
 

 

 



Analytical Chemistry Department

Integrated assessment of  
the presence of emerging compounds 

and their toxicological effects  
in estuaries of Biscay 

Leire Mijangos Treviño 

2018 

A thesis submitted for the international degree of Philosophiae Doctor 
in Environmental Contamination and Toxicology 

Supervised by 

Dr. Nestor Etxebarria Loizate 
Dr. Ailette Prieto Sobrino 

(c)2018 LEIRE MIJANGOS TREVIÑO



Bekak eta Finantziazioa 

i 

Bekak eta Finantziazioa 

Tesi hau Eusko Jaurlaritzako doktore berrien prestakuntzarako diru-laguntzari esker egin da. 

Era berean, Eusko Jaurlaritzak doktore-ikasleei bideratutako mugikortasun bekari esker (Egonlabur) 

posible izan da Leipzig-eko UfZ ikerketa zentroan (Alemania) 4 hilabeteko egonaldia egitea 2016an, 

eta bide batez nazioarteko tesiaren aipamena eskuratu ahal izatea. Bestalde, Kultur Paisaien eta 

Ondarearen UNESCO katedrak emandako mugikortasun-bekari esker beste 2 hilabeteko egonaldia 

egin ahal izan da Leipzig-en 2017an.  

 

Horretaz gain, tesi honetan bildu diren lanak egin ahal izateko hurrengo ikerketa-proiektuen 

diru-laguntza eskertu nahi dugu: 

 Nuevas metodologías para evaluar el impacto de los contaminantes emergentes en 

ecosistemas marinos y el consumo de alimentos (CT;2014-56628-C3-1-R) 2015-

2017. Ikerlari nagusia: Nestor etxebarria Loizate 

 A-motako talde kontsolidatua (IT-742-13) Eusko Jaurlaritza, 2012-2018. Iker 

Nagusia: Juan Manuel Madariaga mota.  
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Esker onak 

Azkenean iritsi da tesi honen azken lerroak idazteko unea. Te bero batekin esku artean eta 

musika “country” amerikarra entzuten (azken boladan nire tesiko soinu-banda bilakatu dena, ezta 

Eleder?) bizitakoak gogoratzen hasi naiz. 4 urte hauetan denetarik egon da: primerako jendea 

ezagutu dut, parranda eta bidaiak egon dira, barre asko egin dut, akademikoki asko ikasi dut eta 

batez ere pertsonalki; baina onartu beharra daukat momentu gogorrak ere egon direla. Argi daukat 

maratoi hau ez nukeela bukatuko zuen guztion laguntza barik eta horregatik eskerrak eman nahi 

dizkizuet.  

Lehenik eta behin, ama eta aita, Trevi eta Miji, zuei eskerrak eman nahiko nizkizueke. Ez soilik 

4 urte hauetan lagundu nauzuen guztiagatik, zuei gehiago zor dizuet. Eskerrik asko edozer gauza lor 

dezakedala sinestarazteagatik eta beti nire jakin-mina (eta, noski, frustrazioak) bideratzen 

jakiteagatik. Oraindik ere gogoratzen dut Barandiaranera kremak eta potinjeak egiten joaten 

ginenean edota etxean, hidrogenozko bateriarekin zebilen urrunetik gidatutako kotxearekin jolasten 

ibiltzea, adibidez. Sister! Zu ere ezin ahaztu, hor egon zara bidelagun: beti prest hegazkin bat 

hartzeko edo txiste txarren bat kontatzeko, zuk badakizu beti zer esan burua galdu ez dezadan eta ni 

lasaitzeko ere. Jakiteagatik, lar dakizu niri buruz (eta askotan ez dizkidazu ahazten usten, esate 

baterako nola ni kimikaria izanik brownie bat egiteko mL eta cL erratu nituenekoa) Gainontzeko 

senideei ere eskerrak, daudenei eta ez daudenei; nork daki piztutako kandelek eta otoi guztiek 

nolabaiteko eraginik edukiko izan duten… 

Eta nola ez! Eskerrik beroenak Nestorri eta Ailetti, ez dakit zelan eskertu ahalko dizuedan 4 

urte hauetan emandako laguntza. Nire “dislexiarekin” guztiz zoratu ez zaituztedan bitartean... Biak 

ala biak hain desberdinak izanik asko ikasi dut zuengandik. Nestor, beti zaude erronka berrietan 

sartzeko animatzen (norbere buruan sinetsi behar da), eskerrak behin baino gehiagotan behar 

genuen bultzada emateko adorea izan duzun edo tesi hau guztiz desberdina izango litzateke. 

Eskerrik asko ere Santiagon garagardo artean ni lasaitzeagatik. Ailette, gutxitan ezagutu dut 

torlojuak horrenbeste estutzeko gaitasuna duen norbait, eta zer esan zure energiari buruz, eres una 

machine! 
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Ta zer esanik ez mintegiko jendeari buruz! Bihotzez esaten dizuet zuei esker plazer bat izan 

dela lanera etortzea. Mintegian sortutako giroa itzela da benetan! Zenbat barre, juerga, poteo, 

TXOKOLATE eta palomita-party, talde ekintza (padel surf, indabada, laser-tag... hurrengoa noizko?), 

bazkari, psikologia taller egin ditugun… Eskerrak eman nahi dizkizuet momenturen batean mintegian 

batera egon garen orori: Josu, Azibar, Naiara, Arantza, Oscar, Sandra, Oier, Janire, Oihana, Ekhine, 

eta oraindik ere unibertsitatean zaudetenei: Olivia, Olaia, Josean, Laura, Leire K, Belen, Mire. Animo 

Denis, Bastian eta Ilaria, testigua zuei pasatzen dizuet, eta Laura zuri betebehar bat: orain zure esku 

utziko dut egunero Denis apur bat txintxatea. Haizea, adiskide kuttuna! Orain dela hamar urte 

karrerako lehen egunetik (gurasoen konspirazioarekin barne) nirekin amaiera arte egon zara 

(erasmusean, masterrean eta orain doktoretzan) ko-zuzendari, psikologo, lagun, eta idazkari lanak 

egiten. Mintegiaren beste pasilloan, Gasteizen edo Zamudion zaudeten IBeA taldeko kide guztioi ere 

eskerrik asko momenturen batean eskainitako laguntzagatik edo, besterik gabe, pasilloan irribarre 

egiteagatik. Maitane eta Olatz, mila eskerrak zuen hurbiltasunagatik. PiE-ko jendeari ere eskar eman 

anhi dizkiet hainbeste biologoen artean kimikariok eskuzabal hartzeagatik eta Erroman gu hain ondo 

zaintzeagatik! Laura de Miguel (ez du balio norbaiti testua itzultzeko eskatzea) eta Urtzi Izagirre, ezin 

zaituztet aipatu barik utzi, plazer bat izan da zuekin erronka berriei aurre egitea.  

I would like to thanks also my colleague from the Helmholtz Centre for Environmental in 

Leipzig. I would like to thank Tobias, Martin and Werner all their help and supporting during this 

stay. I would also like to thank to Liza, Riccardo and Melisse all your help inside and outside the lab 

and to all the people of the lab: Arslan, Erik, Jörg, Marion, Margit, Hubert. I had so much fun with all 

of you and for sure, this experience would not be the same without you! 

Eta zientzia mundutik aparte egon zareten denei besarkada handi bat! Karrerako hirukoteari, 

mila esker bizitako juerga, bidai eta “kedadengatik”. Hurrengo kekada denok doktore modura, ezta 

Vero? Kuadrilakoei ere, eskerrik asko, beti lanari lehentasuna eman behar ez zaiola gogoratzeagatik 

(…baina nor dabil beti nirekin parrandan ta zarataka, kuadrilla tori hau zuentzat da ez nuke besterik 

falta, zuen ondoan egun guztiak hau bezain onak dira ta, larai larai larai larai hau bezain onak dira 

ta…2007an abestuak gaur egun oraindik ere balio du). Eleder, zuri ere muxu bat, abentura honetan 

hasietarik bukaera arte bidai laguna izan zarelako eta azken aldian beste inork baino gehiago jasan 

behar izan duzun guztiagatik.  



 

Zazpi mendeko gauean gaude. 
Gure loreetan sasi, 

Irrintzi, oihu, ele ta ulu, 
Marmario ta garrasi, 

Haize enbata, brisa, galerna, 
Gaur garbi, bihar nahasi, 

Xake taularen zuri beltzetan 
Arrats gozo egun gazi. 

Ai itsasorik ez bageneuka 
Zeri so negarrez hasi. 

 

Gure zuhaitza landatu dugu 
Amildegi muturrean, 

Adarrak daude ertzetik haruntz; 
Sustraiak, berriz, lurrean, 

Bihotz esteak estu helduaz 
Esku baten aurrean. 

Bertso berriak jartzera noa 
Bere indar laburrean 

Nola malko bat isuritzen den 
Itsasoren aurrean. 

 

Nola haizea gurazalea 
Eguzkiaren irteran 

Nola kaioak zorabioan 
Itsas enbata bezperan 

Pentsatzen nago gu ere berdin 
Ibiltzen ez ote geran 

Susmoa dauka gure patoa 
Itsasoa ez ote da 

Libre ta zabal dugu aurrean 
Baina ezin dugu edan 

 
Heldu herria sustraietatik 

Tira eta gora jaso 
Jarri Kantauri aurrean eta 
Mantendu zutikan gizon 

Ispilu hortan ikus gaitezen 
Herriz herri auzoz auzo 

Sauriak gatzez itxi ditzagun 
Malkoak gure zera son 

Sano ta libre irla txiki bat 
Salbatuko kara kaso 

 

Azken arnasa eman nahi nuke 
Eguna hiltzen ari da 

Azken arnasa eman nahi nuke 
Bertsoak entzuten dira 

Azken arnasa eman nahi nuke 
Kantari nator herrira 

Azken arnasa ematen dugu 
Eguzkitik eguzkira 

Azken arnasa eman nahi nuke 
Itsasoari begira.  

 
(Itsasoari begira, Benito Lertxundi) 
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The art and science of asking questions 

 is the source of all knowledge. 

Thomas Berger 
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Pollution has always accompanied human civilizations. However, the concern about the 

impact of chemicals on human health and the environment has gained an increasing attention in the 

last decades. In addition to the legacy compounds, the attention of scientific community is focused 

on the occurrence and effects of compounds that were, until recently, missed, overlooked, ignored 

or unknown (Daughton, 2004). To many of these compounds we refer as emerging contaminants 

(ECs). But, why should be worry about ECs? 

First, the global production of chemicals has risen from 1 million tons per year in the 1930s to 

over 400 million tons nowadays (Bijlsma and Cohen, 2016). In addition to the increase in the 

production and use of chemical products, the awareness about the impact of manufactured 

chemicals on our health and in the environment is, however, rather recent. In fact, the public 

awareness and the perception about the chemical contaminants have evolved dramatically in the 

last decades: from the onset of DDT issues to the distribution of microplastics in the ocean (Guillette 

and Iguchi, 2012). 

Certainly, before going on, it is worth clarifying the term emerging contaminant. Mostly, it 

refers to the fact that we know about them thanks to the use of highly sensitive and appropriate 

instruments and determination methodologies. In this term, however, we also include substances 

recently introduced into the environment as well as previously known compounds, but whose 

toxicological effects were previously unknown. Among those contaminants, we can find many 

different xenobiotics including personal care products (PCPs) (preservatives, sunscreen products, 

etc.), pharmaceuticals (antibiotics, anti-inflammatory), life style products (food additives, stimulants, 

detergents, etc.), industrial compounds (perfluoroalkyl substances, PFASs, plasticisers, etc.) and 

pesticides (Richardson and Ternes, 2018). They are only a few examples from a long list of potential 

ECs.  

As a consequence of the mentioned awareness, different public bodies, such as the European 

Environment Agency (EEA) and the US Environmental Protection Agency (EPA), have prioritized 

many contaminants (European Commission, 2013; USEPA, 2015) based on their physico-chemical 

features (persistence and bioaccumulation) and toxicity. Most of these pollutants are known as 

persistent organic pollutants (POPs) and among them, we can find hydrocarbons, organochlorides, 

https://en.wikipedia.org/wiki/Air_pollution
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organic solvents, pesticides, and phthalates, among others. Moreover, in the framework of the 

Water Framework Directive (WFD) of the European Union (2008/105/EC), environmental quality 

standard (EQS) values were established for some of the priority contaminants (European 

Commission, 2008).  

Since most of the ECs are labile compounds they cannot be categorized as persistent 

pollutants, though they are continuously fed into the aquatic environment at low ng-µg/L levels and, 

thus, they act as if they were persistent and their effects chronic (Daughton and Ternes, 1999). 

Consequently, the concern about the widespread presence of ECs in the environment and their 

possible toxic effects is also reflected now in some legislation. For instance, the Convention for the 

Protection of the Marine Environment of the North-East Atlantic (OSPAR) was the first body who 

formally recognize pharmaceutical contamination, and the compound clotrimazole was included on 

their priority action list (OSPAR, 2002).  

Similarly, the US EPA included 97 contaminants or chemical groups in a Contaminant 

Candidate List (CCL-4) for future regulatory consideration (USEPA, 2015). This list includes different 

contaminant classes such as pesticides (e.g. acephate, acrolein, diuron), pesticides by-products (e.g. 

3-hydroxycarbofuran, acetochlor ethanesulfonic acid), pharmaceuticals (e.g. erythromycin, 

nitroglycerin), industrial by-products (e.g. o-toluidine), perfluoroalkyl substances (perfluorooctanoic 

acid, PFOA and perfluorooctane sulfonic acid, PFOS), plasticisers (e.g. nonylphenols) and hormones 

(e.g. norethindrone), among many others.  

In Europe, the WFD introduced a first dynamic Watch List (WL-1) of ECs (European 

Commission, 2015), which includes a list of potential water pollutants that Member States should 

monitor carefully, to determine the risk they pose to the aquatic environment and if the EQS values 

should be established for them. Five neonicotinoids insecticides, a sunscreen agent (2-ethylhexyl-4-

methoxycinnamate, EHMC), three macrolide antibiotics (azithromycin, clarithromycin and 

erythromycin), one synthetic and two natural hormones (estrone, E1, 17 β-estradiol, E2, and the 17-

α-Ethinylestradiol, EE2), a non-steroidal anti-inflammatory drug (diclofenac) and an antioxidant 

agent (butyl hydroxytoluene, BHT) were identified as candidates under this decision. A second list 

(WL-2) was also published recently in 2018 with three new substances (metaflumizone, amoxicillin 
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and ciprofloxacin) (European Commission, 2018). 

Nonetheless, the number of listed or regulated compounds is insignificant in comparison 

with the existing chemicals (currently, more than 100,000 compounds are produced at industrial 

scale), their metabolites and transformation products. Obviously, one of the consequences of this 

complex scenario is the difficulties to prioritize the contaminants. The analysis of a tiny fraction of all 

those compounds and the estimation of the risks associated to them using the procedures included, 

for instance, in the technical guidance on risk assessment (European Commission, 2003) is 

unsuitable. In fact, this procedure describes how to prioritize chemicals based on risk ratios, which 

are estimated comparing the environmental concentrations with the toxicological effects. In 

addition to this, the estimated risk should include representative test organisms associated to the 

water type monitored, the different mode of actions (MoA) of the contaminants and the synergies 

that can occur when mixtures of them are present (Escher and Hermens, 2002; WHO, 2017).  

Once the most important contaminants are selected or prioritized, the next task is looking for 

the sources to implement the best available technologies to minimise their impact. Among the 

major candidates we can find  wastewater treatment plants (WWTPs), domestic wastewaters and 

hospital discharges. In fact, most of the studies are focused on WWTPs (Tran et al., 2018), and 

continental and ground water (Gredelj et al., 2018; Manamsa et al., 2016). However, marine 

environment is often overlooked despite the fact that estuarine and coastal waters are the final 

destinations (direct spill or inland discharge) of many of these contaminants (Desbiolles et al., 2018). 

Moreover, the occurrence of ECs in aquatic biota shows even fewer studies, probably due to the 

greater complexity of the biota matrices and, thus, the lack of suitable analysis protocols (Núñez et 

al., 2017). 

Considering all the viewpoints, there are still many gaps to bridge (Munthe et al., 2017). In 

fact, the costs of the chemical and biological monitoring required to extend the ecological status to 

all ECs are unaffordable (Busch et al., 2016). Therefore, there is clearly a need to strengthen the 

bioanalytical tools to integrate validated bioassays in the regulatory monitoring programs (Di Paolo 

et al., 2016) and to link the presence of mixtures of chemicals in the environment and the effects 

observed at different biological levels (molecular, organ, cell,…) (Wernersson et al., 2015).  
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Finally, the understanding of the fate and effects of emerging contaminants is a complex and 

challenging issue that requires interdisciplinary approaches and cutting-edge methodologies. In the 

following sections a more detailed description of some of the hot issues that have been pointed 

before will be offered from the viewpoint of an analytical chemist. 

 Where have all the ECs gone? 1.1.

A literature search of the term emerging contaminants shows a steady increase along the last 

decade but this probably does not reflect so much the scientific efforts towards ECs but the 

consequence of a fashionable and trendy use of the term and the topic (Sauvé and Desrosiers, 

2014). Most of the literature reports deal with different classes of organic ECs (i.e. pharmaceuticals, 

UV filters, musks, antimicrobial disinfectants, antioxidants, artificial food additives, PFASs, corrosion 

inhibitors, flame retardants, plasticiser) that are found in sewage treatment plant effluents, surface 

and groundwater and biota. There are several works recompiling the ubiquitous occurrence of them 

in aquatic environments (Desbiolles et al., 2018; Naidu et al., 2016; Richardson and Ternes, 2018; 

Sousa et al., 2018; Wilkinson et al., 2017).  

Nevertheless, it is difficult to establish criteria to compare the occurrence of ECs in water 

bodies across continents-countries since the mentioned works have analysed or focus on different 

compounds. In this sense, the work of Loos et al. (Loos et al., 2013a) provides the monitoring of 

156 polar organic chemical contaminants in 90 European WWTPs. The highest median 

concentration levels in the effluents were those of the artificial sweeteners acesulfame (14300 ng/L) 

and sucralose (2600 ng/L), benzotriazoles (corrosion inhibitors, 2900-6300 ng/L), several 

organophosphate ester flame retardants (133-2400 ng/L) and plasticisers (e.g. tris(2-

chloroisopropyl)phosphate; TCPP, 620 ng/L), pharmaceutical compounds such as carbamazepine 

(752 ng/L), tramadol (256 ng/L), telmisartan (386 ng/L), venlafaxine (119 ng/L) and irbesartan 

(480 ng/L), the insect repellent N,N0-diethyltoluamide (DEET, 678 ng/L), the pesticides 2-methyl-4-

chlorophenoxyacetic acid (MCPA, 150 ng/L) and mecoprop (127 ng/L), PFASs (such as PFOS, 

62.5 ng/L, and PFOA, 255 ng/L) and caffeine (191 ng/L). 



Introduction 

7 

Since direct point sources such as WWTPs are the simplest contributions to evaluate, as 

recently reviewed by Tran et al. (Tran et al., 2018), a big part of the data available comes from the 

occurrence in the aquatic phase and there is a lack of information about the distribution of ECs in a 

variety of solid environmental samples (e.g, biota samples), due to the complexity of these matrices, 

as mentioned before, (Huerta et al., 2012; Miller et al., 2018; Núñez et al., 2017; Omar et al., 2016). 

Finally, it is worth mentioning two important contributions to the monitoring of aquatic 

systems. One is the growing application of passive sampling (PS) procedures to analyse qualitatively 

many contaminants and providing the integrative average concentrations of many of them (Aminot 

et al., 2016; Posada-Ureta et al., 2017; Sultana et al., 2017). The second one is the use of large 

volume solid phase extraction (LVSPE) devices that allow the on-site catchment of much larger 

samples (between 25 and 100 L) and the simultaneous extraction on a sorbent phase (Schulze et al., 

2017).  

 From spot sampling to passive sampling 1.2.

Sampling is the most crucial step of environmental monitoring programs. Additionally, when 

highly dynamic media are being monitored (e.g. estuaries, effluents, etc.), the costs and the efforts 

required to accomplish an efficient spot sampling plan, are very high. In this framework, and 

especially in the last two decades, PS approaches have been widely applied as feasible alternatives. 

PS is usually described as a sampling technique based on the diffusion of an analyte from the 

sampled medium to a receiving phase with no energy supply other than the difference of the 

chemical potential (Vrana et al., 2005). The accumulation of analytes in the sampling device is the 

result of the difference between the chemical potentials of the analytes in both media (i.e., sampled 

medium and receiving phase). After the accumulation of the target analytes in the receiving phase 

of a PS device, they are subsequently analysed in order to quantify the compounds found in the 

sampling medium. From these amounts, the time in which the samplers have been deployed, and 

the kinetic-thermodynamic features of the sorption (i.e. the sampling rate or Rs), it is possible to 

estimate the time-weighted average concentration (CTWA) in the sampled medium, as shown in 
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Figure 1.1. 

 

Figure 1.1. The continuous line shows the dynamic variation of the concentration of a given 

contaminant, solid spheres represent the active samples and the time-weighted average 

concentration (CTWA) is the value estimated by PS methods. 

 

On the contrary, active sampling procedures involve the collection of low volume spot 

samples (bottle or grab) over a certain period of time (and/or space). This sampling approach is 

specially challenging when the concentration follows a dynamic pattern in space and in timescale 

(e.g. groundwaters, tidal effects or the marine coastal currents) or when the contaminants are only 

present at trace level but still at toxicologically relevant concentrations. In those cases, the CTWA 

values provided by the passive samplers can offer a more meaningful environmental endpoint than 

the spot values since the spurious effects of high or low values are limited. In addition to this, it has 

been emphasized the possibility of obtaining lower detection limits as a consequence of a long 

accumulation process and the affordability of some passive samplers. Finally, PS offers cost-effective 

sampling protocols since miniaturize devices with no dependence of power supply are used and long 

and careless deployments are feasible (Miège et al., 2015).  

The backside of PS requires also a deep analysis. First of all, we can mention the real meaning 

of the fraction that is really being measured (i.e. CTWA) and its relevance, particularly the ranges of 

fractions going from the free-available concentration (Cfree) to the total concentration (Ctotal). 

Moreover, we can also consider the modelling of the fate of microcontaminants and the link of 
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these values with the accumulation in aquatic organisms, especially when bioavailability and 

bioaccesibility are discussed (Claessens et al., 2015). Last but not least, we should also recall the low 

recognition of PS by the regulators (Booij et al., 2016). In the case of the EU WFD it is considered as 

a complementary tool that needs further research (European Commission, 2013). For instance, 

there is a lack of compliance to estimate the EQS for the priority contaminants since the standard 

values refer to total concentrations, and the risk of toxicity for aquatic organisms is based on the 

bioavailable fraction (Escher and Hermens, 2004).  

The overall applicability of passive samplers in environmental monitoring programs can be 

found in the Norman position paper (Vrana et al., 2009). Broadly speaking, polymer based samplers 

(i.e. polydimethylsiloxane (PDMS), polyethylene, polyethersulfone (PES), etc.) are most focused on 

the analysis of hydrophobic compounds. On the contrary, polar organic chemical integrative 

samplers (POCIS) (Harman et al., 2012), the Chemcatcher (Charriau et al., 2016; Lissalde et al., 

2016), the membrane enclosed sorptive coating sampler (MESCO) (Vrana et al., 2001) and the 

ceramic dosimeter (Martin et al., 2003) are specifically designed to the analysis of more polar 

compounds.  

The passive samplers used for the analysis of non-polar compounds are deeply studied but, 

passive samplers used to analyse more polar compounds still require a deeper research and the 

exploration of novel applications. In the case of polar or slightly polar contaminants, POCIS is the 

most widely used sampler, as shown in Table 1.1. It consists on a receiving solid phase (usually HLB) 

with affinity for a specific group of pollutants and separated from the sample solution by a diffusing-

limiting membrane layer (commonly PES membranes). Since their development in the early 2000's 

(Alvarez et al., 2004), POCIS has been successfully used for the measurement of a wide range of 

polar to slightly polar compounds (log P 0-4). However, recently, some modifications (see Table 1.1) 

have been proposed to widen the range of micropollutants (e.g, ionic compounds such as herbicides 

or short chain PFASs) and even non-polar compounds such as PAHs, among others. 
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Table 1.1. The configuration of POCIS recently proposed and their sampling rates (Rs). 

Analyte classes Matrix Sorbent Membrane 
Rs range 
(L/day) 

Reference 

Pesticides, pharmaceuticals Water 
Oasis HLB Nylon 0.03 - 3 (Belles et al., 

2013) Oasis HLB PES 0.01 - 0.6 

PAHs, PCPs, pesticides Tap water 
Dowex OptiporeL-493 Nylon 0.03 - 2 (Morrison 

and Belden, 
2016) Oasis HLB Nylon 0.06 - 2 

PFASs Tap water Strata X-AW PES 0.2 - 0.4 
(Kaserzon et 

al., 2012) 

Pesticides 

Tap water 

Oasis HLB 

PES 

0.03 - 0.4 

(Fauvelle et 
al., 2012) 

Oasis MAX 0.02 - 0.3 

Chromabond HR-Xe 0.004 - 0.1 

River 

Oasis HLB 

PES 

0.03 - 0.4 

Oasis MAX 0.05 - 0.3 

Chromabond HR-Xe 0.004 - 0.1 

Oasis HLB 0.06 - 0.2 

Alkylphenols, BPA, 
herbicides, hormones, musks 

Tap water 
Pest-POCIS and C18 PES 

0.04 - 0.2 
(Iparraguirre 
et al., 2017) 

WWTP effluent 0.02 - 0.09 

BPA: bisphenol-A, C18: octadecylsilyl; MAX: strong anion exchange; PAHs: polycyclic aromatic hydrocarbons, PCPs: personal 
care products, PES: polyethersulfone, POCIS: Polar Organic Chemical Integrative Samplers, Rs: sampling rate, WWTP: 
wastewater treatment plant, X-AW; weak anion exchange. 

 Development of analytical methods 1.3.

Environmental monitoring of estuaries and/or biota samples has become a challenge owing 

to the complexity of the matrix (e.g, high physical and chemical dynamism in estuaries and coastal 

areas, and high lipid and protein contents in marine organisms) as well as to the growing amount of 

known and unknowns target candidates at trace levels. In this sense, sensitive and robust analytical 

methods are the key to allow the simultaneous determination of a wide variety of organic 

micropollutants. To many of these methods we usually called them multiscreening or multiresidue 

methods (Petrovic, 2014). 

In the recent literature there are many works describing deeply the development, 

optimization and validation workflows of analytical procedures for the analysis of a wide variety of 

ECs in environmental samples (Huerta et al., 2012; Lorenzo et al., 2018, 2018; Miller et al., 2018; 
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Núñez et al., 2017; Wilkinson et al., 2017). As a summary, in Figure 1.2 we have included the typical 

workflow in the development of a multiresidue method considering the protocols recently published 

in the literature (see Table 1.2).  

 

Figure 1.2. Typical workflow in the development of a multiresidue method. µ-Extn: microextraction, 

C18: octadecylsilyl, Extn: extraction, FUSLE: focused ultrasound solid-liquid extraction, GC: gas chromatography, 

GC-MS: gas chromatography – mass spectrometry, HILIC: hydrophilic interaction liquid chromatography, HPLC: 

high performance liquid chromatography, LC-MS: liquid chromatography – mass spectrometry, LLE: liquid-liquid 

extraction, MAE: microwave assisted extraction, MS: mass-spectrometry, PLE: pressurised liquid extraction, SPE: 

solid-phase extraction.  

 

The first step is the selection of the target analytes. In many cases, though the methods are 

aimed to covering a wide range of compounds, due to the inherent limitations of the analytical 

procedures, they are necessarily focused towards a predefined set of contaminant classes. One of 

the biased consequences of this complexity can be interpreted in terms of the “Matthew effect”: we 

offer a higher prominence to chemicals that have been previously studied instead to those that have 

been overlooked or omitted due to their low interest in the past (Granjean, 2011; Daughton, 2014). 
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For instance, as described by Petrovic et al. (Petrovic, 2014), ibuprofen, acetaminophen, diclofenac, 

sulfamethoxazole, erythromycin, carbamazepine and fluoxetine are the most frequently monitored 

pharmaceuticals. However, very few multiresidue methods (Bayer et al., 2014; Beckers et al., 2018; 

Godoy et al., 2015; Grabic et al., 2012) included rarely studied compounds such as telmisartan (an 

antihypertensive), although it is listed among the top-20 ecotoxicological most relevant compounds, 

based on their aquatic toxicity (Busch et al., 2016). 

Concerning to the extraction step, the purpose is to extract the target compounds in the 

most efficient way as possible, and minimize the co-extracted matrix components. Since not all the 

available procedures meet the requirements of the analysis, we have to balance the use of a more 

efficient solid phase extraction (SPE) protocol, for instance, with a single or a mixture of solid 

sorbents, or perhaps the use of a microextraction (based on the use of polymeric materials such as 

PDMS, PES, etc.) procedure. In the case of the SPE solid sorbents, Oasis HLB and Plexa are widely 

used in the literature (see Table 1.2) for low-intermediate polarity compounds (many ECs), and 

sometimes they are mixed with weak ion exchange sorbents to widen the range of compounds 

extracted.  

The use of a clean-up procedure depends on the matrix effects observed in the 

chromatographic separation and quantification (typically mass-spectrometer, MS). This is mostly the 

case of solid samples (e.g. tissues) since the extraction is usually carried out by a solid liquid 

extraction (SLE) combined with an energy source (focused ultrasound, microwave, pressurised 

solvents, etc.) and the amount of co-extracted matrix components are too big.  Examples of the 

most commonly used clean-up approaches are also included in Table 1.2. 

Finally, the last step is the chromatographic separation, mostly GC or LC, coupled to MS 

(Miller et al., 2018) The use of 2D chromatography has been especially interesting in GC but it is still 

under development (Dimpe and Nomngongo, 2016). In the case of LCs, the availability of different 

columns (narrow bore, mixed mode, hydrophilic interaction liquid chromatography, HILIC, etc.) has 

allowed the development of many specific methods (Pérez-Fernández et al., 2017). Regarding the 

MS, in most of the cases, the GCs are coupled to a single MS and the LCs to a tandem mass-

spectrometry (MS/MS) (Miller et al., 2018; Pérez-Fernández et al., 2017). 
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Table 1.2. Some examples of multiresidue methods recently published in the literature considering the workflow included in 

Figure 1.2.  

Matrix Classes of ECs Extraction Clean-up Reference 

Water 
(WWTP effluent) 

Pharmaceuticals, OPEs, 
industrial chemicals, pesticides 

SPE 
(Oasis-HLB) 

- (Loos et al., 2013b) 

Water 
(surface water) 

Sweeteners, FR, pesticides, 
industrial chemicals, 

pharmaceuticals, plasticiser 

SPE 
(Oasis HLB 

Strata X-AW, 
Strata X-CW 

ENV+) 

- (Osorio et al., 2018) 

Water 
(surface water) 

Pharmaceutical, PCP, industrial 
chemical, pesticides, life 

stimulants products 

LVSPE 
(Chromabond HR-X,  

X-AW, 
X-CW) 

- (Schulze et al., 2017) 

Water 
(WWTP effluent) 

Pharmaceuticals, illicit drugs 
Online SPE 

(HLB) 
- 

(López-García et al., 
2018) 

Water 
(estuarine, WWTP effluent) 

BPA, alkylphenol, hormones 
µ-extraction 

(PES) 
- (Ros et al., 2015) 

Water 
(WWTP influent) 

Pharmaceutical and illicit drugs 
µ-extraction 
(Oasis HLB) 

- 
(Baz-Lomba et al., 

2018) 

Fish 
(liver, kidney, brain, muscle, 

plasma) 
Pharmaceuticals SLE - 

(Grabicova et al., 
2018) 

Invertebrate 
PFASs, estrogens, PCP, UV 

filter, plasticizers, surfactant, FR 
and alkylphenols 

SLE 
dSPE 
(C18) 

(Martín et al., 2017) 

Fish 
(homogenate) 

PPCP, drugs of abuse, plastic 
derivative 

USB 
SPE 

(Strata- X) 
(Carmona et al., 

2017) 

Fish (muscle) and 
invertebrate 

PCBs, pesticides, 
chlorobenzenes, FR, musk, 
fragrances, antimicrobials 

USB GPC (Zhang et al., 2015) 

Fish 
(muscle) 

Hormones MAE 
SPE 

(Phree ) 
(Guedes-Alonso et 

al., 2017) 

Fish 
(homogenate, liver, muscle) 

Pharmaceuticals PLE GPC (Huerta et al., 2013) 

Fish 
(liver, brain, muscle, gills, 

plasma, bile) 
Pharmaceuticals FUSLE 

SPE 
(Oasis HLB) 

(Ziarrusta et al., 
2017) 

Fish 
(bile) 

Alkylphenols, estrogens, BPA 
and phthalate 

µ-extraction  
(PES) 

- 
(Oihana Ros et al., 

2015) 

Invertebrate 
Pesticides, pharmaceuticals, 

corrosion inhibitor, sweeteners, 
plasticizer 

QuEChERS 
LLE 

(hexane) 
(Inostroza et al., 

2017) 

Invertebrate FR MSPD 
SPE 
(NP) 

(Villaverde-de-Sáa 
et al., 2013) 

BPA: Bisphenol-A, ECs: emerging compounds, dSPE: dispersive solid phase extraction, FR: flame retardant, FUSLE: focused ultrasound 
solid-liquid extraction, GPC: gel permeation chromatography, LLE: liquid-liquid extraction, LVSPE: large volume solid phase extraction, 
MAE: microwave assisted extraction, MSPD: matrix solid phase dispersion, NP: normal phase, OPEs: organophosphate esters, PCP: 
personal care products, PES: polyethersulfone, PFAS: perfluoroalkyls substance, PLE: pressurized liquid extraction, PPCP: 
pharmaceutical and personal care products, QuEChERS: quick, easy, cheap, effective, rugged and safe, SLE: solid liquid extraction, SPE: 
solid phase extraction, USB: ultrasound bath extraction, WWTP: wastewater treatment plant, X-AW: weak anion exchange, X-CW: 
weak cation exchange. 
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 From target to non-targeted analysis 1.4.

The continuous advancement and progress of analytical instrumentation particularly that of 

mass spectrometry has redesigned the way we think and conceive the chemical analysis. One of the 

milestones of that progress has been the wide use of high-resolution mass spectrometry (HRMS) 

coupled to ultra-high performance liquid chromatography (we usually identify this as UHPLC-HRMS). 

Thanks to these instruments, we can achieve a huge resolution in both the retention time and mass 

spectra simultaneously, and this offers unsurpassable possibilities to chemical analysis (Hollender et 

al., 2017). In parallel, the development of algorithms to handle large amount of data and data 

processing workflows has provided the keys for the paradigm shift in chemical analysis (Blaženović 

et al., 2018; Gago-Ferrero et al., 2018).  

In brief, in the classical approach, i.e. the target analysis, the burden of proof of any analysis 

is the selection of the target compounds. As mentioned before, this initial selection determines or 

limits the subsequent developments. On the contrary, when the instrumental setup may eventually 

provide a full vision of everything that is injected, the burden of proof is shifted to the sample. 

Under this approach, it is convenient to reduce the analytical procedure to the minimum to avoid 

any bias. In this way, we can understand that the analysis has become “hypothesis free” and the 

vision of the analysis can now be the discovery of the compounds that might be in the sample. In 

fact, we can interrogate the data retrospectively and look for any missed compound (Hollender et 

al., 2017). 

As a consequence of this shift in the analytical paradigm, we now witness the growth of 

approaches that were hardly imagined before. For instance, it is being very useful to identify the 

transformation products that take place in the treatment plants or the metabolites that are 

produced when a drug is taken up by the body. However, the shift from target to non-targeted 

analysis is not completely ready. In fact, as it is shown in Figure 1.3, the most reliable processing 

workflow currently applied considers three scenarios: target, suspect and non-targeted screening, 

according to the prior knowledge we have about the compounds we are looking for (Bletsou et al., 

2015). In this sense, when we can foresee the most likely chemical structures that can be produced 

from a parent compound, and verify any of these structures in our raw data, we would be running 
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the suspect screening scenario.  

 

Figure 1.3. Target, suspect and non-targeted analysis workflow. ddMS2 and diMS2 stand for data-

dependent and data-independent MS/MS acquisition modes, respectively (adapted from (Bletsou 

et al., 2015). 

 

One important issue is the level of identification experimentally achievable. In Figure 1.4 we 

show the combination of the previously described workflow with the confidence levels of the 

putative identification (Schymanski et al., 2015).  



Chapter 1 

16 

 

Figure 1.4. Analytical workflow and confidence levels of compound annotation (taken from 

Schymanski, 2015). 

Level 1. Full identification. We can confirm the structure of the candidate by MS and MS/MS 

spectra and retention time matching with a high quality standard. Further evidences would support 

this identification (i.e. a chromatographic separation with a different column). 

Level 2. Probable structure. We can use the unambiguous matching with MS libraries (MS and 

MS/MS) under comparable experimental conditions (electrospray ionisation, ESI+/- or atmospheric 

pressure chemical ionisation, APCI) and at different fragmentation energies. We can also annotate 

an unique structure under this level if we can provide further evidences (experimental data). The 

lack of a standard hampers the full identification. 

Level 3. Tentative identification. We cannot propose an unique structure from this level 

downwards. At this level, despite we have good MS and MS/MS to annotate a given structure; we 

cannot differentiate among several equivalent candidates (e.g. isomers). 

Level 4. Molecular formula. We can only offer the molecular formula of the compound based 

on the precise mass spectra and isotopic pattern. 

Level 5. Exact mass. We can only provide the mass of the molecule based on the MS and 

isotopic pattern but more than one feasible formula may fit with that mass. 
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The instrumental measurement normally starts with the accurate mass from LC-HRMS 

measurements followed by data-processing to remove noise, blanks, or systematic drifts. Peak 

picking and peak deconvolution is performed then to extract peaks of all possible compounds. Then 

the isotopes, adducts, multicharged ions and in-source fragments coming from the same parent 

compound are grouped. Statistical methods are used then, to evaluate the most relevant features 

by comparison of different samples and blanks. From the relevant features, the elemental 

composition is calculated and the most probable molecular formula selected by matching the 

isotope pattern. For identification, the molecular formulae are searched for in MS/MS databases or 

libraries (Hollender et al., 2017). The retention time is often used as a further criterion to reduce the 

number of hits. Some tools predict and evaluate retention-time using log D based models (Aalizadeh 

et al., 2016).  

Finally, identification is achieved when the MS fragmentation and retention time of the 

unknown compound fit to the library spectrum and the retention time of a reference compound. If 

no match in an MS/MS database or library is available, searches in large chemical databases are 

performed. In silico fragmentation has to be used and then the fragments have to be matched 

against the experimental measured MS fragments (Hug et al., 2014; Krauss et al., 2010; Schymanski 

et al., 2014).  

Concerning to specific tools, a number of open access tools exist for ranking tentative 

candidates and naming probable structures (e.g., MetFrag [http://c-ruttkies.github.io/MetFrag/] and 

STOFF-IDENT [https://www.lfu.bayern.de/stoffident/#!home]. These tools, as well as those available 

from instrument vendors, often rely on large public databases (e.g., ChemSpider 

[http://www.chemspider.com/] and PubChem [https://pubchem.ncbi.nlm.nih.gov/]) for the initial 

identification of tentative candidates, and subsequent ranking based on data sources/references. 

Finally, to enable spectral matching, most tools utilize existing reference spectra, which are available 

via vendors and open databases (e.g., mzCloud™ [https://www.mzcloud.org/], MassBank 

[https://massbank.eu/MassBank/], or theoretical spectra, which are generated from fragmentation 

prediction tools such as MetFrag (Ruttkies et al., 2016). 

Nevertheless, among other research needs, further harmonization of data processing is 

http://c-ruttkies.github.io/MetFrag/
https://www.lfu.bayern.de/stoffident/#%21home
http://www.chemspider.com/
https://pubchem.ncbi.nlm.nih.gov/
https://www.mzcloud.org/
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compulsory. Data exchange among different software platforms, MS instrument suppliers, and 

open-source MS databases are still the major problems.  

 From contaminants to effects (and vice versa) 1.5.

Targeted or non-targeted analysis provides a good insight of the presence of chemical, but 

they do not include any biological effect data to assess the harm cause by any toxicants.The two 

main regulations in the EU, i.e. the WFD and the Marine Strategy Framework Directive (MSFD), 

include the achievement of a Good Environmental Status (GES), in the case of marine environments, 

and the EQS for fresh, transitional and coastal waters. Both assessments include the implementation 

of chemical and biological effects monitoring programmes in terms of the concentrations of priority 

contaminants and the biological effects tools (i.e. ecological indicators, exposition biomarkers and 

toxicity bioassays) (Lyons et al., 2010).  

In this sense, an enduring effort has been made to develop guidelines for ERA. In the case of 

the EU, and in the framework of the WFD, we can mention Technical Guidance Document on Risk 

Assessment (European Commission, 2003) that describes important features of the process and 

discusses theoretical issues, technical matters, and key definitions. In this procedure, the 

assessment of the ecotoxicological risk is based on the determination of predicted environmental 

concentrations (PECs) and predicted no-effect concentrations (PNECs). PNEC is the concentration of 

a substance in any environment below which adverse effects will most likely not occur during long 

term or short-term exposure. In environmental risk assessment, PNECs are compared to PEC to 

determine if the risk of a substance is acceptable or not. Consequently, when the PEC/PNEC ratio is 

lower than 1, the substance is not considered to be of concern but, if the PEC/PNEC ratio is higher 

than 1, further testing must be carried out to improve the determination of PEC or PNEC with 

subsequent revision of PEC/PNEC ratio. 

PNEC is usually calculated by taking into account the lowest effective concentration obtained 

among the representative different trophic levels (e.g. algae/bacteria, invertebrate, fish) and divided 

by an appropriate assessment factor. This approach is based on the concept that ecosystem 
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sensitivity depends on the most sensitive species and it allows to identify priority substances as 

recently reported by Busch et al. (Busch et al., 2016) from 1000 chemicals that were determined in 

different rivers. Nevertheless, this approach has some drawbacks that should be deeply considered, 

especially the possibility of overlooking toxicology relevant compounds if the focus is just on single 

chemicals or known mixtures. 

In this context, it has been highlighted the lack of direct indicators to assess the biological 

relevance of chemical monitoring and the need of implementing new effect-directed tools in the 

current regulations (Di Paolo et al., 2015). 

Effect-directed analysis (EDA) (Brack et al., 2016) tries to integrate in the same workflow the 

toxicity testing and the chemical analysis of a given sample. As it can be seen in Figure 1.5, EDA 

workflow is an iterative procedure that combines orthogonal fractionation schemes to simplify the 

studied sample with the application of a battery of bioassays, according to the toxicity endpoints, 

and running non-targeted analysis of the toxic fractions. Once one or more than one fraction is 

identified as toxic, they can be further fractionated using a separation mode different from the 

preceding ones. 

 

Figure 1.5. Iterative workflow of the effect-directed analysis procedure (modified from Brack et al., 

2016). 
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Recently, Brack et al. (Brack et al., 2016) and Simon et al. (Simon et al., 2015) reviewed the 

most critical aspects of applying the EDA approach in environmental samples. Broadly, the key 

points of the application of EDA are the selection of the bioassays, the modes of fractionation and 

the application of non-targeted analysis. The bioassays are basically in-vitro tests to adapt the 

constraints of the whole workflow to the requirements of each particular assay (high throughput 

and low volume). There are, however, several in-vivo tests such as Vibrio fischeri bacteria (Reineke 

et al., 2002), fresh water Pseudokirchneriella subcapitata algae (Tousova et al., 2018), marine 

microalgae Dunaliella tertiolect (Booij et al., 2014), Daphnia magna for aquatic invertebrates 

(Ouyang et al., 2016) and fish embryo test based on zebrafish, Danio rerio, (Di Paolo et al., 2015). 

The application of the considered bioassay(s) requires a careful design including the study of 

the concentration-toxicity response curve, the number of replicates that are required, the volumes 

that are required to run each test (and therefore the volume of the matrix to extract), the 

measurement of blanks and positive controls, and the minimization of all losses. In this sense, LVSPE 

can provide a more logistic alternative than SPE in order to provide the high amount of sample 

enrichment required in the simultaneous bio-chemical analyses (Busch et al., 2016; Hashmi et al., 

2018; König et al., 2017; Neale et al., 2018; Tousova et al., 2018, 2017). 

Since the concentration levels are measured in terms of the relative enrichment factor (REF), 

as a way to estimate the ratio of concentrations of the given sample against the original raw sample, 

all the sample handling should keep a trace on the concentration/dilution steps. One of the 

constrains of the pre-concentration and fractionation procedures is the ability to provide a high REF 

(80-500) value to assure a 100% response (e.g. lethality, inhibition) considering a monotonic 

response curve. From this curve, it is possible to determine the median effect concentration at a 

specific level (i.e. EC10 or EC50) and compare these values with raw samples to show if the 

concentration in mixtures shows the additive effects. 

Table 1.5 shows some meaningful and more recently published EDA studies for water 

samples. As it can be seen, EDA has been used to identify unexpected causes of biological effect 

such as mutagenicity in treated drinking water (Vughs et al., 2018) or estrogenic compounds in 

surface water (Zwart et al., 2018).  
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Table 1.5. Recently published EDA studies in water samples. 

Sample 
(Volume or 
exposition 

time) 

Enrichment process 
Fractionation 

(# of fractions) 
Endpoint Identified toxicants Ref. 

Drinking 
water  (15 L) 

SPE 
(OASIS HLB) 

C18 (250 x 10 mm, 5 µm) 
(8 F) 

Mutagenecity 5 N-DBPs byproducts 
Vughs, et al., 

2018 

River water 
(850 L) 

LVSPE 
(Chromabond HR-X) 

C18 (250 x 10 mm, 5 µm) 
(30 F) 

Estrogenic effect E2 
Hashmi, et al., 

2018 
Androgenic effect Dihydrotestosterone 

Oxidative stress -a not observed effects 

Surface water 
(5 L) 

SPE 
(Chromabond HR-X,  
X-AW and X-CW and 

Isolute ENV+) 

C18 (250 x 10 mm, 5 µm) 
(24 F) 

PFP (250 x 10 mm, 5 µm) 
(24 F) 

AP (150 x 10 mm, 3 µm) 
(24 F) 

PYE (150 x 4.6 mm, 5 µm) 
(24 F) 

Anti-androgenic 
effect 

4-methyl-7-
diethylaminocoumarin and one 

derivate 

Muschket et 
al., 2018 

River water 
and WWTP 

effluent 
(4 weeks) 

Chemcatcher C18 (250 x 4.6 mm, 5 µm) 
(40 F) 

Estrogenic effect E1, EE2 and E2 

(Sonavane et 
al., 2018) 

Androgenic -a 

Glucocorticoid 
Clobetasol propionate and 

fluticasone propionate 

Dioxin like activity -a 

Zebra fish embryo 
lethal and sublethal 

effect 
-a 

Surface water 
(6 weeks) 

SD and SR 
C18 (100 x 2.1 mm, 1.7 µm), 

(192 F) 

Androgen receptor 

Oxybenzone 
and piperine 

(Zwart et al., 
2018) 

Glucocorticoid 

Estrogenic effect 

Antiestrogenic 
effect 

River water 
(800 L) 

LVSPE 
(Chromabond HR-X, 

X-AW and X-CW) 

C18 (250 x 9.4 mm, 5 µm) 
(27 F) 

Mutagenecity 
Comutagenicity of beta 

carboline alkaloid with aromatic 
amines 

(Muz et al., 
2017) 

Estuary water 
(6 weeks) 

POCIS 
(Sepra Zt) 

SR 

C18 (100 x 2.1 mm, 1.7 µm) 
(20 F) 

Photosyntesis 
inhibition 

Atrazine, diuron, irgarol, 
isoproturon, terbutryn and 

terbutylazine 

(Booij et al., 
2014) 

WWTP 
effluent 

(50 L) 

LVSPE 
(Chromabond HR-X,  

X-AW and X-CW) 

LC x LC, 
C18 (150 x 2.1 mm, 1.8 µm) 
PFP (50 x 4.6 mm, 2.6 µm) 

(384 F) 

AChE inbihition 
Tiapride, amisulpride, and 

lamotrigine 
(Ouyang et al., 

2016) 

WWTP 
effluent 

(50 L) 

LVSPE 
(Chromabond HR-X,  

X-AW and X-CW) 

LVSPE 
(5 F) 

C18-SPE 
(9 F) 

C18 (250 x10 mm, 5µm) 
(30 F) 

Photosyntesis 
inhibition 

-a 
(Tousova et 

al., 2018) 
 

WWTP 
effluent 

(1 L) 

SPE 
(Oasis HLB) 

C18 (75 x 2.1 mm, 2.5 µm) 
(25 F) 

Estrogenecity 
effect TCEP 

Itzel et al., 
2018) Androgenecity 

effect 
-a 

AChE: acetylcholinesterase, AP: aminopropyl, C18: octadecyl carbon chain, E1: estrone, E2: 17-β-estradiol, EE2: 17-α-ethinylestradiol, F: fractions, LVSPE: 
large volume solid phase extraction, N-DBPs: nitrogen containing disinfection by products, PFP: pentafluorophenyl; PH: phenyl hexyl, PYE: pyrenyl ethyl, 
SD: speedisk, SPE, solid phase extraction; SR: silicone rubber, TCEP: phosphorous flame retardant, WWTP: wastewater treatment plant, X-AW: weak anion 
exchange, X-CW: weak cation exchange.  
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Reducing the complexity of the extract mixtures by fractionation is one of the key principles 

in EDA (Brack et al., 2016), as mentioned before. Fractionation of water sample in EDA is 

predominantly based on reverse phase high performances liquid chromatography (Brack et al., 

2016). Other fractionation methods, like lipophilic interaction chromatography, size exclusion, 

planar chromatography and gas chromatography are also used (Brack et al., 2016). Frequently used 

fractionation procedures are based on RP C18 fractionation (see Table 1.5). These types of columns 

do not only serve the purpose of separating but also they are an important source of information on 

the compounds eluting in each fraction (i.e C18 allows for a separation according to log P or log D in 

case of ionisable compounds). Sometimes one single fractionation is not sufficient and multistep 

fractionation procedures are required. They benefit from the combination of chromatographic 

system with maximum orthogonal selectivity (Brack et al., 2016). For instance, as it can be seen in 

Table 1.5, Muschket et al. (Muschket et al., 2018) applied a parallel fractionation with very different 

stationary phases covering a wide range of interactions: C18, pentafluorophenyl (PFP), aminopropyl 

and pyrenyl ethyl columns. Moreover, Ouyang et al. (Ouyang et al., 2016) adopted an unique 

fractionation step (384 fractions) by two dimensional LC, combining a C18 column followed by a PFP.  
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2.1. Aims 

In view of the complexity of the occurrence and toxicity of emerging contaminants (ECs) in 

aquatic environments, we have designed a holistic PhD project to address some of the bioanalytical 

challenges that were feasible. The main aim was to get a close insight about the impact of ECs in 

estuarine waters and the contribution of wastewater treatment plant (WWTP) effluents in the 

observed effects. 

Within this preliminary context, the objectives of this PhD work were the following ones: 

(i) To develop robust and reliable multiresidue analytical methodologies for the targeted 

determination of ECs in aqueous samples and in biota samples. 

(ii) To extend the use of passive sampling (PS) to determine ECs in estuaries and seawater. 

(iii) To monitor the occurrence of ECs in estuaries and WWTP effluents of Biscay using the 

procedures developed before. 

(iv) To implement an effect-directed analysis (EDA) procedure to identify the main toxic 

compounds in the WWTP effluents using the sea urchin embryo test (SET) as a 

toxicological in vivo bioassay.  
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2.2. Context 

It is worth showing the context of this work to understand the scope of a research group that 

is aware about the lack of information on the occurrence and the impact ECs in our near aquatic 

media. 

First, the assessment of the ecological quality status of the transitional and coastal waters is a 

competence of the Basque Government that is currently performed by AZTI-Tecnalia following the 

criteria enforced by the Water Frame Directive (WFD). The most recent results that are available 

(AZTI, 2017) include the analysis of polycyclic aromatic hydrocarbons (PAHs), 

dichlorodiphenyltrichloroethane (DDT) and metabolites, hexachlorocyclohexane (HCHs) and some 

chlorinated pesticides in most of the monitoring stations. As seen, the lack of information regarding 

the ECs is clear. 

When the occurrence of ECs is under discussion the only official reference that is publicly 

available is a couple of reports performed by Tekniker under the supervision of Ura (Basque Water 

Agency) dealing with the occurrence of ECs in some WWTP effluents and the impact of hospital 

effluents in the total sewages treated by the WWTPs (Tekniker, 2011, 2010). In this particular case, 

it was included the analysis of a wide number of pharmaceutical and personal care products (PCPPs) 

and industrial compounds (perfluoroalkyl substances, PFASs). 

Simultaneously, it is widely reported the environmental stressors that are taking part in most 

of the estuaries of the Basque Country, from the estuary of Bilbao, one with highest anthropogenic 

impact of Spain, to the estuary of Urdaibai (a natural biosphere reserve). According to some of 

them, the prevalence of intersex in fishes is rather widespread and is directly related to the 

occurrence of endocrine disruptive compounds (EDCs) in the aquatic media (Bizarro et al., 2014; 

Ortiz-Zarragoitia et al., 2014; Ros et al., 2015). In addition to this, those works pointed to the 

effluents of WWTP as the most likely source of EDCs but we also lack of a systematic monitoring of 

these and many other classes of ECs in estuaries and WWTP effluents. 

Therefore, the first objective of this PhD work was the development of methods that allowed 

us the analysis of a set of ECs, first in water and then in fish tissues. We selected a wide range of 
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emerging compounds, including life style products such as artificial sweeteners (acesulfame, 

sucralose) and stimulants (caffeine), industrial chemicals such as corrosion inhibitor (2-

hydroxybenzothiazole, OBT) and PFASs (perfluoroctylsulfonamide, PFOSA; perfluorooctane sulfonic 

acid, PFOS; perfluorooctanoic acid, PFOA; perfluoro-1-butanesulfonate, PFBS), pesticides (atrazine, 

diuron, isoproturon, simazine), phytoestrogens (genistein, genistin, glycitin), hormones 

(progesterone, testosterone), pharmaceutical (trimethoprim, ciprofloxacin, norfloxacin, sulfadiazine, 

sulfamethoxazole, amitriptyline, clomipramine, imipramine, nortriptyline, eprosartan, irbesartan, 

losartan, telmisartan, valsartan, propranolol, acetaminophen, diclofenac, ketoprofen, bezafibrate, 

clofibric acid, carbamazepine, phenytoin) and personal care products (methylparaben and 

butylparaben) in order to cope with the analytical requirements. The underlying selection was 

determined, in a big extent, by the results reported by Tekniker and their ecotoxicological relevance 

(Petrovic, 2014).  

Regarding to the method for biota sample, the needs were not as tight as the ones for waters 

but the possibility of applying them in a number of circumstances (e.g, fish lab exposure 

experiments for bioaccumulation and metabolites identification or sentinel biomonitoring) was high 

enough to be worth the effort. In fact, we were able to apply this method to determine these ECs in 

mussels in Galicia (results not included in this PhD work). 

Since we gained the required expertise to perform PS analysis in estuarine waters, including 

the calibration of the samplers, we considered that the development of a method based on a POCIS 

set-up would be a good complement to the analytical method. In this case, we also used 

polyethersulfone (PES) fibres because they are much cheaper and easier to handle than the POCIS.  

Along with the development of these two first objectives, we observed the need to study the 

stability of the samples and extracts before any monitoring because we could not assure a fast 

extraction and analysis of a huge volume of samples. That is why we included on the fly this study.  

The monitoring of the estuaries and WWTP effluents was a long expected objective, and 

taking advantage of another longer and more ambitious monitoring of three estuaries of Biscay, we 

decided to join the efforts and run this for one year.  

Finally, we were able to update the instrumental facilities at the Plentzia Marine Station (PiE) 
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including a high-resolution mass spectrometer. This fact opened the way to run non-targeted 

analysis and to apply in metabolomic studies. Furthermore, since the marine station is focused on 

ecotoxicological issues, we were even more ambitious and incorporate certain bioassays. Finally, it 

was possible to join both, the non-targeted analysis and the bioassays thanks to a stay at Helmholtz 

Centre for Environmental Research (UfZ, Leipzig) that open the possibility to apply SET in the EDA 

protocol. 

2.3. The works and the main results 

The core of this PhD work is arranged in six chapters covering the four objectives mentioned 

above. The first objective is developed in chapters 3 and 4, where the multiresidue methods for 

water and biota samples are fully described. The development of two PS methods is the main topic 

included in chapter 5, which develops the second objective of this work. In chapter 6 we have 

included the study of the stability of target analytes in water samples, different polymeric phases 

and extracts as a way to apply efficiently the previously developed methods in the monitoring of 

estuaries and WWTPs. This later work is fully described in chapter 7. Finally, the application of the 

SET to assess the toxicity of several WWTP effluents of Biscay, as well as the application of the EDA 

protocol using the SET to WWTP of Galindo (Biscay) is described in chapter 8.  

Following, a brief summary of each of these works is offered. 

 The development of a multiresidue method for the analysis of 41 multi-class 

emerging contaminants in water. 

In water samplers analysis, a particularly interesting approach is the use of microextraction 

techniques since they are economically more affordable and cleaner from the environmental point 

of view. In this sense, a new procedure using PES polymeric material microextraction followed by 

liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis is shown. Both, the 

extraction method and the analysis were deeply studied. The optimisation of the analysis included 

two different chromatographic columns and different variables (polarity, fragmentor voltage, 

collision energy, and collision cell accelerator) of the mass spectrometer. In the case of PES 

extraction, ion strength of the water, pH, addition of ethylenediaminetetraacetic acid (EDTA) and 
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the amount of the polymeric material were thoroughly investigated.  

The developed procedure was compared with a previously validated one based on a standard 

solid-phase extraction (SPE). In contrast to the SPE protocol, PES method allowed a cost-efficient 

extraction of complex aqueous samples with lower matrix effect from 120 mL of water sample and 

dual extraction (simultaneously acid and basic pH). Satisfactory and comparable apparent recovery 

values (80-119% and 70-131%) and method quantification limits (MQL, 0.4-26ng/L and 0.2-23ng/L) 

were obtained for PES and SPE procedures, respectively, regardless of the matrix. Repeatability 

values lower than 27% were obtained.  

 The development of a multiresidue method for the analysis of 41 multi-class 

emerging contaminants in biota. 

Following an approach close to the one used in the previous case, we carried out the full 

optimisation and validation procedure to analyse of the same set of contaminants in tissues (mussel 

and fish muscle, liver, gills and brain) and biofluids (fish plasma and bile).  

Mussels (Mytilus galloprovincialis) and fish were chosen to cover most of the sentinel 

organism typically analysed in estuarine and coastal environments. In the case of fishes, marine gilt 

head bream fish were used as they are easily obtained from fish farms, and they were available in 

lab exposure experiments.  

Focused ultrasonic solid-liquid extraction (FUSLE) was chosen due to the high experience of 

on lab with this technique for the extraction of organic compounds from biota samples (Navarro et 

al., 2010; Ros et al., 2016; Zabaleta et al., 2014, 2015; Ziarrusta et al., 2016, 2017) and the 

advantages it provides. As FUSLE is based on the application of ultrasonic radiation using a microtip 

immersed directly into the sample, it reduce the amount of organic solvent, sample amount and 

extraction time needed. In this work, the extraction of the solid tissues required a low amount of 

sample (0.1 or 0.5 g), solvent (7 mL of MeOH: Milli-Q water, 95:5, v:v) and short extraction time 

(30 s).  

Regarding the clean-up step, four alternatives were tested: two protocols validated in the 

previous work (SPE based on Oasis HLB and microextraction based on PES polymer), a normal SPE 
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(Florisil phase) and a liquid-liquid extraction (LLE) followed by Oasis-HLB-SPE. The final extracts were 

analysed by (LC-MS/MS) optimised and validated before.  

The methods afforded satisfactory apparent recovery values (71-126%) using isotopically 

labelled analytes and matrix-matched calibration approach, and repeatability (relative standard 

deviation, RSD ≤ 22%) regardless of the matrix.  

 The calibration of two new passive samplers for the analysis of ECs in estuarine and 

coastal waters.  

In order to widen the range of compounds that can be sampled by the commercial polar 

organic chemical integrative sampler (POCIS), some modifications were included. POCIS containing 

100 mg of mixed-mode anion exchanger (Strata X-AW) and 100 mg of polymeric HLB (Plexa) sorbent 

materials and a highly porous Nylon membrane (30-μm pore size) instead of the conventional PES 

membranes, were used. Besides, the suitability of PES hollow fibers with more hydrophobic 

compounds was also studied, for the first time.  

In contrast to the previously mentioned two chapters, the studied contaminants were limited 

to 20 (one compound each class type). Additionally, five deuterated compounds ([
2
H5]-Atrazine, 

[
2
H3]-Amitriptyline, [

2
H7]-Irbesartan, [

2
H3]-Ketoprofen and [

2
H9]-Progesterone) were studied as 

candidates for performance reference compounds (PRCs) in both POCIS and PES.  

In the case of POCIS, both the sorbents and the Nylon membranes were extracted and 

analysed independently. The uptake was linear in POCIS sorbent and Nylon membranes but 

exponential for PES hollow fibres. Furthermore, the highest sampling rates (Rs) values were 

obtained in POCIS sorbent (between 2.7 for acetaminophen and 491 mL/day for PFOA) followed by 

Nylon membranes (between 3.6 for OBT and 50 mL/day for telmisartan) and the lowest were those 

from PES fibres (between 1.7 for bezafibrate and 157 mL/day for butylparaben).  

Regarding the PRCs, though [
2
H5]-atrazine, [

2
H9]-Progesterone and [

2
H3]-amitriptyline showed 

acceptable results in the case of POCIS, only [
2
H5]-atrazine provided a good validation. In the case of 

PES fibres, the PRC corrections did not provide acceptable results due to a low dissipation of the 

PRCs. 
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 Short term preservation and stability assessment for the analysis of ECs in seawater.  

Because one of our aims was the accurate estimation of the concentrations of emerging 

compounds in environmental matrices, an important issue is how to store and preserve the 

environmental samples.  

Thus, in this work the stability study was performed in seawater for 23 ECs over one month. 

Four different alternatives already used previously were tested: (i) seawater at 4°C, (ii) mixed-mode 

SPE cartridge with Bond Elute Plexa (equivalent of HLB) and Strata X-AW stored at −20°C, (iii) PES 

hollow fibre stored at −20°C and (iv) methanol extracts once the samples were extracted, and stored 

at −20°C. Moreover, not only the stability of the analytes was studied, but also the integrity of the 

supporting polymeric phases by Raman spectroscopy, optical microscopy, differential scanning 

calorimetric and thermogravimetric analysis.  

As could be expected, seawater samples showed the lowest stability (losses between 21-

99%). On the contrary, the stability profiles obtained in SPE showed an average loss of 7%, while in 

PES hollow fibres losses up to 58% were observed. These results suggest that the best way to assure 

the stability of the water samples is to keep the extracts in the SPE cartridges. A deeper study of the 

polymeric materials showed the lower efficiency showed in PES fibres might be related with the 

wettability of this material, based on the thermogravimetric analysis.  

 Occurrence of emerging pollutants in estuaries of the Basque Country. Analysis of 

sources and distribution, and assessment of the environmental risk. 

Coastal and estuarine areas are ecologically rich and sensitive environments dwelling under 

the effects of many anthropogenic stressors. Therefore, the protection of those ecosystems from 

the hazardous effects of chemical contaminants is gaining interest. In this sense, a greater 

understanding of spatial-temporal patterns in emerging compounds concentration is necessary to 

characterize the sources, fate and risk and, ultimately, to prevent the anthropogenic impact into the 

ecosystem. This fact is especially important in the estuaries of the Basque Country because, to the 

best of our knowledge, it is the first time we achieve this objective. Therefore, we applied the 

previously developed multiresidue method and the PS methodology to monitor the target ECs 

selected in three estuaries (Bilbao, Urdaibai and Plentzia) of the Basque Country. 



Chapter 2 

42 

The occurrence of the 41 pre-selected ECs was analysed from winter 2016 to winter 2017 (5 

campaigns) by the active sampling protocol developed before. Among the detected compounds, 

anti-inflammatory drugs (diclofenac and acetaminophen), hypertensive drugs (irbesartan and 

valsartan), a stimulant (caffeine), an artificial sweetener (acesulfame) and a corrosion inhibitor (OBT) 

were the ubiquitous compounds. Due to the stratification of the waters in the estuary of Bilbao two 

independent sources were identified: WWTP and harbour activities. In the case of Gernika and 

Plentzia, both are estuaries with a high tidal dilution, and the main sources were localized in upper 

parts of the estuaries.  

In addition to this, an extra campaign was carried out in spring 2017 combining both active 

and PS methods. The use of POCIS provided an efficient way to monitor emerging pollutants over a 

relatively long sampling period. As a result, in addition to the overall good agreement between the 

passive and active samplings, passive samplers allowed the determination of several compounds 

that were below the detection limits in the active sampling. 

Lastly, we were able to identify the most relevant compounds in terms of their 

ecotoxicological risk assessment along the selected three estuaries. In the case of acute toxicity the 

highest risk values (>>1) were obtained for the angiotensin II receptor blockers (telmisartan, 

eprosartan, etc.), diuron and diclofenac. In the case of the chronic toxicity the highest values (>>1) 

were estimated for caffeine, diclofenac, bezafibrate and sulfadiazine.  

The monitoring was also extended to Mussels from the Basque Country. Along with the last 

water monitoring campaign, mussels were collected from the harbour of Bilbao, one of the hot 

spots described before. Among the 41 compounds analysed, 7 were detected in the 1.2 ng/g (PFOA) 

to 14 ng/g (progesterone) concentrations range. The presence of valsartan (7 ng/g) and telmisartan 

(6.8 ng/g) in bivalves is reported for the first time here. These results were included in chapter 4 as 

the application of the method development. 

 Sea urchin embryo test application in the toxicity evaluation of wastewater 

treatment plant effluents and effect directed analysis. 

SET was used to assess toxicity at four WWTP of Biscay (Gorliz, Mungia, Gernika and Galindo). 

All the extracts showed embryo growth inhibition and skeleton malformation activity within the 
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concentration range tested. In relative enrichment factor units (REF), the EC50 values ranged from 

1.1 REF (Gernika) to 16.8 REF (Gorliz) for skeleton malformation and from 0.3 REF (Gernika) to 

8.8 REF (Gorliz) for growth inhibition.  

To identify the causative compounds, EDA was successfully applied for the first time using 

SET assay to the secondary treatment of the Galindo effluent. To this end, two subsequent 

fractionation steps were performed using a C18 and an aminopropyl column. In the first fractionation 

only one fraction showed a remarkable toxicity, and it was fractionated further into 15 sub-fractions. 

In this second fractionation, both endpoints were dramatically observed in one fraction 

By this fractionation, the number of features detected by high resolution mass spectrometry 

(HRMS) in the raw sample was drastically reduced from 1500 to 9, among them, two pesticides 

(mexacarbate and fenpropidin), two antidepressants (amitriptyline and paroxetine) and two 

anthelmintic agents (mebendazole and albendazole) could be identified in the two toxic fractions. 

The comparison of the chemical and biological data using toxic units (TU) showed that 

mebendazole was the predominant contributor (32%) followed in a less extend by amitriptyline 

(9%), whereas fenpropidin could only explain the 0.3% of the sea urchin embryogenesis activity in 

the F13-4 fraction (TUbio=0.03). The high biologically activity shown by mebendazole, which was 

more toxic than amitriptyline and fenpropidin is in agreement with its specific mode of action 

(depolymerisation of microtubules) and the contribution of amitriptyline can be interpreted by its 

high effluent concentration (304 ng/L, TUchem.=2.8 e-3), an order of magnitude higher than that of 

fenpropidin (23 ng/L, TUchem.=7.7 e-5) and mebendazole (65 ng/L, TUchem=9.9 e-3). 

