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Abstract

Solving Partial Differential Equations (PDE), is a key issue in science and engi-
neering since they are widely used in many real problem modelling including fluid
mechanics, acoustics, heat and mass transfer ...etc. Exact solutions for PDEs and
Ordinary Differential Equations (ODE) can be obtained in a very few and simplified
cases only, numerical approximations are used instead (i.e. Finite Volume Method
(FEM), Finite Volume Method (FVM)...). However, and despite the availability of
important supercomputing facilities, due to the huge number of degrees of freedom
these methods have, they may still suffer from cost-effectiveness performance. They
are mainly two contexts where one need to solve PDEs with a lower computational
cost: Real-time context and Many-query context. Examples for the former are:
parameter-estimation, control, flying simulator..., and for the latter: optimization,
multi model/scale simulation... To reduce significantly simulation time (often on the
expense of accuracy) Reduced Order Modelling (ROM) techniques are introduced.
The main idea is to reduce the initial solving space dimension (as in finite elements
method) to a subspace with a significantly reduced dimension and then solve for the
projected solutions.

Proper Orthogonal Decomposition (POD) is one of the more used ROM strate-
gies. The presented work focuses on this technique, which has two challenging steps:
(i) the snapshot location and (ii) the error estimate on the parameter space that
drive the process to search new snapshot location. As a consequence of these two
steps, POD applied to PDEs is considered as belonging to the well-known Greedy
Algorithm family. This thesis brings a mesh adaptivity approach as the process to
find the new parameter space locations. This process will be driven by a new error
estimate based on Leave One Out Cross Validation (LOOCV) technique. We could
say that this error estimate is universal, in the sense that it is not problem depen-
dent. In addition, it is well known POD lack of accuracy when dealing with PDEs
which solution contains shocks. Here, a new interpolation approach improves this,
for shocked solutions. Finally, we present that the POD reduced basis is optimal
just in average, and a new local basis is presented (Sorted Gram-Schmidt (SGS)) to
be coupled with POD one. The criteria to decide which basis is better to be used for
each new parameter value is defined as well. The whole proposed strategy efficiency
is validated against a mathematical (exact) solutions of an incompressible, steady
state flow equations, and on CFD solutions of an inviscid flow around a NACA0012
airfoil.
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Resumen

La resolución de Ecuaciones Diferenciales Parciales (EDP), y mas concretamente,
los sistemas dinámicos paramétricos, que representan la f́ısica real, es un tema clave
en ciencia e ingenieŕıa. La evaluación de esas ecuaciones es necesaria en muchos
campos: mecánica clásica, mecánica de fluidos, acústica, transferencia de calor y
masa... Se han utilizado varias técnicas para lograr esta tarea: tradicionalmente se
ha recurrido a métodos de alto orden, como Método de Elementos Finitos (FEM)
o Método de Volúmenes Finitos (FVM), y que debido a la gran cantidad de grados
de libertad no se pueden resolver siempre tan rápido como uno hubiese deseado.
En general, hay dos contextos principales en los que se necesita resolver estos Sis-
temas en EDP con un costo computacional más bajo: ”contexto en tiempo real” y
”contexto de muchas consultas”. Ejemplos del primero podŕıan ser: estimación de
parámetros, control, simulador de vuelo... Son aplicaciones en las que los parámetros
que entran en juego vaŕıan con frecuencia y es necesario disponer de la solución cor-
respondiente con rapidez para poder evaluar su resultado y actuar en consecuencia.
Ejemplos del segundo contexto podŕıan ser: optimización, simulación de múltiples
modelos/escalas... Son aplicaciones en las que se desea explorar todas las zonas del
espacio paramétrico.

Los Modelos de Orden Reducido (MOR) son la forma principal para afrontar esta
clase de problemas. Ambos contextos son cruciales para la ingenieŕıa computacional
y para una adopción y aplicación más generalizada de métodos numéricos para
EDPs en la práctica de ingenieŕıa. Estos dos contextos son un desaf́ıo para los
métodos numéricos clásicos (FEM, FVM) que requieren un alto coste computacional
cuando la dimensión de la discretización crece excesivamente. Los métodos de Base
Reducida (RB) no son competidores de los modelos clásicos de alto orden, sino que
son complementarios y es obligatorio usar ambos en este tipo de contextos, para
lograr construir modelos eficientes.

Las técnicas MOR reducen la dimensión del problema y permiten una resolución
más rápida que las técnicas de alto orden (alta fidelidad) manteniendo sin embargo
aún un cierto nivel de precisión. Para las EDP paramétricas, ser capaz de evaluar
la solución del problema de baja complejidad, para cualquier nueva instancia, nuevo
valor de los parámetros, a un coste que sea independiente de la dimensión del prob-
lema original de alta fidelidad, es la clave para el éxito computacional de cualquier
MOR.

El trabajo presentado en esta tesis trata sobre varios aspectos del Modelado
de Orden Reducido (MOR) utilizando la Descomposición Ortogonal Propia, mas
conocida por su denominación en inglés Proper Orthogonal Decomposition (POD)
como Base Reducida (RB). La construcción de la base reducida del POD es un
proceso clásico de diagonalización de covarianza que utiliza un conjunto de solu-
ciones del modelo de alta fidelidad (FEM, FVM...), Snapshots, para identificar los
componentes principales y generar los modos ortogonales. Al igual que en la de-
scomposición del valor singular (SVD, del inglés Singular Value Decomposition),
basta con un pequeño número de modos para reproducir el modelo de alto orden
con un nivel de aproximación aceptable. En POD, una combinación de Snapshots
construye una base ortogonal de bajo orden donde se proyectará la Ecuación Difer-
encial Parcial que describe el problema. La proyección de POD clásica está en L2,
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sin embargo, el análisis de la literatura muestra que H1 podŕıa ser una alternativa
más precisa tal y como se describe en el Caṕıtulo 2.

El enfoque de descomposición computacional Offline-Online muestra un buen
desempeño en ROM. La fase Offline es donde se calculan todas las soluciones a
escala completa (Snapshots), y aśı se construye el MOR. Esta es la fase más larga y
la más cara debido a la cobertura de muestreo del espacio paramétrico. Después, en
la fase Online, se resuelve una nueva solución para una nueva ubicación no explorada
del espacio paramétrico. La segunda etapa es mucho más rápida que la primera, ya
que no estamos resolviendo el problema original, sino que tenemos una dimensión
reducida, pero lo suficientemente precisa. Es la fase en la que obtenemos el rédito
del esfuerzo invertido en la fase anterior. Es un equilibrio entre la exploración y la
explotación del espacio de diseño.

En el MOR, un sistema mucho más pequeño reemplaza al algebraico grande,
conservando las caracteŕısticas esenciales del mapeo y garantizando un error por
debajo de un umbral deseado. La precisión del POD-ROM se basa en tres cuestiones
principales: (i) número de muestras de instantáneas (Snapshots), (ii) ubicación de
los Snapshots en el espacio paramétrico y (iii) cantidad de modos ortogonales de la
base reducida.

Las Estimaciones de Error a posteriori se han utilizado como criterio en los
procesos de decisión de estas tres cuestiones en diferentes trabajos, como se describe
en la revisión de la literatura del Caṕıtulo 1. En esta Tesis, se presenta un nuevo
enfoque para determinar la Estimación del Error. Se trata de un método basado
en la técnica bien conocida de Leave One Out Cross Validation (LOOCV) que se
ha modificado para no tener que recalcular la base reducida en el análisis de la
sensibilidad (o relevancia) de cada Snapshot.

Según lo declarado por Quarteroni et al. en [74]: Los ingredientes esenciales de
la metodoloǵıa RB son: una proyección de Galerkin en un espacio tridimensional de
funciones de base correctamente seleccionadas, una dependencia paramétrica af́ın
que permite realizar una división Offline-Online competitiva en el procedimiento
computacional, y una Estimación de error a posteriori rigurosa, utilizada tanto
para la selección de la base como para la certificación de la solución.

La revisión del estado del arte realizada ha mostrado algunos aspectos intere-
santes del método POD en los que se puede profundizar y aśı contribuir al desarrollo
de este tipo de herramientas MOR para la resolución de ecuaciones en derivadas
parciales paramétricas. Además de una introducción teórica al método POD, en el
caṕıtulo 2, se presentan las alternativas de producto escalar L2 y H1 para realizar
la proyección sobre la base reducida.

La calidad de la base reducida POD va a depender de la información que aporten
los Snapshots, por lo que es de vital importancia decidir la cantidad de Snapshots
que se requieren para alcanzar una mı́nima precisión en la solución aproximada y qué
valores tomarán sus parámetros (localización en el espacio paramétrico). Se trata de
recoger la mayor parte de la información disponible, utilizando el menor numero de
Snapshots y barriendo el espacio parámetrico de una forma inteligente y eficiente.
Esta es la fase ”Offline”, la mas costosa desde el punto de vista computacional.
Este ha sido uno de los principales ámbitos en los que se ha desarrollado el caṕıtulo
3: a partir de una distribución uniforme inicial de una serie de Snapshots, se ha
propuesto un método que proporciona una búsqueda justificada, eficiente y fiable
de la localización de nuevos Snapshots en el espacio paramétrico.

2
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Como consecuencia de estos dos pasos: (i) distribución inicial y (ii) búsqueda de
nuevas localizaciones, el POD aplicado a la resolución de EDP pertenece al cono-
cido ámbito de los Algoritmos Voraces (Greedy Algorithm). La tesis recupera una
conocida técnica de adaptividad de malla como método para la localización de los
nuevos Snapshots. El Algoritmo Voraz es guiado por una Estimación del Error a
priori. La revisión bibliográfica ha detectado varias estrategias para la definición
de la Estimación del Error, y su obtención, generalmente, no es sencilla debido a
que es dependiente del tipo de problema que se quiere resolver. En esta tesis se
presenta una nueva estrategia para calcular la Estimación del Error que no es de-
pendiente del problema que se quiere resolver. Para ello se parte de una técnica
Leave One Out Cross Validation (LOOCV), que cuantifica la importancia que cada
uno de los Snapshots tiene al generar el modelo reducido, algo aśı como la cantidad
de información que aporta cada uno y asi poder determinar qué zonas del espacio
paramétrico son mas relevantes y han de ser exploradas con mayor detalle. Para
calcular la Estimación del Error de cada Snapshot, el método LOOCV, anula la
información aportada por cada uno de ellos y calcula su solución sobre el modelo
reducido utilizando el resto de Snapshots. El error calculado será respecto de su
solución ”verdadera” (el propio Snapshot anulado). Este proceso se realiza para
cada uno de ellos. El resultado es conocido como ”a priori Error Estimate”, y es el
valor que gúıa el Algoritmo Voraz.

La técnica LOOCV descrita puede ser costosa: para cada Snapshot analizado se
debe crear un modelo reducido diferente, con una base creada a partir del resto de
Snapshots. El trabajo que se presenta en esta tesis desarrolla, a partir del método
LOOCV, un teorema nuevo para el cálculo de la Estimación de Error de cada Snap-
shot.

El Teorema dice: si φi, 1 ≤ i ≤ N , son los Snapshots y si Ψi, 1 ≤ i ≤ N ,
son los modos ortogonales de la base POD reducida, el enfoque LOOCV para la
formulación POD no depende de la base POD. Es mas,

‖φi −
N∑

j=1,j 6=i

(φi,Ψj)Ψj‖2 ≤ ‖φi‖2 − 1

trace(K)

N∑
j=1,j 6=i

(φi, φj)
2

Este nuevo método solo depende de los Snapshots disponibles calculados en la
fase Offline y no necesita recalcular el sistema POD para obtener la Estimación del
Error de cada uno de ellos. Solo se necesita crear la base reducida una vez.

Se ha utilizado una localización inicial de los Snapshots uniformemente dis-
tribuida a lo largo del espacio paramétrico. Se puede considerar como una malla
estructurada. Para la localización de los nuevos Snapshots se ha tráıdo una técnica
común de adaptividad de malla como Algoritmo Voraz, guiado por la Estimación del
Error desarrollada. Se puede decir que la malla se va a adaptar y refinar allá donde
el error calculado sea mayor, la zona del espacio paramétrico donde mas relevante
sea la nueva información a aportar al modelo.

Es conocido el mal comportamiento que tiene el método POD para resolver de
manera reducida problemas cuyas soluciones contienen choques. Se puede explicar
este problema: el POD es como una interpolación ”inteligente” de los resultados
obtenidos por cualquier método numérico tradicional, por ejemplo, CFD. De esta
manera, cuando se desea resolver el problema reducido para un nuevo valor de los
parámetros, la solución obtenida no presenta el choque en su posición adecuada sino

3
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que lo resuelve como una ”media” de los valores disponibles. La tesis presenta una
técnica para la solución POD de este tipo de problemas.

Para demostrar es falta de precisión del POD en este tipo de problemas que
presentan choques en su solución, también en el caṕıtulo 3, se ha desarrollado un
ejemplo a partir de un problema de valor inicial convectivo puro. Aqúı se demuestra
cómo el POD en su formulación clásica no se comporta bien cuando se analiza la
zona con choques y es necesario plantear un nuevo enfoque.

Primero, recordemos brevemente el cálculo de la solución aproximada en POD:

u(x, t) =
N∑
j=1

yj(t)Ψj(x)

donde u(x, t) es la solución buscada, Ψj(x) son los modos ortogonales de la base
reducida y los coeficientes yj(t) son la proyección de la solución sobre los modos, q
tal y como se muestra, son dependientes de los parámetros.

El cálculo de estos coeficientes yj(t) requiere resolver un sistema dinámico. Puede
ser cuadrático, cúbico... o algebraico, en los casos en los que la EDP no sea de-
pendiente del tiempo. Habitualmente puede resultar un trabajo costoso. Cabe la
posibilidad de estimar yj(t) como interpolación de los coeficientes obtenidos de la
proyección de cada Snapshot sobre la base reducida. En el proceso propuesto en el
caṕıtulo 3, para problemas con choques en la solución, en lugar de interpolar, se pro-
pone buscar el Snapshot mas cercano, pero no es una cercańıa obtenida en el espacio
paramétrico, sino cercano en términos de los coeficientes yj(t). Se va a utilizar un
proceso predictor-corrector. Para ello, en el paso predictor, primero se calculan los
coeficientes yj(t) de la solución buscada mediante cualquier método de interpolación
(cubic, spline...), y a continuación se localiza el Snapshot cuyos coeficientes sean los
mas cercanos (corrector).

