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The dental pulp of adult teeth contains a very active stem cell population with a neural 

crest (NC) cell phenotype, termed dental pulp stem cells (DPSCs). Human DPSCs (hDPSCs) 

present substantial advantages compared to other stem cell types that can be found in the adult 

human body, such as a much higher accessibility than endogenous neural stem cells, big 

capacity of ex-vivo expansion, basal expression of a wide variety of neural cell markers and 

subsequent neural differentiation, leaving the door open to neuroregenerative autologous cell 

therapy.  The common proliferative and maintaining culture mediums are composed of fetal 

bovine serum (FBS) that leads fastest growth of hDPSC as well as surface-adherent cell 

monolayer generation. However, the use of FBS is not compatible with the clinical employment 

of these protocols as far as it is the cause of allergies and immune reaction in grafts in vivo. 

Furthermore, several authors have related the presence of serum with the differentiation toward 

mesenchymal cell lineages, and hence, the reduction of neurogenic capacity of hDPSCs. All 

these inconveniences have challenged the scientific society to design and improve new 

innovative serum-free neural inductive protocols.  

In the present work, we wanted to characterize the phenotypic properties of adult 

hDPSCs cultured in serum free mediums. Our results confirmed that non-engineered and non-

modified adult DPSCs cultured in different serum-free mediums were able to generate 

neurosphere-like structures, singular structures generated by neural stem cells (NSCs), called 

dentospheres. Furthermore, we noticed the basal expression of early neural markers, the remain 

of mesenchymal stem cell being and the pluripotential character of DPSCs both in serum-free 

medium and serum containing mediums. However, each specific serum-free culture medium 

provide different unique features to hDPSCs. Thus, when hDPSCs were grown in Neurocult™ 

differentiation neurogenic induction media, a cell culture medium without serum routinely used 

for the differentiation of adult neural stem cells, we showed the neurogenic potential of hDPSCs 

by the expression of mature neuronal and glial markers. In addition, we also described for the 

first time non-engineered and non-modified hDPSCs expressing vascular endothelial cell 

marker CD31, as well as stem mesenchymal and neural early markers in the hDPSCs cultured in 

Neurocult™ proliferation maintaining media. Surprisingly, 1 month post-intracranial graft into 

athymic nude mice these CD31+, Nestin+ cells were located within brain blood vessels 

increasing their laminin expression and co-existing together with murine vascular endothelial 

cells.  

On the other hand, hDPSCs were cultured in a commercial specific mesenchymal stem 

cell culture medium: StemPro MSCTM (STP). Taking advantage of the molecular and 

physiological profits provide by this medium, we observed an increase of NC cell and 

pluripotential markers expression as well as higher neurogenic potential of hDPSCs, that 

suggest a step back to Neural crest stem cells (NCSCs)- like phenotype. 
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Our results demonstrate the possibility of employment serum-free mediums to culture hDPSCs. 

Indeed, not only was avoid the serum associated issues, but it was achieved the activation of 

neural crest stem/progenitor cell character that facilitate the differentiation toward neural 

lineages. Moreover, unexpectedly, we are the first group that discovered an efficient way to 

obtain functional, they showed histo-integration and capacity to generate neovasculature in vivo, 

endothelial cells from hDPSCs in serum-free conditions.  

To sum up, in this work are clarified the doubts that serum-free cultures may produce; such as, 

those related with cell viability and stem being switch, the neurogenic potential of hDPSCs and 

the integration of these cells in live systems have been widely studied. We conclude that the 

neurogenic potential and newly discovered endothelial potential among the other characteristics 

aforementioned convert hDPSCs in a real option to use as a stem cell source for 

neuroregenerative therapies.  

 

Keywords: Dental Pulp Stem Cells, DPSCs, Dentosphere, Culture media, Serum-free, Calcium 

imaging, Cell differentiation, Neurogenic, Endothelial, Cell survival, Regenerative medicine. 
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Abbreviations 

Aβ = Amyloid beta  

AD = Alzheimer´s disease 

AT-MSCs= Adipose tissue mesenchymal stem cells 

bFGF= fibroblast growth factor  

BME= b-mercaptoethanol  

BDNF= Brain derived neurotrophic factor  

BHA = Butylated hydroxyanisole 

BMPxxx= Bone morphogenetic proteinxxx 

BM-MSCs= Bone marrow mesenchymal stem cells 

CCl4= Carbon tetrachloride  

CDxxx= Cluster Differentiation 

CLECs = Cord lining epithelial cells 

CLMCs= Cord lining mesenchymal cells  

CNS= Central Nervous System 

CT1= Cardiotrophin-1  

DA= Dopaminergic   

DARPP = Cyclic AMP regulated phosphoprotein  

DFSCs= Dental follicule stem cells 

DMEM= Dubbelco´s modified eagle´s medium 

DMP1= Dentin matrix protein 1  

DMSO= Dimethylsulfoxide 

DSPP = Dentin sialophosphoprotein  

ECCs= Embryonal carcinoma cells 

ECM= Extracellular matrix 

EGF = Epidermal growth factor  

EMSCs= Ectomesenchymal stem cells 

EMT= Epithelial-mesenchymal transition 
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EPCs= Endothelial progenitor cells 

ESC= Embryonic stem cells 

FBS= Fetal Bovine Serum 

GDNF = Glial cell line derived neurotrophic factor  

GFAP= Glial fibrillary acidic protein  

GMP= Good manufacturing practice 

hDPSCs= Human DPSCs  

hESCs= Human ESCs 

HGF= Hepatocyte growth factor 

HNF-4α = Nuclear factor 4 α  

HSC= Hematopoietic stem cells  

IBMX= 3-isobutyl-1-methylxanthine  

ICM= Inner cell mass of the blastocyst  

IDO= Indoleamine 2,3-dioxygenase  

IL-xx= Interleukin-xx  

ITSx= Insulin-Transferrin- Selenium-x 

ISCT=International Society for Cellular Therapy  

LMX1a = LIM homoeo- box transcription factor 1 α 

MAP-2= Microtubule-associated protein-2 

MCAO= Middle cerebral artery occlusion  

mESCs= Mouse ESCs 

MI = Myocardial infarction  

MPTP = 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri- dine- 

MSCs= Mesenchymal stem cells 

NC = Neural crest  

NCSCs= Neural crest stem cells 

NeuN= Neuronal nuclei protein  

NGF= Nerve growth factor  

NTRKxx= Neurotrophic tyrosine kinase 
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NT-3= Neurotrophin 3 

NSC= Neural stem cell 

OSX= Osterix 

OGD= Oxygen-glucose deprivation  

PD= Parkinson´s disease 

Pdx1= Duodenal homeobox 1  

PDLSC= Periodontal ligament stem cells  

PitX= Paired-like homeodomain transcription factor 

PNS= Peripheral Nervous System 

POSS-PCL= Polyhedral oligosilsesquioxane–poly (ε-caprolactone)  

POSS-PCU= Polyhedral oligomeric silsesquioxane poly (carbonate-urea) urethane 

PPSCs= Primitive pluripotent stem cells  

PSCs= Pluripotent stem cells 

RA = Retinoic acid  

RGCs= Retinal ganglion cells  

RhoA= Ras homolog gene family member A  

RUNX2= Runt-related transcription factor 2  

SCAP= Stem cells from apical papilla  

SCI= Spinal cord injury 

SCNT= Somatic cell nuclear transplantation  

SFCs = Synovial fluid cells 

SGZ= Dentate gyrus Subgranular zone  

SHED= Stem cells from primary exfoliated deciduous teeth 

Shh= Sonic hedgehog  

SSEA= State-specific embryonic antigens 

STP= StemPro MSCTM 

SUR1= Sulfonyl- urea receptor1  

SVZ= Subventricular zone 

TERT= Telomerase reverse transcriptase   
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TGF-β3=Transforming growth factor-β III  

TH = Tyrosine hydroxylase  

TLR x= Toll-like receptor x 

TNF-α = Tumor necrosis factor-α  

TON= Traumatic optic neuropathy  

UCB-SCs = Umbilical cord blood stem cells  

UC-MSCs= Umbilical cord mesenchymal stem cells 

VMAT = Vesicular monoamine transporter  

VSELs = Very small embryonic-like stem cells  

WHO= World Health Organization 

 6-OHDA= 6-hydroxydopamine 
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1.Stem cells 

Stem cells are classically defined as cells with ability to self-renew, generating copies of 

themselves, and cells with capacity to differentiate under specific physiologic or experimental 

conditions to mature types of cells that constitute distinct organs and tissues (Potten and 

Loeffler, 1990). 

 

Stem cells were first described in 1950, when researchers isolated embryonal carcinoma 

cells (ECCs) from terathocarcinomas (Stevens and Little, 1954; Yu and Thomson, 2008). Few 

years after in 1964, Kleinsmith and Pierce discovered the ability of these cells to differentiate 

into all three germ layers. Given self-renewal and multi-lineage differentiation ability, the 

pluripotent stem cell (PSCs) concept was born, providing the first step to mouse and human 

embryonic stem cell (ESCs) description. All these discoveries along with propagation and study 

were only performed for in vitro models, until some researchers started searching in vivo models 

(Kahan and Ephrussi, 1970). In order to discover the in vivo similar ECCs model like, inner cell 

mass of the blastocyst (ICM) was analyzed (Martin, 1980). ICM showed to have even more 

differentiation potential than ECCs, increasing their use in in vitro models for development. 

This ICM is located in the blastocyst during embryonic development. After the division of the 

zygote when morula structure is achieved, outer layer cells differentiate to trophectoderm, 

which will derive in the placenta. ICM however, will create all cells of the adult body. Both 

human ESC (hESCs) and mouse ESC (mESCs) were obtained deriving ICM of human and 

mouse blastocyst, respectively. hESC are karyotypically common and remain the ability to 

differentiate into all three germ layers (Amit et al., 2000). 

 

Briefly, mesenchymal stem cells (MSCs) pluripotency was described taking in 

consideration the ability they showed to differentiate into mesenchymal derived cell lineages, 

such as; osteoblasts, chondrocytes, adipocytes and myoblast. Indeed, their ability to differentiate 

into one germ layer was defined like multipotency. This first MSCs were obtained culturing 

bone marrow cells and selecting thus that adhere to the plate (Chamberlain et al., 2007; 

Friedenstein et al., 1976) (figure1). 
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Figure 1. Schematic timeline showing the most important historical milestones in stem cell research (Oliveira et 

al., 2016). 

 

The differentiation potential of stem cells is defined by the developmental stage that they are in. 

Taking this fact in consideration stem cells could be divided in 3 groups: 

Totipotent: These cells can generate an individual, creating both a completely viable embryo 

and temporary support tissues (placenta and the umbilical cord). The totipotentiality of the cells 

lasts from just first fertilization to first cell division rounds, until blastomeric stage, 4 days after 

fertilization (Brook and Gardner, 1997). 

Pluripotent: During the differentiation undergo by embryonic cells during first 4 days of 

development, blastocyst is generated. ICM within the blastocyst are the ones defined as 

pluripotent stem cells. They are able to differentiate into cells from 3 germ layers, and hence to 

generate any tissue of the organism. However, the lost the ability to form extraembryonic 

tissues, such as placenta (Smith, 2001). 

Multipotent: The differentiation ability of multipotent stem cells is highly bounded compared 

with the two other stem cells described above. These cells can only differentiate into few cell 

types, and biological function is related with the reparation of their original tissue (Slack, 2000; 

Spangrude et al., 1988). 
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Figure 2. Differentiation potential of pluripotent stem cells and their origins (Oliveira et al., 2016). 

 

Within stem cells, there are to kind of cells; i) Embryonic stem cells, both totipotent and 

pluripotent cells. ii) Adults (after-birth) stem cells, both pluripotent and multipotent stem cells 

(figure 2).    

1.1Embryonic stem cells (ESCs) 

These pluripotent stem cells are located in the ICM of the blastocyst, and they remain the 

ability to differentiate to every adult tissue type. Since mouse ESCs were isolated for first in 

1981, the molecular mechanisms involved in the maintenance of self-renewing and pluripotency 

were studied due to their potential therapeutic applications (Evans and Kaufman, 1981) . 

Among these mechanisms, epigenetic chromatin changes, signal pathways and transcription 

factor effects were described as the responsible of pluripotency (Marks and Stunnenberg, 2014; 

Welling and Geijsen, 2013). Furthermore, transcription factors show an important role 

maintaining pluripotency both in vivo and in vitro (Dunn et al., 2014; Takashima et al., 2014), 

including Oct4 and Nanog, which seem indispensable in regulation (Boyer et al., 2005; Loh et 

al., 2006). 

1.2Adult stem cells 

All three stem cell types can be obtained from embryos; however, only two of them are 

achievable from adult individual. In vivo, pluri- and multi- potent stem cells are present in few 

specific tissues, even also can be generated using in vitro  techniques. 
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1.2.1Hematopoietic stem cells (HSCs) 

Hematopoietic stem cells (HSCs) are the precursors that gives raise to all red and white 

blood cells.  The generation of enteric hematopoietic system is given by these rare cells, which 

have a self-renewal ability and pluripotent capacity. Blood cell production occurs during the life 

of organism in the bone marrow (Ng and Alexander, 2017).  Taking in consideration that as 

over than million of blood cells must be replaced every day, and there are only thousands of 

stem cell population in adult organism throughout entire life, it is clear the importance of correct 

regulation to maintain homeostatic production and to face diseases and stress. HSC are located 

in bone marrow within adult mammals, and along with the hematopoietic microenvironment, 

they form the niche which is the modulator network to control broad aspects of hematopoiesis 

(Hoggatt et al., 2016). The most popular hypothesis says that primitive pluripotent stem cell 

(PPSCs), also known as very small embryonic-like stem cells (VSELs) CD45-, are at the top of 

the hierarchy of stem cell in the adult bone marrow. They can give raise to long-term 

repopulating HSC CD45+, short-term HSCs, MSCs and endothelial progenitor cells (EPCs) 

(Ratajczak, 2008). Adult long-term HSCs are located in a specific niche, closely associated with 

endosteum where they exist in a relative hypoxia condition (Morrison and Scadden, 2014; 

Nombela-Arrieta et al., 2013). These cells remain quiescent until cell cycle recruitment is 

activated by external signaling, such as; cytokine thrombopoietin, the presence of 

megakaryocytes or via interferon (Baldridge et al., 2010; Nakamura-Ishizu et al., 2015; 

Yoshihara et al., 2007). In addition, it is suggested that lineage specification of HSCs can be 

committed very early in the hematopoietic hierarchy in different HSCs progenitor cells. Thus, 

progenitors with self-renewing restricted ability may emerge directly from HSCs (Yamamoto et 

al., 2013). Therefore, there may coexist the idea of direct pathway from HSCs to specific mature 

cells and the idea of the progenitor mature cell pathway. Furthermore, new studies suggest the 

recruitment of long-lived progenitor populations maintains blood cell population in steady-state 

(Sun et al., 2014).  The most primitive myeloid progenitors are known as common myeloid 

progenitor (CMP) and common lymphoid progenitor (CLP) to  lymphoid progenitor(Iwasaki 

and Akashi, 2007). However, recent studies show that before to classical lymphoid/myeloid 

pathways, HSC undergo myelo-erythroid myelo-lymphoid committing (Arinobu et al., 2005) 

(figure 3). 
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Figure 3. Immunophenotypic markers of adult murine HSCs and ‘lineage-restricted’ HSC populations (Ng and 

Alexander, 2017).  

1.2.2Very small embryonic/epiblast-like stem cells (VSELs) 

It is a backup population that renews the pool of tissue committed stem cells defined as 

undifferentiated remain of stem cell population residing in adult tissue firstly described in 2006 

(Kucia et al., 2006). In addition, they are able to circulate throughout peripheral blood in stress 

situations and they express pluripotency markers Oct4, Nanog and SSEA, along with the 

capacity to differentiate into all three germ layers (Ratajczak et al., 2012).  

