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Introduction 

 

1. Alzheimer’s disease. 

 

Alzheimer’s disease (AD), the most common cause of dementia, is an irreversible 

neurodegenerative pathology characterized by a progressive neuron loss. This pathology 

was first reported by the German psychiatrist Aloysius “Alois” Alzheimer (1864-1915), 

who described for the first time a dementing condition which later became known as AD. 

Alzheimer studied in detail the progression of the peculiar disease of Auguste D, a 51-

year-old woman whose symptoms included hallucinations and loss of several mental 

functions, as memory and language impairment. After Auguste’s death in 1906 her case 

was published under the title “On an Unusual Illness of the Cerebral Cortex” (from the 

German “Über eine eigenartige Erkrankung der Hirnrinde”) (Alzheimer, 1907). Post-

mortem analyses showed the presence of intra- and extracellular aggregates being these 

features extensively used years later for AD diagnosis. Interestingly, it was later described 

that the extracellular aggregates that were observed by Alzheimer were insoluble 

aggregates of the amyloid β peptide (Aβ) called senile plaques, and those intracellular 

were neurofibrillar tangles composed by filamentous accumulations of 

hyperphosphorylated protein tau (Figure 1). After Alzheimer’s report on the pathology, 

Kraepelin introduced for the first time the name of the disease in his text “Psychiatrie” 

(Kraepelin, 1910). 

 

 

Figure 1. Pictures of original drawings of Alois Alzheimer showing pathological features of the disease. 

Drawings of senile plaques (A) and neurons with intracellular tangles (B) present in tissue samples from 

Alzheimer’s disease patients. 
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As abovementioned, AD is a neurodegenerative disorder characterized by a profound 

cognitive decline occurring as a consequence of a progressive and irreversible neuronal 

loss. These neurodegenerative events developed in AD patients follow a well-established 

anatomical pattern, being the entorhinal cortex and hippocampus the first brain 

structures affected (Braak & Braak, 1995). The degeneration of these specific areas is 

related to deficits in learning and formation of new memories. The disease usually 

spreads to the neocortex, promoting alterations in several other cognitive functions. 

Reduction in the abundance of synapses is another important feature of this condition 

that, in addition to preceding neuronal degeneration, correlates better with observed 

cognitive deficits. 

 

AD has been classified mainly in two different forms, the early-onset or familial AD 

and the late-onset or sporadic AD. 

 

1.1. Early-onset or familial Alzheimer’s disease. 

 

The early-onset or familial AD is a subtype of this pathology that represents the 5-

10% of the clinical cases, appearing the first symptoms at an early age, usually before 65. 

Familial AD is characterized by Mendelian inheritance, being shown that the presence of 

specific mutations is sufficient to provoke the clinical and pathological manifestations of 

the disease. Mutations associated with this form of AD mainly affect genes related to Aβ 

peptide formation and oligomerization processes. Among others, mutations in at least 

three genes have been described to be promoters of disease onset. Mutations in the gene 

located at the chromosome 21 which coding for the amyloid precursor protein (APP) 

(Goate et al., 1991), are associated with an autosomal dominant inheritance. The Swedish 

mutation is one of the most well known genetic variation that causes early onset familial 

AD. It produces a two aminoacid-change in the protein sequence immediately before the 

Aβ peptide sequence (lysine-methionine for asparagine-leucine). The presence of these 

mutations implies greater amyloidogenic processing of APP or increased oligomerization 

of the Aβ peptide. In addition, these mutations are associated with an earlier age of 

onset, which can be around 40 years. In addition to APP, genes encoding for presenilin 1 

(PSN1) and presenilin 2 (PSN2) have been also associated with this subtype of AD (Cruts, 
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Hendriks, & Van Broeckhoven, 1996). PSN1 is located in the chromosome 14, and about 

180 mutations in this gene have been described. On the other hand, PSN2 which locus is 

localized at the chromosome 1 has about 15 mutations related to triggering the disease. 

However, due to the variability in the mutation penetrance its age of appearance is also 

more variable. 

 

1.2. Late-onset or sporadic Alzheimer’s disease. 

 

The second subtype of the disease, namely late-onset or sporadic AD, starts before 

65 years old and encompasses the majority of clinical cases, around 90-95%. In these 

cases, AD etiology is much more diffuse and complex than familial AD, multiple risk 

factors being described to affect the predisposition to the disease. However, the presence 

of these risk factors is not enough to cause AD. In addition to ageing, the best 

characterized risk factor is apolipoprotein E (ApoE), which is the main cholesterol 

transporter in the brain and has been related to the transport and release of Aβ peptide 

(Bu, 2009). The gene encoding ApoE may present three different allelic variants, ApoEε2, 

ApoEε3 and ApoEε4, the latter being able to triple the probability of suffering AD in the 

case of heterozygotes, and multiply it by 15 in the case of homozygotes, with respect to 

ApoEε2 and ApoEε3 haplotypes (Huang, 2006). In addition, by using genetic association 

studies such as those carried out by Bertram and co-workers (2007), a database has been 

generated in recent years gathering information on those genes which mutations could 

be related to the predisposition to late AD can be consulted (http://www.alzgene.org). 

 

1.3. Alzheimer’s disease pathology. Amyloid β peptide. 

 

Since the first description of presenile dementia by Alzheimer, senile plaques and 

neurofibrillar tangles (NFT) are considered the key pathological hallmarks of AD and have 

been traditionally used to the histological post-mortem diagnosis. While the formation of 

NFT follows well-established patterns, senile plaques appear and distribute in a more 

random manner. Interestingly, the density of these plaques is lower in clinically relevant 

regions of the brain, as the hippocampus (Braak & Braak, 1995). In addition to plaques 

distribution, the detection of Aβ as a main constituent of the plaques (Glenner & Wong, 
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1984b) and the identification of gene mutations related to Aβ synthesis in familial AD, 

lead to formulate the amyloid cascade hypothesis (J. A. Hardy & Higgins, 1992; D J Selkoe, 

1991).  

 

The amyloid cascade hypothesis postulates that the deposition of Aβ, which is due to 

the unbalance between the production and elimination, finally leads to 

neurodegeneration and subsequent dementia (Glenner & Wong, 1984a; J. Hardy & Allsop, 

1991; J. Hardy & Selkoe, 2002). This hypothesis proposes Aβ peptide as a candidate for 

initiating the disease, appearing NFTs after Aβ-induced damage. Aβ peptide is synthesized 

as a 4.5 kDa monomer from the proteolytic processing of the amyloid precursor protein 

(APP). APP is a transmembrane protein with a large extracellular domain that carries out a 

wide range of biological functions in the CNS. Interestingly, it is implicated in the 

regulation of neurites growth during development (Herms et al., 2004), however in the 

adult brain its role is more related to cell adhesion, neuroprotection, synapse formation, 

and transcription modulation of several genes (reviewed in Raychaudhuri & 

Mukhopadhyay, 2007). In addition, several proteins have been shown to interact with 

APP, regulating their processing and intracellular signaling, which may be related to a role 

of APP as a cell surface receptor (Zheng y Koo, 2011). 