La validación de las contribuciones realizadas en el caṕıtulo 3 se ha realizado
en dos partes. Primero, se ha validado el método de localización de nuevos Snap-
shots sobre unas ecuaciones de un flujo incompresible y no viscoso con una solución
conocida. La solución forzada en este caso no responde a una f́ısica real, se han
creado unas oscilaciones importantes para los casos de una zona concreta del es-
pacio paramétrico. Esa será la zona con los Snapshots mas relevantes, donde mas
se debe explorar el espacio paramétrico en la fase Offline. A continuación, se ha
validado también el nuevo enfoque para tratar los casos con choques sobre un caso
CFD de un flujo en régimen permanente y no viscoso de un perfil aerodinámico
simétrico tipo NACA0012. Los parámetros del modelo son el numero de Mach (M)
y el ángulo de ataque (AoA). Se han validado casos subsónicos y transónicos. El
código BBIPED (www.bcamath.org), basado en SU2, se ha utilizado como CFD
para crear los Snapshots. El dominio espacial 2D está discretizado por una malla
circular con 3762 elementos triangulares. Un código de MATLAB programado desde
cero se ha acoplado con BBIPED para ejecutar el proceso completo:

1. Comienza con una distribución inicial de Snapshotsuniforme.

2. Resuelve esos Snapshots utilizando la plataforma BBIPED CFD.

3. Construye una base reducida (RB) de POD y un modelo reducido (POD-ROM
inicial).
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4. Establece la estimación de error segun el nuevo enfoque propuesto.

5. Ejecuta un proceso de adaptabilidad de malla conducido por esa Estimación
de Error, obteniendo las nuevas ubicaciones mejoradas de los Snapshots.

6. Resuelve nuevos Snapshots mejorados (utilizando BBIPED).

7. Construye un nuevo POD-ROM enriquecido.

8. Resuelve ambos enfoques POD-ROM: inicial y enriquecido, para nuevas ubi-
caciones del espacio paramétrico no exploradas.

9. Ambos enfoques POD-ROM son comparados.

La base reducida de POD (POD-RB) es óptima en promedio (Teorema de Mer-
cer). Es decir, para una dimensión determinada de la base reducida, el procedimiento
POD obtiene la mejor representación de los Snapshots, en promedio. En el caṕıtulo
4 se muestra cómo es posible encontrar una mejora local de esa RB. Existen otras
bases reducidas que mejoran el resultado del modelo reducido POD para ciertos val-
ores de los parámetros. La tesis muestra un nuevo enfoque denominado algoritmo
”Gramm Schmidt clasificado” (SGS) para la obtención de otra base reducida. Fi-
nalmente, se define un criterio para discriminar entre ambas bases, POD o SGS, que
determina a la hora de explotar el modelo reducido, cual de las dos se debe utilizar.

La validación del acoplamiento de ambas estrategias ROM, SGS y POD, se ha
realizado también sobre unas ecuaciones de flujo con solución conocida. Ademas, se
ha evaluado el criterio de selección de base reducida local entre SGS y POD.

En Resumen. El trabajo presentado contribuye al método ROM POD en algunos
de sus aspectos. El POD consta de dos pasos transcendentales: la distribución ini-
cial de Snapshots y la localización de los nuevos que vayan a enriquecer el modelo
reducido. La busqueda de los nuevos Snapshots se basa en un Algoritmo Voraz
basado en una Estimación del Error a priori. La técnica LOOCV puede obtener
ese Error. Se ha desarrollado un teorema que demuestra la universalidad de ese
Error, desde el punto de vista que no es dependiente del problema a resolver, y que
no hace falta recalcular la base reducida cada vez que se desea obtener el Error de
cada uno de los Snapshots. Para el proceso que determina las nuevas localizaciones
se ha tráıdo al espacio paramétrico un método de refinamiento de mallado espacial
(mesh adaptivity) comunmente utilizado en métodos de alto orden (FEM, FVM...).
En el ejemplo mostrado, el proceso se ha iniciado con una distribución uniforme
de los Snapshots (como una malla estructurada) para, después, hallar una nueva
distribución de una manera mas inteligente y eficiente. Por otro lado, se ha pre-
sentado el calculo de los coeficientes POD yj(t) (dependientes de los parámetros)
usando métodos de interpolación. Este enfoque no da buenos resultados para los
casos en los que la solución presenta choques. Se ha desarrollado una estrategia
predictor-corrector de estos coeficientes y se ha demostrado en un flujo transónico
en torno a un perfil aerodinámico. Finalmente, la base POD es optima en promedio,
pero se ha demostrado que existen otras bases reducidas que para ciertas zonas del
espacio paramétrico mejoran su comportamiento. Se ha desarrollado un algortimo
para crear una nueva base, denominado SGS. Ambas bases trabajan acopladas, y es
necesario elegir una de las dos a la hora de explotar el ROM para nuevos valores de
los parámetros. Se ha creado un criterio para la toma de esta decisión.
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Chapter 1

Introduction

Solving Partial Differential Equations (PDEs), is a key issue in science and engi-
neering since they are widely used in many real problem modelling including fluid
mechanics, acoustics, heat and mass transfer ...etc. Exact solutions for PDEs can be
obtained in a very few and simplified cases only, numerical approximations are used
instead. Several numerical techniques have been developed and deeply analysed in
literature starting in the early beginning of the 20th century with Richardson(1910);
Phillips and Wiener(1923); Courant,Friedrichsand Lewy(1928). The numerical sim-
ulation interest growth raised exponentially up in the last decade with the advent of
supercomputers and parallel programming techniques. This allowed using high di-
mension methods (Full order scale techniques), like Finite Element Method (FEM),
Finite Volume Method (FVM), discontinuous Galerkin (DG), Spectral Methods and
so on. However and despite the availability of important supercomputing facilities,
due to the huge number of degrees of freedom these methods for some problems
still suffering from cost-effectiveness performance. They are mainly two contexts
where one need to solve PDEs with a low computational cost: Real-time context
and Many-query context [74, 43, 78]. Examples for the first case include parameter-
estimation, control, Flying simulators . . . etc. And for the second case applications
include optimization, multi model/scale simulation among others.

To reduce significantly simulation time (often on the expense of accuracy) Re-
duced Order Modelling (ROM) techniques are introduced. The main idea is to
reduce the initial solving space dimension (as in Finite Elements Method) to a
subspace with a significantly reduced dimension and then solve for the projected
solutions. The dimension reduction will result naturally in a significant computing
cost reduction.

Many techniques were proposed to achieve ROMs, the most popular being Re-
duce Basis (RB) [9, 46, 67, 64], and Proper Orthogonal Decomposition (POD) [53,
1, 14, 93, 54] techniques, specially in the context of PDEs. Note that both methods
are projection methods: a subspace of a reduced dimension is first built on which
the unknown solution is then projected.

A considerable amount of work can be found in literature concerning different
aspect of ROM technique, one can refer to papers [75, 4, 78, 17, 11, 13, 91]. more
detailed can be found in books [73, 81, 40] and PhD Thesis [20, 5, 6].

POD [56, 42, 83, 69, 88, 50, 49, 75, 24, 19, 18] as a particular strategy to build
a ROM, which is the scope of this thesis, is a projection Galerkin method where a
reduced basis system is built such that the spanned subspace captures the maximum
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information (physics in case of PDE-based physical model) of the parametric solution
(parameters could be time, design parameters, boundary conditions, and so on).
Then an unknown solution for any given set of parameters is projected onto the
obtained basis and substituted in the original equation to solve for the projection
coefficients as in Galerkin approach.

As a first consequence using the Galekin approach in POD will result as for
Finite Element Method in a stability issue. Many solutions are proposed to remedy
to this shortcoming, we can cite the generalization of the Stream-line Upwind Petrov-
Galerkin method refereed to as SUPG-POD see [90, 31], the regularization approach
[80] and the stabilization by dissipation [21, 25, 7, 47].

Three other aspects, that are the main scope of this thesis, are crucial for an
effective POD system and received a big interest in literature.

Error Bounds and Snapshots Locations (Sampling)

The basis system is built from a set of off-line computed PDE parametric solutions
called snapshots. Therefore, the efficiency of the basis system depends clearly on
the choice of the snapshots. in another word, the choice of the initial parameters
distribution (snapshots locations) is crucial and will define the performance of the
POD to solve the PDE problem. The most popular approach is to derive an error
bound then introduce the snapshots one by one in order to reduce the error following
the spirit of the Greedy algorithm reviewed later.

A priori error estimate called in general error bound [70, 87, 36, 78, 32] is then
the starting point for an efficient POD system. The error bound must be valid for
any basis size and for all parameter values in the parameter domain, and efficient in
the sense that the error tends to zero as the number of snapshots is increased. This
is problem dependent and very hard to obtain. Other alternative are proposed for
a universal error bounds estimate, like LOOCV (Leave One Out Cross Validation)
technique, that will be the basis of the proposed error estimate in this work.

Note that the POD approach is proven to be optimal (in average), in this work
and based on error estimates, a strategy to locally couple POD with an appropriate
ROM is proposed to improve the classical POD outputs

The choice of parameter sample points is a critical and quite general concern
not only restricted to POD. For instance in the rational interpolation methods [12] ,
one must select parameter samples at which interpolation conditions are applied; for
balanced truncation [59], one must select parameter samples to generate the local
LTI (Linear Time Invariant) systems at which balanced truncation is applied; and in
the POD [83], one must select parameter samples at which snapshots are computed.

For problems with a small number of parameters, a structured or random sam-
pling method is a reasonable approach and, with a sufficiently high number of sam-
ples, will generate a rich set of data that covers the parameter space. For a moder-
ate number of parameters, full grid sampling quickly becomes expensive, since the
number of points in the grid grows exponentially with the dimension d. Then, it
becomes challenging to balance sampling cost with coverage of the parameter space.
In another word, and in the case of POD, to balance the dimension of the POD
subspace with the maximum information capturing. This case a more sophisticated
sampling approaches are required, such as a problem-aware adaptive search of the
parameter space (see [13]). For POD many approaches for snapshots locations are
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proposed based on error estimate and following the Greedy algorithm spirit. In the
same idea we propose in this work the use of techniques for local mesh adaptation
widely used in Computational Fluid Dynamics (CFD) [33, 27, 39, 77, 76, 66, 85,
8, 48] driven by the proposed error estimate to enrich and initially and uniformly
snapshots distribution.

Projection coefficients estimation

Another technical challenge is to estimate the projected POD coefficients. The
natural way to proceed is to substitute the projected solution into the original PDE
and then, solve (numerically) the resulting dynamical system (for time dependent
PDE) or algebraic system. However this is not always easy, specially for nonlinear
PDEs, where the resulting system can be too expensive, reducing the attractive cost-
effectiveness of POD. As an alternative an interpolation techniques are proposed and
many works have been done on the subject [18, 10, 73, 72, 23, 73].

Greedy Algorithm

The greedy algorithm [15] philosophy, is to make local improvement hopping that
this will lead to a globally-optimal solution. In case of availability of a posteriori error
estimators, the Greedy procedure can be applied [87, 36, 64], and accumulatively
determines snapshots based on a (typically large) set of training parameters [38]

The main step consists of repeatedly searching for the currently worst resolved
parameter (as indicated in the error estimator), and computing and including solu-
tion snapshots for this parameter into the basis. This process can loop and extend
the basis in each step until certain a priori error estimate threshold is reached.

Another possible method of selecting the parameter values for sampling, pro-
posed in [16], is to use local sensitivity analysis to estimate whether a change in
parameter value will result in states that are not well represented in the current
reduced basis. That work uses a first-order Taylor series expansion to approximate
the state solution as a function of small changes in parameters about the current
sample point. The sensitivities of the state variables with respect to the parameters
are then obtained by solving a large sparse linear system.

1.1 Thesis Contributions

The main contributions of the thesis are summarized as follows:

1. A Leave-One-Out Cross-Validation method (LOOCV) technique is used to
estimate a universal upper bound error, this error is estimated empirically by
re-building the POD system for each disregarded snapshot. This process is
prohibitive for large systems (when a big number of snapshot is needed). A
theorem is proven providing a formula to estimate the LOOCV error avoiding
recalculating the POD system. The theorem states: if φi 1 ≤ i ≤ N are the
snapshot (solutions of a given PDE for different parameters) and if Ψi 1 ≤ i ≤
N are the POD basis elements, then
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Theorem. The LOOCV approach for POD formulation don’t depend on the
POD basis. Moreover

LOOCV − Error = ‖φi −
N∑

j=1,j 6=i

(φi,Ψj)Ψj‖2 ≤ ‖φi‖2 − 1

trace(K)

N∑
j=1,j 6=i

(φi, φj)
2

(1.1)

Note that this formula does not depend on the POD basis nor on the corre-
lation matrix which means no need to build the basis system to estimate the
error for each snapshot location.

2. A mesh adaptivity inspired approach is proposed to drive the insertion of a
new shots location process for the Greedy algorithm. The error defined in
1. can be used as is or its Hessian. For the performed tests no significant
difference is observed whether the error is used or its Hessian.

3. The POD is performing badly for shocked solutions as mentioned by many
authors. This can be explained by the fact that the POD solution is a ‘smart’
averaging of solutions obtained by any traditional CFD solver, therefore aver-
aging shocks will results necessary in creating oscillations and wrong position
of the real shock. This is first proved using a simple convection equation. To
remedy this problem, a new interpolation (for shocked solutions) approach is
proposed by considering the nearest shot based on the POD coefficient not
on the parameters. In another word, a POD solution is first calculated using
any standard interpolation method, and then the final coefficients of the POD
solution are compared to the snapshot coefficients, to find the closest one.

4. A validation of the proposed POD system against an exact solution of the
following incompressible inviscid flow equations

{
v
(
∂u
∂y
− ∂v

∂x

)
= f1

u
(
∂v
∂x
− ∂u

∂y

)
= f2

where

f1 = cos2(α(x2 + y2))(x+ y)(4α sin(α(x2 + y2)) cos(α(x2 + y2))
f2 = sin2(α(x2 + y2))(x+ y)(−4α sin(α(x2 + y2)) cos(α(x2 + y2))

is achieved.

5. A validation against a CFD solution of an inviscid flow around a NACA0012
is achieved as well demonstrating the efficiency of the proposed approach by
comparison to the numerical result obtained by SU2 solver (a finite volume
solver developed by Stanford University)

6. The contribution presented in chapter 4 is motivated by the optimality theorem
for POD method that states
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Theorem. Let VM = Span{Ψ1, ...,ΨM} ⊂ H = L2(Ω), then for a subspace
QM = Span{W1, ...,WM} ⊂ H we have:

∫
Λ

dH(u(., ., γ), VM)dγ ≤
∫
Λ

dH(u(., ., γ), QM)dγ (1.2)

where dH(u(., ., γ), VM) is a distance from u(., ., γ) to the subspace VM

As we can see from the theorem, POD optimality is guaranteed in the sense of
average over the parameter space. This optimality is not satisfied pointwise, as
we demonstrated with through some tests. So, this open a room for coupling
the POD with another suitable ROM in an appropriate way to improve the
results (locally) without contradicting the optimality theorem.