 

 1.2.3Neural stem cells (NSCs) 

The multipotent nature of neural stem cells (NSC), allow these to differentiate into 

central nervous system (CNS) neural cells. Contrary to what was thought years ago, NSC are 

not only found in embryo developing, but they are located also in adult brain. During 

embryogenesis, after neural tube formation by neuroepithelial cells, they proliferate 

continuously in the ventricular zone in order to generate CNS (Merkle and Alvarez-Buylla, 

2006). Furthermore, these cells are transforming to radial glial cells during embryogenesis, 

another NSC subtype with ability to differentiate in any neural cell type (Götz et al., 2015). 

Despite of at first it was thought that radial glial cells served only as a neuronal migration 

scaffold, several researches demonstrated high proliferation and the ability to generate neurons, 

therefore, they were defined as kind of stem cell (Hartfuss et al., 2001; Mo et al., 2007; Noctor 

et al., 2004) . While differentiated neural type are created, more radial glial cells are generated 

by asymmetric division to maintain stem cell population during brain development (Miyata et 

al., 2004). Later, these radial glial cells derive to multipotent NSCs in mammal postnatal brain 

(Merkle and Alvarez-Buylla, 2006; Merkle et al., 2004). The vertebrates with outstanding  adult 
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neurogenesis even contain radial glia within the adult brain (Adolf et al., 2006; Grandel et al., 

2006). Although vast neurogenesis in mammals is restricted to embryonic brain development, 

nowadays, it is accepted that there are two neurogenic cell-containing locations in human adult 

brain. New neural cell generation is observed in the dentate gyrus subgranular zone of the 

hippocampus (SGZ) (Gage et al., 1998) and in subventricular zone (SVZ) (Doetsch et al., 1999).  

SVZ shows a peculiar ranked NSCs. Radial glial cells disappear after birth, and only type B 

cells are remained, which will become in type C cells, identified by Mash1 expression. C cells 

at same time are the precursors of neuroblasts, also known as type A cells, and oligodendrocytes 

(Parras et al., 2004) (Figure 3).  Contrary to SVZ, NSCs of the SGZ in adult brain are named as 

radial astrocytes, and they share both astrocytic and stem features (Kriegstein and Alvarez-

Buylla, 2009). These cells function as precursors of the new neural cells in dentate gyrus 

(Garcia et al., 2004; Steiner et al., 2004) and new neurogenesis is related with learning and 

memory (Zhao et al., 2008). Radial astrocytes, also known as type I progenitors (Fukuda et al., 

2003) , show an vertical elongation crossing the granular cell layer as well as horizontal little 

process along SGZ. Furthermore, contrary to other astrocytes, radial astrocytes show both 

GFAP and nestin expression (Seri et al., 2004; Steiner et al., 2006). Radial astrocytes are not 

able to give raise to neurons, but they are deriving in processes lacking D type cells, also 

referred as type II progenitors (Seri et al., 2004). In spite of both radial astrocytes and D type 

cells express Sox2, it is suggested that only nonradial cells are direct progenitors of new 

neurons and glial cells (Suh et al., 2007). After division, D cells can undergo symmetric division 

before differentiate into D2 type cells, which show a prominent process and express stage 

dependent different neural markers, such as; doublecourtin, PSA-NCAM, neun, etc..(Kriegstein 

and Alvarez-Buylla, 2009) (Figure 4). Very few oligodendrocytes are obtained in vivo in SGZ 

compared with SVZ. Only Mash1 overexpression is essential to redirect the neuronal fate to 

oligodendrocytic in NSCs of SGZ (Jessberger et al., 2008). 
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Figure 4. Neural stem cells origin and organization. (Kriegstein and Alvarez-Buylla, 2009) 

 

1.2.4Induced pluripotent stem cells (iPSCs) 

First time cell engineering was used to achieve genetically altered stem cells, the 

nucleus of a differentiated cell was transferred to an enucleated mouse oocyte by somatic cell 

nuclear transplantation technique (SCNT) (Wakayama et al., 1998). One year before, Wilmut et 

al published the successful cloning of Dolly sheep transferring the nucleus of differentiated cell 

to an enucleated unfertilized egg (Wilmut et al., 1997). However, there was an ethical issue 

related with human cells. In fact, this method could outcome in individual cloning that is a 

broadly discussed and controversial topic still nowadays. 

Taking in consideration ethical limitations showed by this technique, the aim became to 

develop reprogrammed pluripotent stem cells from differentiated somatic cells. Thus, the 

objective was the obtaining of cells with self-renewal and pluripotency properties similar to 

ESCs. iPSC concept was for first introduced by Takahashi and Yamanaka when they achieved 

the reprogramming of mouse fibroblasts. The reprogramming was given by retroviral 

transduction of Oct4, Sox2, Klf4 and c-Myc, also known as Yamanaka factors (Takahashi and 

Yamanaka, 2006).  It was the same group in charge of reprogramming human cells using the 

same method (Takahashi et al., 2007). In an effort to refine reprogramming procedure some 

changes were done in the methodology, among others; Nanog and Lin28 were used instead of 

Klf4 and c-Myc (Yu et al., 2007) and a combination of six factors to increase the efficiency in 

human fibroblast iPSCs (Liao et al., 2008). Several improvements were obtained such as; c-Myc 

seems to be dispensable in pluripotency induction (Wernig et al., 2008) and the combination of 

these factors with proteins, RNA and peptides to avoid viral infection related issues (Malik and 

Rao, 2013; O’Malley et al., 2009). 

Within adult stem cell type cells one of the most used cells are MSCs. Due to their ease 

of obtaining as well as the amount of them, these are the preferably selected adult stem cell to 

approach in vivo and in vitro tissue regeneration assays. 

 

1.2.5Mesenchymal stem cells (MSCs) 

Since Caplan popularized the term mesenchymal stem cell in 1990s, some researchers 

avoid to refer to cells with stem features in this way (Caplan, 1991). However, in 2000 in an 

International Society for Cellular Therapy (ISCT) workshop, the terminology was accepted and 

the acronym was coined (Horwitz and Keating, 2000). ISCT published a position statement to 
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settle the bases of the criteria to accurately describe and avoid misunderstood about MSCs. In 

agreement with this criteria MSC are primitive non-hematopoietic stromal cells able to 

differentiate into mesenchymal derived tissues with tissue regeneration function. They are 

located in bone, cartilage, muscle, ligament, tendon, adipose tissue (Chamberlain et al., 2007),  

in perivascular area (Crisan et al., 2008) and they could be also isolated from placenta, 

menstrual blood, umbilical cord and dental pulps in adult organism (Du et al., 2016; Ma et al., 

2014; Portmann-Lanz et al., 2006; Tirino et al., 2011).  

The most recognize immune-phenotype MSCs has been identified as positive for CD13, 

CD44, CD105, CD73 and CD90, while negative for hematopoietic markers CD34, CD45 and 

CD14.  

Following these features, Mesenchymal and Tissue Stem Cell Committee (MTSCC) of 

ISCT proposed minimal set to define MSC (Dominici et al., 2006): 

 1. MSCs have to be plastic-adherent when maintained under standard culture conditions. 

2. MSCs must have the ability for osteogenic, adipogenic, and chondrogenic differentiation. 

3. MSCs must express CD73, CD90, and CD105 (Table 1). 

 4. MSC must lack expression of the hematopoietic lineage markers c-kit, CD14, CD11b, CD34, 

CD45, CD19, CD79α,and human leukocyte antigen (HLA)-DR. 

It is important to highlight the immune-phenotype difference depending on MSC tissue 

origin, as it is describe in table 1.  

The highlights of MSCs are the self-renewal ability and pluripotent differentiation 

capacity. MSCs have the ability to differentiate into mesenchymal cells, such as adipocytes, 

fibroblasts, osteocytes and chondrocytes. In addition, MSCs have the capacity to become in 

other non-mesenchymal lineage specific cell types, undergoing the process called cross-

differentiation (Hass et al., 2011; Ullah et al., 2015).  

Apart from pluripotency, also their clinical application could be very interesting due to 

their homeostasis maintenance as well as their contribution in processes as aging, tissue damage 

and inflammatory tissue (Le Blanc et al., 2003; Sordi et al., 2005). 
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Table1. BM-MSCs, AT-MSCs and UC-MSCs immune-phenotype. 

 

1.2.5.1Bone marrow mesenchymal stem cells (BM-MSCs) 

Bone marrow not only contains hematopoietic stem cells, but also non-hematopoietic 

stem cells, such as bone marrow mesenchymal stem cells (BM-MSCs) and endothelial 

progenitor cells (Anjos-Afonso and Bonnet, 2007). BM-MSCs showed natural immune 

function, inhibition of local inflammatory responses and sepsis (McLean et al., 2011; Wang et 

al., 2015; Yang et al., 2013). It is known that CD44, CD73, CD90, CD105 and CD166 are 

positively marked, while CD14, CD34, CD45 are negatively expressed in these cells (table 1) 

(De Ugarte et al., 2003; Pittenger et al., 1999). 

Although their differentiation ability is limited in comparison with ESC, BM-MSCs 

have showed an incredible differentiation capacity in vitro. Indeed, they are able to differentiate 

into all three lineages cell type; ectoderm, mesoderm and endoderm   (Ullah et al., 2015; Zhang 

et al., 2018a).  

 

 

 

 

 BM-MSCs AT-MSCs UC-MSCs 

Positive CD13, CD44, CD73, 

CD90, CD105, 

CD166, STRO-1 

CD9, CD13, CD29, 

CD44, CD54, CD73, 

CD90, CD105, 

CD106, CD146, 

CD166, HLA I, 

STRO-1 

CD11b, 

CD29, CD44, CD90, 

CD73, CD105 

 

Negative CD14, CD34, CD45 CD11b, CD14, CD19, 

CD31, CD34, CD45, 

CD79a, CD133, 

CD144, HLA-DR 

CD31 CD34, CD45, 

CD117,HLA-DR  
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Figure. 5. Mesenchymal stem cell sources. (Guasti et al., 2018) 

 

Ectoderm: Under well-known neural induction medium consisting of growth factor cocktails, 

some groups have identified BM-MSC ectodermal lineages cell type differentiation despite of 

mesenchymal being of BM-MSCs. Rat and human BM-MSC were differentiated into neuronal 

cells in 2000 by containing simple induction media consisting in DMEM/2% dimethylsulfoxide 

(DMSO)/200 µM butylated hydroxyanisole (BHA) (Woodbury et al., 2000). Several groups 

follow this way in order to achieve more effective differentiation protocol. Both mouse and rat 

BM-MSCs were differentiated in neural cells by bFGF, FGF-8 and BDNF cocktails for 7 days, 

sequentially (Jiang et al., 2002). Even specific neuronal cell types are achieved modifying 

primary culture conditions. Thus, human BM-MSCs reprogramming with LMX1a, which is 

described as important piece in dopaminergic differentiation both in vivo and in vitro, resulted 

in dopaminergic differentiation (Barzilay et al., 2009; Wilkins et al., 2009). Regarding to 

dopaminergic induction, new investigation show the importance of cell passage number, the 

more passages have a cell, less dopaminergic differentiation and lower spiking and bursting 

frequencies shows it (Shall et al., 2018). As a counterpart of dopaminergic differentiation, also 

cholinergic neurons were obtained following a 1 mM b-mercaptoethanol (BME) and nerve 

growth factor (NGF) (100 ng/mL) consisting of 2 step induction protocol (Naghdi et al., 2009).  

Mesoderm: Taking in consideration the mesenchymal origin of BM-MSCs, it is not a surprise 

the ability of BM-MSCs to derive in mesodermal lineages cells. Several projects have 

confirmed the in vitro differentiation into adipocytes, osteocytes and chondrocytes using several 

differentiation cocktails. First stablished chondrocyte differentiation protocol was given for 

BM-MSCs (Mackay et al., 1998). After that, the differentiation was confirmed by some other 

research, while differentiation was analyzed by measuring oil droplet generation, mineralization 

and type collagen II secretion respectively (Gronthos et al., 1994; Muruganandan et al., 2009; 

Ranera et al., 2013; Wagner et al., 2005; Zhang et al., 2011). Combining the in vitro 
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differentiation capacity and new gene recombination technologies, more healer BM-MSCs have 

been obtained in order to use them in regenerative therapies. In this case BMP-7 overexpression 

in BM-MSCs lead to a better fracture healing ratio than wild type BM-MSCs  (Yan et al., 2018). 

Apart from these three cell types, also cardiomyocytes were derived from BM-MSCs. 9 years 

after the first attempt in rat BM-MSCs using 5-azacytidine, where multinucleated myotubes 

were obtained (Wakitani et al., 1995), the same protocol was used in human BM-MSCs to 

achieve myocyte-related genes, β-myocin heavy chain, α-cardiac actin, desmin and calcium-

potassium-induced calcium channels expressing differentiated cells (Xu et al., 2004). Moreover, 

the differentiation into endothelial cells have been seen in BM-MSCs, where the down-

regulation of IncRNA MEG3 seems to be a key as well as the effect of biphasic calcium 

phosphate ceramic (Chen et al., 2018; Sun et al., 2018; Urbich and Dimmeler, 2004). 

Endoderm: Although hepatocytes were thought to derived only from endodermal progenitor 

cells, MSCs demonstrated an unexpected hepatogenic differentiation ability. Exposing BM-

MSC to specific 2 step protocol consisting in; a week of a differentiation step where basal 

medium was supplemented with bFGF, EGF and nicotinamide, following by maturation step 

where medium was supplemented with oncostatin M, dexamethasone and ITS+ (insulin, 

transferrin, selenium) premix, they are able to become into hepatic cells. After the treatment 

they expressed liver specific transcription marker albumin, α-fetoprotein, nuclear factor 4 α 

(HNF-4α) as well as liver cells characteristic functions such as; albumin production, glycogen 

storage, urea secretion, uptake of low-density lipoprotein, and phenobarbital-inducible 

cytochrome P450 production  (Lee et al., 2004; Stock et al., 2014). Even non-human BM-MSCs 

hepatocytic differentiation is demonstrated in different species; from mouse to Tibetan mastiff 

(Xu et al., 2017b; Zhang et al., 2018a). Furthermore, the use of coating substrates to improve 

the proliferation, hepatic differentiation and hepatocyte-specific functions during the culture 

along with to ease the engraftment in vivo as scaffolding, has become an aim in last years. 

Coating plates with both liver extracellular matrix (ECM) and matrigel showed a significant 

improvement of differentiation and viability in BM-MSCs (Wang et al., 2018). 