 Finally, SET showed to be an affordable and inexpensive bioassay to screen potential 

teratogens in ocean and transitional waters. 
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3.1 Introduction 

The concern about the impact of chemicals on human health and the environment has 

gained increasing attention. Among the different existing laws and regulations concerning water 

management and protection, the Water Framework Directive (WFD) is probably the most important 

legislation for the EU countries. Directive 2000/60/EU (European Commission, 2000) was the first 

mark in the European water policy, which set up a strategy to define high-risk substances to be 

prioritized. A set of 33 priority substances or groups of them and their respective environmental 

quality standards (EQS) were ratified by Directive 2008/105/EU (European Commission, 2008). 

Moreover, Directive 2013/39/EU (European Commission, 2013) included 45 pollutants to meet 

requirements for the protection of the aquatic compartments and human health. More recently, a 

set of substances for EU monitoring in surface water bodies was defined in the Watch List of 

Decision 2015/495/EU (European Commission, 2015). 

In addition to the traditional pollutants, the attention of scientific community is focussed on 

the presence of newly found substances with no previous knowledge about their effects in the 

environment (Dulio and Slobodnik, 2009). These compounds are often referred to as “contaminants 

of emerging concern”. In this sense, it is still observed the lack of monitoring programs including the 

determination of organic micropollutants, particular regarding these contaminants. Among them, 

pesticides, pharmaceuticals, personal care products (PPCPs), industrial chemicals, hormones, flame 

retardants and disinfection by-products are considered (Richardson and Ternes, 2015). Moreover, 

NORMAN network has worked out a list of the currently most frequently emerging substances and 

pollutants based on different prioritization criteria (NORMAN, 2013). Similarly, the US EPA defined a 

Contaminant Candidate List (CCL), where 116 contaminants (104 chemicals and 12 microbiological) 

were included for consideration in future regulations (United States Environmental Protection 

Agency, 2009). Consequently, the fate and behaviour of many of these compounds can be very 

complex since they are widely distributed in aqueous media at concentration levels usually quite 

low. One typical example is the effluents of wastewater treatment plants (WWTPs) in which a 

continuous release of many of these compounds has been described in the literature (Lapworth et 

al., 2012). Since most of the current WWTPs are not specifically designed to eliminate organic 
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micropollutants, and many of these contaminants are able to pass through WWTPs processes and 

reach the aquatic environment, they have become in an indirect source of chronic pollution (Smith 

et al., 2009).  

The inclusion of a large variety of chemicals into one multiresidue method will enhance the 

applicability of sensitive and robust analytical methodologies and thus, providing a broader 

information about the occurrence and fate of emerging contaminants in the environment (Al Aukidy 

et al., 2012; Grabic et al., 2012; Petrovic, 2014). A particularly interesting approach is the 

combination with microextraction techniques since they are economically more affordable and 

cleaner than traditional approaches from the environmental point of view. Among sorptive 

microextraction techniques, polydimethylsiloxane (PDMS) based solid-phase microextraction (SPME) 

(Souza-Silva et al., 2015) and stir-bar sorptive extraction (SBSE) (Prieto et al., 2010) are the most 

widespread ones. In fact, both share the same extraction features though the amount of phase is 

50-250 times larger in SBSE, which increases its preconcentration capacity. However, recently, 

researchers have focused on the development of new coatings (Camino-Sánchez et al., 2014) to 

modify the selectivity of the solid phase. In this sense, there are up-to-date three commercially 

available coatings for SBSE: PDMS, Polyacrylate (PA) and ethyleneglycol/silicone (EG/silicone). The 

development of new coatings is, in fact, the most relevant improvement to expand the applicability 

of SBSE, allowing the extraction of more polar compounds. However, some mechanical instability 

and degradation of these coatings have been reported (Ochiai et al., 2013). Furthermore, new 

disposable polymeric materials and/or phases such as polypropylene (PP) or polyethersulfone (PES), 

have also been proposed (Bizkarguenaga et al., 2015; Blanco-Zubiaguirre et al., 2014; Casado et al., 

2013; Prieto et al., 2012) as low-cost alternatives to SBSE devices for the aqueous samples 

extraction or extracts clean-up of different more polar substances. 

Concerning to the analysis, and despite gas chromatography (GC) is a well-established 

analytical technique, during the last decades liquid-chromatography-triple quadrupole-tandem mass 

spectrometry (LC-QqQ-MS/MS) has become widespread to analyse polar compounds in 

environmental samples due to its inherent sensitivity and specificity (Carvalho and Santos, 2016; 

Tomšíková et al., 2012). The main advantage of the LC analysis is that a derivatisation reaction prior 

to the analysis is not required and, consequently, the whole analytical procedure is simplified 
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(Hernández et al., 2014). However, it has to be taken into account one of the main drawbacks 

related with LC based analysis, is the strong matrix effect observed, which leads in many cases to 

signal suppression or enhancement (Hernández et al., 2012). Therefore, the use of this technique 

requires a preliminary and exhaustive study of the matrix effects, as well as an adequate sample 

preparation parameters optimisation (Petrovic, 2014). 

Within this context, a new procedure for the simultaneous determination of 41 multiclass 

organic pollutants in WWTP effluents, estuary and seawater samples using a dual extraction based 

on PES polymeric material was developed before being applied in further studies dealing with the 

target analytes environmental distribution. A thorough optimisation of the extraction and 

desorption processes was assessed. In addition to this, the performance of this new procedure was 

compared with a validated standard SPE method. To the best of our knowledge, this is the first work 

using PES polymer combined to LC-MS/MS analysis for the simultaneous determination of a wide 

variety of organic compounds in aqueous samples. 

3.2 Experimental section 

3.2.1 Reagents and materials  

The target analytes (names and abbreviations) with their corresponding families, the supplier 

of the standards, CAS number, molecular formula, molecular weight and some of their physic-

chemical properties such as the acid dissociation constant (pKa) and hydrophobicity (included as 

log P and log D(pH 2 and 11)) are included in Table 3.1 and structures in Figure I in Appendix. The purity 

of all the target analytes was > 95%. 

 

  



Chapter 3 

52 

Ta
b

le
 3

.1
. F

am
ili

es
, n

am
es

 (
ab

b
re

vi
at

io
n

),
 t

h
e 

su
p

p
lie

r 
o

f 
th

e 
st

an
d

ar
d

s,
 C

A
S 

n
u

m
b

er
, m

o
le

cu
la

r 
fo

rm
u

la
, m

o
le

cu
la

r 
w

ei
gh

t,
 L

o
gP

 a
n

d
 o

g 
D

 (p
H

 =
2 

an
d

 1
1)

 a
n

d
 p

Ka
 

va
lu

es
 o

f 
th

e 
ta

rg
et

 c
o

m
p

o
u

n
d

s.
 

 
p

K
aa  

4
.2

 

1
3

.2
 

1
3

.8
 

4
.2

 

- 

-0
.9

 

6
.4

 

3
.4

 

-3
.3

 

-4
.2

 

-3
.3

 

-1
.2

 

3
.0

 

1
1

.9
 

8
.5

 

8
.5

 

7
.2

 

5
.7

; 8
.7

 

5
.7

; 8
.7

 

2
.0

; 7
.0

 

2
.0

; 6
.2

 

Lo
gD

a 

(p
H

2
; 1

1
) 

1
.0

; 2
.2

 

2
.5

; 2
.5

 

2
.6

; 2
.6

 

0
.6

; 1
.8

 

4
.2

; 4
.2

 

3
.4

; 3
.4

 

2
.5

; 0
.9

 

4
.8

; 3
.9

 

3
.0

;3
.0

 

1
.6

; 1
.6

 

0
.2

; 0
.2

 

-0
.6

; -
0

.6
 

-0
.6

; -
1

.5
 

-0
.5

; -
0

.5
 

3
.0

; 1
.0

 

1
.7

; -
0

.4
 

-0
.2

; 1
.3

 

-1
.7

; -
2

.0
 

-1
.8

; 2
.0

 

0
.1

; -
0

.6
 

0
.5

; -
0

.2
 

Lo
g 

P
a  

2
.2

 

2
.5

 

2
.6

 

1
.8

 

4
.2

 

3
.4

 

2
.5

 

4
.8

 

5
.4

 

5
.1

 

2
.6

 

-0
.6

 

-0
.6

 

-0
.5

 

3
.0

 

1
.7

 

1
.3

 

-0
.8

 

-0
.9

 

0
.4

 

0
.8

 

M
w

 

2
1

5
.6

8
 

2
3

3
.0

9
 

2
0

6
.2

8
 

2
0

1
.6

6
 

3
1

4
.4

6
 

2
8

8
.4

2
 

1
5

1
.1

9
 

4
9

9
.1

4
 

5
0

0
.1

3
 

4
1

4
.0

7
 

3
3

8
.1

9
 

1
9

4
.1

9
 

1
6

3
.1

5
 

3
9

7
.6

3
 

1
9

4
.2

3
 

1
5

2
.1

4
 

2
9

0
.3

2
 

3
3

1
.3

4
 

3
1

9
.3

3
 

2
5

0
.2

8
 

2
5

3
.2

8
 

Fo
rm

u
la

  

C
8H

1
4
C

lN
5
 

C
9
H

1
0C

l 2
N

2
O

 

C
1

2H
1

8
N

20
 

C
7H

1
2
C

lN
5
 

C
2

1H
3

0O
2
 

C
1

9H
2

8O
2
 

C
7
H

5
N

O
S 

C
8H

2
F 1

7
N

O
2S

 

C
8
H

F 1
7O

3
S 

C
8
H

F 1
5O

2
 

C
4
F 9

O
3
S 

C
8
H

1
0
N

4
O

2
 

C
4H

5
N

O
4
S 

C
1

2H
1

9
C

l 3
O

8
 

C
1

1H
1

4O
3
 

C
8H

8O
3

 

C
1

4H
1

8
N

4O
3
 

C
1

7H
1

8
FN

3O
3
 

C
1

6H
1

8
FN

3O
3
 

C
1

0H
1

0
N

4O
2
S 

C
1

0H
1

1
N

3O
3
S 

C
A

S 

19
1

2
-2

4-
9

 

33
0

-5
4-

1
 

34
1

2
3

-5
9-

6
 

12
2

-3
4-

9
 

5
7-

8
3-

0
 

5
8-

2
2-

0
 

93
4

-3
4-

9
 

75
4

-9
1-

6
 

17
6

3
-2

3-
1

 

33
5

-6
7-

1
 

29
4

2
0

-4
9-

3
 

5
8-

0
8-

2
 

55
5

8
9

-6
2-

3
 

56
0

3
8

-1
3-

2
 

9
4-

2
6-

8
 

9
9-

7
6-

3
 

73
8

-7
0-

5
 

85
7

2
1

-3
3-

1
 

70
4

5
8

-9
6-

7
 

6
8-

3
5-

9
 

72
3

-4
6-

4
 

Su
p

p
lie

r 

Fl
u

ka
 

Fl
u

ka
 

Fl
u

ka
 

Fl
u

ka
 

Si
gm

a-
A

ld
ri

ch
 

Si
gm

a-
A

ld
ri

ch
 

Si
gm

a-
A

ld
ri

ch
 

D
r.

 E
h

re
n

st
o

fe
r 

Si
gm

a-
A

ld
ri

ch
 

Si
gm

a-
A

ld
ri

ch
 

Si
gm

a-
A

ld
ri

ch
 

Si
gm

a-
A

ld
ri

ch
 

Su
p

el
co

 

Su
p

el
co

 

Si
gm

a-
A

ld
ri

ch
 

Si
gm

a-
A

ld
ri

ch
 

Fl
u

ka
 

Fl
u

ka
 

Fl
u

ka
 

Si
gm

a-
A

ld
ri

ch
 

Fl
u

ka
 

A
n

al
yt

e 

A
tr

az
in

eb
 

D
iu

ro
n

b
 

Is
o

p
ro

tu
ro

n
b
 

Si
m

az
in

eb
 

Pr
o

ge
st

er
o

n
e

 

Te
st

o
st

er
o

n
e

 

2-
h

yd
ro

xy
b

en
zo

th
ia

zo
le

 

(O
B

T)
 

Pe
rf

lu
o

ro
ct

yl
su

lf
o

n
am

id
e 

(P
FO

SA
) 

Pe
rf

lu
o

ro
o

ct
an

e 
su

lf
o

n
ic

 

ac
id

 (
PF

O
S)

 b
 

Pe
rf

lu
o

ro
o

ct
an

o
ic

 a
ci

d
  

(P
FO

A
) 

Pe
rf

lu
o

ro
-1

-

b
u

ta
n

es
u

lf
o

n
at

e 
(P

FB
S)

 

C
af

fe
in

e
 

A
ce

su
lf

am
e

 

Su
cr

al
o

se
 

B
u

ty
lp

ar
ab

en
 

M
et

h
yl

p
ar

ab
en

 

Tr
im

et
h

o
p

ri
m

 

C
ip

ro
fl

o
xa

ci
n

 

N
o

rf
lo

xa
ci

n
 

Su
lf

ad
ia

zi
n

e
 

Su
lf

am
e

th
o

xa
zo

le
 

Fa
m

ily
 

H
e

rb
ic

id
e

 

H
e

rb
ic

id
e

 

H
e

rb
ic

id
e

 

H
e

rb
ic

id
e

 

H
o

rm
o

n
e 

H
o

rm
o

n
e 

In
d

u
st

ri
al

 c
h

em
ic

al
s 

 C
o

rr
o

si
o

n
 in

h
ib

it
o

r 

In
d

u
st

ri
al

 c
h

em
ic

al
s 

PF
A

Ss
 

In
d

u
st

ri
al

 c
h

em
ic

al
s 

PF
A

Ss
 

In
d

u
st

ri
al

 c
h

em
ic

al
s 

 P
FA

Ss
 

In
d

u
st

ri
al

 c
h

em
ic

al
s 

PF
A

Ss
 

Li
fe

 s
ty

le
 p

ro
d

u
ct

s 

St
im

u
la

n
t 

Li
fe

 s
ty

le
 p

ro
d

u
ct

s 

A
rt

if
ic

ia
l s

w
ee

te
n

er
 

Li
fe

 s
ty

le
 p

ro
d

u
ct

s 

 A
rt

if
ic

ia
l s

w
ee

te
n

er
 

PC
P

 

PC
P

 

Ph
ar

m
ac

eu
ti

ca
ls

/ 

D
ih

yd
ro

fo
la

te
 r

ed
u

ct
as

e
 

Ph
ar

m
ac

eu
ti

ca
l 

Fl
u

o
ro

q
u

in
o

lo
n

e
 

Ph
ar

m
ac

eu
ti

ca
l 

Fl
u

o
ro

q
u

in
o

lo
n

e
 

Ph
am

ac
eu

ti
ca

 

 S
u

lf
o

n
am

id
e

 

Ph
am

ac
eu

ti
ca

l 

Su
lf

o
n

am
id

e
 

  



Multiresidue analysis of 41 multi-class pollutants in waters 

53 

Ta
b

le
 3

.1
. F

am
ili

es
, n

am
es

 (
ab

b
re

vi
at

io
n

),
 t

h
e 

su
p

p
lie

r 
o

f 
th

e 
st

an
d

ar
d

s,
 C

A
S 

n
u

m
b

er
, m

o
le

cu
la

r 
fo

rm
u

la
, m

o
le

cu
la

r 
w

ei
gh

t,
 L

o
gP

 a
n

d
 o

g 
D

 (p
H

 =
2 

an
d

 1
1)

 a
n

d
 p

K
a 

va
lu

es
 o

f 
th

e 
ta

rg
et

 c
o

m
p

o
u

n
d

s.
 

 
p

K a
a  

9
.8

 

9
.2

 

9
.2

 

1
0

.5
 

3
.6

; 6
.7

 

4
.1

; 8
.3

 

3
.8

; 8
.3

 

3
.6

; 4
.7

; 5
.9

 

4
.4

; 8
.3

 

9
.7

;1
4

.1
 

9
.5

 

4
.0

 

3
.9

 

3
.8

 

3
.4

 

1
6

.0
 

8
.5

 

6
.6

; 8
.0

; 9
.0

 

7
.3

; 9
.0

;1
2

.5
 

9
.0

;1
2

.2
 

a  V
al

u
es

 r
ep

o
rt

ed
 in

 t
h

e 
Fr

ee
 D

at
a 

B
as

e 
w

w
w

.c
h

e
m

ic
al

iz
e.

o
rg

;  
b
 P

ri
o

ri
ty

 c
o

m
p

o
u

n
d

s 
in

cl
u

d
ed

 in
 t

h
e 

D
ir

ec
ti

ve
s 

20
00

/6
0

/E
U

 a
n

d
 2

00
8/

10
5

/E
U

 o
r 

20
13

/3
9/

EU
; 

 c 
C

o
m

p
o

u
n

d
s 

in
cl

u
d

in
g 

in
 t

h
e 

W
at

ch
 L

is
t 

o
f 

D
ec

is
io

n
 2

01
5/

4
95

/E
U

. 

Lo
gD

a 

(p
H

2
; 1

1
) 

1
.3

; 4
.8

 

1
.4

; 4
.9

 

0
.8

; 4
.3

 

1
.2

; 4
.3

 

4
.1

; -
1

.9
 

3
.5

; 3
.9

 

3
.5

; 3
.5

 

5
.0

; 4
.3

 

5
.3

; 0
.1

 

-0
.7

; 2
.6

 

0
.9

; -
0

.6
 

4
.3

; 0
.7

 

3
.6

; 0
.1

 

4
.0

; 0
.5

 

2
.9

; -
0

.6
 

2
.8

; 2
.8

 

2
.2

; 0
.3

 

3
.1

; -
2

.9
 

0
.8

; -
3

.1
 

0
.3

; -
1

.5
 

Lo
g 

P
a  

4
.8

 

4
.9

 

4
.3

 

4
.4

 

3
.8

 

5
.5

 

5
.1

 

6
.1

 

5
.3

 

2
.6

 

0
.9

 

4
.3

 

3
.6

 

4
.0

 

2
.9

 

2
.8

 

2
.2

 

3
.1

 

0
.8

 

1
.3

 

M
w

 

2
7

7
.4

0
 

3
1

4
.8

5
 

2
8

0
.4

1
 

2
6

3
.3

7
 

4
2

4
.5

2
 

4
2

8
.5

3
 

4
2

2
.9

1
 

5
1

4
.6

2
 

4
3

5
.5

2
 

2
5

6
.3

4
 

1
5

1
.1

6
 

2
9

6
.1

5
 

2
5

4
.2

8
 

3
6

1
.8

0
 

2
1

4
.6

4
 

2
3

6
.2

6
 

2
5

2
.2

0
 

2
7

0
.2

4
 

4
3

2
.3

8
 

4
4

6
.4

0
 

Fo
rm

u
la

  

C
2

0H
2

3N
 

C
1

9H
2

3
C

lN
2
 

C
1

9H
2

4N
2
 

C
1

9H
2

1N
 

C
2

3H
2

4
N

2
O

7S
 

C
2

5H
2

8
N

6
O

 

C
2

2H
2

3
C

lN
6O

 

C
3

3H
3
0

N
4O

2
 

C
2

4H
2

9
N

5
O

3
 

C
1

6H
2

1
N

0 2
 

C
8
H

9
N

O
2
 

C
1

4H
1

1C
l 2

N
O

2
 

C
1

6H
1

4O
3
 

C
1

9H
2

0
C

lN
O

4
 

C
1

0H
1

1
C

lO
3
 

C
1

5H
1

2
N

2
O

 

C
1

5H
1

2
N

2
O

2
 

C
1

5H
1

0O
5
 

C
2

1
H

2
0O

1
0
 

C
2

2
H

2
2O

1
0
 

C
A

S 

5
0-

4
8-

6
 

17
3

2
1

-7
7-

6
 

5
0-

4
9-

7
 

7
2-

6
9-

5
 

1
4

4
1

4
3

-9
6-

4
 

1
3

8
4

0
2

-1
1-

6
 

1
1

4
7

9
8

-2
6-

4
 

1
4

4
7

0
1

-4
8-

4
 

1
3

7
8

6
2

-5
3-

4
 

5
2

5
-6

6-
6

 

1
0

3
-9

0-
2

 

15
3

0
7

-8
6-

5
 

22
0

7
1

-1
5-

4
 

41
8

5
9

-6
7-

0
 

8
8

2
-0

9-
7

 

2
9

8
-4

6-
4

 

5
7-

4
1-

0
 

4
4

6
-7

2-
0

 

5
2

9
-5

9-
9

 

40
2

4
6

-1
0-

4
 

Su
p

p
lie

r 

Si
gm

a-
A

ld
ri

ch
 

Si
gm

a-
A

ld
ri

ch
 

Si
gm

a-
A

ld
ri

ch
 

Si
gm

a-
A

ld
ri

ch
 

So
lv

ay
 P

h
ar

m
a 

Sa
n

o
fi

 

M
er

ck
 

B
o

eh
ri

n
ge

r 

B
o

eh
ri

n
ge

r 

B
io

m
e

d
ic

al
s 

Fl
u

ka
 

Si
gm

a-
A

ld
ri

ch
 

B
io

m
e

d
ic

al
s 

B
io

m
e

d
ic

al
s 

B
io

m
e

d
ic

al
s 

Si
gm

a-
A

ld
ri

ch
 

Si
gm

a-
A

ld
ri

ch
 

Ex
tr

as
yn

th
es

e
 

Ex
tr

as
yn

th
es

e
 

Ex
tr

as
yn

th
es

e
 

A
n

al
yt

e 

A
m

it
ri

p
ty

lin
e

 

C
lo

m
ip

ra
m

in
e

 

Im
ip

ra
m

in
e

 

N
o

rt
ri

p
ty

lin
e

 

Ep
ro

sa
rt

an
 

Ir
b

es
ar

ta
n

 

Lo
sa

rt
an

 

Te
lm

is
ar

ta
n

 

V
al

sa
rt

an
 

Pr
o

p
ra

n
o

lo
l 

A
ce

ta
m

in
o

p
h

en
 

D
ic

lo
fe

n
ac

c  

Ke
to

p
ro

fe
n

 

B
ez

af
ib

ra
te

 

C
lo

fi
b

ri
c 

ac
id

 

C
ar

b
am

az
e

p
in

e
 

Ph
en

yt
o

in
 

G
en

is
te

in
 

G
en

is
ti

n
 

G
ly

ci
ti

n
 

Fa
m

ily
 

Ph
ar

m
ac

eu
ti

ca
l 

Tr
ic

yc
ly

c 
an

ti
d

ep
re

ss
an

t 

Ph
ar

m
ac

eu
ti

ca
l/

 

Tr
ic

yc
ly

c 
an

ti
d

ep
re

ss
an

t 

Ph
ar

m
ac

eu
ti

ca
l 

Tr
ic

yc
ly

c 
an

ti
d

ep
re

ss
an

t 

Ph
ar

m
ac

eu
ti

ca
l 

 T
ri

cy
cl

yc
 a

n
ti

d
ep

re
ss

an
t 

Ph
ar

m
ac

eu
ti

ca
l  

A
n

gi
o

te
n

si
n

 II
 r

ec
ep

to
r 

an
ta

go
n

is
t 

Ph
ar

m
ac

eu
ti

ca
l  

A
n

gi
o

te
n

si
n

 II
 r

ec
ep

to
r 

an
ta

go
n

is
ts

 

Ph
ar

m
ac

eu
ti

ca
l  

A
n

gi
o

te
n

si
n

 II
 r

ec
ep

to
r 

an
ta

go
n

is
t 

Ph
ar

m
ac

eu
ti

ca
l  

A
n

gi
o

te
n

si
n

 II
 r

ec
ep

to
r 

an
ta

go
n

is
t 

Ph
ar

m
ac

eu
ti

ca
l  

A
n

gi
o

te
n

si
n

 II
 r

ec
ep

to
r 

an
ta

go
n

is
t 

Ph
ar

m
ac

eu
ti

ca
l  

β
-b

lo
ck

er
 a

n
ti

h
yp

er
te

n
si

ve
 

Ph
ar

m
ac

eu
ti

ca
l 

 A
n

ti
in

fl
am

m
at

o
ry

 

Ph
ar

m
ac

eu
ti

ca
l 

 A
n

ti
in

fl
am

m
at

o
ry

 

Ph
ar

m
ac

eu
ti

ca
l 

A
n

ti
in

fl
am

m
at

o
ry

 

Ph
ar

m
ac

eu
ti

ca
l 

 L
ip

id
-r

eg
u

la
ti

n
g 

Ph
ar

m
ac

eu
ti

ca
l 

 L
ip

id
-r

eg
u

la
ti

n
g 

Ph
ar

m
ac

eu
ti

ca
l  

 A
n

ti
co

n
vu

ls
an

t 

Ph
ar

m
ac

eu
ti

ca
l  

 A
n

ti
co

n
vu

ls
an

t 

Ph
yt

o
e

st
ro

ge
n

 

Ph
yt

o
e

st
ro

ge
n

 

Ph
yt

o
e

st
ro

ge
n

 

http://www.chemicalize.org/


Chapter 3 

54 

In the case of isotopically mass-labelled analogues (see Table 3.2), amitriptyline-d3 

hydrochloride ([
2
H3]-amitriptyline, 100 mg/L in methanol), atrazine-d5 ([

2
H5]-atrazine, 99%), 

carbamazepine-d10 ([
2
H10]-carbamazepine, 100 mg/L in methanol), ketoprofen-d3 ([

2
H3]-ketoprofen, 

99.4%), nortriptyline-d3 hydrochloride ([
2
H3]-nortriptyline, 100 mg/L in methanol), progesterone-d9 

([
2
H9]-progesterone, 98%), were purchased from Sigma-Aldrich (St. Louis, MO, USA) and 

ciprofloxacin-d8 hydrochloride ([
2
H8]-ciprofloxacin, 99%) was obtained from Fluka (Buchs, 

Switzerland). Sucralose-d6 ([
2
H6]-sucralose, 98%) and irbesartan-d7 2,2,2-trifluoroacetate salt ([

2
H7]-

irbesartan, 99.9%) were purchased from Toronto Research Chemicals (Toronto, Canada). The mix 

(sodium perfluoro-1-hexane [
18

O2] sulfonate (MPFHxS), sodium perfluoro-1-[1,2,3,4-
13

C4] 

octanesulfonate (MPFOS), perfluoro-n-[
13

C4] butanoic acid (MPFBA), perfluoro-n-[1,2-
13

C2] hexanoic 

acid (MPFHxA), perfluoro-n-[1,2,3,4-
13

C4] octanoic acid (MPFOA), perfluoro-n-[1,2,3,4,5-
13

C5] 

octanoic acid (MPFNA), perfluoro-n-[1,2-
13

C2] decanoic acid (MPFDA), perfluoro-n-[1,2-
13

C2] 

undecanoic acid (MPFUdA) and perfluoro-n-[1,2-
13

C2] dodecanoic acid (MPFDoA)) was obtained at 

2 mg/L in methanol from Wellington Laboratories (Ontario, Canada).  

Stock standard solutions were dissolved in methanol (UHPLC-MS MeOH, Scharlab, Barcelona, 

Spain) in order to prepare approximately 1000-2500 mg/L solutions. The addition of 100 µL (in 3.5 

mL of total volume) sodium hydroxide 1 mol/L (NaOH, 98%, Panreac, Barcelona, Spain) was 

necessary for the proper dissolution of fluoroquinolone antibiotics as described by Gros et al. (Gros 

et al., 2013). 100 mg/L dilutions were prepared in MeOH every month and dilutions at lower 

concentrations containing all analytes were prepared daily in MeOH: Milli-Q water (30: 70, v: v). All 

the chemicals standards solutions were stored at −20°C.  
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Table 3.2. The optimised MS/MS parameters for SRM analysis, retention time (RT) and instrumental limits of quantification 

(LOQ) for Kinetex biphenyl and Kinetex F5 columns. 

Analyte 

ESI-MS/MS Biphenyl F5 

Polarity 
Precursor ion 

(m/z) 
Product ions 

(m/z) 
Frag. 
(V) 

Collision 
energy 

(eV) 

RT 
min 

LOQ 
ng/mL 

RT 
min 

LOQ 
ng/mL 

Acesulfameh [M-H]- 162.0 82.0/78.0 72 12/36 1.2 0.81 1.2 0.46 

Acetaminophend [M+H]+ 152.1 93.1/110.1 80 33/25 1.4 1.04 1.4 1.96 

Amitriptylinea [M+H]+ 278.2 91.1/117.1 76 25/29 14.9 0.63 13.9 0.60 

Atrazineb [M+H]+ 216.1 174.1/68.0 80 17/17 9.3 0.23 9.8 0.21 

Bezafibrated [M+H]+ 362.2 139.1/201.1 104 25/37 18.8 0.62 18 0.36 

Butylparabenf [M+H]+ 195.1 139.0/95.1 72 5/17 12.6 0.92 17.1 2.00 

Caffeine
b
 [M+H]

+
 195.1 138.1/110.0 72 21/25 4.1 1.92 2.3 0.96 

Carbamazepinec [M+H]+ 237.1 194.4/193.3 104 20/36 11.6 0.25 8.8 0.29 

Ciprofloxacing [M+H]+ 332.1 314.2/231.0 136 13/17 4.5 3.01 4.5 3.03 

Clofibric acid
d
 [M-H]

-
 213.0 127.0/85.0 72 8/4 11.3 1.92 13.5 1.29 

Clomipraminea [M+H]+ 315.2 58.0/227.1 76 41/45 19.4 0.32 21.6 0.33 

Diclofenac
d
 [M+H]

+
 296.0 214.1/250.0 80 33/17 23.2 0.49 23.2 0.37 

Diuronb [M+H]+ 233.0/235.0 72.1 72/72 17 9.6 0.41 13.2 0.47 

Eprosartani [M+H]+ 425.0 207.3/117.0 80 45/45 8.9 1.17 7.6 1.20 

Genisteinf [M+H]+ 271.1 91.1/215.1 140 25/29 10.3 1.60 12.2 2.46 

Genistinf [M+H]+ 433.1 271.1/153.1 80 13/45 3.6 1.21 3.9 2.03 

Glycitinf [M+H]+ 447.1 285.1/270.0 80 9/45 3.8 1.01 4.1 1.80 

Imipraminea [M+H]+ 281.2 86.1/58.1 76 13/41 13.4 0.49 13.1 0.58 

Irbesartani [M+H]+ 429.0 207.3/180.1 80 45/45 22.5 0.33 13.5 0.31 

Isoproturonb [M+H]+ 207.2 72.1/165.1 80 21/13 10.4 0.40 10.4 0.32 

Ketoprofend [M+H]+ 255.1 105.0/209.1 104 24/22 18.4 0.60 14.0 0.64 

Losartani [M+H]+ 423.0 405.3/207.0 80 45/45 20.3 1.17 12.3 1.20 

Methylparabenf [M+H]+ 153.1 121.1/651.0 72 13/37 4.8 4.54 6.4 4.68 

Norfloxacing [M+H]+ 320.1 302.1/231.0 136 17/41 3.0 1.94 3.9 2.17 

Nortriptylinee [M+H]+ 264.2 233.1/91.1 102 13/25 14.2 0.38 14.4 0.53 

OBTc [M+H]+ 152.0 80.0/65.1 110 33/37 6.8 3.03 6.4 2.93 

PFBSb [M-H]- 299.9 80.0/99.0 144 37/33 3.0 1.09 8.7 0.56 

PFOAk [M-H]- 413.0 369.0/169.0 80 5/13 8.9 1.38 23.1 0.49 

PFOSj [M-H]- 498.9 80.0/99.0 170 45/45 11.8 1.96 23.5 0.33 

PFOSA
j
 [M-H]

-
 497.9 78.0/478.1 140 41/45 20.1 2.51 24.5 0.34 

Phenytoinc [M+H]+ 253.1 182.1/225.1 104 29/9 9.6 0.81 8.3 2.06 

Progesterone
b
 [M+H]

+
 315.2 109.1/97.1 110 25/25 25.9 0.41 23.2 0.87 
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Table 3.2. The optimised MS/MS parameters for SRM analysis, retention time (RT) and instrumental limits of quantification 

(LOQ) for Kinetex biphenyl and Kinetex F5 columns. 

Analyte 

ESI-MS/MS Biphenyl F5 

Polarity 
Precursor ion 

(m/z) 
Product ions 

(m/z) 
Frag. 
(V) 

Collision 
energy 

(eV) 

RT 
min 

LOQ 
ng/mL 

RT 
min 

LOQ 
ng/mL 

Propranolola [M+H]+ 260.2 116.1/72.1 72 16/20 8.3 0.61 9.9 0.55 

Simazineb [M+H]+ 202.1 68.1/132.0 104 40/20 7.4 0.44 7.6 0.50 

Sucraloseh [M-H+HCOOH]- 387.1 341.1/179.0 80 9/17 1.0 0.66 1.0 0.33 

Sulfadiazine
i
 [M+H]

+
 251.1 153.0/108.0 104 12/24 2.1 0.26 1.5 0.35 

Sulfamethoxazolei [M+H]+ 254.1 92.1/156.0 76 28/12 4.6 0.30 3.4 0.69 

Telmisartan
i
 [M+H]

+
 515.0 276.1/497.1 80 45/45 23.8 0.30 21.5 0.34 

Testosteronef [M+H]+ 289.2 109.1/97.1 80 25/21 23.5 0.83 16.0 0.90 

Trimethoprim
b
 [M+H]

+
 291.2 230.1/261.1 136 20/24 2.2 0.34 1.8 0.26 

Valsartan
i
 [M-H]

-
 434.0 350.2/179.2 80 45/45 23.0 2.60 21.0 2.61 

aAmitriptyline-d5 [M+H]+ 291.2 91.1/117.1 76 25/29 

 

b
Atrazine-d5 [M+H]

+
 221.0 179.0/104.0 80 17/17 

cCarbamazepine-d10 [M+H]+ 237.1 194.4/193.3 104 20/36 

dKetoprofen-d3 [M+H]+ 258.1 105.0/209.1 104 24/22 

eNortriptyline-d3 [M+H]+ 267.2 233.1/91.1 102 13/25 

fProgesterone-d9
 [M+H]+ 324.3 113.2/106.1 110 25/25 

gCiprofloxacin-d8
 [M+H]+ 340.1 322.1/296.1 136 13/17 

hSucralose-d6
 [M-H+HCOOH]- 396.1 347.1/179.0 80 9/17 

iIrbesartan-d7
 [M+H]+ 436.0 207.3/180.1 80 45/45 

jMPFOS [M-H]- 503.0 99.0/99.0 60 45/45 

kMPFOA [M-H]- 417.0 372.0/372.0 60 5/5 
a Corrected with Amitriptyline-d5. 
b Corrected with Atrazine-d5.   
c Corrected with Carbamazepine-d10 
d Corrected with Ketoprofen-d3.  
e Corrected with Nortriptyline-d3.  
 f Corrected with Progesterone-d9. 

  

g Corrected with Ciprofloxacin-d8.  
h Corrected with Sucralose-d6. 
i Corrected with Irbesartan-d7. 

  
j
 Corrected with MPFOS. 

  

k
 Corrected with MPFOA. 

 

Oasis-HLB (hydrophilic–lipophilic-balanced) 200 mg SPE cartridges were purchased from 

Waters (Milford, USA). PES hollow fibres (0.7 and 0.5 mm external and internal diameters, 1.43 g/mL 

density) were obtained from Membrana GmbH (Wuppertal, Germany). Pieces of this polymer (4 cm 
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length) were cut using a sharp blade and soaked overnight in MeOH (HPLC grade, 99.9%, LabScan, 

Dublin, Ireland) previous to their use as sorbent material. Afterwards, the polymer was air-dried and 

stored until their use. Given their reduced cost (c.a. 0.05 €/unit) the pieces were discarded after 

each use. Ethylenediaminetetraacetic acid (EDTA, 99.0-101.1%, Panreac), formic acid (HCOOH  

98%, Scharlau, Barcelona, Spain), ammonia (25% as NH3, Panreac) and sodium chloride (NaCl, > 

99.8%, Merck) were used for matrix modification.  

The extracts were evaporated using a Turbovap LV Evaporator (Zymark, Hopkinton, USA) 

under a gentle stream of nitrogen (> 99.999% of purity) supplied by Messer (Tarragona, Spain). The 

reconstituted extracts were (according to the different filters evaluation) filtered through 

polypropylene (PP, 0.22 µm, 13 mm, Phenomenex, California, USA), polytetrafluoroethylene (PTFE, 

0.2 μm, 13 mm, Teknokroma, Barcelona, Spain) or polydivinylfluoride (PVDF, 0.22 μm, 13 mm, 

Simplepure, Membrane solution, Plano, USA) filters before the LC-MS/MS analysis. Milli-Q (< 0.05 

μS/cm, Milli-Q, Millipore) water and UHPLC-MS MeOH (Scharlab) were used as mobile phase eluent 

and HCOOH (Optima, Fischer Scientific, Gell, Belgium) for mobile phase modification. High purity 

nitrogen gas (> 99.999%) supplied by Messer was used as collision gas. Nitrogen gas (99.999%) 

provided by AIR Liquid (Madrid, Spain) was used as both nebuliser and drying gas. 

3.2.2 Sample collection and treatment 

Effluent samples (Galindo WWTP secondary treatment, 2°57'52.8"W, 43°18'11.0"N), estuary 

sample (estuary of Bilbao, 2°59'33.77"W, 43°18'50.38"N, downstream of the WWTP) and marine 

water (3°4'35.58"W, 43°22'50.94"N, harbour of Bilbao estuary) were collected in July 2016. Samples 

were collected in pre-cleaned amber glass bottles and transported to the laboratory in cooled 

boxes. Only effluent samples were filtered through 1.2 μm glass microfiber filter (GE Whatman, 

Maidstone, UK), according to the filter evaluation (see section 3.3.3). All the real samples were kept 

in the fridge at 4°C before analysis. The analyses were performed within 24 h after sampling. 

3.2.3 Polyethersulfone microextraction 

Under optimised conditions, two aliquots of 120 mL of water samples (dual extraction) were 

directly poured into 150 mL glass extraction vessels (ServiQuimia, Tarragona, Spain) containing 30% 
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NaCl (w/v), in both cases at pH=2 or pH=10 (as they represent two different optimal conditions for 

the target analytes). Pre-cleaned portions of PES (4 PES tubes of 4 cm each corresponding to a total 

mass of approx. 48 mg) and a magnetic stirrer were also introduced into the vessels. Additionally, an 

appropriate volume of a EDTA solution to achieve a final concentration of 0.1% (m/m) was added. 

Thereafter, vessels were closed and extraction (800 rpm) was performed in a 15 position magnetic 

stirrer (Gerstel, Mülheim an der Ruhr, Germany) at room temperature and overnight according to 

the previous experience of the research group (Bizkarguenaga et al., 2015; Blanco-Zubiaguirre et al., 

2014; Ros et al., 2015). 

Once the sorption step was over, the polymers were removed and rinsed with Milli-Q water 

in order to eliminate salt residues, and finally, dried with a clean tissue. Subsequently, the sorbents 

were chemically desorbed. To this aim, the polymers from the two aliquots, i.e. sorbents from pH 2 

and 10 modified samples, were introduced together into a 1.5 mL Eppendorf tube (Eppendorf , 

Berzdorf, Germany) containing 1000 µL of MeOH and soaked for 32 min in an ultrasound bath 

(Digital Ultrasonic Cleaner, USB Axtor by Lovango, Barcelona, Spain). The extract was evaporated to 

dryness under a gentle stream of nitrogen at 35 °C and reconstituted in 200 μL of MeOH: Milli-Q 

water (30:70, v:v). Finally, the reconstituted extracts were filtered through a 0.22 μm PP filter before 

the LC-MS/MS analysis. 

3.2.4 Solid phase extraction procedure 

Among the published multiresidue based on SPE methods a suitable SPE protocol (Hernández 

et al., 2014; Petrovic, 2014) was selected and validated. Prior to the extraction, an appropriate 

volume of a EDTA solution to achieve a final concentration of 0.1% (g solute/g solution) was added 

and samples were acidified (pH=2) with formic acid. 200 mg-Oasis HLB cartridges were sequentially 

conditioned with 5 mL of MeOH, 5 mL of ultrapure water and 5 mL of ultrapure water at pH=2. The 

sample (100 mL in the case of effluent and 250 mL in the cases of estuary and seawater) was, then, 

percolated through the cartridge assisted by a vacuum pump at ca. 5 mL/min. Subsequently, the 

cartridges were washed with 6 mL of ultrapure water, vacuum dried for 40 min and eluted with 6 mL 

of MeOH. After elution, the extract was evaporated to dryness under a gentle stream of nitrogen at 

35°C and reconstituted in 200 μL of MeOH: Milli-Q water (30:70, v:v). Finally, the reconstituted 
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extracts were filtered through a 0.22 μm PP filter before the LC-MS/MS analysis. 

3.2.5 LC-MS/MS analysis 

An Agilent 1260 series HPLC chromatograph equipped with a degasser, binary pump, 

autosampler and column oven coupled to an Agilent 6430 triple quadrupole (QqQ) mass 

spectrometer equipped with electrospray ionization (ESI) source (Agilent Technologies, Palo Alto, 

CA, USA) was employed for the separation and quantification of the 41 target analytes. Two 

chromatographic columns were tested for the separation: a Kinetex F5 100 Å core-shell (2.1 mm × 

100 mm, 2.6 m) column coupled to a Kinetex F5 pre-column (2.1 mm x 4.6 mm, 2.6 m), and a 

Kinetex biphenyl 100Å core-shell (2.1 mm x 100 mm, 2.6 m) column with a Kinetex biphenyl pre-

column (2.1 mm x 5 mm, 2.6 m), both from Phenomenex (Torrance, 235 CA, USA). The column 

temperature and the injection volume were set to 35°C and 10 L, respectively, in the case of both 

columns. The separation of the target analytes was carried out at a flow rate of 0.3 mL/min. Under 

optimised conditions, a binary mixture consisting of water: MeOH (95: 5, v: v) (mobile phase A) and 

mobile phase B of MeOH: water (95: 5, v: v), both containing 0.1% of HCOOH were used for gradient 

separation of target analytes. The gradient profile started with 30% B which was increased to 50% in 

4 min and maintained for 12 min. Then, it was increased to 90% B where it was maintained constant 

for 10 min. Initial gradient conditions (30% B) were then achieved in 6 min, where it was finally held 

for another 10 min (post-run step). After the optimisation of ESI parameters, the analysis was 

carried out in the positive and negative voltages, according to the target analytes, which were 

simultaneously applied in a single injection using a N2 flow rate of 12 L/min, a capillary voltage of 

3500 V, a nebuliser pressure of 45 psi, and a source temperature of 350°C. Fragmentor voltage (40-

200 V) and collision energy (5-45 eV) were optimised (see Table 3.2) for ESI source by injection of 

individual compounds. 

Quantification was performed in the selected reaction monitoring (SRM) acquisition mode by 

recording the two most intense transitions for each analyte (the most sensitive transition was 

chosen as the quantifier and the second one as qualifier). In addition, the ratio of quantifier/qualifier 

ion was used to identify according to the limits set by EC guidelines (European Commission, 2002) 

on performance of analytical methods and the interpretation of the results. Different ion ratio 
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criteria depending on the relative intensity of the product ion (a relative intensity >50%, ±20%; >20 

to 50%, ±25%; >10 to 20% ± 30% and <10% ± 50%) were followed. Instrumental operations, data 

acquisition and peak integration were performed with the Masshunter Workstation Software 

(Qualitative Analysis, Version B.06.00, Agilent Technologies). 

3.2.6 Analyte quantification and method validation 

For the quantification of the target analytes in the different aqueous samples an external 

calibration together with surrogate corrections approach was performed for SPE, while in the case 

of PES method, a procedural calibration with Milli-Q using isotopically labelled analogues as 

surrogates was used. In this sense, calibration standards in Milli-Q water were prepared containing 

concentrations ranged from 0 (procedural blanks) to 1000 ng/L and treated according to the 

extraction procedure (see sections 3.2.3 and 3.2.4). 

Method validation was performed in the case of both PES and SPE protocols for seawater, 

estuary and wastewater effluents in terms of process efficiency (PE%), apparent recovery and 

method quantification limits (MQLs). The PE and apparent recovery of the method were evaluated 

with spiked (100 ng/L) aliquots of effluent, estuary water and seawater real samples and extracted 

under conditions previously described. The experiments were performed in triplicate (n=3) and 

blanks (n=3) were processed in parallel for signal subtraction.  

Due to the lack of a free analyte matrix, the MQLs could not be calculated by spiking seven 

replicates of each blank matrix with the analytes at the lowest concentration used in the validation, 

according to USEPA guidance (United States Environmental Protection Agency, 2016). Thus, MQLs 

were calculated using the Equation 3.1 (Baker and Kasprzyk-Hordern, 2011a; Huntscha et al., 2012; 

Kasprzyk-Hordern et al., 2008; Vieno et al., 2006). 

𝑀𝑄𝐿 =
𝐿𝑂𝑄 × 1000

𝑃𝐸 (%) × 𝐶𝐹
   Equation 3.1 

where LOQ (ng/mL) is the instrumental quantification limit (PE (%) is the process efficiency of 

the analyte in the corresponding matrix and CF is the analyte concentration factor according to the 

developed procedures. 
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3.3 Results and discussion  

3.3.1 MS/MS parameters optimisation 

The parameters related to the mass spectrometry (polarity, fragmentor voltage, collision 

energy and collision cell accelerator) were fully optimised using a standard containing all the target 

compounds at a concentration level of 2.5 μg/mL through the specific Agilent optimizer software. 

Both, target analytes and surrogates were considered. All the precursor ions corresponded to 

[M+H]
+
 and [M-H]

-
 in positive and negative ionization modes, respectively, except in the case of 

sucralose which increased approximately 10 fold its sensitivity using [M-H+HCOOH]
-
 adduct as 

precursor ion. The use of different sucralose adducts as precursor ions has also been reported in the 

literature (Arbeláez et al., 2015; Ordoñez et al., 2013). Optimum values for the target analytes and 

surrogates are summarized in Table 3.2. 

3.3.2 Calibration ranges, determination coefficients and instrumental limits of 

quantification 

Before LC-MS/MS analysis all the sample extracts and standards solutions were filtered. In 

order to avoid analyte losses in the filters or any contamination, several 0.22 µm-filters of different 

providers and materials (PP, PTFE hydrophilic and PVDF filters, see section 3.2.1) were evaluated and 

compared. In this sense, injection solvent MeOH: Milli-Q water (30:70, v: v) mixture was spiked 

(200 ng/mL) with the target compounds either after or before filtration and analysed by LC-MS/MS. 

From the results shown in Table 3.3, PP and PTFE filters gave comparable recovery values (p-value> 

0.05 according to ANOVA) and did not show any significant retention. However, some PFASs (PFOA 

and PFOS) showed recoveries higher than 130% using PTFE filters, and therefore, PP filters were 

used in further experiments. 

Calibration curves were built under optimised chromatographic conditions with MeOH: Milli-

Q (30:70, v: v) standard solutions in the instrumental limit of quantification (LOQ)-5000 ng/mL range 

at 12 concentration levels. The two chromatographic columns (a Kinetex biphenyl, 100 mm x 

2.1 mm, 2.5 µm and a Kinetex F5, PFP phase, 100 mm x 2.1 mm, 2.6 µm) were evaluated according 

to the literature (Borova et al., 2014; Regalado et al., 2014; Ziarrusta et al., 2016).  
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Table 3.3: Absolute recovery of analytes after 0.22 µm filtration steps. 

 
Analyte 

0.22 µm filter 

PTFE PP PVDF 

Acesulfame 105±2 101±2 37±8 

Acetaminophen 98±5 99±8 90±9 

Amitriptyline 104±1 102±2 46±5 

Atrazine 103±7 106±10 103±16 

Bezafibrate 101±4 108±9 104±8 

Butylparaben 106±6 108±11 109±9 

Caffeine 92±1 98±5 103±2 

Carbamazepine 103±7 109±10 77±11 

Ciprofloxacin 101±0.3 98±4 53±6 

Clofibric acid 103±3 107±8 78±8 

Clomipramine 105±3 99±5 33±6 

Diclofenac 102±1 102±2 108±12 

Diuron 107±6 108±10 118±20 

Eprosartan 96±5 99±3 75±9 

Genistein 103±3 108±9 93±7 

Genistin 105±6 106±7 92±12 

Glycitin 104±2 105±8 107±13 

Imipramine 106±6 101±2 46±3 

Irbesartan 95±7 105±6 93±11 

Isoproturon 103±2 106±7 104±2 

Ketoprofen 103±3 107±10 110±4 

Losartan 96±7 95±8 97±7 

Methylparaben 101±2 102±5 101±6 

Norfloxacin 99±1 100±11 46±8 

Nortriptyline 100±6 101±8 106±9 

OBT 105±1 107±9 106±1 

PFBS 120±2 105±3 108±8 

PFOA 150±6 105±6 108±11 

PFOS 161±10 106±8 89±8 

PFOSA 122±3 105±4 109±4 

Phenytoin 107±8 111±7 100±14 

Progesterone 96±7 101±10 105±7 

Propranolol 100±2 105±6 113±15 

Simazine 104±4 105±7 115±4 

Sucralose 97±4 99±2 38±5 

Sulfadiazine 91±9 96±7 99±3 

Sulfamethoxazole 102±3 103±3 104±6 

Telmisartan 92±5 95±9 98±9 

Testosterone 103±5 105±8 112±9 

Trimethoprim 93±1 97±5 104±1 

Valsartan 92±8 93±9 94±6 

PP: polypropylene, PVDF: Polydivinylfluoride, PTFE: Polytetrafluoroethylene 
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Determination coefficients in the same range of 0.975–0.999 and 0.973–0.999 were obtained 

for all the target analytes with correction with the corresponding labelled standard for biphenyl and 

F5 columns, respectively. Limits of detection (LODs) were estimated as the concentration producing 

a signal-to-noise ratio of 3. LODs below 2.3 and 2.7 ng/mL were obtained for all the analytes in the 

case of F5 and biphenyl columns, respectively. LOQs were established as the lowest concentration 

fulfilling all of the following criteria: (i) a linear calibration curve, (ii) an acceptable peak shape, and 

(iii) a signal-to-noise ratio of at least 10 (S/N=10). As can be observed in Table 3.2, in the same order 

of magnitude LOQ values were obtained by means of both columns for the majority of the analytes, 

except in the case of artificial sweeteners and PFASs which showed better results in terms of 

sensitivity and chromatographic peak shape using the PFP column (see Figure 3.1). Besides, in 

general terms, LODs and LOQs obtained were similar to the values reported in the literature 

(Bizkarguenaga et al., 2015; Grabic et al., 2012; Gros et al., 2013; Huntscha et al., 2012; Tran et al., 

2013). Therefore, the F5 (PFP phase) column was selected and used in further experiments. 

 

 

Figure 3.1. The influence of the column phase on a)acesulfame and b) PFBS analytes for both columns 

Kinetex F5 (black line) and Kinetex Biphenyl (green line).  

http://www.sciencedirect.com/science/article/pii/S0021967315002022#tbl0005
http://www.sciencedirect.com/science/article/pii/S0021967315002022#tbl0005
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3.3.3 Filtration 

An important factor in the analysis of organic compounds in water samples is the filtration 

step. Water filtration is a highly controversial procedure due to the risk of losing partially some of 

the analytes in the filters (Baker and Kasprzyk-Hordern, 2011b; Petrovic, 2014). Therefore, possible 

losses during the water samples filtration step were investigated by means of two widely used 

filters: 1.2 m glass microfiber and 0.45 m cellulose nitrate membrane filters (47 mm diameter, 

Whatman). The assays were carried out using 100 mL of Milli-Q, WWTP effluent, estuary and 

seawater samples spiked at 400 ng/L with all the target analytes, before and after filtration. The 

absolute recovery results included in Table 3.4 showed two different tendencies based on the 

particulate matter content and on the filters material nature. Analytes were less retained on both 

filters in the case of effluent and estuary samples compared with the retention observed in 

seawater or Milli-Q, probably due to the highest particulate matter content present in the case of 

effluent and estuary samples, which seems to minimize the retention of analytes independently of 

the filters nature. Moreover, the retention of the target analytes occurred mostly on 0.45 µm 

cellulose nitrate membrane filters (0-67%, 0-95% and 0-95% for effluent, estuary samples and 

seawater, respectively) compared to the 1.2 µm glass microfiber filters (0-46%, 0-68% and 0-7% for 

effluent, estuary and seawater, respectively). Therefore, only effluent was filtered with 1.2 µm glass 

microfilters which rendered the lowest analyte losses (the adsorption was negligible, <% 20, for the 

majority of analytes) as reported in the literature (Baker and Kasprzyk-Hordern, 2011b; Petrovic, 

2014). The rest of water matrices were not filtered before analysis by PES or SPE 
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Table 3.4: Absolute recovery of analytes after 1.2 and 0.45 µm filtration steps. 

Analyte 
1.2 µm glass microfilter 0.45 µm cellulose nitrate 

Milli-Q water Effluent Estuary Seawater Milli-Q water Effluent Estuary Seawater 

Acesulfame 78±3 106±5 91±4 65±9 70±3 103±9 73±3 67±7 

Acetaminophen 64±2 97±13 85±7 59±2 58±5 95±5 104±11 43±13 

Amitriptyline 30±1 79±3 60±2 33±3 4.1±0.3 13.3±0.3 7±2 5±1 

Atrazine 99±6 104±3 96±2 93±8 101±10 96±4 105±6 92±10 

Bezafibrate 10±7 101±1 84±8 35±5 12.7±0.3 94±4 89±8 11±2 

Butylparaben 94±9 95±2 96±4 89±11 95±3 90±2 95±7 88±14 

Caffeine 73±6 103±1 93±8 69±11 55±8 102±3 52±8 45±13 

Carbamazepine 85±10 98±2 96±3 93±4 87±9 92±3 98±2 79±8 

Ciprofloxacin 35±5 106±6 80±7 28±1 12.9±0.1 74±4 33±0.2 15.2±0.8 

Clofibric acid 90±8 101±2 92±6 88±9 82±6 102±1 85±5 76±8 

Clomipramine 36±1 71±1 45±6 40±2 22.7±0.3 45±1 33±1 25±0.5 

Diclofenac 63±5 103±9 85±3 76±8 48±7 105±6 101±7 68±2 

Diuron 88±7 103±1 90±6 93±13 92±4 91±3 83±3 89±10 

Eprosartan 81±9 104±3 93±5 97±3 50±8 86±2 92±3 65±8 

Genistein 76±2 104±4 93±8 85±5 61±6 90±16 111±12 53±4 

Genistin 81±7 89±8 91±8 87±12 86±38 91±5 67±9 69±6 

Glycitin 75±11 84±2 78±5 62±6 32±6 88±11 31±3 58±9 

Imipramine 70±8 85±5 75±3 78±8 28±3 50±1 25±8 33±2 

Irbesartan 24±1 105±8 90±8 68±4 1.8±0.1 62±4 53±6 16±3 

Isoproturon 53±1 101±1 82±6 73±13 25.5±0.3 94±6 83±8 25±4 

Ketoprofen 90±8 98±1 93±7 82±5 93±3 92±6 97±7 97±8 

Losartan 75±12 102±4 83±9 69±7 53±2 88±3 42±11 55±6 

Methylparaben 77±8 95±2 86±6 91±13 95±1 90±15 88±11 63±5 

Norfloxacin 45±3 107±4 82±8 55±3 22±2 74±3 27±3 18±2 

Nortriptyline 40±2 76±6 60±6 59±8 14.1±0.1 82±3 36±6 23±5 

OBT 99±2 93±10 95±6 97±3 94±6 100±3 94.5±0.6 95±10 

PFBS 74±9 106±7 92±7 79±5 89±3 102±11 36±7 78±11 

PFOA 15±1 106±19 90±3 34±6 33±1 99±3 48±6 42±2 

PFOS 10±1 74±9 42±3 7±1 11.7±0.1 48±9 65±7 12.4±0.6 

PFOSA 26±3 105±7 83±5 35±2 13.8±0.8 68±11 23±14 19±2 

Phenytoin 39±5 98±6 81±3 66±5 48±5 92±7 58±11 63±9 

Progesterone 103±9 100±3 96±5 92±6 60±2 62±1 50±1 36±10 

Propranolol 89±8 102±6 99±1 94±6 42.1±0.2 48±4 45±4 38±6 

Simazine 47±9 110±9 96±3 99±1 63.4±0.3 98±2 102±10 72±7 

Sucralose 67±10 99±1 98±3 59±7 43±9 97±3 85±1 46±10 

Sulfadiazine 65±10 95±1 90±3 73±12 50±2 85±11 66±7 66±10 

Sulfamethoxazole 75±8 97±4 86±8 71±7 71±4 80±6 85±4 56±12 

Telmisartan 69±9 79±15 83±7 78±5 36±2 74±5 52±3 63±10 

Testosterone 51±4 104±4 93±11 56±4 43±1 86±1 52±3 38±5 

Trimethoprim 56±10 104±3 91±3 74±2 70±10 86±1 63±5 83±7 

Valsartan 57±2 105±6 86±8 39±8 12.3±0.1 62±1 44±18 16±6 
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3.3.4 PES protocol optimisation 

3.3.4.1 Desorption conditions 

MeOH solvent which is expected to display high affinity for polar analytes and it is compatible 

with the PES material was chosen as the desorption solvent (Bizkarguenaga et al., 2015; Blanco-

Zubiaguirre et al., 2014; Casado et al., 2013; Ros et al., 2015; Villaverde-de-Sáa et al., 2012). The 

efficiency of desorption step was investigated soaking each piece (24 mg) of sorbent previously 

exposed to 400 ng/L spiked Milli-Q water samples. Chemical desorption of the analytes from the 

sorbent was performed 5 consecutive times (8 min each) using 500 µL of MeOH in an ultrasonic 

bath. 500 µL were chosen as the minimum volume which assures that all PES tubes were completely 

covered by the MeOH organic solvent. Recoveries in the range of 75-105% were obtained for all the 

target analytes after the three first desorption cycles except for clomipramine, diclofenac, 

butylparaben and telmisartan which were detected in the 4
th

 desorption fraction (17-34%). Thus, 4 

desorption cycles were selected as optimal desorption time (32 min) and used in further 

experiments. 

3.3.4.2 Microextraction conditions 

Factors affecting the analytes extraction (PES amount, sample pH, ionic strength and EDTA 

addition) were evaluated in order to achieve the optimum extraction conditions. Optimisation of 

extraction conditions was performed with spiked (400 ng/L) Milli-Q water samples using 120 mL and 

stirring speed of 800 rpm and considering an extraction period of 12 h (overnight).  

In order to improve the extraction efficiency of the target analytes, the amount (2, 3 and 

4 pieces of 4 cm each) of PES material (24-48 mg) was evaluated (n=3). The extraction efficiency 

increased from 15 to 43% with the use of 3 pieces of PES compared with the use of 2 pieces, but no 

significance differences (FExp=1.9-7.2 < FCrit=7.7, at 95% of confidence level according to the analysis 

of variance, ANOVA) were observed between 3 and 4 pieces for most (29 of 41) of the analytes, 

except in the cases of acesulfame, PFASs, fluoroquinolones, sulfonamides and lipids regulating 

compounds, which showed slightly higher extraction efficiencies using 4 PES pieces (FExp=7.9-

11.1 > FCrit=7.7, according to ANOVA at 95% of confidence level). Thus, 4 pieces (48 mg) were 
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selected as optimum PES amount for all the target analytes and used in further experiments.  

The addition of a chelating agent such as EDTA prior to the extraction is a very common 

procedure in SPE protocols (Gros et al., 2013; Hernández et al., 2014) since a considerably improve 

of the extraction efficiency of antibiotics as well as other pharmaceutical compounds has been 

observed. This is attributed to the fact that these compounds can potentially bind residual metals 

present in the sample matrix and glassware, resulting in low extraction recoveries. In this sense, real 

water samples (effluent, estuary and seawater) were spiked at 400 ng/L with all the target analytes 

and the samples analytes recoveries calculated (n=3) with and without the addition of EDTA. With 

this aim, a suitable volume of a EDTA solution was added to achieve a final concentration of 0.1%. As 

it can be observed in Figure 3.2 (one analyte of each family has been included as example) in the 

case of effluent, the recoveries of fluoroquinolones, sulfonamides, PFASs and artificial sweeteners 

were enhanced nearly 21-37% with the addition of EDTA. Not significant differences (p-value>0.05 

according to ANOVA) were observed for the rest of the target analytes with and without EDTA 

addition. Similar results were obtained in the case of estuary and seawater matrices. These results 

could be due to the fact that antibiotics from the groups of fluoroquinolones and sulfonamides have 

a high tendency to complex with metal (Ca (II), Mg (II), Al (III), Fe (III), etc.) ions present in the water 

samples as it has been previously reported in the literature (Seifrtová et al., 2008). Additionally, the 

presence of EDTA may also minimize the adsorption of these compounds onto the glass wall 

containing silicate and silanol groups that act as ion-exchange and nucleophilic centres (Mompelat 

et al., 2009). In this sense, the amount of analyte remaining in the wall phase with and without the 

addition of EDTA was also estimated. Thus, the extraction vessels were sonicated with 7 mL of 

MeOH which was transferred to a test tube and evaporated to 200 µL and analysed by means of    

LC-MS/MS. Since less than 10% of the total amount of target analytes was adsorbed in the wall, not 

significant differences were observed (p-value>0.05 according to ANOVA) independently of the 

EDTA addition or not, the affinity between the target analytes and the wall of the extraction vessels 

was considered negligible. Anyway, since the recoveries of some of the target analytes were 

enhanced with the addition of EDTA, it was used in further experiments.  
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Figure 3.2. Influence of the addition of EDTA in the case of PES protocol. As an example, only one analyte 

per family is shown. 

 

The effect of sample pH (2-12, 2, 7 and 12 pH levels), adjusted with HCOOH or ammonia, and 

ionic strength (0-30% of NaCl addition, 0, 15 and 30% levels) was studied by means of a Central 

Composite Design (CCD, 12 experiments, two repetitions of each experiment) with four replicates of 

the central point. Responses (peak areas) measured for each compound were processed with the 

Statgraphics Centurion 16.1 software (Startpoint Technologies, Warrenton, VA, USA). Relative 

standard deviations (RSDs%) of the central experiments (n=4) were in the 1-20% range, except for 

PFOS (35%) and Caffeine (37%).  

The percentage of NaCl had a statistically significant positive effect in the responses of the 

76% of the analytes (see Figure 3.3a for amitriptyline as example). On the other hand, the addition 

of NaCl had a negative effect (see Figure 3.3b for PFOSA) for the rest of compounds (artificial 

sweeteners and PFASs) or even it was not statistically significant for OBT, parabens, caffeine, 

clofibric acid and bezafibrate. This behaviour is explained on the basis of the well-known salting out 

effect (Prieto et al., 2010). In general terms, it has been observed that for hydrophobic analytes (see 

the log D values included at Table 3.1) the addition of NaCl does not improve, but even reduces, the 

extraction efficiency, due to the increase in the viscosity of the sample, leading to slower extraction 
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kinetics for the most lipophilic species. However, polar analytes profit from the higher ionic strength 

of the sample solution and the response increases with the addition of inert salts. The results 

observed in this work are in good agreement with the literature (Racamonde et al., 2015; Villaverde-

de-Sáa et al., 2012).  

The sample pH showed a statistically significant positive linear effect for basic compounds 

(pKa=9-12) such as tricyclic antidepresants, propranolol and trimethoprim (see Figure 3.3a for 

amitriptyline) or for acid compounds with basic groups such as atrazine and simazine (see pKa values 

included in Table 3.1). On the other hand, in the case of acid compounds, 17 analytes showed 

statistically significant negative effect (see Figure 3.3b for PFOSA, as example). Besides, a negative 

quadratic pH term was obtained in the case of sulfadiazine (see Figure 3.3c) which shown its 

maximum response around pH 6. This could be explained according to multiple pKa values of some 

of the target compounds which contain one basic amine group and one acidic sulfonamide group. 

Thus, while sulfonamides are positively charged at pH 2, they are negatively charged at alkaline 

conditions above pH 6. Similar behaviour was observed for irbesartan and losartan. For the rest of 

the analytes, pH did not show any statistically significant response. Finally, the interaction between 

NaCl and pH terms was only statistically relevant for the anti-inflammatory compounds. Therefore, 

30% of NaCl addition was selected as optimum and the extractions were carried out at both pH=2 

and pH=10 (dual extraction). Real samples salinity was always measured before extraction, and the 

salinity adjusted to 30% with the NaCl addition. 
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Figure 3.3. Response surfaces obtained after a CCD for three of the target compounds: (a) Amitriptyline 

(pKa=9.8), and (b) PFOSA (pka=3.4) 
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Figure 3.3. Response surfaces obtained after a CCD for three of the target compounds: (c) Sulfadiazine (pKa=2.0 

and 7.5). 
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analytes in the case of the three evaluated matrices and for both extraction protocols indicating a 

very low detection matrix effect, except in the case of fluoroquinolones (51-56%) for effluent and 

SPE procedure which showed a slightly signal suppression. 

𝑀𝐸% = 100 ×
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠𝑝𝑖𝑘𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒−𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑢𝑛𝑠𝑝𝑖𝑘𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠𝑝𝑖𝑘𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
     Equation 3.2 

Subsequently, the matrix effects that take place during the extraction were also estimated by 

comparing the analytes responses obtained for Milli-Q water and real matrix (seawater, estuary and 

effluent) spiked at 100 ng/L of each analyte before (n=3) and after (n=3) the extraction using once 

again both, SPE and PES protocols in order to exclude this time the detection matrix effect. Once 

again, non-spiked samples were also analysed and considered for calculations (Equation 3.3).  

𝑀𝐸% = 100 ×
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠𝑝𝑖𝑘𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒−𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑢𝑛𝑠𝑝𝑖𝑘𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠𝑝𝑖𝑘𝑒𝑑 𝑀𝑖𝑙𝑙𝑖−𝑄 𝑤𝑎𝑡𝑒𝑟
     Equation 3.3 

As it can be observed in Figures 3.4a-c (one analyte of each family has been included as 

example) for the three evaluated matrices, acceptable recoveries (65-127%) were obtained in the 

case of PES procedure independently of the matrix considered. Anyway, the lowest or highest 

recoveries were obtained in the case of effluent (see Figure 3.4a). A positive or negative matrix 

effect in the case of SPE protocol was, however, slightly higher (recoveries in the range of 51-155%, 

73-133% and 55-115% for effluent, estuary water and seawater, respectively), showing that PES 

microextraction provided cleaner extracts and probably less co-extraction of interfering compounds. 

These matrix effects accounting may be compensated by the use of labelled standards, which will be 

evaluated in the method validation section (see section 3.3.6). 

3.3.6 Method validation 

The validation results obtained are summarized in Tables 3.5 and 3.6. Process efficiencies 

higher than 50% were achieved by SPE for the majority of target compounds and for the three 

evaluated matrices, except in the case of ciprofloxacin and losartan for effluent. Process efficiencies 

in the range of 6–68% were achieved by PES extraction (see Table 3.5). Sulfonamides and 

fluoroquinolones showed a low process efficiency (<20%). In the case of sulfonamides and sartans 

the low PE could be mainly attributed to the fact that the experimental conditions chosen are not 
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always the most appropriate for those specific compounds since a compromise has to be found. 

Nevertheless, the low PE obtained were not considered an obstacle for their determination in 

environmental waters, as their sensitivity in LC-MS/MS analysis was fairly good (see Table 3.2 for 

instrumental LOQs).  

 

Figure 3.4. Matrix effect during the PES and SPE protocols in the cases of (a) effluent, (b) estuary and (c) 

seawater for 17 of the target analytes. 
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Concerning to the apparent recoveries, although good apparent recoveries using external 

calibration and surrogate corrections were obtained in the 70–131% range for all the target analytes 

and matrices in the case of SPE (see Table 3.6), this approach was not a properly strategy in the case 

of PES (33–213%). Consequently, a procedural calibration with Milli-Q using isotopically labelled 

analogues as surrogates approach was considered (see section 3.2.6). Determination coefficients 

higher than 0.986 were obtained in all the cases after correction with the corresponding isotopically 

labelled analogues. Acceptable apparent recovery values (see Table 3.6) in the 80–119% range were 

obtained.  

