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Abstract

This master’s thesis presents a new technique for creating monolingual and cross-lingual
meta-embeddings. Our method integrates multiple word embeddings created from com-
plementary techniques, textual sources, knowledge bases and languages. Existing word
vectors are projected to a common semantic space using linear transformations and aver-
aging. With our method the resulting meta-embeddings maintain the dimensionality of the
original embeddings without losing information while dealing with the out-of-vocabulary
(OOV) problem. Furthermore, empirical evaluation demonstrates the effectiveness of our
technique with respect to previous work on various intrinsic and extrinsic multilingual
evaluations.
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1 Introduction

1.1 Context

This master’s thesis is framed in the area of Natural Language Processing (NLP). Natural
language processing is a field of research in computer science, artificial intelligence and
linguistics, which studies how to model the human language by computational means.
NLP final purpose is making computers able to understand, interpret and manipulate
human language. Among the main challenges of natural language processing are speech
recognition, natural language comprehension and language generation. Among these great
challenges are tasks such as automatic translation or the extraction of information from
texts.

1.2 Introduction

Humans are really good understanding language and conversations. When someone says a
word like “bank” we are able to understand if the word is used in the context of a financial
institute or a river bank. At the same time, we are able to understand that works such
as “beautiful” and “pretty” have roughly the same meaning. We are also able to conclude
that if something is “good” is not “bad” since it cannot be both at the same time. We do
all these things thanks to logical, linguistic, commonsense reasoning and understanding.

To build machines able to understand natural language like we do, the first task is to
teach them the meaning of words. Encoding the meaning of words in a computer is the
most basic and at the same time more challenging task in NLP. Fortunately, during the
past few years, significant progress have been made in this field.

In classic NLP systems based on rules and statistics word are represented as discrete and
atomic units. If we use as example 1 the sentences “I like icecream” and “I love icecream”,
if we use a discrete variables to represent each word such one-hot vectors and we consider
that our vocabulary contains 4 words, we will represent “ ‘I” as [0,0,0,1], “like” as [0,0,1,0],
“love” as [0,1,0,0] and “icecream” as [1,0,0,0], using this encoding, “like” and “love” will be
two different words without any relation between them, they will be as different as “I”
and “icecream”. This type of representation does not encode any information about the
relations that could exits between different words, all that can encode is the presence or
absence of words in a sentence. Representing words as unique discrete variables does not
provide sufficient information to be able to develop systems that can successfully perform
complex natural language processing tasks.

Taxonomies or semantic networks are other classic approaches trying to represent the
meaning of words. WordNet (Miller, 1995) or ConceptNet (Speer et al., 2017) are examples
of such lexical knowledge bases. In the case of WordNet it stores hyperonymic relations
such as “A cat is an animal” and sets of synonyms. However, in WordNet if we search for
the synonyms of the word “expert” ’, we will find the words “adept”, “good”, “practiced”,
“proficient”, “skillful”. But the sentences “I am an expert in NLP” and “I am skillful in NLP”

1Example inspired by “Introduction to Word Embeddings and Word2Vec” by Dhruvil Karani
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do not share the exact same meaning. Another problem is that we cannot measure that
“good” can be more similar to “skilful” than to “expert” 2. These representations usually
suffer from another problem, they need to be developed and maintained by humans, which
require a huge amount of labour, makes very difficult to maintain the knowledge base
updated, and since the knowledge base is created by humans subjectivity becomes also a
problem.

Modern word semantic representation methods are based on the Distributional Hypoth-
esis (Harris, 1954). This hypothesis states that words that occur in the same contexts, tend
to have similar meanings. We can know the meaning of the word bank by the words that
appear in the same context, for example, if we refer to the financial entity sense, we will
find words such as “money”, “goverment”, “debs”, “regulation”, “crisis”, etc. The underly-
ing idea that “a word is characterized by the company it keeps” was popularized by Firth
(1957) and is one of the most successful ideas in NLP.

Based on the distributional hypothesis, many word representation methods have been
proposed. One of the first methods is the so-called “bag of words”. Words are represented a
large vector of numbers, in with each dimension is a measure of association between words
and a particular type of information, such as the document in which it appears, the words
next to which it appears, etc. This usually generates a very large matrix, where almost
all positions are zeros (sparse matrix), meaning that the dot product between almost all
the vectors will equal zero, providing us no useful information. This problem is solved
by applying dimensionality reduction algorithms (i.e Single Value Decomposition) that
transforms the large sparse matrix in a dense matrix with fewer dimensions (Deerwester
et al., 1990).

The breakthrough in word representations methods come with neural networks (Rumel-
hart et al., 1988; Bengio et al., 2003; Mnih and Hinton, 2009; Collobert et al., 2011). These
methods become popular after the word done by Tomas Mikolov and Dean (2013), who
developed word2vec, a toolkit for learning neural vector representations of words. These
type of models are called predictive models. Predictive models are based on the idea that
if we can predict in what context a word appears, then it means that we understand the
meaning of the word in its context. Predictive models attempt to directly predict a word
from its neighbours in terms of small, dense vectors that are learned during training. Words
are represented in vector spaces where semantically similar words will be found close to
each other. Figure 1 shows an example of a word embeddings in a 2-D vector space, we
can see that words that appear in similar contexts are close to each other. This type of
representations are known as “Word Embeddings”.

Using word embeddings as input, Neural Networks and Deep Learning methods have
become the most successful approach in current natural language processing. These mod-
els have been successfully applied to many complex tasks such as Question Answering
(Wang et al., 2017; Santoro et al., 2017; Kamath et al., 2019; Yoon et al., 2019), Machine
Translation (Bahdanau et al., 2014; Gehring et al., 2017; Vaswani et al., 2017), Word Sense

2Example borrowed from: “Natural Language Processing with Deep Learning” by Christopher Manning
and Richard Socher
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Figure 1: Example of Word Embeddings represented in a 2-D vector space (source:
https://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-
winners-interview-1st-place-alex-andreas-nurlan/)

disambiguation (Papandrea et al., 2017; Vial et al., 2019) or Semantic Role Labelling (Zhou
and Xu, 2015; Kozhevnikov and Titov, 2013; Marcheggiani and Titov, 2017) among many
others (Otter et al., 2018). While these models provide superior possibilities that classic
NLP approaches, almost all the models are supervised, this is, they require annotated data
for training. For many languages and domains there is not enough annotated data avail-
able or even there is not annotated data at all, this leads to inferior performance compared
to English. This is why recently the development of cross-lingual embedding has received
great attention. Cross-lingual embeddings are vector spaces that contain words for two or
more languages, words that have a similar meaning in both languages will be found close
to each other. Cross-lingual embedding provides a mechanism for transfer learning, that
is, train a model for a resource-rich language and transfer it to a low-resource language
(Upadhyay et al., 2016; Artetxe et al., 2018b; Goikoetxea et al., 2018).

On the other hand, there exists another line of research that follows the hypothesis
that different knowledge sources contain complementary semantic information (Goikoetxea
et al., 2016). Thus, several authors have tried to enhance the quality of distributional word
representations by incorporating information for knowledge bases (Halawi et al., 2012b;
Faruqui et al., 2015; Bollegala et al., 2016; Speer et al., 2017), languages (Vulić and Korho-
nen, 2016; Artetxe et al., 2017, 2018c) or both (Speer and Lowry-Duda, 2017; Goikoetxea
et al., 2018). Another way to improve word representations is to obtain an ensemble of
distinct word embeddings each trained using different methods and resources, and possibly
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containing complementary knowledge. This ensembles are know as “Meta-Embeddings”
(Yin and Schütze, 2016). While meta-embeddings show promising results, learning a sin-
gle meta-embedding from multiple sources remains a challenging task. The algorithms,
resources and languages used for learning the source word embeddings often differ signifi-
cantly and it is now obvious how to reconcile their differences. Previous approaches based
on concatenation (Goikoetxea et al., 2016) produce word meta-embeddings that suffer from
a much larger dimensionality, alternatives such as averaging (Coates and Bollegala, 2018)
or dimensionality reduction (Raunak, 2017) suffer or from loss of information.

The objective of our research is to explore the combination of word embeddings which
have been independently learned applying different techniques to different textual sources,
knowledge bases and languages by projecting all word embeddings to a common semantic
space using linear transformations and averaging.

1.3 Objectives

This Master’s Thesis is the continuation of the work done for in my final degree work
“Estudio de Word Embeddings y métodos de generación de Meta Embeddings” (Study of
Word Embeddings and methods of generating Meta-embeddings) (García-Ferrero, 2018),
where we studied the performance of different pre-trained word embeddings, normalization
methods and meta embedding generation methods in the word similarity task. The main
approach of this work was the development of a meta embedding generation method using
linear transformations Artetxe et al. (2018b) and averaging. The main objective of this
work is to extend the proposed method to the multi-lingual domain with two intentions.
The first one being able to improve the quality of the generated meta-embeddings by
ensembling representations in different languages. The second one is to use it as a transfer
learning mechanism, where pre-trained embeddings trained in a rich-resource language
can improve the quality of the pre-trained embedding from a low-resource language. In
the original research, we evaluated our embeddings in the word similarity task. Now,
we will extend the results evaluating the generated mono-lingual and cross-lingual meta-
embeddings in more challenging tasks: Semantic Textual Similarity (STS), Part-of-Speech
(POS) and Named Entity Recognition (NER).

The objectives of the research also include the development of the necessary software
for generating and evaluating word-embeddings. This software will be available under a
copyleft license in GitHub 3.

1.4 Structure of the Document

This document is divided in 7 sections bing the first one this brief introduction. The rest
of the sections are structured as follows:

• Section 2 presents and discuss the current state-of-the-art in the field of research.

3https://github.com/ikergarcia1996/
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• Section 3 presents and explains in-depth our proposed method for meta-embedding
generation.

• Section 4 presents an evaluation of different pre-trained word embeddings our meta-
embeddings and alternative meta-embedding generation method in the word sim-
ilarity task. We include monolingual and cross-lingual evaluations in English and
Spanish.

• Section 5 present a multilingual (Spanish and English) evaluation of different pre-
trained word embeddings and our meta-embeddings in the Semantic Text Similarity
task. In this section, we will also explore the transfer-learning capabilities of our
meta-embeddings.

• Section 6 presents a multilingual (Spanish and English) evaluation of different pre-
trained word embeddings and our meta-embeddings in the Sequence labelling task.

• Section 7 concludes, presents the main contributions of the work and discusses future
work.

______________________________________________________
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2 State of the art

This chapter will focus on the background of the project. We will divide it into four
sections. Section 2.1 explains in-depth word embeddings, their influence and applications,
the most relevant embedding generation methods and word embedding evaluation methods.
Section 2.2 describes the current state-of-the-art in meta-embedding generation methods.
In our project we made use of cross-lingual embeddings and word mapping methods, section
2.3 explains them. Finally section 2.4 describes the current state-of-the-art in contextual
embeddings methods.

2.1 Word Embeddings

Word embedding approach to distributional semantics by representing words as real num-
ber vectors. This representation has useful grouping properties. Semantically similar words
will appear closer in the vector space. For example, we expect words such as “cat” and
“dog” to be close, since both are animals, mammals and pets, but “cat” and “train” not
to be close since there is no a strong relationship between them. Therefore, words are
represented as vectors of real values, where each value captures a dimension of the word
meaning. The numerical value en each dimension captures the closeness of the associa-
tion of the word to that meaning. This causes semantically similar words to have similar
vectors.