Like happens with hepatocytes, pancreocyte differentiation ability of BM-MSCs was 

unexpected. However, there are some elegant works where BM-MSCs are successfully 

differentiated to insulin producing β-cells both in vitro and in vivo. The ability to differentiate 

these cells in vitro by specific inductive media, is going beyond than only morphological change 

but they are able to correct the streptozotocin-induced hyperglycemic condition (Gabr et al., 

2013, 2014; Tang et al., 2012). It is also demonstrated the capacity of these cells to differentiate 

into endocrine pancreatic lineage cells in vivo in the presence of paracrine factors, extracellular 

vesicle-mimetic nanovesicles, etc..(Bhonde et al., 2014; Oh et al., 2015; Phadnis et al., 2011). 
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 1.2.5.2Adipose tissue mesenchymal stem cells (AT-MSCs) 

 The adipose tissue has been classified as energy storing tissue composed by different 

cells. Within adipose tissue could be find adipocytes, endothelial cells, hematopoietic cells, 

fibroblasts and adipose tissue mesenchymal stem cells (AT-MSCs), all of them irrigated by an 

intermingling vasculature (Eto et al., 2009). Although AT-MSCs are similar to BM-MSCs in 

morphology and phenotype, there are important differences in cell harvest and cell yield 

(Markarian et al., 2014). In addition, it is demonstrated that transcriptome is different depending 

on MSC tissue origin. Thus, proliferation related genes are upregulated in AT-MSCs compared 

with BM-MSCs, which match with the fact of AT-MSC multiplied faster to up to 20 passages 

compared to BM-MSCs (Wagner et al., 2005) . AT-MSCs can be isolated from the patient 

himself with minimal donor morbidity, being useful to “autologous” cellular therapies. These 

cells are present in subcutaneous adipose tissue in both inguinal and abdominal areas (Hu et al., 

2014; Maharlooei et al., 2011; Zografou et al., 2013). The AT-MSCs denomination requires 

specific immune-phenotype and differentiation capacity criteria. Commonly described as 

fibroblastic-like large nucleus containing cells, their immune-phenotype have been defined as 

positive to CD9, CD13, CD29, CD44, CD54, CD73 (SH3), CD90, CD105 (SH2), CD106, 

CD146, CD166, HLA I, STRO-1 and negative to CD11b, CD14, CD19, CD31, CD34, CD45, 

CD79a, CD133, CD144, HLA-DR (table 1) (Chen et al., 2013; Schäffler and Büchler, 2007; 

Zuk et al., 2002).  

 Like happens with BM-MSCs, AT-MSCs are able to differentiate into all three lineage 

cells (ectodermic, mesodermic and endodermic) apart from expected mesenchymal lineage cells 

(Gadelkarim et al., 2018; Schäffler and Büchler, 2007; Ullah et al., 2015). 

Ectoderm:  Neural differentiation of AT-MSCs was first reported by Safford, who confirmed 

neural differentiation by nestin and neuronal nuclei protein (NeuN) expression (Safford et al., 

2002). Years later, several groups followed differentiating neural cells from AT-MSCs.  

Different inductive protocols were used for this aim, among others; simple neurobasal medium 

(Dave et al., 2018), neural induction media containing FGF2, EGF, BMP-9, retinoic acid and 

heparin to obtain cholinergic and dopaminergic neurons (Marei et al., 2018), olfactory 

ensheathing cells (OECs) or Schwann cells (SCs) conditioned medium (CM) (Lo Furno et al., 

2018), and even  one group achieve NSCs combining neurobasal media with EGF and bFGF 

(Petersen et al., 2018). In addition, new approach of neuro-differentiation based in the most 

common neuro-inductive material, graphene oxide, and in the one of the most important 

neuronal migration, proliferation and function regulators, calcium, also have demonstrated their 
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important role in the differentiation of AT-MSC to neuronal lineages (Feng et al., 2018; 

Goudarzi et al., 2018). 

Mesoderm: Transcriptional and molecular events responsible of lineage-specific mesodermal 

differentiation into osteocytes (Lian et al., 2004; Zhao et al., 2018), chondrocytes (Otto and 

Rao, 2004), adipocytes (Rosen, 2002) and myocytes (Brand-Saberi, 2005) are already studied 

and well-known. AT-MSCs derived adipocytes develop both white and brown adipocyte mature 

features, such as; lipolytic capacity under catecholamine stimulation, anti-lipolytic activity 

mediated by α2-adrenoceptors, and the secretion of typical adipokines, such as adiponectin and 

leptin. (Dicker et al., 2005; Kilroy et al., 2018; Rashnonejad et al., 2018). Could be interesting 

the use of preadipocytes more than the use of mature adipocytes, thanks to their smaller size 

mediated quicker revascularization ability, in vivo differentiation effectiveness and low oxygen 

consumption (Heimburg et al., 2005) . New sources of osteogenic progenitor cells are needed 

since bone tissue engineering requires large amounts of osteocytes. It is described the similar 

ability for osteogenic differentiation showed by BM-MSCs and AT-MSCs, even if the age of 

donor is increase (Shi et al., 2005). However, it is also published that  AT-MSCs have inferior 

potential for osteogenesis and inferior ability in the treatment of partial growth arrest in murine 

model  than MSCs have (Hui et al., 2005; Im et al., 2005). Both human and mouse AT-MSCs 

can acquire typical osteogenic differentiation hallmarks, such as mineralized extracellular 

matrix production, osteoblast-associated proteins osteocalcin and alkaline phosphatase 

expression, responsiveness to fluid shear stress and the expression of mechanosensitive genes 

(osteopontin, collagen type Iα1, and COX-2 ) after mechanical loading (Ardeshirylajimi et al., 

2014; Jia et al., 2018; Knippenberg et al., 2005). Several signaling pathways have been 

identified as regulators of osteodifferentiation including TGFB/BMP, Wnt/B-Catenin, Notch, 

Fibroblast growth factor and Hedgehog. BMP is in particular an important key of osteogenesis, 

and the most important elements are BMP2 and 7. Treating AT-MSCs with recombinant BMP2 

and BMP7 stimulates osteogenic and adipogenic differentiation, respectively (Dragoo et al., 

2003; Knippenberg et al., 2006). Thus, genetically modified AT-MSCs overexpressing BMP2 

were successfully used to heal femoral defects (Peterson et al., 2005). BMP can activate 

differentiation either activating BMPR I and II receptors or activating both Runt-Related Protein 

2 (Runx-2) and osterix (OSX), which are considered the master regulation genes for bone 

formation (Heldin et al., 1997; Lian et al., 2006). Furthermore, other elements, such as Tbx3 

(Lee et al., 2007b) and FOXO1 (Zhao et al., 2018) have showed an important role in osteogenic 

differentiation of AT-MSCs. Apart from specific differentiation factors, extracellular matrix 

substitutes and three-dimensional environment scaffolds are critical for a successful 

differentiation. Hence, chitosan particle-agglomerated scaffolds, fibrin scaffolds, α-tricalcium 

phosphate scaffolds as well as gum tragacanth hydrogel have been reported as suitable 
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scaffoldings (B Malafaya et al., 2005; Haeri et al., 2016; Hattori et al., 2006).  There are many 

protocols to obtain chondrogenic differentiation; from the simplest one in which there are not 

factor added (Wagner et al., 2005), to the standard protocol for chondrogenesis combines 

DMEM with ITS+, linoleic acid, selenious acid, pyruvate, ascorbate 2-phosphate, 

dexamethasone and transforming growth factor-β III (TGF-βIII). It is known that pre-induction 

stage of chondrogenic differentiation carry MSCs express type I and II collagens. The 

expression of chondrogenic genes and adhesion molecules depends on the presence of TGF-β 

family (TGF-β1, TGF-β2and TGF-β3) soluble factors. The maturation of chondrocyte is 

achieved once they express Sox9, L-Sox5 and Sox6  chondrogenic transcription factors 

(Chimal-Monroy and Díaz de León, 1999; Ikeda et al., 2004). Furthermore, apart from TGF-β1, 

which in humans interacts with Wnt/β- catenin pathways to inhibit osteogenic differentiation to 

support chondrogenesis (Zhou, 2011) , other growth factors such as, insulin like growth factor-I 

(IGF-I) and BMP-2 are known to induce the chondrogenic differentiation of AT-MSCs (An et 

al., 2010; Wei et al., 2006). Commonly used polyhedral oligomeric silsesquioxane poly 

(carbonate-urea) urethane (POSS-PCU) and polyhedral oligosilsesquioxane–poly (ε-

caprolactone) (POSS-PCL) cyto-compatible novel bioscaffolds, are effective in chondrogenic 

differentiation (Griffin et al., 2017; New et al., 2017). 

Many investigations support AT-MSCs differentiation toward cardiomyocytes. When 

AT-MSC are cultured under specific conditions, they are able to achieve cardiomyocytes-like 

phenotype with pacemaker activity and specific cardiac marker expression (Planat-Bénard et al., 

2004). Moreover, other researchers have showed how the engraftment of AT-MSCs in murine 

myocardial injury models they are able to differentiate in cardiomyocytes, promote angiogenesis 

and even either  improve or heal injured areas (Miyahara et al., 2006; Strem et al., 2005). Even 

these data were obtained from murine models some new works supported also differentiation 

into functional contractile cardiomyocytes from human origin (Choi et al., 2010) and 

emphasized in the important role of ascorbic acid in generation of AT-MSCs derived 

cardiomyocytes through MEK/ERK signaling pathway (Liu et al., 2018b). 

Unexpectedly, as happens with BM-MSCs, AT-MSCs have demonstrated the ability to 

differentiate into endothelial cells, which show proangiogenic potential, post-ischemic 

neovascularization and vessel-like structure formation as well as secretion of endothelial cell-

related elements, such as VEGF, hepatocyte growth factor (HGF), placental growth factor, 

FGF-2, TGF-β , and angiopoietin-1 (Bekhite et al., 2014; Cao et al., 2005; Rehman et al., 2004). 

Endoderm: First human AT-MSCs were differentiated into pancreatic endocrine phenotype 

using the differentiation factors activin-A, exendin-4, HGF, and pentagastrin. These cells were 

able to express endocrine pancreatic hormones insulin, glucagon and somatostatin along with 
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pancreatic developmental transcription factors Pax-6, Ipf-1, and Ngn-3 (Timper et al., 2006).  

Despite new investigations shedded light to the AT-MSCs differentiation ability comparing with 

BM-MSC, it was not clear what was the process underwent by these cells (Gabr et al., 2014). 

Several groups manipulate AT-MSCs genetically, with the purpose to provide new strategies to 

understand pancreatic endocrine differentiation mechanism. Thus, has been demonstrated how 

the combined effect of Pdx1 and Shh overexpression in rat AT-MSCs insulin producing cells, 

can increase insulin production along with the expression of MafA, Nkx2.2, Nkx6.1, Ngn3, 

insulin, and Isl1. At the same time, these cells exhibited the ability to normalize blood glucose 

values in diabetic rats (Hashemi Tabar et al., 2018). In the same way, another investigation 

point to the activation of Wnt pathway during differentiation (Wang et al., 2017b). The use of 

3D scaffolding will probably be the future in autologous diabetes mellitus I cell therapies. 

Combining both 3D scaffolding PVA and platelet-rich plasma (PRP) the differentiation protocol 

of AT-MSCs derived insulin producing cells have been optimized (Enderami et al., 2018). 

AT-MSCs cultured with HGF, oncostatin M (OSM), and dimethyl sulfoxide derived in 

hepatocyte-like phenotype expressing albumin and α-fetoprotein with the ability to avoid low-

density lipoprotein increase and produce urea (Seo et al., 2005). Murine models demonstrated 

the viability of AT-MSCs hepatocytic differentiation assays resulting in functional periportal 

and pericentral hepatocyte. They even had the ability to restore the liver function after carbon 

tetrachloride (CCl4)-induced acute fulminant liver failure (Winkler et al., 2015; Xu et al., 

2015a). As model counterpart, there are several works, where totally functional and histo-

compatible hepatocyte-like cells are obtained from human AT-MSCs both in vitro and in vivo 

using different induction protocols (Aurich et al., 2009; Lee et al., 2012; Wang et al., 2014). 

 

1.2.5.3Umbilical cord stem cells (UC-MSCs) 

The development of human umbilical cord starts in the 5th week of embryogenesis 

(Ellis, 1989). In addition to common adult tissues (adipose tissue, bone marrow), MSCs can be 

obtained from birth associated tissues including placenta, amnion and umbilical cord (figure 5). 

Umbilical cord stem cells (UC-MSCs) are a high accessible and ethically acceptable novel cell 

source. These cells can be non-invasively obtained after birth, and they seem to be more 

primitive than the others MSCs located in adult tissues, ergo, they have intermediate features 

between adult and embryonic stem cells (El Omar et al., 2014). Taking in consideration last 

investigations about UC-MSCs, their immune-phenotype has been standardized as positive for 

CD29, CD10, CD13, CD58, CD59, CD61, CD44, CD90, CD73, CD106, CD166, CD325, 

CD56, CD51 and CD49(b-e) and negative for CD31, CD3, CD11b, CD14, CD19, CD31, CD33, 

CD34, CD38, CD40, CD49a,CD34, CD45, CD117, CD133, CD86, CD80, CD71, CD56, CD53, 
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CD50 and HLA-DR. Some data are contradictory depending on the report; CD54, CD105, 

CD106, CD117, CD144 and CD146. The contradiction of CD105 is specially unexpected due to 

its importance in mesenchymal stem cell identification. However, in most studies CD105 is 

expressed, only few studies have shown that either it is not expressed or the expression is 

decreasing along with the passage is increasing  (table 1) (Batsali et al., 2013; Can and 

Karahuseyinoglu, 2007; El Omar et al., 2014; Seo et al., 2009). The investigations carried out 

after their description in 1656 have demonstrated the big amount of these cells, the high 

proliferation capacity and the safety to use them in cell therapies (Fong et al., 2011; Friedman et 

al., 2007). After animal disease model experiments support the use of human UC-MSCs in 

clinical trials some clear conclusions are taken. UC-MSCs used in cardiac, skin, 

musculoskeletal, ophthalmologic, pulmonary, endocrine, liver, hematologic and neurologic 

diseases showed anti-apoptotic, immunomodulatory, anti-fibrotic and angiogenic properties 

along to stem cell related benefits. Furthermore, they did not show infusion-related toxicity, 

which make these cells attractive tool for cell therapies. However, all works mentioned the need 

to refining nomenclature in researches to discern between different cell types of umbilical cord  

(Arutyunyan et al., 2016; Can et al., 2017).  

Hence, it is important to highlight that UC-MSCs can be isolated from different parts of 

umbilical cord, such as Wharton´s jelly, cord lining and umbilical cord blood. Both cord lining 

and umbilical cord blood contains more than one cell type, only few of them are MSCs (Maria 

et al., 2010).  

1.2.5.3.1Wharton´s jelly 

Umbilical cord tissue used to be medical waste until 1991, when fibroblast-like cells 

where discovered in this tissue (McElreavey et al., 1991). Years later, these cells were taken as 

MSCs due to their immune-phenotype and their differentiation ability (Wang et al., 2004). Two 

arteries and one vein, all of them surrounded by mucoid connective tissue known as Wharton´s 

jelly, compose the umbilical cord (figure 6). This gelatinous connective tissue is protecting 

blood vessels from clumping providing them flexibility, and it is also covered by an amnion 

derived epithelium, which is named cord lining. It is described that Wharton´s jelly is composed 

by glycosaminoglycans, specially hyaluronic acid and chondroitin sulfate. In absence of elastic 

fibers, collagen fibers are the main fibrillary component. Regarding to cell-composition, it is fill 

by mesenchyme derived cells, such as fibroblasts, myofibroblasts, smooth muscle cells and 

mesenchymal stem cells (Arutyunyan et al., 2016). MSCs can be isolated from perivascular, 

intervascular and subamnion zones within Wharton’s jelly (Maria et al., 2010). 
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Figure 6. UC-MSC. Modified from (Ding et al., 2015)  

 

1.2.5.3.2Cord lining 

Two kind of cells can be isolated from this area, cord lining mesenchymal cells 

(CLMCs) and cord lining epithelial cells (CLECs). CLMCs are achieved from the subamnion 

region dissecting out Wharton´s jelly and have been used for burn and diabetic wound healing. 

On the other hand, CLECs have been used both to skin cosmetic trials, ocular disorders, insulin 

dependent diabetes, liver failure, wound regeneration and for treating persistent corneal 

epithelial defects(Lim and Phan, 2014; Saleh and Reza, 2017). 