Thus, acceptable apparent recoveries were obtained for all the analytes and matrices by 

means of both, SPE and PES protocols. In fact, all the values were in compliance with the 

requirements (i.e. trueness, as mean recovery, must be in the range of 70–130%) of Commission 

Decision 2002/657/EC (European Commission, 2002), and similar to the those reported in the 

literature (Tran et al., 2013; Valls-Cantenys et al., 2016) for some of the target compounds 

determined in different environmental aqueous samples and using different extraction protocols. 

Additionally, the repeatability of PES and SPE methods in terms of RSD% were evaluated for 

five replicates analysed within a day. RSD values were below 27% for all the target analytes in the 

case of both, PES and SPE methods. Similar RSD values were also reported in the literature (Valls-

Cantenys et al., 2016).  

The MQL values were determined (see section 3.2.6) and included in Table 3.7. Similar values 

for both, SPE and PES protocols in the case of effluent matrix were achieved for all the target 

analytes. However, higher MQLs were obtained for most of the analytes in the case of estuary and 

seawater using PES compared to SPE. MQLs obtained are in agreement with method detection limits 

(MDLs) and/or MQLs reported in the literature for some of the target compounds analysed by 

means of different extraction and microextraction techniques (Bizkarguenaga et al., 2015; Casado et 

al., 2013; Racamonde et al., 2015; Valls-Cantenys et al., 2016; Villaverde-de-Sáa et al., 2012). It 

should be underlined the simultaneous determination of 41 organic analytes among a high variety 

of compounds families considered in this work.  
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Table 3.5. Process efficiency (%) of the validated procedures by means of PES and SPE for effluent, estuary and seawater. 

Analytes 

Process efficiency (PE%, n=3) 

PES SPE 

Effluent Estuary Seawater Effluent Estuary Seawater 

Acesulfame 14±4 17±3 18±3 51±12 56±7 62±9 

Acetaminophen 25±3 28±7 32±8 139±28 91±25 97±8 

Amitriptyline 47±12 49±11 55±14 68±8 71±16 68±10 

Atrazine 25±3 27±6 32±5 93±7 90±16 110±10 

Bezafibrate 44±8 48±13 53±7 96±25 107±21 101±12 

Butylparaben 41±7 46±10 54±8 71±13 95±19 84±19 

Caffeine 30±6 32±5 37±5 78±3 93±20 83±10 

Carbamazepine 41±8 43±11 48±12 134±36 108±14 114±27 

Ciprofloxacin 9±2 11±2 12±3 26±5 43±3 31±3 

Clofibric acid 26±8 32±4 34±4 81±19 86±8 77±20 

Clomipramine 51±13 57±14 65±18 53±4 63±5 58±11 

Diclofenac 54±11 63±10 68±18 57±10 116±31 95±7 

Diuron 37±6 42±11 49±13 76±18 103±9 82±15 

Eprosartan 28±7 30±9 34±7 79±13 56±8 88±8 

Genistein 35±10 39±11 46±10 42±8 93±14 79±10 

Genistin 45±11 48±10 53±11 67±11 99±14 80±22 

Glycitin 36±5 45±12 48±9 46±7 87±22 75±11 

Imipramine 37±6 41±7 48±10 50±10 64±4 57±13 

Irbesartan 26±4 31±8 34±5 58±9 62±11 73±8 

Isoproturon 43±11 47±7 51±9 75±5 85±12 90±22 

Ketoprofen 42±11 43±8 51±10 108±10 127±19 162±23 

Losartan 24±6 26±4 30±6 32±5 51±8 52±9 

Methylparaben 48±6 53±12 61±18 96±26 102±22 111±17 

Norfloxacin 12±4 13±2 15±3 71±5 53±8 55±14 

Nortriptyline 39±10 44±10 51±15 70±10 58±7 56±15 

OBT 45±12 49±13 57±10 67±12 90±7 86±13 

PFBS 20±5 21±5 25±6 70±13 55±13 79±21 

PFOA 18±3 19±4 21±4 78±9 86±6 59±9 

PFOS 32±6 35±9 40±11 80±13 96±11 88±7 

PFOSA 34±5 36±7 42±11 78±19 55±7 56±4 

Phenytoin 44±9 51±10 59±13 141±16 115±24 126±26 

Progesterone 51±14 56±12 61±9 62±10 95±26 80±21 

Propranolol 27±5 30±6 36±9 70±15 77±7 90±13 

Simazine 34±9 36±10 42±12 84±10 96±8 114±24 

Sucralose 10±2 12±3 13±3 59±4 59±9 71±9 

Sulfadiazine 9±1 10±2 11±2 78±21 48±10 84±23 

Sulfamethoxazole 6±1 6±2 7±2 91±6 58±8 136±22 

Telmisartan 35±6 39±11 46±7 64±17 57±9 84±11 

Testosterone 39±9 40±5 46±12 128±29 80±12 107±22 

Trimethoprim 32±8 32±9 38±11 67±7 53±12 66±15 

Valsartan 22±3 25±5 26±6 100±14 60±7 91±15 
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Table 3.6. Apparent recovery (%) of the validated procedures by means of PES and SPE for effluent, estuary and seawater. 

Analytes 

Apparent recovery (%, n=3) 

PES-procedural calibration  SPE-external calibration 

Effluent Estuary Seawater Effluent Estuary Seawater 

Acesulfame 14±4 17±3 18±3 51±12 56±7 62±9 

Acetaminophen 25±3 28±7 32±8 139±28 91±25 97±8 

Amitriptyline 47±12 49±11 55±14 68±8 71±16 68±10 

Atrazine 25±3 27±6 32±5 93±7 90±16 110±10 

Bezafibrate 44±8 48±13 53±7 96±25 107±21 101±12 

Butylparaben 41±7 46±10 54±8 71±13 95±19 84±19 

Caffeine 30±6 32±5 37±5 78±3 93±20 83±10 

Carbamazepine 41±8 43±11 48±12 134±36 108±14 114±27 

Ciprofloxacin 9±2 11±2 12±3 26±5 43±3 31±3 

Clofibric acid 26±8 32±4 34±4 81±19 86±8 77±20 

Clomipramine 51±13 57±14 65±18 53±4 63±5 58±11 

Diclofenac 54±11 63±10 68±18 57±10 116±31 95±7 

Diuron 37±6 42±11 49±13 76±18 103±9 82±15 

Eprosartan 28±7 30±9 34±7 79±13 56±8 88±8 

Genistein 35±10 39±11 46±10 42±8 93±14 79±10 

Genistin 45±11 48±10 53±11 67±11 99±14 80±22 

Glycitin 36±5 45±12 48±9 46±7 87±22 75±11 

Imipramine 37±6 41±7 48±10 50±10 64±4 57±13 

Irbesartan 26±4 31±8 34±5 58±9 62±11 73±8 

Isoproturon 43±11 47±7 51±9 75±5 85±12 90±22 

Ketoprofen 42±11 43±8 51±10 108±10 127±19 162±23 

Losartan 24±6 26±4 30±6 32±5 51±8 52±9 

Methylparaben 48±6 53±12 61±18 96±26 102±22 111±17 

Norfloxacin 12±4 13±2 15±3 71±5 53±8 55±14 

Nortriptyline 39±10 44±10 51±15 70±10 58±7 56±15 

OBT 45±12 49±13 57±10 67±12 90±7 86±13 

PFBS 20±5 21±5 25±6 70±13 55±13 79±21 

PFOA 18±3 19±4 21±4 78±9 86±6 59±9 

PFOS 32±6 35±9 40±11 80±13 96±11 88±7 

PFOSA 34±5 36±7 42±11 78±19 55±7 56±4 

Phenytoin 44±9 51±10 59±13 141±16 115±24 126±26 

Progesterone 51±14 56±12 61±9 62±10 95±26 80±21 

Propranolol 27±5 30±6 36±9 70±15 77±7 90±13 

Simazine 34±9 36±10 42±12 84±10 96±8 114±24 

Sucralose 10±2 12±3 13±3 59±4 59±9 71±9 

Sulfadiazine 9±1 10±2 11±2 78±21 48±10 84±23 

Sulfamethoxazole 6±1 6±2 7±2 91±6 58±8 136±22 

Telmisartan 35±6 39±11 46±7 64±17 57±9 84±11 

Testosterone 39±9 40±5 46±12 128±29 80±12 107±22 

Trimethoprim 32±8 32±9 38±11 67±7 53±12 66±15 

Valsartan 22±3 25±5 26±6 100±14 60±7 91±15 
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Table 3.7. MQLs (ng/L) obtained by SPE-LC-(ESI)-MS/MS and PES-LC-(ESI)-MS/MS methods obtained with the F5 column in the 

case of effluent, estuary and seawater sample. 

Analyte 

MQLs (ng/L) 

Effluent Estuary Seawater 

PES SPE PES SPE PES SPE 

Acesulfame 2.6 1.8 2.2 0.7 2.0 0.6 

Acetaminophen 6.2 2.8 5.7 1.7 4.9 1.6 

Amitriptyline 1.0 1.8 1.0 0.7 0.9 0.7 

Atrazine 0.7 0.5 0.6 0.2 0.5 0.2 

Bezafibrate 0.7 0.8 0.6 0.3 0.5 0.3 

Butylparaben 3.9 5.6 3.5 1.7 3.0 1.9 

Caffeine 2.5 2.5 2.4 0.8 2.1 0.9 

Carbamazepine 0.6 0.4 0.5 0.2 0.5 0.2 

Ciprofloxacin 25.6 23.3 22.2 5.6 19.7 7.8 

Clofibric acid 3.9 3.2 3.2 1.2 3.0 1.3 

Clomipramine 0.5 1.2 0.5 0.4 0.4 0.5 

Diclofenac 0.6 1.3 0.5 0.3 0.4 0.3 

Diuron 1.0 1.2 0.9 0.4 0.8 0.5 

Eprosartan 3.5 3.0 3.2 1.7 2.8 1.1 

Genistein 5.6 11.7 5.0 2.1 4.3 2.5 

Genistin 3.6 6.1 3.4 1.6 3.1 2.0 

Glycitin 3.9 7.8 3.2 1.7 3.0 1.9 

Imipramine 1.3 2.3 1.1 0.7 1.0 0.8 

Irbesartan 1.0 1.1 0.8 0.4 0.7 0.3 

Isoproturon 0.6 0.9 0.6 0.3 0.5 0.3 

Ketoprofen 1.2 1.2 1.2 0.4 1.0 0.3 

Losartan 4.0 7.5 3.7 1.9 3.2 1.8 

Methylparaben 7.7 9.8 7.0 3.7 6.1 3.4 

Norfloxacin 13.9 6.1 13.8 3.3 11.8 3.2 

Nortriptyline 1.1 1.5 1.0 0.7 0.8 0.8 

OBT 5.2 8.7 4.8 2.6 4.1 2.7 

PFBS 2.2 1.6 2.1 0.8 1.8 0.6 

PFOA 2.2 1.3 2.1 0.5 1.9 0.7 

PFOS 0.8 0.8 0.8 0.3 0.7 0.3 

PFOSA 0.8 0.9 0.8 0.5 0.6 0.5 

Phenytoin 3.7 2.9 3.2 1.4 2.8 1.3 

Progesterone 1.4 2.8 1.3 0.7 1.1 0.9 

Propranolol 1.6 1.6 1.5 0.6 1.2 0.5 

Simazine 1.2 1.2 1.1 0.4 1.0 0.4 

Sucralose 2.7 1.1 2.2 0.4 2.0 0.4 

Sulfadiazine 3.2 0.9 2.9 0.6 2.5 0.3 

Sulfamethoxazole 9.9 1.5 8.6 1.0 7.9 0.4 

Telmisartan 0.8 1.1 0.7 0.5 0.6 0.3 

Testosterone 1.9 1.4 1.8 0.9 1.6 0.7 

Trimethoprim 0.6 0.8 0.6 0.4 0.5 0.3 

Valsartan 9.6 1.8 8.5 3.5 7.9 2.3 
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3.3.7 Application to real samples 

In the absence of a properly certified reference material (CRM), inter-method comparability 

was carried out. The validated SPE and PES protocols were applied in the analysis (n=3) of seawater, 

estuarine and WWTP effluent (see Table 3.8). In the case of estuary 17 and 10, and in the case of 

seawater 11 and 6 analytes, were detected above their MQLs with SPE and PES protocols, 

respectively. Comparable concentrations (p-value>0.05 according to ANOVA) by means of both 

methodologies were determined for most of the detected analytes in the case of effluent 

(acetaminophen, bezafibrate, caffeine, carbamazepine, ciprofloxacin, diclofenac, eprosartan, 

irbesartan, ketoprofen, losartan, norfloxacin, OBT, sulfadiazine, sulfamethozaxole, telmisartan, 

trimethoprim and valsartan), estuary (acesulfame, caffeine, carbamazepine, diclofenac, irbesartan, 

OBT, telmisartan and valsartan) and seawater (butylparaben and OBT).  

 

Table 3.8. Real samples concentrations (ng/L) obtained by SPE-LC-(ESI)-MS/MS and PES-LC-(ESI)-MS/MS methods in the case 

of effluent, estuary and seawater samples. 

Analyte 
Effluent Estuary Seawater 

PES SPE PES SPE PES SPE 

Acesulfame 423±33 365±17 213±16 226±57 <MQL 13±1 

Acetaminophen 213±19 174±39 n.d. <MQL n.d. <MQL 

Amitriptyline 23±4 37±3 <MQL 4.9±0.1 n.d. 2.9±0.1 

Atrazine n.d. n.d. n.d. n.d. n.d. n.d. 

Bezafibrate 53±6 61±2 <MQL 7.5±0.9 n.d. n.d. 

Butylparaben n.d. n.d. n.d. n.d. n.d. n.d. 

Caffeine 76±11 62±2 1023±67 914±85 85±6 94±6 

Carbamazepine 78±2 87±8 16±3 13.4±0.9 n.d. 3.6±0.2 

Ciprofloxacin 74±3 96±21 n.d. <MQL n.d. <MQL 

Clofibric acid n.d. <MQL n.d. <MQL n.d. n.d. 

Clomipramine <MQL <MQL n.d. <MQL n.d. n.d. 

Diclofenac 293±38 350±22 66±7 71.3±0.3 <MQL 25±3 

Diuron 96±8 73±9 2.6±0.3 3.44±0.08 n.d. n.d. 

Eprosartan 456±23 515±79 n.d < MQL n.d. n.d. 

Genistein n.d. n.d. n.d. n.d. n.d. n.d. 

Genistin n.d. n.d. n.d. n.d. n.d. n.d. 

Glycitin n.d. n.d. n.d. n.d. n.d. n.d. 

Imipramine <MQL <MQL n.d. <MQL n.d. n.d. 

Irbesartan 1096±98 945±119 496±28 478±50 <MQL 21±1 
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Table 3.8. Real samples concentrations (ng/L) obtained by SPE-LC-(ESI)-MS/MS and PES-LC-(ESI)-MS/MS methods in the case 

of effluent, estuary and seawater samples. 

Analyte 
Effluent Estuary Seawater 

PES SPE PES SPE PES SPE 

Isoproturon <MQL 0.9±0.1 n.d. n.d. n.d. n.d. 

Ketoprofen 213±19 184±9 <MQL 3.5±0.1 n.d. n.d. 

Losartan 217±24 178±13 n.d. <MQL n.d. <MQL 

Methylparaben n.d. n.d. n.d. n.d. 13±2 <MQL 

Norfloxacin 76±4 124±53 n.d. <MQL n.d. n.d. 

Nortriptyline 10±2 7.5±0.1 <MQL <MQL n.d. n.d. 

OBT 82±12 106±10 81±11 71±5 211±19 179±12 

PFBS 56±3 62±2 n.d. 14.4±0.2 n.d. n.d. 

PFOA <MQL 8.4±0.3 n.d. n.d. n.d. n.d. 

PFOS 9.6±0.8 5.5±0.1 <MQL 10±1 n.d. n.d. 

PFOSA n.d. n.d. n.d. n.d. n.d. n.d. 

Phenytoin n.d. <MQL n.d. n.d. n.d. n.d. 

Progesterone <MQL <MQL n.d. n.d. n.d. n.d. 

Propranolol 26±4 19.5±0.8 n.d. <MQL n.d. n.d. 

Simazine n.d. n.d. n.d. n.d. n.d. n.d. 

Sucralose 713±56 621±89 463±53 435±23 <MQL 20±3 

Sulfadiazine 56±7 70±8 <MQL <MQL n.d. n.d 

Sulfamethoxazole 59±8 62±7 <MQL 2.3±0.3 n.d. n.d. 

Telmisartan 253±19 285±51 412±33 384±23 <MQL 19.4±0.7 

Testosterone <MQL <MQL n.d. n.d. n.d. n.d. 

Trimethoprim 123±10 98±17 <MQL 10.0±0.1 n.d. n.d. 

Valsartan 489±50 551±52 546±78 623±76 <MQL 30±5 

n.d.: not detected, MQL: method quantification limit.  

3.4 Conclusions 

A new procedure based on a PES microextraction followed by LC-MS/MS was developed and 

applied for the determination of 41 multiclass organic pollutants (of which 5 are WFD-priority) in 

seawater, estuary and WWTPs effluents. With this aim, all the steps involving the analytical 

performance, such as filtration, extraction and analysis were thoroughly optimised. Filtration had a 

significant impact on the outcome of fate and behaviour of target analytes since it was observed 

that a high proportion of analytes were bound to filterable particulates. A thorough optimisation of 

LC−MS/MS analysis was carried out including the chromatographic column, the ionisation conditions 



Chapter 3 

80 

and the mass spectrometric variables. It should be concluded that Kinetex F5 100 mm core-shell 

column provided better results than Kinetex biphenyl column with the same length and particle 

diameter in terms of peak resolution, peak symmetry and sensitivity in the case of PFASs and 

artificial sweeteners. The efficiency of the microextraction step for acid and neutral compounds was 

mainly conditioned by the sample pH, while for basic compounds both, sample pH and NaCl addition 

variables were significant. As it is known, a multiresidue or multiclass method comes from the 

necessity of adjusting the pH to a single value, thus, a compromise has to be found. However, the 

dual PES microextraction carried out here allowed us the simultaneous determination of acid, 

neutral and basic compounds. The PES procedure was compared with a previously validated 

standard SPE procedure. In contrast to SPE protocol, PES method allowed the extraction of complex 

aqueous samples with lower matrix effect, cost and consumption of organic solvents. Satisfactory 

and comparable apparent recovery values and MQLs, regardless of the matrix, were obtained.  

Finally, the methods were applied to the analysis of the target compounds in several WWTPS 

effluents and estuaries of Biscay, as will be described in chapter 7.  
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4.1 Introduction 

The fate and occurrence of non-regulated contaminants in estuarine and coastal waters is 

still a matter of growing interest (Sousa et al., 2018) In fact, the presence of these chemicals, usually 

referred as Emerging Contaminants (ECs) (Ternes et al., 2015), in aquatic environments and 

organisms is often reported but their potential hazards or adverse effects are still under study (Davis 

et al., 2016). In this sense, the determination of the distribution of the exposed contaminants is 

required to understand the impact of the exposure, to assess the risks to aquatic life or to 

implement food safety measures (Miller et al., 2018). Among the reported ECs we can find a wide 

variety of pharmaceutical and personal care products (PPCPs), currently used pesticides and 

industrial compounds. Concerning the analytical approaches most of the reported procedures make 

use of screening or multiresidue methods to quantify known contaminants and, more recently, 

either suspect or non-targeted methods to identify as many contaminants as possible (Schymanski 

et al., 2015). 

The development of multiresidue methods in complex samples such as fish and mussel 

tissues follow the typical workflow of sample extraction, clean-up and chromatographic analysis and 

each method is fine tuned to the specific features of the target contaminants and the sample itself 

(Núñez et al., 2017). Broadly speaking, the first two steps allow the analysis of a largest amount of 

contaminants with the minimum payoff in terms of matrix effect or interferences. The final step is 

usually the liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS) since most 

of the target compounds are slightly or very polar and hardly volatile (Núñez et al., 2017). Regarding 

the extraction, most of the reported methods combine the use of solvent mixtures with the external 

energy supply (either microwave, ultrasounds or pressurized solvents) (Núñez et al., 2017). For 

cleaning the extracts up, solid phase extraction (SPE) has shown good performance in the 

purification of ECs from biota extracts being the most commonly applied technique (Miller et al., 

2018), and allows the preconcentration of the sample. Typical sorbents for SPE include Oasis HLB 

(hydrophilic–lipophilic balanced) due to their good retentions and highly reproducible recoveries of 

a wide range of compounds. However, in the case of matrices with high lipid content as fish liver, a 

further purification procedure is also required. Several techniques have been described in the 

literature as alternative clean-up protocols to reverse-phase SPE: gel permeation chromatography 
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(Huerta et al., 2013; Tanoue et al., 2014), solid-phase microextraction (Ros et al., 2015), normal 

phase SPE (Navarro et al., 2010) and liquid-liquid extraction (LLE) (Al-Ansari et al., 2011; Ziarrusta et 

al., 2017b).  

In the framework of previous analytical developments (Ros et al., 2016), environmental 

monitoring studies (Mijangos et al., 2018), and the exposure studies of fishes to ECs (Ziarrusta et al., 

2017a), we observed the need to develop a target multiresidue method for precise and accurate 

measurements in biota samples. In this particular work, we developed the simultaneous 

determination of 41 multi-class organic pollutants in mussel, tissues and fluids of gilt head bream. In 

the case of the solid tissues, both the optimisation of a focused ultrasound solid-liquid extraction 

(FUSLE) method and the comparison of different clean-up approaches by means of SPE using Oasis-

HLB and Florisil phases, microextraction based on polyethersulfone (PES) polymer and LLE were 

carried out. In the case of seawater and biofluids, a previously developed SPE method (Mijangos et 

al., 2018) was applied. The analyses were performed by liquid-chromatography-triple quadrupole 

tandem mass spectrometry (LC-MS/MS) in all the cases. Furthermore, the uptake and distribution of 

ten (acesulfame, sulfadiazine, acetaminophen, carbamazepine, PFBS, diuron, amitriptyline, 

irbesartan, butylparaben and bezafibrate) of the target analytes were investigated in tissues (brain, 

liver, gill, muscle) and biofluids (plasma, bile) of juvenile gilt-head bream (Sparus aurata) exposed to 

them during 7 days in seawater, under controlled dosing experiments. Finally, mussel (Mytilus 

galloprovincialis) sampled in the Basque coast were also collected and analysed. 

4.2 Experimental section 

4.2.1 Reagents and materials 

The target analytes with their corresponding families, CAS number, molecular formula and 

weight and some of their physico-chemical properties such as the acid dissociation constant (pKa) 

and the log of octanol–water partition coefficient (log P) are included in Table 3.1, Chapter 3.  

2-hydroxybenzothiazole (OBT), amitriptyline hydrochloride, butylparaben, caffeine, 

carbamazepine, clomipramine hydrochloride, diclofenac sodium salt, potassium perfluoro-1-
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octanesulfonate (PFOS), imipramine hydrochloride, methylparaben, nortriptyline hydrochloride, 

perfluoro-n-octanoic acid (PFOA), phenytoin, perfluoro-1-butanesulfonate (PFBS), progesterone, 

sulfadiazine and testosterone were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Acetaminophen, atrazine, ciprofloxacin hydrochloride, diuron, isoproturon, norfloxacin 

hydrochloride, simazine, sulfamethoxazole and trimethoprim were acquired from Fluka (Buchs, 

Switzerland). Acesulfame and sucralose were supplied by Supelco (Bellefonte, PA, USA), whereas 

clofibric acid, ketoprofen, bezafibrate and propranolol hydrochloride were acquired from MP 

biomedicals (Illkirch Cedex, France). Genistein, genistin and glycitin were purchased from 

Extrasynthese (Lyon, France), perfluorooctane sulfonamide (PFOSA) from Dr. Ehrenstorfer 

(Augsburg, Germany), losartan from Merck (Darmstadt, Germany), valsartan and telmisartan from 

Boehringer (Ingelheim am Rhein, Germany), irbesartan from Sanofi (Paris, France) and eprosartan 

mesylate from Solvay pharmaceuticals (Brussels, Belgium). The purity of all the target analytes was 

> 95%. 

In the case of surrogate analogues, amitriptyline-d3 hydrochloride (100 mg/L in methanol), 

atrazine-d5 (99%), carbamazepine-d10 (100 mg/L in methanol), ketoprofen-d3 (99.4%), nortriptyline-

d3 hydrochloride (100 mg/L in methanol), progesterone-d9 (98%), were purchased from Sigma-

Aldrich and ciprofloxacin-d8 hydrochloride (99%) was obtained from Fluka. Irbesartan-d7 2,2,2-

trifluoroacetate salt (99.9%) were purchased from Toronto Research Chemicals (Toronto, Canada).  

Stock standard solutions were dissolved individually on a weight basis in methanol (UHPLC-MS MeOH, 

Scharlab, Barcelona, Spain) in order to prepare approximately 1000-2500 mg/L solutions. However, the 

addition of 100 µL sodium hydroxide 1 mol/L (NaOH, 98%, Panreac, Barcelona, Spain) was necessary for the 

proper dissolution of fluoroquinolone antibiotics as described by Gros et al. (Gros et al., 2013). 100 mg/L 

dilutions were prepared in MeOH every month and dilutions at lower concentrations containing all analytes 

were prepared daily in MeOH: Milli-Q (90: 10, v: v). All the chemicals standards solutions were stored at −20 °C. 
 

MeOH (HPLC grade, 99.9%), ethyl acetate (EtOAc; 99.8%) , acetonitrile (ACN, 99.8%) , and n-

hexane (HPLC grade, 95%) were supplied by LabScan (Dublin, Ireland), ethylenediaminetetraacetic 

(EDTA, 99.0-101.1%) and ammonia solution (25% as NH3) by Panreac (Barcelona, Spain), formic acid 

(HCOOH  98%) by Scharlau (Barcelona, Spain) and sodium chloride (NaCl > 99.8%) and acetic acid 

(HOAc, 100%) by Merck.  
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A Cryodos-50 laboratory freeze-dryer from Telstar Instrument (Sant Cugat del Valles, 

Barcelona, Spain) was used to freeze-dry the solid samples. An ultrasonic cell disruptor/homogeniser 

(100 W, 20 kHz; Bandelin Sonopuls HD 3100 sonifier, Bandelin Electronic, Berlin, Germany) equipped 

with a 3-mm titanium microtip was used for the extraction of analytes from solid samples. The 

extractions were performed using 50-mL polypropylene conical tubes (PP, internal diameter 27.2 

mm × 117.5 mm length) obtained from Deltalab (Barcelona, Spain) and the extracts were filtered 

through polypropylene filters (PP, 0.45 m, Macherey-Nagel, Germany). Fractions were evaporated 

using a Turbovap LV Evaporator (Zymark, Hopkinton, USA) under a gentle stream of nitrogen 

(> 99.999% of purity) supplied by Messer (Tarragona, Spain).  

Oasis-HLB (hydrophilic–lipophilic-balanced, 200 mg) SPE cartridges were purchased from 

Waters (Milford, USA) and 2 g-Florisil cartridges from Supelco (Walton-on-Thames, UK). PES tubes 

were obtained (Membrana, Wuppertal, Germany) in a tubular format (0.7 mm external diameter, 

1.43 g/mL density). Pieces of this polymer (4 cm length) were cut using a sharp blade and soaked 

overnight in MeOH (HPLC grade, 99.9%, LabScan, Dublin, Ireland) before their use as sorbent 

material. Afterwards, the polymer was dried with air and stored until used. Given their reduced cost 

(c.a. 0.05 €/unit) the pieces were discarded after each use. Agitation was carried out using 30-mL 

polystyrene vessels (PS, 60 x 27 mm
2
) provided by ServiQuimia (Tarragona, Spain) in a 15 position 

magnetic stirrer (Gerstel, Mülheim an der Ruhr, Germany). Desorption was made in 1.5 mL 

Eppendorf tubes purchased from Eppendorf (Berzdorf, Germany) using a Digital Ultrasonic Cleaner 

(2500 mL, USB Axtor by Lovango, Barcelona, Spain).  

The reconstituted extracts were filtered through polypropylene (PP, 0.22 µm, 13 mm, 

Phenomenex, California, USA) filters before the LC-MS/MS analysis. Milli-Q water (<0.05 S/cm, Milli-

Q purification system model 185, Millipore, Bedford, MA, USA) and UHPLC-MS MeOH (Scharlab) 

were used as mobile phase eluent and HCOOH (Optima, Fischer Scientific, Gell, Belgium) for mobile 

phase modification. High purity nitrogen gas (> 99.999%) supplied by Messer was used as collision 

gas and nitrogen gas (99.999%) provided by AIR Liquid (Madrid, Spain) was used as both nebuliser 

and drying gas.  
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4.2.2 Application of the method 

In order to verify the performance of the method we applied it to determine the 

concentration of some of the ECs in two different scenarios.  

In the first case, live mussels (Mytilus galloprovincialis) of 35–45 mm length were manually 

collected at Arriluze (3° 0'56.68"W, 43°20'15.67"N), in the Bilbao estuary mouth (Bay of Biscay) in 

April of 2017. Mussels were collected, rinsed with natural water and taken to the laboratory in a 

cool box before 8 h had elapsed. The soft tissues of the mussels were separated from the shell with 

a sterile stainless steel scalpel, freeze-dried, ground and homogenised in a ball mill, and stored at 

4°C until analysis. 

In the second case, juvenile gilt-head bream (Sparus aurata) were exposed during 7 days to a 

mixture (dosing concentrations of 300 ng/L) of ten ECs (acesulfame, sulfadiazine, acetaminophen, 

carbamazepine, PFBS, diuron, amitriptyline, irbesartan, butylparaben and bezafibrate). Juvenile gilt-

head bream weighing around 40 g and measuring 15 cm in length were obtained from Groupe 

Aqualande (Roquefort, France). For exposure experiments, two polypropylene tanks (control and 

dosed) each containing 100 L of seawater and 30 gilt-head bream per tank were used. The 

experiments were performed at controlled temperature (18°C) and light (14:10 h light: dark cycles) 

during 7 days. The water was continuously aerated using aquarium oxygenators and fish were fed 

daily with 0.10 g pellets/fish. The analytes dosing was performed using a continuous flow-through 

system with a peristaltic pump delivering 8.5 L seawater/h and another pump infusing the 10-

analytes stock dosing solution (128 ng/mL per analyte in Milli-Q water, refilled every 24 h with newly 

prepared solution) at 20 mL/h to the exposure tank. Control tank (only seawater) was maintained at 

identical conditions during the course of the experiment. 

Fish processing was carried out according to the Bioethics Committee rules of the University 

of the Basque Country (procedure approval CEEA/380/2014/ETXEBARRIA LOIZATE). Ten fish were 

collected from both, exposed and control tanks at the beginning of the experiment (day 0) and on 

day seven of exposure (day 7). Afterwards, fish were immediately anaesthetized in a tank containing 

10 L of seawater with 200 mg/L of tricaine and 200 mg/L of sodium bicarbonate. Blood was sampled 

from the caudal vein-artery using a syringe previously rinsed with 0.5 mol/L EDTA solution (pH 
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adjusted to 8.0 using NaOH) and then centrifuged for 5 min at 1000 rpm to get the plasma. Samples 

of biofluids (bile and plasma) and tissues (liver, gill, muscle and brain) were separated and prepared 

for analysis. Tissues were stored in liquid nitrogen during dissection, and then transferred to a −80°C 

freezer. All the tissues were freeze-dried for 48 h, ground and homogenised in a ball mill, and stored 

at 4°C until analysis. 

4.2.3 Sample preparation of tissues samples 

4.2.3.1 FUSLE 

0.5 g of freeze-dried sample (fish muscle and liver and mussel) or 0.1 g (fish gills and brain) 

were placed together with 7 mL of MeOH: Milli-Q water (95:5) mixture in a 40-mL PP vessel and 

isotopically labelled standards mixture (amitriptyline-d3, atrazine-d5, carbamazepine-d10, 

ketoprofen-d3, progesterone-d9, ciprofloxacin-d8, sucralose-d6 and irbesartan-d7). The FUSLE 

extraction required 30 s (with a pulsed time on of 0.8 s and a pulsed time off of 0.2 s) and 10% of 

amplitude. Extractions were carried out at 0°C in an ice-water bath. After the extraction was over, 

the supernatant was filtered through 0.45 µm PP filters and the FUSLE extracts were evaporated to 

∼1 mL under a nitrogen stream and submitted to a clean-up step. 

4.2.3.2 Clean-up step 

Four different clean-up approaches were tested: (i) reverse phase SPE, (ii) normal phase SPE, 

(iii) microextraction based on PES and (iv) LLE followed by Oasis-HLB-SPE. For this purpose, FUSLE 

extracts of mussel, liver and muscle samples were spiked before the clean-up step with a mixture of 

the target analytes at a concentration level of 500 ng/mL. The experiments were performed in 

triplicate (n=3) and blanks were processed in parallel for signals subtraction. In all the assays, the 

eluate recovered after the clean-up step was concentrated to dryness under a gentle stream of 

nitrogen at 35°C, reconstituted in 200 μL of MeOH: Milli-Q water (90:10, v:v) and filtered through a 

0.22 μm PP filter, previous to the LC-MS/MS analysis. 

4.2.3.2.1 Oasis-HLB-SPE phase  

This clean-up approach was performed based on the method published by Mijangos et 
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al. (Mijangos et al., 2018). Briefly, the extract was evaporated to ∼1 mL, diluted in 6 mL of Milli-

Q water (previously adjusted at pH 2 with HCOOH) and an appropriate volume of a EDTA solution to 

achieve a final concentration of 0.1% (g solute/g solution) was added. Oasis HLB-200 mg cartridges 

were sequentially conditioned with 5 mL of MeOH, 5 mL of ultrapure water and 5 mL of ultrapure 

water at pH=2. After the extract was loaded, 6 mL of Milli-Q water were added with cleaning 

purposes before the cartridge was dried for ∼40 min under vacuum. Finally, the analytes were 

eluted using 6 mL of MeOH.  

4.2.3.2.2 Florisil-SPE phase 

According to the experience of the research group (Navarro et al., 2010) the extract was 

evaporated to dryness and diluted in 0.5 mL of Hexane. 2 g-Florisil cartridges were conditioned with 

10 mL of n-hexane and the extracts loaded on top of the cartridges. Finally, the analytes were eluted 

with 9 mL of ethyl acetate. 

4.2.3.2.3 PES microextraction 

Dual PES microextraction was performed according to the method published by Mijangos et 

al. (Mijangos et al., 2018) with some modifications. Briefly, extracts evaporated to ~1 mL were 

directly poured into two 30 mL-extraction vessels containing 6 mL of Milli-Q with 30% NaCl (w/v) in 

both cases, one at pH=2 (adjusted with HCOOH) or pH=10 (adjusted with NH3). An appropriate 

volume of a EDTA solution to achieve a final concentration of 0.1% (g solute/g solution), pre-cleaned 

portions of PES (4 PES tubes of 4 cm each corresponding to a total mass of approx. 50 mg) and a 

magnetic stirrer were also introduced in each one of the vessels. Thereafter, vessels were closed 

and extraction (800 rpm) was performed at room temperature overnight. Once the sorption step 

was over, the polymers were removed and rinsed with Milli-Q water in order to eliminate salt 

residues, and finally, dried with a clean tissue paper. Subsequently, the sorbents were chemically 

and simultaneously desorbed in a 1.5 mL Eppendorf tube containing 1 mL of MeOH by soaking for 

32 min in an ultrasound bath. 

4.2.3.2.4 Liquid-liquid extraction 

The extract evaporated to ∼1 mL was diluted in 6 mL of Milli-Q water and 2 mL of n-Hexane 
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were added. The tube was vortexed for 1 min, centrifuged for 5 min at 8000 rpm, and the water 

layer was collected in a glass test tube. Therefore, the water phase was submitted to the Oasis HLB 

extraction as described before (see section 4.2.3.2.1). 

4.2.3.2.5 Seawater and biofluids sample preparation 

Plasma and bile (500 and 100 μL, respectively) and seawater (250 mL) were fortified with 

deuterated analogues (amitriptyline-d3, atrazine-d5, carbamazepine-d10, ketoprofen-d3, 

progesterone-d9, ciprofloxacin-d8, sucralose-d6 and irbesartan-d7) prior to Oasis-HLB SPE extraction 

(Mijangos et al., 2018) (see chapter 3). The seawater samples or the biofluids (once diluted in 6 mL 

of Milli-Q water and buffered at pH 2 with HCOOH) were loaded in 200 mg-Oasis HLB cartridges 

after they were sequentially conditioned with 5 mL of MeOH, 5 mL of ultrapure water and 5 mL of 

ultrapure water at pH=2. Next, 6 mL of Milli-Q water were added with cleaning purposes before the 

cartridge was dried for 40 min under vacuum. Then, the analytes were eluted using 6 mL of MeOH. 

The eluate recovered after the clean-up step was concentrated to dryness under a gentle stream of 

nitrogen at 35°C, reconstituted in 200 μL of MeOH: Milli-Q water (90:10, v:v) and filtered through a 

0.22 μm PP filter previous to the LC-MS/MS analysis.  

4.2.4 Liquid chromatography coupled to triple quadrupole tandem mass spectrometry 

The analysis was performed by LC-QqQ-MS/MS based on a modification of a previously 

developed method (Mijangos et al., 2018). The separation and quantification of the 41 target 

analytes were performed using an Agilent 1260 series HPLC coupled to an Agilent 6430 triple 

quadrupole mass spectrometer with electrospray ionisation (ESI) source (Agilent Technologies, Palo 

Alto, CA, USA). The extracts (2 μL) were injected into a Kinetex F5 100 Å core-shell (2.1 mm × 

100 mm, 2.6 m) column coupled to a Kinetex F5 pre-column (2.1 mm x 4.6 mm, 2.6 m), both from 

Phenomenex (Torrance, 235 CA, USA). The column temperature and the flow rate were set to 35°C 

and 0.3 mL/min, respectively. A binary mixture consisting of water: MeOH (95: 5, v: v) (mobile phase 

A) and mobile phase B of MeOH: water (95: 5, v: v), both containing 0.1% of HCOOH were used for 

gradient separation of target analytes. The gradient profile started with 30% B which was increased 

to 50% in 4 min and maintained for 12 min. Then, it was increased to 90% B where it was 
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maintained constant for 10 min. Initial gradient conditions (30% B) were then achieved in 6 min, 

where it was finally held for another 10 min (post-run step). ESI was carried out using a N2 flow rate 

of 12 L/min, a capillary voltage of 3500 V, a nebuliser pressure of 45 psi and a source temperature of 

350°C.  

Quantification was performed in the selected reaction monitoring (SRM) acquisition mode. 

Both, negative and positive voltages, according to the target analytes, were simultaneously applied 

in a single injection. The transitions followed in SRM mode as well as the fragmentor and collision 

energy (CE, polarity and the ion ratios) values are summarised in Table 3.2, in Chapter 3. The 

retention times and instrumental limits of quantification of each analyte are also included. 

Instrumental operations, data acquisition and peak integration were performed with the 

Masshunter Workstation Software (Qualitative Analysis, Version B.06.00, Agilent Technologies). 

4.3 Results and discussion  

4.3.1 LC-MS/MS optimisation and instrumental figures of merit 

Firstly, it was observed that the presence of water in the reconstitution solvent (30:70-

MeOH: Milli-Q) used before (Mijangos et al., 2018) was not suitable for injection into LC-MS/MS due 

to the presence of a turbidity. This fact was attributed to the presence of water-insoluble matrix 

components, such as proteins as previously described in the literature (Griebenow and Klibanov, 

1996; Ziarrusta et al., 2016a). In this sense, following our previous experience (Ziarrusta et al., 

2016a) MeOH: Milli-Q (90:10, v:v) was used as reconstitution solvent since turbidity was observed 

when water levels were above the 10% .  

Furthermore, different injection volumes (2, 5 and 7 µL) were tested. As can be seen in 

Figures 4.1a and 4.1b for sulfamethoxazole and phenytoin, respectively, the chromatographic 

resolution of early-eluting analytes (tR < 3.5 min for 7 µL and 10 µL and tR  < 8 min for 10 µL) was 

highly affected by the injection volume due to the high eluotropic strength of the injection solvent 

(MeOH: Milli-Q water (90:10, v:v) in comparison with the initial composition of the mobile phase 

(MeOH: Milli-Q water, 30:70, v:v). Therefore, 2 µL were used in further assays as injection volume as 
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a compromise between sensitivity and peak resolution.  

 

 

Figure 4.1: Normalised chromatographic signals of three different injection volumes (2, 5 and 7 µL) for (a) 

sulfamethoxazole and (b) phenytoin. 

 

Calibration curves were built with MeOH: Milli-Q (10:90, v: v) standard solutions in the 

instrumental limit of quantification (LOQ)-5000 ng/mL range at 10 concentration levels. 

Determination coefficients (r
2
) higher than 0.997 were obtained for all the target analytes corrected 

with the corresponding labelled standard. Instrumental quantification limits (LOQs) were established 

as the lowest concentration fulfilling all of the following criteria: (i) a linear calibration curve, (ii) an 

acceptable peak shape, and (iii) a signal-to-noise ratio of at least 10 (S/N = 10). LOQs in the 1-7 

ng/mL range were obtained. 

4.3.2 Optimisation of FUSLE for tissues 

In a first approach for the optimisation of the FUSLE variables, including the solvent type, 

extraction time and the number of consecutive extractions, we considered the fortification of clean 

tissues (analyte free). However, in the cases of brain, gills and liver, this approach could not be used 

since a modification of the matrix was observed. Alternatively, matrix spiking was considered when 

slurry fortification was not viable, as pointed recently (Ziarrusta et al., 2017b). Both strategies were 

tested for muscle samples, and comparable results (p-value > 0.3) were obtained for all the target 

compounds. Hence, the samples were spiked (200 ng/g) using stock solutions of each compound in 

MeOH.  
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According to the literature, pure organic solvents such as MeOH and ACN or mixtures of 

them with water, to extract more polar compounds or with HOAc to promote protein precipitation, 

are the most commonly used solvents (Núñez et al., 2017). Therefore ACN, MeOH, 95:5-MeOH: 

Milli-Q and 95:5-MeOH: HOAc mixtures were evaluated here for the extraction of the target 

analytes. Aliquots of muscle (0.5 g, dry weight) were extracted with 7 mL of the solvents mentioned 

above during 0.5 min. Other variables such as temperature, solvent volume and amplitude were 

fixed at 0°C, 7 mL and 10% at 0.8 s/s of duty cycle, respectively, according to our previous 

experience (Ziarrusta et al., 2016a). In order to optimise the FUSLE conditions, all the extracts were 

filtered through 0.45 μm PP filters and cleaned-up using the Oasis-HLB-SPE clean-up approach (see 

section 2.4.2.1). The experiments were performed in triplicate (n=3) and blanks were processed in 

parallel for signal subtraction.  

Figure 4.2 shows the normalised recoveries for FUSLE obtained for some of the target 

analytes (one analyte per family was included). It was observed that among the tested solvents, 

mixtures of MeOH: Milli-Q water (95:5, v/v) and MeOH: HOAc (95:5, v/v) rendered the highest 

recoveries for most of the target compounds. The results showed that the addition of HOAc 

favoured the extraction of compounds as sulfadiazine and ciprofloxacin, probably due to the 

disruption of the analyte-protein binding (Martínez Bueno et al., 2013; Tang et al., 2009) promoted 

by the proteins denaturalisation present in fish muscle (López-Alonso et al., 2010). However, this 

protein-precipitation caused significant looses (> 30%) during the evaporation step. Therefore, the 

use of HOAc was discarded and the mixture of MeOH: Milli-Q water (95:5) was selected as the most 

adequate extractant.  
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Figure 4.2: Normalised recoveries of the target compounds (one analyte of each family) obtained with different 

solvents during FUSLE extraction in fish muscle. 

 

In order to improve the FUSLE efficiency, three different extraction times (0.5, 2.5 and 5 min) 

were studied. The optimisation was carried out at the same conditions explained above. Each 

experiment was carried out in triplicate. As can be seen in Figure 4.3 the recoveries obtained for 

most of the target compounds at three extraction times were statistically comparable, except for 

PFOS, methylparaben, sulfadiazine, propranolol and trimethoprim (extraction time was slightly 

significant). However, since the differences were not higher than the 20%, extraction time was fixed 

to the minimum time (i.e. 30 s).  

Due to the lack of a certified reference material (CRM), three consecutive extractions (n=3) 

were performed on the four biological tissues (mussel and fish muscle, gills and liver) in order to 

determine whether exhaustive extractions were achieved under optimised conditions. Recoveries 

lower than 10-15% were obtained in the second extraction for all the target analytes except for 6 

compounds: ciprofloxacin (23-32%), norfloxacin (25-36%), sulfadiazine (25-29%) and 

sulfamethoxazole (30-28%) in muscle and brain, respectively, and for progesterone (28%) and PFOS 

(25%) in liver. Thus, only a single extraction of the same sample was carried out in further assays for 

all the matrices.  
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Figure 4.3: Influence of extraction time during FUSLE in fish muscle for one analyte of each family. Recoveries are 

expressed as the recovery of the extraction step normalised to the highest values. 

 

4.3.3 Clean-up optimisation 

The efficiency of the clean-up step was evaluated in terms of recoveries and cleanliness of 

the extracts. Regarding the five tissues studied in this work, fish liver and mussel was chosen due to 

their high lipid content and muscle due to its high protein content. In this sense, 0.5 g of freeze-

dried samples were extracted under the conditions fixed before (see section 4.3.2).  

The clean-up recoveries for the procedures tested (i-iv) were calculated by comparing the 

responses obtained when the extracts were spiked at 500 ng/mL before and after the clean-up. In 

the case of muscle, a single clean-up using the widely used Oasis-HLB cartridges (Núñez et al., 2017) 

rendered acceptable results in terms of absolute recoveries (35-85%) and properly cleanliness of the 

extracts. In consequence, in the case of brain and gills, a single Oasis-HLB purification step was also 

selected as clean-up protocol. In the case of high lipid content matrices (mussel and liver), 

acceptable absolute recoveries were obtained when HLB-SPE (41-160%) was used for mussel, while 

for liver high values were obtained (11-213%). Therefore, different protocols (PES microextraction, 

Florisil-SPE and the combination of LLE-HLB-SPE) were tested for liver in order to remove most of 
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the fatty compounds. Florisil cartridges were discarded as a viable option, since negligible recoveries 

(< 20%) were obtained for 23 out of the 41 target analytes under the elution conditions used. On 

the contrary, overall, acceptable recoveries with PES microextraction (23-76%) and LLE procedure 

(40-143%) with n-hexane combined with HLB-SPE, were obtained. It is worth mentioning that, when 

the LLE step was included before the Oasis-HLB clean-up, most of the analytes were not detected in 

the n-hexane fraction except atrazine, progesterone, telmisartan and irbesartan which showed 

recoveries between 18 and 35%.  

4.3.4 Method validation for tissues and biofluids 

The suitability of the methods was evaluated in terms of apparent recoveries (corrected 

using matrix-matched calibration approach and isotopically labelled standards), precision and 

method detection limits (MDLs). Apparent recoveries and the repeatability of the method in terms 

of relative standard deviation (RSD%) for the tissues (mussel and fish muscle, liver, brain and gills) 

and biofluids (plasma and bile) matrices were determined at two concentration levels: 25 ng/g (n=5) 

and 100 ng/g (n=3) or 25 ng/L (n=5) and 100 ng/L (n=3), respectively (see Table 4.1 for the low level 

results). In the case of liver samples, two different protocols were validated, FUSLE-PES 

microextraction-LC-MS/MS and FUSLE-LLE-HLB-SPE-LC-MS/MS.  

Overall, satisfactory apparent recoveries were achieved for all the target compounds using 

labelled standards corrections in all the matrices except for liver. Since the use of labelled standards 

(i.e., isotopically labelled standards of atrazine and irbesartan) could not compensate the recoveries 

obtained in the case of liver matrix regarding the protocol used (FUSLE-PES and FUSLE-LLE-HLB), 

matrix-matched calibration approach was applied obtaining acceptable apparent recoveries (64-

145%). In all the cases, RSD values varied between 2 and 22%, which can be considered satisfactory 

values taking into account the complexity of the matrices. Similar results in terms of both apparent 

recovery and RSD values were obtained in the case of high concentration level tested. The values 

obtained are comparable to other works focused on the analysis of target analytes in biological 

samples using other methodologies (Alvarez-Muñoz et al., 2015; Huerta et al., 2013; Turnipseed et 

al., 2017). 
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Method detection limits (MDLs) were determined by fortification of five replicates of each 

blank matrix with each analyte at the lowest concentration levels (10 ng/g and 10 ng/L for tissues 

and biofluids, respectively) according to the USEPA method 

(https://www.epa.gov/sites/production/files/2016-12/documents/mdl-procedure_rev2_12-13-2016.pdf). The 

MDLs were then calculated according to the Equation 4.1: 

𝑀𝐷𝐿 =  𝑡(𝑛−1) 𝑥 𝑠𝑑    Equation 4.1 

where 𝑡99,4=3.75 and sd refers to the standard deviation of the replicate analyses (n=5). MDL 

values between 0.4-48 ng/g and 0.3-111 ng/L were obtained for biotissues and biofluids, 

respectively (see Table 4.2). Similar MDLs were reported in the literature in a variety of biological 

matrices (Alvarez-Muñoz et al., 2015; Grabicova et al., 2018; Huerta et al., 2013; Tanoue et al., 

2014; Wille et al., 2011).  

 

Table 4.2: Method detection limits (MDLs, n=5) of the validated procedures for the biotissues (ng/g) and biofluids (ng/mL). 

Analytes 

Tissues (ng/g) Biofluids (ng/mL) 

Mussel Brain Muscle Gills 
Liver 

(FUSLE-PES) 
Liver 

(FUSLE-LLE-SPE) 
Plasma Bile 

Acesulfame 1 6 2 7 4 1 1 7 

Acetaminophen 20 10 3 9 13 2 2 39 

Amitriptyline 2 6 1 6 3 2 1 13 

Atrazine 0.8 2 0.4 2 5 0.9 0.3 4 

Bezafibrate 2 3 0.8 2 4 0.5 0.5 5 

Butylparaben 13 12 4 10 8 5 3 46 

Caffeine 5 8 2 8 6 1 2 15 

Carbamazepine 0.7 3 0.7 3 2 0.6 0.5 5 

Ciprofloxacin 0.8 29 16 13 20 17 5 71 

Clofibric acid 1 6 2 7 6 5 1 13 

Clomipramine 2 3 0.7 4 1 0.9 0.6 7 

Diclofenac 1 3 0.5 4 1 0.9 0.5 7 

Diuron 0.5 4 0.8 4 2 0.8 0.6 7 

Eprosartan 0.9 8 2 9 5 1 1 18 

Genistein 5 18 5 14 10 5 3 29 

Genistin 1 12 5 15 9 3 3 31 

Glycitin 0.9 11 4 7 8 5 3 26 

Imipramine 1 6 1 9 3 3 1 16 

Irbesartan 0.7 3 0.6 4 2 0.6 0.5 5 

https://www.epa.gov/sites/production/files/2016-12/documents/mdl-procedure_rev2_12-13-2016.pdf
https://www.epa.gov/sites/production/files/2016-12/documents/mdl-procedure_rev2_12-13-2016.pdf
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Table 4.2: Method detection limits (MDLs, n=5) of the validated procedures for the biotissues (ng/g) and biofluids (ng/mL). 

Analytes 

Tissues (ng/g) Biofluids (ng/mL) 

Mussel Brain Muscle Gills 
Liver 

(FUSLE-PES) 
Liver 

(FUSLE-LLE-SPE) 
Plasma Bile 

Isoproturon 0.7 3 0.6 4 2 0.9 0.6 6 

Ketoprofen 2 4 0.8 3 3 1 0.7 10 

Losartan 0.9 14 3 14 9 4 2 27 

Methylparaben 9 16 3 24 8 3 4 34 

Norfloxacin 1 32 6 18 16 5 4 60 

Nortriptyline 1 6 1 7 3 1 1 19 

OBT 2 12 3 13 7 3 3 27 

PFBS 2 4 0.7 4 4 0.7 0.7 7 

PFOA 7 4 1 4 6 1 0.7 15 

PFOS 2 3 0.7 4 2 0.7 0.5 6 

PFOSA 0.5 3 0.8 3 2 1 0.7 8 

Phenytoin 5 13 4 20 7 2 4 40 

Progesterone 10 8 1 7 3 3 1 11 

Propranolol 1 5 1 5 4 0.9 0.9 8 

Simazine 2 5 0.7 6 3 1 0.7 3 

Sucralose 4 3 1 4 2 0.9 0.7 10 

Sulfadiazine 0.4 6 0.7 5 3 0.9 0.5 8 

Sulfamethoxazole 0.4 11 2 9 4 0.9 1 16 

Telmisartan 5 4 0.5 4 2 1 0.6 6 

Testosterone 2 4 1 4 3 0.8 0.7 8 

Trimethoprim 0.5 2 0.4 2 2 0.5 0.3 4 

Valsartan 4 17 3 7 15 4 3 30 

 

4.3.5 Application of the method results 

During the exposure experiments, target analytes average concentrations in seawater ranged 

between 291±13 ng/mL (irbesartan) and 312±15 ng/mL (carbamazepine), which are consistent with 

nominal dosing concentrations (300 ng/L). In addition to this, the concentration of these analytes in 

the control tank were below their MQLs (<2-15 ng/L) (see chapter 3), except in the case of 

butylparaben, which was measured at a concentration of 23 ng/mL. 

Mortality was not observed in any of the experiments and K and HSI values were not 

statistically different between control and exposed fish (p-values = 0.06 and 0.18, respectively) at 

the 95% confidence level, indicating maintenance of fish health over the duration of the 7 days-
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exposition experiment. 

The uptake concentrations (ng/g or ng/mL) of individual target compounds in liver, muscle, 

brain, gills, bile and plasma are included in Table 4.3. Acesulfame, acetaminophen and sulfadiazine 

did not show any tissue distribution. Sulphonamides antibiotics and acetaminophen have also been 

reported to have low bioaccumulation factors in several species (Armitage et al., 2016). 

In general terms, diuron and butylparaben showed the highest concentrations values. 

Concentrations of PFBS (23 ng/g), diuron (234 ng/g) and butylparaben (214 ng/g) were statistically 

higher (p-value>0.06-1.2) in liver compared to the rest of fish tissues/fluids. To the best of our 

knowledge, there is no reported uptake data of PFBS. In the case of carbamazepine (an 

anticonvulsant) and amitriptyline (an antidepressant), they showed a similar tissue distribution; the 

highest concentrations (91 and 58 ng/mL, respectively) were detected in brain. These results are 

consistent with Ziarrusta and co-workers (Ziarrusta et al., 2017a) results, where an extensive 

diffusion of amitriptyline to fish brain was observed. 

 

Table 4.3. Concentrations (ng/g and ng/mL) of the fish exposed to 10 of the target analytes. 

Analytes 

Concentration 

Tissues (ng/g) Biofluids (ng/mL) 

Muscle Gill Liver Brain Plasma Bile 

Acesulfame n.d. n.d. n.d. n.d. n.d. n.d. 

Acetaminophen <MDL <MDL <MDL <MDL <MDL <MDL 

Amitriptyline 7.1±0.5 16±2 18±2 58±9 15±1 n.d. 

Bezafibrate 6.2±0.4 28±2 41±4 20±3 57±7 10.8±0.8 

Butylparaben 73±9 73±7 214±26 <MDL 27±4 55±7 

Carbamazepine 8±1 14±1 30±4 91±5 18±1 <MDL 

Diuron 34±3 53±4 234±23 22±3 60±8 60±6 

Irbesartan 14±2 35±3 53±5 28±2 88±13 24±2 

PFBS 3±1 6±1 23±4 <MDL <MDL n.d. 

Sulfadiazine n.d. n.d. <MDL <MDL n.d. n.d. 

n.d.: not detected, MDL: method detection limit 

 

 



Multiresidue analysis of 41 multi-class pollutants in biota 

109 

When the method was applied in the analysis of wild mussels, only 7 analytes were detected 

above their MDLs: amitriptyline (3.2±0.1 ng/g), PFOS (4.2±0.4 ng/g), PFOSA (1.4±0.1 ng/g), 

progesterone (14±2 ng/g), sulfadiazine (0.6±0.1 ng/g), telmisartan (6.8±0.6 ng/g) and valsartan (7±1 

ng/g). See Figure 4.4 for representative SMR chromatograms of some of the detected analytes.  

 

Figure 4.4: SRM chromatograms of (a) a standard solution of the detected analytes at 200 µg/L each one and (b-

d) a mussel real sample extract of (b) sulfadiazine, (c) amitriptyline and (d) valsartan. Other compounds 

(telmisartan, progesterone, PFOS and PFOSA) were also detected but not included in this figure. 
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The presence of pharmaceutical and hormones could be related to the upstream presence of 

Galindo WWTP, the biggest WWTP in the Basque Country and one of the biggest in Spain. Among 

the pharmaceuticals, sulfadiazine (0.6±0.1 ng/g, Log P =0.4) was detected at the lowest 

concentration. Other studies carried out in Singapore (Bayen et al., 2016), California Coast (Dodder 

et al., 2014), China (Li et al., 2012a) and Spain (Serra-Compte et al., 2017) summarised in Table 4.4 

also reported low detection frequencies and concentrations of sulfadiazine in mussel, suggesting a 

low accumulation potential or a high metabolic degradation rate in mussels. Concentrations of 

amitriptyline and progesterone (see Table 4.4) were also in accordance with the literature (Álvarez-

Muñoz et al., 2015; de Solla et al., 2016; Dévier et al., 2010; Dodder et al., 2014; Klosterhaus et al., 

2013). In the case of valsartan and telmisartan, though they are widely used (Godoy et al., 2015), 

only valsartan has been determined before in invertebrates (Klosterhaus et al., 2013), and it was not 

detected in any of the studied samples. To the best of our knowledge, this is the first time that the 

presence of telmisartan (6.8±0.6 ng/g) and valsartan (7±1 ng/g) in mussels is reported.  

Concerning the PFASs, the concentration obtained for PFOS (4.2±0.4 ng/g) did not exceed the 

established Environmental Quality Standard in biota (9.1 μg/kg) in the field of water policy under the 

directive 2013/39/EU (European Commission, 2013). The concentrations obtained for both, PFOS 

(4.2±0.4 ng/g), and PFOSA (1.4±0.1 ng/g), are in agreement with previous studies carried out in the 

Basque coast for PFASs and their potential precursors (Zabaleta et al., 2015) and in Belgium coast 

(Wille et al., 2011). However, higher concentrations were obtained by Cunha et al. (Cunha et al., 

2005), who reported levels of PFOS up to the 126 ng/g in mussels (Mytilus galloprovincialis) 

collected from the Vouga river (Portugal).  
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Table 4.4. Concentrations (ng/g) of the target analytes detected in mussel samples from various locations (including this 

study). Results are expressed as concentration ranges or spot concentration values with its standard deviation. 

Analyte Location Specie Extraction-clean-up Concentrations Reference 

Amitriptyline 

Basque coast 
(Basque Country) 

M. galloprovicialis FUSLE-SPE (HLB) 3.2±0.1 In this study 

Basque coast 
(Basque Country) 

M. galloprovicialis FUSLE-SPE (Evolute-CX) n.d. Ziarrusta et al., 2016 

Grand river 
(USA) 

Lasmigona costata USB-SPE (HLB) 5.8-35.1 de Solla et al., 2016 

San Francisco Bay 
(USA) 

Geukensia demissa SLE-SPE (HLB) n.d.-0.2 
Klosterhaus et al., 

2013 

California coast 
(USA) 

M. edulis SLE-SPE (HLB) n.d.-6.2 Dodder et al., 2014 

PFOS 

Basque coast 
(Basque Country) 

M. galloprovicialis FUSLE-SPE (HLB) 4.2±0.4 In this study 

Basque coast 
(Basque Country) 

M. galloprovicialis 
FUSLE-SPE 

(Evolute WAX, Envi-carb) 
n.d.-2.4 Zabaleta et al., 2015 

Belgium coast 
(Belgium) 

M. edulis SLE-SPE (HLB) n.d.-4 Bayen et al., 2016 

California coast 
(USA) 

M. edulis SLE n.d.-5.5 Dodder et al., 2014 

Vouga  
(Portugal) 

M. galloprovicialis IPE(MTBE) 36.8-125.9 Cunha et al., 2005 

PFOSA 

Basque coast 
(Basque Country) 

M. galloprovicialis FUSLE-SPE (HLB) 1.4±0.1 In this study 

Basque coast 
(Basque Country) 

M galloprovicialis 
FUSLE-SPE 

(Evolute WAX, Envi-carb) 
3-8 Zabaleta et al., 2015 

California coast 
(USA) 

M. edulis SLE n.d.-2.9 Dodder et al., 2014 

Progesterone 

Basque coast 
(Basque Country) 

M. galloprovicialis FUSLE-SPE (HLB) 14±2 In this study 

Ebro delta 
(Spain) 

M. galloprovincialis PLE-SPE (HLB) 2.6±0.1 
Álvarez-Muñoz et al., 

2015 

Arcachon Bay 
(France) 

M edulis 
MAE-SPE  

(EnviChrom, NH2) 
0-5-8.9 Dévier et al., 2010 

Sulfadiazine 

Basque coast 
(Basque Country) 

M. galloprovicialis FUSLE-SPE (HLB) 0.6±0.1 In this study 

Singapore coast Perna viridis SLE n.d. Bayen et al., 2016 

California coast M. edulis SLE-SPE (HLB) n.d. Dodder et al., 2014 

Bohai sea, China M. edulis PLE-SPE (HLB) n.d.-2.7 Li et al., 2012 

Ebro Delta, Spain M. galloprovincialis QuEChERS n.d. 
Serra-Compte et al., 

2017 

Telmisartan Basque coast M. galloprovicialis FUSLE-SPE (HLB) 6.8±0.6 In this study 

Valsartan 
Basque coast M. galloprovicialis FUSLE-SPE (HLB) 7±1 In this study 

San Francisco Bay Geukensia demissa SLE-SPE (HLB) n.d. 
Klosterhaus et al., 

2013 

USB: ultrasonic bath; FUSLE: focused ultrasonic solid liquid extraction; IPE: ion par extraction; MAE: microwave assisted extraction; MTBE: 
methyl tert-butyl ether; n.d.: not detected; PLE: pressurized liquid extraction; SLE: solid liquid extraction; SPE: solid phase extraction. 
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4.4 Conclusions 

A thorough optimisation and validation of different methodologies was performed for the 

simultaneous analysis of up to 41 analytes belonging to different families (artificial sweeteners, 

industrial products, hormones, pharmaceutical and personal care products, pesticides, and 

phytoestrogens) in biota (mussel and fish tissues and fluids) samples. With this aim, four clean-up 

protocols were evaluated and HLB for mussel, muscle, plasma, bile, gills and brain,  and LLE-HLB or 

PES microextraction provided satisfactory results not only in terms of apparent recoveries but also in 

terms of extracts cleanliness and matrix effect. The uptake experiment carried out in this study 

showed the uptake and distribution of 10 analytes (including PFBS for the first time). Amitriptyline 

and carbamazepine showed a different tissue distribution, being the brain the compartment with 

the highest concentration values. When real mussel samples of the Biscay Coast were analysed, the 

presence of pharmaceutical compounds (amitriptyline, sulfadiazine, telmisartan and valsartan) as 

well as industrial compounds such as PFOS and PFOSA, was demonstrated. High levels of valsartan 

and telmisartan were reported for the first time in mussels. The analysis of the environmental 

samples carried out here showed the necessity of continuing with the monitoring of the area. 
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5.1 Introduction 

A number of procedures are usually applied for the chemical analysis of micro-organic 

contaminants in water samples, and the final selection of the most adequate one lies often on the 

fitness to the analytical purpose, i.e. those that minimise any bias in the analysis and in the 

interpretation of the results (Zhang et al., 2014). Additionally, when highly dynamic media is being 

monitored (e.g. transitional waters, effluents, etc.), the costs and the efforts required to accomplish 

an efficient sampling plan are very high. In this sense, the application of passive sampling (PS) 

methods has introduced a new paradigm in water analysis, since they can provide reliable 

estimations of the time-weighted average concentration (CTWA) or the bioavailable fraction of 

contaminants in complex environmental media. However, proper validated procedures are still 

required for achieving regulatory compliance (Miège et al., 2015; Söderström et al., 2009; Vrana et 

al., 2005). 

The passive samplers used for the analysis of non-polar compounds are deeply studied and 

show many applications (Booij et al., 2016). On the contrary, samplers used to analyse more polar 

compounds still require a deeper research and the exploration of novel applications (Vrana et al., 

2005; Zabiegała et al., 2010). Broadly speaking, the most widely used passive samplers are the polar 

organic chemical integrative samplers (POCIS) (Harman et al., 2012), the Chemcatcher (Charriau et 

al., 2016; Lissalde et al., 2016), the membrane enclosed sorptive coating sampler (MESCO) (Vrana et 

al., 2001), the ceramic dosimeter (Martin et al., 2003) and the passive in situ concentration 

extraction sampler (PISCES) (Vrana et al., 2005). 

Though POCIS samplers were developed for slightly polar compounds (Alvarez et al., 2004), 

two configurations are commercially available, the pest-POCIS and the POCIS-pharma. The latter is 

the most widely used configuration and it consists of 200 mg of Oasis HLB receiving phase enclosed 

between two polyethersulfone (PES) membranes (Morin et al., 2012). This sampler, however, shows 

a low affinity for highly polar and ionic compounds (Kaserzon et al., 2012; Mazzella et al., 2007) and 

low diffusion coefficients through the PES membranes for many hydrophobic compounds 

(Vermeirssen et al., 2012). To overcome this limitation, the replacement or combination of the Oasis 

HLB sorbent with a mixed-mode anion exchange sorbent has been recently proposed (Fauvelle et 
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al., 2012; Kaserzon et al., 2012; Li et al., 2011) to broaden the simultaneous analysis of a large 

variety of slightly polar and hydrophobic compounds. Similarly, the use of Nylon membranes instead 

of PES membranes (Belles et al., 2013; Morrison and Belden, 2016a) has been proposed to improve 

the diffusion across the membranes and the sampling rates. It is also worth mentioning the use of 

PES material as passive samplers (Posada-Ureta et al., 2016; Rusina et al., 2007). 

Another important issue in PS is the use of performance reference compounds (PRCs) to 

solve the differences in the hydrodynamic regimes between the calibration and the application 

scenarios (Harman et al., 2008; Huckins et al., 2002). The use of PRC assumes that the exchange 

between the bulk aqueous phase and the acceptor phase and vice versa are affected in the same 

way by the variation of the hydrodynamic regimes (i.e. the exchange is isotropic). Therefore, by 

spiking the sampling devices prior to exposure, the PRC remaining in the passive sampler after a 

certain deployment time can be used to correct the sampling rates (Rs) estimated during the 

calibration (Söderström et al., 2009). However, since the uptake in POCIS is basically driven by 

adsorption processes, the isotropic exchange is not always assured, and this fact explains the lack of 

reliable PRCs. 

Within this context, we considered to extend the use of passive samplers to the analysis of 

20-multiclass organic emerging contaminants with a broad range of hydrophobicity (log P ranging 

between -0.9 and 6.1) in seawater including Nylon membranes instead of the classical PES ones. This 

way, we could widen the range of compounds that are sampled by the commercial POCIS and we 

can simultaneously minimise the extraction in the PES membrane. In this sense, the laboratory 

calibration of two passive samplers was studied: (i) POCIS samplers combining 100 mg of a mixed-

mode anion exchanger (Strata X-AW) and 100 mg of polymeric HLB (Plexa) and enclosed between 

two highly porous Nylon membranes (30-μm pore size) and (ii) PES hollow fibres to study, for the 

first time, the suitability of this polymer with more polar compounds following previous works 

(Posada-Ureta et al., 2017, 2016). In the case of POCIS, the new sorbent mixture and the Nylon 

membranes were treated independently in order to assess the suitability of the latter. In both cases, 

the feasibility of five deuterated ([
2
H3]-amitriptyline, [

2
H5]-atrazine, [

2
H3]-ketoprofen, [

2
H9]-

progesterone and [
2
H7]-irbesartan) compounds as PRCs was also considered. 
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5.2 Experimental section 

5.2.1 Reagents and materials  

The selected 20 analytes cover a wide variety of physicochemical properties as shown in 

Table 3.1 in Chapter 3, which includes the molecular weight, the acid dissociation constant (pKa) and 

the log P. Other physicochemical properties such as log D(pH=7.4), the water solubility and polar 

surface area of the target compounds are included in Table 5.1. 