Vector space models have been used in distributional semantics since the 1990s. Since
then, different models have been developed to estimate continuous representations of words,
one of the most relevant examples in Latent Semantic Analysis (LSA). The term word
embedding was originally conceived by Bengio et al. (2003), who trained a vector space
model using neuronal probabilistic model. However Collobert and Weston (2008) where
probably the first ones to demonstrate the power of word embeddings, they probed that
word embeddings are a highly effective tool in different types of tasks such as Semantic
Role Labelling (SRL), Named Entity Recognition (NER), Part-of-speech tagging (POS),
chunking and language modelling. They also proposed a neural network architecture in
which is the base for many modern approaches.

However, word embeddings were popularized and became an indispensable resource for
NLP largely thanks to the work done by Tomas Mikolov and Dean (2013) who released
“ ‘Word2Vec”, a tool to train and use word embeddings. A year later Pennington et al.
(2014) released GloVe, another toolkit for word embedding generation. From this moment
on, word embeddings have become one of the main building blocks in NLP.

2.1.1 Influence and Applications

Word embeddings are able to successfully capture lexical and semantic information about
words in terms of vectors than can be used as input for any machine learning algorithm.
Therefore, their use have spread rapidly and they are now a fundamental piece in the
architecture of all type of models that perform NLP tasks. The list of possible applications

______________________________________________________
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for word embeddings is huge. We will describe just some of the applications where word
embeddings have been very successful and have had a big impact.

• Automatic machine translation has been a topic of great interest since the very begin-
ning of computer science. For example, in 1954, the IBM 701 computer successfully
translated 49 sentences on the topic of chemistry from Russian into English. However,
classic machine translation approaches such as rule-based systems or statistics-based
systems were not able to produce wide coverage good quality machine translations
for all languages. In conjunction with neural network architectures, word embed-
dings have massively improved the quality of the machine translations (Edunov et al.,
2018). Modern neural machine translations systems such as Google Translate, DeepL
or Modela are able to provide high quality machine translations for many language
pairs.

• Text classification accuracy has been a field that has also massively improved thanks
to word embeddings and neural network architectures (Kowsari et al., 2019). This
has resulted in the development of customer service, spam detection, document clas-
sification systems or information retrieval systems with a a very high accuracy for
many domains.

• Question Answering systems is one of the faster-growing topics in NLP. Question
Answering has benefited enormously from modern deep learning techniques as well
as from the improvement made in the text classification and information retrieval
fields. This has resulted in very famous systems such as “Siri”, “Alexa” or “Google
assistant” that are used by millions of people around the globe.

• Automatic Text Summarisation is a field which has been gaining popularity in recent
years as a way to avoid the overload of information on the internet. Many modern
systems that made use of word embeddings and neural networks architectures are
able to achieve very good results in this task. Pointer-Generator Networks by Reddy
et al. (2019) is an example of these models.

These are just some examples of the influence and applications of word embeddings
among many others. Word embeddings have become the base of almost any NLP task.

2.1.2 Word Embedding Generation Methods

Since word embeddings began to popularize, many different methods to generate word
embeddings have emerged. In this section, we will present the most relevant methods to
generate words embeddings among the ones that we will use later in our empirical study.
The methods for generating word embeddings are usually accompanied by pre-calculated
word vectors. We used these pre-calculated word vectors in our experiments, so we will
also specify them in this section. We also include a short description of alternative meta-
embeddings that we used in our experiments.

______________________________________________________
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• Word2Vec (W2V) ((Tomas Mikolov and Dean, 2013)) implements two neural mod-
els: CBOW and Skip-gram. In the first, given the context of the target word, it tries
to predict it. In the second, given the word it tries to predict the context. The word
embedding of a word corresponds to the internal layers of the neural network. We
use the embeddings from Google News (100 billion words).

• GLOVE (GV) (Pennington et al. (2014)) unlike Word2Vec, is a counting-based
model. GloVe generates a large matrix where the information of the concurrency
between words and contexts is stored. That is, for each word we count how many
times that word appears in some context. The training goal of this matrix is to learn
vectors so that the scalar product between the words is equal to the logarithm of the
probability of co-occurrence between the words. As the number of contexts is very
high, a factorisation of the matrix is performed to obtain one of smaller dimensions.
In this way a vector that represents each word is obtained. In this report we include
the results of the Common Crawl pre-trained vectors (pre-trained on a corpus of 600
billion words). As the authors recommend, we have applied l2 normalization to its
variables to improve performance.

• FastText (FT) (Mikolov et al., 2018) is an extension of word2vec that treats each
word as the sum of its composing characters (ngrams). For the example, we will
calculate the vector for the word “apple” as the sum of the vectors for the ngrams
that form it ‘<ap, app, appl, apple, apple>, ppl, pple, pple>, ple, ple>, le>”. In
this way it is expected to obtain better representations for “ rare ” words, which have
very few appearances in the corpus of texts, and thus be able to generate vectors for
words that are not found in the vocabulary of the word embeddings. For English, we
used Common Crawl (pre-trained on a corpus of 600 billion words). For Spanish, the
model is trained on the Spanish Billion Word Corpus Cardellino (2016) with around
1.4 billion words.

• LEXVEC (LV) (Alexandre Salle and Villavicencio, 2016) is a model that seeks to
obtain better results thanks to the combination of GloVe and Word2Vec. The most
recent version uses context vectors. Context vectors seek to improve the performance
of word embeddings in analogy tasks. Usually, word embedding generation models
only take into account words within the context of the objective word. For example
in the sentence: “ ‘The big dog barked loudly” if the objective word is “ ‘dog”, the
context will be “ ‘(the, big, barked, loudly)”. Context vectors also take into account
the relative position of each word in the context relative to the objective word, for
example, the context in the previous example will be encoded as “(The−2, big−1,
barked1, loudly2).” It also implements the ngram approach from FastText. We have
used the vectors trained in the common crawl corpus using around 58 billion words.

• RWSGwn (UKB) (Goikoetxea et al., 2015): is a model that combines random walks
over WordNet (Fellbaum, 1998) with the skip-gram model. The random walks over
WordNet generate sentences of the type: “amphora wine nebuchadnezzar bear retain
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long”. The phrase begins with amphora, a container that is usually filled with wine.
Wine is the second word. Nebuchadnezzar is a particular bottle size. And the final
words are related to storage. In the original paper, the generated corpus is processed
by the skip-gram model to generate word embeddings. We have used the vectors
trained using WordNet3.0 plus gloss relations. Apparently using GloVe instead of
skip-gram improves the performance of the final embeddings, so by default we used
GloVe instead.

• Attract Repel (AR) Mrkšić et al. (2017) is an algorithm for improving the seman-
tic knowledge encoded in word embeddings created from textual corpora by injecting
synonymy and antonym constraints extracted from monolingual and cross-lingual
lexical resources. Attract-Repel is also able to use semantic relations extracted from
BabelNet (Navigli and Ponzetto, 2012) to inject constraints between words in differ-
ent languages to map vector spaces of multiple languages into a single vector space.
We used the English vocabulary from the published four-lingual (English, German,
Italian, Russian) vector space.

• Paragram (P) (Wieting et al., 2015) are pre-trained word vectors learned using word
paraphrase pairs from PPDB (Ganitkevitch et al., 2013) using a modification of the
skip-gram objective function. The hyperparameters were tuned using the wordsim-
353 dataset. The word embeddings of the default model are initialized with GloVe
word vectors.

• Numberbatch (N) (Speer et al., 2017): they claim to be the best pre-trained word
embeddings available. They combine knowledge encoded in ConcepNet, word2vec,
GloVe and OpenSubtitles 2016 using concatenation, dimensionality reduction (trun-
cated SVD) and a variation on retrofitting (Faruqui et al., 2015). We used Number-
batch version 17.06 in the experiments.

• JOINTChyb (J) (Goikoetxea et al., 2018) combines Random Walks over multilin-
gual WordNets and bilingual corpora as input for a modified skip-gram model that
forces equivalent terms in different languages to come closer during training. We
used the English-Spanish bilingual embeddings publicly available.

During our experiments we also tested other word embeddings for creating our meta-
embeddings such as PDC/HDC (Sun et al., 2015) or context2vec (Melamud et al., 2016)
without showing significant improvements over the ones shown in this section.

2.1.3 Word Embeddings Evaluation Methods

In the section 2.1.2 we have described many word embeddings generation methods, but
there are many more. Since word embeddings are the base for almost every NLP model,
a wide range of different approaches have been proposed for generating them. Evalua-
tion methods to determine the quality of the different word representations are necessary.
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These evaluation methods can be divided into two main groups: Intrinsic and Extrinsic
evaluations.

Intrinsic evaluations compare word embeddings against human judgements on words
relations. Manually generated sets of words are used to obtain human assessments. Then,
these assessments are compared with the ones obtained from the word embeddings. There
are two main alternatives to collect these assessments. The first one is using a limited set
of experts in the field to make judgements on a given data. The other one uses crowd-
sourcing platforms such as “Mechanical Turk”, where assessments can be collected from an
unlimited number of participants. Crowd-sourcing platforms allow the generation of huge
datasets thanks to the collaboration of a large number of persons. However, using experts
in the field can result in a better quality evaluation dataset. Many intrinsic evaluation
methods exist Bakarov (2018). We will describe the most common ones: word similarity,
word analogy, concept categorization, synonym detection and outlier word detection.

• Word similarity: This method is based on the idea that distances between words
could be evaluated through the human heuristic judgements on the actual semantic
distances between these words. For example, the distance between “house” and “flat”
defined in the continuous interval [0,1] could be 0.7 since both words are quite similar
although not exactly the same thing. The distances between pairs are also calculated
in the word embedding space. The more similar these results are to the human
judgements, the better are the word embeddings. This method will be explained
in-depth together with the datasets available in section 4 where we will perform an
evaluation of word- and meta-embeddings using this evaluation method.

• Word analogy. Word embeddings also seems to capture semantic regularities such
as word analogies as shown by (Mikolov et al., 2013b). A word analogy holds between
two word pairs: a:a* :: b:b* (a is to a* as b is to b*). For example, having the puzzle
Tokyo is to Japan as Paris is to b* the relation a:a* seems to be capital:country.
Thus, the word b* that we are looking for is France. Some of the most well-kown
dataset for word analogy are WordRep (Gao et al., 2014), BATS (Gladkova et al.,
2016), Google Analogy (Tomas Mikolov and Dean, 2013), SemEval-2012 (Jurgens
et al., 2012), MSR (Mikolov et al., 2013b), SAT (Turney et al., 2003) and JAIR
(Turney, 2008).

• Concept Categorization or word clustering. Given a set of words, the task is to
split them into subsets of words belonging to different categories. For example two
cluster seem to appear in dog, cat, hammer, screwdriver. One with the words dog and
cat that corresponds to animals and another one with hammer and screwdriver that
correspond to tools. The number of clusters is given by the dataset. The most well-
known datasets for the Concept Categorization task are BM (Baroni et al., 2010),
AP (Almuhareb, 2006), BLESS (Baroni and Lenci, 2011) and ESSLLI-2007 (Baroni
et al., 2008).

• Synonymy Detection is very close to the word similarity task. However, instead
of calculating a value for the similarity for a pair of words, the task is to determine
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which word from the list is more similar to a given one. For example, the most
similar word to cat given the list of words including dog, car, church and moon is dog
since both dog and cat are animals. The most well-known datasets for this tasks are
RDWP (Jarmasz and Szpakowicz, 2004), TOEFL (Landauer and Dumais, 1997) and
ESL (Turney, 2001).