 

The proteolytic sequential processing of APP mainly occurs by two different 

pathways, one non-amyloidogenic and one amyloidogenic (Figure 2). The first consists on 

the cleavage of APP by the enzyme α-secretase that generates the soluble protein APPsα 

(N-terminus) and a smaller fragment called APP-CTFα (C-terminus), which remains 

anchored to the cell membrane. Then, APP-CTFα fragment is cleaved by the γ-secretase 

producing two soluble peptides, p3 which biological function is yet to be understood, and 

AICD (APP intracytoplasmic domain), that can act as a transcriptional regulator of several 

genes as GSK-3β or p53, among others (Kimberly, Zheng, Guénette, & Selkoe, 2001; von 

Rotz et al., 2004). In contrast, in the amyloidogenic or toxic pathway the first cleavage is 

performed by β-secretase, which activity generates APPsβ (a fragment that is shorter than 

APPsα) and APP-CTFβ. Further processing of the last by γ-secretases produces AICD and 

Aβ peptide, the last being released to the extracellular medium. Remarkably, while the 

first pathway is predominant in physiological conditions, avoiding excessive production of 
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Aβ peptide, the equilibrium between the two pathways is lost in AD patients. In addition, 

there are several non-canonical pathways through which APP can be processed distinct 

from those two above mentioned, some of them also contributing to Aβ peptide 

generation (U. C. Müller, Deller, & Korte, 2017). 

 

 

Figure 2. Schematic representation of canonical amyloid precursor protein (APP) processing. The non-

amyloidogenic (green background) and amyloidogenic (red background) pathways are shown. The 

proteolytic cleavage of APP by α- or β-secretase, and subsequently by γ-secretase, generates APP 

intracellular domain (AICD), and p3 or amyloid β (Aβ) peptides, respectively. Adapted from Müller et al., 

2017. 

 

 

Since γ-secretases exhibit lack of specificity of the proteolytic cleavage of APP, Aβ 

peptide length may vary and can be formed by 37-49 aminoacids (Weidemann et al., 

2002). Most of the circulating Aβ peptide consists of 40-aminoacid-long peptides, being 

also present in a less extent those formed by 42 or 43 aminoacids (Aβ1-40, Aβ1-42 and Aβ1-

43, respectively). In addition, shorter (38- or 39-aminoacid-long) and longer (46 to 49-

aminoacid-long) peptides can be found (Takami et al., 2009). After APP processing, Aβ 

monomers, especially Aβ1-42, tend to aggregate due to their structure, forming oligomers 

that will lead to protofibers and fibers, and eventually generating senile plaques. In this 

sense, in vitro and in vivo experiments have shown that the Aβ peptide monomer 

aggregation into high molecular weight species makes them toxic (Chromy et al., 2003; 

Pike, Walencewicz, Glabe, & Cotman, 1991; Walsh, Lomakin, Benedek, Condron, & 
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Teplow, 1997), oligomers representing the predominant neurotoxic Aβ peptide species 

(Glabe, 2005; W. L. Klein, 2002).  

 

In addition to this, Aβ peptide oligomers have been isolated from animal models of 

AD (Oddo y cols., 2006; Tomiyama y cols., 2010) and from cerebrospinal fluid and brains 

from AD patients (Bao et al., 2012), in whom the presence of this peptide seem to 

correlate with disease progression (Santos et al., 2012). In fact, nanomolar concentrations 

of Aβ oligomers are able to induce neuronal death in hippocampal organotypic slices 

(Alberdi et al., 2010; Lambert et al., 1998), inhibit long-term potentiation (Lambert et al., 

1998; Q. Wang, Walsh, Rowan, Selkoe, & Anwyl, 2004), and promote Ca2+ dysregulation 

and cell membrane disruption interfering with the optimal function of neurons (Alberdi et 

al., 2010; Demuro et al., 2005). Due to the complexity of Aβ peptide biochemistry 

(oligomerization, varying length, etc.), it is very promiscuous molecule able to signal 

through a repertoire of receptors, promoting a wide range of effects in neurons and other 

cell types (Viola & Klein, 2015) (Figure 3). 

 

 

Figure 3. Scheme of the roles of Amyloid β peptide in Alzheimer’s disease. Amyloid β peptide promotes a 

wide repertoire of alterations on both neurons and glial cells. Adapted from Viola & Klein, 2015. 
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1.4. Animal models of Alzheimer’s disease. 

 

The identification of mutations related to AD onset and progression has allowed 

generating animal models useful to increase the knowledge on the pathobiology of the 

disease. In fact, in the last decades a wide range of animal models has emerged and 

therefore, nowadays it is possible to independently study each pathological event 

occurring in the disease (Table 1). In this sense, it has been possible to successfully 

generate animal models that exhibit increased synthesis and/or deposition of Aβ peptide 

leading to senile plaque formation, as a result of APP overexpression or mutations in 

PSN1. Since the first of these models resembling AD pathology was created by producing 

a single mutation in APP (Games et al., 1995), many others carrying two or three genetic 

manipulations have been generated. Besides, after the identification of mutations in the 

protein tau gene observed in patients suffering from Parkinson’s disease, it has been also 

possible to produce transgenic mice developing tauopathies (Götz et al., 1995; Higuchi et 

al., 2002; Hutton et al., 2000). However, although most of the models develop either 

tangles or senile plaques, the apparition of one of them do not promote the generation of 

the other. Therefore, more complicated models were necessary in order to completely 

understand AD pathology, including those carrying multiple transgenes, hybrids from 

crossbreeding independent transgenic mice strains, or by microinjection of pathological 

proteins in transgenic mice (Gotz y cols., 2001; Lewis y cols., 2001). 
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Table 1. Neuropathological characteristics of the main mouse models of Alzheimer’s disease (Schaeffer, 

Figueiro, & Gattaz, 2011).  

 

 

Therefore, one of the most complete models of AD is the triple transgenic mouse 

(3xTg-AD) (Oddo et al., 2003) that was created by directly microinjecting two tansgenes, 

APPSwe and tauP301L, in a genetically-modified mouse germ line (PSIM146V). Thus, 

these mice carry three transgenes related to the development of AD: Swedish mutation of 

APP (APPSwe; K670N/M671L), a mutation in PSN1 (M146V), and a mutation in protein tau 

(P301L). This model was a pioneer since it develops both senile plaques and neurofibrillar 

tangles in AD-relevant brain regions, showing ageing-associated cognitive defects related 

to learning and memory that highly resemble those found in AD patients. 