 

Table 5.1: Physico-chemical properties log D at pH 7.4, the water solubility (log S), polar surface area and Van der Waals 

accessible surface area of the target compounds. 

Analyte Log Da 

(pH=7.4) 

Log Sa 

(pH 7.4) 

(mol/L) 

Polar 

surface areaa 

(A2) 

VdW accessible 

surface areaa 

(A2) 

OBT 0.9 0.0 33 181 

Acesulfame -3.1 0.0 79 184 

Acetaminophen 0.9 -1.1 49 222 

Amitriptyline 2.5 -2.0 3 282 

Atrazine 2.2 -3.8 63 324 

Bezafibrate 0.7 -1.3 76 515 

Butylparaben 3.0 -2.5 47 315 

Caffeine -0.6 -0.4 58 269 

Carbamazepine 2.8 -3.8 46 312 

Diuron 2.5 -3.1 32 296 

Irbesartan 4.2 -6.0 87 638 

Ketoprofen 0.4 -0.3 54 368 

Norfloxacin -0.9 -2.1 73 435 

PFOA 1.6 0.0 37 374 

PFOS 3.0 0.0 54 454 

PFBS 0.2 0.0 57 279 

Phenyntoin 2.1 -3.3 58 341 

Progesterone 4.2 -5.6 34 524 

Sulfadiazine -0.1 -2.0 98 323 

Telmisartan 4.7 -6.5 73 753 
a Values reported in the Free Data Base www.chemicalize.org  
VdW: Van der Walls. 

 

2-Hydroxybenzothiazole (OBT), amitriptyline hydrochloride, butylparaben, caffeine, 

carbamazepine, perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluoro-1-

butanesulfonate (PFBS), phenytoin, progesterone and sulfadiazine were purchased from Sigma-

Aldrich (Steinheim, Germany). Acetaminophen, atrazine, diuron and norfloxacin hydrochloride were 

http://www.chemicalize.org/
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acquired from Fluka (Buchs, Switzerland). Acesulfame potassium was supplied by Supelco 

(Bellefonte, PA, USA), whereas, ketoprofen and bezafibrate were acquired from MP biomedicals 

(Illkirch Cedex, France). Telmisartan was purchased from Boehringer (Ingelheim am Rhein Germany) 

and irbesartan from Sanofi (Paris, France). The purity of all the target analytes was >95%. 

In the case of the deuterated analogues used as PRCs, [
2
H3]-amitriptyline hydrochloride 

(100 mg/L in methanol), [
2
H5]-atrazine, (99%), [

2
H3]-ketoprofen (99.4%) and [

2
H9]-progesterone 

(98%) were purchased from Sigma-Aldrich while [
2
H7]-irbesartan 2,2,2-(as trifluoroacetate salt, 

99.9%) was obtained from Toronto Research Chemicals (Toronto, Canada).  

The target analytes were individually dissolved on a weight basis in methanol (MeOH, Romil-

UpS, Optima, Fisher Scientific, Loughborough, UK) in order to prepare approximately 250-1000 mg/L 

of the stock solutions. However, the addition of 100 µL of sodium hydroxide 1 M (NaOH, 98%, 

Panreac, Barcelona, Spain) was necessary for the proper dissolution of the fluoroquinolones, as 

described in the recent literature (Gros et al., 2013). Mixed solutions with  ̴500 mg/L of each target 

compound were prepared, and lower concentration solutions were afterwards prepared according 

to the experimentation. The stock solutions were stored in amber vials at -40°C.  

MeOH (HPLC grade, 99.9%) and acetone (HPLC grade, 99.8%) were supplied by LabScan 

(Dublin, Ireland). Acetonitrile (ACN, HPLC grade, 99.9%) was supplied by Sigma–Aldrich (Steinheim, 

Germany). MeOH and formic acid (Optima formic acid,  98%) used as mobile phase were provided 

by Scharlau (Barcelona, Spain) and Fischer Scientific (Geel, Belgium), respectively. Ammonia (25% as 

NH3), ethylenediaminetetraacetic sodium salt (EDTA,  99.9%) were supplied by Panreac. Ultra-pure 

water was obtained using a Milli-Q water purification system (<0.05 µS/cm, Milli-Q model 185, 

Millipore, Bedford, MA, USA).  

Empty solid phase extraction (SPE) tubes (6 mL) and polypropylene (PP) frits were purchased 

from Supelco. 50 mL PP conical tubes (internal diameter 27.2 × 117.5 mm length) obtained from 

Deltalab (Barcelona, Spain) and 1.5 mL Eppendorf tubes supplied by Eppendorf (Berzdorf, Germany) 

were used for the desorption of Nylon membranes and PES hollow fibres, respectively. Additionally, 

Oasis-HLB (hydrophilic–lipophilic-balanced, 200 mg) SPE cartridges were purchased from Waters 

(Milford, USA) for the analysis of exposure media. 
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High purity nitrogen gas (>99.999%) supplied by Messer was used to evaporate the extracts 

using a Turbovap LV Evaporator (Zymark, Hopkinton, USA) and as collision gas during the liquid 

chromatography tandem mass spectrometry (LC-MS/MS) analysis. Moreover, nitrogen gas 

(99.999%) provided by Air Liquide (Madrid, Spain) was used as both nebuliser and drying gas during 

the analysis. Finally, PP filters (0.22 µm, 13 mm) from Phenomenex (California, USA) were used for 

filtration of all the extracts before the LC-MS/MS analysis. 

5.2.2 Passive samplers  

Strata X-AW (Phenomenex, Torrance, CA, USA) and Bond-Elute Plexa (Plexa, Agilent, Santa 

Clara, CA, USA) sorbents were used for the POCIS sampler. Nylon membranes (30 μm of pore size, 

65 μm thickness, 45 mm diameter) were acquired from Fisher Scientific (Illkirch, France). The 

stainless steel rings for the POCIS were homemade by UfZ-Helmholtz Centre for Environmental 

Research (Leipzig, Germany). PES hollow fibres were purchased from Membrana GmbH (Wuppertal, 

Germany) (16 cm x 0.7 mm external diameter, 1.43 g/mL density).  

POCIS sorbents and PES hollow fibres were thoroughly cleaned before their use. POCIS-

sorbents (Strata X-AW and Plexa) were cleaned separately with 100 mL of 2.5% NH3 in MeOH 

followed by MeOH and Milli-Q water (30 min for each solvent) in an ultrasonic bath (USB Axtor from 

Lovango Barcelona, Spain). PES pieces were shaken in pure MeOH for 24 h, renewing the solvent 

twice during that period of time. 

5.2.3 POCIS 

Before deployment, each POCIS sorbent was prepared with the corresponding PRC mixture 

at 4 µg/g of each of the five deuterated analogues. Each PRC was independently spiked to  ̴3 g of 

each sorbent and  ̴25 mL of acetone were finally added. This mixture was stirred for 24 h at 800 rpm, 

and, then, the acetone was evaporated to dryness at room temperature. Finally, 100 mg of each 

fortified sorbent was accurately weight and arranged between two Nylon membranes before being 

fixed with two home made stainless steel rings.  

Regarding the extraction of the POCIS after exposure, the sorbent was carefully removed 

from the membranes using   ̴10 mL of Milli-Q water and introduced into empty SPE cartridges. The 
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sorbent was dried under vacuum for   ̴ 1 h. Afterwards, the cartridges were stored in the freezer at    

-40
o
C until analysis. The analytes were firstly eluted with 6 mL of 2.5% NH3 in MeOH and 

subsequently with other 6 mL of MeOH. The mixture was evaporated to dryness using a TurboVap 

LV Evaporator at 35
o
C and reconstituted in 200 µL of MeOH: Milli-Q water (30:70, v:v) mixture. 

Finally, extracts were filtered through a 0.22 μm PP filter before the LC-MS/MS analysis.  

Concerning the two Nylon membranes in each POCIS device, both were immersed together 

in 10 mL of MeOH and sonicated in an ultrasound bath for 30 min. Then the membranes were 

removed, and the MeOH extracts were evaporated and reconstituted following the same procedure 

used for POCIS sorbent.  

5.2.4 PES hollow fibres 

21 PES hollow fibres of 16 cm ( ̴80 mg) were individually spiked with 10 µg/g of each PRC. 

Each fibre was immersed in 12 mL of Milli-Q water and 20 µL of a solution containing 60 mg/L of 

each of the deuterated analogues used as possible PRCs were added. Then, the tubes were shaken 

for 24 h in an agitator (Reax 2 Overhead Shaker, Heidolph, USA). After the PES fortification with the 

PRCs, the fibres were removed and dried with a clean lint free tissue paper and every fibre was cut 

in three smaller pieces. The PES pieces were introduced in 6 different stainless steel tea balls (each 

ball included three PES pieces).  

After the exposure, PES fibres were cut in small pieces (8 pieces per replicate) and introduced 

in a microcentrifugation tube (Eppendorf, 2 ml) with 1 mL of MeOH. The tubes were sonicated for 

30 min in an ultrasound bath to extract the analytes from the fibres, and then the extracts were 

stored in a freezer at -40
o
C until analysis. Immediately before the LC-MS/MS analysis, the extracts 

were evaporated and reconstituted as in the case of POCIS sorbents.  

5.2.5 Laboratory calibration 

The laboratory calibration of passive samplers was performed at the Plentzia Marine Station 

(PiE) according to a previous design based on a continuous flow calibration approach (Posada-Ureta 

et al., 2016; Vallejo et al., 2013). The POCIS and PES samplers were allocated together in a stainless 

steel carrousel vertically to the water flow direction. Afterwards, the carrousel was immersed in a 
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metallic tank ( ̴50 L) full of seawater and the carrousel was stirred at a constant rate of 50 rpm 

(equivalent to a linear water velocity of  ̴70 cm/s). The exposure tank was continuously fed with 

seawater at 2 L/h and with a stock solution containing all the analytes at 20 mL/h with a peristaltic 

pump (323S Watson-Marlow pump, Cornwall, UK) and the exposure was kept for 14 days. The 

resulting nominal concentration of each analyte in the tank was  ̴600 ng/L. In order to assure the 

steady state of that nominal value, the feeding set-up was initiated 72 h before exposing the passive 

samplers. As the carrousel can only hold 14 POCIS, when some POCIS were removed from the tank, 

new samplers were placed to assure 3 replicates per day. Moreover, on day 7
th

 of the calibration 

experiment, additional new replicates (n=2) of POCIS and PES samplers were added and removed 4 

and 7 days later in order to validate the calibration model with an independent set of samplers.  

Along the calibration and every two or three days, 3 POCIS, 1 tea ball (with the 3 PES fibres) 

and 250 mL of water were removed from the tank to analyse the target compounds. 

Simultaneously, blanks (n=3) were air exposed during the deployment and retrieval time to control 

any potential external contamination. Furthermore, some physicochemical parameters 

(temperature, dissolved oxygen, pH, redox potential, conductivity and salinity) of the seawater were 

monitored with a multiparametric probe (EXO 2, YSI, USA). 

5.2.6 Water samples  

Water sample extraction was carried out according to a previously validated SPE procedure 

(Mijangos et al., 2018). Briefly, the samples were acidified (pH 2) with 2 mL of formic acid, and EDTA 

was added at a concentration of 0.1% (m/m). Oasis-HLB cartridges were sequentially conditioned 

with 5 mL of MeOH, 5 mL of Milli-Q water and finally, with 5 mL of Milli-Q water at pH=2. Once the 

water samples were percolated through the cartridges, they were washed with 6 mL of Milli-Q 

water and then vacuum dried for an hour. The cartridges were afterwards stored at -40°C until 

analysis. The elution was carried out with 6 mL of MeOH, and then the solvent was evaporated to 

dryness and the sample reconstituted in 200 µL MeOH, as mentioned previously, before analysis by 

LC-MS/MS. Three replicates of water samples were processed. 
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5.2.7 LC-MS/MS analysis 

All the extracts were analysed in a HPLC-QqQ (Agilent 1260 series LC coupled to an Agilent 

6430 triple quadrupole) equipped with an electrospray ionisation (ESI) source (Agilent Technologies, 

CA, USA). The separation of the 20 target analytes was accomplished according to (Mijangos et al., 

2018) at a flow of 0.3 mL/min using a Kinetex F5 100 Å core-shell (2.1 mm × 100 mm, 2.6 m) 

column coupled to a Kinetex F5 pre-column (2.1 mm x 4.6 mm, 2.6 m). The column temperature 

and the injection volume were set to 35°C and 5 L, respectively. A binary mixture consisting of a 

mobile phase A of Milli-Q water: MeOH (95: 5) mixture and a mobile phase B of MeOH: Milli-Q 

water (95: 5) mixture, both containing 0.1% of formic acid, was used for gradient separation of the 

target analytes. The gradient profile started with 30% B which was increased to 50% in 4 min and 

maintained for 12 min. Then it was increased to 90% B where it was maintained constant for 10 min. 

Initial gradient conditions (30% B) were then achieved in 6 min, where it was finally held for another 

10 min (post-run step). ESI was carried out using a N2 flow rate of 12 L/min, a capillary voltage of 

3500 V, a nebuliser pressure of 45 psi, and a source temperature of 350°C. Both, negative and 

positive voltages, according to the target analytes, were simultaneously applied in a single injection.  

Quantification was performed in the selected reaction monitoring (SRM) acquisition mode. 

The instrumental details regarding the LC-MS/MS measurements, including precursor and product 

ions (m/z), collision energy (eV) and fragmentor voltage (V) values and polarity, as well as the 

instrumental limits of quantification (LOQs) are included in Table 3.2, Chapter 3. Instrumental 

operations, data acquisition and peak integration were performed with the MassHunter 

Workstation Software (Qualitative Analysis, Version B.06.00, Agilent Technologies). 

 

5.3 Results and discussion  

5.3.1 Recovery of the target analytes 

Recovery values obtained were in the range of 75-99% for all the analytes and for the three 

different polymeric materials (POCIS sorbent mix, Nylon membranes and PES hollow fibres). 

Repeatability in terms of relative standard deviations (n=3; RSDs) between 4 and 19% was obtained 
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in all the cases. In the case of blank samplers, none of the target analytes were detected in the 

materials, therefore, they were not considered for the recovery calculations.  

5.3.2 Compounds stability 

As reported in Table 5.2, some physicochemical parameters of seawater at the exposure tank 

were measured along the experiment. Temperature, conductivity and salinity were constant along 

the whole experiment with RSDs% lower than 5% and the redox potential values showed an RSD of 

21%.  

 

The concentrations of the compounds in the exposure tank were also monitored during the 

calibration period (14 days) (see Table 5.3). As a rule, these concentrations were kept under 

statistical control (average±2 x standard deviation, sd), except for PFOA and PFOS. Most of the 

target analytes showed concentrations around the nominal value ( ̴600 ng/L) except for norfloxacin, 

OBT and PFBS, which showed values around 800 ng/L, and for caffeine, with values close to 1 µg/L. 

On the contrary, PFOA, PFOS and progesterone showed concentrations (308-404 ng/L) lower than 

the nominal ones, which may be explained in terms of the evaporation losses from the stock 

solution during the fortification step or because the analytes tend to stick on the glass material used 

but no degradation was suspected since the concentrations remained constant during the 

calibration period.  

Table 5.2: Physic-chemical parameters of water measured during the experiment. 

Exposure Day 
Temperature 

(°C) 
pH 

Redox potential 

(ORP, mV) 

Conductivity 

(ms/cm) 

Dissolved oxygen 

(%) 

Salinity 

(psµ) 

0 13.8 7.4 143 40.5 98.3 33.8 

2 13.7 7.3 154 40.2 97.0 33.6 

4 13.6 7.1 141 40.2 99.8 33.8 

7 13.4 7.8 97 39.8 93.2 33.6 

9 13.3 7.6 156 39.6 92.3 33.4 

11 13.5 7.4 172 40.0 93.2 33.8 

14 13.6 7.6 98 40.0 86.6 33.6 

Average 13.6 7.5 137 40.0 94.3 33.7 

RSD% 1.3 3.1 21 0.7 4.7 0.4 
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Table 5.3: The sampling rate (Rs)±sd (mL/day) (n=7 and sd from the slope) and the coefficient of determination (r2) for POCIS 

sorbent, Nylon membrane and PES fibres, and average concentrations (14 days) in seawater (Cw, ng/L). For PES fibres the 

release kinetic constant (k2) is also included. 

Analyte 
POCIS Nylon PES 

Cw (ng/L) 
Rs r2 Rs r2 Rs k2 r2 

Acesulfame 4.2±0.3 0.97 n.e.s  n.e.s   593±53 

Acetaminophen 2.7±0.2 0.98 n.e.s.  n.e.s   694±46 

Amitriptyline 147±4 0.99 4.9±0.5 0.95 4±2 0.5±0.3 0.95 568±75 

Atrazine 294±15 0.98 26±2 0.96 7±2 0.4±0.1 0.98 675±36 

Bezafibrate 47±8 0.99 39±1 0.99 1.7±0.6 0.18±0.09 0.97 685±30 

Butylparaben 308±12 0.99 47±1 0.95 157±69 0.2±0.1 0.95 506±37 

Caffeine 55±4 0.96 n.e.s  n.e.s   1125±68 

Carbamazepine 370±18 0.99 15±1 0.97 3±1 0.2±0.1 0.91 634±35 

Diuron 409±11 0.99 18±2 0.95 44±9 0.3±0.1 0.99 597±31 

Irbesartan 232±8 0.99 46±3 0.99 17±4 0.3±0.1 0.98 595±46 

Ketoprofen 411±15 0.99 11.8±0.8 0.98 l.o.f   690±34 

Norfloxacin l.o.f  n.e.s  n.e.s   899±53 

OBT 263±15 0.98 3.6±0.3 0.95 43±9 0.3±0.1 0.98 756±62 

PFBS 277±14 0.98 n.e.s  10±6 1.1±0.8 0.97 793±51 

PFOA 491±24 0.99 23±2 0.97 n.e.s   324±68 

PFOS 144±5 0.99 43±2 0.99 l.o.f   212±63 

Phenytoin 426±17 0.99 34±2 0.98 8±5 0.2±0.2 0.90 671±29 

Progesterone 238±17 0.97 32±2 0.98 76±16 0.4±0.1 0.99 354±12 

Sulfadiazine l.o.f  n.e.s  n.e.s   581±79 

Telmisartan 68±1 0.99 50±4 0.98 27±5 0.3±0.1 0.99 469±25 

l.o.f The fit was not acceptable (lack of fit).  
n.e.s The uptake was too low to be considered (not enough sensitivity). 

 

5.3.3 Uptake kinetics 

The first step was the study of the uptake kinetics curves, in order to estimate the Rs of each 

compound in the POCIS sorbent, in the Nylon membranes and in the PES fibres. The exchange 

kinetics between a passive sampler and the bulk water phase has been extensively described in the 

literature (Górecki and Namieśnik, 2002; Vrana et al., 2005) and it is assumed to follow the model 

shown in Equation 5.1. 

𝐶𝑠(𝑡) = 𝐶𝑤 ·
𝑘1

𝑘2
⁄ · (1 − exp  (−𝑘2 · 𝑡))    Equation 5.1 

where Cs(t) is the concentration in the sampler at exposure time t, Cw is the concentration in 

water, and k1 and k2 the uptake and dissipation rate constants, respectively. Under the kinetic 
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regime, the uptake is directly proportional to exposure time, i.e. Equation 5.1 can be written as 

follows:  

𝑚𝑠(𝑡) = C𝑇𝑊𝐴 · 𝑅𝑠 · 𝑡    Equation 5.2 

where Rs (L/day) is the sampling rate, ms(t) is the mass of analyte in the sampler after a t 

exposure time and CTWA is the integrated average water concentration. The values of these 

integrated concentrations can be calculated from the values shown in Table I, Appendix.  

 

In the case of PES hollow fibres, Rs and k2 values were estimated from the non-linear fit to 

the exponential Equation 5.3 (Curvefit toolbox for Matlab 2012b): 

𝑚𝑠(𝑡) = 𝐶𝑇𝑊𝐴 ·
𝑅𝑠

𝑘2
· (1 − exp(−𝑘2 · 𝑡)) Equation 5.3 

The estimated fitting parameters (Rs values for POCIS and Rs and k2 for PES) and their 

respective sd are summarised in Table 5.3.  

As shown in Figure 5.1, as example, the uptake of atrazine is linear without any burst or lag 

effects in POCIS sorbent and Nylon membranes, but it follows an exponential shape for PES hollow 

fibres. These patterns are generally extended to all the compounds, except for norfloxacin and 

sulfadiazine in the case of POCIS sorbent, and acetaminophen, acesulfame, caffeine and PFBS for 

Nylon membranes.  

Most of the fits were statistically acceptable (r
2
≥ 0.90) but, since the accumulated mass of 

some particular compounds was close to the resolution of our analytical method (i.e. 

max(ms)<10 ng) the uptake was considered negligible. Consequently, as shown in Table 5.3, the 

three Rs values were reported only for amitriptyline, atrazine, bezafibrate, butylparaben, 

carbamazepine, diuron, irbesartan, OBT, phenytoin, progesterone and telmisartan. The highest Rs 

values were obtained in POCIS sorbent (between 2.7 mL/day for acetaminophen and 491 mL/day for 

PFOA) followed by Nylon membranes (between 3.6 mL/day for OBT and 50 mL/day for telmisartan) 

and the lowest were obtained in PES fibres (between 1.7 mL/day for bezafibrate and 157 mL/day for 

butylparaben). 
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Figure 5.1: Uptake plots of atrazine for the three evaluate passive samplers (POCIS sorbent, Nylon membrane 

and PES hollow fiber). The uptakes are plotted according to Equation 5.2 for POCIS sorbent and Nylon 

membranes (left Y axis) and according to Equation 5.3 for PES hollow fiber (right Y axis). 

 

Except for sulfadiazine and norfloxacin, the sorbent mixture used in the POCIS showed linear 

uptakes for all the compounds over the 14 days regardless of the nature of the compounds (i.e., 

acesulfame is a highly hydrophilic compound and PFOS is a surfactant negatively charged at the 

seawater pH value). The fact that sulfadiazine and norfloxacin forms strong metal-ligand complexes 

with cations typically present in seawater (e.g., Ca
2+

, Mg
2+

, Al
3+

, Fe
3+

), as reported in the literature 

(Gros et al., 2013; Gu and Karthikeyan, 2005; Schmitt and Schneider, 2000), may explain the lack of 

fit observed. Therefore, these two analytes were discarded and not considered in further 

experiments.  
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The comparison of the Rs values obtained in this work and those reported in the literature 

are summarised in Table 5.4. Regarding the POCIS sorbent, the Rs were comparable to those 

reported in the literature following equivalent procedures. Furthermore, to the best of our 

knowledge, the values of butylparaben, irbesartan, telmisartan and OBT were reported for the first 

time. The Rs values obtained in this work ranged between 0.0027 and 0.49 L/day with uncertainties 

between 2-5% (RSD) and they were slightly lower than those reported (0.03-2.78 L/day) by Belles et 

al. (Belles et al., 2013) using Nylon-POCIS configuration. The highest sampling rates (i.e. > 400 

mL/day) were obtained for diuron, ketoprofen, phenytoin, bezafibrate and PFOA, while Rs values of 

acesulfame (log D(pH=7.4)=- 3.1) and acetaminophen (log D(pH=7.4)=0.9) were remarkably lower. The use 

of Strata X-AW sorbent seems to play a remarkable role to improve the uptake of PFBS, PFOA and 

PFOS (Fedorova et al., 2013; Kaserzon et al., 2013, 2012; Li et al., 2016). Other works in the 

literature have shown that the modification of the type of sorbent in the POCIS sampler comes 

accompanied by the increase of the number of compounds that can be analysed (Iparraguirre et al., 

2017). 

It is also worth mentioning that the Rs values reported in this work for POCIS sorbent are 

similar to those estimated in different waters (seawater (Martínez Bueno et al., 2009), drinking 

water (Belles et al., 2014; Fauvelle et al., 2012; Kaserzon et al., 2012; Morin et al., 2012; Morrison 

and Belden, 2016a) and wastewater (Fedorova et al., 2013; Iparraguirre et al., 2017), which would 

offer a robust use of these samplers in estuarine or coastal waters. Additionally, the fact that the 

more acidic analytes could compete with seawater anions, such as phosphate, sulphate and/or 

chloride, for the anion exchanger sites, seemed to be non-relevant.  

In the case of Nylon membranes, it was able to estimate Rs values for also a high number (14 

of 20) of compounds (see Table 5.3). The net mass found in the Nylon membranes was much lower 

than that found in the POCIS sorbent (less than 10% for most of the compounds) except for PFOS, 

irbesartan and butylparaben, where values around 15% were achieved, and particularly, for 

telmisartan, with comparable accumulations. This fact suggests either a lower affinity for the Nylon 

membrane or an effective and fast diffusion transfer from the bulk solution to the sorbent through 

the pores of the membrane. 
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In the case of PES fibres, it is worth mentioning the faster uptake kinetics compared to the 

other two samplers. As shown in the uptake profile shown in Figure 5.1, the equilibrium was 

achieved in one week while, for the other two, the kinetic regime is still maintained after two weeks. 

The use of PES hollow fibres as passive samplers has been described in the literature for non-polar 

compounds (Posada-Ureta et al., 2016) and the reported Rs values are between 9 mL/day 

(chlorfenvinphos) to 130 mL/day (4,4’-DDT), which are of the same order of magnitude to those 

reported in this work.  

When the surface of both polymers is taken into account (i.e. 26.4 cm
2
 vs. 3.5 cm

2
 for Nylon 

and PES, respectively) the relative suitability or affinity of each sampler can be obtained. In this case, 

PES (0.48-45 mL/day) showed higher normalised Rs values than Nylon (0.14-1.89 mL/day) for most 

of the studied compounds (only bezafibrate showed a higher equivalent sampling rate in Nylon; 1.48 

vs. 0.48 mL/day). It would be more convenient to use Nylon membranes rather than PES ones in 

POCIS since the affinity for many contaminants is much lower and the transport across the 

membrane is faster. 

Finally, correlation coefficients of Rs values with some physicochemical features of the 

studied compounds (physico-chemical parameters included in Table 5.1) were calculated. In general 

terms, low and non-significant correlations (Abs(r) < 0.54, p-level > 0.05) were observed for most of 

the descriptors and Rs values and, only in the case of Nylon membrane (considered as an 

independent passive sampler), several significant correlations were observed, particularly the 

positive high correlation between Rs and polar surface area (r
2
=0.70) and Van der Waals accessible 

surface area (r
2
=0.74). These results suggest an uptake mode based on polar interactions between 

the molecules and the membrane that should be confirmed in future experiments. 
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Table 5.4. Compound wise comparison between the Rs obtained in this work and in the literature. 

Analyte Rs (mL/day) Matrix Sorbent 
Membrane  
(pore size) 

Reference 

Acesulfame 
4.2±0.3 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

80 Tap water Oasis HLB (220 mg) PES (0.1 μm) Sultana et al., 2017 

Acetaminophen 

2.7±0.2 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

2±14 Tap water Oasis HLB (200 mg) PES (0.1 μm) Miege et al., 2012 

n.d.
 

Tap water Oasis HLB (200 mg) PES (0.1 μm) Morin et al., 2012 

Amitriptyline 

147±4 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

120±70 Tap water Oasis HLB (200 mg) PES (0.1 µm) Belles et al., 2014 

180±130 Tap water Oasis HLB (200 mg) Nylon (30 µm) Belles et al., 2014 

Atrazine 

294±15 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

286±12 Tap water Oasis HLB (200 mg) PES (0.1 µm) Fauvelle et al., 2014 

263±8 Tap water Oasis HLB (200 mg) PES (0.1 μm) Fauvelle et al., 2012 

186±4 Tap water Oasis MAX (200 mg) PES (0.1 μm) Fauvelle et al., 2012 

103±4 Tap water Chromabond HR-X (200 mg) PES (0.1 μm) Fauvelle et al., 2012 

253±10 River Oasis HLB (200 mg) PES (0.1 μm) Fauvelle et al., 2012 

198±10 River Oasis MAX (200 mg) PES (0.1 μm) Fauvelle et al., 2012 

102±3 River Chromabond HR-X (200 mg) PES (0.1 μm) Fauvelle et al., 2012 

300±90 Tap water Oasis HLB (200 mg) PES (0.1 µm) Belles et al., 2014 

1111±760 Tap water Oasis HLB (200 mg) Nylon (30 µm) Belles et al., 2014 

929 Tap water Dowex optiporeL-493 (200 mg) Nylon (35 µm) Morrison et al., 2016 

994 Tap water Oasis HLB (200 mg) Nylon (35 µm) Morrison et al., 2016 

214 Seawater Oasis HLB (200 mg) PES (0.1 μm) 
Martinez-Bueno et al., 

2009 

189±6 Tap water Oasis HLB (200 mg) PES (0.1 μm) Morin et al., 2012 

Bezafibrate 
473±8 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

146±34 Tap water Oasis HLB (200 mg) PES (0.1 μm) Morin et al., 2012 

Butylparaben 308±12 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

Caffeine 

55±4 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

167 River water Oasis HLB (200 mg) PES (0.1 µm) Vermeirssen et al., 2012 

44±36 
Tap water with 

30 g/L NaCl 
Oasis HLB (200 mg) PES (0.1 µm) Bayen et al., 2014 

Carbamazepine 

370±18 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

497±15 
Tap water with 

30 g/L NaCl 
Oasis HLB (200 mg) PES (0.1 µm) Bayen et al., 2014 

354±42 Tap water Oasis HLB (200 mg) PES (0.1 µm) Li et al., 2011 

164±3 Tap water Oasis MAX(200 mg) PES (0.1 µm) Li et al., 2011 

248±38 Tap water Oasis MCX(200 mg) PES (0.1 µm) Li et al., 2011 

140±30 Tap water Oasis HLB (200 mg) PES (0.1 µm) Belles et al., 2014 

190±110 Tap water Oasis HLB (200 mg) Nylon (30 µm) Belles et al., 2014 

Diuron 

409±11 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

284±9 Tap water Oasis HLB (200 mg) PES (0.1 µm) Fauvelle et al., 2014 

258 River  Oasis HLB (200 mg) PES (0.1 µm) Vermeirssen et al., 2012 
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Table 5.4. Compound wise comparison between the Rs obtained in this work and in the literature. 

Analyte Rs (mL/day) Matrix Sorbent 
Membrane  
(pore size) 

Reference 

Diuron 

208±8 Tap water Oasis HLB (200 mg) PES (0.1 μm) Fauvelle et al., 2012 

162±5 Tap water Oasis MAX (200 mg) PES (0.1 μm) Fauvelle et al., 2012 

49±3 Tap water Chromabond HR-X (200 mg) PES (0.1 μm) Fauvelle et al., 2012 

212±6 River Oasis HLB (200 mg) PES (0.1 μm) Fauvelle et al., 2012 

164±10 River Oasis MAX (200 mg) PES (0.1 μm) Fauvelle et al., 2012 

56±3 River Chromabond HR-X (200 mg) PES (0.1 μm) Fauvelle et al., 2012 

330±100 Tap water Oasis HLB (200 mg) PES (0.1 µm) Belles et al., 2014 

1580±1050 Tap water Oasis HLB (200 mg) Nylon (30 µm) Belles et al., 2014 

86 Seawater Oasis HLB (200 mg) PES (0.1 μm Martinez-Bueno et al., 2009 

198±5 Tap water Oasis HLB (200 mg) PES (0.1 μm) Morin et al., 2012 

Irbesartan 232±8 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

Ketoprofen 

411±15 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

160±30 Tap water Oasis HLB (200 mg) PES (0.1 µm) Belles et al., 2014 

520±410 Tap water Oasis HLB (200 mg) Nylon (30 µm) Belles et al., 2014 

118±7 Tap water Oasis HLB (200 mg) PES (0.1 μm) Morin et al., 2012 

OBT 263±15 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

PFBS 

277±14 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

n.d. WWTP effluent Oasis HLB (200 mg) PES (0.1 μm) Fedorova et al., 2013 

370±70 Drinking water Strata X-AW 600 mg PES (0.45 μm) Kaserzon et al., 2012 

PFOA 

491±24 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

n.d. WWTP effluent Oasis HLB (200 mg) PES (0.1 μm) Fedorova et al., 2013 

160±10 Tap water Strata X-AW 600 mg PES (0.45 μm) Kaserzon et al., 2012 

PFOS 

144±5 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

222±35 WWTP effluent Oasis HLB (200 mg) PES (0.1 μm) Fedorova et al., 2013 

360±80 Tap water Strata X-AW 600 mg PES (0.45 μm) Kaserzon et al., 2012 

Phenytoin 
426±17 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

557±120 Tap water Oasis HLB (200 mg) PES (0.1 µm) Bayen et al., 2014 

Progesterone 

238±17 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

346±8 Tap water Oasis HLB (200 mg) PES (0.1 μm) Morin et al., 2012 

47±4 Tap water Oasis HLB (200 mg) PES (0.1 μm) Vallejo et al., 2013 

Telmisartan 68±1 Seawater Strata X-AW and Plexa (200 mg) Nylon (30 µm) This work 

MAX: strong anion exchange, n.d.: not detected, PES: polyethersulfone, Rs: sampling rate, X-AW: weak anion exchange. 
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5.3.4 Evaluation of the PRC suitability 

It is generally assumed that a PRC can be accepted if the regression lines for dissipation show 

good fittings (r
2
 > 0.90) and the dissipation takes place among a significant range of masses (i.e. 20-

80% of the initially spiked mass) to assure the analytical resolution of the retained fraction. Besides, 

PRCs can be applied only when it is demonstrated that the kinetics of a compound uptake and 

release are isokinetic, i.e. characterised by rate constants that are equal or close to each other. 

As shown in Figure 5.2, the elimination constants (ke) from the POCIS sorbent (Figure 5.2a) 

and PES (Figure 5.2b) were determined according to Equation 5.4, where mt and m0 (ng) 

corresponds to the amount of analyte in the sorbent at t days and at 0 day of exposure. 

ln (
𝑚𝑡

𝑚0
) = 𝑘𝑒 𝑡   Equation 5.4 

In the case of POCIS, [
2
H9]-progesterone, [

2
H5]-atrazine and [

2
H3]-amitriptyline fulfilled the 

above mentioned conditions, with maximum dissipation in the range of 68-90% and linear 

regression coefficients higher than 0.98. The dissipation of [
2
H9]-progesterone showed a short lag of 

one-two days that were not observed in the case of the other two PRCs. The values of the ke (L/day) 

obtained were - 0.19±0.01 for [
2
H9]-progesterone, -0.099±0.006 for [

2
H5]-atrazine and -0.19±0.01 

for [
2
H3]-amitriptyline.  

On the other hand, in the case of PES fibres, a non-linear dissipation was observed after 7 

days of exposure, as it happened for the uptake, and therefore the linear plots could only be built 

during the first week of exposure. In this case, only [
2
H9]-progesterone and [

2
H5]-atrazine showed 

good fittings (r
2 

> 0.95), but since the maximum dissipation was lower (< 25%) we did not consider 

them for any further correction. The values of ke were -0.178±0.005 L/day for [
2
H5]-atrazine and -

0.103±0.003 L/day for [
2
H9]-progesterone. 

In the literature, only few studies have reported the use of labelled analogues as PRC 

candidates in this kind of passive samplers. Belles et al. (Belles et al., 2014) reported the use of [
2
H5]-

desisopropyl-atrazine ([
2
H5]-DIA), [

13
C3]-caffeine and [

2
H3]-salbutamol and they did not observe 

significant differences in the dissipation rates. On the other hand, Fauvelle et al. (Fauvelle et al., 

2012) used two different deuterated analogues ([
2
H5]-DIA and [

2
H3]-dicamba) in different POCIS 
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configurations, and only [
2
H5]-DIA provided good results when Oasis-MAX sorbent was used. 

Moreover, first order PRC elimination from POCIS-Nylon configuration was demonstrated for [
13

C3]-

caffeine, cotinine-d3 and [
2
H5]-DIA (Morrison and Belden, 2016b); however, no discernible 

elimination was observed for [
2
H5]-atrazine, [

2
H10]-fluoranthene and lindane. Therefore, it can be 

concluded that the selection of a PRC and its suitability is intimately related to the features of the 

membranes and the sorbents used in POCIS. 

 

 

 

Figure 5.2: Dissipation plots of the PRCs for a) the POCIS sorbent and b) PES hollow fiber. In the former case the 

plots of [
2
H5]-atrazine, [

2
H9]-progesterone and [

2
H3]-amitriptyline are shown and in the later those of             

[
2
H5]-atrazine and [

2
H9]-progesterone. In both cases, the dissipation has been plotted according to Equation 5.4. 
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Besides, the suitability of the PRCs was also tested in an internal validation. As mentioned in 

section 5.2.3, some of the POCIS and PES fibres were removed from the tank on day 7
th

 of the 

calibration experiment and additional new replicates (n=2) of POCIS and PES samplers added and 

removed 4 and 7 days later, aiming to be used as an “external” validation set and to check the 

robustness of the calibration process and the estimated Rs values. The samplers that were shifted 

showed more rust than those introduced at the beginning of the experiment. This particular fact 

could be considered as a kind of biofouling effect and therefore, it offered the chance to recalculate 

 CTWA
  for each analyte based on the correction of the laboratory Rs values and the kinetic 

elimination constants, as shown in Equation 5.5: 

𝑅𝑠𝑐𝑜𝑟𝑟 =  (
𝑘𝑒 𝑖𝑛𝑡.𝑣𝑎𝑙

𝑘𝑒 𝑐𝑎𝑙
) ×  𝑅𝑆  Equation 5.5 

where ke,cal is the elimination constant estimated in the calibration process, and ke int.val is the 

value estimated directly from the validation samples after applying Equation 5.4.  

Assuming that the average water concentrations, i.e. based on samples at each sampling day 

(and shown in Table 5.3), are good reference values, these average values were plotted against the 

estimated CTWA values from the non-corrected and corrected Rs values. As shown in Figure 5.3 for 

7-day samples and with the [
2
H5]-atrazine correction, the slope of this plot was 1.0, while the non-

corrected one was 0.7. Similar results were obtained when [
2
H3]-amitriptyline was used as PRC (i.e. 

slopes of 0.6 and 0.85 for the non-corrected and corrected results, respectively). In the case of PES 

fibres, as expected from the low dissipation rates, the PRC corrections did not provide good results. 

It should be highlighted, that no dramatic differences were observed between time-integrated 

passive sampler and active sampler concentrations, since the  CTWA systematically overestimates 

the water concentrations from spot samples by approximately 50-100 ng/L. 
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Figure 5.3: Comparison of spot analysis (SPE) average concentrations and Cw (ng/L) values obtained using POCIS 

passive sampling approach corrected with [
2
H5]-atrazine after 7 days of exposure. The error bars in both axes 

are the standard deviation of the measured and estimated concentrations. 

 

5.4 Conclusions 

The main achievements of this work can be summarised as follows. First, the calibration of 

the POCIS uptake of a large number of emerging contaminants was carried out satisfactorily using 

an innovative sorbent mixture (Strata X-AW and HLB Plexa) and using Nylon as a supporting 

membrane, which enables the analysis of a wide range of organic compounds. This new POCIS 

sampling device showed the feasibility of the simultaneous uptake of hydrophilic, acidic and basic 

compounds, together with the low interference and the good hydrodynamic behaviour of Nylon. 

Second, the use of POCIS samplers and the [
2
H5]-atrazine as PRC allowed the efficient correction of 

the  CW
TWA values of target analytes. It should be highlighted that in spite of not considering a 

composite active sample, a reasonable agreement was found between grab sampling values and the 

ones derived from laboratory calibration of POCIS in seawater after PRC corrections. 

Finally, POCIS was applied to the analysis of the target compounds in estuaries of Biscay, as 

will be described in chapter 7.  
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6.1 Introduction 

The analysis of the so-called emerging contaminants, i.e. the potentially hazardous 

compounds that are not under any environmental regulation (Postigo and Barceló, 2015), is facing a 

number of methodological challenges. Among them, we can highlight the development and 

implementation of suitable high-throughput methods following the suspect and non-target 

screening procedures (Schymanski et al., 2015), the design of proper extraction and 

preconcentration procedures allowing the screening of the widest variety of compounds in a single 

run, and the strategies to assure the integrity of the samples up to the analysis should be kept into 

account, since most of the compounds considered are bioactive and their lack of stability can 

hamper all the analytical efforts (Baker and Kasprzyk-Hordern, 2011a; Fedorova et al., 2014; 

Petrovic, 2014). 

Regarding the last point, however, we tend to assume the integrity of the analytes during the 

sampling step while the storage of the samples should assure their stability, as pointed out recently 

(Analytical Methods Committee, 2015). The increasing interest for the analysis of contaminants of 

emerging concern, the extended use of passive sampling (PS) methods (Miège et al., 2015) and the 

management requirements when a large number of samples are being processed, have opened the 

discussion about the stability of the samples as well as the best approaches to assure their 

preservation. In this sense, we can highlight the review for pharmaceuticals in natural waters by 

Mompelat et al. (Mompelat et al., 2013), the analysis of illicit drugs in sewers and wastewaters by 

McCall et al. (McCall et al., 2016) or the analysis of antibiotics by Llorca et al. (Llorca et al., 2014). 

Concerning to the PS methods and its increasing use (Miège et al., 2015), new sampling 

methodologies such as semipermeable membrane devices (Sultana et al., 2017), Chemcatcher 

(Kaserzon et al., 2014; Vermeirssen et al., 2012), and polar organic chemical integrative samplers 

(POCIS) (Iparraguirre et al., 2017; Mijangos, 2018b; Vallejo et al., 2013), allow the direct analysis 

from water matrices avoiding, to some extent, the stability issues. However, issues such as the 

preservation of compounds in different sorbents during the PS may arise, as pointed by Carlson et 

al. (Carlson et al., 2013).  

As pointed before, labile analytes such as pharmaceuticals and pesticides are bioactive and 
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hence may undergo different chemical, physical and biological processes from the sampling up to 

the analysis (Fatta-Kassinos et al., 2011). Thus, depending on stability, quantifying a compound that 

has been released several hours previously may, in fact, lead to a significant under estimation of the 

actual amount of residue present. As a consequence, the procedures and strategies to collect and 

handle the samples are usually guided by the compliance to the existing regulations or to the good 

laboratory procedures (Baker and Kasprzyk-Hordern, 2011a; Mompelat et al., 2013). Typically, the 

factors studied are the influence of suspended solids (Baker and Kasprzyk-Hordern, 2011a), the 

addition of a preserving agent (González-Mariño et al., 2010; Llorca et al., 2014) and the storage 

conditions (temperature, pH and time) (Baker and Kasprzyk-Hordern, 2011a; Mompelat et al., 2013).  

One of the favourite options is the use of solid phase extraction (SPE) cartridges (Ferrer et al., 

2011; González-Mariño et al., 2010; Petrović and Barceló, 2000; Turiel et al., 2004) because we gain 

the extraction of the analytes and we save a lot of space in the labs. On the other hand, the growing 

interest for passive samplers such as POCIS (Carlson et al., 2013) can provide simplified procedures 

to sampler store, but we lack the knowledge regarding the sorptive features on the different 

polymers in short and long-term storage. The effect of wettability on the performance of polymers-

stability and properties has been studied in the literature (Sharma and Bijwe, 2012), although it is 

not explored its effect on the analytes stability.  

Therefore, the aim of this work was to evaluate of the stability of 23 organic contaminants 

(21 emerging compounds and 2 priority contaminants) in seawater during one month and under 

different preservation procedures. For this purpose, four different preservation modes were tested: 

(i) seawater samples stored at 4
o
C, (ii) preconcentration of spiked seawater in a SPE cartridge with a 

mixture of Bond Elute Plexa and Strata X-AW sorbents (commonly used as passive sampler sorbents 

(Fauvelle et al., 2012; Kaserzon et al., 2014, 2012; Mijangos, 2018b)) and stored at −20
o
C, (iii) 

preconcentration in a polyethersulfone (PES) hollow fibres (disposable polymeric materials used in 

microextraction techniques (Bizkarguenaga et al., 2015; Blanco-Zubiaguirre et al., 2014a; Mijangos 

et al., 2018a; Prieto et al., 2010)) and stored at −20°C and finally, (iv) the storage of methanol 

extracts at −20
o
C. The target analytes include herbicides, hormones, life style products (stimulants 

and artificial sweeteners), personal care products, phytoestrogens, industrial chemicals (corrosion 

inhibitor and perfluoroalkyl substances) and pharmaceuticals (dihydrofolate reductase inhibitor, 
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fluoroquionolones, sulfonamides, dihydrofolate reductase inhibitor (DHFR inhibitor), tricyclic 

antidepressants, antihypertensives, anti-inflammatories, β-blocker cardiovascular drugs, lipid-

regulatings, angiotensin II receptor antagonists [ARA-IIs] and anticonvulsant psychiatric drug). 

Additionally, supporting polymeric phases (PES, Plexa and Strata X-AW) integrity was also evaluated 

by means of Raman spectroscopy, optical microscopy and differential scanning calorimetric and 

thermogravimetrical analysis. 

 

6.2 Experimental section 

6.2.1 Reagents and materials  

The selection of the target pollutants was carried out taking into account their presence and 

relevance on the environment (Brack et al., 2017; Busch et al., 2016; Tousova et al., 2017). 

According to these criteria, 23 organic pollutants with urban, rural and industrial use were selected, 

which cover a wide variety of physico-chemical properties as shown in Table 6.1, including some 

physico-chemical parameters.  

2-hydroxybenzothiazole (OBT), amitriptyline hydrochloride, butylparaben, caffeine, 

carbamazepine, perfluorooctane sulfonic acid (PFOS), imipramine hydrochloride, Perfluoro-1-

butanesulfonate (PFBS), progesterone and sulfadiazine were purchased from Sigma-Aldrich (St. 

Louis, MO, USA). Atrazine, diuron, norfloxacin hydrochloride, sulfamethoxazole and trimethoprim 

were acquired from Fluka (Buchs, Switzerland). Acesulfame potassium was supplied by Supelco 

(Bellefonte, PA, USA), and ketoprofen, bezafibrate and propranolol were acquired from MP 

biomedicals (Illkirch Cedex, France). Genistein and genistin were purchased from Extrasynthese 

(Lyon, France), perfluorooctanesulfonamide (PFOSA) from Dr. Ehrenstofer (Augsburg, Germany), 

and irbesartan from Sanofi (Paris, France). The purity of all the target analytes was higher than 95%. 

Individual stock standard solutions were dissolved on a weight basis in methanol (MeOH, 

UHPLC-MS MeOH, Scharlab, Barcelona, Spain) in order to prepare approximately 1000-2500 mg/L 

solutions. However, the addition of 100 µL sodium hydroxide 1 mol/L (NaOH, 98%, Panreac, 

Barcelona, Spain) was necessary for the proper dissolution of fluoroquinolone antibiotics as 
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described by Gros et al. (Gros et al., 2013). 100 mg/L dilutions were prepared in MeOH every month 

and dilutions at lower concentrations containing all analytes were prepared daily in MeOH: Milli-Q 

(30: 70, v: v). All the chemicals standards solutions were stored at −20 °C.  

 

Individual stock standard solutions were dissolved on a weight basis in methanol (MeOH, 

UHPLC-MS MeOH, Scharlab, Barcelona, Spain) in order to prepare approximately 1000-2500 mg/L 

solutions. However, the addition of 100 µL sodium hydroxide 1 mol/L (NaOH, 98%, Panreac, 

Barcelona, Spain) was necessary for the proper dissolution of fluoroquinolone antibiotics as 

described by Gros et al. (Gros et al., 2013). 100 mg/L dilutions were prepared in MeOH every month 

and dilutions at lower concentrations containing all analytes were prepared daily in MeOH: Milli-Q 

(30: 70, v: v). All the chemicals standards solutions were stored at −20 °C.  

Table 6.1: Physico-chemical parameters of the target analytes. 

Analyte pKa
a log Pa Log Da  

pH=2; pH=10 
Solubility a  

(mg/L) 

OBT 6.4 2.5 2.5; 0.9 2.4·103 

Acesulfame 3.0 -0.6 -0.6; -1.5 9.1·10
8
 

Amitriptyline 9.8 4.8 2.5 0.8 

Atrazine 3.2; 14.5 2.2 2.2 214.1 

Bezafibrate -0.8; 3.8 4.0 0.7 1.2·103 

Butylparaben 8.5 3.0 3.0 207 

Caffeine -1.1 -0.6 -0.6 1.6·10
3
 

Carbamazepine 16.0 2.8 2.8 17.6 

Diuron 13.2 2.5 2.5 150 

Genistein 6.6; 8.1; 9.0 3.1 2.1 257 

Genistin 7.3; 9.0; 12.2 0.8 0.4 1.4·103 

Imipramine 9.2 4.3 2.5 1.0·103 

Irbesartan 4.1; 5.8 5.4 4.2 0.06 

Ketoprofen 3.9 3.6 0.4 120 

Norfloxacin 5.8 -0.9 -0.9 1.2·108 

PFBS -3.0 2.6 0.2 8.4·104 

PFOS -3.3 5.4 3.0 520 

PFOSA 3.4 4.8 3.9 - 

Progesterone -4.8 4.2 4.2 5·103 

Propranolol 9.7; 14.1 2.6 0.4 228 

Sulfadiazine 2.0; 7.0 0.4 -0.1 8.0·104 

Sulfamethoxazole 2.0; 6.2 0.8 0.0 3.9·104 

Trimethoprim 7.2 1.3 1.1 2.33·103 
a Values reported in the Free Data Base www.chemicalize.org 

 

http://www.chemicalize.org/
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The most relevant characteristics and suppliers of the polymers evaluated in the present 

work are listed in Table 6.2. Empty SPE tubes (6 mL) and polypropylene (PP) frites were purchased 

from Supelco. PES hollow fibres agitation was carried out using 150 mL glass vessels provided by 

ServiQuimia (Tarragona, Spain) in a 15 position magnetic stirrer (Gerstel, Mülheim an der Ruhr, 

Germany). Desorption was made in 1.5 mL Eppendorf tubes purchased from Eppendorf (Berzdorf, 

Germany) using a Digital Ultrasonic Cleaner (2500 mL, USB Axtor by Lovango, Barcelona, Spain). 

Ethylenediaminetetraacetic acid (EDTA, 99.0-101.1%, Panreac), formic acid (HCOOH  98%, 

Scharlau, Barcelona, Spain), ammonia (25% as NH3, Panreac) and sodium chloride (NaCl, > 99.8%, 

Merck) were used for matrix modification and elution step. MeOH (HPLC grade, 99.9%) was supplied 

by LabScan (Dublin, Ireland).  

Table 6.2. Main characteristics of the materials evaluated. 

Polymer Chemical structure Mode of action Characteristics 

Polyethersulfone (Hollow fibre) 

 

Reverse phase 
External diameter: 0.7 mm 

Porosity 87% 

Bond Elute Plexa (Bulk) 
Hydrophilic styrene 

divinylbenzene  

(structure not provide) 
Reverse phase 

Particle size: 45 µm 
Pore size: 160 Å 

Strata X-AW (Bulk) 

 

Weak anion 
mixed mode 

Particle size: 30 µm 
Pore size: 85 Å 

 

The extracts were evaporated using a Turbovap LV Evaporator (Zymark, Hopkinton, USA) 

under a gentle stream of nitrogen (> 99.999% of purity) supplied by Messer (Tarragona, Spain). The 

extracts were filtered through PP filters (0.22 µm, 13 mm, Phenomenex, California, USA). Milli-Q 

(< 0.05 μS/cm, Milli-Q, Millipore) water and UHPLC-MS MeOH (Optima, Scharlau, Barcelona, Spain) 

were used as mobile phase eluents and HCOOH (Optima, Fischer Scientific, Geel, Belgium) for 

mobile phase modification. High purity nitrogen gas (99.999%) supplied by Messer was used as 

collision gas and nitrogen gas (99.999%) provided by AIR Liquid (Madrid, Spain) was used as both 

nebuliser and drying gas. 
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6.2.2 Stability tests 

The removal of suspended particulates from water samples may avoid further degradation or 

losses of analytes through their adsorption onto the solid particles, but the retention of these 

analytes in the filters should be also thoroughly considered (Baker and Kasprzyk-Hordern, 2011a; 

Petrovic, 2014). In this sense, unfiltered seawater samples were collected in 2 L PP bottles as 

previously described by (Llorca et al., 2014) from the Plentzia Marine Station (PiE-UPV/EHU, Basque 

Country, Northern Spain) and used for the stability experiments. 

The experiments were carried out spiking the seawater (100 mL) with a mixture of the 23 

analytes at a final concentration of ~200 ng/L each one. In parallel to the spiked samples, a non-

spiked control sample (blank) was also processed in duplicate alongside each of the stability tests 

and at the same conditions. The experiments were performed in triplicate for each preservation 

mode at 6 different sampling times (after 0, 3, 10, 17, 24 and 31 days) and all the samples were 

analysed at the same day by LC-MS/MS (Mijangos et al., 2018a) (see section 6.2.4).  

In the case of preservation mode (i), 100 mL of unfiltered seawater were stored at 4°C in the 

pre-cleaned PP bottles. In the case of mode (ii), 200 mg SPE cartridges (a 1:1 mixture of Strata X-AW 

and Plexa, as the sorbent composition used for passive sampler previously published (see chapter 5) 

were prepared from 100 mL spiked seawater samples. SPE cartridges were sequentially conditioned 

with 5 mL of MeOH and 5 mL of Milli-Q water. Then the water sample (100 mL) was percolated 

through the cartridge assisted by a vacuum pump at ca. 5 mL/min. In the case of mode (iii), 4 pre-

cleaned PES hollow fibres of 4 cm (final weight of aprox. 50 mg) were used, according to the 

previously published work (Mijangos et al., 2018a). First of all, the fibres were cut using a sharp 

blade and conditioned by soaking overnight in MeOH and air dried. Two aliquots of 120 mL of spiked 

seawater (dual extraction) were directly poured into 150 mL extraction vessels and NaCl and EDTA 

were added to achieve final concentrations of 30% (w/v) and 0.1% (w/w), respectively. The pH of 

each aliquot was fixed at pH=2 and pH=10 and, finally, hollow fibres and a magnetic stirrer were also 

added. Thereafter, vessels were closed and extraction was performed at room temperature (RT) and 

at 800 rpm overnight. Once the sorption step was over, the polymers were removed and rinsed with 

Milli-Q water in order to eliminate salt residues, and finally, dried with a clean tissue and stored in 
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an air-tight freezer bag at −20
o
C. Finally, in the case of mode (iv) PES fibres were used following the 

extraction procedure described before, and once the extraction was accomplished the fibres were 

introduced into a 1.5 mL Eppendorf tube containing 1 mL of MeOH and soaked for 32 min in an 

ultrasound bath and then, the methanolic extracts were stored in Eppendorf tubes at −20
o
C. 

To run the analysis (18 aliquots per preservation mode), water samples (mode (i)) were 

extracted by SPE cartridges according to the previously published work (Mijangos et al., 2018a) . In 

the case of mode (ii)) the cartridges were washed with 6 mL of Milli-Q water, vacuum dried and 

eluted with 6 mL of 2.5% (v/v) NH3 solution in MeOH followed by 6 mL of MeOH (Mijangos, 2018b). 

All the extraction solutions from modes (i-iv) were always evaporated to dryness under a gentle 

stream of nitrogen at 35°C and reconstituted in 200 μL of MeOH: Milli-Q (30: 70, v: v). Finally, the 

reconstituted extracts were filtered through a 0.2 μm PP filter before the LC-MS/MS analysis.  

The target analytes stability was calculated according to Equation 6.1, and a 100% result 

represents a lack of analytes losses or degradation,  

  Recovery (%) = 100 x 
𝐴𝑥,𝑠𝑝

𝑖 −  𝐴𝑥,𝑛𝑠𝑝
𝑖

𝐴𝑥,𝑠𝑝
0 − 𝐴𝑥,𝑛𝑠𝑝

0   Equation 6.1 

where 𝐴𝑥,𝑠𝑝
𝑖  and 𝐴𝑥,𝑛𝑠𝑝

𝑖  correspond to the chromatographic peak areas of analyte x from the 

spiked (sp) and non-spiked (nsp) samples, respectively, at time i, and 𝐴𝑥,𝑠𝑝
0  and 𝐴𝑥,𝑛𝑠𝑝

0  are the 

corresponding peak areas at day 0. A significant (mean) loss of 30% in the recovery of the analytes 

was chosen to point out the lack of stability during a given storage preservation mode and time, 

since the precision attributable to an analytical method, expressed as relative standard deviation, 

RSD (%) (inter-day precision) must be ≤30% according to the European Commission decision 

2002/657/EC (European Commission, 2002).  

6.2.3 Characterisation of sorptive materials  

PES, Plexa and Strata X-AW were individually examined prior and after storage at -20°C and 

RT for a month. The surface and the cross section of the polymers materials were examined by a 

Nikon SMZ800 stereomicroscope coupled to a NIKON DS-RI1 at x 40 magnifications. Chemical 

characterisation of the sorptive materials was assured by means of Raman spectroscopy. They were 
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analysed using a portable Renishaw RA 100 Raman spectrometer (Renishaw, Gloucestershire, UK) 

using either the 785 nm or the 514 nm excitation laser. Measured scans were accumulated during    

50 s at 100% of the maximum power of the used laser. The homogeneity of the PES hollow fibre was 

tested by acquiring longitudinally ten Raman spectra per fibre (one measurement per 1.5 mm). The 

software used to collect and process the Raman spectra was BWspec4 and Omnic (Nicolet, Madison, 

WI, USA).  

The wettability and thermal stability of the polymeric materials were studied by differential 

scanning calorimeter (DSC) by a Mettler Toledo Differential Scanning Calorimeter instrument (model 

DSC822). 10 mg of each polymeric material were subjected to 5 sequential heating/cooling cycles: 

the first 4 were done consecutively and the 5
th

 run was performed after having the polymer one 

hour out of the measuring chamber (nitrogen ambient). Temperatures range was from 0°C to 200°C 

and the scanning rate was of 20
o
C/min. Furthermore, a thermogravimetric analysis (TGA) was 

performed in a Mettler Toledo TGA/SDTA 851 system. 10 mg of solid phase samples were kept 

during 30 min at 20°C prior to the measurement and then heated from 20 to 800
o
C. The scanning 

rate was 10
o
C/min and all measurements were carried out under nitrogen atmosphere. 

6.2.4 Liquid chromatography tandem mass spectrometry analysis 

An Agilent 1260 series HPLC chromatograph equipped with a degasser, binary pump, 

autosampler and a column oven coupled to an Agilent 6430 triple quadrupole (QqQ) mass 

spectrometer with electrospray ionisation (ESI) source (Palo Alto, CA, USA) was employed. For 

analyte separation: a Kinetex F5 100 Å core-shell (2.1 mm × 100 mm, 2.6 m) column coupled to a 

Kinetex F5 pre-column (2.1 mm x 4.6 mm, 2.6 m from Phenomenex (Torrance, CA, USA) was used. 

The column temperature and the injection volume were set to 35°C and 5 L, respectively. The 

separation of the target analytes was carried out at a flow rate of 0.3 mL/min. Under optimised 

conditions (Mijangos et al., 2018a) a binary mixture consisting of water: MeOH (95: 5, v: v) (Phase A) 

and MeOH: water (95: 5, v: v) (Phase B), both containing 0.1% of HCOOH were used for gradient 

separation of target analytes. The gradient profile started with 30% B and it was increased to 50% in 

4 min and maintained for 12 min. Then it was increased to 90% B, and it was kept constant for 10 

min. Initial gradient conditions (30% B) were then recovered in 6 min, held constant for another 10 
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min (post-run step). ESI was carried out using a nitrogen flow rate of 12 L/min, a capillary voltage of 

3500 V, a nebuliser pressure of 45 psi, and a source temperature of 350
o
C. Quantification was 

performed in the selected reaction monitoring (SRM) acquisition mode by recording the two most 

intense transitions for each analyte (the most sensitive was chosen as the quantifier and the second 

one as qualifier) when it was possible. Both, negative and positive voltages, according to the target 

analytes, were simultaneously applied in a single injection. Optimum parameter values for each 

target compound and the limit of quantifications (LOQs) are summarised in Table 3.2 in Chapter 3. 

Instrumental operations, data acquisition and peak integration were performed with the 

MassHunter Workstation Software (v B.06.00, Agilent Technologies). 

 

6.3 Results and discussion  

6.3.1 Quality control  

The analytical figures of merit in real spiked seawater samples (n=3, 100 ng/L) of both, the 

previously published PES-LC-MS/MS methodology and in the case of SPE-LC-MS/MS method 

(Mijangos et al., 2018a) are summarised in Chapter 3. The quantification of the target analytes in 

real seawater was carried out using an external calibration together with surrogate corrections 

approach for SPE, while in the case of PES method a procedural calibration with Milli-Q using 

isotopically labelled analogues as surrogates was used. In this sense, extraction efficiency, apparent 

recovery and method quantification limits (MQLs) were determined. MQLs were calculated using 

the Equation 6.2 (Baker and Kasprzyk-Hordern, 2011b; Huntscha et al., 2012; Kasprzyk-Hordern et 

al., 2008; Vieno et al., 2006). 

𝑀𝑄𝐿 =
𝐿𝑂𝑄 × 1000

𝑃𝐸 (%) × 𝐶𝐹
   Equation 6.2 

where LOQ (ng/mL) is the instrumental quantification limit (included in Table 3.2, chapter 3) 

PE (%) is the process efficiency of the analyte in the corresponding matrix (see Table 3.5), and CF is 

the analyte concentration factor according to the developed procedures. 

Additionally, during the samples treatment, control samples (samples spiked at known 
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concentration level, n=3) and procedural blanks (n=3) were analysed periodically every 12-15 

samples. RSDs in the range of 3-30% were obtained for all the analytes and concentrations lower 

than their MQLs were obtained in the case of blanks for the target compounds. 

6.3.2 Characterisation of sorptive materials 

The polymers used in the present study (Plexa, Strata X-AW and PES) were characterized 

chemically before the stability test was assessed. Raman spectrometry was carried out before and 

after being storing at -20°C and RT for a month (see Figure 6.1 for the PES hollow fibre).  

 

Figure 6.1 Raman spectra of PES hollow fibres at two different storage temperatures: room temperature (up) 

and -20°C (down). 

 

Good quality Raman spectra were obtained for all the sorptive phases before and after 

storing and no differences were observed at the two temperatures. PES hollow fibres were highly 

homogeneous since all the measurements taken from a short piece of tube provided the same 

spectra and the same intensities. The characteristic Raman bands for PES hollow fibre were 

consistent with the spectra data published in the literature (Blanco-Zubiaguirre et al., 2014a; Cao et 

al., 2011; Sharma and Bijwe, 2012). With 785 nm laser, the main peak observed were at 1146.9 cm
−1

 

corresponding to the symmetric C–O–C stretching (see Table 6.2 for the chemical structure). 

Additional peaks at 1074.4 cm
−1

 and 1106.9 cm
−1

 are for symmetric and asymmetric SO2 stretching, 
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respectively; peaks at 628.9 cm
−1

 shows C–S stretching; 790.8 cm
−1

 shows the out-of-plane C–H 

deformation; and 1580.2 cm
−1

 and 1601.1 cm
−1

 are for phenyl ring vibration. According to Strata X-

AW-structure (see Table 6.2), the main peak was observed at 1440.9 cm
−1

 corresponding to C-H 

stretching (1400-1470 cm
−1

) and 1602.4 cm
−1 

correspond to the phenyl ring vibration. Additional 

peaks at 2868.2-2913.2 cm
−1

 are for the C-H stretching (2800-3000 cm
−1

). In the case of Plexa as its 

specific chemical structure is unknown it was not possible to compare the Raman spectra with its 

structure, however the same spectra feature was observed at the different temperatures (the main 

peaks observed were at 1001.6, 1589.3 and 1610.0 cm
−1

).  

The alterations of the sorptive surface before and after storage at -20°C were analysed by a 

Microscopic analysis. The photographs of skin surface of the polymers were taken under identical 

magnification as shown in Figure 6.2a-c. Figure 6.2c-d did not show difference related to the ridges 

along the length of PES hollow fibres, however, the fibre wall thickness (see Figure 6.2e-f) was found 

to be reduced by the addition water (Bolong et al., 2009). As it can be seen in Figure 6.2h-i and 6.2k-l 

for bulk Plexa and Strata X-AW, respectively, there was no major morphological changes in the 

surface of the polymers.  

Additionally, thermal degradation of polymers stored at low temperatures was studied by 

running a TGA curve as shown in Figure 6.3a-d. In the case of PES hollow fibre, the thermal 

characteristics obtained from TGA and first derived thermogravimetric (DTG) curves before storage 

and after low temperature storage are different as can be seen in Figure 6.3a and 6.3b, respectively. 

When the fibres were kept at RT a significant weight loss temperature was observed at 550°C and 

attributed to the decomposition of polymer main chain (Cao et al., 2011; Guan et al., 2005; Sharma 

and Bijwe, 2012). When PES fibres were kept at -20°C for one month an additional sharp weight 

(35% of the total mass) can be seen at 100°C, and this loss can be related to the desorption of 

water. These results are in total agreement with published data (Cao et al., 2011; Guan et al., 2005; 

Sharma and Bijwe, 2012) where it was observed that water can be bonded through the sulfonic 

groups of PES polymer. Plexa and Strata X-AW did not show any significant changes (see   

Figure 6.3c-d) in thermal behaviour, the weight loss origin from water content was <5% in both 

cases.  
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Figure 6.2. Photographs of polymers surface studied before and after storage at -20°C for one month a) 

Overall view of PES hollow fibre before storage, b) overall view of PES hollow fibre after storage, c) ridges along 

the length of PES polymer before storage, d) ridges along the length of PES polymer after storage, e) cross 

section of PES polymer before storage, f) cross section of PES polymer after storage, g) overall view of Plexa bulk 

polymer, h) Plexa particles before storage, i) Plexa particles after storage, j) overall view of Strata X-AW bulk 

polymer, k) Strata X-AW particles before storage and l) Strata X-AW particles after storage. 
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Figure 6.3. Thermogravimetric (TGA) curve (left axis, line) and first derivate thermogravimetric (DTG, right axis, 

dots) of the studied polymers before and after storage at -20°C for one month: a) PES hollow fibre before 

storage, b) PES hollow fibre after storage, c) PLEXA after storage, d) Strata X-AW after storage. 

 

Finally, the wettability of these polymers was studied by running differential scanning 

calorimetric (DSC) analysis in a sequential way. As shown in Figure 6.4a, PES hollow fibres showed 

two signals in its thermogram: a broad peak around 100°C, due to the desorption of water 

molecules present in the polymers (Cao et al., 2011; Sharma and Bijwe, 2012) and a glass transition 

temperature (Tg) at 230
o
C, which is in agreement with the values reported in the literature for pure 

PES (Bolong et al., 2009; Cao et al., 2011; Prieto et al., 2012; Sharma and Bijwe, 2012). Regarding the 

wettability, the removal of water content of the PES fibre was achieved after running the scan 

several times (runs 1-4 in Figure 6.4a) since the humidity peak was significantly smoothed at every 

scan. Furthermore, the observed increase of the glass transition temperature is a consequence of 

the plastification induced by the humidity that lowers Tg. Finally, once the fibre was release from 

the inert gas chamber of the DSC for an hour (run 5 in Figure 6.4a) the broad peak corresponding to 

the humidity increased again suggesting that the PES hollow fibre can re-adsorb water. Thus, PES 
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hollow fibre has the ability to re-uptake water from the air even after being totally dried (Guan et 

al., 2005). On the contrary, the signals of Plexa and Strata X-AW (see Figure 6.4b and Figure 6.4c, 

respectively) remain constant after getting dried. These results suggest that the polymers chosen 

(PLEXA, Strata X-AW and PES hollow fibre) have a good thermal and chemical stability; however, the 

hydrophobicity of the PES hollow fibre, closely linked to the chemical structure of the polymer, may 

be an issue. 

