is graphitic, which is in good agreement with the 

deactivation of the catalysts. 
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8.3. CONCLUSIONS 

In this chapter, the effect of CeO2 modification on commercial silico-aluminates was studied for 

SR of a synthetic bio-oil/bio-glycerol mixture. For that purpose, nickel based monometallic 

catalysts were prepared with and without support modification with CeO2. 

CeO2 impregnation on the supports did not significantly affect the properties measured during 

the catalyst characterization. Accordingly, textural properties and CO chemisorption results were 

the only ones that showed a slight variation.  

Among the studied commercial silico-aluminates HZSM5 and USY Zeolites, which were the 

catalysts with the highest surface area values, showed to be the most effective due to their high 

hydrogen yield at all tested temperatures. In addition, those catalyst families were the ones that 

contained the lowest amount of carbon on them indicating that were the most carbon resistant. 
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ABSTRACT 

Zeolite L featuring different size and shape (nanocrystals and discs), and with and without 

alkaline metal exchange (Cs or Na) was used as catalyst support in a bio-oil/bio-glycerol mixture 

Steam Reforming (SR). Zeolites were modified with CeO2 to improve support properties before 

the impregnation of nickel on them. After calcinating the catalysts, they were tested in Steam 

Reforming of a multi-component synthetic bio-oil/bio-glycerol mixture at 1073 and 973 K, under 

atmospheric pressure and using a Steam to Carbon (S/C) ratio of 5.0. Activity tests showed that 

catalysts deactivated during the experiments at 973 K. In addition, the sodium exchange 

produced the sintering of the zeolite crystals. Thus, Na containing catalysts produced low 

conversions and hydrogen yields. On the other hand, Cs containing catalysts resulted in slightly 

lower hydrogen yields than the supports without these metallic cation. Regarding the 

morphology of the zeolites, the ones with disc shape were the most active for bio-oil SR 

purposes. 

9.1. EXPERIMENTAL 

9.1.1. Catalyst preparation 

The catalysts prepared for this chapter were supported on laboratory prepared zeolite L. The 

synthesis of zeolite L with tunable size and morphology via microwave assisted hydrothermal 

synthesis, as well as the cation exchange with cesium and sodium, were carried out as described 

by Gartzia-Rivero et al. [1]. The characterization of the bare zeolite L can be found elsewhere 

[1,2]. 

First, a 10 wt. % of CeO2 and a 13 wt. % of Ni were impregnated on the support materials 

following the wet impregnation method described in section 3.1.1. of Chapter 3. The 

impregnation of CeO2 was decided after observing the favourable effect of CeO2 impregnation 

produced in alumina supported catalysts and commercial silico-aluminates supported catalysts, 

as described in previous chapters. 

9.1.2. Catalyst characterization 

Prepared catalysts were characterized by N2 adsorption-desorption isotherms, Scanning electron 

microscopy (SEM), Temperature programmed reduction (TPR), Inductively Coupled 

Plasma-Optical Emission Spectroscopy (ICP-OES), Temperature programmed desorption of 
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ammonia (NH3-TPD), CO chemisorption, X-ray diffraction (XRD), X-ray photoelectron 

spectroscopy (XPS) and Temperature programmed oxidation (TGA-TPO). 

9.1.3. Tests methodology 

The SR experiments for this chapter, using a synthetic bio-oil/bio-glycerol mixture, were carried 

out at the same conditions than in previous chapter, i.e. at atmospheric pressure, S/C molar ratio 

of 5.0 and different temperatures. The reaction temperature profile is shown in Figure 9.1. 

 

Figure 9.1. Reaction temperature profile followed during the SR experiments. Green dots indicate the sampling 

moments. 

9.2. RESULTS AND DISCUSSION 

9.2.1. Fresh and reduced catalysts characterization 

9.2.1.1. Catalyst textural properties and chemical composition 

The textural properties of the catalysts and their chemical compositions are summarized in Table 

9.1. The textural properties showed that the initial surface area of the catalysts was reduced with 

the cesium and sodium incorporation in the channels of the zeolite. Among them, the highest 

surface area reduction was observed for the sodium containing catalysts, which could be 

originated by sintering of the zeolite during the calcination process [1]. 

The calcination temperature was set up at 873 K because of previous experiences [1]. In that 

work, it was observed that a calcination of the catalysts at 1073 K produced a significant 

decrease in the textural properties of the catalysts due to zeolite structural modifications. In 

addition, SEM images for DLNa Zeolite were obtained in fresh, calcinated at 873 K and 
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calcinated at 1073 K as depicted in Figure 9.2. In that figure can be observed how the structure 

of the zeolite calcined at 1073 K was destroyed in comparison with the fresh zeolite and calcined 

at 873 K. Thus, in order to avoid such structure modifications, a lower calcination temperature, 

873 K, was selected. Even though, some modification of the structure of Ni/CeO2-NLNa catalyst 

was detected. 

Table 9.1. Catalysts textural properties and chemical composition. 

 Textural properties Chemical composition* 

SBET VP dP Ni CeO2 

Ni/CeO2-DL 36 0.08 19 13.4 8.8 

Ni/CeO2-DLCs 31 0.03 15 11.6 5.4 

Ni/CeO2-DLNa  20 0.10 27 12.2 6.1 

Ni/CeO2-NL 123 0.23 81 13.6 6.0 

Ni/CeO2-NLCs  60 0.19 131 13.2 7.0 

Ni/CeO2-NLNa  4 0.05 463 13.2 5.7 

SBET: Surface area (m
2
/g); VP: Pore volume (cm

3
/g); dP: Average pore size (Å) 

*Chemical composition measured by ICP-OES. Expressed in wt. %. 

  Nominal values (wt. %): Ni: 13; CeO2: 10. 

 

   
 

   
 

Figure 9.2. SEM images for DLNa Zeolite in fresh (left), calcined at 873 K (center) and calcined at 1073 K (right) 

with different magnification. 

The reduction of the BET area was related to the reduction of the pore volume and the increase 

in the average pore size. That effect is more prominent for the zeolite with the nanostructure 

since those catalysts presented higher surface area.  
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The chemical composition of the catalysts indicated that the impregnation of nickel was 

successful as its real value in the catalysts was close to the desired value. On the contrary, the 

measurement of the content of ceria evidenced a wide variety of the oxide content. The highest 

value was determined for Ni/CeO2-DL catalyst, while Ni/CeO2-DLCs catalysts contained the 

lower amount of CeO2. However, those results do not mean that the impregnation of CeO2 on the 

catalysts was not properly carried out, but it could also be due to a non-homogeneous ceria 

impregnation. 

9.2.1.2. Temperature programmed reduction (TPR) 

Figure 9.3 contains the TPR profiles of the prepared catalysts. Most of the catalysts showed a 

single reduction peak from 523 to 823 K. Those peaks can be separated in two different peaks 

with maximums in the ranges from 573 to 623 K and 623-698 K. Such peaks indicate that the 

nickel contained on the catalysts is present without interacting with the surface and with weak 

interaction with the surface, respectively. 

Interestingly, for catalysts supported on disc-shaped zeolites the peak at lower temperature 

represents the higher hydrogen consumption. On the contrary, for Ni/CeO2-NL and 

Ni/CeO2-NLCs catalysts, the peaks in the range of 623-698 K are the ones consuming more 

hydrogen. 

 

Figure 9.3. TPR profiles of the fresh calcined zeolite L supported catalysts. 

On the other hand, the incorporation of sodium to the zeolites produced a displacement to the 

right side of the reduction peaks, making nickel and support to interact more strongly. 
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Accordingly, Ni/CeO2-NLNa catalyst produced a reduction peak from 573 to 1073 K. Therefore, 

a fraction of the nickel on this catalyst is also interacting strongly with the support. 

9.2.1.3. CO chemisorption 

CO chemisorption results were used to evaluate the dispersion of nickel in the catalysts, see 

Table 9.2. Low nickel dispersion values were obtained for all silico-aluminates supported 

catalyst. Thus, all dispersion values were lower than 0.3 %. 

Table 9.2. CO chemisorption results and nickel crystallite sizes estimated for Zeolite L supported catalysts. 

 CO Chemisorption XRD 

 SMe DMe Ni size Ni size  

Ni/CeO2-DL 0.15 0.17 600 30 

Ni/CeO2-DLCs 0.22 0.29 348 25 

Ni/CeO2-DLNa 0.01 0.01 7336 50 

Ni/CeO2-NL 0.11 0.12 867 45 

Ni/CeO2-NLCs 0.23 0.26 384 45 

Ni/CeO2-NLNa 0.01 0.02 6546 40 

SMe: Active metal surface area (m
2
/g). 

DMe: Active metal dispersion (%) 

Ni size: Average nickel particle size (nm). 

 

 

DL supported catalysts achieved higher dispersion values than their corresponding NL supported 

catalysts. Interestingly, Cs exchanged supports in both catalyst series achieved the highest active 

metal surface and dispersion values, which were higher than 0.2 m
2
/g and 0.25 %, respectively. 

On the contrary, both Na exchanged catalysts produced the lowest dispersed values (0.01 %). 

Thus, the nickel particle sizes for sodium exchanged catalysts were higher than 5 µm, which 

were the two catalysts with the lowest values of textural properties. 

9.2.1.4. Ammonia TPD (NH3-TPD) 

The profiles obtained by means of the NH3-TPD measurements are collected in Figure 9.4 and 

their corresponding acidity results in Table 9.3. 

The acidity profiles show two ammonia desorption peaks for the catalysts without alkaline atoms 

exchange and with cesium exchanged catalyst. Those peaks were recorded at 473 and 

573-623 K, and are attributed to mild and medium acidity centers. 
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There was not a significant difference among the acidity of the catalysts supported on NL and 

DL and their corresponding Cs containing catalysts. But, the catalysts with sodium in their 

structure halved the acidity of the catalysts of their series. Moreover, Ni/CeO2-DLNa and 

Ni/CeO2-NLNa catalysts almost had the same acidity, while for the rest of them, DL supported 

catalysts showed to be more acidic. 

 

Figure 9.4. NH3-TPD profiles of reduced zeolite L supported catalysts. 

 

Table 9.3. NH3-TPD quantitative results of zeolite L supported catalysts.  

 Acidity (μmol NH3/g) 

Mild Medium Strong 

Ni/CeO2-DL 74.4 (47 %) 65.6 (41 %) 18.9 (12 %) 

Ni/CeO2-DLCs 67.6 (46 %) 63.4 (43 %) 17.0 (11 %) 

Ni/CeO2-DLNa  23.6 (32 %) 35.4 (49 %) 14.0 (19 %) 

Ni/CeO2-NL 58.6 (45 %) 58.2 (44 %) 14.0 (11 %) 

Ni/CeO2-NLCs 56.2 (41 %) 63.8 (47 %) 17.1 (12 %) 

Ni/CeO2-NLNa 23.7 (30 %) 38.1 (49 %) 16.0 (21 %) 

Mild acidity: 423-573 K, Medium acidity: 573-773 K, Strong 

acidity: >773 K 

9.2.1.5. X-ray diffraction (XRD) 

The diffractograms recorded during the analysis of the catalysts by XRD are collected in Figure 

9.5Figure 9.14. On them, all catalysts showed a series of peaks from 10 to 42 2 theta degrees, 

which are characteristics of the support material, zeolite L [1,2]. At 44 and 53 2θ degrees, the 
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signature peaks of metallic nickel were detected. CeO2 crystallites were not detected by this 

technique, but the presence of ceria on the catalysts was confirmed by ICP-OES measurements. 

Afterwards, the most intense nickel peaks, the ones measured at 44 2θ degrees, were used to 

estimate the average nickel crystallite size using Scherrer's equation (Table 9.2). Crystallite sizes 

ranging from 25 to 50 nm were estimated. The lowest estimated crystallite sizes, 25-30 nm were 

for Ni/CeO2-NL and Ni/CeO2-NLCs catalysts, which are the two catalysts with the higher 

surface area. Sodium-containing NL supported catalyst produced nickel crystallites of 50 nm, as 

it has the lowest surface area of the catalysts series of this work. Thus, nickel particles had less 

surface available for dispersion and consequently, they originated aggregates of higher size. 

 

Figure 9.14.  

Figure 9.5. XRD patterns of reduced zeolite L supported catalysts. 

Catalysts supported on disc-shaped Zeolite L produced nickel crystallites of 40-45 nm. Those 

values are in good agreement with the surface area measurements. All these catalysts presented 

similar surface areas and this size is between the ones of the Ni/CeO2-NLCs and Ni/CeO2-NLNa 

catalysts, as BET surface areas are. 

The comparison of the nickel particle size calculated from CO chemisorption results and 

estimated by Scherrer's equation showed that the values from CO chemisorption experiments 

were much higher. That fact was caused because the nickel particles present in the catalysts are 

polycrystalline particles, and therefore, XRD experiments identify those structures with the same 

crystalline arrangement as individual nickel particles.  
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9.2.1.6. X-ray photoelectron spectroscopy (XPS) 

The information obtained from XPS results was summarized in Table 9.4 and Figure 9.6, in 

which different atomic ratios and XPS patterns for nickel 2p and cerium 3d core electrons are 

collected, respectively. 

Ni/CeO2-DL and Ni/CeO2-NL contained a Si/Al ratio close to 2, which was significantly reduced 

when Cs was exchanged, producing a ratio lower than 1. For sodium exchanged zeolites 

supported catalysts, the ratio was close to 2 for the catalyst with disc morphology, but for the 

catalyst with nanocrystals, the ratio was slightly higher than 4. Those ratios highlight the 

structural modification suffered by the sodium exchanged catalysts. 

Table 9.4. Comparison of the surface atomic ratios measured by XPS and the bulk atomic ratios measured by 

ICP-OES. 