 

1.2.5.3.3Umbilical cord blood stem cells (UCB-SCs) 

Umbilical cord blood stem cells (UCB-SCs)  are first isolated fetal stem cells. UCB-SCs 

were declared source of hematopoietic stem and progenitor cell in 1974 (Ali and Al-Mulla, 

2012; Knudtzon, 1974). Nowadays, umbilical cord blood containing different stem cell 

populations are defined. Like it is described in figure 7, there are 3 kind of stem cell within 

UCB-SCs. 
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Figure 7. UCB-SCs types (Ali and Al-Mulla, 2012). 

Hematopoietic stem cells: As it is described above (HSCs, 1.2.1 chapter), all blood cells are 

created from these multipotent stem cells. HSCs located in umbilical cord blood contain 

different commitment stages of HSCs. In comparison with any other MSCs, their main 

characteristic is the expression of hematopoietic origin surface markers; CD133, CD34 and 

CD45 (McGuckin et al., 2003). 

Mesenchymal stem cells: These cells are the mesenchymal part of stem cellular components in 

umbilical cord blood, also known as umbilical cord mesenchymal stem cells (UC-MSCs). As 

the others MSCs, UC-MSCs showed the ability to differentiate into mesodermal lineage cells as 

well as into non-mesodermal lineages (da Silva Meirelles et al., 2006). They have a high 

proliferation capacity (Bieback et al., 2004). 

Multipotent non-hematopoietic stem cells: Their presence is minimum and are negative to 

CD45, hematopoietic marker (McGuckin et al., 2005; Zhao et al., 2006). They have displayed 

embryonic pluripotential related OCT4, SOX2 and NANOG markers, as well as human 

embryonic stem cell specific surface markers state-specific embryonic antigens, SSEA-3 and 

SSEA-4, among others (Inamdar et al., 2009). These cells have shown the ability to differentiate 

into three germ layers cell types. Multipotent non-hematopoietic stem cells have been  

differentiate into ectodermal lineage neural cells (Zangiacomi et al., 2008) , hepatic and 

pancreatic endodermic lineage cells (Denner et al., 2007; McGuckin et al., 2005), and 

endothelial cells from mesodermal lineage(Ma et al., 2006). The differentiation potential and 

accessibility, become UC-MSCs in a promising source of stem cell source for research and even 

to cell therapy applications (Ali and Al-Mulla, 2012). 

 

Ectoderm: UC-MSCs have the ability to differentiate into neurons, astrocytes and other glial 

cells, even it is demonstrated that they can rescue a stroke in a rat model increasing neurotrophic 

factors and β1-integrin (Ding et al., 2007; Liu et al., 2010).  Differentiation protocols have been 

optimized to achieve specific neuronal cells; expressing dopaminergic specific markers, such as 

tyrosine hydroxylase (TH), dopamine, cyclic AMP regulated phosphoprotein (DARPP) 32, 

paired-like homeodomain transcription factor (PitX) 3 and vesicular monoamine transporter 

(VMAT) 2 with 65% of differentiation efficiency (Datta et al., 2011; Fong et al., 2011; Mitchell 

et al., 2003). Also oligodendrocytes and astrocyte differentiation were achieved (Leite et al., 

2014; Mitchell et al., 2003).  
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There also few works that differentiate UCB-MSCs into neural lineages. The 

combination of telomerase reverse transcriptase (TERT) and brain derived neurotrophic factor 

(BDNF) improved UCB-MSC viability, proliferation and neural differentiation (Zhao et al., 

2014). In other case, Cardiotrophin-1 (CT1) stimulates differentiation of UCB-MSCs and their 

survival through PI3/AKT pathway (Peng et al., 2017).  

Mesoderm: In spite of UC-MSCs derived adipocytes have shown to create small lipid vacuoles, 

they also have the capacity to maintain multipotency for longer periods compared with BM-

MSCs (Fong et al., 2012; Mennan et al., 2013). Some investigations focus their efforts in 

elucidate which mechanism interfere in adipogenic differentiation. BMP-9 show to be a key in 

adipogenic, chondrogenic and osteogenic differentiation (Shu et al., 2018). Like happens with 

other MSCs, UC-MSCs can be cultured in different scaffoldings, however, never substrate 

stiffness was taken as important element in differentiation. Different lineage commitment can be 

undergo depending on the rigidity of the material. UC-MSCs show to tended to differentiate 

into adipocytes in soft matrix, however, cells cultured in high-stiffness undergo osteoblastic 

differentiation (Xu et al., 2017a).  

Osteogenic differentiation was less effective in UC-MSCs than other MSCs (Ishige et 

al., 2009), however MSCs from other part of the umbilical cord showed higher osteogenic 

potential. Wharton jelly´s MSCs had higher osteogenic potential than the other UC-MSCs 

(Mennan et al., 2013).  

Regardless of the place of the umbilical cord they were isolated from, all the cells 

revealed the same chondrogenic potential, increasing in 3 the potential showed by BM-MSCs 

(Mennan et al., 2013). 

Endoderm: Human UC-MSCs are able to express hepatic markers and to differentiate both in 

vivo and in vitro. When UC-MSCs were transplanted into chemically injured liver rat model 

they differentiated into hepatocytes and even they successfully engrafted into injured liver 

(Campard et al., 2008; Lin et al., 2010). 

Regarding to insulin producing cells, effectively differentiated human UC-MSCs in 

vitro could recovery normal glycemic values after portal vein injection both in rats and mice 

(Tsai et al., 2012; Wang et al., 2011).   

 

1.2.5.4Dental pulp stem cells (DPSCs)                                                                                                                                                                   

Like happens with other tissues, also oral cavity contains MSCs population in adult 

organisms (Huang et al., 2009). Gronthos et al. described in 2000 the existence of unique stem 
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cell population very similar to BM-MSCs derived from dental pulp tissue (Gronthos et al., 

2000). Due to their ability to self-renewal and capacity to differentiate into neurogenic and 

mesenchymal lineage cell, they were named as dental pulp stem cells (DPSCs) (Gronthos et al., 

2002). The tooth structure consists of an outer enamel layer (created by ameloblasts), following 

by dentin layer (created by odontoblasts), which surrounds a dental pulp located into tooth 

cavity (Shi and Gronthos, 2003). Dental pulp is a soft connective tissue containing nerves, blood 

vessels, mesenchymal tissues and mesenchymal cells (mesenchymal stem cells, fibroblasts, 

immune cells). This has an important role in primary and secondary tooth development and 

protection in front of insults and injuries, such as caries. DPSCs have shown high-proliferative 

capacity and more important, they are accessible without invasive surgical procedures (Gardin 

et al., 2016) (figure 8)(figure 9, red). Nowadays, there are not standard immune-phenotype to 

define DPSCs. However, it is well defined the expression of three surface stem mesenchymal 

markers CD73, CD90, CD105 required by ISCT to consider DPSCs mesenchymal stem cells. In 

addition, several works have compiled the expression of CD27, CD29, CD44, CD146, CD166, 

CD271 and STRO-1. In the contrary, DPSCs do not express CD34, CD45 ( hematopoietic 

markers), CD14 (monocyte or macrophage marker), CD19 (B cell marker) and HLA-DR 

(human leukocyte antigen) surface molecules (Anitua et al., 2018; Gronthos et al., 2002; 

Kawashima, 2012). Moreover, DPSCs express Oct-4, Nanog and Sox2 stem pluripotential 

markers as well as neural stem cell markers (Nestin, Vimentin) and mesenchymal (Vimentin, 

Collagen I) markers. In addition, DPSCs express other cranial neural crest cell-related neural 

markers such as glial fibrillary acidic protein (GFAP), β-III tubulin and microtubule-associated 

protein-2 (MAP-2) (Feng et al., 2013; Ibarretxe et al., 2012; Király et al., 2009). 

 

 

 

 

 

 

 

 

Figure 8. Tooth longitudinal section (Gardin et al., 2016). 
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1.2.5.4.1Neural crest origin and ectomesenchymal being 

The neural crest (NC) is a transient structure composite by a population of a pluripotent  

cells located at the lateral edge of neural tube in vertebrate embryos. Neural crest stem cells 

(NCSCs) have the capacity to migrate throughout the body to generate several cells type 

achieving diverse array of tissues, such as skin melanocytes, endocrine cells in the adrenal and 

thyroid glands, peripheral nervous system (PNS) and most craniofacial structures such as bones, 

tongue, craniofacial nerves and muscles (Shyamala et al., 2015; Vega-Lopez et al., 2017). In 

fact, craniofacial structures are composed by special NCSCs. During neural tube creation, the 

edges of neuroectoderm edges join after neural fold. Once, tubular shape is achieved neural 

crest stem cells undergo epithelial-mesenchymal transition (EMT), becoming ectomesenchymal 

stem cells (EMSCs). So, they are already EMSCs, when NCSCs migrate to create craniofacial 

structures, which create craniofacial connective tissues including dental pulp and periodontal 

ligament during embryonic development (figure 9) (Ibarretxe et al., 2012). DPSCs and the 

others dental stem cells described above, have been constituted as NCSCs source in adult tissue 

due to their neural crest origin and neural crest marker remain (Chai et al., 2000; Janebodin et 

al., 2011). 

 

 

 

 

 

 

 

Figure 9. Neural crest cells origin  (Ibarretxe et al., 2012). 

 

1.2.5.4.2Other dental stem cells 

Although DPSCs are the most used cells for research purposes, it must be remarked that 

not only DPSCs have been identified among dental stem cells. There exist dental follicle stem 

cells (DFSCs) and stem cells from apical papilla (SCAP) in developing teeth tissues and there 
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are periodontal ligament stem cells (PDLSCs) and stem cells from primary exfoliated deciduous 

teeth (SHED) in adult teeth (Ibarretxe et al., 2012; Sharpe, 2016) (figure 9).   

DFSCs: These cells are isolated from the ectomesenchymal embryonic tissue that cover tooth 

germ in tooth development. In adults, DFSCs can be found in pre-erupting wisdom teeth follicle 

(figure 10, purple) (Morsczeck et al., 2005). Despite of the specific ability of DFSCs to 

differentiate into periodontal tissue related cells, they are also able to differentiate into other cell 

lineages in vitro (Honda et al., 2010; Morsczeck et al., 2017). 

SCAP: This high proliferative ectomesenchymal stem cell (EMSC) population is located 

surrounding apices of root sheath of developing teeth (figure 10, yellow).  Although these cells 

are currently present in development of teeth morphogenesis, SCAP is also present in pre-

erupting wisdom teeth in adults (Bakopoulou et al., 2011). SCAP have shown differentiation 

capability, not only to common mesenchymal lineage cells, but also show neurogenic and 

angiogenic potential in specific conditions (Nada and El Backly, 2018). 

PDLSCs: In 2004, Seo et al. obtain MSCs with similar proliferation, clonogenic differentiation 

capability and basal expression of pluripotential markers to adult DPSCs from perivascular 

space of periosteum, these cells were named periodontal ligament stem cells (PDLSCs)(Liu et 

al., 2018a; Seo et al., 2004; Trubiani et al., 2010) (figure 10, blue).  

SHED: As happens with DPSCs, also primary human exfoliated deciduous teeth are an EMSC 

population. SHED high proliferative rate, basal neural marker expression, expression of 

pluripotency markers and even the capacity to survive and integrate in host brain tissue (Kerkis 

et al., 2006; Miura et al., 2003)(figure 10, red). In addition, SHED have shown a remarkable 

differentiation ability to mesenchymal lineages (Bento et al., 2013; Sakai et al., 2010) as well as 

neurogenic lineages (Brar and Toor, 2012; Zhang et al., 2016b). Taking in consideration such 

properties population could be used as EMSCs source, however, their availability is limited in 
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adult human being and their collected material amount is reduced due to root resorption during 

exfoliation.   

Figure 10. Dental stem cell types. Modified from (Sharpe, 2016).   

 

In order to elucidate if DPSCs are actually a good source of stem cell to use in 

regenerative cell therapies these cells have been compared with other studied stem cell sources. 

In one of the first works where DPSCs were compared with BM-MSCs, similar differentiation 

capabilities and neural and glial specific marker expression were discovered in both cell types. 

However, they showed DPSCs were more active and developed metabolically than BM-MSCs, 

concluding DPSCs remain better neural and epithelial stem cell features (Karaöz et al., 2011). 

Later, DPSCs were compared with other accessible MSCs sources. In this work the 

morphology, proliferation and differentiation capability of UC-MSCs, menstrual blood cells and 

DPSCs were faced. Although UC-MSCs were higher proliferative stem source, DPSCs 

demonstrated lower cellular senescence as well as higher osteogenic capabilities than the other 

two stem cell types (Ren et al., 2016). These results are correlated with the results of the next 

investigation, where the upregulation of growth factor activity, receptor activity and signal 

transduction in DPSCs were demonstrated. In contrast, cell proliferation, immune response and 

angiogenesis related genes were overexpressed in UC-MSCs. In conclusion, UC-MSCs higher 

proliferation was correlated with the overexpression of cell proliferation genes and DPSCs 

lower senescence was correlated with the increase of growth factor activity genes (Kang et al., 

2016). In other research, the differentiation capability was compared between DPSCs, SHEDs, 

BM-MSCs and synovial fluid cells (SFCs), all of them MSCs. Whereas BM-MSCs and SFCs 

showed higher osteogenic and chondrogenic capacity, DPSCs and SHEDs had higher 

neurogenic ability. In the same work SHEDs demonstrated higher proliferation rates compared 

DPSCs and BM-MSCs (Isobe et al., 2016). As was expected due to developmental origin of 

SHEDs, they showed more stem cell markers than DPSCs. In addition, SHEDs had higher 

osteogenic capabilities than DPSCs, but less than BM-MSCs, which also express less stem cell 

markers (Aghajani et al., 2016). iPSCs, are main stem cell source to study neurogenetic 

syndromes.  There are in literature multiple research focused on the efficiency and safety of 

DPSCs reprogramming into iPSCs. It is a fact that DPSCs intrinsically express stem cell 

markers even before to be induce, hence, some authors hypothesize these cells could be more 

efficient source of creating iPSC than cells traditionally used for it (Pisal et al., 2018; Yan et al., 

2010). 
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1.2.5.4.3Serum-free cultures and dentosphere formation  

Most differentiation treatments consists of fetal serum (bovine or calf) addition in order 

to provide cells proliferation and monolayer adherent growth. The use of serum, committed 

DPSCs to osteo/odontoblastic lineages, following their intrinsic path (Pisciotta et al., 2012; Yu 

et al., 2010). Furthermore, xenogeneic elements could cause immune reactivity and even 

rejection of transplanted cells in cell therapies (Gregory et al., 2006; Horwitz et al., 2002). Since 

MSCs were defined as cell-based medicinal products (CBMPs), DPSCs need to be prepared 

under hard culture measurements in order to achieve good manufacturing practice (GMP) 

required quality standards, as described in EU Regulation 2003/94/EC (Pacini, 2014). Serum 

free medium culture protocols has been studied with the purpose of avoid these problems. Al 

contrary of what showed mDPSCs (Zainal Ariffin et al., 2013) there is no evidence of 

spontaneous osteo/odontoblastic differentiation of human DPSCs (hDPSC). Serum-free based 

studies demonstrated the viability of hDPSCs in this condition as well as the maintenance of 

stem characteristics (Hirata et al., 2010). As we said above the NC origin of hDPSCs grants to 

these cells some special features.  

Although in vitro formation of neurospheres is a singular neural stem/progenitor cell 

characteristic (Pineda et al., 2013), it is not a surprise, due to their EMSCs origin, the capacity 

of hDPSCs to form neurospheres like structures in serum-free conditions, called dentospheres. 

There is a controversy about delicate regulation of dentosphere differentiation ability in 

literature, which is essential to control the role and capacity of DPSCs derived dentospheres. 