• Outlier word detection is a similar task to concept categorization. However, the
goal is not to divide a set of words in a certain amount of clusters, but to identify
a semantically anomalous word in an already formed cluster. For example given the
cluster including elephant, car, cat, dog, giraffe and lion the outlier word is seems
to be car since all the words in the cluster are animals expect this one. The most
well-known datasets for this tasks are 8-8-8 Dataset (Camacho-Collados and Navigli,
2016) and WordSim-500 (Blair et al., 2016).

Extrinsic evaluations compare word embeddings based on the ability to be used as
vectors of characteristics on supervised automatic learning algorithms used in various NLP
tasks. The performance of the supervised method on a particular dataset is taken as a
measure of the quality of the word embedding. By definition, any NLP task where we have
a model that takes as input word embeddings and a dataset available for evaluating the
model is an extrinsic evaluation method. Therefore, the list of possible extrinsic evaluation
methods is very large since it combines every existing NLP task and system using word
embeddings. In our research we carried out some experiments on Semantic Textual Sim-
ilarity (Section 5) and Sequence labelling (Section 6) as evaluation methods for different
word- and meta-embeddings. Tasks, datasets and systems used are in-depth described in
their corresponding sections.

2.2 Word Meta-Embeddings

In this section, we revise previous research with meta-embeddings. Meta-embeddings have
been a field of study since the moment word embeddings became popular. Hill et al. (2014)
showed that word embeddings trained from monolingual or bilingual corpora capture dif-
ferent nearest neighbours, proving that they encode different knowledge. Yin and Schütze
(2016) where the first ones that proved the possibilities of meta-embeddings. By meta-
embedding five different pre-trained word embeddings, they show that we can overcome the
out-of-vocabulary problem, while improving the accuracy of cross-domain part-of-speech
(POS) tagging.

Although word embeddings are mainly constructed by exploiting information from text
corpora only as we shown in the section 2.1.2, some researchers tried to combine them
with the knowledge encoded in lexical resources such as WordNet (Halawi et al., 2012b;
Bollegala et al., 2016; Goikoetxea et al., 2016), PPDB (Faruqui et al., 2015) or ConceptNet
(Speer et al., 2017). Their work show improvements in performance when combining text
corpora and lexical resources, which seems to prove the hypotheses that they encode dif-
ferent knowledge that can be combined to create new word representations with improved
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quality. Moreover, Goikoetxea et al. (2016) show that simply concatenating word embed-
dings derived from text and WordNet outperform alternative methods such as retrofitting
(Faruqui et al., 2015) at the cost of increasing the dimensionality of the meta-embeddings.
Trying to overcome this issue Coates and Bollegala (2018) found that averaging is in some
cases better than concatenation, with the additional benefit of reduced dimensionality. The
most popular approach to address the dimensionality problem is to apply dimensionality
reduction algorithms such as SVD (Yin and Schütze, 2016), PCA (Ghannay et al., 2016)
or DRA (Raunak, 2017). In this line of work Numberbatch (Speer et al., 2017) claims
to be the best meta-embedding model generated so far. The meta-embedding combines
the knowledge encoded in ConcepNet, word2vec, GloVe and OpenSubtitles corpus using
concatenation, dimensionality reduction and a variation on retrofitting.

Other alternative approaches have also been proposed. Bollegala et al. (2017) proposed
an unsupervised locally linear method for learning meta-embeddings from a given set of pre-
trained source embeddings. Bollegala and Bao (2018) propose three types of autoencoders
to learn meta-embeddings. Autoencoders are a type of artificial neural network used to
learn efficient data encoding in an unsupervised manner.

2.3 Cross-lingual embeddings

In previous sections, we have discussed how monolingual word embeddings have proven to
be extremely useful across a wide range of NLP applications. However, these monolingual
word representations are only suitable for mono-lingual tasks. Cross-lingual word embed-
dings is a research line that has attracted a lot of attention in recent times. Cross-lingual
word embeddings represent words from different languages in the same vector space in
such a way that words with similar meaning in different languages may appear close to
each other. Section 2 shows an English-Italian example. In the left image, we can see
how the two monolingual word embeddings are unaligned. This representation does not
provide any useful knowledge about the relations between words in both languages. How-
ever, in the image to the right both monolingual embeddings have been projected into a
joint cross-lingual embedding space. Words with similar meaning in both languages tend
to appear close to each other. This can provide us with a lot of information about the
relationship between words in both languages. For example, we can use these cross-lingual
word representations to measure which is the most similar word in English for a given
Italian word.

Cross-lingual embeddings are useful for two main reasons. The first one is that they
enable us to compare word meaning across languages, which is key for bilingual lexicon
induction, machine translation, or cross-lingual information retrieval among others. Sec-
ond, although many NLP models based on deep learning techniques have achieved very
good results for many tasks, they require huge amounts of annotated data for training.
For many languages and domains, there is not enough annotated data available or even
there is not annotated data at all. This leads to inferior performance compared to En-
glish. Cross-lingual embeddings enable model transfer learning between languages, that
is, transfer the knowledge learned in a resource-rich language to a low-resource language.
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Figure 2: Unaligned monolingual word embeddings (left) and word embeddings projected
into a joint cross-lingual embeddings space (right). Source: “A survey of cross-lingual word
embedding models” by Ruder et al. (2017)

Transfer-learning allows using a resource-rich language to improve the accuracy of a task
in a low-recourse language where not enough data is available to successfully train the
required NLP models. Cross-lingual transfer learning (Lin et al., 2019) has been proved
to improve the performance in several NLP task, including machine translation (Neubig
and Hu, 2018; Nguyen and Chiang, 2017; Johnson et al., 2016), parsing (Ponti et al.,
2018; Ahmad et al., 2018), part of-speech or morphological tagging (Plank and Agic, 2018;
Malaviya et al., 2018), named entity recognition (Xie et al., 2018; Agerri et al., 2018) and
entity linking (Rijhwani et al., 2018) among others.

Many models for learning cross-lingual embeddings have been proposed in recent years
(Ruder et al., 2017). One of these methods is using parallel corpora in different languages
(Luong et al., 2015) or some sort of bilingual signal (Mogadala and Rettinger, 2016). How-
ever, these resources may not available for many language pairs. An alternative approach
seeks to remove the necessity of using bilingual data. This approach independently trains
the embeddings for each language using monolingual corpora and then learns a linear trans-
formation to map one embedding into the other based on a bilingual dictionary. In our
research, we take advantage of these mapping methods to generate our meta-embeddings.
More precisely, we apply VecMap by Artetxe et al. (2016) for creating meta-embeddings.

2.3.1 Mapping Word Embedding

In this section, we discuss different approaches applied for mapping word embeddings
learned independently from different languages.

Word embeddings mapping methods seek to project independently learned mono-lingual
word representations to a common cross-lingual vector space. Mikolov et al. (2013a) learns
a linear transformation minimizing the sum of squared Euclidean distances of the word
vectors. This approach was later improved and expanded by other authors Zhang et al.
(2016); Lazaridou et al. (2015); Xing et al. (2015). Instead of using a linear transformation
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from the source language to the target language, other authors use canonical correlation
analysis (CCA) to map both languages to a common space (Faruqui and Dyer, 2014; Lu
et al., 2015). Artetxe et al. (2016) propose a general framework that clarifies the rela-
tion between the previous work as variants of the same core optimization problem. They
propose a new method called VecMap that surpasses them all. However, these methods
made use of large bilingual dictionaries, that may not be available for many language pairs.
Recent research has focused on using much smaller dictionaries (Artetxe et al., 2017) or
even no dictionary at all (Conneau et al., 2017; Artetxe et al., 2018b).

Word Embeddings mapping methods have been successfully applied to cross-lingual
meta embedding generation. Doval et al. (2018) tries to improve the cross-lingual word
embeddings generated by VecMap (Artetxe et al., 2018c) and MUSE (Conneau et al., 2017)
by averaging the source embeddings after its mapping to a common vector space. Our
method extends this approach by combining into a single meta-embedding any number of
monolingual and cross-lingual source embeddings created from complementary techniques,
textual sources, knowledge bases and languages. Existing word vectors are projected to a
common semantic space using linear transformations and averaging. We also extend the
method to generate word representations that are missing in some of the source embeddings.
This allows us to improve the cross-lingual mapping and the quality of the final meta-
embeddings. As a consequence, the performance improves for both intrinsic and extrinsic
mono-lingual and cross-lingual evaluations. In addition, we can use cross-lingual transfer
learning to exploit pre-trained source embeddings from a resource-rich language in order
to improve the word representations for under-resourced languages.

2.4 Contextual Embeddings

Word embeddings have been proven useful and even essential in many NLP task. However,
all the embeddings generation methods such as the ones described in section 2.1.2 generate
a unique and a static representation for each word. For example, we only have a repre-
sentation for the word bank. However, bank has a very different meaning in the following
sentences 4:

1. A bank of clouds was building to the northeast.

2. Her bank account was rarely over two hundred.

3. She sat on the river bank across from a series of wide, large steps leading up a hill
to the park where the Arch stood, framed against a black sky.

4. Deidre’s gaze was caught by the bank of windows lining one side of the penthouse.

5. Mr. Catlin at the bank says he’s as honest as they come.

6. ATMs replaced human bank tellers, so they are called "Automated Teller Machines.
4Examples borrowed from https://sentence.yourdictionary.com/bank
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In each sentence the word bank have a different meaning. However, using static word
embeddings, all instances of bank will share the same word representation. Alternatively,
we can also use sense embeddings (Iacobacci et al., 2015). Furthermore, even if they
refer to the same sense (e.g. financial institution), two appearances of the word bank can
still not have exactly the same meaning. Contextualized word embeddings obtain different
word representations depending on the context. The sequence tagger of Li and McCallum
(2005) is one of the first works employing contextualized word representations. The model
infers context-sensitive latent variables for each word using clustering and integrates them,
as additional features, to a sequence tagger. However, contextual word representations
become a research field after the introduction of word embeddings and their proven efficacy
as input for neural networks. Context2vec by Melamud et al. (2016) is one of the first and
one of the most relevant proposals for contextualized word representations. The model
represents the context of a target word by extracting the output embedding of a multi-layer
perceptron built on top of a bi-directional LSTM language model. Context2vex focuses on
using contextualized word representations as input for downstream tasks with the objective
of improving their accuracy. Context2vec is the base for many of the subsequent works.

The work that popularized and proved the power of contextualized word representations
is ELMo by Peters et al. (2018). ELMO uses use language models to obtain embeddings
for individual words while taking the entire sentence or paragraph into account. These
representations are later used as input in a wide variety of NLP downstream tasks. Con-
cretely, ELMo uses a pre-trained, multi-layer, bi-directional, LSTM-based language model
and extract the hidden state of each layer for the input sequence of words. LSTM-based
language models is a model that can predict how likely a certain sequence of words is a real
piece of text. ELMo trains this LSTM-based language model by trying to predict the next
word in a given sequence of words. ELMo is trained using a massive amount of unlabelled
training data. ELMo suppose a significant step forward in NLP achieving state-of-the-art
results in a wide variety of tasks including Question Answering, Natural Language In-
ference, Semantic Role Labelling, Coreference Resolution, Named entity recognition and
Sentiment Analysis.

LSTMs in which ELMo is based, have been successfully applied in NLP for many
years. Recently, instead of LSTMs Vaswani et al. (2017) presented a new architecture
called transformer for machine translation. Transformer seems to deal better than LSTMs
with long-term dependencies. BERT by Devlin et al. (2019) is a language model similar
to ELMo that replaces the LSTM architecture by a transformer. BERT supposed another
step forward in NLP improving the state-of-the-art results previously achieved by ELMo.

