
Department of Computer Architecture and Technology

A CONTEXT- AND TEMPLATE-BASED DATA COMPRESSION

APPROACH TO IMPROVE RESOURCE-CONSTRAINED

IOT SYSTEMS INTEROPERABILITY

Dissertation

for the degree of Doctor of Philosophy

Candidate

Jorge Berzosa

Supervisors

Roberto Cortiñas - Luis Gardeazabal

2019

(cc)2019 JORGE BERZOSA MACHO (cc by-nc 4.0)

Abstract

The Internet of Things (IoT) has emerged as a powerful paradigm with a huge range of

possibilities, promoting its adoption across multiple technological domains. Roughly

speaking, the IoT abstraction aims to interconnect every kind of things, like simple de-

vices (a light bulb or a thermostat) or more complex and abstract systems, e.g., facility

management. Behind these things, there are physical devices tasked with specific sensing

or actuation roles. Similarly to the things themselves, these devices often have signif-

icant differences among them in terms of capabilities and the set of communication

technologies they use. This heterogeneity leads to an integration challenge regarding

interoperability at the connectivity level, including data representation.

A common approach to deal with interoperability in IoT systems is to re-use Internet

mature technologies and approaches. At data level, this can be implemented by structur-

ing data following a standard data model and using text-based data formats, e.g., XML.

However, the type of devices usually deployed in IoT systems has limited capabilities as

well as scarce processing and communication resources. Due to these restrictions, text-

based data formats cannot be integrated into resource-constrained devices and networks

in an easy and efficient way. Consequently, these limitations also apply to interoperable

technologies that rely on text-based data formats such as Web Services.

In this Thesis, we present a novel data compression approach for text-based data for-

mats, namely Context- and Template-based Compression (CTC), which is specially designed

taking into account the limitations of resource-constrained devices and networks. CTC

enhances data-level interoperability in IoT systems while keeping very low resource re-

quirements (in terms of communication bandwidth, memory size and processing power).

This Thesis also includes the specification of a set of complementary solutions which

facilitate the deployment of CTC in IoT networks and its integration into applications

targeted to resource-constrained devices.

Interestingly, CTC is designed with interoperability and extensibility in mind so that

it can be applied to different data formats. This work also includes the evaluation of

the proposed solution for two popular data formats, XML and JSON, both in real and

simulated scenarios. Additionally, the results of the evaluations have been compared

with some other current data compression approaches, showing that CTC is a suitable

candidate for data compression in resource-constrained IoT deployments.

ii

Laburpena

Gauzen Interneta (the Internet of Things, IoT) aukera anitz eskaintzen dituen paradigma

bihurtu da, bere erabilera domeinu teknologiko desberdinetan sustatuz. IoT-ren helburu

nagusia mota askotako gauzak elkar konektatzea da: bonbila edo termostatoa bezalako

gailu sinpleetatik hasita, etxea edo makina moduko elementu abstraktu eta konplexuago-

raino iritsiz . Gauza hauen atzean, sentsore eta aktuazio ardura espezifikok dituzten gailu

fisikoak daude. Gauzekin gertatzen den bezala, gailu hauek elkarrengan oso ezberdinak

dira, bereziki gaitasunei eta erabiltzen dituzten teknologiei dagokienez. Heterogeneota-

sun honek konektagarritasun mailako elkarreragingarritasunean integrazioa erronka

handia aurkezten du, datuen errepresentazioa barne.

IoT sistemetan, elkarreragingarritasuna, Interneten denbora luzez erabili diren

teknologiekin jorratzea ohiko joera da. Planteamendu honek, datuen errepresentazio

mailan, datuak eredu estandar bat jarraituz egituratzea eskatzen du, baita testuan oinar-

ritutako datu formatuak erabiltzea ere (esaterako, XML). IoT sistemetan erabili ohi diren

gailuak, aldiz, gaitasun mugatuak eta prozesatzeko eta komunikatzeko baliabide urrikoak

izan ohi dira. Murrizketa hauek medio, testuan oinarritutako datu formatuak, baliabide

murriztuko gailu eta sareetan era erraz eta eraginkor batean integratzea ez da posible.

Are gehiago, murrizketa hauek, testuan oinarritutako datu formatuak erabiltzen dituzten

bestelako teknologia elkarreragileetara ere hedatzen da, besteak beste, Web Zerbitzuak.

Tesi honetan, testuan oinarritutako datu formatuen konpresiorako soluzio bat au-

rkezten da, baliabide murriztuko gailu eta sareen mugak aintzat hartuta diseinatua izan

dena. Soluzio honek Context- and Template-based Compression, CTC, du izena. CTC-ek

IoT sistemen datu mailako elkarreragingarritasuna hobetzea du helburu, beharrezko

komunikazio banda zabalera, memoria tamaina eta prozesamendu ahalmen erabilera

minimizatuz. Are gehiago, tesi honetan, CTC soluzioa IoT sareetan eta baliabide murriz-

tuko gailuetan errazago integratzeko bidean, hainbat soluzio osagarri zehaztu dira.

CTC elkarreragingarritasuna eta hedagarritasuna ardatz izanik diseinatu da, datu

formatu ezberdinetan aplikagarria izanik. Proposatutako soluzioa bi datu formaturekin

ebaluatu da, XML eta JSON, ingurune simulatu eta errealetan. Ebaluazio hauen emaitzak,

datu konpresioa jorratzen duten gaur egungo beste soluzio batzuen emaitzekin konparatu

dira. Konparaketa honetan, CTC baliabide murriztuko IoT sistemen datu konpresiorako

hautagai ona dela ikusi da.

iv

Resumen

El Internet de las Cosas (the Internet of Things, IoT) ha surgido como un paradigma con

un amplio número de posibilidades, promoviendo así su adopción en múltiples dominios

tecnológicos. El objetivo de IoT es el de interconectar todo tipo de cosas, desde dispositivos

simples, como una bombilla o un termostato, a elementos más complejos y abstractos

como unamáquina o una casa. Detrás de estas cosas se encuentran dispositivos físicos que

desempeñan roles específicos de sensor o activador. De manera similar a las cosas, estos

dispositivos varían enormemente entre sí, especialmente en las capacidades que poseen

y el tipo de tecnologías que utilizan. Esta heterogeneidad genera una gran complejidad

en los procesos integración en lo que a la interoperabilidad se refiere, incluyendo la

representación de los datos.

Un enfoque habitual para abordar la interoperabilidad en sistemas IoT es el de

reutilizar tecnologías de Internet ya consolidadas. Más concretamente, a nivel de repre-

sentación de los datos, los datos se pueden representar siguiendo un modelo de datos

estándar, así como formatos de datos basados en texto, e.g., XML. Sin embargo, nor-

malmente el tipo de dispositivos que se se encuentra en sistemas IoT tiene capacidades

limitadas, así como recursos de procesamiento y de comunicación escasos. Debido a estas

limitaciones no es posible integrar formatos de datos basados en texto de manera sencilla

y eficiente en dispositivos y redes con recursos restringidos. Además, esta situación

también aplica a tecnologías interoperables que dependen de formatos de datos basados

en texto como, por ejemplo, los Servicios Web.

En esta Tesis, presentamos una novedosa solución que permite una gestión eficiente

de los datos mediante la compresión de datos para formatos de datos basados en texto y

que está especialmente diseñada teniendo en cuenta las limitaciones de dispositivos y

redes con recursos restringidos. Denominamos a esta solución Context- and Template-

based Compression (CTC). CTC mejora la interoperabilidad a nivel de los datos de los

sistemas IoT a la vez que requiere muy pocos recursos en cuanto a ancho de banda de las

comunicaciones, tamaño de memoria y capacidad de procesamiento. Esta Tesis también

especifica una serie de soluciones complementarias que facilitan el despliegue de CTC en

redes IoT, así como su integración en aplicaciones orientadas a dispositivos con recursos

restringidos.

Como aspecto destacable, CTC está diseñado con la interoperabilidad y extensibilidad

en mente, por lo que puede ser aplicado a diferentes formatos de datos. En este trabajo

se presenta la evaluación de la solución propuesta para dos formatos de datos populares,

XML y JSON, tanto en entornos reales como en simulados. Además, los resultados de

estas evaluaciones se han contrastado con soluciones de compresión de datos actuales.

Los resultados muestran que CTC es un candidato válido para la compresión de datos en

despliegues IoT con recursos restringidos.

vi

Acknowledgements

A Maite, por su paciencia y apoyo cuando más lo necesitaba. Además, por decirme que

desconectara de la tesis de vez en cuando.

A mis padres, porque me dieron el primer empujón que me ha traído hasta aquí y

ahora.

A mis hermanos y hermana, por creer en mí aun sabiendo como soy.

Nire zuzendarientzat, dokumentu honi forma eman dioten finketak, hobekuntzak,

eta, bereziki, zuzenketa guztiengatik.

viii

Acronyms

6LowPAN Internet Protocol (IPv6) and Low-power Wireless Personal Area Networks

ACK Acknowledgement

API Application Programming Interface

CBOR Concise Binary Object Representation

CoAP Constrained Application Protocol

CoRE Constrained RESTful Environments

CPS Cyber Physical System

CPU Central processing unit

CTC Context- and Template-based Compression

DNS Domain Name System

DOM Document Object Model

DPWS Devices Profile for Web Services

DTD Document Type Definition

DTLS Datagram Transport Layer Security

EXI Efficient XML Interchange

EXIP EXIProcessor

HTML Hyper Text Markup Language

HTTP HyperText Transfer Protocol

IANA Internet Assigned Numbers Authority

IDL Interactive Data Language

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

INF Infinity

IoT Internet of Things

IP Internet Protocol

IPSec Internet Protocol Security

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

JSON JavaScript Object Notation

LPWPAN Low-power Wireless Personal Area Networks

M2MMachine to Machine

MACMedium Access Control

MCUMicroController Unit

MQTTMessage Queuing Telemetry Transport)

NaN Not a Number

OGC Open Geospatial Consortium

OS Operating System

OSI Open Systems Interconnection

PC Personal Computer

RAM Random Access Memory

RDF Resource Description Framework

REST Representational State Transfer

RFC Request for Comments

ROM Read Only Memory

RPC Remote Procedure Call

SASL Simple Authentication and Security Layer

SOAP Simple Object Access Protocol

SOS Sensor Observation Service

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

UTF-8 8-bit Unicode Transformation Format

W3CWorld Wide Web Consortium

WoTWeb of Things

WSWeb Service

WSDLWeb Service Definition Language

WSNWireless Sensor Network

XML eXtensible Markup Language

XMPP Extensible Messaging and Presence Protocol

XSF XMPP Standards Foundation

x

Contents

Abstract i

Contents xiii

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Document Structure . 4

2 Motivation Background 7

2.1 The Internet of Things and Cyber-Physical Systems 7

2.2 Towards IoT Interoperability . 9

2.3 Structured Data and Interoperability . 12

2.4 Compression of Structured Data . 14

2.5 Conclusions . 15

3 Related Work 17

3.1 Text-Based Data Formats . 17

3.1.1 eXtensible Markup Language (XML) 18

3.1.2 JavaScript Object Notation (JSON) . 24

3.2 Structured Data Compression . 27

3.2.1 Efficient XML Interchange . 29

3.2.2 Concise Binary Object Representation 35

3.2.3 Protocol Buffers . 38

3.2.4 Other Proposals on Compression for Structured Data 40

3.2.5 Compression of Protocols Over Text-Based Data Formats 42

3.3 IoT Communication Protocols . 44

3.3.1 Constrained Application Protocol, CoAP 46

3.3.2 MQTT . 50

3.3.3 XMPP . 53

3.3.4 Summary and Conclusions . 59

xi

4 Context- and Template-based Compression (CTC) 61

4.1 CTC Components . 62

4.1.1 Context Table . 64

4.1.2 Template Table . 66

4.1.3 Context Table and Template Table Creation 68

4.1.4 Schema Mapping . 70

4.2 CTC Codification Algorithm . 75

4.2.1 Rules . 76

4.2.2 Example . 78

4.3 Summary and Conclusions . 80

5 CTC Communication Model 81

5.1 Communication Architecture . 81

5.2 Schema Repository . 83

5.2.1 Schema Link Register Structure . 85

5.2.2 Schema Registration Management Abstract Methods 86

5.3 CoAP Binding . 88

5.3.1 Schema Directory . 88

5.3.2 Schema Directory Registration Interface 90

5.3.3 Schema Directory Lookup Interfaces 91

5.3.4 Schema Directory Registration Deletion 95

5.3.5 CTC Link Format . 95

5.4 Summary and Conclusions . 96

6 CTC Library 99

6.1 Architecture and Components . 99

6.2 CTC Compiler . 103

6.2.1 CTC Compiler Example . 105

6.3 Summary and Conclusions . 107

7 Evaluation 111

7.1 XML Compression Performance Evaluation 111

7.1.1 First comparison: compression size 112

7.1.2 Second comparison: processing time 115

7.1.3 Third comparison: memory usage . 117

7.2 JSON Compression Evaluation . 119

7.2.1 XML, JSON and CTC comparison . 121

7.3 CTC Impact on Communication Performance 122

7.3.1 Message Fragmentation . 125

7.3.2 Overhead of the schema register and download processes 127

7.3.3 Direct impact on transmitted message quantity 128

7.3.4 Long-term impact on transmitted message quantity 129

7.4 Summary and Conclusions . 132

xii

8 Conclusions 135

8.1 Summary of the contributions . 136

8.2 Future Work . 138

A Data formats: technical aspects 139

A.1 XML Schema . 139

A.1.1 Basic Structure . 139

A.1.2 Built-in Data Types . 140

A.1.3 Complex Data Types . 142

A.1.4 Simple Data Types . 143

A.1.5 Global and Local Declarations . 145

A.1.6 Element Cardinality . 147

A.1.7 The any Declaration . 148

A.1.8 Schema Reuse . 148

A.2 JSON Schema . 150

A.2.1 JSON Schema Structure . 151

A.2.2 JSON Schema Validation Keywords . 152

A.2.3 keywords for numbers . 152

A.2.4 keywords for strings . 153

A.2.5 keywords for arrays . 153

A.2.6 keywords for objects . 153

A.2.7 keywords for any instance type . 154

A.2.8 Metadata keywords . 154

References 170

xiii

xiv

List of Figures

2.1 The IoT and CPS relationship. 9

3.1 XML element and attribute example. 19

3.2 XML tree structure example. 19

3.3 XML prolog example. 19

3.4 XML processing instruction example. 20

3.5 XML namespace declaration example. 22

3.6 XML namespace prefix declaration example. 22

3.7 Multiple XML namespace prefix declaration example. 22

3.8 XML Schema simple example. 24

3.9 JSON simple structure example. 25

3.10 JSON Schema root schema and subschema example. 26

3.11 Built-in Document Grammar. 31

3.12 Protocol Buffer “.proto” file example. 38

3.13 CoAP architecture. 46

3.14 CoAP reliable message. 47

3.15 CoAP piggybacked response. 47

3.16 CoAP separate response. 48

3.17 CoAP architecture. 49

3.18 MQTT architecture. 51

3.19 MQTT topic example. 51

3.20 MQTT-SN architecture. 52

3.21 Transparent and Aggregating Gateways. 52

3.22 XMPP opening stream example. 54

3.23 XMPP closing stream example. 54

3.24 XMPPmessage stanza example. 55

3.25 XMPP basic architecture. 55

3.26 XMPP distributed architecture example. 56

3.27 XMPP two streams example. 57

3.28 XMPP EXI streamStart example. 58

3.29 XMPP EXI streanEnd example. 58

xv

4.1 Simplified target network architecture of CTC. 62

4.2 Schema context graph example. 63

4.3 Example of representation of CTC components. 64

4.4 Template table structure detail with exemplary content. 67

4.5 Notebook XML Schema document. 71

4.6 Template table Notebook example. 72

4.7 Notebook JSON Schema document. 74

4.8 Schema instance example. 79

5.1 CTC communication model general architecture. 82

5.2 Template location. a) at the Node, b) at an external Server. 85

5.3 CTC abstract methods REGISTER, ASSIGN and DOWNLOAD. 87

5.4 CTC abstract methods LOOKUP and DELETE. 88

5.5 Example discovery on a schema directory example. 89

5.6 Example registration request on a schema directory. 92

5.7 Example schema lookup request on a schema directory. 93

5.8 Example schemaId lookup request on a schema directory with a single “uid”

value. 94

5.9 Example schemaId lookup request on a schema directory with a context

parameter. 94

5.10 Example schemaId resource query on a schema directory. 94

5.11 Example schemaId resource deletion on a schema directory. 95

5.12 JSON schema for “application/link-format+ctc”. 97

6.1 Architecture of the CTC Library. 100

6.2 CTC Library configuration for resource-constrained devices. 103

6.3 Full-featured CTC Library configuration. 103

6.4 Inputs and outputs of the CTC Compiler. 104

6.5 Internal process of the CTC Compiler. 105

6.6 Notebook XML Schema document. 106

6.7 Code snippet of the “notebook-sc.c” file. 107

6.8 Code snippet of the “template-table.c” file. 108

6.9 Code snippet of the C structure binding of the Notebook XML Schema docu-

ment. 108

6.10 Code snippet of the basic C function wrappers for the Note structure binding

of the Notebook XML Schema document. 108

7.1 XML document compression comparative in bytes. 114

7.2 XML document decoding time comparative. 116

7.3 Flash code memory usage comparative in bytes. 118

xvi

7.4 REST validation deployment. 122

7.5 Layouts of NodeA and NodeB CoAP APIs. 123

7.6 OPC-UA data model instance. 124

7.7 SEP2 data model instance. 124

7.8 SenML data model instance. 124

7.9 Software architecture of the resource-constrained devices and CTC Gateway.125

7.10 Message fragmentation. 126

7.11 Message structure fo the evaluation. 126

7.12 Link format information returned by the schema repository. 127

7.13 Schema link register for the OPC-UA case. 127

7.14 Schema link register for the SEP2 case. 127

7.15 Schema link register for the senML case. 128

7.16 Logical sequence of the schema register, schema download and data trans-

mission processes. 130

A.1 Schema element general format. 140

A.2 XML Schema example. 140

A.3 XML Schema nested content models example. 142

A.4 XML Schema complex data type extension example. 143

A.5 XML Schema complex data type restriction example. 143

A.6 XML Schema restriction declaration example. 144

A.7 XML Schema list declaration example. 145

A.8 XML Schema union declaration example. 145

A.9 XML Schema global complex element declaration example. 146

A.10 XML Schema global element declaration by reference example. 146

A.11 XML Schema local element declaration example. 147

A.12 XML Schema element cardinality example. 147

A.13 XML Schema any declaration example. 148

A.14 XML Schema import declaration example. 149

A.15 XML Schema include declaration example. 150

A.16 JSON Schema root schema and subschema example. 151

xvii

xviii

List of Tables

1.1 Summary of Scientific and Technological contributions and related publica-

tions. 4

3.1 Summary of compression technologies targeted to structured data. 28

3.2 EXI Event types and codes. 30

3.3 Built-in EXI Data Type Representations and associated XML data types. . . 31

4.1 Schema context table example. 66

4.2 Schema context Notebook example, after Context Collapsing. 72

4.3 CTC Templates generated from the Notebook JSON Schema. 75

4.4 Schema context generated from the Notebook JSON Schema. 75

6.1 Schema context Notebook example, after Context Collapsing. 106

6.2 Notebook XML Schema’s templates, after Context Collapsing. 106

7.1 XML document compression comparative in bytes. 113

7.2 XML document decoding time comparative. Numbers are in microseconds. 116

7.3 Flash code memory usage comparative in bytes. 118

7.4 Data memory (RAM) usage comparative in bytes. 119

7.5 JSON instance document compression comparative in bytes (B) and propor-

tion (%). 121

7.6 senML instances’ size comparison in bytes for XML, JSON and CTC cases. . 121

7.7 Transmitted messages and raw bytes quantity for the registration and

schema download processes. 128

7.8 Messages per data unit transmission. 129

7.9 Accumulated messages transmitted including schema download process. . 131

7.10 Accumulated messages transmitted not taking into account schema down-

load process. 132

xix

xx

1 | Introduction

This introductory chapter aims at setting the motivation of the Thesis and to establish

its objectives. In this work, we present Context- and Template-based Compression (CTC),

a compression approach for structured data represented in text-based data formats.

CTC addresses the IoT interoperability problem at the data representation level and is

specially targeted to resource-constrained devices and networks, typically deployed in

IoT systems.

In this introductory chapter, we start in Section 1.1 with a brief explanation of the

need of efficient data compression technologies for resource-constrained devices and

networks in order to improve IoT interoperability. Next, in Section 1.2, we describe the

core objectives of this Thesis as well as the main contributions. Finally, in Section 1.3, we

outline the structure of the Thesis document.

1.1 Motivation

The Internet of Things (IoT) leads the trend to integrate almost any kind of devices (Things)

into a global network (the Internet). In this scenario, interoperability has become one

of the main integration challenges. On the one hand, different APIs and protocols are

required at communication and application levels in order to interconnect a wide range

of different devices and systems. On the other hand, data shows even more diversity

regarding semantics and structure, resulting in complex data (pre)processing procedures

(translation, filtering, aggregation, storing, etc.) and flows.

A promising solution is to leverage already available Internet technologies and stan-

dards, and apply them on top of IoT deployments. This involves the integration of Internet

mature technologies directly on, or as close as possible to, the devices. At data level,

interoperability is addressed by structuring the data following an agreed data model and

representing it in platform-independent data formats which are usually text-based, such

as XML or JSON.

However, this approach requires the technologies to be implemented either in the

lower architectural layers (close to the physical devices) or in intermediary layers (such

as gateways or middle-wares). In the latter case, the deployment of specific purpose inter-

mediaries only moves the complexity related to the interoperability, without removing

1

2 Chapter 1. Introduction

(or reducing) it while, in the former case, devices typically deployed in IoT systems may

not have enough resources or capabilities to natively implement the technologies. These

resource-constrained devices have very different characteristics of those commonly

found through the Internet. The most important ones are the limited resources of the

devices and the low bandwidth of the communication channel.

Due to these restrictions, the majority of the technologies that make the Internet a

success cannot be directly integrated into resource-constrained devices and networks.

In the specific case of data level interoperability, text-based data formats such as XML

or JSON cannot be efficiently used in resource-constrained devices and networks due to

limitations in processing power, memory size, transmission bandwidth and available

energy. By extension, this is also the case for Internet technologies that rely on text-based

data formats such as Web Services, which are one of the key technologies on today’s

interoperable Internet.

A viable solution for the use of verbose data formats on resource-constrained devices

and networks is to compress structured data using a more efficient encoding. However,

reducing data size effectively reduces the memory and communication resources (mainly

bandwidth) needed but incurs in a processing overhead that may be beyond resource-

constrained devices’ capabilities. Furthermore, if the data format is modified to ad-hoc

encodings the benefits of text-based formats and interoperability with the original format

may be lost, if not handled properly. In order to apply data compression technologies to

resource-constrained devices and networks to raise interoperability, technologies must

be efficiently integrated within the limited resources and capabilities while keeping

backwards and seamless compatibility with the original format.

Interoperability has been key in the extension and adoption of Internet technologies

and it is expected to be equally (or more) important in the integration of IoT systems. the

work presented in this Thesis provides a solution for data level interoperability targeted

to resource-constrained devices and networks typically found in IoT deployments and

represents a step towards an interoperable IoT.

1.2 Contributions

This thesis aims to address the paradigm of efficient compression technologies for struc-

tured data targeted to resource-constrained devices in the following context:

• The IoT suffers from a generalized interoperability lack problem.

• There are several standard and mature technologies used across the Internet but

they are not directly usable on resource-constrained devices due to processing,

storing and communication channel limitations.

Section 1.2. Contributions 3

• Specifically, the adaptation of standard data representation formats would signif-

icantly increase interoperability within the IoT as well as become an enabler for

approaches such as Web Services.

• Data compression technologies can help in the use of text-based data formats in

resource-constrained devices but current data compression technologies a) are

designed for specific formats, b) are not easily integrable in a seamlessly way and

c) impose constrains that may not be meet by resource-constrained devices and

networks.

In this thesis, we present Context- and Template-based Compression (CTC), a compres-

sion approach for structured data represented in text-based data formats which allows

resource-constrained devices to deal with high level, standard information data-formats,

in pursuit of the seamless integration of information. Roughly speaking, templates are

extracted from data model schemas so that their representation can be replaced in the

data with a minimum number of references. Data are then compressed (by using lossless-

compression) following an algorithm that takes into account the context(s) and templates

derived from the original data format and schema.

This Thesis considers the representation of data, which can be done using many

different formats, as well as the impact of the data format on processing time, memory

usage and data transmission performance. First, by codifying the data in a more efficient

format, the processing performance is increased. Second, the use of templates minimizes

the memory needed to store schema information and the data structures. Third, data is

codified in a more compact format, effectively reducing the message quantity needed to

transmit the whole data.

In this work we focus on text-based data formats. More precisely, we use W3C’s XML

(Extensible Markup Language) and JSON (JavaScript Object Notation). XML and JSON are

widely extended and are the basis for many application layer protocols, Web Services and

related protocols. Although the work presented here uses XML and JSON as illustrative

examples, CTC could be easily extended to other formats.

This document also specifies the communication model of CTC, including generic

mechanisms for themanagement of the contextual information required by CTC. Basically

this implies gathering, identifying and referencing schema related information in an

efficient way. CTC builds these functionalities based on the concept of a schema repository

which is a network component responsible of gathering, storing and managing schema

information as well as assign and maintain references (i.e., links) and identification

information. Although the schema repository was originally designed for CTC, it is

generic enough to be applied to other data compression technologies based on contextual

information. The schema repository concept is designed in a generic way, independent

from any underlying communication protocol.

4 Chapter 1. Introduction

Table 1.1: Summary of Scientific and Technological contributions and related publica-

tions.

Scientific and Technological Contribution Chapter(s) Publication(s)

CTC Specification 4 [BGC17, MGC16]

CTC Communication Model 5 [BGC18]

CTC Software Framework 6 [BGC17]

The core work performed in this Thesis is based on the following hypothesis:

The proposed generic data model description structure and compression approach

keep backward compatibility and interoperability while providing a more memory,

processing and transmission efficient solution compared to the original data format.

In order to validate the hypothesis described above, this Thesis has the following main

scientific and technological objectives:

Objective-1 Study and analyse that, through the use of templates and context information, it is

possible to seamlessly use standard data models and data formats in an interopera-

ble and backwards compatible way.

Objective-2 Design and develop a generic data model description structure not tied to a specific

data model or data format.

Objective-3 Design and develop data compression mechanisms and algorithms that support

the generic representation of structured data and that enable an efficient imple-

mentation in terms of processing time, memory usage and transmission bandwidth,

tailored to resource-constrained devices and networks.

Objective-4 Develop generic context information transference mechanisms suitable to resource-

constrained devices and networks.

The most relevant scientific and technological contributions of this Thesis are listed in

Table 1.1, together with the chapters and publications in which they are addressed.

1.3 Document Structure

This introductory chapter is followed by a more in deep description in Chapter 2 of this

Thesis’motivation and scope. The chapter includes a description of the scope of this Thesis

within the IoT domain focused on interoperability as well as the role of structured data

formats and data compression technologies within the context of resource-constrained

devices and networks.

Section 1.3. Document Structure 5

The motivation chapter is complemented with Chapter 3 which contains the related

work for this Thesis. This related work chapter is divided in three main sections: a

brief introduction to text-based data formats including structural concepts and terms, an

in-deep state-of-the-art description of structured data compression technologies and an

overview of the most relevant communication protocols within the IoT domain for this

Thesis.

The core technical content of this Thesis starts in Chapter 4 with the specification

of Context- and Template-based Compression approach. This chapter includes the de-

scription of the core components of CTC, the codification algorithm and two practical

applications to XML and JSON data formats. The CTC specification is followed by Chap-

ter 5 where the CTC communication model, how it fits within a typical IoT system, and

the complementary mechanisms needed to be effectively used are explained. The tech-

nical content of this Thesis finishes with Chapter 6 and the description of the software

framework that implements CTC and all the developed support tools.

Chapter 7 contains all the empirical tests performed during the development of the

Thesis in order to evaluate and verify the work done and the objectives fulfilment. The

evaluation chapter is followed by the conclusions in Chapter 8. This chapter includes a

wrap-up of this document, the main conclusions and the future work.

6 Chapter 1. Introduction

2 | Motivation Background

The purpose of this chapter is to establish in more detail the motivation and scope of this

Thesis. First, in Section 2.1 we describe the scope of this Thesis within the IoT and CPS

domains and why interoperability is one of the main challenges of IoT deployments. We

continue in Section 2.2 by describing the current approaches in the IoT to reduce the

interoperability gap and their implications. Next, in Section 2.3, we introduce the applica-

tion of structured data formats in an interoperable IoT followed by a brief introduction

in Section 2.4 to compression technologies for enabling structured data representation

formats within the context of resource-constrained devices. Finally, Section 2.5, presents

a summary and the conclusions of this chapter.

2.1 The Internet of Things and Cyber-Physical Systems

This section briefly describes an discuss the Internet of Things (IoT) and Cyber-Physical

Systems (CPS) domains as well as outline the main paradigms relevant to this Thesis. The

purpose is not to formulate a definite definition of the IoT and CPS concepts. However,

there is a general confusion between the terms IoT and CPS, sometimes used interchange-

ably. The aim of this section is to explain what this Thesis considers as IoT and CPS, why

they are relevant and what paradigms are addressed by this Thesis.

The IoT could be described as a network formed by interconnected “things” that

are uniquely identifiable. The network can be formed by heterogeneous elements,

from simple sensors to full featured computers. However, the term Thing has been

adopted because the elements of the network can also represent more generic and/or

complex concepts such as a car, a person or a place. Thus, each Thing can vary greatly

in complexity, capabilities and purpose, forming cooperation patterns and clusters with

other Things, and creating a final application from the sum of all the added functionalities.

The IoT is often associated with Machine-to-machine (M2M) communications. M2M

is traditionally seen as the communication of two (or more) elements over an isolated

network where applications do not interact with the outside. In contrast, the IoT is

seen as distributed heterogeneous applications (sensing, actuation, etc.) producing and

consuming data and being globally accessible to third party applications. The IoT relies

7

8 Chapter 2. Motivation Background

on the idea that a globally interconnected network of information will provide more

added value than isolated (sub-)networks.

From an infrastructure point of view, the IoT provides a communication architecture

that links data producers and consumers of a highly heterogeneous nature, regarding var-

ious aspects such as communication bandwidth, processing capabilities, role, autonomy,

smartness, etc.

This was not easily achievable before the upcoming of IPv6 [DH17] due to the com-

plexity of addressing and escalating an increasing number of interconnected Things.

IPv6 has brought a significant increment on the IP address range compared to IPv4.

Specifically, the address range covers 2128 unique addresses, approximately 6.65×1023 per

square meter of the Earth [Hag06]. These new address range provides more than enough

addresses to uniquely identify each and every one of the Things that can be reasonably

expected.

Cyber-physical Systems (CPS) are described as the integration of physical objects and

environments together with their virtual counterparts (sometimes referred as “digital

twin”). CPS are often build on complex architectures and synergies which are com-

posed by physical devices (sensors, actuators, routers, etc.), a multi-layered commu-

nication infrastructure and middle-ware, and high level applications that model the

cyber-representation as well as implement the management of the physical entities.

Examples of CPS include Smart Cities and Smart Factories, which may be composed by

(smart) buildings, (smart) homes, inhabitants, workers, (smart) waste collection systems,

(smart) equipment, (smart) machinery, etc.

This Thesis sees the IoT as an integral part and an enabling technology of CPS. The

IoT serves as the natural link between the physical and cyber/virtual world of CPS, as is

represented in Figure 2.1.

The IoT approach, and hence CPS, imposes several challenges that derive from the

distributed, heterogeneous and large-scale nature of typical IoT systems. These challenges

range from the efficient management and scalability of a massive number of data points

(processing, timing, storage, etc.) to interoperability in the communication protocols,

application interfaces and data.

For instance, one of the domains that is gaining attention rapidly is the IoT security

and privacy. The increased number of connected devices and infrastructure grow as well

as its application to a wider range of application domains, has proportionally increased

the appealing and risk of intentional attacks. Additionally, putting private data “on the

net” and making it globally/remotely available, also increased the risk of stolen data as

well as raised governmental and legal management concerns regarding data privacy.

Nevertheless, although the integration of added-value capabilities such as security

is an acknowledged need, interoperability is raising as one of the mayor integration

Section 2.2. Towards IoT Interoperability 9

Figure 2.1: The IoT and CPS relationship.

challenges as the number of IoT enabled devices and applications grows rapidly. Inter-

operability challenges are mainly gathered within three domains: applications, com-

munications and data. On the one hand, applications and communication channels

require standard APIs and protocols in order to handle the increasingly heterogeneous

devices and systems. On the other hand, data diversity regarding semantics and structure

entail complex formatting procedures and complicate the creation of homogeneous and

seamless data processing solutions.

This situation enforces the deployment of specific purpose gateways, proxies and

middle-wares with multi-protocol interfaces and data preprocessing capabilities in order

to provide the APIs and data formats (which sometimes do not even follow a standard)

required by applications. Thus, although the IoT pretends to overcome the limitations

associated to M2M systems, in practice, interoperability clashes often turn IoT networks

into isolated networks leading to fragmented applications.

2.2 Towards IoT Interoperability

One of the main barriers to overcome for today’s IoT is that there is no easy way to

globally and seamlessly connect all the existing (and forthcoming) Things. In the current

IoT landscape several incompatible technologies are being deployed. Actually, despite the

raison d’être of the IoT, nowadays IoT systems often result in a group of isolated intra-nets

that can not directly interact across the several heterogeneous networking interfaces

that exist. In this scenario, the connection and integration of services, interfaces and

data from several Things is very costly and complex. Thus, it is essential to remove the

interoperability gap and provide universal standards and mechanisms for the Things to

interact between them and the overall ecosystem.

10 Chapter 2. Motivation Background

There are various approaches to tackle interoperability issues in the IoT. An inter-

esting approach is the one proposed by the Web of Things (WoT) [GTMW11, KKD18]

which purpose is to overcome the IoT fragmentation and promote platform-independent

standards. Compared to the IoT, the WoT is a more current trend which takes the IoT

paradigm one step forward. The WoT concept was first develop by the WebofThings.org

community [wc] which defines it as “... a refinement of the Internet of Things by inte-

grating smart things not only into the Internet (network), but into the Web Architecture

(application)”. The main purpose of WoT is to (re-)use and leverage already available Web

protocols and standards, and apply them on top of the IoT paradigm in order to remove

the existing interoperability gap whether it applies to data, communication protocols,

services or transversal technologies (such as security or discovery).

WoT is totally based on application layer protocols (from a network OSI layer point

of view), in contrast to the IoT which is usually more focused on network and transport

layers. The purpose of focusing on the application layer is to effectively abstract lower

layers (e.g., physical or transport layers), which are the ones showing the highest degree

of heterogeneity and main source of interoperability clashes in traditional IoT networks.

Although WoT only adds functionality at the application layer, it defines an architec-

ture to organize the several existing Web technologies into a standard and functional

structure. The WoT architecture stack is further divided into four layers. Each of these

layers adds a higher level of functionality, briefly described in the list below.

• Access Layer: the first layer is the responsible of providing a standard Web inter-

face, such as a HTTP-REST API.

• Find Layer: the second layer includes semantic Web standards to describe Things

(and their services) in order to provide standard mechanisms to automatically (i.e.

without human intervention) find them.

• Share Layer: the main purpose of the third layer is to secure the data interchanged

between the Things.

• Compose Layer: the final layer includes the tools and frameworks to integrate and

build applications on top of the heterogeneous data and services provided by the

Things.

The WoT architecture promotes generic/standard Web interfaces in order to enhance

overall interoperability and build loosely coupled services by providing mechanisms for

highly configurable services/interactions. The WoT architecture includes Web scripting

languages such as javascript, data encodings such as JSON [Bra14] and EXI [SKPK14], and

Web protocols such as HTTP [FR14] and WebSockets [MF11]. In summary the aim of the

Section 2.2. Towards IoT Interoperability 11

WoT architecture is to bring Web technologies to the IoT and add a standardization layer

on top of the traditional IoT.

WoT has also attracted the interest of the W3C, which created the Web of Things

Working Group [W3C]. The W3C’s Web of Things Working Group focuses on platform

independent APIs and discovery procedures for inter-platform operations in order to

overcome the lack of interoperability across IoT systems. The group is mainly working

on descriptive metadata and interaction models as well as communication and security

requirements.

The W3C’s Web of Things Working Group released the Web Thing Model [TGC17]

which describes a common model and Web API for the “virtual counterpart of physical

objects in the Web of Things”. The aim is to provide an interoperable model and protocols

to access and interact with Things using Web standards. The document contains three

main sections:

• The first section (Integration Patterns) proposes three patterns to connect and

integrate Things with the Web.

• The second section (Web Things Requirements) provides domain agnostic constrains

and recommendations about protocol implementations for the WoT.

• The final section (Web Things Model) specifies a RESTful Web protocol together with

the resource types, data models and payload syntax that Things should implement.

The Integration Patterns proposal contemplates three distinct patterns depending on

the capabilities and architecture of the network. In the Direct Connectivity Pattern, clients

send requests directly to the Thing’s API, whether they both are on the same or different

network. This is the simplest pattern because it avoids the deployment of intermediaries.

If the Thing is not able to provide a Web API, the Gateway-Based Connectivity Pattern is

used. In this integration pattern an intermediate element (a gateway or proxy) provides

the Web API on behalf of the Thing and makes the proper translations/adaptations.

Sometimes it is more convenient to deploy a cloud service to act on behalf of the Thing

(to provide the Web API), for instance, when a Thing has to be globally accessible. This is

the third pattern and is called the Cloud-Based Connectivity Pattern.

As can be extrapolated from these integration patterns, one of the methods to over-

come the lack of interoperability across networks is to directly implement Web tech-

nologies, tools and methods on the Things. However, the majority of the devices used to

implement the core of the Things tend to have very scarce resources due to technical,

economical and practical reasons. These resource-constrained devices are designed with

low memory capacity (<256KBytes Flash/ROM and a few KBytes of RAM), limited pro-

cessing capabilities (<48MHz, typically 8-16MHz) and an average consumption of a few

12 Chapter 2. Motivation Background

µA due to energy source limitations and autonomy requirements. Thus, it is usually not

possible to integrate Web technologies directly on the resource-constrained devices. In

these cases, an intermediary such as a physical gateway/proxy or software middle-wares,

is used. The intermediary will provide an abstraction layer on top of the physical and

transport layers as well as data encodings and formats of the underlying Thing(s).

Regardless of the integration pattern used, ideally, Web technologies should be pushed

as close to the Thing as possible. In this way, less specific translation layers and inter-

mediaries would be necessary in order to achieve communication, data and application

level interoperability. Failing that, using intermediaries to leverage domain specific

protocols and translate them to Web technologies is a viable option but, in truth, it only

moves the complexity to the intermediaries. Either domain/application/protocol specific

intermediaries are deployed, or general intermediaries that must implement the myriads

of protocols and standards should be used. In order to minimize the impact and com-

plexity of the intermediaries, they should try to avoid specific technologies as much as

possible and focus on general purpose technologies that are able to seamlessly adapt to

the technologies used across network boundaries. This approach is not only applicable

to the WoT philosophy, but to similar approaches (such as the one followed by Open

Connectivity Foundation [OCF]) or IoT architectures in general if interoperability has to

be supported.

2.3 Structured Data and Interoperability

When two (or more) distributed applications communicate between them, they need

to use the same protocol and data “language”. This is mandatory so each application is

able to decode and interpret the information sent by other applications. At data level

this is achieved by structuring the data following an agreed data model. A data model

defines the concepts used to describe the data and the semantic relationships between

them (or concepts outside the data model). In turn, data models are implemented

using data formats that capture the data model’s structure and vocabulary (the terms

defined within the data model). A data format defines how the concepts are syntactically

represented. Data models can be more or less generic (such as the one specified by

SenML [JSA+18] standard which is used to describe the capabilities of generic sensors) or

for specific applications (such as the model described by GeoJSON [BDD+16], for location

information).

Structured data formats specify two levels of structural information. The first one is

the structure and grammar of the format itself, i.e. how elements and their relationships

are described. The second level is related to the data that is being formatted and contains

the structure and terms of the data model, sometimes referred as vocabulary or language.

Additionally, structured data formats are not only used to describe data that follows a

Section 2.3. Structured Data and Interoperability 13

given data model, but also to implement protocols (that, actually, also follow a particular

data model).

Until the general adoption of text-based data representation formats, data were

interchanged over the Internet following ad-hoc binary formats. These binary formats

were hard to maintain and any change or update in the structure of the format could

create parsing and interpretation mismatches between the communicating elements.

Nowadays, binary formats have been mainly dropped (except in the most resource-

constrained scenarios) in favour of formats such as XML or JSON, which are text based.

The main advantage of text-based data formats is that they allow the representation of

information in an interoperable way by setting a clear separation between data itself and

how it is presented. Data can be interchanged between different machines, systems and

entities with all the necessary information for the processing and interpretation of the

data contained in the data itself. Additionally, rules can be set for validation and pruning

of wrongly structured data.

One of the Internet technologies that more relies on structured data formats is Web

Services (WS). Interoperability is one of the core design principles of WS; they allow the

direct interaction between different types of platforms, software and users (human or

machine). They are based on the simple client/server model and are used in all kind of

applications. Manywidely used high level protocols, such as DPWS [CCK+06], SOS [BSE12]

or SensorThingsAPI [LHK16], are built on top of WS.

Apart from enhancing overall interoperability, WS enable the application of high

level services, such as the “self-*” services family (where “self-*” stands for self-discovery,

self-configuring, etc.), directly on top of the devices.

WSs can be roughly divided into two types, depending on the implementation ap-

proach:

• Based on services. These type of WSs are mainly based on Remote Procedure

Calls (RPCs) to access the services offered by a server. One of the most popular

technologies used to implement RPCs is Simple Object Transfer Protocol (SOAP

[12a]). The description and transport of SOAP is made by means of XML files.

• Based on resources. The data and services are represented as resources and they

are accessed by means of Representational Transfer State (REST [Fie00]) approach.

REST sees everything as an HTTP resource although the resource itself is typically

described in HTML, XML or JSON.