 XPS atomic ratios 

Si/Al Ni/(Si+Al) Ce/(Si+Al) Ni/Ce Cs/(Si+Al) Na/(Si+Al) 

Ni/CeO2-DL 2.18 0.14 0.10 1.41/1.89* - - 

Ni/CeO2-DLCs 0.75 0.13 0.08 1.60/2.64* 0.09 - 

Ni/CeO2-DLNa 1.93 0.21 0.09 2.27/2.46* - 0.21 

Ni/CeO2-NL 2.46 0.04 0.03 1.27/2.78* - - 

Ni/CeO2-NLCs 0.95 0.04 0.02 1.86/2.32* 0.13 - 

Ni/CeO2-NLNa 4.11 0.03 0.02 2.20/2.84* - 0.26 

*Bulk Ni/Ce atomic ratio calculated from ICP-OES results. 

 

Surface Ni/(Si+Al) and Ce/(Si+Al) ratios were also calculated for the catalysts. Both ratios were 

at least three times higher for DL supported catalysts, probably due to their lower values of 

textural properties, which provide a lower internal surface area for the impregnation of 

incorporated metals. Interestingly, the low Ni/(Si+Al) and Ce/(Si+Al) ratios of Ni/CeO2-NLNa 

catalyst indicate that the amount of nickel and cerium in the surface of the catalyst is low. 

Therefore, nickel and cerium should be located in the internal porous structure of the catalyst. 

Accordingly, the so low values of textural properties of Ni/CeO2-NLNa catalyst could be 

originated by the pore blockage by nickel and cerium, reducing the amount of nickel sites 

accessible for the SR reaction. 

However, the surface Ni/Ce ratios are similar for catalysts without Cs or Na exchange, Cs 

exchanged catalysts and Na exchanged catalysts. Thus, nickel and cerium were proportionally 

distributed in all catalysts. Then, comparing the surface (XPS) and bulk (ICP-OES) atomic Ni/Ce 
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ratios, higher Ni/Ce atomic ratios were measured in bulk material than on the catalyst surface. 

Thus, nickel is probably decorating ceria particles. 

The XPS patterns of nickel 2p 3/2 and 2p 1/2 electron lines and cerium 3d electron lines for 

zeolite L supported catalysts can be observed in Figure 9.6. The binding energies (BE) measured 

in those figures for nickel and cerium were attributed to oxidized species. 

 

Figure 9.6. Nickel 2p and cerium 3d electron lines for zeolite L supported catalysts: DL supported catalysts (left) 

and NL supported catalysts (right). 

The nickel 2p electron lines for catalysts contain the maximums at binding energies (BE) of 2p 

3/2 electron line around 854 eV [3] and the corresponding satellite peak 860 eV [4] which are 

originated by the presence of NiO. Accordingly, binding energies of the 2p 1/2 nickel electron 

lines were obtained at 872 eV [5,6] and their corresponding satellite peak at 879 eV [5]. Thereby, 

binding energies indicated that nickel was not strongly interacting with support (nickel aluminate 

binding energies were not detected), which agrees with the information provided by TPR 

analysis. 

The binding energies due to cerium around 881 [7] and 886 eV [8] were attributed to the Ce 3d 

5/2 electrons. Then, the peaks close to 900 and 905 eV were attributed to Ce 3d electron lines 

originated by the presence of CeO2 [9]. Finally, the peak at the highest BE value, around 917 eV, 
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only measured in catalysts without Cs or Na exchange, as attributed to the presence of CeO2 

[9,10]. 

Finally, the surface abundances of cesium and sodium were calculated as Cs/(Si+Al) and 

Na/(Si+Al). The values of the cesium ratios were around 0.1, while the sodium ratios reached 

values close to 0.2. The binding energies were attributed to CsCl and NaCl species at 724 [11] 

and 1072 eV [12,13], respectively. 

9.2.2. Activity results 

The activity results obtained with Zeolite L supported catalysts are summarized in Figure 

9.7¡Error! No se encuentra el origen de la referencia. and compared with the thermodynamic 

equilibrium results. Equilibrium results produced negligible methane yields and no hydrocarbons 

yields at all tested reaction temperatures. On the other hand, the blank test performed in previous 

work [14] showed a high bio-oil model compound conversion, but with a low yield to gas 

products (H2, CO and CO2). 

In the present work, all catalysts, except the sodium exchanged ones, were able to completely 

convert the bio-oil/bio-glycerol mixture during the first 5 hours of the experiment at 1073 K. 

Thus, the catalysts that completely converted the liquid fed produced high hydrogen yields 

(75-80 %). 

Nevertheless, those hydrogen yield values were far from equilibrium (~90 %), mainly due to the 

presence of methane and other hydrocarbons among the product gases, which were not present in 

equilibrium conditions. In addition, CO yields were close to equilibrium values, but the CO2 

yields did not reach the equilibrium values, reducing the hydrogen yield. A CO2 yield lower than 

the equilibrium value could be due to a low WGS activity of the catalysts in the studied 

conditions. 

Regarding the sodium exchanged zeolite L catalysts, both of them produced an incomplete feed 

conversion. Accordingly, the hydrogen yields produced with those two catalysts achieved values 

in the range of 15-30 %. So, those values were much lower than the hydrogen yields produced by 

the other four catalysts. Moreover, the low hydrogen yields were also affected by the high 

hydrocarbon yields produced by the sodium containing catalyst. Both catalysts produced 

hydrocarbon yield around 20-25 %, which indicates that Ni/CeO2-NLNa and Ni/CeO2-DLNa 

catalysts were unable to break the bonds of the products originated when part of the molecules 

fed were broken. Accordingly, an organic liquid phase was also collected as a reaction product, 

where phenolic molecules, among others, were identified. 
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At 973 K conversion decayed. Thus, all experimental conversions were between 50 and 80 %, 

even if the equilibrium values predicted a complete conversion. In addition, at this reaction 

temperature, all catalysts produced an organic liquid phase, due to the conversion of the 

molecules fed to intermediate liquid products. In those organic liquid products, apart from the 

unconverted model compounds, aromatic molecules (i.e. benzene and its derived molecules, such 

as toluene, styrene or naphthalene among others) were identified. These results evidenced a loss 

of the chain breaking capacity of the catalysts.  

 

Figure 9.7. Parameters measured during the SR of the bio-oil/bio-glycerol mixture. Conversion (a), CH4 (b), 

hydrocarbons (c), H2 (d), CO (e) and CO2 (f) yields. Experiments were carried out in the following steps: 1073 K for 

5 h (left set for each species), followed by 973 K for 5 h (centre) and 1073 K for 2 h (right). Values shown are the 

average over the last 2 h at each step. 

The reduction in the conversion and the chain breaking capacity of the catalysts could be due to a 

slower kinetics of the reaction network, catalysts deactivation or a combination of both 

processes. The catalysts without cesium or sodium exchanged were the ones that achieved the 

highest conversions at 973 K, while the catalysts with sodium incorporation converted the lowest 

amount of the synthetic bio-oil/bio-glycerol mixture. Among the Ni/CeO2-NL and Ni/CeO2-DL 

catalysts, the last of them produced the highest hydrogen yield operating at 973 K and 

atmospheric pressure. 
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That decay in the conversion was also noticeable in CO and CO2 yields that did not reach the 

20 %. This fact indicates that the capacity of the catalysts to produce single carbon atom 

containing molecules (CO and CH4) was limited. Therefore, the hydrocarbon yield increased. 

Thus, as CO production was limited the WGS reaction did not develop as equilibrium predicted, 

producing low amounts of H2 and CO2. Consequently, the hydrogen yields for all catalysts did 

not reach the 30 %. The trend on the hydrogen yield was similar to the trend in conversion. 

For the sodium containing supports the reduction in conversion also affected the hydrocarbon 

yield. As mentioned above, the reduction of the conversion was related to the bond breaking 

capacity of the catalysts. Thus, the catalysts capacity to produce cracking products in the 

hydrogen production process was limited. Additionally, the CO2 yields for these two catalysts 

were almost negligible, which also supports the reduction on the hydrogen yields. 

When the reaction temperature was heated up to the initial reaction temperature, all catalysts 

increased the conversions they achieved at 973 K. But, they were unable to completely convert 

the bio-oil/bio-glycerol mixture. Thus, initial activities were not recovered, which means that all 

catalysts were deactivated. 

The deactivation of the catalysts was more clearly observed looking at the hydrocarbon yields at 

this reaction conditions. All catalysts produced a hydrocarbon yield of ~25 %, evidencing the 

loss of the chain breaking capacity. 

As it could be expected the increase of the conversion caused an increase in the hydrogen yield 

values of the catalysts compared to the values at 973 K. Nevertheless, the increase in the H2 

yields only produced a yield close to the 50 % for the most active catalysts, Ni/CeO2-DL and 

Ni/CeO2-DLCs, far from the initial hydrogen yields. That fact can be explained by the difference 

in the CO2 yields, which at the last reaction stage were significantly lower than at the beginning 

of the test. 

Interestingly, at the end of the first reaction stage at 1073 K, hydrogen yields correlated well 

with medium and strong acidity values: the higher the sum of medium and strong acidity values, 

the higher the hydrogen yield. In addition, Ni/CeO2-DL and Ni/CeO2-DLCs, the most active 

catalysts at tested temperatures, were the most acidic ones and both of them presented high 

nickel dispersion values. On the contrary, sodium exchanged zeolites were the less active 

catalysts due to their low acidity and dispersion and high nickel particles, which reduced the 

amount of nickel sites. In addition, the big nickel particles measured by CO chemisorption 

indicated that those catalysts contained the lowest amounts nickel sites for reaction. 
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9.2.3. Spent catalyst characterization 

The use of synthetic bio-oil/bio-glycerol mixtures produces high amounts of carbon in catalysts. 

Thus, XRD and XPS techniques are only able to discern carbonaceous structures and species, 

being the graphitic carbon the most abundant.  

Thermogravimetric analyses of the Temperature Programmed Oxidation (TGA-TPO) of the used 

catalysts are summarized in Figure 9.8.  

 

Figure 9.8. TGA-TPO profiles of the used zeolite L supported catalysts. 

As happened during the activity results, two trends can be observed in the TGA-TPO 

experiments. On the one hand, sodium exchanged catalysts (Ni/CeO2-DLNa and 

Ni/CeO2-NLNa) only show one weight loss peak with the maximum at 900 K. At this 

temperature, the oxidation of graphitic carbon takes place [15]. Thus, even if the weight losses 

due to carbon removal are lower than for the rest of the catalysts, that carbon amount was 

enough to deactivate the catalysts. Therefore, graphitic carbon could have encapsulated the 

active nickel crystals, deactivating the catalysts, which could explain the low hydrogen yield for 

those catalysts, taking into account their low BET surface area.  

On the other hand, the oxidation experiments conducted with the other four catalysts 

(Ni/CeO2-DL, Ni/CeO2-DLCs, Ni/CeO2-NL and Ni/CeO2-NLCs) produced two weight losses. 

400 600 800 1000 1200

90

92

94

96

98

100

Temperature (K)

w
e

ig
h

t.
 %

Ni/CeO
2
-DL

Ni/CeO
2
-NL

Ni/CeO
2
-DLCs

Ni/CeO
2
-NLCs

Ni/CeO
2
-DLNa

Ni/CeO
2
-NLNa

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

D
e

ri
v
a

ti
v
e

400 600 800 1000 1200

90

92

94

96

98

100

Temperature (K)

w
e

ig
h

t.
 %

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

D
e

ri
v
a

ti
v
e

400 600 800 1000 1200

90

92

94

96

98

100

Temperature (K)

w
e

ig
h

t.
 %

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

D
e

ri
v
a

ti
v
e

400 600 800 1000 1200

90

92

94

96

98

100

Temperature (K)

w
e

ig
h

t.
 %

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

D
e

ri
v
a

ti
v
e

400 600 800 1000 1200

90

92

94

96

98

100

Temperature (K)

w
e

ig
h

t.
 %

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

D
e

ri
v
a

ti
v
e

400 600 800 1000 1200

90

92

94

96

98

100

Temperature (K)

w
e

ig
h

t.
 %

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

D
e

ri
v
a

ti
v
e



Chapter 9 

206 

The first had its maximum at 373 K, while the second peak occurred at 873 K, approximately. 

Thus, for those catalysts apart from the oxidation of filamentous and graphitic carbon [15–17], 

some molecules adsorbed on the catalysts (water, reactants, reaction intermediates or products) 

were removed [17]. Those molecules probably were unconverted cracking reaction products that 

blocked active nickel sites, which led to the catalysts deactivation, as well as graphitic carbon 

did. In addition, for those catalysts there is a weight increase peak with a maximum at 

temperatures slightly below 673 K. Those peaks are attributed to the oxidation of metallic nickel 

that is still present in the catalysts [18]. Thus, the main reason for the loss of the activity of those 

catalysts was the graphitic carbon deposition on the catalytic surface. 

Regarding the effect of cesium and sodium exchanged in zeolites, a correlation between the 

exchange and carbon resistance was not observed. 

9.3. CONCLUSIONS 

In this work, Zeolite L with two different sizes and morphologies (nanocrystal and disc) were 

used as catalyst support. Among them, the zeolite with micrometric size and disc shape produced 

the highest hydrogen yields at all temperatures. Therefore, disc-shaped zeolites were more 

resistant to the deactivation.  

The ion exchange with Cs or Na did not improve the catalytic activity of the catalysts, nor 

reduced the carbon formation on the catalysts. Cs exchange caused an important drop in the 

hydrogen yield of the catalysts operating at 973 K. On the other hand, the exchange of Na in the 

zeolites caused the sintering of the zeolite structure. Thus, the catalytic activities of Na 

containing catalysts were the lowest at all tested temperatures. 

The main deactivation cause of the catalysts was the graphitic carbon deposition on the catalysts 

produced during the reforming process, as well as the inability of the catalysts to remove the 

carbon deposited on the surface as fast as it was produced. 