Some works describe osteogenic pre-disposition achieved by dentosphere-like DPSCs in serum-

free conditions (Bakopoulou et al., 2017; Bonnamain et al., 2013), while other works defend the 

increase of pluripotential markers in dentospheres increase when DPSCs are cultured in serum-

free medium for several days (Hirata et al., 2010; Lee et al., 2017; Xiao and Tsutsui, 2013). Not 

all the authors are agree on the timing of dentosphere formation during neural differentiation, 

Gervois et al. showed dentosphere formation in the initial differentiation phases, while 

Karbanova et al. demonstrated this formation during late phase. However, both of them as well 

as other several studies suggested a direct link between the differentiation into neural lineages, 

even dopaminergic neuron-like cells were obtained, and the expression of numerous neural 

markers in dentospheres (Chun et al., 2016; Gervois et al., 2015a; Karbanová et al., 2011; 

Osathanon et al., 2014).  
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1.2.5.4.4Neuroprotective and immunomodulative properties of DPSCs 

As important as pluripotent differentiation capability is the expression and secretion 

potential of  nerve growth factor (NGF), brain- derived neurotrophic factor (BDNF), glial cell 

line derived neurotrophic factor (GDNF), neurotrophin 3 (NT-3), vascular endothelial growth 

factor (VEGF) and platelet-derived growth factor (PDGF) showed by DPSCs (Mead et al., 

2014; Sakai et al., 2012).  It is both in vivo and in vitro demonstrated the higher expression of 

these factors by DPSCs compared with BM-MSCs and AT-MSCs (Caseiro et al., 2016). These 

results support the idea of that DPSCs exhibit bigger neuroprotective characteristic to face 

nervous system related affections. It has been described in the literature the importance of these 

factors. For example, some groups have identified the role of trophic factors, i) in the reduction 

of neurodegeneration in the early stages of neural apoptosis and sensory neuron survival (Nosrat 

et al., 2001) or ii) in the promotion of axon regeneration in spite of axonal growth inhibitor 

(Arthur et al., 2009; Kolar et al., 2017) in spinal cord injury (SCI) model. In the same way but 

in ischemic injury of astrocyte model, DPSCs provide both direct and indirect cytoprotection 

(Song et al., 2017). 

Beyond of trophic factor secretion, it has been also documented the importance of 

immunomodulatory and anti-inflammatory factors in DPSCs-based tissue regeneration assays. 

The expression of interleukin-8 (IL-8), interleukin-6 (IL-6), and TGF- β via Toll-like receptor 

(TLR) 4 as well as TGF-β, HGF and indoleamine 2,3-dioxygenase (IDO) by DPSCs has been 

reported (Bianco et al., 2016; Özdemir et al., 2016; Tomic et al., 2011). TGF-β, HGF and IDO  

are able to suppress both the activation of T cells and the proliferation of peripheral blood 

mononuclear cells, even allogeneic immune response was inhibited (Kwack et al., 2017; Sugita 

et al., 2015). In addition, IL-8 preserves axon integrity in SCI crush injury (He et al., 2013). The 

co-culture of DPSCs and T cells resulted in human leukocyte antigen-G, vascular adhesion 

molecule-1, intracellular adhesion molecule-1, IL-6, TGF-β, HGF, and IL-10 secretion. 

Moreover, proinflammatory IL-2, IL-6 receptor, IL-12, IL-17A and tumor necrosis factor-α 

(TNF-α) cytokines were downregulated (Demircan et al., 2011), as well as the proliferation rate 

of T cells was inhibited in 90% (Pierdomenico et al., 2005). In another research, 

intraperitoneally injected DPSCs showed a remarkable modulation effect increasing 

CD4+CD25+FoxP3+ regulatory T cells (Hong et al., 2017). In conclusion, these 

immunomodulatory effects could be a key to create safe and effective allogenic and autogenic 

stem cell therapies. 
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1.2.5.4.5Differentiation of DPSCs 

Due to their EMSC condition, it is not unexpected the relative ease to differentiate 

DPSCs into specialized connective tissue cells, such as adipocytes, chondroblasts and 

osteo/odontoblasts (Gronthos et al., 2002; Kawashima, 2012). However, as already is described 

above, the EMSC origin of DPSCs provide them to become easily into at least two of the three 

germ layer lineage cells, though, they can differentiate into cells of three germ-layers. 

 

Figure 11. DPSCs derived mesodermic and ectodermic cell types (Ibarretxe et al., 2012) 

Ectoderm: Two of the most important advantage of DPSCs compared with other MSCs are the 

neural crest origin and the neuron-like characteristics that facilitate in vitro induction of DPSCs 

into functional neurons. In the last years have been developed many neural differentiation 

protocols. The use of growth factors, neurotrophins and some other small molecules, such as 

fibroblast growth factor (bFGF), epidermal growth factor (EGF), NGF, BDNF, GDNF, sonic 

hedgehog , NT-3, retinoic acid (RA), forskolin and heparin have been necessary in these 

differentiation inductive mediums. Also, B27, ITSx , non-essential amino acids, and N2 culture 

supplements have been commonly used in these protocols (Arthur et al., 2008; Chang et al., 

2014; Gervois et al., 2015a; Kanafi et al., 2014; Király et al., 2011; Osathanon et al., 2014; Xiao 

and Tsutsui, 2013; Zhang et al., 2017) (figure 11 and 12). 

The most of the works above mentioned and the works described in paragraph 1.3.4.3, 

have in common the creation of dentospheres as an essential step in neural differentiation 
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protocols. However, some groups have been able to through along this step. Using endogenous 

environmental factors and multistep inductive protocols they achieved specialized motor and 

dopaminergic sub-lineages (Chang et al., 2014; Gnanasegaran et al., 2018; Kanafi et al., 2014). 

Even spiral ganglion neuron-like cells were obtained after BDNF, NT-3 and GDNF treatment of 

DPSCs (Gonmanee et al., 2018). 

Leaving aside typically used neural differentiation confirmation hallmarks, such as 

NeuN, MAP-2, DCX and neural adhesion molecules, few studies used electrophysiological 

assay in order to deepen in functional neural differentiation of DPSCs. However, it is not totally 

clear the genuine neuron differentiation from DPSCs as far as no action potential burst has been 

described, although voltage-gated sodium and potassium functional channel expression have 

been demonstrated (Arthur et al., 2008; Gervois et al., 2015a; Király et al., 2009). 

Several investigations support the idea of either glial or neuronal precursor 

differentiation. Oligodendrocytic differentiation of mDPSCs was used to show the clonal 

heterogeneity into dental pulp, where only nestin positive clones were able to undergo 

differentiation (Young et al., 2016). Genetically modified human DPSCs turn into 

oligodendrocyte progenitor cells after Olig2 gene overexpression (Askari et al., 2014). In 

addition, Martens et al. were able to differentiate DPSCs into functional Schwann cells, which 

could generate myelin sheath around axons in a 3-dimensional collagen type I hydrogel neural 

tissue construct (Martens et al., 2014). 

Mesoderm: The differentiation toward osteoblasts, adipocytes and chondroblasts is one of the 

criterion required by ISCT to consider DPSCs as MSCs (Dominici et al., 2006). 

The osteogenic differentiation has been quite well documented in several researches. 

Like occurs with other differentiation protocols, also osteodifferentiation needs some 

components commonly repeated in almost all receipts. Dexamethasone, L-ascorbic acid and β-

glycerol phosphate are key elements to achieve alkaline phosphatase, collagen type I, 

osteocalcin, osteonectin, osteopontin, osterix and runt-related transcription factor 2 (RUNX2) 

expressing  DPSCs derived osteoblast-like cells (Ajlan et al., 2015; Atari et al., 2012a; Bhuptani 

and Patravale, 2016; Goto et al., 2016; Riccio et al., 2010). Indeed, RUNX2 is one of the most 

important osteo/odontoblastic differentiation regulator. It activates osteoblast gene expression 

and mineralization in the early stages of osteoblast differentiation (Vimalraj et al., 2015; Xu et 

al., 2015b). RUNX2 is also responsible of odontoblastic potential through dentin 

sialophosphoprotein (DSPP) activation, which encodes both dentin sialoprotein and 

phosphoprotein (Han et al., 2014). DSPP and dentin matrix protein 1 (DMP1) upregulated 

expression along with alkaline phosphatase activity increasing are the hallmarks of 

ondotoblastic differentiation (Abuarqoub et al., 2015; Paduano et al., 2016). 
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There are evidence of adipogenic differentiation of DPSCs by insulin, dexamethasone 

and 3-isobutyl-1-methylxanthine (IBMX) containing inductive medium. Both O staining of lipid 

droplets and the expression of peroxisome proliferator–activated receptor γ, glucose transporter 

type 4, fatty acid binding protein 4 and lipoprotein lipase adipogenic markers are necessaries to 

confirm differentiation (Grottkau et al., 2010; Lee et al., 2015; Zhang et al., 2006). 

Chondroblastic differentiation is given by inductive medium composed of ITSx, 

dexamethasone, L-ascorbic acid, L-proline , sodium pyruvate and TGF-β3 (Hilkens et al., 2013; 

Jang et al., 2016; Nemeth et al., 2014). TGF-β protein superfamily plays an key role in 

chondrogenesis main phases, being the controller of differentiation/de-differentiation activities 

in the cartilage (Dexheimer et al., 2016). 

DPSCs are able to differentiate into less common cell types, such as cardiomyocytes 

(Ferro et al., 2012) and smooth muscle (Song et al., 2016). Endothelial cells were obtained 

culturing DPSCs at least  for 30 days in a-MEM culture medium with 20% (d’Aquino et al., 

2007). Endothelial-like cells were also achieved by Marchionni et al. using DMEM with 2% 

FBS and 50 ng/ml VEGF for 7 days (Marchionni et al., 2009) (figure 11 and 12). 

 

 

 

 

 

 

 

 

Figure 12. DPSCs derived three germ-layer cell types (Anitua et al., 2018) 

 

Endoderm: Contrary to what was thought years ago, not only ectoderm and mesoderm lineage 

cells could be obtained from hDPSCs. New researches have shed light into pluripotential ability 

of DPSCs. It is confirmed in the last five years, the huge plasticity of these cells, even achieving 

endodermal lineage cell differentiation (figure 12). Hepatic differentiation of human DPSCs was 

successfully demonstrated by the expression of several hepato-specific markers. All these 
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investigations were carried on using serum-free or low serum (1%-2%) concentrations 

combined with at least two of the next elements; HGF, ITSx, dexamethasone and oncostatin M  

(Chen et al., 2016; Ferro et al., 2012; Han et al., 2017; Ishkitiev et al., 2012) . Also pancreatic 

cell lineage differentiation has also been reported from human DPSCs. Achieved cells were able 

to produce insulin, glucagon, somatostatin and pancreatic polypeptide as well as the expression 

of pancreatic markers were enhanced. Ishkitiev et al. showed that CD117+ cells were the most 

capable cells to undergo pancreatic differentiation. Moreover,  Yagi Mendoza et al. figured out 

the PI3K/AKT and WNT pathways key role in pancreatic cell differentiation, while Carnevale 

and his group determined that the differentiation began at day 7 (Carnevale et al., 2013; 

Ishkitiev et al., 2013; Yagi Mendoza et al., 2018). 

 

1.2.5.4.6DPSC based regeneration therapies 

Apart of differentiation capability it is must be taking in consideration the 

immunomodulatory, angiogenic and neuroprotective properties of DPSCs (Luo et al., 2018). All 

these features make DPSCs the ideal source to use in regeneration therapies, specifically in 

nerve tissue regeneration due to NC origin shared with PNS cells. Furthermore, vasculogenesis 

may be essential in neural tissue regeneration, providing nutrients and oxygen to injured tissue 

area (figure 13). 

 

Figure 13.  DPSCs and scaffold constructs to application in nervous system diseases (Luo et al., 2018). 
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1.2.5.4.6.1Vasculogenesis and angiogenesis by DPSCs 

Vasculogenesis and angiogenesis are essential processes necessary to create the vascular 

network during embryonic development. Although these two terms often are used like 

synonymous, actually, vasculogenesis is the formation of new blood vessel de novo while 

angiogenesis is the formation of new blood vessels from existing vessels.  Both of them are very 

necessary to maintain normal blood supply needed to maintain normal function of organs and 

tissues (Patan, 2004). Some angiogenic trophic factors are the responsible of creation of new 

blood vessels (Carmeliet, 2000). Like the most of MSCs, it is described the capacity of DPSCs 

to secrete these angiogenic factors; colony-stimulating factor, interleukin-8, angiogenin, 

endothelin-1, angiopoie tin-1, and insulin-like growth factor binding protein-3 (Bronckaers et 

al., 2013; Ratajczak et al., 2016). In combination with secretion of VEGF, PDGF, bFGF, and 

NGF stimulatory growth factors (Mead et al., 2014; Tran-Hung et al., 2008), DPSCs can 

promote tubulogenesis, proliferation and survival of endothelial cells (Tran-Hung et al., 2006). 

Furthermore, Bronckaers et al. discovered that migration and vasculogenesis were activated by 

PI3K/AKT and MEK/ERK pathway of endothelial cells. Taking together the endothelial 

differentiation capability and angiogenic and stimulatory factor expression DPSCs could 

promote therapeutic angiogenesis (Psaltis et al., 2008). Even in 1999 Takahashi et al. began to 

use stem cells and EPCs to stimulate vasculogenesis in order to treat ischemic disease 

(Takahashi et al., 1999). Then, in 2008, rat DPSCs were transplanted into myocardial infarction 

(MI) model. The formation and function of new blood vessels were improved and the infarct 

size reduced by presence  of DPSCs (Gandia et al., 2008). Three years later, focal cerebral 

ischemia rat model was injected with porcine cd31-/cd146- DPSCs, resulting in vasculogenesis 

induction and ameliorated ischemic brain injury after middle cerebral artery occlusion ( MCAO) 

(Sugiyama et al., 2011). One of the few studies focused in human DPSCs in rodent ischemia 

model suggested the paracrine dependent effect of DPSCs in post-stroke recovery, given 

importance to non-neural replacement therapies (Leong et al., 2012). Also the combination of 

DPSCs with HUVECs, showed the formation of microvessel-like formation, which suggests 

that DPSCs could act as perivascular cells for in vivo angiogenesis (Nam et al., 2017). Recently, 

the use of new 3D print top technique has facilitated the creation of vascularized dentin/pulp 

structure (Hilkens et al., 2017). 

 

1.2.5.4.6.2Neural regeneration by DPSCs 

Neuroregeneration therapies have ever been a priority research due the social, economic 

and dependency burden suffered by both patients and their close people. The use of NSCs 

should be crucial in nerve tissue regeneration therapies, however, the low incidence of these 
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cells in adult organism as well as obtaining difficulties force researchers to find new stem cell 

sources. Taking in consideration the large amount and relatively easy access to them, MSCs 

have been selected as ideal source to fill the hole left by NSCs (Kerkis et al., 2006; Kim et al., 

2012). Nevertheless, not all MSCs are optimal for these purpose, in fact, DPSCs have the 

needed properties, such as, embryonic pluripotent and neural  stem cell markers, NC origin, 

neural differentiation ability and they can be harvested from the own patient without harmful 

intervention. Furthermore, although DPSCs are less abundantly available compared with other 

MSCs, they present higher proliferation rates (Gronthos et al., 2000). Moreover, using own cells 

of the patients to use in autologous therapy, it possible to avoid immune reactivity, which could 

be a fatal event in neural tissue. Several investigations have been carried on in both central 

nervous system (CNS) and peripheral nervous system (PNS). Some of them are based in cell-

cell substitution, but overall, these researches are secretome-based cell therapies. 