As can be seen, WS need to rely on text-based data formats at some point, either for

formatting a protocol, the data itself, or both. However, traditional text-based data format

management technologies are unsuitable for their application in resource-constrained

14 Chapter 2. Motivation Background

devices and networks. This is why binary formats are usually preferred or needed in

resource-constrained networks. The price to pay is interoperability and the need for

specific purpose intermediaries, though. These intermediaries are usually gateways or

proxies that are needed in order to ensure interoperability across networks. This is, for

instance, the strategy followed by WoT.

Interoperability has been a key enabler capability of the Internet and, as has been

explained in the previous sections, it is key for a successful deployment and integration

of the IoT and its associated technologies. Developing efficient and reliable technologies

for data formats targeted to resource-constrained devices and networks would be a large

step towards an interoperable IoT.

2.4 Compression of Structured Data

An effective technique used to reduce the size of the data is to compress the data itself

using a more efficient encoding. Generic compressed data formats have been around

for several years and are widely used in everyday technologies. These formats can

be based on lossless compression algorithms (such as GZIP [lGA] which is based on

DEFLATE [Deu96]) or lossy algorithms which are mainly used for audiovisual file formats

(such as JPEG [Ham92] for images or MP3 [ISO93] for audio) where a controlled loss of

information does not significantly affect the overall perceived result.

Generic compressed data formats can be applied to data without any assumption

of structure or semantics. In contrast, compression techniques for structured data can

directly take advantage from both, the structure of the original data format and the

structure of the data model, and produce a more compact and efficient encoding of

the data. These kind of technologies can also encapsulate and derive further context

information from the original data format, such as data types or the semantics of a

specific token.

Compression technologies for structured data are primarily based on information

extracted from the structure itself and they make use of this knowledge to efficiently

compress data streams. These technologies take advantage of the formal structure and

grammar specification followed by the data format as well as the structure followed by

the data model, usually described by means of a schema.

For instance, current compression technologies based on structured data are EXI,

CBOR and Protocol Buffers. EXI [SKPK14], adopted as a recommendation by W3C, has

emerged in the recent years as the most prominent XML compression algorithm. CBOR

(Concise Binary Object Representation) [BH13] is a compact data format based on the

JSON datamodel optimized for simplicity, processing speed, minimum resource usage and

implementation compactness. Protocol Buffers [18e] is Google’s proposal for structured

Section 2.5. Conclusions 15

data serialization. The structure of the data is described as an IDL document that acts as

the data schema. This IDL document is pre-compiled in order to produce the code stubs

that are used to marshal/un-marshal the coded streams to/from runtime objects. A more

in deep description of EXI, CBOR and Protocol Buffers is provided in Section 3.2.

Compression technologies for structured data require the use of schema or struc-

ture information in order to achieve the most efficient compression. Although these

technologies can compress data without schema information (i.e., solely relying on the

data format structure), the most efficient compression is achieved when the schema is

also available. However, how this information is shared and referenced, is usually not

specified or it is assumed that an out of band method is used.

Additionally, the entities that interchange the compressed data require the identifica-

tion of the schema (if any) that has been used as the base for the data compression. This

identification has to be either advertised at runtime or agreed beforehand between all

the parties.

However, compressing data only solves part of the problem. Reducing data size

effectively reduces communication resources but the compression process itself produces

an overhead that may be beyond resource-constrained devices’ capabilities. Additionally,

compressing data implies changing the data format in which the data is encoded. This

can raise again an interoperability issue and loss all the benefits of text based formats, if

not done properly. Ideally, the compression/decompression should be performed in a

seamless and transparent way.

2.5 Conclusions

Currently, the IoT suffers from a generalized interoperability problem mainly produced

by the increasingly number of heterogeneous applications, protocols, data and devices

that are being deployed. This heterogeneity is specially notable in the semantics, formats

and structures followed by the produced and consumed data.

Resource-constrained devices and networks usually found in IoT deployments have

very different characteristics of those commonly found through the Internet. Notably, the

capabilities of the devices are severely limited and communication channels are based

on low bandwidth technologies. These restrictions complicate the integration of solutions

and applications readily available on the Internet because they require significantly more

resources than those offered by resource-constrained devices and networks.

This also applies to text-based data representation formats. Resource-constrained

devices cannot process formats such as XML or JSON in an efficient manner (regarding

processing time) and will put to test resources such as energy or memory. Additionally,

16 Chapter 2. Motivation Background

using these formats has an impact on the network bandwidth needed which, again, has

an impact on the devices’ energy and network load.

Using compression technologies for structured data results inmore compact encodings

than text-based formats. However, compression technologies also produce a processing

overhead that may be beyond resource-constrained devices’ capabilities. Additionally, if

the format is modified, the benefits of text-based formats and interoperability with the

original format may be lost, if it is not handled properly. If compression technologies are

to be used in resource-constrained devices and networks to raise interoperability, they

must be efficiently executed within the limited resources of the devices while keeping

backwards compatibility with the original format.

This thesis aims to address the paradigm of efficient compression technologies for

structured data targeted to resource-constrained devices in order to leverage existing

standard data formats and enhance IoT interoperability at data level.

3 | Related Work

The objective of this chapter is to give the reader an insight of the technologies, researches

and developments related to this Thesis. The chapter is divided into three main sections.

Section 3.1 gives a brief introduction to two text-based data formats that dominate

the Internet, XML and JSON. These two data formats are used through this work as

application examples. The section includes information about structural concepts and

terms used across the document as well as relevant characteristics.

The next section, Section 3.2, describes state-of-the-art compression technologies or

approaches targeted to structured data, including standards and open researches. For

completeness reasons, Section 3.2 also includes protocols based on structured data and/or

text-based data formats. The presented approaches are analysed within the context of

resource-constrained devices and networks.

Finally, Section 3.3 contains an overview of the most relevant IoT communication

protocols for this Thesis. This section introduces concepts and approaches of IoT com-

munication protocols addressed in the technical chapters of this document (specially in

Chapter 5) as well as briefly discuss their relevance and applicability.

3.1 Text-Based Data Formats

Text-based data formats are the preferred way to represent and interchange data over

the Internet. Text-based data formats are mainly used for two purposes: to represent

data in a structured way and to add metadata. By representing data in a structured and

known way, a clear separation is set between data itself and how it is presented. The

main advantage is that rules can be set for validation and wrongly structured data can

be rejected. By the addition of metadata, the data can be enriched with capabilities such

as self-description or high level validation.

The main advantage of Text-based data formats is that they allow the representation

of information in an interoperable way. Data can be interchanged between different

machines, systems and entities with all the necessary information for the processing and

interpretation of the data contained in the data itself.

17

18 Chapter 3. Related Work

In this section we focus on the two text-based data formats used for data interchange

that dominate the Internet: XML and JSON. These two data formats are also used through

this work as relevant application examples. However, the principles and approaches

developed within this thesis are applicable to other text-based data formats such as

Hypertext Markup Language (HTML [FEL+17]) or the Resource Description Framework

(RDF [WWWCc]) set of recommendations.

Nevertheless, this section does not pretend to be an exhaustive description of the XML

and JSON specifications but its intent is to give the necessary information to understand

the technical development shown in this thesis. Complementary information is available

in Appendix A.1 and Appendix A.2.

3.1.1 eXtensible Markup Language (XML)

Among text-based data formats eXtensible Markup Language (XML [BPSM+08]) is one

of the most famous ones. XML is a recommendation promoted by W3C and one of their

leading technologies.

XML documents are formatted following a tree structure where the main nodes are

XML elements. The tree starts with the root element, branching through child elements

and finish in leave elements.

Elements represent the base information item of a XML document. There must be

at least one element, the root element, and any additional item must be a child of this

element. Thus all the items in a XML document form a hierarchical tree with the root

element on the top. Elements can be defined in two ways: with a full start and end tags

(<element_name> . . . </element_name>) or with a self-closing tag (<element_name . . . />).

The other main item of XML documents is attributes. Attributes are name/value pairs

in the form “attribute_name=value”. Every attribute is bound to an element and they are

defined within the element’s start or self-closing tag.

Figure 3.1 shows an example of a XML document containing four elements and one

attribute. “pet” is the root element and it contains the child elements “name”, “age”

and “gender” with the values “Calcetines”, “1” and “female” respectively. “species” is

an attribute of the “pet” element with the value “feline”. The tree structure is shown in

Figure 3.2.

3.1.1.1 XML Structure Representation

After the appearance of XML, many technologies adopted it and developed their own

model abstractions and terminology. This led to some confusion in the XML community

and the need for a common model arose. In order to solve this issue, the W3C‘s released

the recommendation XML Information Set [CT04], commonly known as XML Infoset. The

Section 3.1. Text-Based Data Formats 19

<pet species="Cat">
<name>Calcetines</name>
<age>1</age>
<gender>Female</gender>

</pet>

Figure 3.1: XML element and attribute example.

root element

<pet>

attribute

species

<name> <age>
leave element

<gender>

Figure 3.2: XML tree structure example.

main purposes of the XML Infoset is to provide a common terminology and to abstract a

XML document into an idealized model.

The XML Infoset defines eleven components, denoted information items. Each of the

information items contains a set of properties as well as links to the nested items.

• Document Information Item: as the name suggest, the Document Information

Item provides general information about the XML document as well as contain all

the other items in the document. This information includes, for instance, properties

set in the prolog and the root element.

The prolog is a XML construct gives contextual information to the XML parsers. For

instance, the prolog shown in Figure 3.3 declares that the XML version used is “1.0”

and that the text encoding is “UTF-8”. The prolog is optional but if a XML document

contains one, it must a appear at the beginning of the document before any other

item.

• Element Information Item: every element has one associated Element Informa-

tion Item. The properties of this item contain information related to the element

including the name, parent item, children (not only elements but also other items

such as comments or processing instructions) and attributes.

• Attribute Information Item: every attribute has one associated Attribute Informa-

tion Item. The properties of this item include the name and the parent element (the

element in which this attribute is declared).

<?xml version="1.0" encoding="UTF-8"?>

Figure 3.3: XML prolog example.

20 Chapter 3. Related Work

<?app param1="123" param2="example"?>

Figure 3.4: XML processing instruction example.

• Processing Instruction Information Item: the model will contain one Processing

Instruction Information Item per processing instruction (PI). The information con-

tained in a PI is not intended for an XML Parser but for the application processing

the XML document. This information is usually composed by instructions on how

to process the document or to control different behaviours. Basically, a PI has a

target that identifies the application as well as data that is used as parameters. For

instance, the example in Figure 3.4 shows a PI for the application “app” with the

content “param1="123" param2="example"”

Basically, the properties of a Processing Instruction Information Item will contain

information about the PI’s target and content.

• Character Information Item: although in theory the model should contain one

Character Information Item per character in the document, in practice characters

are grouped in strings and processed as such by applications. Nevertheless, the

properties of the Character Information Item include the character code (following

the ISO 10646 standard) and the parent item.

CDATA sections are also included within Character Information Items. CDATA

declarations are used to define sections with no XML markup. This sections will be

escaped by parsers.

CDATA sections are defined through a “<![CDATA[escaped_text]]>” declaration.

The content of a CDATA section is considered simple text and it is not necessary

to escape characters reserved by the XML Recommendation This is very useful to

avoid repetitive escaping of characters.

• Comment Information Item: each item is linked to a comment in the XML docu-

ment. The properties of this item contain the text of the comment and the parent

item.

• Namespace Information Item: each item of the document will contain one Names-

pace Information Item per namespace in scope. XML Namespaces are explained in

more detail in the following section.

• Document Type Declaration Information Item, Unexpanded Entity Reference

Information Item, Unparsed Entity Information Item and Notation Informa-

tion Item: a model will contain these items only if the source document defines a

document type declaration. The properties of these items contain information to

Section 3.1. Text-Based Data Formats 21

manage DTD’s associated to the document such as the retrieval of the XML docu-

ment’s DTDs or notations for the inclusion of non-XML content.

XML Infoset provides a standard model to represent and refer to XML components.

However, there are other technologies used to represent an in-memory instance of an

XML document. The most popular data models for representing, storing, accessing and

processing XML documents is W3C’s Document Object Model (DOM [WWWCa]).

DOM represents XML documents as a tree-structure where everything is a node:

the document itself, elements, attributes, etc. As with other tree-structures, DOM is

represented as a graph and the relationships between nodes are described using terms

like parent, child, sibling, etc. DOM also specifies a low-level Application Programming

Interface (API) for accessing and processing XML documents. The API also allows to

modify the nodes at run-time, which in effect, is equivalent to modifying the values of

those nodes in the XML document itself.

3.1.1.2 Namespaces

In XML, namespaces are used to group elements and attributes. The name of an ele-

ment or attribute within a namespace must be unique but it can be reused in another

namespace because the namespace itself is used to solve the ambiguity.

Namespaces are specially useful when XML documents are shared or mixed with

other XML documents developed by third parties. Namespaces ensure that the names

of elements and attributes defined in each XML document format do not clash and XML

applications parse then correctly.

Namespaces usually follow the URI [BLFM05] format. It is common practice to use

registered domains as part of the namespace in order to assure the uniqueness (as well

as provide an evident means for identification) and avoid clashes with other entities’

choices.

Namespaces can be declared implicitly or explicitly. To declare a namespace implicitly,

the namespace is declared within the element it will be associated with. This is known as

declaring a default namespace and it is in scope of the element in which it is declared as

well as all the child elements. In this context, being “in scope”means that the namespace

is available to be used. As we will se later, a namespace may be in scope but not assigned.

On the other hand, attributes are not covered by a default namespace.

Figure 3.5 shows an example of a default namespace declaration. The namespace

“http://example.com/namespaces/pets” is in scope for the elements “pet”, “name”,
“age” and “gender” and the four elements are associated to it.

In order to declare a namespace explicitly a prefix has to be assigned to it using the

following form:

22 Chapter 3. Related Work

<pet xmlns="http://example.com/namespaces/pets" species="Cat">
<name>Calcetines</name>
<age>1</age>
<gender>Female</gender>

</pet>

Figure 3.5: XML namespace declaration example.

<pe:pet xmlns:pe="http://example.com/namespaces/pets" species="Cat">
<name>Calcetines</name>
<age>1</age>
<gender>Female</gender>

</pe:pet>

Figure 3.6: XML namespace prefix declaration example.

xmlns:prefix="namespace_URI"

The name of the prefix must follow the same naming rules as elements and must not

start with the character string “xml”. In the example of Figure 3.6, the four elements

“pet”, “name”, “age” and “gender” are within the scope of the namespace “pe” but only

the “pet” element belongs to it. When an element or attribute is explicitly associated to

a namespace, the prefix forms part of its name and is known as a Qualified Name (or

QName). The original name (without the prefix) is known as the Local Name.

Usually attributes are not explicitly assigned to a namespace. This is because attributes

are already associated with an element, thus, if the element belongs to a namespace, the

attribute is already uniquely identifiable.

A XML document may contain more than one explicitly declared namespace and they

can be mixed with a default namespace. For instance, Figure 3.7, shows a default names-

pace mixed with an explicit namespace. The element “pet” belongs to the default names-

pace (i.e. “http://example.com/namespaces/pets”) while elements “name”, “age”
and “gender” belong to the namespace “http://example.com/namespaces/info”.
There are several XML namespaces already defined, the majority of them covering

an standard or entity conventions. The following list contains the most common and

representative namespaces.

<pet
xmlns="http://example.com/namespaces/pets"
xmlns:in="http://example.com/namespaces/info"
species="Cat">

<in:name>Calcetines</in:name>
<in:age>1</in:age>
<in:gender>Female</in:gender>

</pet>

Figure 3.7: Multiple XML namespace prefix declaration example.

Section 3.1. Text-Based Data Formats 23

• XML Namespace: the “xml” prefix is always bound to the “http://www.w3.org/
XML/1998/namespace” URI and its contents are available by default in all XML
parsers.

• XMLNS Namespace: the prefix “xmlns” is used to declare a prefix for an ex-

plicit namespace. The “xmlns” prefix is bound to the “http://www.w3.org/2000/
xmlns/” URI and hard-coded into all XML parsers.

• XML Schema Namespace: the XML Schema Namespace covers the declarations

used to define XML Schemas. This namespace is bound to the “http://www.w3.
org/2001/XMLSchema” URI and is usually associated with prefixes “xs” or “xsd”
(although it is not mandatory).

• SOAP Namespace: this namespace contains the declarations to define method

calls following the client/server paradigm. Actually, there are two versions of

the SOAP Namespace: “http://schemas.xmlsoap.org/soap/envelope/” URI
for SOAP 1.1, usually used with the prefix “soap”, and “http://www.w3.org/2003/
05/soap-envelope” for SOAP 1.2, usually bound to the prefix “soap12”.

• WSDL Namespace: WSDL stands for Web Services Description Language and is

used to describe the methods and data structures used in web services. WSDL is

closely related to SOAP and the SOAP Namespace is included in the declarations

of the WSDL Namespace. The WSDL Namespace is bound to the “http://www.w3.
org/ns/wsdl” URI and is usually associated with the prefix “wsdl”.

3.1.1.3 XML Schema

In general, a schema is a document that contains a specific model that describes a well-

defined structure. XML Schema is the W3C specification [WWWCd] for describing the

structure and vocabulary of XML documents. Although there are other specifications,

such as Document Type Definition (DTD [WWWCb]) or RELAX NG [Rel], XML Schema

is very mature and is widely used in many XML applications/domains as well as be the

basis for other XML technologies (e.g., SOAP [12a]).

Usually, an XML document includes a reference to the XML Schema that describes

its vocabulary. This XML document is denoted an “instance” of the schema document.

The main use for XML Schemas is for document validation, which consist on verifying

that the content of an XML document is in conformance with the model and structure

described in the associated schema.

The schema element is the root element of any XML Schema document. This element

provides several attributes to declare information about the overall schema including

the namespace it is bound to and version information. The targetNamespace attribute

24 Chapter 3. Related Work

<schema
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:pe="http://example.com/namespaces/pets"
targetNamespace="http://example.com/namespaces/pets"
elementFormDefault="qualified">

<element name="pet">
<complexType>

<sequence>
<element name="name" type="string"/>
<element name="age" type="integer"/>
<element name="gender" type="string"/>

</sequence>
<attribute name="species" type="string"/>

</complexType>
</element>

</schema>

Figure 3.8: XML Schema simple example.

is used to declare the namespace URI that will identify this XML Schema. Other XML

documents will use this URI to reference the schema as a namespace. Figure 3.8 shows

an example of a simple XML Schema, containing four elements and one attribute. “pet”

is the root element and it contains the child elements “name”, “age” and “gender” as well

as an attribute of the “pet” element named “species”.

The Appendix A.1 gives a more detailed description of the XML Schema specification

including the most important concepts and components relevant to this thesis.

3.1.2 JavaScript Object Notation (JSON)

JavaScript Object Notation [Bra14], better known as JSON, is a data format born from

the JavaScript Programming Language. However, JSON is a text-based format as well

as language independent and is not tailored to JavaScript Although being a text-based

data format, JSON was designed to be relatively lightweight and easy to parse, at least,

compared to XML.

The JSON format structure is based on two constructs: name/value pairs and arrays of

values. JSON can also represent four basic types: strings, numbers, booleans and null.

In JSON, objects are unordered sequences of name/value pairs separated by a coma (i.e.

‘,’), where the name is always represented as a string and the value is either a string,

number, boolean, null, array or another nested object. JSON objects are enclosed between

curly braces (i.e. ‘{’ and ‘}’). A JSON array is an ordered sequence of zero or more values

separated by a coma (i.e. ‘,’), where values are strings, numbers, booleans, null, or nested

arrays and objects. JSON arrays are enclosed between square brackets (i.e. ‘[’ and ‘]’). A

simple example of a JSON document is shown in Figure 3.9.

JSON structure components are described in more detail in the following list:

Section 3.1. Text-Based Data Formats 25

� �
{

"name": "Calcetines",
"age": 1,
"gender": "Female",
"owners": ["Maite","Jorge"]

}� �
Figure 3.9: JSON simple structure example.

• Literals: JSON specifies three literals: “true”, “false” and “null”. The first two (“true”

and “false”) are used for boolean values while the third one (“null”) is used to

represent null values.

• Numbers: JSON numbers are represented as a base 10 sequence of decimal digits.

JSON numbers can be prefixed with a sign symbol (‘+’ or ‘-’) and may include a

fractional part. The fractional part can be either represented with a dot (i.e., ‘.’)

separated digits or with an exponent of ten prefixed by an ‘e’ or ‘E’. Notably, JSON

does not support numbers that cannot be represented as sequences of digits (such

as INF and NaN).

• Strings: a JSON string is a sequence of Unicode characters enclosed in quotation

marks. A reverse solidus (i.e. ‘\’) is used to escape characters. Characters in the

Basic Multilingual Plane (U+0000 through U+FFFF) may be optionally represented

as a reverse solidus, followed by the letter ‘u’, followed by the four hexadecimal

code point digits. For instance, the letter ‘A’may be optionally encoded as “\u0041”.

Extended characters that are not in the Basic Multilingual Plane, can be represented

by combining characters within the Basic Multilingual Plane.

• Objects: objects are used to represent structured data composed by one or more

fields. JSON objects are represented as a sequence of name/value pairs enclosed by

curly braces. Names are represented as quoted strings and are separated by a colon

(i.e., ‘:’) from the value. Consecutive value pairs are separated by a coma (i.e., ‘,’).

The box below shows an example of a JSON object with two subschemas.

{ "name1": value1, "name2": value2 }

• Arrays: array represent a sequence of values. JSON arrays are represented as a

coma separated sequence of zero or more values enclosed between square brackets.

The values of an array can be of different types.

The box below contains a JSON array with three subschemas.

[value1, value2, value3]

26 Chapter 3. Related Work

� �
{

"title": "root schema",
"sub": {
"title": "subschema"

}

}� �
Figure 3.10: JSON Schema root schema and subschema example.

3.1.2.1 JSON Schema

A JSON Schema defines the structure of JSON data as well as provide information for

validation, parsing and interaction. At the time of this writing Draft-04 version is still

the more widely used JSON Schema version, compared to more recent ones (currently

Draft-07 [WA18, WAL18]). Thus, this thesis focuses on JSON Schema Draft-04. However,

the principles described in this thesis are easily extrapolated to more recent JSON Schema

versions, such as Draft-07.

The JSON Schema Draft-4 specification is actually composed by three documents.

• JSON Schema core specification [GZC13] describes the core terminology, references

to other JSON Schemas and vocabulary definition.

• JSON Schema Validation [ZC13] defines the vocabulary for validation assertions,

link navigation and interaction constrains.

• JSON Hyper-Schema specification [LZC13] describe the hypertext structure and

management of JSON documents such as resource link relations and multimedia

vocabulary.

A JSON Schema is in itself a JSON document but it is used to define the data model fol-

lowed by other JSON documents, known as “instances”. Thus, a JSON Schema defines the

structure and constrains over the same structural components used by JSON documents

and listed in the previous section, Section 3.1.2: null, boolean, number, string, object and

array.

A JSON Schema document always starts from the root schema but it can contain any

number of nested schemas, denoted subschemas. For instance, Figure 3.10 shows an

example JSON Schema that is composed by a root schema (titled “root schema”) and one

subschema (titled “subschema”).

The root schema and subschemas of a JSON document are either an object or a

boolean. Schemas with boolean root elements are special schemas that either always

pass validation of instances (“true”) or always fail (“false”). If the schema is an object,

Section 3.2. Structured Data Compression 27

it contains the structure and constrains that must be followed by the JSON instances of

the data model described in the schema. The properties of the JSON Schema contain the

vocabulary of the data model and are refereed as “keywords”.

Appendix A.2 describes in more detail the structure and keywords defined by the

JSON Schema Draft-04 specification.

3.2 Structured Data Compression

Integrating WSNs into larger networks is a mayor design challenge. The research commu-

nity has tried to bring the technologies designed for the Internet to WSNs with the hope

that they would become just another cluster of the cloud. However, Internet technolo-

gies do not usually take into account the limited resources and restrictions of a typical

resource-constrained IoT device. Thus, these technologies are not easily adapted or are

simply beyond the capabilities of a resource-constrained device.

Regarding lossless data compression, there are several approaches. In this thesis we

focus on lossless data compression for structured data as opposed to general purpose

approaches such as DEFLATE [Deu96] or MP3 [ISO93]. Compression techniques for

structured data take advantage from the knowledge of the data format and the data

model that describe the structured data. This knowledge is used to extract the grammar

and vocabulary that describe the structured data and produce a more compact and

efficient encoding of the data (compared to the original format).

There is a fairly hight amount of data compression technologies for structured data

which had variable popularity over the years. Readers are encouraged to take a look at

[Sak09], [Li10] and [BH13] for a survey on compression technologies targeted either to

XML or JSON as well as ad-hoc binary data formats. A summary list is shown in Table 3.1.

In this section we will focus on standard technologies that are most widely used

and have a high level of acceptance within the scientific and industrial communities at

the time of this writing. Specifically, this section focuses on Efficient XML Interchange

(EXI), Concise Binary Object Representation (CBOR) and Protocol Buffers. Despite the

several data compression proposals targeted to XML, W3C’s EXI [SKPK14] has emerged in

the recent years as the most prominent XML compression algorithm [MTSG10b, HB15].

CBOR [BH13] is a compact data format based on the JSON data model and it has gained in-

creased popularity as a compact representation for JSON data streams. JSON is optimized

for simplicity, processing speed, minimum resource usage and implementation compact-

ness and has been ported to several programming languages. Protocol Buffers [18e] is

Google’s proposal for structured data serialization. Protocol Buffers provide an ad-hoc

schema format in IDL. Although Protocol Buffers define a JSON mapping it is mainly de-

signed to be used on its own. Apart from the compression library, there are various tools

28 Chapter 3. Related Work

Compressor
Target

Data Format

Schema

Aware
Compression Method

ASN.1 [Uni15] ad-hoc YES Binary Structure

AXECHOP [LDM05] XML NO Context-Free Grammar

BSON [18a] JSON NO Context-Free Grammar

CBOR [BH13] ad-hoc, JSON NO Binary Structure

DTDPPM [Che05b, Che05a] XML YES Dictionary

Exalt [Tom04, Tom03] XML NO Context-Free Grammar

EXI [SKPK14] XML, JSON YES Dictionary + Grammar

ISX [WLS07] XML NO Labelled Tree

MessagePack [Fur13] ad-hoc, JSON NO Binary Structure

Millau [GS00] XML YES Dictionary

Protocol Buffers [18e] ad-hoc, JSON YES Varints

QRFXFreeze [SNR15] XML NO Structure Modelling + Dictionary

QXT [SS07] XML NO Dictionary

RFXFreeze [SHK
+
08] XML NO Structure Modelling + Dictionary

rngzip [LE07, Lea15] XML YES Deterministic Tree Automata

SCMPPM [ANdlF03] XML NO Structure Context Modelling

Smile [Fas17] JSON NO Binary Structure

SXSI [ACM
+
15] XML YES Labelled Tree

TinyT [MS10] XML YES Grammar-Based Tree

TREECHOP [LMD05] XML NO Dictionary

UBJSON [Kal18] JSON NO Binary Structure

XAUST [SS05] XML YES Deterministic Finite Automata

XBzip [FLMM06, FLMM09] XML NO Labelled Tree

XCpaqs [WLLH04] XML NO Dictionary

XCQ [NLWL06] XML YES Dictionary

XGrind [TH02, Tol02] XML YES Dictionary

XMill [LS00] XML NO Dictionary

XMLPPM [Che00] XML NO Multiplexed Hierarchical PPM

XPress [MPC03] XML NO Dictionary

XQueC [ABMP07] XML YES Structure Tree

XQzip [CN04] XML NO Dictionary

XSeq [LZLY05] XML NO Context-Free Grammar

XWRT [Ski16] XML, HTML NO Dictionary

XXS [BCN14] XML YES Dictionary

Table 3.1: Summary of compression technologies targeted to structured data.

Section 3.2. Structured Data Compression 29

to automatically create the code stubs used to marshal/un-marshal the coded streams

to/from runtime objects.

Section 3.2.4 includes compression proposals found in the state of the art but did not

result in formalized compression technologies or standards. These proposals are included

in Section 3.2.4 because of their significance to this thesis, either because they make make

explicit use of templates or they are specifically targeted to resource-constrained devices.

Finally, the last section describes compression approaches for protocols that are based

on structured data and/or text-based data formats.

3.2.1 Efficient XML Interchange

Although there are several XML compression algorithms, currently the most promising

one seems to be Efficient XML Interchange (EXI [SKPK14]), adopted as a recommendation

by W3C. For a comprehensible comparative of XML compression algorithms readers are

encouraged to consult [MTSG10b]. EXI relies on a binary representation of XML and it

is designed to provide a considerable reduction on the size of the information in XML

format (70-80 % as shown in [WKB+07]) and high performance when encoding/decoding

(6.7 times faster decoding and 2.4 times faster encoding according to [Bou09]) as well

as show better results when compared to other XML and JSON compression algorithms

[MTSG10b, HB15].

In EXI, a XML document is represented by an EXI stream, which is composed of a

header (containing encoding information) and a body (representing the data). The EXI

header contains the options used to encode the EXI body. EXI bodies may carry whole

EXI documents (i.e. documents that contain the root element followed by the reset of the

document) or EXI fragments, which represent portions of a document.

EXI represents data according to three formal grammars. These three built-in gram-

mars are the base of EXI and each one of them is applied to EXI documents (Built-in

Document Grammar), EXI fragments (Built-in Fragment Grammar) and EXI elements

(Built-in Element Grammar). The built-in grammars are dynamically created during the

EXI stream processing. When a new element is found, a new matching built-in grammar

is added. In this way, consecutive appearances of the same element will be codified more

efficiently using the newly created grammar

If the XML Schema of the XML document is available, EXI can take advantage of

the structure information inferred from the schema an use the set of schema-informed

grammars instead of the built-in grammars. The set of schema-informed grammars is also

composed by three grammars (equivalents in purpose to the three built-in grammars) for

EXI documents (Schema-informed Document Grammar), EXI fragments (Schema-informed

Fragment Grammar) and EXI elements (Schema-informed Element Grammar).

30 Chapter 3. Related Work

EXI Event Type Grammar Notation
Information Items

Structure Content

Start Document SD

End Document ED

Start Element

SE (qname) [prefix]

SE (uri:*) local-name, [prefix]

SE (*) qname, [prefix]

End Element EE

Attribute

AT (qname) [prefix] value

AT (uri:*) local-name, [prefix]

AT (*) qname, [prefix]

Characters CH value

Namespace Declaration NS uri, prefix, local-element-ns

Comment CM text

Processing Instruction PI name, text

DOCTYPE DT name, public, system, text

Entity Reference ER name

Self Contained SC

Table 3.2: EXI Event types and codes.

Schema-informed and built-in grammars may be used together. The schema-informed

grammars will be used as long as the processed XML data conforms to the schema. If

there are any deviations, the built-in grammar will be used instead. EXI also defines

a “strict” compression mode. In this mode no deviations from the schema-informed

grammar are accepted. The strict mode is less flexible than the default mode but it is

more efficient regarding compression rate and processing complexity.

The EXI grammars specify the events that are permitted during the data stream

processing. The allowed events will depend on the currently used grammar and the

information contained in the data stream. Table 3.2 lists the defined event types and

codes. Events are codified using 1 to 3 non-negative integers. These codes are used to

codify consecutive events within a data stream. For instance, Figure 3.11 shows the

built-in document grammar as specified in the EXI Format [SKPK14], including the events

that are accepted and the corresponding codes.

3.2.1.1 Built-in EXI Data Type Representations

EXI specifies various built-in data types. The EXI specification includes the representation

(i.e. codification) of each of the built-in data types as well as the mapping to/from XML

data types. Event codes are codified using n-bit unsigned integers (see Table 3.3) while

the contents are represented using the corresponding data type. If no data type can be

inferred, String data type is assumed.

The list of specified built-in data-types and their corresponding XML data types is

summarized in Table 3.3 and listed below:

• Unsigned Integer: unsigned integers are encoded as a sequence of bytes with the

least significant byte first. The most significant bit of every byte is set to ‘1’, except

Section 3.2. Structured Data Compression 31

� �
Syntax Event Code

Document :
SD DocContent 0

DocContent :
SE (*) DocEnd 0
DT DocContent 1.0
CM DocContent 1.1.0
PI DocContent 1.1.1

DocEnd :
ED 0
CM DocEnd 1.0
PI DocEnd 1.1� �

Figure 3.11: Built-in Document Grammar.

Built-in EXI

Datatype

Representation

XML Schema Datatypes

Unsigned

Integer

nonNegativeInteger or integer bounded to a value

equal to or greater than 0 with minInclusive or minEx-

clusive facets.

n-bit Unsigned

Integer

integer bounded to a value equal to or smaller than

4096 with minInclusive, minExclusive, maxInclusive

or maxExclusive facets.

Binary base64Binary, hexBinary

Boolean boolean

Integer
integers not coverred by the n-bit Unsigned Integer or

Unsigned Integer data types

Decimal decimal

Float float, double

String
string, anySimpleType, anyURI, duration, QName, No-

tation, all types derived by union

QName QName for values of xsi:type attribute

Date-Time
dateTime, time, date, gYearMonth, gYear, gMonthDay,

gDay, gMonth

List
All types derived by list, including IDREFS and ENTI-

TIES

Table 3.3: Built-in EXI Data Type Representations and associated XML data types.

32 Chapter 3. Related Work

the last byte which is marked with a ‘0’ in its most significant bit. The actual value

of the unsigned integer is stored in the 7 least significant bits of each byte.

• n-bit Unsigned Integer: this data type is encoded by representing the unsigned in-

teger value within n bits. Complete bytes are concatenated with the least significant

byte first.

• Binary: the Binary data type is simply encoded as a sequence of bytes. This sequence

is preceded by a length field of the Unsigned Integer data type.

• Boolean: this data type is actually a n-bit Unsigned Integer of length 1. FALSE is

represented as ‘0’ and TRUE as ‘1’.

• Integer: the Integer data type is encoded with a sign Boolean and an Unsigned

Integer. A sign value of ‘0’ represents a positive number while the ‘1’ value is used

for negative numbers. If the number is non-negative, the Integer value is stored

in the Unsigned Integer. If the number is negative, the Unsigned Integer holds the

magnitude of the value minus ‘1’.

Optionally, if a schema definition of the data type is available and the value is

bounded, the Integer can be encoded as a n-bit Unsigned Integer or Unsigned

Integer.

• Decimal: the Decimal data type is composed of a sign field of Boolean data type

and two Unsigned Integers. A sign value of ‘0’ represents a positive number while

the ‘1’ value is used for negative numbers. The two following unsigned integers

respectively represent the integral and fractional portions of the Decimal value. The

fractional portion field is encoded with the digits in reverse order to preserve the

leading zeros.

• Float: the Float data type is composed by two Integers representing the mantissa

and the base-10 exponent, respectively. Special values on the exponent value are

used to represent especial Float values such as INF or NaN.

• String: a String data type is encoded as a sequence of characters. The sequence is

preceded by a length field of the Unsigned Integer data type. String data types can

also be represented by their compact identifiers under certain conditions. This is

explained in more detail in the next section, Section 3.2.1.2.

• QName: the QName data type is composed of an URI, local-name and prefix fields.

The fields of the QName are encoded depending on the schema information (if

available) and whether there is an assigned namespace. If the schema gives enough

context information, the URI, local-name and prefix can be omitted. Otherwise

URI and local-name fields are represented as String data types while prefixes are

Section 3.2. Structured Data Compression 33

encoded using the compact identifier assigned by the String Table, as explained in

the next section, Section 3.2.1.2.

• Date-Time: the Date-Time data type is composed of various optional fields that will

be present or not according to the specific represented value. The possible fields

are listed below:

– Year: an Integer containing the offset from the 2000 year.

– MonthDay: a 9-bit Unsigned Integer that satisfies the equationmonth ∗ 32+ day.
day is bounded to the values [1,31] andmonth is within the range [1,12].

– Time: a 17-bit Unsigned Integer that satisfies the equation ((hour∗64)+minutes)∗
64 + seconds. hour is within the range [0,24],minutes [0,59] and seconds [0,60].

– FractionalSecs: an Unsigned Integer that contains the fractional portion of the

seconds. In order to preserve the leading zeros, digits are encoded in reverse

order.

– TimeZone: a 11-bit Unsigned Integer that satisfies the equation TZHours ∗ 64+
TZMinutes+ 896. TZHours is bounded to the values [-14, 14] and TZMinutes

is within the range [-59, 59].

– Presence: a Boolean that indicates whether the presence fields are included in

the Date-Time value.

Which fields will be encoded depends on the specific XML Schema data type. For

instance, the date XML data type will include the Year,MonthDay and Presence fields

as well as the TimeZone field in case the presence is TRUE.

• List: a List data type is encoded as a sequence of items. The sequence is preceded by

a length field of the Unsigned Integer data type. The items will be encoded according

to their specific data type.

3.2.1.2 String Table

EXI uses a string table to assign “compact identifiers” to string tokens (such as qualified

names and literals). The string table is dynamically expanded at run-time to include

additional string values encountered in the document. When a string token is found

(e.g. qualified names, literals, string values, etc.), it is checked against the string table.

If the string is not found, the string is included in the string table and a new compact

identifier is assigned. The index of the string token within the string table is used as the

compact identifier. If there is a match, the string token is encoded using the associated

compact identifier instead of using the string itself. When XML Schema information is

available, the string table is initially pre-populated with the string tokens extracted from

the schema allowing a much more efficient coding and compression.

34 Chapter 3. Related Work

The string table is structured into multiple partitions. These partitions are optimized

for one of two purposes, either for the frequent use of compact identifiers or string literals.

Which partition type will be used will depend on the nature of the tokens stored in it.

For instance, URIs and prefix strings will be stored in partitions optimized for compact

identifiers while value content items will be stored in partitions optimized for frequent

use of string literals.

Splitting the string table in multiple partitions has a second advantage. The assigned

compact identifiers are actually the index of the string tokens within the string table

partition. By keeping multiple purpose-specific partitions, the indexes are keep relatively

small, resulting in smaller compact identifiers which, in turn, produce more compact

codes.

As has been explained above, the string table is populated with strings found in the

currently processed EXI stream. However, after the EXI stream has been processed, the

string table returns to its initial state (i.e. the state before the EXI stream processing

started). This means that populated string tables cannot be reused between consecutive

EXI streams

There is one notable exception to this rule. When schema-informed grammars are

used (i.e. the XML Schema describing the data is available) the string table is already

pre-populated with strings contained in the XML Schema. However, if new strings are

added to the string table during the EXI stream processing (for instance, a string data

value or because an element not conforming to the schema has been found), they will be

removed from the string table after the EXI stream processing finishes.

3.2.1.3 EXI Profile

EXI Profile [FP14] recommendation proposes a series of configuration parameters and

practices in order to reduce the memory needs of EXI implementations. EXI Profile is

targeted to devices that are not allowed (either by design or convenience) to use arbitrary

memory growth at runtime. The use of runtime memory is bounded by restricting

the growth of string tables and the evolution of grammar(s), sacrificing some of the

compression efficiency.

The EXI profile configuration is included as options in the EXI Header. EXI Profile

bounds the consumed memory grow by allowing the management of the grammar

learning mechanisms. Two options are provided to limit the number of grammars that

can evolve at runtime as well as the number of newly inserted grammar productions

Additionally, EXI Profile provides an option to disable the use of local value references.

In this way the arbitrary grow of the string table is avoided.

Section 3.2. Structured Data Compression 35

3.2.1.4 EXI for JSON

Currently, the W3C is working on the EXI for JSON (EXI4JSON [PB18]) specification witch

defines the use of EXI for JSON documents.

EXI4JSON is based on the use of an intermediate XML Schema that maps to the JSON

structure. This XML Schema is used to perform an EXI schema-informed compression.

First, JSON documents are transformed into an XML document following the schema and

mapping specified by EXI4JSON recommendation. Then the schema-informed grammar

derived from the schema is used to perform the encoding. EXI4JSON also mandates the

use of the schema strict compression mode as well as define the schemaId "exi4json" to

identify the EXI4JSON XML Schema.

Initial experiments performedwith the exificient-for-json [18d] tool show that EXI4JSON

outperforms other technologies for JSON document compression.

3.2.1.5 Conclusions

Despite its many configuration options, EXI may be too complex to be efficiently imple-

mented in resource-constrained devices. On the one hand, the implementation may

require too much code memory or processing time. On the other hand, EXI requires

the use of runtime memory allocation in order to accommodate schema deviations and

grammar learning.

EXI Profile recommendations may not cover the resource limitations of the most

resource-constrained devices. In contrast, the compression approach proposed in this

thesis is specifically targeted to resource-constrained devices and makes use of templates

and schema context information for energy efficient management of standard data model

representation formats.

EXI4JSON does not take direct advantage of the JSON Schema as it relies on an inter-

mediate XML Schema. This means that EXI does not take advantage of the JSON Schema

vocabulary. The proposed compression approach, on the other hand, directly exploits the

JSON Schema information to perform the codification, removing unnecessary contextual

information from the compressed stream.

3.2.2 Concise Binary Object Representation

Concise Binary Object Representation (CBOR [BH13]) is a compact data format based

on the JSON data model. CBOR is optimized for simplicity, processing speed, minimum

resource usage and implementation compactness.

Although it is designed to be used on its own, the CBOR specification defines a JSON

mapping that can be used to directly transform data between JSON and CBOR formats.

36 Chapter 3. Related Work

JSON objects are converted to CBOR maps where the JSON property names are used as

the keys of the CBOR map.

CBOR follows a very straightforward approach to encode data items. The first byte

of each data item gives information about the data type of the data item. Thus, CBOR

includes the information about the CBOR data types in-line, in the coded stream itself.

The data type byte is further divided into two distinct fields, themajor type (high order 3

bits) and additional information (remaining low-order 5 bits).

The additional information field provides further data-type specific information that

is used to decode the data item’s value. For instance, if the additional information value

is less than 24 it represents a small unsigned integer (i.e. an integer between 0 and 23)

while if the value is between 24 and 27, it indicates that the actual value of the additional

information field is encoded in the following bytes and its length is 1, 2, 4 or 8 bytes long

respectively.

The additional information field interpretation is done according to themajor type field

semantics. For instance, if themajor type indicates and array, the additional information

field provides the length of the array.

3.2.2.1 CBOR Data Type Codification

The following list summarizes the major types as well as the type-specific additional

information and any complementary fields.

• Major Type ‘0’: the major type ‘0’ is used to represent an unsigned integer. The

additional information field encodes the integer value either directly (if less than 24)

or in the following bytes (if between 24 and 27).

• Major Type ‘1’: this type represents a negative integer. The additional information

field encodes the integer value in the same way as unsigned integers (major type

‘0’).