 

Figure 6.4. Sequential differential scanning calorimeter (DSC) analysis carried out for the three studied polymers 

after storing at -20°C for one month: a) PES hollow fibre, b) Plexa and c) Strata X-AW. First four measurements 

(continuous line) were run sequentially (heating/cooling cycles) but the 5
th

 run (dots) was performed after 

having each polymer one hour out of the measuring chamber (nitrogen inert gas ambient). 
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6.3.3 Stability test 

The variation of the concentrations of all the analytes along the storage time in the four 

modes studied in this work are shown in Figure 6.5a-d. As mentioned before (see section 6.2.2), the 

storage procedure assures the stability when the losses along the storage time are below 30%.  

 

 

 

Figure 6.5. Relative recovery percentage of each analyte at 6 times (0, 3, 10, 17, 24 and 31 days) preserved at a) 

raw seawater at 4°C and b) SPE cartridges at -20°C. 
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Figure 6.5. Relative recovery percentage of each analyte at 6 times (0, 3, 10, 17, 24 and 31 days) preserved at c) 

PES hollow fibres stored at -20°C and d) 100% MeOH extracts stored at -20°C. 

 

In the case of preservation mode (i) three profiles were observed, as shown in Figure 6.5a: a 

declining profile (78% of the studied analytes), an increasing profile, and constant concentrations 

throughout the experimental period. After 31 days, statistically significant losses (within 20-45% at a 

p-level < 0.05 in the analysis of variance) were observed for atrazine, bezafibrate, butylparaben, 

caffeine, diuron, ketoprofen, norfloxacin, OBT, propranolol, sulfadiazine, sulfamethoxazole and 

trimethoprim, whereas amitriptyline, imipramine, genistein, genistin, irbesartan and progesterone 

reduced quantitatively (>99%) their initial concentrations in just three days. These behaviours could 

be attributed to the chemical structure and reactivity of the studied analytes. With regards to 

pharmaceutical like compounds, numerous studies have reported the lack of stability in aqueous 
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samples (Baker and Kasprzyk-Hordern, 2011a; Fedorova et al., 2014; Llorca et al., 2014; Mompelat 

et al., 2013). Baker et al. (Baker and Kasprzyk-Hordern, 2011a) described a thorough verification of 

methodologies commonly used for the storage of aqueous samples and for the analysis of 

pharmaceuticals and illicit drugs, and observed that antidepressant showed a poor stability with a 

recovery decreased of 61% after 72 hours in unfiltered wastewater samples. Turiel et al. (Turiel et 

al., 2004) studied the degradation of fluoroquinolones under different storage conditions (time, light 

and temperature) for 2 weeks and the analytes loses were mainly attributed to photolysis (after two 

weeks a loss of 50% of the initial concentration was observed).  

The increasing profile (up to 146%) was detected in the case of PFOS accompanied by a 

parallel signal decrease (up to 42%) of its parent compound PFOSA. Similar degradation pathway of 

PFOSA precursor into the stable PFOS end-product have been reported in the literature (Buck et al., 

2011; Zhang et al., 2017). Finally, only acesulfame, carbamazepine and PFBS remain constant during 

the 31 days evaluation (p-level > 0.05, according to the analysis of variance, ANOVA). These results 

are in good agreement with those of Van Stempvoord et al. (Van Stempvoort et al., 2011), which 

compared refrigerated and frozen environmental samples for the stability of artificial sweeteners 

(acesulfame, cyclamate, saccharin, sucralose) over a storage time of 13 months and found 

acesulfame was stable during this period. Due to their high stability in aquatic media, acesulfame 

and carbamazepine compounds have been proposed as tracers of human wastewater 

contamination in environmental samples (Huntscha et al., 2012; Jekel et al., 2015; Lange et al., 

2012; Mawhinney et al., 2011).  

In the case of the SPE cartridges the average loss of all compounds after 31 days of storage 

was 7% with a maximum loss of 24% for OBT, see Figure 6.5b. Therefore, the short term 

preservation of extracted samples in SPE cartridges in the freezer (-20
o
C) is a good approach. The 

advantages of using SPE cartridges for these purposes have been previously described in several 

works (Baker and Kasprzyk-Hordern, 2011a; Fedorova et al., 2014; Mompelat et al., 2013).  

On the contrary, though a close stability pattern would have been expected in PES hollow 

fibres, the stability profiles obtained in PES were quite different from those obtained onto SPE 

cartridges (see Figure 6.5b and Figure 6.5c for SPE and PES, respectively). PES hollow fibres showed 
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remarkable losses on the analytes concentrations after 31 days for acesulfame (45% remaining after 

31 days), caffeine (65%), genistein (42%), genistin (60%), norfloxacin (50%), OBT (45%), PFBS (65%), 

sulfadiazine (43%) and sulfamethoxazole (53%). In contrast to the well-known stability onto SPE 

cartridges (C18 and/or HLB) (Llorca et al., 2014; McCall et al., 2016; Mompelat et al., 2013), there is 

no published data on stability tests for PES polymer material, even though it is highly used in POCIS 

as the supporting membrane (Carlson et al., 2013; Posada-Ureta et al., 2017; Vallejo et al., 2013; 

Vermeirssen et al., 2012) and in sorptive microextraction methods (Bizkarguenaga et al., 2015; 

Blanco-Zubiaguirre et al., 2014b; Prieto et al., 2012; Ros et al., 2015). Finally, as it can be seen in 

Figure 6.5d, all the analytes concentrations remain stable up to 31 days in the MeOH extracts.  

Regarding the three most relevant matrices (seawater, PES hollow fibres and SPE phases) 

evaluated and, broadly speaking, only carbamazepine remained constant regardless the 

preservation mode after 31 days. Remarkable losses onto PES hollow fibres were observed in 

compounds that showed a high stability in water such as acesulfame (55%) and PFBS (35%). The 

stability of the phytoestrogens, OBT, fluoroquinolones and sulphonamides was rather low onto PES 

hollow fibres (42-60% remaining concentrations after 31 days) as well as in seawater. In contrast, 

amitriptyline, butylparaben, imipramine, irbesartan, progesterone and PFOSA were significantly 

more stable onto PES hollow fibres (looses <20%) compared to seawater (looses up to 99%). 

The patterns observed in the PES hollow fibre might not be related with the degradation of 

those compounds in the polymer but to the presence of the low amount of water observed in the 

previous section (see section 6.3.2) that may help to solubilise and to loss some analytes such as 

genistein, genistin, OBT, PFOSA, sulfadiazine or sulfamethoxazole as it happens in a similar extend in 

water (see the solubility values collected in Table 6.1). 

 

6.4 Conclusions 

According to the results obtained in this work, the best way to assure the stability of the 

water samples containing polar or slightly polar emerging contaminants is either to keep the MeOH 

extracts after being extracted the samples by SPE or any other procedure, or to keep the extracted 
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samples in SPE cartridges. Both procedures assure a high recovery of a wide amount of 

contaminants typically found in aquatic media for a short term period. This way, the management of 

the sample analysis can be effectively carried out. Furthermore, PLEXA, Strata X-AW and PES hollow 

fibre showed a good thermal and chemical stability to be used as potential solid phases but the 

wettability of the PES fibres has been linked to the lack of stability of a number of compounds. A 

deeper study of the polymeric materials showed that the losses observed in PES hollow fibres were 

related to the capability of the polymer to re-absorb water, which might can degraded biotically 

some analytes or redissolved them due to their high water solubility.  
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 Introduction 7.1

The fate and distribution of emerging contaminants is a matter of growing interest since 

most of the chemicals considered are unregulated and the effects that might be attributed to many 

of them are missed or overlooked in many monitoring and surveillance programs (Ternes et al., 

2015). Among these emerging contaminants we may find many different chemicals including 

personal care products (PCPs), pharmaceuticals, consumption products (food additives, detergents, 

etc.), industrial compounds (perfluoroalkyl substances (PFASs), plasticisers, etc.), pesticides and 

engineered (nano)materials. Although we can find many of these contaminants in the effluents of 

wastewater treatment plants (WWTPs), in agriculture surface run-offs and in industrial discharges, 

the impact of the former ones from urban areas (i.e. WWTP effluents) is especially remarkable 

(Prasse et al., 2015). As a consequence, rivers, estuaries and coastal ecosystems are under the 

influence of chronic exposures to many emerging contaminants. 

Environmental monitoring of special sensitive areas such as estuaries has become a challenge 

owing to the complexity of the analytical end-points (a growing amount of target candidates at trace 

level, a high physical and chemical dynamism in estuaries and coastal areas, an unknown number of 

transformation products, etc.) and the potential effects (antibiotic resistance, endocrine disruption, 

mutagenicity, etc.) (Maruya et al., 2016). Although the application of the current legal framework, 

i.e. the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD), is 

somewhat limited by the prioritised set of contaminants and the application of compliance 

methods, we can also widen those limits by a thorough application of screening and non-target 

methods and new effect-based (bio)analytical approaches (Busch et al., 2016). 

In this work, we consider the application of recently developed procedures, for the 

simultaneous analysis of 41 emerging contaminants and for the calibration of Polar Organic 

Chemical Integrative Samplers (POCIS) of those emerging contaminants (Mijangos et al., 2018a, 

2018b) in several estuaries of the Basque Country because there was a clear lack of analytical data 

and a high uncertainty about the real impact of many of these contaminants. Though some recent 

works described a general assessment about the health status (Cajaraville et al., 2016) or the 

anthropogenic drivers in bacterial communities of this estuary (Aguirre et al., 2017), the occurrence 
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of emerging contaminants is still missed. In addition to the estuary of Bilbao, we also extended this 

study to the estuaries of Urdaibai (Gernika) and Plentzia because they fit with completely different 

geophysical and urban features (Valencia et al., 2004). In this sense, the occurrence of 41 emerging 

contaminants was analysed from winter 2016 to winter 2017 by grab sampling, with an extra 

campaign carried out in spring 2017 combining both grab and passive sampling protocols. The main 

WWTP effluents of each estuary were also monitored to assess the impact of these effluents on the 

average loading of the estuaries. Finally, we ranked the contaminants in terms of their acute and 

chronic toxic effects based on the estimated Risk Quotient (RQ) values (European Commission, 

2003). 

 Experimental section 7.2

7.2.1 Study area 

As shown in Figure 7.1a, three estuaries (Bilbao, Bi; Plentzia, Pl; and Urdaibai, Ur) of the 

Basque Country were selected for this study and between 4 and 7 sampling sites were chosen at 

each estuary (Figure 7.1b-d). Those sites were selected along a longitudinal gradient from the sea to 

upstream taking into account the general features of each estuary. In the particular case of the 

estuary of Bilbao, water samples were collected at two depths (surface and bottom water) due to 

the high stratification observed in this estuary. In addition to this, the effluent of the main WWTPs 

of each estuary (i.e. Galindo in Bilbao, Gorliz in Plentzia and Gernika in Urdaibai) were also 

monitored. An overview of the selected sampling sites is given in Table 7.1. 

The estuary of Bilbao is 15 km long and an average 100 m wide, and the depth ranges 

between 2 m (upper estuary) and 30 m (estuary mouth). The estuary is partially mixed in the outer 

part and highly stratified within the inner half with average tidal ranges between 1.2 m to 4.6 m, and 

crosses the metropolitan area of Bilbao (>1,000,000 inhabitants). Currently, major pollution inputs 

have been related with the harbour activities and urban discharges from the WWTP of Galindo, the 

biggest WWTP in the Basque Country and one of the largest in Spain.  
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Figure 7.1. Location of (a) the study areas along the Bay of Biscay and sampling points in (b) Bilbao estuary (Bi), 

(c) estuary of Plentzia (Pl) and (d) estuary of Urdaibai (Ur). Active sampling points are marked in black, passive 

samplers’ position in blue and the location of the main WWTPs in red. Dashed line shows the position of the 

effluent discharge of Gorliz WWTP. 

 

 

 

 

A) B)

C) D)
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Table 7.1. Sampling codes, depth, distance and a short description of the sampling points for Bilbao 

estuary (Bi), Plentzia estuary (Pl) and Urdaibai estuary (Ur). 

Site code Depth 
Distance a 

(km) 
Site characteristics 

Bi-1s Surface 

0 
Mouth of the estuary. Downstream Galindo WWTP. Close to harbour (the 4th busiest port and 
largest one in Spain with 3.13 km² of land and 16.94 km² of water along 17 km of waterfront). 

Bi-1b 
Bottom 
(22 m) 

Bi-2sb Surface 
6.6 

Downstream Galindo WWTP. Close to beaches and a marine with high cruise and ship traffic. 
Site affected by impact of leisure activities and industrial activity. 

Bi-2b 
Bottom 
(16 m) 

Bi-3s Surface 

10.5 
Downstream Galindo WWTP, where Gobela tributary joins the main chain (0.3% of contribution 

to the main chain). A remarkable pharmaceutical and food industrial activity remains. To 
highlight the presence of a firestation during the course of the river. Bi-3b 

Bottom 

(2 m) 

Bi-4sb Surface 

12.3 

Downstream Galindo WWTP, where Galindo tributary joins the main chain (4% of contribution). 
Galindo WWTP releases the effluent discharge (~11,500 L/s) to this tributary which is a low 
flowing river (500-3000 L/s). A remarkable industrial activity remains in the upper part of 

Galindo river. Bi-4b 
Bottom

  

(3 m) 

Bi-5s Surface 

14.1 
Upstream Galindo WWTP, where Kadagua tributary joins the main chain (27%). A hospital (the 

largest in the Basque Country) is located in the Kadagua course. 
Bi-5b 

Bottom  
(5 m) 

Bi-6s Surface 

19.8 
Upstream Galindo WWTP. Site located in the city centre of Bilbao and affected by urban 

pressure and traffic affluence. 
Bi-6b 

Bottom 
(5 m) 

Galindo 
WWTP 

- 13 
Biggest WWTP of the Basque Country and one of the biggest of Spain. 2nd Treatment. Source of 

effluent: industrial 3.7%, hospital 0.5%, domestic 95.8% (>1,000,000 inhabitant). Water flow 
rate of 1 E9 m3/day. It discharges directly to Galindo river. 

Pl-1 Surface 0 Nearest point to the Gorliz WWTP discharge point. Close to harbour, hospital and beach. 

Pl-2 Surface 1 Site affected by leisure activities and shipping navigation. 

Pl-3
b
 Surface 2.2 Site affected by urban pressures and recreation shipping navigation. 

Pl-4 Surface 3.3 Site affected by urban pressures and navigation. 

Pl-5 Surface 4.5 No remarkable activity. 

Pl-6 Surface 6.7 No remarkable activity. 

Pl-7 Surface 10.1 Close to a dam, which limits the intertidal area. 

Gorliz 
WWTP 

- - 1000 

2nd Treatment. Industrial 0%, hospital 1.3%, domestic 98.7% (10,600 inhabitants, featured by an 
increase in population during the summer). Water flow rate of 1.4e6 m

3
/day. It releases the 

effluent into the estuary mouth (2°57´35.63´´W, 43°25´23.61´´N) through a submarine pipe 
located to  ̴1000 m from the coast with an 18 m depth. 
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Table 7.1. Sampling codes, depth, distance and a short description of the sampling points for Bilbao 

estuary (Bi), Plentzia estuary (Pl) and Urdaibai estuary (Ur). 

Site code Depth 
Distance a 

(km) 
Site characteristics 

Ur-1 Surface 0 
Downstream Gernika WWTP. Close to two marines, a little port with middle-size fishing boats 

and beaches. Site affected by impact of leisure activities. 

Ur-2
 

Surface 5 
Downstream Gernika WWTP. Site affected by impact of leisure activities and high traffic 
pressure (especially during summer-fall time). A shipyard is located between S-2 and S-3 

sampling points. 

Ur-3 b Surface 8.6 
Downstream Gernika WWTP, where a small tributary coming from the agricultural area joins 

Oka river (main chain). 

Ur-4 Surface 18.6 
Upstream of Gernika WWTP and upper part of Gernika city (70,000 inhabitants). A remarkable 

industrial activity (metallurgic and motoring) remains in the surroundings of Oka River. 

Gernika 
WWTP 

- 12.9 
1st Treatment. Water flow rate of 2200 m3/day. Source of effluent: industrial and urban 70,000 

people). It discharges directly to Oka river. 

a 
The distance of each sampling point was calculated to respect sampling point collected in the mouth of the estuary.  

b POCIS samplers were deployed at these sampling points. 

 

The estuary of Plentzia is classified as a mesotidal system with a tidal variation of 2.5 m, being 

exposed 80% of the estuary at lowtide. The presence of a dam (~10 km upstream from the sea) in 

the upper part of the estuary limits the intertidal area. Major pollution inputs can be related to 

leisure shipping traffic and urban discharges. The Gorliz WWTP, located in the mouth of the estuary, 

collects urban wastewater from ~ 10,000 inhabitants, featured by an increase in population during 

the summer period, but it releases the effluent out the estuary mouth through a submarine pipe 

located at ~ 1000 m from the coast and ~ 18 m depth.  

The estuary of Urdaibai (Reserve of The Biosphere declared by Unesco since 1984) is formed 

by the tidal part of the Oka river with 11.6 km long and 1 km wide alluvial valley (Valencia et al., 

2004). The estuary is impacted by urban inputs, especially from the direct discharge of the WWTP of 

Gernika to the Oka river, fisheries, industrial activities (metallurgic, motoring and shipyards) and 

leisure activities.  

7.2.2 Reagents and materials 

The selection of the target pollutants was carried out taking into account their presence and 

relevance in the environment (Busch et al., 2016). According to these criteria, 41 organic pollutants 

with urban, rural and industrial use, among several classes (artificial sweeteners, corrosion 
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inhibitors, hormones, PCPs, PFASs, pesticides, pharmaceuticals and phytoestrogens) were selected. 

Compound families, names, CAS numbers, suppliers, molecular formulas and other relevant  

physico-chemical properties for all the target compounds are summarised in Table 3.1, Chapter 3.  

Isotopically mass-labelled analogues amitriptyline-d3 hydrochloride ([
2
H3]-amitriptyline, 

100 mg/L in methanol), atrazine-d5 ([
2
H5]-atrazine, 99%), carbamazepine-d10 ([

2
H10]-carbamazepine, 

100 mg/L in methanol), ketoprofen-d3 ([
2
H3]-ketoprofen, 99.4%), nortriptyline-d3 hydrochloride 

([
2
H3]-nortriptyline, 100 mg/L in methanol), progesterone-d9 ([

2
H9]-progesterone, 98%), were 

purchased from Sigma-Aldrich (St. Louis, MO, USA) and ciprofloxacin-d8 hydrochloride ([
2
H8]-

ciprofloxacin, 99%) was obtained from Fluka (Buchs, Switzerland). Sucralose-d6 ([
2
H6]-sucralose, 

98%) and irbesartan-d7 2,2,2-trifluoroacetate salt ([
2
H7]-irbesartan, 99.9%) were purchased from 

Toronto Research Chemicals (Toronto, Canada). The surrogate mix sodium perfluoro-1-[1,2,3,4-
13

C4] 

octanesulfonate (MPFOS) and perfluoro-n-[1,2,3,4-
13

C4] octanoic acid (MPFOA) was obtained at 2 

mg/L in methanol from Wellington Laboratories (Ontario, Canada).  

Stock standard solutions were dissolved in methanol (MeOH, UHPLC-MS MeOH, Scharlab, 

Barcelona, Spain) in order to prepare approximately 1000–2500 mg/L solutions. The addition of 100 

μL (in 3.5 mL of total volume) sodium hydroxide 1 mol/L (NaOH, 98%, Panreac, Barcelona, Spain) 

was necessary for the proper dissolution of fluoroquinolone antibiotics as described by Gros et al. 

(Gros et al., 2013). Dilutions (100 mg/L) were prepared in MeOH every month and dilutions at lower 

concentrations containing all analytes were prepared daily in MeOH: Milli-Q water (30:70, v:v). All 

the chemical standard solutions were stored at − 20°C for no more than one month. 

Oasis hydrophilic-lipophilic balanced (HLB) 200 mg SPE cartridges were purchased from 

Waters (Milford, USA). Formic acid (>98%), and ethylenediaminetetraacetic (EDTA,  99.9%) used 

for matrix modification were supplied by Panreac (Barcelona, Spain), MeOH (HPLC grade, 99.9%) by 

LabScan (Dublin, Ireland) and ultra-pure water was obtained using a Milli-Q water purification 

system (<0.05 S/cm, Milli-Q model 185, Millipore, Bedford, MA, USA).   

Concerning passive sampling, Bond-Elute Plexa (Plexa) bulk sorbent and Strata X-AW bulk 

sorbent used as POCIS sorbents were purchased to Agilent (Santa Clara, CA, USA) and Phenomenex 

(Torrance, CA, USA), respectively. Highly porous nylon membranes (30 μm of pore size, 65 μm 
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thicknesses and 45 mm diameter) were obtained from Fisher Scientific. Empty solid phase extraction 

(SPE) tubes (6 mL) and polypropylene (PP) frits were purchased from Supelco (Bellefonte, PA, USA) 

and 50 mL PP conical tubes (internal diameter 27.2 × 117.5 mm length) were obtained from Deltalab 

(Barcelona, Spain). Ammonia (25% as NH3) was supplied by Panreac.  

High purity nitrogen gas (>99.999%) supplied by Messer was used to evaporate the extracts 

using a Turbovap LV Evaporator (Zymark, Hopkinton, USA) and as collision gas during the liquid 

chromatography tandem mass spectrometry (LC-MS/MS) analysis. Moreover, nitrogen gas 

(99.999%) provided by Air Liquide (Madrid, Spain) was used as both, nebuliser and drying gas during 

the analysis. UHPLC-MS MeOH and formic acid (Optima grade, Fischer Scientific, Geel, Belgium) 

were used as mobile phase. Finally, PP filters (0.22 µm, 13 mm) from Phenomenex (California, USA) 

were used for filtration of all the extracts before the LC-MS/MS analysis. 

7.2.3 Water sample collection and treatment  

Five sampling campaigns were undertaken between February 2016 and February 2017: 

winter 2016 (February 24-March 18), spring (May 31-Jun 2), summer (September 8-September 12), 

fall (November 11-November 30) and winter 2017 (February 16-February 23). For each sampling 

campaign, samples were collected along a salinity gradient from the sea up to the non-tidal zone, 

always at high tide. Surface water (near 50 cm) and depth water (near the bottom) were collected 

by means of Van Dorn and Niskin bottles (KC, Denmark A/S, 2L), respectively.  

An EXO2 multiparametric probe was deployed during the sampling for in-situ measuring of 

depth, pH, oxidation-reduction potential (ORP), temperature, conductivity, salinity, total dissolved 

solids (TDS) and dissolved oxygen concentration (DO) along the water column. The rest of the 

parameters were determined in the laboratory. Non-purgable organic carbon (NPOC) was 

determined using a TOC-VCSN (Shimadzu Corporation, Kyoto, Japan), which is based on total 

oxidation on a platinum catalyst at a temperature of 680°C; the concentrations of ammonia (NH4
+
) 

and nitrate (NO3
-
) were evaluated potentiometrically using the standard additions method with an 

ion-selective electrode; and, silicate (Si(OH)4) and phosphate (PO4
3-

) concentrations were 

determined using molybdenum-blue based flow injection analysis methods with UV-VIS 
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spectrophotometric detection (Kortazar et al., 2016). The physico-chemical properties measured are 

summarised in Tables II-VII (see Appendix).  

Regarding to the analysis of organic pollutants, effluents and estuary water samples were 

transferred to pre-cleaned PP bottles, transported to the laboratory in cooled boxes and kept in the 

fridge at -4°C before analysis. The analyses were performed within 24 h after sampling. A previously 

validated SPE method (Mijangos et al., 2018a) was used for the extraction of the samples, see 

Chapter 3. Briefly, an appropriate volume of EDTA solution to achieve a final concentration of 0.1% 

(g solute/g solution) was added and samples were acidified (pH=2) with formic acid prior to the 

extraction. Oasis HLB 200 mg-cartridges were sequentially conditioned with 5 mL of MeOH, 5 mL of 

Milli-Q water and 5 mL of Milli-Q water at pH=2. The sample (100 mL in the case of effluent and 250 

mL in the case of estuary) was, then, percolated through the cartridge assisted by a vacuum pump at 

ca. 5 mL/min. Subsequently, the cartridges were washed with 6 mL of ultrapure water, vacuum 

dried for 40 min and eluted with 6 mL of MeOH. After elution, the extract was concentrated to 

dryness under a gentle stream of nitrogen at 35°C and reconstituted in 200 μL of MeOH: Milli-Q 

water (30:70, v:v). Finally, the reconstituted extracts were filtered through a 0.2 μm PP filter before 

the LC-MS/MS analysis.  

7.2.4 Passive sampling 

In March-April 2017, POCIS devices were deployed at the estuaries of Bilbao (Bi-2 and Bi-4), 

Plentzia (Pl-3) and Urdaibai (Ur-3), as shown in Figure 7.1b-d. At each site, a canister containing two 

POCIS was deployed at ~50-100 cm below the surface and two consecutive deployments of 14 days 

were carried out. POCIS were prepared according to the procedure described previously (Mijangos 

et al., 2018b). POCIS were transported at -4°C to the lab. Once in the lab, POCIS sorbent was 

carefully removed from the membranes using approximately 10 mL of Milli-Q water and introduced 

into empty SPE cartridges. The sorbent was dried under vacuum for ~ 1 h and storage at -20°C until 

the analysis. Elution was carried out using 6 mL of MeOH with 2.5% NH3 followed by 6 mL of MeOH. 

The mixture was evaporated to dryness using a TurboVap LV Evaporator at 35 °C and reconstituted 

in 200 µL of MeOH: Milli-Q (30:70, v:v) mixture. Finally, the extracts were filtered through a 0.22 μm 

PP. 
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One transport blank was performed per sampling day and, simultaneously, water samples 

were taken in PP bottles from the sampling sites before each deployment and after the last retrieval 

(0
th

 , 14
th

  and 28
th

 days). Water samples were carried to the laboratory in cooled boxes and kept at 

4°C before analysis, which was performed within 24 h according to a previously validated SPE 

procedure (Mijangos et al., 2018a), as described previously.  

Time-weight average concentrations (CTWA) of acesulfame, acetaminophen, amitriptyline, 

atrazine, bezafibrate, butylparaben, caffeine, carbamazepine, diuron, irbesartan, ketoprofen, 2-

hydroxybenzothiazole (OBT), perfluoro-1-butanesulfonate (PFBS), perfluorooctanoic acid (PFOA), 

perfluorooctane sulfonic acid (PFOS), phenytoin, progesterone and telmisartan were calculated 

based on the sampling rates (Rs) determined previously and the concentration of atrazine-d5 

included as a Performance Reference Compound (PRC), see Chapter 5, (Mijangos et al., 2018b). 

7.2.5 LC-MS/MS analysis 

Analysis were carried out using a HPLC-QqQ (Agilent 1260 series LC coupled to an Agilent 

6430 triple quadrupole) equipped with electrospray ionisation (ESI) source (Agilent Technologies) 

according to a previously optimised method, see Chapter 3, (Mijangos et al., 2018a).  

The separation of the target analytes was accomplished at a flow of 0.3 mL/min using a 

Kinetex F5 100 Å core-shell (2.1 mm × 100 mm, 2.6 m) column coupled to a Kinetex F5 pre-column 

(2.1 mm x 4.6 mm, 2.6 m). The column temperature and the injection volume were set to 35°C and 

5 L, respectively. Under optimised conditions, a binary mixture consisting on a mobile phase A of 

water: MeOH (95: 5) and mobile phase B of MeOH: water (95: 5), both containing 0.1% of formic 

acid was used for gradient separation of the target analytes. The gradient profile started with 30% B 

which was increased to 50% in 4 min and maintained for 12 min. Then it was increased to 90% B 

where it was maintained constant for 10 min. Initial gradient conditions (30% B) were then achieved 

in 6 min, where it was finally held for another 10 min (post-run step). ESI was carried out using a 

nitrogen flow rate of 12 L/min, a capillary voltage of 3500 V, a nebulizer pressure of 45 psi, and a 

source temperature of 350°C. Both, negative and positive voltages, according to the target analytes, 

were simultaneously applied in a single injection.  
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Quantification was performed in the selected reaction monitoring (SRM) acquisition mode. 

Fragmentor voltage and collision energy values for each target analyte are included in Chapter 3 

(see Table 3.2). Instrumental operations, data acquisition and peak integration were performed with 

the MassHunter Workstation Software (Qualitative Analysis, Version B.06.00, Agilent Technologies). 

7.2.6 Quality Control 

Although the analytical method used in this work was previously developed and validated 

(Mijangos et al., 2018a), procedural blanks and control samples (samples spiked at known 

concentration) were analysed every 20 samples. Values lower than MQLs were obtained in the case 

of blanks and apparent recoveries were in agreement with those reported before in Chapter 3. 

7.2.7 Statistical analysis 

Principal Component Analysis (PCA) of the data was performed using The Unscrambler 

software (v. 9.2.6 Camo, Norway). Prior to any data treatment, the responses were normalised and 

centred and the models were built using cross-validation (Esbensen et al., 2002). A PCA of the data 

included in Tables II-VII and IX-XVIII (Appendix) was performed. 

7.2.8 Environmental Risk Assessment 

Environmental risk assessment (ERA) was carried out evaluating RQ according to the 

European Union technical Guidance Document (European Commission, 2003). In this study, RQs for 

acute and chronic effects were calculated for each compound as the ratio of the measured 

environmental concentration (MEC) and the predicted no-effect concentration (PNEC).  

Maximum values obtained along the monitoring period for each compound at each estuary 

and effluent samples were used as MEC values, which represent the “worst-case scenario” 

(Alygizakis et al., 2016; Ma et al., 2017). PNEC values were calculated dividing the lowest chronic or 

acute toxicity data available from the ecotoxicology knowledge-base (ECOTOX database, 

https://cfpub.epa.gov/ecotox/) for several target species representing different trophic levels 

(algae/bacteria, invertebrates and fish) by an assessment factor (AF). The reference values were 

https://cfpub.epa.gov/ecotox/
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chosen considering the effects on growth/population, reproduction and behaviour and both fresh 

water and marine species were considered.  

For sub-lethal chronic toxicity levels no-observed effect concentrations (NOEC) were used 

and the applied AF values were 1000, 100, 50 and 10 depending on the data available: 1000 when 

only one short-term NOEC value was available, 100 when only one long-term NOEC value was 

available for a specie in one trophic level, 50 when two long-term NOEC values were available for 

species in two different trophic levels and, 10 when NOEC values for species in the three evaluated 

trophic levels were available (European Commission, 2003).  

For acute toxicity levels the effect concentration (EC50) or the lethal concentration (LC50) was 

used and the AF was 1000 (Alygizakis et al., 2016; Ma et al., 2017). L(E)C50s were based on either 

measured acute concentrations retrieved from the ECOTOX database or, when the data was 

missing, by QSAR models as described by Busch et al. (Busch et al., 2016).  

 Results and discussion 7.3

The minimum, maximum and median analyte concentrations (ng/L) of the target compounds 

determined in each WWTP effluent and estuary are summarised in Tables 7.2 and 7.3, respectively. 

Out of the total 41 compounds, 35 compounds were detected in at least one effluent sample and 36 

in at least one estuary sample. Clofibric acid, genistin, glycitin, imipramine, PFOA and 

perfluoroctylsulfonamide (PFOSA) were below their MQLs in most of the samples. 
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Table 7.2. Minimum, maximum and median concentrations (ng/L) of the studied target analytes determined in each WWTP 

effluent. 

Analyte 
Galindo WWTP 

(n=15) 
Gorliz WWTP 

(n=15) 
Gernika WWTP 

(n=15) 

Min. Max. Median Min. Max. Median Min. Max. Median 

Acesulfame 52 1164 430 51 1261 311 134 11419 4202 

Acetaminophen 47 860 111 119 724 222 812 5460 845 

Amitriptyline 30 97 50 9 23 16 5 39 22 

Atrazine 
-aa

 
-a

 
-a

 
-a

 
-a

 
-a

 18 18 18 

Bezafibrate 23 132 82 2 40 14 20 101 78 

Butylparaben 
-a

 
-a

 
-a

 9 9 9 97 100 98 

Caffeine 25 99 57 71 317 183 1752 65999 26034 

Carbamazepin 49 137 94 12 94 52 2 390 46 

Ciprofloxacin 155 3803 549 58 3194 120 36 4719 294 

Clofibric acid 7 7 7 -a -a -a -a -a -a 

Clomipramine 3 7 3 1 8 4 -a -a -a 

Diclofenac 127 1911 1161 8 683 414 10 1932 528 

Diuron 55 204 122 31 204 162 7 349 225 

Eprosartan 46 339 279 74 570 184 42 879 499 

Genistein -a -a -a -a -a -a 5 597 180 

Genistin -a -a -a -a -a -a -a -a -a 

Glycitin 5 5 5 -a -a -a -a -a -a 

Imipramine 3 3 3 -a -a -a -a -a -a 

Irbesartan 410 1275 933 86 750 617 54 940 488 

Isoproturon 2 4 3 2 5 4 -a -a -a 

Ketoprofen 53 281 152 5 13 9 19 374 340 

Losartan 43 302 249 32 717 303 21 913 438 

Methylparaben -a -a -a -a -a -a 22 189 105 

Norfloxacin 32 463 61 15 40 20 2 275 88 

Nortriptyline 6 11 9 5 6 6 2 2 2 

OBT 53 172 95 61 243 86 8 1082 621 

PFBS 33 200 132 -a -a -a 28 202 115 

PFOA -a -a -a -a -a -a -a -a -a 

PFOS 5 9 6 2 2 2 1 168 11 

PFOSA -a -a -a -a -a -a -a -a -a 

Phenytoin 31 2375 201 31 110 88 111 1020 133 

Progesterone 3 11 7 6 25 16 20 20 20 
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Table 7.2. Minimum, maximum and median concentrations (ng/L) of the studied target analytes determined in each WWTP 

effluent. 

Analyte 
Galindo WWTP 

(n=15) 
Gorliz WWTP 

(n=15) 
Gernika WWTP 

(n=15) 

Min. Max. Median Min. Max. Median Min. Max. Median 

Propranolol 13 31 28 5 18 14 2 30 11 

Simazine 
-a

 
-a

 
-a

 5 5 5 0 
-a

 
-a

 

Sucralose 46 771 638 125 4532 1859 27 1380 52 

Sulfadiazine 20 5477 59 7 303 18 6 24 8 

Sulfamethoxazole 66 8963 1224 47 244 67 8 190 131 

Telmisartan 2 1316 434 146 766 298 127 1208 545 

Testosterone 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 2 6 3 

Trimethoprim 7 5843 271 6 79 8 2 61 29 

Valsartan 89 416 375 154 1811 412 141 9485 8135 

a
 Analytes  below their method quantification  limits (see chapter 3) 

Max. . maximum; Min. : minimum 

 

7.3.1 Occurrence and seasonal distribution in the WWTPs 

Concerning WWTPs, concentration levels were ranged between low-ng/L levels to 8963 ng/L, 

4532 ng/L and 11419 ng/L in the case of Galindo, Gorliz and Gernika WWTPs, respectively. Only 

caffeine (66000 ng/L) found in the Gernika WWTP greatly exceeded these concentrations. In the 

case of Galindo, sulfamethoxazole (8963 ng/L), trimethoprim (5843 ng/L) and ciprofloxacin (3803 

ng/L) were the analytes detected at the highest concentrations. Sucralose (4532 ng/L), ciprofloxacin 

(3194 ng/L), valsartan (1811 ng/L) and acesulfame (1261 ng/L) were the analytes detected at the 

highest concentrations in the case of the Gorliz WWTP, whereas in the Gernika WWTP caffeine 

(65999 ng/L), acesulfame (11419 ng/L), valsartan (9485 ng/L) and acetaminophen (5460 ng/L) 

showed the highest maximum concentration levels. Genistein (5-597 ng/L), methylparaben (n.d.-189 

ng/L) and butylparaben (<MQL-100 ng/L) were only found in the Gernika WWTP. 

In general, the levels of commonly detected target pharmaceuticals (i.e. trimethoprim, 

diclofenac, acetaminophen, sulfamethoxazole, sulfadiazine) were in the same range as those 

detected in Europe wide surveys of WWTP effluents (Beckers et al., 2018; Loos et al., 2013). 

Ciprofloxacin, which is highly prescribed for human use, was also found with relatively high 
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concentrations (32-4719 ng/L) despite its high sorption and degradation coefficients (Boy-Roura et 

al., 2018). Acesulfame, sucralose, irbesartan, eprosartan, valsartan and telmisartan, which are not so 

often studied, also exhibited high detection rates (<75%) and high concentrations (see Table 7.2), 

confirming the relevance of their monitoring. In fact, Loos et al. (Loos et al., 2013) considered the 

angiotensin II receptor antagonists (ARA-IIs) family one of the most relevant emerging 

contaminants,  with median concentrations of 480 ng/L, 368 ng/L and 227 ng/L and maximum 

concentrations up to 17900 ng/L, 4300 ng/L and 6800 ng/L for irbesartan, telmisartan and 

eprosartan congeners, respectively.  

The levels of caffeine, typically used as an indicator of the presence of untreated domestic 

wastewater (Nödler et al., 2016), were much higher in the Gernika WWTP than those obtained in 

Galindo and Gorliz WWTPs (see Table 7.1 for WWTP details). Moreover, according to the global 

distribution of caffeine in effluent samples (world-wide analysis of 29132 samples) (Rodríguez-Gil et 

al., 2018), the reported levels in Gernika WWTP (1752-65999 ng/L) would be ranked above the 95
th

 

percentile.  

The seasonal patterns at each WWTP were also studied to identify specific features regarding 

the use of some of the studied contaminants. In the case of the WWTP of Galindo, the highest 

concentrations were found in summer and winter 2017 (in 9 and 8 compounds, respectively, out of 

28) and the lowest in spring (14 out of 28 compounds) and winter 2016 (in 8 out of 28 compounds). 

In the case of the WWTP of Gorliz, the distribution of the highest concentrations was evenly 

observed along all the campaigns and the lowest ones in summer (early September) and autumn 

(late November). It is worth mentioning that in summer seven compounds(acetaminophen, 

butylparaben, caffeine, carbamazepin, propranolol, simazine and telmisartan)  showed the highest 

levels and another seven (acesulfame, bezafibrate, diclofenac, diuron, losartan, sucralose and 

sulfadiazine), the lowest ones which could be related with the seasonal mobility patterns of the 

population in the surrounding urban areas. Finally, in the WWTP of Gernika, it is clearly seen that 

the highest levels were measured in summer (in 12 out of 28) and the lowest ones in winter (16 out 

of 28). 
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7.3.2 Occurrence and distribution of contaminants in the estuaries 

Concentrations in the range of 1-3977 ng/L, 1-4138 ng/L and 1-1092 ng/L in the case of the 

Bilbao, Plentzia and Urdaibai estuaries, respectively, were determined (see Table 7.3).  

 

Table 7.3. Minimum, maximum and median concentrations (ng/L) of the studied target analytes determined in each estuary. 

 

Analyte 
Estuary of Bilbao (Bi) 

(surface, n=87) 
Estuary of Bilbao (Bi) 

(bottom, n=78) 
Estuary of Plentzia (Pl) 

(n=99) 
Estuary of Urdaibai (Ur) 

(n=57) 

Min. Max. Median Min. Max. Median Min. Max. Median Min. Max. Median 

Acesulfame 7 191 39 4 20 14 4 70 11 9 126 35 

Acetaminophen 9 440 49 5 150 31 14 49 11 14 321 40 

Amitriptyline 2 36 8 2 11 5 -a -a -a 3 3 3 

Atrazine 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 

Bezafibrate 4 67 9 4 15 11 2 11 3 2 8 4 

Butylparaben 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 2 2 2 

Caffeine 25 699 132 8 220 49 20 362 83 27 1092 111 

Carbamazepin 1 93 7 2 18 4 1 45 4 1 14 2 

Ciprofloxacin 3 540 48 7 298 52 -a -a -a 17 17 17 

Clofibric acid -a -a -a -a -a -a -a -a -a -a -a -a 

Clomipramine 2 2 2 -a -a -a -a -a -a -a -a -a 

Diclofenac 1 650 47 3 295 22 1 22 7 2 35 19 

Diuron 4 81 14 3 15 4 2 13 4 3 10 7 

Eprosartan 8 183 27 10 56 22 3 42 14 3 28 14 

Genistein -a -a -a -a -a -a -a -a -a -a -a -a 

Genistin -a -a -a -a -a -a -a -a -a -a -a -a 

Glycitin -a -a -a -a -a -a -a -a -a -a -a -a 

Imipramine -a -a -a -a -a -a -a -a -a -a -a -a 

Irbesartan 2 494 32 2 181 11 2 182 8 2 27 12 

Isoproturon -a -a -a -a -a -a -a -a -a -a -a -a 

Ketoprofen 10 57 37 -a -a -a -a -a -a 2 4 3 

Losartan 8 183 21 6 51 12 2 50 14 6 16 9 

Methylparaben 9 66 24 8 34 11 9 65 20 5 6 5 

Norfloxacin 4 62 11 25 25 25 -a -a -a 5 5 5 

Nortriptyline 1 6 6 2 2 2 -a -a -a -a -a -a 
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Table 7.3. Minimum, maximum and median concentrations (ng/L) of the studied target analytes determined in each estuary. 

 

Analyte 
Estuary of Bilbao (Bi) 

(surface, n=87) 
Estuary of Bilbao (Bi) 

(bottom, n=78) 
Estuary of Plentzia (Pl) 

(n=99) 
Estuary of Urdaibai (Ur) 

(n=57) 

Min. Max. Median Min. Max. Median Min. Max. Median Min. Max. Median 

OBT 20 1267 373 38 3977 553 17 4138 301 17 669 160 

PFBS 3 158 19 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 8 13 11 

PFOA 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 

PFOS 2 28 12 
-a

 
-a

 
-a

 6 8 7 
-a

 
-a

 
-a

 

PFOSA 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 

Phenytoin 6 1401 13 4 84 10 5 13 9 3 20 3 

Progesterone 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 

Propranolol 4 17 9 3 5 4 1 1 1 
-a

 
-a

 
-a

 

Simazine 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 
-a

 

Sucralose 30 694 137 -a -a -a 3 244 58 10 191 101 

Sulfadiazine 1 49 21 7 7 7 1 51 5 -a -a -a 

Sulfamethoxazole 5 226 27 9 227 43 3 19 5 -a -a -a 

Telmisartan 2 969 34 4 185 15 1 83 9 1 42 8 

Testosterone -a -a -a -a -a -a -a -a -a -a -a -a 

Trimethoprim 3 2046 21 2 310 16 1 6 2 1 3 2 

Valsartan 4 248 65 15 60 46 6 213 41 8 219 75 

a Analytes  below their method quantification  limits (see chapter 3) 
Max. . maximum; Min. : minimum 

 

Taking into account the three estuaries, caffeine and OBT showed the highest detection 

frequencies (above 97%) followed by irbesartan (70%), telmisartan (68%), acetaminophen (54%), 

carbamazepine (52%), diclofenac (46%) and acesulfame (42%). Atrazine, clofibric acid, genistein, 

genistin, glycitin, imipramine, isoproturon, PFOA, PFOSA, progesterone, simazine and testosterone 

were not detected above their MQLs (see Table 3.7, in Chapter 3) in any sample. Although the 

highest concentrations were, in general terms, detected in the Gernika WWTP, the levels observed 

along this estuary were not the highest ones, as a consequence of the high dilution effect by tidal 

intrusion in the estuary.  

Caffeine was detected in all the evaluated samples at levels ranging between 8 and 699 ng/L, 

20-362 ng/L and 27-1092 ng/L for the estuaries of Bilbao, Plentzia and Urdaibai, respectively. 
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Caffeine levels reported in this study are in the same order of magnitude as those reported by 

Alygizakis et al. (Alygizakis et al., 2016) in Saronikog gulf (Greece) in the Eastern Mediterranean sea, 

which also receives inputs from WWTPs.  

OBT, a compound widely used as a corrosion inhibitor in many industrial applications as well 

as in anti-icing fluids and in detergents for household dishwashers, has been frequently reported in 

effluents and in rivers at concentrations up to 1000 ng/L (Beckers et al., 2018; Loos et al., 2013). 

However, data on its presence in estuarine environments are scarce. The maximum concentrations 

at offshore from Venice (113 ng/L), in San Francisco Bay (240 ng/L) and in Baltic sea (Germany) (135 

ng/L) (Nödler et al., 2014), are lower than the values obtained in this work (maximum 

concentrations of 3977 ng/L, 4138 ng/L and 669 ng/L  in the  estuaries of Bilbao, Plentzia and 

Urdaibai, respectively). 

In general, the pharmaceutical compounds concentrations measured in the three estuaries 

are similar to those reported in European estuaries and coastal waters (Aminot et al., 2016; Maruya 

et al., 2016; Munaron et al., 2012; Nödler et al., 2014). For instance, diclofenac and acetaminophen 

were widely detected at high concentration ranges: 1-650 ng/L, and 54-440 ng/L, 1-22 and 14-49 

ng/L, and 2-35 ng/L and 14-321 ng/L in estuaries of Bilbao (taking into account both, surface and 

bottom water), Plentzia and Urdaibai, respectively. The European Commission recently adopted a 

watch list (Decision 495/2015/EU) of substances for Union-wide monitoring in the field of water 

policy, where diclofenac was included.  

It is worth mentioning the detection of PFBS, a short chain perfluorinated compound, ranging 

between its MQL and 158 ng/L and 13 ng/L in the estuaries of Bilbao and Urdaibai, respectively. 

Besides, the detection of PFOS in estuary waters (not detected (n.d.)-28 ng/L) also indicates that 

products containing PFOSs are still releasing these substances into the environment, despite the 

European restrictions on the marketing and use of this compound in 2006 (European Commission, 

2006). 

Concerning herbicides, a high overall detection of atrazine was observed in the coastal and 

surface waters of Europe (Beckers et al., 2018; Sousa et al., 2018). However, we only detected 

diuron in the ranges of 4-81 ng/L, 2-13 ng/L and 3-10 ng/L for the estuaries of Bilbao, Plentzia and 
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Urdaibai, respectively. Moreover, though diuron is used as active ingredient in antifouling paints as 

substitutes for tributylin, the concentrations detected in this work are similar to those reported in 

the literature (Munaron et al., 2012; Nödler et al., 2016) in coastal waters with marinas and/or areas 

with high ship density, and those concentrations do not exceed the annual average of the 

environmental quality standards (EQS, 0.2 µg/L) defined by the European Commission (European 

Commission, 2013). 

The three estuaries showed a similar longitudinal pattern, since most concentrations 

decreased from the upper limit of the estuary to the estuary mouth, as it can be seen in the 

summation of concentrations included in Figure 7.2a-d for the estuaries of Bilbao (surface and 

bottom water), Plentzia and Urdaibai, respectively.  

 

Figure 7.2. Cumulative (sum of concentrations) spatial concentrations (ng/L) in (a) Bilbao estuary for surface 

water and (b) Bilbao estuary for bottom water. 

A)

B)
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Figure 7.2. Cumulative (sum of concentrations) spatial concentrations (ng/L) in (c) Plentzia estuary and (d) 

Urdaibai estuary. In the estuaries of Plentzia and Urdaibai the summation of concentration is plot in log scale. 

 

In the estuary of Bilbao, the samples collected at two depths were significantly different 

(analysis of variance, p-value<0.05). Deep and surface water showed two different cumulative 

(presented as sum of contaminants) longitudinal distributions (see Figure 7.2a and 7.2b for surface 

and bottom water, respectively), suggesting the presence of two independent sources. On the one 

hand, surface water showed the highest cumulative concentrations (2742-5558 ng/L) at Bi-4s, which 

receives the input of the WWTP of Galindo, with a gradual decrease trend from the WWTP 

discharge point to the sea and upstream. On the contrary, in deep waters, the highest cumulative 

C)

D)
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concentrations (1044-4050 ng/L) are coming predominantly from OBT corrosion inhibitor (71-93%) 

and the sources were detected close to the estuary mouth at Bi-1b and Bi-2b, where the industrial 

harbour, a marina and passenger ship traffic are located. In addition to this, the concentrations of 

pharmaceuticals and artificial sweeteners were one order of a magnitude higher in the surface 

water (32% in fall and 75-97% in the rest of seasons for drugs and 57% in fall and 83-97% in the rest 

of seasons for sweeteners). On the contrary, higher concentrations of OBT (see Table 7.3) were 

observed in deep waters (38-3977 ng/L) compared to the superficial ones (20-1267 ng/L). Therefore, 

the consequences of a partially mixed estuarine system is observed as well as the impact of the 

effluent´s flowing mostly along the upper layer and bypassing the bottom saline water.  

To the best of our knowledge, there are few works thoroughly evaluating the distribution of 

emerging contaminants in an estuary environment at different depths of the water columns 

(Alygizakis et al., 2016; Lara-Martín et al., 2014). For instance, Lara-Martín et al. (Lara-Martín et al., 

2014) studied the environmental distribution of non-ionic surfactants and pharmaceuticals in the 

Long Island Sound Estuary (New York), and they found variations in the profile of concentrations 

consistent with salinity differences. Alygizakis et al. (Alygizakis et al., 2016) evaluated the occurrence 

and spatial distribution of 158 pharmaceuticals and drugs of abuse in the Saronikos Gulf (Athenes, 

Mediterranean Sea) at 3 different depths and amoxicillin, caffeine and salicylic acid showed a 

significant concentration variation with depth.  

In the case of the Plentzia estuary, since the WWTP discharges to the open sea, the effects of 

this source are hardly seen along the estuary. The concentrations measured in the coastal point (Pl-

1) were very low, being caffeine (88-362 ng/L), OBT (23-1361 ng/L) and methylparaben (n.d.-65 

ng/L) the only analytes detected above their MQLs. In fact, the highest cumulative concentrations 

were found at Pl-7 site, 11 km upstream of the estuary mouth (see Figure 7.2c) suggesting a non-

defined source upstream the estuary. The presence of pharmaceuticals (acetaminophen 25-40 ng/L, 

bezafibrate 3-11 ng/L, diclofenac n.d.-22 ng/L, eprosartan n.d.-42 ng/L, irbesartan 20-182 ng/L, 

losartan <MQL-50 ng/L, phenytoin n.d.-3 ng/L, sulfadiazine 2-51 ng/L, telmisartan 3-83 ng/L, 

trimethoprim n.d.-6 ng/L, valsartan 51-213 ng/L) and, especially, the presence of WWTP effluent 

marker compounds (Lange et al., 2012; Nödler et al., 2016) such as carbamazepine (3-45 ng/L) and 

acesulfame (9-70 ng/L) at Pl-7, indicates the possibility of a non-monitored WWTP effluent. 
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In the Urdaibai estuary, a hot spot was located at site Ur-3 (see Figure 7.2d), which receives 

the discharge from the WWTP effluent. Upstream of that point, at sampling point Ur-4, only caffeine 

(<MQL-120 ng/L) and OBT (n.d.-669 ng/L) were detected.  

7.3.3 Statistical analysis and seasonal patterns 

The PCA of the reported data of each estuary was performed independently (see Tables I-VI 

and IX-XVIII, in Appendix). The mean concentrations at each site, depth and campaign, plus the 

physico-chemical parameters were included in the PCA.  

In the case of the estuary of Bilbao, up to 3 principal components (PCs) were enough to 

explain up to 70% of the variance of the experiments, where the first PC (PC1) explained up to the 

33% of the variance, PC2 up to 25% and the PC3 up to 12%. Figure 7.3 shows the PC1-PC2 projection 

of the loadings. As it can be observed, the target chemicals can be clustered in three main groups 

according to their relationships with the most likely source: compounds with non-identified sources 

(methylparaben, caffeine and OBT, see Figure 7.4a for OBT as example), compounds detected at low 

frequencies and tentatively linked with a WWTP source (see Figure 7.4b for amitriptyline as 

example), and compounds with a high detection frequency and closely linked with a WWTP source 

(acesulfame, carbamazepine, diuron, sulfadiazine, sulfamethoxazole, trimethoprim, sucralose; see 

Figure 7.4c for carbamazepine as example). In fact, PO4
3-

 is also clustered in this latter group, 

showing high correlation coefficients (r) with the concentrations of carbamazepine (r in the range of 

0.82-0.95) and acesulfame (r in the range of 0.79-0.98). Since both organic compounds are also 

recognized as persistent markers of WWTP effluent discharges (Sun et al., 2016b, 2016a), these 

results provide a stronger proof of the identification of these sources.  

For the target analytes, 76%, 86% and 81% of the compounds showed a significantly positive 

correlation with PO4
3-

 in the case of the estuary of Bilbao (r>0.863), Plentzia (r>0.714) and Urdaibai 

(r>0.854), respectively. Five analytes (acetaminophen, caffeine, methylparaben, OBT and PFOS) 

showed low r values suggesting the presence of an additional or different input source. In the case 

of acetaminophen and PFOS, two different sources are identified in the estuary of Bilbao, a WWTP 

discharge in spring and summer (positive r
 
in the range of 0.71 and 0.86-0.87 for acetaminophen 
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and PFOS, respectively) and a non-identified source in Bi-3 in winter 2016 and 2017. Methylparaben 

(r
 
from -0.60 to -0.24) showed the highest concentrations close to the estuary mouth and harbour 

sites at the three estuaries. Lastly, in the case of caffeine (r from -0.71 to 1.00) and OBT (r from -

0.83 to 0.99) steady emissions were observed at Bi-1s/b and Ur-1 (both sampling points close to a 

harbour/marine) and at the hot-spots of the three estuaries (Bi-4s, Pl-7 and Ur-3). Additionally, non-

specific inputs of caffeine and OBT over the whole estuary were observed, mainly related to leisure 

or urban activities in the case of caffeine and shipping activity over the navigable estuary channel in 

the case of OBT. The high detection frequencies and wide distribution of both, underlines the 

relevance of their monitoring in estuaries. 

 

 

Figure 7.3. PC1-PC2 projection of loadings of the target analyte concentrations and water              

physico-chemical distributions in the estuary of Bilbao. Abbreviations: a, acesulfame; b, acetaminophen; c, 

amitriptyline; d, bezafibrate; e, caffeine; f, carbamazepine; g, ciprofloxacin; h, diclofenac; i, diuron; j, eprosartan; 

k, irbesartan; l, ketoprofen; m, losartan; n, methylparaben; o, norfloxacin; p, OBT; q, PFBS, r, PFOS; s, phenytoin; 

t, propranolol; u, sucralose; v, sulfadiazine; w, sulfamethoxazole; x, telmisartan; y, trimethoprim; z, valsartan. 

Cond., conductivity; DO, dissolved oxygen; NH4, ammonia; NO3
-
, nitrate; NPOC, non-purgable organic carbon; 

PO4
3-

, phosphate; TDS, total dissolved solids; Si (OH)4
-
, silicates. 
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Figure 7.4. Mean concentrations (ng/L) obtained for each sampling site (deep and surface) and each 

season at Bilbao estuary with active (circle) and passive samplers (triangle) for (a) OBT, (b) amitriptyline (AMY) 

and (c) carbamazepine (CAR). 
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In the estuary of Bilbao, unlike to the other two estuaries, surface and bottom water samples 

were clustered separately in fall (as seen in Figure 7.2). Bottom water showed higher cumulative 

concentrations in comparison to the other campaigns, see Figure7.2b, probably due to a higher 

mixing rate of the water column (see Table III in appendix for water physico-chemical parameters). 

 

 

 

Figure 7.5. Principal component analysis of Bilbao estuary. (a) PC1-PC2 projection of the scores. 

Numbers refer to the sampling point in Bilbao estuary, being 1 the estuary mouth and 6 the upper part of the 

estuary. 
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Figure 7.5. Principal component analysis of Bilbao estuary. (b) PC1-PC3 projection of the scores and (c) PC2-PC3 

projection of scores. Numbers refer to the sampling point in Bilbao estuary, being 1 the estuary mouth and 6 the 

upper part of the estuary. 
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Among the target analytes, the highest levels of acetaminophen and diclofenac were 

observed during the winter (see Figure 7.6a for diclofenac) and fall seasons in Plentzia and Urdaibai, 

probably related to an increment in the consumption of them and a decreased biodegradation 

(Aminot et al., 2016; Beckers et al., 2018; Sun et al., 2016a). 

Moreover, in summer, significantly high concentrations (analysis of variance, ANOVA, pvalue 

<0.05) of amitriptyline, bezafibrate, ARA-IIs and ciprofloxacin pharmaceuticals were detected in the 

estuary of Bilbao (see Figure 7.6b, where telmisartan was included as example). This fact might be 

related to the lower flow in this season and the lowest impact of the tidal dilution. A similar effect 

was observed by Aminot et al. (Aminot et al., 2016) where the majority of pharmaceuticals exhibited 

lower in-stream attenuation during summer in the estuary of the Garonne river.  

In the case of carbamazepine and phenytoin (see Figure 7.6c in the case of phenytoin), 

psychiatric drugs which are mainly used to treat epilepsy, the highest concentrations were observed 

during summer and spring at the three estuaries, which might be related to a higher prescription 

and usage in those seasons (Aminot et al., 2016; Beckers et al., 2018). 

The same pattern is also observed with trimethoprim and sulfamethoxazole (see Figure 7.6d, 

where sulfamethoxazole is included as example), which are often co-administered to enhance the 

treatment against a variety of bacterial infection. They showed significantly lower concentrations 

(pvalu <0.05) in summer, suggesting a joint prescription of these two antibiotics in Biscay throughout 

the year. Beckers et al. (Beckers et al., 2018) also observed a join temporal exposure patterns for 

trimethoprim and sulfamethoxazole after analysing the presence of 146 organic micropollutants 

from two separate WWTP effluents in Germany.  

Lastly, OBT (see Figure 7.6e) and caffeine showed a constant emission with large general 

variation but we were unable to see a clear pattern, probably because of their wide variety of 

applications and their potential different sources. 
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Figure 7.6. Logarithmic concentrations ranges (ng/L) within sampling campaigns at each sampling estuary 

(Bilbao, Plentzia and Urdaibai) for (a) diclofenac, (b) telmisartan, (c) phenytoin, (d) sulfamethoxazole and 

(e) OBT. 

7.3.4 Passive sampling results 

The concentrations obtained from the POCIS were included together with the grab sampling 

concentrations (days 0
th

, 14
th

 and 28
th

) in Tables XIX-XX, Appendix. Grab sampling and CTWA s in water 

(ng/L) are only shown for compounds for whose Rs values were previously determined, see 
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Chapter 5.  

The highest concentrations ranges obtained with passive samplers were observed in the 

upstream site in Bilbao (Bi-4) (progesterone 2 ng/L-telmisartan 3118 ng/L) and in Urdaibai (Ur-3) 

(amitriptyline 1 - telmisartan 1088 ng/L), followed by Plentzia (Pl-3) (1.0 ng/L amitriptyline - OBT 530 

ng/L) and the harbour of Bilbao (Bi-2) (bezafibrate 0.9 ng/L- caffeine 129 ng/L). From the 21 

monitored compounds by passive sampling, ketoprofen, PFBS, PFOS and progesterone were 

exclusively quantified by passive sampling. On the contrary, only atrazine, butylparaben, PFOA and 

phenytoin were not quantifiable at any sampling site with the passive sampling approach. Finally, 

though we were able to identify genistein, glycitin and clofibric acid in the POCIS, we could not 

estimate their CTWA since we lacked their Rs. Therefore, we can highlight the need for further POCIS 

calibration to include these compounds. 

The comparison between CTWA and direct ones (days 0
th

, 14
th

 and 28
th

) showed a good 

agreement in all the estuaries. Only two compounds, caffeine (416 ng/L in POCIS vs 22-174 ng/L 

with grab sample) in Plentzia and progesterone (26 ng/L in POCIS vs n.d.-8 ng/L with grab sample) in 

Urdaibai showed higher concentrations with POCIS than with active sampling (see Figures 7.7a-d). 

POCIS has been used primarily for continental surface water monitoring or sewage 

discharges (Harman et al., 2012), and few works (Munaron et al., 2012; Shi et al., 2014) have used 

POCIS as a tool to monitor emerging contaminants in estuarine environments since they can be 

highly dynamic. The concentrations measured by spot sampling over 3 different days fluctuated less 

than 35% in the case of the estuary of Bilbao (taking into account both sampling points) and more 

than 56% and 91% for Plentzia and Urdaibai estuaries, respectively. However, it is clear from this 

study that POCIS provides an efficient way to monitor emerging pollutants over a relatively long 

time period. 
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Figure 7.7. Concentration (ng/L) obtained by active sampling (days 0
th

, 14
th

 and 28
th

) and POCIS (1
st

 and 2
nd

 

deployment) at sampling points: (a) Bi-2, (b) Bi-4 and (c) Pl-3.  
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Figure 7.7. Concentration (ng/L) obtained by active sampling (days 0
th

, 14
th

 and 28
th

) and POCIS (1
st

 and 2
nd

 

deployment) at sampling points: (d) Ur-3. 

 

7.3.5 Environmental risk assessment 

Concerning the toxicity database selection, most of the literature related to emerging 

compounds toxicity focused on fresh water organisms (Alygizakis et al., 2016; Beckers et al., 2018; 

Busch et al., 2016; Ma et al., 2017). However, in this work, bioassays carried out with marine 

representative organisms were also taken into consideration to include the effects of the measured 

contaminants in estuarine ecosystems. From the evaluated initial dataset (833 for LC50s - EC50s and 

904 for NOECs values), only 27% of the bioassays reported were performed in seawater. 

Furthermore, measured data were favoured over QSAR based ones due to the limitations of the 

QSAR models to account for a large variety of chemical structures (Busch et al., 2016). Tables 7.4 and 

7.5 show the most sensitive NOEC and acute L(E)C50 values, respectively, reported for the studied 

contaminants and for target species (zebra danio, water flea, copepod, bivalve, sea urchin, water 

flea, green algae, haptophyte and cyanobacteria) and test media (fresh water and seawater). 

Chronic data were available only for 21 of the 41 target compounds, whereas acute toxicological 

data were missed only for clomipramine, imipramine and nortriptyline. European guidelines 

(European Commission, 2013) recommend the use of chronic toxicity to calculate PNEC values, as 

they are most likely to induce chronic effects rather than acute ones. However, due to the current 
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limited availability of chronic toxicity data, short-term (EC50 and LC50) values are widely used to 

estimate PNEC values and, therefore, the potential adverse effects to aquatic organisms (Beckers et 

al., 2018; Busch et al., 2016). 

 

Table 7.4. The lowest available chronic effect concentrations of target analytes for each representative specie and water 

media collected from the ECOTOX database 

Analyte 
Taxonomic 

Level 
Species Common Name  

(scientific name) 
Media 
Type 

Duration 
(Days) 

Concentration 
(µg/L) 

References 

Acetaminophen 

Invertebrate 
(crustaceans) 

Water Flea 
(Daphnia magna) 

FW 21 5720 (Kim et al., 2012) 

Fish 
Zebra Danio 
(Danio rerio) 

FW 21 5000 
(Zhang and Gong, 

2013) 

Amitriptyline Fish 
Zebra Danio 
(Danio rerio) 

FW 14 1000 (Yang et al., 2014) 

Atrazine 

Algae 
Green Algae  

(Pseudokirchneriella subcapitata) 
FW 49 10 

(Pannard et al., 
2009) 

Invertebrate 
(crustaceans) 

Copepod  
(copepoda) 

SW 28 25 
(Bejarano et al., 

2005) 
Invertebrate 

(crustaceans) 
Copepod 

(cyclopoida) 
FW 21 25 (Choung et al., 2013) 

Invertebrate 
(crustaceans) 

Water Flea  
(Daphnia magna) 

FW 21 99 
(Olmstead and 
LeBlanc, 2003) 

Invertebrate 
(molluscs) 

Bilvalve  
(Mytilus galloprovincialis) 

SW 56 3583 
(Ei-Shenawy et al., 

2007) 

Fish 
Zebra Danio 
(Danio rerio) 

FW 28 30 
(Plhalova et al., 

2011) 

Bezafibrate 
Invertebrate 
(molluscs) 

Bilvalve  
(Mytilus galloprovincialis) 

SW 2 1 (Fabbri et al., 2014) 

Caffeine 
Algae 

Green Algae  
(Cyanophycota) 

FW 56 5 
(Lawrence et al., 

2012) 
Invertebrate 

(crustaceans) 
Water Flea 

(Daphnia magna) 
FW 21 120 (Lu et al., 2013) 

Carbamazepine 

Algae, 
Green Algae  

(Chlorella pyrenoidosa) 
FW 30 1000 (Zhang et al., 2012) 

Invertebrate 
(crustacean) 

Copepod  
(Calanoida) 

FW 31 2 (Jarvis et al., 2014) 

Fish 
Zebra Danio  
(Danio rerio) 

FW 21 1780 
(Madureira et al., 

2012) 

Ciprofloxacin Algae, 
Green Algae  

(Pseudokirchneriella subcapitata) 
FW 3 5000 (Yang et al., 2008) 

Clofibric acid 
Invertebrate 

(crustaceans) 
Water Flea  

(Daphnia magna) 
FW 21 40000 (Han et al., 2006) 

Diclofenac 

Algae 
Green Algae 

(Cyanophycota) 
FW 56 5 

(Lawrence et al., 
2012) 

Invertebrate 
(crustaceans) 

Water Flea  
(Daphnia magna) 

FW 21 10000 (Han et al., 2006) 

Invertebrate 
(molluscs) 

Bilvalve  
(Mytilus galloprovincialis) 

SW 21 0.25 
(Gonzalez-Rey and 
Bebianno, 2014) 

Diuron Algae 
Green Algae 

(Chlorella pyrenoidosa) 
FW 21 2.33 (Davis et al., 1976) 

Genistein Fish 
Zebra Danio 
(Danio rerio) 

FW 75 1.3 (Schiller et al., 2014) 

Isoproturon Algae 
Green Algae 

(Chlorella fusca var. Vacuolata) 
FW 1 4 

(Junghans et al., 
2006) 
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Table 7.4. The lowest available chronic effect concentrations of target analytes for each representative specie and water 

media collected from the ECOTOX database 

Analyte 
Taxonomic 

Level 
Species Common Name  

(scientific name) 
Media 
Type 

Duration 
(Days) 

Concentration 
(µg/L) 

References 

Methylparaben Algae, 
Green Algae  

(Pseudokirchneriella subcapitata) 
FW 3 5000 (Madsen et al., 2001) 

Norfloxacin 
Invertebrate 

(crustaceans) 
Water Flea  

(Daphnia magna) 
FW 21 120 (Lu et al., 2013) 

PFOA 
Invertebrate 

(crustaceans) 
Water Flea  

(Daphnia magna) 
FW 21 6250 (Ji et al., 2008) 

PFOS 

Invertebrate 
(crustaceans) 

Water Flea  
(Daphnia magna) 

FW 21 1250 (Ji et al., 2008) 

Invertebrate 
(molluscs) 

Bilvalve  
(Lampsilis siliquoidea) 

FW 36 69.5 
(Hazelton et al., 

2012) 

Fish 
Zebra Danio  
(Danio rerio) 

FW 152 5 (Wang et al., 2011) 

Progesterone 
Invertebrate 

(crustaceans) 
Water Flea  

(Daphnia magna) 
FW 22 100 

(Kashian and 
Dodson, 2004) 

Propranolol 

Invertebrate 
(molluscs) 

Bilvalve  
(Mytilus edulis) 

SW 21 100 (Ericson et al., 2010) 

Fish 
Zebra Danio  
(Danio rerio) 

FW 21 31.8 
(Madureira et al., 

2012) 

Simazine 
Algae, 

Green Algae 
(Stigeoclonium sp.) 