 

1.2.5.4.6.2.1Central nervous system (CNS) 

Central nervous system is the organ that integrate environmental signals and controls 

and coordinates the response for them. It is composed by brain and spinal cord. Stem cell 

treatment as novel CNS disease therapy is already a reality (Tatullo et al., 2015; Varga and 

Gerber, 2014). The low precursor cell population (Mead et al., 2017), expression of myelin-

associated growth inhibitory factors (Geoffroy and Zheng, 2014) and the intrinsic formation of 

glial scar (Stichel and Müller, 1998), make the repair and regeneration capacity of CNS 

especially weak in front of several insults.  

-Neurodegenerative diseases: Alzheimer´s (AD) and Parkinson´s disease (PD) are the first and 

second commonest age-related neurodegenerative diseases. Both of them have been extensively 

studied and new DPSC-based cell therapies have been published in the last years (Apel et al., 

2009). AD is neurodegenerative pathology caused by intracellular neurofibrillary tangles, 

neuronal loss and generation of insoluble peptide deposits. These physiological changes lead to 

well-known symptomatology; that comprehend memory loss, cognitive deficits and linguistic 

disorders, among others (Huang and Mucke, 2012). Both in vivo and in vitro AD models have 

been used to demonstrated the benefit in behavioral and physiological deficits of use DPSCs 

based cell therapies (Apel et al., 2009; Shin et al., 2014). Moreover, other AD disease models 

have been tested. Thus, okadaic acid induced AD was repaired by DPSCs promoted neuronal 

regeneration, microtubule stability protection and maintaining cytoskeletal structure (Wang et 

al., 2017a). Two researches pointed that DPSCs demonstrated high secretion of VEGF, 

fractalkine, RANTES, and fms-related tyrosine kinase 3, seem to be important in the reduction 
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of amyloid beta (Aβ) peptide-induced cytotoxicity and apoptosis (Ahmed et al., 2016; Mita et 

al., 2015).  

DPSCs have been broadly used to dopaminergic (DA) neuron obtaining in vitro (Chang 

et al., 2014; Gnanasegaran et al., 2018; Kanafi et al., 2014). Parkinson´s disease (PD) 

progressive neurodegeration results in loss of DA neurons of nigrostriatal pathway. The loss of 

DA neurons causes bradykinesia, resting tremor, muscle rigidity and postural instability in 

patients (Dauer and Przedborski, 2003).  Like it is described with other CNS affections, DPSCs 

showed anti-inflammatory activity is a key in damaged tissue recovery. Thus, intrathecal 

transplantation of DPSCs into 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri- dine- (MPTP) induced 

old-aged PD mouse model achieved behavioral deficits recovery and DA function restoring by 

upregulation of IL2, IL4, and TNF-β anti-inflammatory factors, while the secretion of pro-

inflammatory factors IL-1α, IL- 1β, IL6, IL8, and TNF-α were reduced (Gnanasegaran et al., 

2017a). Also in vitro, MPTP associated deficits were reduced by neuroimmunomodulatory 

activity of DPSCs (Gnanasegaran et al., 2017b). In addition, a different PD model deficits, in 

this case a model created by 6-hydroxydopamine (6-OHDA) both in vitro (Chun et al., 2016; 

Nosrat et al., 2004) and in vivo (Fujii et al., 2015), were solved by DPSCs promoting of DA 

neurons survival. 

-Stroke: It is defined as blood supply interruption or reduction of the brain, which deprives brain 

tissue and could cause either brain death, long-term disability, even the death (Sughrue et al., 

2004). The interest in this affection is huge since it is the second leading cause of preventable 

death in worldwide and the fourth leading cause of lost productivity  in 2012 (Kuklina et al., 

2012). Damages undergone by brain during long interval of starving could be irreversible. 

Moreover, sadly there are few effective restorer therapies (Hossmann, 2006). Nowadays, the use 

of stem cells in this therapies seems optimistic due to the special properties showed by these 

cells (Lemmens and Steinberg, 2013). In regard to the use of DPSCs, some in vivo works 

demonstrated the therapeutic effectiveness of DPSCs injection into focal ischemic areas of 

MCAO in rats, either by cell-cell DA neurons substitution (Yang et al., 2009) or by trophic 

secretion (Sugiyama et al., 2011). Recently published research work shows how the intravenous 

administration of combination of rat DPSCs and BDNF in MCAO model rats can lead 

neurological function  more effectively compared with either BDNF or DPSCs injection alone 

(Zhang et al., 2018b). Apart from neuronal replacement, song et al. showed the importance of 

secreted anti-inflammatory and trophic factors, using both DPSCs and conditioned medium of 

DPSCs to human astrocyte cytoprotection in model of oxygen-glucose deprivation (OGD) 

ischemia in in vitro (Song et al., 2015). 
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-SCI: SCI can cause partial or complete loss of sensory and motor control of the body 

depending on injury severity and location. World health organization (WHO) estimates that 

between 250 000 and 500 000 people suffer this affection every year, in 2018. SCI can divided 

in two independent physiopathologic intervals. The first comprehend nerve and vascular tissue 

destruction, and the second one, which causes neuro-inflammatory responses  such as, 

excitotoxicity, apoptosis, oxidative stress, glial scar formation) (Jiang et al., 2014). NC origin 

and ectomesenchymal properties have made DPSCs very popular in SCI therapies. DPSCs have 

shown the ability to differentiate in both neuron and oligodendrocyte-like cells that provide a 

new source of cell to avoid initial primary tissue disruption (Yamamoto et al., 2014a, 2014b). In 

the same way, DPSCs can attack inflammatory secondary injury, reducing progressive 

hemorrhagic necrosis related with IL-1β, ras homolog gene family member A (RhoA), and 

expressing sulfonyl-urea receptor1 (SUR1) that leads axonal regeneration by neurotrophic 

factors production (Nosrat et al., 2001; Yang et al., 2017). Combining DPSCs with chitosan, 

SCI derived cell apoptosis was inhibited and motor functional recovered (Zhang et al., 2016a).  

-Retinal Injury: Photoreceptors, bipolar cells and retinal ganglion cells (RGCs) create the retina 

(Ramsden et al., 2013). Several affections can cause retinal injuries, such as, traumatic optic 

neuropathy (TON) and degenerative RGCs damaging glaucoma (Munemasa and Kitaoka, 

2015). The low production of neurotrophic growth factors and axonal growth inhibitory 

molecules avoid retinal regeneration (Berry et al., 2008). To face it, use of DPSCs could provide 

the necessary factors to active patients own retinal neural survive and DPSCs neural 

differentiation toward both RGCs-like (Roozafzoon et al., 2015) and photoreceptors (Bray et al., 

2014) in vivo. Indeed, Mead et al. intravitreally transplanted DPSCs after optic nerve injury in a 

rat model caused NGF, BDNF, and NT-3 related axonal recovery along with RGCs 

neuroprotection were reported (Mead et al., 2013). Also, glaucoma was attenuated per 35 days 

after DPSCs intravitreal transplantation by preventing RGCs death (Mead et al., 2016). 

 

1.2.5.4.6.2.2Peripheral nervous system (PNS) 

PNS is divided into the cranial nerves, from III to XII, and the nerves supplying upper 

and lower limbs. They work as the link between CNS and limbs and organs (Catala and Kubis, 

2013). Peripheral nerve injury and diseases often outcome in physical disability and neuropathic 

pain. Treatments that contemplate end-nerve suturing, tissue grafts and growth-stimulatory 

therapies are current clinical treatments (Battiston et al., 2005; Matsuyama et al., 2000; Pfister et 

al., 2011).  Autologous nerve grafting is considered the gold standard for peripheral nerve long 

gap deficits (Tamaki et al., 2016). Autografting related disadvantages, donor nerve availability 

and morphometric mistakes can be solved combining nerve tissue engineering and stem cell 
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therapies (Pereira et al., 2014). Sasaki et al. achieved injured facial nerve regeneration and 

functional recovery using DPSCs (Sasaki et al., 2011). Another two similar  researches showed 

regeneration of sciatic nerve after treatment with collagen conduits filled with Schwann-like 

cells derived from DPSCs (Martens et al., 2014; Sanen et al., 2017). Even genetically 

transformed DPSCs could act as functional oligodendrocytes in vitro and promoted peripheral 

nerve repair in a mouse model (Askari et al., 2015). 
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Alizarin Red assay  

 To test osteogenic potential after three weeks of 

culture, extracellular calcified bone matrix deposits were stained using Alizarin Red. Briefly, 

hDPSCs were fixed for 30 minutes with 10 % formaline (#F7503, Sigma, St. Louis, MO, USA), 

rinsed and stained using 2 g/100 ml Alizarine Red S (#400480250, Fisher Scientific, Hampton, 

Nou Hampshire, USA), pH 4.3 for 45 minutes. After three PBS rinses of 5 min, Alizarin Red 

absorbance was measured at 450 nm using a Synergy HT Multi-Mode Microplate Reader 

(Biotek,Winooski, Vermont, USA). 

Animals and cell graft 

Consanguine c57bl6 litters from Nesti-GFP mice and Athymic Swissnu/nu were used as hosts for 

murine and human in vivo graft purposes. Nestin-GFP neurospheres or DPSCs dentospheres in 

the active growth phase were disaggregated, washed and collected in Neurocult serum-free 

media. Two microliters containing 100,000 cells were injected (0.5 µL/min) unilaterally at the 

following coordinates (from bregma): AP = −1.9, L = −1.2, and DV = −2 and −2.1. The cell 

transplantations were performed using a small animal stereotaxic apparatus (Kopf model 900) 

with a 10 µl Hamilton syringe and a 33 G needle (Hamilton, Bonaduz, Switzerland). All 

surgical procedures were performed under anesthesia with ketamine (75 mg/kg, Imalgen; 

Merial,Lyon, France) and medetomidine (1 mg/kg, Domitor; Pfizer, Paris, France). After the 

surgery, paracetamol (1.64 mg/mLDoliprane; Sanofi, France) was administered in the drinking 

water for 1 week. Animals were provided with food and water ad libitum and housed in a 

colony isolator maintained at a constant temperature of 19–22 °C and humidity (40–50%) on a 

12:12 h light/dark cycle. The animal experiments were performed in compliance with the 

European Communities Council Directive of November 24, 1986 (86/609/EEC) and were 

approved by the competent authority (Administración Foral de Bizkaia).  

 

Conventional PCR and quantitative real-time PCR (qPCR) 

cDNA (20 ng/µl) was obtained by reverse transcription of total extracted RNA using 

iScript cDNA Kit (BioRad, 1708890), using the following reagents: iScript reverse 

Transcriptase (1µl), 5x iScript Reaction Mix (4ul) and Nuclease Free water (variable), obtaining 

a final volume of 20 µl. To perform comparative gene expression assays, a cDNA volume of 10 

µl was used as a template for conventional PCR using My TaqTM Red Mix (Bioline, BIO-

25043), at a 4 ng/µl concentration. The molecular length of the amplification products were 

checked by electrophoresis in a 2 % agarose gel. Quantitative Real-Time PCR experiments were 

performed in CFX96 touch real-time Detection System (BioRad) with Power SYBR® Green 

PCR Master Mix 2x (4367659, Applied Biosystems TM). Experiments were carried out using 0.5 
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µl Primer and 3 ng/µl sample concentration. The molecular weights of the amplification 

products were checked by electrophoresis in a 2 % agarose gel. All reactions were performed in 

triplicate and the relative expression of each gene was calculated using the standard 2-ΔΔCt 

method. Primer pairs used were obtained through either the Primer-Blast method (Primer Bank) 

or other publications. 

Flow cytometry 

Half-million DPSCs were enzymatically disaggregated and then incubated in PBS 

0.15% bovine serum-albumin (BSA) solution with CD90-FITC 1:50 (Biolegend, San Diego, 

California, USA), CD105-PE 1:50 (eBioscience,Waltham, Massachusetts, USA), CD73-APC 

1:50 (eBioscience,Waltham, Massachusetts, USA), CD45-APC 1:50 (Biolegend, San Diego, 

California, USA) or IgG2a κ Isotype control (Biolegend, San Diego, California,USA) for 40 

minutes on ice. Then, DPSCs were washed with PBS 0.15% BSA after staining, then cells were 

resuspended in 300 µl of PBS 0.15% BSA and analyzed using a FACS Beckman Coulter 

Gallios (Beckman Coulter Life Sciences, Indianapolis, United States). Flowing Software 2.5 

(University of Turku, Finland) was used for data analysis. 

hDPSC isolation and culture 

Primary hDPSCs were isolated from human third molars from healthy donors between 

15 and 40 years of age, who gave their informed consent. Teeth were fractured mechanically, 

and the dental pulp enzymatically digested by 3 mg/ml collagenase and 4 mg/ml dispase 

(ThermoFisher Scientific, Waltham, Massachusetts, USA) for 1h at 37 ºC. After centrifugation 

at 15000 rpm for 5 minutes, cells were mechanically dissociated by 18G needles (BD 

Microlance). Then DPSCs were grown in different culture mediums depending on our interests. 

DMEM:  Then, DPSCs were cultured in Dulbecco’s modified Eagle´s medium (DMEM, Lonza, 

Basel, Switzerland) supplemented with 10% of inactivated FBS (Hyclone, GE Healthcare Life 

Sciences, Logan. UT, USA), 2 mM L-glutamine (Sigma, St. Louis, MO, USA) and penicillin 

100 U/ml + streptomycin antibiotics 150 µg/ml (Gibco, Karlsruhe, Germany). Culture media 

were renewed every 2-3 days. Using this protocol, hDPSCs were maintained in optimal 

conditions even up to 3 months, with a total accumulation of 6 passages as maximum. It is the 

optimal medium to cell proliferation and maintainance. 

StemPro MSC SFM™ : Once the DMEM+FBS 10% culture was in confluence hDPSCs were 

subcultured in well defined culture medium named STP for one week, which was composed of 

StemPro MSC SFM basal medium (Gibco, Karlsruhe, Germany) supplemented with StemPro 

MSC SFM supplement (Gibco, Karlsruhe, Germany) at 9:1 ratio and in presence of antibiotics 

penicillin 100 U/ml and streptomycin 150 µg/ml (Gibco, Karlsruhe, Germany). 
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StemPro MSC SFM™ + DBDNF/NT3: After 1 week of culture, the STP medium was replaced 

with STP+NTP medium, consisting in the same formulation described above with the addition 

of 500 ng/ml BDNF (Peprotech, London, UK) and 20 ng/ml NT-3 (Peprotech, London, UK). 

Cells are grown in this medium for 7 days at maximum. 

Neurocult™ proliferation: DPSCs were cultured in Neurocult™ proliferation medium after 

enzimatical disossiation for 7 days.  The dentospheres here achieved had the capacity to provide 

more self-renewing cells in each passage. Human Neurocult medium composed of Human 

Neurocult NS-A basal medium (cat# 05750, Stem Cell Technologies, Vancouver, Canada) with 

Neurocult proliferation supplement (cat# 05753, Stem Cell Technologies, Vancouver, Canada) 

at 9:1 ratio, and supplemented with Heparin solution 2 µg/ml (cat# 07980, Stem Cell 

Technologies, Vancouver, Canada), b27 without VitA, EGF 20 ng/ml and FGFb 10 ng/ml 

(Peprotech, London, UK) as previously described in presence of antibiotics penicillin 100 U/ml 

and streptomycin 150 µg/ml (15140-122, Gibco).  

hDPSCs differentiation protocols  

The initial seeding for all conditions was 15000 cell/cm2 using non-coated or coated 

cover slips.  

Osteogenic differentiation: These cells were first cultured in DMEM+10% FBS, STP, 

STP+NTP. Then, culture media were rinsed and changed to DMEM+10% FBS, 20 µM β-

glycerol-phosphate (Sigma, G9422, St. Louis, MO, USA), 10 nM dexamethasone (D4902, 

Sigma, St. Louis, MO, USA), and 52 nM ascorbic acid (#100468, Merck, Darmstadt, Germany) 

for three weeks. 