• Major Type ‘2’: major type ‘2’ is used to represent byte strings. The additional

information field is interpreted as an unsigned integer and specifies the length of

the string. The actual byte string follows the data type encoding.

• Major Type ’3’: this type follows the same encoding specification as byte strings

(major type ‘2’) but it specifically represents a string of UTF-8 characters.

• Major Type ‘4’: this type is used to represent arrays of data items. The additional

information field is interpreted as an unsigned integer and specifies the number of

items in the array.

Section 3.2. Structured Data Compression 37

• Major Type ‘5’: themajor type ‘5’ represents a map. Amap is composed of key/value

data item pairs that are concatenated together to form the map. The first data item

of each pair is the key, followed by the value. The additional information field is

interpreted as an unsigned integer and specifies the number of data item pairs

contained in the map. CBOR applications need to agree on what type(s) of keys are

used.

• Major Type ‘6’: major type ‘6’ is a special type used to semantically tag data items.

A tag data item is used to give semantic meaning to the following data item. The

CBOR specification includes predefined values for the tag data item’s additional

information field. For example, dates and big numbers (bignums).

• Major Type ‘7’: this type is used to encode floating-point numbers and special data

types (such as true or false).

Finally, CBOR specification provides some hints on a CBOR-to-JSON transformation.

Basically, base data types are directly mapped from CBOR to JSON (and vice-versa). For

instance, CBOR integers (major types 0 or 1) are mapped to JSON numbers and CBOR

arrays (major type 4) are mapped to JSON arrays. Notably, JSON objects are converted to

CBOR maps where each key/value pair represents one of the properties of the object. The

map the keys are CBOR string data items containing the name of the JSON property.

Some specifications based on CBOR may provide integer substitutes for the JSON prop-

erty names. In these cases, property names are first transformed into the assigned integer

substitutes and then used as keys for the CBOR map. Thus, the keys are integer data items

instead of string data items achieving a more efficient encoding. For instance, this is

the approach followed by Media Types for Sensor Measurement Lists (SenML) [JSA+18]

specification.

3.2.2.2 Conclusions

CBOR does not rely on schema information and codifies the data types within the coded

stream. This design decision simplifies the implementation as no cross refeferences to

context information is needed in order to decode data values. However, every data value

must be preceded by a data type description (in the form of one or more data type bytes)

with the added overhead on the resulting compression size. This is the case even when a

JSON mapping is used to define compact keys for the CBOR maps (which are transformed

into JSON objects).

The compression approach proposed in this thesis takes full advantage of JSON Schema

information to achieve good compression while resulting in simple enough implementa-

tions that fit the requirements of resource-constrained devices.

38 Chapter 3. Related Work

� �
message Pet {
required string name = 1;
optional int32 age = 2;

enum Species {
CAT = 0;
DOG = 1;
TORTOISE = 2;
RABBIT = 3;

}

required Species species = 3;

message Event {
required string date = 1;
required string description = 2;

}

repeated Event events = 4;
}� �

Figure 3.12: Protocol Buffer “.proto” file example.

The most efficient CBOR compression is achieved by mapping the JSON property

names to integers and using them as keys for the CBOR map, such as the approach

followed SenML [JSA+18]. However, CBOR does not define any formal concept of schema

and does not provide any mechanism to define and distribute the mapping structure.

3.2.3 Protocol Buffers

Protocol Buffers [18e] are Google’s proposal for structured data serialization. The struc-

ture of the data is described as an IDL document that acts as the data schema. This IDL

document is pre-compiled to produce the code stubs to marshal/un-marshal the coded

streams to/from runtime objects. In a similar way as CBOR, Protocol Buffers also provide

a JSON mapping that can be used to directly transform the structures defined in the IDL

to JSON.

In Protocol Buffers, the structure of the data is specified in a IDL file (known as the

“.proto” file). The Protocol Buffer community provides multiple tools in order to parse

and process the .proto files and create the code stubs for various programming languages,

such as java and C++. These stubs are included in the application code in order to serialize

native data structures into the Protocol Buffers binary format and de-serialize Protocol

Buffers into native structures.

Protocol Buffers use the concept of Protocol Buffer Messages which are defined within

the .proto file. The format of the message definition in the .proto file contains uniquely

numbered fields, a name and a data type. Messages can also be arranged into a hierarchy

by defining messages within messages. The fields of a message can be tagged as optional,

Section 3.2. Structured Data Compression 39

repeated or required. Figure 3.12 shows an example of a .proto file. In this example the

“Pet”message is composed by the “name”, “age”, “species” and “events” fields, respectively

numbered 1,2,3 and 4. The “events’ field, in turn, is also a message of the “Event” type.

3.2.3.1 Data Type Codification

Protocol Buffers binary encoding is based on varints, specifically base 128 varints. Var-

ints are a straightforward serialization method for integers where smaller integers are

serialized in fewer bytes. In a base 128 varints, the most significant bit of each byte

is set to ‘1’ except in the last byte. The 7 less significant bits of each byte contain the

corresponding portion of the value of the integer, in little endian order. For example,

the number two is serialized as 0x02 (0000_0010) while the number 300 is serialized as

0xAC,0x02 (1010_1100, 0000_ 0010).

Protocol Buffer Messages are encoded as one data structure following a key/value

format. Each element of the message is also encoded as a key/value pair, thus, the

structure of an encoded Protocol Buffer Message is composed of concatenated key/value

pairs.

The key is assigned according to the definition of the field as described in the .proto

file, i.e. the number assigned to the field in the .proto file is used as the key. The data

type of the field is not encoded in the protocol buffer message and can only be extracted

from the .proto file. Thus, a decoding application needs to know the .proto file used by

the encoding application.

However, the key also contains enough information to skip the encoded field so it

can be skipped in case it is not recognized. This allows to mix different versions of the

same .proto file in encoding and decoding applications. The information used to skip the

encoded field is denoted a “wire type”. The wire type is part of the key (in the lower three

bits) together with the field number. The whole key is encoded as a varint.

Array types (defined as “repeated” in the .proto file) are encoded using a single

key/value pair. A wire type is used to determine the length of the full array (in bytes) and

the values are concatenated in order within the value. However, if multiple instances of

the same array key are found within the same encoded stream, they are concatenated

together. Optional fields are implicitly omitted by not including them in the encoded

stream.

3.2.3.2 Conclusions

Protocol Buffers do not provide a direct mapping of JSON Schemas (or other schemas) and

directly rely on the definition of the structures following the dedicated IDL format. Thus,

Protocol Buffers rely on application specific and manually defined IDL files resulting in

40 Chapter 3. Related Work

solutions that lack interoperability. Additionally, Protocol Buffers specification does not

include any mechanism to distribute the IDL schemas as well as identify them.

In contrast, the solution proposed by this thesis is general enough to be mapped to

multiple data model representation formats and produces the internal constructs needed

for the compression from standard schemas (such as XML and JSON Schemas).

3.2.4 Other Proposals on Compression for Structured Data

This section describes other compression proposals found in the state of the art not

covered in the previous sections. These works did not result in formalized compression

technologies or standards, and could be considered as still being open researches. How-

ever, they are mentioned here because of their relation and significance to this thesis.

Some of these compression proposals make explicit use of templates or pattern repeti-

tions in order to represent structured data in a more compact encoding. Other proposals

covered in this section are specifically targeted to resource-constrained devices.

Hoeller et al. [HRN+08, HRN+10a, HRN+10b] identified the inefficient management of

XML formatted data in resource-constrained devices as a barrier to overcome in order to

achieve full interoperability. They defined a series of mechanisms to efficiently manage

XML in terms of processing, storing, and transmission.

In the solution proposed by Hoeller et al. identifiers (such as XML element names)

are first separated from the original XML data and stored in program/flash memory. In

a second step, the XML data is processed to extract repeating structures and templates.

In this step the static and dynamic data of the XML data are separated and embedded

into a structure denoted a XML Template Stream (XTS). The XTS is encoded in a memory

efficient way. For instance, the repeated structures are substituted with references to

the templates. Finally, the XTS is encoded using a binary format based on Huffmann

encoding [Huf52].

Hoeller et al. also developed a pre-compiler tool called XOBESN [HRN
+10b]. This

tool allows an easy integration of XML structures into C programs that are later trans-

lated into plain C (compilable with standard compilers). Additionally, it makes use of

reused structures to efficiently store and process XML documents. The client/server

communication model is based on XPath queries and optimized for this purpose.

The use of pseudo XML structures in the code makes the solution proposed by Hoeller

et al. heavily tied to XML. This thesis proposes a more natural data binding technique by

using native C structures, giving a convenient abstraction of the underlying original data

representation format.

The work presented by Hoeller et al. does not provide a formal encoding or compres-

sion format for data transmission. The use of templates is suggested for the transmission

of data but few details are given.

Section 3.2. Structured Data Compression 41

Käbisch et al. propose in [KPHK11] a solution to generate optimized XML-based Web

services using EXI and targeted to resource-constrained devices. Basically, the solution

uses a SOAP WSDL as input in order to generate the required EXI grammar, optimized

EXI processor and binding code stubs. The paper also includes performance results that

show the significant efficiency improvement regarding message size and code footprint.

Later, Käbisch et al. extended the core approach presented in [KPHK11] to propose a

solution for efficient processing and storing of RDF documents in resource-constrained

devices: µRDF [KPA15, CKK17]. This solution enables the efficient use of semantic data

in resource-constrained devices in order to follow approaches such as WoT. The paper

defines a XML Schema to describe the RDF document structure and uses it to generate

the EXI grammar. Additionally, the paper presents µRDF, a semantic repository that

efficiently represents and stores RDF data.

Käbisch et al. also explored other uses of EXI in order to optimize network traffic

based on service filtering [KK14] . These filters are applied directly over EXI grammars

and avoid the transmission of unwanted/useless data. The main contribution of this

research line is to be an interesting use case of an EXI application.

TinyPack XML [SML12] is a XML compression method for WSN that takes advantage

of the structured nature of XML and the similarity between data messages consecutively

transmitted. Each data message to be transmitted is analysed and compared to previous

messages. The common sections of the XML data are extracted and set as “format strings”.

A compact identifier is assigned to the format strings and they are advertised to the

(sub-)network. Dynamic data is encoded using techniques specific of the data type.

In TinyPack, the format string is refined with each every transmitted data message.

This means that the data message has to be preprocessed every time in order to check for

variations on the structure. The paper argues that there is indeed additional processing

involved but that it is compensated by the savings in transmission time. Each time the

format string is modified, it has to be advertised to the network. If the nature of the

messages change often, this implies sending the format string very frequently.

They also propose other optional methods to extract the format string. These optional

methods include the extraction of the format string from the XML Schema, although this

would imply sending a lot of overhead data because, usually, all the elements within

a XML Schema are hardly used all together. They also claim that the format string

could be defined by hand on a message by message basis. Although this would result

in an optimal assignment of format strings, it would rely on the end users skills and

could be cumbersome for development processes. Nevertheless no data regarding the

performance of these methods is provided and their benefits are qualitatively exposed.

Packedobjects [Moo09, Moo10] was first designed to implement network protocols

in a compact format. The compression approach used by Packedobjects is based on the

42 Chapter 3. Related Work

efficient encoding of the data types, which are previously extracted from a schema. Latter

on, Packedobjects was applied to XML compression in [MKB13, MKB14, KMB13]. The data

types used for the encoding are extracted from XML Schemas for which Packedobjects

implement a subset of the XML Schema specification.

The experiments performed in [KMB13] show that Packedobjects outperforms XML

compression technologies. However, the XML compression technologies used for the

comparison are mainly not based on schema information (such as XMLPPM and XMILL),

which are the ones showing the best performance. Additionally, they do not compare it

to EXI which was the leading XML compression technology at the time.

A performance evaluation of Packedobjects against EXI is presented in [BMKR15].

The paper shows that Packedobjects and EXI have similar compression ratios but that

Packedobjects shows a better processing performance. However, the comparison was

made between a C Packedobjects implementation and a java EXI implementation (EX-

IProcessor) that is not intended for resource-constrained devices nor is as optimized as a

C application. Thus, the comparison is not made under fair conditions.

3.2.5 Compression of Protocols Over Text-Based Data Formats

This section presents different approaches made by the research community to improve

the efficiency of protocols built on top of structured data and text-based data formats.

Notably, the efforts are targeted to SOAP or SOAP-based protocols. This makes sense

as SOAP itself is implemented using XML. SOAP shares all the benefits of XML (self-

describing, interoperable, etc) as well as its burdens, especially the verbosity.

Roşu proposes Adaptive SOAP (A-SOAP [Ros07]), a compression approach that takes

advantage of the structure repetitions of messages transmitted between two nodes. The

work presented is focused on Web Services implemented through SOAP and the final aim

is to reduce the message processing time and message size. The A-SOAP stack incremen-

tally builds a dictionary with the string tokens used in the messages and substitutes them

with more compact identifiers. The dictionary is interchanged with the other endpoint

according to a configurable policy.

A-SOAP is not specifically targeted to resource-constrained devices but it proposes sim-

ple enough mechanisms that could be adapted to resource-constrained devices. However,

A-SOAP trades memory for processing and transmission efficiency because it does not

provide any mechanism to control the memory used as the message types and endpoints

number grows. Additionally, the achieved compression is suboptimal as it is simply based

on the substitution of XML tags but does not take advantage of the structure and grammar

of XML documents.

Devices Profile for Web Services (DPWS [CCK+06], a conjunction of ws-* services)

defines a minimal set of implementation constraints to enable secure Web Service mes-

saging, discovery, description and notification on resource-constrained devices. The main

Section 3.2. Structured Data Compression 43

purpose of DPWS is to bring WSs to small embedded devices. That way, devices can

communicate with each other or other DPWS enabled devices and applications using and

standardized protocol.

DPWS is based on SOAP and makes extensive use of XML. Thus, DPWS also shares

the verbosity of SOAP and XML. Additionally, DPWS sets demanding quality-of-service

restrictions and require significant processing power and memory consumption. These

qualities turn DPWS too complex and resource demanding to be adopted by resource-

constrained devices, despite all advanced capabilities it provides.

There are many attempts to bring DPWS to resource-constrained devices and net-

works, ranging from the compression of XML with EXI [AGGT10] to simplifications or

translations of the protocol [MZP+09, MTSG10a, SHG13]. In some cases, the use of ad-hoc

templates is also suggested [BZB+08].

There are also dedicated implementations, such as µDPWS. µDPWS [12b] is a spe-

cialized implementation of DPWS, designed to work on micro-controllers with small

amounts of memory. Thus, it is well suited for memory-efficient networked embedded

systems. Although this provides a useful implementation, it is still not suited for the most

resource-constrained devices and networks.

Moritz et al. [MZP+09] leverage the necessary modifications needed to apply DPWS

mechanisms in WSNs without a loss of interoperability. The major goal of all restrictions

and enhancements is the minimization of exchanged messages inside the WSN and the

reduction of memory usage of DPWS implementations. The enhancements are focused

on the reduction of the necessary discovery messages based on a previous research made

in [BZB+08]. Moritz et al. also define service and device templates for DPWS. These

templates are used to create application specific DPWS clients in a more memory efficient

way. The templates can also be used to extract application information and speed-up

DPWS discovery processes.

Moritz et al. also detect some key points where improvements can be applied. The

analysed points range from the message size consumed by namespace declarations,

management (transmission and storing) of WSDL, or the major problems found while

porting the event concept to WSNs. Finally, they make some recommendations. However,

the paper is mainly focused on alternative options that DPWS provides in order to reduce

the offered traffic and therefore innovative ideas are missing.

Later Moritz et al. define an ad-hoc compression mechanism for DPWS [MTSG10a]

targeted to 6LowPAN networks, named encDPWS. encDPWS provides a binary more

compact encoding than traditional XML based DPWS protocols. the binary encoding is

designed to be used within the constrained network. The border router or gateway that

links the constrained network with external networks is tasked with the required en-

coding/decoding processes to translate between the compact and original DPWS formats.

44 Chapter 3. Related Work

enDPWS is designed to be stateless and in order to meet this requirement HTTP related

information is also included in the encoded DPWS messages. The paper also notices the

need for a TCP to 6LoWPAN-UDP mapping but it is not covered in the paper.

All the proposals made by Moritz et al. are focused on specific solutions to enable

DPWS on resource-constrained networks. However, these proposals can not be extended

to other SOAP or XML based technologies.

A modified DPWS protocol stack that can be embedded inWSNs (Tiny SOA for wireless

sensors, TinySOAWS) which support the 6LoWPAN architecture is proposed by Samara

et al. [SHG13]. The proposed solution is based on the transformation of DPWS messages

in a more compact XML structure and format. Basically XML tokens (element names,

attributes, etc.) are substituted with more compact tags and the DPWS and SOAP names-

paces aremapped to a single namespaces removing the need for explicit XML namespaces

and prefixes. The proposed format preserves all the semantics of the DPWS and SOAP

vocabularies. Although TinySOAWS results in a more compact XML document, it still uses

XML format to encode data, resulting in a overhead for resource-constrained devices.

3.2.5.1 Conclusions

To date, the efforts to adapt DPWS to WSNs are based on a functionality subset, ad-hoc

translations or use EXI for XML compression. All these solutions are either too specific or

partially solve a specific problem. The mechanisms devised to reduce the overhead of

the protocol logic (such as the reduction of discovery messages) are specific to DPWS and

may not be applicable to other protocols or situations. All the elements in the network

would need to support the DPWS functionality implemented with the ad-hoc solution.

3.3 IoT Communication Protocols

This section provides an overview of the most relevant communication protocols within

the IoT domain for this Thesis. However, the descriptions provided here do not intent to

be exhaustive but to provide the reader with the necessary information and background

to understand the technical descriptions and relevance of the contribution of this Thesis.

The relevance of protocols targeted to constrained devices does not only takes into

account message transmission but also transversal services such as service discovery,

advertisement of network availability and seamless interoperability with other networks

or protocols. Thus, the protocols included in this section gather the philosophy of more

sophisticated Internet oriented protocols/mechanisms and redesign them to be applied to

constrained environments.

On the other hand, compression technologies for structured data require the use

of schema or structure information in order to achieve the most efficient compression.

Section 3.3. IoT Communication Protocols 45

However, they do not specify how this information is shared and referenced, or they

assume that an out of band method is used. These drawbacks can be compensated by

mechanisms provided by the underlying communication protocol.

There are several protocols targeted to IoT domains. These protocols successfully

adapted or extended Internet standards to more constrained environments and provided

more efficient implementations of their Internet-equivalent. For instance, we can find

6LoWPAN [SB10] as the IPv6 adaptation on top of 802.15.4 [GCB03]. CoAP [SHB14]

brought the REST philosophy to constrained environments. In the same manner, MQTT

provides a simple publish/subcribe implementation. On the other hand, DNS [Moc87]

adaptations based onm-DNS [CK13b] and DNS-SD [CK13a] to constrained sensor networks

[KK12, KK13].

These protocols offer optimized mechanisms to discover, register, retrieve, reference

and, in summary, manage certain resources in an optimized way. Further information

about protocols targeted to resource-constrained devices, their characterization and

limitations can be found at [OA17].

This section focuses on a few IoT protocols that are relevant for the work presented in

the technical chapters of this document. The following sections describe in more detail

the three protocols listed below:

• CoAP: CoAP is a very popular IoT protocol that has successfully enabled native

REST services in constrained environments. This thesis uses CoAP as one of the

main building blocks to create a REST web service based on CTC that includes

message delivery, template management and service/resource discovery. A binding

of the CTC communication architecture to CoAP is provided in Section 5.3 and the

evaluation is shown in Section 7.3.

• MQTT: MQTT is a lightweight publish/subscribe protocol targeted to M2M appli-

cations. It is also very popular within the IoT domain due to its simplicity and

publish/subscribe approach. Furthermore, the MQTT community defined the MQTT-

SN specification which further optimizes MQTT to resource constrained sensor

networks. MQTT-SN specifies a runtime mechanism to map (potentially long) MQTT

topics to a more compact topic identifier. This mechanism follows a similar ap-

proach to the method proposed by Thesis to assign compact identifiers to schemas.

• XMPP: XMPP is included because it is a simple, highly extensible IoT protocol based

on XML. Additionally, XMPP includes an extension that specifies the application of

EXI encoding to allow the use of XMPP in constrained environments. Thus, XMPP

provides a relevant example of an IoT protocol that directly benefits from data

model compression.

46 Chapter 3. Related Work

Figure 3.13: CoAP architecture.

3.3.1 Constrained Application Protocol, CoAP

The IETF CoRE group specifies the Constrained Application Protocol (CoAP [SHB14]) as

a “specialized web transfer protocol for use with constrained networks”. CoAP follows

the request/response interaction model and includes core concepts of the web such as

URIs and media types. CoAP implements a limited subset of HTTP functionality, making

it easy the cross-protocol proxying to HTTP. Thus, CoAP could be seen as the equivalent

of HTTP within WSNs, allowing the integration with the Internet through a simple and

nearly direct translation.

However, CoAP does not simply compress HTTP, it also provides a series of HTTP re-

latedmechanisms, commonly used to implement REST, but optimized to M2M constrained

systems. These mechanisms include low header overhead, multicast and asynchronous

messages, stateless mapping to HTTP, and built-in discovery. Basically, CoAP implements

the REST approach by using CoAP requests to perform and action on a resource pro-

vided by a server which in turn sends a CoAP response. This is very similar to the

approach followed by HTTP but instead of a connection oriented approach, CoAP uses

and asynchronous one. Thus, unlike HTTP that is usually bind to TCP, CoAP runs over a

datagram-oriented transport layer, such as UDP. Additionally, CoAP also supports multi-

cast requests. On the other hand, CoAP defines several security modes and a binding to

DTLS as well as the use of IPsec [Bor12].

Thanks to CoAP, RESTful mechanisms can be effectively used on WSNs while meeting

the requirements of constrained systems. This leads to an easy development of simple

applications oriented towards Web Services.

Although the CoAP specification defines a single protocol, it is usually represented

with two layers (Figure 3.13). The first layer is composed by the messaging model which

is meant to deal with the asynchronous interactions of the communications. The second

layer defines the request/response methods on top of the messaging model.

Section 3.3. IoT Communication Protocols 47

Figure 3.14: CoAP reliable message.

Figure 3.15: CoAP piggybacked response.

3.3.1.1 Messaging Layer

CoAP defines a compact header that is used in request and response messages. The

messages can be marked either as Confirmable (CON) or Non-confirmable (NON). A CON

message is used to implement reliable transmissions and indicates that an Acknowl-

edgement (ACK) message is required as a response (Figure 3.14). If for some reason the

recipient is not able to send an ACK response, a Reset (RST) message is sent instead. If

reliability is not required, messages are marked as NON and, in this case, a response

message is not required. However, as which CON messages, if the recipient is not able to

process the NON message it may still reply with a RST message.

3.3.1.2 Request/Response Layer

CoAP messages are divided into requests, which are identified with Method Codes, and

responses that carry Response Codes. If a request message is marked as CON, the response

is included in the ACK message and is known as a piggybacked response (Figure 3.15).

If the request cannot be satisfied immediately, the recipient still sends and empty ACK

message in order to satisfy the reliability requirement. Once the response is available,

it is send in a CON message that also requires to be confirmed with an ACK message

(Figure 3.16). On the other hand, if the request is marked as NON, the recipient may

respond with a NON response message. Optionally, the recipient may also respond with a

CON message.

48 Chapter 3. Related Work

Figure 3.16: CoAP separate response.

CoAP defines the GET, PUT, POST, and DELETE methods. The semantics of these meth-

ods are similar to the equivalent methods specified by HTTP, although some differences

apply.

• GET: the GET method is used to access and retrieve the resource identified by the

requested URI. The GET method is safe and idempotent.

• POST: the POST method is used to request to the recipient to process the contents of

the request message and apply it to the target resource. The POST method is usually

used to create or update a resource. POST is neither safe nor idempotent.

• PUT: the PUTmethod is used to create or update the target resourcewith the contents

of the request message. PUT is not safe but is idempotent.

• DELETE: this method is used to delete the target resource. DELETE is not safe but is

idempotent.

Additionally, CoAP defines several Response Codes that are used to identify the re-

sulting status after the request have been processed by the recipient. Response Codes

are grouped into various categories: responses within the “Success” category are used

to inform that the request was successfully received and processed. “Client Error” and

“Server Error” categories’ responses are respectively used to indicate that a client or a

server has suffered from an error in the processing of the request.

3.3.1.3 Caching

Caching is a convenience mechanism of the CoAP protocol designed to improve the

overall performance of the communications. The foundation behind CoAP caching is to

store a response message with the hope that it can be used to satisfy a future request.

When a client node makes a request, a server may decide to use the cached response in

case a new (updated) value since the previous request is not available.

Section 3.3. IoT Communication Protocols 49

Figure 3.17: CoAP architecture.

There exist various parameters in order to decide whether a cached response can

be used to satisfy a request. For instance, the cached value should be “fresh” enough to

still be valid and the method used in the current request must match the method used to

produce the cached value. Additionally, CoAP provides mechanisms for a client to specify

when a message is cache-able. It also defines mechanisms to specify whether a message

can be cached and check if it is still valid.

3.3.1.4 Proxying

CoAP supports proxying and relies on it to improve the overall performance of the

network as well as to implement interoperability across networks. Given the similarities

between HTTP and CoAP and that they both follow the REST [Fie00] architecture, the

mapping between both protocols is quite straightforward. This is useful to deploy cross-

protocol proxies that seamlessly map CoAP networks to HTTP networks.

Within CoAP, a proxy is an intermediary that forwards requests and relays responses

in the name of node endpoints (Figure 3.17). An interesting property of CoAP proxies is

that they do not assume or implement any application semantics, thus, they can be used

to deploy application agnostic proxies between (sub-)network domains.

CoAP defines two types of proxies: forward-proxy and reverse-proxy. A Forward-

Proxy is a proxy explicitly selected by a client node in order to relay messages on its

behalf. On the other hand, a Reverse-Proxy is a proxy that relays messages and accepts

requests in a transparent way, i.e. as if the messages would have been sent by the original

node. Thus, the client node is not aware that it is communicating with a proxy instead of

with the original node.

The role of a CoAP node is not fixed and it can switch from server, to client to forward-

proxy and reverse-proxy during its lifetime, depending on the application behaviour.

Finally, CoAP proxies make use of caching whenever possible in order to speed-up

responses and improve the overall network performance

50 Chapter 3. Related Work

3.3.1.5 Resource Discovery in CoAP

The CoRE group has defined many extensions for CoAP. One of the most interesting func-

tionalities for this Thesis is the CoRE Link Format [She12] that specifiesWeb Linking to be

used within CoAP. Within the HTTP domain [FGM+99],Web Discovery is defined as the

ability to discover resources provided by a HTTP web server, whileWeb Linking [Not10]

refers to the description of the relations between the resources. These two mechanisms

together bring great flexibility to the system as they provide the necessary tools for dis-

covery of hosted resources (by means of URIs), their description (by means of attributes)

and progressive discovery of additional related resources (by means of link relations).

The CoRE Link Format is an extension of the HTTP Link Header format and Web

Linking, used to describe links for CoRE Resource Discovery. This specification adapts

Web Linking to the constrains of WSN systems but, unlike HTTP, these links are a resource

on their own represented in the CoRE Link Format.

CoRE Resource Discovery is performed through a well-known relative URI “/.well-

known/core” that is defined as a default entry point. The root of the well-known resource’s

path is “/.well-known/” as specified in [HLN10] and it is extended with “core”. Thus, the

full path specified by CoRE Resource Discovery is “/.well-known/core”.

In order to perform discovery on a server, a GET request is made on the “/.well-

known/core” path of the server. On reception, the server returns the set of links that

conform the resources hosted in the server (or resources referenced by the server and

stored elsewhere). These links are represented using the CoRE Link Format. However,

the included links, their organization and relations are application specific.

The CoRE Resource Discovery is complemented with the the CoAP Resource Direc-

tory [SKB+18]. The Resource Directory is used to store information about generic web

resources. A Resource Directory offers a REST interface designed for the registration

and lookup of stored resources as well as provide discovery capabilities. CoAP Resource

Directory allows the registration of generic resources and the creation of links to them.

When a resource is registered, a path to the resource is returned as a means to reference

it, for example, to delete it. However, the format of this path results in a string that can be

unnecessarily large. This renders the path string as a suboptimal choice for the resource

identifier.

3.3.2 MQTT

Message Queue Telemetry Transport (MQTT [BG14]) is a broker-based publish/subscribe

messaging transport protocol. Clients subscribe and publish to topics which are created

as a hierarchy of character strings. MQTT is designed to be light weight and easy to

implement which make it suitable for constrained environments such as typical IoT

Section 3.3. IoT Communication Protocols 51

Figure 3.18: MQTT architecture.

� �
building05/apartment10/room2/device03� �

Figure 3.19: MQTT topic example.

scenarios. For instance, MQTT adds minimal message size overhead and exchange of

messages in order to reduce as much as possible network traffic.

MQTT runs on top of bidirectional and lossless connections (typically TCP/IP) and uses

a central server or message broker to relay messages and implement the publish/sub-

scribe behaviour. Figure 3.18 shows an example of three clients connected to a broker. In

the example client A publishes a message to the topic “sensor/temperature”. This message

is received by clients B and C that were subscribed to that very same topic.

Topics are filtered by MQTT brokers and relayed to the subscribed clients. A topic

is arranged following a hierarchy and multiple levels separated by a forward slash (i.e.

’/’). Topics do not need to be pre-created and they can be used on the fly. Clients can

subscribe directly to the desired topics or use wild-cards in order to cover a common

set of topics in the hierarchy. Wild-cards can only by used in subscriptions. Figure 3.19

shows a four level topic (“building05”, “apartment10”, “room2” and “device03”).

Finally, MQTT provides three levels of QoS that range from best effort unreliable

transmission to reliable one time delivery.

3.3.2.1 MQTT-SN

MQTT-SN [SCT13] is a MQTT version tailored to the constrains and conditions typically

found in sensor networks such as the particularities of wireless communication links, lim-

ited energy, low bandwidth, and short messages. In sort MQTT-SN is a publish/subscribe

MQTT-SN protocol for constrained sensor networks.

MQTT-SN networks are composed by three distinct components (Figure 3.20): clients,

gateways and forwarders. A MQTT-SN node connects to a MQTT node through a MQTT-

SN gateway. the MQTT-SN node uses the MQTT-SN protocol to communicate with the

MQTT-SN gateway and the gateway translates the messages to MQTT and relays them

52 Chapter 3. Related Work

Figure 3.20: MQTT-SN architecture.

Figure 3.21: Transparent and Aggregating Gateways.

to the MQTT node. A forwarder is used in those cases where the gateway is not directly

accessible by the MQTT-SN node (i.e. the gateways in a different network). The forwarder

simply relays the node’s messages to the gateway (or other forwarder) and vice-versa.

MQTT-SN gateways are further divided into two classes, transparent and aggregating

gateways (Figure 3.21), depending on how the translation between MQTT and MQTT-SN

is made. A transparent gateway will maintain one MQTT connection with the MQTT

broker for each MQTT-SN node connected to the gateway. A transparent gateway will

transparently translate between MQTT and MQTT-SN protocols keeping the contents

of the messages unchanged and effectively maintaining an end-to-end connection. In

contrast, an aggregating gateway will only maintain one MQTT connection with the

broker, no matter the number of MQTT-SN nodes connected. In this case, there is no end-

to-end connection and the gateway behaves more like a proxy, deciding which messages

are relayed to the MQTT broker.

MQTT and MQTT-SN are very similar. The differences are motivated mainly by

the more constrained environments MQTT-SN is designed for. On one hand, MQTT is

designed to run on top of TCP-like transport layers while MQTT-SN only requires a bi-

directional transportation layer. On the other hand, the mechanics of MQTT have been

simplified. For instance, the MQTT CONNECT message (used to stablish a connection) is

split into three messages in MQTT-SN. Only one of the messages is mandatory, reducing

the complexity and bandwidth required for a regular connection.

Another aspect that has been optimized in MQTT-SN is topic management. In order

to reduce the (usually relatively long) size of the MQTT topic, MQTT-SN replaces it with

shorter “topic id”. topic ids are two octect long. MQTT-SN defines a procedure to register

Section 3.3. IoT Communication Protocols 53

topics at runtime and assign identifiers to them. Additionally, MQTT-SN defines “pre-

defined” topic ids and “short” topic names. Pre-defined topic ids are topic ids that are

statically mapped to a known set of topic names and are known to the clients and

gateways rendering the registration process unnecessary. Short topic names are topic

names that are already two octets short. These topic names are preserved and used

without the need of a registration process.

MQTT-SN also implements a simplified discovery feature in order to look out for

valid gateway addresses. MQTT-SN gateways can coexist in the same WSN and either

co-operate sharing the network load, or behave in a standalone way. Furthermore, MQTT-

SN supports sleeping clients through an off-line keep-alive procedure. Gateways store

the messages for sleeping clients and relay all the messages to them once they awake.

3.3.3 XMPP

Extensible Messaging and Presence Protocol (XMPP [SA11a]) was born in the Jabber open-

source community [17] as an alternative to closed instant messaging services. Nowadays,

XMPP has significantly extended its initial capabilities and it covers several application

domains beyond instant messaging (e.g. voice and video calls, multi-party chat, cloud

computing, etc.) as well as provide a lightweight middleware for the routing of arbitrary

XML data.

XMPP specification is open. It is promoted by the XMPP Standards Foundation and is

standardized by the Internet Engineering Task Force (IETF). The XML specification is split

into three parts XMPP Core [SA11a], XMPP IM [SA11b] and XMPP Address Format [SA15].

XMPP is easily extensible as it is based on XML. Custom functionalities can be imple-

mented by defining XML extensions on top of the XMPP specifications. For instance, an

extension for instant messaging and presence functionality is defined in [SA11b]. Other

common extensions are listed in the XSF’s XEP series [SAC16].

The XMPP core specifications define the XML streaming layer and communication

primitives for messaging, network availability ("presence"), and request-response in-

teractions. Additionally, XMPP specification has built-in security by means of channel

encryption with TLS and authentication with SASL.

XMPP defines the vocabulary and application profile on top of XML for near-real-time

transfer XML documents following a well defined streaming protocol. XMPP is designed

to provide asynchronous end-to-end transmission of structured data.

3.3.3.1 XMPP streams and stanzas

XMPP makes use of two basic building blocks to interchange data between two entities:

XML streams and XML stanzas.

54 Chapter 3. Related Work

<stream:stream
from="sensor1@example.com"
to="example.com"
version="1.0"
xmlns="jabber:client"
xmlns:stream="http://etherx.jabber.org/streams">

Figure 3.22: XMPP opening stream example.

</stream:stream>

Figure 3.23: XMPP closing stream example.

An XML stream is a message envelope that contains the XML elements that will be

sent between two XMPP entities. An XML stream is established by the initiating entity

(either a client or a server) and accepted by the receiving entity. An XML stream creates

an unidirectional communication channel between the initiating and receiving entity. If

a bidirectional communication is required, an additional XML stream must be created

from the receiving entity to the initiating entity, which inverted roles.

Once an XML stream is established, any number of XML elements can be send within

its scope. These elements include, for instance, security negotiation elements and XML

stanzas.

An XML stream is bounded by the opening XML tag <stream> and its corresponding

closing tag </stream>. Each tag is sent in a separate message. The first message starts

the stream and contains the opening XML tag <stream> (Figure 3.22). The opening tag

<stream> is considered as the “stream header’ and contains the XMPP attributes and

namespaces required to deliver and process the stream. A stream is finalized with a

message containing the </stream> closing tag (Figure 3.23).

An XML stanza is XMPP’s basic data unit and is used to enclose messages’ payload. An

XML stanza must be included as a first level XML element within the XML stream and be

qualified with the namespaces “jabber:client” or “jabber:server”.

XML stanzas are divided into three types: message, presence and Info/Query (IQ).

Message stanzas are general purpose stanzas used to send data to a recipient while

IQ stanzas are used as a request/response mechanism in order to request data from

another XMPP entity. On the other hand, presence stanzas are used to broadcast network

availability. Figure 3.24 shows an example of amessage stanza.

The body of a XML stanza contains the payload information arranged and structured

as required by the application and may be qualified by any XML namespace.

Section 3.3. IoT Communication Protocols 55

<message from="sensor1@example1.com/temperature"
to="client@example2.com">
<body>23</body>
</message>

Figure 3.24: XMPPmessage stanza example.

Figure 3.25: XMPP basic architecture.

3.3.3.2 XMPP Architecture

The architecture of XMPP is decentralized and is usually compared with the Internet Mail

Architecture [Cro09] approach. XMPP architecture follows a distributed client/server

approach (Figure 3.25). A XMPP client establishes a connection with a server in order to

communicate with other XMPP entities. Two XMPP servers can connect to each other in

order to provide a communication channel between two domains.

XMPP communications are connection oriented. XMPP uses persistent XML streams

over long-lived TCP connections between XMPP entities (client-to-server and server-to-

server) in order to provide a point-to-point transport layer. In this way XMPP entities are

always ready to send, receive or relay XMPP messages. Additionally, these connections

are characterized by a (typically) high number of concurrent messages between XMPP

entities (clients and/or servers) that require a run time knowledge of network availability.

The XMPP specification names this architecture approach as “Availability for Concurrent

Transactions” (ACT).

XMPP messages are sent as XML "stanzas", each XML "stanza" representing a XML

fragment within a stream. Each XML stanza includes routing attributes as well as the

actual payload of the messages.

XMPP relies on globally unique addresses in order to route messages through the

network. In order for an entity to be reachable within a XMPP network it must be address-

56 Chapter 3. Related Work

Figure 3.26: XMPP distributed architecture example.

able, i.e. be identified, by a globally unique address. This includes clients and servers

but also other type of XMPP services. XMPP addresses follow the schema and format of

email addresses. Server addresses are specified following the format <domainpart> (e.g.,

<example.com>). On the other hand, accounts follow the format <localpart@domainpart>

(e.g., <sensor1@example.com>) and authorized resources assigned to an account <local-

part@domainpart/resourcepart> (e.g., <sensor1@example.com/temperature>. The XMPP

Address Format is defined in its own specification RFC 7622 [SA15].

The communication architecture of XMPP takes advantage of the global addresses

in order to route messages through a distributed network of XMPP clients and servers.

Clients send messages to other clients using intermediate servers as in a transparent

and seamless way. Thus, message delivery in XMPP is end-to-end but physically client-

to-server-to-server-to-client (Figure 3.26). This approach is similar to email delivery

protocols such as SMTP [Kle08] and follows the general Internet Mail Architecture [Cro09].

Finally, one of the particularities of XMPP is that it has built-in advertisement of

network availability also known as “presence”. Presence is advertised end-to-end using

dedicated primitives. This mechanism allows the detection at run-time of the presence

(or absence) of an XMPP entity improving the overall network efficiency by avoiding

sending messages to not-present entities. XMPP presence mechanisms are specified in

[SA11b].

Figure 3.27 shows an example of a possible interaction between two XMPP entities, a

client and a server. In this example, two XML streams are used during the session: one

so the client can establish the connection and send messages to the server an another

one for the server to send its responses.

The client initiates an XML stream and, in this example, so does the server in order to

enable bidirectional communications. Then the client sends a presence stanza followed

by a message stanza and an IQ request. Afterwards, the server sends the response to the

clients IQ stanza. The client and server keep interchanging stanzas until, finally, the client

closes the stream by sending a closing </stream> tag to the server in order to terminate

the connection.

Section 3.3. IoT Communication Protocols 57

Figure 3.27: XMPP two streams example.

3.3.3.3 XMPP and EXI

XMPP defines an extension [WD16] to apply Efficient XML Interchange (EXI) Format to

XMPP streams and stanzas. The intended use is for those application domains (such as

sensor networks) where the constrains of the devices and networks do not allow for an

efficient processing and transmission of XML.

Basically, the use of EXI together with XMPP requires a preliminary agreement on the

set of parameters that will be used for the EXI codification. These parameters include

practical encoding options such as data alignment. Among these parameters, the most

important one is the schemas that will be used during the EXI processing because EXI

can use schema information to drastically improve the compression ratio. The XMPP-EXI

extension defines dedicated mechanisms to negotiate and inform the recipient entity of

the XML schemas information that will be used in the EXI encoding.

During an XMPP-EXI connection negotiation, if the server informs the client that it

does not have schema information, the client has two options: either the client performs

schema-less compression or it uploads the missing schemas into the server. To upload

the schema(s) a specific message is used, uploadSchema.

Optionally, the client can instruct the server to download the schemas from other

sources with the downloadSchemamessage. An interesting property of this mechanism is

that the schemas can be stored in dedicated servers and remove this responsibility from

the client.

58 Chapter 3. Related Work

<exi:streamStart from='sensor1@example.com'
to='example.com'
version='1.0'
xml:lang='en'
xmlns:exi='http://jabber.org/protocol/compress/exi'>
<exi:xmlns prefix='' namespace='jabber:client'/>
<exi:xmlns prefix='streams' namespace='http://etherx.jabber.org/streams'/>
<exi:xmlns prefix='exi' namespace='http://jabber.org/protocol/compress/exi'/>
</exi:streamStart>

Figure 3.28: XMPP EXI streamStart example.

<exi:streamEnd xmlns:exi='http://jabber.org/protocol/compress/exi'/>

Figure 3.29: XMPP EXI streanEnd example.

The XMPP-EXI extension communications require specific opening and closing tags.

EXI compression process requires for all XML elements to be closed before the compres-

sion takes place. Thus, XMPP streams cannot be started with the <stream:stream> tag

if the closing tag </stream:stream> is left out, as in Figure 3.22. In order to make XMPP

streams EXI compliant, in the XMPP-EXI extension the <stream> and </stream> opening

and closing tags are replaced with the <exi:streamStart/> and <exi:streamEnd/> elements

as shown in Figure 3.28 and Figure 3.29.

This change implies that XMPP-EXI and XMPP stream definitions are slightly dif-

ferent at the structure level although they share the same semantics. Additional pre-

processing and post-processing is also required as stanzas and first level elements under

<stream:stream> tags must be encoded as a standalone EXI body in XMPP-EXI streams.

Furthermore, if namespaces are declared within the stream opening tag (<stream:stream>

in XMPP and <exi:streamStart/> in XMPP-EXI) prefixes must be stored and preserved for

their use in the stanzas.

Summarizing, the following modifications must be performed on the XML streams

before performing the EXI compression. First, the <stream:stream> opening tag must be

mapped to a standalone <exi:streamStart/> element, including attributes and namespaces.