FW 42 100 
(Goldsborough and 

Robinson, 1986) 

Fish 
Zebra Danio 
(Danio rerio) 

FW 28 60 
(Plhalova et al., 

2011) 

Sulfadiazine Algae, 
Haptophyte 

(Isochrysis galbana) 
SW 4 100 (Orte et al., 2013) 

Sulfamethoxazole 

Invertebrate 
(crustaceans) 

Water Flea  
(Daphnia magna) 

FW 21 120 (Lu et al., 2013) 

Fish 
Zebra Danio  
(Danio rerio) 

FW 21 533 
(Madureira et al., 

2012) 

Trimethoprim 

Invertebrate 
(crustaceans) 

Water Flea  
(Daphnia magna) 

FW 21 3120 
(De Liguoro et al., 

2012) 

Fish 
Zebra Danio  
(Danio rerio) 

FW 21 157 
(Madureira et al., 

2012) 

FW=fresh water; SW=seawater. 
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Table 7.5 The lowest available acute effect concentrations (EC50) of target analytes for each representative specie and water 

media collected from the ECOTOX database  

Analyte 
Taxonomic  

level 
Species Common Name  

(Scientific name) 
Media  
Type 

EC50 
(µg/L) 

Reference 

Acesulfame 

Algae 
Green algae 

(Isochrysis galbana) 
-a 2068174 (Busch et al., 2016) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

-a 19450783 (Busch et al., 2016) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 8622577 (Busch et al., 2016) 

Acetaminophen 

Algae 
Green algae 

(Isochrysis galbana) 
-a 478042 (Busch et al., 2016) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

FW 11850 (Kim et al., 2012)  

Fish 
Zebra Danio 
(Danio rerio) 

FW 1529769 (Selderslaghs et al., 2012) ( 

Amitriptyline 

Algae 
Green algae 

(Isochrysis galbana) 
-a 1860 (Beckers et al., 2018) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

-a 942 (Beckers et al., 2018) 

Fish 
Zebra Danio 

(Danrio rerio) 
FW 1400 (Yang et al., 2014) 

Atrazine 

Algae 
Green Algae 

(Chlorella vulgaris) 
FW 4 (Bérard et al., 2003) 

Algae 
Green Algae 

(Tetraselmis chuii) 
SW 20 (Debelius et al., 2008) 

Algae 
Haptophyte 

(Isochrysis galbana) 
FW 91.1 (Weiner et al., 2004) 

Algae 
Haptophyte 

(Isochrysis galbana) 
SW 30 (Debelius et al., 2008) 

Bacteria 
Cyanobecteria 

(Microcystis aeruginosa) 
FW 20 (Chalifour et al., 2016) 

Bacteria 
Cyanobecteria 

(Synechococcus elongates) 
SW 49 (González-Barreiro et al., 2004) 

Invertebrate 
(crustacean) 

Copepod 
(Eurytemora affinis) 

FW 125 (Forget-Leray et al., 2005) 

Invertebrate 
(crustacean) 

Copepod 
(Acartia tonsa) 

SW 94 (Ward and Ballantine, 1985) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

FW 420 (Palma et al., 2009) 

Invertebrate 
(mollusc) 

Bilvalve 
(Mytilus galloprovincialis) 

SW 3100 (Losso et al., 2004) 

Fish 
Zebra Danio 
(Danio rerio) 

FW 6090 (Wang et al., 2017) 

Bezafibrate 

Algae 
Green algae 

(Isochrysis galbana) 
-a 247 (Busch et al., 2016) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

FW 30300 (Han et al., 2006) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 1684 (Busch et al., 2016) 

Butylparaben 

Algae 
Green algae 

(Isochrysis galbana) 
-a 21424 (Busch et al., 2016) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

-a 24297 (Busch et al., 2016) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 11337 (Busch et al., 2016) 

Caffeine Algae 
Green algae 

(Isochrysis galbana) 
-a 1124 (Busch et al., 2016) 
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Table 7.5 The lowest available acute effect concentrations (EC50) of target analytes for each representative specie and water 

media collected from the ECOTOX database  

Analyte 
Taxonomic  

level 
Species Common Name  

(Scientific name) 
Media  
Type 

EC50 
(µg/L) 

Reference 

Caffeine 

Invertebrate  
(crustacean) 

Water Flea 
(Daphnia magna) 

FW 440 (Lu et al., 2013) 

Fish 
Zebra Danio 
(Danio rerio) 

FW 155352 (Teixidó et al., 2013) 

Carbamazepine 

Algae 
Green Algae 

(Chlorella pyrenoidosa) 
FW 33110 (Zhang et al., 2012) 

Algae 
Green Algae 

(Dunaliella tertiolecta) 
SW 53200 (Tsiaka et al., 2013) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

FW 111000 (Han et al., 2006) 

Fish 
Zebra Danio 
(Danio rerio) 

FW 50089 (Pruvot et al., 2012) 

Ciprofloxacin Algae 
Green Algae 

(Pseudokirchneriella subcapitata) 
FW 6700 (Yang et al., 2014) 

Clofibric acid 

Algae 
Green Algae 

(Desmodesmus subspicatus) 
FW 115000 (Cleuvers, 2003) 

Algae 
Green Algae 

(Tetraselmis chuii) 
SW 318200 (Nunes et al., 2005) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

FW 141200 (Han et al., 2006) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 322 (Busch et al., 2016) 

Diclofenac 

Algae 
Green Algae 

(Pseudokirchneriella subcapitata) 
FW 64800 (Quinn et al., 2011) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

FW 80100 (Han et al., 2006) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 44 (Busch et al., 2016) 

Diuron 

Algae 
Green Algae 

(Pseudokirchneriella subcapitata) 
FW 0.7 (Ma et al., 2006) 

Algae 
Green Algae 

(Dunaliella tertiolecta) 
SW 2.9 (Booij et al., 2013) 

Algae 
Haptophyte 

(Isochrysis galbana) 
SW 10 (Walsh, 1972) 

Bacteria 
Cyanobecteria 

(Synechocystis sp.) 
FW 8 (Podola and Melkonian, 2005) 

Bacteria 
Cyanobecteria 

(Chroococcus minor) 
SW 5 (Bao et al., 2011) 

Invertebrate 
(crustacean) 

Copepod 
(Nitocra spinipes) 

SW 4000 (Karlsson et al., 2006) 

Invertebrate 
(echinoderm) 

Sea Urchin 
(Paracentrotus lividus) 

SW 1940 (Manzo et al., 2008) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 48758 (Busch et al., 2016) 

Eprosartan 

Algae 
Green algae 

(Isochrysis galbana) 
-a 11 (Busch et al., 2016) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

-a 0.2 (Busch et al., 2016) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 1 (Busch et al., 2016) 

Genistein 

Algae 
Green algae 

(Isochrysis galbana) 
-a 12087 (Busch et al., 2016) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

-a 350 (Busch et al., 2016) 
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Table 7.5 The lowest available acute effect concentrations (EC50) of target analytes for each representative specie and water 

media collected from the ECOTOX database  

Analyte 
Taxonomic  

level 
Species Common Name  

(Scientific name) 
Media  
Type 

EC50 
(µg/L) 

Reference 

Genistein Fish 
Zebra Danio 
(Danio rerio) 

FW 2800 (Schiller et al., 2014) 

Irbesartan 

Algae 
Green algae 

(Isochrysis galbana) 
-a 124 (Busch et al., 2016) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

-a 2 (Busch et al., 2016) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 5 (Busch et al., 2016) 

Isoproturon 

Algae 
Green Algae 

(Chlorella pyrenoidosa) 
FW 5 (Ma et al., 2001) 

Algae 
Green Algae 

(Dunaliella tertiolecta) 
SW 8.7 (Sjollema et al., 2014) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

-a 26698 (Busch et al., 2016) 

Fish 
Zebra Danio  
(Danio rerio) 

-a 30937 (Busch et al., 2016) 

Ketoprofen 

Algae 
Green algae 

(Isochrysis galbana) 
-a 14947 (Busch et al., 2016) 

Invertebrate 
(crustacean) 

Copepod 
(Tisbe battagliai) 

SW 15800 (Schmidt et al., 2011) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 279 (Busch et al., 2016) 

Losartan 

Algae 
Green algae 

(Isochrysis galbana) 
-a 2434 (Busch et al., 2016) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

-a 42 (Busch et al., 2016) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 64 (Busch et al., 2016) 

Methylparaben Algae 
Green Algae 

(Pseudokirchneriella subcapitata) 
FW 91000 (Madsen et al., 2001) 

Norfloxacin 

Algae 
Green Algae 

(Pseudokirchneriella subcapitata) 
FW 10400 (Eguchi et al., 2004) 

Bacteria 
Cyanobacteria 

(Chlorella vulgaris) 
FW 38 (Ando et al., 2007) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

FW 880 (Lu et al., 2013) 

OBT 

Algae 
Green algae 

(Isochrysis galbana) 
-a 11000 (Beckers et al., 2018) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

-a 56700 (Beckers et al., 2018) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 24100 (Beckers et al., 2018) 

PFBS 

Algae 
Green algae 

(Isochrysis galbana) 
-a 269318 (Busch et al., 2016) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

-a 364012 (Busch et al., 2016) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 333285 (Busch et al., 2016) 

PFOA 

Algae 
Green Algae 

(Pseudokirchneriella subcapitata) 
FW 96200 (Rosal et al., 2010) 

Algae 
Green Algae 

(Chlorella vulgaris) 
SW 877205 (Latała et al., 2009) 

Algae 
Haptophyte 

(Isochrysis galbana) 
SW 163600 (Mhadhbi et al., 2012) 

Bacteria 
Cyanobecteria 

(Geitlerinema amphibium) 
SW 248442 (Latała et al., 2009) 
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Table 7.5 The lowest available acute effect concentrations (EC50) of target analytes for each representative specie and water 

media collected from the ECOTOX database  

Analyte 
Taxonomic  

level 
Species Common Name  

(Scientific name) 
Media  
Type 

EC50 
(µg/L) 

Reference 

PFOA 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

FW 268686000 (Sanderson et al., 2003) 

Invertebrate 
(echinoderm) 

Sea Urchin 
(Paracentrotus lividus) 

SW 20000 (Mhadhbi et al., 2012) 

Invertebrate 
(mollusc) 

Bilvalve 
(Ligumia recta) 

FW 161000 (Hazelton et al., 2012) 

Invertebrate 
(mollusc) 

Bilvalve 
(Lampsilis siliquoidea) 

FW 162600 (Hazelton et al., 2012) 

Fish 
Zebra Danio 
(Danio rerio) 

FW 157320 (Kalasekar et al., 2015) 

PFOS 

Algae 
Haptophyte 

(Isochrysis galbana) 
SW 37500 (Mhadhbi et al., 2012) 

Invertebrate 
(echinoderm) 

Sea Urchin 
(Paracentrotus lividus) 

SW 20000 (Mhadhbi et al., 2012) 

Invertebrate 
(mollusc) 

Bilvalve 
(Ligumia recta) 

FW 13500 (Hazelton et al., 2012) 

Fish 
Zebra Danio 
(Danio rerio) 

FW 1120 (Huang et al., 2010) 

Phenytoin 
Invertebrate 
(echinoderm) 

Sea Urchin 
(Arbacia punctulata) 

SW 9081 (Estus and Blumer, 1989) 

Progesterone 

Algae 
Green algae 

(Chlorella vulgaris) 
-a 6415000 (Busch et al., 2016) 

Invertebrate 
(crustaceans) 

Water Flea 
(Daphnia magna) 

-a 10524000 (Busch et al., 2016) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 14197000 (Busch et al., 2016) 

Propranolol 

Algae 
Green Algae 

(Desmodesmus subspicatus) 
FW 5800 (Cleuvers, 2003) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

FW 1600 (Huggett et al., 2002) 

Invertebrate 
(echinoderm) 

Sea Urchin 
(Paracentrotus lividus) 

SW 232 (Karaaslan and Parlak, 2016) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 14197000 (Busch et al., 2016) 

Simazine 

Algae 
Green Algae 

(Pseudokirchneriella subcapitata) 
FW 0.614 (Turbak et al., 1986) 

Algae 
Green Algae 

(Dunaliella tertiolecta) 
SW 760 (McFeters et al., 1983) 

Algae 
Haptophyte 

(Isochrysis galbana) 
SW 500 (Walsh, 1972) 

Bacteria 
Cyanobacteria 

(Synechocystis sp.) 
FW 131 (Podola and Melkonian, 2005) 

Invertebrate 
(crustacean) 

Copepod 
(Heliodiaptomus viduus) 

FW 1000 (George et al., 1982) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

FW 94000 (Karaaslan and Parlak, 2016) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 716 (Busch et al., 2016) 

Sucralose 

Algae 
Green algae 

(Isochrysis galbana) 
-a 23414190000 (Busch et al., 2016) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

-a 22881218000 (Busch et al., 2016) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 10951640000 (Busch et al., 2016) 

Sulfadiazine Algae 
Green algae 

(Pseudokirchneriella subcapitata) 
FW 2190 (Eguchi et al., 2004) 
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Table 7.5 The lowest available acute effect concentrations (EC50) of target analytes for each representative specie and water 

media collected from the ECOTOX database  

Analyte 
Taxonomic  

level 
Species Common Name  

(Scientific name) 
Media  
Type 

EC50 
(µg/L) 

Reference 

Sulfadiazine 

Algae 
Haptophyte 

(Isochrysis galbana) 
SW 1440 (Orte et al., 2013) 

Bacteria 
Cyanobacteria 

(Microcystis aeruginosa) 
FW 135 (Lützhøft et al., 1999) 

Invertebrate 
(echinoderm) 

Sea Urchin 
(Arbacia lixula) 

SW 12700 (Carballeira et al., 2012) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 189420 (Busch et al., 2016) 

Sulfamethoxazole 

Algae 
Green Algae 

(Pseudokirchneriella subcapitata) 
FW 520 (Isidori et al., 2005) 

Invertebrate 
(crustaceans) 

Water Flea 
(Daphnia magna) 

FW 1290 (Lu et al., 2013) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 385124 (Busch et al., 2016) 

Testosterone 

Algae 
Green algae 

(Isochrysis galbana) 
-a 9121 (Busch et al., 2016) 

Invertebrate 
(crustacean) 

Copepod 
(Acartia tonsa) 

SW 1500 (Andersen et al., 2001) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 186 (Busch et al., 2016) 

Trimethoprim 

Algae 
Green Algae 

(Pseudokirchneriella subcapitata) 
FW 40000 (Yang et al., 2008) 

Bacteria 
Cyanobacteria 

(Anabaena variabilis) 
FW 11000 (Ando et al., 2007) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

-a 37966 (Busch et al., 2016) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 27064 (Busch et al., 2016) 

Valsartan 

Algae 
Green algae 

(Isochrysis galbana) 
-a 574 (Busch et al., 2016) 

Invertebrate 
(crustacean) 

Water Flea 
(Daphnia magna) 

-a 96 (Busch et al., 2016) 

Fish 
Zebra Danio 
(Danio rerio) 

-a 134 (Busch et al., 2016) 

-a=predicted value with QSAR according to Bunsh et al (Busch et al., 2016) 
 FW=fresh water; SW=seawater. 

 

Criteria for interpreting the RQ values in order to establish different levels of environmental 

risk were: low risk (RQ values below to 0.1), medium risk (RQ values between 0.1 and 1) and high 

risk (RQ values higher than 1) (Alygizakis et al., 2016; European Commission, 2013; Ma et al., 2017). 

RQ values of the detected compounds are summarised in Tables XXI-XXII (Appendix) and   

Figure 7.8a-d. 

 



Chapter 7 

208 

 

 

 

Figure 7.8. Risk Quotients (RQ) of the target compounds calculated for (a) chronic toxicity in effluents samples 

and (b) chronic toxicity in estuary samples. Colours refer to the risk level: green RQ<0.1; orange 0.1<RQ<1 and 

red RQ>1.  
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Figure 7.8. Risk Quotients (RQ) of the target compounds calculated for (c) acute toxicity in effluent samples and 

(d) acute toxicity for estuary samples. Colours refer to the risk level: green RQ<0.1; orange 0.1<RQ<1 and red 

RQ>1.  

 

Regarding the chronic toxicity, as can be seen in Figures 7.8a and 7.8b for WWTP effluent and 

estuary samples, respectively, caffeine, diclofenac, bezafibrate, sulfadiazine and genistein are the 

compounds that showed the most negative impact. It is worth mentioning the impact of caffeine 

(detection frequency of 99%) and the fact that its main source is not only related to WWTP 

effluents.  
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RQ values obtained for pharmaceutical compounds are consistent with other RQs reported in 

the literature (Beckers et al., 2018; Busch et al., 2016). Among them, the anti-inflammatory agent 

diclofenac was previously identified as one of the main risk drivers in environmental mixtures 

(Beckers et al., 2018; Busch et al., 2016) and has been associated with growth inhibition in daphnia 

and cell multiplication in algae (see Tables 7.4 and 7.5). 

Compounds detected at low concentrations and frequency as genistein (only detected in 

effluent samples at maximum concentrations of 5-597 ng/L) could imply a higher acute risk due to 

their higher toxicity (see Figure 7.8a). Moreover, PFOS also showed a RQacute>0.1 although the 

maximum detected concentrations during the monitoring campaign (28 ng/L and 168 ng/L for 

estuary and effluent samples, respectively) did not exceed the its established Environmental Quality 

Standard (Maximum Allowable Concentration 65000 ng/L) (European Commission, 2013). 

Regarding the acute toxicity, in at least one of the evaluated sample points, telmisartan, 

eprosartan, irbesartan, diuron, caffeine, valsartan, diclofenac, sulfadiazine, sulfamethoxazole, 

losartan, norfloxacin, simazine, atrazine, genistein and ketoprofen showed a RQacute>1, while 

isoproturon, ciprofloxacin, bezafibrate, acetaminophen, phenytoin, trimethoprim, PFOS, propranolol 

and amitriptyline showed a RQacute>0.1 (Figures 7.8c and 7.8d for effluent and estuary samples, 

respectively). 

In this work, three sartans-compounds (telmisartan, eprosartan and irbesartan) were ranked 

as the most toxic compounds on the bases of RQacute estimation. Similar results were also found by 

Busch et al. (Busch et al., 2016) from a list of 214 top toxic compounds. Although the occurrence of 

sartans has been reported before (Loos et al., 2013), to the best of our knowledge there are no 

measured L(E)50 values and in this work their RQ ranking relies only on toxicity estimations that are 

retrieved from QSAR prediction (Busch et al., 2016). Therefore, they should be included in further 

monitoring campaigns as well as in bioassays.  

Norfloxacin, sulfamethoxazole and sulfadiazine, also showed high RQacute values. These 

results are in agreement with Ma et al. (Ma et al., 2017), where sulfadiazine and sulfamethoxazole 

(RQs ranging from 1.0 to 9.2) were identified as the antibiotics with the higher ecological risks.  
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Besides, it is noteworthy that the aquatic risk assessment pointed out a highly possible risk in 

all the sites where diuron, simazine and atrazine were detected (see Table 7.2 and 7.3 for the 

concentrations), even if the Environmental Quality Standard for pesticides (EQS, 0.2 µg/L) 

established by Directive 2013/39/EC (European Commission, 2013) were not exceeded. 

Lastly, in the case of OBT, RQacute values>0.1 were only obtained in the estuary samples, 

confirming the importance of monitoring not only WWTPs but also other potential sources such as 

harbours.  

In any case, it should be underlined that RQs act as a normalised measurement of risk 

allowing a comparison between different compounds with different toxicities and exposure levels 

and thereby it might be good a starting point for further prioritisation. 

 

 Conclusions 7.4

The analysis of a wide number of emerging contaminants in three estuaries and three WWTP 

effluents allowed us to describe the complexity of the studied scenarios. The time and space 

distribution of the studied contaminants allowed us to identify that one of the most likely sources 

are the urban wastes released by the WWTPs, though other remarkable contributions such as the 

harbour activities were also identified. It is important to emphasize that WWTPs are important 

secondary sources of anthropogenic compounds and the composition of their effluents depend on 

the primary urban inputs and the efficiency of the treatments. In this sense, the confirmation of 

valuable markers of these effluents has also been highlighted to identify non-monitored effluents. In 

addition to this, we can also point out the utility of passive samplers because they allowed us to 

estimate CTWA of a number of contaminants and to detect contaminants that would have not been 

measured by active sampling methods. Besides, based on the estimated RQ values the contaminants 

were ranked in terms of their acute and chronic toxic effects to complement their occurrence data 

along the estuaries and their most likely sources. On the one hand, well known pharmaceuticals, 

such as diclofenac show high acute and chronic effects, but ubiquitous caffeine seems to be a 

contaminant of increasing concern. On the other hand, the estimated toxicity of the 
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antihypertensive drugs (sartans) together with their detection frequencies in effluents and 

estuaries, are warning evidences of their environmental impact. 
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8.1. Introduction 

The presence of emerging contaminants (ECs) in the aquatic environment is an issue of 

growing concern due to the chronic exposure of many aquatic ecosystems and the subsequent risks 

for environmental and human health (Ternes et al., 2015). Considering that around 500 known 

organic micropollutants can be typically reported in aquatic systems, and more than 10,000 are likely 

to be found, a targeted analysis of all these compounds seems difficult to achieve in regular 

monitoring and using methods that comply with quality standards (Hernández et al., 2012). In 

addition to the difficulties of the screening analysis of complex samples, especially the most 

demanding ones such as effluents of wastewater treatment plants (WWTPs), the picture of the 

toxicological risk that is obtained is still very limited. In this context, the application of bioassays 

allows us not only to determine the modes of action of complex samples but to reduce the domain 

of ECs to be analysed and to focus the analytical efforts towards the most toxic ones (Busch et al., 

2016). In fact, the development and application of high throughput bioanalytical techniques and 

screening tools, i.e., the use of high resolution mass spectrometry (HRMS) combined with bioassays 

application, is one of the ways to tie the demanding needs of information for ECs (i.e., the links 

between the occurrence and the toxicity) (Escher and Leusch, 2011). 

To estimate the risk associated with the exposure to ECs, we have to integrate the fate and 

behaviour of the contaminants (both primary contaminants and by-products) and the effects that 

may occur at different taxonomic levels and the ecological relevance of the tested bioassays (Arnold 

et al., 2014; Pusceddu et al., 2018). While freshwater organisms have been widely studied as 

biological models in ecotoxicity, there is still a gap with marine organisms (Beiras and Tato, 2018; 

Gaw et al., 2014). In this sense, the use of sea urchin (Paracentrotrus lividus) embryo test (SET) 

(Carballeira et al., 2012; Saco-Álvarez et al., 2010) has been chosen in a number of works since they 

are key benthic species in the coastal environment and they are sensitive to many emerging 

contaminants (Cunha et al., 2017; Gambardella et al., 2016; Vethaak et al., 2017). 

Sea urchins live in wave-exposed rock pools, coral reefs and in sea grass bed, where they 

function as grazer and prey play a key role (Agnello, 2017). On the one hand, they graze and prune 

the algae, thus remodelling the bottom. On the other hand, sea urchin embryo and larvae swim in 
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the water column up to their metamorphosis, being a good part of the plankton and constituting 

food for other organisms (Agnello, 2017).  

The use of sea urchin models has been included in the European Union Reference Laboratory 

for Alternatives to Animal Testing (EURL ECVAM) and it has been standardised by several national 

environmental agencies (ASTM, 1995; Environment Canada, 2011; USEPA, 2002). However, it still 

requires the standardisation and validation to achieve the rank of zebrafish based tests (Di Paolo et 

al., 2015).  

Paracentrotus Lividus is widely found in Europe (Mediterranean and Atlantic coast) and there 

are equivalent species in eastern (Lytechinus variegates) and western American coasts 

(Strongylocentrotus purpuratus), and even in the Antarctic (Sterechinus neumayeri). Therefore, the 

sea urchin bioassay would support worldwide applications. In spite of easiness to capture these 

invertebrates from the field (they inhabit hard bottom from few centimetres deep to 20 or more 

meters (Gambardella et al., 2016)), the availability of embryos with reliable good quality outside the 

natural spawning season is rather limited (Anselmo et al., 2011; Garmendia et al., 2010). 

Nevertheless, it is affordable to maintain them in captivity in aquaculture facilities. Besides, the  

growing sea urchin and hatching the eggs and embryos aer quite simple to carry out (e.g., high 

amount of eggs, and high and external fecundity) and therefore they may become a promising 

model. Gametes can be obtained easily from mature adults either by direct stripping of the gonad 

(Bellas, 2008) or osmotic-shock induced spawning (Carballeira et al., 2012) (see Figure 8.1a-d). 

Moreover, eggs and larvae are transparent and the early embryo development is highly synchronous 

and predictable (see Figure 8.2a-l for the predictably development of the Paracentrotus Lividus over 

48 h), which makes the observation and evaluation of the larvae easy to follow. Finally, it is worth 

mentioning the sophistication of the urchin genome and the number of complex immune responses 

that integrates, which may be equivalent to that of vertebrates (Pennisi, 2006). 

Most standard methods (ASTM, 1995; Environment Canada, 2011; USEPA, 2002) mentioned 

before are based on the evaluation of the sea urchin morphological toxicity. This end-point involves 

distinguishing between normal and malformed larvae. The normal larvae should exhibit four fully 

formed arms (two longer post-oral arms and two shorter oral arms that are half the length of the 
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long axis of the larvae) and a regular outer contour of the body (see Figure 8.2l). Recently, several 

other end-points have been proposed (e.g., fertilisation rate (Mohd Zanuri et al., 2017), 

skeletogenesis (Carballeira et al., 2012), neurotoxicity response (Falugi and Aluigi, 2012), swimming 

behaviour (Faimali et al., 2017)) in order to enhance the SET applicability. For instance, since the 

identification of more detailed abnormalities can complicate the observation, and considering that 

this even depends on the position of the larvae under microscope, Saco-Alvarez and co-workers 

(Saco-Álvarez et al., 2010) proposed an alternative growth inhibition endpoint based on the size 

increase. The maximum dimension of all the individuals (not only normal larvae but also any other 

earlier or abnormal development stage) is measured, and the size increased respect to the egg 

diameter is measured. This allows a more independent observation response, and makes automatic 

reading feasible, which could improve the high-throughput required in monitoring programs.  

 

 

Figure 8.1. Obtaining gametes by direct stripping (a-b) and Osmotic-shock-induced (c-d). a) Mature gonads of a 

female, b) mature gonads of a male, c) injection of 1 mL KCl 0.5 M through the peri-oral membrane into coelom 

and d) collection of the gametes from inverted female over a beaker containing seawater and sperm directly 

from the gonopores of the males. 

A)

C)

B)

D)
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Figure 8.2. Paracentrotus lividus embryo development, from fertilised egg until it reachs the four arm pluteus 

stage in 48 h: a) fertilised egg (within the first 30 min), b) 2 cell division (within 1.30 min), c) 4 cell division (2.30 

h), d) eight cell division (3 h), e) sixteen cells division (3.30 h), f) 32 cell division (4.30 h), g) morula (4.45 h), h) 

blastula (5 h), i) glastula (5-22 h), j-k) primsa larvae, pre pluteos stage (22-48 h), and l) normal four arm 

pluteous stage (48 h).  

 

The integration of these kind of bioassays in chemical monitoring can be achieved through 

the application of the effect-directed analysis (EDA) since it is a streamlined procedure that 

integrates a chromatographic fractionation with bioassays driven non-targeted analysis (Brack et al., 

2016). Furthermore, the application of EDA may go from the discovery of unknown chemicals to the 

prioritisation of contaminants, according to the scope and criteria (i.e., the selected end-point) 

established beforehand. Recently published EDA applications focused on the toxicity evaluation of 

100 µm
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wastewater effluents and surface waters (Hashmi et al., 2018; Osorio et al., 2018), the elucidation of 

the causes of mutagenicity in the Rhine river (Muz et al., 2017) and the development of specific 

protocols based on in vitro tests (Muschket et al., 2018; Ouyang et al., 2016; Zwarg et al., 2018; 

Zwart et al., 2018). However, the application of EDA on estuaries and coastal waters is still rather 

limited (Booij et al., 2014).  

Within this context, this chapter includes the application of SET to study the toxicity of the 

WWTP effluents affecting some important estuaries of Biscay. in addition to this, the 

implementation of SET into an EDA protocol was carried out for the first time in order to integrate a 

relevant organism in coastal environments and to widen the scope of this procedure.  

 

8.2. Experimental section 

8.2.1 Reagents and materials 

Name, classes, main use, molecular formulas and CAS numbers for the set of organic 

compounds used are summarised in Table 8.1. Brands of the compounds are also included. 

Oasis hydrophilic-lipophilic balanced (HLB) 200 mg solid phase extraction (SPE) cartridges 

were purchased from Waters (Milford, USA). Bond-Elut Plexa and Strata X-AW bulk sorbents used in 

the EDA approach were purchased from Agilent (Santa Clara, CA, USA) and Phenomenex (Torrance, 

CA, USA), respectively. Empty SPE tubes (6 mL and 20 mL) and polypropylene (PP) frits were 

purchased from Supelco (Bellefonte, PA, USA). 

Formic acid (>98%) and sodium thiosulfate (98%) were supplied by Panreac (Barcelona, 

Spain). Methanol (MeOH, HPLC grade, 99.9%), ethyl acetate (EtOAc, HPLC grade, 99.9%), acetone 

(HPLC grade, 99.9%) and ammonium solution (25% as NH3) used in the SPE extraction were obtained 

from Sigma Aldrich (St. Louis, MO, USA). Ultra-pure water was obtained using a Milli-Q water 

purification system (<0.05 S/cm, Milli-Q model 185, Millipore, Bedford, MA, USA). Dimethyl 

sulfoxide (DMSO, cell culture grade) used in the bioassays was supplied by Panreac.  
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Table 8.1. Name, class, use, molecular formula, CAS number and brand of each of the synthetic compounds studied. They all 

have a purity of at least 97%. 

Name Class  Usea 
Molecular  
formula 

CAS 
number 

2-hydroxybenzothiazoleB Industrial chemical Corrosion inhibitor C7H5NOS 934-34-9 

4-ChlorophenolB Pharmaceutical Anti-infective C6H5ClO 106-48-9 

4-hydroxytamoxifenC Pharmaceutical Antineoplastic C26H29NO2 97151-02-5 

AcesulfameD Life style product Artificial sweetener C4H5NO4S 33665-90-6 

AcetaminophenE Pharmaceutical Anti-inflammatory C8H9NO2 103-90-2 

Acetamiprid
B
 Pesticide Insecticide C10H11ClN4 135410-20-7 

AcetochlorB Pesticide Herbicide C14H20ClNO2 34256-82-1 

Acyclovir
B
 Pharmaceutical Antiviral C8H11N5O3 59277-89-3 

AlachlorB Pesticide Herbicide C14H20ClNO2 15972-60-8 

Albendazole
B
 Pharmaceutical Anthelminthic C12H15N3O2S 54965-21-8 

Amantadine
B
 Pharmaceutical Antiviral C10H18ClN 665-66-7 

AmbroxolB Pharmaceutical Expectorants  C13H18Br2N2O 18683-91-5 

Ametryn
B
 Pesticide Herbicide C9H17N5S 834-12-8 

AmiodaroneB Pharmaceutical Antiarrhythmic C25H30Cl2NO3 19774-82-4 

Amitriptyline
B
 Pharmaceutical Antidepressant C20H23N 50-48-6 

AmoxicillinB Pharmaceutical Antibiotic C16H25N3O8S 61336-70-7 

AmpicillinB Pharmaceutical Antibiotic C16H19N3O4S 69-53-4 

AnastrozoleB Life style product Stimulant C17H19N5 120511-73-1 

AtenololB Pharmaceutical Antihypertensive C14H22N2O3 29122-68-7 

AtorvastatinB Pharmaceutical Anti-cholesteric  C33H35FN2O5 134523-00-5 

AtrazineE Pesticide Herbicide C8H14ClN5 1912-24-9 

AzelastineB Pharmaceutical Antihistaminic C22H25Cl2N3O 79307-93-0 

AzithromycinB Pharmaceutical Antibiotic C38H72N2O12 83905-01-5 

AzoxystrobinB Pesticide Fungicide C22H17N3O5 131860-33-8 

BendiocarbB Pesticide Insecticide C11H13NO4 22781-23-3 

BentazoneB Pesticide Herbicide C10H12N2O3S 25057-89-0 

BenzethoniumB Pharmaceutical Bactericide C27H42ClNO2 121-54-0 

BenzothiazoleB Industrial chemical Corrosion inhibitor C7H5NS 95-16-9 

Bezafibrate
F
 Pharmaceutical Anti-cholesteric C19H20ClNO4 41859-67-0 

BicalutamideB Pharmaceutical Antineoplastic  C18H14F4N2O4S 90357-06-5 

BisoprololB Pharmaceutical Antihypertensive C18H31NO4 66722-44-9 

BoscalidB Pesticide Fungicide C18H12Cl2N2O 188425-85-6 

BosentanB Pharmaceutical Antihypertensive C27H29N5O6S 147536-97-8 

BupropionC Pharmaceutical Antidepressant C13H19Cl2NO 31677-93-7 

https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68005100
https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68000924
https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68000970
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Table 8.1. Name, class, use, molecular formula, CAS number and brand of each of the synthetic compounds studied. They all 

have a purity of at least 97%. 

Name Class  Usea 
Molecular  
formula 

CAS 
number 

ButylparabenB Personal care product Preservative C11H14O3 94-26-8 

CaffeineB Life style product Stimulant C8H10N4O2 58-08-2 

CaptoprilB Pharmaceutical Antihypertensive C9H15NO3S 62571-86-2 

CarbamazepineB Pharmaceutical Anticonvulsant C15H12N2O 298-46-4 

CarbarylB Pesticide Insecticide C12H11NO2 63-25-2 

Carbendazim
B
 Pesticide Fungicide C9H9N3O2 10605-21-7 

CelecoxibB Pharmaceutical Cyclooxygenase 2 inhibitors  C17H14F3N3O2S 169590-42-5 

Cetirizine
B
 Pharmaceutical Antihistaminic C21H27Cl3N2O3 83881-52-1 

ChloridazonB Pesticide Herbicide C10H8ClN3O 1698-60-8 

Chloroxuron
B
 Pesticide Herbicide C15H15ClN2O2 1982-47-4 

Chlortoluron
B
 Pesticide Herbicide C10H13ClN2O 15545-48-9 

CiprofloxacinE Pharmaceutical Antibiotic C17H18FN3O3 85721-33-1 

Clarithromycin
B
 Pharmaceutical Antibiotic C38H69NO13 81103-11-9 

Clofibric acidF Pharmaceutical Anti-cholesteric  C10H11ClO3 882-09-7 

Clomazone
B
 Pesticide Herbicide C12H14ClNO2 81777-89-1 

ClomipramineB Pharmaceutical Antidepressant C19H23ClN2 303-49-1 

ClonidineB Pharmaceutical Antihypertensive C9H9Cl2N3 4205-90-7 

ClopidogrelC Pharmaceutical Antithrombotic C16H16ClNO2S 113665-84-2 

ClozapineB Pharmaceutical Antipsychotic C18H19ClN4 5786-21-0 

CortisoneB Pharmaceutical Anti-inflammatory C21H28O5 53-06-5 

CotinineB Life style product Stimulant C10H12N2O3S 486-56-6 

CrotamitonB Pharmaceutical Anti-parasitic C13H17NO 483-63-6 

CyclophosphamideB Pharmaceutical Antineoplastic  C7H15Cl2N2O2P 50-18-0 

CyproteroneG Pharmaceutical Hormone C22H27ClO3 2098-66-0 

DesloratadineC Pharmaceutical Antihistaminic C19H19ClN2 100643-71-8 

DexamethasoneB Pharmaceutical Anti-inflammatory C22H29FO5 50-02-2 

DiazepamC Pharmaceutical Antianxiety C16H13ClN2O 439-14-5 

DichlorvosB Pesticide Insecticide C4H7Cl2O4P 62-73-7 

Diclofenac
B
 Pharmaceutical Anti-inflammatory C14H11Cl2NO2 15307-86-5 

DidecyldimethylammoniumB Industrial chemical Biocide C22H48BrN 2390-68-3 

Diethyl toluamide B 

(DEET) 
Pesticide Insecticide C12H17NO 134-62-3 

DiflufenicanB Pesticide Herbicide C19H11F5N2O2 83164-33-4 

DimethachlorB Pesticide Herbicide C13H18ClNO2 50563-36-5 

DimethoateB Pesticide Insecticide C5H12NO3PS2 60-51-5 

https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68052246
https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68000924
https://metlin.scripps.edu/metabo_info.php?molid=3969
https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68000970
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Table 8.1. Name, class, use, molecular formula, CAS number and brand of each of the synthetic compounds studied. They all 

have a purity of at least 97%. 

Name Class  Usea 
Molecular  
formula 

CAS 
number 

DiphenhydramineB Pharmaceutical Antihistaminic C17H22ClNO 147-24-0 

DiuronF Pesticide Herbicide C9H10Cl2N2O 330-54-1 

DodemorphB Pesticide Fungicide C18H35NO 1593-77-7 

DomperidoneB Pharmaceutical Anti-inflammatory C22H24ClN5O2 57808-66-9 

DrospirenoneB Pharmaceutical Hormone C24H30O3 67392-87-4 

Duloxetine
B
 Pharmaceutical Antidepressant C18H19BOS 116539-59-4 

EDDPB Pesticide Fungicide C14H15O2PS2 17109-49-8 

Efavirenz
B
 Pharmaceutical Antiviral C14H9ClF3NO2 15498-52-4 

EprosartanB Pharmaceutical Antihypertensive C23H24N2O7S 133040-01-4 

Erythromycin
B
 Pharmaceutical Antibiotic C37H67NO13 114-07-8 

Ethion
B
 Pesticide Insecticide C9H22O4P2S4 563-12-2 

ExemestaneB Pharmaceutical Antineoplastic  C20H24O2 107868-30-4 

Fenoxycarb
B
 Pesticide Insecticide C17H19NO4 72490-01-8 

FenpropidinB Pesticide Fungicide C19H31N 67306-00-7 

Fenpropimorph
B
 Pesticide Fungicide C20H33NO 67564-91-4 

FenthionB Pesticide Insecticide C10H15O3PS2 55-38-9 

FinasterideB Pharmaceutical Antiviral C23H36N2O2 98319-26-7 

FluconazoleB Pharmaceutical Antifungal C13H12F2N6O 86386-73-4 

FlufenoxuronB Pesticide Insecticide C21H11ClF6N2O3 101463-69-8 

FlumequineB Pharmaceutical Antibiotic C14H12FNO3 42835-25-6 

FlusilazoleB Pesticide Fungicide C16H15F2N3Si 85509-19-9 

FlutamideB Pharmaceutical Antineoplastic  C11H11F3N2O3 13311-84-7 

FluvoxamineC Pharmaceutical Antidepressant C15H21F3N2O2 54739-18-3 

FurosemideB Pharmaceutical Antibiotic C12H10ClN2O5S 54-31-9 

GabapentinB Pharmaceutical Anticonvulsant C9H17NO2 60142-96-3 

GemfibrozilB Pharmaceutical Hypolipidemic  C15H22O3 25812-30-0 

GenisteinH Phytoestrogens Phytoestrogen C15H10O5 446-72-0 

GenistinH Phytoestrogens Phytoestrogen C21H20O10 529-59-9 

Glibenclamide
B
 Pharmaceutical Antidiabetic C23H28ClN3O5S 10238-21-8 

GlimepirideB Pharmaceutical Antidiabetic C23H34N4O5S 93479-97-1 

GlycitinH Phytoestrogens Phytoestrogen C22H22O10 40246-10-4 

HexazinoneB Pesticide Herbicide C12H20N4O2 51235-04-2 

HydroxychloroquineB Pharmaceutical Antilipemic C18H28ClN3O5S 747-36-4 

IfosfamideB Pharmaceutical Antineoplastic  C7H15Cl2N2O2P 3778-73-2 

https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68000970
https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68000970
https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68000960
https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68000970
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Table 8.1. Name, class, use, molecular formula, CAS number and brand of each of the synthetic compounds studied. They all 

have a purity of at least 97%. 

Name Class  Usea 
Molecular  
formula 

CAS 
number 

ImatinibB Pharmaceutical Antineoplastic  C29H31N7O 152459-95-5 

ImazalilB Pesticide Fungicide C14H14Cl2N2O 35554-44-0 

ImidaclopridB Pesticide Insecticide C9H10ClN5O2 138261-41-3 

IminostilbeneB Life style product Stimulant C14H11N 256-96-2 

ImipramineB Pharmaceutical Antidepressant C19H24N2 50-49-7 

Indometacin
B
 Pharmaceutical Anti-inflammatory C19H16ClNO4 53-86-1 

IprodioneB Pesticide Fungicide C13H13Cl2N3O3 36734-19-7 

Irbesartan
I
 Pharmaceutical Antihypertensive C25H28N6O 138402-11-6 

IsoproturonE Pesticide Herbicide C12H18N2O 34123-59-6 

Ketoconazole
B
 Pharmaceutical Antifungal C26H28Cl2N4O4 65277-42-1 

Ketoprofen
F
 Pharmaceutical Anti-inflammatory C16H14O3 22071-15-4 

LenacilB Pesticide Herbicide C13H18N2O2 2146-08-1 

Lidocaine
B
 Pharmaceutical Anesthetise C14H22N2O 137-58-6 

LinuronB Pesticide Herbicide C9H10Cl2N2O2 330-55-2 

Lorazepam
B
 Pharmaceutical Antianxiety C15H10Cl2N2O2 846-49-1 

LosartanJ Pharmaceutical Antihypertensive C22H23ClN6O 114798-26-4 

MebendazoleC Pharmaceutical Anthelminthic C16H13N3O3 31431-39-7 

MebeverineB Pharmaceutical Anticonvulsant C25H36ClNO5 2753-45-9 

MeclocyclineB Pharmaceutical Antibiotic C29H27ClN2O14S 73816-42-9 

MecopropB Pesticide Herbicide C10H11ClO3 93-65-2 

MedroxyprogesteroneB Pharmaceutical Hormone C22H32O3 520-85-4 

Mefenamic acidB Pharmaceutical Anti-inflammatory C15H15NO2 61-68-7 

MemantineB Pharmaceutical Antiparkinsonian C12H22ClN 41100-52-1 

MetalaxylB Pesticide Fungicide C15H21NO4 57837-19-1 

MetamitronB Pesticide Herbicide C10H10N4O 41394-05-2 

MetazachlorB Pesticide Herbicide C14H16ClN3O 67129-08-2 

MetconazoleB Pesticide Fungicide C17H22ClN3O 125116-23-6 

MetforminB Pharmaceutical Antidiabetic C4H12ClN5 1115-70-4 

Methiocarb
B
 Pesticide Insecticide C11H15NO2S 2032-65-7 

MethotrexateB Pharmaceutical Antineoplastic  C20H22N8O5 59-05-2 

MethylparathionB Pesticide Insecticide C8H10NO5PS 298-00-0 

MethylpirimiphosB Pesticide Insecticide C11H20N3O3PS 29232-93-7 

MetolachlorB Pesticide Herbicide C15H22ClNO2 51218-45-2 

MetoprololB Pharmaceutical Antihypertensive C15H25NO3 51384-51-1 

https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68000970
https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68000970


Application of SET in the evaluation of the toxicity and the implementation of EDA  

228 

Table 8.1. Name, class, use, molecular formula, CAS number and brand of each of the synthetic compounds studied. They all 

have a purity of at least 97%. 

Name Class  Usea 
Molecular  
formula 

CAS 
number 

MetribuzinB Pesticide Herbicide C8H4N4OS 21087-64-9 

MiconazoleB Pharmaceutical Antibiotic C18H14Cl4N2O 22916-47-8 

MirtazapineB Pharmaceutical Antidepressant C17H19N3 85650-52-8 

MontelukastB Pharmaceutical Anti-inflammatory C35H35ClNO3 151767-02-1 

MyclobutanilB Pesticide Fungicide C15H17ClN4 88671-89-0 

Mycophenolic acid
B
 Pharmaceutical Antibiotic C17H20O6 24280-93-1 

NaproxenB Pharmaceutical Anti-inflammatory C14H14O3 22204-53-1 

Nitrofurantoin
B
 Pharmaceutical Anti-infective C8H6N4O5 67-20-9 

Perfluoro-1-butanesulfonate B 
(PFBS) 

Industrial chemical PFAS C4H9O3S 375-73-5 

Norfloxacin
E
 Pharmaceutical Antibiotic C16H18FN3O3 70458-96-7 

Norgestimate
B
 Pharmaceutical Hormone C23H31NO3 35189-28-7 

NortriptylineB Pharmaceutical Antidepressant C18H21N 894-71-3 

Omeprazol
B
 Pharmaceutical Diuretic C17H19N3O3S 73590-58-6 

OndansetronB Pharmaceutical Anthelminthic C8H20ClN3O 99614-01-4 

OryzalinB Pesticide Herbicide C12H18N4O6S 19044-88-3 

OxazolamB Pharmaceutical Sedative C18H17ClN2O2 24143-17-7 

OxybutyninB Pharmaceutical Anticholinergic C22H32ClNO3 1508-65-2 

ParathionB Pesticide Insecticide C10H14NO5PS 56-38-2 

ParoxetineB Pharmaceutical Antidepressant C19H21ClFNO3 78246-49-8 

PendimethalinB Pesticide Herbicide C13H19N3O4 40487-42-1 

PentoxifyllineB Pharmaceutical Vasodilator  C13H18N4O3 6493-05-6 

PerfluoroctylsulfonamideC 
(PFOSA) 

Industrial chemical PFAS C8H2F17NO2S 754-91-6 

Perfluorooctane sulfonic acid 
(PFOS) B 

Industrial chemical PFAS C8HF17O3S 1763-23-1 

Perfluorooctanoic acid 
(PFOA) B 

Industrial chemical PFAS C8HF15O2 335-67-1 

PhenytoinB Pharmaceutical Anticonvulsant C15H12N2O2 57-41-0 

PindololB Pharmaceutical Antihypertensive C14H20N2O2 13523-86-9 

PipamperoneB Pharmaceutical Antidepressant C21H32Cl2FN3O2 2448-68-2 

Pirimicarb
B
 Pesticide Insecticide C11H18N4O2 23103-98-2 

PravastatinB Pharmaceutical Anti-cholesteric  C23H35NaO7 81131-70-6 

PrednisoneB Pharmaceutical Anti-inflammatory C21H26O5 53-03-2 

Primidone
B
 Pharmaceutical Anticonvulsant C12H14N2O2 125-33-7 

Prochloraz
B
 Pesticide Fungicide C15H16Cl3N3O2 67747-09-5 

ProgesteroneB Pharmaceutical Hormone C21H30O2 57-83-0 

PropachlorB Pesticide Herbicide C11H14ClNO 1918-16-7 

https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68014665
https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68000924
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Table 8.1. Name, class, use, molecular formula, CAS number and brand of each of the synthetic compounds studied. They all 

have a purity of at least 97%. 

Name Class  Usea 
Molecular  
formula 

CAS 
number 

PropamocarbB Pesticide Fungicide C9H20N2O2 245979-73-5 

PropanilB Pesticide Herbicide C9H9Cl2NO 709-98-8 

PropiconazoleB Pesticide Fungicide C15H17Cl2N3O2 60207-90-1 

PropofolB Pharmaceutical Anesthetise C12H18O 2078-54-8 

PropranololF Pharmaceutical Antihypertensive C16H21NO2 525-66-6 

Propyphenazone
B
 Pharmaceutical Anti-inflammatory C14H18N2O 479-92-5 

PropyzamideB Pesticide Herbicide C12H11Cl2NO 23950-58-5 

Prosulfocarb
B
 Pesticide Herbicide C14H21NOS 52888-80-9 

PyrantelB Pharmaceutical Anthelminthic C34H30N2O6S 22204-24-6 

Pyrazophos
B
 Pesticide Fungicide C14H20N3O5PS 13457-18-6 

Quinmerac
B
 Pesticide Herbicide C11H8ClNO2 90717-03-6 

QuinoxyfenB Pesticide Fungicide C15H8Cl2FNO 124495-18-7 

Raloxifene
B
 Pharmaceutical 

Selective Estrogenic Receptor 
Modulators  

C28H28ClNO4S 84449-90-1 

RanitidineB Pharmaceutical Antiulcer C13H23ClN4O3S 66357-59-3 

RemifentanylB Pharmaceutical Analgesic C20H28N2O5 132875-61-7 

RisperidoneB Pharmaceutical Antipsychotic C23H27FN4O2 106266-06-2 

RopiniroleB Pharmaceutical Antiparkinsonian C16H25ClN2O 91374-20-8 

RoxithromycinB Pharmaceutical Antibacterial  C41H76N2O15 80214-83-1 

SertralineB Pharmaceutical Antidepressant C17H17Cl2N 79617-96-2 

SimazineE Pesticide Herbicide C7H12ClN5 122-34-9 

SotalolB Pharmaceutical Antihypertensive C12H21ClN2O3S 959-24-0 

SpiroxamineB Pesticide Fungicide C18H35NO2 118134-30-8 

SulfadiazineB Pharmaceutical Antibiotic C10H10N4O2S 68-35-9 

SulfamethazineB Pharmaceutical Antibiotic C12H14N4O2S 57-68-1 

SulfamethoxazoleB Pharmaceutical Antibiotic C10H11N3O3S 723-46-6 

SulfapyridineB Pharmaceutical Antibiotic C11H11N3O2S 144-83-2 

SulfathiazoleB Pharmaceutical Antibiotic C9H9N3O2S2 72-14-0 

TamoxifenB Pharmaceutical 
Selective Estrogenic Receptor 

Modulators  

C26H29NO 10540-29-1 

TebuconazoleB Pesticide Fungicide C16H22ClN3O 107534-96-3 

TelmisartanK Pharmaceutical Antihypertensive C33H30N4O2 144701-48-4 

Terbinafine
B
 Pharmaceutical Antifungal C21H26ClN 78628-80-5 

Terbuthylazine
B
 Pesticide Herbicide C9H16ClN5 5915-41-3 

TerbutrynB Pesticide Herbicide C10H19N5S 886-50-0 

TestosteroneB Pharmaceutical Hormone C19H28O2 58-22-0 

https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68020845
https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68020845
https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68000900
https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68020845
https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68020845
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Table 8.1. Name, class, use, molecular formula, CAS number and brand of each of the synthetic compounds studied. They all 

have a purity of at least 97%. 

Name Class  Usea 
Molecular  
formula 

CAS 
number 

ThiabendazoleB Pharmaceutical Anthelminthic C10H7N3S 148-79-8 

ThiaclopridB Pesticide Insecticide C10H9ClN4S 111988-49-9 

ThiamethoxamB Pesticide Fungicide C8H10ClN5O3S 153719-23-4 

ThymolB Pesticide Fungicide C10H14O 89-83-8 

TramadolB Pharmaceutical Analgesic C16H26ClNO2 36282-47-0 

Triadimenol
B
 Pesticide Fungicide C14H18ClN3O2 55219-65-3 

TriethylphosphateB Industrial chemical Plasticiser C6H15O4P 78-40-0 

Trimethoprim
E
 Pharmaceutical Antibiotic C14H18N4O3 738-70-5 

TriphenylphosphateB Industrial chemical Fire retardant C18H15O4P 115-86-6 

Valsartan
K
 Pharmaceutical Antihypertensive C24H29N5O3 137862-53-4 

Verapamil
B
 Pharmaceutical Antihypertensive C27H38N2O4 52-53-9 

a
 The classification of the compounds was done according to the information obtained in Pubchem  (https://pubchem.ncbi.nlm.nih.gov/) 

B Sigma-Aldrich 
C Dr. Ehrenstofer 
D
 Supelco 

E Fluka 
F MP biomedicals 
G
 Toronto Research Chemicals 

H Extrasynthese 
I Sanofi 
J Merck 
K Boehringer 

 

LC-MS grade MeOH, water and formic acid (Optima grade) purchased from Sigma Aldrich 

were used as mobile phase in the fractionation, whereas Optima grade water, acetonitrile (ACN), 

isopropanol and formic acid provided by Fischer Scientific (Geel, Belgium) were used as mobile 

phase in the LC-HRMS. 

8.2.2. Sampling and sample preparation 

8.2.2.1 WWTP effluent toxicity 

For the toxicity analysis of the WWTP effluents four treatment plants of Biscay were selected 

(i.e. Gorliz, Mungia, Gernika and Galindo, see the location on Chapter 7,  Figure 7.1) and, in the case 

of Galindo, the samples were taken from the secondary treatment (Ga2) and from an experimental 

third treatment effluent (Ga3) that uses a chlorination process. Further details about the 

treatments, water flow and sources of all those effluents are summarised in Table 8.2. 

https://metlin.scripps.edu/metabo_info.php?molid=62875
https://pubchem.ncbi.nlm.nih.gov/
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Table 8.2. Name, location, treatment, effluents discharge estuaries, water flow and influents sources of the WWTPs studied in 

this work. 

WWTP Treatment 
Effluents discharge  

estuaries 
Water flow 

(m3/day) 
Influent  

sources (%) 

Galindo 
Ga2 

2nd Bilbao estuary 1.0 E9 

Industrial 3.2%, 
Hospital 0.5%, 

Domestic 96.3% 
(>1000000 inhabitant) 

Galido 
Ga3 

3rd  
chlorination 

-a -a 

Industrial 3.2%, 
Hospital 0.5%, 

Domestic 96.3% 
(>1000000 inhabitant) 

Gorliz 2nd 

Plentzia estuary 
It releases the effluent into the estuary mouth through a 
submarine pipe located to ̴ 1000 m from the coast with 

an 18 m depth. 

1.4 E6 

Industrial 0%, 
Hospital 1.3%, 

Domestic 98.7% 
(10600 inhabitants) 

Mungia 2nd 
Plentzia estuary 

It releases the effluent into the upper part (22 km with to 
respect the mouth) of Plentzia estuary 

5.4 E3 

Industrial  3.1%, 
Hospital 0%, 

Domestic 96.9% 
(17000 inhabitants) 

Gernika 1
st

 

Urdaibai estuary. 
It discharges directly to the estuary of Urdaibai, which is 

declared Reserve of The Biosphere by Unesco since 
1984. 

-
b
 

Industrial 25.33%, 
Hospital 0.2%, 

Domestic 74.46% 
(70000 inhabitants) 

a) Experimental state treatment, private use in the WWTP 
b) Unknown (but <10% of the total flow) 

 

From each effluent 5 L samples were taken in pre-cleaned plastic bottles and transported to 

the laboratory in cooled boxes and filtered within 48 h with a 1.2 µm glass microfiber filter (GE 

Whatman, Maidstone, UK) before extraction.  

The filtered samples were extracted with 200 mg HLB-SPE according to a previously validated 

method with slight modifications (Mijangos et al., 2018a). Each cartridge was sequentially 

conditioned with 5 mL of acetone, 5 mL of EtOAc, 5 mL of MeOH and 5 mL of Milli-Q water. In the 

case of Ga3, sodium thiosulfate (30 mg/L) was added to the sample, prior to perform the SPE, to 

neutralise the presence of chlorine (Fernández et al., 2008). A maximum of 500 mL of each effluent 

sample were passed through each cartridge (several cartridges were used in parallel) assisted by a 

vacuum pump at ca. 5 mL/min. Subsequently, the cartridges were washed with 6 mL of ultrapure 

water, vacuum dried for 40 min and eluted with 6 mL of MeOH. All the eluted extracts were pooled 

together and the final extract was then concentrated to dryness under a gentle stream of nitrogen 

at 35°C, re-dissolved in pure MeOH, and submitted to the sea urchin bioassay (see section 8.2.4). 



Application of SET in the evaluation of the toxicity and the implementation of EDA  

232 

8.2.2.2. Application of EDA  

For EDA, 225 L of the effluent of the secondary treatment of Galindo (Ga2) was sampled and 

filtered in the lab. For the SPE extraction, the cartridges were prepared in-house by filling an empty 

PP column (20 mL) with 1.5 g Strata X-AW (bottom) and 3.5 g of Bond-Elut Plexa (top). Previous to 

the extraction, both bulk materials were individually cleaned with 400 mL of acetone followed by 

EtOAc, MeOH, MeOH with 2% NH3 (v/v) solution and Milli-Q water (30 min for each solvent, 3 

cycles) in an ultrasonic bath. The 225 L of the effluent sample were percolated through the cleaned 

cartridges assisted by a vacuum pump at ca. 5 mL/min (the ratio mass of sorbents/volume of 

effluent was scaled up from an amount of 0.2 g of total sorbent amount per 0.5 L of water). After 

the extraction, all cartridges were kept at -40°C for 24 h and freeze-dried (Cryodos-50 laboratory 

freeze-dryer from Telstar Instrument, Sant Cugat del Vallés, Barcelona, Spain). Elution was carried 

out with 90 mL of MeOH: EtOAc (50:50, v:v) solvent mixture followed by 60 mL of MeOH with 2% 

NH3 (v/v). All extracts were neutralised by adding formic acid and the pooled extracts were 

evaporated using a rotary evaporation (Büchi, Switzerland) and adjusted to a final volume of 225 mL 

(i.e. the raw sample with a concentration factor of 1000).  

8.2.3 EDA workflow 

As illustrated in Figure 8.3, the previously obtained raw sample (effluent sample submitted to 

a SPE extraction) was subjected to a two-fold fractionation step (see section 8.2.3.1). The SET 

bioassay was applied to all the fractions obtained at both fractionations (see section 8.2.4), while 

non-targeted chemical analysis was restricted to biologically active and non-active neighbouring 

fractions and the parent extract (see section 8.2.5). In the same way, a procedural blank was also 

submitted to fractionation and analysis. 

At each fractionation step, a recombined mixture of all the fractions was prepared and tested 

in the bioassay to assure that no major losses of bioactivity occurred during fractionation. Finally, 

SET dose-effect curves of putatively identified candidate drivers were recorded in those cases where 

standards were available in order to confirm the toxicity of these compounds and to assess their 

contribution to the entire bioactivity of the active fractions (see section 8.2.6) in terms of toxic units 

(TU). In order to account for the concentration of contaminants along the whole procedure, dose-
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range values are given in terms of the relative enrichment factor (REF), which is the product of the 

enrichment factor of the SPE process and the dilution of the extract in the bioassay test media (see 

section 8.2.4).  

 

 

Figure 8.3. Schematic representation of the experimental design of the EDA approach. ƩF, recombined fractions; 

AP fract., fractionation with aminopropyl column; C18 fract., fractionation with C18 column; REF, relative 

enrichment factor; SET, sea urchin embryo toxicity; SPE, solid phase extraction; TU toxic units. 

 

8.2.3.1 Fractionation 

The extracts were fractionated by semi-preparative reverse phase liquid chromatography. 

The HPLC was operated under the control of Chromeleon 6.7 (Dionex) software and was comprised 

of a Rheodyne manual valve, a Varian Prostar 210 Pump and a Foxy 2000 fraction collector 

(Teledyne Isco Inc.Lincon USA). A Dionex UVD 340U UV/VIS detector was used for the recording of 

chromatograms at 210 nm and 254 nm. 

The sequential fractionation was performed combining two different columns with an 

orthogonal selectivity (Muschket et al., 2018): a reverse phase C18 column (Macherey-Nagel 

Nucleodur C18 column, 250 x 10 mm, 5 µm particle size) and an aminopropyl column (AP, Imtakt, 

150 x 10 mm, 3 µm particle size) using a gradient elution with water and MeOH, both containing 

0.1% of formic acid, at a flow rate of 2.36 mL/min. In the first fractionation, the gradient started at 
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30% of MeOH, held for 5 min, linearly increasing to 95% of MeOH within 30 min and maintained for 

the next 15 min before returning back to the initial conditions for 15 min re-equilibration. In total, 

18 fractions (F1-F18) of two minute intervals were collected followed by two fractions of three 

minutes (F19-F20) and a last fraction (F21) of 8 minutes (see Table 8.3). In the second fractionation, 

the gradient started at 5% of MeOH, held for 2 min, linearly increasing to 95% MeOH within 32 min 

and maintained for the next 10 min before returning to the initial conditions for 20 min re-

equilibration. 15 fractions (F13-1-F13-15) of three minute intervals were collected.  

Fractionation blanks (FBC18 and FBAP) were obtained and processed prior to the sample 

fractionation. The recombined fraction mixtures (RC18 and RAP) were constituted from equal volumes 

of all 21 and 15 fractions collected, respectively, and processed in the same way as the individual 

fractions.  

Aliquots of 500 µL of the 10000 fold enriched extract were injected at each run and the 

resulting fractions from each of the 12 injections were combined. In order to remove the water that 

hampers the evaporation of the extracts (see Table 8.3), the fractions, blanks (FBC18 and FBAP) and 

recombined mixtures (RC18 and RAP) were first diluted with LC-MS grade water to less than 5% of 

MeOH (Hashmi et al., 2018) and then re-extracted with SPE on Plexa:Strata-X-AW (70:30, m:m, 

conditioned with 12.5 mL of LC-MS grade acetone, ethyl acetate, MeOH and 25 mL of LC-MS grade 

water) . The loaded cartridges were dried and eluted with 9 mL of MeOH:EtOAc (1:1, v:v) and 6 mL 

of MeOH containing 2% (v/v) 7N ammonia in MeOH (Supelco, Bellefonte, PA, USA). The extracts 

were neutralised with formic acid and evaporated to dryness under a gentle stream of nitrogen at 

35°C. The final extract was split in two fractions: one part was reconstituted in 200 μL of MeOH: 

Milli-Q water (15:85, v/v) 1000 fold enriched for the chemical analysis (see section 8.2.5) and the 

other was re-dissolved in pure MeOH, stored at -40°C and then submitted to the sea urchin embryo 

test (see section 8.2.4). 

Additionally, the recovery of the whole procedure (extraction with SPE and fractionation) was 

assesed with a synthetic mixture containing 216 micropollutants (see Table 8.1) including several 

classes of environmentally relevant compounds. The set of compounds (each at 500 ng/mL) was 

submitted to each fractionation procedure using the same elution program explained above and the 
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resulting fractions were analysed by LC-HRMS (see section 8.2.5). 

 

Table 8.3. Fraction names, elution time windows and water content of the resulting fractions after the consecutive 

fractionation performed with two columns (Nucleodur C18 gravity and Imtakt aminopropyl). 

Fraction 

 Fractionation approaches 

 
1

st
 fractionation step 

Nucleodur C18 Gravity column 
2

nd
 fractionation step 

Imtakt aminopropyl column 

 Name 
Fraction tR a 

(min) 
Water content 

(%) 
Name 

Fraction tR
 a 

(min) 
Water content 

(%) 

1  F1-1 0-2 70 F13-1 0-3 92 

2  F1-2 2-4 70 F13-2 3-6 84 

3  F1-3 4-6 68 F13-3 6-9 77 

4  F1-4 6-8 64 F13-4 9-12 69 

5  F1-5 8-10 60 F13-5 12-15 61 

6  F1-6 10-12 56 F13-6 15-18 53 

7  F1-7 12-14 52 F13-7 18-21 45 

8  F1-8 14-16 48 F13-8 21-24 37 

9  F1-9 16-18 44 F13-9 24-27 29 

10  F1-10 18-20 40 F13-10 27-30 21 

11  F1-11 20-22 36 F13-11 30-33 13 

12  F1-12 22-24 32 F13-12 33-36 6 

13  F1-13 24-26 28 F13-13 36-39 5 

14  F1-14 26-28 24 F13-14 39-42 5 

15  F1-15 28-30 20 F13-15 42-45 5 

16  F1-16 30-32 16    

17  F1-17 32-34 12    

18  F1-18 34-36 10    

19  F1-19 36-39 5    

20  F1-20 39-42 5    

21  F1-21 42-50 5    

a The fractions collector was started with a delay of 4 min. 

 

8.2.4 Sea-urchin embryo test (SET) 

Adults of sea urchins (P lividus) were provided by the ECIMAT (Galicia, Spain) or collected 

from an intertidal area of Armintza (43.43347N, 2.89889W, Basque Country) and maintained in 

aquaria at the Plentzia Marine Station (PiE). Seawater tanks were maintained at 15±1°C and natural 

photoperiod. Every two days sea urchins were fed with macroalgae and dregs were siphoned. 
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Gametes were obtained by osmotic-shock-induced spawning injecting 1 mL of potassium 

chloride (KCl, 0.5 mol/L) through the peri-oral membrane into coelom (Carballeira et al., 2012). 

Afterwards, gametes were observed under a microscope to check their viability (eggs roundness and 

sperm mobility) and the viable ones were pooled. 

The fertilisation procedure was carried out as described by Fernández and Beiras (Fernández 

and Beiras, 2001). A dense suspension of oocytes in control FSW was fertilised with a few µL of non-

diluted sperm. 20 µL-aliquots (n=4) were taken to record fertilisation success (assessed by the 

percentage of eggs showing a fertilisation membrane, see Figure 8.2a) and egg density through an 

inverted microscope (Nikon eclipse Ti-S). Eggs were counted using a Sedgewick-rafter counting cell 

(Pyser Optics, Edenbridge, United Kingdom). Within 30 minutes, the fertilised egg suspension was 

distributed in glass vials (20 mL) containing a known volume of test sample (3 mL), assuring a final 

concentration of 40 eggs/mL.  

In parallel, the methanolic solutions obtained from the extraction and fractionation (see 

sections 8.2.2 and 8.2.3.1) were concentrated to dryness under a gentle stream of nitrogen at 35°C 

and redissolved with 3 mL of filtered seawater (0.2 µm, FSW) containing 0.1% of DMSO, (v/v). In 

order to perform the dose-response curve, two different concentration ranges were used: REF 0.05-

75 (3 mL, n=3) for the analysis of toxicity in the effluents and REF 1-75 (3 mL, n=3) for the EDA 

approach. Afterwards, the samples were placed in an incubator at 20°C for 48 h in darkness until 

larvae reach the four arm-pluteus stage (see Figure 8.2l). After the incubation, larvae were 

preserved by adding a one drop per sample of 40% formalin. 

The quantitative assessment of the toxic effects was evaluated by measuring two different 

sublethal points: the index of toxicity (IT) account for the skeleton malformations and by measuring 

the growth inhibition or size increase (SI) of the larvae. 

For the calculation of the IT, 100 individual embryos were categorised for their level of 

malformation according to Carballeira et al. (Carballeira et al., 2012) (see Figure 8.4). Normal larvae 

or Level 0 correspond to larvae at four arm-pluteus stage with fully developed arms, complete 

skeletal rods and of similar size to control larvae. Level 1 toxicity (slightly toxic) was characterised by 

larvae presenting an incorrect arrangement of skeletal rods (crossed tip, separated tip, fused arms 
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and incomplete skeletal rods). Level 2 (moderate toxicity) was featured by larvae with no skeleton or 

in which skeletal rods were absent or incomplete, or anomalous shape. Level 3 toxicity (highly toxic) 

was characterised by the blockage of development at early stages and larvae that did not reach the 

pluteus stage. Then, the general index of toxicity (IT) was calculated according to Equation 8.1.  

𝐼𝑇 =  
(0 x %Level 0)+(1 xLevel 1)+(2 x %Level 2)+(3 x %Level 3)

100
    (Equation 8.1) 

where IT ranges from no toxicity (IT=0) to highly toxic (IT=3). 

 

 

 

Figure 8.4. Classification of larval malformations according to their degree of alteration in order to establish the 

severity of toxicity proposed by Carballeira et al. (Carballeira et al., 2012). 
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The growth inhibition was recorded according to Saco-Álvarez (Saco-Álvarez et al., 2010). The 

maximum dimension of 35 early embryos (either normal or abnormal, see Figure 8.5a-e) was 

measured and the size increase was calculated by subtracting the fertilised egg diameter at t=0 

(fertilised egg were fixed once the initial size was measured). 

 

 

Figure 8.5. Examples of how to measure the maximum dimension according to Saco-Álvarez (Saco-

Álvarez et al., 2010) in P. Lividus at different stages: (a) fertilised eggs, (b) morulae, (c) gastrule (d) prism larve, 

and (e) 4 arms pluteus larvae. In case of 4 arms pluteus larvae, either in the case of normal or abnormal larvae 

the distance is always measured as the distance between the apex and the end of the post oral arm. 