Finally, the most adequate zeolites among the tested support materials are the ones with disc 

shape, without modification or with Cs. They both produced the highest hydrogen yields at the 

tested temperatures indicating that they were the most active and the most resistant to 

deactivation among the tested catalysts. That behavior was attributed to the higher dispersion and 

acidity of the catalysts. Moreover, the Cs exchange increased the nickel dispersion on the 

catalysts. 
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ABSTRACT 

This chapter contains a study of the feasibility of industrial residues derived materials for 

hydrogen production from bio-oil. Nickel was impregnated in the selected materials (Waelz 

Oxide and Double Leached Waelz Oxide; P20, P26 and PF salt slugs; and Sewage sludge ashes). 

Then, catalysts were tested under SR of m-xylene in the same conditions in which alumina 

supported catalysts were tested for a first screening. For comparison purposes, the results 

obtained with industrial residues derived materials were evaluated together with the results 

obtained with Ni/Al2O3 catalyst. Afterwards, the most active catalysts (Ni/DLWO, Ni/PF and 

Ni/SSA) were tested under SR of synthetic bio-oil/bio-glycerol. In those conditions, Ni/SSA 

showed to be the most suitable catalyst because it was the most resistant to deactivation. That 

fact was supported by its low carbon content after the experiment. Nevertheless, even if high 

hydrogen yields were achieved with industrial residues derived materials supported catalysts 

during the SR of the synthetic bio-oil/bio-glycerol process, the achieved hydrogen yields were 

lower than the H2 yield produced by Ni/Al2O3 catalyst. Reduced and used catalyst 

characterization was correlated with the catalytic activity. 

10.1. EXPERIMENTAL 

10.1.1. Catalyst preparation 

The preparation of the catalysts was carried out by Wet Impregnation (WI) process, following 

the procedure described in Chapter 3 for nickel incorporation in the supports. For this chapter, 

the selected supports were Waelz Oxide (WO), double leached WO (DLWO), three salt slugs 

from aluminum industry (P20, P26, PF) and sewage sludge ashes (SSA). 

10.1.2. Catalyst characterization 

Prepared catalysts were characterized by N2 adsorption-desorption isotherms, Temperature 

programmed reduction (TPR), Inductively Coupled Plasma-Optical Emission Spectroscopy 

(ICP-OES), Temperature programmed desorption of ammonia (NH3-TPD), CO chemisorption, 

X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Temperature 

programmed oxidation (TGA-TPO). 

10.1.3. Tests methodology 

First, the feasibility of the non conventional materials supported catalysts were tested in SR of 

m-xylene. The experiments were carried out in the same conditions as the SR of m-xylene with 
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alumina supported catalysts. Catalysts were tested at different temperatures, as indicated in 

Figure 10.1. Experiments were carried out at atmospheric pressure and an S/C molar ratio of 5.0. 

 

Figure 10.1. Reaction temperature profile followed during the SR of m-xylene experiments. Green dots indicate the 

sampling moments. 

 

Figure 10.2. Reaction temperature profile followed during the SR of the synthetic bio-oil/bio-glycerol mixture 

experiments. Green dots indicate the sampling moments. 

Then, the catalysts that were the most active during SR of m-xylene were tested in SR of a 

synthetic bio-oil/bio-glycerol mixture. The mixture was prepared as an equimolecular mixture of 

n-butanol, m-xylene, furfural, m-cresol, syringol and glycerol. Reforming experiments were 

performed at 1073 K for 5 hours before reducing the reaction temperature to 973 K and 

maintained for 5 hours. Then, the reaction temperature was heated up to 1073 K and maintained 

for 2 hours to compare initial and final activity results, as shown in Figure 10.2. Experiments 

were performed at atmospheric pressure and an S/C molar ratio of 5.0.  
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During the experiments, samples were taken every hour and liquid and gas products analyzed 

using two gas chromatographs. The activity results produced with non conventional supported 

catalysts were compared with the results obtained with Ni/Al2O3 catalysts. 

10.2. RESULTS AND DISCUSSION 

10.2.1. Fresh and reduced catalysts characterization 

10.2.1.1. Catalyst textural properties and chemical composition 

Industrial residues derived materials supported catalysts presented low BET areas as the data in 

Table 10.1 show. Accordingly, very low pore volumes and high pore sizes. Such low values 

were probably originated by the high temperature processes in which support materials were 

involved during their production. 

Table 10.1. Textural properties of calcined non-conventional materials supported catalysts. 

Catalyst SBET VP PD Ni content 

Ni/WO 1 <0.01 110 13.0 

Ni/DLWO 2 0.01 100 12.6 

Ni/P20 18 0.07 75 8.1 

Ni/P26 10 0.06 131 11.6 

Ni/PF 48 0.13 110 12.9 

Ni/SSA 8 4.78 246 13.6 

SBET: BET surface area (m
2
/g);  

VP: Pore volume (cm
3
/g). 

PD: Average pore size (Å). 

Nickel nominal value (wt. %): Ni=13.0. 

 

 

Nickel content on catalysts, measured by ICP-OES, is also contained in Table 10.1. Nickel 

values were close to the nominal 13 wt. % in most of the cases. However, Ni/P20 catalyst only 

contained an 8.1 wt. % of nickel. 

On the other hand, due to the different origin of the support material, their chemical composition 

and loss on ignition (LOI) values were evaluated by XRF (see Table 10.2). 

Industrial residues derived materials, with the exception of DLWO, were mainly a mixture of 

SiO2 and Al2O3. Among them, for P20, P26 and PF materials alumina was the main component, 

especially in the case of PF. In the case of SSA, silica also was the main component, but its 
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content on CaO and P2O5 (18 and 13 wt. %, respectively) was higher than alumina content 

(9 wt. %). 

Table 10.2. Chemical composition of selected non-conventioanl materials, measured by XRF. 

Support SiO2 Al2O3 Fe2O3* MnO MgO CaO Na2O K2O TiO2 P2O5 LOI 

DLWO 0.8 0.5 4.1 0.5 0.2 3.5 - - 0.1 0.1 1.7 

P20 17.9 59.5 1.9 - 4.9 1.7 1.9 1.1 0.9 - 8.8 

P26 17.0 48.9 2.2 - 3.2 1.6 6.9 1.2 0.8 - - 

PF 5.41 75.3 1.9 0.3 8.2 2.5 1.03 0.5 0.9 0.1 2.2 

SSA 35.8 9.4 7.6 0.1 2.9 18.3 2.18 2.2 1.1 12.9 2.9 

*Total iron content expressed as Fe2O3. 

 

Finally, DLWO material was the most different among the studied materials. Its main component 

was zinc with an abundance up to 62 wt. %, followed by iron and lead (4 and 2 wt. %, 

respectively). Due to their similar origin, only DLWO material was analyzed. However, analyses 

carried out by ICP-OES indicated that the ZnO content for WO was lower than for DLWO. 

10.2.1.2. Temperature programmed reduction (TPR) 

The reduction profiles obtained for industrial residues derived materials supported catalysts are 

shown in Figure 10.3.  

 

Figure 10.3. TPR profiles of the industrial residues supported catalysts. 

Ni/WO supported catalyst presented two reduction peaks. The maximums of those peaks were 

placed around 810 and 942 K. Ni/DLWO catalyst also presented two reduction peaks due to the 

presence of nickel, the ones placed around 720 and 850 K. The broad peak with the maximum 
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around 1200 K was identified as peak originated by the support. According to literature, for ZnO 

supported nickel catalysts, the reduction peaks around 590 K are produced by nickel with low 

interaction with ZnO support [1]. Afterwards, the reduction of NiO strongly interacting with 

support occurs from 670 to 870 K, approximately [2,3]. Accordingly, the species present in 

Ni/WO and Ni/DLWO catalysts could be attributed to nickel with strong interactions with 

support. 

The catalysts supported in aluminum salt slugs (Ni/P20, Ni/P26 and Ni/PF) presented TPR 

profiles that varied from one to the other, but the temperatures in which hydrogen consumption 

maximums were observed remained around the same temperature. Thus, the three catalysts 

produced reduction peaks around 700 K, 890 K and 1080 K. 

The first peak, around 700 K, was produced due to the reduction of NiO with weak interaction 

with support [4,5]. Afterwards, around 890 K, the reduction of small nickel oxides with stronger 

interaction with alumina occurred [4,6], which could be considered strongly interacting nickel 

species [5]. The last peak, which took place at temperatures between 973 and 1273 K were 

originated by the reduction of nickel aluminate phase with spinel structure [4,5,7,8].  

On the other hand, Ni/SSA catalyst presented a first reduction peak around 630 K, attributed to 

the reduction of large bulk NiO to Ni
0
 [6,7]. The rest of the peaks for this catalyst were similar to 

the ones produced by alumina salt slug supported catalysts. Nonetheless, there was a 

displacement though slightly higher temperatures. The highest displacement was observed for 

the nickel aluminate peak, which took place above 1200 K  

10.2.1.3. X-ray diffraction (XRD) 

Figure 10.4 contains the XRD patterns of reduced industrial residues derived materials supported 

catalysts. Different diffraction peaks can be observed in that figure. Nevertheless, the only peaks 

that are present in all catalysts are the ones around 44 and 52 2 theta degrees. Those peaks are 

attributed to metallic nickel. The nickel peaks that took place at 44 degrees were used to estimate 

an average nickel crystallite size using Scherrer's equation (see Table 10.3). The rest of the peaks 

are originated by crystalline structures of the support materials.  

Ni/WO, Ni/DLWO, Ni/P20 and Ni/P26 catalysts contained nickel crystals with an average size 

ranging from 90 to 160 nm. On the contrary, lower average nickel crystallite sizes were 

estimated for Ni/PF and Ni/SSA catalysts (~30 nm). 
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Figure 10.4. XRD patterns of reduced industrial residues derived materials supported catalysts. 

 

Table 10.3. Average nickel crystallite sizes estimated from XRD results using Scherrer’s equation. 

Catalyst Ni size (nm) 

Ni/WO 90 

Ni/DLWO 170 

Ni/P20 100 

Ni/P26 135 

Ni/PF 30 

Ni/SSA 35 

 

Even if low nickel crystallite sizes were estimated, nickel dispersion was lower than 0.01 % for 

most of the catalysts. The highest dispersion values were obtained for Ni/PF with dispersion 

values of 0.11 %. Therefore, those results highlight the polycrystalline structure of the nickel 

particles measured by CO chemisorptions results. 

10.2.1.4. X-ray photoelectron spectroscopy (XPS) 

The XPS patterns for nickel electrons are depicted in Figure 10.5. The patterns show that nickel 

was mainly present in oxidized state. Accordingly, peaks attributed to NiO were detected in the 

range from 854 to 857 eV for Ni 2p 3/2 electron [9–12] with the corresponding shake up satellite 

peak at 860-862 eV [9,10,12]. In addition, for some catalysts, Ni 2p 1/2 peaks were identified 

around 874 eV [9–15] with the corresponding shake up satellite peak around 880 eV [12,14]. 

Those peaks were also attributed to the presence of NiO (Ni
2+

) [14,15]. Nonetheless, on 
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Ni/DLWO catalyst presented a peak with a binding energy around 852 eV with the absence of a 

satellite peak, which was attributed to metallic nickel [9,16–18]. 

The surprising XPS results for the nickel oxidation state on reduced catalysts was attributed to 

the assumption that NiO was formed on the surface nickel particles due to the air exposure of the 

samples for few minutes during XPS analyses [15]. 

 

Figure 10.5. XPS patterns for Ni 2p 3/2 and Ni 2p 1/2 electrons of industrial residues derived materials supported 

catalysts. 

Ni/WO, Ni/DLWO and Ni/SSA catalysts presented calcium in the chemical composition of their 

surface. Interestingly, the binding energies in which calcium peaks were detected around 347 and 

351 eV, which correspond to Ca 2p 3/2 and Ca 2p 1/2 electrons, respectively [19–22], which 

were attributed to the presence of CaO, Ca(OH)2 and CaCO3 [23]. 

On the other hand, only Ni/WO and Ni/DLWO catalysts contained iron in their surface, which 

represented the 4 and almost 7 % of the surface atomic percentage, respectively. Iron was present 

with binding energies around 710 and 719 eV. The peak around 710 eV was originated by the 2p 

3/2 line of Fe2O3 in the catalyst [24–26], while the peak around 719 eV was attributed to the 

characteristic Fe
3+

 peak of Fe2O3 [27]. 

10.2.2. Activity results 

10.2.2.1. SR of m-xylene at S/C = 5.0 

The activity results obtained by using industrial residues derived material supported nickel 

catalysts at S/C molar ratio of 5.0, atmospheric pressure and different temperatures are 

summarized in Figure 10.6. There, it can be observed that at the first reaction stage at 1073 K all 
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tested catalysts were able to completely convert m-xylene. Moreover, the methane and 

hydrocarbon yields measured at that temperature were lower than 5 % each. Thus, the main 

reaction products were hydrogen, carbon monoxide and carbon dioxide. As the yields of carbon 

monoxide and carbon dioxide were quite close to the equilibrium predicted values, the hydrogen 

yields reached values slightly lower than equilibrium values, around the 80 %. 

 

Figure 10.6. Parameters measured during the SR m-xylene with industrial residues derived materials. Conversion 

(a), CH4 (b), hydrocarbon (c), H2 (d), CO (e) and CO2 (f) yields. Experiments were carried out in the following 

steps: 1073 K for 5 h (left set for each species), followed by 973 K for 5 h (centre) and 1073 K for 2 h (right). 

Values shown are the average over the last 2 h at each step. 