Next, all first level elements directly under the root <stream:stream> element must be

mapped to standalone elements and missing namespace declarations must be added.

Finally, </stream:stream> closing tag must be mapped to a standalone <exi:streamEnd/>

element.

On the receiver side, the following steps must be performed on the EXI decoded XML

streams before performing the XMPP parsing. First, the <exi:streamStart/> element must

be mapped to a <stream:stream> opening tag including attributes and namespace declara-

tions. Then, the EXI messages must be mapped to root elements within <stream:stream>

Section 3.3. IoT Communication Protocols 59

and namespacesmust bemapped to the corresponding prefixes. Finally, <exi:streamEnd/>

element must be mapped to a </stream:stream> closing tag.

3.3.4 Summary and Conclusions

Compression technologies for structured data require the use of schema or structure

information in order to achieve the most efficient compression. However, these technolo-

gies do not deal with the transmission and interchange of the structural information. The

transmission of this information is usually left to the underlying communication protocol

or it is assumed that an out of band method is used.

Communication protocols targeted to constrained networks implement compact mes-

sage formats and relatively simple mechanisms in order to cope with network restrictions.

In some cases these protocols offer an optimized alternative to protocols usually used

across the Internet such as 6LoWPAN [SB10] for IPv6, CoAP [SHB14] for HTTP or MQTT-

SN [SCT13] for MQTT.

These protocols offer optimized mechanisms to discover, register, retrieve, reference

and, in summary, manage certain resources in an optimized way. However, these mecha-

nisms result in suboptimal solutions for context information sharing and for compact

identifier assignment.

The Coap set of specifications include the defintion of the CoAP Resource Direc-

tory [SKB+18]. The specified approach offers mechanisms for the registration and lookup

of stored web resources as well as provide discovery capabilities. The mechanisms pro-

vided by the Resource Directory could be used to design a schema management protocol.

However, when a resource is registered, a path to the resource is returned as an identifier

and a means to reference it. The format of this path results in a string that can produce

unnecessarily large identifiers and negatively impact on the message length and, hence,

network bandwidth.

MQTT-SN [SCT13] is a MQTT version tailored to the constrains and conditions typically

found in sensor networks such as the particularities of wireless links, limited energy, low

bandwidth, and short messages. In order to reduce the (potentially long) size of the MQTT

topic, MQTT-SN replaces it with a shorter “topic id”. MQTT-SN also defines a procedure to

register topics at runtime and assign compact identifiers to them. However, the compact

identifiers are limited to topics and cannot be used to identify resources or generic data.

XMPP (Extensible Messaging and Presence Protocol) [SA11a]) was born as an alterna-

tive to closed instant messaging services. Nowadays, XMPP has significantly extended

its initial capabilities and it covers several application domains beyond instant mes-

saging (e.g. voice and video calls, multi-party chat, cloud computing, etc.) as well as

provide a lightweight middleware for the routing of arbitrary XML data. XMPP defines

an extension [WD16] to apply Efficient XML Interchange (EXI) Format to XMPP streams.

60 Chapter 3. Related Work

The intended use is for those application domains (such as sensor networks) where

the constrains of the devices and networks do not allow for an efficient processing and

transmission of XML.

Basically, the use of EXI together with XMPP requires a preliminary agreement on the

set of parameters that will be used for the EXI codification. These parameters include

practical encoding options such as data alignment. The XMPP-EXI extension defines

dedicated mechanisms to negotiate and inform the recipient entity of the XML schema

information that will be used in the EXI encoding. XMPP-EXI provides convenient mecha-

nisms for schema advertisement but it does not offer efficient schema identification and

reference. XMPP-EXI uses the XML Schema namespaces in order to identify the schemas

and their instances. XML namespaces tend to be verbose and negatively affect the data

compression size and its transmission overhead.

There is a lack of standard and generic mechanisms to efficiently share schema

information and assign compact identifiers. The communication model proposed in this

Thesis provides all the required mechanisms and are generic enough to be applied to

different compression technologies and underlying communication protocols.

4 | Context- and Template-based Compression (CTC)

This chapter describes the core components of CTC, the codification algorithm and its

application to two distinct data formats, XML and JSON, in order to show two practical

and relevant examples.

The approach followed by CTC is to use a data representation encoding that is more

efficient than standard data formats but that allows seamless transformation between

the CTC format and the original format. CTC analyses the schemas of the data models

in order to extract repeated structural portions, denoted templates. These templates

are then used to perform a lossless-compression together with contextual information

derived from the data, original data format and schema.

The main objective of CTC is to reduce the resources needed to transmit, store and

process structured data compared to using standard text-based data formats. First, by

compressing the structured data, the quantity of messages needed to transmit the whole

data is effectively reduced. Second, the use of templates minimizes the memory needed

to store the data models’ schemas and the structures of the data. Finally, data is codified

in a more efficient format, resulting in a reduction on the required processing time.

CTC is conceived as a part of a more complex distributed system. Figure 4.1 shows

the simplified network architecture of such a system, which is similar to communication

architectures found in traditional Low PowerWireless Personal Area Networks (LPWPAN)

and CPS in general: resource-constrained devices are deployed in a dedicated network

and an edge-router or gateway is used to access external networks (such as the Internet)

and clients.

Devices interchange data with clients that either reside in the same local network or

in external networks. Devices with constrained resources will be able to take advantage

of CTC while more powerful devices use the original format at the same time. On the

one hand, when both the resource-constrained device and the client implement CTC, the

communication will be end-to-end, with the gateway acting as a mere router. On the

other hand, if the client does not implement CTC and make use of the data models in their

original format, the gateway will act as an application level gateway and translate the

original format to CTC and vice-versa. CTC allows for the transformation between the

two formats to be done in a transparent way so as not to break interoperability. The CTC

communication model is described in detail in Chapter 5.

61

62 Chapter 4. Context- and Template-based Compression (CTC)

Constrained Devices Network

Gateway

Internet

Remote client

Figure 4.1: Simplified target network architecture of CTC.

4.1 CTC Components

CTC defines a data model structure representation that is able to describe the links

between the items and templates that compose a data model. The proposed approach is

intended to be generic and not tied to a specific data format. The data model’s specific

schema is used to extract a generic graph that is independent of the schema’s original

representation format as well as the templates used to build the schema instances. We

denote this graph a schema context.

A schema context contains all the relevant schema information including individual

nodes and links. This approach is similar toW3CDocument ObjectModel (DOM [WWWCa]),

which is one of the most popular data models for representing, storing, accessing and

processing XML documents. DOM represents XML documents as a tree-structure where

everything is a node: the document itself, elements, attributes, etc. DOM also specifies a

low-level Application Programming Interface (API) for accessing, processing and modi-

fying XML documents. In a schema context, data model schemas are also represented

as graphs and the same terminology is used to refer to the relationships between nodes

(parent, child, sibling, etc.).

However, unlike DOM, a schema context only considers two types of nodes: Elements

and eContexts (short form of “Element Context”). An Element node encapsulates the

properties of an item of the original schema and its associated template. For instance,

an Element contains the cardinality and whether it is a basic type (“string”, “integer”,

etc.). An eContext node basically groups child Element nodes. Depending on its type, an

Element node may have an eContext which contains the list of child Element nodes. An

Element with no eContext is a leaf of the schema context graph.

A simple schema context graph example is shown in Figure 4.2. The figure depicts

the eContext and Element nodes, the links between them and associated templates. For

Section 4.1. CTC Components 63

ROOT

ROOT

e1

C1

e3 e4 e5

e2

C2

e6

Templates

t1

t2

t3

t4

t5

1..
∗

1

1 0..1
1..∗

0..1

11

Figure 4.2: Schema context graph example. Rounded nodes denote Elements, square

nodes eContexts and trapezium nodes templates. The numbers in the arrows indicate the

cardinality: “1” one child, “1..*” one to many children, “0..1” none or one child (optional).

instance, Element “e1” has an eContext “C1” which in turn is the parent of child Elements

“e3”, “e4” and “e5” with cardinalities “1”, “0..1” and “1..*” respectively. Additionally, “e3”,

“e4” and “e5” Elements are linked to templates “t3”, “t4” and “t5” respectively. Note that

Element “e4” shares its template (“t4”) with Element “e6”.

There are some other fundamental differences between DOM and schema context.

DOM nodes only accept one parent (tree graph) while, in the schema context, a node

may have multiple parents. Although DOM is conceived as a generic data model repre-

sentation, it is specially targeted to XML and HTML formats while the schema context

does not make any specific assumption regarding the original format. DOM is used to

represent any type of XML document while schema context is only used to represent the

data model schemas themselves, i.e., not the data. Additionally, DOM representation of

XML documents consumes a lot of memory because the in-memory copy of a node keeps

a lot of information and APIs tend to be heavy, producing verbose code. In contrast, the

schema context is targeted to minimummemory footprint and the in-memory represen-

tation of a schema context only keeps the minimum information necessary to perform

the codification.

CTC itself has two main components: the context table and the template table. The

context table contains the schema contexts while the template table is composed by the

templates extracted from the schemas. Figure 4.3 shows a simplified representation

of these two components. They are described with more detail in Section 4.1.1 and

Section 4.1.2.

The encoding and decoding processes are executed following a specific algorithm,

denoted CTC Codification Algorithm. In turn, the CTC Codification Algorithm uses the

context table (or more specifically, the schema contexts contained in the context table) as a

reference in order to perform the encoding and decoding processes. The CTC Codification

Algorithm is described in detail in Section 4.2.

64 Chapter 4. Context- and Template-based Compression (CTC)

Context Table

sc_1

sc_2

sc_3

.

.

.

“sc_2”

Schema

Context

ROOT

C1

C2

“C1” eContext

e3

e4

e5

Template Table

t1→ “<ab@>@</ab>”

t2→ “attr=@”

t3→ “<def>@</def>”
.
.
.

Figure 4.3: Example of representation of CTC components.

4.1.1 Context Table

The context table stores all the information of the data model schemas used by the device.

Each entry of the context table is a schema context that contains the information related

to the nodes in the schema, links between nodes, cardinality, links to templates and, in

summary, all the information needed to process a data model instance described by the

schema.

A schema context is identified by the URI (acronym for Uniform Resource Identifier)

and SchemaId attributes. The URI attribute must be unique and it is used to globally

identify the schema context. The SchemaId attribute is assigned at the device’s bootstrap-

ping phase (as described later) and must be unique within the (sub-)network the schema

context is used (for example, within a wireless sensor local network).

A schema context is formally structured as a table where each entry is an eContexts

node. In turn, each eContext entry contains a list with the child Element nodes. The first

eContext of an schema context always belongs to the root Element node and indicates the

entry point for the CTC Codification Algorithm.

Figure 4.3 shows a simplified representation of a context table, with the template table

on the right side. The figure depicts a detail of a schema context with a SchemaId value of

‘2’, represented as “sc_2”, and eContexts “ROOT”, “C1” and “C2”. The figure also shows

that eContext “C1” contains the child Elements “e3”, “e4” and “e5” and that Element “e3” is

linked to template “t3”.

An eContext has the following attributes:

• Id: the unique identifier of the eContext node, which is denoted by the eContext’s
entry index within the schema context.

• MultipleParents: TRUE if the eContext node is referenced by more than one
Element nodes. FALSE otherwise.

Section 4.1. CTC Components 65

• Order: the value of this attribute depends on the order the child nodes may appear
in a data model instance document. If the order of the children is fixed and coincides

with the order in which they are defined in the schema, the value is fixed. If the

order is random, the value is dynamic. Finally, if only one single children can appear

(among all the ones defined in the schema for that particular node), the value is

choice.

• Children: it contains the list of child Element nodes.

The MultipleParents attribute allows the reuse of the same eContext node by more
than one Element node. The result is a better leverage of the memory as it avoids

unnecessary duplicities. On the other hand, the Order attribute is used to perform the
most efficient encoding of the children, tailored to the schema’s restrictions. This also

avoids the parsing of irrelevant coded items improving the overall processing speed.

The most efficient encoding is provided by fixed children, followed by choice and, finally,

dynamic as the worst case. The choice order value is a special case of dynamic order,

where the order is also unspecified but only one children can appear.

An Element node is composed of the following attributes:

• Template: a reference to the entry in the template table that contains the template
for this Element node.

• Type: data type of the Element node. The data type can be either a basic type, a
constant, a complex or a schema. For the basic type case, the following data types

(inherited from the EXI [SKPK14] specification) are supported: binary, boolean,

decimal, float, integer, date-time and string.

• IsOptional: TRUE in case the cardinality of the child Element is 0..m, wherem > 0,

and FALSE otherwise.

• IsArray: TRUE in case the child Element can appear consecutively more than once,
i.e., those children which have cardinality n..m, wherem > n andm > 1.

• Context: if the Type attribute is complex, Context attribute contains this child‘s
eContext. In the case in which Type attribute is schema, the Context attribute is
equal to the schema context that describes the schema. A special value is used to

represent a “any” schema, i.e., an unspecified schema. Basic types and constant type

do not make use of the Context attribute.

• Separator: separators are used to insert templates between lists of Elements or
repeated Elements, such as the children of an Element node or Elements of type

array. As in the Template attribute, Separator attribute contains a reference to the
entry in the template table that represents the corresponding separator text string.

66 Chapter 4. Context- and Template-based Compression (CTC)

Table 4.1: Schema context table example. Each column represents an eContext. The

content of the Children row represents the tuple (Template, Type, IsOptional, IsArray,
Context). x denotes complex, s string, f FALSE and t TRUE.

Atribute
Id

ROOT(0) C1(1) C2(2)

MultipleParents f f t

Order fixed dynamic fixed

Children
e1(t1,x,f,t,C1)

e2(t2,x,t,f,C2)

e3(t3,s,f,f,-)

e4(t4,s,t,f,-)

e5(t5,x,f,t,C2)

e6(t4,s,t,f,-)

The Type attribute is key in order to use the most efficient compression encoding
for each data type. This also translates to average better processing performance as

parsing/compressing with dedicated encoding is usually more efficient than processing

plain string texts.

The IsOptional and IsArray attributes are used to codify the cardinality of the
Element node. On one hand, IsOptional attribute identifies items that may not appear,
removing the need to codify and process missing items. On the other hand, the IsArray
attribute allows the codification of items’ repetitions by reusing the same Element (and

its template) without the need of in-memory duplications. Additionally, a template can

be referenced by more than one Element. In this way, template table entries are reused

when possible, reducing memory requirements.

Separators are useful for encoding templates related to Element lists that would

otherwise need to be represented with nested eContexts and Elements. For example,

in JSON the ‘,’ character is used to separate the different items that compose the JSON

document. This character is not part of the data model structure as such but it is needed

to properly parse the JSON instance.

Table 4.1 shows the schema context table associated to the example data model schema

context presented in Figure 4.2. For instance, as can be seen in Table 4.1, Element

“e1” is linked to template “t1”, is of complex type (thus, it has an eContext, “C1”) and

its a non-optional array (cardinality “1..*”) with IsOptional to FALSE and IsArray to
TRUE. As another example, Element “e4” is a leaf node (no eContext) of string basic

type and it is optional (cardinality 0..1) with IsOptional to TRUE and IsArray to FALSE.
Additionally, Element “e4” is linked to template “t4” together with Element “e6”. The

example assumes that no separator templates are used. Finally, note how eContext “C2”

has MultipleParents attribute set to TRUE and its linked by Elements “e2” and “e5”.

4.1.2 Template Table

The template table stores the list of templates of the schemas used by the device. Basically,

templates are represented by using a character string format. The template table also

contains the position of the place-holders that represent the extension/nesting points

Section 4.1. CTC Components 67

Template Table

Primary Table

t1→ “<?xml ...?>”

t2→ “<ab@>@</ab>”
. . .

Secondary Table

t3→ “attr=@”

t4→ “constant”

t5→ “<def>@</def>”
. . .

“C1” eContext

e3

e4

e5

“sc_2”

Schema

Context

ROOT

C1

C2

Context Table

sc_1

sc_2

sc_3

.

.

.

Figure 4.4: Template table structure detail with exemplary content.

for each template, i.e., where the templates of the child nodes or nested data models

are inserted. Figure 4.4 shows the simplified template table structure with example

content. In the figure, the place-holders of the example templates are represented with

the character ‘@’.

The template table is structured and designed to provide efficient template searching

and matching. As can be seen in Figure 4.4, the template table is divided into two sub-

tables: Primary Table and Secondary Table. The Primary Table only contains the templates

of the valid starting items of a data model, according to the structure described in the

data model’s schema. That is, the schema defines which items must appear first in a valid

instance document and only the templates of these items are included in the Primary

Table. For instance, in the XML case, the Primary Table will include the templates of the

XML global elements. The Secondary Table contains the templates of all the remaining

items.

In addition to the information related to the template representation, each table entry

also contains information about the Element nodes that reference the template. This

simplifies the matching between the original format, the templates, the Elements and

their eContexts, thus, improving and optimizing the searching, matching and codification

processes.

However, templates are only needed when data have to be transformed from/to the

original format. As it will be explained later in Chapter 6, resource-constrained devices

do not need to include the template table, reducing the memory needs. If the template

table is needed by a device in order to transform from/to the original format, two distinct

cases are considered: decoding and encoding.

When a coded stream is decoded to retrieve the data in the original format, the

coded stream is parsed using the information in the context table and templates are

merged together as the items are processed. In this case, the template table acts as a mere

container of templates.

68 Chapter 4. Context- and Template-based Compression (CTC)

On the other case, when data in the original format have to be codified to CTC, the

template table assumes a more active role. First, the Primary Table is used as the entry

point for the encoding process and it is searched for a valid match. Once a match is found,

the associated Elements and eContexts are recursively navigated until the full document

is parsed. This searching strategy improves the search performance by reducing the

searching range.

In summary, the template table has two main purposes. On the one hand, the template

table is used during decoding phase to rebuild the codified data to its original format. On

the other hand, it servers as a pattern matching reference during the codification process

in order to search data in their original format, match the template patterns and, finally,

extract the associated Element and eContext nodes.

4.1.3 Context Table and Template Table Creation

As explained in Section 4.1.1, the context table contains the list of all the schema contexts

used by the device. Each schema context is created by processing the individual data

model schemas. As the schema is processed, the respective eContext and Element nodes

are created for every item found in the schema.

In order to avoid confusion, this section uses the term item to refer to a node of the

original schema (such as an “element” or “attribute” in XML or “property” in JSON) and

the specific terms Element and eContext nodes to refer to the respective CTC nodes of the

schema context.

There are five pieces of basic information per item that need to be extracted from the

data model schema: (a) the links between the items, (b) the cardinality of those links, (c)

the order in which the child items can appear, (d) the data type of the item and, finally, (e)

the template and separator used to represent the structure of the item in the original data

format. How this information is processed and gathered from the schema is described in

detail in the following paragraphs, together with Algorithm 1.

If the cardinality of the item is 1, the IsOptional and IsArray attributes are set to
FALSE. If the item has cardinality n..m, where n = 0, the IsOptional attribute is set
to TRUE. In the case the cardinality is m > 1, the IsArray attribute is also set to TRUE.
Then, the template is added to the template table and the Template attribute is set to the
assigned index within the template table. If the item is an array (i.e., IsArray = TRUE), the

corresponding separator used by item lists is assigned to the Separator attribute.

Once cardinality attributes and templates have been processed, the item’s type is

added to Type attribute. In case the item’s type is complex, the algorithm checks whether
its eContext node already exists within the schema context. In case the eContext node

already exists, its MultipleParents attribute is set to TRUE.

Section 4.1. CTC Components 69

forall Item in Schema do
Element = Create();
ifMinCardinality(Item) == 0 then Element.IsOptional = TRUE ;
ifMaxCardinality(Item) > 1 then

Element.IsArray = TRUE;
Element.Separator = AddSeparator(TemplateTable, Item);

Element.Template = AddTemplate(TemplateTable, Item);
Element.Type = GetType(Item);
if Element.Type == complex then

Element.Separator = AddSeparator(TemplateTable, Item);
Element.Context = FindEContext(SchemaContext, Item);
if Element.Context 6= NULL then

Element.Context.MultipleParents = TRUE;
else

Element.Context = Create();
Element.Context.Order = GetOrder(Item);
AddEContext(SchemaContext, Element.Context);

else if Element.Type == schema then
Element.Context = FindSchemaContext(ContextTable, Item)

AddChild(Parent.Children,Element)

Algorithm 1: Schema context creation

On the contrary, if the eContext node does not exist, a new eContext node is created

and its MultipleParents attribute is set to FALSE. In case (a) the order of appearance of
children is fixed and (b) the appearance matches the order defined in the schema, Order
attribute is set to fixed. If the appearance order of the children can vary dynamically,

Order attribute is set to dynamic. In case only one of the children can appear, Order
attribute is set to choice. Additionally, the corresponding separator for the child element

nodes is assigned to the Separator attribute. After the eContext node is composed, it is
added to the schema context.

If the item’s type is schema, the Context attribute is set to the associated schema
context. For those cases where the nested schema is unknown a priory, the Context
attribute is set to the special value “any”.

Finally, the new child element node is added to the eContext’s Children attribute of
the parent Element node.

Once the schema has been processed and the schema context has been created, a

process called Context Collapsing is performed. This process reduces the number of eCon-

texts, Elements and templates without any loss of information. If (1) the Type attribute

of an eContext node’s and a child Element node’s eContext are both fixed, (2) the child

Element is neither optional nor array (i.e., IsOptional = FALSE and IsArray = FALSE),

and (3) the child’s eContext only has one parent (i.e.,MultipleParents = FALSE), then the

eContext and template of the child Element are merged together with the eContext and

template of the parent Element, including separators.

70 Chapter 4. Context- and Template-based Compression (CTC)

Context Collapsing is executed starting from the root node in a recursive way, for each

eContext and its child Elements. During a Context Collapsing, nested eContext nodes of

order fixed are merged together, including the associated templates and separators. This

process optimizes the effective processing time by reducing the necessary iterations and

accesses to the schema context and template table.

4.1.4 Schema Mapping

The previous section described the general algorithm and approach to create a schema

context from a generic data model schema. Although the algorithm is generic, it has to

be specifically implemented for each data format type, as the mapping of the schema to

a schema context is data format specific. This section describes the specific case of the

algorithm application to XML Schema and JSON Schemas.

Although a full detailed explication of the mapping of every single node type described

in the XML Infoset and JSON Schema specification is out of the scope of this document,

we give here an overview of the most relevant and representative cases.

4.1.4.1 XML Schema Mapping

XML complex and simple elements are transformed into CTC eContexts. The Order
will vary depending on whether the containers’ XML order indicator is “All” (dynamic),

“Choice” (choice) or “Sequence” (fixed).

XML element particles are mapped as Elements. The cardinality of the Element will

depend on the XML occurrence indicators “maxOccurs” and “minOccurs”.

XML attributes are mapped in a similar way as XML elements, but they are grouped

into a single child Element with a dynamically ordered eContext. The separator of this

Element is set to a single space character (‘ ’).

Templates are extracted from the XML elements and attributes, and formatted accord-

ing to their nature. XML global elements (described in the Appendix A.1.5) are stored in

the Primary Table while any other element is assigned to the Secondary Table.

An optional child Element containing the XML prolog is always added to the root

eContext, followed by any relevant global definition (such as namespaces and prefixes).

Global XML elements and attributes are also added as Elements to the root eContext.

Each XML namespace is transformed into a different schema context. If the XML type

of an XML element or attribute belongs to a namespace other than the current one, the

Element’s Type will be of schema type and the Context will be assigned to the schema
context of the relevant namespace. If the XML element or attribute is of “<any>” type,

the Element’s Type will also be of schema type but the Context is specially marked to
represent the special value “any”.

Section 4.1. CTC Components 71

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">
<xs:element name="notebook">

<xs:complexType>
<xs:sequence maxOccurs="unbounded">

<xs:element name="note" type="Note"/>
</xs:sequence>
<xs:attribute ref="date"/>

</xs:complexType>
</xs:element>

<xs:complexType name="Note">
<xs:sequence>

<xs:element name="subject" type="xs:string"/>
<xs:element name="body" type="xs:string"/>

</xs:sequence>
<xs:attribute ref="date" use="required"/>
<xs:attribute name="category" type="xs:string"/>

</xs:complexType>
<xs:attribute name="date" type="xs:date"/>

</xs:schema>

Figure 4.5: Notebook XML Schema document.

XML Built-in Data Types are mapped to the corresponding CTC basic types, i.e., bi-

nary, boolean, decimal, float, integer, date-time and string. As explained in Section 4.1.1,

these types are inherited from the EXI [SKPK14] specification and are described in Sec-

tion 3.2.1.1.

Context Table and Template Table Example. We present an example of a schema

context and template table generated from an XML Schema. To this end, we use the Note-

book XML document example proposed by Peintner et al. [PPG14]. Figure 4.5 shows the

original Notebook XML Schema example. Figure 4.6 shows the template table generated

before performing Context Collapsing (see Figure 4.6a) as described in Section 4.1.3, and

after Context Collapsing (see Figure 4.6b).

As can be appreciated in Figure 4.6, templates are merged together after Context

Collapsing is performed, eliminating in the process the unneeded eContext and Element

nodes. The result is a more compact schema context and template table. Finally, Table 4.2

shows the schema context generated after Context Collapsing. This table is related to

the template table shown in Figure 4.6b and contains the eContexts and Elements after

pruning the unneeded items.

4.1.4.2 JSON Schema Mapping

This section describes the mapping of the schema context creation algorithm for the

specific case of JSON Schema.

Themapping for the JSON Schema of the schema context creation algorithm is based on

the Draft-04 version (i.e., “http://json-schema.org/draft-04/schema#”) of the JSON Schema

72 Chapter 4. Context- and Template-based Compression (CTC)

--------------------------------------- t1
<?xml version="1.0" encoding="UTF-8"?>
--------------------------------------- t2
<notebook @>
@
</notebook>
--------------------------------------- t3
date=@
--------------------------------------- t4
<note @>
@
@
</note>
--------------------------------------- t5
category=@
--------------------------------------- t6
<subject>@</subject>
--------------------------------------- t7
<body>@</body>

(a) No Context Collapsing.

--------------------------------------- t1
<?xml version="1.0" encoding="UTF-8"?>
--------------------------------------- t2
<notebook @>
@
</notebook>
--------------------------------------- t3
date=@
--------------------------------------- t4
<note @>
<subject>@</subject>
<body>@</body>
</note>
--------------------------------------- t5
category=@

(b) With Context Collapsing.

Figure 4.6: Template table Notebook example. Symbol ’@’ is used to represent the place-
holders’ positions. Templates ‘t1’, ‘t2’ and ‘t3’ are stored in the Primary Table.

Table 4.2: Schema context Notebook example, after Context Collapsing. The content of

the Children row represents the tuple (Template, Type, IsOptional, IsArray, Context). Cn
represents the eContext Id and tn the template identifier, x denotes complex, s string, c
constant, d date-time, t TRUE and f FALSE. No separators are used in this example.

Attribute
Id

C1 (ROOT) C2 (CONTENT) C3 (NOTEBOOK) C4 (NOTE) C5 (NOTE-ATT)

MultipleParents f f f f f

Order fixed choice fixed fixed dynamic

Children
(t1,c,t,f,-)

(-,x,f,f,C2)

(t2,x,t,f,C3)

(t3,d,t,f,-)

(t3,d,t,f,-)

(t4,x,f,t,C4)

(-,x,f,f,C5)

(-,s,f,f,-)

(-,s,f,f,-)

(t3,d,f,f,-)

(t5,s,t,f,-)

Specification [GZC13] and JSON Schema Validation vocabulary [ZC13]. We describe the

mapping for the Draft-04 version as it is still widely used, in contrast to more recent ones

(Draft-07 [WA18, WAL18] at the time of this writing). However, following the principles

described here, it is straightforward to extend the mapping specification for the Draft-07

version.

The purpose of this section is not to provide a thorough technical description of the

schema context creation from a JSON Schema, but to give an outline of the most relevant

and representative application cases. Thus, all the possible keywords and item types may

not be covered.

First, the JSON root schema is converted into a new schema context and the “id” JSON

attribute is assigned as the unique identifier, i.e, the URI. The root eContext node is also

added with the Order attribute set to choice.

The subsequent JSON sub-schemas are progressively converted to eContext nodes.

The order of the eContext node will be dynamic by default as JSON specification does

Section 4.1. CTC Components 73

not enforce any specific ordering. JSON sub-schemas including the keywords “allOff” or

“anyOff” are also converted to eContext nodes of order dynamic. However, if the keyword

“oneOff” is included, the order assigned to the eContext node is choice.

If the JSON Schema contains a “definitions” sub-schema, a new eContext node is added

as a direct child to the root eContext node. All the productions of the sub-schemas within

the “definitions” sub-schema (i.e., its children) are added as children to the newly added

“definitions” eContext node. The order of the “definitions” eContext node is set to choice.

The properties of JSON sub-schemas of type “object” are mapped to CTC Element nodes.

The cardinality of the Element node will depend on the “type” keyword of the JSON

property and the “required” keyword of the parent sub-schema. If the type is “array”,

then the Element node’s IsArray attribute is set to TRUE. On the other hand, if the JSON
property is listed within the “required” keyword of the parent sub-schema, then the

Element node’s IsOptional attribute is set to FALSE.
If the sub-schema includes a “$ref” keyword pointing to a relative URI within the JSON

schema, the CTC Element node’s Type attribute is assigned as element. On the contrary,
if the scope of the “$ref” keyword URI is outside the current schema (i.e., it points to

another JSON Schema), the Element node type is assigned to schema and the eContext

node of the Element node will belong to a different schema context.

The remaining JSON base primitive types (boolean, integer, number and string) are

mapped to the corresponding CTC basic types. As explained in Section 4.1.1, CTC basic

types are binary, boolean, decimal, float, integer, date-time and string. These types are

inherited from the EXI [SKPK14] specification and are described in Section 3.2.1.1.

The template of the root schema is included in the Primary Table of the template table.

The templates of the other sub-schemas are stored in the Secondary Table.

Finally, in the case of JSON sub-schemas or properties of types “array” or “object”, the

separator of the corresponding Element node will be set to the ‘,’ (coma) character.

JSONContext Table and Template Table Example. In order to clarify the JSON Schema

mapping, we present here an example of a schema context and template table generated

from a JSON Schema. The example JSON Schema used is derived from the Notebook XML

document example proposed by Peintner et al. [PPG14]. Figure 4.7 shows the Notebook

JSON Schema, which is semantically equivalent to the original Notebook XML Schema

example proposed by Peintner et al.

Table 4.3 shows the template table generated after performing the process described

in Section 4.1.3. As can be seen, the JSON schema has been split in the independent

templates that conform a JSON document instance of the Notebook JSON Schema.

Table 4.4 shows the schema context generated from the Notebook JSON Schema. This

table includes the eContexts and Elements as well as references to the templates shown in

Table 4.3.

74 Chapter 4. Context- and Template-based Compression (CTC)

� �
{

"$schema": "http://json−schema.org/draft−04/schema#",
"id": "notebook.schema04.json",
"type": "object",
"properties": {
"notebook": {
"type": "object",
"properties": {
"date": {
"$ref": "#/definitions/date"

},

"Notes": {
"type": "array",
"minItems": 1,
"items": {
"$ref": "#/definitions/Note"

}

}

},

"required": ["Notes"],
"additionalProperties": false

}

},

"required": ["notebook"],
"additionalProperties": false,
"definitions": {
"Note": {
"type": "object",
"properties": {
"date": {
"$ref": "#/definitions/date"

},

"category": {
"type": "string"

},

"subject": {
"type": "string"

},

"body": {
"type": "string"

}

},

"required": ["date", "subject", "body"],
"additionalProperties": false

},

"date": {
"type": "string",
"format": "date−time"

}

}

}� �
Figure 4.7: Notebook JSON Schema document.

Section 4.2. CTC Codification Algorithm 75

Table 4.3: CTC Templates generated from the Notebook JSON Schema. Symbol ’@’ is used
to represent the place-holders’ positions. Template ‘t1’ is stored in the Primary Table.

t1 {"notebook":{@}}

t2 ,

t3 "date":"@"

t4 "Notes":[@]

t5 {@}

t6 "category":"@"

t7 "subject":"@"

t8 "body":"@"

Table 4.4: Schema context generated from the Notebook JSON Schema. The content of the

Children row represents the tuple (Template, Separator, Type, IsOptional, IsArray, Context).

Cn represents the eContext Id and tn the template identifier, x denotes complex, s string, d
date-time, t TRUE and f FALSE.

Attribute
Id

C1 (ROOT) C2 (NOTEBOOK) C3 (DEFINITIONS) C4 (NOTES) C5 (NOTE) C6 (DATE)

Order choice dynamic choice dynamic dynamic dynamic

Children
(t1,t2,x,f,f,C2)

(-,-,x,t,f,C3)

(t3,-,d,t,f,-)

(t4,t2,x,f,f,C4)

(-,-,x,t,f,C5)

(-,-,x,t,f,C6)
(t5,t2,x,f,t,C5)

(t3,-,d,f,f,-)

(t6,-,s,t,f,-)

(t7,-,s,f,f,-)

(t8,-,s,f,f,-)

(-,-,d,f,f,-)

4.1.4.3 Other Data Model Representation Formats

In this Thesis, XML and JSON data formats are used as relevant application examples to

show the capabilities and mechanisms that conform CTC. However, CTC can be used with

any other data model representation format as long as the information regarding the

structure of the data model can be extracted from a schema or by any other means. For

instance, the principles and approaches developed within this Thesis could be applied

to other text-based data formats such as Hypertext Markup Language (HTML [FEL+17])

or the Resource Description Framework (RDF [WWWCc]) set of recommendations. In a

similar way as with the XML and JSON cases, the structure can be extracted and used by

CTC to build the context table and template table that will be used for the CTC compression

and management processes.

As the complexity of the format and related schema grows, so does the CTC schema

mapping and encoding processes. However, this complexity is mostly concentrated in

the mapping of the schema to the context table and template table. Additionally, different

techniques can be applied (such as the Context Collapsing method) to the tables building

in order to relieve the resource-constrained devices from the runtime overhead.

4.2 CTC Codification Algorithm

In this section we describe the generic rules that, applied together, form the CTC Codifica-

tion Algorithm, used to perform the encoding and decoding processes. The rules define

76 Chapter 4. Context- and Template-based Compression (CTC)

the actions to perform for each node, based on the information available in the context

table. The rules are grouped and formalized using a set of equations that represent the

different steps involved in the encoding/decoding process of each node.

4.2.1 Rules

We define the following terms:

• We denote e0 . . . en−1 ∈ C as the ordered list of child Elements of the eContext C
where n is the total number of C’s children.

• We denote e′0 . . . e
′
m−1 ∈ C as the unordered list of child Elements of the eContext C,

wherem,m 6 n, is the number of C’s children actually appearing in the data.

• The Trim(x, y) function trims the representation of x to dlog2 ye bits. Optionally, the
form xy is also used to represent x with y bits. Thus, Trim(x, y) = xy.

• The symbol ⊕ represents the concatenation of two bit arrays.

• The Pos(C, e) function returns the position index of the child Element e within

eContext C. Note that, for an ordered child e, Pos(C, ei) = i where 0 6 i < n.

However, for an unordered child e′, Pos(C, e′i) = iMAY not be TRUE.

Four set of rules are defined together with the corresponding equations: CodS(s) for

schema contexts, CodEC(C) for eContexts, CodE(C, e) for children Elements and CodT(e) for

data types. CodS(s) is always applied first.

Rule1: if the SchemaId of a (nested) schema is not known a priory (i.e., is of “any”

type), the SchemaIdmust be codified before the root eContext of the schema is processed.

Otherwise, the codification of the root eContext of the (nested) schema is processed

directly.

CodS(s) =

CodEC(s) SchemaId(s) 6= any

SchemaId(s)⊕ CodEC(s) SchemaId(s) = any

(4.1)

At the beginning of a coding/decoding process, Equation 4.1 is always used first. Thus,

all CTC streams start with the SchemaId of the data model’s schema, followed by the root

eContext.

Rule2.a: if the order of the child Elements is fixed, the codification of the eContext is

equal to the concatenation of the children’s codification, following the same order the

children are defined in the Children list attribute.

Section 4.2. CTC Codification Algorithm 77

Rule2.b: if the order of the child Elements is independent of the order defined in the

schema, a prefix equal to the child Element’s index plus 1 is added to the codification of

each of the children. If not all the children are present, a prefix of 0n+1 is used to indicate

the end of the children list, where n in the children quantity.

Rule2.c: if only one of the children can appear, a prefix equal to the child Element’s

index is added to the codification of the children.

The following equation groups Rules 2a, 2.b and 2.c.

CodEC(C) =

CodE(C, e0)⊕ . . .⊕ CodE(C, en−1) ContentType(C) = fixed

Trim(Pos(C, e′0) + 1, n+ 1)⊕ CodE(C, e′0)⊕ . . .

. . .⊕ Trim(Pos(C, e′i) + 1, n+ 1)⊕ CodE(C, e′i)

⊕Trim(0, n+ 1)

ContentType(C) = dynamic

Trim(Pos(C, e′i), n)⊕ CodE(C, e′i) ContentType(C) = choice

(4.2)

CodEC is used to codify eContexts. As can be seen in Equation 4.2, the codification

of an eContext depends mainly on the Type attribute. CTC defines a strict mode where
the items of a schema are always codified strictly following the order defined in the

schema. In this mode, all the eContext nodes where condition Type = dynamic applies,

are considered to be fixed. The strict mode provides a more compact compression at the

cost of some of the flexibility of CTC. However, this mode is ideal for resource-constrained

devices, as it is straightforward for the device to codify the data models respecting the

items’ definition order.

Rule3.a: if an Element is not an array nor optional, the codification is equal to the

codification of the Element’s Type.

Rule3.b: if an Element is optional but not an array, a 11 prefix is added to the codifica-

tion, followed by the Element’s type codification. In case the Type of the parent eContext
is not fixed, the prefix is omitted. If the optional Element does not appear, a 01 will be

added to the codification.

Rule3.c: if an Element is an array, a 11 prefix is added to each of the Element occur-

rences and a 01 is added when no more occurrences remain.

Equation 4.3 groups Rules 3.a, 3.b and 3.c.

78 Chapter 4. Context- and Template-based Compression (CTC)

CodE(C, e) =

11 ⊕ CodT(e)
(IsOptional(e) = TRUE) & (IsArray(e) = FALSE)

& (e 6= null) & ContentType(C) = fixed

01 (IsOptional(e) = TRUE) & (e = null)

11 ⊕ CodT(e)⊕ . . .

. . .⊕ 11 ⊕ CodT(e)

⊕ 01

(IsArray(e) = TRUE) & (e 6= null)

CodT(e) otherwise

(4.3)

Finally, the following rules are used to process the Element’s type:

Rule4.a: if the Element is a basic type, the inherited built-in EXI data type representa-

tion is used to codify the Element’s value. These data types are described in Section 3.2.1.1.

Rule4.b: when the Element is of complex type, the equation CodEC is used to codify

the Element’s context.

Rule4.c: if the Element is of schema type, the equation CodS is used to codify the

Element’s context.

CodT(e) =

CodEC(Context(e)) Type(e) = complex

CodS(Context(e)) Type(e) = schema

EXI_basic_type(e) otherwise

(4.4)

4.2.2 Example

In order to clarify the application of the rules and equations explained in the previous

section, the step by step codification of the XML instance document shown in Figure 4.8

(which follows the “Notebook” schema of Figure 4.5) is described here. For simplicity

reasons, the example below only expands the first occurrence of the XML element “note”.

First, the SchemaId of the schema is codified, followed by the root eContext:

CodS(sNOTEBOOK)⇒ SchemaId(sNOTEBOOK)⊕ CodEC(CROOT)

Next, the prolog Element of the root eContext is processed, followed by the content of

the data model instance:

Section 4.2. CTC Codification Algorithm 79

<?xml version="1.0" encoding="UTF-8"?>
<notebook date="2007-09-12">

<note category="EXI" date="2007-07-23">
<subject>EXI</subject>
<body>Do not forget it!</body>

</note>
<note date="2007-09-12">

<subject>Shopping List</subject>
<body>milk, honey</body>

</note>
</notebook>

Figure 4.8: Schema instance example.

CodEC(CROOT)⇒ CodE(CROOT, ePROLOG)⊕ CodE(CROOT, eCONTENT)

CodE(CROOT, eCONTENT)⇒ CodT(eCONTENT)⇒ CodEC(CCONTENT)

The “notebook” XML element is codified into the stream taking into account that the

eContext’s Type is choice:

CodEC(CCONTENT)⇒ 01 ⊕ CodE(CCONTENT, enotebook)

CodE(CCONTENT, enotebook)⇒ CodT(enotebook)⇒ CodEC(Cnotebook)

The “notebook” eContext contains two Elements, one for the XML attributes and

another for the “note” XML element:

CodEC(Cnotebook)⇒ CodE(Cnotebook, enotebook_att)⊕ CodE(Cnotebook, enote)

The “note” Element is an array with length two:

CodE(Cnotebook, enote)⇒ 11 ⊕ CodT(enote)⊕ 11 ⊕ CodT(enote)⊕ 01

The “note” eContext contains three Elements, one for the XML attributes and another

two for the “subject” and “body” XML elements:

CodT(enote) ⇒ CodEC(Cnote) ⇒ CodE(Cnote, enote_att) ⊕ CodE(Cnote, esubject) ⊕
CodE(Cnote, ebody)

The “note_att” eContext contains the attributes of the “note” XML element. It is a

dynamic eContext with two child Elements:

CodE(Cnote, enote_att)⇒ CodT(enote_att)⇒ CodEC(Cnote_att)⇒
⇒ 12 ⊕ CodE(Cnote_att, edate)⊕ 22 ⊕ CodE(Cnote_att, ecategory)

80 Chapter 4. Context- and Template-based Compression (CTC)

Finally, basic type Elements are directly encoded using the EXI codification standard

for built-in EXI data type representations. For instance, for the “subject Element of type

string, the value is codified as:

CodE(Cnote, esubject)⇒ CodT(esubject)⇒ 38 ⊕ “EXI ′′

4.3 Summary and Conclusions

In this chapter, we presented Context- and Template-based Compression (CTC), a com-

pression approach for standard data model representation formats. CTC provides a data

model representation encoding targeted to resource-constrained devices that is more

efficient than standard formats but that allows seamless transformation between the CTC

format and the original format. The specification of the core components of CTC (context

table and template table) is included as well as how these core components are created

from standard data format schemas. We also provided two specific examples for XML

and JSON Schema mappings. Finally, the chapter described in detail the CTC Algorithm

used to encode/decode CTC streams based on the information stored in the context table

and template table.