 

As quality control tests, four different control samples (n=3) were included: i) eggs (fertilised 

eggs development was blocked just after fertilisation), ii) FSW, iii) solvent control (FSW with DMSO 

at 0.1% v/v) and iv) procedural blank control. Procedural blanks were processed in parallel to the 

effluent samples and fractions. A test was acceptable when the mean size of all the controls respect 

to the egg exceeds in 218 µm (in the case of larvae growth rate) or the length of control larvae was 

>340 µm (in the case of IT criterion) (Saco-Álvarez et al., 2010). Water quality was also measured at 

the beginning and at the end of the bioassay to ensure acceptability of incubation (temperature 
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20°C, salinity >32%, dissolved oxygen >5 mg/L, pH >7 and ammonia <40 µg/L (NOEC 40 µg/L) (Saco-

Álvarez et al., 2010)). Additionally, to assure the accuracy of the test, copper (Cu) solutions (0-1000 

µg/L) were used as quality positive control samples (Beiras et al., 2003). 

All statistical analyses were performed with the SPSS Statistics 23 package (v17, IBM SPSS), 

using data corrected by the control response. To test the normal distribution of the data, a 

normality analysis was conducted using the Shapiro–Wilk test and non-normal data were modified 

with an angular transformation (SI´=arcsin SI
0.5

). The ECi values (EC50 and EC10) with 95% confidence 

limits were calculated by the probit model. Sizes measuring and images were taken with NIS-

Elements Imaging Software v4.30 (Nikon Instruments BV, Europe). 

8.2.5. LC-HRMS analysis 

Raw effluent sample extract (without fractionation) from Ga2, the fractions showing a 

significant toxicity in the SET and the non-toxic neighbour fractions were analysed by LC-HRMS. Non-

targeted analysis was performed in a Thermo Scientific Dionex UltiMate 3000 UHPLC coupled to a 

Thermo Scientific Q Exactive quadrupole-Orbitrap mass spectrometer equipped with a heated ESI 

source (HESI, Thermo, CA, USA).  

The separation was carried out at 0.3 mL/min and 35°C of flow rate and temperature, 

respectively, on an ACE UltraCore 2.5 SuperPhenylhexyl (2.1 mmx 100 mm, 2.5 µm) column coupled 

to a pre filter (Vivi Jour, Schenkon, Switzerland) from Waters (Milford, Massachusetts, United 

States). Milli-Q water was used as mobile phase A and ACN as mobile phase B, both containing 0.1% 

formic acid. The injection volume was set to 5 L. The eluent gradient profile was as follows: linear 

change of 85% A to 70% up to 4 min, another linear change to 50% A up to 4 min (hold 12 min), 

another linear change to 10% A up to 10 min (hold 15 min) and a final linear change to 85% A up to 

3 min. Lastly, 5 min to regain initial conditions.  

The Orbitrap was operated in the corresponding ionisation mode in full scan – data 

dependant MS/MS
 
(Full MS-ddMS

2
) discovery acquisition mode. One full scan at a resolution of 

70,000 full width at half maximum (FWHM) at m/z 200 over a scan range of m/z 70-1000 was 

followed by three ddMS
2
 scans at a resolution of 17,500 FWHM at m/z 200, with an isolation 

window of 0.8 Da. The stepped normalised collision energy (NCE) in the higher-energy collisional 
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dissociation (HCD) cell was set to 10, 35 and 75 eV. Negative and positive voltages were measured in 

different injections runs. The HESI source parameters in positive mode were set to 3.2 kV spray 

voltage, 300°C capillary temperature, 35 arbitrary units (au) sheath gas (nitrogen), 10 au auxiliary 

gas, 1 au sweep gas, 280°C auxiliary gas heater and S-lens RF level 55.0. The HESI source parameters 

in negative mode were set to 3.2 kV spray voltage, 330°C capillary temperature, 48 au sheath gas, 

11 au auxiliary gas, 2 au sweep gas, 310°C auxiliary gas heater and S-lens RF level 55.0. External 

calibration of the instrument was conducted immediately prior to analysis using Pierce LTQ ESI 

Calibration Solutions (Thermo Scientific, Waltham, Massachusetts, United States). The instrument 

was controlled by Xcalibur 4.0 software (Thermo).  

Data analysis was done using Compound Discoverer 2.1 (CD; Thermo-Fisher Scientific). The 

workflow (see Figure II) and settings (see Table XXIII) used for the data analysis with the CD are 

summarised in Appendix. Briefly, peak picking and peak alignment were performed with a retention 

time deviation of 0.5 min, a mass tolerance of 5 ppm and a signal higher than 5·10
5
. The m/z values 

of the predicted compounds were searched in the peak list considering the criteria of 5 ppm for 

mass tolerance and 30% for the intensity tolerance for the isotope search. The peaks that fulfilled 

both criteria were manually checked and only those with available MS
2
 spectra, a maximum of 10 

background contamination to sample ratio and resembling Lorentzian or Gaussian peak shape, were 

further considered. Structural assignments were carried out based on ddMS
2
 fragments annotated 

by Compound Discoverer. Afterwards, we compared the exact mass, isotope pattern, MS
2
 

fragmentation and abundances of the selected features with those available in the mzCloud (best 

match >70%) library. When the substance was not available in the mzCloud library, experimental 

fragmentation pattern was compared against in silico fragmentation obtained in MetFrag 

(https://msbi.ipb-halle.de/MetFragBeta/). Besides, plausible candidates were selected based on the 

number of references in ChemSpider as an indicator of human use and commercial importance.  

From this step, only the peaks with an intensity ratio 4 times higher in the active (toxic) 

fractions compared to neighbouring inactive ones were considered. Since the C18 column is 

expected to separate complex mixtures according to hydrophobicity (Brack et al., 2016), retention 

time and Log D(pH=3) values were used as criteria for candidate selection based on log D calibration of 

the C18 chromatographic system, with the synthetic mixture (500 ng/mL) of 216 micropollutants (see 

https://msbi.ipb-halle.de/MetFragBeta/
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Table 8.1). Besides, the analysis of the compounds presence in each fractions allowed estimating the 

interval of retention times.  Lastly, tentatively identified mixture components were confirmed with 

neat standards using retention times and MS/MS spectra. 

8.2.6. Chemical and effect confirmation 

TUs were calculated according to the following equations:  

𝑇𝑈𝑐ℎ𝑒𝑚 =  
𝐶i 

𝐸𝐶50(𝑖)
    Equation 8.2 

𝑇𝑈𝑏𝑖𝑜 =  
1

𝐸𝐶50(𝑠𝑎𝑚𝑝𝑙𝑒)
   Equation 8.3 

Where Ci is the concentration of a compound i in the sample extract or fraction, the EC50 

(sample) is the 50% effect concentration of the sample expressed as REF and EC50 (i) is the 50% effect 

concentration of the target compound i.  

The determination of the concentrations was carried out in the TraceFinder 4.1 software 

(Thermo). EC50 values were calculated by recording the modelling dose-response curves. Stock 

solutions were made up by dissolving standards in non-toxic DMSO approximately 2 hours before 

the beginning of the experiment. The experimental concentrations were obtained by diluting the 

stock solutions in FSW maintaining a final DMSO concentration in the exposure vessels lower than 

0.1% (v/v). Dose range concentrations were chosen on the basis of their measured concentrations in 

the extracts and their water solubility. 

 

8.3. Results and discussion  

8.3.1. Effluent toxicity evaluation 

The procedural blanks did not induce any effect with the tested endpoints below the 

maximum concentration level (REF 75) and all the extracts showed embryo growth or size increase 

inhibition and skeleton malformation activity within the concentration range tested, which allowed 

us to calculate EC50 values.  

The modelled dose-response curves are shown in Figure 8.6a-b and the EC10 and EC50 values  
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determinated are summarised in Table 8.4. Figure 8.7a-i shows representative malformations 

observed for the tested effluents in this work. 

 

 

 

Figure 8.6. The log dose-response curves of the tested effluents samples (Gernika, Mungia, Ga2, Ga3 and Gorliz) 

obtained with a) size increase endpoint and b) skeleton malformation endpoint. Continuous lines show the EC fit 

values obtained with probit model and dashed lines indicate the confidence level (95%). 
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Table 8.4. EC10 and EC50 obtained with both endpoints (larvae malformations, IT, and size increase, SI) along with their 

confidence limits (95%) and the dose concentration range (expressed as relative enrichment factor, REF) used for each 

sample. 

 Sample 
Dose range 

 (REF) 

Effective concentrations (ECi)  
(Confidence limits) 

Skeleton malformation Size increase 

EC10-IT EC50-IT EC10-SI EC50-SI 

Effluent 
screening 

Gernika 0.05-75 
0.3 

(0.1-0.4) 
1.1 

(1.0-1.4) 
0.36 

(0.26-0.44) 
1.1 

(1.0-1.2) 

Mungia 0.05-75 
2.9 

(1.0-4.1) 
5.7 

(4.6-7.5) 
3.3 

(2.5-4.0) 
7.0 

(6.2-7.8) 

Gorliz 0.05-75 
8.8 

(7.3-10.0) 
16.8 

(15.5-18.2) 
10.6 

(7.5-13-5) 
23.9 

(20.8-28.0) 

Ga2 0.05-75 <0.05 
12.2 

(10.8-13.9) 
7.9 

(6.6-9.1) 
17.4 

(16.1-18.9) 

Ga3 0.05-75 
1.6 

(1.1-2.1) 
2.9 

(2.4-3.6) 
2.1 

(1.2-2.7) 
4.3 

(4.3-5.2) 

 

 

The effluent of Gernika WWTP was identified as the most toxic one followed by Ga3 (EC50-

SI=1.1 REF and 4.3, respectively) and the effluents with the secondary treatment (EC50-SI=7.0, 17.4 

and 23.9 for Mungia, Galindo and Gorliz, respectively). These investigations revealed a 6-23 times 

higher bioactivity of the effluent of the Gernika WWTP effluent compared to the other two effluents 

after secondary treatments. An EC10 values 0.4 and 0.3 REF indicate significant effects even in 

diluted samples and thus this effect might be of highly concern, even considering the tidal dilution of 

the discharge in the estuary (as discussed in Chapter 7) (Mijangos et al., 2018b). 

Effluents from Galindo (Ga2 and Ga3) exhibited two different patterns regarding the selected 

endpoints. Ga2 showed a lower EC10-lT value for larvae development compared to Ga3 (<0.05 vs 1.6, 

see Table 8.4), while growth or size increase was inhibited at lower concentrations by Ga3 (EC50-SI 2.1 

vs 7.9). Even though larvae treated with Ga2 reached the 4 arm pluteous stage at any dose 

concentration lower than REF 50, a high number of crossed tip malformations (level 1) were 

observed even at low REF values (see Figure 8.7b). This fact would suggest a slightly different 

susceptibility of both endpoints to the concentration of complex mixtures with malformations being 

more sensitive than the growth inhibition or size increase at low concentrations. Enhanced growth 

inhibition at Ga3 might be driven by chlorination by-products formed during the treatment 

(Fernández et al., 2008).  
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Overall, the EC10-lT values obtained in this study are higher than those reported by (Carballeira 

et al., 2012) for different effluents of marine fish farms without any preconcentration/clean-up 

treatment. However, they reported similar malformations.  

 

 

Figure 8.7. Types of embryonic stages and abnormalities of Paracentrotus lividus. a) normal 4 arm pluteus stage 

(level 0); b) crossed tip (level 1); c) fused arms (level 1); d) separated tip (level 1); e) incomplete skeletal rods 

(level 2); f) absence of skeletal rods (level 2); g) folded tip (level 2); h) pre-pluteus stage; i) undeveloped stage. 
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8.3.2. Identification of active fractions 

The effluent extract from the secondary treatment of Galindo (Ga2) was selected to 

demonstrate the power of SET-based EDA to identify drivers of sea urchin toxicity. SET of the tested 

extract exhibited monotonic dose–response curves with REF 75 causing full inhibition (100%) and 

17.2 REF and 19.2 for EC50-IT and EC50-SI, respectively, indicating no significant difference in sensitivity 

between skeleton malformation and growth. Procedural blanks (FBC18 and FBAP) did not induce any 

effect on the tested endpoints up to REF 75.  

As can be seen in Figure 8.8, in the first fractionation step only fraction 13 (F13) showed a 

remarkable toxicity. In order to further reduce complexity the active primary fraction F13 was 

separated into 15 sub-fractions using the AP column. In this second fractionation, embryo growth or 

size increase inhibition was only observed in two fractions, namely F13-4 and F13-5. However, this 

last fraction (F13-5) was not further considered due to its relatively low bioactivity.  

 

Figure 8.8. Size increase (%) response of the fractions obtained with a) C18 column b) aminopropyl (AP) column. 

Red bars represent the identified active fractions. All the fractions are at REF 75. 
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The modelled dose-response curve are shown in Figure 8.9a-b and the determined EC10 and 

EC50 values of the identified active samples are summarised in Table 8.5. 

 

Figure 8.9. The log dose-response curve of the active samples (Ga2 raw, RC18, F13, RAP and F13-4) obtained with 

a) size increase endpoint and b) Skeleton malformation endpoint. Straight lines show the EC fit values obtained 

with probit and dashed line the confidence level (95%). 
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Table 8.5. EC10 and EC50 obtained with both endpoints (larvae malformations, IT, and size increase, SI) with their 95% 

confidence limits and the dose concentration range (expressed as relative enrichment factor, REF) used for each sample. 

 Sample 
Dose range 

 (REF) 

Effective concentrations (ECi) 
(Confidence limits) 

Skeleton malformation Size increase 

EC10-IT EC50-IT EC10-SI EC50-SI 

EDA  
approach 

RAW 1-75 
<1 

 
19.3 

(17.7-21.0) 
7.8 

(6.3-9.1) 
17.2 

(16.1-18.2) 

RC18 1-75 
4.2 

(1.5-6.3) 
21.9 

(20.3-23.7) 
10.9 

(9.0-12.3) 
21.4 

(20.3-22.7) 

F13 1-75 
20.3 

(18.5-21.8) 
29.8 

(28.4-31.6) 
17.0 

(13.5-19.6) 
28.8 

(26.3-32.0) 

RAP 1-75 
24.2 

(22.3-25.9) 
31.1 

(28.9-32.6) 
21.6 

(20.3-24.9) 
26.2 

(23.1-29.3) 

F13-4 1-75 
23.1 

(21.1-24.6) 
32.7 

(30.7-34.2) 
20.4 

(18.4-22.1) 
32.3 

(30.7-34.2) 

 

 

The biological activities of the recombined primary fractions (RC18) and of the raw sample 

were identical in a window of ±20% confirming the excellent recovery of the fractionation 

procedure. The latter has been confirmed chemically with the mixture of 216 standard compounds 

(acceptable recoveries from 53% to 89%) were obtained for most of the tested compounds, see 

Table XXIV in Appendix). Since about 75% of the EC50 of the raw extract were recovered in F13, the 

rest is probably distributed over the other fractions without getting significant in any of them. 

Besides, more than 90% of EC50 value of F13 for skeleton malformation and 86% for growth 

inhibition could be recovered in F13.4. This indicates only minor contributions of the other 

secondary fractions to the activity of F13. 

Interestingly, on the basis of EC10-IT much lower values are observed for raw extract and RC18 

than in the F13 active fractions (<1-4.2 vs 20.3 REF), indicating that slightly increased skeleton 

malformations might be already induced at very low concentrations of the complex mixture even if 

this effect cannot be recovered in the fractions. This is also evident from the reduced slope of the 

dose-response curves for raw extract and RC18 and skeleton malformation (see Figure 8.9b). With no 

other complementary information, it would be feasible to include the possibility of synergic effects 

of the different mixtures, i.e. part of the effects are seen in raw and recombined fractions were 
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missed in the toxic fraction and in the second fractionation. This toxicity distribution has already 

been reported in other EDA works (Brack et al., 2016). For instance, Hashmi et al. (Hashmi et al., 

2018) observed a similar effect when they evaluated the oxidative stress response in Danube river. 

8.3.3. Non-targeted analysis 

The toxic fractions (F13 and F13-4), the neighbouring non-toxic fractions, the recombined 

fractions and the raw and blank samples were analysed in order to identify the most likely toxic 

candidates.  

More than 15,000 features (in both positive and negative ionisation modes) were detected in 

the raw sample. Among them, 49 could be identified (Level 1), 67 tentatively identified as probable 

structures (Level 2a) and 59 as tentative candidates (Level 3), according to Schymanski classification 

(Schymanski et al., 2015) (see Table 8.6). 

The list of feasible features present in the raw sample was drastically reduced when the 

restriction to be found in the two toxic fractions was introduced, i.e. maintaining only the features 

with peak intensity at least 4 times higher in the active fractions (F13 and F13-4) than in the 

neighbouring non-active fractions and focusing on retention time’s windows of 4.5-7.5 min (see 

Table XXIV in Appendix). Lastly, the pre-calibrated C18 fractionation step (C18 vs. log D(pH=3), r
2
=0.89) 

showed that the F13 fraction may content chemicals with Log D(pH=3) in the range of 1.27-2.49 (see 

Table XXIV in Appendix). 
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Table 8.6. Retention time (RT), ionisation, molecular weight, formula, name and uses of the compounds classified as level 1 or 

level 2a according to Schymanski criteria (Schymanski et al., 2015) with a mzCloud best match >70% and a maximum error of 

5 ppms. Compounds classified as level 3 due to isomerisation (cis-trans) or enantiomers (R, S) were also included.  

# 
RT 

(min) 
Ionisation 

Molecular 
Weight 

Formula Name Level Use 

1 0.7 Positive 129.10149 C4H11N5 Metformin 2a Hypoglycemic  

2 0.8 Positive 140.10617 C6H12N4 Hexamethylenetetramine 2a Preservative 

3 0.8 Positive 266.16265 C14H22N2O3 Atenolol 1 Antihypertensive 

4 0.8 Positive 314.14077 C13H22N4O3 S Ranitidine 1 Histamine H2 Antagonists  

5 0.8 Positive 292.23589 C14H32N2O4 Edetol 2a Intermediate 

6 0.9 Negative 163.8960 C4H4NO4S Acesulfame 2a Artificial sweetener 

7 1.1 Positive 303.19448 C17H25N3O2 Vildagliptin 2a Antidiabetic 

8 1.3 Positive 328.14525 C15H24N2O4S Tiapride 2a Antipsychotic 

9 1.3 Positive 274.04082 C13H10N2O3S Ensulizole 2a Sunscreen 

10 1.4 Positive 270.17284 C17H22N2O Doxylamine 2a Antihistamine 

11 1.5 Positive 201.03588 C10H7N3S Thiabendazole 1 Bendazole 

12 1.5 Positive 151.13602 C10H17N Amantadine 1 Antiviral 

13 1.6 Positive 290.13732 C14H18N4O3 Trimethoprim 1 Antibiotic 

14 1.7 Positive 152.09493 C8H12N2O IMHP 2a Insecticide 

15 1.7 Positive 245.11623 C13H15N3O2 4-Acetamidoantipyrine 2a Analgesic 

16 1.7 Positive 203.10581 C11H13N3O 4-Aminoantipyrine 2a Anti-inflammatory 

17 1.7 Positive 194.08031 C8H10N4O2 Caffeine 1 Stimulant 

18 1.7 Positive 231.10066 C12H13N3O2 Isocarboxazide 2a Antidepressant 

19 1.7 Positive 113.08433 C6H11NO Caprolactam 2a Flavouring agent 

20 1.8 Positive 219.12587 C13H17NO2 Alminoprofen 2a Anti-inflammatory 

21 1.8 Positive 331.13283 C17H18FN3O3 Ciprofloxacin 1 Antibiotic 

22 1.8 Positive 234.17302 C14H22N2O Lidocaine 1 Anesthetics 

23 1.9 Positive 361.14336 C18H20FN3O4 Levo/Ofloxacin 3 Antibiotic 

24 1.9 Positive 237.09189 C13H16ClNO Ketamine 2a Stimulant 

25 2.0 Positive 369.17180 C17H27N3O4S Amisulpride 2a Antipsychotic 

26 2.1 Positive 249.05697 C11H11N3O2S Sulfapyridine 1 Antibiotic 

27 2.1 Positive 119.04854 C6H5N3 Benzotriazole 2a Anticorrosive 

28 2.3 Positive 255.00765 C9H7Cl2N5 Lamotrigine 2a Anticonvulsant 

29 2.3 Positive 267.18312 C15H25NO3 Metoprolol 1 Antihypertensive 

30 2.4 Positive 263.18830 C16H25NO2 Desvenlafaxine 2a Antidepressant 

31 2.5 Positive 188.09482 C11H12N2O Antipyrine 2a Anti-inflammatory 

32 2.6 Positive 221.17781 C14H23NO Tapentadol 2a Sedative 

33 2.7 Positive 250.13171 C13H18N2O3 Lacosamide 2a Anticonvulsant 

https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68007004
https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68006635
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Table 8.6. Retention time (RT), ionisation, molecular weight, formula, name and uses of the compounds classified as level 1 or 

level 2a according to Schymanski criteria (Schymanski et al., 2015) with a mzCloud best match >70% and a maximum error of 

5 ppms. Compounds classified as level 3 due to isomerisation (cis-trans) or enantiomers (R, S) were also included.  

# 
RT 

(min) 
Ionisation 

Molecular 
Weight 

Formula Name Level Use 

34 2.8 Positive 748.50754 C38H72N2O12 Azithromycin 2a Antibacterial  

35 2.8 Positive 270.10012 C15H14N2O3 10,11-Dihydroxycarbamazepine 3 Anticonvulsant 

36 2.8 Positive 306.10369 C13H12F2N6O Fluconazole 1 Antifungal 

37 3.1 Negative 133.06244 C7H7N3 4-Methylbenzotriazole 2a Anticorrosive 

38 3.2 Positive 307.04302 C15H14ClNO2S Clopidogrel carboxylic acid 2a Antithrombotic 

39 3.2 Positive 239.10745 C13H18ClNO Bupropion 1 Antidepressant 

40 3.3 Positive 424.17967 C18H33ClN2O5S Clindamycin 2a Antibiotic 

41 3.3 Positive 325.22484 C18H31NO4 Bisoprolol 1 Antihypertensive 

42 3.4 Positive 277.20391 C17H27NO2 Venlafaxine 2a Antidepressant 

43 3.4 Positive 254.10527 C15H14N2O2 10-Hydroxycarbazepine 2a Anticonvulsant 

44 3.6 Positive 182.07080 C6H15O4P Triethyl phosphate 1 Organophosphorus 

45 3.6 Positive 326.12935 C18H19ClN4 Clozapine 1 Antipsychotic 

46 4.0 Positive 253.05187 C10H11N3O3S Sulfamethoxazole 1 Antibiotic 

47 4.0 Positive 446.20632 C24H26N6O3 Olmesartan 2a Antihypertensive 

48 4.1 Positive 372.15029 C20H24N2O3S Deacetyl Diltiazem 2a Antihypertensive 

49 4.2 Positive 151.00910 C7H5NOS OBT 1 Anticorrosive 

50 4.2 Positive 222.1367 C12H18N2O2 Mexacarbate 2a Insecticide 

51 4.2 Positive 259.15691 C16H21NO2 Propanolol 1 Antihypertensive 

52 4.3 Positive 371.15090 C19H22ClN5O Trazodone 2a Antidepressant 

53 4.3 Positive 252.08963 C15H12N2O2 Carbamazepine epoxide 2a Anticonvulsant 

54 4.5 Positive 348.12529 C16H20N4O3S Torsemide 2a Antihypertensive 

55 4.6 Negative 266.0804 C14H10N4O2 Valsartan acid 2a Antihypertensive 

56 4.7 Positive 252.08954 C15H12N2O2 Oxcarbazepine 2a Anticonvulsant 

57 4.9 Positive 733.46031 C37H67NO13 Erythromycine 1 Antibacterial  

58 5.0 Positive 310.14775 C19H19FN2O Demethylcitalopram 2a Antidepressant 

59 5.0 Negative 265.08845 C12H15N3O2S Albendazole 1 Antihelminthic 

60 5.0 Positive 199.11084 C12H13N3 Pyrimethanil 2a Fungicide 

61 5.2 Positive 324.16341 C20H21FN2O Citalopram 3 Antidepressant 

62 5.2 Positive 414.13738 C17H20F6N2O3 Flecainide 2a Antiarrhythmic 

63 5.3 Positive 232.15727 C14H20N2O Norfentanyl 2a Sedative 

64 5.3 Positive 143.13100 C8H17NO Valpromide 2a Anticonvulsant 

65 5.4 Positive 414.16106 C22H26N2O4S Diltiazem 2a Antihypertensive 

66 5.4 Positive 295.09547 C16H13N3O3 Mebendazole 1 Antihelminthic 

https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68000900
https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68000900
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Table 8.6. Retention time (RT), ionisation, molecular weight, formula, name and uses of the compounds classified as level 1 or 

level 2a according to Schymanski criteria (Schymanski et al., 2015) with a mzCloud best match >70% and a maximum error of 

5 ppms. Compounds classified as level 3 due to isomerisation (cis-trans) or enantiomers (R, S) were also included.  

# 
RT 

(min) 
Ionisation 

Molecular 
Weight 

Formula Name Level Use 

67 5.5 Positive 277.18261 C20H23N Maprotiline 2a Antidepressant 

68 5.6 Positive 309.18376 C19H23N3O Benzydamine 2a Anti-inflammatory 

69 5.8 Positive 236.09469 C15H12N2O Carbamazepine 1 Anticonvulsant 

70 5.8 Positive 329.1423 C19H20FNO3 Paroxetine 2a Antidepressant 

71 5.8 Positive 292.09743 C15H17ClN2O2 Climbazole 2a Fungicide 

72 5.9 Positive 256.12087 C15H16N2O2 Ancymidol 2a Herbicide 

73 5.9 Positive 241.13585 C10H19N5S Terbutryn 1 Herbicide 

74 6.1 Positive 747.47635 C38H69NO13 Clarithromycin 1 Antibiotic 

75 6.2 Negative 330.0078 C12H11ClN2O5S Furosemide 1 Diuretic 

76 6.2 Positive 309.20885 C21H27NO Methadone 2a Stimulant 

77 6.3 Positive 230.14171 C14H18N2O Propyphenazone 1 Anti-inflammatory 

78 6.3 Positive 277.18271 C20H23N Amitriptyline 1 Antidepressant 

79 6.3 Positive 286.05054 C15H11ClN2O2 Oxazepam 2a Benzodiazepine 

80 6.4 Positive 388.15474 C21H25ClN2O3 Cetirizine/ Levocetirizine 3 Antihistaminic 

81 6.4 Positive 514.23640 C33H30N4O2 Telmisartan 1 Antihypertensive 

82 6.5 Positive 428.23194 C25H28N6O Irbesartan 1 Antihypertensive 

83 6.6 Positive 320.01146 C15H10Cl2N2O2 Lorazepam 1 Sedative 

84 6.7 Positive 191.13078 C12H17NO DEET 1 Insecticide 

85 6.8 Positive 197.17781 C12H23NO Laurolactam 2a Intermediate 

86 6.9 Positive 206.14178 C12H18N2O Isoproturon 1 Herbicide 

87 6.9 Positive 422.16173 C22H23ClN6O Losartan 1 Antihypertensive 

88 7.1 Positive 232.01692 C9H10Cl2N2O Diuron 1 Herbicide 

89 7.6 Positive 203.13095 C13H17NO Crotamiton 1 Antipruritic  

90 7.7 Positive 334.02693 C16H12Cl2N2O2 Lormetazepam 2a Sedative 

91 7.8 Positive 389.10053 C21H15N3O5 Azoxystrobin acid 2a Fungicide 

92 7.8 Positive 284.07139 C16H13ClN2O Diazepam 1 Sedative 

93 7.9 Negative 142.01703 C7H7ClO Chlorocresol 2a Fungicide 

94 7.9 Negative 214.03885 C10H11ClO3 Mecoprop 2a Herbicide 

95 8.0 Positive 361.10772 C19H20ClNO4 Bezafibrate 1 Hypolipidemic 

96 8.1 Positive 321.05870 C16H16ClNO2S Clopidogrel 1 Antithrombotic 

97 8.2 Positive 547.23468 C27H37N3O7S Darunavir 2a Antiviral 

98 8.3 Positive 323.12978 C15H21N3O3S Gliclazide 2a Hypoglycemic  

99 8.3 Positive 386.17221 C22H26O6 GENISER MD 2a Clarifier 

https://en.wikipedia.org/wiki/Antipruritic
https://www.ncbi.nlm.nih.gov/sites/entrez?Db=pccompound&DbFrom=mesh&Cmd=Link&LinkName=mesh_pccompound&IdsFromResult=68007004
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Table 8.6. Retention time (RT), ionisation, molecular weight, formula, name and uses of the compounds classified as level 1 or 

level 2a according to Schymanski criteria (Schymanski et al., 2015) with a mzCloud best match >70% and a maximum error of 

5 ppms. Compounds classified as level 3 due to isomerisation (cis-trans) or enantiomers (R, S) were also included.  

# 
RT 

(min) 
Ionisation 

Molecular 
Weight 

Formula Name Level Use 

100 8.4 Positive 148.08873 C10H12O Anethole 3 Flavouring agent 

101 8.4 Negative 435.22713 C24H29N5O3 Valsartan 1 Antihypertensive 

102 8.8 Negative 430.06107 C18H14F4N2O4S Bicalutamide 1 Antineoplastic 

103 9.1 Positive 307.14485 C16H22ClN3O Tebuconazole 1 Fungicide 

104 9.2 Negative 276.07246 C11H11F3N2O3 Flutamide 1 Antineoplastic 

105 9.3 Negative 250.15658 C15H22O3 Gemfibrozil 1 Antilipemic 

106 9.5 Positive 342.03212 C18H12Cl2N2O Boscalid 1 Fungicide 

107 9.6 Positive 295.01621 C14H11Cl2NO2 Diclofenac 1 Anti-inflammatory 

108 10.0 Positive 341.06957 C15H17Cl2N3O2 Propiconazole 1 Fungicide 

109 10.0 Positive 268.15718 C17H20N2O Centralite 2a Gunshot residue 

110 10.2 Positive 210.10190 C8H19O4P Dibutyl phosphate 2a Intermediate 

111 10.2 Positive 266.16425 C12H27O4P Tributyl Phosphate 2a Organophosphorus 

112 10.2 Positive 283.32352 C19H41N Cetrimonium 2a Surfactant 

113 10.5 Negative 241.10985 C15H15NO2 Mefenamic acid 1 Anti-inflammatory 

114 11.3 Positive 304.10024 C12H21N2O3PS Dimpylate 2a Insecticide 

115 11.8 Negative 499.93779 C8HF17O3S PFOS 1 Surfactant 

116 12.2 Positive 326.07044 C18H15O4P Triphenyl phosphate 1 Organophosphorus 

117 13.4 Positive 325.37027 C22H47N Didecyldimethylammonium 2a Antiseptic 

118 14.3 Negative 326.19145 C18H30O3S 4-Dodecylbenzenesulfonic acid 2a Surfactant 

119 14.7 Negative 220.18197 C15H24O Caryophyllene oxide 3 Flavouring agent 

120 14.9 Positive 312.13566 C19H20O4 Butylbenzylphthalate 2a Plasticiser 

121 23.4 Positive 283.28688 C18H37NO Stearamide 2a Surfactant 

122 25.1 Positive 297.30254 C19H39NO Tridemorph 2a Fungicide 

DEET: N,N-Diethyl-meta-toluamide, GENISER MD: Bis(methylbenzylidene)sorbitol, IMHP: 2-Isopropyl-6-methyl-4-pyrimidinol,  
OBT: 2-hydroxyobenzothiazole.  

 

In this sense, the initial amount of peaks detected at the raw sample was limited to nine 

features (see Table 8.7). Two of these features could be associated to tentative structures and four 

more were confirmed with standards, as can be seen in the MS
2
 spectra shown in Figure 8.10a-f. The 

determination of the unequivocal molecular formula was not possible in the case of the remaining 3 

features due to poor MS
2
 spectra. The nine identified compounds include two pesticides, 

mexacarbate and fenpropidin and 4 pharmaceuticals, amitriptyline and paroxetine antidepressants 
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drugs, and mebendazole and albendazole antihelminthic agents. All these compounds were 

detected in all the active fractions (RAW, F13, F13-4), except fenpropidin, which could not be 

detected in the raw sample. We attribute this to the complex matrix of the raw sample compared to 

that of the individual fractions (F13, F13-4).  

As an example, the identification of mexacarbate (m/z 233.1440, RT 4.2 min) is explained in 

detail. Only one plausible molecular formula (C12H18N2O2) remained after the mass accuracy 

(<5 ppm) and isotopic fit criteria and only two structures showed an mzCloud score above 70%: 

mexacarbate (a pesticide, 4-(dimethylamino)-3,5-dimethylphenyl methylcarbamate) and 

neostigmine (a parasympathomimetic pharmaceutical, N,N,N-trimethybenzenamino 3-

(dimethylcarbomoyloxy)). The main differences between their structures arise in the position of two 

methyl groups. Metfrag explained the fragments found in the MS
2
 spectra of both candidates: 

Mexacarbate explained nine out of the ten most intense fragments and neostigmine explained 

eight. Neostigmine could not explain the peak m/z 178.12175 (see Figure 8.10a) present in the 

spectra, and in the case of mexacarbate it was feasible by the loss of N-methylamine [C9H11NO + H
+
], 

m/z 178.1227. Lastly, F13 fraction may content chemicals with Log D(pH=3) in the range of 1.27-2.49, 

and thus, neostigmine (Log D(pH=3)=-1.6) was discarded as a possible candidate.  
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Figure 8.10. MS
2 

spectra (HCD 10, 35 and 75) of a) Fragments explanation of two potential candidates 

(mexacarbate and neostigmine) which match with the precursor ion #1 included in Table 8.6, and b) 

albendazole. Only the major fragments have been rounded. 

A) 
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Figure 8.10. MS
2 

spectra (HCD 10, 35 and 75) of c) mebendazole and d) amitriptyline.  Only the major fragments 

have been rounded.  

C) 

D) 
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Figure 8.10. MS
2 

spectra (HCD 10, 35 and 75) of e) fenpropidin and f) paroxetine. Only the major fragments 

have been rounded.  

E) 

F) 
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8.3.4. Assessment of toxicities and conclusions 

The current knowledge of SET in response to individual organic chemicals is still very limited. 

In fact, we could not narrow down the identified list with the information available in EPA 

Dashboard web application (https://comptox.epa.gov/dashboard) or ecotoxicology knowledgebase 

(ECOTOX database, https://cfpub.epa.gov/ecotox/). Therefore, one compound for each of the MoA 

(see Table 8.7) in the toxic fraction was tested: the antihelminthic mebendazole (Ga2 effluent 

concentration 65 ng/L at REF=1), the anti-depressant amitriptyline (304 ng/L) and the fungicide 

fenpropidin (23 ng/L). They were tested for toxicity in SET with EC50-SI of 213, 3523 and 9653 µg/L. 

The comparison of the chemical and biological data using TUs showed that mebendazole was the 

predominant contributor (32%) followed in a less extend by amitriptyline (9%), whereas fenpropidin 

could only explain the 0.3% of the sea urchin embryogenesis activity in the F13-4 fraction 

(TUbio=0.03). 

The high biologically activity shown by mebendazole, which was more toxic than amitriptyline 

and fenpropidin is in agreement with its specific MoA. Mebendazole is a benzimidazole extensively 

used as an anthelmintinc agent in veterinary and human practices in order to treat parasitic 

infections (Akhtar et al., 2017). Adults and worm eggs are affected by depolymerisation of 

microtubules (Tydén et al., 2016), a process that plays an essential role in sea urchin embryos since 

this process is involved in many cellular processes such as cell division during early embryogenesis, 

intracellular transport and four arm-pluteus stage shape maintenance (Kiselyov et al., 2010; 

Semenova et al., 2006; Sheremetev et al., 2010). For instance, Stepanov et al. (Stepanov et al., 2015) 

evaluated the microtubule-destabilizing properties of a series of benzimidazole drugs and reported 

alterations in swimming pattern of blastulae treated after hatching. The rapid spinning of embryos 

around the axis suggests a microtubule destabilizing activity as it can be seen in the video available 

at http://www.chemblock.com/urchin.php. 

The contribution (9%) of amitriptyline, with a TUchem.=2.8 E-3, can be interpreted by its high 

effluent concentration (304 ng/L), an order of magnitude higher than that of fenpropidin (23 ng/L, 

TUchem.=7.7 E-5) and mebendazole (65 ng/L, TUchem=9.9 E-3). This neuroactive antidepressant has 

been reported to be toxic for crustaceans (Busch et al., 2016; Minguez et al., 2014) and, specially, 

https://comptox.epa.gov/dashboard
https://cfpub.epa.gov/ecotox/
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for zebrafish (Beckers et al., 2018). Among other alterations, it was demonstrated to alter the 

swimming behaviour and body length of Danio rerio embryo (Yang et al., 2014). However, this is the 

first time that the potential toxicity of amitriptyline on sea urchin embryos has been evaluated. 

The share of non-explained toxicity can be attributed to paroxetine and albendazole (both of 

them present in the raw sample at a much lower concentration than those of amitriptyline and 

mebendazole), plus mexacarbate and the non-identified compounds.  

Finally, the use of SET in the EDA streamline procedure was successfully implemented to 

study the toxicity of WWTP effluents and to identify the most toxic contaminants. The performance 

of the SET allowed us to measure effectively the toxicity of all the fractions reducing significantly the 

chemical domain of potential contaminants. In fact, the non-targeted analysis of the toxic fractions 

allowed us to fully identify six contaminants from nine potential candidates. In addition to this, we 

also determined the toxic units to estimate the contribution of the identified contaminants in the 

total toxicity. In this sense, mebendazole was identified as the predominant contributor followed in 

a less extend by amitriptyline, though it is true that we are lacking evidence due to non-tested 

compounds. 
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It is good to have an end to journey towards; 

but it is the journey that matters, in the end. 

Ursula K. Le Guin 
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If we recall the aims and objectives of this PhD Thesis we would see that our main aim was 

to get a close insight about the impact of emerging contaminants in estuarine waters and the 

contribution of WWTP effluents in the observed effects and, once the work is concluded, we honestly 

think that the aims were satisfactorily accomplished. 

In the case of the large monitoring which we performed in three estuaries and WWTP 

effluents we were able to determine the concentration of a wide number of emerging 

contaminants. These achievements are not trivial because we now have a much closer knowledge 

about the occurrence of emerging contaminants in our estuaries and the effluents of WWTPs and 

we are now able to focus the analytical efforts towards a set of contaminants that were never 

considered before. 

Deeply, we obtained a better understanding of the temporal and spatial distribution of the 

41 contaminants along the studied estuaries of the Bay of Biscay (Bilbao, Plentzia and Urdaibai). 

Furthermore, since we monitored the effluents with higher impact on those estuaries we were able 

to identify the most likely sources of contamination. In the particular case of the estuary of Bilbao, at 

least two independent sources were categorised, one in the effluents and the other in the harbour 

activities. The scenario of the other two estuaries was comparable, though the tidal dilution was 

remarkably higher and the impact of other sources was much lower. One of the outcomes of this 

work was the maturation of the WWTP fingerprint that might be useful in future works. Another 

outcome was the identification of pharmaceuticals, such as diclofenac and sartants, and caffeine as 

contaminants of increasing concern that should be carefully monitored in the future. 

On the other hand, in the case of the application of the effect-directed analysis, we were 

able to implement a bioassay designed for coastal waters as the way to drive the non-targeted 

analysis and to identify the main toxic emerging contaminants in a WWTP effluent. Most of the 

experimental work was carried out from scratch and without hardly any previous expertise in this 

field. However, thanks to the network of partners and coworkers, we were able to implement for 

the first time the sea urchin embryo test at the Plentzia Marine Station as the way to measure the 

toxicity in the EDA approach. The combination of a bioassay that is ecologically relevant for the 

coastal waters and the non-targeted analysis workflow in the toxic fractions allowed us to identify 
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six of the nine most toxic compounds present in the effluent of a WWTP. In fact, two of those 

compounds are anthelmintic drugs (albendazole and mebendazole), other two are antidepressant 

(paroxetine and amitriptyline) and last two are pesticides (mexacarbate and fenpropidin).  

These two achievements would have not been possible if we had not succeeded in the 

analytical developments tackled in the previous four chapters. The development of robust analytical 

methods is the core work of our research and, in this particular case, we were able to develop most 

of the methods that were thoroughly used in the monitoring of the estuaries and in other spinoff 

applications.  

Briefly, we developed two methods to run a targeted multiresidue analysis of more than 40 

emerging contaminants in a variety of water and biota environmental samples. In the case of water, 

one of the developed methods, dual PES microextraction, gains a lower matrix effect, cost and 

consumption of organic solvents. In the case of biota samples, both tissues and biofluids, the 

combination of an exhaustive FUSLE protocol with different clean-up alternatives rendered accurate 

results and demonstrated to be useful for the treatment of complex biota samples. The full 

development of a new POCIS configuration to perform passive sampling analysis was also carried 

out, allowing the monitoring of hydrophilic, acid and basic compounds in complex systems such as 

the estuaries. Finally, an established and validates SPE methodology allowed us to safe the integrity 

of a large amount of real water samples.   
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A good decision is based on knowledge 

and not on numbers. 
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I) Atrazine

 

II) Diuron 

 

III) Isoproturon 

 

IV) Simazine 

 
V) Progesterone 

 

VI) Testosterone 

 

VII) 2-Hydroxybenzothiazole 
(OBT) 

 

VIII)Perfluoroctylsulfonamide 
(PFOSA) 

 

 

IX) Perfluorooctane sulfonic 
acid (PFOS) 

 

X) Perfluorooctanoic acid 

(PFOA) 

 

XI)Perfluorobutanesulfonate 
(PFBS)

 

XII) Caffeine 

 

XIII) Acesulfame

 

XIV)Sucralose 

 

XV) Butylparaben 
 

 

XVI) Methylparaben 
 

 

XVII) Trimethoprim

 

XVIII) Ciprofloxacin 

 

XIX) Norfloxacin 

 

XX) Sulfadiazine 

 

XXI) Sulfamethoxazole

 

XXII) Amitriptyline 

 

XXIII) Clomipramine 

 

XXIV) Imipramine 

 
 

XXV) Nortriptyline

 

XXVI) Eprosartan 

 

XXVII) Irbesartan 
 

 

XXVIII) Losartan 
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XXIX) Telmisartan

 

XXX) Valsartan 

 

XXXI) Propanolol 

 

XXXII) acetaminophen 
 

 

XXXIII) Diclofenac

 

XXXIV) Ketoprofen 

 

XXXV) Bezafibrate 

 

XXXVI) Clofibric acid 

 

XXXVII) Carbamazepine

 

XXXVIII) Phenytoin 

 

XXXIX) Genistein 

 

XL) Genistin 

 

XLI) Glycitin 

 

   

 
Figure I Structures of the 41 target compounds.  
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Table II. Sample location, sampling depth and water physico-chemical parameters for each sampling campaign in the Bilbao 

estuary (Bi). 

Season 
(yyyy/mm/dd) 

Site 
Depth 

(m) 
pH 

ORP 
(mV) 

Temperature 
(°C) 

Conductivity 
(µS/cm) 

Salinity 
(psµ) 

TDS 
(mg/L) 

ODO 
(mg/L) 

Winter 
2016/03/18 

Bi-1s 0.3 7.9 266 12.3 32363 27 27787 9 

Bi-1b 20.0 8.0 253 12.6 41744 36 35516 8 

Bi-2s 0.3 7.8 268 11.3 18419 15 16214 10 

Bi-2b 16.2 8.0 278 12.6 41688 36 35492 8 

Bi-3s 0.9 8.1 273 11.6 4208 3 3680 11 

Bi-3b 1.8 7.8 198 11.0 18709 16 16616 10 

Bi-4s 1.0 7.4 194 11.7 2345 2 2047 9 

Bi-4b 3.3 7.5 214 11.5 36833 32 32228 8 

Bi-5s 1.0 8.5 243 10.6 771 1 691 11 

Bi-5b 4.7 7.7 291 12.2 38414 33 33010 8 

Bi-6s 1.0 8.1 252 9.2 2326 2 2166 12 

Bi-6b 4.5 7.6 285 11.9 35855 31 31115 8 

Spring 
2016/05/31 

Bi-1s 0.8 8.2 131 17.4 46933 36 35693 8 

Bi-1b 22.2 8.1 132 16.0 45938 37 36026 8 

Bi-2s 0.9 8.2 145 18.0 44138 34 33130 9 

Bi-2b 16.2 8.1 146 16.5 46245 37 35855 8 

Bi-3s 0.9 8.1 117 18.6 38371 28 28409 9 

Bi-3b 2.6 8.1 118 17.9 43438 33 32691 9 

Bi-4s 0.1 8.0 141 19.5 24047 17 17476 10 

Bi-4b 3.5 7.9 110 17.6 42794 33 32418 6 

Bi-5s 0.9 8.1 151 18.5 18312 13 13591 10 

Bi-5b 3.1 8.0 156 18.3 39629 29 29542 9 

Bi-6s 0.9 8.2 156 18.3 3599 2 2680 10 

Bi-6b 6.1 7.5 191 16.8 42373 33 32687 5 

Summer 
2016/09/07 

Bi-1s 0.0 7.6 236 20.8 49044 35 34629 7 

Bi-1b 23.1 7.7 224 15.2 44689 36 35718 7 

Bi-2s 0.1 7.8 236 21.4 47878 34 33416 7 

Bi-2b 15.6 7.9 231 16.1 45775 37 35861 7 

Bi-3s 0.9 7.8 230 22.8 42267 29 28696 7 

Bi-3b 1.8 7.8 228 21.8 47066 33 32594 6 

Bi-4s 0.1 7.6 219 24.1 32417 21 21439 6 

Bi-4b 2.1 7.6 169 21.9 47873 33 33077 6 

Bi-5s 0.2 8.0 105 24.1 38695 25 25613 8 

Bi-5b 3.9 7.9 112 22.0 46836 33 32268 6 

Bi-6s 0.1 7.8 211 24.7 38538 25 25177 5 

Bi-6b 4.1 7.7 217 22.5 45593 31 31141 4 

Fall 
2016/11/30 

Bi-1s 0.2 7.1 165 14.5 43988 36 35725 8 

Bi-1b 21.0 8.1 194 14.7 44927 37 36327 8 

Bi-2s 0.1 8.7 239 14.1 41095 34 33739 8 

Bi-2b 15.0 8.6 236 14.6 44659 37 36209 8 

Bi-3s 0.2 9.0 152 13.1 25011 20 21021 8 

Bi-3b 1.8 9.1 153 13.2 29834 25 25057 8 
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Table II. Sample location, sampling depth and water physico-chemical parameters for each sampling campaign in the Bilbao 

estuary (Bi). 

Season 
(yyyy/mm/dd) 

Site 
Depth 

(m) 
pH 

ORP 
(mV) 

Temperature 
(°C) 

Conductivity 
(µS/cm) 

Salinity 
(psµ) 

TDS 
(mg/L) 

ODO 
(mg/L) 

Fall 
2016/11/30 

Bi-4s 0.2 9.0 184 13.7 21742 17 18015 8 

Bi-4b 3.7 8.7 171 14.3 41758 35 34108 7 

Bi-5s 0.1 9.1 183 12.6 17245 14 14685 9 

Bi-5b 6.0 8.6 137 14.3 41524 34 33941 7 

Bi-6s 0.1 9.6 85 11.1 5902 4 5221 11 

Bi-6b 5.7 8.6 108 14.0 39343 33 32403 4 

Winter 
2017/02/23 

Bi-1s 0.9 7.9 268 12.8 43105 37 36531 9 

Bi-1b 22.1 7.8 228 12.9 44488 39 37634 8 

Bi-2s 0.2 8.0 260 13.2 41422 35 34722 9 

Bi-2b 14.5 7.9 33 12.9 44365 38 37482 8 

Bi-3s 0.2 7.9 71 13.0 17372 14 14641 9 

Bi-3b 2.1 7.9 95 13.2 41683 36 35020 8 

Bi-4s 0.1 7.1 120 14.9 10866 8 8616 8 

Bi-4b 2.8 7.8 117 13.1 42799 37 35977 7 

Bi-5s 0.1 8.2 96 11.7 4405 3 3843 11 

Bi-5b 4.8 7.8 135 13.1 42058 36 35419 7 

Bi-6s 0.9 8.6 197 11.5 2073 1 1816 12 

Bi-6b 4.9 7.8 223 12.9 42088 36 35590 6 

Bi-b: bilbao estuary bottom, Bi-s: Bilbao estuary surface, ODO: optical dissolved oxygen, TDS: total dissolved solid. Numbers refer to the 
sampling point in Bilbao estuary, being 1 the estuary mouth and 6 the upper part of the estuary (see Figure7.1. in chapter 7). 
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Table III. Sample location, sampling depth and non-purgable organic carbon (NPOC) ammonia (NH4
+), nitrate (NO3

-) silicate 

(Si(OH)4) and phosphate (PO4
3-) concentrations for each sampling campaign in the Bilbao estuary (Bi). 

Season 
(yyyy/mm/dd) 

Site 
Depth 

(m) 
NPOC 
(mg/L) 

NH4
+ 

(mg/L) 
NO3

- 
(mg/L) 

Si(OH)4 
(mg/L) 

PO4
3- 

(mg/L) 

Winter 
2016/03/18 

Bi-1s 0.3 2.20 24 185 2.12 0.04 

Bi-1b 20.0 1.04 46 238 0.25 0.02 

Bi-2s 0.3 2.73 5 60 7.18 0.31 

Bi-2b 16.2 1.27 34 235 0.31 0.03 

Bi-3s 0.9 2.78 2 28 10.94 0.24 

Bi-3b 1.8 2.74 4 52 7.36 0.23 

Bi-4s 1.0 4.65 2 47 10.87 3.30 

Bi-4b 3.3 1.49 25 208 1.88 0.17 

Bi-5s 1.0 2.39 0.4 9 9.21 0.06 

Bi-5b 4.7 1.42 29 221 1.25 0.08 

Bi-6s 1.0 3.05 1 14 8.64 0.09 

Bi-6b 4.5 1.63 24 192 2.08 0.08 

Spring 
2016/05/31 

Bi-1s 0.8 1.51 24 274 0.11 0.03 

Bi-1b 22.2 1.47 46 288 0.01 0.03 

Bi-2s 0.9 1.97 5 235 0.14 0.21 

Bi-2b 16.2 1.47 34 272 0.15 0.06 

Bi-3s 0.9 3.10 2 180 1.25 0.88 

Bi-3b 2.6 2.12 4 228 0.01 0.29 

Bi-4s 0.1 5.31 2 123 1.78 7.90 

Bi-4b 3.5 1.95 25 226 0.73 0.43 

Bi-5s 0.9 3.13 0.4 227 0.20 0.20 

Bi-5b 3.1 2.24 29 345 2.57 0.68 

Bi-6s 0.9 4.11 1 29 4.76 0.15 

Bi-6b 6.1 1.98 24 212 1.32 0.31 

Summer 
2016/09/07 

Bi-1s 0.0 2.35 48 221 0.21 0.07 

Bi-1b 23.1 1.83 49 228 0.23 0.04 

Bi-2s 0.1 2.88 43 216 0.67 0.39 

Bi-2b 15.6 2.00 44 224 0.42 0.04 

Bi-3s 0.9 4.20 31 171 2.89 1.08 

Bi-3b 1.8 2.70 46 221 0.81 0.38 

Bi-4s 0.1 8.64 24 123 6.18 7.59 

Bi-4b 2.1 3.31 43 186 1.45 0.93 

Bi-5s 0.2 5.70 32 154 2.11 1.42 

Bi-5b 3.9 3.42 44 199 1.20 0.38 

Bi-6s 0.1 7.03 27 141 2.89 0.51 

Bi-6b 4.1 4.39 45 204 1.84 0.56 

Fall 
2016/11/30 

Bi-1s 0.2 1.39 36 242 0.23 0.03 

Bi-1b 21.0 1.13 36 243 0.17 0.02 

Bi-2s 0.1 1.58 30 223 1.78 0.19 

Bi-2b 15.0 1.04 36 252 0.20 0.02 

Bi-3s 0.2 2.94 20 147 5.04 1.21 

Bi-3b 1.8 2.23 20 159 4.43 0.58 

Bi-4s 0.2 3.18 15 119 6.46 1.55 
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Table III. Sample location, sampling depth and non-purgable organic carbon (NPOC) ammonia (NH4
+), nitrate (NO3

-) silicate 

(Si(OH)4) and phosphate (PO4
3-) concentrations for each sampling campaign in the Bilbao estuary (Bi). 

Season 
(yyyy/mm/dd) 

Site 
Depth 

(m) 
NPOC 
(mg/L) 

NH4
+ 

(mg/L) 
NO3

- 
(mg/L) 

Si(OH)4 
(mg/L) 

PO4
3- 

(mg/L) 

Fall 
2016/11/30 

Bi-4b 3.7 1.41 34 249 0.99 0.15 

Bi-5s 0.1 2.95 13 106 6.57 0.43 

Bi-5b 6.0 1.51 32 239 1.00 0.10 

Bi-6s 0.1 3.17 3 46 10.99 0.15 

Bi-6b 5.7 2.25 32 210 2.20 0.20 

Winter 
2017/02/23 

Bi-1s 0.9 2.46 35 236 0.12 0.04 

Bi-1b 22.1 2.12 34 238 0.21 0.03 

Bi-2s 0.2 2.72 32 223 0.48 0.09 

Bi-2b 14.5 2.17 36 255 0.21 0.04 

Bi-3s 0.2 6.46 12 92 5.30 0.80 

Bi-3b 2.1 2.64 32 221 1.69 0.12 

Bi-4s 0.1 9.99 7 74 7.55 4.96 

Bi-4b 2.8 2.89 32 224 0.75 0.15 

Bi-5s 0.1 7.22 2 24 1.93 0.03 

Bi-5b 4.8 3.07 34 237 0.74 0.08 

Bi-6s 0.9 8.68 1 17 4.72 0.05 

Bi-6b 4.9 3.89 31 213 1.10 0.08 

Bi-b: bilbao estuary bottom, Bi-s: Bilbao estuary surface. Numbers refer to the sampling point in Bilbao estuary, being 1 the estuary mouth and 
6 the upper part of the estuary (see Figure7.1. in chapter 7). 
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Table IV. Sample location, sampling depth and water physico-chemical parameters for each sampling campaign in the Plentzia 

estuary (Pl). 

Season 
(mm/dd) 

Site 
Depth 

(m) 
pH 

ORP 
(mV) 

Temperature 
(°C) 

Condutivity 
(µS/cm) 

Salinity 
( psµ) 

TDS 
(mg/L) 

ODO 
(mg/L) 

Winter  
2016/03/15 

Pl-1 1.1 8.0 262 12.1 39944 35 34421 9 

Pl-2 1.0 8.0 242 12.0 39390 34 34044 9 

Pl-3 1.0 7.9 252 11.8 38687 34 33638 9 

Pl-4 1.1 7.8 223 11.7 35901 31 31311 9 

Pl-5 1.0 7.4 194 9.6 11661 20 10735 11 

Pl-6 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Pl-7 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Spring  
2016/06/01 

Pl-1 0.06 8.2 185 17.8 47272 36 35597 8 

Pl-2 0.1 7.8 245 17.8 45040 34 33965 8 

Pl-3 0.07 8.1 214 17.9 44860 34 33749 8 

Pl-4 0.04 8.1 268 18.2 44243 33 33038 8 

Pl-5 0.06 8.1 290 18.7 37573 28 27784 8 

Pl-6 0.04 8.1 277 18.9 32398 23 23811 8 

Pl-7 0.3 6.0 128 17.5 459 0.3 348 8 

Summer  
2016/09/12 

Pl-1 0.2 8.4 61 17.9 47066 36 35413 7 

Pl-2 0.1 7.8 235 17.8 45040 36 35965 7 

Pl-3 0.9 8.0 242 20.1 48993 36 35158 7 

Pl-4 0.8 8.0 249 21.3 48821 35 34125 7 

Pl-5 0.8 8.1 266 22.3 45173 31 30970 7 

Pl-6 0.7 8.1 279 23.5 42693 28 28554 7 

Pl-7 1.0 7.4 51 19.2 621 0.3 454 6 

Fall  
2016/11/28 

Pl-1 0.4 8.5 258 14.5 43737 36 35599 8 

Pl-2 0.8 7.8 311 14.3 43152 36 35217 8 

Pl-3 0.9 8.8 289 14.4 43734 36 35623 8 

Pl-4 0.8 8.6 303 14.4 43599 36 35523 8 

Pl-5 0.9 8.8 330 12.6 31478 26 26819 9 

Pl-6 0.9 8.6 329 12.4 26930 22 23034 9 

Pl-7 1.0 6.3 177 10.1 331 0.2 301 10 

Winter  
2017/02/21 

Pl-1 0.3 8.0 266 12.9 43921 38 37145 9 

Pl-2 0.5 8.1 294 12.9 43666 38 36893 9 

Pl-3 0.4 8.1 320 12.5 43047 37 36752 9 

Pl-4 0.5 8.1 311 12.5 35614 30 30388 9 

Pl-5 0.5 8.1 304 12.1 25494 21 22001 10 

Pl-6 0.06 8.1 278 11.6 21050 17 18413 10 

Pl-7 0.2 7.9 225 10.3 392 0.3 355 10 

n.a.: not adquired, ODO: optical dissolved oxygen, TDS: total dissolved solid. Pl-i: plentzia estuary sampling point,;numbers refer to the sampling 
point, being 1 the estuary mouth and 7 the upper part of the estuary (see Figure7.1. in chapter 7). 
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Table V. Sample location, sampling depth and non-purgable organic carbon (NPOC) ammonia (NH4
+), nitrate (NO3

-) silicate 

(Si(OH)4) and phosphate (PO4
3-) concentrations for each sampling campaign in the Plentzia estuary (Pl). 

Season 
(yyyy/mm/dd) 

Site 
Depth 

(m) 
NPOC 
(mg/L) 

NH4
+ 

(mg/L) 
NO3

- 
(mg/L) 

Si(OH)4 
(mg/L) 

PO4
3- 

(mg/L) 

Winter  
2016/03/15 

Pl-1 1.1 1.3 41 223 0.4 0.02 

Pl-2 1.0 1.2 40 216 0.7 0.02 

Pl-3 1.0 1.1 40 220 0.7 0.02 

Pl-4 1.1 1.7 22 139 6 0.1 

Pl-5 1.0 2.4 8 53 10 0.2 

Pl-6 n.a. n.a. n.a. n.a. n.a. n.a. 

Pl-7 n.a. n.a. n.a. n.a. n.a. n.a. 

Spring  
2016/06/01 

Pl-1 0.06 1.5 46 362 0.1 0.02 

Pl-2 0.1 1.9 44 347 0.4 0.02 

Pl-3 0.07 1.9 41 359 0.7 0.03 

Pl-4 0.04 1.8 40 376 1 0.04 

Pl-5 0.06 2.2 33 404 3 0.04 

Pl-6 0.04 2.6 29 368 4 0.06 

Pl-7 0.3 3.4 0.5 25 16 0.5 

Summer  
2016/09/12 

Pl-1 0.2 1.5 51 249 0.1 0.01 

Pl-2 0.1 1.4 53 239 0.2 0.02 

Pl-3 0.9 1.5 50 233 0.1 0.02 

Pl-4 0.8 1.7 50 249 0.4 0.02 

Pl-5 0.8 2.0 46 207 1 0.05 

Pl-6 0.7 2.4 41 192 2 0.07 

Pl-7 1.0 4.4 0.9 8 18 0.5 

Fall  
2016/11/28 

Pl-1 0.4 1.5 34 238 0.4 0.03 

Pl-2 0.8 1.3 35 240 0.4 0.03 

Pl-3 0.9 1.3 34 238 0.3 0.03 

Pl-4 0.8 1.4 35 239 0.4 0.03 

Pl-5 0.9 3.1 20 151 6 0.1 

Pl-6 0.9 3.1 20 146 6 0.1 

Pl-7 1.0 5.9 0.4 10 2 0.3 

Winter  
2017/02/21 

Pl-1 0.3 0.9 33 224 0.2 0.02 

Pl-2 0.5 0.8 34 239 0.2 0.03 

Pl-3 0.4 0.9 34 231 0.4 0.03 

Pl-4 0.5 1.2 24 177 3 0.05 

Pl-5 0.5 2.0 16 119 5 0.07 

Pl-6 0.06 2.0 10 70 7 0.08 

Pl-7 0.2 2.8 0.2 7 10 0.1 

n.a.: not adquired. Pl-i: plentzia estuary sampling point,;numbers refer to the sampling point, being 1 the estuary mouth and 7 the upper part 
of the estuary (see Figure7.1. in chapter 7). 

 

 

 



Appendix  

280 

Table VI. Sample location, sampling depth and water physico-chemical parameters as non-purgable organic carbon (NPOC) 

ammonia (NH4
+), nitrate (NO3

-) silicate (Si(OH)4) and phosphate (PO4
3-) concentrations for each sampling campaign in the 

Urdaibai estuary (Ur). 

Season 
yyyy/mm/dd 

Sampling 
point 

Depth 
(m) 

pH 
ORP 
(mV) 

Temperature 
(°C) 

Conductivity 
(µS/cm) 

Salinity 
( psµ) 

TDS 
(mg/L) 

ODO 
(mg/L) 

Winter 
2016/02/24 

Ur-1 0.9 8.3 276 13 40586 35 34338 9 

Ur-2 0.9 8.3 299 13 25869 21 21778 9 

Ur-3 1.1 8.1 279 13 10845 8 9229 8 

Ur-4 0.2 8.7 105 10 302 0.2 275 12 

Spring 
2016/06/02 

Ur-1 1.2 8.3 290 19 46902 35 36891 6 

Ur-2 0.1 8.0 270 19 43340 32 32046 7 

Ur-3 0.1 7.8 265 19 31251 22 22716 6 

Ur-4 0.1 7.2 98 15 367 0.2 296 10 

Summer 
2016/09/08 

Ur-1 0.2 7.6 307 21 49901 36 34933 7 

Ur-2 0.1 7.5 310 21 49710 36 34923 7 

Ur-3 0.2 7.2 262 24 49276 33 32635 5 

Ur-4 0.2 8.8 170 19 537 0.3 391 9 

Fall 
2016/11/17 

Ur-1 1.1 7.9 209 15 47202 39 38222 8 

Ur-2 0.4 9.1 234 14 34151 28 28363 8 

Ur-3 0.2 9.4 157 13 19477 16 16590 8 

Ur-4 0.2 9.6 113 10 352 0.2 322 12 

Winter 
2017/02/16 

Ur-1 0.9 7.9 226 13 41526 36 35333 9 

Ur-2 0.2 7.9 229 13 28009 23 23478 8 

Ur-3 0.1 7.9 217 13 14103 11 11912 8 

Ur-4 0.2 8.5 148 10 322 0.2 290 13 

ODO: optical dissolved oxygen, TDS: total dissolved solid. Ur-i: urdaibai estuary sampling point; numbers refer to the sampling point, being 1 
the estuary mouth and 4 the upper part of the estuary (see Figure7.1. in chapter 7). 
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Table VII. Sample location, sampling depth and water physico-chemical parameters as non-purgable organic carbon (NPOC) 

ammonia (NH4
+), nitrate (NO3

-) silicate (Si(OH)4) and phosphate (PO4
3-) concentrations for each sampling campaign in the 

Urdaibai estuary (Ur). 

Season 
(yyyy/mm/dd) 

Site 
Depth 

(m) 
NPOC 
(mg/L) 

NH4
+ 

(mg/L) 
NO3

- 
(mg/L) 

Si(OH)4 
(mg/L) 

PO4
3- 

(mg/L) 

Winter 
2016/02/24 

Ur-1 0.9 1.5 44 221 0.5 0.01 

Ur-2 0.9 2.0 25 133 4.3 0.08 

Ur-3 1.1 2.3 10 57 12.1 0.16 

Ur-4 0.2 1.5 0.2 6 11.8 0.05 

Spring 
2016/06/02 

Ur-1 1.2 1.7 47 323 0.3 0.02 

Ur-2 0.1 1.9 37 317 1.5 0.08 

Ur-3 0.1 2.9 26 241 6.0 0.17 

Ur-4 0.1 1.7 0.5 20 18.7 0.06 

Summer 
2016/09/08 

Ur-1 0.2 1.6 46 232 0.1 0.01 

Ur-2 0.1 1.9 54 240 0.1 0.02 

Ur-3 0.2 3.6 50 207 1.9 0.16 

Ur-4 0.2 7.3 0.6 9 23.0 0.12 

Fall 
2016/11/17 

Ur-1 1.1 1.7 34 233 0.3 0.02 

Ur-2 0.4 3.7 22 174 3.8 0.12 

Ur-3 0.2 5.9 15 98 8.3 0.31 

Ur-4 0.2 9.0 0.2 7 1.5 0.09 

Winter 
2017/02/16 

Ur-1 0.9 0.9 32 217 1.0 0.04 

Ur-2 0.2 1.6 21 139 4.5 0.10 

Ur-3 0.1 2.5 10 75 7.6 0.15 

Ur-4 0.2 1.5 0.1 6 4.5 0.06 

Ur-i: urdaibai estuary sampling point; numbers refer to the sampling point, being 1 the estuary mouth and 4 the upper part of the estuary (see 
Figure7.1. in chapter 7). 
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Table IX. Mean concentrations (ng/L) of the target analytes at each sampling point of the estuaries of Bilbao in winter 2016. 

Analyte 
Bilbao estuary surface water (Bi) Bilbao estuary bottom water (Bi) 

Bi-1s Bi-2s Bi-3s Bi-4s Bi-5s Bi-6s Bi-1b Bi-2b Bi-3b Bi-4b Bi-5b Bi-6b 

Acesulfame < mql 30 39 97 7 9 n.d. n.d. 4 < mql < mql < mql 

Acetaminophen 39 153 440 89 54 59 31 25 82 5 < mql n.d. 

Amitriptyline n.d. 2 3 8 n.d. n.d. n.d. n.d. n.d. < mql n.d. n.d. 

Atrazine < mql < mql < mql < mql < mql < mql < mql < mql < mql < mql < mql < mql 

Bezafibrate n.d. n.d. 5 10 n.d. < mql n.d. n.d. < mql n.d. n.d. n.d. 

Butylparaben n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Caffeine 45 141 247 132 127 225 60 30 75 12 8 18 

Carbamazepin 1 5 7 25 < mql < mql n.d. n.d. < mql < mql < mql < mql 

Ciprofloxacin n.d. n.d. < mql 33 n.d. n.d. n.d. n.d. < mql < mql n.d. n.d. 

Clofibric acid n.d. n.d. n.d. < mql n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Clomipramine n.d. n.d. n.d. < mql n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Diclofenac < mql 33 47 332 5 5 n.d. n.d. 14 39 < mql < mql 

Diuron n.d. < mql 6 68 n.d. n.d. n.d. n.d. < mql < mql n.d. n.d. 

Eprosartan n.d. n.d. 16 85 n.d. < mql n.d. n.d. n.d. n.d. n.d. n.d. 

Genistein n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Genistin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Glycitin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Imipramine n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Irbesartan n.d. 32 27 207 2 4 n.d. n.d. 3 2 < mql < mql 

Isoproturon n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. < mql n.d. n.d. n.d. 

Ketoprofen n.d. n.d. n.d. 37 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Losartan 9 9 17 50 < mql < mql n.d. n.d. n.d. < mql n.d. n.d. 

Methylparaben 19 9 n.d. n.d. n.d. n.d. 30 10 n.d. n.d. n.d. n.d. 

Norfloxacin n.d. n.d. n.d. 7 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Nortriptyline n.d. n.d. n.d. < mql n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

OBT 345 300 101 420 20 < mql 1097 1044 412 189 60 < mql 

PFBS n.d. n.d. n.d. < mql n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

PFOA n.d. n.d. n.d. < mql n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

PFOS n.d. 2 24 2 n.d. n.d. n.d. n.d. < mql < mql n.d. n.d. 

PFOSA n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Phenytoin n.d. n.d. n.d. 15 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Progesterone n.d. n.d. n.d. < mql n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Propranolol n.d. < mql < mql 9 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Simazine n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Sucralose n.d. 30 48 212 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Sulfadiazine n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Sulfamethoxazole < mql 35 38 92 < mql n.d. n.d. n.d. < mql < mql n.d. n.d. 

Telmisartan 2 29 30 129 2 n.d. n.d. n.d. 4 9 4 < mql 

Testosterone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Trimethoprim < mql 21 47 197 n.d. n.d. n.d. n.d. < mql < mql n.d. n.d. 