7. As a consequence, it is proposed in this chapter 4 a new ROM based on a
sorted Gram Schmidt (SGS) algorithm. Then the POD and SGS approaches
are coupled to improve the final result. First an error distribution is calculated
over the parameter space for both POD and SGS. Note that in this chapter a
projection-error is proposed since the proved theorem (chapter 3) for LOOCV
based error is not valid for the SGS. The projection-error is defined as the
projection of each shot on the space spanned by the POD and SGS basis
respectively. To couple the two methods, when estimating a new solution (for
a new parameters value), and to decide which method to use (POD or SGS) the
error is interpolated for the current parameters using the error distributions
defined above and then the method with smallest error is selected.

8. The efficiency of the coupled POD-SGS is demonstrated for the exact solution
of the following uncompressible inviscid flow equations

{
v
(
∂u
∂y
− ∂v

∂x

)
= f1

u
(
∂v
∂x
− ∂u

∂y

)
= f2

with source terms

f1 = (x− y)
2β2(

(x− a)2 + (y − a)2 − β2
)2 e

2β2

(x− a)2 + (y − a)2 − β2

f2 = (y − x)
2β2(

(x− a)2 + (y − a)2 − β2
)2 e

2β2

(x− a)2 + (y − a)2 − β2

It is demonstrated that results are improved when POD-SGS is used comparing
to when POD or SGS is used separately
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1.2 Thesis Outline

The thesis is organized as follow: In Chapter 2, the POD method is introduced
in the general framework and in the context of PDEs. In Chapter 3, two contri-
butions of the thesis are developed. First, based on LOOCV technique, a new a
priori error estimate formula is proposed through a proved theorem. Then snapshot
locations technique using a well known mesh adaptivity strategy is proposed. Then,
a new interpolation approach for POD projection coefficients is presented, in order
to remedies the lack of accuracy of the POD method when dealing with shocked
solution. The chapter ends with a validation section against exact (mathematical)
solutions of incompressible inviscid flow equations and against CFD solutions of
inviscid flow around a NACA0012. Chapter 4 proposes a strategy to couple POD
with appropriate ROM (SGS). In chapter 5, conclusions are drawn.
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Proper Orthogonal Decomposition
(POD)

Solving large-scale problems is one of the biggest challenge in computational science
in general and in PDEs (partial differential equations) based problems in particular.
Despite the huge progress in computers capability and parallel architectures, solving
cost-effectively the original problems still unaffordable in almost complex cases. One
of the most attracting methods to handle and overcome such limitations are the
so-called reduced-order models (ROMs) that reduce the dimension of the original
problem such that the obtained reduced model is solved with much less complexity
and in a reasonable processing time. Almost of ROMs models are snapshots based
and the most popular one is undoubtedly the Proper Orthogonal Decomposition
(POD) [53, 1, 14, 93], know as well as Karhunen-Loeve’s expansion (KLE) [54].
The ROMs snapshots based received a lot of attention in the literature due to their
success in solving many problems in a wide range of fields. The principle of the
technique consists in representing a parametric family of functions, that could be
solutions of PDEs, belonging to a given functional space, by their projections on a
subspace of reduced dimension spanned by a reduced number of orthogonal basis
functions built from the snapshots and referred to, in some areas, as modes. This
reduces for instance solving Navier-Stokes equations by finite elements that requires
a subspace spanned by a basis of size of order of millions to solve a small dynamical
system of size smaller than hundred [55, 82, 41, 26].

In the following, a detailed overview of the the proper orthogonal decomposi-
tion (POD) technique, the purpose of this thesis, is provided in either the general
framework and the particular context of PDEs.

2.1 POD: General framework

2.1.1 General idea

In the general context of data analysis, POD is a technique that aims to represent a
huge amount of data by a reduced number of basis element built from the data. In
another word if the data are represented in a m× n matrix A with n being a large
number, it is possible to represent the main information stored in the n columns A
by a p orthonormal vectors with p very small comparing to n.
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2.1.2 Mathematical formulation

If A = [V1, V2, ..., Vn] , the problem is to find B = [W1,W2, ...,Wp] an orthonormal
set of p vectors that better represent the n columns A in the following sense,

W1 satisfying the optimization problem,

W1 = Arg

[
MaxW∈IRn

(
n∑
i=1

| 〈W1, Vi〉 |2
)

subject to ‖W1‖2 = 1

]
(2.1)

This constrained optimization problem can be solved using Lagrange multipliers:

L(W,λ) =
n∑
i=1

| 〈W,Vi〉 |2 + λ(1− ‖W‖2) (W,λ) ∈ IRn (2.2)

Then find W2 satisfying

W2 = Arg

[
MaxW∈IRn

(
n∑
i=1

| 〈W2, Vi〉 |2
)

subject to ‖W2‖2 = 1 and 〈W2,W1〉 = 0

]
(2.3)

And so on...
By Nullifying the gradient of the Lagrange multipliers L(W,λ1, ..., λp), namely

∇L(W,λ) = 0 we can show (see [88] for details) that {W1,W2, ...,Wp} are the
eigenvectors of the positive semi-definite matrix AAT and the λ′s are the associated
eigenvalues. Moreover this establishes a clear connection of the POD approach to
the SVD (singular values decomposition) technique [34, 52]. A deeper description
of the relation between POD and SVD based on the approaches of Nobach in [62]
and Kutz in [52] is available at Appendix B.

2.2 POD: PDEs context

Proper Orthogonal Decomposition for PDEs is based on a Galerkin projection of
the governing equations onto the subspace spanned by POD basis functions (also
known as modes) yielding a simple set of ordinary differential equations (ODEs).

Let
∂u

∂t
+ L(u) = f (2.4)

represent an evolutionary PDE, where L being any space differential operator and
f is a source term.

Let Λ be a space of parameters (design parameters, flying conditions, etc...) on
which the solution depends. For the sake of simplicity, let’s consider a one dimen-
sional case. So, u = u(t, x, γ) γ ∈ Λ. Let φi, 1 ≤ i ≤ N , be a set of solutions
(snapshots) of equation (2.4), where the index i refers to different values of the
parameter γ. The goal of the POD method is to reconstruct the solution of (2.4)
for any parameter value (within a certain range), without solving the original prob-
lem (2.4). To achieve this objective a discrete vector space with a low dimension
(as low as possible) is built from the snapshots, then the solution of (2.4) is pro-
jected onto this subspace and as a result, rather than solving (2.4), an approximated
POD solution is obtained by solving a simple Ordinary Differential Equation (ODE)
system.
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2.2.1 POD basis system

To build this POD basis system we proceed as follows:
Let K be the correlation matrix given by Ki,j = (φi, φj) where (, ) is any inner

product (L2, H1, or any other depending on the functional space to wich belongs the
solution u). Then the eigenvalues and associated eigenvectors are calculated. Let V
a matrix which columns are eigenvecors of K, then the basis functions Ψi, called in
this case modes, are given by:

Ψi =
N∑
i=1

vji φi (2.5)

where vji are the components of the jth eigenvector of K
Let’s now calculate the inner product (Ψi,Ψj)

(Ψi,Ψj) = (
N∑
l=1

vilφl,

N∑
k=1

vjk, φk) =
∑
l,k

vjl v
j
k(φl, φk) =

∑
l,k

vjl v
j
kK

l
k = KV i.V j = λiV

i.V j

(2.6)
This shows that the functions Ψi, 1 ≤ i ≤ N , are orthogonal if and only if the

eigenvectors V i, 1 ≤ i ≤ N are orthogonal, which is general the case. Now if i = j
we get the norm ‖Ψi‖ = λi . This is coherent, since the matrix K is positive semi-
definite which imply that its eigenvalues are all non-zero. The norm of φi represents
part of the energy of the system. We can conclude that the modes with low energy
(low corresponding eigenvalues) can be neglected reducing the POD basis to only
modes with significant energy.

2.2.2 From PDE to reduced dimension Dynamical system

Now multiply both sides of equation (2.4) by Ψi

(
∂u

∂t
,Ψi) + (L(u),Ψi) = (f,Ψi) (2.7)

Then extend the solution of problem (2.4) on the POD basis

u(x, t) =
N∑
j=1

yj(t)Ψj(x) (2.8)

And by substituting this expression in (2.4) and using the fact that Ψj are
orthonormal (we can always normalize the modes), we get

(
∂
∑N

j=1 Yj(t)Ψj(x)

∂t
,Ψi) + (L(

N∑
j=1

Yj(t)Ψj(x)),Ψi) = (f,Ψi) (2.9)

Then

∂Yi(t)

∂t
+ (L(

N∑
j=1

Yj(t)Ψj(x)),Ψi) = (f,Ψi) (2.10)

Now if L is a linear operator we get
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∂Yi(t)

∂t
+

N∑
j=1

Yj(t)(L(Ψj(x)),Ψi) = (f,Ψi) (2.11)

Which is a linear dynamical system in Yj(t)
′s of the form

Y ′ = A+ (BY ) 0 ≤ i ≤ N (2.12)

Here the vector A contains the source term and the boundary conditions and B
contain the terms of the form (L(Ψj(x)),Ψi)

If L is a quadratic operator we obtain a quadratic dynamical system in Yj(t).

Y ′ = A+ (BY ) + (CY, Y ) = 0 0 ≤ i ≤ N (2.13)

Here C is a N ×N ×N tensor.
More details for builded dynamical system in this thesis developped by POD

projection of Euler equations onto an orthonormal basis can be found in appendix
A.3.

2.2.3 Choice of the inner product

The choice of the inner product (, ) when POD is applied to solve PDEs is important,
it is pointed out in literature [44, 45, 62] add references and confirmed by our tests,
that we get better solutions using the H1 inner product defined by

(u, v)H1 =

∫
Ω

uvdx+

∫
Ω

(∇u · ∇v)dx (2.14)

Than using L2 inner product

(u, v)L2 =

∫
Ω

(u1v
T
1 + u2v

T
2 + u3v

T
3 )dx; (2.15)

This is due, among others, to the contribution of the derivatives that brings
information about the solution regularity. However this is on the expense of the
cost-effectiveness.
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POD: Effective Snapshots
Location and Interpolation
Strategy

Proper Orthogonal Decomposition (POD), described in Chapter 2 gained a large
interest in the contest of solving PDEs thanks to its strong mathematical background
and practical implementation. The key for an efficient POD design (as is the case
for all ROMs methods) is the sampling strategy consisting in an optimal snapshots
(PDEs solutions) selection that capture a maximum information and allow building
a POD subspace on which the projected PDEs solutions are representative of the
actual solution to a desired accuracy. Several sampling strategies have been proposed
and used in the literature [37, 18, 20, 51, 2, 61, 79]. The main trend is to set an
initial Snapshots locations distribution (computed at an Offline stage), then increase
the number of Snapshots driven by an a posteriori error estimator. This strategy
falls into the well known Greedy Algorithm general framework [15, 36, 87, 86, 64,
63]. Note that this error estimator is in general problem dependent and not easy to
obtain.

In this chapter we propose to first derive an error estimator based on the Leave-
One-Out Cross-Validation strategy (LOOCV) (described later), and then use the
well known local mesh adaptivity technique to drive the process of inserting and im-
proving snapshots locations. Note that the LOOCV based error estimate combined
to machine learning is used successfully in the context of POD in [92]. However and
as reported by the authors, this process is prohibitive for large snapshots samples
since it requires re-building the POD basis for each removed snapshot. To overcome
this shortcoming, we proved a theorem that provides a formula of the LOOCV that
is independent of the POD basis, as a consequence no need to re-build the basis
for each disregarded snapshot. The advantage of using LOOCV based error, is it
universality (it is not a problem dependent) and the proposed theorem reducing
drastically its cost-effectiveness makes it even more attractive.

3.1 Shots Location Algorithm

In this section the proposed algorithm for an optimal shots locations is described.
This is based on two ingredients, the technique of local mesh adaptivity, and LOOCV
based error estimate. First a short overview of local mesh adaptivity technique is
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given, then the LOOCV based error is described and a theorem providing a POD-
basis independent LOOCV formula is proved.

3.1.1 Local mesh adaptivity technique

In numerical simulation of PDEs-based physical phenomena, it is well known that
the accuracy of any numerical method used for such a purpose depends strongly on
the mesh quality. To improve the final solution, one of the mostly used technique
is the mesh adaptivity which received a constant interest growth in literature see
for instance [33, 27, 39, 77, 76, 66, 85, 8, 48]. The most popular approach of
mesh adaptivity is the so called Hessian-based local mesh adaptation technique.
The adaptivity process is driven by an a posteriori error estimate based on the
Hessian of a selected scalar of the field variables solution. When the Hessian H
is positive definite it defines a metric T , therefore the error along a given vector
could be interpreted as the length of the vector measured by the Hessian metric.
Consequently, and to ensure positivity, the absolute value of the the Hessian is
considered. Resulting in a metric T = |H| = Rt|Λ|R , with |R| being the eigenvectors
matrix of |H| and Λ = diag{λ1, λ2, λ3, ...} the matrix composed by the absolute
values of the eigenvalues of |H|. The eigenvectors provide the local direction of the
stretching, while the eigenvalues give its local magnitude, thus gradually creating
anisotropy.

The goal of the adaptation is to equi-distribute the error on the adapted grid,
where the error along an edge in the Riemannian metric is computed as:

ε =

∫ 1

0

√
−→x t(s)T (s)−→x (s) (3.1)

where −→x is the vector that defines the edge.

The algorithm starts with a uniform mesh, and then a first solution is estimated
by the solver and used to estimate the error metric. The mesh adaptation operations
include node movement, edge refinement, coarsening and swapping. The error on
the adapted mesh is interpolated on the original one considered as a background
mesh.

The sequence of operations begins with node movement, edge refinement and
edge swapping on solid boundaries, to satisfy a minimum and maximum edge length
constraint, as well as a curvature constraint, yielding substantial surface CAD im-
provements. The process then continues with node movement in the entire domain,
followed by refinement and coarsening, then swapping, before concluding with ad-
ditional node movement. The method preserves CAD integrity by re-projecting
boundary points onto the original surfaces during the adaptation process.

This technique has been widely tested in CFD applications and its efficiency
demonstrated over a considerable set of test cases. In this work the technique is
adapted to optimize snapshots locations. The space of parameters is considered as
a mesh and referred to it by a P-mesh. To drive the whole process and error based
on the LOOCV technique is derived and described in the following subsection.
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3.1.2 LOOCV based error estimate

Introduced by [57], and well known in statistics, the method computes each snapshot
error estimate as follows.

Let φi be a given snapshot of the set S = {φ1, ..., φN}, consider the new set Si =
S\{φi}, by taking out the shot φi. Then generate the POD system B = {Ψk(x)}N−1

k=1

from the snapshots of S. The error Error(i) is then calculated as the L2 norm of
the difference between φi and its projection φi onto B namely

Error(i) =

√∫
Ω

(φi(x, y)− φi(x, y))2dxdy√∫
Ω

(φi(x, y))2dxdy
(3.2)

With

φi =
N−1∑
k=1

(φk,Ψk)Ψk (3.3)

This formula could be used as is and then the error length εi of an edge ei,j
connecting two nodes in the parameter mesh (P-mesh) is given simply by

εi =
Error(i) + Error(j)

2
ei,j (3.4)

or we can look at the curvature of the error by taking its Hessian and then use
formula (3.1) and proceed as in subsection 3.1.1.