After ELMo and BERT proved the efficacy of contextualized word representations many
other models emerged. All of them introducing improvements in the transformer architec-
ture and mainly increasing the computational resources and training data used. The most
well-known models are GPT2 by Radford et al. (2019). They generated a great controversy
in the NLP community after they decided not to release their biggest pre-trained model
claiming that it was so good that it could be dangerous (its text generation capabilities
could be used to generate a huge amount of artificial content on the internet). XLNet (Yang
et al., 2019), an improvement of the BERT architecture, achieves even better results.
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Figure 3: Contextualized word embeddings give words a different emebdding based on the
meaning they carry in the context of the sentence. Source: “The Illustrated BERT, ELMo,
and co.” by Jay Alammar. http://jalammar.github.io/illustrated-bert/

Contextualized word representations have achieved new state-of-the-art results for every
NLP task while taking into account the context of the words is necessary. However, training
these models require a huge amount of data and computational resources that may be not
easily accessible. Although these models are usually provided as pre-trained models to be
incorporated into downstream tasks, they are not available for every language and domain.

We tested our meta-embeddings in the Semantic Text Similarity task (Section 5) and
in the Sequence labelling task (Section 6) in order to compare our new meta-embeddings
with respect existing word- and meta-embeddings, not for obtaining new state-of-the art
performances on these tasks.
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3 A Common Semantic Space for Meta-Embeddings
In this chapter we describe our method for word meta embedding generation (Section 3.1)
and its advantages against alternative methods (Section 3.2).

In the work done for my final degree work Estudio de Word Embeddings y métodos de
generación de Meta Embeddings García-Ferrero (2018), we found that current methods for
creating meta embedding face multiple problems. Concatenation is able to combine word
embedding from different sources without losing information. However, the resulted meta
embedding has as many dimension as the sum of the dimension of the source embeddings.
The resulting meta-embeddings have a very high dimensionality and are not suitable for
its use in a real NLP tasks. Other methods, such as dimensionality reduction or averag-
ing are able to overcome this problem at the cost of losing information and reducing its
performance.

We proposed a new algorithm to generate meta-embeddings which consists of three
steps: (i) aligning the vector spaces using VecMap (Artetxe et al., 2018b), (ii) creating
new representations for OOV words and, (iii) averaging the resulting word embeddings.

In this thesis, the original algorithm has been generalized to create multi-lingual meta-
embeddings by combining mono-lingual and multi-lingual source embeddings in different
languages. Additionally, the original algorithm has also been completely rewritten and
optimized. First, it takes advantage of modern GPUs or CPUs with multiple cores. Second,
the new algorithm offers much lower memory usage. It does not require to load all the word
embeddings at the same time. For instance, the original algorithm last 2 days5 combining
the English pre-trained FastText embedding and the English pre-trained UKB embedding
(the ones described in the section 2.1.2). The new code can combine these two embeddings
in less than 30 minutes using the same system. This allowed us to make many more
experiments on the same amount of time.

Now, our method can combine any number of word embeddings generated with any
technique, source or language as long as there is some common vocabulary between them.
The resulting meta-embedding vocabulary will be the union of the vocabularies of the word
embeddings used.

3.1 Method explanation

Our approach to create meta-embeddings consists of three steps: (i) aligning the vector
spaces using VecMap, (ii) creating new representations for OOV words and, (iii) averaging
the resulting word embeddings.

3.1.1 VecMap

Artetxe et al. (2016) presents a method that learns bilingual mappings between word
embeddings. VecMap first applies a normalisation to the word embeddings and then

5On a system with 2x Intel Xeon E5-2640 v4 (40 threads in total) and a GTX Titan X and 64GB of
RAM

______________________________________________________
Language Analysis and Processing



A Common Semantic Space for Meta-Embeddings 18/58

an orthogonal transformation. Orthogonality allows monolingual invariance during the
mapping, preserving vector dot products between words. Monolingual invariance makes
Vecmap a suitable method for generating meta-embeddings since it is not causing loss of
information after the mapping. Recent versions of VecMap introduce multiple steps to im-
prove bilingual mappings (Artetxe et al., 2018a). However, for meta-embedding generation,
the best approach seems to be just applying, as a preprocessing step, length normalisation
and mean centering to the original word embeddings (Step 0 as described in Artetxe et al.
(2016)), and then just applying an orthogonal mapping (Step 2). In this way, we are able
to sequentially project to a common space any number of word embeddings6.

Although VecMap has the ability to induce bilingual dictionaries (Artetxe et al., 2018c)
for meta-embedding generation, our source word embeddings will always have some vocab-
ulary in common (otherwise we cannot generate a meta-embedding). Thus, we generate
the mapping dictionaries as the intersection of the vocabulary of the word embeddings to
be ensembled.

3.1.2 OOV treatment

When combining word embeddings we need to deal with the problem of having a missing
word embedding in one of the source embeddings. In this case, one source embedding E1
has a representation for the word W while another source embedding E2 does not have a
representation for that word. Inspired by Speer et al. (2017), once placed in a common
space, we approximate a synthetic representation for a missing word (W) in one source
embedding (E2) by using the ten most similar word representations of W in the other
source embedding (E1). That is, first we calculate the set of ten nearest neighbours of W
by cosine similarity in E1. Second, we obtain the corresponding embeddings in E2 of the
set of nearest neighbour words. Finally, we assign the centroid in E2 of this set of nearest
neighbours as the new word representation for W in E2. In this way, we ensure that both
source representations have the same vocabulary placed in a common space.

3.1.3 Averaging

Finally, once projected two source word embeddings to a common space, we still need to
combine them into a single word representation. The simplest way is by averaging the two
projected word representations.

It should be noted that when generating cross-lingual meta-embeddings we also apply
exactly the same process described in Section 3.1 with at least one source cross-lingual
embedding. That is, projection (3.1.1), OOV generation (3.1.2) and averaging (3.1.3).
After projecting both embeddings to the same common space using VecMap, for every
missing word in both source embeddings, we first apply the same OOV generation process
described above and, secondly, we apply averaging. Thus, when combining a monolingual
Spanish embedding and a cross-lingual one, we will also create new synthetic embeddings
for all missing words in the corresponding sets (possibly new English word embeddings in

6As a target common space we can use any of the ones provided by the original word embeddings.

______________________________________________________
Language Analysis and Processing



A Common Semantic Space for Meta-Embeddings 19/58

the Spanish set and possibly some new Spanish word embeddings in the cross-lingual set).
Thanks to this, the meta-embedding creation process can help to improve both languages.
This is specially interesting when good representations are available only for one language.

3.2 Advantages

We consider that in addition to the experimental results that we will provide in the following
sections, it is also important to describe the rationale behind the method and why it is
superior to alternative approaches.

3.2.1 No information loss

We know that the concatenation (assuming that all the vectors are normalized to have the
same length) can combine any number of source embeddings without loss of information,
since none of the source embeddings is altered in the final embedding. Coates and Bollegala
(2018) proved that the concatenation and the average hold a strong relationship. More
precisely, lets suppose that we have the embeddings E1 and E2 with the same number
of dimensions d and we want to calculate the euclidean distance between the words u
and v. We denote the euclidean distance between u and v in both embeddings as DE1

and DE2 . If we concatenate both embeddings, the resulting euclidean distance will be√
(DE1)

2 + (DE2)
2 − 2DE1DE2cos(Θ). We can express the concatenation of two vectors

as the sum of the two vectors padding one of them d position to the right and the other
one d to the left, this means that the vectors are orthogonal to each other, that is if we
calculate the dot product between them we will obtain 0, so in the previous expression
−2DE1DE2cos(Θ) equals 0. We can simplify it as follows

√
(DE1)

2 + (DE2)
2. On the

other side, if we average both embeddings the resulting euclidean distance will also be√
(DE1)

2 + (DE2)
2 − 2DE1DE2cos(Θ), however in the case of averaging we can not assume

that the vector are orthogonal, so the term −2DE1DE2cos(Θ) if what differentiates the
concatenation and the average. Coates and Bollegala (2018) mathematically prove that
this term should be a small number without a big impact in the final result, but in the
experiments that we did in our previous research work García-Ferrero (2018) we found that
in practice, average offers significantly worse performance than concatenation.

Mapping the source embeddings to the same vectors space the average becomes equal to
the concatenation. Thanks to this we can obtain the same results than the concatenation
without increasing the dimensionality of the resulted meta embedding.

3.2.2 OOV handling

Each source word embedding use to have a different vocabulary since it has been trained on
different resources. They use to share many common words, but many uncommon words
are not present in every word embedding set making the combination difficult. The easier
approach is to just discard them, but this approach results on a meta embedding with
a smaller vocabulary that the source embeddings. A good meta embedding combination
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method should be able to handle OOV words correctly and generate a meta embedding
that contains all the words from all the source embeddings (the union of the vocabularies
of the source embeddings).

Let’s imagine that we have the source embeddings E1, E2, E3 and E4 and we want
to combine them by averaging, but E3 does not have a representation for the word u. If
we just average the representations for u from the other 3 source embeddings, the result
vector will be located in a different vector space than the vectors for the rest of the words,
making this word vector useless for any future calculation. However, if we normalize all the
embeddings to have the same length and we map all the embeddings to the same vector
space, we expect the representation for u in all the embeddings to be very close. This
means that if E3 would have had a representation for u it would have been very similar
to the representation for u in the rest of the source embeddings, so now the average of
the representations for u in E1, E2 and E4 will be a good approximation of the result
that we would have obtained if E3 would have had a representation for u. The embedding
mapping by its own is a good OOV handling method. In our research we found that we
can further improve the results using the OOV generation algorithm described in Section
3.1.2 to generate an approximate representation for u in E3 (Section 4.2.1).

3.2.3 Combine everything!!

Our methods allows combining any word embedding from any source, method and lan-
guage. We can combine embeddings trained using text corpora and embeddings trained
using knowledge-based methods. Or even we can combine monolingual embeddings in
different languages with multi-lingual embeddings. The combination can be done by just
writing one command in a terminal and we just need to decide one hyperparameter, which
is the vector space to which we will map all the source embeddings (can be any of the
source pre-trained word embeddings). In our experiments, we found that the vector space
chosen to map all the embeddings does not have a significant impact on the performance.
Also, our method will generate the meta-embeddings very fast compared to other previ-
ously proposed methods. None of the meta embedding generated in this research took
more than 6 hours.
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4 Word Similarity Experiments

In this chapter we will describe the word similarity task (Section 4.1), the datasets that
we use for this task (Section 4.1.1), the methodology for evaluating word embeddings and
meta-embeddings (Section 4.1.2) and the results obtained (Section 4.2.2). Finally Section
4.3 concludes with a short summary of the chapter.

4.1 Word Similarity

Word Similarity is an intrinsic evaluation task. We compare our word embeddings against
human judgements on words relations. This method is based in the idea that distances
between words could be evaluated through the human judgements on the actual seman-
tic distances between these words. For example the distance between “house” and “flat”
defined in the continuous interval [0,1] could be 0.7 since both words are similar, but not
exactly the same thing. The distances between pairs are also calculated in the word em-
bedding space. The more similar these results are to the human judgements, the better are
the embeddings. This method roots back to 1965 when trying to test the distributional
hypothesis. Rubenstein and Goodenough (1965) conducted a test on human judgements
on word semantic similarity. This way, datasets to evaluate word similarity provide a set
of pairs of words with the corresponding score given by humans. This score is known as
gold standard. Listing 4.1 shows the first ten pairs of words from the MTurk-287 dataset
as an example of a word similarity dataset. In this dataset the similarity is defined in
the continuous interval [0,5]. In the example we can see that the words mistake and error
receive a high similarity score, since they are almost synonyms. However, the score is not
5 because they do not have the exact same meaning. On the other side, latin and credit
receive a low similarity score because their meaning is not similar or related. This dataset
evaluates semantic relatedness as shown by the pair plays and losses. These words have
not a similar meaning. However they have a high similarity score in this dataset because
there is a strong relation between them (when you play a game, you can loose).