Valsartan 4 27 24 80 26 n.d. n.d. n.d. n.d. < mql < mql < mql 

n.a.= not adquired; n.d.= non detected, < mql= below method quantification limit 
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Table X. Mean concentrations (ng/L) of the target analytes at each sampling point of the estuaries of Plentzia and Urdaibai in 

winter 2016. 

Analyte 
Plentzia estuary (Pl) Urdaibai estuary (Ur) 

Pl-1 Pl-2 Pl-3 Pl-4 Pl-5 Pl-6 Pl-7 Ur-1 Ur-2 Ur-3 Ur-4 

Acesulfame n.d. n.d. < mql 6 5 n.a. n.a. < mql 11 30 < mql 

Acetaminophen n.d. n.d. 6 7 27 n.a. n.a. 25 138 321 n.d. 

Amitriptyline n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. < mql n.d. 

Atrazine n.d. < mql < mql < mql < mql n.a. n.a. n.d. n.d. n.d. n.d. 

Bezafibrate n.d. n.d. < mql < mql 5 n.a. n.a. < mql 3 8 n.d. 

Butylparaben n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. n.d. n.d. 

Caffeine 138 20 30 127 147 n.a. n.a. < mql 156 364 < mql 

Carbamazepin n.d. n.d. n.d. < mql 5 n.a. n.a. n.d. n.d. < mql n.d. 

Ciprofloxacin n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. 17 n.d. 

Clofibric acid n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. n.d. n.d. 

Clomipramine n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. n.d. n.d. 

Diclofenac n.d. n.d. < mql 5 9 n.a. n.a. < mql 2 5 n.d. 

Diuron n.d. n.d. < mql < mql 2 n.a. n.a. n.d. n.d. 4 n.d. 

Eprosartan n.d. n.d. n.d. < mql 3 n.a. n.a. < mql 3 17 n.d. 

Genistein n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. n.d. n.d. 

Genistin n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. n.d. n.d. 

Glycitin n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. n.d. n.d. 

Imipramine n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. n.d. n.d. 

Irbesartan < mql < mql < mql 3 6 n.a. n.a. < mql 12 27 n.d. 

Isoproturon n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. n.d. n.d. 

Ketoprofen n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. n.d. n.d. 

Losartan n.d. n.d. n.d. < mql 2 n.a. n.a. < mql 7 14 n.d. 

Methylparaben 13 21 < mql n.d. n.d. n.a. n.a. n.d. n.d. n.d. n.d. 

Norfloxacin n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. n.d. n.d. 

Nortriptyline n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. n.d. n.d. 

OBT 1219 210 356 218 308 n.a. n.a. 118 336 320 < mql 

PFBS n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. < mql n.d. 

PFOA n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. n.d. n.d. 

PFOS n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. < mql n.d. 

PFOSA n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. < mql n.d. 

Phenytoin n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. n.d. n.d. 

Progesterone n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. < mql n.d. 

Propranolol n.d. n.d. n.d. n.d. < mql n.a. n.a. n.d. n.d. < mql n.d. 

Simazine n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. 5 n.d. 

Sucralose n.d. n.d. < mql 3 10 n.a. n.a. n.d. n.d. < mql n.d. 

Sulfadiazine n.d. < mql 3 9 14 n.a. n.a. n.d. n.d. < mql n.d. 

Sulfamethoxazole n.d. n.d. n.d. < mql < mql n.a. n.a. n.d. n.d. < mql n.d. 

Telmisartan < mql < mql n.d. 4 14 n.a. n.a. 5 22 42 n.d. 

Testosterone n.d. n.d. n.d. n.d. n.d. n.a. n.a. n.d. n.d. < mql n.d. 

Trimethoprim n.d. n.d. n.d. < mql < mql n.a. n.a. < mql < mql < mql n.d. 

Valsartan n.d. < mql 11 30 86 n.a. n.a. 8 37 65 n.d. 

n.a.= not adquired; n.d.= non detected, < mql= below method quantification limit 
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Table XI. Mean concentrations (ng/L) of the target analytes at each sampling point of the estuaries of Bilbao in spring 2016. 

Analyte 
Bilbao estuary surface water (Bi) Bilbao estuary bottom water (Bi) 

Bi-1s Bi-2s Bi-3s Bi-4s Bi-5s Bi-6s Bi-1b Bi-2b Bi-3b Bi-4b Bi-5b Bi-6b 

Acesulfame < mql 9 16 33 n.a. 90 n.d. n.d. n.d. < mql n.a. n.a. 

Acetaminophen < mql 19 17 95 n.a. 77 n.d. n.d. < mql < mql n.a. n.a. 

Amitriptyline n.d. < mql < mql 15 n.a. n.d. n.d. n.d. < mql 3 n.a. n.a. 

Atrazine < mql < mql < mql < mql n.a. < mql < mql < mql < mql < mql n.a. n.a. 

Bezafibrate < mql < mql 7 18 n.a. 5 < mql < mql < mql < mql n.a. n.a. 

Butylparaben n.d. n.d. n.d. n.d. n.a. n.d. n.d. n.d. n.d. n.d. n.a. n.a. 

Caffeine 44 47 64 171 n.a. 395 57 41 65 28 n.a. n.a. 

Carbamazepin < mql 4 17 38 n.a. 15 < mql < mql 3 4 n.a. n.a. 

Ciprofloxacin n.d. n.d. 3 540 n.a. < mql n.d. n.d. n.d. 298 n.a. n.a. 

Clofibric acid n.d. n.d. n.d. n.d. n.a. n.d. n.d. n.d. n.d. n.d. n.a. n.a. 

Clomipramine n.d. n.d. < mql n.d. n.a. n.d. n.d. n.d. n.d. n.d. n.a. n.a. 

Diclofenac n.d. < mql 27 78 n.a. 28 n.d. < mql 23 23 n.a. n.a. 

Diuron n.d. < mql 12 41 n.a. 15 n.d. n.d. n.d. < mql n.a. n.a. 

Eprosartan n.d. n.d. 13 36 n.a. 39 < mql n.d. n.d. < mql n.a. n.a. 

Genistein n.d. n.d. n.d. n.d. n.a. n.d. n.d. n.d. n.d. n.d. n.a. n.a. 

Genistin n.d. n.d. n.d. n.d. n.a. n.d. n.d. n.d. n.d. n.d. n.a. n.a. 

Glycitin n.d. n.d. n.d. n.d. n.a. n.d. n.d. n.d. n.d. n.d. n.a. n.a. 

Imipramine n.d. n.d. n.d. n.d. n.a. n.d. n.d. n.d. n.d. n.d. n.a. n.a. 

Irbesartan n.d. < mql 39 280 n.a. 39 < mql < mql 7 13 n.a. n.a. 

Isoproturon < mql < mql < mql < mql n.a. < mql n.d. n.d. n.d. n.d. n.a. n.a. 

Ketoprofen n.d. n.d. n.d. 10 n.a. n.d. n.d. n.d. n.d. n.d. n.a. n.a. 

Losartan n.d. < mql 11 38 n.a. 16 n.d. n.d. < mql 6 n.a. n.a. 

Methylparaben < mql < mql n.d. < mql n.a. n.d. < mql < mql n.d. < mql n.a. n.a. 

Norfloxacin n.d. n.d. < mql 4 n.a. n.d. n.d. n.d. < mql < mql n.a. n.a. 

Nortriptyline n.d. n.d. < mql 6 n.a. n.d. < mql n.d. < mql < mql n.a. n.a. 

OBT 267 272 273 218 n.a. 635 1434 810 553 475 n.a. n.a. 

PFBS n.d. n.d. 3 9 n.a. 3 n.d. n.d. n.d. n.d. n.a. n.a. 

PFOA n.d. n.d. n.d. n.d. n.a. n.d. n.d. n.d. n.d. n.d. n.a. n.a. 

PFOS n.d. < mql 13 28 n.a. 13 n.d. n.d. n.d. n.d. n.a. n.a. 

PFOSA n.d. n.d. n.d. n.d. n.a. n.d. n.d. n.d. n.d. n.d. n.a. n.a. 

Phenytoin 6 100 355 1401 n.a. 10 < mql < mql 74 84 n.a. n.a. 

Progesterone < mql < mql < mql < mql n.a. < mql < mql < mql < mql < mql n.a. n.a. 

Propranolol n.d. < mql < mql 10 n.a. < mql n.d. n.d. < mql < mql n.a. n.a. 

Simazine < mql n.d. < mql n.d. n.a. < mql < mql n.d. < mql < mql n.a. n.a. 

Sucralose n.d. n.d. n.d. n.d. n.a. n.d. n.d. n.d. n.d. n.d. n.a. n.a. 

Sulfadiazine < mql 10 19 33 n.a. 1 < mql < mql < mql n.d. n.a. n.a. 

Sulfamethoxazole 5 27 24 108 n.a. 9 n.d. n.d. < mql < mql n.a. n.a. 

Telmisartan 6 29 122 531 n.a. 57 n.d. < mql 33 47 n.a. n.a. 

Testosterone n.d. n.d. n.d. n.d. n.a. n.d. n.d. n.d. n.d. n.d. n.a. n.a. 

Trimethoprim 3 18 55 485 n.a. 14 < mql < mql 16 14 n.a. n.a. 

Valsartan n.d. < mql 47 89 n.a. 175 < mql n.d. n.d. 15 n.a. n.a. 

n.a.= not adquired; n.d.= non detected, < mql= below method quantification limit 
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Table XIII. Mean concentrations (ng/L) of the target analytes at each sampling point of the estuaries of Bilbao in summer 2016. 

Analyte 
Bilbao estuary surface water (Bi) Bilbao estuary bottom water (Bi) 

Bi-1s Bi-2s Bi-3s Bi-4s Bi-5s Bi-6s Bi-1b Bi-2b Bi-3b Bi-4b Bi-5b Bi-6b 

Acesulfame n.d. < mql 23 74 28 49 n.d. n.d. 20 20 9 n.a. 

Acetaminophen < mql < mql 19 27 25 43 n.d. < mql 9 9 < mql n.a. 

Amitriptyline n.d. n.d. < mql 36 n.d. n.d. < mql < mql 2 6 < mql n.a. 

Atrazine < mql < mql < mql < mql < mql < mql < mql < mql < mql < mql < mql n.a. 

Bezafibrate < mql 4 9 67 14 4 < mql < mql 10 13 4 n.a. 

Butylparaben n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Caffeine 29 25 117 90 66 209 48 16 61 50 35 n.a. 

Carbamazepin < mql 5 14 93 19 14 < mql < mql 14 18 6 n.a. 

Ciprofloxacin n.d. < mql 4 111 4 < mql n.d. < mql 11 37 7 n.a. 

Clofibric acid n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Clomipramine n.d. n.d. n.d. 2 n.d. n.d. < mql n.d. < mql n.d. n.d. n.a. 

Diclofenac 1 4 10 265 17 3 < mql < mql 14 14 3 n.a. 

Diuron < mql 7 14 75 19 7 n.d. n.d. n.d. n.d. n.d. n.a. 

Eprosartan n.d. 8 21 183 31 19 n.d. n.d. 22 31 10 n.a. 

Genistein n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Genistin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Glycitin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Imipramine n.d. n.d. < mql < mql < mql < mql n.d. n.d. n.d. n.d. n.d. n.a. 

Irbesartan 4 18 53 494 88 28 n.d. < mql 56 90 16 n.a. 

Isoproturon < mql < mql < mql < mql < mql < mql n.d. n.d. < mql < mql < mql n.a. 

Ketoprofen n.d. n.d. n.d. < mql n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Losartan < mql 8 24 183 37 21 n.d. < mql 24 37 10 n.a. 

Methylparaben 50 19 11 < mql < mql < mql 25 12 8 9 9 n.a. 

Norfloxacin n.d. n.d. n.d. 62 < mql n.d. n.d. n.d. < mql 25 n.d. n.a. 

Nortriptyline < mql < mql < mql 6 < mql < mql < mql < mql < mql < mql < mql n.a. 

OBT 691 401 472 606 113 697 3977 1755 174 145 38 n.a. 

PFBS < mql 11 26 158 39 51 n.d. n.d. n.d. n.d. n.d. n.a. 

PFOA < mql < mql < mql < mql < mql < mql n.d. n.d. n.d. n.d. n.d. n.a. 

PFOS n.d. < mql 12 24 n.d. 7 n.d. n.d. n.d. n.d. n.d. n.a. 

PFOSA n.d. n.d. n.d. n.d. n.d. 2 n.d. n.d. n.d. n.d. n.d. n.a. 

Phenytoin n.d. < mql 9 39 11 10 n.d. 4 9 11 6 n.a. 

Progesterone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Propranolol n.d. < mql 4 17 4 < mql n.d. n.d. 4 5 n.d. n.a. 

Simazine < mql < mql < mql < mql < mql < mql n.d. n.d. n.d. n.d. n.d. n.a. 

Sucralose < mql n.d. < mql n.d. n.d. n.d. n.d. n.d. n.d. < mql < mql n.a. 

Sulfadiazine 6 13 31 29 22 21 n.d. n.d. n.d. n.d. n.d. n.a. 

Sulfamethoxazole < mql < mql < mql 11 < mql < mql n.d. n.d. < mql < mql < mql n.a. 

Telmisartan 10 43 126 969 238 94 < mql < mql 126 185 44 n.a. 

Testosterone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Trimethoprim < mql < mql 4 21 5 < mql n.d. n.d. 4 5 2 n.a. 

Valsartan 26 32 66 248 65 66 n.d. n.d. 60 60 32 n.a. 

n.a.= not adquired; n.d.= non detected, < mql= below method quantification limit 
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Table XIV. Mean concentrations (ng/L) of the target analytes at each sampling point of the estuaries of Plentzia and Urdaibai in 

summer 2016. 

Analyte 
Plentzia estuary (Pl) Urdaibai estuary (Ur) 

Pl-1 Pl-2 Pl-3 Pl-4 Pl-5 Pl-6 Pl-7 Ur-1 Ur-2 Ur-3 Ur-4 

Acesulfame n.d. < mql < mql 5 9 7 57 n.d. < mql 41 22 

Acetaminophen n.d. < mql < mql 5 4 5 25 n.d. n.d. 4 n.d. 

Amitriptyline n.d. n.d. n.d. n.d. < mql < mql < mql n.d. n.d. n.d. n.d. 

Atrazine < mql < mql < mql < mql < mql < mql < mql n.d. n.d. n.d. n.d. 

Bezafibrate n.d. n.d. < mql < mql < mql < mql 3 n.d. n.d. < mql n.d. 

Butylparaben n.d. < mql n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Caffeine 88 86 80 39 221 83 44 28 67 103 120 

Carbamazepin n.d. < mql < mql 2 5 9 45 n.d. 2 14 n.d. 

Ciprofloxacin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. < mql n.d. 

Clofibric acid n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Clomipramine n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Diclofenac n.d. n.d. n.d. n.d. < mql < mql < mql n.d. n.d. < mql n.d. 

Diuron < mql < mql < mql < mql 2 3 13 n.d. < mql 7 n.d. 

Eprosartan n.d. n.d. n.d. n.d. n.d. < mql 42 n.d. n.d. n.d. n.d. 

Genistein n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Genistin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Glycitin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Imipramine n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Irbesartan n.d. < mql < mql 3 11 18 182 n.d. < mql 12 n.d. 

Isoproturon n.d. n.d. n.d. n.d. n.d. n.d. < mql n.d. n.d. n.d. n.d. 

Ketoprofen n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Losartan n.d. n.d. n.d. n.d. < mql < mql 26 n.d. < mql 9 n.d. 

Methylparaben < mql 19 12 11 35 9 n.d. 5 6 5 n.d. 

Norfloxacin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Nortriptyline n.d. < mql < mql n.d. < mql < mql < mql n.d. n.d. n.d. n.d. 

OBT 23 20 17 19 18 17 1208 25 21 24 31 

PFBS n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

PFOA n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

PFOS < mql < mql < mql < mql < mql < mql < mql n.d. n.d. < mql n.d. 

PFOSA < mql < mql < mql < mql < mql < mql n.d. n.d. n.d. n.d. n.d. 

Phenytoin n.d. n.d. n.d. n.d. < mql < mql 13 < mql < mql 20 n.d. 

Progesterone < mql < mql < mql < mql < mql < mql < mql n.d. n.d. n.d. n.d. 

Propranolol n.d. n.d. n.d. n.d. n.d. n.d. < mql n.d. n.d. n.d. n.d. 

Simazine n.d. < mql < mql < mql < mql < mql n.d. n.d. n.d. n.d. < mql 

Sucralose n.d. n.d. n.d. n.d. n.d. n.d. < mql n.d. n.d. < mql n.d. 

Sulfadiazine n.d. < mql < mql 2 3 3 2 n.d. n.d. < mql n.d. 

Sulfamethoxazole n.d. n.d. n.d. < mql < mql < mql 7 n.d. n.d. < mql n.d. 

Telmisartan n.d. < mql 2 4 10 20 83 < mql 4 14 n.d. 

Testosterone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Trimethoprim < mql < mql < mql < mql 1 1 3 n.d. n.d. < mql n.d. 

Valsartan n.d. n.d. n.d. < mql 6 12 120 n.d. < mql 149 n.d. 

n.a.= not adquired; n.d.= non detected, < mql= below method quantification limit 
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Table XV. Mean concentrations (ng/L) of the target analytes at each sampling point of the estuaries of Bilbao in fall 2016. 

Analyte 
Bilbao estuary surface water (Bi) Bilbao estuary bottom water (Bi) 

Bi-1s Bi-2s Bi-3s Bi-4s Bi-5s Bi-6s Bi-1b Bi-2b Bi-3b Bi-4b Bi-5b Bi-6b 

Acesulfame n.d. < mql < mql < mql < mql 39 n.d. n.d. < mql < mql < mql < mql 

Acetaminophen 9 21 235 85 116 237 n.d. n.d. 150 119 < mql < mql 

Amitriptyline n.d. n.d. n.d. n.d. < mql < mql n.d. n.d. < mql 11 n.d. n.d. 

Atrazine n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Bezafibrate n.d. n.d. 4 17 < mql n.d. n.d. n.d. < mql 15 < mql n.d. 

Butylparaben n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Caffeine 51 85 217 231 292 588 27 220 99 40 44 72 

Carbamazepin 1 2 6 17 4 5 n.d. < mql 3 13 2 2 

Ciprofloxacin n.d. 47 65 90 51 48 n.d. n.d. 57 62 52 53 

Clofibric acid n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Clomipramine n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Diclofenac < mql 21 74 276 47 78 n.d. < mql 39 295 21 20 

Diuron n.d. < mql 8 24 5 4 n.d. n.d. 4 15 3 < mql 

Eprosartan n.d. n.d. 28 65 19 25 n.d. n.d. < mql 56 11 n.d. 

Genistein n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Genistin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Glycitin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Imipramine n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Irbesartan 5 11 65 214 26 40 n.d. < mql 23 181 8 6 

Isoproturon n.d. n.d. < mql < mql < mql n.d. n.d. n.d. n.d. < mql < mql n.d. 

Ketoprofen n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Losartan n.d. < mql 20 48 15 19 n.d. n.d. 12 51 6 n.d. 

Methylparaben 30 66 n.d. n.d. n.d. n.d. < mql 34 n.d. n.d. n.d. n.d. 

Norfloxacin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Nortriptyline n.d. n.d. 1 < mql n.d. n.d. n.d. n.d. n.d. 2 n.d. n.d. 

OBT 421 612 487 413 162 152 1017 1572 185 375 474 267 

PFBS n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

PFOA n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

PFOS n.d. n.d. < mql < mql n.d. < mql n.d. n.d. < mql < mql n.d. n.d. 

PFOSA n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Phenytoin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Progesterone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Propranolol n.d. < mql < mql 5 < mql < mql n.d. n.d. < mql 3 < mql n.d. 

Simazine n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Sucralose n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Sulfadiazine n.d. 7 27 n.d. 17 24 n.d. n.d. n.d. 7 n.d. n.d. 

Sulfamethoxazole 7 16 125 214 22 < mql n.d. n.d. 43 227 9 < mql 

Telmisartan < mql 12 52 639 19 34 n.d. < mql 17 49 < mql 10 

Testosterone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Trimethoprim n.d. 18 118 405 15 < mql n.d. < mql 36 310 < mql < mql 

Valsartan n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

n.a.= not adquired; n.d.= non detected, < mql= below method quantification limit 

  



Appendix  

290 

Table XVI. Mean concentrations (ng/L) of the target analytes at each sampling point of the estuaries of Plentzia and Urdaibai in 

fall 2016. 

Analyte 
Plentzia estuary (Pl) Urdaibai estuary (Ur) 

Pl-1 Pl-2 Pl-3 Pl-4 Pl-5 Pl-6 Pl-7 Ur-1 Ur-2 Ur-3 Ur-4 

Acesulfame n.d. n.d. n.d. n.d. < mql 4 9 n.d. < mql 42 <mql 

Acetaminophen n.d. n.d. n.d. n.d. < mql 12 39 n.d. 23 72 n.d. 

Amitriptyline n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. < mql n.d. 

Atrazine < mql < mql < mql < mql < mql < mql n.d. n.d. n.d. n.d. n.d. 

Bezafibrate n.d. n.d. n.d. n.d. < mql 2 3 n.d. n.d. < mql n.d. 

Butylparaben n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Caffeine 212 39 37 43 74 89 182 84 362 1077 80 

Carbamazepin n.d. n.d. n.d. n.d. 2 2 3 < mql 2 3 n.d. 

Ciprofloxacin n.d. n.d. n.d. n.d. n.d. < mql < mql n.d. n.d. < mql n.d. 

Clofibric acid n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Clomipramine n.d. n.d. n.d. n.d. n.d. n.d. n.d. < mql n.d. < mql n.d. 

Diclofenac < mql 2 1 < mql < mql < mql 4 n.d. 19 35 n.d. 

Diuron n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 7 n.d. 

Eprosartan n.d. n.d. n.d. n.d. n.d. n.d. n.d. < mql 14 23 n.d. 

Genistein n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Genistin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Glycitin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Imipramine n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Irbesartan < mql 2 2 2 7 9 20 2 9 24 n.d. 

Isoproturon n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. < mql n.d. 

Ketoprofen n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. < mql n.d. 

Losartan n.d. n.d. n.d. n.d. n.d. < mql 3 < mql 8 15 n.d. 

Methylparaben 65 14 25 < mql < mql < mql < mql n.d. n.d. n.d. n.d. 

Norfloxacin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Nortriptyline n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

OBT 431 735 501 169 352 440 4138 17 19 23 27 

PFBS n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. < mql 13 n.d. 

PFOA n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

PFOS n.d. < mql 8 6 < mql < mql < mql n.d. n.d. n.d. n.d. 

PFOSA n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Phenytoin n.d. n.d. n.d. n.d. n.d. n.d. < mql n.d. < mql < mql n.d. 

Progesterone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Propranolol n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. < mql n.d. 

Simazine n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Sucralose n.d. n.d. n.d. n.d. < mql 58 87 n.d. n.d. < mql n.d. 

Sulfadiazine < mql < mql < mql 2 5 5 8 n.d. n.d. < mql n.d. 

Sulfamethoxazole n.d. n.d. n.d. n.d. < mql < mql 19 n.d. n.d. < mql n.d. 

Telmisartan < mql < mql 4 2 8 17 3 < mql 7 8 n.d. 

Testosterone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Trimethoprim n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 2 n.d. 

Valsartan n.d. n.d. n.d. < mql < mql 27 51 n.d. 84 219 n.d. 

n.a.= not adquired; n.d.= non detected, < mql= below method quantification limit 
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Table XVII. Mean concentrations (ng/L) of the target analytes at each sampling point of the estuaries of Bilbao in winter 2017. 

Analyte 
Bilbao estuary surface water (Bi) Bilbao estuary bottom water (Bi) 

Bi-1s Bi-2s Bi-3s Bi-4s Bi-5s Bi-6s Bi-1b Bi-2b Bi-3b Bi-4b Bi-5b Bi-6b 

Acesulfame < mql 82 103 191 71 147 n.d. n.d. < mql < mql n.d. n.a. 

Acetaminophen < mql 46 98 15 30 49 n.d. n.d. 37 < mql n.d. n.a. 

Amitriptyline n.d. n.d. 3 17 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Atrazine < mql < mql < mql < mql < mql < mql < mql < mql < mql < mql < mql n.a. 

Bezafibrate n.d. n.d. 9 30 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Butylparaben n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Caffeine 65 102 372 177 163 699 108 54 71 66 45 n.a. 

Carbamazepin 1 2 16 52 18 7 n.d. n.d. < mql < mql < mql n.a. 

Ciprofloxacin n.d. < mql 9 78 < mql < mql n.d. n.d. < mql 7 < mql n.a. 

Clofibric acid n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Clomipramine n.d. n.d. n.d. < mql n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Diclofenac n.d. n.d. 115 650 89 74 n.d. n.d. n.d. 47 n.d. n.a. 

Diuron n.d. n.d. 17 81 n.d. < mql n.d. n.d. n.d. < mql n.d. n.a. 

Eprosartan n.d. n.d. 23 115 n.d. < mql n.d. n.d. n.d. n.d. n.d. n.a. 

Genistein n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Genistin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Glycitin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Imipramine n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Irbesartan 7 12 101 438 29 33 n.d. n.d. 11 11 5 n.a. 

Isoproturon n.d. n.d. < mql < mql < mql < mql n.d. n.d. < mql < mql n.d. n.a. 

Ketoprofen n.d. n.d. n.d. 57 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Losartan n.d. n.d. 22 102 < mql < mql n.d. n.d. n.d. n.d. n.d. n.a. 

Methylparaben 12 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Norfloxacin n.d. n.d. < mql 15 n.d. n.d. n.d. n.d. n.d. < mql n.d. n.a. 

Nortriptyline n.d. n.d. < mql n.d. n.d. n.d. n.d. n.d. n.d. < mql n.d. n.a. 

OBT 1267 265 306 606 415 273 1498 2289 649 674 236 n.a. 

PFBS n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

PFOA n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

PFOS n.d. n.d. 4 mql < mql < mql n.d. n.d. < mql < mql < mql n.a. 

PFOSA n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Phenytoin n.d. n.d. n.d. mql n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Progesterone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Propranolol n.d. n.d. < mql 11 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Simazine n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Sucralose n.d. 63 694 330 < mql < mql n.d. n.d. n.d. < mql n.d. n.a. 

Sulfadiazine < mql 9 33 49 20 28 n.d. n.d. n.d. n.d. n.d. n.a. 

Sulfamethoxazole < mql 63 227 mql 15 < mql n.d. n.d. n.d. < mql n.d. n.a. 

Telmisartan 6 8 65 316 12 19 n.d. n.d. 7 13 5 n.a. 

Testosterone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.a. 

Trimethoprim 8 25 389 2046 < mql < mql n.d. n.d. 20 26 n.d. n.a. 

Valsartan n.d. n.d. n.d. 182 147 < mql n.d. n.d. n.d. n.d. n.d. n.a. 

n.a.= not adquired; n.d.= non detected, < mql= below method quantification limit 
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Table XVIII. Mean concentrations (ng/L) of the target analytes at each sampling point of the estuaries of Plentzia and Urdaibai in 

winter 2017. 

Analyte 
Plentzia estuary (Pl) Urdaibai estuary (Ur) 

Pl-1 Pl-2 Pl-3 Pl-4 Pl-5 Pl-6 Pl-7 Ur-1 Ur-2 Ur-3 Ur-4 

Acesulfame n.d. n.d. n.d. < mql 12 19 46 < mql 79 126 < mql 

Acetaminophen n.d. n.d. < mql 10 9 34 39 < mql 56 73 n.d. 

Amitriptyline n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. < mql n.d. 

Atrazine n.d. < mql < mql < mql < mql n.d. n.d. n.d. n.d. < mql n.d. 

Bezafibrate n.d. n.d. n.d. n.d. 2 3 6 n.d. n.d. < mql n.d. 

Butylparaben n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Caffeine 362 45 55 153 225 238 349 188 471 1092 76 

Carbamazepin n.d. n.d. n.d. 1 2 4 5 n.d. n.d. 2 n.d. 

Ciprofloxacin n.d. n.d. n.d. n.d. < mql < mql < mql n.d. n.d. < mql n.d. 

Clofibric acid n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Clomipramine n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Diclofenac n.d. n.d. n.d. < mql 17 19 22 < mql 19 26 n.d. 

Diuron n.d. n.d. < mql < mql 3 5 5 < mql 3 9 n.d. 

Eprosartan n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 28 n.d. 

Genistein n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Genistin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Glycitin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Imipramine n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Irbesartan < mql 3 4 10 20 34 62 2 10 21 n.d. 

Isoproturon n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. < mql n.d. 

Ketoprofen n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. < mql n.d. 

Losartan n.d. n.d. n.d. n.d. < mql < mql < mql < mql 9 16 n.d. 

Methylparaben 34 23 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Norfloxacin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Nortriptyline n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

OBT 1361 414 494 234 141 64 39 550 577 370 < mql 

PFBS n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

PFOA n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

PFOS n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. < mql n.d. 

PFOSA n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Phenytoin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Progesterone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Propranolol n.d. n.d. n.d. n.d. n.d. < mql < mql n.d. n.d. n.d. n.d. 

Simazine n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. < mql n.d. 

Sucralose n.d. n.d. n.d. < mql < mql 58 244 n.d. n.d. < mql n.d. 

Sulfadiazine n.d. < mql 1 8 17 29 50 n.d. n.d. < mql n.d. 

Sulfamethoxazole n.d. < mql < mql < mql < mql 3 5 n.d. n.d. < mql n.d. 

Telmisartan < mql < mql < mql 1 8 7 21 < mql 10 13 n.d. 

Testosterone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Trimethoprim n.d. < mql < mql < mql < mql < mql 2 n.d. n.d. 2 n.d. 

Valsartan n.d. n.d. n.d. < mql 22 58 213 n.d. n.d. < mql n.d. 

n.a.= not adquired; n.d.= non detected, < mql= below method quantification limit 
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Table XIX. Mean concentrations (ng/L) obtained from the grab sampling (days 0th, 14th and 28th) and POCIS (1st deployment 

and 2nd deployment) for the estuary of Bilbao (sampling point Bi-2 and Bi-4). Grab sampling and TWA concentrations in water 

(ng/L) are only presented for compounds for whose Rs values were previously determined in chapter 4. 

Analyte 

Bilbao estuary (Bi-2) Bilbao estuary (Bi-4) 

Grab sampling POCIS Grab sampling POCIS 

0th 14th 28th 1 2 0th 14th 28th 1 2 

Acesulfame < mql < mql < mql n.d. n.d. 169 128 546 203 177 

Acetaminophen < mql < mql < mql n.d. n.d. < mql < mql < mql n.d. n.d. 

Amitriptyline 6 6 6 7 5 42 31 35 14 29 

Atrazine n.d. n.d. n.d. n.d. n.d. < mql < mql < mql < mql < mql 

Bezafibrate < mql < mql < mql 1 2 34 49 52 33 56 

Butylparaben < mql < mql < mql n.d. n.d. < mql < mql < mql n.d. n.d. 

Caffeine 82 89 133 129 74 256 142 72 341 427 

Carbamazepibe 37 36 37 46 36 53 84 44 137 173 

Diuron < mql < mql < mql 38 26 34 49 44 224 250 

Irbesartan 60 46 47 64 89 1450 1499 1024 1359 1645 

Ketoprofen n.d. n.d. n.d. n.d. n.d. n.d. < mql < mql n.d. n.d. 

OBT 40 75 123 65 59 38 39 50 76 98 

PFBS n.d. n.d. n.d. n.d. n.d. 33 < mql < mql 36 48 

PFOA n.d. n.d. n.d. n.d. n.d. < mql < mql < mql < mql < mql 

PFOS n.d. n.d. n.d. 19 15 n.d. n.d. n.d. 7 13 

Phenytoin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Progesterone n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 5 2 

Telmisartan 18 17 6 9 19 2007 1995 3040 2160 3118 

n.d.= non detected, < mql= below method quantification limit 
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Table XX. Mean concentrations (ng/L) obtained from the grab sampling (days 0th, 14th and 28th) and POCIS (1st deployment and 

2nd deployment) for the estuary of Plentzia (Pl-3) and Urdaibai (Ur-3). Grab sampling and TWA concentrations in water (ng/L) 

are only presented for compounds for whose Rs values were previously determined in chapter 4. 

Analyte 

Plentzia estuary (Pl-3) Urdaibai estuary (Ur-3) 

Grab sampling POCIS Grab sampling POCIS 

0 th 14 th 28 th 1 2 0 th 14 th 28 th 1 2 

Acesulfame < mql 22 28 27 38 51 1279 2232 433 836 

Acetaminophen < mql < mql < mql n.d. n.d. < mql 86 66 13 21 

Amitriptyline < mql < mql < mql 1 2 < mql < mql < mql 3 2 

Atrazine n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Bezafibrate < mql < mql < mql n.d. n.d. < mql < mql < mql 2 4 

Butylparaben < mql < mql < mql n.d. n.d. < mql < mql < mql n.d. n.d. 

Caffeine 22 174 290 416 363 95 1182 1508 932 1060 

Carbamazepibe < mql 7 6 8 8 < mql 37 47 14 22 

Diuron n.d. n.d. < mql n.d. n.d. < mql 17 30 15 21 

Irbesartan 2 43 45 17 19 3 64 130 52 100 

Ketoprofen n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 3 4 

OBT 150 346 459 230 530 126 63 23 32 42 

PFBS n.d. n.d. n.d. 16 21 n.d. n.d. n.d. 12 6 

PFOA n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

PFOS n.d. n.d. n.d. 6 8 n.d. n.d. 134 87 250 

Phenytoin n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Progesterone n.d. n.d. n.d. n.d. n.d. < mql 8 n.d. 26 5 

Telmisartan < mql 56 94 36 67 44 1240 1660 809 1088 

n.d.= non detected, < mql= below method quantification limit 
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Table XXI. Predicted no effect concentrations (PNEC) and chronic Risk Quotients (RQ) of the target compounds calculated for 

each effluent and estuary sample. 

Analyte 
PNEC 
(µg/L) 

RQ effluent RQ estuary 

Galindo Gorliz Gernika Surface Bilbao Bottom Bilbao Urdaibai Plentzia 

Acetaminophen 100 0.009 0.007 0.05 0.004 0.002 0.003 0.0005 

Amitriptyline 10 0.01 0.002 0.004 0.004 0.001 0.0003 <mql 

Atrazineb 1 <mql <mql 0.02 <mql <mql <mql <mql 

Bezafibrate 0.001 132 40 101 67 15 8 11 

Caffeine 0.05 2 6 1320 14 4 22 7 

Carbamazepine 0.2 0.7 0.5 2 0.5 0.09 0.07 0.2 

Ciprofloxacin 5 0.8 0.6 0.9 0.1 0.06 0.003 <mql 

Clofibric acid 400 0.00002 <mql <mql <mql <mql <mql <mql 

Diclofenacc 0.005 382 137 386 130 59 7 4 

Diuronb 0.0233 9 9 15 3 0.6 0.4 0.6 

Genistein 0.013 <mql <mql 46 <mql <mql <mql <mql 

Isoproturonb 0.004 1 1 <mql <mql <mql <mql <mql 

Methylparaben 5 <mql <mql 0.04 0.01 0.007 0.001 0.01 

Norfloxacin 1.2 0.4 0.03 0.2 0.05 0.02 0.004 <mql 

PFOS 0.1 0.09 0.02 2 0.3 <mql <mql 0.08 

Progesterone 1 0.01 0.03 0.06 <mql <MQL <mql <mql 

Propranolol 0.636 0.05 0.03 0.05 0.03 0.008 <mql 0.002 

Simazineb 1.2 <mql 0.004 0.0009 <mql <mql <mql <mql 

Sulfadiazine 0.1 55 3 0.2 0.5 0.07 <mql 0.5 

Sulfamethoxazole 2.4 4 0.1 0.08 0.09 0.09 <mql 0.008 

Trimethoprim 3.14 2 0.03 0.02 0.7 0.1 0.001 0.002 

PFOSA and genistin were not taken into consideration since they were <MQL in all the measured samples. There were no NOECs values for 
acesulfame, butylparaben, clomipramine, eprosartan, glycitin, imipramine, irbesartan, ketoprofen, losartan, nortryptyline, OBT, PFBS, PFOSA, 
phenytoin, sucralose, telmisartan, testosterone and valsartan. 
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Table XXII. Predicted no effect concentrations (PNEC) and acute Risk Quotients (RQ) of the target compounds calculated for 

each effluent and estuary sample. 

Analyte 
PNEC 
(µg/L) 

RQ effluent RQ estuary 

Galindo Gorliz Gernika 
Surface  
Bilbao 

Bottom 
Bilbao 

Urdaibai Plentzia 

Acesulfame 2068 0.0006 0.0006 0.006 0.00009 0.00001 0.00006 0.00003 

Acetaminophen 12 0.07 0.06 0.5 0.04 0.01 0.03 0.004 

Amitriptyline 0.9 0.1 0.02 0.04 0.04 0.01 0.003 <mql 

Atrazineb 0.004 <mql <mql 4 <mql <mql <mql <mql 

Bezafibrate 0.3 0.5 0.2 0.4 0.3 0.06 0.03 0.04 

Butylparaben 11 <mql 0.0008 0.009 <mql <mql 0.0002 <mql 

Caffeine 0.4 0.2 0.7 150 2 0.5 2 0.8 

Carbamazepine 33 0.004 0.003 0.01 0.003 0.0005 0.0004 0.001 

Ciprofloxacin 7 0.6 0.5 0.7 0.08 0.04 0.003 <mql 

Clofibric acid 0.3 0.02 <mql <mql <mql <mql <mql <mql 

Diclofenacc 0.04 43 16 44 15 7 0.8 0.5 

Diuronb 0.0007 292 292 499 116 21 14 19 

Eprosartan 0.0002 1695 2850 4394 915 280 140 210 

Genistein 0.4 <mql <mql 2 <mql <mql <mql <mql 

Irbesartan 0.002 637 375 470 247 91 14 91 

Isoproturonb 0.005 0.8 1.0 <mql <mql <mql <mql <mql 

Ketoprofen 0.3 1 0.05 1 0.2 <mql 0.01 <mql 

Losartan 0.04 7 17 22 4 1 0.4 1 

Methylparaben 91 <mql <mql 0.002 0.0007 0.0004 0.0001 0.0007 

Norfloxacin 0.04 12 1 7 2 0.7 0.1 <mql 

OBT 11 0.02 0.02 0.10 0.1 0.4 0.06 0.4 

PFBS 269 0.0007 <mql 0.008 0.0006 <mql 0.00005 <mql 

PFOS 1 0.008 0.002 0.2 0.3 <mql <mql 0.007 

Phenytoin 9 0.3 0.01 0.1 0.15 0.01 0.00 0.00 

Progesterone 6415 0.000002 0.000004 0.00001 <mql <mql <mql <mql 

Propranolol 0.2 0.1 0.08 0.1 0.07 0.02  0.004 

Simazineb 0.0006 <mql 7 2 <mql <mql <mql <mql 

sucralose 10951640 0.0000001 0.0000004 0.0000001 0.0000001 <mql 0.00000002 0.00000002 

Sulfadiazine 0.1 41 2 0.2 0.4 0.05 <mql 0.4 

Sulfamethoxazole 0.5 17 0.5 0.4 0.4 0.4 <mql 0.04 

Telmisartan 0.000003 438601 255286 402708 323000 61667 14000 27667 

Testosterone 0.2 <mql <mql 0.03 <mql <mql <mql <mql 

Trimethoprim 27 0.2 0.003 0.002 0.08 0.01 0.0001 0.0002 

Valsartan 0.1 4 19 99 3 1 2 2 

PFOSA and genistin were not taken into consideration since they were <MQL in all the measured sampled. There were no L(E)C50s values for 
clomipramine, imipramine and notriptyline. 
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Figure II Compound 

Discoverer (2.1) workflow 
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Table XXIII. Compound Discoverer (2.1) workflow settings and parameters. 

1. Select Spectra 

1.1 General settings 

- Precursor Selection:  Use MS (N - 1) Precursor 
- Use New Precursor Reevaluation:  True 
- Use Isotope Pattern in Precursor Reevaluation:  True 
- Store Chromatograms:  False 

1.2 Spectrum properties Filter 

- Lower RT Limit:  0 
- Upper RT Limit:  0 
- First Scan:  0 
- Last Scan:  0 
- Ignore Specified Scans:  (not Specified) 
- Lowest Charge State:  0 
- Highest Charge State:  0 
- Min. Precursor Mass:  100 Da 
- Max. Precursor Mass:  5000 Da 
- Total Intensity Threshold:  0 
- Minimum Peak Count:  1 

1.3 Scan event Filters 

- Mass Analyzer:  (not Specified) 
- MS Order:  Any 
- Activation Type:  (not Specified) 
- Min. Collision Energy:  0 
- Max. Collision Energy:  1000 
- Scan Type:  Any 
- Polarity Mode:  (not Specified) 

1.4 peak filters - S/N Threshold (FT-only):  1.5 

1.5. Replacements for 
Unrecognized Properties 

- Unrecognized Charge Replacements:  1 
- Unrecognized Mass Analyser Replacements:  ITMS 
- Unrecognized MS Order Replacements:  MS2 
- Unrecognized Activation Type Replacements:  CID 
- Unrecognized Polarity Replacements:  + 
- Unrecognized MS Resolution@200 Replacements:  60000 
- Unrecognized MSn Resolution@200 Replacements:  30000 

2. Align Retention times 2.1. General Settings 

- Alignment Model:  Adaptive curve 
- Alignment Fallback:  Use Linear Model 
- Maximum Shift [min]:  2 
- Shift Reference File:  True 
- Mass Tolerance:  5 ppm 
- Remove Outlier:  True 

3. Detect Unknown 
Compounds 

3.1. General Settings 

- Mass Tolerance [ppm]:  5 ppm 
- Intensity Tolerance [%]:  30 
- S/N Threshold:  3 
- Min. Peak Intensity:  500000 
- Ions: [M+Cl]-1; [M+FA-H]-1; [M+H]+1; [M+H+MeOH]+1; [M+K]+1; [M+Na]+1; 
[M-H]-1; [M-H-H2O]-1 
- Base Ions:  [M+H]+1; [M-H]-1 
- Min. Element Counts:  C H 
- Max. Element Counts:  C90 H190 Br3 Cl4 F20 K2 N10 Na2 O18 P3 S5 

3.2. Peak Detection 

- Filter Peaks:  True 
- Max. Peak Width [min]:  0.8 
- Remove Singlets:  True 
- Min. # Scans per Peak:  3 
- Min. # Isotopes:  1 

4. Merge Features 4.1 Peak consolidation 
-mass tolerance: 5 ppm 
- RT Tolerance 0.1 min 

5. Group Unknown 
Compounds 

5.1. Compound Consolidation 
- Mass Tolerance:  5 ppm 
- RT Tolerance [min]:  0.5 

5.2. Fragment Data Selection - Preferred Ions:  [M+H]+1; [M-H]-1 

6 Search ChemSpider 6.1. Search Settings 
Database(s):  ACToR: Aggregated Computational Toxicology Resource; 
DrugBank; EAWAG BIOcatalysis/Biodegradation Databse; EPA DSSTox; EPA 
Toxcast; FDA UNII-NLMBioCyc; KEGG; Mass Bank 
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Table XXIII. Compound Discoverer (2.1) workflow settings and parameters. 

6 Search ChemSpider  

6.1. Search Settings 
Database(s):  ACToR: Aggregated Computational Toxicology Resource; 
DrugBank; EAWAG BIOcatalysis/Biodegradation Databse; EPA DSSTox; EPA 
Toxcast; FDA UNII-NLMBioCyc; KEGG; Mass Bank 

6.1. Search Settings 

- Mass Tolerance:  5 ppm 
- Max. # of results per compound:  100 
- Max. # of Predicted Compositions to be searched per Compound:  3 
- Result Order (for Max. # of results per compound):  Order By Reference 
Count (DESC) 

6.2. Predict Composition - Check All Predicted Compositions:  True 

7. Search Mass Lists 7.1. Search Settings 

- Input file(s):  \EFS HRAM Compound Database_OZZ.csv 
- Show extra Fields as Columns:  False 
- Consider Retention Time:  True 
- RT Tolerance :  0.5 
- Mass Tolerance:  5 ppm 

8.Predict Composition 

8.1. Prediction Settings 

Mass Tolerance:  5 ppm 
- Min. Element Counts:  C H 
- Max. Element Counts:  C90 H190 Br3 Cl4 F20 K2 N10 Na2 O18 P3 S5 
- Min. RDBE:  0 
- Max. RDBE:  40 
- Min. H/C:  0.1 
- Max. H/C:  3.5 
- Max. # Candidates:  10 
- Max. # Internal Candidates:  200 

8.2. Pattern Matching 

Intensity Tolerance [%]:  30 
- Intensity Threshold [%]:  0.1 
- S/N Threshold:  3 
- Min. Spectral Fit [%]:  30 
- Min. Pattern Cov. [%]:  80 
- Use Dynamic Recalibration:  True 

8.3. Fragments Matching 
- Use Fragments Matching:  True 
- Mass Tolerance:  5 ppm 
- S/N Threshold:  3 

9. Seach mzVault 9.1 Seach settings 

- mzVault Library:  \mzVault February 2017.db 
- Compound Classes:  All 
- Match Ion Activation Type:  True 
- Match Ion Activation Energy:  Match with Tolerance 
- Ion Activation Energy tolerance:  20 
- Match Ionization Method:  True 
- Apply Intensity Method:  true 
- Remove precursor Ion:  true 
- Precursor Mass Tolerance:  10 ppm 
- FT Fragment Mass Tolerance:  10 ppm 
- IT Fragment mass tolerance:  0.4 Da 
- Match Analyzer Type:  True 
- Search Algorithm:  HighChem HighRes 
- Match factor Threshold:  50 
- Max. # results:  10 

10. Mark BackGround 
compounds 

10.1 Seach settings 
- Max. Sample/Blank:  5 
- Max Max. Blank/Sample:  0 
- Hide Background:  True 
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Table XXIII. Compound Discoverer (2.1) workflow settings and parameters. 

11. Search mzCloud 11.1. Search Settings 

- Compound Classes:  All 
- Match Ion Activation Type:  True 
- Match Ion Activation Energy:  Match with Tolerance 
- Ion Activation Energy Tolerance:  20 
- Apply intensity threshold:  True 
- Precursor Mass Tolerance:  10 ppm 
- FT Fragment Mass Tolerance:  10 ppm 
- IT Fragment Mass Tolerance:  0.4 Da 
- Search Algorithm: Cosine 
- Similarity Search:  Similarity Forward 

--Library:  Reference 
- Post Processing:  Recalibrated 
- Match factor threshold:  50 
- Max. # results per compound and spectrum:  20 
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Table XXIV. Information of the set compounds used to calibrate the fractionation and as reference compounds in the 

non-target analysis. Recovery, log P, log D(pH=3), C18 column fractionation in which each compound appear and they ionization 

mode and retention times in the two LC-HRMS systems used for the analysis. 

Name 
Recovery 

(%) 

C18 fractionation LC-HRMS 

LogPa 
LogDb 
(pH=3) 

Fractionc Ionization 
RT 

(min) 

4-Chlorophenol 65±8 2.3 2.3 F13 [M-H]- 5.63 

4-hydroxytamoxifen 74±12 5.7 2.5 F14 [M+H]+ 7.61 

Acesulfame 62±9 -0.6 -0.8 F3 [M-H]- 0.97 

Acetaminophen 64±9 0.9 0.9 F8 [M+H]+ 1.23 

Acetamiprid 60±6 1.1 -0.1 F8 [M+H]+ 1.23 

Acetochlor 48±6 3.5 3.5 F15 [M+H]+ 9.77 

Acyclovir 72±9 -1.0 -1.3 F2 [M+H]+ 0.73 

Alachlor 79±26 3.6 3.6 F16 [M+H]+ 9.73 

Albendazole 65±13 3.2 2.2 F13 [M+H]+ 5.18 

Amantadine 16±2 1.5 -1.6 F6 [M+H]+ 1.56 

Ambroxol 74±12 2.7 -0.6 F5 [M+H]+ 3.10 

Ametryn 60±12 2.6 0.6 F11 [M+H]+ 4.76 

Amiodarone 56±6 7.6 4.1 F16 [M+H]+ 9.55 

Amitriptyline 62±7 4.8 1.3 F13 [M+H]+ 6.32 

Amoxicillin 69±8 -2.3 -2.6 F4 [M+H]+ 1.42 

Ampicillin 76±6 -2.0 -2.3 F5 [M+H]+ 1.42 

Anastrozole 76±8 3.0 3.0 F15 [M+H]+ 6.54 

Atenolol 71±13 0.4 -2.8 F3 [M+H]+ 0.73 

Atorvastatin 74±12 5.4 5.4 F18 [M-H]- 8.04 

Atrazine 89±18 2.2 1.0 F12 [M+H]+ 6.40 

Azelastine 79±14 4.0 0.5 F10 [M+H]+ 6.14 

Azithromycin 70±15 2.4 -4.6 F7 [M+H]+ 2.97 

Azoxystrobin 64±16 4.2 4.2 F16 [M+H]+ 9.54 

Bendiocarb 76±9 1.6 1.6 F13 [M+H]+ 6.25 

Bentazone 69±8 0.8 0.1 F9 [M-H]- 1.91 

Benzethonium 73±6 -0.5 -0.5 F10 M+ 10.50 

Benzothiazole 54±7 2.1 2.1 F11 [M+H]+ 4.85 

Bezafibrate 69±6 4.0 3.9 F16 [M+H]+ 7.93 

Bicalutamide 75±8 2.7 2.7 F14 [M+H]+ ; [M-H]- 8.77 

Bisoprolol 76±8 2.2 -1.0 F5 [M+H]+ 3.48 

Boscalid 61±14 4.9 4.9 F17 [M+H]+ 9.43 

Bosentan 73±17 4.9 4.9 F17 [M+H]+ 9.31 

Bupropion 82±18 3.3 0.0 F8 [M+H]+ 3.38 

Butylparaben 75±5 3.0 3.0 F12 [M+H]+ 2.89 

Caffeine 59±4 -0.5 -0.5 F7 [M+H]+ 1.61 

Captopril 53±5 0.7 0.7 F12 [M+H]+ 2.67 

Carbamazepine 76±5 2.8 2.8 F14 [M+H]+ 5.76 

Carbaryl 75±16 2.5 2.5 F14 [M+H]+ 6.76 

Carbendazim 66±12 1.8 0.7 F9 [M+H]+ 1.27 

Celecoxib 77±13 4.0 4.0 F16 [M+H]+ ; [M-H]- 10.54 
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Table XXIV. Information of the set compounds used to calibrate the fractionation and as reference compounds in the 

non-target analysis. Recovery, log P, log D(pH=3), C18 column fractionation in which each compound appear and they ionization 

mode and retention times in the two LC-HRMS systems used for the analysis. 

Name 
Recovery 

(%) 

C18 fractionation LC-HRMS 

LogPa 
LogDb 
(pH=3) 

Fractionc Ionization 
RT 

(min) 

Cetirizine 74±14 0.9 0.4 F10 [M+H]+ ; [M-H]- 6.55 

Chloridazon 68±15 1.1 1.1 F12 [M+H]+ 3.22 

Chloroxuron 67±16 3.4 3.4 F15 [M+H]+ 8.92 

Chlortoluron 60±15 2.4 2.4 F13 [M+H]+ 6.43 

Ciprofloxacin 32±3 -0.8 -1.7 F5 [M+H]+ 1.93 

Clarithromycin 55±8 3.2 -0.3 F10 [M+H]+ 6.21 

Clofibric acid 60±7 2.9 2.7 F11 [M-H]- 3.10 

Clomazone 54±8 2.9 2.9 F14 [M+H]+ 7.80 

Clomipramine 54±6 4.9 1.4 F14 [M+H]+ 6.99 

Clonidine 89±12 2.5 0.1 F8 [M+H]+ 1.38 

Clopidogrel 62±15 4.0 2.3 F14 [M+H]+ 8.16 

Clozapine 69±17 3.4 -1.0 F6 [M+H]+ 3.71 

Cortisone 64±21 1.7 1.7 F13 [M+H]+ 5.12 

Cotinine 76±3 0.2 -0.7 F5 [M+H]+ 0.73 

Crotamiton  82±9 3.1 3.1 F15 [M+H]+ 7.60 

Cyclophosphamide 60±16 0.1 0.1 F9 [M+H]+ 3.98 

Cyproterone 79±17 3.2 3.2 F15 [M+H]+ 8.85 

DEET 67±23 2.5 2.5 F14 [M+H]+ 6.63 

Desloratadine 79±6 4.0 -0.4 F5 [M+H]+ 2.76 

Dexamethasone 81±5 1.7 1.7 F13 [M+H]+ 5.95 

Diazepam 55±19 3.1 2.8 F14 [M+H]+ 7.84 

Dichlorvos 69±7 1.4 1.4 F13 [M+H]+ 5.35 

Diclofenac 80±8 4.3 4.2 F17 [M+H]+ 9.52 

Didecyldimethylammonium 80±23 4.0 4.0 F16 [M+H]+ 10.25 

Diflufenican 72±5 5.1 5.1 F18 [M+H]+ 14.10 

Dimethachlor 15±2 2.6 2.6 F14 [M+H]+ 7.67 

Dimethoate 42±3 0.3 0.3 F10 [M+H]+ 3.53 

Diphenhydramine 16±2 3.7 0.2 F9 [M+H]+ 5.00 

Diuron 74±12 2.5 2.5 F14 [M+H]+ 7.03 

Dodemorph 60±12 5.3 1.8 F14 [M+H]+ 6.70 

Domperidone 56±6 2.9 -0.5 F7 [M+H]+ 4.38 

Drospirenone 62±7 3.4 3.4 F15 [M+H]+ 8.87 

Duloxetine 69±8 4.2 1.0 F12 [M+H]+ 6.30 

EDDP 76±6 4.6 1.1 F12 [M+H]+ 5.85 

Efavirenz 76±8 4.5 4.5 F18 [M+H]+ 10.19 

Eprosartan 61±13 3.8 4.0 F15 [M+H]+ 4.88 

Erythromycin 74±12 2.6 -0.9 F6 [M+H]+ 5.05 

Ethion 29±3 3.9 3.9 F18 [M+H]+ 22.74 

Exemestane 79±14 3.9 3.9 F16 [M+H]+ 8.41 

Fenoxycarb 70±15 3.3 3.3 F15 [M+H]+ 10.37 

https://metlin.scripps.edu/metabo_info.php?molid=3969
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Table XXIV. Information of the set compounds used to calibrate the fractionation and as reference compounds in the 

non-target analysis. Recovery, log P, log D(pH=3), C18 column fractionation in which each compound appear and they ionization 

mode and retention times in the two LC-HRMS systems used for the analysis. 

Name 
Recovery 

(%) 

C18 fractionation LC-HRMS 

LogPa 
LogDb 
(pH=3) 

Fractionc Ionization 
RT 

(min) 

Fenpropidin 64±16 5.4 1.9 F13 [M+H]+ 7.25 

Fenpropimorph 56±9 5.2 1.7 F13 [M+H]+ 7.40 

Fenthion 16±2 3.8 3.8 F17 [M+H]+ 12.18 

Finasteride 74±12 3.1 3.1 F15 [M+H]+ 7.86 

Fluconazole 60±12 0.6 0.5 F11 [M+H]+ 2.70 

Flufenoxuron 56±6 6.1 6.1 F19 [M-H]- 22.21 

Flumequine 62±7 2.4 2.4 F13 [M+H]+ 6.31 

Flusilazole 69±8 4.7 4.6 F17 [M+H]+ 9.75 

Flutamide 76±6 3.3 3.3 F15 [M-H]- 9.15 

Fluvoxamine 76±8 2.8 -0.3 F10 [M+H]+ 5.95 

Furosemide 61±13 1.7 1.7 F12 [M-H]- 3.33 

Gabapentin 24±4 -1.3 -2.0 F3 [M+H]+ 1.15 

Gemfibrozil 59±18 4.4 4.4 F17 [M-H]- 9.63 

Genistein 79±14 3.1 3.1 F14 [M+H]+ 6.21 

Genistin 70±15 0.8 0.8 F9 [M+H]+ 3.04 

Glibenclamide 64±16 3.8 3.8 F16 [M+H]+ 9.86 

Glimepiride 76±9 3.1 3.1 F15 [M+H]+ 10.06 

Glycitin 16±2 0.3 0.3 F8 [M+H]+ 2.17 

Hexazinone 74±12 1.4 1.3 F13 [M+H]+ 4.78 

Hydroxychloroquine 60±12 2.9 -2.0 F6 [M+H]+ 0.73 

Ifosfamide 56±6 0.1 0.1 F12 [M+H]+ 3.98 

Imatinib 62±7 4.4 0.0 F3 [M+H]+ 2.97 

Imazalil 69±8 3.8 3.2 F5 [M+H]+ 5.88 

Imidacloprid 76±6 0.9 -1.5 F9 [M+H]+ 3.57 

Iminostilbene 76±8 3.8 3.8 F7 [M+H]+ 10.15 

Imipramine 61±13 4.3 0.8 F14 [M+H]+ 6.03 

Indometacin 74±12 3.5 3.5 F6 [M+H]+ ;[M-H]- 9.60 

Iprodione 59±18 2.3 2.3 F17 [M+H]+ 10.21 

Irbesartan 79±14 5.4 4.4 F12 [M+H]+ 6.53 

Isoproturon 70±15 2.6 2.6 F15 [M+H]+ 6.85 

Ketoconazole 64±16 4.2 2.6 F4 [M+H]+ 6.13 

Ketoprofen 76±9 3.6 3.6 F15 [M+H]+ 17.04 

Lenacil 16±2 1.8 1.8 F16 [M+H]+ 5.77 

Lidocaine 74±12 2.8 -0.6 F14 [M+H]+ 1.90 

Linuron 60±12 2.7 2.7 F14 [M+H]+ 8.51 

Lorazepam 56±6 3.5 3.5 F17 [M+H]+ 6.59 

Losartan 62±7 5.0 4.2 F12 [M+H]+ 6.59 

Mebendazole 69±8 3.3 2.4 F7 [M+H]+ 5.38 

Mebeverine 76±6 4.9 1.4 F14 [M+H]+ 6.49 

Meclocycline 76±8 -4.8 -4.8 F15 [M+H]+ 4.68 
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Table XXIV. Information of the set compounds used to calibrate the fractionation and as reference compounds in the 

non-target analysis. Recovery, log P, log D(pH=3), C18 column fractionation in which each compound appear and they ionization 

mode and retention times in the two LC-HRMS systems used for the analysis. 

Name 
Recovery 

(%) 

C18 fractionation LC-HRMS 

LogPa 
LogDb 
(pH=3) 

Fractionc Ionization 
RT 

(min) 

Mecoprop 81±13 3.0 2.9 F16 [M-H]- 3.10 

Medroxyprogesterone 74±12 3.7 3.7 F13 [M+H]+ 8.94 

Mefenamic acid 89±18 5.4 5.3 F13 [M+H]+; [M-H]- 10.52 

Memantine 39±4 2.1 -1.0 F3 [M+H]+ 3.20 

Metalaxyl 70±15 2.1 2.1 F14 [M+H]+ 6.77 

Metamitron 64±16 0.4 0.2 F16 [M+H]+ 2.92 

Metazachlor 76±9 3.0 2.9 F18 [M+H]+ 7.75 

Metconazole 16±2 3.6 3.6 F5 [M+H]+ 9.56 

Metformin 24±2 -0.9 -5.7 F13 [M+H]+ 0.70 

Methiocarb 60±12 3.1 3.1 F8 [M+H]+ 8.37 

Methotrexate 56±6 -0.2 -0.2 F14 [M+H]+ 1.07 

Methylparaben 62±7 1.7 1.7 F15 [M+H]+ 4.21 

Methylpirimiphos 69±8 3.0 1.3 F1 [M+H]+ 10.52 

Metolachlor 56±6 3.5 3.5 F15 [M+H]+ 9.47 

Metoprolol 66±8 1.8 -1.5 F5 [M+H]+ 2.45 

Metribuzin 81±13 2.0 1.9 F11 [M+H]+ 5.48 

Miconazole 74±12 6.0 5.4 F16 [M+H]+ 8.66 

Mirtazapine 79±18 3.2 -1.3 F15 [M+H]+ 2.36 

Montelukast 79±14 8.5 8.3 F15 [M+H]+; [M-H]- 22.12 

Myclobutanil 70±15 3.7 3.6 F4 [M+H]+ 8.97 

Mycophenolic acid 64±16 3.5 3.4 F11 [M+H]+; [M-H]- 7.29 

Naproxen 76±9 3.0 3.0 F18 [M+H]+; [M-H]- 6.15 

Nitrofurantoin 16±2 0.1 -2.5 F6 [M+H]+; [M-H]- 2.71 

Norfloxacin 47±6 -1.0 -1.8 F20 [M+H]+ 1.75 

Norgestimate 87±8 4.1 3.8 F15 [M+H]+ 11.11 

Nortriptyline 16±2 4.4 1.2 F15 [M+H]+ 6.06 

OBT 74±12 2.5 2.5 F14 [M+H]+ 4.10 

Omeprazol 60±12 2.4 1.1 F15 [M+H]+ 3.15 

Ondansetron 56±6 2.3 1.3 F7 [M+H]+ 3.53 

Oryzalin 62±7 2.3 2.3 F10 [M+H]+ 10.35 

Oxazolam 69±8 3.9 3.1 F6 [M+H]+ 3.10 

Oxybutynin 76±6 4.4 0.9 F16 [M+H]+ 6.66 

Parathion 76±8 3.3 3.3 F12 [M+H]+ 12.39 

Paroxetine 71±13 3.1 -0.1 F11 [M+H]+ 5.70 

Pendimethalin 74±12 4.8 4.8 F12 [M+H]+ 19.30 

Pentoxifylline 69±18 0.2 0.2 F20 [M+H]+ 3.04 

PFBS 79±14 2.6 0.3 F17 [M-H]- 4.74 

PFOA 70±15 5.1 1.6 F12 [M-H]- 6.72 

PFOS 64±16 5.4 3.1 F12 [M-H]- 8.47 

PFOSA 76±9 4.9 4.7 F15 [M-H]- 11.73 
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Table XXIV. Information of the set compounds used to calibrate the fractionation and as reference compounds in the 

non-target analysis. Recovery, log P, log D(pH=3), C18 column fractionation in which each compound appear and they ionization 

mode and retention times in the two LC-HRMS systems used for the analysis. 

Name 
Recovery 

(%) 

C18 fractionation LC-HRMS 

LogPa 
LogDb 
(pH=3) 

Fractionc Ionization 
RT 

(min) 

Phenytoin 16±2 2.1 2.1 F16 [M+H]+ 6.00 

Pindolol 74±12 1.7 -1.5 F8 [M+H]+ 1.84 

Pipamperone 60±12 1.9 -4.4 F19 [M+H]+ 1.50 

Pirimicarb 56±6 1.8 0.1 F8 [M+H]+ 2.28 

Pravastatin 62±7 1.6 1.6 F18 [M-H]- 3.81 

Prednisone 69±8 1.7 1.7 F15 [M+H]+ 4.97 

Primidone 76±6 1.1 1.1 F11 [M+H]+ 2.44 

Prochloraz 76±8 3.6 3.5 F13 [M+H]+ 8.23 

Progesterone 81±13 4.1 4.1 F5 [M+H]+ 9.95 

Propachlor 64±12 2.4 2.4 F4 [M+H]+ 7.49 

Propamocarb 19±3 0.8 -2.7 F10 [M+H]+ 1.08 

Propanil 69±14 3.1 3.1 F12 [M+H]+; [M-H]- 7.95 

Propiconazole 70±15 4.3 4.3 F13 [M+H]+ 9.96 

Propofol 64±16 4.2 4.2 F11 [M-H]- 10.83 

Propranolol 76±9 2.6 -0.7 F15 [M+H]+ 7.95 

Propyphenazone 16±2 2.3 2.3 F16 [M+H]+ 6.18 

Propyzamide 74±12 3.2 3.2 F13 [M+H]+ 9.10 

Prosulfocarb 60±12 4.2 4.2 F3 [M+H]+ 13.70 

Pyrantel 56±6 2.0 -0.5 F15 [M+H]+ 2.12 

Pyrazophos 62±7 3.1 3.1 F17 [M+H]+ 12.67 

Quinmerac 69±8 2.7 2.7 F16 [M+H]+ 2.97 

Quinoxyfen 76±6 5.0 4.1 F6 [M+H]+ 12.49 

Raloxifene 76±8 5.7 2.6 F13 [M+H]+; [M-H]- 5.58 

Ranitidine 71±13 1.0 -2.5 F15 [M+H]+ 0.74 

Remifentanyl 74±12 1.5 -1.9 F17 [M+H]+ 4.00 

Risperidone 79±18 2.6 -1.0 F6 [M+H]+ 3.64 

Ropinirole 79±14 3.1 -0.4 F16 [M+H]+ 2.04 

Roxithromycin 70±15 3.0 -0.6 F11 [M+H]+ 6.50 

Sertraline 64±16 5.1 1.9 F16 [M+H]+ 6.87 

Simazine 76±9 1.8 0.6 F14 [M+H]+ 4.92 

Sotalol 16±2 -0.4 -3.2 F2 [M+H]+ 0.73 

Spiroxamine 74±12 4.4 0.9 F4 [M+H]+ 7.05 

Sulfadiazine 60±12 0.4 0.3 F7 [M+H]+ 1.85 

Sulfamethazine 56±6 0.7 0.6 F7 [M+H]+ 1.85 

Sulfamethoxazole 62±7 0.8 0.8 F6 [M+H]+ 3.95 

Sulfapyridine 69±8 1.0 1.0 F13 [M+H]+ 2.01 

Sulfathiazole 76±6 1.0 0.9 F10 [M+H]+ 1.95 

Tamoxifen 76±8 6.4 2.9 F1 [M+H]+ 9.24 

Tebuconazole 81±13 3.7 3.7 F12 [M+H]+ 9.12 

Telmisartan 74±12 6.1 5.2 F9 [M+H]+ 6.62 
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Table XXIV. Information of the set compounds used to calibrate the fractionation and as reference compounds in the 

non-target analysis. Recovery, log P, log D(pH=3), C18 column fractionation in which each compound appear and they ionization 

mode and retention times in the two LC-HRMS systems used for the analysis. 

Name 
Recovery 

(%) 

C18 fractionation LC-HRMS 

LogPa 
LogDb 
(pH=3) 

Fractionc Ionization 
RT 

(min) 

Terbinafine 89±18 5.5 2.0 F7 [M+H]+ 7.65 

Terbuthylazine 79±14 2.5 1.3 F9 [M+H]+ 8.04 

Terbutryn 70±15 2.9 0.9 F11 [M+H]+ 6.02 

Testosterone 64±16 3.4 3.4 F9 [M+H]+ 7.36 

Thiabendazole 76±9 2.3 1.4 F11 [M+H]+ 1.48 

Thiacloprid 16±2 2.1 2.0 F15 [M+H]+ 5.11 

Thiamethoxam 74±12 1.3 1.0 F16 [M+H]+ 2.56 

Thymol 60±12 3.4 3.4 F18 [M-H]- 8.62 

Tramadol 56±6 2.4 -1.1 F13 [M+H]+ 2.56 

Triadimenol 62±7 3.3 3.2 F14 [M+H]+ 7.64 

Triethylphosphate 69±8 1.2 1.2 F12 [M+H]+ 3.55 

Trimethoprim 76±6 1.3 -0.2 F15 [M+H]+ 1.62 

Triphenylphosphate 76±8 5.1 5.1 F11 [M+H]+ 12.22 

Valsartan 61±13 5.3 5.3 F13 [M+H]+; [M-H]- 5.50 

Verapamil 64±12 5.0 1.5 F11 [M+H]+ 6.49 

a) LogP has been calculated with the JChem free software in excel.
b) LogD at pH = 3 (the pH of the fractionation step mobile phase) has been calculated with the JChem free software in excel.
c) If one compound appears in more than one fraction, only the mayor fraction has been included.

https://metlin.scripps.edu/metabo_info.php?molid=62875
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