However, the reduction on the reaction temperature value produced a significant decrease in 

activity for several catalysts. Ni/DLWO, Ni/P20 and Ni/P26 were only able to completely 

convert m-xylene at 973 K. On the contrary, Ni/PF, Ni/SSA and Ni/WO catalysts only converted 

the 80, 50 and 10 % of the m-xylene feed, respectively. Moreover, even if methane yields were 

low for all catalysts, the hydrocarbon yields significantly increased their values. Thus, the 

capacity of hydrocarbon reforming of the catalysts was affected by the reduction of the reaction 

temperature. 

As it could be expected, the catalysts which produced the highest hydrogen yields were the ones 

that completely converted m-xylene, being Ni/DLWO catalysts the most active at 973 K. The 
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high hydrogen yield for Ni/DLWO catalyst (~70 %) was supported by a low methane and 

hydrocarbon yield, as well as by the highest WGS reaction performance at those experimental 

conditions. Although that, the hydrogen yield was far from the equilibrium value (~90 %). 

Ni/P20 and Ni/P26 produced similar hydrogen yield values (~60 %) because their measured 

activity parameters were similar at 973 K.  

The hydrogen yields of the catalysts that were unable to completely convert m-xylene, the 

hydrogen yields produced followed the same trend than conversion. Thus, Ni/PF was able to 

produce more hydrogen than Ni/SSA, which produced more hydrogen than Ni/WO catalyst. 

Afterwards, then the reaction temperature was set at 873 K, the catalytic activities of the 

catalysts were reduced. In those reaction conditions, none of the catalysts was able to completely 

convert the m-xylene, although thermodynamic equilibrium predicted a complete conversion. 

The highest conversion values were achieved by Ni/PF, Ni/P26 and Ni/P20, respectively, which 

converted from 60 to 40 % of the m-xylene fed. Ni/DLWO catalyst still was able to convert the 

10 % of the m-xylene feed, but Ni/WO and Ni/SSA catalysts showed no activity at 873 K. 

Accordingly, the highest hydrogen yields measured at these reaction conditions were produced 

using Ni/P26 and Ni/PF catalysts (30-40 %). Although Ni/P20 catalyst achieved a high 

conversion, it produced a hydrocarbon yield higher than 20 %. Therefore, the CO and CO2 

production was lower than for Ni/P26 and Ni/PF catalysts, and therefore the hydrogen yield was 

also lower. 

After the experimental stage at 873 K the reactor was heated up to 1073 K. Surprisingly, all 

catalysts recovered the initial activity values. Thus, the low catalytic activities observed at 873 K 

were attributed to slow kinetics because catalysts were not deactivated. Therefore, for further 

experiments, Ni/DLWO, Ni/PF and Ni/SSA catalysts were selected, as they were the best 

catalysts of their corresponding catalytic family. 

The catalytic performances of Ni/Al2O3 and the ones of the non conventional materials supported 

catalysts under SR of m-xylene were compared. Results showed that the activities were 

comparable when the reaction temperature of 1073 K was used, at the beginning and the end of 

the experiment because catalysts were not deactivated.  

10.2.2.2. SR of the synthetic bio-oil/bio-glycerol mixture at S/C= 5.0 

The results of the experiments in which industrial residues derived materials supported catalysts 

were used in SR of a synthetic bio-oil/bio-glycerol mixture are shown in Figure 10.7. 



Chapter 10 

222 

 

Figure 10.7. Parameters measured during the SR of the bio-oil/bio-glycerol mixture with industrial residues derived 

materials supported catalysts. Conversion (a), CH4 (b), hydrocarbon (c), H2 (d), CO (e) and CO2 (f) yields. 

Experiments were carried out in the following steps: 1073 K for 5 h (left set for each species), followed by 973 K 

for 5 h (centre) and 1073 K for 2 h (right). Values shown are the average over the last 2 h at each step. 

Three catalysts were able to completely convert the synthetic bio-oil/bio-glycerol mixture during 

the first 5 hours on stream at 1073 K as equilibrium calculations predicted. Nonetheless, the 

equilibrium methane and hydrocarbon yield values were not achieved because catalysts were 

unable to completely convert methane and other hydrocarbons. That indicated that there were 

kinetic limitations for those catalysts. Thus, due to the presence of methane and hydrocarbons in 

the gas product stream, the amount of CO, CO2 and H2 that were produced were lower than 

equilibrium predicted. In addition, the WGS reaction was not carried out to the extent that 

equilibrium predicted. Ni/SSA catalyst was the less active in WGS reaction performance. 

Therefore, the hydrogen yields that were achieved in these reaction conditions were far from the 

equilibrium value and only reached a value around the 60 %. 

The decrease of the reaction temperature to 973 K highly affected the amount of the molecules 

that catalysts were able to convert. Thus, only Ni/PF catalyst was able to convert more than the 

half of the bio-oil/bio-glycerol mixture, while Ni/DLWO and Ni/SSA barely reached the 40 % of 

conversion. In accordance with those low conversion values, the methane and hydrocarbon 
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yields were lower than at the previous reaction temperature, but also H2, CO and CO2 yields 

decreased. Thus, hydrogen yields did not reach the 20 % regardless of the used catalyst. 

After the reaction period at 973 K, the reactor was heated up to 1073 K. The increase of the 

reaction temperature made possible to increase the conversion values from the ones obtained at 

973 K. Nevertheless, the conversion values obtained during the first 5 hours on stream were not 

achieved. Therefore, catalysts suffered a deactivation process. 

Ni/SSA catalyst converted the highest amount of the synthetic bio-oil/bio-glycerol mixture, 

around 95 %, while Ni/DLWO and Ni/PF reached a conversion between 80 and 90 %. According 

to that lower activity, the amount of hydrocarbons produced by the catalysts was similar or 

higher than at the beginning of the experimental process, and therefore, the CO, CO2 and H2 

yields were lower. 

In those reaction conditions, Ni/SSA catalyst produced the highest hydrogen yield because it 

produced the highest amount of CO and CO2 and it performed the WGS reaction in higher 

extent. Therefore Ni/SSA catalyst was the less deactivated catalyst. Just for the opposite reasons, 

Ni/PF catalyst was the less active or which suffered the highest deactivation.  

10.2.3. Spent catalyst characterization 

The XRD patterns of the most active catalysts were recorded after being used in activity tests. In 

addition, SEM images of the most active catalysts were taken to investigate the surface of the 

catalysts after the experiments. Finally, TGA-TPO analyses were performed to the catalysts to 

determine the amount of carbon and the carbon morphology on the catalysts. 

10.2.3.1. X-Ray powder diffraction 

The XRD patterns of selected used catalysts, presented in Figure 10.8, produced the 

characteristic nickel peaks around 44 and 52 2 theta degrees, as happened with reduced catalysts. 

However, the identification of those peaks was more difficult in the case of the catalysts used in 

SR of the synthetic bio-oil/bio-glycerol mixture. Then, Scherrer’s equation was used to estimate 

the average nickel crystallite sizes of those catalysts. The catalysts used in SR of m-xylene 

contained nickel crystallites in the range of 60-80 nm. However, the catalysts used in SR of 

synthetic bio-oil/bio-glycerol mixture nickel crystallite sizes could only be estimated in the case 

of Ni/DLWO catalysts, with a size around 80 nm. 
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Apart from nickel, there was an additional peak that was present in all patterns. The peak was 

originated around 26 2 theta degrees, which was attributed to the presence of carbon (graphite) in 

the catalysts [28–31]. 

 

Figure 10.8. XRD patterns of selected industrial residues derived materials supported catalysts. 

In addition, the XRD pattern of Ni/DLWO catalyst used in SR of m-xylene contained a peak 

around 60 2 theta degrees with was originated by the presence of SiC in the analyzed sample 

[32–34], due to an ineffective separation. In the case of the catalysts tested in SR of the synthetic 

bio-oil/bio-glycerol mixture, the SiC diffraction peak was present in both catalysts. Moreover, 

SiC diffraction peaks were also found between 35 and 40 2 theta degrees. 

10.2.3.2. Scanning electron microscopy (SEM) 

First of all, SEM images of Ni/Al2O3 catalysts used in SR of m-xylene and SR of the synthetic 

bio-oil/bio-glycerol mixture were obtained as a reference (Figure 10.9). The morphological 

image (SEI) at 25000 increases obtained for the Ni/Al2O3 catalyst used in SR of m-xylene, 

showed the presence of easily visible nickel particles. The presence of those nickel particles was 

confirmed by the compositional image (COMPO) using the same increases. Using a higher 

increment, X100000, for morphological images it was possible to observe some carbonaceous 

structures on the alumina surface. 

On the morphological images at 25000 and 100000 increases for the catalyst used in SR of 

synthetic bio-oil/bio-glycerol mixture the presence of nickel particles is not observable. In 

addition, the presence of nickel particles was not observed in the compositional image at 25000 

increases. Therefore, the encapsulation of nickel particles during SR of synthetic 

bio-oil/bio-glycerol mixture was the catalyst deactivation cause. Thereby, the reactants 

accessibility to nickel sites was limited. 
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Figure 10.9. SEM images of Ni/Al2O3 catalyst used in SR of m-xylene and SR of synthetic bio-oil/bio-glycerol 

mixture. 
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Figure 10.10. SEM images of Ni/DLWO catalyst used in SR of m-xylene and SR of synthetic bio-oil/bio-glycerol 

mixture. 

The SEM images of selected industrial residues derived materials supported catalysts are 

collected in Figure 10.10 for Ni/DLWO catalyst and Figure 10.11 for Ni/PF catalyst. On them, 

nickel was not observed in morphological images at 25000 increases of Ni/DLWO and Ni/PF 

catalysts used in SR of m-xylene or SR of synthetic bio-oil/bio-glycerol mixture. However, some 

nickel particles were detected in compositional images at 25000 increases, as highlighted in red 

circles and arrows. Therefore, nickel particles were covered with a carbon layer. 
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In addition, when morphological images at 100000 increases were obtained carbon nanotubes 

were observed (indicated with green arrows), which were more abundant for the catalysts used in 

SR of m-xylene. On the other hand, the catalysts used in SR of synthetic bio-oil/bio-glycerol 

mixture contained bigger carbon nanotubes but also easily observable carbon clusters. 
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Figure 10.11. SEM images of Ni/PF catalyst used in SR of m-xylene and SR of synthetic bio-oil/bio-glycerol 

mixture. 

In view of the obtained SEM images, it is possible to conclude that the encapsulation of nickel is 

more intense in SR of synthetic bio-oil/bio-glycerol. In addition, nanotubes were more abundant 

for catalysts used in SR of m-xylene. Thus, the gasification of those nanotubes (filamentous 

carbon) could explain the increase in hydrogen yield measured at the last reaction stages. 

10.2.3.3. X-ray photoelectron spectroscopy 

The abundance of surface nickel was measured by XPS. That amount was lower than 1 % for 

catalysts used in SR of m-xylene. Nevertheless, nickel signals were not recorded for catalysts 

used in SR of synthetic bio-oil/bio-glycerol mixture. Nickel was present as metallic and oxidated 

nickel. Accordingly, Ni 2p 3/2 species were recorded at binding energies around 853 eV for 

metallic nickel [35,36] and around 856 and 860 eV for nickel oxide and the corresponding 

satellite peak [37], respectively. In addition, the same nickel lines for Ni 2p 1/2 electron around 

871, 874 and 879 for metallic nickel, nickel oxide and the satellite peak of nickel oxide 

[10,35,38] were detected, respectively. 
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Regardless of the process, carbon was the main component in the surface of the catalysts, 

achieving values as high as 90 % in some catalysts used in SR of synthetic bio-oil/bio-glycerol 

mixture. Thereby, graphitic carbon was the most abundant specie with a binding energy of 

284.6 eV [39–41], followed by carbon in hydrocarbon form (C-C binding) attributed to carbon 

nanotubes at binding energies around 285 eV [41]. 

10.2.3.4. TGA-TPO 

The weight losses due to carbon removal on the catalysts are summarized in the following 

figures. Thus, Figure 10.12 contains the TGA-TPO profiles of industrial residues derived 

materials supported catalysts. 

 

Figure 10.12. TGA-TPO profiles of industrial residues derived materials supported catalysts used in SR of 

m-xylene. 

The weight losses occurring from 573 to 800 K are related to the oxidation of filamentous carbon 

associated with nickel particles. Afterwards, above 800 K graphitic carbon with different degrees 

of graphitization is oxidized [42–44]. Therefore, as the weight losses for these catalysts mainly 

occurred from 800 to 1000 K, graphitic carbon is the main carbon component in used catalysts. 

However, the presence of filamentous carbon (carbon nanotubes) was confirmed by SEM. 

Thereby, it is likely that the reason for the high yields to CO and CO2 during the last reaction 
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stages at 1073 K was the gasification of filamentous carbons. Nevertheless, even if carbon was 

present as graphite in the catalysts, the amount of carbon was not enough to deactivate the 

catalysts during m-xylene SR. 

For some catalysts, a weight increase occurred, due to the oxidation of the reduced nickel that 

was present in the catalysts. The maximums of these nickel oxidation weight increases were 

recorded around 600 and 700 K [45,46].  

 

Figure 10.13. TGA-TPO profiles of industrial residues derived materials supported catalysts used in SR of synthetic 

bio-oil/bio-glycerol mixture. 

The TGA-TPO profiles of the catalysts used in SR of the synthetic bio-oil/bio-glycerol mixture 

are summarized in Figure 10.13. In this case, the weight losses were higher than the ones 

measured for the catalysts used in SR of m-xylene. The higher carbon content was measured at 

temperatures above 1000 K due to a higher degree of graphitization of carbon in the catalysts.  

Filamentous carbon was not detected by TGA-TPO profiles in these catalysts, but in some SEM 

images carbon nanotubes were observed. Therefore, it is likely that carbon nanotubes were 

removed from the catalysts during the last reaction stage at 1073 K, which produced an increase 

in the CO yield values. However, under the experimental conditions of SR of the synthetic 

bio-oil/bio-glycerol mixture the CO2 yields were not increased due to a limited performance for 

the WGS reaction. 