1 episcopal russia 2.75
2 water shortage 2.714285714
3 horse wedding 2.266666667
4 plays losses 3.2
5 classics advertiser 2.25
6 latin credit 2.0625
7 ship ballots 2.3125
8 mistake error 4.352941176
9 disease plague 4.117647059

10 sake shade 2.529411765

Listing 1: Example of a word similarity dataset: 10 first pairs of words from the MTurk-287
dataset

This method has become one of the most popular methods for evaluating word em-
beddings because it is computationally inexpensive and fast. However it is also criticized,
specially for the subjective factor in of the human judgements. Linguistic, psychological,
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social factors or even the assessors getting tired can influence the judgement. Another
strong criticism is the ambiguity of the task since different definitions for “semantic simi-
larity” are given by different authors (Faruqui et al., 2016).

4.1.1 Datasets

In this section we describe the datasets that we use for evaluating word embeddings and
meta-embeddings.

As explained in the Section 4.1 different authors give different definitions for semantic
similarity. This means that datasets notably differ from each other. The datasets available
for the task can be divided in two main groups. The ones that measures semantic simi-
larity and the ones that measure semantic relatedness. Datasets that study the similarity
between words generally capture synonymy relationships between words. Sometimes also
hyperonymy and hyponymy relationships. Let’s use as an example the pair of words coast
and shore that are synonyms. In a dataset that measures semantic similarity this pair will
have a very high score. In a dataset that measures semantic relatedness they will also
have a very high scores since being synonyms means that a strong relationship between
exists. However, if we use as an example the pair of words clothes and closet in a dataset
measuring semantic word similarity they will have a very low score. clothes and closet are
not similar in any way since they are completely different objects. However in a dataset
measuring semantic relatedness they will have a high score since they hold a strong rela-
tionship, people generally store their clothes in a closet. 7. Section 1 at the end of this
chapter summarizes this classification.

In our evaluation we used all the datasets available for the word similarity task. We
will briefly describe them:

1. SimVerb-3500 (Gerz et al., 2016). 3500 pairs of verbs, judged by semantic similarity,
on a scale from 0 to 4.

2. MEN Bruni et al. (2014) (Acronym for Marco, Elia, and Nam). 3000 pairs of words
judged by semantic relatedness on a scale from 0 to 50. This dataset is divided into
three sets, one of them with the objective to be used as training for different types
of algorithms, another with the objective to be used as a test, and another that
combines both, we use the last one in our evaluation.

3. RW (Luong et al., 2013) (Acronym for Rare Words), 2034 pairs of words, with the
peculiarity that they are rarely used words, with few appearances in the training
corpus. The pairs are judged by semantic similarity on a scale from 0 to 10.

4. SimLex-999 (Hill et al., 2015). 999 pairs of words judged very strictly by semantic
similarity on a scale of 0 to 10.

5. MTurk-771 (Halawi et al., 2012a) (Acronym for Mechanical Turk), 771 pairs of words
judged by semantic relatedness on a scale from 0 to 5.

7Example borrowed from: https://fh295.github.io/simlex.html
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6. MTurk-287 (Radinsky et al., 2011). (Acronym for Mechanical Turk), 287 pairs of
words judged by semantic relatedness on a scale from 0 to 5. The pairs of word in
this dataset differ from the ones in the MTurk-771 dataset.

7. WordSim-353 (Finkelstein et al., 2002). 353 pairs judged by semantic similarity on
a scale of 0 to 10. The original, in which the dataset is divided into two sets, called
set1 and set2. However, many researchers consider that the instructions given to
the judges on similarity and association were ambiguous, causing both to be mixed
in the evaluation. So there is a second division proposed by Agirre et al. (2009)
where the 353 words are divided into two subsets. One whose pairs are focused
on measuring the semantic similarity between words and the other whose pairs are
focused on measuring the semantic relatedness between words. We use the latest
proposed subsets in our results.

8. Verb-142 (Baker et al., 2014). 143 pairs of verbs judged by semantic similarity on a
scale from 0 to 4.

9. YP-130 (Yang and Powers, 2005) (Acronym for Yang and Powers), 130 pairs of verbs
judged by semantic similarity on a scale from 0 to 4.

10. RG-65 (Rubenstein and Goodenough, 1965). (Acronym for Rubenstein and Goode-
nough). 65 pairs of words judged by semantic similarity on a scale of 0 to 4.

11. MC-30 (Miller and Charles, 1991). (Acronym for Miller and Charles) a subset of
RG-65 containing 10 pairs with high semantic similarity, 10 with medium semantic
similarity and 10 with low similarity.

12. SemEval-2017 (Camacho-Collados et al., 2017). 500 pairs assessed by semantic simi-
larity with a scale from 0 to 4. This dataset was prepared for the SemEval-2017 Task
2 (Multilingual and Crosslingual Semantic Word Similarity). This dataset contains
not only words, but also collocations such as “autonomous car”, since our embeddings
contain representation for individual words, not collocations, we exclude collocations
from the evaluation reducing the dataset to 388 pairs.

4.1.2 Methodology

In this section we describe the methodology that we follow to evaluate word embeddings
or meta-embeddings.

We follow the same well-standardized methodology used in previous research. The
similarity between two words has been calculated as the cosine similarity between their
word representations. The correlation betweeen the similarities calculated using the word
embeddings and the gold scores calculated by humans provided by the datasets has been
calculated using Spearman Correlation Spearman (1904).

Cosine similarity = cos(xxx,yyy) = xxx·yyy
||xxx||·||yyy||
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Datasets
Semantic Similarity Semantic Relatedness

SimVerb-3500 MEN
RW MTurk-287

SimLex999 MTurk-771
WS353 similarity WS353 relatedness

Verb 143
RG 65
MC30

SemEval-2017

Table 1: Datasets classified by the semantic properties that they measure (Semantic simi-
larity or Semantic Relatedness)

However while this procedure is well-standardized, the methodology to deal with Out-
of-Vocabulary (OOV) words is not. When evaluating word embeddings in a word similarity
dataset we usually face the OOV, since the embedding may not have a representation for
every word in the dataset.

Embedding Cov. All Cov. Rel Cov. Sim
W2V 97.4 98.3 97.3
GV 99.8 100 99.7
FT 99.8 100.0 99.7
UKB 89.0 94.4 87.3
AR 94.2 99.7 92.1
P 91.8 97.1 90.2
LV 99.6 100.0 99.5

Table 2: Coverage in the word similarity datasets

Table 2 shows the coverage of the word embeddings in the word similarity datasets.
UKB presents the lower coverage while FastText almost full coverage. Previous research
differ on how to deal with this problem. Some researchers assign an arbitrary vector for
the missing word (a zero vector or the average of all word embeddings in the vocabulary).
Other researchers prefer to assign a predefined similarity (i.e. 0.5) to all the pairs where
we have an OOV word. Others prefer not taking into account the pairs of words when
there is no representation for at least one of the words. We adopt this last option. We
found that when assigning arbitrary vectors or similarity, the scores are probably bad and
significantly differ from the gold standard. When generating a meta embedding, the final
vocabulary increases. So, even if the new word representations are worse than the ones
from the source embeddings, we can obtain a higher Spearman correlation just because we
have artificially introduce less arbitrary results. This can lead to the wrong conclusion that
a meta embedding generation method produces representations with an improved quality
when in reality it is not. Since what we want is to test if the new representations generated
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by our method are better than the ones in the source embeddings we discard those pairs of
words when there is no representation for at least one them. However, It is also important
to mention that we are using pre-trained embeddings with large vocabularies than can go
up to millions of words, and the generated meta-embeddings combining this vocabularies
obtain even larger ones. This mean that as we can see in Table 2 all the embeddings and
meta-embeddings achieve almost one hundred percent coverage. In fact, this decision has
a very little impact in the final results since there are few OOV words.

4.2 Results

In this section we show the results obtained in the word similarity task. First, in Section
4.2.1 we compare our meta-embeddings against some baseline methods (concatenation,
dimensionality reduction and average) and alternative meta-embeddings on English. We
also evaluate our meta-embeddings in a multilingual and cross lingual setting (Section
4.2.2).

4.2.1 English Word Similarity

In this section we first compare our meta-embeddings against some baseline ensemble
methods, and then compare our method against other meta-embeddings methods. For
this comparison we have used all the datasets described in section 4.1.1. Since there is
a large number of datasets and it would be very difficult to compare them all, we just
report the average of the results of all the datasets (Av), the average of those datasets that
measure word similarity (Sim), and the average of the ones that measure word relatedness
(Rel). WS353 dataset is divided in two subsets Agirre et al. (2009) measuring semantic
similarity and semantic relatedness. We use the corresponding one to calculate the average
of the datasets that measure word similarity and the average of the ones that measure
word relatedness. To calculate the average of all the datasets we use the WS353 dataset
containing both subsets. We do not take into account the MC-30 dataset for the averages
since it is a subset of the RG-65 dataset. In this section all the meta-embeddings have
been mapped to the vector space of the English FastText (Common Crawl, 600B tokens).

We compare our meta-embeddings with three baseline methods.

• Concatenation: For each word we concatenate the representation for that word in
each source embedding. To ensure that every source embedding contributes equally
in the meta-embedding we normalize them using the l2 norm. This method produces
meta-embeddings of high quality but very difficult to manage because its very high
dimensionality.

• Dimensionality reduction: The most popular approach to solve the dimensional-
ity problem is to apply dimensionality reduction algorithms. We report the results
obtained using DRA Raunak (2017) when reducing the dimensionality to 300 di-
mensions of the meta-embeddings generated by concatenation. We also tested the
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implementations of PCA and truncated SVD using sklearn Pedregosa et al. (2011)
but DRA obtains the best results.

• Averaging: For each word, we calculate the average of the representation for that
word. To ensure that every source embedding contributes equally, we normalize the
source embeddings using l2 norm. This is another way to approximate the results of
the concatenation as described in the section 3.2.1.

For a fair comparison we also apply the OOV approach described in Section 3.1.2 when
concatenating or averaging word embeddings. We also test our meta-embeddings with
respect to alternative approaches.

• Autoencoding Meta-Embeddings (AAEME) (Bollegala and Bao, 2018) uses au-
toencoders to generate meta-embeddings. Autoencoders are an unsupervised learning
algorithm that first compress the input in a space of latent variables and then recon-
structs the input based on the information encoded in those latent variables. This
method aims to learn meta-embeddings by reconstructing multiple source embed-
dings. This method comes in three flavours, DAEME, CAEME and AAEME. We
used the last one because it obtains better results. We tested this method with the
default parameters and enabling the option to generate OOV word representations.

• Locally Linear Meta Embedding Learning (LLE) (Bollegala et al., 2017) consist
in two steps. A reconstruction step and a projection step. In the reconstruction step
the embeddings of each word is represented by the linear weighted combination of the
embeddings of its nearest neighbours. In the projection step they compute the meta
embedding of each word such that the nearest neighbours in the source embedding
spaces are embedded closely to each other in the meta-embedding space. We tested
this method with the same parameters used in the paper.

• Numberbatch (N) (Speer et al., 2017) claims to be the best pre-trained word embed-
dings available. It combines knowledge encoded in ConcepNet, word2vec, GloVe and
OpenSubtitles 2016 using concatenation, dimensionality reduction (truncated SVD)
and a variation on retrofitting (Faruqui et al., 2015). Results using Numberbatch
version 17.06 are reported.