Now let’s prove a theorem that provides a LOOCV-based error formula indepen-
dent of the POD basis independent

Theorem. The LOOCV approach for POD formulation don’t depend on the POD
basis. Moreover

LOOCV − Error = ‖φi −
N∑

j=1,j 6=i

(φi,Ψj)Ψj‖2 ≤ ‖φi‖2 − 1

trace(K)

N∑
j=1,j 6=i

(φi, φj)
2

(3.5)

Proof Let’s estimate the quantity

‖φi −
N∑
j=1

(φi,Ψj)Ψj‖2 (3.6)

‖φi −
N∑
j=1

(φi,Ψj)Ψj‖2 =

=
(
φi −

N∑
j=1

(φi,Ψj)Ψj , φi −
N∑
j=1

(φi,Ψj)Ψj

)
=

= ‖φi‖2 + ‖
N∑
j=1

(φi,Ψj)Ψj‖2 − 2
(
φi,

N∑
j=1

(φi,Ψj)Ψj

)
(3.7)
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let’s develop second and third terms from equation (3.7).

The second term:

‖
N∑
j=1

(φi,Ψj)Ψj‖2 =
( N∑
j=1

(φi,Ψj)Ψj ,

N∑
j=1

(φi,Ψj)Ψj

)
=

=
N∑

j,k=1

(
(φi,Ψj)Ψj , (φi,Ψk)Ψk

)
=

N∑
j,k=1

(φi,Ψj)(φi,Ψk)(Ψj,Ψk) =

=
N∑
j=1

(φi,Ψj)
2

since for every j 6= k, (Ψj,Ψk) = 0, by orthogonality.
and for j = k, (Ψj,Ψk) = 1, we assume that the modes are normalized (Ψj =

Ψj

‖Ψj‖
=

Ψj

λj

Now, we develop the third term:

2
(
φi,

N∑
j=1

(φi,Ψj)Ψj

)
=

2
N∑
j=1

(φi,Ψj)(φi,Ψj) = 2
N∑
j=1

(φi,Ψj)
2

substituting in (3.7) we get

‖φi −
N∑
j=1

(φi,Ψj)Ψj‖2 = ‖φi‖2 −
N∑
j=1

(φi,Ψj)
2 (3.8)

Now let Ki be the correlation matrix given by Kk,j = (φk, φj) obtained with the
snapshots excluding φi, and V i the matrix of corresponding eigenvectors. We know
that

Ψj =
1√
λj

N∑
k=1
k 6=i

vi,jk φk (3.9)

where vi,jk are the k components of the jth eigenvector of Ki.

Set

Φi =


(φi, φ1)

...
(φi, φk)

...
(φi, φN)

 for k 6= i and note that trace(Ki) ≤ trace(K)

Now, expend the second term of (3.8)
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N∑
j=1,j 6=i

(φi,Ψj)
2 =

N∑
j=1,j 6=i

(φi,
N∑
k=1
k 6=i

1√
λj
vi,jk φk)

2 =
N∑

j=1,j 6=i

1√
λj

2 (
( N∑
k=1
k 6=i

vjk(φi, φk)
)2

=

≥ 1

trace(Ki)

N∑
j=1,j 6=i

(
(V i)T ,Φi

)2

=

≥ 1

trace(K)

N∑
j=1,j 6=i

(
(V i)T ,Φi

)2

=

1

trace(K)

N∑
j=1,j 6=i

(
(V i)TΦi, (V

i)TΦi

)
=

1

trace(K)

N∑
j=1,j 6=i

(
(V i)(V i)TΦi,Φi

)
=

1

trace(K)

N∑
j=1,j 6=i

(
Φi,Φi

)
=

1

trace(K)

N∑
j=1,j 6=i

(φi, φj)
2 (3.10)

Substituting back in (3.8) :

‖φi −
N∑

j=1,j 6=i

(φi,Ψj)Ψj‖2 ≤ ‖φi‖2 − 1

trace(K)

N∑
j=1,j 6=i

(φi, φj)
2 (3.11)

Which achieves the proof.

3.1.3 The Algorithm

The proposed algorithm steps are summarized as follow:
1. Start with a random number of uniformly distributed snapshots (parame-

ters), the parameter space could include time, Mach number, angle of attack, design
parameters and others, depending on the targeted application

2. Consider the parameter space as a mesh (P-mesh) then for each snapshot
calculate the proposed error at snapshot location (node) by

Erri = ‖φi‖2 − 1

trace(K)

N∑
j=1,j 6=i

(φi, φj)
2 (3.12)

3. estimate the error εi,j along each edge ei,j either by taking the Hessian (with
the absolute value as described in subsection 3.1.1 ) of Erri and Errj or use

εi,j =
Erri + Errj

2
‖ei,j‖ (3.13)
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4. Apply the local mesh adaptivity algorithm described in subsection 3.1.1, till
a uniform error distribution is obtained and equal to prescribed error threshold.
This mechanism will move, add, and delete snapshots locations in order to put more
snapshots where needed and remove unnecessary snapshots for an optimal POD
basis system

3.2 POD Projection Coefficients Estimate

Another challenging task when POD is applied to solve PDEs (Chapter 2) is to
estimate the projection coefficients onto POD basis system, indeed if {Ψj(x)}Nj=1 is
the POD basis and u(x, t) is the POD solution of the concerned PDE, then

u(x, t) ≈
N∑
j=1

yj(t)Ψj(x) (3.14)

To estimate the coefficient {yj(t)}Nj=1 the natural approach is to substitute the POD
solution in the PDE equation and then solve the obtained dynamical system in
yj(t) (or an algebraic system if the PDE is time independent) (see Chapter 2). This
dynamical system (as mentioned in Chapter 2) can be quadratic, cubic etc... system
and therefore not easy to solve and time consuming, for this reason in literature the
coefficients are obtained by interpolation(cubic, bi-splines,...) rather than solving
the nonlinear dynamical system. However, and whatever the used approach, it is
pointed out in the literature [60] and verified by our tests, difficulties are observed
for shocked solution. In such a problem is demonstrated on a simple example.

3.2.1 POD for shocked solutions

Let’s consider the simple pure parabolic convection initial value problem,


∂Q
∂t

+ ∂Q
∂x

= 0, (t, x) ∈ [0,∞)× IR

Q(0, x) = H(x) =

{
1 if x ≥ 0
0 if x < 0

(3.15)

The exact solution is given by Q(t, x) = H(x− t) (see Figs. 3.1 and 3.2)
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Figure 3.1: Initial condition of the convection parabolic equation
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Figure 3.2: Solution of the convection parabolic equation at t = 2

Now apply the POD technique to solve the equation with the time t being a
parameter.

Let {Qi(x) = H(x− ti)}Ni=1 N solutions (snapshots) at times t1, t2, ..., tN Note
that the POD solutions are ’smart’ averaging of the snapshots, and if we need to
estimate the solution at a time t̄ ∈ (tk, tk+1) we will get

QPOD(t̄, x) ≈
N∑
j=1

yj(t̄)Ψj(x) (3.16)

And this can be written as

QPOD(t̄, x) ≈
N∑
i=1

αi(t̄)Qi(x) (3.17)

since Ψj’s are linear combinations of Qi’s

Now we want that QPOD(t̄, x) ≈ H(x− t̄) which means that
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QPOD(t̄, x) ≈ 1 for x ≥ t̄ (3.18)

in another hand

H(x− ti) = 0 ifx < ti (3.19)

This implies that for any x ∈ (tk, tk+1) (see Fig. 3.3)

QPOD(t̄, x) ≈
k∑
i=1

αi(t̄)Qi(x) +
N∑

i=k+1

αi(t̄)Qi(x) =
k∑
i=1

αi(t̄)Qi(x) (3.20)

But we need QPOD(t̄, x) ≈ 0 if x < t̄ and QPOD(t̄, x) ≈ 1 if x ≥ t̄ to be an
acceptable solution. This leads to

k∑
i=1

αi ≈ 0 and
N∑
i=1

αi ≈ 1 (3.21)

Which is impossible to obtain.

Figure 3.3: Solutions of the convection parabolic equation for different times. Here
the interval [t1, t2] = [2, 4]
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3.2.2 Closest Snapshot: prediction-correction approach

The previous example shows that it really hard to capture shocks properly with
POD as long as we consider through any interpolation process the contribution of
all snapshots. Based on that, we propose to consider the closest snapshot rather
than interpolating. That is

u(x, t) ≈ Arg
(
Min{‖u(x, t)− φj‖}Nj=1

)
(3.22)

Of course we don’t have u(x, t) to take the min, we can think about taking the
closest parameters, but as we will demonstrate in the validation section, closest
parameters doesn’t necessary mean closest solutions. Therefore we propose the
following closest snapshot measure in the light of the prediction-correction spirit
approach.

We assume that we already built the POD system with the proposed adaptive
technique. We then proceed using the commonly used interpolation (cubic, spline,..).
For such a purpose we need first to project the snapshots onto the POD basis system
(Modes) Ψj

N
j=1, then interpolate component by component (prediction step).

Any snapshot can φi(x, t) be projected onto the POD basis Ψj
N
j=1 as follows,

φi(x, t) =
N∑
j=1

yij(t)Ψj(x) (3.23)

Note that in general modes with low energy are neglected then the previous sum
is reduced to

φi(x, t) =
M∑
j=1

yij(t)Ψj(x) (3.24)

with M << N . But without loss of generality let’s keep the sum to N
The coefficients yij(t) are given by (use orthonormality of Ψj)

yij(t) =
(
φi(x, t),Ψj

)
(3.25)

( , ) being the inner product used to build the correlation N × N matrix K. In
practice the inner product (generally L2 or H1) are computed numerically, for more
accuracy we propose in the following exact value of the coefficients yij .

Let V the matrix of eigenvectors ofK and λ1, λ2, ..., λN the associated eigenvalues
(see chapter 2 for details).

Set

V =


v1

1 v2
1 . . . vN1

v1
2 v2

2 . . . vN1
...

...
...

v1
N v2

N . . . vNN

 , (3.26)

The modes Ψj are the projection of the snapshots φi(x, t) onto the eigenvectors,

Ψj =
N∑
k=1

vjkφk (3.27)
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Substituting Ψj in equation 3.25 we obtain

yij(t) = (φi(x, t),Ψj) = (φi(x, t),
N∑
k=1

vjkφk) =
N∑
k=1

vjk(φi, φk) (3.28)

The last expression is the product of the ith row of the correlation matrix K with
the jth eigenvector. we deduce (since KV j = λjV

j ) that

yij(t) = λjv
j
i (3.29)

Now to estimate any new solution with the POD system, apply any interpola-
tion method to the components yij as function of the parameters space, and obtain
yPODj . The next step (correction step) is to take the closest snapshot based on POD
projection coefficients of the snapshots and the interpolated ones,

if we refer by yPOD−finalj to the POD solution output, then

yPOD−finalj = Arg

(
Mini(

N∑
j=1

(yij − yPODj )2)

)
, for j = 1, N (3.30)

3.3 Validation

The proposed method is implemented in MATLAB environment for validation. First
the method is assessed against exact solutions, the goal of this step is to better (since
we have a full control on the solution) demonstrate the effectiveness of the proposed
approach including the accuracy of the reconstructed solutions and more precisely
the validity of the proposed error distribution and adaptivity process, a corner stone
of an effective snapshots locations distribution. In a second step and for a validation
on a practical physical problems, the MATLAB code is coupled with an open source
CFD solver SU2 (Stanford university unstructured) developed by Stanford university
[84, 68, 35].

3.3.1 Validation on Exact Solutions

Let us consider the following incompressible, steady state flow given by the following
governing equations: {

v
(
∂u
∂y
− ∂v

∂x

)
= 0

u
(
∂v
∂x
− ∂u

∂y

)
= 0

(3.31)

Then let us define on the whole plan R2 the following analytical velocity field{
u = sin2(α(x2 + y2))
v = cos2(α(x2 + y2))

(3.32)

with

α =
1

β((a− a0)2 + (b− b0)2
+ ε (3.33)

ε and β are given values, a, b, a0 and b0 belong to the parameter space. Note that
the selected velocity field didn’t correspond to a physical solution, this is motivated
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in one hand to obtain an exact solution for the considered PDEs system, in another
hand to create important oscillations around a0, b0 to show clearly the effect of
adaptivity . In our tests, we set β = 10, ε = 0.1, a0 = 0.4 and b0 = 0.4

Now, to force the above functions to be solutions of (3.31) with appropriate
source terms f1 and f2, we substitute their expressions into the equations and then
obtain the following new system:

{
v
(
∂u
∂y
− ∂v

∂x

)
= f1

u
(
∂v
∂x
− ∂u

∂y

)
= f2

(3.34)

where

f1 = cos2(α(x2 + y2))(x+ y)(4α sin(α(x2 + y2)) cos(α(x2 + y2))
f2 = sin2(α(x2 + y2))(x+ y)(−4α sin(α(x2 + y2)) cos(α(x2 + y2))

Consider now the problem (3.34) in a rectangular domain and impose boundary
conditions extracted from the exact solution (3.32). The rectangle is discretized
using uniform 20× 20 quads. We first start with a uniform distribution of 49 initial
points from the parameter space, referred to as P-mesh for simplicity, shown in
Fig.3.4. The deriving error is estimated using the proposed LOOCV formula. Then,
the adaptivity algorithm described in section 3.1.1 is applied.

Fig.3.5 shows the adapted P-mesh, in which we can see that the mesh is enriched
and the nodes are more concentrated in the area of high oscillations, as expected.

To assess the impact of the adapted P-mesh, error distribution is calculated by
considering the L2 norm of the difference between the exact solution and estimated
POD solution. Fig.3.6 and Fig.3.7 show the error distribution for the original P-
mesh and the adapted one. We can see that the error distribution (POD-Exact
solutions) using the original P-mesh (light gray) is sensibly reduced (dark gray)
after adaptivity.

The same tests are repeated using the Hessian-based metric of the LOOCV-based
error. The results, depicted in Figs. 3.8 and 3.9, showed similar results. Note that
in situations where the relevant parameters have an anisotropic distribution, the
use of the Hessian-based metric approach will allow capturing anisotropy and then
obtaining more efficient snapshots locations with a reduced number of snapshots.
Cross sections of error surfaces at different parameter values are depicted in Figs.
3.10, 3.11 and 3.12.