 

The first histopathological feature exhibited by 3xTg-AD mice is intraneuronal Aβ 

peptide, which is detectable from 3-4 months in the cortex and from 6 months in the 

hippocampus. Accumulation of intraneuronal Aβ peptide negatively correlated with levels 

of synaptic transmission observed in these animals, included in the long-term 

potentiation. From this age on, extracellular deposits of Aβ peptide start to appear mainly 

in the cortex at 6 months and the hippocampus at 12 months. Regarding soluble Aβ 

peptide oligomers, they can be detected intracellularly from the second month of life, 
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levels go down at 12 months probably due to the increase in fiber formation, and in 15-

month-old mice these levels rise again (Figure 4). On the other hand, neurofibrillar 

tangles start to form at 12 months in the hippocampus then expanding to the cortex. This, 

in fact, support amyloid cascade hypothesis, since the initial event in these mice is the 

accumulation of Aβ peptide. 

 

 

Figura 4. Temporal profile of Aβ peptide oligomer formation in 3xTg-AD mice. Dot blot showing the 

density of low (M71/3) and high (A11) molecular weight Aβ peptide oligomers in 2 to 20-month-old control 

and 3xTg-AD mice. Extracted from Oddo et al., 2006. 

 

2. Oligodendrocytes. 

 

Oligodendrocytes are the glial cells responsible for producing a multilamellar lipid 

structure highly specialized around the axons called myelin in the central nervous system 

(CNS). This cell type was described by Pío del Río-Hortega in 1921 as small cell bodies 

containing nuclei with large amounts of chromatin and exhibiting a highly complex 

network of cellular extensions without fibers but filled with cytoplasmic granules.  

 

During late embryonic developmental stages, oligodendrocytes originate from 

multipotential neural progenitor cells (NPCs). Under specific signals, NPCs start to express 

Olig2 triggering the first embryonic wave of specification of oligodendrocyte progenitors 

cells (OPCs) (Naruse, Ishizaki, Ikenaka, Tanaka, & Hitoshi, 2017). Then, OPCs migrate from 

ventricular/subventricular zone of the brain to the developing white matter where they 

proliferate and form an evenly spaced network of cell processes. After OPCs migration 

and establishment at a suitable region, some of them remain in a precursor state while 

others differentiate into postmitotic myelin-forming oligodendrocytes (Simons & Nave, 

2016).  
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2.1. Oligodendrocyte differentiation. 

 

OPCs differentiation undergoes several stages of cell maturation which are 

extensively defined by morphological aspects and specific-marker proteins. The 

sequential expression of developmental markers divide the lineage into distinct 

phenotypic stages (Baumann & Pham-Dinh, 2001). Early progenitor cells are responsible 

for migration and proliferation, and are mainly characterized by expressing the platelet-

derived growth factor receptor-α (PDGFR-α). These cells have a bipolar morphology and 

are able to differentiate into late progenitor cells, which acquire the marker O4 and 

develop a more complex shape. At this stage, cells keep their ability to proliferate, but 

they lose their motility almost completely. Following oligodendrocyte lineage progression, 

late progenitors give rise to immature cells that express the earliest myelin-related 

marker, 2′,3′-Cyclic nucleotide-3′-phosphodiesterase (CNPase). Finally, these cells will 

differentiate into mature oligodendrocytes which exhibit the ability to synthesize myelin-

related proteins as myelin basic protein (MBP) and myelin proteolipid protein (PLP). 

 

After development, a population of OPCs remain in the adult brain preserving their 

ability to proliferate and generate new mature oligodendrocytes, which will be needed to 

maintain myelination processes both in healthy or diseased adult brain (Young et al., 

2013). 

 

Oligodendrocyte differentiation require a series of well-coordinated events that 

orchestrate all stages, from OPCs proliferation to myelin synthesis regulation, following 

an intrinsic program of maturation controlled by extracellular and intracellular signals 

(Almeida, Czopka, ffrench-Constant, & Lyons, 2011). Therefore, differentiation and 

myelination are properly controlled a wide repertoire of both negative and positive 

regulators. 

 

Regarding extracellular signals, the Leucine-rich repeat and immunoglobulin domain-

containing-1 (LINGO1) is a transmembrane protein expressed in axons and 

oligodendrocytes is one of the main negative regulators. LINGO-mediated signaling 

pathways repress oligodendrocyte differentiation by decreasing Fyn kinase activity and 
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subsequent RhoA signaling (Mi et al., 2005). The G-protein-coupled receptor 17 (GRP17), 

exclusively expressed in oligodendrocyte and the Notch-1 receptor also act as negative 

regulators of this process. While, GRP17 is transiently expressed in late OPCs to inhibit 

oligodendrocyte differentiation (Chen et al., 2009), Notch-1 have a double role in cell 

maturation depending on the axonal proteins it interacts with. The binding between 

axonal Jagged-1, Delta-1, and Notch-1 generates an intracellular domain which enters in 

the nucleus and increase expression of inhibitors transcription factor (S. Wang et al., 

1998). In contrast, axonal F3/contractin-Notch-1 binding promotes OPC differentiation by 

expressing myelin proteins (Hu et al., 2003). In turn, a variety of diffusible factors 

positively influence in oligodendrocyte differentiation. In addition to being involved in 

OPC survival and proliferation, insulin-like growth factor 1 (IGF-1) signaling is required for 

oligodendrocyte differentiation and myelin formation (Zeger et al., 2007) via 

PI3K/Akt/mTOR signaling pathway (Flores et al., 2008; Tyler et al., 2009). In addition, 

thyroid hormone 3 (T3) also regulates oligodendrocyte differentiation, observing a 

reduction in myelin gene expression in human hypothyroidism patients and rodents (S. 

Mitew et al., 2014). 

 

Concerning the intracellular regulators of oligodendrocyte differentiation, there are 

several transcription factors regulating all the stages of this process. Among the 

differentiation inhibitors, bHLH transcription factors acts as negative regulators binding 

directly to pro-differentiation factors as Olig1 and Sox10 to inhibit their function (Liu et 

al., 2006; Samanta & Kessler, 2004). The transcription factor Tcf12 also is involved in 

differentiation blockade being recruited by β-catenin via Wnt signaling pathway. As 

positive regulators, Olig2 is constantly expressed through all oligodendrocyte lineage, 

being its levels progressively decreased at mature stages (Kitada & Rowitch, 2006). 