The verbosity of text-based data formats requires system resources that might be be-

yond the capabilities of the resource-constrained devices typically used into IoT networks.

CTC tackles this problem by enabling the interoperable integration of heterogeneous

devices at the data representation level while requiring very low resource needs in terms

of communication bandwidth, memory usage and processing power.

Additionally, CTC supports interoperability-driven approaches such as the Web of

Things. CTC eases the seamless use of Web Services by enabling the native use of standard

data model representation formats Web Services are based on.

5 | CTC Communication Model

The previous chapter focused on the description of the core CTC components and mecha-

nisms. However, CTC coding/decoding components alone do not provide all the function-

alities needed to be directly used together with a distributed application. This chapter

describes the CTC communication model, how it fits within a distributed system, and the

complementary mechanisms needed to be effectively used.

Although the CTC communication model is mainly designed to be used by resource-

constrained devices, it is very flexible and simple. The CTC communicationmodel is easily

adapted to various scenarios and in conjunction with distinct technologies, targeted to

resource-constrained domains or not.

Hence, although in this chapter we assume that the compression technology used is

CTC, the proposed solution can be also applicable to other data compression technologies

for structured data, such as EXI or CBOR.

The following sections describe the general communication architecture followed by

CTC enabled systems, the complementary mechanisms needed to manage the interchange

of schemas as well as a specific and practical implementation of CTC based on CoAP to

show the applicability of the CTC communication model on a standard communication

protocol.

5.1 Communication Architecture

CTC is conceived as a component within a distributed system such as the one shown in

Figure 5.1: connected nodes (usually resource-constrained devices) are deployed in a

local network and an edge-router or gateway is used to access external networks and

nodes. This architecture is similar to communication architectures found in traditional

Low Power Wireless Personal Area Networks (LPWPAN) and the IoT in general.

CTC communication architecture can be integrated into networks and architectures

with other topologies such as clusters of local networks or two local networks connected

by an Internet link. Nevertheless, this section considers the basic architecture depicted

in Figure 5.1 because it is easily scalable and extrapolated to other, more complex,

architectures.

81

82 Chapter 5. CTC Communication Model

Constrained Devices Network

Gateway /

Schema reposi-

tory
Internet

External node

External node

Figure 5.1: CTC communication model general architecture.

Depending on the application domain, nodes belonging to a (sub-)network interchange

data with other nodes that may reside in the same (sub-)network or in an external

network, i.e., a network accessed through an edge-router. If two connected nodes codify

the transmitted data following the same encoding/format, no data transformation will be

required in order for the two nodes to understand each other’s data. If the two nodes

are separated by a gateway, no application level transformation will be needed and the

communication will be effectively end-to-end, with the gateway acting as a mere router.

This is the simplest communication use case.

However, compression technologies targeted to resource-constrained systems (such

as CTC) are especially conceived for those cases in which an (external) node uses a data

format not suitable for resource-constrained nodes. Thus, data needs to be translated to

CTC in order to be efficiently used within the constrained nodes’ network. In this case,

one of the connected nodes does not implement CTC (i.e., it makes use of data in their

original format) and the gateway will act as an application level gateway, translating the

original data format to CTC and vice-versa. In order for the gateway to fulfil this role, it

needs to meet three requirements: 1) it must contain a CTC implementation, including

schema management, 2) it must have access to the data (i.e., the payload of the messages)

and 3) it must have access to the schema information of the interchanged data.

Regarding the third requirement, CTC enabled gateways and nodes need to know

the context tables and template tables (and their identifiers) associated with the data

models they are using. As explained in Chapter 4, this information is extracted from

the schemas of the data models themselves. Thus, the schemas of the data models must

be disseminated before CTC can be applied. Additionally, schemas must be uniquely

identified within the CTC enabled (sub-)network. This requirement is because, in order

to decode a CTC stream, the identifier of the schema against it has been encoded must be

inserted in the stream itself. This identifier must be as compact as possible (as opposed to

traditional URIs which tend to be verbose) in order to avoid unnecessary overhead.

Section 5.2. Schema Repository 83

In the CTC communication model, schema information is collected andmade available

by the schema repository. Nodes communicate with the schema repository in an initial

dissemination phase, in which schema information is distributed and registered. Thus, a

schema repository acts as a centralized resource information base (where the resources

are schemas) and provides application agnostic mechanisms to register, store, request,

update and, in summary, manage data model schemas.

When the gateway translates application data to/from CTC, the use of CTC is effectively

hidden to the external nodes and, thus, the schema repository does not need to be

externally accessible. On the other hand, when two nodes interchange data represented

in CTC, they both need to have access to the same schema information stored in the

same schema repository, regardless of the (sub-)network they are located in. This is a

requirement in order to access consistent information and satisfy CTC’s schema context

dependencies during the bootstrapping phase.

Although it is not required in all cases, for convenience, the schema repository is

depicted at the gateway itself in Figure 5.1. However, note that the gateway and the

schema repository have two distinct functionalities: a gateway acts as a link between two

networks, performing a data or protocol mapping/transformation if required, while a

schema repositorymanages the data models’ schema information that is needed by CTC.

The schema repository is explained in more detail in the next section.

Nevertheless, CTC communication architecture allows the coexistence and interoper-

ability between CTC enabled and not enabled devices. Devices with constrained resources

will be able to take advantage of CTC while more powerful devices use the original data

format at the same time.

5.2 Schema Repository

This section describes the role of the schema repository, the functionalities it provides

and the procedure that must be followed to register, access, update and, in summary,

to manage the schema information interchange process within a CTC enabled network.

Although the schema repository approach was initially designed for CTC, it can be directly

applied to other technologies for data compression based on schema information, such

as EXI. Additionally, CTC uses the schema repository to explicitly manage schemas but the

concept can be easily extended to more generic resources that need to be discovered at

runtime and would benefit from a compact identifier assigned at runtime.

Themain function of a schema repository is to provide a centralized location for storing

information to access data model schemas (i.e., “links” to schema storing locations) as

well as generate and assign compact identifiers, denoted schemaIds. Additionally, a

schema repositorymay also be used as an intermediate schema storing place.

84 Chapter 5. CTC Communication Model

When a node joins the network for the first time, it can start a schema registration

process with the schema repository. The purpose of registering a data model schema

is to inform the schema repository of where the schema is located and how it can be

retrieved. After this information is registered, a schemaId is assigned to the schema. Once

the registration process is finished, other nodes are able to request schema information

from the schema repository.

Upon the reception of a schema registration request, the schema repository first

checks whether that particular schema has been already registered. In that case, the

associated schemaId is returned to the node. If the schema is not registered yet, the

schema repository generates a new schemaId.

When a schema is registered, an associated globally unique identifier is provided in

order to unambiguously identify the schema. Additional parameters are also included in

order to give relevant information needed to access the schema, such as the URL where

the schema is located or the data format. This set of parameters, which conform all the

information required to locate and access the schema, is denoted a schema link register.

Initially, schemas may be stored at the node itself or at another convenient location

such as an external server. Note that resource-constrained nodes only need to store the

schemas of the data models they actually use. Moreover, if the schemas are stored in an

external server and are accessible by the interested (client) nodes, they can be totally

stripped from the source node.

A schema repository may download the schemas directly from a node or from an

external server as depicted in Figure 5.2, a) and b) respectively. Optionally, the schema

repositorymay also became an intermediate container of the downloaded schemas. In

this case, schemas will be also accessible and downloadable directly from the schema

repository. Storing the schemas directly in the schema repository gives some advantages.

On one hand, nodes are relieved from the burden of serving the schemas each time a

schema is requested, reducing energy consumption. On the other hand, the traffic of

the constrained network is reduced in case the schema is requested by an external node.

Additionally, problems related to sleeping nodes (such as non-availability) are avoided.

Once the registration process is finished and the schemas are downloaded and stored

in the schema repository, they are processed in order to generate the context table and

template table. As an efficiency improvement, the schema repository could also pre-load a

set of standard schemas or download already pre-compiled context tables and template

tables.

CTC registration process aims to be generic and, consequently, does not assume any

underlying protocol. The next section provides a generic definition of the structure of a

schema link register and Section 5.2.2 describes the abstract methods used in a schema

registration process. An illustrative example can be found in Section 5.3. The example

Section 5.2. Schema Repository 85

Constrained Devices Network

Gateway / Schema

repository

Internet

External node
Schema server

a)

b)

Figure 5.2: Template location. a) at the Node, b) at an external Server.

shows a binding of the registration process to CoAP [SHB14]. This binding specifies a

registration API using CoAP methods to gather/register the schemas using CoRE Link

Format [She12], together with an extension of CoAP resource directory [SKB+18].

5.2.1 Schema Link Register Structure

A schema link register is used to represent all the information needed to access, download

and process a datamodel schema.

A schema link register entry must contain, at least, the following information:

• unique identifier: it must identify the schema in a globally unique way so it
usually takes the form of an URI. For instance, in the case of XML or JSON schemas,

the associated namespace could be directly used as unique identifier under the

assumption that they unambiguously identify the schema.

• schemaId: the locally unique (compact) identifier assigned by the schema repository
to the schema.

• lifetime: the registration of a schema must be refreshed periodically or the
schema registration will be removed from the schema repository. The lifetime

attribute specifies the period of time a schema link register is considered valid

before a refresh is needed.

• location: this attribute contains the location where the schema can be accessed.
It will usually take the form of an URL.

• size: the size of the schema. This attribute is necessary to manage the schema
download as well as arrange the necessary resources.

86 Chapter 5. CTC Communication Model

• hash: the computed hash of the schema document, such as a md5hash, in order to
verify that the version of the schema is the proper one as well as to detect corrupted

schemas.

• format: the data representation format used by the schema, e.g., XML, JSON, EXI
and CTC.

Depending on the specific case, additional information may be needed. For instance,

security configuration options may be specified in order to overcome security measures

set by a server.

More than one schema link register may share the same unique identifier and
schemaId. These different instances of the same schema may be used to declare multiple
optional locations (for example, in the node and in mirror servers) or schemas stored in

different formats.

5.2.2 Schema Registration Management Abstract Methods

This section describes the abstract methods used to manage the schema registration

process of a schema repository. These methods are generic enough so they can be

mapped to a variety of protocols and architecture approaches.

The management of the schema registration process can be logically divided into five

abstract methods: REGISTER, ASSIGN, LOOKUP, DELETE and DOWNLOAD.

• REGISTER: this method is used to register a schema into a schema repository. The

REGISTERmethod must include the unique identifier parameter as well as the
location from where the schema is accessible. The lifetime parameter may be
included but it is not mandatory if a default value is defined for all the stored schema

link registers. The format parameter is mandatory if it cannot be inferred by other
means. Finally, size and hash parameters should be included in order to verify the
schema.

• ASSIGN: a schema repository uses this method to assign a schemaId to a schema.
The ASSIGN method is the response to a REGISTER method.

The ASSIGNmethod includes the parameters unique identifier and schemaId,
and can optionally specify a lifetime parameter in case the value used in the
REGISTER method has not been accepted (for instance, if the schema repository

demands shorter refresh cycles than the one requested by the node).

• LOOKUP: a node uses the LOOKUP method to request a schema link register. The

LOOKUP method has a single mandatory parameter, the unique identifier. A
LOOKUPmethod may be used to retrieve information to access the schema or just

Section 5.2. Schema Repository 87

Constrained

Devices Network

Internet

Schema

Repository

NodeA

Schema

Directory

http://server.com

1 REGISTER

example:namespace:A

http://server.com/schemaA.xsd

example:namespace:A ⇒ 2 http://server.com/schemaA.xsd

2 ASSIGN

3 DO
WNL

OAD

Figure 5.3: CTC abstract methods REGISTER, ASSIGN and DOWNLOAD.

to get the schemaId. Filtering functionalities may be implemented by the schema
repository in order to retrieve multiple schema link registers that meet the same

criteria.

• DELETE: this method is used by a node to explicitly erase a schema link register

entry.

The DELETE method has two mandatory parameters, the unique identifier and
schemaId. The schema link register will only be deleted if both parameters are
consistent with the information stored in the schema repository. Note that only the

schema link register will be deleted, the schemaIdwill not be necessarily freed. The
schemaId will be freed when all the schema link registers of the associated unique
identifier are deleted from the schema repository.

• DOWNLOAD: this method is used by a node or gateway to download a schema based

on the information stored in a specific schema link register.

Figures 5.3 and 5.4 present an example that summarizes the different processes of

the registration management methods during the life-cycle of a schema. More precisely,

Figure 5.3 shows the REGISTER, ASSIGN and DOWNLOAD methods. First, NodeA sends

a REGISTER method to the schema repository (step 1). In this step NodeA specifies

the unique identifier (“example:namespace:A”) and location (“http://server.
com/schemaA.xsd”) parameters. In this case, the format parameter is not included
since it can be inferred from the schema document file extension (“.xsd”). Then, the

schema repository answers with an ASSIGN method (step 2) and assigns the schemaId
‘2’ to the data model schema. Additionally, the schema repository downloads the schema

(step 3) and stores it locally.

Figure 5.4 shows the LOOKUP and DELETE methods. NodeB sends a LOOKUP method

(step 4) and the schema repository answers sending two schema link registers: one rep-

http://server.com/schemaA.xsd
http://server.com/schemaA.xsd

88 Chapter 5. CTC Communication Model

Constrained

Devices Network

Internet

Schema

Repository

NodeA

NodeB

Schema

Directory

http://server.com

6 DELETE

4 LOOKUP

5 DOWNLOAD

http://server.com/schemaA.xsd
http://sr.com/schemaA.xsd

example:namespace:A

example:namespace:A

http://server.com/schemaA.xsd
http://sr.com/schemaA.xsd

Figure 5.4: CTC abstract methods LOOKUP and DELETE.

resenting the original schema link register registered by NodeA (“http://server.com/
schemaA.xsd”) and the second one created by the schema repository itself, containing
the link (“http://sr.com/schemaA.xsd”) to the schema locally stored in the schema
repository. The NodeB decides to download the schema from the schema repository (step

5) so it uses the information in the second schema link register to execute a DOWNLOAD

method. After downloading the schema, NodeB processes it and generates the context

table and template table in order to use CTC in the forthcoming communications. Finally,

NodeA deletes the schema link register (step 6) and the schema repository releases the

schemaId, also deleting the additionally created schema link register for the locally stored
schema copy.

5.3 CoAP Binding

As has been explained in previous sections, the purpose of the schema repository is to

serve as a repository of schema link registers and schemas as well as to manage the

generation and assignment of schemaIds. This section describes how the functionalities

of a schema repository are implemented using CoAP as the underlying protocol.

5.3.1 Schema Directory

The schema repository implementation based on CoAP is built on top of the concept of

a schema directory. In turn, the concept of a schema directory is largely based on the

resource directory [SKB+18] specification for CoAP.

A CoAP resource directory is used to store information about generic web resources.

Additionally, a resource directory provides a REST interface designed for the registration

and lookup of stored resources. A schema directory, in contrast, is specifically designed

http://server.com/schemaA.xsd
http://sr.com/schemaA.xsd
http://server.com/schemaA.xsd
http://sr.com/schemaA.xsd

Section 5.3. CoAP Binding 89

� �
Req: GET coap://[ff02::1]/.well−known/core?rt=core.sd*

Res: 2.05 Content
</sd>;rt="core.sd";ct=40,
</sd−sch>;rt="core.sd−lookup−sch";ct=40,
</sd−sid>;rt="core.sd−lookup−sid";ct=40� �

Figure 5.5: Example discovery on a schema directory example.

for one resource type (data model schemas) and implements a dedicated CoAP interface

in order to provide the methods and functionalities for a schema repository.

A schema directory uses the same discovery approach as a resource directory, i.e., a

GET request is performed on a well-known path (“/.well-known/core”) on the server. For

the schema directory case, the server is always a schema repository.

On a resource directory, the GET request indicates the “Resource Type” query parame-

ter. The specified parameter values are “core.rd”, “core.rd-lookup-res”, “core.rd-lookup-

ep”,“core.rd-lookup-gp” or “core.rd-group”. These parameters are used for querying

the location of the different interfaces for registration, lookup and groups. However, a

schema directory uses a different set of “Resource Type” values than the ones defined

by the CoAP resource directory. The schema directory registration path is requested by

specifying a “Resource Type” parameter with a value of “core.sd” in the query string.

In order to request the lookup paths for schema link register entries, a request must

be performed with the value “core.sd-lookup-sch”. Finally, a “Resource Type” value of

“core.sd-lookup-sid” is used to query the schemaIds lookup paths. These new “Resource

Type” parameter values are not IANA (Internet Assigned Numbers Authority) official

registered identifiers and they are defined here in order to be able to differentiate them

from the CoAP resource directory’s counterparts.

In the same way as in a resource directory, a successful request will return a response

containing a list of link entries (following the CoRE Link Format) that satisfy the request’s

parameters.

The following example (Figure 5.5) shows the CoAP request issued by a node perform-

ing a discovery operation as well as the response sent by a schema repository. The request

queries all the interfaces of a schema directory, i.e., “Resource Type” parameters that start

with the value “core.sd”. In the example, the schema registration interface path is “/sd”,

the schema lookup interface path is “/sd-sch” and the schemaId lookup interface path is

“/sd-sid”. Additionally, the content-format for all the interfaces is “application/link-format”

(ct=40). Note that the paths are application dependant and the ones shown in Figure 5.5

are just examples.

90 Chapter 5. CTC Communication Model

5.3.2 Schema Directory Registration Interface

In order to perform a REGISTER request to register a data model schema (or a list of data

model schemas), a node issues a POST method to the registration interface. This POST

method must contain the list of schema link register entries of the data model schema to

be registered.

Each schema link registermust include the globally unique identifier required by the

schema repository and, optionally, an anchor attribute (as explained in the CoAP Resource

Directory specification [SKB+18], section “5.3.Registration”) in order to indicate schemas

stored outside the origin node. The uid attribute is used to specify the globally unique
identifier of a schema link register. Although it is not mandatory, it is recommended that

the uid attribute follows the URI format. There is no upper bound to the length of the
uid attribute. Although it would be recommended to set a maximum length limit, unique
identifiers will be probably mapped to namespaces used in the schemas (XML and JSON

namespaces), which are known to be verbose.

On a successful registration, the schema repository creates a new registration resource

in the schema directory for each unique identifier not already registered. Therefore, for

each new data model schema (i.e., uids not already registered in the schema directory)
contained in the schema link register list, a new resource is created and a new schemaId

is generated and assigned to the data model schema. In case a data model schema with

the same unique identifier has already been registered, the schema repository reuses the

already assigned schemaId. Due to security reasons, some checking may be necessary in

order to ensure that the unique identifier and links really identify and point to the same

data model schemas.

Once the schema repository finishes the internal registration process (i.e., resource

creation and schemaId assignment), it returns the location of the registration resource to

the origin node. The location is included in the “Location” header of the response sent by

the schema repository. As in the resource directory, a node that just registered its data

model schemas, should remember the location of the registration resource. This location

is used in management operations such as the refreshing of the registration lifetime as

well as inspect, update or remove the resource.

Schema registrations must be refreshed within a given period. This period can be

specified in the registration request using the lifetime parameter. If a lifetime
parameter is not specified, a default value is assigned. Lifetime values are assigned to the

whole registration resource. If the lifetime of a registration resource expires, all the links

registered by the origin node are removed from the schema directory. If all the links of a

given unique identifier (and hence, of a data model schema) are removed, the schema

registration resource is deleted and the schemaId is freed.

Section 5.3. CoAP Binding 91

The registration request may also include a context parameter that will be applied to
all the schema link registers contained in the request. However, if a schema link register

already has an anchor attribute, the context parameter is ignored. The purpose of the
context parameter is to reduce the size of each schema link register. If the context
parameter is not included, it is assumed that the origin node is the context. Nevertheless,

links that upon registration did not contain an anchor attribute, which indicates that the
data model schema is stored outside the origin node, are assigned an anchor equal to the

context URI of the registration.

The registration request interface of the schema directory is an adaptation of the

registration interface specified for the resource directory (specified in [SKB+18], Section

5.3).

Interaction: CoAP Endpoint -> Schema Directory

Method: POST

URI Template: +sd?lt,con

The parameters lt and con are specified as defined in [SKB+18], i.e, they respectively
indicate the lifetime of the registration in seconds and the default base URI for the request’

schema link register entries.

Following with the example shown in Figure 5.5, Figure 5.6 shows an example of

a request sent and response received by a node registering two data model schemas

using the registration interface path “/sd”. The node attempts to register two data model

schemas with unique identifier values of “example:uri:schema1” and “example:uri:
schema2”. For the data model schema identified as “example:uri:schema1”, two links
are provided, one located in the node itself (on the path “/sch/schema1”) and the other

in an external server in the URL “http://example.com//schema1/schema”. For the
data model schema identified as “example:uri:schema2” one single link located at the
node in the path “/sch/schema2” is provided. The content format for all the links is

“application/xml” (‘41’ in CoAP identifier code format). The size and hash parameters
are provided in order to verify the schema document.

Upon registration, the schema repository will, optionally, download the schema, store

it locally and make it available through a CoAP resource interface. In this case, the

schema repository adds the link to the schema directory so it is available on the lookups

interfaces.

5.3.3 Schema Directory Lookup Interfaces

The schema directory provides lookup interfaces in a similar way as a resource directory.

These interfaces are necessary in order to discover and retrieve the links to the datamodel

92 Chapter 5. CTC Communication Model

� �
Req: POST coap://sd.example.com/sd
Content−Format: 40
Payload:
</sch/schema1>;ct=41;rt="schema";uid=example:uri:schema1;sz=512;hash="0123456789←↩

abcdef0123456789abcdef",

</schema1/schema>;ct=41;rt="schema";uid=example:uri:schema1;anchor="http://example.←↩
com";sz=512;hash="0123456789abcdef0123456789abcdef",

</sch/schema2>;ct=41;rt="schema";uid=example:uri:schema2;sz=322;hash="←↩
abcdef0123456789abcdef0123456789"

Res: 2.01 Created
Location: /sd/1245� �

Figure 5.6: Example registration request on a schema directory.

schema locations and to the schemaIds assigned to the schemas. The schema directory

provides two types of lookup interfaces, the schema lookup interface and schemaId lookup

interface. The schema lookup interface is used to retrieve the list of schema link registers

to data model schema locations while the schemaId lookup interface is used to get the

schemaIds assigned to the data model schemas.

A request to the schema lookup interface will return the schema link register to the

location where data model schemas are stored and from where they can be accessed

and downloaded. Note that the schema link registers of the schemas locally stored in the

schema repository will be also included.

The resource type for the schema lookup interface is “core.sd-lookup-sch” and is

specified as follows:

Interaction: CoAP Endpoint -> Schema Directory

Method: GET

URI Template: +lookup-location?uid

The lookup-location parameter is the lookup URI of the schema lookup interface
as returned by the well-known path. The result is the list of schema link registers to the

data model schema identified by the uid parameter. It is convenient to apply filters (by
specifying relevant parameters, in this case uid) to schema lookup requests. This avoids
the need to explicitly search the required resource in the (potentially large) returned

resource list.

In the example shown in Figure 5.7, a node issues a schema lookup request of the

data model with the unique identifier “example:uri:schema1”. The schema directory
returns three schema link registers, the first one pointing to the schema stored in the

origin node (“coap://[2001:db8:3::123]:61616/sch/schema1”), the second to the
schema stored in an external server (“http://example.com/schema1/schema”) and

Section 5.3. CoAP Binding 93

� �
Req: GET coap://sd.example.com/sd−sch?uid=example:uri:schema1

Res: 2.05 Content
</sch/schema1>;ct=41;rt="schema";uid=example:uri:schema1;anchor="coap://[2001:db8:3::123←↩

]:61616";sz=512;hash="0123456789abcdef0123456789abcdef",
</schema1/schema>;ct=41;rt="schema";uid=example:uri:schema1;anchor="http://example.←↩

com";sz=512;hash="0123456789abcdef0123456789abcdef",
</sd/sch/1>;ct=41;rt="schema";uid=example:uri:schema1;sz=512;hash="0123456789←↩

abcdef0123456789abcdef"� �
Figure 5.7: Example schema lookup request on a schema directory.

the last one pointing to the schema stored in the schema repository itself (“coap://sd.
example.com/sd/sch/1”).
A request to the schemaId lookup interface will return the list of schemaIds assigned

to the queried unique identifiers. The resource type for the schemaId lookup interface is

“core.sd-lookup-sid” and it is specified as follows:

Interaction: CoAP Endpoint -> Schema Directory

Method: GET

URI Template: +lookup-location?uid,con

The lookup-location parameter is the lookup URI of the schemaId lookup interface
as returned by the well-known path.

The result is the schemaId resource assigned to the registered data model schema

identified by the uid and/or registered by the origin node identified with the context URI
con. Many unique identifiers can be included in the query parameter uid separated with
a space. In this case, the result may be a list of schemaId resources.

Figure 5.8 shows an example of a node requesting a schemaId lookup on a schema

directory. In this example, the node only specifies one unique identifier (“example:uri:
schema1”) and, consequently, the schema repository only returns one resource with the
assigned schemaId of “1”. In contrast, in the example depicted in Figure 5.9 the node

requests a schemaId lookup for data model schemas registered by a particular node,

in this case “coap://[2001:db8:3::123]:61616”. In the example, the queried node
had registered two data model schemas so the schema repository returns two resources,

“/sd/sid/1” and “/sd/sid/2” with assigned schemaIds of “1” and “2” respectively.

schemaId resources can also be queried in order to get the list of registration resources

associated to a specific data model schema. Although this functionality is not expected to

be specially useful for applications, it may be needed by management applications.

For instance, Figure 5.10 shows an example of a node querying a schemaId resource

which, in this case, is linked to two distinct registration resources (produced by two nodes

registering the same data model schema).

94 Chapter 5. CTC Communication Model

� �
Req: GET coap://sd.example.com/sd−sid?uid=example:uri:schema1

Res: 2.05 Content
</sd/sid/1>;uid="example:uri:schema1";sid=1� �
Figure 5.8: Example schemaId lookup request on a schema directorywith a single “uid”

value.

� �
Req: GET coap://sd.example.com/sd−sid?con="coap://[2001:db8:3::123]:61616"

Res: 2.05 Content
</sd/sid/1>;uid="example:uri:schema1";sid=1
</sd/sid/2>;uid="example:uri:schema2";sid=2� �
Figure 5.9: Example schemaId lookup request on a schema directory with a context

parameter.

� �
Req: GET coap://sd.example.com/sd/sid/1

Res: 2.05 Content

</sd/1245>;con="coap://[2001:db8:3::123]:61616"
</sd/4567>;con="coap://[2001:db8:3::124]:61616"� �

Figure 5.10: Example schemaId resource query on a schema directory.

Section 5.3. CoAP Binding 95

� �
Req: DELETE /sd/1245

Res: 2.02 Deleted� �
Figure 5.11: Example schemaId resource deletion on a schema directory.

5.3.4 Schema Directory Registration Deletion

Like CoAP resource directory entries, schema directory registrations have soft state and

will be erased if they are not refreshed within the lifetime specified in the registration

(see Section 5.3.2). Nevertheless, the schema directory provides a registration removal

interface in order for the origin node to be able to explicitly remove its registration.

The registration removal interface is specified as follows:

Interaction: CoAP Endpoint -> Schema Directory

Method: DELETE

URI Template: +location

The location parameter is the registration resource path returned in the “Location”
header of the response to the successful registration request.

If the schema directory receives a DELETE request, the registration resource is treated

in the same way as if the lifetime expires: all the schema link registers contained in

the registration resource are removed from the schema directory. If all the links of a

given unique identifier (and hence, of a data model schema) are removed, the schema

registration resource is deleted and the schemaId is freed.

Figure 5.11 shows an example of a node deleting the registration resource created on

the registration example shown in Figure 5.6.

5.3.5 CTC Link Format

Apart from the formats supported by the CoAP resource directory, CoRE Link Format [She12]

(“application/link-format”), JSON CoRE Link Format (“application/link-format+json”), and

CBOR CoRE Link Format [LRB17] (“application/link-format+cbor”), a schema directory

also accepts the CTC Link Format (“application/link-format+ctc”).

The CTC Link Format is a complementary and convenient way of formatting link

contents in a compressed link format. In order to be able to make use of the CTC Link

Format, a globally unique identifier must be assigned to the CTC Link Format schema and

the schema registermust register it into the schema directory before any other registration

96 Chapter 5. CTC Communication Model

process takes place. By registering the CTC Link Format schema, the schema directory is

pre-populated with the schema link registers and a schemaId is assigned to the schema.

The data model schema for the CTC Link Format is specified based on the JSON

Schema for the Content Format “application/link-format+json” and defined in [LRB17].

This schema is extended with the attributes uid and sid in order to support the interfaces
of a schema directory. The schema is shown in Figure 5.12.

5.4 Summary and Conclusions

The IoT relies on the deployment of interconnected heterogeneous devices and sys-

tems. This demands interoperable communications and data formats which are typically

addressed through the adoption of standard text-based data formats. However, the

verbosity of these text-based data formats demands processing and communication re-

sources that might be beyond the capabilities of the resource-constrained devices and

networks typically used in IoT networks.

A common technique used to handle structured data more efficiently is to compress

the data itself using a more efficient encoding. Compression technologies targeted to

structured data take advantage of the contextual information extracted from the data

format and model (formal structure, grammar, schema, etc.) and use this information to

efficiently compress data.

In this section we have presented a generic communication model for the efficient

management of the contextual information required by compression techniques for

structured data. The section describes the schema registration and schema repository

approaches in a generic, independent way from any underlying communication protocol.

The schema registration and schema repositorymechanisms allow to dynamically assign

and distribute schema information at run time. These mechanisms are very flexible and

have been designed taking into account the multiple restrictions of resource-constrained

devices.

The proposed solution provides a flexible and interoperable communication architec-

ture. Devices using standard data representation formats can coexist and communicate

with devices using compressed formats. Devices can be located within the same (sub-

)network or reside in separated networks. A CTC gateway can be deployed to behave as

an application level gateway and seamlessly translate between the compressed format

and the original data format.

We used CTC as the compression technology for the schema registration and schema

repository approaches. In Chapter 4 we showed that CTC is specially targeted to resource-

constrained devices and it is able to provide a generic transformation from one format to

other in a seamless, interoperable and efficient way. Together with the communication

Section 5.4. Summary and Conclusions 97

� �
{

"$schema": "http://json−schema.org/draft−06/schema#",
"type": "object",
"required": [
"href"

],

"properties": {
"href": {
"type": "string"

},

"rel": {
"type": "string"

},

"anchor": {
"type": "string"

},

"rev": {
"type": "string"

},

"hreflang": {
"type": "string"

},

"media": {
"type": "string"

},

"title": {
"type": "string"

},

"type": {
"type": "string"

},

"rt": {
"type": "string"

},

"if": {
"type": "string"

},

"sz": {
"type": "integer"

},

"ct": {
"type": "integer"

},

"obs": {
"type": "boolean"

},

"con": {
"type": "string"

},

"uid": {
"type": "string"

},

"sid": {
"type": "integer"

}

},

"additionalItems": false
}� �

Figure 5.12: JSON schema for “application/link-format+ctc”.

98 Chapter 5. CTC Communication Model

model presented in this chapter, CTC proves to be a very good candidate for generic data

model representation and compression in resource-constrained devices and networks.

Nevertheless, the CTC Communication Model is generic enough to be applied to other

structured data compression technologies based on contextual information, e.g., EXI.

As will be shown later in Section 7.3, CTC and CTC Communication Model have a

positive impact on the reduction of transmitted messages. Different configurations of

the proposed solution can fit different needs and scenarios depending on the available

resources and schemas used. For instance, the flexibility in the location of schemas’

storing place notably reduces the message transmission overhead and removes the need

to store the schemas on the devices themselves, saving memory resources.

6 | CTC Library

The functionalities provided by CTC are encapsulated in a software library, denoted as

CTC Library. These functionalities include the management of the context table and

template table, the execution of the CTC Codification Algorithm and the mechanisms of the

CTC Communication Model. This library is embedded and used by resource-constrained

devices, external clients, CTC Gateway and, in summary, any entity that requires access

the functionalities offered by CTC and to encode/decode data streams. In this chapter we

will use the term “device” to refer to any HW/SW entity that makes use of the CTC Library.

The CTC Library follows a modular approach in order to tailor its capabilities to the

needs of the application and resources of the device. A support tool for the CTC Library,

called CTC Compiler, is used to process the data model schemas and automatically create

the context table and template table as well as the necessary native code for the data

model bindings. This code is embedded in the devices’s application code at programming

time and is referenced by the CTC Library in order to provide the CTC capabilities.

6.1 Architecture and Components

The architecture of the CTC Library is designed to be modular. In this way unneeded

components can be removed at compile time and effectively reduce code size. The generic

architecture of the CTC Library is shown in Figure 6.1.

The core of the CTC Library is composed by the Codifier and Manager components.

The Codifier component implements the CTC Compression Algorithm and is in charge of

decoding/codifying the data streams while theManager component is the responsible of

the management of the context table, including external accesses. On the other hand, the

Compiler component is used to process data model schemas at runtime and create the

corresponding schema context and templates. The CTC Library also provides a Generic

Binder component which is used to either decode the coded data stream and rebuild

the data in their original data format or to parse data in the original data format and

transform they to a CTC coded data stream.

99

100 Chapter 6. CTC Library

Figure 6.1: Architecture of the CTC Library. Components in the white area are provided

by the CTC Librarywhile components in the grey area are created by the CTC Compiler.

Dotted components are optional.

The Context Table and Template Table components represent the implementation of

the context table and Template Table concepts described in Chapter 4. Thus, the Context

Table component holds all the schema contexts used by the device, whereas the Template

Table component contains the schema templates.

Finally, the Binding Stubs component groups all the data model binding code used

to directly map the data stream decoded by the Codifier component into native struc-

tures and to transform native structures into coded data streams through the Codifier

component. In other words, Binding Stubs component acts as the interface between the

application’s native structures and the CTC implementation.

The Context Table, Template Table and Binding Stubs components (depicted in the grey

area in Figure 6.1) are not provided by default by the CTC Library. These components are

created using the CTC compiler.

Each component of the CTC Library architecture is described in more detail in the

following list.

• Codifier: the Codifier component implements the CTC Compression Algorithm and is

the decoding/codifying engine of the CTC Library. The Codifier component provides

mechanisms for the Binding Stubs andGeneric Binder components. The Binding Stubs

component uses these mechanisms to map native structures to CTC coded streams

while the Generic Binder component does the same with data model instances in

their original format. On the other hand, The Codifier component will use the

Context Table and Template Table components, or more specifically, the information

provided by these components, in order to perform the decoding and codifying

processes.

Section 6.1. Architecture and Components 101

The Codifier component is mandatory and is always included as part of the CTC

Library.

• Manager: the Manager component is the responsible of the management of the

external accesses (either write or read) to the context table. These accesses are

usually produced by interactions with other nodes or the CTC schema repository as

part of the schema registration process. TheManagermakes use of the Compiler

component to process schemas and create the schema contexts and templates for

the Context Table and Template Table components.

TheManager component is considered as a mandatory component and is practically

always included as part of the CTC Library. However, as a special case and if no

schema registration is needed (for instance, if an application uses statically assigned

schemaIds), this component could be removed.

• Generic Binder: the Generic Binder component is used to rebuild the data coded in

a data stream to its original format (by processing the data stream and merging the

templates) and vice-versa. The Generic Binder uses the mechanisms provided by the

Codifier component to recreate the datamodel instance to its original format, usually

by simply merging the templates as the data stream is decoded. This component is

also able to codify data in their original data format to their CTC coded version by

making use of the Codifier and the information in the Context Table and Template

Table components.

The Generic Binder is an optional component and is only used by applications that

need to process data in their original data format. This component is provided by

the CTC Library.

• Compiler: the Compiler component is the embedded implementation of the CTC

Compiler tool. It is used by devices to parse schemas and create schema contexts and

templates to populate the context table and template table. The Compiler component

is used by devices that need to populate the context table and template table at

runtime, for instance, CTC gateways that need to include a new registered schema.

This component should not be confused with the CTC Compiler. The CTC Compiler is

a standalone tool used at code compile time (as it will be described in the following

section) to generate the Context Table, Template Table and Binding Stubs components.

The Compiler component, on the other hand, is part of the CTC Library and used at

runtime to feed newly created schema contexts and templates to the context table

and template table.

The Compiler is provided by the CTC Library but it is an optional component as it is

only needed by devices that need to update the context table and template table at

runtime.

102 Chapter 6. CTC Library

• Context Table: the Context Table component holds all the schema contexts of the

application. This component also contains the schemas of the schema contexts.

The schemas are included so they can be retrieved by the Manager component.

However, the schemas can be stripped if another suitable storing place (such as an

external server) is provided.

The Context Table is a mandatory component but the inclusion of the schemas in

the Context Table is optional. The Context Table component is created by the CTC

Compiler.

• Template Table: the Template Table component contains the templates of all the

schema contexts stored in the Context Table component. These templates are mainly

used by the Generic Binder to transform data coded in CTC to their original data

format and vice-versa.

The Template Table is an optional component created by the CTC Compiler. It is only

needed if the Generic Binder component is also included as part of the CTC Library.

• Binding Stubs: the Binding Stubs component groups all the data model binding code

automatically generated by the CTC compiler. These code stubs are used to directly

map the data stream decoded by the Codifier component into native structures and

to transform native structures into coded streams through the Codifier component.

This results in a much more efficient processing of data because the parsing of the

original data format is completely avoided. Note that a device that uses the Binding

Stubs component does not need to include the Template Table and Generic Serializer

components.

The Binding Stubs component is an optional component created by the CTC Compiler.

It is only needed if the application uses native structures to represent data and does

not require an intermediate representation of the data in their original data format.

In practice, there are two basic CTC Library component combinations that will be used

in real applications: a component combination tailored to resource-constrained devices

and a full-featured CTC Library for applications that need to access data in their original

data format.

A resource-constrained device will directly use native structures to represent data

instead of using the original data format, which will be more verbose and more CPU

consuming to process. Thus, a resource-constrained device will only include the Codifier

and Manager core components. The CTC Compiler will be used to create the Context

Table and Binding Stubs components from the schemas of the data models used by the

device’s application. Note that the Template Table is not included while the Binding Stubs

component is used to efficiently process data as native structures. Additionally, if the

schemas of the data models are reachable from an external source (such as a dedicated

Section 6.2. CTC Compiler 103

Figure 6.2: CTC Library configuration for resource-constrained devices.

Figure 6.3: Full-featured CTC Library configuration.

server), they can be stripped from the Context Table component. This combination of

components is depicted in Figure 6.2.

On the other hand, devices that need to act as translators or, in any case, translate

from the CTC format to the original data format (and vice-versa), will use a full-featured

CTC Library. Examples of devices that will use a full-featured CTC Library include CTC

gateways or external applications that communicate with a CTC enabled network but

nevertheless need to process data in their original data format (for instance, for compati-

bility or legacy reasons). In this case, the CTC Librarywill include all the core components

(Codifier,Manager, Compiler and Generic Binder) as well as the Context Table and Template

Table components. Usually, the CTC Compiler is not used at compile time as the schemas

used by the devices may not be known in advance. Thus, Context Table and Template

Table components may be initially empty and they will be populated as the schemas are

discovered and registered. This component combination is shown in Figure 6.3.

6.2 CTC Compiler

The CTC Compiler is a complementary tool for the CTC Library. This compiler is used to

process data model schemas and create the corresponding schema contexts and templates

104 Chapter 6. CTC Library

Figure 6.4: Inputs and outputs of the CTC Compiler.

to be included in the Context Table and Template Table components. Additionally, the CTC

Compiler also generates the necessary C code for the data model bindings that is included

as part of the Binding Stubs component of the CTC Library. In summary, the CTC Compiler

generates all the data model(s) specific code needed by the CTC Library components.

Figure 6.4 shows a simplified model of the CTC Compiler’s inputs and outputs. All the

schemas that are to be supported by the application have to be included as inputs for the

CTC Compiler.

For each schema, two pairs of code and header files will be created. One of these file

pairs corresponds to the schema context of the schema (depicted as “schema#-sc.{c,h}”

in Figure 6.4) and the other pair contains the code binding stubs (depicted as “schema#-

stub.{c,h}” in Figure 6.4). The objective of the code binding stubs is twofold. In one hand,

it provides a managing wrapper on top of the C structures representing the elements of

the schema. On the other hand, it acts as an interface between the application and the

CTC Library.

Additionally, another two pairs of code and header files will be created for the Context

Table and Template Table components, respectively depicted as “context-table.{c,h}” and

“template-table.{c,h}” in Figure 6.4. The Context Table files contain the references to

the schema context files created from the input schemas, while the Template Table files

include all the templates of all those schema contexts.

All these files are included into the application and compiled together with the core

implementation of the CTC Library. Currently, the CTC Compiler supports two schema

types: XML Schemas and JSON Schemas.

The different steps followed by the CTC Compiler to process the schemas and create

the native code is shown in Figure 6.5. The CTC Compiler follows four steps to create the

native code from the schemas.

First, each schema is parsed separately and an internal representation of the data

model structure and the relationships between the elements is created. Next, the internal

Section 6.2. CTC Compiler 105

Figure 6.5: Internal process of the CTC Compiler.

representation is processed and a first version of the Context Table and Template Table

components is created.

Then, the Context Collapsing process is applied to the previously created Context Table

and Template Table components. As described in Section 4.1.3, this process removes

unnecessary and redundant eContexts, Elements and templates, resulting in a more

compact representation and faster processing. Once the definite version of the Context

Table and Template Table components is created, the binding C code for the schema is

generated. As explained before, two sets of files are created for every schema: one set

contains the schema context code (depicted as “schema-sc.{c,h}” in Figure 6.5) and the

other set (depicted as “schema-stub.{c,h}” in Figure 6.5) implements the code stubs to

access and process the schema data model as native C structures.

Finally, once all the schemas are processed, the code for the Context Table and Template

Table components is produced (depicted as “context-table.{c,h}” and “template-table.{c,h}”

in Figure 6.5)

6.2.1 CTC Compiler Example

In this section we show an example for the CTC Compiler. The same Notebook schema

example used in Section 4.1.4.1 will be used here. For convenience reasons, the Notebook

XML Schema is shown again here in Figure 6.6.

The schema context and templates produced after parsing, processing and collapsing

the schema are shown in Table 6.1 and Table 6.2, also copied from Section 4.1.4.1 for

convenience reasons.