The performed tests demonstrated the efficiency of the proposed snapshots lo-
cations algorithm and the accuracy of the reconstructed POD solutions.
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Figure 3.4: Original P-Mesh: Uniform distribution

Figure 3.5: Adapted P-mesh using LOOCV-based error
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Figure 3.6: Logarithmic POD-Exact solution error distribution before(light gray)
and after (dark gray) adaptivity for β = 10, ε = 0.1

Figure 3.7: Logarithmic POD-Exact solution error distribution before(light gray)
and after (dark gray) adaptivity for β = 10, ε = 1
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Figure 3.8: Adapted P-mesh using the LOOCV-based error Hessian

Figure 3.9: Using Hessian-based error: Logarithmic POD-Exact solution error dis-
tribution before(light gray) and after (dark gray) adaptivity
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Figure 3.10: Cross section of POD-Exact solutions error distribution before(dashed
line) and after (solid line)

Figure 3.11: Cross section of POD-Exact solutions error distribution before(dashed
line) and after (solid line)
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Figure 3.12: Cross section of POD-Exact solutions error distribution before(dashed
line) and after (solid line)

3.3.2 Validation on CFD solutions: Flow Around Airfoil

For a validation against a physical CFD solutions, inviscid flow around a NAC0012
is considered. The following Euler equations are solved

∂ρ

∂t
+
∂ (ρu)

∂x
+
∂ (ρv)

∂y
= 0 (3.35)

∂ (ρu)

∂t
+

∂

∂x
(ρuu) +

∂

∂y
(ρuv) +

∂p

∂x
= 0 (3.36)

∂ (ρv)

∂t
+

∂

∂x
(ρvu) +

∂

∂y
(ρvv) +

∂p

∂y
= 0 (3.37)

∂E

∂t
+

∂

∂x

(
(E + p)u

)
+

∂

∂y

(
(E + p)u

)
= 0 (3.38)

Pressure is related to the conservative flow variables, ρ, ρu, ρv and E, by the
equation of state

p = (γ − 1)
(
E − 1

2
ρ
(
u2 + v2

) )
(3.39)

where γ is the ratio of specific heats, generally taken as γ = 1.4.
The coefficients of the dynamical system obtained after substituting the pro-

jected solution on POD basis for each field variable are given in appendix A after
neglecting third order terms in projection coefficients. Details are not given here
since and as we mentioned along this manuscript, the dynamical system is not
solved, interpolation approach is used instead to estimate the projection coefficients
(coordinates on POD basis)
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Figure 3.13: CFD mesh

The parameter space is formed by AoA and Mach number and the range (θ,M) ∈
[0, 5]× [0.3, 0.9] is selected. An unstructured mesh of 3762 triangular elements (see
Fig. 3.13 and Fig. 3.14) is used for all simulations. An initial uniform P-mesh
(parameters space) is obtained by subdividing the interval ∈ [0, 5] × [0.3, 0.9] into
10 sub-intervals,then the initials snapshots (CFD solutions) at each parameter node
are obtained using SU2 solver.The proposed algorithm is then run to improve/enrich
snapshots locations and new snapshots are calculated at new nodes. Results before
and after P-mesh improvement are compared to confirm the efficiency of the pro-
posed method already demonstrated on exact solutions in previous subsection.

Before showing results and to confirm the interpolation issue discussed in section
3.22, tests are performed on the uniform P-mesh and POD projection coefficients are
calculated using cubic-spline interpolation. Fig. 3.15 shows that for subsonic solu-
tion (smooth solutions) the interpolation can provide a good solution reconstruction
(not always unfortunately). However Fig. 3.16 shows that for transonic solutions
(shocked solution) the method faces real difficulties to reconstruct the solution as it
was pointed out before. Of course result can be improved by increasing considerably
the number of snapshots which is not a desired thing to do.

To demonstrate the efficiency the proposed snapshots locations, Fig. 3.17 shows
the uniform P-mesh and the adapted one, as one can expect the P-mesh is enriched
in the area of high Mach and High AoA for which the physics is more complex. This
confirms the validity of the proposed a posteriori error LOOCV proposed formula.
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Figure 3.14: CFD mesh -zoom
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Figure 3.15: Airfoil Pressure (AoA=3.125, M=0.375):Subsonic CFD and POD so-
lutions
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Figure 3.16: Airfoil Pressure (AoA=3.125, M=0.75):Transonic CFD and POD solu-
tions

0 2 4 6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.17: Initial (left) and Adapted (right) P-mesh: Snapshot locations insertion
and improvement
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POD solution: Adapted Snapshots using closest paraeters interp.

Figure 3.18: Airfoil Pressure(AoA=3.125, M=0.6): Before and after snapshots lo-
cations improvement

As we mentioned in this chapter taking the closest snapshot based on the closest
parameters is not accurate, Figs. 3.18, 3.19 and 3.20 depict airfoil pressure distri-
butions for different AoA and MAch numbers on adapted . The results show a clear
discrepancy between POD solutions and CFD solutions. This demonstrates that
the use of closest snapshot based on closest parameter is not the best choice. In the
following this results will be repeated with the proposed closest snapshot estimation
method

For the rest of the tests, the proposed closest snapshot (subsection 3.2.2) is
used. Figs.3.24, 3.21, 3.25, 3.22 and 3.23 show for different values of AoA and Mach
numbers (from subsonic to supersonic regimes) the reconstructed POD solution
before and after adaptation. First Figs.3.21, 3.22, 3.23 are the same tests done
above to evaluate closest snapshot parameters based, we can see that using the
proposed ’interpolation’ (prediction-correction based) results are sensibly improved.

The whole showed tests confirm the effectiveness of the proposed strategy to
build a POD method for PDEs already demonstrated with the exact solutions tests.
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Figure 3.19: Airfoil Pressure (AoA=2.5, M=0.75): Before and after snapshots loca-
tions improvement
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Figure 3.20: Airfoil Pressure (AoA=3.125, M=0.75): Before and after snapshots
locations improvement
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Figure 3.21: Airfoil Pressure (AoA=3.125, M=0.6): Before and after snapshots
locations improvement
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Figure 3.22: Airfoil Pressure(AoA=2.5, M=0.75): Before and after snapshots loca-
tions improvement
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Figure 3.23: Airfoil Pressure (AoA=3.125, M=0.75): Before and after snapshots
locations improvement
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Figure 3.24: Airfoil Pressure (AoA=3.75, M=0.6): Before and after snapshots loca-
tions improvement
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Figure 3.25: Airfoil Pressure (AoA=2.5, M=0.675): Before and after snapshots
locations improvement
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ROMs Coupling Strategy

It was observed in literature that using POD (or any ROM method), results can be
improved by decomposing the parameter domain into subdomains and then build
different POD basis with low dimensions for each subdomain, this will reduce the
prohibitive cost of a global high dimension POD basis (for high dimension parameter
space) while keeping the same accuracy. Many strategies are proposed [3, 28, 29,
30, 37, 65, 89, 22]. In this chapter, we are not concerned by the cost but rather by
unceasing the accuracy by coupling different ROMs methods on the same domain
and this, to our knowledge, was never done. As we mentioned in the introduction,
the POD method yields an optimal set of basis functions in the sense that no other
decomposition of the same order captures an equivalent amount of kinetic energy
[62, 58]. So any attempt to couple the method with any other ROM will result
in degrading the accuracy. This is not completely true, let’ first recall the POD
optimality theorem,

Theorem. Let VM = Span{Ψ1, ...,ΨM} ⊂ H = L2(Ω), then for a subspace QM =
Span{W1, ...,WM} ⊂ H we have:∫

Λ

dH(u(., ., γ), VM)dγ ≤
∫
Λ

dH(u(., ., γ), QM)dγ (4.1)

where dH(u(., ., γ), VM) is a distance from u(., ., γ) to the subspace VM

As we can see from the theorem, POD optimality is guaranteed in the sense
of average over the parameter space. This optimality is not satisfied pointwise, as
we will demonstrate later on. So, the idea is to build another basis under some
criterion such that the POD results could be improved in some areas (locally) of the
parameter space Λ by coupling without contradicting the optimality theorem.

Let to illustrate the idea on a very simple example: consider 3 vectors in the
R3, where two of them are orthogonal and span the horizontal plan as in Fig.4.1.
The third one is has an angle of 45 degrees with respect to the horizontal plane.
Assume that we want to build a POD model of two dimensions (a plane) from the
given vectors to represent the three vectors. Applying the POD method will result
in the light grey plane passing between the horizontal one and the third vector as
in Fig.4.2. Now, it is clear that three vectors close or belonging to the horizontal
plane will be better represented by the horizontal plane. So, the idea is then to
build another basis (ROM) that spans the horizontal plane and to find a mechanism
such each vector of the initial space is projected on the appropriate plane. The first
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challenge is to build a basis system (ROM) that could locally improve the results
of the classical POD method, to take advantage of the coupling. In the following
section we propose an example of a basis system that fulfils such a condition.

Figure 4.1: Three vectors in R3 and the horizontal plan

Figure 4.2: Light-gray plan shows the 2D plan obtained using POD

4.1 Locally competitive ROM

As mentioned above, before considering any coupling, we need first to build a ROM
or equivalently a basis system from the snapshots that can locally improve the POD
results. For such a purpose we need a criterion prior building the targeted basis
system. First, note that the best scenario in building any snapshot-based basis is
to have snapshots that are already orthogonal, assuming of course that the snap-
shots locations are optimal (in the broad sense), which can be obtained with the
proposed adaptivity process (using the already built POD system). This case, the
basis elements are solutions of the considered PDE providing consequently a max-
imum (local) information of the PDE. Consequently we can advance the following
criterion; when building a basis system for a competitive ROM, the basis elements
have to stay as close as possible to the snapshots, in another word, the desired basis
system should be built with a minimum change of the original system of snapshots.
Mathematically we can formulate this criterion as:

If we refer by W1, ...,Wd to the desired basis, and φ1, ..., φd to the snapshots, then

{W1, ...,Wd} = Arg

[
max
U,σ

d∑
k=1

|
(
Uk, φσ(k)

)
H
|

‖Uk‖H‖φσ(k)‖H
, subject to U1, ..., Ud orthogonal

]
(4.2)
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where H is a functional space, in general H = L2 or H = H1, and σ are
all possible one-to-one functions from a natural number set of dimension d (the
desirable dimension) onto a natural numbered set of dimension N (the initial shots
set size).

It is very difficult to solve the optimization problem (4.2) exactly, instead we will
provide an algorithm that attempts to follow the spirit of the criterion, after which
some validation will be provided.

4.1.1 Sorted Gram Schmidt (SGS) algorithm

We propose to build new basis from the snapshots using the classical Gram Schmidt
process but after sorting the snapshots according to problem (4.2). We refer to this
procedure as the Sorted Gram Schmidt (SGS) algorithm.

The algorithm is summarized as follows.

1. Find the least correlated two snapshots among the set of snapshots.

2. Apply Gram-Schmidt (GS) orthogonalization for the two snapshots found in
step 1.

3. Find the least correlated snapshot to the previous subspace spanned by the
basis elements built so far.

4. Complete GS orthogonalization with the selected snapshot in 3.

5. Use the correlation computed in 3 as a stopping test. If it is bigger than a
given threshold stop, otherwise repeat from step 3.

4.2 POD-SGS coupling

To couple the POD and the SGS methods, we need first to have an error distribution
on the P-mesh nodes for each method, such that for any new solution estimate (at
new parameter node) we first interpolate the error for both method and then go
with the lowest one. Of course the LOOCV can be used however we cannot use the
proposed cost-effective formula for SGS since it is valid for POD only. Therefore we
propose to use a project-based error. This is is defined as follow:

Let φi be a given shot of the set S = {φ1, ..., φN}, let B = {Ψ1, ...,ΨM}, be the
corresponding POD or SGS basis. The error at Node i is taken to be,

Erri =
‖φi −

∑M
j=1

(
(φi,Ψj) Ψj

)
‖

‖φi‖
(4.3)

Of course we need to have in general M < N .
This error distribution is calculated for both method POD and SGS. This error is

estimating how well each snapshot is represented by the POD or SGS subspace. Now,
by interpolating on the P-mesh, we can estimate the error for a new targeted solution
(prior to solving) for both POD and SGS and then select the more appropriate
method to use based on the smallest error.

The proposed coupling strategy efficiency is validated on an exact (mathematical)
solution in the following subsection.
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4.3 Validation

Considering the same system as in the chapter 3 (3.31):

{
v
(
∂u
∂y
− ∂v

∂x

)
= 0

u
(
∂v
∂x
− ∂u

∂y

)
= 0

(4.4)

And the following velocity field

u = v =


e

β2

(x− a)2 + (y − a)2 − β2
, if(x− a)2 + (y − a)2 < β2

0, else

(4.5)

where, a is a parameter and β is the width of the bell. In our tests we set β = 0.4.
Using the same process, substituting this expression into equation (4.4), we force it
to be the exact solution of similar equations

{
v
(
∂u
∂y
− ∂v

∂x

)
= f1

u
(
∂v
∂x
− ∂u

∂y

)
= f2

(4.6)

with source terms

f1 = (x− y)
2β2(

(x− a)2 + (y − a)2 − β2
)2 e

2β2

(x− a)2 + (y − a)2 − β2

f2 = (y − x)
2β2(

(x− a)2 + (y − a)2 − β2
)2 e

2β2

(x− a)2 + (y − a)2 − β2

The goal of this test is to demonstrate the possibility of coupling two ROMs (here
POD and SGS) using the proposed strategy to achieve a local improvements of the
efficiency of both methods. The POD method and the proposed SGS method were
coupled as described in section 4.2 using the POD-projection and SGS-projection
based errors.

Fig.4.3 shows the error-distribution solution for both methods, which clearly
demonstrates that POD optimality is not satisfied pointwise.

Fig.4.4 shows that the errors in the POD and SGS solutions behave with per-
fect agreement with the corresponding POD-projection and SGS-projection errors,
shown in the previous picture. This confirms our expectations and justifies the cou-
pling procedure. Fig.4.5 shows the solution error of the coupled POD-SGS, we can
see that the coupling is effective, the coupled method takes the best solutions from
each method.
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Figure 4.4: Solution error distribution for the POD and SGS based ROM

Figure 4.3: POD-projection and SGS-projection error distribution
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Figure 4.5: Solution error using coupled POD-SGS
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Conclusion

Reduction Order Methods (ROMS), received a sensitive interest growth last two
decades, the principle is to reduce a problem initially defined in a high dimension
space to an equivalent problem (up to a desired accuracy) defined in a sensitively
low dimension for a cost-effectiveness solving and better analysis of inherent phe-
nomena. This work deals with one of most popular ROMs, the Proper Orthogonal
Decomposition (POD) in the context of partial differential equations (PDEs). Where
parameters dependent solutions are first solved for a given set of parameters (called
snapshots solutions) using a classical (yet expensive) CFD solver and then a POD
subspace (with a reduced dimension) is built, spanned by a basis system obtained
from the snapshots. Any new solution (for new parameters value) is then projected
onto the POD subspace and then reconstructed with low cost. To build an efficient
POD system, two challenging steps that received a big interest in literature are
crucial, first the initial selection of the snapshots or equivalently the initial distri-
bution of parameters, and alternatively, the mostly used terminology (adopted in
this work), snapshots locations. Second the error estimate on the parameters space
that drive the snapshots locations process. Note that as a consequence of these two
steps, POD applied to PDEs is considered as belonging to the well-known Greedy
algorithm family.