Ablation of Olig2 in OPCs causes a sustained decrease in oligodendrocyte differentiation, 

while ablation in mature cells have no detrimental effect, suggesting that Olig2 mediates 

cell differentiation but has no role on mature oligodendrocyte functions, as myelination 

(Mei et al., 2013). In contrast, the transcription factor Myrf is specifically induced during 

oligodendrocyte differentiation and is also required for maintenance of myelin. Inducible 

conditional ablation of Myrf in mature cells results in a severe reduction in myelin genes 

and a subsequent demyelination (Emery et al., 2009; Koenning et al., 2012).   
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2.2. Oligodendrocyte functions. 

 

The main function of mature oligodendrocytes is the formation of the myelin sheath 

around the axon. Myelin provides the structural basis for rapid impulse propagation 

required to properly develop of motor, sensory and cognitive functions in CNS. Axonal 

insulation by myelin membrane restricts their energy requirements and accelerates nerve 

conduction 20-100-fold in comparison with non-myelinated axons. Moreover, 

oligodendrocytes are able to myelinate a varying number of axonal areas (internode), 

between 20 and 80, depending on several factors as axon caliber and length (Snaidero & 

Simons, 2014a). In this sense, most of oligodendrocytes myelinating large caliber axons 

develop less number of internodal areas, but these are longer and thicker. 

 

In addition to electrical insulation of axons, oligodendrocytes provide them with 

trophic and metabolic support (Figure 5). In this process, glutamate plays relevant roles as 

its neuronal activity-dependent release regulates oligodendrocyte metabolic supportive 

function (Saab et al., 2016). After glutamate binding to NMDA receptor in 

oligodendrocytes, these cells uptake glucose to generate lactate that is transported to 

and released into periaxonal space. Then, lactate is taken up by neurons which catabolize 

it to generate ATP. Other metabolites, proteins, mRNA and neuronal trophic factors are 

transported from oligodendrocyte soma towards axons likely through myelin cytoplasmic 

channels in order to support their activity (Nave & Werner, 2014). These cytoplasmic 

channels are non-compacted areas in which microtubules and multivesicular bodies are 

present, that preserve functional axon integrity by permitting oligodendrocyte-axon 

support. In fact, cytoplasmic channels loss observed in CNPase null-mice results in axonal 

degeneration, in spite of the absence of myelin defects (Snaidero et al., 2017). In turn, 

MBP-deficient mice that develop a severe dysmyelination conserve an intact axonal 

function, likely due to the maintenance of the glia-driven metabolic support. Indeed, 

evidences observed in different myelin models suggest that absence of myelin is better 

than the presence of defective one for sustaining proper axonal functions, as this 

defective myelin is associated with an uncoupling of oligodendrocyte support of axons 

(Simons & Nave, 2015).  
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Figura 5. Oligodendrocyte provides metabolic support to neurons. (A) Oligodendrocytes and astrocytes 

contribute to neuronal metabolic support. (B) Oligodendrocyte metabolic supportive function is regulated 

by glutamate release from electrically active neurons. Glutamate binds to oligodendrocytes NMDA 

receptors, leading an enhanced glucose uptake to be finally transformed to lactate. (C) Lactate is 

transported through oligodendrocyte uncompacted myelinic channels to periaxonal space where is 

imported by axon and processed for ATP synthesis. Adapted from Philips & Rothstein 2017. 

 

a. Oligodendrocyte myelination. 

 

The precise and coordinated production of myelin by mature oligodendrocytes 

supports the smooth functioning and development of CNS. In order to ensure the optimal 

function of this process, myelination is tightly regulated by several signals that control 

both initial formation and maintenance of myelin sheaths. Oligodendrocytes must 

integrate all these regulatory signals which are determined not only by axonal factors, but 

by electrical activity (Gibson et al., 2014; Wake, Lee, & Fields, 2011a), spatial density of 

OPCs (Rosenberg, Kelland, Tokar, De La Torre, & Chan, 2008), and cues from astrocytes 

(Back et al., 2005; Hammond et al., 2014) and microglia/macrophages (Miron et al., 2013; 

Ruckh et al., 2012).  

 

Mature oligodendrocytes extend their processes to make contact with axons and 

then, initiate wrapping around them. Oligodendrocytes rapidly reorganize their 
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cytoskeleton morphology, and increase microfilament polymerization and branching in 

response to axon-oligodendrocyte recognition (Bauer, Richter-Landsberg, & Ffrench-

Constant, 2009; Simons & Trotter, 2007). Most of the axonal signals that participate in 

this regulation act as negative regulators, as occurs during differentiation stages. Axonal 

proteins, as Jagged-1 and Lingo1 that interact with Notch-1 and Nogo receptor, inhibit 

myelination and oligodendrocyte process outgrowth, besides their role as regulators of 

oligodendrocyte differentiation (Mi et al., 2005; S. Wang et al., 1998). In addition, the 

expression of polysialylated-neural cell adhesion molecule (PSA-NCAM) regulate myelin 

formation, being necessary to be downregulated before myelination onset (Charles et al., 

2000; Fewou, Ramakrishnan, Büssow, Gieselmann, & Eckhardt, 2007). These inhibitory 

signals regulate the initiation steps of myelination and prevent over-myelination.  

 

Oligodendrocytes also receive neuronal pro-myelinating signals which have to be 

integrated by them to control their responses. An essential neuronal signal integrator is 

Fyn (Krämer-Albers & White, 2011), a member of the Src non-receptor tyrosine kinase 

family which expression is predominant and upregulated during oligodendrocyte 

differentiation (Osterhout, Wolven, Wolf, Resh, & Chao, 1999). It has been described that 

Fyn activation is essential for myelination and MBP translation (Krämer-Albers & White, 

2011). Moreover, in vivo studies have demonstrated the importance of Fyn as mediator of 

myelin formation process, since knock-out Fyn mice present severely reduced levels of 

myelin and oligodendrocyte loss in corpus callosum and optic nerve (B R Sperber et al., 

2001). In addition, analysis in the zebrafish model have confirmed the important role of 

Fyn in myelination process showing that it regulates over the number of myelin sheaths 

per oligodendrocyte (Czopka, ffrench-Constant, & Lyons, 2013).  

 

During oligodendrocyte maturation, Fyn kinase activity is compartmentalized and 

recruited into lipid raft membrane domains with another specific proteins, as integrin 

α6β1, to promote their interaction (White & Krämer-Albers, 2014). Fyn is activated by 

axonal-glia contact in which axonal cell adhesion molecule L1 and extracellular matrix-

derived laminin-2 interact with an oligodendroglial complex of integrin β1 and contactin-1 

(Lisbeth Schmidt Laursen, Chan, & ffrench-Constant, 2009; White et al., 2008). 