10.3. CONCLUSIONS 

In this chapter, the feasibility of several industrial residues derived materials was evaluated for 

their application as steam reforming catalyst support. For that purpose, after impregnating nickel 

on them, they were tested in SR of m-xylene. Afterwards, the most active catalysts were tested in 

SR of a synthetic bio-oil/bio-glycerol mixture. 
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The experiments carried out with m-xylene showed that at 1073 K industrial residues derived 

materials supported catalysts were as actives as alumina supported catalyst. However, at lower 

reaction temperatures alumina catalyst was more active. In addition, at the last reaction stage at 

1073 K, industrial residues derived materials presented higher hydrogen yields than in the first 

reaction stage. That increase was attributed to the gasification of the filamentous carbon 

produced during the low temperature reaction stages. 

Then, three selected catalysts (Ni/DLWO, Ni/PF and Ni/SSA) were tested under SR of synthetic 

bio-oil/bio-glycerol mixture. In that reforming process, those three catalysts were less active than 

Ni/Al2O3 catalyst, especially at 973 K. Additionally, as happened with Ni/Al2O3 catalyst, 

industrial residues derived materials supported catalyst were unable to recover their initial 

activities. That behaviour was caused by the high graphitic carbon content of the catalysts. 

Among the tested materials, SSA was the most suitable for catalyst preparation as it achieved 

hydrogen yields that were close to the other catalysts at the first two reaction stages, but it 

produced a higher hydrogen yield during the last reaction stage at 1073 K. That higher activity 

was probably originated by the low carbon content on it. However, during the SR of synthetic 

bio-oil/bio-glycerol process, industrial residues derived materials supported catalysts were not as 

actives as Ni/Al2O3 catalyst. 
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ABSTRACT 

Herein, materials with natural origins (volcanic materials and minerals) were used as nickel 

catalyst support. A first screening of the catalysts was carried out by testing the catalyst in Steam 

Reforming (SR) of m-xylene at a Steam to Carbon (S/C) molar ratio of 5.0, at atmospheric 

pressure at temperatures from 1073 to 873 K. Afterwards, the most active catalysts were tested in 

SR of a synthetic bio-oil/bio-glycerol mixture at S/C molar ratio of 5.0, atmospheric pressure at 

1073 and 973 K. For comparison purposes, a prepared Ni/Al2O3 catalyst was used. Catalysts 

were characterized before and after the activity tests, and those values were correlated with the 

activity. Among the tested catalysts, Ni/Sepiolite T catalyst was the most active catalyst 

overcoming the hydrogen yields of Ni/Al2O3 in some cases. That fact was attributed to the high 

nickel dispersion. However, it deactivated quicker than alumina supported catalyst when reaction 

temperature was reduced. Regarding the deactivation resistance, volcanic materials supported 

catalysts were the most resistant ones, which almost recovered the initial hydrogen yields when 

they were tested in SR of synthetic bio-oil/bio-glycerol mixture. 

11.1. EXPERIMENTAL 

11.1.1. Catalyst preparation 

The preparation of the catalysts was carried out by Wet Impregnation (WI) process, following 

the procedure described in Chapter 3. Thereby, a 13 wt. % of nickel was impregnated in the 

supports. The natural materials used for catalyst preparation were the following: 

 Volcanic materials: Lava, volcanic ashes (Ashes), grey lapilli (GL) and red lapilli (RL) 

 Minerals: atapulgite, estevensite, olivine, sepiolite S and sepiolite T 

11.1.2. Catalyst characterization 

The catalysts prepared and used in this chapter were characterized by N2 adsorption-desorption 

isotherms, Temperature programmed reduction (TPR), Inductively Coupled Plasma-Optical 

Emission Spectroscopy (ICP-OES), Temperature programmed desorption of ammonia 

(NH3-TPD), CO chemisorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy 

(XPS) and Temperature programmed oxidation (TGA-TPO). 
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4.4.1. Tests methodology 

First, the feasibility of the non conventional materials supported catalysts were tested in SR of 

m-xylene. The experiments were carried out in the same conditions as the SR of m-xylene with 

alumina supported catalysts. Catalysts were tested at different temperatures, as indicated in 

Figure 11.1. Experiments were carried out at atmospheric pressure and an S/C molar ratio of 5.0. 

 

Figure 11.1. Reaction temperature profile followed during the SR of m-xylene experiments. Green dots indicate the 

sampling moments. 

 

Figure 11.2. Reaction temperature profile followed during the SR of the synthetic bio-oil/bio-glycerol mixture 

experiments. Green dots indicate the sampling moments. 

Then, the catalysts that were the most active during SR of m-xylene were tested in SR of a 

synthetic bio-oil/bio-glycerol mixture. The mixture was prepared as an equimolecular mixture of 

n-butanol, m-xylene, furfural, m-cresol, syringol and glycerol. Reforming experiments were 
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performed at 1073 K for 5 hours before reducing the reaction temperature to 973 K and 

maintained for 5 hours. Then, the reaction temperature was heated up to 1073 K and maintained 

for 2 hours to compare initial and final activity results, as shown in Figure 11.2. Experiments 

were performed at atmospheric pressure and an S/C molar ratio of 5.0.  

During the experiments, samples were taken every hour and liquid and gas products analyzed 

using two gas chromatographs. The activity results produced with non conventional supported 

catalysts were compared with the results obtained with Ni/Al2O3 catalysts. 

11.2. RESULTS AND DISCUSSION 

11.2.1. Fresh and reduced catalysts characterization 

11.2.1.1. Catalyst textural properties and chemical composition 

Natural materials supported nickel catalysts showed a wide variety in their textural property 

values, which are summarized in Table 11.1. In general, the lowest BET surface areas were 

measured for volcanic materials. Accordingly, their pore volumes were very low and average 

pore sizes, in general, higher than 100 Å. Therefore the main contribution to the measured BET 

surface came from surface roughness. Those low surface area values were probably originated 

by the high temperature treatments materials suffered during their production. 

Table 11.1. Textural properties of calcined natural materials supported catalysts. 

Catalyst SBET VP PD 
Ni 

content 

 
Catalyst SBET VP PD 

Ni 

content 

Ni/Lava 1 <0.01 159 7.6  Ni/Atapulgite 80 1.33 67 12.0 

Ni/Ashes 3 0.03 370 13.0  Ni/Estevensite 92 0.06 25 10.5 

Ni/GL 1 0.01 402 10.5  Ni/Olivine 7 0.02 135 10.3 

Ni/RL 1 <0.01 36 11.5  Ni/Sepiolite S 104 0.13 52 12.1 

      Ni/Sepiolite T 119 0.46 156 12.5 

SBET: BET surface area (m
2
/g);  

VP: Pore volume (cm
3
/g). 

PD: Average pore size (Å). 

Nickel nominal value (wt. %): Ni=13.0. 

     

 

 

On the contrary, minerals supported catalysts owned BET areas higher than 80 m
2
/g. The 

exception was olivine supported catalyst, which textural properties were closer to volcanic or 

industrial residues derived material supported catalysts.  
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Ni/Atapulgite and Ni/Sepiolite T catalysts presented high pore volume and average pore size 

values as it could be expected from the high BET areas. But, even if their surface area was high, 

Ni/Estevensite and Ni/Sepiolite S contained pores with low volume and size. Thus, these 

catalysts were highly porous, but those pores were very small. 

The nickel content in the catalysts was measured by ICP-OES and the results are also 

summarized in Table 11.1. The amount of nickel determined for each catalyst was close to the 

nominal 13 wt. % value, with the exception of Ni/Lava catalyst. That catalyst contained a nickel 

value close to the 8 wt. %. 

Following the procedure of the previous chapter, the chemical composition of selected materials 

was determined by XRF technique. Accordingly, the chemical composition of the natural 

materials is summarized in Table 11.2. 

As it could be expected due to the origin of the materials, the loss on ignition (LOI) value was 

low, close to 1 %, for all volcanic materials. The main components of all volcanic materials were 

SiO2 and Al2O3, which represent the 60 % of the total weight for Lava, GL and RL. That sum 

represents almost the 80 wt. % for VA. In all those materials, the silica-alumina ratio was 3, 

approximately. The following most abundant components in volcanic materials are Fe2O3, MgO 

and CaO, which represent around the 25 wt. % of the materials. That amount is lower for VA, 

around 15 wt. %. The rest of the measured oxides (MnO, Na2O, K2O, TiO2 and P2O5) 

individually represent less than 3 wt. %. 

Table 11.2. Chemical composition of selected non-conventioanl materials, measured by XRF. 

Support SiO2 Al2O3 Fe2O3* MnO MgO CaO Na2O K2O TiO2 P2O5 LOI 

Lava 46.8 15.6 12.2 0.2 5.9 10.9 2.8 1.8 1.7 0.5 0.5 

VA 61.8 16.5 6.7 0.2 2.2 6.5 3.4 0.9 0.6 0.1 1.1 

GL 43.4 11.9 13.4 0.2 12.3 9.9 2.8 1.2 2.8 0.7 0.3 

RL 45.1 12.4 13.5 0.2 10.0 9.9 3.0 0.9 2.5 0.5 0.8 

Olivine** 41  8  48 
 

    
 

Sepiolite S 64.2 2.5 0.7 0.1 23.1 1.6 0.3 0.6 0.1 0.1 5.2 

Sepiolite T 60.8 3.3 2.6 0.1 21.2 0.4 0.8 0.4 0.2 0.1 4.1 

*Total iron content expressed as Fe2O3. 

**Chemical composition obtained from provider. 

 

The composition of GL and RL materials are very close to each other. Nevertheless, their 

appearance is clearly different. GL is grey whereas RL is a reddish material. That difference was 

attributed to the different oxidation state of iron on the materials as Fe2O3 is a red oxide while 
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FeO and Fe3O4 are grey oxides. Therefore, RL material could mainly contain Fe2O3 while in GL 

the most abundant oxides were FeO or Fe3O4. 

On the other hand, the main components of minerals were SiO2 and MgO, which reached a value 

close to 90 wt. % for the analyzed materials and olivine. In this case, silica was also more 

abundant than MgO. The chemical composition of sepiolites, even if the origin of the sepiolites 

was different, the chemical composition of them was similar. Nevertheless, Sepiolite T also 

contained a 2.7 wt. % of zinc.  

11.2.1.2. Temperature programmed reduction (TPR) 

Fresh calcined natural materials supported catalysts were analysed by TPR. The reduction 

profiles obtained are summarized in Figure 11.3 for volcanic materials supported catalysts and in 

Figure 11.4 for minerals supported catalysts. 

Volcanic materials supported catalysts produced similar reduction profiles. All of them 

contained two different reduction peaks below 900 K. The first peak, which represented the 

highest hydrogen consumption in all cases, had the maximum in the range from 625 to 700 K, 

approximately. The peaks at lower temperature, around 625 K, were attributed to the reduction 

of bulk NiO, whereas the peaks around 700 K could be originated by the reduction of NiO 

weakly interacting with SiO2 support [1–4].  

 

Figure 11.3. TPR profiles of the catalysts with volcanic material supports. 

Then, the second hydrogen consumption peak took place with the maximum around 750 K, 

produced by the reduction of NiO particles more strongly interacting with SiO2 support [2]. 
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could be found as an independent peak, as in the cases of Ni/Lava or Ni/LR, or as a shoulder of 

the first peak as in the case of Ni/Ashes. The presence of easily reducible nickel or nickel with 

low interaction with the surface is in good agreement with the textural properties of the catalysts. 

Thus, as the surface area in which nickel could be dispersed is low, nickel particles were 

agglomerated, becoming big particles with low interface with support material. Thereby, these 

TPR results showed that the weakest nickel-support interactions took place in Ni/RL catalyst. 

Additionally, the TPR experiment of Ni/Ashes catalyst produced an additional third peak with 

the maximum around 950 K, which could be attributed to the presence of NiO particles in 

intimate contact with the support [5]. 

The reduction patterns of the minerals supported catalyst presented a wider variety of shape. The 

reduction profile of Ni/Atapulgite catalyst contained three contributions with maximums around 

640, 780 and 910 K. Those peaks were attributed to the reduction of bulk NiO, NiO-SiO2 and 

superficial NiO-MgO, respectively [6,7]. A reduction peak around 640 K was also present in 

Ni/Olivine and Ni/Sepiolite T catalysts. However, for Ni/Olivine catalyst the maximum of the 

peak took place at slightly higher temperatures, probably due to a higher amount of nickel to be 

reduced. At temperatures around 840 K and 1045 K, Ni/Olivine catalyst presented two 

contributions due to the reduction of the free iron oxide associated to the olivine structure (Fe2O3 

and MgFe2O4), which occurs from 820 to 1073 K [8–10]. But, those peaks could also be 

attributed to the reduction of NiO-SiO2 and bulk NiO-MgO [6]. Similar Ni/Olivine reduction 

profile was obtained by García-García et al. [11]. 

 

Figure 11.4. TPR profiles of the catalysts supported on minerals. 
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Above 700 K Ni/Sepiolite T presented two additional peaks. The first one took place around 

875 K due to the reduction of superficial NiO-MgO [6]. The second peak, with a maximum 

around 970 K was attributed to nickel species strongly interacting with the sepiolite support [12]. 

Sepiolite S supported nickel catalyst also contained three reduction peaks. Nevertheless, the tow 

first reduction peaks for Ni/Sepiolite S agreed with the temperatures of the second and third 

reduction peaks of Ni/Sepiolite T catalyst, i.e. around 875 and 970 K. In addition, it presented a 

last peak around 1080 K probably due to the reduction of Fe
3+

 impurities present in the substrate 

[10]. 