In this work we proposed an error estimate based on the a Leave-One-Out Cross-
Validation method (LOOCV) technique. Each snapshot is disregarded and then the
POD system is built with the remaining snapshots and the error is calculated at the
considered parameter node to be the sensibility of the POD system to the absence of
the considered snapshot. This has the advantage of being a universal upper bound
error in the sense it is problem independent. However this is prohibitive for large
systems due to the fact that the POD basis needs to be re-built for each disregarded
node. To remedy to this shortcoming, a theorem is proven providing a formula to
estimate the LOOCV error avoiding recalculating the POD system.

To drive the snapshot location selection an adaptive approach base on the well-
known mesh adaptivity in CFD is proposed.

In this work we showed as well that using interpolation to estimate the projec-
tion coefficients on the POD basis has as a consequence a bad shocks capturing, as
mentioned by many authors. A new interpolation (for shocked solutions) approach
is then proposed based on the prediction-correction principle. The projection coeffi-
cients are first estimated with any interpolation technique, then the closest snapshot
(based on the projection coefficients, not parameters) is taken as the POD solution.
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The whole proposed strategy efficiency is validated against a mathematical (ex-
act) solutions of an incompressible, steady state flow equations, and on CFD solu-
tions of an inviscid flow around a NACA0012.

Another contribution of the thesis is a strategy to couple ROMs. It is pointed-
out first that the POD is optimal in an average sense which mean that there is a
room for a local improvement if it is coupled properly with another ROMs. We
showed how to build a new basis for a ROM, based on a small modification of the
Gram Schmidt algorithm that can do better locally than the POD. Then we provide
how to do the coupling using a projection-based error. This strategy is validated on
mathematical (exact) solutions of an incompressible, steady state flow equations.

Future work

As a future work we will intend to achieve more CFD tests for a more complete vali-
dation on more complex geometries and flows. We will investigate the exact solution
of the challenging optimization problem we proposed for the coupling process.
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Euler Equations projection onto
Orthogonal POD Ψi modes

A.1 Euler Equations

Find here below stated the Euler equations for a two dimensional case. First conser-
vation of mass, second and third conservation of momentum and finally conservation
of energy. See [71] for more details.

∂ρ

∂t
+
∂ (ρu)

∂x
+
∂ (ρv)

∂y
= 0 (A.1)

∂ (ρu)

∂t
+

∂

∂x
(ρuu) +

∂

∂y
(ρuv) +

∂p

∂x
= 0 (A.2)

∂ (ρv)

∂t
+

∂

∂x
(ρvu) +

∂

∂y
(ρvv) +

∂p

∂y
= 0 (A.3)

∂E

∂t
+

∂

∂x

(
(E + p)u

)
+

∂

∂y

(
(E + p)u

)
= 0 (A.4)

Pressure is related to the conservative flow variables, ρ, ρu, ρv and E, by the
equation of state

p = (γ − 1)
(
E − 1

2
ρ
(
u2 + v2

) )
(A.5)

where γ is the ratio of specific heats, generally taken as γ = 1.4.
In next, m1 = ρu and m2 = ρv. Then

∂ρ

∂t
+
∂ (m1)

∂x
+
∂ (m2)

∂y
= 0 (A.6)

∂ (m1)

∂t
+

∂

∂x
(m1u) +

∂

∂y
(m1v) +

∂p

∂x
= 0 (A.7)

∂ (m2)

∂t
+

∂

∂x
(m2u) +

∂

∂y
(m2v) +

∂p

∂y
= 0 (A.8)

∂E

∂t
+

∂

∂x

(
(E + p)u

)
+

∂

∂y

(
(E + p)u

)
= 0 (A.9)
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A.2 Vector integration by parts. Green’s Theo-

rem

∫
Ω

u∇ · FdΩ =

∫
S

uF · ndS −
∫

Ω

(∇u) · FdΩ (A.10)

A.3 Euler Equations projection onto Orthogonal

POD Ψi modes

Now, as detailed in section 2.2.2, and in equation 2.11, Euler equations will be
projected onto the orthogonal POD reduced basis, formed by modes Ψi,

∫
Ω

∂ρ

∂t
Ψρ
i +

∫
Ω

∂m1

∂t
Ψm1
i +

∫
Ω

∂m2

∂t
Ψm2
i +

∫
Ω

∂E

∂t
ΨE
i +∫

Ω

∂m1

∂x
Ψρ
i +

∫
Ω

∂m2

∂y
Ψρ
i+∫

Ω

∂um1

∂x
Ψm1
i +

∫
Ω

∂vm1

∂y
Ψm1
i +

∫
Ω

∂p

∂x
Ψm1
i +∫

Ω

∂um2

∂x
Ψm2
i +

∫
Ω

∂vm2

∂y
Ψm2
i +

∫
Ω

∂p

∂y
Ψm2
i +∫

Ω

∂

∂x

(
(E + p)u

)
ΨE
i +

∫
Ω

∂

∂y

(
(E + p) v

)
ΨE
i = 0

(A.11)

∫
Ω

∂ρ

∂t
Ψρ
i +

∫
Ω

∂m1

∂t
Ψm1
i +

∫
Ω

∂m2

∂t
Ψm2
i +

∫
Ω

∂E

∂t
ΨE
i +∫

Ω

∇ ·
(
m1

m2

)
Ψρ
i +

∫
Ω

∇ ·

(
m1

(
u

v

))
Ψm1
i +

∫
Ω

∇ ·

(
m2

(
u

v

))
Ψm2
i +

∫
Ω

∂p

∂x
Ψm1
i +

∫
Ω

∂p

∂y
Ψm2
i +

∫
Ω

∇ ·

(
(E + p)

(
u

v

))
ΨE
i = 0

(A.12)

Applying Green’s Theorem vector integration by parts A.10 to equation A.12,
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∫
Ω

∂ρ

∂t
Ψρ
i +

∫
Ω

∂m1

∂t
Ψm1
i +

∫
Ω

∂m2

∂t
Ψm2
i +

∫
Ω

∂E

∂t
ΨE
i +∫

∂Ω

((
m1

m2

)
n

)
Ψρ
i −

∫
Ω

(
m1

m2

)
· ∇Ψρ

i+∫
∂Ω

((
m1u

m1v

)
n

)
Ψm1
i −

∫
Ω

(
m1u

m1v

)
· ∇Ψm1

i +

∫
∂Ω

((
p

0

)
n

)
Ψm1
i −

∫
Ω

p · ∂
∂x

Ψm1
i +

∫
∂Ω

((
m2u

m2v

)
n

)
Ψm2
i −

∫
Ω

(
m2u

m2v

)
· ∇Ψm2

i +

∫
∂Ω

((
0

p

)
n

)
Ψm2
i −

∫
Ω

p · ∂
∂y

Ψm2
i +

∫
∂Ω

((
(E + p)u

(E + p) v

)
n

)
ΨE
i −

∫
Ω

(
(E + p)u

(E + p) v

)
· ∇ΨE

i

(A.13)

where ∂Ω are all the boundaries which are formed by two: the Farfield Γ1 and the
airfoil surface Γ2. Remember that all integrals related to velocity and belonging
to airfoil surface boundary Γ2 are zero, since velocities there are orthogonal to n
vector. Finally, find here all the terms of the Dynamical System with its respective
boundary terms:

∫
Ω

∂ρ

∂t
Ψρ
i +

∫
Ω

∂m1

∂t
Ψm1
i +

∫
Ω

∂m2

∂t
Ψm2
i +

∫
Ω

∂E

∂t
ΨE
i +

−
∫

Ω

(
m1

m2

)
· ∇Ψρ

i −
∫

Ω

(
m1u

m1v

)
· ∇Ψm1

i −
∫

Ω

p · ∂
∂x

Ψm1
i −∫

Ω

(
m2u

m2v

)
· ∇Ψm2

i −
∫

Ω

p · ∂
∂y

Ψm2
i −

∫
Ω

(
(E + p)u

(E + p) v

)
· ∇ΨE

i +∫
Γ1

((
m1

m2

)
n

)
Ψρ
i +

∫
Γ1

((
m1u

m1v

)
n

)
Ψm1
i +

∫
Γ1

p nxΨ
m1
i +

∫
Γ1

((
m2u

m2v

)
n

)
Ψm2
i +

∫
Γ1

p nyΨ
m2
i +

∫
Γ1

((
(E + p)u

(E + p) v

)
n

)
ΨE
i +∫

Γ2

p nxΨ
m1
i +

∫
Γ2

p nyΨ
m2
i = 0

(A.14)

Now we introduce the separation of variables by POD modes Ψi(x)for each of
the conservative variables:
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ρ(x, t) = ρ̄+
N∑
j=1

yj(t)Ψ
ρ
j (x)

m1(x, t) = m̄1 +
N∑
j=1

yj(t)Ψ
m1
j (x)

m2(x, t) = m̄2 +
N∑
j=1

yj(t)Ψ
m2
j (x)

E(x, t) = Ē +
N∑
j=1

yj(t)Ψ
E
j (x)

(A.15)

where N is the number of modes of the Reduced Basis, ρ̄, m̄1, m̄2, Ē are the average
values and Ψρ

j (x),Ψm1
j (x),Ψm2

j (x),ΨE
j (x) are the modes separated for each of the

conservative variables respectively. Notice that in this formulation just one yj(t)
has stated common to all the variables.

Find below the development for each of the terms fo equation A.14 separately:

∫
Ω

∂ρ

∂t
Ψρ
i =

∫
Ω

∂

∂t

(
ρ̄+

N∑
j=1

yjΨ
ρ
j

)
Ψρ
i =

∂

∂t

N∑
j=1

yj

∫
Ω

Ψρ
jΨ

ρ
i =

∂

∂t
yi (A.16)

since
∂ρ̄

∂t
= 0 (A.17)

and ∫
Ω

ΨiΨj = δij (A.18)

where

δij =

{
0 fori 6= j

1 fori = j
(A.19)

is the Kroenecker delta symbol. Next three terms of (A.14) are developed in a
similar way. Shortly: ∫

Ω

∂m1

∂t
Ψm1
i =

∂

∂t
yi (A.20)

∫
Ω

∂m2

∂t
Ψm2
i =

∂

∂t
yi (A.21)

∫
Ω

∂E

∂t
ΨE
i =

∂

∂t
yi (A.22)

Fifth term of (A.14):
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∫
Ω

(
m1

m2

)
· ∇Ψρ

i =

∫
Ω

m1
∂

∂x
Ψρ
i +

∫
Ω

m2
∂

∂y
Ψρ
i =∫

Ω

(
m̄1 +

N∑
j=1

yjΨ
m1
j

)
∂

∂x
Ψρ
i +

∫
Ω

(
m̄2 +

N∑
j=1

yjΨ
m2
j

)
∂

∂y
Ψρ
i =

N∑
j=1

yj

(∫
Ω

Ψm1
j

∂

∂x
Ψρ
i +

∫
Ω

Ψm2
j

∂

∂y
Ψρ
i

)
+

∫
Ω

m̄1
∂

∂x
Ψρ
i +

∫
Ω

m̄2
∂

∂y
Ψρ
i

(A.23)

In a similar way are developed the next terms. Remember that u = m1

ρ
and

v = m2

ρ
, and pressure p is related to the conservative flow variables, ρ, ρu, ρv and E,

by the equation of state A.5. Just take in to account that for the sake of simplicity,
variables appearing in any denominator have not been expanded by equations A.15
but approximated by its average values ρ̄, m̄1, m̄2 and Ē respectively.

∫
Ω

(
m1u

m1v

)
· ∇Ψm1

i =

∫
Ω

m1 u
∂

∂x
Ψm1
i +

∫
Ω

m1 v
∂

∂y
Ψm1
i =∫

Ω

m2
1

ρ̄

∂

∂x
Ψm1
i +

∫
Ω

m1m2

ρ̄

∂

∂y
Ψm1
i =

∫
Ω

(
m̄1 +

∑N
j=1 yjΨ

m1
j

)2

ρ̄

∂

∂x
Ψm1
i +

∫
Ω

(
m̄1 +

∑N
j=1 yjΨ

m1
j

)(
m̄2 +

∑N
j=1 yjΨ

m2
j

)
ρ̄

∂

∂y
Ψm1
i =

N∑
j,k=1

yjyk

(∫
Ω

1

ρ̄
Ψm1
j Ψm1

k

∂

∂x
Ψm1
i +

∫
Ω

1

ρ̄
Ψm1
j Ψm2

k

∂

∂y
Ψm1
i

)
+

N∑
j=1

yj

(∫
Ω

2m̄1

ρ̄
Ψm1
j

∂

∂x
Ψm1
i +

∫
Ω

m̄1

ρ̄
Ψm2
j

∂

∂y
Ψm1
i +

∫
Ω

m̄2

ρ̄
Ψm1
j

∂

∂y
Ψm1
i

)
+

∫
Ω

m̄2
1

ρ̄

∂

∂x
Ψm1
i +

∫
Ω

m̄1m̄2

ρ̄

∂

∂y
Ψm1
i

(A.24)

∫
Ω

p · ∂
∂x

Ψm1
i = · · · =

0.4

[
N∑

j,k=1

yjyk

(
(−)

∫
Ω

1

2ρ̄
Ψm1
j Ψm1

k

∂

∂x
Ψm1
i −

∫
Ω

1

2ρ̄
Ψm2
j Ψm2

k

∂

∂x
Ψm1
i

)
+

N∑
j=1

yj

(∫
Ω

ΨE
j

∂

∂x
Ψm1
i −

∫
Ω

m̄1

ρ̄
Ψm1
j

∂

∂x
Ψm1
i −

∫
Ω

m̄2

ρ̄
Ψm2
j

∂

∂x
Ψm1
i

)
+

∫
Ω

Ē
∂

∂x
Ψm1
i −

∫
Ω

m̄1
2

2ρ̄

∂

∂x
Ψm1
i −

∫
Ω

m̄2
2

2ρ̄

∂

∂x
Ψm1
i

]
(A.25)

55



Chapter A

∫
Ω

(
m2u

m2v

)
· ∇Ψm2

i = · · · =

N∑
j,k=1

yjyk

(∫
Ω

1

ρ̄
Ψm1
j Ψm2

k

∂

∂x
Ψm2
i +

∫
Ω

1

ρ̄
Ψm2
j Ψm2

k

∂

∂y
Ψm2
i

)
+

N∑
j=1

yj

(∫
Ω

m̄1

ρ̄
Ψm2
j

∂

∂x
Ψm2
i +

∫
Ω

m̄2

ρ̄
Ψm1
j

∂

∂x
Ψm2
i +

∫
Ω

¯2m2

ρ̄
Ψm2
j

∂

∂y
Ψm2
i

)
+∫

Ω

m̄1m̄2

ρ̄

∂

∂x
Ψm2
i +

∫
Ω

m̄2
2

ρ̄

∂

∂y
Ψm2
i

(A.26)