Furthermore, it has been shown that neuronal activity stimulates Fyn kinase, which may 
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be mediated by increased axonal surface expression of L1 (Wake, Lee, & Fields, 2011b). 

Fyn activation also interferes in oligodendrocyte maturation and in particular process 

outgrowth (C. Klein et al., 2002; Brian R. Sperber & McMorris, 2001). In addition to 

regulating the cytoskeleton recruitment and local MBP synthesis, Fyn kinase in involved in 

regulating morphological differentiation of oligodendrocytes triggered by integrin 

receptor activation (Liang, Draghi, & Resh, 2004) (Figure 6). 

 

 

Figure 6. The role of Fyn kinase during oligodendrocyte-axon interactions. Fyn activation induced by axon-

derived signaling modulates oligodendrocyte survival and differentiation, and MBP mRNA transport and 

translation (Adapted from Krämer-Albers & White, 2011).  

 

One of the main receptors implicated in Fyn activation is integrin β1 (Holly Colognato, 

Ramachandrappa, Olsen, & ffrench-Constant, 2004; L. S. Laursen, Chan, & ffrench-

Constant, 2009). Integrins are a major family of extracellular matrix receptor formed by 

two subunits, α and β, and are widely expressed in neurons and glial cells. During 

oligodendrocyte development, the expression of this heterodimeric receptor vary 

depending on the differentiation stage, being integrin α6β1 and αvβ1 strongly expressed 

in newly formed oligodendrocytes (Malek-Hedayat & Rome, 1994; Milner & Ffrench-

Constant, 1994) (Figure 7). Interestingly, environmental cues also change the expression 

pattern of integrin receptors suggesting an involvement in diverse cellular function. It has 

been described that integrins, specifically integrin β1, mediate oligodendrocyte survival 
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(Benninger et al., 2006; Corley, Ladiwala, Besson, & Yong, 2001) and differentiation 

(Buttery & ffrench-Constant, 1999), and participate in the initiation of myelination. 

Indeed, using a dominant negative integrin β1 mouse model it has been demonstrated a 

reduction in the density of internodes and myelinated axons, as well as a higher axonal 

diameter threshold required for myelination (Câmara et al., 2009; K. K. Lee et al., 2006). 

However, conditional ablation of integrin β1 in oligodendrocytes showed strong effects 

on oligodendrocyte survival but little effects on myelination (Benninger et al., 2006). 

These contradictory results may be due the presence of other receptors implicated in 

Fyn-mediated myelination which likely compensate for lack of integrin β1 expression. One 

proposed candidate involved in this compensatory effect is the dystroglycan receptor (H. 

Colognato et al., 2007). Moreover, integrin β1 is also required in myelin thickness 

determination, since no functional integrin β1 mice exhibit thinner myelin sheaths at later 

stages (Barros et al., 2009; K. K. Lee et al., 2006). 

 

 

Figure 7. Integrin receptor expression during oligodendrocyte differentiation. Integrin receptors are 

differentially expressed during oligodendrocyte development. The expression of αvβ3 is strongly increased 

in immature oligodendrocytes, while αvβ5 is markedly expressed at mature stages. α6β1 and αvβ1 are 

mainly expressed at early stages, whereas the expression of αvβ8 is increased both in precursor and mature 

oligodendrocytes (Adapted from O’Meara, Michalski, & Kothary, 2011).  

 

 

Myelin formation is also regulated by the molecular signaling triggered by 

neuregulins (NRG), which act through ErbB tyrosine kinase receptor. NRG expression is 

restricted mainly to neurons where is cleaved by β- (BACE) and γ-secretases to mediate 

ErbB receptor activation. Although it is described that NRG mediate oligodendrocyte 
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survival and differentiation, its role in myelination process is still under debate. Both NRG 

and ErbB receptor knockout mice exhibit normal myelination (Brinkmann et al., 2008), 

while the expression of dominant negative of ErbB4 result in reduced myelin thickness 

and oligodendrocyte density (Roy et al., 2007). Moreover, overexpression of NRG induces 

CNS hypermyelination (Brinkmann et al., 2008) and in turn, NRG and ErbB reduced 

expression observed in schizophrenia causes hypomyelination (Makinodan, Rosen, Ito, & 

Corfas, 2012). Thus, these data suggest that NRG/ERbB signaling have an impact in 

oligodendrocyte myelination, although this process is yet to be fully understood.  

 

After oligodendrocyte stimulation by extracellular mediators, several intracellular 

signaling pathways have been shown to be implicated in the molecular events which lead 

oligodendrocytes to myelination. Among them, PI3-Kinase/Akt/mTOR and ERK1/2-MAPK 

pathways as well as the Ca2+/CaMKII act as important mediators of myelin formation 

(Gaesser & Fyffe-Maricich, 2016; White & Krämer-Albers, 2014).  

 

In addition to axonal extracellular cues, myelination is also regulated by 

oligodendrocyte transcription factors such as Olig1, Sox10, and Myrf. In vivo ablation or 

blocking of these factors results in myelin loss (Dai, Bercury, Ahrendsen, & Macklin, 2015; 

Hornig et al., 2013; Koenning et al., 2012), revealing their contribution in myelin synthesis 

process. Moreover, it has been described that transcriptional factor activities are 

associated with regulatory network intrinsic to oligodendrocytes as chromatin 

remodeling, histone and DNA modifications, micro-RNAs and non-coding RNA that 

regulate oligodendrocyte myelination (Emery & Lu, 2015). Importantly, integration of 

myelination-mediated signals and subsequently, crosstalk between activated molecular 

pathways allow oligodendrocyte controlling and supplying myelination failures to ensure 

a robust myelination.  

 

3. Myelin. 

 

The myelin sheath is an extension of the oligodendrocyte plasma membrane that 

wraps axons in the central nervous system. Myelin was considered a neuronal secretion 

until Pío del Río Hortega described this membrane as part of oligodendroglial cells by 
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using of silver carbonate staining. The main function of the myelin sheath is to insulate 

axons and restrict the generation of action potential to unmyelinated axonal segments, 

the nodes of Ranvier, which are essential for the fast saltatory conduction in the brain. 

The term myelin was coined by Rudolf Virchow in 1864 and comes from Greek word 

“myeloid” (marrow).  