The CTC Compiler converts the schema context shown in Table 6.1 to C code and creates

the C files “notebook-sc.c” and “notebook-sc.h”. In the same manner, the C code stubs to

access the notebook data model schema context is stored in the files “notebook-stub.c”

and “notebook-stub.h”.

Once the Notebook schema is processed and all the specific code files are created,

the CTC Compiler creates the files for the Context Table component and includes the

necessary references to the Notebook schema’s schema context. Finally, the CTC Compiler

106 Chapter 6. CTC Library

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">
<xs:element name="notebook">

<xs:complexType>
<xs:sequence maxOccurs="unbounded">

<xs:element name="note" type="Note"/>
</xs:sequence>
<xs:attribute ref="date"/>

</xs:complexType>
</xs:element>
<xs:complexType name="Note">

<xs:sequence>
<xs:element name="subject" type="xs:string"/>
<xs:element name="body" type="xs:string"/>

</xs:sequence>
<xs:attribute ref="date" use="required"/>
<xs:attribute name="category" type="xs:string"/>

</xs:complexType>
<xs:attribute name="date" type="xs:date"/>

</xs:schema>

Figure 6.6: Notebook XML Schema document.

Table 6.1: Schema context Notebook example, after Context Collapsing. The content of

the Children row represents the tuple (Template, Type, IsOptional, IsArray, Context). Cn
represents the eContext Id and tn the template identifier, x denotes complex, s string, c
constant, d date-time, t TRUE and f FALSE.

Attribute
Id

C1 (ROOT) C2 (CONTENT) C3 (NOTEBOOK) C4 (NOTE) C5 (NOTE-ATT)

MultipleParents f f f f f

Order fixed choice fixed fixed dynamic

Children
(t1,c,t,f,-)

(-,x,f,f,C2)

(t2,x,t,f,C3)

(t3,d,t,f,-)

(t3,d,t,f,-)

(t4,x,f,t,C4)

(-,x,f,f,C5)

(-,s,f,f,-)

(-,s,f,f,-)

(t3,d,f,f,-)

(t5,s,t,f,-)

Table 6.2: Notebook XML Schema’s templates, after Context Collapsing. Symbol ’@’ is used
to represent the place-holders’ positions

t1 <?xml version="1.0" encoding="UTF-8"?>

t2

<notebook @>

@

</notebook>

t3 date=@

t4

<note category=@ @>

<subject>@</subject>

<body>@</body>

</note>

t5 category=@

Section 6.3. Summary and Conclusions 107

� �
#include "notebook−sc.h"
#include "template−table.h"

const schema_context_s sc_ = {
"sc_", // uri

6, // element_number

&ec__root // element_contexts

};

static const element_s _children__root[] = {
/*0*/ {24, &template_table_notebook[0], NULL}, //_prolog, "<?xml version=\"1.0\" encoding←↩
=\"UTF−8\"?>"

/*1*/ {9, &template_table_notebook[1], &ec__body} //_body, "@"
};

const element_context_s ec__root = {
content_fixed, 2, _children__root

};

static const element_s _children__body[] = {
/*0*/ {89, &template_table_notebook[2], &ec_notebook}, //notebook, "<notebook@>@</←↩
notebook>"

/*1*/ {86, &template_table_notebook[3], NULL} //date, " date=\"@\""

};

const element_context_s ec__body = {
content_choice, 2, _children__body

};� �
Figure 6.7: Code snippet of the “notebook-sc.c” file.

includes the templates of the Notebook schema into the Template Table and creates the

files “template-table.c” and “template-table.h”.

A code fragment of each file is shown in the following figures. Figure 6.7 and Figure 6.8

respectively contain a code snippet of the schema context and Template Table source code

files for the Notebook XML Schema example (i.e. “notebook-sc.c” and “template-table.c”

files). Two different code fragments of the “notebook-stub.c” are shown in Figure 6.9 and

Figure 6.10, one of the C structure bindings and the other of the C function wrappers.

6.3 Summary and Conclusions

In this section we described the CTC Library and its main components. The CTC Library

provides an implementation of the CTC capabilities, including the management of the

context table and template table, the execution of the CTC Codification Algorithm and

the mechanisms of the CTC Communication Model. The CTC Library is embedded in

applications in order to access the CTC capabilities as well as encode and decode data

streams.

108 Chapter 6. CTC Library

� �
const template_s template_table_notebook[] = {
/*0*/ {42, "<?xml version=\"1.0\" encoding=\"UTF−8\"?>"},
/*1*/ {23, "<notebook@>@</notebook>"},

/*2*/ {11, " date=\"@\""},

/*3*/ {15, " category=\"@\""},

/*4*/ {48, "<note@><subject>@</subject><body>@</body></note>"},

};� �
Figure 6.8: Code snippet of the “template-table.c” file.

� �
struct Note {
char *subject;
char *body;
char *date;
char *category;

};

struct notebook {
int __notebook_sequence_size;
struct __notebook_sequence {
struct Note *note;

} *__notebook_sequence;
char *date;

};� �
Figure 6.9: Code snippet of the C structure binding of the Notebook XML Schema docu-

ment.

� �
Note* Note_create(void);

int Note_destroy(Note* Note);

int Note_decode(const char* in_stream, int is_size, Note* Note);

int Note_encode(const Note* Note, char* out_stream, int os_size);� �
Figure 6.10: Code snippet of the basic C function wrappers for the Note structure binding

of the Notebook XML Schema document.

Section 6.3. Summary and Conclusions 109

The CTC Library provides a modular approach that allows to tailor the library ca-

pabilities to the needs and resources of the devices. This is specially important for

resource-constrained devices in order to reduce the size of the library as much as possi-

ble (and make the most of the available memory) while implementing all the required

functionalities. As will be shown later in Section 7.1, the CTC Library has a very small

memory footprint and provides an efficient CTC implementation suitable for the most

resource-constrained devices.

The CTC Library is complemented by the CTC Compiler tool, easing and automating

the implementation of the context table, template table and data model bindings to native

code.

110 Chapter 6. CTC Library

7 | Evaluation

This chapter contains all the empirical tests performed during the development of the

work presented in this document. The purpose of these tests is to evaluate and verify the

performed work in terms of compression size, processing time and memory usage, as

well as the sustained hypothesis.

Section 7.1 contains the performance evaluation of a prototype implementation of

CTC, using XML as the specific data format. This section also includes a comparison of

CTC to the leading XML compressor: EXI. Section 7.2 extends the compression efficiency

evaluation of CTC for the JSON case. This section also contains a comparison of CTC

applied to XML and JSON documents Finally, Section 7.3 shows the CTC evaluation

within a typical REST architecture deployment and focused on the impact of CTC on the

transmission efficiency and communication load.

7.1 XML Compression Performance Evaluation

In this section, two performance tests are presented in order to compare CTC and EXI

implementations. The results are grouped into three sections, each one focused on one

performance metric: compression size, processing time and memory usage.

In the first test, a set of XML instances are compressed by using (a) EXIficient [16b],

an EXI implementation, and (b) a prototype implementation of the CTC approach. The

purpose of this test is to evaluate and compare the compression rate of both implementa-

tions.

In the second test, the compressed data streams obtained from the previous test

are decompressed to analyse the required processing time and memory usage. For the

decodification of the EXI streams, another EXI implementation more suited to resource-

constrained systems is used, Embeddable EXI Processor (EXIP) [KPED14]. EXIP is consid-

ered here because, to the author’s knowledge, it is the best suited to resource-constrained

systems. Other implementations targeted to resource-constrained systems, such as WS4D-

uEXI [WS4], only implement a subset of the EXI specification and/or are somewhat

outdated.

111

112 Chapter 7. Evaluation

The tests were performed in a CC2650 MCU [CC2] running at 48MHz. The test ap-

plications as well as the code under test were compiled with the optimizations turned

on.

The set of XML documents used in the tests is composed of the XML Schema instances

for Network Configuration Protocol (netconf) [net], Media Types for Sensor Markup

Language (SenML) [JSA+18], Data Types definitions for OPC-UA (OPC-UA Types) [fou]

and Zigbee Smart Energy Profile 2.0 (SEP2) [SEP], presented in the EXIP evaluation

paper [KPED14]. As in [KPED14], three different documents per XML Schema are consid-

ered. Additionally, the notebook XML document used as an example in the EXI Primer

web page [PPG14] is also included.

7.1.1 First comparison: compression size

For this comparison, each XML document was compressed using the EXIficient [16b] EXI

processor implementation and a prototype implementation of the CTC approach. Then

the resulting compressed streams were compared between them to evaluate the overall

and relative compression size efficiency.

In order to ensure fairness, the EXI compression options were carefully configured.

First, the EXI “schema strict” compression mode was selected. This mode takes into

account the XML Schema(s) that describe a XML document in order to achieve the most

compact compression. Additionally, all the EXI preserve options were set to FALSE, reduc-

ing the overhead that may be produced by compressing meta-data, such as comments.

Finally, the EXI schemaId option was set to the constant string “1”. This ensures that the

schemaId option is included in the EXI header but removes the arbitrary overhead of

long identifiers. Although, EXI schemaIds are rarely one character long and it benefits

EXI regarding compression size, this configuration sets a best case EXI benchmark for the

comparison.

For each XML document, four cases are considered: with/without EXI Profile parame-

ters and with/without including the EXI options in the EXI header. In CTC, the context

tables and template tables were created from the XML Schemas and the compression

was performed using the CTC approach. Results in terms of size in bytes and relative

compression are shown in Table 7.1 and Figure 7.1.

In Table 7.1, the Document column lists the XML document instances while the column

Size contains the respective original sizes in bytes. The EXIP case contains results for

schema strict mode with all preserve options to FALSE and schemaId to constant string

“1”. The EXIP-EP lists the results for the same configuration as the EXIP case plus the

EXI Profile option enabled. CTC and CTC-S cases respectively contain the results for the

CTC normal and strict modes. For each case in the table, two columns are included to

show the compressed size in bytes (B) and proportional compared to the original XML

Section 7.1. XML Compression Performance Evaluation 113

Table 7.1: XML document compression comparative in bytes.

Document Size
EXIP EXIP-EP CTC CTC-S

B % B % B % B %

notebook 297 (3+)59 20.9 (13+)59 24.2 62 20.9 61 20.5

netconf-01 395 (3+)21 6.1 (13+)21 8.6 21 5.3 21 5.3

netconf-02 660 (3+)51 8.2 (13+)51 9.7 50 7.6 50 7.6

netconf-03 423 (3+)3 1.4 (13+)3 1.7 3 0.7 3 0.7

SenML-01 448 (3+)97 22.3 (13+)98 24.8 138 30.8 130 29.0

SenML-02 219 (3+)61 29.2 (13+)61 33.8 64 29.2 60 27.4

SenML-03 173 (3+)45 27.7 (13+)45 33.5 46 26.6 45 26.0

SEP2-01 406 (3+)64 16.5 (13+)64 19.0 65 16.0 64 15.8

SEP2-02 92 (3+)19 23.9 (12+)19 33.7 19 20.7 19 20.7

SEP2-03 522 (3+)27 5.7 (13+)27 7.7 24 4.6 24 4.6

OPC-UA-01 936 (3+)61 6.8 (12+)62 7.9 73 7.8 73 7.8

OPC-UA-02 278 (3+)4 2.5 (12+)4 5.8 4 1.4 4 1.4

OPC-UA-03 300 (3+)4 2.5 (13+)4 5.7 4 1.3 4 1.3

document instance (%). In both EXIP and EXIP-EP cases, numbers inside brackets indicate

the extra overhead in bytes due to EXI options embedded in the EXI header.

The cases depicted in Figure 7.1 are the same ones included in Table 7.1. Stacked bars

indicate the extra overhead due to EXI options embedded in the EXI header.

For instance, in the “notebook” row of Table 7.1, the original XML document has a size

of 297 bytes and, for the EXIP case, EXI compresses it to 59 bytes plus a header overhead

of 3 bytes, achieving a relative size of 20.9%. For the EXIP-EP case, the compressed size is

59 bytes plus a header overhead of 13 bytes which result in a relative size of 24.2%. In

the CTC case, the achieved compression size is equal to the EXIP case, i.e., 62 bytes but

the CTC-S case has slightly better results with a compressed size of 61 bytes and a relative

size of 20.5%.

Results show that CTC has a very similar compression size performance compared

to EXI and an average better performance if we take into account the EXI header. The

overhead produced by the EXI header could be overcome by providing the EXI options

out of band but it would imply a loss of flexibility, which is one of the strong points of EXI.

However, it may be necessary in order to reduce communication bandwidth, specially

for the EXI Profile case. On the other hand, it is interesting to note that in the case of the

SenML-01 document, EXI shows better compression results. The reason lies in the fact

that, in its current version, CTC is not able to compress occurrences of strings outside

the schema, while EXI does not differentiate between strings belonging to data or to the

schema vocabulary. CTC sacrifices this capability for the benefit of simplicity and still

achieves similar or better results than EXI, as can be seen in Table 7.1.

114 Chapter 7. Evaluation

Figure 7.1: XML document compression comparative in bytes.

Section 7.1. XML Compression Performance Evaluation 115

7.1.2 Second comparison: processing time

In the second test, EXI streams produced in the previous compression test (described in

Section 7.1.1) were decoded using the EXIP v5.4 [16a] EXI implementation and a prototype

implementation of the CTC approach. The time needed to process each coded stream was

recorded in order to evaluate the overall and relative processing time efficiency.

In the EXIP case, the EXI grammars were statically created from the set of XML test

schemas using the tools provided by EXIP and they were included in the EXIP test code.

These EXI grammars were then used at runtime by EXIP to perform the decoding of the

EXI streams. In the case of the CTC approach, the context tables and template tables were

created using the CTC Compiler and added to the CTC test code as described in Section 6.2.

A prototype implementation of CTC was used to decode the CTC streams.

100 test runs were performed for each EXI and CTC compressed stream with no

additional system load. As in the previous test, we considered four EXI cases for each

XML instance document decoding: with/without EXI Profile parameters and with/without

including the EXI options in the EXI header. For the EXI Profile cases, EXI Profile options

had to be stripped from the EXI header of the EXI compressed streams because they are

not supported by EXIP. This means that the results shown for the EXI Profile cases are

actually slightly better than they would be in a full featured implementation, benefiting

EXI in the comparison of this section.. Nevertheless, these results are used as a benchmark

for the processing time evaluation as we consider them as a worst case scenario for CTC.

Table 7.2 and Figure 7.2 show the test results. The EXIP column list the results for EXIP

configured in schema strict mode, all preserve options to FALSE and schemaId to constant

string “1”. The EXIP-H contains the results for the same configuration as the EXIP column

but with the EXI options embedded in the EXI header. The EXIP-EP column shows the

results for the same configuration as EXIP case but also including the EXI Profile option.

The results of the EXIP-EP-H column have the same configuration as the EXIP-EP column

but with the EXI options embedded in the EXI header, excluding EXI Profile parameters

as explained in the previous paragraph. The CTC column shows the processing time for

the CTC case in normal and strict modes. Only one column is presented for both modes

because there is no notable difference between the results yield by CTC in normal and

strict modes. The without-H column contains the average processing time improvement

(%) in the CTC case compared to the EXIP cases with EXI options not included in the

EXI header, i.e., EXIP and EXIP-EP. The with-H column lists the average processing time

improvement (%) compared to the EXIP cases with the EXI options embedded in the EXI

header, i.e., EXIP-H and EXIP-EP-H.

For example, the “netconf-01” row of Table 7.2 shows that EXIP needs 290µs, 531µs,

314µs and 629µs to process the “netconf-01.xml” XML document respectively for the EXIP,

EXIP-H, EXIP-EP and EXIP-EP-H test configurations. In contrast, CTC only requires 152µs

116 Chapter 7. Evaluation

Table 7.2: XML document decoding time comparative. Numbers are in microseconds.

Document
EXIP EXIP-H EXIP-EP EXIP-EP-H CTC Improvement (%)

Time (µs) without-H with-H

notebook 684 929 574 808 625 0.6 28.0

netconf-01 290 531 314 629 152 49.6 73.8

netconf-02 814 1049 946 1251 518 41.1 54.9

netconf-03 286 518 320 621 183 39.6 67.8

SenML-01 1576 1817 1409 1635 1493 0.0 13.5

SenML-02 726 966 615 840 618 7.8 31.5

SenML-03 465 705 591 511 377 28.6 38.0

SEP2-01 1186 1429 770 1004 910 6.9 25.2

SEP2-02 553 787 213 437 230 39.9 62.4

SEP2-03 1210 1446 860 1079 763 26.3 39.5

OPC-UA-01 1804 1935 1251 1385 788 48.4 52.5

OPC-UA-02 500 642 98 244 81 72.9 81.7

OPC-UA-03 540 684 142 285 101 70.4 79.1

Figure 7.2: XML document decoding time comparative.

Section 7.1. XML Compression Performance Evaluation 117

which implies a processing time improvement on average of 49.6% compared to the EXIP

and EXIP-EP cases, and of 73.8% compared to the EXIP-H and EXIP-EP-H cases.

Results from the tests show that CTC performed generally better in terms of processing

time compared to any EXIP case: an average of 36.6% time reduction and up to 87.4%

time reduction. This is a direct result from using the simpler CTC approach and structure

of the context tables and template tables compared to the EXI specification and EXIP

implementation. This difference in processing time will be more pronounced in devices

with slower CPUs such as the popular TelosB [Tel] , which runs at 8MHz. For those cases,

times shown in Table 7.2 will be considerably incremented. Reducing processing time is

key in resource-constrained devices in order to reduce the energy consumption as much

as possible and make the most of the available energy.

7.1.3 Third comparison: memory usage

In the last comparison, memory usage of the EXIP library and CTC prototype implementa-

tions were compared in terms of required code and runtime data memories (i.e. code

size, data, heap and stack consumption).

The EXIP library supports a dedicated compilation configuration for EXI Profile. In

this configuration, the EXIP library code and EXI grammars are more compact and the

RAM usage is notably reduced. Both compilation configurations, normal and EXI Profile,

were taken into account in the comparison. For CTC, the memory consumption for the

context tables and template tables are separately considered. Measures were taken from

the test applications used in the second test (described in Section 7.1.2). Results are listed

in Table 7.3 and Table 7.4.

Table 7.3 shows the flash code memory used by the EXIP and CTC implementations.

Memory usage is listed for the EXI and CTC base libraries in the Library row, and for each

XML schema in the rows labelled as “*.xsd”. The EXIP column contains the flash memory

usage in bytes of the EXIP library in normal mode while column EXIP-EP lists the results

in the EXI Profile configuration. Two columns are shown for the CTC case. The Core

column contains the memory required when the template table is not included in the

application code while the Template column indicates the additional memory space in

bytes needed by the template table in case it is included. Finally, the Comparison column

shows the relative size in % of the CTC case compared to the EXIP and EXIP-EP cases,

without and with the template table included in the application code.

Figure 7.3 shows the Flash memory usage listed in Table 7.3. Stacked bars in the CTC

columns indicate the extra overhead of the template table.

For example, in the “netconf.xsd” row, the EXIP library requires 8226 bytes to include

the schema information (i.e., the EXI grammars) in the normal mode, while it needs 8979

bytes with the EXI Profile capabilities enabled. The CTC implementation uses 1224 bytes

118 Chapter 7. Evaluation

Table 7.3: Flash code memory usage comparative in bytes.

Component EXIP EXIP-EP
CTC Comparison (%)

Core Template EXIP EXIP-EP

Library 21493 21794 1722 0 8.0 8.0 7.9 7.9

notebook.xsd 4786 5242 208 196 4.3 8.4 4.0 7.7

netconf.xsd 8226 8979 1224 1812 14.9 36.9 13.6 33.8

SenML.xsd 5550 6064 320 300 5.8 11.2 5.3 10.2

SEP2.xsd 85776 94500 25560 27188 29.8 61.5 27.0 55.8

OPC-UA.xsd 133528 130823 21172 42396 15.9 47.6 16.2 48.6

Figure 7.3: Flash code memory usage comparative in bytes.

for the same schema and an additional 1812 bytes in case the template table is included.

For the “netconf.xsd” schema, the CTC implementation consumes the 36.9% memory size

of the EXIP case, and the 14.9% if the template table is not included.

Table 7.4 shows the consumption of data memory (RAM). The rows and columns have

the samemeaning as in Table 7.3, with the notable exception that the used memory refers

to data memory rather than code memory. Apart from the data memory usage shown

in Table 7.4, the maximum heap and stack used for the EXIP case is 1734 and 904 bytes

respectively. For the EXIP-EP case, maximum heap and stack usage amounts to 1294 and

792 bytes respectively. Finally, CTC uses no heap and the maximum stack size used for

the tests is 692 bytes.

Results show that CTC requires significant less code and data memory than EXIP. In

the case of the base library, CTC takes 8.0% the size of the EXIP implementation and the

Section 7.2. JSON Compression Evaluation 119

Table 7.4: Data memory (RAM) usage comparative in bytes.

Component EXIP EXIP-EP CTC

Library 292 292 12

notebook.xsd 1196 252 0

netconf.xsd 1748 292 0

SenML.xsd 1348 292 0

SEP2.xsd 11860 292 0

OPC-UA.xsd 13765 292 0

7.9% of the EXIP EXI Profile implementation. For the XML test schemas, the comparative

size ranges from 7.7% to 61.5%. As has been explained in Chapter 6, the template table

can be stripped from devices that do not make use of it, thus, reducing even further CTC

memory requirements for the XML test schemas. In this case, the comparative memory

usage will be reduced to 4.0% to 29.8%.

Additionally, CTC uses nearly no data RAM while EXIP uses 252 bytes in its best case

and up to 13765 bytes in the worst one. The maximum heap used for the EXIP case is

1734 and 1294 bytes for the EXIP-EP case. In contrast, CTC uses no heap memory at all.

Devices need to share the memory between multiple functionalities (application,

sensor drivers, communication stacks, etc.) and will likely need to accommodate more

than one schema. Thus, it is of most importance to assign memory resources as efficiently

as possible and make the most of the available memory. Although the CTC Library used in

these tests is still a prototype, results show that CTCmemory requirements aremuchmore

suited to resource-constrained devices than EXI implementations due to the significantly

smaller memory footprint and runtime usage requirements. On the one hand, the CTC

core library requires 92% less memory than the EXIP library configured for EXI Profile,

and the schema information is reduced to a 4.0% in the best case and to a 61.5% in the

worst. On the other hand, CTC core library uses no RAM, no heap and a maximum stack

size of 692 bytes, while EXIP uses 252 RAM bytes, 1294 heap bytes and 792 stack size in its

best case.

7.2 JSON Compression Evaluation

In this section the compression efficiency of CTC for JSON document instances is compared

against EXI4JSON [PB18] and CBOR [BH13]. A set of JSON instances are compressed using

(a) a prototype implementation of CTC, (b) EXIficient [16b], an EXI implementation, and

(c) CBOR diagnostic utilities [18b], a command line set of utilities provided by the CBOR

community.

This section also includes a comparison of the efficiency in terms of size for two

different data formats, XML and JSON, and their respective CTC codification.

120 Chapter 7. Evaluation

The set of JSON instance documents used in the tests is composed of a series of JSON

Schema instances for Media Types for Sensor Measurement Lists (SenML) [JSA+18],

the JSON implementation of OGC Observations and Measurements (O&M) specifica-

tion [SJDT15] and the GeoJSON Format [BDD+16]. For the GeoJSON case, the schema used

is the geometry schema defined within the JSON OGC O&M specification [SJDT15].

Three different instance documents per JSON Schema are considered. For the SenML

case, the three examples included within sections 5.1.2 and 5.1.3 of the SenML specifi-

cation [JSA+18] are used. In the O&M case, the three instances used are the examples

included in the JSON OGC O&M specification [SJDT15] within sections 7.6 (Specimen

data) and 7.8 (Sampling feature collection) as well as the first example of section 7.9

(Observation data). Finally, the GeoJSON instance used are taken from the examples

included in the GeoJSON Format [BDD+16] specification in sections A.2 (LineStrings), A.3

(Polygons with no holes) and A.6 (MultiPolygons).

For this comparison, the JSON instance documents were first compressed using the

EXIficient [16b] EXI processor implementation and the CBOR diagnostic utilities [18b]. EX-

Ificient includes a mode to compress JSON schemas using the EXI4JSON [PB18] approach.

This mode automatically sets the EXI options to the ones specified in the EXI4JSON rec-

ommendation: the EXI “schema strict” compression mode is set to TRUE and the EXI

schemaId option is set to the constant string “exi4json”. The alignment option is set to

“bit-packed”. On the other hand, CBOR diagnostic utilities includes a tool to automatically

convert from JSON instances to CBOR. No specific label or tag mappings have been used

in the codification. Finally, the corresponding CTC schema contexts and template tables

were created from the JSON Schemas and the compression was performed using the CTC

approach.

Results in terms of size in bytes are shown in Table 7.5. The Size column lists the

original size of the respective JSON instance. The table shows the results for the EXI4JSON,

CBOR, CTC in normal mode and CTC in strict mode (column CTC-S) in their corresponding

columns. Each case includes two (sub-)columns in order to show the absolute size in

bytes (column B) and proportional to the original size (column%).

For example, the original size of the “GeoJSON-01” JSON instance is 78 bytes. EXI4JSON

is able to compress the “GeoJSON-01” instance to 47 bytes resulting in a 60.3% of the

original size while CBOR achieves a compression to 44 bytes for a 56.4% size compared

to the original size. In contrast, the size of the CTC compressed data is 13 and 12 bytes

respectively for the CTC normal and strict modes, with a relative size of 16.7% and 15.4%.

Results show that CTC outperforms both EXI4JSON and CBOR codifications. EXI4JSON

and CBOR achieve an average relative size of 69.8% and 73.6% respectively while CTC

shows an average relative size of 39.2% (38.2% in the CTC Schema Strictmode). EXI4JSON

does not take advantage of the JSON Schema directly as it depends on a mapping to a

Section 7.2. JSON Compression Evaluation 121

Table 7.5: JSON instance document compression comparative in bytes (B) and proportion

(%).

Document Size
EXI4JSON CBOR CTC CTC-S

B % B % B % B %

SenML-01 103 83 80.6 86 83.5 61 59.2 60 58.3

SenML-02 291 172 59.1 223 76.6 142 48.8 140 48.1

SenML-03 406 233 57.4 287 70.7 184 45.3 185 45.6

GeoJSON-01 78 47 60.3 44 56.4 13 16.7 12 15.4

GeoJSON-02 116 63 54.3 63 54.3 29 25.0 27 23.3

GeoJSON-03 259 136 52.5 202 78.0 86 33.2 83 32.0

O&M-01 520 453 87.1 449 86.3 270 51.9 264 50.8

O&M-02 335 294 87.8 274 81.8 142 42.4 137 40.9

O&M-03 486 454 93.4 446 91.8 274 56.4 269 55.3

Table 7.6: senML instances’ size comparison in bytes for XML, JSON and CTC cases.

Document XML JSON
CTC CTC-S

CTC-X CTC-J CTC-X CTC-J

SenML-01 171 103 61 61 60 60

SenML-02 414 291 143 143 140 141

SenML-03 605 406 184 184 185 185

SenML-04 118 56 39 39 39 39

dedicated XML Schema, as explained in Section 3.2.1.4. Although the resulting compres-

sion is undoubtedly better than the raw JSON, it is outperformed by CTC, which takes

advantage of the JSON schema knowledge for the compression. On the other hand, CBOR

does not take into account schema information and suffers from the overhead of in-lining

the data types into the coded stream.

7.2.1 XML, JSON and CTC comparison

In this section we will compare the size of data formatted in two different data formats,

XML and JSON, as well as the resulting CTC compression efficiency. The selected data

model for this evaluation is JSON Schema instances for Media Types for Sensor Measure-

ment Lists (SenML) [JSA+18]. The SenML specification describes several examples in

different data formats and encodings, including XML and JSON. The example documents

used in this evaluation are the four examples found within sections 5.1.1 (SenML-04),

5.1.2 (SenML-01 and SenML-02) and 5.1.3 (SenML-03) of the SenML specification [JSA+18].

Table 7.6 summarizes the original and compressed sizes of the selected instance

documents. The XML column contains the size of the data in XML format and the JSON

column the size of the data in JSON format. The CTC and CTC-S columns show the

compressed size in bytes for CTC in normal and strict modes, respectively for the XML

(columns CTC-X) and JSON (columns CTC-J) cases.

As can be seen in Table 7.6, JSON format is consistently more compact than XML.

This is due to the less verbose nature of JSON that uses less grammar constructs and

122 Chapter 7. Evaluation

Constrained

Devices Network

Internet

NodeA

NodeB

CTC

gateway

Figure 7.4: REST validation deployment.

string tokens to describe relationships between items of the structure. Nevertheless,

CTC codification yields similar results for both XML and JSON cases. This is because CTC

mapping captures the core structure of the datamodel and segregates data format specific

artefacts. The codified stream only includes the minimum needed information in order to

properly decode and parse the stream while the data format specific information (mainly

stored in the template table) is only used if the original format must be reconstructed.

7.3 CTC Impact on Communication Performance

In this section we will show the CTC performance within a REST communication architec-

ture as well as evaluate the impact on the communication load. We consider the following

deployment (shown in Figure 7.4): two resource-constrained devices (NodeA and NodeB)

are deployed in a local network and are connected to an external network through a

gateway. For all the tests performed in this evaluation, the roles of the nodes are the

same.

NodeA produces data periodically and NodeB gathers it at a regular time rate. Both

devices use the CoAP protocol to implement the REST interface. CoAP Block-Wise Trans-

fers [BS16] are used to send fragmented data streams that do not fit into a single IP

Frame.

Data are accessible on NodeA through the path “/out/data”. CoAP requests and sub-

scriptions are allowed on that path. The layout of NodeA’s CoAP API is shown in Fig-

ure 7.5a. On the other hand, NodeB consumes the data produced by NodeA. To do so,

NodeB subscribes to the path “/out/data” provided by the CoAP API of NodeA. After the

subscription, NodeA periodically sends data to NodeB. The subscription message is not

taken into account in the tests results and evaluation. The layout of NodeB’s CoAP API is

shown in Figure 7.5b.

The role of the gateway is to act as an interface between the local network and the

external network, as well as host the CTC schema repository. Additionally, the gateway has

Section 7.3. CTC Impact on Communication Performance 123

� �
/.well−known/core
/sch/schema1
/out/data� �

(a) NodeA CoAP API layout.

� �
/.well−known/core
/sch/schema1� �

(b) NodeB CoAP API layout.

Figure 7.5: Layouts of NodeA and NodeB CoAP APIs.

to act as a CTC Gateway i.e., transform between CTC and the original format, whenever

required.

The purpose of this test is to evaluate the impact on the communication load of using

CTC and CTC communication model mechanisms. In order to make a fair comparison, we

also take into account the overhead produced by the CTC discovery, schema register and

schema download processes. We consider two cases: (a) data formatted in the original

data format and (b) compressed with CTC. For the second case, the CTC communication

model is used.

A set of three different data model schemas and instances are used in the evaluation:

OPC-UA, SEP2 and senML. Each of these data models represents a different benchmark

that can be found in a realistic scenario. On the one hand, senML instance and schema

are relatively compact and set a reasonable benchmark for a lower bound. On the other

hand, the OPC-UA instance and schema are much more verbose and set a good example

of a heavy data model. Finally, SEP2 schema is very heavy but the SEP2 instance is very

compact. This last example represents a reasonable worst case for the CTC validation,

because there is a big overhead due to the schema size but CTC compression ratio is low

due to the small size and compactness of the instance.

The specific data model instances used in the tests are shown in Figure 7.6, Figure 7.7

and Figure 7.8. The respective schemas are available in [fou], [SEP] and [JSA+18].

These three data model instance and schema sets allow us to set reasonable low and

high benchmark bounds for the evaluation in order to compare the impact of the data

model instance and schema size in the overall performance. Thus, for each of the data

formats (original and CTC), we run three sets of tests, one for each data model.

The discovery process needed to discover the location of the schema directory is taken

into account in the evaluation. However, no other discovery steps (such as the discovery

of the CoAP gateway) are considered in order to remove any overhead not specifically

related to CTC. Thus, the parameters usually configured at runtime through the CoAP

discovery process are hard-coded in the nodes. For example, the resource paths used by

the test applications (i.e., used by NodeB to request data to NodeA) are statically assigned

at programming time.

124 Chapter 7. Evaluation

<?xml version="1.0" encoding="UTF-8"?>
<tns:Node xmlns:tns="http://opcfoundation.org/UA/2008/02/Types.xsd" ←↩

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ←↩
xsi:schemaLocation="http://opcfoundation.org/UA/2008/02/Types.xsd ←↩
../Schemas/OPC-UA-Types.xsd " xsi:type="tns:Node">
<tns:NodeId>

<tns:Identifier>tns:Identifier</tns:Identifier>
</tns:NodeId>
<tns:NodeClass>Unspecified_0</tns:NodeClass>
<tns:BrowseName>

<tns:NamespaceIndex>0</tns:NamespaceIndex>
<tns:Name>tns:Name</tns:Name>

</tns:BrowseName>
<tns:DisplayName>

<tns:Locale>tns:Locale</tns:Locale>
<tns:Text>tns:Text</tns:Text>

</tns:DisplayName>
<tns:Description>

<tns:Locale>tns:Locale</tns:Locale>
<tns:Text>tns:Text</tns:Text>

</tns:Description>
<tns:WriteMask>0</tns:WriteMask>
<tns:UserWriteMask>0</tns:UserWriteMask>
<tns:References>

<tns:ReferenceNode/>
</tns:References>

</tns:Node>

Figure 7.6: OPC-UA data model instance.

<Reading href="/upt/0/mr/4/r" xmlns="http://zigbee.org/sep">
<value>14</value>

</Reading>

Figure 7.7: SEP2 data model instance.

<?xml version="1.0" encoding="UTF-8"?>
<senml xmlns="urn:ietf:params:xml:ns:senml" bn="urn:dev:ow:10e2073a01080063" >

<e n="voltage" t="0" v="120.1" u="V" />
<e n="current" t="0" v="1.2" u="A" />

</senml>

Figure 7.8: SenML data model instance.

Section 7.3. CTC Impact on Communication Performance 125

Resource-constrained Devices

Application

CTC lib

Erbium CoAP

UDP + uIP (sicslowpan)

nullmac

ContikiOS 3.0

CTC Gateway

Application

CTC lib

libcoap

UDP/IP

Linux

Figure 7.9: Software architecture of the resource-constrained devices and CTC Gateway.

The simplified software architecture, including the communication stack, of the two

resource-constrained devices and the gateway is shown in Figure 7.9. As can be seen,

all the resource constrained devices use Contiki OS 3.0 [DGV04, 18c] as an operating

system and the communication stack is composed by Contiki’s nullmac, uIP and CoAP

components. The platform used is Zolertia’s Z1 [Lig16] and the tests were run within

the Cooja [ÖDE+06, 16c] simulator. The CTC gateway is implemented on a PC running

an Ubuntu 14.04 distribution. The CTC gateway and schema repository applications

are implemented on top of the libCoAPv4.1 [Ber17] CoAP library and is connected to

the simulated network through a virtual socket provided by Cooja. All the nodes use

a prototype implementation of the CTC Library. The specific binding of the schema

repository approach to CoAP is explained in more detail in Section 5.3.

7.3.1 Message Fragmentation

Contiki allows the configuration of the maximum IP frame size in order to fit it to the

available resources on the device. The selection of this configuration parameter also

bounds the maximum allowed size of the CoAP message and CoAP block size. The CoAP

block size indicates the maximum data payload that can be sent in a single CoAP message.

These two parameters greatly influence the results of this evaluation.

On one hand, it is always desirable to fit a data unit in the payload of a single message

frame (Case a) in Figure 7.10) in order to avoid fragmentation. In case the data is

larger than the allowed payload, it has to be split into multiple payload fragments and a

corresponding IP and COAP headers is attached to each of them to compose an IP frame,

as can be seen in Case b) in Figure 7.10. In turn, if the IP frames do not fit within a

MAC frame payload, each of them has to be further divided into smaller fragments with

their own MAC-header, as shown in Case c) in Figure 7.10. Fragmentation increases the

126 Chapter 7. Evaluation

a)

b)

c)

MAC-Header IP-Header CoAP-Header Payload

Data Unit

IP-Headeri CoAP-Headeri Payload-Fragmenti

MAC-Headerj IP-Fragmentj

Figure 7.10: Message fragmentation.

a)

b)

c)

N Bytes

Max. 180/370 Bytes

Max. 128 Bytes

Data Unit

IP-Headeri CoAP-Headeri Payload-Fragmenti (Max. 64/256 bytes)

MAC-Headerj IP-Fragmentj

Figure 7.11: Message structure fo the evaluation.

number of total bytes sent because the headers of the underlying communication layers

have to be re-sent together with the fragmented payloads.

Increasing the IP frame size, reduces IP level fragmentation and the overhead of

additional IP headers. However, a buffer has to be keep in RAM in order to fit a whole IP

frame. Thus, there is a physical limit to the size of the IP frame, which tends to be rather

low in resource-constrained devices. For instance, for the Z1 platform [Lig16] (8KB RAM

and 92KB Flash) with Contiki case, the transmission buffer tends to be in the order of

140 to 256 bytes and, for the test applications used in this evaluation (which are fairly

simple), using a value larger than 400 bytes yields a memory over-usage error.

Nevertheless, using a low IP frame size would increase the number of messages

needed to send a data unit, which may unfairly benefit the CTC case. In this evaluation, a

data unit corresponds to the document instances used in the tests which will vary in size,

as depicted in Case a) in Figure 7.11.

For the evaluation tests performed in this section, we used two message frame con-

figurations (shown in Case b) in Figure 7.11). In the first configuration, the IP frame

size selected is 180 bytes, enough to fit a CoAP block size of 64 bytes. In the second

configuration, the selected IP Frame size is 370 bytes and the CoAP block size is 256

bytes. These two configurations will show the relative impact of CTC in two realistic data

fragmentation situations while keeping a reasonable (yet somewhat optimistic for the

second configuration) use of available RAM. In all cases, the maximum number of bytes

that fit in a single MAC layer message is 128 (Case c) in Figure 7.10).

Section 7.3. CTC Impact on Communication Performance 127

� �
</.well−known/core>;ct=40,
</sd>;rt="core.sd";ct=40,
</sd−sch>;rt="core.sd−lookup−sch";ct=40,
</sd−sid>;rt="core.sd−lookup−sid";ct=40� �

Figure 7.12: Link format information returned by the schema repository.

� �
</sch/schema>;ct=41;rt="schema";uid=http://opcfoundation.org/UA/2008/02/Types.xsd;sz←↩

=170892;hash="92CE25B721D41DDCB1CA021292D552A1",
</schema1/schema>;ct=41;rt="schema";uid=http://opcfoundation.org/UA/2008/02/Types.xsd;←↩

anchor="http://example.com";sz=170892;hash="92CE25B721D41DDCB1CA021292D552A1"� �
Figure 7.13: Schema link register for the OPC-UA case.

7.3.2 Overhead of the schema register and download processes

In a first step, we separately evaluate the communication resources needed in terms

of sent messages for the schema registration and schema download processes. This

information will be used latter to evaluate the impact of CTC in the communication

performance.

The registration process is performed as explained in Section 5.2.2 and the specific

binding to CoAP is described in Section 5.3. Basically, it is composed of two steps: a) the

discovery of the schema repository resources and b) the actual registration of the schema

link register. The resource links returned by the schema repository discovery are shown

in Figure 7.12. The schema link registers used for the registration of the OPC-UA, SEP2

and senML data models are shown in Figure 7.13, Figure 7.14 and Figure 7.15.

Table 7.7 summarizes the message quantity needed to perform the registration and

schema download processes of each of the data models. The size column of the “register”

rows contain the size in bytes of the resource links returned in the discovery phase, as

shown in Figure 7.12, plus the size of the respective schema link registers, i.e., Figure 7.13,

Figure 7.14 and Figure 7.15. For the “schema” rows, the size column shows the size in

bytes of the respective schema. The message quantity for each CoAP block size configura-

tion, i.e., 64 and 256, is respectively shown in columns Block:64 and Block:256, together

� �
</sch/schema>;ct=41;rt="schema";uid=http://zigbee.org/sep;sz=287778;hash="←↩

CEBC11A7EF98E589D624D47B3B4E3935",

</schema1/schema>;ct=41;rt="schema";uid=http://zigbee.org/sep;anchor="http://example.←↩
com";sz=287778;hash="CEBC11A7EF98E589D624D47B3B4E3935"� �

Figure 7.14: Schema link register for the SEP2 case.

128 Chapter 7. Evaluation

� �
</sch/schema>;ct=41;rt="schema";uid=urn:ietf:params:xml:ns:senml;sz=965;hash="27←↩

F18B40A6037DC7CBA8CE00A3F4DD3A",

</schema1/schema>;ct=41;rt="schema";uid=urn:ietf:params:xml:ns:senml;anchor="http://←↩
example.com";sz=965;hash="27F18B40A6037DC7CBA8CE00A3F4DD3A"� �

Figure 7.15: Schema link register for the senML case.

Table 7.7: Transmitted messages (max. 128 bytes) and raw bytes quantity for the reg-

istration and schema download processes for two cases: 64 and 256 bytes per CoAP

block.

Process Size
Messages / Bytes

Block:64 Block:256

OPC-UA register 130+295 18 / 1527 13 / 1267

OPC-UA schema 170892 5342 / 421932 2671 / 27370

SEP2 register 130+247 16 / 1355 11 / 1095

SEP2 schema 287778 8994 / 711264 4498 / 460934

senML register 130+255 16 / 1363 11 / 1103

senML schema 936 30 / 2314 15 / 1514

with the total number of bytes (separated by a “/”).

For instance, in the case of the “OPC-UA register” process, the size of the resource

links is 130 bytes and the size of the schema link registers is 295 bytes. With a CoAP block

configuration of 64 bytes, 18 messages are needed to transmit the data for a total of 1527

bytes including headers’ overheads. In the case of the CoAP block size configuration of

256 bytes, the message quantity is reduced to 13 and the number of transmitted bytes

to 1267. Note that, for all cases, the maximum number of bytes per message is 128 as

explained in the introduction to Section 7.3.

As can be seen, when the size of the CoAP block is 64, the number of total bytes

transmitted is higher. This is a direct result of the overhead produced by fragmentation

and the need to send additional IP headers.