The first reduction peak for Ni/Estevensite catalyst had its maximum around 750 K due to the 

reduction of NiO-SiO2 [6,7]. Then, at higher temperatures, around 960 and 1045 K presented 

two peaks attributed to the reduction of nickel species with strong interaction with the support 

[12] and the reduction of bulk NiO-MgO species, respectively [6]. 

11.2.1.3. X-ray diffraction (XRD) 

Figure 11.5 contains the XRD patterns of selected reduced catalysts. On them, different 

diffraction peaks can be observed depending on the support material. However, metallic nickel 

diffraction peaks were measured in the patterns of all catalysts around 44 and 52 2 theta degrees. 

 

Figure 11.5. XRD patterns of selected volcanic and minerals supported reduced catalysts. 

The nickel peaks recorded at 44 degrees were used to estimate an average nickel crystallite size 

using Scherrer's equation (see Table 11.3). For volcanic materials supported catalysts (Ni/Ashes 

and Ni/GL) the crystallite sizes ranged from 150 to 190 nm.  
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In the case of the minerals supported catalysts, the ones with high surface areas (Ni/Atapulgite 

and Ni/Sepiolite T) presented low average crystallite sizes, which were around 20-25 nm. 

Similar average nickel crystallite sizes were estimated for Ni/PF and Ni/SSA catalysts (~30 nm). 

On the other hand, Ni/Olivine catalyst, which contained a low porosity, owned nickel crystallites 

around 80 nm. 

Table 11.3. Average nickel crystallite sizes estimated from XRD results using Scherrer’s equation. 

Catalyst Ni size (nm) 

Ni/Ashes 190 

Ni/GL 150 

Ni/Atapulgite 20 

Ni/Olivine 80 

Ni/Sepiolite T 25 

 

Even if low nickel crystallite sizes were estimated, nickel dispersion was lower than 0.01 % for 

most of the catalysts. For these catalysts, sepiolite S (0.14 %) and sepiolite T (0.44 %) supported 

catalyst presented the highest dispersion values. Accordingly, they contained nickel active sites 

with a size below 600 and 250 nm. Thus, due to the difference in nickel sites and the estimated 

nickel crystallite sizes, the polycrystalline structure of nickel sites was highlighted. 

11.2.1.4. X-ray photoelectron spectroscopy (XPS) 

The XPS patterns for nickel electrons are depicted in Figure 11.6. The patterns show that nickel 

was mainly present in oxidized state. Accordingly, peaks attributed to NiO were detected in the 

range from 854 to 857 eV for Ni 2p 3/2 electron [13–16] with the corresponding shake up 

satellite peak at 860-862 eV [13,14,16]. In addition, for some catalysts, Ni 2p 1/2 peaks were 

identified around 874 eV [13–19] with the corresponding shake up satellite peak around 880 eV 

[16,18]. Those peaks were also attributed to the presence of NiO (Ni
2+

) [18,19].  

The surprising XPS results for the nickel oxidation state on reduced catalysts was attributed to 

the assumption that NiO was formed on the surface nickel particles due to the air exposure of the 

samples for few minutes during XPS analyses [19]. 

On the other hand, due to the complex chemical composition of the materials used as support, 

additional metals were identified in the surfaces of the catalysts using this technique. Thus, for 

volcanic materials calcium spectra showed doublet peaks around 347 and 351 eV, which 

correspond to Ca 2p 3/2 and Ca 2p 1/2 electrons, respectively [20–23]. Those binding energies 
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are characteristic of Ca
2+

 [21] of some calcium minerals [23], which is in good agreement with 

the origin of these support materials. Accordingly, the binding energy values around 347 eV are 

characteristic of CaO, Ca(OH)2 and CaCO3 [24]. However, the amount of surface calcium on 

Ni/GL catalyst doubled the amount of Ni/Ashes catalysts. 

 

Figure 11.6. XPS patterns for Ni 2p 3/2 and Ni 2p 1/2 electrons of volcanic materials and minerals supported 

catalysts. 

Calcium contributions were not observed for minerals supported catalysts. Nevertheless, 

magnesium was detected in all the analyzed minerals supported catalysts, being the most 

abundant in the surface of Ni/Olivine catalyst. Magnesium was present as MgO at a binding 

energy close to 50 eV [25]. 

11.2.2.Activity results 

11.2.2.1. SR of m-xylene at S/C = 5.0 

Volcanic materials supported catalysts were used in m-xylene SR at temperatures from 1073 

from 873 K, atmospheric pressure and an S/C molar ratio of 5.0. The m-xylene conversion and 

the gas species yields measured in those experiments are summarized in Figure 11.7.  

During the four hours of reaction at 1073 K all catalysts were able to completely convert 

m-xylene, as thermodynamic equilibrium values predict. Nevertheless, hydrogen yields did not 

reach equilibrium, caused by the low WGS reaction performance and the presence of methane 

and other hydrocarbons. The presence of hydrocarbons was especially important for Ni/Lava 

catalyst. Therefore, its hydrogen yield is the lowest at 1073 K. 
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The presence of hydrocarbons and low WGS reaction performance could be due to the presence 

of few active sites available for reaction, caused by the low nickel dispersion as the big amount 

of bulk nickel reduction on TPR experiments indicate. Therefore, m-xylene molecules were 

thermally cracked but not reformed. 

In this reaction conditions, Ni/Ashes catalyst achieved the highest hydrogen yield, which was 

close to the equilibrium values because of its very low hydrocarbon yield and the high CO2 yield 

in comparison with the rest of the catalysts. 

After reducing the reaction temperature to 973 K the m-xylene conversion values dropped, 

though thermodynamic equilibrium predicted a complete conversion. Thus, Ni/Ashes catalyst 

achieved a conversion close to the 80 %, while the rest of the catalysts did not reach the 60 % of 

m-xylene conversion. Accordingly, Ni/Ashes catalyst achieved the highest hydrogen yield 

(~50 %) at 973 K. However, all hydrogen yields were far from the equilibrium, which was 

originated by the low WGS reaction performance and the hydrocarbons present in the gas phase. 

At this temperature, the hydrocarbons yields are higher than at 1073 K, even if the conversion 

was lower. Thus, even if less m-xylene molecules are cracked catalysts capacity to reform those 

molecules was limited. 

A further decrease of the reaction temperature to 873 K produced catalysts to achieve an even 

lower conversion values. Again, the highest conversion and hydrogen yield were produced by 

Ni/Ashes catalysts, 55 % and 40 %, respectively. Ni/Lava, Ni/GL and Ni/RL catalysts 

conversions did not reach the 30 %, thus, hydrogen yields remained below 20 %. Those 

differences in hydrogen yield mainly happened due to the high CO and CO2 yields of the 

Ni/Ashes catalyst in comparison with the rest of the catalysts. High CO yields are originated by 

the higher conversion of m-xylene produced by Ni/Ashes catalyst while maintaining the methane 

and hydrocarbons yields close to the values of the other catalysts. The high CO2 yield occurred 

due to a higher performance of a WGS reaction, favored thermodynamically. 

The low conversions and therefore low hydrogen yields produced with the decrease of the 

reaction temperature could be due to the deactivation of the catalysts by active metal oxidation or 

carbon deposition, to the slower kinetics or a combination of both of them. At this reaction 

conditions, hydrocarbons yields are also high compared with the conversion. Thus, the limited 

capacity of the catalysts to reform hydrocarbons in these conditions is highlighted. Therefore, to 

determine the reason for the low activities at 973 and 873 K reaction temperature was increased 

to 1073 K to compare initial and final activity parameters. 
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Surprisingly, the increase of the reaction temperature to 1073 K produced an increase in the 

values of the measured parameters. Thus, all catalysts recovered the initial values of the 

measured parameters. Therefore, catalysts were not deactivated during the previous reaction 

stages, so the low activity values were caused by slower kinetics. In addition, Ni/Ashes and 

Ni/GL increased their hydrogen yields with respect to the initial H2 yields. Those higher values 

are originated by the gasification of the carbon accumulated on the catalysts during the previous 

reaction stages. 

 

Figure 11.7. Parameters measured during the SR of m-xylene with volcanic materials supported catalysts. (a) 

Conversion, (b) CH4, (c) hydrocarbon, (d) H2, (e) CO and (f) CO2 yields. Experiments were carried out in the 

following steps: 1073 K for 4 h (left set for each species), followed by 973 K for 4 h, 873 K for 4 hours and 1073 K 

for 2 h (right). Values shown are the average over the last 2 h at each step. 

As the characterization results of Ni/GL and Ni/RL catalysts were similar and Ni/RL exhibited 

lower activity towards hydrogen than Ni/GL catalysts, Ni/RL catalyst was discarded to be tested 

with the synthetic bio-oil/bio-glycerol mixture. 

The results produced with the use of minerals supported catalysts in SR of m-xylene at an S/C 

molar ratio of 5.0, atmospheric pressure and at temperatures from 1073 to 873 K are collected in 

Figure 11.8. 
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Initially, at 1073 K all catalysts completely converted m-xylene. In addition, low methane and 

hydrocarbon yields were measured, except for Ni/Atapulgite catalyst. Thus, high hydrogen 

yields were measured, being the lowest for Ni/Atapulgite catalyst. In those reaction conditions, 

the highest hydrogen yields were achieved by sepiolite supported catalysts because they 

achieved the experimental results closest to the equilibrium ones, even if they did not reach 

equilibrium CO and CO2 yields. 

 

Figure 11.8. Parameters measured during the SR of m-xylene with minerals supported catalysts. Conversion (a), 

CH4 (b), hydrocarbon (c), H2 (d), CO (e) and CO2 (f) yields. Experiments were carried out in the following steps: 

1073 K for 5 h (left set for each species), followed by 973 K for 5 h (centre) and 1073 K for 2 h (right). Values 

shown are the average over the last 2 h at each step. 

When reactor temperature was reduced to 973 K, Ni/Estevensite catalyst was the only catalyst 

unable to completely convert m-xylene. In addition, it produced the highest hydrocarbon yield, 

while its CH4, CO and CO2 yields were similar to the ones achieved by the rest of the catalysts, 

with the exception of sepiolite supported catalysts. Therefore, estevensite supported catalyst 

achieved the lowest hydrogen yield at 973 K. Nevertheless, the hydrogen yields produced by 

atapulgite and olivine supported catalysts were not far from the H2 yield of Ni/Atapulgite 

catalyst because of their high hydrocarbon yield. 

At 973 K the most active catalysts were the sepiolite supported ones. Ni/Sepiolite S catalyst 

produced a hydrogen yield slightly higher than the above mentioned three catalysts mainly 
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because of a lower hydrocarbon yield. On the other hand, Ni/Sepiolite T produced again the 

experimental results that were closest to equilibrium values. That fact is especially highlighted in 

hydrocarbon and CO2 yields. 

During the following reaction stage at 873 K, only sepiolite supported catalysts were able to 

convert more than 90 % of the m-xylene. Atapulgite and olivine supported catalysts converted 

the 55 and 45 % of the m-xylene fed, respectively, while Ni/Estevensite catalyst only converted 

the 20 % of m-xylene, approximately. Therefore, as equilibrium predicted complete conversion 

values were only achieved by Ni/Sepiolite T catalyst, the rest of the measured parameters 

remained also far from equilibrium values. 

Thus, Ni/Atapulgite, Ni/Estevensite and Ni/Olivine catalysts did not overcome the 30 % of the 

hydrogen yield because their conversion and consequently their CH4, hydrocarbon, CO and CO2 

yields were the lowest at 873 K. Although Ni/Sepiolite S achieved almost a complete 

conversion, the hydrogen yield was lower than the H2 yield achieved by Ni/Sepiolite T catalyst, 

because of a lower WGS reaction performance and a lower hydrocarbon conversion capacity. 

Therefore, the most active catalyst at 873 K was Ni/Sepiolite T, which almost reached the 

equilibrium H2 yield (~80 %). But it was unable to completely convert the hydrocarbons 

produced in the reaction and did not perform the WGS reaction to the extent that equilibrium 

predicted. 

At this point, it was clear that the activity of Ni/Atapulgite, Ni/Estevensite and Ni/Olivine 

catalysts at 873 K was limited. Therefore, the reaction temperature was heated up to 1073 K to 

discern whether the low activity was due to slow kinetics or deactivation. Thus, when the 

reaction temperature was increased at 1073 K, all catalysts were able to completely convert the 

m-xylene molecules to gaseous products. Accordingly, the hydrogen yields increased to 

equilibrium values. In view of that, it was concluded that the low activities measured at 873 K 

were not due to catalyst deactivation, but slow kinetics of the steam reforming process. 

At those reaction conditions, CO and CO2 yields close to equilibrium values were also observed 

for Ni/Atapulgite and the two sepiolite supported catalysts. For Ni/Estevensite and Ni/Olivine 

catalysts, the CO yield was much higher than equilibrium, due to a poor WGS reaction 

performance. Nevertheless, their hydrogen yield reached almost equilibrium values, probably 

due to the gasification of carbon at 1073 K. 

Therefore, Ni/Atapulgite, Ni/Olivine and Ni/Sepiolite T catalysts were selected to be studied 

under SR of bio-oil/bio-glycerol mixture. The first two catalyst were selected due to their high 

carbon gasification capacity as they showed at the second reaction stage at 1073 K. Ni/Sepiolite 
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catalyst was selected because it was the most active in all tested temperatures, producing 

conversions and yields close to equilibrium values in all cases. 

11.2.2.2. SR of the synthetic bio-oil/bio-glycerol mixture at S/C= 5.0 

The activity results of the volcanic materials supported catalysts used in SR of 

bio-oil/bio-glycerol at atmospheric pressure, S/C=5.0 and different temperatures are resumed in 

Figure 11.9.  