• We also tested several configurations of contextual embeddings such as those from
ELMo (Peters et al., 2018) or BERT (Devlin et al., 2019) but as this task does not
include context, they obtain much lower results than the static ones. Using BERT8,
the configuration that provided the best results was using the sum of the last four
layers of the model. This configuration scored an average result of 33.3, much lower
than the results from any other static word embedding tested in this section.

8“bert-base-uncased” model
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Embedding Mturk 287 RW
FastText 72.6 (100) 59.5 (98.1)
UKB 64.6 (80.1) 45.0 (68.9)
Concatenation 71.5 (100) 51.4 (99.9)
Concatenation (Gen) 72.7 55.9
Average 66.2 50.2
Average (Gen) 68.1 54.8
Mapping + Average 71.6 54.5
Mapping + Average (Gen) 71.8 58.7

Table 3: Results of the different methods to handle OOV during the meta embedding
generation method. (Gen) indicate that we are using the OOV generation algorithm. The
coverage of each embeddings for each dataset is indicated between brackets after the results.

In our first experiment, we focused on evaluating our word approximation algorithm
(Section 3.1.2) and the effect of the mapping in the handling of the OOV words during the
generation of the meta embedding (Section 3.2.2). Table 3 reports the results of our meta-
embeddings combining the embedding with larger (FastText) and smaller (UKB) coverage.
We present the results in the two datasets where UKB has smaller coverage (Mturk287
and RW). In the case of concatenation, we compare our OOV generation algorithm with
the most common approach appearing in the literature. That is, using a vector of zeros.
Regarding average, we compare our approach against averaging using the representations
available. As we can observe, our OOV generation algorithm significantly improves the
results. Interestingly, the mapping using VecMap by itself is a good method for handling
OOVs, increasing by a large margin the results of the average without mapping and the
concatenation using zeros. We obtain even better approximations for OOV words by
combining the mapping method and our word generation algorithm.

Table 4 reports the results of the single pre-trained embeddings, the baseline meta-
embeddings and our meta-embeddings. As we can see in the table, in general concatenation
scores are significantly better than the ones of the best pre-trained word embedding used
in the concatenation. This method also outperforms the other baseline methods, averag-
ing and dimensionality reduction. We can also see that dimensionality reduction sightly
outperforms averaging, specially when combining a large number of source embeddings.
Averaging causes more knowledge loose as we increase the number of word embeddings.
We think that this happens because averaging multiple source-embeddings (each one in
a different vector space) results in vectors that cancel each other. That is, averaging an
infinite number of source-embeddings will be a embedding where all vectors are zeros. On
the other side, while dimensionality reduction seems to be a better alternative to averaging,
computing meta embedding with this method require much more computational effort.

Our approach leverages the advantages of the concatenation and the average or dimen-
sionality reduction. It produces meta-embeddings of similar or higher quality than the
ones produced by concatenation, with the advantage of not increasing the dimensionality
of the word vectors.
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1. Embeddings Av Rel Sim
W2V 60.7 68.7 57.9
GV 62.4 75.3 57.8
LV 62.6 73.4 58.7
UKB 62.5 70.2 60.3
AR 65.0 61.4 67.0
FT 66.6 76.5 63.2
P 68.2 74.9 65.9
2. Concatenation
W2V+UKB 68.6 75.8 66.4
W2V+AR 69.1 71.4 68.6
GV+UKB 69.4 79.0 66.3
GV+AR 70.1 75.4 68.5
FT+W2V 65.1 74.5 61.8
FT+GV 65.7 77.6 61.5
FT+UKB 70.9 78.8 68.3
FT+AR 71.5 74.6 70.8
FT+UKB+P 72.8 81.0 70.1
FT+UKB+AR 72.7 78.2 71.1
FT+UKB+AR+LV 72.4 79.4 69.9
FT+UKB+AR+P 74.1 79.9 72.5
3. Average
W2V+UKB 66.8 72.4 64.9
W2V+AR 67.1 68.6 67.1
GV+UKB 67.8 76.6 65.0
GV+AR 70.5 76.2 68.8
FT+W2V 63.3 72.3 60.1
FT+GV 63.6 75.0 59.6
FT+UKB 67.1 74.8 64.9
FT+AR 69.0 70.9 68.6
FT+UKB+P 68.9 77.0 66.5
FT+UKB+AR 69.6 72.6 69.2
FT+UKB+AR+LV 69.2 74.1 67.7
FT+UKB+AR+P 71.6 75.9 70.5
4. Dim. reduction
W2V+UKB 64.5 69.9 62.7
W2V+AR 67.2 67.6 67.0
GV+UKB 68.0 77.8 64.6
GV+AR 70.9 77.0 68.7
FT+W2V 65.1 73.9 61.8
FT+GV 66.0 77.5 61.8
FT+UKB 68.9 76.9 66.3
FT+AR 72.1 75.1 70.9
FT+UKB+P 71.3 78.5 69.0
FT+UKB+AR 71.9 76.1 70.6
FT+UKB+AR+LV 72.5 78.4 70.6
FT+UKB+AR+P 72.8 77.3 71.4
5. Mapping + Average
W2V+UKB 68.7 77.0 66.25
W2V+AR 69.4 72.8 68.4
GV+UKB 69.4 78.6 66.4
GV+AR 70.6 75.5 69.1
FT+W2V 65.2 74.9 61.8
FT+GV 66.4 77.7 62.3
FT+UKB 71.8 79.4 69.6
FT+AR 72.1 75.4 71.2
FT+UKB+P 73.2 81.0 70.7
FT+UKB+AR 74.0 78.6 72.9
FT+UKB+AR+LV 73.5 79.8 71.6
FT+UKB+AR+P 74.5 80.0 72.9

Table 4: English Word Similarity results
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Another interesting behaviour that we can see in Table 4 is that meta-embeddings
generate better word representations when ensembling pre-trained word embeddings that
encode complementary and different knowledge. The more different the method or the
corpus used to generate the source embeddings, the better meta-embeddings are obtained.
For instance, the combination of word representations learned from WordNet and text
result in higher performance (Goikoetxea et al., 2016). This proves that meta-embeddings
are able to combine the knowledge encoded in different word embeddings.

Embeddings Av Rel Sim
N 73.7 78.9 71.6
AAEME(FT+UKB+P) 65.8 74.3 62.7
AAEME(FT+UKB+AR+P) 65.0 73.6 61.9
LLE(FT+UKB+P) 63.2 71.5 60.0
LLE(FT+UKB+AR+P) 64.9 71.4 62.3
FT+UKB+P 73.2 81.0 70.7
FT+UKB+AR+P 74.5 80.0 72.9
FT+UKB+N 74.1 81.3 71.8
FT+UKB+AR+N 75.4 80.4 73.9

Table 5: Comparison of different meta-embedding approaches

Table 5 presents the results comparing different meta-embedding approaches. For
AAEME and LLE we have generated two meta-embeddings using two of the source em-
bedding combination that resulted in better results in Table 4. For Numberbatch we
use the pre-trained word embedding provided by the authors (version 17.06). Our meta-
embeddings obtain similar or better results that Numberbatch and outperforms by far
LLE and AAEME approaches when using the same pre-trained embeddings. We also
found that, apparently, Numberbatch encoded complementary knowledge not encoded in
the rest of pre-trained embeddings (probably thanks to the knowledge not included in the
rest of embeddings). Adding Numberbatch to our meta-embeddings results in even better
meta-embeddings. To the best of our knowledge these are the best results on the English
word similarity task.

4.2.2 Multilingual and Crosslingual Word Similarity

In this section we will test our meta-embedding generation method in multilingual and
crosslingual word similarity tasks. We used English and Spanish since for these languages
there are more pre-trained word embeddings and evaluation datasets. First, we evaluate our
cross-lingual English-Spanish meta-embeddings in the English version of the SimLex999,
WS353, RG65 and SemEval datasets, and them we evaluate the same meta-embeddings
in the Spanish version of the datasets. In the cross-lingual English-Spanish task we used
the same cross-lingual meta-embeddings but this time for each pair in the datasets, the
first word in English and the second in Spanish. In our preliminary research we found
out that the best approach to generate cross-lingual meta-embeddings using our method

______________________________________________________
Language Analysis and Processing



A Common Semantic Space for Meta-Embeddings 30/58

ME EN ES
ME1 Jen+FTen+Aten+Pen Jes+FTes
ME2 Jen+Nen+FTen+ATen+Pen+UKBen Jes+Nes
ME3 Jen+Nen Jes+Nes
ME4 Jen+Nen+FTen+ATen Jes+Nes

Table 6: Cross-lingual meta-embeddings

is to independently generate the best possible meta-embeddings in English and the best
possible meta-embeddings in Spanish, and project them to the same space. In this section
we map all of our meta-embeddings to the English-Spanish cross-lingual space offered by
JOINTChyb (J). Mapping our meta-embeddings to an already cross-lingual vector space
allows us to skip the dictionary induction process and the generation of the cross-lingual
meta-embeddings is much faster. Also, since we are averaging the source embeddings
to merge then in a common vector space, the best possible cross-lingual mapping is not
necessary, although it could provide a small performance increase thanks to reducing the
loss of information during the averaging.

Table 6 summarises the information of our best performing meta-embeddings. Suf-
fixes (en) for English or (es) for Spanish indicate the language of the monolingual embed-
dings selected for creating the meta-embeddings. For instance, FTen corresponds to the
English FastText. In the case of cross-lingual word embeddings, the suffix indicate the
language of the words selected for creating the meta-embeddings. For instance, Jen cor-
responds to the English vocabulary from JOINTChyb. Thus, our meta-embedding ME1
includes 6 word embeddings, four English and two Spanish, all projected to the space of
JOINTChyb (English-Spanish cross-lingual embedding) which is the same space for both
English and Spanish. As the generated meta-embeddings show, our approach for creating
meta-embeddings can ensemble a very large number of word embeddings.

Table 7 shows the multilingual results for English and Spanish, and the cross-lingual
English-Spanish. We include the results of some monolingual embeddings, and the cross-
lingual JOINTChyb (J) and NumberBach (N). Compared to Numberbach, our cross-lingual
meta-embeddings obtain the best results for English, slightly better for Spanish. In the
case of the cross-lingual results our meta-embeddings obtain a slightly lower results than
Numberbach. However, our meta embedding has a much larger vocabulary than Number-
bach, which means that they give an answer for almost every pair of word in the datasets,
while Numberbach due to a smaller vocabulary skips giving answer to some of pair of
words that include non-commonly used words. Since these words are not used commonly
there are few instances of them during the training of the source embeddings resulting in
low quality representations and more inaccurate results for the similarity task. Skipping
the answers for these pairs Numberbach obtains an advantage over our meta-embeddings.
Providing answers for the same word-pairs as Numberbach, our meta-embedding M4enes
obtains in the cross-lingual English-Spanish a result of 80.4 which is a slightly better re-
sult than Numberbach. Thanks to these results we can probe that our meta-embedding
generation method is suitable for different languages. To the best of our knowledge, these
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Embedding EN-EN ES-ES EN-ES
UKBen 71.9 - -
FTen 73.5 - -
FTes - 60.2 -
Pen 73.6 - -
ARen 75.7 - -
Jenes 73.5 68.7 71.7
Nenes 80.7 75.6 80.0
ME1enes 81.6 69.1 74.6
ME2enes 82.4 75.7 79.6
ME3enes 81.1 75.7 79.5
ME4enes 82.6 75.7 79.6

Table 7: Multilingual and Cross-lingual word similarity results using cross-lingual meta-
embeddings

are the best published results for English and Spanish in the mono-lingual word similarity
task. At the same time, the approach is also suitable for a cross-lingual task achieving
similar results to the current state-of-the-art.