 

Neurogenic differentiation: Neurogenic induction was achieved using Neurocult™ medium 

with differentiation supplement at 9:1 ratio (Stem Cell Technologies, Vancouver, Canada), 

Heparin at 2 µg/ml (Stem Cell Technologies, Vancouver, Canada), EGF at 20 ng/ml, FGFb at 

10 ng/ml (Peprotech, London, UK), 2% of B27 supplement (Thermofisher, Waltham, 

Massachusetts, USA) and a mixture of antibiotics penicillin/streptomycin at 100 U/ml and 150 

µg/ml respectively (Gibco, Karlsruhe, Germany). DPSCs were grown for at least 7 days in 

laminin coated coverslips. These cells were not grown in other medium before this. 

 

Endotelial differentiation: Our results demonstrated that  DPSCs cultured in human Neurocult 

medium composed of Human Neurocult NS-A basal medium (cat# 05750, Stem Cell 

Technologies, Vancouver, Canada) with Neurocult proliferation supplement (cat# 05753, Stem 

Cell Technologies, Vancouver, Canada) at 9:1 ratio, and supplemented with Heparin solution 2 

µg/ml (cat# 07980, Stem Cell Technologies, Vancouver, Canada), b27 without VitA, EGF 20 
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ng/ml and FGFb 10 ng/ml (Peprotech, London, UK) as previously described in presence of 

antibiotics penicillin 100 U/ml and streptomycin 150 µg/ml (15140-122, Gibco) could be 

differentiated into endothelial cells. These cells were not grown in other medium before this. 

 

Immunostaining of brain sections and cell culture 

Animals were deeply anesthetized with Avertin 2.5 % and transcardially perfused with a 

4 % paraformaldehyde solution in 0.1 M sodium phosphate, pH 7.2 and processed. After post-

fixation overnight at 48ºC, the brains were embedded in agarose and then cut into 20µm 

sections using a VT 1200S vibratome (Leica, France). In order to detect grafted genetically 

unmodified human DPSCs on mice brain, specific antibodies targeted to human Nestin 

(MAB1259, 1:200 R&D systems)49, and human CD31 (BBA7, 1:200 R&D systems) were used. 

Immunostaining of brain vasculature was developed using CD31 (550247, 1:300 BD 

Pharmingen), laminin (L9393, 1:200 Sigma, St. Louis, MO), and VEGF (ABS82-AF647, 1:200 

Sigma, St. Louis, MO) antibodies.  

After a variable days of cell culture, they were fixed by incubation with 4 % PFA for 10 

minutes at room temperature and permeabilized by incubation in 0.1 % Triton X-100. They 

were then incubated overnight at 4 ºC with primary antibodies at the following dilutions: Glial 

Fibrillary Acidic Protein (GFAP) (MAB3402, 1:400; Millipore, Lake Placid, NY), Nestin (NES, 

1:200 Aves Labs), S100ß (Z0311, 1:1000, Dako, Glostrup, Denmark), NeuN (EPR12763, 

1:200; Abcam, Cambridge, UK), Doublecortin (DCX) (sc-8066, 1:200; Santa Cruz, Dallas, TX, 

USA), CD31 (550247, 1:300 BD Pharmingen, San Jose, CA , USA), Anti-STAT3 (phospho 

Y705) antibody (1:500, ab76315, Abcam), anti-human-CD31 (1:200, F8402, Sigma St. Louis, 

MO), VEGF (ABS82-AF647, 1:200 Sigma, St. Louis, MO) and laminin (L9393, 1:200 Sigma, 

St. Louis, MO). For both tissue sections and cell culture, secondary antibodies conjugated to 

Alexa 488, 568 and 647 Donkey anti-mouse, anti-rabbit or anti-goat were incubated for 2 h and 

30 min respectively at room temperature. Preparations were counterstained with DAPI and 

images were captured using a Leica SP8 confocal microscope at 40X magnification. 

 

Live cell calcium imaging 

hDPSCs were grown on glass coverslips and allowed to grow and make contacts for 7 

days. In order to register cell calcium imaging, 5 µM fura-2/AM or 2 µM fluo-4/AM 

(Invitrogen, Waltham, Massachusetts, USA) were incubated for 60 minutes at 37 ºC. 

Immediately, coverslips were placed in a flow chamber (Warner Instruments) with constant 

perfusion of Hank`s balanced salt solution (HBSS, Invitrogen, Waltham, Massachusetts, USA) 

supplemented with 10 mM Hepes (2-[4-(2-hydroxyethyl) piperazin-1-yl] ethanesulfonic acid) at 
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room temperature. Then, cells were alternately excited at 340 and 380 nm for fura-2 imaging, 

recording the emitted light above 510 nm. The F340/380 ratio was used as index of cytoplasmic 

[Ca2+]. For fluo-4 imaging, single excitation at 488 nm and emission at 520 nm was used and 

data were plotted as ΔF/F, where ΔF =F-F0. F is the fluorescence intensity of agonist-containing 

solution and F0 is the fluorescence intensity of control solution. Recordings were performed 

using a C10600-10B Hamamatsu camera installed on an Olympus IX71 microscope. Data 

analysis was performed using manually selected regions of interest (ROI), including 

background subtraction using Fiji software. Results are based on recordings from hDPSCs of 3-

4 patients cultured in different culture mediums. 

NSCs culture 

For NSC cultures isolated from Nestin-GFP mice, dissected hippocampi were removed with ice-

cooled PBS-sucrose and either plated in 6 well-plates or T25 low attachment flasks  with 

Neurocult complete medium (StemCell) that was supplemented with heparin (2 mg/ml), EGF 

(20 ng/ml; Invitrogen) and FGF2 (10 ng/ml; Invitrogen). Cells were maintained at standard 

conditions in a humidified 37 Cº incubator containing 5% CO2. Neurosphere cultures were then 

passaged every 7 days by enzymatic disaggregation with Accutase (Sigma, St. Louis, MO). 

 

RNA extraction and retrotranscription 

Cell pellets from the different cultures were washed with PBS, trypsinized (T1426, 

Sigma)  and centrifugated at 1500 rpm for 5 min. Then, they were immediately frozen at -80 ºC 

until use. RNA extraction was performed following RNeasy mini kit instructions (Qiagen, 

Hilden, Germany). RNA concentration was determined using Nanodrop Synergy HT (Biotek, 

Winooski, Vermont, USA) and purity was calculated by 260/280nm absorbance ratio. RNA 

retrotranscription to synthetize cDNA was performed starting from 1000 ng of the total 

extracted RNA using iScript cDNA Kit (1708890, Biorad, Hercules, California) following 

manufacturer instructions. 

 

Statistical analyses  

All results are presented as mean ± standard error, also referred as SEM. Statistical 

comparisons were performed employing Mann Whitney U test, Student’s t-test, Kruskal Wallis 

followed by Dunn´s post hoc test or a one-way ANOVA followed by Bonferroni and Scheffe 

post-hoc tests. Statistical tests were performed by IBM SPSS Statistics v.22. Statistical 

significance was considered to be *p ≤ 0.05, ** p ≤ 0.01, ***p ≤ 0.001. Comparisons between 
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multiple groups were made using The number of independent experiments is shown in the 

respective section. 

Western blot 

Cells were counted and resuspended in a ratio of 20,000 cells /µl of RIPA lysis buffer 

(R0278, Sigma, St. Louis, MO) supplemented with protease (11873580001; Roche) and 

phosphatase inhibitors (78420; Thermo Scientific) to ensure the same cellular concentration for 

the different type of cells and culture media. From this, thirty micrograms of protein was diluted 

in RIPA buffer supplemented with LDS Sample Buffer (NP0007; Invitrogen by Life 

technologies). Then, samples were heated for 5 min at 95Cº and loaded into NuPAGE 4–12% 

Bis-Tris gels (NP0322BOX; Novex by Life Technologies). For electrophoresis, NuPAGE 

running buffer (NP001; Novex by Life Technologies) was used. Protein transfer was performed 

using nitrocellulose membranes (LC2000; Invitrogen by Life Technologies) and NuPAGE 

Transfer Buffer (NP0006-1; Invitrogen by Life Technologies) along with XCell Sure Lock 

Electrophoresis machine (NP0007, Novex, Life Technologies). Phosphorylated-ERK and total 

ERK antibodies (both 1:1000, #4370 and #4695 respectively, Cell Signaling Technologies) and 

phospho-Stat3 and Stat3 (both 1:1000, #9145 and #9132 respectively, Cell Signaling 

Technologies) were used to detect the angiogenic signaling pathways and Ponceau staining 

(P7170-1L, Sigma St. Louis, MO) were used as loading control to detect protein in the charged 

lanes. 
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The angiogenic, immunomodulatory, anti-inflammatory, neuroprotective and 

pluripotent differentiation characteristics make the use of MSCs based therapies in the ideal cell 

source for neuroregeneration assays. However, FBS containing proliferative and differentiation 

mediums do not complete the demands GMP requirements to use these cells in human cell 

neuroregenerative therapies. In addition, the most of MSCs show two inconvenience to use 

them in neuroregenerative cell therapies. 1)do not keep close relationship with ectoderm germ 

layer, the origin of neural cells, which means a necessity to undergo a lineage trans-

differentiation to achieve neurogenic fate, and 2) often is needed an invasive intervention to 

acquire them. 

Thus, our hypothesis defend that, NC origin and ectomesenchymal properties of DPSCs 

would provide more effective and safe neurogenic differentiation protocol in serum-free culture 

mediums. Altogether, with the high accessibility, we think that DPSCs are the best option to 

autologous neuroregenerative cell therapies. 
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The main objective of this work has been the design of serum-free, safe, effective and 

transplantation permissive, neural differentiation protocols with the aim to assess the neurogenic 

potential of DPSCs without use neither transgenic nor epigenetic modifications. 

 

Specific objectives 

 

1. Ectomesenchymal characterization of DPSCs cultured in serum-free STP, specific stem 

mesenchymal culture medium. 

2. Comparison of the main morphological and proliferative features between DPSCs 

cultured in DMEM + FBS 10% and serum-free STP. 

3. Test the functionality of the main expressed neurotransmitter and voltage dependent 

calcium channels in both DMEM + FBS 10% and serum-free STP. 

4. Creation of new neurodifferentiation protocol using newly discovered properties 

promoted by serum-free STP. 

5. Assessment of the neuro/glio-genic potential of DPSCs when they are pre-cultured in 

different mediums. 

6. Evaluation of both ectomesenchymal, endothelial and neuro/glio-genic potential in 

Neurocult proliferation™, specific proliferation medium for NSCs. 

7. Evaluation of both ectomesenchymal, endothelial and neuro/glio-genic potential in 

Neurocult differentiation ™, specific differentiation medium for NSCs. 

8. Evaluation of in vivo histo-integration, neuro/glio-genic and vasculogenesis potential of 

hDPSCs in mice brain engraftment. 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

Results and Discussion 

 

Chapter I: Dental pulp stem cells as a multifaceted tool for bioengineering and the 

regeneration of craniomaxillofacial tissues. (Review). 

Chapter II: Human dental pulp stem cells grown in neurogenic media differentiate into 

endothelial cells and promote neovasculogenesis in the mouse brain. (Research article). 

 

Chapter III: BDNF and NT3 reprogram human ectomesenchymal Dental Pulp Stem Cells to 

neurogenic and gliogenic Neural Crest progenitors cultured with serum free medium. 

(Research article). 
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Neural tissue related affections embrace from neurodegenerative diseases, such as AD 

and PD, to stroke and traumatic injuries. Every year, between 250 000 and 500 000 people 

suffer SCI around the world according to World Health Organization (WHO). The high 

incidence, the lack of effective treatment, the invalidating being and derived economic and 

social burden of the aforementioned diseases (Lopez, 2011) , create a primordial necessity to 

develop and design new neuroregenerative therapies.  

Last years, several works have described the use of stem cells in innovative regeneration 

strategies of disrupted and degenerated nerve tissue. The use of genuine NSCs as precursor of 

newly generated neural cells should be the best way to nerve fiber reconstruction (Steward et 

al., 2013). However, the poor amount of NSCs present in adult human body and the high 

difficulty to access to NSCs location niches, turn these cells in useless for realistic autologous 

cell therapies. 

MSCs have been described as the one of the most available and well-known stem cells 

in adult human body. They can be isolated from umbilical cord, bone marrow, adipose tissue 

and dental structures, among others (El Omar et al., 2014).  Despite of existing SCI reparation 

effective therapies with conventional mesenchymal stem cells (Vaquero et al., 2018), the 

importance of DPSCs in neuroregeneration has been increasing since few years ago. The NC 

origin shared with PNS, the ectomesenchymal features, as well as low invasive extraction 

procedure, draw DPSCs as very compatible source to innovative regeneration approaches 

(Aurrekoetxea et al., 2015). 

The culture of human DPSCs has gone hand in hand with FBS supplementation, that is 

composed of not stablished nutrients, factors and elements of animal origin. The use of serum in 

cultures of human DPSCs provides high proliferation rates and allows long duration cultures. 

However, the cell culture supply with 10-20% FBS is also related with of mesenchymal stem 

cell phenotype promotion. Furthermore, previous works describe the tendency of human DPSCs 

to spontaneously differentiation into osteo/odonto-blasts after expose them to relatively high 

FBS concentrations for long periods (Pisciotta et al., 2012; Yu et al., 2010). In addition, several 

side effects such as allergies and immune reactions  are related with the use of xenogenic serum 

(Gregory et al., 2006; Horwitz et al., 2002). These serum related issues, make FBS useless for 

human neuroregeneration therapies. 

This research work has focused on design, development and test of serum-free commercial 

culture mediums in order to obtain cells that could be used in human neuroregenerative cell 

therapies.  
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We use in our hDPSCs cultures NeurocultTM and StemPro MSCTM (STP) serum free 

culture mediums instead of serum containing common used DMEM+ FBS 10-20%.  Both 

NeurocultTM and STP are genuinely employed in specific cell type cultures. Thus, NeurocultTM is 

currently used in NSCs and progenitor culture in vitro, while STP is especially formulated for 

human mesenchymal stem cell expansion.  

The use of serum-free media is not yet broadly expanded to cell cultures, isolation or 

differentiation of hDPSCs. However, the few works published using serum-free mediums shed 

some light in innovative culture and differentiation protocols for hDPSCs. Thus, according to 

the results we obtained in our separate works where NeurocultTM and STP were used as culture 

mediums (chapter II and chapter III, results and discussion), Hirata et al. firstly mentioned the 

maintenance of hDPSC in serum-free media (Hirata et al., 2010). We showed that also 

proliferation ratio was decreased in both NeurocultTM and STP, likely due to replace of FBS. In 

addition, our group carried out the characterization of phenotypic change of hDPSCs into 3D-

like spheroid structures. These non-adherent spheroids-like structures, termed dentospheres, are 

pretty similar to that spheroids, called neurospheres, generated by NSCs and NCSCs in vitro 

(Fournier et al., 2016; Lee et al., 2007a; Reynolds and Weiss, 1992b). Although the generation 

of spheroid –like structures in serum-free conditions by hDPSCs totally agrees with the 

publication of Bonnamain et al. where similar results were described, the efficiency of 

dentosphere generation seems to be higher in our both works. We achieved almost 100% of 

dentosphere creation efficiency compared with low 30% ratio described by Bonnamain et al. 

(Bonnamain et al., 2013). 