Catalysts completely converted the reaction mixture at 1073 K as equilibrium conditions 

predicted. In those conditions, Ni/Ashes catalyst produced the highest hydrogen yield (~65 %) 

due to its higher WGS reaction performance. Nevertheless, that hydrogen yield value was far 

from the equilibrium hydrogen yield which is around the 90 %. Ni/Lava and Ni/GL produced 

hydrogen yields as high as 55 %. The three catalysts produced high amounts of methane and 

hydrocarbons, which caused the hydrogen yields to be significantly lower than in equilibrium 

conditions. 

The reduction of the reaction temperature to 973 K produced an important drop in the value of 

the conversion, even if thermodynamic equilibrium predicted a complete conversion. 

Accordingly, the reduction of the conversion value produced a decrease in the carbon species 

yield, especially in CO and CO2 yields, which affected the H2 yields. At 973 K WGS reaction 

should be thermodynamically favored as equilibrium CO and CO2 yields indicate. However, 

experimental condition limited its performance, probably due to slow kinetics on the catalysts. 

At this temperature, the highest hydrogen yields were for Ni/Lava and Ni/Ashes catalysts which 

produced hydrogen yields close to the 30 %. 

The increase of the reaction temperature to 1073 K produced an increase on the conversion 

values. Thus, Ni/Lava and Ni/GL completely converted the bio-oil/bio-glycerol mixture, while 

Ni/Ashes converted more than 80 % of the liquid feed. Accordingly, the yields to carbon species 

increased, but it was not enough to reach initial activity values. As happened during the first 

reaction stage, experimental CO yields were higher than CO2 yields, the contrary than 

equilibrium predicts. Therefore the hydrogen yields were lower than equilibrium. In addition, 

CO yields reached the same values than at the first reaction stage at 1073 K, which did not 

happen with CO2 yields, because catalysts were slightly deactivated. Despite deactivation and 

lower conversion, Ni/Ashes catalyst was the one that most promoted the WGS reaction at this 

reaction conditions. 
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On the other hand, Ni/Lava and Ni/GL catalysts increased their initial hydrocarbon yield, 

indicating that catalysts partially lost their hydrocarbon reforming capacities. Ni/Ashes catalyst 

significantly reduced its hydrocarbon yield. However, that decrease in yield is related to the 

decrease in conversion, evidencing that this catalyst lost its m-xylene chain breaking capacity 

due to deactivation. Accordingly, the hydrogen yields of the catalysts were lower than at the first 

reaction stage at 1073 K. 

Thus, all catalysts produced a similar amount of hydrogen during the last reaction stage at 

1073 K. Nevertheless, Ni/Lava and Ni/Ashes suffered the biggest drops in their hydrogen yields 

values. Therefore, Ni/GL catalyst was the most stable during the experiments. 

 

Figure 11.9. Parameters measured during the SR of bio-oil/bio-glycerol mixture with volcanic materials supported 

catalysts. (a) Conversion, (b) CH4, (c) hydrocarbon, (d) H2, (e) CO and (f) CO2 yields. Experiments were carried out 

in the following steps: 1073 K for 4 h (left set for each species), followed by 973 K for 4 h, 873 K for 4 hours and 

1073 K for 2 h (right). Values shown are the average over the last 2 h at each step. 

The three selected minerals supported catalysts (Ni/Atapulgite, Ni/Olivine and Ni/Sepiolite T) 

were tested in SR of a synthetic bio-oil/bio-glycerol mixture. The activity results obtained in 

those experiments are summarized in Figure 11.10. 

During the first reaction stage at 1073 K, Ni/Atapulgite was the only catalyst that did not reach 

the 90 % of conversion of the syrnthetic bio-oil/bio-glycerol mixture. In addition, it produced the 
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highest methane and hydrocarbon yields, 9 % and 27 %, respectively, and the lowest WGS 

reaction performance. Therefore, it was the less active catalyst at 1073 K. Among Ni/Olivine and 

Ni/Sepiolite T, the second catalyst was the most active for hydrogen production at 1073 K, 

achieving an H2 yield close to the 80 %. Olivine supported catalyst almost reached a 50 % of 

hydrogen yield. That difference was produced because olivine supported catalyst was less active 

in methane and hydrocarbon reforming. Moreover, the WGS reaction performance for 

Ni/Olivine catalyst was also lower than for Ni/Sepiolite T catalyst. 

 

Figure 11.10. Parameters measured during the SR of the bio-oil/bio-glycerol mixture with minerals supported 

catalysts. Conversion (a), CH4 (b), hydrocarbon (c), H2 (d), CO (e) and CO2 (f) yields. Experiments were carried out 

in the following steps: 1073 K for 5 h (left set for each species), followed by 973 K for 5 h (centre) and 1073 K for 

2 h (right). Values shown are the average over the last 2 h at each step. 

The decrease of the reaction temperature to 973 K affected the activity of all tested mineral 

supported catalyst. Thus, the conversion of all catalysts was lower than their original conversion 

value at 1073 K. Nevertheless, thermodynamic equilibrium values predicted a complete 

conversion of the bio-oil/bio-glycerol mixture. Thus, Ni/Olivine and Ni/Sepiolite T catalysts 

achieved a conversion close to the 80 %, whereas the conversion for Ni/Atapulgite catalyst did 

not reach the 40 %. Accordingly, the hydrogen yields were lower than the ones obtained at 

1073 K. Accordingly, Ni/Atapulgite catalyst achieved a hydrogen yield lower than 10 %. and 

Ni/Olivine and Ni/Sepiolite T catalysts reached an H2 yield value in the range of 30-40 %.  In 
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this reaction conditions, the WGS reaction was poorly performed by all catalysts, which in 

addition to the high hydrocarbon yields explains the low hydrogen yields that were produced in 

the experiments. 

Finally, when reaction temperature was heated up to 1073 K, two catalytic behaviors were 

observed. On the one hand, Ni/Atapulgite and Ni/Sepiolite T catalysts increased the values of 

their activity parameters from the ones obtained at 973 K. However, they did not reach the 

values obtained in the first reaction stage at 1073 K because of a loss of hydrocarbon reforming 

capacity and WGS reaction performance, especially for Ni/Sepiolite T catalyst. On the other 

hand, Ni/Olivine was not able to produce such an increase. So, the activity parameters measured 

for this catalyst were similar to the ones it produced at 973 K. Nevertheless, even that, the 

activity parameters for Ni/Olivine catalyst were higher than for Ni/Atapulgite catalyst. 

Therefore, the most suitable catalyst for further experiments with minerals supported catalyst 

was Ni/Sepiolite T as it was the most active catalyst for tested experimental conditions. 

11.2.3. Spent catalyst characterization 

The XRD patterns of the most active catalysts were recorded after being used in activity tests. In 

addition, SEM images of the most active catalysts were taken to investigate the surface of the 

catalysts after the experiments. Finally, TGA-TPO analyses were performed to the catalysts to 

determine the amount of carbon and the carbon morphology on the catalysts. 

11.2.3.1. X-Ray powder diffraction (XRD) 

The XRD patterns of used catalysts are shown in Figure 11.11 and Figure 11.12 for volcanic 

material and mineral supported catalysts, respectively. The figures contain a comparison of the 

XRD patterns of reduced catalyst and catalysts used in SR of m-xylene and SR of the synthetic 

bio-oil/bio-glycerol mixture. In those patterns, it is possible to observe how the diffraction peaks 

of the support materials and nickel were diluted as carbon and SiC diffraction peaks started. 

Therefore, the detection of nickel peaks was more difficult in the case of the catalysts used in SR 

of the synthetic bio-oil/bio-glycerol mixture. Accordingly, nickel diffraction peaks were only 

clearly detected in the patterns of Ni/Atapulgite and Ni/Sepiolite T catalysts. 
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Figure 11.11. Comparison of the XRD patterns of reduced and used Ni/Ashes and Ni/GL catalysts. 

 

 

Figure 11.12. Comparison of the XRD patterns of reduced and used Ni/Atapulgite, Ni/Olivine and Ni/Sepiolite T 

catalysts. 

Nickel peaks recorded at 44 2 theta degrees were used to estimate the average nickel crystallite 

size using Scherrer’s equation. Thus, the nickel crystallite sizes of used catalysts are summarized 

in Table 11.4. 
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Table 11.4. Average nickel crystallite sizes estimated from XRD results for non-conventional materials supported 

catalysts. 

Catalyst Ni size* Ni size** 

Ni/Ashes 80 15 

Ni/GL 95 - 

Ni/Atapulgite 60 45 

Ni/Olivine 70 - 

Ni/Sepiolite T 40 25 

*Catalysts used in SR of m-xylene 

** Catalysts used in SR of bio-oil/bio-glycerol 

 

The comparison of the nickel crystallite sizes of reduced catalysts with catalysts used in SR of 

m-xylene showed that crystallite sizes were increased for minerals supported catalysts. 

Therefore, some sintering could have occurred in the process. On the other hand, for volcanic 

materials supported catalyst the size of nickel crystallites was approximately halved. Moreover, 

when the nickel crystallite sizes of the catalysts used in SR of the synthetic bio-oil/bio-glycerol 

mixture were analyzed three observations were carried out. Firstly, the XRD profiles of Ni/GL 

and Ni/Olivine catalysts did not allow an estimation of nickel crystallite size. Secondly, minerals 

supported catalysts presented crystallite sizes which values were similar to the ones estimated in 

reduced catalysts. Thirdly, Ni/Ashes catalyst contained nickel crystallites much lower than the 

ones in the reduced state. 

Those different behaviors were attributed to a recrystallization process that could have occurred 

during the reforming reactions. Moreover, biggest nickel particles could have also been covered 

by carbon (as the absence of nickel diffraction peaks for nickel in some catalysts indicate), 

reducing the average size of the crystallite sizes [11]. Accordingly, diffraction peaks due to 

carbon (graphite) structures were recorded in all used catalysts around 26 2 theta degrees [26–

29]. 

Finally, it is worth mentioning that in some used catalysts there were some diffraction peaks in 

the 35-40 2 theta degrees range and peaks around 60 and 68 2 theta degrees which were 

originated by the SiC particles in the analyzed samples. The presence of SiC was due to an 

inefficient sieving for the separation of the catalyst after the experiments. 
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11.2.3.2. Scanning electron microscopy (SEM) 

SEM images at the same increments were obtained for volcanic materials supported catalysts, 

which are contained in Figure 11.13 for Ni/Ashes catalyst and Figure 11.14 for Ni/GL catalyst. 

For those catalysts samples used in both reforming processes, nickel particles were not visible in 

the morphological images, but they can be observed in the compositional images, as highlighted 

in red circles and arrows. Therefore, nickel particles were encapsulated with a thin carbon layer 

on them. In addition, in the morphological images at 100000 increases some carbon nanotubes 

(indicated with green arrows) can be observed, especially in the case of the catalysts used in SR 

of m-xylene. 

The presence of those nanotubes, which can be gasified at lower temperatures than graphitic or 

encapsulating nickel, could be the reason for the increment of the hydrogen yield during the last 

reaction stage at 1073 K during SR of m-xylene. 
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Figure 11.13. SEM images of Ni/Ashes catalyst used in SR of m-xylene and SR of synthetic bio-oil/bio-glycerol 

mixture. 

In the case of the minerals supported catalysts, SEM images for Ni/Atapulgite (Figure 11.15), 

Ni/Olivine (Figure 11.16) and Ni/Sepiolite T (Figure 11.17) catalysts were obtained. In this case, 

the images were obtained at different magnifications. 
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Figure 11.14. SEM images of Ni/GL catalyst used in SR of m-xylene and SR of synthetic bio-oil/bio-glycerol 

mixture. 
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Figure 11.15. SEM images of Ni/Atapulgite catalyst used in SR of m-xylene and SR of synthetic 

bio-oil/bio-glycerol mixture. 

For Ni/Atapulgite and Ni/Olivine catalysts used in SR of m-xylene it was not possible to observe 

nickel particles in the morphological images at 25000 increases, but they were observed in the 

compositional images. Thus, the nickel particles contained a thin external carbon layer. 

Nevertheless, while nickel particles in Ni/Atapulgite catalyst were on the surface of the catalysts, 

in Ni/Olivine catalyst nickel particles were on carbon nanotubes. Those carbon nanotubes can be 
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observed with special clarity in the morphological image at 100000 increases for Ni/Olivine 

catalysts used in SR of m-xylene. 
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Figure 11.16. SEM images of Ni/Olivine catalyst used in SR of m-xylene and SR of synthetic bio-oil/bio-glycerol 

mixture. 
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Figure 11.17. SEM images of Ni/Sepiolite T catalyst used in SR of m-xylene and SR of synthetic 

bio-oil/bio-glycerol mixture. 

On the other hand, in the SEM images for Ni/Sepiolite catalysts used in SR of m-xylene, nickel 

particles were clearly visible in the morphological image at 25000 increases. That fact was 

confirmed by the compositional image. Similar observations were made for Ni/Al2O3 catalysts. 
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Therefore, that easy access for reactants to uncovered nickel particles was probably the reason 

for  the high activity of Ni/Sepiolite T during SR of m-xylene. 

The SEM images obtained for minerals supported catalysts used in SR of synthetic 

bio-oil/bio-glycerol mixture showed that regardless of the magnification, nickel was not visible 

on catalysts. 

11.2.3.3. X-ray photoelectron spectroscopy (XPS) 

The measurements carried out by XPS showed that the amount of nickel in the surface of the 

catalysts used in SR of m-xylene was lower than 1 %. Nickel was identified in metallic and 

oxidized state on the catalysts. Accordingly, Ni 2p 3/2 core electron species with binding 

energies around 853 eV for metallic nickel [30,31] and around 856 and 860 eV for nickel oxide 

and the corresponding satellite peak [32], respectively. Moreover, the same nickel lines for Ni 2p 

1/2 electron were identified around 871, 874 and 879 for metallic nickel, nickel oxide and the 

satellite peak of nickel oxide [14,30,33] respectively. On the contrary, the presence of nickel in 

the catalysts used in SR of synthetic bio-oil/bio-glycerol mixture was not recorded 

Carbon was the main component in the surface of the catalysts used in both processes, reaching 

values up to 90 % in some catalyst. Among carbon species, graphite was the most abundant 

specie with a binding energy of 284.6 eV [34–36], followed by carbon in hydrocarbon form (C-C 

binding) attributed to filamentous carbon at binding energies around 285 eV [36]. 