4.3 Conclusions

In this section we have evaluated our meta-embeddings on the mono-lingual and cross-
lingual word similarity task. Our method achieve a strong performance in mono-lingual
word similarity, surpassing different baseline methods and other alternative approaches
proposed by different authors. To the best of our knowledge, we have achieved the best
results for English and Spanish in word similarity task. Our method also offers a robust
performance in the English-Spanish cross-lingual word similarity task with a performance
on par with the current state-of-the-art.
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5 Semantic Text Similarity Experiments

In this chapter we describe the Semantic Text similarity task (Section 5.1), the dataset that
we use for this task (Section 5.1.1), the methodology for evaluating word embeddings and
meta-embeddings (Section 5.1.2) and the results obtained (Section 5.2). Finally section
5.3 concludes with a short summary of the chapter.

5.1 Semantic Text Similarity

Semantic Text Similarity is an extrinsic task. We compare word embeddings based on the
ability to be used as vectors of characteristics of supervised automatic learning algorithms
used in various NLP task. The performance of the supervised method, usually measured
in a dataset for NLP tasks, is taken as a measure of the quality of the word embedding.
In this case the task is Semantic Text Similarity (STS).

Semantic Text Similarity aims to calculate the degree of semantic similarity between two
texts. This task is a key component of many NLP systems such as Machine Translation and
evaluation, Summarization, Machine Reading, Question Answering, etc. and has received
a lot of attention in recent years. For instance, if we provide the following texts A man is
cutting up a cucumber and A man is slicing a cucumber, the similarity between them in
the continuous interval [0,1] could be 0.8 since they are very similar but the meaning is not
exactly the same. A supervised automatic learning algorithm that uses as input the word
embedding for each word in the sentence is trained using these type of examples, and them
the similarity between these sentences is calculated using the trained model. The more
similar the results provided by the model and by the dataset are, the better is the model.
If we use the same system, with the same training data, but different word embeddings as
input we can compare the quality of the word embeddings based on the performance of the
supervised model. Listing 5.1 shows as example of this type of dataset corresponding to
the first 5 pairs of texts from the STS Benchmarks test set dataset. This dataset is scored
in the continuous interval [0,5]. In this example we can see that the sentences One woman
is measuring another woman’s ankle and A woman measures another woman’s ankle. are
annotated with the highest possible similarity because their meaning is exactly the same.
They just differ in one word only that does not affect the meaning in any way. On the
other side, the sentences A man is playing a harp. and A man is playing a keyboard. are
annotated with a low similarity. Even if they just differ in one word, playing an harp and
playing a keyboard is not the same. They are very different instruments, so the meaning of
the sentence has completely changed. They are not annotated with the lower possible score
because, in both sentences a man is playing an instrument, so still exists some similarity
between them.
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1 2.500 A girl is styling her hair. A girl is brushing her hair.
2 3.600 A group of men play soccer on the beach. A group of boys are playing soccer on the beach.
3 5.000 One woman is measuring another woman's ankle. A woman measures another woman's ankle.
4 4.200 A man is cutting up a cucumber. A man is slicing a cucumber.
5 1.500 A man is playing a harp. A man is playing a keyboard.

Listing 2: Example of a semantic text similarity dataset: 5 first pairs of texts from the
STS bechmark dataset

The gold scores provided by the semantic text similarity datasets are usually calculated
by humans judges. Deciding the semantic similarity between two texts is a very time
consuming task. Instead of just compare two words as in semantic word similarity (Section
4) we need to read, understand and compare two texts. Due to this for a long time only few
very small datasets where available. For instance, Li et al. (2006) dataset, containing 65
sentence pairs corresponding to the dictionary definitions for the 65 word pairs in the RG-65
dataset (Rubenstein and Goodenough, 1965) or Lee et al. (2005) containing 60 documents
ranging from 51 to 126 words. Choosing pairs of sentences or texts is also a challenging
task, since taken random sentences usually generate unrelated pairs of sentences. Thanks
to the word done by Agirre et al. (2012) and crowdsourcing platforms such as Amazon
Mechanical Turk where a large number of persons can evaluate a small number of pairs of
texts, large high-quality STS datasets are now available.

5.1.1 Dataset

In this section we describe the semantic texual Similarity (STS) dataset that we use for
evaluating word embeddings and meta-embeddings. We use STS benchmark (Cer et al.,
2017). This is a set of multilingual and cross-lingual datasets used in the STS task organized
in the context of SemEval between 2012 and 2017. It includes text from image captions,
news headlines and user forums. For English we used the training, development and test
set provided by STSbenchmark. For Spanish we collected all the Spanish data provided in
previous SemEval editions to create a new training and development dataset. This dataset
was divided in two. 85% of sentences were used for training and 15% for development. We
used as test the dataset provided in the SemEval 2017 STS task 1. The number of pairs
for each dataset is shown in Table 8. It is important to highlight that the Ensligh dataset
is almost 5 times larger than the Spanish dataset.

Train Dev. Test
English 5749 1500 1379
Spanish 1296 324 250

Table 8: Number of words for each STS dataset
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5.1.2 Methodology

In this section we describe the methodology followed to evaluate the word embedding and
meta-embeddings. In order to evaluate our embeddings in STS we have used the system
proposed by Shao (2017). The system is composed by a convolutional neural network
(CNN), a comparison of semantic vectors and a fully-connected neural network (FCNN).
The reason for choosing this system is a light model that can be trained very fast without
the need for large computing power while obtaining very good results in the task. The
system achieved the 3rd place on the primary task of SemEval 2017. The model also
includes a pre-process step.

• Pre-process: The preprocessings include multiple steps.

1. All punctuations are removed.

2. All words are lower-cased, all sentence are tokenized using Natural Language
Toolkit (NLTK) Bird et al. (2009).

3. All words are replaced by the pre-trained word embeddings (or meta-embeddings).
Out-of-vocabulary words are set to zero vector.

4. All sentences are padded to a static length 30 with zero vectors.

5. If a word appears in both sentences, a True flag is added to the word vector,
otherwise, a False flag.

6. If a word is a number, and the same appears in the other sentence, add a True
flag to the word vector of the matching number in each sentence, otherwise, a
False flag is added.

7. The part-of-speed (POS) tag of every word according to NLTK is added as
one-hot vector.

• Convolutional Neural Network (CNN): The aim of the CCN is to transform the
word level word embedding from the input to sentence level embeddings. This CNN
consists on 300 one dimensional filters. The length of these filters is the same as the
dimensions of the enhanced word vectors. Sentence level embeddings are calculated
by max pooling over every dimension of the transformed word level embedding.

• Comparison of semantic vectors: To calculate the semantic similarity score of two
sentences, a semantic difference vector is generated by concatenating the element-wise
absolute difference and the element-wise multiplication of the corresponded paired
sentence level embeddings.

S ~DV = (|S~V 1− S~V 2|, S~V 1 ◦ S~V 2)

S ~DV is the semantic difference vector, S~V 1 and S~V 2 are the semantic vectors of
the two sentences and ◦ is the Hadamard product which generates the element-wise

multiplication of two semantic vectors.
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Sentence pad length 30
Dimension of embeddings 300
Number of CNN layers 1
Dimension of CNN filters 1
Number of CNN filters 300
Activation function of CNN relu
Initial function of CNN he_uniform
Number of FCNN layers 2
Dimension of input layer 600
Dimension of the first layer 300
Dimension of second layer 6
Activation of first layer tanh
Activation of second layer softmax
Initial function of layers he_uniform
Optimizer ADAM
Batch size 339
Max epoch 6
Run Times 8

Table 9: Hyperparamers of the Neutal Network used for STS

• Fully-connected neural network (FCNN): An FCNN is used the transfer the
600 dimension semantic difference vector to a probability distribution over the labels
used by STS.

The system is trained 8 times. All the weights and parameters are reinitialised reach
time we train the model. The model is evaluated in the development test after each epoch.
The model and epoch that achieves the higher result in the development test is selected
and evaluated in the test set. We used the default hyperparemeters that are shown in
Table 9. To compare the results obtained from the model with respect to those from the
gold standards Pearson correlation is used.

5.2 Results

Table 10 shows the results when training and evaluating the model in English. Some of
our meta embedding achieve better results compared to other word embeddings evaluated.
The original system presented at SemEval used GloVe pre-trained embeddings. Using our
meta-embeddings the same system outperforms the original one by a large margin, proving
the potential of our meta-embedding. In the same way Table 11 shows the results when
training and evaluating in Spanish. For Spanish our meta-embeddings also outperform
other mono-lingual embeddings, including Numberbatch selecting the Spanish vocabulary.
Compared to English, in Spanish we have much less training data available thus obtaining
lower results. Interestingly, the best results on the test data for Spanish are obtained when
including into the meta-embeddings not just Spanish source embeddings, but also English
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Embedding Dev Test
UKB 76.3 70.7
FT 81.7 76.1
GV 81.8 78.1
AT 81.3 75.3
P 82.4 78.8
Nen 83.5 79.6
FT+UKB+AT+P 83.5 79.7
FT+UKB+AT+N 84.0 80.1
FT+N+AT+P 83.9 80.5

Table 10: STS results training and testing
on English

Embedding Dev Test
GVes 76.6 73.7
FTes 80.4 75.1
Jes 76.0 73.1
Nes 76.3 73.8
Nes+FTes 81.8 75.3
Nenes+FTen+FTes+Pen 81.0 78.4

Table 11: STS results training and testing
on Spanish

ones. Our meta-embedding generation method is able to improve the knowledge encoded
in one language with the knowledge from another language. That is, we are successfully
performing transfer learning from English (where we have very good word meta-embeddings
trained with very large corpora) to Spanish (where we have lower quality word embeddings).

In order to further explore the transfer-learning capabilities of our meta-embeddings,
we trained a model in English and then, without seeing any Spanish example, we test the
model in Spanish. That is, using the training parameters learned from English and applying
them to Spanish. Our meta-embedding MEenes have been obtained by ensambling Jenes,
Nenes, FTes, FTen, ATen and Pen. Our meta-embeddings outperforms other cross-lingual
alternatives and they exhibit a very robust cross-lingual capabilities. Thanks to these
capabilities we can achieve better results for the STS task in Spanish when training the
model with English data ( 7K sentences) than when training the model with the smaller
Spanish dataset ( 1K sentences) only. Our meta-embeddings are not only able to improve
the results in mono-lingual STS task. They are also capable of transferring the knowledge
from a resource-rich language to another language, allowing us to successfully perform STS
for languages where training data is very limited or not available at all.

Embedding Test EN Test ES
Jenes 73.8 69.3
Nenes 79.6 81.8
MEenes 78.8 82.8

Table 12: STS results training on English and testing on Spanish.

5.3 Conclusions

In this section we have proved that our meta-embeddings exhibit solid performance in a
semantic textural similarity task. Although the STS leaderboard is currently headed by
contextual embeddings, these experiments confirm that our meta-embeddings outperform
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other existing static embeddings and meta-embeddings. Furthermore, since contextual
embeddings require huge resources, our cross-lingual approach could be useful for under-
resourced languages.
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6 Sequence Labelling Experiments
In this chapter we describe the Sequence Labelling tasks (Section 6.1), the datasets that we
use (Section 6.1.1), the methodology for evaluating word embeddings and meta-embeddings
(Section 6.1.2) and the results obtained (Section 6.2). Finally section 6.3 concludes with a
short summary of the chapter.