7.3.3 Direct impact on transmitted message quantity

In the second evaluation we compare the communication resources needed, in terms of

sent messages of a maximum of 128 bytes, to transmit a data unit in the original data

format and using CTC. As in the previous section (Section 7.3.2), we considered two CoAP

block sizes: 64 and 256. The data model instances used in the tests were previously shown

in this section, in Figure 7.6, Figure 7.7 and Figure 7.8.

Table 7.8 contains the message quantity (and bytes) sent in order to transmit a data

model instance in the original and CTC formats. The Size column shows the size in bytes

of the data unit in the original data format (column Orig.), coded in CTC (column CTC)

and proportional size between CTC and original formats. The message quantity used to

Section 7.3. CTC Impact on Communication Performance 129

Table 7.8: Messages per data unit transmission.

Instance

Size Messages / Bytes

Orig. CTC %
Block:64 Block:256

Orig. CTC % Orig. CTC %

OPC-UA 936 73 7.8 26 / 2038 4 / 291 15 / 14 14 / 1408 2 / 201 14 / 14

SEP2 92 19 20.7 4 / 305 2 / 147 50 / 48 3 / 247 2 / 147 67 / 60

senML 219 60 27.4 8 / 597 2 / 188 25 / 31 4 / 387 2 / 188 50 / 49

transmit each data model instance is shown for the two CoAP block size configuration

cases, i.e., 64 and 256 bytes. The results for these configurations are respectively con-

tained within columns Block:64 and Block:256, with the total number of transmitted bytes

separated by a “/”. For each block configuration, Table 7.8 includes the message and byte

quantities for the original format (column Orig.), coded in CTC (column CTC) and relative

between the original and CTC format (column%).

For example, the XML document instance “OPC-UA” has an original size of 936 bytes

that is reduced to 73 bytes after being compressed with CTC. In the CoAP block configura-

tion of 64 bytes, 26 messages or 2038 bytes need to be transmitted to deliver the original

uncompressed document while the compressed data only requires 4 messages or 291

bytes to be transmitted, which amounts to the 15% of messages of the original document.

In the case of the CoAP block configuration of 256 bytes, 14 messages or 1408 bytes are

needed to transmit the original document. In contrast, 2 messages or 201 bytes suffice

to send the compressed document which is the 14% of messages needed to transmit the

original document.

As can be seen, the number of required message transmissions is significantly reduced

for the CTC case. For a CoAP block size of 64, the number of messages sent in the case

of CTC compared to the original data format ranges from 15% to 50%. When the CoAP

block size is 256, the number of messages sent ranges from 14% to 67%. The results

show that, regardless of data fragmentation, using CTC yields significant better use of the

communication channels due to the reduction in transmitted messages and bytes for the

same data unit.

7.3.4 Long-term impact on transmitted message quantity

For the third evaluation we compare the message quantity needed to transmit increasing

numbers of data units. The purpose of this test is to show the benefits of using CTC for a

number of data unit transmissions, even taking into account the overhead produced by

the schema register and schema download processes. We also discuss here the benefits

and drawbacks of storing the schema in the node, depending on the schema size.

As has been explained before, two nodes are deployed in a local network connected

to a gateway. NodeA produces a new data unit periodically and sends it to NodeB. All

130 Chapter 7. Evaluation

NodeA NodeB

.

.

.

<GET>

<data>

<GET>

<data>

(a) Original Format

NodeA NodeB Gateway

<register>

<schema download>

<register>

<GET>

<data>

<GET>

<data>

.

.

.

(b) CTC Format

Figure 7.16: Logical sequence of the schema register, schema download and data trans-

mission processes followed in the two cases: a) the original format and b) the CTC format.

the elements have a direct communication link and no multi-hop communications are

considered. In the cases where data is compressed with CTC, the schema register process

takes place before any data transmission is performed. Additionally, for the CTC case

where the schemas are downloaded directly from the node, the download process takes

place just after the schema register process, before any data transmission takes place.

Figure 7.16 shows the logical sequence followed in the original data format (Figure 7.16a)

and CTC (Figure 7.16b) cases.

Table 7.9 presents the accumulated number of messages as consecutive data units are

incrementally sent. Different quantities of data unit transmissions are considered to show

the benefits of CTC as the number of transmitted data units increases. The table shows

the accumulated number of messages per data unit for the original and CTC formats. The

quantity of messages considered for each row is indicated in the column Data Units Sent.

Each data model column is further divided into three columns which respectively show

the number of messages needed to transmit the data units in the original format (column

Orig), in the CTC format (column CTC) and the proportional number of messages in the

CTC case compared to the original format (column%). For the original data format cases,

only the transmission of the data model instance is accounted for (see Table 7.8). In the

CTC cases, the messages needed for the registration and schema download processes (see

Table 7.7) are also taken into account. The top and bottom halves of the table respectively

show the results for a CoAP block size of 64 bytes and 256 bytes.

As an example, lets consider the OPC-UA column and the row labelled as “10” of the

Block:64 case. 260 messages are needed to transmit 10 data units in the original data

format as opposed to the 5400 messages required for the data units sent in the CTC format.

Thus, almost 21 times more messages are sent in the CTC case compared to the original

Section 7.3. CTC Impact on Communication Performance 131

Table 7.9: Accumulated messages transmitted including schema download process.

Data Units

Sent

OPC-UA SEP2 senML

Orig CTC % Orig CTC % Orig CTC %

Block: 64

10 260 5400 2077 40 9030 22575 80 66 83

100 2600 5760 222 400 9210 2303 800 246 31

1000 26000 9360 36 4000 11010 275 8000 2046 26

10000 260000 45360 17 40000 29010 73 80000 20046 25

100000 2600000 405360 16 400000 209010 52 800000 200046 25

Block: 256

10 140 2704 1931 30 4529 15097 40 46 115

100 1400 2884 206 300 4709 1570 400 226 57

1000 14000 4684 33 3000 6509 217 4000 2026 51

10000 140000 22684 16 30000 24509 82 40000 20026 50

100000 1400000 202684 14 300000 204509 68 400000 200026 50

case. The main reason lies in the CTC need to perform preliminary processes, i.e., schema

register and schema download processes, before being able to transmit compressed data.

However, the tendency changes as the number of sent data units increases. For

instance, 26000 messages are needed to transmit 1000 OPC-UA data units in the original

format. In the CTC case, the message quantity is reduced to 9360 which is a 36% of the

messages needed in the original format.

As can be seen in Table 7.9, the proportional number of messages needed to transmit

the data units is reduced after a number of data units is sent. This means that the message

quantity reduction only pays of once the number of saved messages is greater than the

combined messages needed for the schema registration and schema download processes.

For example, in the case of the SEP2 data model instance and with a CoAP block size of

64, this only happens when the number of transmitted data units is greater than 4505

(between upper rows “1000” and “10000” in Table 7.9), while for the OPC-UA case 244

transmitted data units are necessary (between upper rows “100” and “1000” in Table 7.9).

In contrast, for the senML case only 8 data unit transmissions suffice to benefit from CTC,

i.e., with 10 data units sent the message quantity is already reduced to a 83%, as can be

seen in the row “10” of Table 7.9.

As can be deduced from the results shown in Table 7.7 and Table 7.9, the size of the

schema is the factor with more weight for determining the message reduction efficiency.

This is due to the fact that the schema download process has a much bigger impact than

the schema registration process (as shown in Section 7.3.2).

Table 7.10 shows the accumulated message savings for a CoAP block size of 64 and

256 bytes, without taking into account the schema download process, i.e., it is assumed

that the schemas are not downloaded directly from the nodes. The table follows the same

structure as Table 7.9.

If we consider again the OPC-UA column and the row labelled as “10” of the Block:64

case, we will see that the number of messages needed to transmit 10 data units in the

132 Chapter 7. Evaluation

Table 7.10: Accumulated messages transmitted not taking into account schema download

process.

Data Units

Sent

OPC-UA SEP2 senML

Orig CTC % Orig CTC % Orig CTC %

Block: 64

10 260 58 22 40 36 90 80 36 45

100 2600 418 16 400 216 54 800 216 27

1000 26000 4018 15 4000 2016 50 8000 2016 25

Block: 256

10 140 33 24 30 31 103 40 31 78

100 1400 213 15 300 211 70 400 211 53

1000 14000 2013 14 3000 2011 67 4000 2011 50

original data format is still the same: 260 messages. In contrast, only 58 messages are

required for the CTC case which is a 22% of the messages needed in the original format.

As another example of the improvement, the SEP2 data model instance with a CoAP

block size of 64, shows a better performance for the CTC case after only 8 data unit

transmissions, which is a significant improvement to the results shown in Table 7.9

where 4505 data unit transmissions were necessary.

Thus, it is clear that for the OPC-UA and SEP2 cases, where the schema size is con-

siderable, the overhead of downloading the schema is very high and it takes longer to

compensate it. In this cases, it is more reasonable to avoid the overhead produced by the

schema download by storing and downloading the schemas from an external server.

Although this test only takes into account one hop transmissions, the number of

transmitted messages impact on multi-hop topologies will be even bigger. The benefits of

reducing the number of messages sent by a node will be extended to relaying nodes as

the number of retransmissions will be reduced proportionally, saving resources (such as

energy and bandwidth) not only in the origin node, but also in the adjacent ones.

7.4 Summary and Conclusions

This chapter showed the empirical evaluation (including results) of the work performed

during the Thesis. The evaluation covered the performance tests of a prototype im-

plementation of CTC for the XML and JSON data formats compared to other standard

compression technologies and encodings targeted to resource-constrained devices. This

chapter also included the evaluation of the impact of CTC on a typical REST architecture

deployment following the CTC communication model.

First, we presented the performance of CTC for the XML data format (Section 7.1). The

results show that CTC provides good performance results compared to EXI implementa-

tions. CTC achieves better performance than EXI implementations in terms of processing

time and memory usage, while keeping a similar efficiency in terms of compression for

Section 7.4. Summary and Conclusions 133

EXI’s ideal case. These results support CTC as a good candidate for resource-constrained

devices as it produces very efficient implementations in terms of memory usage and

energy consumption.

Although the CTC Library used in Section 7.1 is still a prototype, results show that CTC

memory requirements are much more suited to resource-constrained devices than EXI

implementations due to the significantly smaller memory footprint and runtime usage

requirements. The modular approach of the CTC Library allows to tailor the capabilities

to the needs and resources of the devices. This is important because resource-constrained

devices need to share the limited memory between multiple functionalities (application,

sensor drivers, communication stacks, etc.) and assigningmemory resources as efficiently

as possible is key in order to make the most of the available memory.

In Section 7.2 we extended the evaluation performed in Section 7.1 to the JSON

data format as well as compare the XML and JSON cases. Section 7.2 showed that CTC

provides good performance results compared to EXI4JSON and CBOR implementations.

These results demonstrate that CTC is also suitable for both XML and JSON Schemas,

and that CTC can handle seamless transformation to various data model representation

formats in a resource efficient way. Thus, CTC is a good candidate for generic data model

representation in resource-constrained devices.

The final section (Section 7.3) showed the impact of CTC on the communication load

when it is integrated in a typical REST architecture deployment. The results demonstrate

the positive impact and the reduction on transmitted messages when CTC is used. The

evaluation also showed the ability of the CTC communication model mechanisms to adapt

to different configurations and needs.

In summary, the evaluation and results included in this chapter demonstrate that

CTC is suitable for generic data model representation in resource-constrained devices

because it provides an encoding format that produces efficient implementations in terms

of processing time, memory usage and compression ratio, while enabling interoperable

applications.

134 Chapter 7. Evaluation

8 | Conclusions

In this Thesis, we presented Context- and Template-based Compression (CTC), a com-

pression approach for structured data. CTC provides a more efficient encoding than

text-based data formats while being especially suited to resource-constrained devices and

networks. Although CTC is an alternative to text-based data formats, it keeps backwards

compatibility, resulting in an practical solution for addressing IoT interoperability at data

representation level.

The number of devices targeted at IoT domains is rapidly growing. These devices are

highly-heterogeneous and tailored to the needs of the (also heterogeneous) IoT applica-

tions. At data representation level, the diversity in semantics and structures hinder the

efforts to provide seamless and interoperable data processing solutions. This diversity

results in very costly and complex procedures for the connection and integration of

services, interfaces and data as well as set a barrier to overcome for today’s IoT systems

to enable the global and seamless connection of all the existing and forthcoming tech-

nologies. This is the reason why universal standards and mechanisms are essential for

removing the interoperability gap across the IoT ecosystem.

Various initiatives are working in increasing the IoT interoperability, such as Web of

Things and Open Connectivity Foundation communities. These initiatives are based on

the promotion of platform-independent standards (either already available or specifically

developed) to be used by IoT devices and systems. However, this approach requires

for the standards to be implemented either in the lower architectural layers (as close

to the device as possible) or in intermediary layers (such as gateways or middle-wares).

In the former case, devices may not have enough resources or capabilities to natively

implement the standards while, in the latter case, the deployment of specific purpose

intermediaries only moves the interoperability-related complexity, it does not remove or

reduce it.

At data level, interoperability is achieved by structuring the data following a well-

defined data model and data format. Text-based data formats, such as XML and JSON,

have been one of the key interoperability enablers across the Internet and they are the

basis for other high-level technologies such as Web Services. It is expected that text-based

data formats will also play an important role in the IoT integration. However, text-based

135

136 Chapter 8. Conclusions

data formats are hardly suitable for the resource-constrained devices typically deployed

in IoT networks.

CTC addresses all these problems by easing the interoperable integration of data

represented in text-based data formats while requiring very few resources regarding

processing power, memory size and communication bandwidth. Compressing data using

a more efficient encoding is a common approach to deal with the verbosity of text-based

data formats. However, compressing the data may raise some drawbacks. On the one

hand, the compression process produces an overhead that may be beyond the capabilities

of resource-constrained devices or cancel the benefits of the size reduction. CTC provides

a structured data representation encoding targeted at resource-constrained devices and

networks. On the other hand, changing the data format to another encoding may break

interoperability if not handled properly. CTC is more efficient than standard data formats

and allows seamless transformation between the CTC format and the original format

while keeping backwards interoperability.

This Thesis also describes complementary technologies build around CTC. Firstly, the

CTC communication model (Chapter 5) specifies the communication architectures CTC is

targeted at, as well as the schema registration and schema repositorymechanisms, which

aim to provide flexibility and interoperability by dynamically assigning and distributing

schema information at running time. Secondly, the CTC Library (Chapter 6) describes the

modular approach that allows tailoring the CTC capabilities to the needs and resources of

the devices. Finally, the CTC Compiler tool (Section 6.2) is designed to ease and automate

the implementation of the context table, template table and data model bindings to native

code. All these complementary technologies facilitate the integration of CTC in general

IoT deployments.

8.1 Summary of the contributions

In this work, we have shown that CTC provides good performance results for XML and

JSON data formats, compared with current compression technologies. For the XML

case (Section 7.1), CTC achieves better performance than EXI implementations in terms

of processing time and memory usage, while keeping a similar efficiency in terms of

compression for EXI’s better case (Schema Strict). In the JSON case (Section 7.2), we

have shown that CTC outperforms EXI4JSON and CBOR implementations in terms of

compression size by taking advantage of the JSON Schema information.

These results show that CTC is in-line with the objectives described in Chapter 1.2 and

that it can handle seamless compression of various data formats in an efficient way and

suitable for resource-constrained devices and networks.

The solution offered by CTC is agnostic of any specific data format and are able to

rebuild the original data format based on the information extracted from the schema and

Section 8.1. Summary of the contributions 137

stored in the context table and template table, thus, meetingObjective-1. The context table

and template table themselves fulfil Objective-2 by providing a structure description

mechanism for generic data models and text-based data formats. Furthermore, CTC also

meets the Objective-3 because it offers a solution for structured data compression suit-

able for resource-constrained devices and networks, and efficient regarding processing

time, memory size and transmission bandwidth as shown in Chapter 7.

The last objective, Objective-4, is addressed in the CTC communication model. The

CTC communication model provides flexible and interoperable mechanisms for typical

IoT communication architectures. In the proposed CTC communication model, devices

using standard data representation formats can coexist and communicate with devices

using compressed formats whether they reside in the same (sub-)network or not. The

communication can be end-to-end if both devices implement CTC or a CTC gateway can

be deployed to seamlessly translate between the compressed format and the original data

format.

The schema registration and schema repositorymechanisms defined within the CTC

communication model enable the dynamic assignment and distribution of schema infor-

mation at run time. Following the same approach as CTC, these mechanisms are very

flexible and tailored to the multiple restrictions of resource-constrained devices and net-

works. In this Thesis we use CTC as the compression solution for the schema registration

and schema repositorymechanisms. A specific underlying binding protocol, CoAP, is also

used as an illustrative and relevant example. However, the proposed CTC communication

model is generic enough to be applied to other structured data compression approaches

based on contextual information (such as EXI) or binding protocols (such as MQTT).

In Section 7.3 we showed the positive impact and the reduction on the quantity of

exchanged messages when the CTC communication model is used. The section also

shows that different configurations meet the restrictions of the available resources and

application needs.

In summary, all the objectives of this work have been successfully met and has been

proven that the hypothesis this Thesis is based on (described in Chapter 1.2) holds. CTC

is a good candidate for generic structured data representation targeted to resource-

constrained devices and networks as it produces very efficient implementations in terms

of memory usage and energy consumption while maintaining interoperability with the

original data format.

Additionally, the modular approach followed by the CTC Library allows to tailor the

CTC capabilities to the needs of the application and further optimize the used resources.

This is complemented by the CTC Compiler tool, which eases the adoption of CTC and its

integration on IoT application developments.

138 Chapter 8. Conclusions

8.2 Future Work

In this work, a preliminary implementation of the CTC Library has been developed. This

prototype will be further developed to improve and to fully implement the features

presented in this document. For instance, the parsing of the formatted data is based

on a straightforward algorithm for text search on a list of elements, i.e., the template

table. Further research on text search and text matching would improve this process. As

another example, the CTC Compiler would need further development to produce the full

set of data binding code stubs.

As a future work, we are planning on extending the CTC mapping to additional

data model representation formats as well as define further bindings of the schema

registrationmechanisms to other typical IoT communication protocols. Specifically, it

is of great interest to extend the CTC Compiler capabilities to process data model based

protocols, such as SOAP, in order to support the automatic generation of Web Service

bindings. The extension of CTC to more technologies would raise its usability for more

IoT scenarios and make CTC more appealing to IoT system developers and integrators.

Another interesting improvement of CTC would be to include mechanisms to take

into account constraints described in the schema, e.g., the maximum value of a number.

Leveraging the constrains would improve the compression rate by producing more

compact representations of the data as well as enable partial validations to the coded

streams

We are also exploring the possibility of embedding the data model related information

stored in the schema context directly in the code stubs generated by the CTC Compiler, in

contrast to keeping the information in a separated and dedicated structure. The purpose

of the research is to assess if such a change would bring improvements regardingmemory

usage and processing performance, while keeping software modularity.

Finally, we are considering another line of research focused on the application of

approaches used in CTC to EXI. Some of themechanisms designed for CTC could be applied

to EXI grammar implementations in order to enhance its efficiency, from in-memory

representation to grammar processing. By improving the implementation efficiency

of EXI processors, the use of EXI would open to a wider range of resource-constrained

devices.

A | Data formats: technical aspects

This appendix contains further details of the XML Schema and JSON Schema specifications.

This information is complementary to the descriptions found in Section 3.1 but it is not

mandatory by any means to follow the work described in this document. However, this

information has been gathered here for convenience as it may help in understanding

the mapping processes described in Section 4.1.4 as well as some of the design decisions

behind the Context Table and Template Table specifications.

A.1 XML Schema

This section gives a more detailed overview of the XML Schema specification [WWWCd].

The XML Schema specification describes the structure and vocabulary of XML documents.

Usually, an XML document includes a reference to the XML Schema that describes its

vocabulary and the XML document is denoted an “instance” of the schema document.

The main use for XML Schemas is for document validation, which consist on verifying

that the content of an XML document is in conformance with the model and structure

described in the associated schema.

The following subsections describe the most important concepts and components of

the XML Schema specification relevant to this thesis. However, these subsections do not

aim to provide exhaustive information but to give enough information to understand the

principles proposed in this thesis.

A.1.1 Basic Structure

The schema element is the root element of any XML Schema document. This element

provides several attributes to declare information about the overall schema including

the namespace it is bound to and version information.

The general format of a schema element starting tag is shown in Figure A.1. The

targetNamespace attribute is used to declare the namespace URI that will identify this

XML Schema. Other XML documents will use this URI to reference the schema as a

namespace. The attributeFormDefault and elementFormDefault attributes specify how

139

140 Appendix A. Data formats: technical aspects

<schema
targetNamespace="URI"
attributeFormDefault="qualified | unqualified"
elementFormDefault="qualified | unqualified"
version="version_number">

Figure A.1: Schema element general format.

<schema
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:pe="http://example.com/namespaces/pets"
targetNamespace="http://example.com/namespaces/pets"
elementFormDefault="qualified">

<element name="pet">
<complexType>

<sequence>
<element name="name" type="string"/>
<element name="age" type="integer"/>
<element name="gender" type="string"/>

</sequence>
<attribute name="species" type="string"/>

</complexType>
</element>

</schema>

Figure A.2: XML Schema example.

elements and attributes should be qualified in the instance documents. An element or

attribute is qualified if it is associated to a namespace, as explained in section 3.1.1.2.

As has been already said, XML elements are one of the basic building blocks of an XML

document. To declare an element three main properties must be specified: the name, the

type and the cardinality. The XML Schema Recommendation specifies the use of two kinds

of data types: built-in data types and user-defined data types. User-defined data types

are specified in the the schema through the simpleType and complexType declarations.

Built-in data types, on the other hand, are simple data types already defined in the XML

Schema namespace and they are available to be reused for schema definitions.

Attribute declarations are very similar to element declarations. However, attribute

declarations can only be of simple types.

Figure A.2 shows an example of a simple XML Schema, containing four elements and

one attribute. “pet” is the root element and it contains the child elements “name”, “age”

and “gender” as well as an attribute of the “pet” element named “species”.

A.1.2 Built-in Data Types

The following list summarizes the most common data types defined in the XML Schema

namespace:

• string: a chain of characters.

Section A.1. XML Schema 141

• Name: a string that contains a valid XML name.

• QName: a string that contans a qualified XML name.

• anyURI: an Uniform Resource Identifier (URI).

• byte: a numeric value in the range [-128, 127].

• unsignedByte: a numeric value in the range [0, 255].

• hexBinary: binary information encoded in hexadecimal.

• base64Binary: binary information encoded in Base64.

• integer: a whole number (no fractional part).

• positiveInteger: an integer greater than 0.

• negativeInteger: an integer lower than 0.

• nonNegativeInteger: an integer greater or equal to 0.

• nonPositiveInteger: an integer lower or equal to 0.

• int: a signed 32-bit integer.

• unsignedInt: an unsigned 32-bit integer.

• long: a signed 64-bit integer.

• unsignedLong: an unsigned 64-bit integer.

• short: a signed 16-bit integer.

• unsignedShort: an unsigned 16-bit integer.

• decimal: a decimal value. It may or may not include a fractional part.

• float: a IEEE single-precision 32-bit floating-point value. INF and NaN values are

accepted.

• double: a IEEE double-precision 64-bit floating-point value. INF and NaN values

are accepted.

• boolean: a logical value. true, false, 0, and 1 values are accepted.

• time: a time value in the format “hour:minutes:seconds”.

• dateTime: a date and time value in the format “year-month-dayThour:minutes:seconds”.

• date: a date value in the format “year-month-day”.

142 Appendix A. Data formats: technical aspects

<complexType name="id_or_info_type">
<choice>

<element name="identifier" type="string"/>
<sequence>

<element name="name" type="string"/>
<element name="age" type="integer"/>
<element name="gender" type="string"/>

</sequence>
</choice>

</complexType>

Figure A.3: XML Schema nested content models example.

A.1.3 Complex Data Types

Complex data types are used to create user-defined XML elements that contain other

elements and/or attributes. Complex data types are declared with the complexType

declaration and define the content model of the complex element. In the context of XML

Schemas, a content model specifies how elements are grouped together. The XML Schema

Recommendation defines three content models:

• sequence: elements must appear in the order defined in the schema.

• choice: only one of the elements defined in the schema may appear.

• all: elements may appear in any order, and any of them may be omitted.

sequence and choice content models can be used within other content models and not

just individual elements. For instance, Figure A.3 shows an example of a choice content

model containing an element and a sequence content model. Specifically, the example

declares that a “id_or_info_type” type element is either an “identifier” element or an

ordered list of “name”, “age” and “gender” elements.

The all content model is used when the elements are known, but not the order.

However, there are some restrictions on the use of the all content model. On one hand,

the all declaration must be the only content model of a complexType element definition

and it cannot contain sequence or choice declarations, only elements. On the other hand,

children of an all declaration may only appear once in the instance document, i.e. the

cardinality of the children is bounded to 0 or 1.

Complex data types can be extended by deriving a new data type from a base or

original data type. Complex data types can be extended either through restriction or

extension.

When deriving a complex data type through extension, the content model of the new

data type is the combination of the content model of the original data type and the content

model specified in the derived data type. In the example shown in Figure A.4 a new

Section A.1. XML Schema 143

<complexType name="pet">
<sequence>

<element name="name" type="string"/>
<element name="age" type="integer"/>
<element name="gender" type="string"/>

</sequence>
<attribute name="species" type="string"/>

</complexType>

<complexType name="pet_ext">
<complexContent>

<extension base="pet">
<sequence>

<element name="owner" type="string" />
</sequence>

</extension>
</complexContent>

</complexType>

Figure A.4: XML Schema complex data type extension example.

<complexType name="pet">
<sequence>

<element name="name" type="string"/>
<element name="age" type="integer"/>
<element name="gender" type="string"/>

</sequence>
<attribute name="species" type="string"/>

</complexType>

<complexType name="pet_rest">
<complexContent>

<restriction base="pet">
<sequence>

<element name="name" type="string"/>
<element name="age" type="integer"/>

</sequence>
</restriction>

</complexContent>
</complexType>

Figure A.5: XML Schema complex data type restriction example.

complex type named “pet_ext” is created by adding a new element with the name “owner”

to the user-defined data type “pet”.

When deriving complex types through restriction, the content model of the new data

type is a subset of the original data type. The difference of extension by restriction

applied to simple types and complex types is that in simple types a more restricted range

of values is specified while in complex types the types content model declarations are

restricted. In the example shown in Figure A.5 a new complex type named “pet_rest” is

created by removing the element named “gender” from the user-defined data type “pet”.

A.1.4 Simple Data Types

The simpleType declaration allows to define simple data types based on already defined

data types, which may be built-in or custom data types. As simple types are always

144 Appendix A. Data formats: technical aspects

<attribute name="species">
<simpleType>

<restriction base="string">
<enumeration value="Cat"/>
<enumeration value="Dog"/>
<enumeration value="Tortoise"/>
<enumeration value="Rabbit"/>

</restriction>
</simpleType>

</attribute>

Figure A.6: XML Schema restriction declaration example.

derived from other types, they are also known as derived types. There are three kinds of

derived types: restriction, list and union.

A restriction is a simple type that defines a subset of the type it is derived from.

To specify the type from which the simple type is derived, the base attribute is used.

The subset of the base type can be bounded using a series of elements defined within

the simpleType declaration known as facets. For instance, totalDigits facet specifies

the number of digits of a numeric type, minLength facet sets the minimum number of

characters in a string type and pattern facet allows to define regular expressions that

string types must follow. Not all the facets have to be used at the same time and each type

only supports a subset of the facets.

Figure A.6 shows an example of a restricted attribute “species” derived from the

built-in type “string” and that only allows the use of four values: “Cat”, “Dog”, “Tortoise”

and “Rabbit”. In this case, the enumeration facet is used, which specifies allowed values

through an enumerated list.

The list declaration allows to define a list of items in which each item is a simpleType.

The base simple type can be a global simple data type (including built-in data types) or a

locally defined simple type.

In the example shown in Figure A.7 a global simple type is defined,“species_type”,

using the restriction declaration and the enumeration facet. This global simple type is

then used as an item of the “species_list_type” derived type.

union declarations enable the combination of multiple simple types. The simple types

to be combined are listed in thememberTypes attribute. The types listed can be a global

simple data type (including built-in data types) or a locally defined simpleType.

The Figure A.8 shows an examplewherewe define a simple type named “unknown_or_age_type”

from the union of the “integer” built-in data type and a globally defined data type,

“string_unknown_type”. The “unknown_or_age_type” data type will allow float values as

well as the string “Unknown”.

Section A.1. XML Schema 145

<simpleType name="species_type">
<restriction base="string">

<enumeration value="Cat"/>
<enumeration value="Dog"/>
<enumeration value="Tortoise"/>
<enumeration value="Rabbit"/>

</restriction>
</simpleType>

<simpleType name="species_list_type">
<list itemType="species_type"/>

</simpleType>

Figure A.7: XML Schema list declaration example.

<simpleType name="string_unknown_type">
<restriction base="string">

<enumeration value="Unknown"/>
</restriction>

</simpleType>

<simpleType name="unknown_or_age_type">
<union memberTypes="integer string_unknown_type"/>

</simpleType>

Figure A.8: XML Schema union declaration example.

A.1.5 Global and Local Declarations

User-defined data types can be declared globally or locally. To define a global element

type, it must be declared as a direct child of the root element (i.e. the schema element)

of the schema document. This makes the type available to be reused through the whole

schema document. Local declarations are children of elements other than the root

element and can be used only within the element in which it is declared or its child

elements.

The main reason to declare global element types is re-usability. In the example

of Figure A.9 we can see a globally declared element type “pet_type” which is then

assigned to the type of the root element “pet”. Actually, the elements “name”, “age”,

“gender” and attribute “species” are also assigned to globally available types: “string” and

“integer”. These global types are part of the declaration of the XML Schema namespace

(http://www.w3.org/2001/XMLSchema) which in the example appears included as the

default namespace.

It is possible to reuse a whole global element and not just the type trough the ref

attribute. In the example shown in Figure A.10 the elements contained within the type

“pet_type” are declared using the references of globally declared elements.

To create a local type, the type has to be declared as a direct child of the corresponding

element. Unlike global declarations, local complexType definitions are not named (i.e. do

146 Appendix A. Data formats: technical aspects

<schema
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:pe="http://example.com/namespaces/pets"
targetNamespace="http://example.com/namespaces/pets"
elementFormDefault="qualified">

<complexType name="pet_type">
<sequence>

<element name="name" type="string"/>
<element name="age" type="integer"/>
<element name="gender" type="string"/>

</sequence>
<attribute name="species" type="string"/>

</complexType>
<element name="pet" type="pe:pet_type"/>
</schema>

Figure A.9: XML Schema global complex element declaration example.

<schema
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:pe="http://example.com/namespaces/pets"
targetNamespace="http://example.com/namespaces/pets"
elementFormDefault="qualified">

<element name="name" type="string"/>
<element name="age" type="integer"/>
<element name="gender" type="string"/>
<complexType name="pet_type">

<sequence>
<element ref="pe:name"/>
<element ref="pe:age"/>
<element ref="pe:gender""/>

</sequence>
<attribute name="species" type="string"/>

</complexType>
<element name="pet" type="pe:pet_type"/>

</schema>

Figure A.10: XML Schema global element declaration by reference example.

Section A.1. XML Schema 147

<element name="pet">
<complexType>

<sequence>
<element name="name" type="string"/>
<element name="age" type="integer"/>
<element name="gender" type="string"/>

</sequence>
<attribute name="species" type="string"/>

</complexType>
</element>

Figure A.11: XML Schema local element declaration example.

<element ref="owner" maxOccurs="5"/>

<element name="owner" type="string" minOccurs="2" maxOccurs="3"/>

<element name="owner" minOccurs="0" maxOccurs="unbounded"/>

Figure A.12: XML Schema element cardinality example.

not include a name attribute) and are known as anonymous complex types. In the example

of Figure A.11 the element “pet” is bound to a local type with three child elements (“name”,

“age” and “gender”) and an attribute “species”.

Attributes can also be created using local types or global types (including reference)

in the same way as with elements.

A.1.6 Element Cardinality

The cardinality of an element specifies how many occurrences of the element can ap-

pear in the instance document. Cardinality is specified by declaring theminOccurs and

maxOccurs attributes.

minOccurs andmaxOccurs attributes are optional and they may be omitted. If any of

them is not included, the default value in both cases is 1. ThemaxOccurs attribute allows

the use of the value “unbounded” in order to indicate no upper limit to the number of

occurrences.

In the first example shown in Figure A.12, the “owner” element is a global element

and states that the element instance must appear at least one time and a maximum of

5 times. The second example declares an element named “owner” that must appear

in the instance document a minimum of two times and a maximum of three. The last

example declares an optional element (it may appear 0 times) but with no upper limit to

the number of occurrences.

148 Appendix A. Data formats: technical aspects

<complexType name="pet_type">
<sequence>

<element name="name" type="string"/>
<element name="age" type="integer"/>
<element name="gender" type="string"/>
<any namespace="##any"

processContents="lax"
minOccurs="0"
maxOccurs="unbounded"/>

</sequence>
<attribute name="species" type="string"/>

</complexType>

Figure A.13: XML Schema any declaration example.

A.1.7 The any Declaration

The any declaration is used to declare elements in a non explicit way. This type of element

declarations are known as element wildcards and enable, for instance, to indicate that an

element can be any element declared within a given namespace.

It is not possible to create any global declarations and they must always appear as

children of content model declarations. any declarations are quite flexible and allow to

specify the range of elements allowed through the namespace attribute. From instance,

the “##any” value allows elements from all namespaces and the “##targetNamespace”

value allows elements from only the targetNamespace to be included.

In the example in Figure A.13, we declare that the “pet_type” element type accepts

elements from any namespace as its children. Thus, an instance document containing an

element of “pet_type” type must include the “name”, “age” and “gender” elements and,

optionally, any number of elements from any namespace.

A.1.8 Schema Reuse

The XML Schema Recommendation provides two declarations to reuse definitions made

in multiple XML Schema documents: import and include. The import declaration allows

to use global declarations from XML Schemas with a different targetNamespace. import

declarations must be globally declared. On the other hand, the include declaration allows

to combine XML Schemas that share the same targetNamespace or that do not have a

targetNamespace at all.

In the example shown in Figure A.14 the “http://example.com/namespaces/info” schema

is imported into the “http://example.com/namespaces/pets” schema with the prefix “in”.

The child elements within the “pet_type” type are specified through a reference to global

elements in the “in” schema. In contrast, the type of the “species” attribute is assigned to

a global simple type declaration of the“in” schema.

Section A.1. XML Schema 149

<schema
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:in="http://example.com/namespaces/info"
targetNamespace="http://example.com/namespaces/info"
elementFormDefault="qualified">

<element name="name" type="string"/>
<element name="age" type="integer"/>
<element name="gender" type="string"/>
<simpleType name="species_type">

<restriction base="string">
<enumeration value="Cat"/>
<enumeration value="Dog"/>
<enumeration value="Tortoise"/>
<enumeration value="Rabbit"/>

</restriction>
</simpleType>

</schema>

<schema
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:pe="http://example.com/namespaces/pets"
xmlns:in="http://example.com/namespaces/info"
targetNamespace="http://example.com/namespaces/pets"
elementFormDefault="qualified">

<import namespace="http://example.com/namespaces/info"/>
<complexType name="pet_type">

<sequence>
<element ref="in:name"/>
<element ref="in:age"/>
<element ref="in:gender""/>

</sequence>
<attribute name="species" type="in:species_type"/>

</complexType>
<element name="pet" type="pe:pet_type"/>

</schema>

Figure A.14: XML Schema import declaration example.

150 Appendix A. Data formats: technical aspects

<schema
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:pe="http://example.com/namespaces/pets"
targetNamespace="http://example.com/namespaces/pets"
elementFormDefault="qualified">

<element name="name" type="string"/>
<element name="age" type="integer"/>
<element name="gender" type="string"/>
<simpleType name="species_type">

<restriction base="string">
<enumeration value="Cat"/>
<enumeration value="Dog"/>
<enumeration value="Tortoise"/>
<enumeration value="Rabbit"/>

</restriction>
</simpleType>

</schema>

<schema
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:pe="http://example.com/namespaces/pets"
targetNamespace="http://example.com/namespaces/pets"
elementFormDefault="qualified">

<include schemaLocation="pets_info.xsd"/>
<complexType name="pet_type">

<sequence>
<element ref="pe:name"/>
<element ref="pe:age"/>
<element ref="pe:gender"/>

</sequence>
<attribute name="species" type="pe:species_type"/>

</complexType>
<element name="pet" type="pe:pet_type"/>

</schema>

Figure A.15: XML Schema include declaration example.

Global declarations of schemas included through an include declaration are treated

as if they were defined within the same schema. This is mainly useful when a complex

vocabulary is being defined and it is practical to split it in multiple sections (denoted

modules) across schema documents.

In the example shown in Figure A.15 the “http://example.com/namespaces/pets” is

split into two modules. The definitions made in the first schema document are used in

the second one but all the declarations are made within the same namespace and they

are treated as if the would have been defined within the same document.

A.2 JSON Schema

In this section we describe in more detail the JSON Schema specification. This section

covers the Draft-04 version (i.e.: “http://json-schema.org/draft-04/schema#”) of the JSON

Schema [GZC13] specification and JSON Schema Validation [ZC13] vocabulary. At the

time of this writing Draft-04 version is still the more widely used JSON Schema version,

compared to more recent ones (currently Draft-07 [WA18, WAL18]).

Section A.2. JSON Schema 151

� �
{

"title": "root schema",
"sub": {
"title": "subschema"

}

}� �
Figure A.16: JSON Schema root schema and subschema example.

The JSON Schema Draft-4 specification is actually composed by three documents.

• JSON Schema core specification [GZC13] describes the core terminology, references

to other JSON Schemas and vocabulary definition.

• JSON Schema Validation [ZC13] defines the vocabulary for validation assertions,

link navigation and interaction constrains.

• JSON Hyper-Schema specification [LZC13] describe the hypertext structure and

management of JSON documents such as resource link relations and multimedia

vocabulary.

A JSON Schema is in itself a JSON document and is composed by the same structural

components used by JSON documents: null, boolean, number, string, object and array.

This primitives are described in more detail in Section 3.1.2.

A JSON document or JSON component that follows the structure and constrains speci-

fied by a JSON Schema is denoted an “instance”.

A.2.1 JSON Schema Structure

A JSON Schema document always starts from the root schema but it can contain any

number of nested schemas, denoted subschemas. For instance, Figure A.16 shows an

example JSON Schema that is composed by a root schema (titled “root schema”) and one

subschema (titled “subschema”).

The root schema and subschemas of a JSON document are either an object or a

boolean. Schemas with boolean root elements are special schemas that either always

pass validation of instances (“true”) or always fail (“false”). If the schema is an object,

it contains the structure and constrains that must be followed by the JSON instances

that follow the data model described in the schema. The properties of the JSON Schema

contain the vocabulary of the data model and are refereed as “keywords”.

The “$schema”keyword accepts an URI value and it indicates the JSON Schema version

this particular schema conforms to. For the JSON Schema Dratf-04 version the value

152 Appendix A. Data formats: technical aspects

“http://json-schema.org/draft-04/schema#” is predefined. At the time of this writing, the

last version (Draft-07) is defined as “http://json-schema.org/draft-07/schema#”.

The “$ref” keyword is used to reference either an internal or external JSON schema. In

the case of internal references, they can be used to include subschemas that are defined

in another location of the JSON Schema document instead of directly embedding the

schema itself. This is useful, for instance, to define a schema once and reference it from

multiple locations within the JSON Schema document. External references are used to

include schemas that are defined in another JSON Schema documents. In this case, it also

allows the reuse of schema definitions across JSON Schema document boundaries. An

important remark is that the URI value of a “$ref” keyword is not a network locator, but

an identifier (described in the next paragraph).

The “$id” keyword is used to assign an explicit URI to an schema. This URI also defines

the base URI for the subschemas of the schema. The identifiers of nested subschemas

are resolved recursively against the base URI of the parent schema. Any schema can be

referenced (with the “$ref” keyword) by any other schema within the same JSON Schema

using the assigned “$id” identifier. External schemas (defined in another JSON Schema

document) can be referenced by means of the “$id” URI value of the root schema.

A.2.2 JSON Schema Validation Keywords

The main purpose of the JSON Schema is to provide the means to specify the structure and

restrictions applicable to a specific data model. This information can be used to validate

JSON documents. The JSON Schema Validation specification [ZC13] defines the vocabulary

and keywords to assert and validate JSON documents. The version of the JSON Schema

and, hence, the used vocabulary, is specified by means of the “$schema” keyword. The

following vocabulary corresponds to the JSON Schema Dratf-04 version, identified with

the predefined “$schema” keyword value of “http://json-schema.org/draft-04/schema#”.

A.2.3 keywords for numbers

The keyword “multipleOf” is used together with JSON numbers to specify that a number

must be a multiple of the specified value, i.e. the value of the instance number divided by

the value of the “multipleOf” keyword must be an integer.

The value of the “maximum” keyword is a number that specifies the maximum value

allowed for the instance. If the boolean keyword “exclusiveMaximum” is used together

with the “maximum” keyword and its value is true, then the value of the instance must

be lower than the “maximum” keyword value.

In a similar manner, the value of the “minimum” keyword is a number that specifies

theminimumvalue allowed for the instance. If the boolean keyword “exclusiveMinimum”

is used together with the “minimum” keyword and its value is true, then the value of the

instance must be greater than the “minimum” keyword value.

Section A.2. JSON Schema 153

A.2.4 keywords for strings

The values of the “maxLength” and “minLength” keywords are unsigned integers that

respectively specify the maximum and minimum number of characters hold by a string

instance.

The “pattern” keyword is used to define a string regular expression. A string instance

is valid if it matches the regular expression.

A.2.5 keywords for arrays

The “items” keyword is used to specify the object schema that must be meet by all the

elements of the instance array. Optionally the “items” keyword can hold an array, in

which case, it specifies the schema for the instance array elements one by one. The

“items” keyword can be followed by the “additionalItems” keyword. The “additionalItems”

keyword is used to specify whether more elements than the ones defined in the “items”

keyword are allowed, in case the value of the “items” keyword is an array.

The values of the “maxItems” and “minItems” keywords are unsigned integers that

respectively specify the maximum and mimimum number of elements that can be held

in an array instance.

The “uniqueItems” keyword is used to declare if the elements of the array must

be different between them. If the value of the “uniqueItems” keyword is true, all the

elements of the array must be unique.