 

Myelin structure is composed of a multilayered stack of membranes organized in 

alternating electron-dense (major dense line) and electron-light layers (the intraperiod 

line), as observed using transmission electron microscopy. Major dense lines represent 

the adhesion zone between closely condensed cytoplasmic membranes, while intraperiod 

lines consist of extracellular apposed myelin membranes (Hartline, 2008) (Figure 8). This 

compacted area appears in repeating patterns of 12 nm and provides the high electrical 

resistance and low capacitance that is essential for propagation of axon potentials. The 

myelinated segments along axons are separated by the nodes of Ranvier, small areas 

lacking of myelin where the excitable axonal membrane is exposed to the extracellular 

space. The nodes are characterized by a high density (>1200/μm2) of sodium channels 

which allow the generation of the action potential during saltatory conduction (Stephen 

G. Waxman & Ritchie, 1993). At both sides of them, myelin lateral edges form the 

paranode, a non-compacted structure in which myelin is firmly attached to axon. This 

specialized contact area is maintained by the adhesion of contactin and Caspr proteins on 

the axonal surface and Neurofascin-155 on the glial side (Salzer, Brophy, & Peles, 2008). 

 

 

Figure 8. Myelin  structure. Myelin is composed of stacked layers of oligodendrocyte cell membrane mainly 

packed by MBP. Due to the tight package, two alternating types of layers can be observed under the 

electron microscope, electron-dense (major dense line) and electron–light layers (the intraperiod line). 
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In addition to myelin membrane ultrastructure, its specialized molecular composition 

makes myelin a unique membrane in the CNS. Myelin sheath is a poor hydrated structure 

containing 70-80% lipids (by dry weight) and a low proportion of highly hydrophobic small 

proteins, MBP and PLP being the most abundant. This hydrophobic context exerts a 

repulsive force towards the extracellular fluid, which contribute to myelin stability and 

compaction. Moreover, the specific content of lipids, organized in lipids rafts, and their 

interaction with proteins, confers this membrane a solid molecular stability turning it into 

a highly stable system. In this sense, myelin membrane components, as myelin proteins 

and lipids, have half-lives on the order of several weeks to months. Interestingly, even 

when oligodendrocytes are ablated from inducible transgenic mice by using a diphtheria 

toxin, myelin remains stable for several weeks (Pohl et al., 2011; Traka et al., 2010). 

 

3.1. Myelin biogenesis. 

 

Myelin synthesis implies extensive changes in oligodendrocyte morphology and 

membrane architecture. Despite the complicated detection of oligodendrocyte structural 

changes due to technical limitations, several models of myelin biogenesis in the CNS have 

been proposed. First, it was proposed a peripheral nervous system model in which glial 

membrane extends along the axon towards the node of Ranvier and then, inner tongue 

begin to wrap the axon, known as jelly roll model (BUNGE, BUNGE, & RIS, 1961). 

However, the application of new techniques in electron microscopy and the use of high-

pressure frozen samples and three-dimensional reconstructions has made possible to 

study myelin ultrastructure during optic nerve development and thus propose a new 

model (Snaidero et al., 2014). These analyses revealed that myelin is a single extension of 

membrane with a triangular shape where the outer layer is in direct contact with the 

oligodendrocyte cell body and the innermost layer with the axon. This model suggests 

that the wrapping occur by two different, but coordinated movements. First, the 

oligodendrocyte send out the process which makes contact with the axon and the inner 

tongue leads the wrapping around it, expanding the membrane underneath the 

previously generated layers. This motion is the responsible for creating new membrane 

layers. Second, there is a lateral extension of all layers towards the node of Ranvier to 

increase myelin length (Figure 9). Thus, oligodendrocyte has two direct contact zones 
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with axon surface, one at the innermost layer and the other one at the lateral edges of 

each myelin layer which form the complex paranode zone.  

 

In order to progress with myelin development, it is necessary to transport newly 

synthesized myelin components from the soma of oligodendrocytes to the growing areas 

in the myelin sheath. For that, there is an elaborated system of cytoplasmic-rich channels 

containing microtubules and vesicular carriers that transport new membrane elements to 

the growing zones, both inner tongue and lateral edges. The trafficking pathways for 

radial and lateral growth are spatially separated. During myelin development, these 

cytoplasmic channels are largely present in the myelin sheath. However, when 

myelination is complete, their number is notably reduced (Snaidero et al., 2014), although 

many of them remain active in the adult brain. The presence of these channels may 

generate functional connections between oligodendrocyte soma to axon, creating 

communication and allowing the distribution of glial metabolites to axonal compartment, 

as previously described. Thus, myelin is a highly dynamic structure in which lipids and 

small proteins diffuse freely, enabling the active and plastic design of the developing 

myelin sheath (Snaidero & Simons, 2014b). 

 

 

Figure 9. Model of myelin wrapping around axons by oligodendrocytes. There are two types of motion 

during myelin wrapping. After axon-oligodendrocyte contact, glial membrane wraps around the azon 

forming new layers. Second, layers expand laterally towards the node of Ranvier to increase myelin length. 
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3.2. Myelin compaction. 

 

Myelin compaction is mainly carried out by MBP and occurs early in the 

development, after only few wraps (Readhead et al., 1987). The compaction starts in the 

outermost layers (closer to oligodendrocyte soma) and progresses inward both radially 

and longitudinally in parallel with membrane growth. However, it has been described that 

MBP mRNA is transported from the nucleus to the innermost layers and there, closed to 

axon, is translated to protein. Thus, to prevent premature compaction at inner tongue, 

the myelin membrane-associated enzyme CNPase acts as spacer between two adjacent 

cytoplasmic-membranes and regulate the compaction rate. In absence of CNPase, myelin 

compaction extends to inner tongue (Snaidero et al., 2014), while its overexpression lead 

to a lack of compaction (Gravel et al., 1996; Yin, Peterson, Gravel, Braun, & Trapp, 1997). 

Thereby, due to CNPase presence MBP protein can be transported from inner tongue to 

outer layers, and there begin myelin compaction (Snaidero & Simons, 2014b).  

 

3.3. Myelin plasticity and remodeling. 

 

Myelin is a dynamic structure with adaptive capacity in response to neuronal activity 

changes. This plasticity allow myelin to modulate information processing and network 

activity during adult life (Fields, 2008). In this sense, it has been observed that inhibition 

of new oligodendrocyte generation by tamoxifen-induced ablation of Myrf transcription 

factor in adult mice, results in a blockade of de novo myelination and a subsequent fail in 

motor task learning. This data suggest that myelination in adult mice is essential to 

learning (McKenzie et al., 2014). Supporting these data, a study of Young and co-workers 

(2013) demonstrated that myelination also occurs throughout adulthood. By using an 

inducible PDGFr-α knock-out mouse model, they observed the generation of adult-born 

OPCs that were able to proliferate and differentiate into mature oligodendrocyte engaged 

in myelin remodeling. However, these new adult-born mature cells form myelin with 

different properties, creating myelin sheaths with shorter, but more abundant internodes 

in comparison with oligodendrocytes generated during early development. More 

importantly, evidences of myelin plasticity also have been observed in human brain 

(Bengtsson et al., 2005; Scholz, Klein, Behrens, & Johansen-Berg, 2009).  
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Therefore, it has been proposed that subtle changes in myelin thickness or nodal 

length participate in the timing of conduction velocity. During evolution of nervous 

systems, most of myelinated fibers have acquired a specific myelin thickness and length 

adequate for obtaining the maximal conduction velocity. However, several areas of the 

mammalian brain exhibit different caliber axons which need to synchronize their 

conduction velocity. In this case, myelin is able to adapt its thickness and length to 

facilitate a coupled neuronal activity (Snaidero & Simons, 2014a). 