11.2.3.4. TGA-TPO 

The weight losses due to carbon removal on the catalysts are summarized in the following 

figures. Thus, Figure 11.18 contains the TGA-TPO profiles of the catalysts used in SR of 

m-xylene. Similarly, Figure 11.19 contains the TGA-TPO profiles of the catalysts used in SR of 

the synthetic bio-oil/bio-glycerol mixture. 

The weight losses of catalysts used in SR of m-xylene ranged from almost 5 wt. % to 18 wt. %. 

The lowest weight loss took place for Ni/Lava or Ni/Atapulgite catalyst, while Ni/Sepiolite T 

lost the highest amount of weight.  

The weight losses occurring from 573 to 800 K are related to the oxidation of filamentous carbon 

associated with nickel particles. Afterwards, above 800 K graphitic carbon with different degrees 

of graphitization is oxidized [37–39]. Therefore, as the weight losses for these catalysts mainly 

occurred from 800 to 1000 K, graphitic carbon is the main carbon component in used catalysts. 

However, the presence of filamentous carbon (carbon nanotubes) was confirmed by SEM. 
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Thereby, it is likely that the reason for the high yields to CO and CO2 during the last reaction 

stages at 1073 K was the gasification of filamentous carbons. Nevertheless, even if carbon was 

present as graphite in the catalysts, the amount of carbon was not enough to deactivate the 

catalysts during m-xylene SR. 

 

Figure 11.18. TGA-TPO profiles of the natural materials supported catalysts used in SR of m-xylene. 

From 300 to 500 K slight weight losses occurred, which were attributed to the desorption of 

reactants, products and reaction intermediates adsorbed in the catalysts [39]. Then, for some 

catalysts, a weight increase occurred, due to the oxidation of the reduced nickel that was present 

in the catalysts. The maximums of these nickel oxidation weight increases were recorded around 

600 and 700 K [40,41]. Nevertheless,  
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Figure 11.19. TGA-TPO profiles of non-conventional materials supported catalysts used in SR of synthetic 

bio-oil/bio-glycerol mixture. 

The TGA-TPO profiles of the catalysts used in SR of the synthetic bio-oil/bio-glycerol mixture 

are summarized in ¡Error! No se encuentra el origen de la referencia.. In this case, the weight losses 

were higher than the ones measured for the catalysts used in SR of m-xylene. Accordingly, the 

measured weight losses ranged from 15 to 55 wt. %, approximately. The higher carbon content 

was measured at temperatures above 1000 K due to a higher degree of graphitization of carbon 

in the catalysts.  

Filamentous carbon was not detected by TGA-TPO profiles in these catalysts, but in some SEM 

images carbon nanotubes were observed. Therefore, it is likely that carbon nanotubes were 

removed from the catalysts during the last reaction stage at 1073 K, which produced an increase 

in the CO yield values. However, under the experimental conditions of SR of the synthetic 

bio-oil/bio-glycerol mixture the CO2 yields were not increased due to a limited performance for 

the WGS reaction. 

11.3. CONCLUSIONS 

In this chapter, several materials with a natural origin (volcanic material and mineral) were used 

to prepare nickel based catalysts. The activity of those catalysts was evaluated under SR of 
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m-xylene conditions, and then, the most active catalysts were under SR of a synthetic 

bio-oil/bio-glycerol mixture. In all cases, the activity of the natural materials supported catalysts 

was compared with the activity of a prepared Ni/Al2O3 catalyst. 

Ni/Ashes catalyst was the most active catalyst during SR of m-xylene. It was also able to gasify 

a high amount of carbon at the last reaction stage at 1073 K, producing a notable increase in the 

hydrogen yield. However, during SR of the synthetic bio-oil/bio-glycerol mixture all volcanic 

materials supported catalysts presented similar activities, which were lower than the activities 

achieved by Ni/Al2O3 catalyst. 

Among the tested catalysts, Ni/Sepiolite T catalyst was the most promising one. This catalyst 

produced hydrogen yields close to the equilibrium values when it was used to produce hydrogen 

from m-xylene, being more active than alumina supported catalyst at 873 K. Moreover, when it 

was tested in SR of synthetic bio-oil/bio-glycerol mixture, it produced a hydrogen yield which 

was similar to the value achieved by Ni/Al2O3. However, when reaction temperature was 

reduced, Ni/Sepiolite T deactivated and it was not able to reach the hydrogen yields of Ni/Al2O3 

at the last reaction stage at 1073 K. 

The main deactivation cause of the catalyst was the deposition of graphitic carbon and the 

encapsulation of metallic nickel, which limited the access of reactants to nickel sites as the 

TGA-TPO profiles and SEM images indicate.  
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The current PhD thesis has been focused in the development of nickel based catalyst supported 

on commercial and non conventional materials for hydrogen production by means of Steam 

Reforming (SR) of bio-oil. In the present Chapter 12, the most relevant conclusions achieved in 

each chapter are summarized. 

Alumina supported catalysts for hydrogen production from model compounds SR to real 

bio-oils SR. 

The use of alumina supported catalysts for producing hydrogen showed to be a feasible 

alternative. In addition, the experiment layout, from individual model compound SR, going 

through model compound mixtures SR to finish with real bio-oil SR allowed to gain insights into 

the reforming process. Thereby, the main conclusions are the following: 

 In the range from 1073 to 873 K, the use of a high reaction temperature favours the 

hydrogen production during the experiments. Moreover, the increase of the amount of 

bio-oil model compounds to the synthetic bio-oil mixture produces a decrease in the 

catalytic activity and a permanent catalyst deactivation at low temperatures. 

 Cerium incorporation on the catalyst favoured the hydrogen production as the cerium 

containing catalyst achieved the highest hydrogen yields during SR of n-butanol, SR of 3 

component equimolecular mixture, SR of the synthetic bio-oil/bio-glycerol and SR of 

real bio-oil. Moreover, during SR of m-xylene was the most suitable catalyst. 

 The beneficial effect of CeO2 incorporation becomes beneficial once nickel is 

incorporated on the CeO2-Al2O3 support. That happens because the CeO2-Al2O3 support 

lacks a bond breaking component, as nickel. Therefore, the support is not able to produce 

high hydrogen yields by itself. 

 SR of n-butanol was not enough for selecting the best prepared catalyst, but was useful to 

discard catalysts with limited activity, such as Ni/MgO-Al2O3 catalyst. 

 Nickel sintering occurred during the SR experiments. However, it was not the main 

deactivation cause. 

 The presence of sugars (xylose) in the reactants is a cause of reaction system blockage, 

which happens before catalyst deactivation. Thus, new reactor design or feed strategies 

should be developed. 

 The durability of the reaction system was increased by incorporation a low amount of 

glycerol to the reactants mixture. 
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 Rhodium (1 wt. %) was the most effective noble metal to prepare a highly active and 

stable bimetallic catalyst (Rh-Ni/CeO2-Al2O3), as shown in the experiments with 

synthetic bio-oil/bio-glycerol mixture and real bio-oil.  

 Graphitic carbon deactivation was the main catalyst deactivation cause when individual 

model compounds or equimolecular model compound mixtures were used to produce 

hydrogen. On the contrary, during the SR of real bio-oil the coverage of nickel sites by 

reactants, reaction intermediates or reaction products was the main deactivation cause. 

 The deactivation of the catalyst produced by nickel sites being encapsulated by 

amorphous carbon was quicker than the deactivation by graphitic carbon deposition. 

SR of synthetic bio-oil/bio-glycerol mixture using commercial silico-aluminates and 

laboratory prepared Zeolite L 

After evaluating the activity of alumina supported catalysts, the application of commercial 

silico-aluminates as reforming catalyst support was studied. Due to the knowledge gained in the 

previous sections, catalysts were tested in SR of synthetic bio-oil/bio-glycerol mixture: 

 CeO2 incorporation on commercial silico-aluminates was favorable for increasing the 

hydrogen yield. Therefore, zeolite L supported catalysts were prepared with CeO2 

modification. 

 HZSM5 and USY zeolites supported catalysts were the most appropriate catalysts for 

hydrogen production from bio-oil, as they were the most deactivation resistant catalysts, 

due to their high surface area and dispersion values. Therefore, Ni/CeO2-HZSM5 and 

Ni/CeO2-USY were the most adequate catalysts. 

 c exchange of the zeolite L increased the metal dispersion of the final catalyst but did not 

increase the catalytic activity of the catalyst. 

 Sodium ion exchange not only sintered the structure of the zeolites, but also reduced the 

activity of the catalysts. Accordingly, the catalysts supported on zeolite L with Na 

exchange achieved the lowest hydrogen yields. 

 Disc shaped zeolite L supported catalysts were more resistant to deactivation than zeolite 

L with nanocrystals. Therefore, Ni/CeO2-DL and Ni/CeO2-DLCs were the most suitable 

zeolite L supported catalysts for SR of synthetic bio-oil/bio-glycerol, due to their high 

dispersion and acidity values. 

 The main deactivation cause of the catalysts was the graphitic carbon deposition on the 

catalysts during the reforming process, as well as the inability of the catalysts to remove 

the carbon deposited on the surface as fast as it was produced. 
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Use of non-conventional materials as nickel catalyst supports for hydrogen production 

from bio-oil 

Finally, the feasibility of using non-conventional materials (industrial residues derived materials, 

volcanic materials and minerals) for bio-oil SR was studied, with the aim of producing cheaper 

catalysts. For a first screening, prepared catalysts were tested under SR of m-xylene. Afterwards, 

the most active catalysts were used under SR of a synthetic bio-oil/bio-glycerol mixture. In this 

study, the following conclusions were achieved: 

 The activity of non-conventional materials supported catalysts at low temperatures (973 

and 873 K) was limited. However, as the reaction conditions were not too harsh, catalysts 

were not deactivated. 

 Non-conventional materials supported catalysts achieved higher hydrogen yields at the 

last reaction stage than at the beginning of the experiment at 1073 K because of the 

filamentous carbon gasification. 

 During SR of m-xylene the activity values achieved with non-conventional material 

supported catalyst were similar to the values achieved by Ni/Al2O3 catalyst. 

 The activities measured in SR of synthetic bio-oil/bio-glycerol mixture were lower than 

the activity of Ni/Al2O3 catalyst at the first reaction stage at 1073 K. Therefore, 

non-conventional material supported catalysts were less actives than Ni/Al2O3 catalyst. 

 The activity of non-conventional materials supported catalysts was limited at 973 K due 

to slower kinetics and catalyst deactivation. 

 Volcanic materials supported catalysts were the most deactivation resistant catalysts, as 

they almost achieved their initial activities at 1073 K. 

 Ni/Sepiolite T catalyst was the most suitable catalyst as it achieved hydrogen yields that, 

in some cases, were higher than for Ni/Al2O3 catalyst. The high activity was attributed to 

the high dispersion of nickel. However, it suffered a stronger deactivation than alumina 

supported catalyst, when reaction temperature was lowered.  

 The main deactivation cause of the catalysts was the graphitic carbon deposition and the 

encapsulation of nickel sites.  

 Non-conventional material supported catalysts showed to be a feasible alternative to 

conventional catalyst formulations. However, their activity in long term experiments 

should be better studied for an industrial application. 

The comparison of the catalytic activities measured for different catalysts when SR of the 

synthetic bio-oil/bio-glycerol mixture showed that alumina supported catalysts were the most 
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adequate catalysts. Those catalysts, achieved high hydrogen yields at all tested temperatures. The 

difference in hydrogen yields was especially notorious when reforming experiments were carried 

out at 973 K, where only Ni/CeO2-HZSM5 and Ni/CeO2-USY achieved hydrogen yields 

comparables with alumina supported catalysts. Regarding the resistance to the deactivation, 

alumina supported catalyst, Ni/CeO2-HZSM5 and Ni/CeO2-USY catalysts were again the most 

suitable catalysts. 

From an industrial point of view, it is concluded that an accurate control of the reaction 

temperature is needed for a successful Steam Reforming process for hydrogen production. Thus, 

the operational temperature drops could be avoided, limiting the carbon deposition on the 

catalysts. That carbon deposition showed to be able to permanently deactivate the catalysts. 

Moreover, the activity lost due to the low temperature deactivation was not recovered when 

reaction temperature was set up. Therefore, operational temperature fluctuations should be 

avoided in order to maintain the high activity values, and therefore, high hydrogen yields. 

Catalysts deactivation could be mitigated by increasing the S/C ratio, but it would increase the 

energy requirements. Accordingly, the feeding of a low amount of oxygen (or air) could reduce 

the energy demand for bio-oil reforming, favouring the gasification of carbon while not 

deactivating the catalysts by oxidation. 

The use of air instead of pure oxygen may reduce the operational costs of the reforming process 

as air is cheaper than oxygen. Nevertheless, it requires the heating of huge amounts of nitrogen, 

which also increases the cost. In addition, the use of air would dilute the produced hydrogen. 

Thus, the reforming system would require further purification processes, originating additional 

costs. Therefore, future work should be focused in developing and testing different reactor 

designs such as membrane reactors or microreactors for producing a high purity hydrogen 

streams while avoiding undesired secondary reactions. 

On the other hand, the use of innovative reforming processes proposed in literature (sorption 

enhanced steam reforming, chemical looping reaction or a combination of both of them) could 

play an important role in the extensive hydrogen production from bio-oil. However, at the 

moment, these processes need to be further tested with real bio-oils before their scaling up for to 

an industrial process.  
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