  Even if we have demonstrated in each work (chapter II and chapter III, results and 

discussion) that depending on culture conditions cell growth and some marker expression can be 

changed, analysed hDPSCs demonstrated almost indentical expression of mesenchymal and 

neural stem/neural crest stem markers. All three analyzed proliferation culture mediums; 

NeurocultTM proliferation, STP and DMEM + FBS 10%, unexpectedly expressed almost similar 

mesenchymal stem surface markers CD73, CD90 and CD105 ( data not shown to neurocult 

proliferation). In addition, Nestin and GFAP were presented in similar values  in analysed 

hDPSCs cultured in all culture mediums, even in cultures of NSCs. All these markers together 

comprehend the common marker pattern showed by NC-derived mesenchymal stem cells. There 

is described the presence of NC progenitors located in perivascular niches within dental pulp 

(Janebodin et al., 2011; Kaukua et al., 2014).  NCSCs can be commited to either to neural 

lineage forming  neuronal and glial cells of  PNS or to ectomesenchymal lineage to form special 

connective tissue that will generate the most of maxillofacial structures in embryonic 

development (Aurrekoetxea et al., 2015).  
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Once we achieved NC-derived EMSCs dentospheres in NeurocultTM, we realized the 

potential applications of these cells in neuroregenerative therapies. The employment of STP, 

specialized human mesenchymal stem cell culture medium, seemed to be logical for this 

purpose. We did not only improve our NCSCs obtaining efficiency using STP, but also 

achieved more pure NCSCs rather than already committed neural or endothelial progenitors 

discovered using NeurocultTM. 

Despite of the similarity of the dentospheres created by hDPSCs cultured in Neurocult 

proliferation and STP, these two protocols provide different special characteristic to hDPSCs. 

On the one hand, surprisingly, we discovered the overexpression of mRNA levels of NTRK2 

and NTRK3 when hDPSCs were grown in STP. These two receptors belong to Tyrosine Kinase 

activity receptors and are involved in neural stem cell physiological and cellular activities, such 

as differentiation and neuronal survival among others (Bibel and Barde, 2000; Oliveira et al., 

2013).  To our knowledge, we are one of the first groups demonstrating the expression of these 

receptors in hDPSCs. 7 days after exposure of BDNF and NT3, respective ligands of 

NRTK2/TrkB and NRTK3/TrkC, to that cells cultured preliminarily in STP, the role of NTRK2 

and NTRK3 in homeostasis and differentiation of hDPSCs was proposed. The physiological and 

molecular modifications; proliferation increase, common stem pluripotency core factors 

NANOG, SOX2 and OCT4a overexpression and NC HNK1 and p75NTR progenitor markers 

overexpression promoted by exogenous neurotrophins, made us to suggest a step back in 

DPSCs lineage, reprogramming them toward genuine NCSCs. 

On the other hand, hDPSCs grown in NeurocultTM proliferation did not show 

aforementioned NCSCs-like modifications apart from markers they expressed basally. 

However, they were able to express VEGF and CD31 endothelial markers in proliferation 

conditions either in suspension or in laminin promoted adhesion, suggesting some type of 

differentiation or selection. 

Likely, phenotypic similarity with NCSCs is also present in hDPSCs grown in DMEM+ 

FBS 10%, but according  to Xiao and Tsutsui the dentospheres could be composed by different 

mature and progenitor cells at first. However, the hermetic structure of dentosphere that avoids 

the needed oxygenation, along with the starving caused by serum-free condition promote the 

death of committed mature cells while time goes by. In fact, neural progenitors and stem cells 

can survive, and even hDPSCs stemness is enhanced in hypoxic conditions  (Xiao and Tsutsui, 

2013). 

One of the aims seeked in neuroregeneration therapies is the restoration of neuronal 

cells lost after a tissue injurie or pathology. The multiple connections created by  large quantity 

of neuronal cells showed by human adult nervous systems turn the neurogeneration in a tough 
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challenge for researchers. In overall, we have demonstrated with those works, the capacity of 

hDPCSs to differentiate into neuronal and glial cells after grown in serum-free conditions. 

Depending on culture medium, the differentiation can be indirect or  direct.  

Like it is commented above, when hDPSCs were seeded in BDNF and NT-3 containing STP 

medium for 7 days it seemed to be a dedifferentiation procces, were NCSCs-like cells were 

achieved.  In order to confirm the functional reprogramming of ectomesenchymal hDPSCs into 

early NC precursors we tested the capacity of these cells to derive into neural cells. It is 

described that differentiation fate can be switch depending on serum absence or presence. In 

fact, serum presence enhance the ectomesenchymal being of NCSCs, as we concluded with our 

hDPSCs grown in DMEM+FBS 10% (Lee et al., 2007a).  The hDPSCs pre-exposed to FBS and 

then seeded in both DMEM+ FBS 10% and in STP were still remaining mesenchymal being, 

once BDNF and NT-3 addited, this characteristic was changed and NC and pluripotency 

markers were overexpressed, that are related with stemness increase (Uribe-Etxebarria et al., 

2017). The genuine characteristics of both NC early precursors and ectomesenchymal cells, 

provide them the ability to differentiate into different type of cells .Thus, we saw the loss of 

capacity of BDNF/NT-3 treated hDPSCs to give rise osteoblasts or mineralized bone matrix in 

osteoinductive medium, however,  hDPSCs exposed to DMEM+FBS 10% for long period 

seemed to be preconditioned to osteogenic fate. Moreover, not only mesenchymal comitting 

was decrease in neurotrophin treated hDPSCs, but they significantly increase the neurogenic 

potential once they were cultured in NeurocultTM differentiation neuroinductive medium. 

Compared with the hDPSCs of the same donor grown in DMEM+FBS 10%, neuronal (NeuN, 

DCX) and glial (p75NTR, S100β) marker expression were five times increased each. Supported 

by these results, we can say that we firstly design a culture protocol able to increase very 

functional NCSCs population from not genetically or epigenetically modified hDPSCs. This 

could be described as an indirect neurogenic differentiation, given the need for several steps to  

differentiate hDPSCs into neural lineage cells (figure 1). 
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Figure 1. Graphical abstract of “BDNF and NT3 reprogram  human ectomesenchymal Dental 

Pulp Stem Cells to neurogenic and gliogenic Neural Crest progenitors cultured with serum free 

medium” (chapter III ). 

In the case of hDPSCs cultured in NeurocultTM differentiation medium, that is a specific 

variant of NeurocultTM proliferation medium to differentiate NSCs into mature cells, showed 

almost the same neurogenic capability shown by NSCs. After 1 week of culture of hDPSCs in 

neurocult differention serum-free medium, supplemented with B27 with vitA, hDPSCs began to 

express neuronal markers NeuN and DCX. In the same way, these cells expressed GFAP and 

S100b glial markers. There were not statistical significance difference with the marker 

expression values showed by NSCs. These results suggest direct neurogenic potential of 

hDPSCs cultured in NeurocultTM differentiation (figure 2). 

It is widely accepted the role of substitutive neuronal cells in neuroregenerative 

therapies, however, some neurological affections are not directly derived of neuronal cells loss, 

but they are caused by irrigation problems. Thus, since Takahashi et al. employed EPCs and 

stem cells for first time to vasculogenesis stimulation in ischemic disease (Takahashi et al., 

1999), the importance of angiogenesis and vasculogenesis have been taken importance in some 

neural afections, such as ischemia, and MI, among others (Tatullo et al., 2015).  In addition to 

already confirmed neurogenic potential, we wanted to asses the endothelial differentiation 

potential of hDPSCs. Despite of the existance of previous works that achieve endothelial 

vascular cells either they were cultured in 10% serum presence in the case of hDPSCs, or the 

serum-free protocol was optimized for non-human cells (d’Aquino et al., 2007; Weiss et al., 

1990). We have been the first group able to derive non-genetically modified endothelial 

vascular cells from hDPSCs in serum free conditions. Although we achieved neurogenic cells 
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after neural induction using NeurocultTM differentiation medium, we realized that we could 

achieve VEGF and CD31, endotelial markers, expressing hDPSCs using NeurocultTM 

proliferation supplemented with B27 without vitA, EGF and bFGF. We also reported both the 

activation of  STAT3 and ERK in NeurocultTM proliferation medium and the out standing role of 

them in endothelial differentiation. Our results totally correlate with the results of other groups, 

that support the importance of ERK in angiogenesis (Xu et al., 2008) and the relation of 

phosphor-STAT3 with VEFG overexpression (Niu et al., 2002), and endothelial cell activation 

(Chen et al., 2008). Furthermore, Bento et al. related the differentiation of SHED toward 

endothelial cells by ERK activation with the VEGF dependant VEGFR2 enhancement (Bento et 

al., 2013). Taking in consideration all the results obatined we concluded that we were able to 

give rise endothelial cells from hDPSCs (figure 2). 

 

 

 

 

 

 

 

 

 

Figure 2. Graphical abstract of “human dental pulp stem cells grown in neurogenic media 

differentiate into endothelial cells and promote neovasculogenesis in the mouse brain” (chapter 

II). 

Like is commented several times during this work, there are a large amount of works in 

the literature were is given more weight to neuroprotective activity than to the cell-cell neuronal 

restoration (Ratajczak et al., 2016; Song et al., 2017). In accordance to Mead et al. we also 

characterized the expression of NGF, BDNF and NT-3 (Mead et al., 2014). 

All the results obtained in vitro seems to be very hopeful to translation of these 

protocols to cell therapies in human. However, the employment of these cells in in vivo models 

could be totally change the approach. In fact, although hDPSCs were able to express neuronal 

and glial markers in vitro when were grown in NeurocultTM differentiation, they were previously 
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grown in NeurocultTM proliferation to expand, we could not find any neural marker after 

intracranial graft of hDPSCs in vivo. Probably due to specific immune system that eliminated all 

the neuro-differentiated hDPSCs (data not shown). On the other hand, after one month of post-

intracranial graft into athymic nude mice we found CD31+ Nestin+ VEGF+ hDPSCs. Nestin 

(Suzuki et al., 2010), VEGF (Ferrara et al., 2003) and laminin (Malinda et al., 2008) increased 

expression are taken as angiogenesis hallmark. Moreover, laminin is 50% decreased in ageing 

related issues  (Gavazzi et al., 1995) and it can downregulate TGF-β in epithelial cells (Streuli et 

al., 1993), that is involved neurogenic niche quiescence during ageing (Pineda et al., 2013). In 

addition, the capacity to depolymerization of amyloid  fibrils, the laminin degradation in 

cerebral ischemia and laminin variation during CNS injuries, make us to realize about the 

importance of laminin. Accordingly, hDPSCs disaggregated from dentospheres and then grafted 

into the brain of immunosuppressed mice, could be advantageous in rejuvenating therapies and 

neurodegenerative illnes (Bronfman et al., 1996; Fukuda et al., 2004; Ji and Tsirka, 2012). 

In the case of hDPSCs grown in STP, we needed to asses their histointegration capacity, 

as far as this is the ability of cells to adapt to new enviroment. The creation of new functional 

interactions and the ability to exchange information with hostage tissue is key to a correct 

function and good engrafment of foreign cells (Guerzon et al., 2011; Muschler et al., 2004). The 

aforementioned NCSC character of hDPSC is given by the addition of BDNF and NT-3, 

common elements released in the nervous system. More than the engrafment of already NCSCs-

like reprogrammed hDPSCs, would be better to engraft hDPSCs genuinely grown in STP. Thus, 

we could elude the use of exogenous neurotrophins, activating overexpressed NTRK2 and 

NTRK3 by endogenous neurotrophins. Neurotransmitters are the main elements used in the 

intercelullar communications in nerve tissue. For example both GABA and glutamate are 

determinant in the creation of synaptic connectiosn during development (Ben-Ari, 2001; 

Egorov and Draguhn, 2013). The characterization of the possible responses given by hDPSCs 

to different neurotransmitters was essential to know the capacity of these cells to interact with 

hostage tissue and, therefore, to coordinately communicate to provide a common function of the 

tissue. Suprinsingly, we found that except to P2XR7, a purinergic receptor tested by ATPyS 

agonist, more expressed in STP conditions, both DMEM+ FBS 10% and STP expressed 

similarly different subunits of ionotropic neurotransmitter receptors. Moreover, the stimulation 

of hDPSCs by certain agonists were clearly demonstrated by microfluorescence calcium assays. 

Apart from neurotransmitter receptors hDPSCs of two culture conditions expressed also several 

groups of Connexins (Cx26, Cx43) and Pannexin (Pnx1) subunits, that are responsibles of Ca+2 

propagation, a special characteristic of neural tissue during development (Bruzzone et al., 2003; 

Harrison et al., 2007; Nadarajah et al., 1997; Ray et al., 2005). We also confirmed the presence 

of functional Bay-K-sensitive L-type voltage dependent calcium channels, that were described 
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for first in hDPSCs by Ellis et al  (Ellis et al., 2014). All these elements are necessary to good 

integration in nervous tissue, that make gDPSCs ideal to regeneration therapies. 

To sum up, all these results here gathered not only suggest the good viability of human 

DPSCs in different serum-free mediums, but also means that these mediums can promote 

physiological, molecular and functional changes in the cells that could be interesting to use in 

neuroregeneration assays. Furtheremore, the clear neurogenic and endothelial differentiation 

potential, neuroprotective cues expression along with the integration and neovacularization of 

human DPSCs in the mouse brain are the needed requirements (Luo et al., 2018) to open the 

window of a new generation of tissue regeneration cell therapies, apart from nervous system 

related tissues also, even in pathologies of non-nerve tissues .  
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The use of innovative new serum-free culture mediums has resulted in the discovery of 

new physiological, molecular and behavioral features in hDPSCs that clearly suggest the high 

capacity of these cells to differentiate into neurogenic lineage cells. The neuroprotective and 

vasculogenic properties also remark the importance of DPSCs in neural regeneration cell 

therapies. 

The following conclusions have been drawn from the results obtained in this work: 

1. The culture of hDPSCs in serum-free STP, does not affect the ectomesenchymal 

characteristic expression compared with those grown in DMEM + FBS 10%. They 

remain expressing neural stem, mesenchymal and pluripotent markers in STP.  

2. While hDPSCs cultured in DMEM + FBS 10% grow in monolayer, hDPSCs cultured 

in serum-free STP are able to generate neurospheres-like dentosphere 3D structures. 

Proliferation rate of  hDPSCs cultured in DMEM + FBS 10% is significantly higher 

than the rate showed by these cells grown in STP, that showed quiescence-like stage, 

likely promoted by serum absence.  

3. All tested neurotransmitter receptors and voltage dependent calcium channels have 

shown to be functional in both DMEM + FBS 10% and serum-free STP. 

4. NTRK2 and NTRK3, neurotrophin receptor are overexpressed in the cells cultured in 

serum-free STP. 

5. Adding BDNF and NT3, respectively the natural ligands of NTRK2 and NTRK3, in a 

serum-free STP, termed as STP + NTF2, NC and pluripotential markers are 

overexpressed. These results suggest the lineage step -back to NCSCs from hDPSCs, 

after passing out quiescence stage showed by cells cultured in genuine STP. 

6. The hDPSCs cultured in STP + NTF2, show remarkable higher neurogenic ability 

than those cells cultured in both genuine STP and DMEM- FBS 10%. 

7. hDPSCs cultured in Neurocult proliferation™, are able to generate dentospheres and 

express both stem mesenchymal and endothelial markers. 

8. While hDPSCs cultured in neurocult differentiation™ are able to express neuronal and 

glial markers, they do not express endothelial markers. 

9. The engraftment of hDPSCs pre-cultured in serum-free neurocult proliferation™ into 

mice brain, showed the ability to generate de novo vasculature in brain. Suggesting 

both in vivo integration and endothelial differentiation of hDPSCs in vivo. 
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I Patent: Organ and tissue revascularization by dental origin cells 

transplantantion (2018) 

 

 

 

 

 

 