 

In this sense, it has been described that myelin thickness is directly related to axon 

caliber, being the theoretical g-ratio index around 0.6 (Chomiak & Hu, 2009). This 

measurement is based on the ratio of the axonal diameter to the total fibers diameter 

and is commonly used as structural myelination index. When myelin thickness is deviated 

from this value, either higher or lower, conduction velocity drops (S G Waxman, 1997). In 

addition to myelin thickness, internodal length also influence speed conduction raising 

the optimal velocity when axons with large caliber have long internode lengths (Friede & 

Bischhausen, 1982). Moreover, a recent study proposed node of Ranvier length as 

another conduction velocity regulator (Arancibia-Cárcamo et al., 2017). This predictive 

model shows that node elongation is related to slow conduction by increasing the node 

capacitance. On the other hand, the density of Na+ channels at the node has to remain 

unchanged in order to avoid loss of conduction velocity. 

 

4. Myelin basic protein (MBP). 

 

Myelin basic protein (MBP) is one of the most abundant proteins in myelin sheath 

membranes. MBP is a product of a large gene complex called Golli in which 7 exons give 

rise to classic MBP. In addition, due to alternative splicing several isoforms of MBP have 

been described (Boggs, 2006). 

 

In general, the process of myelination is remarkably resistant to genetic ablation of 

its structural components. While most of major myelin proteins, including PLP, are not 

essential, the absence of MBP leads to severe myelination deficits as it was observed in 
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shiverer mice. Thus, MBP has a unique and essential role in myelin formation and 

maintenance (Krämer-Albers & White, 2011).  

 

4.1. MBP function: Myelin compaction. 

 

The main function of MBP is related to myelin compaction by membrane association. 

MBP regulates the protein/lipid ratio in myelin sheath membranes to form a proper lipid-

rich insulating membrane. For that, MBP carries positive electrostatic charges that 

interact with the negatively-charged headgroups of phospholipids in the inner leaflet, 

leading to the compaction of the two opposing cytoplasmic membrane layers (Fitzner et 

al., 2006; Musse, Gao, Homchaudhuri, Boggs, & Harauz, 2008; Nawaz et al., 2009). Then, 

MBP connects the two adjacent membranes by self-oligomerization creating a cohesive 

protein meshwork that acts as a physical filter excluding other cytoplasm- and 

membrane-associated proteins out of the compacting area, only remaining PLP and MBP 

(Aggarwal et al., 2013). Moreover, MBP interacts with cytoskeletal proteins modulating its 

assembly (Dyer, Philibotte, Wolf, & Billings-Gagliardi, 1994; Hill & Harauz, 2005; Hill, 

Libich, & Harauz, 2005). Notably, MBP is subject to various post-translational 

modifications modulating its charge level, which may regulate its ability to promote sheet 

segregation and membrane compaction (Harauz & Musse, 2007). 

 

4.2. MBP mRNA transport and translation. 

 

To permit a correct compaction of membranes at appropriate intracellular sites, MBP 

mRNA is transported from the nucleus to the myelin compartment where is translated 

locally. The presence of MBP mRNA and ribosomes in purified myelin fraction was the 

first evidence which suggest MBP mRNA transport (Colman, Kreibich, Frey, & Sabatini, 

1982). MBP mRNA is packed and transported in specialized RNA transport granules 

through cytoplasmic microtubules to the distal parts of the processes (Ainger et al., 1993, 

1997) where MBP translation is initiated by participation of several proteins, as Fyn and 

integrin receptors (Figure 10). These RNA transport granules contain all necessary 

molecules for the transport, as well as mRNA translation machinery. In addition, RNA 

granules also contain specific molecules to maintain a translationally repressed state until 
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the periphery is reached. In fact, defects in proteins involved in MBP mRNA transport or 

in translation repression results in accumulation of MBP at inappropriate subcellular 

locations, leading to myelination defects (Lyons, Naylor, Scholze, & Talbot, 2009). 

 

As previously mentioned, Fyn kinase has an important role in CNS myelination, being 

also involved in local MBP translation. Activated Fyn binds to the microtubule associated 

protein Tau and recruits the cytoskeleton towards axon-glia contact sites (C. Klein et al., 

2002). Thus, Fyn facilities the transport of MBP mRNA to the axon-glia site to initiate the 

myelination by synthesizing MBP (C. Müller, Bauer, Schäfer, & White, 2013). Furthermore, 

Fyn activation also result in MBP mRNA release from RNA granule protein complex by 

phosphorylation of repressed proteins, as hnRNP F, allowing MBP mRNA to be translated 

(White et al., 2012) (Figure 10). Interestingly, it has been described that MBP translation 

triggered by Fyn is coupled to neuronal stimulation and glutamate signaling, supported 

the idea of Fyn as important neuronal signals integrator (Wake et al., 2011a). 

 

 

Figure 10. MBP mRNA transport and localized translation. MBP mRNA is transported through microtubules 

within mRNA transport granules towards oligodendrocyte processes where is locally translated. Fyn 

integrates neuronal signals and allow MBP mRNA release from transport granules and be translated. 

 

 

In addition, α6β1 integrin receptor activates Fyn (Holly Colognato et al., 2004; L. S. 

Laursen et al., 2009) and stimulates MBP synthesis through interactions with a mRNA-

binding protein, hnRNP-K (Lisbeth S. Laursen, Chan, & ffrench-Constant, 2011). Moreover, 
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Fyn knock-out mice show a reduction in MBP levels (Lu, Ku, Chen, & Feng, 2005), while 

the presence of a constitutively active α6β1 integrin mutant promotes MBP translation 

(Lisbeth S. Laursen et al., 2011). The regulation of MBP translation is also regulated by 

transcription factors as CREB which may be phosphorylated by CAMKII (Sun, Enslen, 

Myung, & Maurer, 1994), PKC (Xie & Rothstein, 1995) and growth factor-induced kinases 

like ribosomal S6 kinase (Xing, Ginty, & Greenberg, 1996). 