A.2.6 keywords for objects

The values of the “maxProperties” and “minProperties” keywords are unsigned integers

that respectively indicate the maximum and minimum number of properties that can be

defined by an object instance.

The “required” keyword specifies an array of strings that must match the names of

the properties defined in the object.

The “properties” keyword determines the structure of the object instance and its

children objects. The value of the “properties” keyword is an object in itself and each

value of the object contains a JSON Schema identified by the keyword of the value.

Instances of the object have to match the child names and corresponding schemas.

The “patternProperties” keyword is very similar to “properties”, the only difference is

that instead of validating against keywords in the object that perfectly match the name of

the instance child, it validates against the regular expression and schema of the keywords.

The “additionalProperties” keyword is used in conjunction with “patternProperties”

and “properties”. The “additionalProperties” keyword specifies the schema of the object

154 Appendix A. Data formats: technical aspects

instance’s children that are not covered by the “patternProperties” and “properties”

keywords.

The “dependencies” keyword defines validation rules that must be met by an object

instance in case a specific child match one of the keywords definedwithin the dependency.

The value of the “dependencies” keyword is and object in which each child can be either

an object or an array of unique strings. In case the child is an object, if the object instance

has a property that matches the keyword, then the object instance must validate against

the schema of the dependency. If the child is an array and the object instance has a

property that matches the keyword, then the object instance must also contain properties

that match the strings in the array.

A.2.7 keywords for any instance type

The “enum” keyword defines an array of unique elements. An instance is valid if its value

matches one of the elements listed in the “enum” keyword array.

The value of “type” keyword is either a string or an array of unique strings. The

strings’ value must be one of the primitive types defined in the JSON Schema specification

and described in Section 3.1.2. The instance validates successfully if the type matches

one the strings of the “type” keyword.

The “allOf” keyword value is an array of objects. A valid instance must match the

schemas of all the objects within the “allOf” keyword. The value of the “anyOf” keyword

is also an array of objects. However, in this case an instance successfully validates if

it matches at least the schema of one of the objects within the “anyOf” keyword. In a

similar way, the value of the “oneOf” keyword is also an array of objects. However, an

instance successfully validates if it matches only one of the schemas of the objects within

the “oneOf” keyword. The “not” keyword value is an object for which valid instances

must fail to validate.

Finally, the “definitions’ keyword is used to define a standardized area to locate

schemas, instead of directly nesting them in the root schema. This is useful, for example,

to define schemas that are referenced from more than one parent schema.

A.2.8 Metadata keywords

The “title” and “description” keywords are not used to validate instances. However, they

are useful to annotate schemas and subschemas and give contextual information to the

schema readers or to visualization tools.

The “default” keyword is used to define the default value of an schema, in case one is

not provided in an instance.

Section A.2. JSON Schema 155

The “format” keyword is used to provide semantic validation of an instance. The value

of the “format” keyword is a string that contains the identifier of a “format attribute”.

The JSON Schema validation specification predefines a set of format attributes such as

“date-time”, “email”, “hostname”, “ipv4”, “ipv6” and “uri”. Valid instances must match

the restrictions defined in the schema as well as meet the restrictions associated to the

format attribute.

156 Appendix A. Data formats: technical aspects

Bibliography

[12a] W3C Simple Object Access Protocol (SOAP). http://www.w3.org/TR/soap,
2012. Last visited on October of 2018.

[12b] Ws4d-udpws - the devices profile for web services (dpws) for highly resource-

constrained devices. https://gitlab.amd.e-technik.uni-rostock.
de/michael.rethfeldt/ws4d-udpws, 2012. Last visited on October of
2018.

[16a] Embeddable EXI Processor in C. http://exip.sourceforge.net, 2016.
Last visited on October of 2018.

[16b] EXIficient EXI procesor, java version. http://exificient.github.io/
java/, 2016. Last visited on October of 2018.

[16c] An introduction to Cooja. https://github.com/contiki-os/contiki/
wiki/An-Introduction-to-Cooja, 2016. Last visited on April 2018.

[17] Jabber.org community. https://www.jabber.org, 2017.

[18a] Binary JSON (BSON). http://bsonspec.org/, 2018. Last visited on July of
2018.

[18b] CBOR diagnostic utilities. https://github.com/cabo/cbor-diag, 2018.
Last visited on March of 2018.

[18c] Contiki: The Open Source OS for the Internet of Things. http://www.
contiki-os.org, 2018. Last visited on April 2018.

[18d] EXI for JSON - How EXI can be used to represent JSON data efficiently. https:
//github.com/EXIficient/exificient-for-json, 2018. Last visited on
April of 2018.

[18e] Protocol Buffers. https://developers.google.com/
protocol-buffers/, 2018. Last visited on March of 2018.

[ABMP07] Andrei Arion, Angela Bonifati, Ioana Manolescu, and Andrea Pugliese. Xquec:

A query-conscious compressed XML database. ACM Trans. Internet Techn.,

7(2):10, 2007.

157

http://www.w3.org/TR/soap
https://gitlab.amd.e-technik.uni-rostock.de/michael.rethfeldt/ws4d-udpws
https://gitlab.amd.e-technik.uni-rostock.de/michael.rethfeldt/ws4d-udpws
http://exip.sourceforge.net
http://exificient.github.io/java/
http://exificient.github.io/java/
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://www.jabber.org
http://bsonspec.org/
https://github.com/cabo/cbor-diag
http://www.contiki-os.org
http://www.contiki-os.org
https://github.com/EXIficient/exificient-for-json
https://github.com/EXIficient/exificient-for-json
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

158 Bibliography

[ACM+15] Diego Arroyuelo, Francisco Claude, Sebastian Maneth, Veli Mäkinen, Gonzalo

Navarro, Kim Nguyen, Jouni Sirén, and Niko Välimäki. Fast in-memory xpath

search using compressed indexes. Softw., Pract. Exper., 45(3):399–434, 2015.

[AGGT10] H. Abangar, M. Ghader, A. Gluhak, and R. Tafazolli. Improving the perfor-

mance of web services in wireless sensor networks. In Future Network and

Mobile Summit, 2010, pages 1–8, 2010.

[ANdlF03] Joaquín Adiego, Gonzalo Navarro, and Pablo de la Fuente. SCM: Structural

Contexts Model for Improving Compression in Semistructured Text Databases

. Technical Report IT-DI-2003-0004, Dep. Informatica, Universidad de Val-

ladolid, 2003.

[BCN14] Nieves R. Brisaboa, Ana Cerdeira-Pena, and Gonzalo Navarro. XXS: efficient

xpath evaluation on compressed XML documents. ACM Trans. Inf. Syst.,

32(3):13:1–13:37, 2014.

[BDD+16] H. Butler, M. Daly, A. Doyle, Sean Gillies, T. Schaub, and T. Schaub. The

GeoJSON format. RFC 7946, August 2016.

[Ber17] Olaf Bergmann. libcoap: C-implementation of CoAP. https://libcoap.net,
2017. Last visited on April 2018.

[BG14] Andrew Banks and Rahul Gupta. MQTT version 3.1.1. Technical report,

OASIS, 10 2014. OASIS Standard.

[BGC17] Jorge Berzosa, Luis Gardeazabal, and Roberto Cortiñas. Context- and

Template-Based Compression for Efficient Management of Data Models in

Resource-Constrained Systems. Sensors, 17(8):1755, 2017.

[BGC18] Jorge Berzosa, Luis Gardeazabal, and Roberto Cortiñas. A Communication

Model for Efficient Management of Standard Data Formats in Resource-

Constrained IoT Networks. Computer Standards & Interfaces, 2018. Submit-

ted.

[BH13] Carsten Bormann and Paul E. Hoffman. Concise binary object representation

(CBOR). RFC 7049, October 2013.

[BLFM05] Tim Berners-Lee, Roy T. Fielding, and Larry M Masinter. Uniform Resource

Identifier (URI): Generic Syntax. https://rfc-editor.org/rfc/rfc3986.
txt, January 2005. RFC 3986.

[BMKR15] Jiva N. Bagale, John P. T. Moore, Antonio D. Kheirkhahzadeh, and Yasmine Z.

Rosunally. Energy consumption trade-offs for XML compression on embed-

ded devices. In 2015 Sustainable Internet and ICT for Sustainability, SustainIT

https://libcoap.net
https://rfc-editor.org/rfc/rfc3986.txt
https://rfc-editor.org/rfc/rfc3986.txt

Section Bibliography 159

2015, Madrid, Spain, April 14-15, 2015, pages 1–3. IEEE Computer Society,

2015.

[Bor12] Carsten Bormann. Using CoAP with IPsec. Internet-Draft draft-bormann-core-

ipsec-for-coap-00, Internet Engineering Task Force, December 2012. Work in

Progress.

[Bou09] C. Bournez. Efficient XML Interchange Evaluation. Technical report, W3C, 4

2009. Last visited on October of 2018.

[BPSM+08] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François

Yergeau. Extensible Markup Language (XML) 1.0 (Fifth Edition). Technical

report, W3C, 11 2008. Last visited on June of 2018.

[Bra14] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange Format.

RFC 7159, March 2014.

[BS16] Carsten Bormann and Zach Shelby. Block-Wise Transfers in the Constrained

Application Protocol (CoAP). RFC 7959, August 2016.

[BSE12] Arne Bröring, Christoph Stasch, and Johannes Echterhoff. OGC® Sensor

Observation Service Interface Standard. http://www.opengeospatial.
org/standards/sos, 2012. Last visited on June of 2018.

[BZB+08] A. Bobek, E. Zeeb, H. Bohn, F. Golatowski, and D. Timmermann. Device

and service templates for the devices profile for web services. In Industrial

Informatics, 2008. INDIN 2008. 6th IEEE International Conference on, pages

797–801, 2008.

[CC2] CC2650, simplelink multi-standard 2.4 ghz ultra-low power wireless MCU.

http://www.ti.com/product/CC2650. Last visited on October of 2018.

[CCK+06] Shannon Chan, Dan Conti, Chris Kaler, Thomas Kuehnel, Alain Regnier, Bryan

Roe, Dale Sather, Jeffrey Schlimmer, Hitoshi Sekine, Jorgen Thelin, Doug

Walter, Jack Weast, Dave Whitehead, Don Wright, and Yevgeniy Yarmosh.

Devices profile for web services specification. http://specs.xmlsoap.
org/ws/2006/02/devprof/devicesprofile.pdf, February 2006.

[Che00] James Cheney. XMLPPM: XML-Conscious PPMCompression. http://xmlppm.
sourceforge.net/, 2000. Last visited on July of 2018.

[Che05a] James Cheney. DTDPPM: DTD-Conscious Compression. http://xmlppm.
sourceforge.net/dtdppm/index.html, 2005. Last visited on July of 2018.

[Che05b] James Cheney. An empirical evaluation of simple DTD-conscious compression

techniques. In Eighth International Workshop on the Web and Databases

(WebDB), pages 43–48. Citeseer, 2005.

http://www.opengeospatial.org/standards/sos
http://www.opengeospatial.org/standards/sos
http://www.ti.com/product/CC2650
http://specs.xmlsoap.org/ws/2006/02/devprof/devicesprofile.pdf
http://specs.xmlsoap.org/ws/2006/02/devprof/devicesprofile.pdf
http://xmlppm.sourceforge.net/
http://xmlppm.sourceforge.net/
http://xmlppm.sourceforge.net/dtdppm/index.html
http://xmlppm.sourceforge.net/dtdppm/index.html

160 Bibliography

[CK13a] S. Cheshire and M. Krochmal. DNS-Based Service Discovery. RFC 6763

(Proposed Standard), February 2013.

[CK13b] S. Cheshire and M. Krochmal. Multicast DNS. RFC 6762 (Proposed Standard),

February 2013.

[CKK17] Victor Charpenay, Sebastian Käbisch, and Harald Kosch. \mu µ RDF store:

Towards extending the semantic web to embedded devices. In Eva Blomqvist,

Katja Hose, Heiko Paulheim, Agnieszka Lawrynowicz, Fabio Ciravegna, and

Olaf Hartig, editors, The Semantic Web: ESWC 2017 Satellite Events - ESWC

2017 Satellite Events, Portorož, Slovenia, May 28 - June 1, 2017, Revised Selected

Papers, volume 10577 of Lecture Notes in Computer Science, pages 76–80.

Springer, 2017.

[CN04] James Cheng and Wilfred Ng. Xqzip: Querying compressed XML using struc-

tural indexing. In Elisa Bertino, Stavros Christodoulakis, Dimitris Plexousakis,

Vassilis Christophides, Manolis Koubarakis, Klemens Böhm, and Elena Fer-

rari, editors, Advances in Database Technology - EDBT 2004, 9th International

Conference on Extending Database Technology, Heraklion, Crete, Greece, March

14-18, 2004, Proceedings, volume 2992 of Lecture Notes in Computer Science,

pages 219–236. Springer, 2004.

[Cro09] Dave Crocker. Internet Mail Architecture. https://rfc-editor.org/rfc/
rfc5598.txt, July 2009. RFC 5598.

[CT04] John Cowan and Richard Tobin. XML Information Set (Second Edition).

Technical report, W3C, 2 2004. Last visited on October of 2018.

[Deu96] L. Peter Deutsch. DEFLATE Compressed Data Format Specification version

1.3. RFC 1951, May 1996.

[DGV04] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki - A lightweight and

flexible operating system for tiny networked sensors. In 29th Annual IEEE

Conference on Local Computer Networks (LCN 2004), 16-18 November 2004,

Tampa, FL, USA, Proceedings, pages 455–462. IEEE Computer Society, 2004.

[DH17] Dr. Steve E. Deering and Bob Hinden. Internet Protocol, Version 6 (IPv6)

Specification. RFC 8200, July 2017.

[Fas17] LLC FasterXML. Smile Data Format. https://github.com/FasterXML/
smile-format-specification, 2017. Last visited on July of 2018.

[FEL+17] Steve Faulkner, Arron Eicholz, Travis Leithead, Alex Danilo, and Sangwhan

Moon. HTML 5.2. Technical report, W3C, 12 2017. Last visited on June of

2018.

https://rfc-editor.org/rfc/rfc5598.txt
https://rfc-editor.org/rfc/rfc5598.txt
https://github.com/FasterXML/smile-format-specification
https://github.com/FasterXML/smile-format-specification

Section Bibliography 161

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), June

1999. Obsoleted by RFCs 7230, 7231, 7232, 7233, 7234, 7235, updated by RFCs

2817, 5785, 6266, 6585.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-based

Software Architectures. PhD thesis, University of California, Irvine, 2000.

[FLMM06] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan.

Compressing and searching XML data via two zips. In Les Carr, David De

Roure, Arun Iyengar, Carole A. Goble, and Michael Dahlin, editors, Proceed-

ings of the 15th international conference on World Wide Web, WWW 2006,

Edinburgh, Scotland, UK, May 23-26, 2006, pages 751–760. ACM, 2006.

[FLMM09] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan.

Compressing and indexing labeled trees, with applications. J. ACM, 57(1):4:1–

4:33, 2009.

[fou] OPC foundation. Opc-ua types schema. https://opcfoundation.org/UA/
2008/02/Types.xsd. Last visited on October of 2018.

[FP14] Youenn Fablet and Daniel Peintner. Efficient XML Interchange (EXI) Profile

for limiting usage of dynamic memory. Technical report, W3C, 09 2014. Last

visited on October of 2018.

[FR14] Roy T. Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1):

Message Syntax and Routing. RFC 7230, June 2014.

[Fur13] Sadayuki Furuhashi. MessagePack. https://msgpack.org/, 2013. Last
visited on July of 2018.

[GCB03] Jose A. Gutierrez, Edgar H. Callaway, and Raymond Barrett. IEEE 802.15.4

Low-Rate Wireless Personal Area Networks: Enabling Wireless Sensor Net-

works. IEEE Standards Office, New York, NY, USA, 2003.

[GS00] Marc Girardot and Neel Sundaresan. Millau: an encoding format for efficient

representation and exchange of XML over the web. Computer Networks,

33(1-6):747–765, 2000.

[GTMW11] Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde. From

the Internet of Things to theWeb of Things: Resource-oriented Architecture and

Best Practices, pages 97–129. Springer Berlin Heidelberg, Berlin, Heidelberg,

2011.

https://opcfoundation.org/UA/2008/02/Types.xsd
https://opcfoundation.org/UA/2008/02/Types.xsd
https://msgpack.org/

162 Bibliography

[GZC13] Francis Galiegue, Kris Zyp, and Gary Court. JSON schema: core definitions

and terminology. Internet-Draft draft-zyp-json-schema-04, Internet Engineer-

ing Task Force, January 2013. Work in Progress.

[Hag06] S. Hagen. IPv6 Essentials. O’Reilly Media, 2006.

[Ham92] Eric Hamilton. Jpeg file interchange format. Technical report, C-Cube Mi-

crosystems, Milpitas, CA, USA, 9 1992.

[HB15] Hill and W. Bruce. Evaluation of efficient XML interchange (EXI) for large

datasets and as an alternative to binary JSON encodings. https://calhoun.
nps.edu/handle/10945/45196, 2015.

[HLN10] Eran Hammer-Lahav and Mark Nottingham. Defining Well-Known Uniform

Resource Identifiers (URIs). https://rfc-editor.org/rfc/rfc5785.txt,
April 2010. RFC 5785.

[HRN+08] Nils Hoeller, Christoph Reinke, Jana Neumann, Sven Groppe, Daniel Boeck-

mann, and Volker Linnemann. Efficient XML usage within wireless sensor

networks. In Xudong Wang and Ness B. Shroff, editors,WICON, ACM Interna-

tional Conference Proceeding Series, page 74. ICST, 2008.

[HRN+10a] Nils Hoeller, Christoph Reinke, Jana Neumann, Sven Groppe, Martin Lip-

phardt, B. Schuett, and Volker Linnemann. Stream-Based XML Template

Compression for Wireless Sensor Network Data Management. InMUE, pages

1–9. IEEE, 2010.

[HRN+10b] Nils Hoeller, Christoph Reinke, Jana Neumann, Sven Groppe, Christian

Werner, and Volker Linnemann. Efficient XML data and query integration in

the wireless sensor network engineering process. IJWIS, 6(4):319–358, 2010.

[Huf52] D. A. Huffman. A Method for the Construction of Minimum-Redundancy

Codes. Proceedings of the IRE, 40(9):1098–1101, Sept 1952.

[ISO93] ISO/IEC. ISO/IEC 11172-3:1993 - Information technology – Coding of moving

pictures and associated audio for digital storage media at up to about 1,5

Mbit/s – Part 3: Audio. Standard, International Organization for Standardiza-

tion, Geneva, CH, August 1993.

[JSA+18] Cullen Jennings, Zach Shelby, Jari Arkko, Ari Keränen, and Carsten Bormann.

Media types for sensor measurement lists (SenML). Internet-Draft draft-

ietf-core-senml-13, Internet Engineering Task Force, March 2018. Work in

Progress.

[Kal18] Riyad Kalla. Universal Binary JSON Specification. http://ubjson.org/,
2018. Last visited on July of 2018.

https://calhoun.nps.edu/handle/10945/45196
https://calhoun.nps.edu/handle/10945/45196
https://rfc-editor.org/rfc/rfc5785.txt
http://ubjson.org/

Section Bibliography 163

[KK12] Ronny Klauck and Michael Kirsche. Bonjour contiki: A case study of a dns-

based discovery service for the internet of things. In Xiang-Yang Li, Symeon

Papavassiliou, and Stefan Rührup, editors, Ad-hoc, Mobile, and Wireless

Networks - 11th International Conference, ADHOC-NOW2012, Belgrade, Serbia,

July 9-11, 2012. Proceedings, pages 316–329. Springer, 2012.

[KK13] Ronny Klauck and Michael Kirsche. Enhanced DNS message compression -

optimizing mdns/dns-sd for the use in 6lowpans. In 2013 IEEE International

Conference on Pervasive Computing and Communications Workshops, PER-

COM 2013 Workshops, San Diego, CA, USA, March 18-22, 2013, pages 596–601.

IEEE, 2013.

[KK14] Sebastian Käbisch and Richard Kuntschke. Leveraging efficient XML inter-

change (EXI) for filter-enabled data dissemination in embedded networks. In

Valérie Monfort and Karl-Heinz Krempels, editors,Web Information Systems

and Technologies - 10th International Conference, WEBIST 2014, Barcelona,

Spain, April 3-5, 2014, Revised Selected Papers, volume 226 of Lecture Notes in

Business Information Processing, pages 79–95. Springer, 2014.

[KKD18] Kazuo Kajimoto, Matthias Kovatsch, and Uday Davuluru. Web of things (wot)

architecture. Technical report, W3C, 09 2018. Last visited on October of 2018.

[Kle08] Dr. John C. Klensin. Simple Mail Transfer Protocol. https://rfc-editor.
org/rfc/rfc5321.txt, October 2008. RFC 5321.

[KMB13] Antonio D. Kheirkhahzadeh, John P. T. Moore, and Jiva N. Bagale. Xml-

compression techniques for efficient network management. InWorkshops

Proceedings of the Global Communications Conference, GLOBECOM 2013,

Atlanta, GA, USA, December 9-13, 2013, pages 996–1000. IEEE, 2013.

[KPA15] Sebastian Käbisch, Daniel Peintner, and Darko Anicic. Standardized and effi-

cient RDF encoding for constrained embedded networks. In Fabien Gandon,

Marta Sabou, Harald Sack, Claudia d’Amato, Philippe Cudré-Mauroux, and

Antoine Zimmermann, editors, The Semantic Web. Latest Advances and New

Domains - 12th European Semantic Web Conference, ESWC 2015, Portoroz,

Slovenia, May 31 - June 4, 2015. Proceedings, volume 9088 of Lecture Notes in

Computer Science, pages 437–452. Springer, 2015.

[KPED14] Rumen Kyusakov, Pablo Punal Pereira, Jens Eliasson, and Jerker Delsing.

EXIP: A framework for embedded web development. TWEB, 8(4):23:1–23:29,

2014.

[KPHK11] Sebastian Käbisch, Daniel Peintner, Jörg Heuer, and Harald Kosch. Optimized

xml-based web service generation for service communication in restricted

https://rfc-editor.org/rfc/rfc5321.txt
https://rfc-editor.org/rfc/rfc5321.txt

164 Bibliography

embedded environments. In Zoubir Mammeri, editor, IEEE 16th Conference

on Emerging Technologies & Factory Automation, ETFA 2011, Toulouse, France,

September 5-9, 2011, pages 1–8. IEEE, 2011.

[LDM05] Gregory Leighton, Jim Diamond, and Tomasz Müldner. AXECHOP: A

grammar-based compressor for XML. In 2005 Data Compression Conference

(DCC 2005), 29-31 March 2005, Snowbird, UT, USA, page 467. IEEE Computer

Society, 2005.

[LE07] Christopher League and Kenjone Eng. Type-based compression of XML data.

In 2007 Data Compression Conference (DCC 2007), 27-29March 2007, Snowbird,

UT, USA, pages 273–282. IEEE Computer Society, 2007.

[Lea15] Christopher League. RNGzip — type-based XML compression. https://
contrapunctus.net/league/haques/rngzip/, 2015. Last visited on July
of 2018.

[lGA] Jean loup Gailly and Mark Adler. The GZIP home page. http://www.gzip.
org/. Last visited on June of 2018.

[LHK16] Steve Liang, Chih-Yuan Huang, and Tania Khalafbeigi. OGC SensorThings

API Part 1: Sensing. http://docs.opengeospatial.org/is/15-078r6/
15-078r6.html, 2016. Last visited on June of 2018.

[Li10] C. Li. Advanced Applications and Structures in XML Processing: Label Streams,

Semantics Utilization and Data Query Technologies: Label Streams, Semantics

Utilization and Data Query Technologies. IGI Global research collection. IGI

Global, 2010.

[Lig16] Antonio Lignan. Zolertia Z1 mote. https://github.com/Zolertia/
Resources/wiki/The-Z1-mote, 2016. Last visited on April 2018.

[LMD05] Gregory Leighton, Tomasz Müldner, and James Diamond. Treechop: A tree-

based query-able compressor for xml. Technical report, In Proceedings of

the Ninth Canadian Workshop on Information Theory (CWIT, 2005.

[LRB17] Kepeng Li, Akbar Rahman, and Carsten Bormann. Representing constrained

RESTful environments (core) link format in JSON and CBOR. Internet-Draft

draft-ietf-core-links-json-09, Internet Engineering Task Force, July 2017. Work

in Progress.

[LS00] Hartmut Liefke and Dan Suciu. XMILL: an efficient compressor for XML data.

In Weidong Chen, Jeffrey F. Naughton, and Philip A. Bernstein, editors, Pro-

ceedings of the 2000 ACM SIGMOD International Conference on Management

of Data, May 16-18, 2000, Dallas, Texas, USA., pages 153–164. ACM, 2000.

https://contrapunctus.net/league/haques/rngzip/
https://contrapunctus.net/league/haques/rngzip/
http://www.gzip.org/
http://www.gzip.org/
http://docs.opengeospatial.org/is/15-078r6/15-078r6.html
http://docs.opengeospatial.org/is/15-078r6/15-078r6.html
https://github.com/Zolertia/Resources/wiki/The-Z1-mote
https://github.com/Zolertia/Resources/wiki/The-Z1-mote

Section Bibliography 165

[LZC13] Geraint Luff, Kris Zyp, and Gary Court. JSON Hyper-Schema: Hypertext

definitions for JSON Schema. Internet-Draft draft-luff-json-hyper-schema-00,

Internet Engineering Task Force, January 2013. Work in Progress.

[LZLY05] Yongjing Lin, Youtao Zhang, Quanzhong Li, and Jun Yang. Supporting efficient

query processing on compressed XML files. In Hisham Haddad, Lorie M.

Liebrock, Andrea Omicini, and Roger L. Wainwright, editors, Proceedings of

the 2005 ACM Symposium on Applied Computing (SAC), Santa Fe, New Mexico,

USA, March 13-17, 2005, pages 660–665. ACM, 2005.

[MF11] Alexey Melnikov and Ian Fette. TheWebSocket Protocol. RFC 6455, December

2011.

[MGC16] Jorge Berzosa Macho, Luis Gardeazabal, and Roberto Cortiñas. Efficient

Management of Data Models in Constrained Systems by Using Templates and

Context Based Compression. In Carmelo R. García, Pino Caballero-Gil, Mike

Burmester, and Alexis Quesada-Arencibia, editors, Ubiquitous Computing

and Ambient Intelligence - 10th International Conference, UCAmI 2016, San

Bartolomé de Tirajana, Gran Canaria, Spain, November 29 - December 2, 2016,

Proceedings, Part II, volume 10070 of Lecture Notes in Computer Science,

pages 332–343, 2016.

[MKB13] John P. T. Moore, Antonio D. Kheirkhahzadeh, and Jiva N. Bagale. Domain-

specific XML compression. In Ali Bilgin, Michael W. Marcellin, Joan Serra-

Sagristà, and James A. Storer, editors, 2013 Data Compression Conference,

DCC 2013, Snowbird, UT, USA, March 20-22, 2013, page 510. IEEE, 2013.

[MKB14] John P. T. Moore, Antonio D. Kheirkhahzadeh, and Jiva N. Bagale. Towards

markup-aware text compression. In Ali Bilgin, Michael W. Marcellin, Joan

Serra-Sagristà, and James A. Storer, editors, Data Compression Conference,

DCC 2014, Snowbird, UT, USA, 26-28 March, 2014, page 417. IEEE, 2014.

[Moc87] P. Mockapetris. Domain names - implementation and specification. https:
//rfc-editor.org/rfc/rfc1035.txt, November 1987. RFC 1035.

[Moo09] John Moore. Get stuffed: tightly packed abstract protocols in Scheme. In 10th

Scheme and Functional Programming Workshop, Boston, USA, 22 Aug 2009,

pages 111–115, 2009.

[Moo10] John Moore. Everything counts in small amounts. In Intl. Conf. on SIMULA-

TION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS Darm-

stadt (Germany) November 15-16, 2010, pages 273–283, 2010.

[MPC03] Jun-Ki Min, Myung-Jae Park, and Chin-Wan Chung. XPRESS: A queriable

compression for XML data. In Alon Y. Halevy, Zachary G. Ives, and AnHai

https://rfc-editor.org/rfc/rfc1035.txt
https://rfc-editor.org/rfc/rfc1035.txt

166 Bibliography

Doan, editors, Proceedings of the 2003 ACM SIGMOD International Conference

on Management of Data, San Diego, California, USA, June 9-12, 2003, pages

122–133. ACM, 2003.

[MS10] Sebastian Maneth and Tom Sebastian. Fast and tiny structural self-indexes

for XML. CoRR, abs/1012.5696, 2010.

[MTSG10a] Guido Moritz, Dirk Timmermann, Regina Stoll, and Frank Golatowski. encD-

PWS - message encoding of SOAP web services. In PerComWorkshops, pages

784–787. IEEE, 2010.

[MTSG10b] Guido Moritz, Dirk Timmermann, Regina Stoll, and Frank Golatowski. En-

coding and compression for the devices profile for web services. In AINA

Workshops, pages 514–519. IEEE Computer Society, 2010.

[MZP+09] Guido Moritz, Elmar Zeeb, Steffen Prüter, Frank Golatowski, Dirk Timmer-

mann, and Regina Stoll. Devices profile for web services in wireless sensor

networks: Adaptations and enhancements. In ETFA, pages 1–8. IEEE, 2009.

[net] Network configuration protocol (netconf) schema. https://www.iana.
org/assignments/xml-registry/schema/netconf.xsd. Last visited on
October of 2018.

[NLWL06] Wilfred Ng, Wai Yeung Lam, Peter T. Wood, and Mark Levene. XCQ: A

queriable XML compression system. Knowl. Inf. Syst., 10(4):421–452, 2006.

[Not10] M. Nottingham. Web Linking. RFC 5988 (Proposed Standard), October 2010.

[OA17] Olayinka O. Ogundile and Attahiru S. Alfa. A survey on an energy-efficient

and energy-balanced routing protocol for wireless sensor networks. Sensors,

17(5), 2017.

[OCF] OCF. Open Connectivity Foundation. https://openconnectivity.org/.
Last visited on June of 2018.

[ÖDE+06] Fredrik Österlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and Thiemo

Voigt. Cross-level sensor network simulation with COOJA. In LCN 2006, The

31st Annual IEEE Conference on Local Computer Networks, Tampa, Florida,

USA, 14-16 November 2006, pages 641–648. IEEE Computer Society, 2006.

[PB18] Daniel Peintner and Don Brutzman. EXI for JSON (EXI4JSON). W3C working

draft, W3C, 7 2018. Last visited on October of 2018.

[PPG14] Daniel Peintner and Santiago Pericas-Geertsen. Efficient XML Interchange

(EXI) Primer. Technical report, W3C, 4 2014. Last visited on October of 2018.

[Rel] Relax ng specification. Technical report.

https://www.iana.org/assignments/xml-registry/schema/netconf.xsd
https://www.iana.org/assignments/xml-registry/schema/netconf.xsd
https://openconnectivity.org/

Section Bibliography 167

[Ros07] Marcel-Catalin Rosu. A-SOAP: adaptive SOAP message processing and com-

pression. In 2007 IEEE International Conference on Web Services (ICWS 2007),

July 9-13, 2007, Salt Lake City, Utah, USA, pages 200–207. IEEE Computer

Society, 2007.

[SA11a] Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core.

RFC 6120, March 2011.

[SA11b] Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP):

Instant Messaging and Presence. RFC 6121, March 2011.

[SA15] Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP):

Address Format. RFC 7622, September 2015.

[SAC16] Peter Saint-Andre and Dave Cridland. Xep-0001: Xmpp extension protocols.

Technical report, XMPP Standards Foundation (XSF), 11 2016.

[Sak09] Sherif Sakr. XML compression techniques: A survey and comparison. J.

Comput. Syst. Sci., 75(5):303–322, 2009.

[SB10] Zach Shelby and Carsten Bormann. 6LoWPAN: The Wireless Embedded Inter-

net. Wiley Publishing, 2010.

[SCT13] Andy Stanford-Clark and Hong Linh Truong. MQTT for sensor networks

(MQTT-SN) protocol specification, version 1.2. Technical report, International

Business Machines Corporation (IBM), 11 2013.

[SEP] Zigbee smart energy profile 2.0. http://www.zigbee.
org/zigbee-for-developers/applicationstandards/
zigbeesmartenergy/. Last visited on October of 2018.

[SHB14] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol

(CoAP). RFC 7252 (Proposed Standard), June 2014.

[She12] Z. Shelby. Constrained RESTful Environments (CoRE) Link Format. RFC 6690

(Proposed Standard), August 2012.

[SHG13] Ioakeim K. Samaras, George Hassapis, and John V. Gialelis. A modified dpws

protocol stack for 6lowpan-based wireless sensor networks. IEEE Trans.

Industrial Informatics, 9(1):209–217, 2013.

[SHK+08] R. Senthilkumar, S. Daphne Hannah, A. Y. Raj Kumar, R. Joyson, and A. Kan-

nan. Rfxfreeze: A non-queriable compressor for rfx storage structure. In

2008 International Conference on Computing, Communication and Networking,

pages 1–5, Dec 2008.

http://www.zigbee.org/zigbee-for-developers/applicationstandards/zigbeesmartenergy/
http://www.zigbee.org/zigbee-for-developers/applicationstandards/zigbeesmartenergy/
http://www.zigbee.org/zigbee-for-developers/applicationstandards/zigbeesmartenergy/

168 Bibliography

[SJDT15] Cox Simon J D and Peter Taylor. OGC observations and measurements – JSON

implementation. https://portal.opengeospatial.org/files/64910,
2015. Last visited on March of 2018.

[SKB+18] Zach Shelby, Michael Koster, Carsten Bormann, Peter Van der Stok, and

Christian Amsüss. CoRE resource directory. Internet-Draft draft-ietf-core-

resource-directory-13, Internet Engineering Task Force, March 2018. Work

in Progress.

[Ski16] Przemyslaw Skibinski. XWRT (XML-WRT). https://github.com/inikep/
XWRT, 2016. Last visited on July of 2018.

[SKPK14] John Schneider, Takuki Kamiya, Daniel Peintner, and Rumen Kyusakov. Effi-

cient XML Interchange (EXI) Format 1.0 (Second Edition). Technical report,

W3C, 02 2014. Last visited on October of 2018.

[SML12] Tommy Szalapski, Sanjay Madria, and Mark Linderman. Tinypack XML: real

time XML compression for wireless sensor networks. In 2012 IEEE Wireless

Communications and Networking Conference, WCNC 2012, Paris, France, April

1-4, 2012, pages 3165–3170. IEEE, 2012.

[SNR15] Radha Senthilkumar, Gomathi Nandagopal, and Daphne Ronald. Qrfxfreeze:

queryable compressor for rfx. The Scientific World Journal, 2015, 2015.

[SS05] Hariharan Subramanian and Priti Shankar. Compressing XML documents

using recursive finite state automata. In Jacques Farré, Igor Litovsky, and

Sylvain Schmitz, editors, Implementation and Application of Automata, 10th

International Conference, CIAA 2005, Sophia Antipolis, France, June 27-29,

2005, Revised Selected Papers, volume 3845 of Lecture Notes in Computer

Science, pages 282–293. Springer, 2005.

[SS07] Przemyslaw Skibinski and Jakub Swacha. Combining efficient XML compres-

sion with query processing. In Yannis E. Ioannidis, Boris Novikov, and Boris

Rachev, editors, Advances in Databases and Information Systems, 11th East

European Conference, ADBIS 2007, Varna, Bulgaria, September 29-October 3,

2007, Proceedings, volume 4690 of Lecture Notes in Computer Science, pages

330–342. Springer, 2007.

[Tel] Cm5000 telosb. https://www.advanticsys.com/shop/
mtmcm5000msp-p-14.html. Last visited on October of 2018.

[TGC17] Vlad Trifa, Dominique Guinard, and David Carrera. Web thing model. Tech-

nical report, W3C, 04 2017. Last visited on June of 2018.

https://portal.opengeospatial.org/files/64910
https://github.com/inikep/XWRT
https://github.com/inikep/XWRT
https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html
https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html

Section Bibliography 169

[TH02] Pankaj M. Tolani and Jayant R. Haritsa. XGRIND: A query-friendly XML

compressor. In Rakesh Agrawal and Klaus R. Dittrich, editors, Proceedings

of the 18th International Conference on Data Engineering, San Jose, CA, USA,

February 26 - March 1, 2002, pages 225–234. IEEE Computer Society, 2002.

[Tol02] Pankaj M. Tolani. XGrind. http://xgrind.sourceforge.net/, 2002. Last
visited on July of 2018.

[Tom03] Vojtech Toman. Exalt (An Experimental XML Archiving Library/Toolkit).

http://exalt.sourceforge.net/, 2003. Last visited on July of 2018.

[Tom04] Vojtěch Toman. Syntactical compression of xml data. In Presented at 16th

Intl. Conf. on Advanced Information Systems Engineering (CAiSE’04, 2004.

[Uni15] International Telecommunication Union. ITU-T Recommendation X.690

(08/2015) - Information technology – ASN.1 encoding rules: Specification

of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distin-

guished Encoding Rules (DER) . Technical report, 2015.

[W3C] W3C. WEB OF THINGS AT W3C. https://www.w3.org/WoT/. Last visited
on June of 2018.

[WA18] Austin Wright and Henry Andrews. JSON schema: A media type for describ-

ing json documents. Internet-Draft draft-handrews-json-schema-01, Internet

Engineering Task Force, March 2018. Work in Progress.

[WAL18] Austin Wright, Henry Andrews, and Geraint Luff. JSON schema validation: A

vocabulary for structural validation of json. Internet-Draft draft-handrews-

json-schema-validation-01, Internet Engineering Task Force, March 2018.

Work in Progress.

[wc] webofthings.org community. WebOfThings.org. https://webofthings.
org/. Last visited on June of 2018.

[WD16] Peter Waher and Yusuke DOI. XEP-0322: Efficient xml interchange (EXI)

format. Technical report, XMPP Standards Foundation (XSF), 11 2016.

[WKB+07] G. White, J. Kangasharju, D. Brutzman, , and S. Williams. Efficient XML

Interchange Measurements Note. Technical report, W3C, 02 2007. Last

visited on October of 2018.

[WLLH04] Hongzhi Wang, Jianzhong Li, Jizhou Luo, and Zhenying He. Xcpaqs: Compres-

sion of XML document with xpath query support. In International Conference

on Information Technology: Coding and Computing (ITCC’04), Volume 1, April

5-7, 2004, Las Vegas, Nevada, USA, page 354. IEEE Computer Society, 2004.

http://xgrind.sourceforge.net/
http://exalt.sourceforge.net/
https://www.w3.org/WoT/
https://webofthings.org/
https://webofthings.org/

170 Bibliography

[WLS07] Raymond K. Wong, Franky Lam, and William M. Shui. Querying and main-

taining a compact XML storage. In Carey L. Williamson, Mary Ellen Zurko,

Peter F. Patel-Schneider, and Prashant J. Shenoy, editors, Proceedings of the

16th International Conference onWorld Wide Web, WWW 2007, Banff, Alberta,

Canada, May 8-12, 2007, pages 1073–1082. ACM, 2007.

[WS4] WS4D-uEXI. http://ws4d.org/2012/ws4d-uexi-available-as-open-source/.
Last visited on October of 2018.

[WWWCa] W3C World Wide Web Consortium. Document Object Model (DOM). https:
//www.w3.org/DOM/. Last visited on October of 2018.

[WWWCb] W3C World Wide Web Consortium. Document type definition (DTD). https:
//www.w3.org/TR/xml/. Last visited on October of 2018.

[WWWCc] W3C World Wide Web Consortium. Resource Description Framework (RDF).

https://www.w3.org/RDF/. Last visited on June of 2018.

[WWWCd] W3C World Wide Web Consortium. XML schema. https://www.w3.org/
XML/Schema. Last visited on October of 2018.

[ZC13] Kris Zyp and Gary Court. JSON Schema: interactive and non interactive

validation. Internet-Draft draft-fge-json-schema-validation-00, Internet Engi-

neering Task Force, January 2013. Work in Progress.

http://ws4d.org/2012/ws4d-uexi-available-as-open-source/
https://www.w3.org/DOM/
https://www.w3.org/DOM/
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xml/
https://www.w3.org/RDF/
https://www.w3.org/XML/Schema
https://www.w3.org/XML/Schema

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Document Structure

	Motivation Background
	The Internet of Things and Cyber-Physical Systems
	Towards IoT Interoperability
	Structured Data and Interoperability
	Compression of Structured Data
	Conclusions

	Related Work
	Text-Based Data Formats
	eXtensible Markup Language (XML)
	JavaScript Object Notation (JSON)

	Structured Data Compression
	Efficient XML Interchange
	Concise Binary Object Representation
	Protocol Buffers
	Other Proposals on Compression for Structured Data
	Compression of Protocols Over Text-Based Data Formats

	IoT Communication Protocols
	Constrained Application Protocol, CoAP
	MQTT
	XMPP
	Summary and Conclusions

	Context- and Template-based Compression (CTC)
	CTC Components
	Context Table
	Template Table
	Context Table and Template Table Creation
	Schema Mapping

	CTC Codification Algorithm
	Rules
	Example

	Summary and Conclusions

	CTC Communication Model
	Communication Architecture
	Schema Repository
	Schema Link Register Structure
	Schema Registration Management Abstract Methods

	CoAP Binding
	Schema Directory
	Schema Directory Registration Interface
	Schema Directory Lookup Interfaces
	Schema Directory Registration Deletion
	CTC Link Format

	Summary and Conclusions

	CTC Library
	Architecture and Components
	CTC Compiler
	CTC Compiler Example

	Summary and Conclusions

	Evaluation
	XML Compression Performance Evaluation
	First comparison: compression size
	Second comparison: processing time
	Third comparison: memory usage

	JSON Compression Evaluation
	XML, JSON and CTC comparison

	CTC Impact on Communication Performance
	Message Fragmentation
	Overhead of the schema register and download processes
	Direct impact on transmitted message quantity
	Long-term impact on transmitted message quantity

	Summary and Conclusions

	Conclusions
	Summary of the contributions
	Future Work

	Data formats: technical aspects
	XML Schema
	Basic Structure
	Built-in Data Types
	Complex Data Types
	Simple Data Types
	Global and Local Declarations
	Element Cardinality
	The any Declaration
	Schema Reuse

	JSON Schema
	JSON Schema Structure
	JSON Schema Validation Keywords
	keywords for numbers
	keywords for strings
	keywords for arrays
	keywords for objects
	keywords for any instance type
	Metadata keywords

	References