6.1 Sequence Labelling

Sequence labelling in NLP is a type of patter recognition task that involves classifying each
member of a sequence of words with a linguistic label. A very large family of NLP tasks
can be formulated as sequence labelling problems. The most popular sequence labelling
tasks in NLP are Part-of-speech tagging, chunking and named entity recognition:

• Part-of-speech tagging (POS tagging or POST), also known as grammatical tagging
or word-category disambiguation, is a task that consists of assigning a particular
part of speech for each word in sequence based on its definition and context. A
Part of speech is a category of words which share a similar grammatical properties.
Commonly listed English parts of speech are noun, verb, adjective, adverb, pronoun,
preposition, conjunction, interjection, article and determiner. Figure 4 shows an ex-
ample of Part-of-speech tagging for the sentence: She sells seasshells on the seashore.
As we can see, each word is annotated with a POS tag. She is annotated as a per-
sonal pronoun. sells is annotated as 3rd person singular present Verb. seashells is
annotated as a plural Noun. on is annotated as a preposition. The is annotated as a
determiner. Finally, seashore is annotated as a singular noun.

Figure 4: Example of POS tagging application on a example sentence. Source: https:
//nlpforhackers.io/training-pos-tagger/

• Chunking, also known as shallow parsing, is a task on top of POST tagging. The
task consist of generating a tree whose leaves will hold POS tags and then links them
to higher order units such as noun or verb phrases. Figure 5 shows as example of
chunking using the sentence John hit the ball. We can see that each word has been
first assigned a Post tag. John has been tagged as a Noun Phrase. hit has been
tagged as a verb. the has been tagged as a determiner. And ball has been tagged as
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a Noun. Then the leaves are linked to higher order units. The (Det) and ball (N)
form a Noun Phrase. hit (V) and the ball (NP) form a Verb Phrase. Finally, John
(NP) and hit the ball (VP) form a sentence.

Figure 5: Example of chunking application on a example sentence. Source: https://
courses.cs.ut.ee/LTAT.01.001/2017_fall/uploads/Main/Lecture7.pdf

• Named Entity Recognition (NER), also known as entity chunking or entity extrac-
tion is a task that consists of locating and classifying named entity mentions in
unstructured text into pre-defined categories such as persons, names, locations, time
expressions, monetary values, medical codes, etc. Figure 6 shows a example of NER
for the text: The Mona Lisa is 16th century oil painting created by Leonardo. It’s
held at the Leuvre in Paris. Mona Lisa has been tagged as a word since we are speak-
ing about the painting, not the person. oil painting has been tagged as a concept.
Leonardo has been tagged as a person. Finally Louvre and Paris have been tagged as
places. The system used to tag this sentence has not tagged 16th century. However,
we could have tagged it as a time expression. Note that named entities can consist
of multiple words. The task it not limited to determine if a given word is an entity
of any type, entities can also be multi-word expressions that we need to tag as only
one named entity (e.g. oil painting).

Figure 6: Example of NERC application on a example sentence. Source: https:
//dandelion.eu/semantic-text/entity-extraction-demo/

Sequence labelling, as Semantic Text Similarity (Section 5) is an extrinsic task. The
performance of a supervised method for sequence labelling is taken as a measure of
the quality of the word embeddings. A model is trained and them evaluated using
examples annotated by humans. The more similar the model predictions are to the
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ones annotated by humans the better the model is. If we use the same system with
same training data, but different word embeddings as input we can evaluate the
performance of the word embeddings based on the performance of the supervised
model.

We experiment with POS tagging and NER in English and Spanish.

6.1.1 Datasets

For POS tagging we experiment with the Universal Dependencies 2.0 data Nivre et al.
(2017). This dataset was used in the CoNLL 2017 Multilingual Parsing from Raw Text
to Universal Dependencies shared task 9. In Listing 6.1 we have an example of a labelled
sentence from the dataset: President Bush on Tuesday nominated two individuals to replace
retiring jurists on federal. In the example we can see how the dataset provides for each
word its lemma and the POS tag, as well as other useful information. The dataset contains
data form multiple languages, although we restrict our experiments to English and Spanish.

1 # sent_id = weblog-blogspot.com_nominations_20041117172713_ENG_20041117_172713-0002
2 # text = President Bush on Tuesday nominated two individuals to replace retiring jurists on
3 federal courts in the Washington area.
4 1 President President PROPN NNP Number=Sing 5 nsubj _ _
5 2 Bush Bush PROPN NNP Number=Sing 1 flat _ _
6 3 on on ADP IN _ 4 case _ _
7 4 Tuesday Tuesday PROPN NNP Number=Sing 5 obl _ _
8 5 nominated nominate VERB VBD Mood=Ind|Tense=Past|VerbForm=Fin 0 root _ _
9 6 two two NUM CD NumType=Card 7 nummod _ _

10 7 individuals individual NOUN NNS Number=Plur 5 obj _ _
11 8 to to PART TO _ 9 mark _ _
12 9 replace replace VERB VB VerbForm=Inf 5 advcl _ _
13 10 retiring retire VERB VBG VerbForm=Ger 11 amod _ _
14 11 jurists jurist NOUN NNS Number=Plur 9 obj _ _
15 12 on on ADP IN _ 14 case _ _
16 13 federal federal ADJ JJ Degree=Pos 14 amod _ _
17 14 courts court NOUN NNS Number=Plur 11 nmod _ _
18 15 in in ADP IN _ 18 case _ _
19 16 the the DET DT Definite=Def|PronType=Art 18 det _ _
20 17 Washington Washington PROPN NNP Number=Sing 18 compound_ _
21 18 area area NOUN NN Number=Sing 14 nmod _ SpaceAfter=No
22 19 . . PUNCT . _ 5 punct _ _

Listing 3: Example sentence from the Universal Dependencies 2.0 english data

For NER we used the well-known CoNLL 2002 data for Spanish and the 2003 one for
English. In Listing 6.2 we can see an example of a labelled sentence from the dataset:
U.N. official Ekeus heads for Baghdad.. In this sentence the word U.N is labelled as and
organization entity (I-ORG). The word Ekeus as a Person entity (I-PER) and the word
Baghdad as a location entity (I-LOC). The rest of the words are not classified as an entity
that the system must recognize (O).

9http://universaldependencies.org/conll17/
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Embedding en es
Flair 92.34 93.12
Flair+kom (Komninos and Manandhar, 2016) 94.07 -
Flair+GV (news) 93.78 94.37
Flair+FT (news) 93.84 94.77
Flair + Jenes+N+FTes+FTen+ATen+Pen 94.18 94.68

Table 13: Word accuracy POS results for English and Spanish evaluated on UD 2.0

1 U.N. NNP I-NP I-ORG
2 official NN I-NP O
3 Ekeus NNP I-NP I-PER
4 heads VBZ I-VP O
5 for IN I-PP O
6 Baghdad NNP I-NP I-LOC
7 . . O O

Listing 4: Example sentence from the CoNLL 2003 data for English

6.1.2 Methodology

We use the Flair system10 for the Part-of-Speech (POS) and Named Entity Recognition
(NER) sequence labelling tasks. Flair implements a recurrent neural network (RNN) ar-
chitecture (Cho et al., 2014) to represent documents, modelling text as a sequence of
characters passed to the RNN which at each point in the sequence is trained to predict the
next character (Akbik et al., 2018). We used this architecture leveraging the pre-trained
word embedding and meta-embedding models combined with the Flair character-based
contextual embeddings for English and Spanish. Flair has been successfully applied to
sequence labelling tasks obtaining best results for a number of public benchmarks Akbik
et al. (2018), outperforming current successful approaches such as BERT and ELMO (De-
vlin et al., 2019; Peters et al., 2018) in NER and POS evaluations. For the NER task we
compare the results produced by the model and the results provided by the dataset gold
standards using F1 score. For the POS tagging task we use word accuracy.

6.2 Results

For POS tagging we experiment with the Universal Dependencies 2.0 data. For NER we
used the well-known CoNLL 2002 data for Spanish and the 2003 one for English. Both
datasets provide train, development and test partitions. We train the neural network off-
the-shelf using the parameters used in Akbik et al. (2019). We compare the previous best
configurations of Flair (Akbik et al., 2019) replacing the static word embeddings with our
own meta-embeddings.

10https://github.com/zalandoresearch/flair
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Embedding en es
Flair 90.85 86.47
Flair + GV (news) 92.74 87.70
Flair + FT (news) 92.35 87.60
Flair + Jenes+Nes+FTes 92.59 88.19

Table 14: F1 micro NER results for English (CoNLL 2003) and Spanish (CoNLL 2002).

In Table 13 we can see that for POS tagging the best performing meta-embedding
combines the cross-lingual embeddings JOINTChyb, Numberbatch (full vocabulary), both
Spanish and English FastText, Attract Repel and Paragram.

Table 14 shows that the best meta-embeddings we used for NER is a combination of
the cross lingual embedding JOINTChyb, the Spanish vocabulary of Numberbatch and
FastText trained in Spanish.

The results show that using our meta-embeddings help to improve results for POS
tagging in English and for NER in Spanish. To the best of our knowledge, these are the
best results published so far for these two benchmarks.

6.3 Conclusions

In this section we have proved that our meta-embeddings in combination with the Flair
model, can also help to improve the results for POS tagging in English and for NER in
Spanish. As for STS, we would like to highlight that the cross-lingual character of our
meta-embeddings helps also the monolingual tasks.
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7 Conclusions
We have presented a new-meta embedding generation approach that can integrate effi-
ciently and effectively combine multiple word embeddings derived from complementary
techniques, textual sources, knowledge bases and languages. Our method is able to com-
bine these sources without increasing the dimensionality of the representations and with-
out producing a loss of information. We also propose a method to successfully deal with
the out-of-vocabulary problem, which allows combining source embeddings with differ-
ent vocabularies. The vocabulary of the generated meta-embedding will be the union of
the vocabularies of the source embeddings. Our OOV method also allows us to combine
word embeddings in different languages, which gives to our meta-embeddings interesting
transfer-learning capabilities. Our meta-embeddings help to improve performance over
previous meta- and static word embeddings, obtaining excellent results in several tasks,
including Word Similarity, Semantic Textual Similarity and Sequence Labelling.

The main contributions of our work are:

• We have carried out an in-depth study of the current state-of-the-art regarding word
embeddings and meta-embeddings.

• We propose a new method to efficiently and effectively combine word embeddings
from complementary techniques, textual sources, knowledge bases and languages.

• The code and some of our best meta-embeddings are publicly available11 under a
copyleft licence in the hope that they will be useful in future research and initiatives.

• A summary of the research carried out in this Master’s thesis have also resulted in
a paper submitted to the Thirty-Fourth AAAI Conference on Artificial Intelligence
(AAAI-20). The paper is currently under review and we are waiting for feedback.

7.1 Future work

To conclude we want to present some of the future research lines that might be interest-
ing. Our meta-embedding have shown interesting transfer-learning capabilities. For both
Semantic Textual Similarity and Sequence Labelling, the knowledge encoded in the En-
glish pre-trained word embeddings seems to help the performance in Spanish evaluation
task when combined with Spanish pre-trained word embeddings. We plan to investigate
further this technique to improve performance for less-resourced languages by applying
cross-lingual meta-embeddings. We are especially interested in testing the transfer-learning
capabilities of our meta-embeddings in the Basque language. We also plan to extend the
work done to enable the generation of cross-lingual embeddings just from monolingual ones
taking advantage of the dictionary induction capabilities of VecMap.

11https://github.com/ikergarcia1996
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