∫
Ω

p · ∂
∂y

Ψm2
i = · · · =

0.4

[
N∑

j,k=1

yjyk

(
−
∫

Ω

1

2ρ̄
Ψm1
j Ψm1

k

∂

∂y
Ψm2
i −

∫
Ω

1

2ρ̄
Ψm2
j Ψm2

k

∂

∂y
Ψm2
i

)
+

N∑
j=1

yj

(∫
Ω

ΨE
j

∂

∂y
Ψm2
i −

∫
Ω

m̄1

ρ̄
Ψm1
j

∂

∂y
Ψm2
i −

∫
Ω

m̄2

ρ̄
Ψm2
j

∂

∂y
Ψm2
i

)
+

∫
Ω

Ē
∂

∂y
Ψm2
i −

∫
Ω

m̄2
2

2ρ̄

∂

∂y
Ψm2
i −

∫
Ω

m̄1
2

2ρ̄

∂

∂y
Ψm2
i

]
(A.27)

56



I. Bidaguren

∫
Ω

(
(E + p)u

(E + p) v

)
· ∇ΨE

i = · · · =

N∑
j,k=1

yjyk

(
−
∫

Ω

0.2m̄1

ρ̄2
Ψm1
j Ψm1

k

∂

∂x
ΨE
i −

∫
Ω

0.2m̄1

ρ̄2
Ψm2
j Ψm2

k

∂

∂x
ΨE
i −∫

Ω

0.4m̄1

ρ̄2
Ψm1
j Ψm1

k

∂

∂x
ΨE
i −

∫
Ω

0.4m̄2

ρ̄2
Ψm2
j Ψm1

k

∂

∂x
ΨE
i −∫

Ω

0.2m̄2

ρ̄2
Ψm1
j Ψm1

k

∂

∂y
ΨE
i −

∫
Ω

0.2m̄2

ρ̄2
Ψm2
j Ψm2

k

∂

∂y
ΨE
i −∫

Ω

0.4m̄1

ρ̄2
Ψm1
j Ψm2

k

∂

∂y
ΨE
i −

∫
Ω

0.4m̄2

ρ̄2
Ψm2
j Ψm2

k

∂

∂y
ΨE
i +∫

Ω

1.4

ρ̄
ΨE
j Ψm1

k

∂

∂x
ΨE
i +

∫
Ω

1.4

ρ̄
ΨE
j Ψm2

k

∂

∂y
ΨE
i

)
+

N∑
j=1

yj

(∫
Ω

1.4

ρ̄
ΨE
j m̄1

∂

∂x
ΨE
i −

∫
Ω

0.4

ρ̄2
m̄1

2Ψm1
j

∂

∂x
ΨE
i −∫

Ω

0.4

ρ̄2
m̄2m̄1Ψm2

j

∂

∂x
ΨE
i −

∫
Ω

0.2

ρ̄2
m̄1

2Ψm1
j

∂

∂x
ΨE
i −∫

Ω

0.2

ρ̄2
m̄2

2Ψm1
j

∂

∂x
ΨE
i +

∫
Ω

1.4

ρ̄
m̄2ΨE

j

∂

∂y
ΨE
i −∫

Ω

0.4

ρ̄2
m̄2m̄1Ψm1

j

∂

∂y
ΨE
i −

∫
Ω

0.4

ρ̄2
m̄2

2Ψm2
j

∂

∂y
ΨE
i −∫

Ω

0.2

ρ̄2
m̄1

2Ψm2
j

∂

∂y
ΨE
i −

∫
Ω

0.2

ρ̄2
m̄2

2Ψm2
j

∂

∂y
ΨE
i +∫

Ω

1.4

ρ̄
ĒΨm1

j

∂

∂x
ΨE
i +

∫
Ω

1.4

ρ̄
ĒΨm2

j

∂

∂y
ΨE
i

)
+∫

Ω

1.4

ρ̄
Ēm̄1

∂

∂x
ΨE
i −

∫
Ω

0.2

ρ̄2
m̄1

3 ∂

∂x
ΨE
i −∫

Ω

0.2

ρ̄2
m̄2

2m̄1
∂

∂x
ΨE
i +

∫
Ω

1.4

ρ̄
Ēm̄2

∂

∂y
ΨE
i −∫

Ω

0.2

ρ̄2
m̄2

3 ∂

∂y
ΨE
i −

∫
Ω

0.2

ρ̄2
m̄1

2m̄2
∂

∂y
ΨE
i

(A.28)

Integrals over boundaries are treated next. First find the only two terms related
to the airfoil boundary Γ2:
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∫
Γ2

pnxΨ
m1
i = · · · =

0.4

[
N∑

j,k=1

yjyk

(
(−)

∫
Γ2

1

2ρ̄
Ψm1
j Ψm1

k nxΨ
m1
i −

∫
Γ2

1

2ρ̄
Ψm2
j Ψm2

k nxΨ
m1
i

)
+

N∑
j=1

yj

(∫
Γ2

ΨE
j nxΨ

m1
i −

∫
Γ2

m̄1

ρ̄
Ψm1
j nxΨ

m1
i −

∫
Γ2

m̄2

ρ̄
Ψm2
j nxΨ

m1
i

)
+

∫
Γ2

ĒnxΨ
m1
i −

∫
Γ2

m̄1
2

2ρ̄
nxΨ

m1
i −

∫
Γ2

m̄2
2

2ρ̄
nxΨ

m1
i

]
(A.29)

∫
Γ2

pnyΨ
m2
i = · · · =

0.4

[
N∑

j,k=1

yjyk

(
(−)

∫
Γ2

1

2ρ̄
Ψm1
j Ψm1

k nyΨ
m2
i −

∫
Γ2

1

2ρ̄
Ψm2
j Ψm2

k nyΨ
m2
i

)
+

N∑
j=1

yj

(∫
Γ2

ΨE
j nyΨ

m2
i −

∫
Γ2

m̄1

ρ̄
Ψm1
j nyΨ

m2
i −

∫
Γ2

m̄2

ρ̄
Ψm2
j nyΨ

m2
i

)
+

∫
Γ2

ĒnyΨ
m2
i −

∫
Γ2

m̄1
2

2ρ̄
nyΨ

m2
i −

∫
Γ2

m̄2
2

2ρ̄
nyΨ

m2
i

]
(A.30)

And all integrals over Farfield boundary Γ1,

∫
Γ1

((
m1

m2

)
n

)
Ψρ
i +

∫
Γ1

((
m1u

m1v

)
n

)
Ψm1
i +

∫
Γ1

p nxΨ
m1
i +

∫
Γ1

((
m2u

m2v

)
n

)
Ψm2
i +

∫
Γ1

p nyΨ
m2
i +

∫
Γ1

((
(E + p)u

(E + p) v

)
n

)
ΨE
i =∫

Γ1

m1nxΨ
ρ
i +

∫
Γ1

m2nyΨ
ρ
i +

∫
Γ1

m2
1

ρ̄
nxΨ

m1
i +∫

Γ1

m1m2

ρ̄
nyΨ

m1
i +

∫
Γ1

p nxΨ
m1
i +

∫
Γ1

m1m2

ρ̄
nxΨ

m2
i +∫

Γ1

m2
2

ρ̄
nyΨ

m2
i +

∫
Γ1

p nyΨ
m2
i +∫

Γ1

(E + p)m1

ρ̄
nxΨ

E
i +

∫
Γ1

(E + p)m2

ρ̄
nyΨ

E
i

(A.31)

All terms of system of equations A.14 have been developped. Now, all of them
can be merged so the general ODE system can be written as follows:(

4
∂yi
∂t

+ ai

)
+

N∑
j=1

bi,j yj +
N∑

j,k=1

ci,j,k yjyk = 0 (A.32)
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that yields to the Dynamical System to solve and find function yi:

∂yi
∂t

=
1

4

(
−ai −

N∑
j=1

bi,j yj −
N∑

j,k=1

ci,j,k yjyk

)
(A.33)

where in next lines can be found the terms ai, bi,j and ci,j,k:

ai = −
∫

Ω

m̄1
∂Ψρ

i

∂x
−
∫

Ω

m̄2
∂Ψρ

i

∂y
−
∫

Ω

m̄1
2

¯rho

∂Ψm1
i

∂x
−∫

Ω

m̄1m̄2

¯rho

∂Ψm1
i

∂y
− 0.4

∫
Ω

Ē
∂Ψm1

i

∂x
Ψm1
i + 0.2

∫
Ω

m̄1
2

ρ̄

∂Ψm1
i

∂x
+

0.2

∫
Ω

m̄2
2

ρ̄

∂Ψm1
i

∂x
−
∫

Ω

m̄1m̄2

ρ̄

∂Ψm2
i

∂x
Ψm2
i −

∫
Ω

m̄2
2

ρ̄

∂Ψm2
i

∂y
−

0.4

∫
Ω

Ē
∂Ψm2

i

∂y
+ 0.2

∫
Ω

m̄2
2

ρ̄

∂Ψm2
i

∂y
+ 0.2

∫
Ω

m̄1
2

ρ̄

∂Ψm2
i

∂y
−

1.4

∫
Ω

Ēm̄1

ρ̄

∂ΨE
i

∂x
+ 0.2

∫
Ω

m̄1
3

ρ̄2

∂ΨE
i

∂x
+ 0.2

∫
Ω

m̄2
2m̄1

ρ̄2

∂ΨE
i

∂x
−

1.4

∫
Ω

Ēm̄2

ρ̄

∂ΨE
i

∂y
+ 0.2

∫
Ω

m̄2
3

ρ̄2

∂ΨE
i

∂y
+ 0.2

∫
Ω

m̄1
2m̄2

ρ̄2

∂ΨE
i

∂y
+

0.4

∫
Γ2

ĒnxΨ
m1
i − 0.2

∫
Γ2

m̄1
2

2ρ̄
nxΨ

m1
i − 0.2

∫
Γ2

m̄2
2

2ρ̄
nxΨ

m1
i +

0.4

∫
Γ2

ĒnyΨ
m2
i − 0.2

∫
Γ2

m̄1
2

2ρ̄
nyΨ

m2
i − 0.2

∫
Γ2

m̄2
2

2ρ̄
nyΨ

m2
i +∫

Γ1

m1nxΨ
ρ
i +

∫
Γ1

m2nyΨ
ρ
i +

∫
Γ1

m2
1

ρ̄
nxΨ

m1
i +

∫
Γ1

m1m2

ρ̄
nyΨ

m1
i +∫

Γ1

p nxΨ
m1
i +

∫
Γ1

m1m2

ρ̄
nxΨ

m2
i +

∫
Γ1

m2
2

ρ̄
nyΨ

m2
i +

∫
Γ1

p nyΨ
m2
i +∫

Γ1

(E + p)m1

ρ̄
nxΨ

E
i +

∫
Γ1

(E + p)m2

ρ̄
nyΨ

E
i

(A.34)
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bi,j = −
∫

Ω

Ψm1
j

∂Ψρ
i

∂x
−
∫

Ω

Ψm2
j

∂Ψρ
i

∂y
− 2

∫
Ω

m̄1

ρ̄
Ψm1
j

∂Ψm1
i

∂x
−∫

Ω

m̄1

ρ̄
Ψm2
j

∂Ψm1
i

∂y
−
∫

Ω

m̄2

ρ̄
Ψm1
j

∂Ψm1
i

∂y
− 0.4

∫
Ω

ΨE
j

∂Ψm1
i

∂x
+

0.4

∫
Ω

m̄1

ρ̄
Ψm1
j

∂Ψm1
i

∂x
+ 0.4

∫
Ω

m̄2

ρ̄
Ψm2
j

∂Ψm1
i

∂x
−
∫

Ω

m̄1

ρ̄
Ψm2
j

∂Ψm2
i

∂x
−∫

Ω

m̄2

ρ̄
Ψm1
j

∂Ψm2
i

∂x
− 2

∫
Ω

m̄2

ρ̄
Ψm2
j

∂Ψm2
i

∂y
− 0.4

∫
Ω

ΨE
j

∂Ψm2
i

∂y
+

0.4

∫
Ω

m̄1

ρ̄
Ψm1
j

∂Ψm2
i

∂y
+ 0.4

∫
Ω

m̄2

ρ̄
Ψm2
j

∂Ψm2
i

∂y
− 1.4

∫
Ω

m̄1

ρ̄
ΨE
j

∂ΨE
i

∂x
+

0.6

∫
Ω

m̄1
2

ρ̄2
Ψm1
j

∂ΨE
i

∂x
+ 0.4

∫
Ω

m̄2m̄1

ρ̄2
Ψm2
j

∂ΨE
i

∂x
+ 0.2

∫
Ω

m̄2
2

ρ̄2
Ψm1
j

∂ΨE
i

∂x
−

1.4

∫
Ω

m̄2

ρ̄
ΨE
j

∂ΨE
i

∂y
+ 0.4

∫
Ω

m̄2m̄1

ρ̄2
Ψm1
j

∂ΨE
i

∂y
+ 0.6

∫
Ω

m̄2
2

ρ̄2
Ψm2
j

∂ΨE
i

∂y
+

0.2

∫
Ω

m̄1
2

ρ̄2
Ψm2
j

∂ΨE
i

∂y
− 1.4

∫
Ω

Ē

ρ̄
Ψm1
j

∂ΨE
i

∂x
− 1.4

∫
Ω

Ē

ρ̄
Ψm2
j

∂ΨE
i

∂y
+

0.4

∫
Γ2

ΨE
j nxΨ

m1
i − 0.4

∫
Γ2

m̄1

ρ̄
Ψm1
j nxΨ

m1
i − 0.4

∫
Γ2

m̄2

ρ̄
Ψm2
j nxΨ

m1
i +

0.4

∫
Γ2

ΨE
j nyΨ

m2
i − 0.4

∫
Γ2

m̄1

ρ̄
Ψm1
j nyΨ

m2
i − 0.4

∫
Γ2

m̄2

ρ̄
Ψm2
j nyΨ

m2
i

(A.35)

ci,j,k = −
∫

Ω

1

ρ̄
Ψm1
j Ψm1

k

∂Ψm1
i

∂x
−
∫

Ω

1

ρ̄
Ψm1
j Ψm2

k

∂Ψm1
i

∂y
+

0.2

∫
Ω

1

ρ̄
Ψm1
j Ψm1

k

∂Ψm1
i

∂x
+ 0.2

∫
Ω

1

ρ̄
Ψm2
j Ψm2

k

∂Ψm1
i

∂x
−∫

Ω

1

ρ̄
Ψm1
j Ψm2

k

∂Ψm2
i

∂x
−
∫

Ω

1

ρ̄
Ψm2
j Ψm2

k

∂Ψm2
i

∂y
+

0.2

∫
Ω

1

ρ̄
Ψm1
j Ψm1

k

∂Ψm2
i

∂y
+ 0.2

∫
Ω

1

ρ̄
Ψm2
j Ψm2

k

∂Ψm2
i

∂y
+

0.6

∫
Ω

m̄1

ρ̄2
Ψm1
j Ψm1

k

∂ΨE
i

∂x
+ 0.2

∫
Ω

m̄1

ρ̄2
Ψm2
j Ψm2

k

∂ΨE
i

∂x
+

0.4

∫
Ω

m̄2

ρ̄2
Ψm2
j Ψm1

k

∂ΨE
i

∂x
+ 0.2

∫
Ω

m̄2
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(A.36)

Finally, we bring solution yi from A.33 into A.15 and get the wanted approximate
solutions ρ, ρu, ρv and E for new problem parameter values.
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POD in relation to SVD

In this appendix one of the most powerful method of data analysis for multivariate
and non linear phenomena will be described. Essentially, POD is a linear proce-
dure that takes a given collection of input data and creates an orthogonal basis
constituted by functions estimated as the solutions of an integral eigenvalue prob-
lem. These eigenfunctions are optimal in terms of representation of the energy
present within the data, and only a small number of them are necessary to represent
the main underlying information. Reduced Order Modelling by Proper Orthogonal
Decomposition is based on a Galerkin projection of the governing equations onto
subspaces spanned by those POD basis functions (also known as modes) yielding a
simple set of ordinary differential equations (ODEs).

In the context of affine parameter dependence, which the operator is expressible
as the sum of products of parameter-dependent functions and parameter-independent
operators, allows an offline/online decomposition and is the basis for efficient reduced
simulation. Then, suppose that we want to approximate a vector function u(x, t)
over some domain of interest Ω as a finite sum in the separated variables form:

u(x, t) ≈
N∑
j=1

yj(t)Ψj(x) (B.1)

In the applied cases that will be found in this thesis, numerical simulations
of fluid flows equations, x can be considered as a spatial coordinate and t as a
temporal coordinate, or even more, as any parameter variable in which solution
physics depends on (Mach number, Angle of Attack...).

The approximation (B.1) becomes exact as N −→ +∞, and is not unique. A
classic way to solve this problem is to use for the basis functions Ψj(x), functions
given a priori, for example Fourier series, Legendre polynomials or Chebyshev poly-
nomials. An alternative approach could be to determine the functions Ψj(x) that
are naturally intrinsic for the approximation of the function u(x, t). This particular
approach corresponds to the Proper Orthogonal Decomposition.

Related to the Ψj(x) selected basis functions will be the yj(t) functions. Different
yj(t) sequence corresponds to each choice of basis functions Ψj(x), and each yj(t)
will depend only in each associated Ψj(x), for each j value, and not on the other
Ψ(x). Then, for selecting basis functions Ψj(x), it will be useful to be orthonormal
one to each other:
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∫
Ω

Ψj1(x)Ψj2(x)dx = δj1j2 (B.2)

where

δj1j2 =

{
0 forj1 6= j2

1 forj1 = j2

(B.3)

is the Kroenecker delta symbol, then

yj(t) =

∫
Ω

u(x, t)Ψj(x)dx (B.4)

As mentioned before, the accuracy of the approximation (B.1) depends on the
size of N , and therefore, we would like to find, for any specific N size, the sequence
of orthonormal functions Ψj(x) which better approximates u(x, t) in a least square
sense. As it will be shown in next subsection, this is what the Singular Value
Decomposition (SVD) do. Now consider that we can measure (experimentally or
numerically) at Nt different values of t, M realizations of u(x, t) at M different
locations x1, x2, ..., xM . The approximation problem (B.1) is then equivalent to
finding the orthonormal functions {Ψj(x)}Nj=1 with N ≤ Nt that solve:

min
Nt∑
i=1

‖ u(x, ti)−
N∑
j=1

[u(x, ti),Ψj(x)]Ψj(x) ‖2
2, (B.5)

where ‖ ∆ ‖2 define the norm associated to the usual L2 inner product (., .), but as
it is discussed in chapter 2, other inner product can be used, too. Remind that, for
any vector v ∈ RM we have

v =

 v1
...
vM

 =⇒ ‖ v ‖2= (v, v)1/2 =
√
vTv =

√
v2

1 + · · ·+ v2
M (B.6)

The method for solving the (B.5) problem is to arrange the data set into a MxNt

matrix, called the snapshot matrix A.

A =


u(x1, t1) u(x1, t2) . . . u(x1, tNt)
u(x2, t1) u(x2, t2) . . . u(x2, tNt)

...
...

...
u(xM , t1) u(xM , t2) . . . u(xM , tNt)

 , A ∈ RMxNt (B.7)

where each of the columns A:,i ∈ RM is a solution u(x, ti) for an input value of
ti. We note that, if the snapshot data are assumed to be linearly independent, the
snapshot data matrix has full column rank.

Regarding to the minimization problem (B.5), the solutions are given by the
truncated Singular Value Decomposition (SVD) of length N of the matrix A. For
this reason, in next subsection, short review of the SVD is presented.
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B.1 Definition of SVD

Let A be a general complex MxNt matrix. The Singular Value Decomposition
(SVD) of A is the factorization [34]:

A = UΣV ∗ (B.8)

where U and V are (non-unique) unitary MxM and NtxNt matrices, respectively,
i.e. UU∗ = IM and V V ∗ = INt and Σ = diag(σ1, ..., σr) with σ1 ≥ σ2 ≥ ... ≥ σr ≥ 0
where r = min(M,Nt). The rank of A equals the number of nonzero singular values
it has. Here, V ∗ denotes the adjoint matrix of V defined as the conjugate transpose
of V . Remind that for a unitary matrix A−1 = A∗. If A ∈ RMxNt then V ∗ = V T ,
and V is said to be orthogonal.

The σi are called the singular values of A (and of A∗), the first r columns of
V = (v1, v2, ..., vNt) are the right singular vectors, and the first r columns of U =
(u1, u2, ..., uM) are the left singular vectors. Since the singular values are arranged
in a specific order, the index i of the i-th singular value will be called the singular
value number.

B.2 Relationships Between SVD and Eigenvalue

Problems

Now is presented how the singular values and the right and left singular vectors of
a rectangular matrix A can also be computed by solving symmetric eigenproblems
with, e.g., the matrices A∗A or AA∗, instead of computing the SVD of A.

Let A = UΣV ∗ be a singular value decomposition of A ∈ RMxNt . Then

A∗A = V ΣTU∗UΣV ∗

= V Σ2V ∗
(B.9)

where Σ2 is a diagonal matrix. Since A∗A is an Hermitian matrix, its eigenvalue
decomposition can be written:

A∗A = WΛW−1

= WΛW ∗ (B.10)

where W is an NtxNt unitary matrix. By comparing the two expression of A,
we conclude that

Σ2 = Λ (B.11)

and
W = V (B.12)

In other words

σi =
√
λi (B.13)

and (V,Λ) is the eigenvector–eigenvalue decomposition of A∗A ∈ RNtxNt .
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The same development applied to the matrix AA∗ leads to

AA∗ = UΣV ∗V ΣTU∗

= UΣ2U∗
(B.14)

so (U,Λ) is the eigenvector–eigenvalue decomposition of AA∗ ∈ RMxM .

B.3 The covariance matrix

Regard again to the snapshot matrix A (B.7), and remember the objective we are
trying to achieve: finding an orthonormal basis, dimensionally smaller than A, which
represents as best as possible the information contained in those snapshots. In other
words, we are searching a process which compares all the data from Snapshots and
keeps the main trends of the system. This process will try to remove redundant infor-
mation, and will keep the most important directions (modes) in which ”things hap-
pen”. An easy way to identify redundant data is by considering the covariance be-
tween data sets. The covariance measures the statistical dependence/independence
between two variables. Obviously, strongly statistically dependent variables can be
considered as redundant observations of the system. Specifically, consider two sets
of measurements with zero means expressed in row vector form:

~a = [a1 a2 ... an] ~b = [b1 b2 ... bn] (B.15)

where the subscript denotes the sample number. The variances of ~a and ~b are given
by

σ2
a =

1

Nt

aaT (B.16)

σ2
b =

1

Nt

bbT (B.17)

while the covariance between these two data sets is given by

σ2
ab =

1

Nt

abT (B.18)

In snapshot matrix (B.7) there aren’t just two vectors, but potentially quite a
number of experiments and data that would need to be correlated and checked for
redundancy and so needs to be checked for covariance. The appropriate covariance
matrix for this case is then

CA =
1

Nt

AAT (B.19)

The covariance matrix CA is a square, symmetric MxM matrix whose diagonal
represents the variance of particular measurements. The off-diagonal terms are
the covariances between measurement types. Thus CA captures the correlations
between all possible pairs of measurements. Redundancy is thus easily captured
since if two data sets are identical (identically redundant), the off-diagonal term

and diagonal term would be equal since σ2
ab = σ2

a = σ2
b if ~a = ~b. Thus, large

off-diagonal terms correspond to redundancy while small off-diagonal terms suggest
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that the two measured quantities are close to being statistically independent and
have low redundancy. It should also be noted the meaning of the diagonal terms.
Large diagonal terms, or those with large variances, typically represent what we
might consider the dynamics of interest (where ”things happen”) since the large
variance suggests strong fluctuations in that variable. Thus the covariance matrix
is the key component to understanding the entire data analysis. Summarizing, the
covariance matrix:

• CA is a square, symmetric M x M matrix.

• The diagonal terms of CA are the variances for particular measurements. By
assumption, large variances correspond to dynamics of interest, whereas low
variances are assumed to correspond to uninteresting dynamics.

• The off-diagonal terms of CA are the covariances between measurements. In-
deed, the offdiagonals capture the correlations between all possible pairs of
measurements. A large offdiagonal term represents two events that have a high
degree of redundancy, whereas a small off-diagonal coefficient means there is
little redundancy in the data, i.e. they are statistically independent.

• It is also possible to compute the covariance matrix as CA = 1
Nt
ATA, and in

that case resulting matrix would be NtxNt dimension.

The insight given by the covariance matrix leads to our ultimate aim of: remov-
ing redundancy and identifying those signals with maximal variance. Thus, in a
mathematical sense we are simply asking to represent CA so that the diagonals are
ordered from largest to smallest and the off-diagonals are zero, i.e. our task is to
diagonalize the covariance matrix. This is exactly what the SVD does, thus allow-
ing it to becomes the tool of choice for data analysis and dimensional reduction. In
fact, the SVD diagonalizes and each singular direction captures as much energy as
possible as measured by the singular values σj.

The key idea behind the diagonalization is simply this: there exists an ideal
basis in which the CA can be written (diagonalized) so that in this basis, all redun-
dancies have been removed, and the largest variances of particular measurements
are ordered. In the language being developed here, this means that the system
has been written in terms of its Principal Components, or in a Proper Orthogonal
Decomposition (POD).

B.4 Diagonalization by Eigenvectors and Eigen-

values

The most straightforward way to diagonalize the covariance matrix is by making
the observation that AAT is a square, symmetric MxM matrix, i.e. it is self-adjoint
so that the M eigenvalues are real and distinct. Linear algebra provides theorems
which state that such a matrix can be rewritten as

AAT = SΛS−1 (B.20)

where the matrix S is a matrix of the eigenvectors of AAT arranged in columns.
Since it is a symmetric matrix, these eigenvector columns are orthogonal so that

65



Chapter B

ultimately the S can be written as a unitary matrix with S−1 = ST . Recall that the
matrix Λ is a diagonal matrix whose entries correspond to the M distinct eigenvalue
of AAT .

This suggests that instead of working directly with the matrix A, we consider
working with the transformed variable, or in the principal component basis,

Y = STA (B.21)

For this new basis, we can then consider its covariance

CY =
1

Nt

Y Y T

=
1

Nt

STAATS

=
1

Nt

STSΛSTS

=
1

Nt

Λ

(B.22)

which is clearly diagonal, with eigenvalues on it.
In this basis, the principal components are the eigenvectors of AAT with the

interpretation that the jth diagonal value of CY is the variance of A along xj, the
jth column of S.

B.5 Diagonalization by SVD

A second method for diagonalizing the covariance matrix is the SVD method. The
SVD can diagonalize any matrix by working in the appropriate pair of bases U and
V. Now, instead of working directly with the matrix A, we consider working with
the transformed variable Y , in the principal component basis, defined as

Y = U∗A (B.23)

where U is the unitary transformation associated with the SVD: A = UΣV ∗. For this
new basis, just as in the eigenvalue/eigenvector formulation, we can then consider
its covariance:

CY =
1

Nt

Y Y T

=
1

Nt

U∗AA∗U

=
1

Nt

U∗UΣV ∗V ΣTU∗U

=
1

Nt

Σ2

(B.24)

This makes explicit the connection shown in (B.11) between the SVD and the
eigenvalue method, namely that Σ2 = Λ. This gives the SVD method for producing
the principal components. As regarded, matrices can be diagonalized via either an
eigenvalue decomposition or an SVD decomposition. However, there are three key
differences in the diagonalization process making the SVD method more robust:
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• The SVD performs the diagonalization using two different bases, U and V,
while the eigenvalue method uses a single basis S.

• The SVD method uses an orthonormal basis while the basis vectors in S, while
linearly independent, are not generally orthogonal.

• Finally, the SVD is guaranteed to exist for any matrix A while the same is not
true, even for square matrices, for the eigenvalue decomposition.

Now comes the last, and most formative, property associated with the SVD: low
dimensional approximations to high degree of freedom or complex systems. In linear
algebra terms, this is also known as low rank approximations. The interpretation of
the theorems associated with these low dimensional reductions are critical for the
use and implementation of the SVD. Thus we consider the following:

Theorem. A is the sum of r rank-one matrices

A =
r∑
j=1

σj~uj~v
∗
j (B.25)

There are a variety of ways to express an m x n matrix A as a sum of rank-
one matrices. The bottom line is this: the Jth partial sum captures as much of the
matrix A as possible. Thus the partial sum of the rank-one matrices is an important
object to consider. This leads to the following theorem:

Theorem. For any N so that 0 ≤ N ≤ r, we can define the partial sum

A =
N∑
j=1

σj~uj~v
∗
j (B.26)

And if N = min{m,n}, define σN+1 = 0 Then

||A− AN ||2 = σJ+1 (B.27)

Interpreting this theorem is critical. Geometrically, we can ask what is the best
approximation of a hyper-ellipsoid by a line segment? Simply take the line segment
to be the longest axis, i.e. that associated with the singular value σ1. Continuing
this idea, what is the best approximation by a two-dimensional ellipse? Take the
longest and second longest axes, i.e. those associated with the singular values σ1 and
σ2. After r steps, the total energy in A is completely captured. Thus the SVD gives
a type of least-square fitting algorithm, allowing us to project the matrix onto low
dimensional representations in a formal, algorithmic way. Herein lies the ultimate
power of the method.
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