 

5. Oligodendrocyte and Alzheimer´s disease. 

 

AD has been traditionally considered to be a gray matter (GM) disease. However, 

evidence of diffuse white matter (WM) pathology from AD patients and animal models 

have also been reported (Firbank et al., 2007; Kavcic, Ni, Zhu, Zhong, & Duffy, 2008; Roher 

et al., 2002a). WM is an essential component of neural networks and is critical for many 

high order cognitive processes including attention, executive functioning, non-

verbal/visual-spatial processing, and generalized processing speed, all of which are 

impaired in AD. It was generally believed that atrophic changes observed in the WM were 

a consequence of axon retraction caused by Wallerian degeneration due to neuronal cell 

body loss. However, there is no correlation between GM and WM damage (Brun & 

Englund, 1986; de la Monte, 1989). Moreover, it has been observed at early stages of AD 

pathology that WM atrophy occurs before GM degeneration as neuronal loss, plaque 

formation or cognitive decline, suggesting that axonal or myelin chemical abnormalities 

provoke neuronal body loss degeneration (Bartzokis et al., 2003, 2004; Brun & Englund, 

1986; Kavcic et al., 2008; Price et al., 2001).  

 

Myelination process occurs in a specific chronological pattern in which different brain 

regions are myelinated at different time points. In fact, myelin synthesis of prefrontal and 

temporal areas continues until the end of the fifth decade of life. Imaging techniques 

revealed that late-myelinating regions, such as temporal and frontal lobes characterized 

by the presence of small caliber fibers, are the first to be affected by AD degenerative 

process (Bartzokis et al., 2003; Stricker et al., 2009; Teipel et al., 2007). In addition, 

oligodendrocyte progenitors cells in these regions have reduced myelin turnover and 
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thus, a diminished capacity for myelin repair than oligodendrocytes present in early-

myelinating areas (Power, Mayer-Pröschel, Smith, & Noble, 2002). 

 

It is well established that WM integrity progressively deteriorates with normal aging 

(Damoiseaux et al., 2009; Inano, Takao, Hayashi, Abe, & Ohtomo, 2011), but evidence 

from whole brain imaging studies suggests that this natural tendency is exacerbated and 

accelerated by AD (Bartzokis et al., 2003; de la Monte, 1989; Stricker et al., 2009). 

Postmortem and in vivo magnetic resonance imaging (MRI) studies have largely 

demonstrated a substantiated WM impairment in AD, finding reduced white matter 

volume and alterations of white matter microstructure (Bartzokis, 2011; Roher et al., 

2002a), such as differences in the physical organization of the myelin lipid bilayer (Chia, 

Thompson, & Moscarello, 1984). A recent study, in which several imaging measurements 

of myelin status and psychological test are combined, has demonstrated that age-related 

demyelination is associated with memory impairment, especially in dementia states 

(Kavroulakis et al., 2017). It has been described that AD patients present loss of myelin in 

specific regions of the brain, such as cortical GM and WM (Roher et al., 2002b), and large 

decrease in the number of Olig2+ cells in the WM and GM of superior temporal gyrus and 

sensory motor cortex. In contrast, the WM of the mild frontal gyrus exhibit increased 

density of Olig2+ cells (Behrendt et al., 2013). In the case of corpus callosum, it is also 

affected in AD brains and its impairment correlates with the progression and severity of 

the disease (Teipel et al., 2002). 

 

Interestingly, several studies have observed WM disruption in asymptomatic 

individuals with increased risk for AD and in patients with mild cognitive impairment 

(MCI) (B. Parente et al., 2008; Bartzokis et al., 2006). Bartzokis and colleagues correlated 

age-related slow cognitive processing speed with myelin breakdown in late-myelinating 

WM areas of these subjects. Moreover, the development of a novel brain imaging 

approach allows evaluating more precisely the myelin content in the brain. In this sense, a 

recent exhaustive study of asymptomatic individuals with genetic risk factors for AD show 

that these individuals present brain alterations of myelin content in relation to well 

established AD markers in cerebrospinal fluid (CSF). Interestingly, they observed a strong 

association between myelin content reduction and soluble Aβ concentration in CSF. This 
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study also revealed that age-related changes in myelin are particularly observed in late-

myelinating areas, as frontal WM and the genu of corpus callosum, corroborating the 

facts previously described (Dean et al., 2017). These results indicate that myelin have an 

important role in preclinical stages in AD, which may be related to the onset of the 

cognitive decline. 

 

The underlying causes of oligodendrocyte and myelin dysfunction in AD have not 

been fully clarified. However, several studies propose Aβ as a candidate to promote WM 

dysfunction. In AD patients, increased levels of Aβ peptide have been correlated with 

brain regions exhibiting myelin abnormalities (Roher et al., 2002b), being these Aβ 

deposits mainly in late-myelinating areas (Bartzokis, Lu, & Mintz, 2007). Moreover, WM 

changes including demyelination, have been also documented in MCI and are potentially 

related to Aβ and tau pathology (Bartzokis et al., 2003; Dean et al., 2017; Dennis J Selkoe 

& Hardy, 2016). Specifically, focal demyelination is observed in plaque-associated 

myelinated axons from AD temporal cortex, whereas plaque-free cortical GM of human 

AD have no significant loss of myelin or oligodendrocyte density (Stanislaw Mitew et al., 

2010). 

 

In this sense, biochemical analysis of total myelin fraction in AD patients revealed 

increased Aβ1-42 levels accompanied by a significant decrease in the amount of MBP, PLP 

and CNPase. In addition, myelin lipid content is also altered, observing a marked decrease 

in cholesterol levels, while total fatty acid content was increased (Roher et al., 2002a). 

Concretely, depending on the brain area MBP levels vary. While in AD frontal WM is 

significantly lower in comparison with MCI (D.-S. Wang et al., 2004), increased levels of 

MBP are observed in cortical GM of AD patients (Dennis J. Selkoe, Brown, Salazar, & 

Marchotta, 1981; Zhan et al., 2015a). Interestingly, in these AD patients the high ratio of 

degraded MBP over total MBP revealed a strong rate of MBP degradation (Zhan et al., 

2015b). Increase of degraded MBP and myelin components as galactocerebroside is also 

observed within vesicles in periventricular WM of AD (Zhan et al., 2014), suggesting a high 

myelin damage. Furthermore, it has been described an increase in degraded MBP 

associated with autophagy specific markers (Zhan et al., 2015a). This findings are 

consistent with previous studies documenting myelin and lipid changes in GM and WM of 
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AD (Han, 2007; Han, M Holtzman, McKeel, Kelley, & Morris, 2002; Pernber, Blennow, 

Bogdanovic, Månsson, & Blomqvist, 2012). However, the mechanisms by which MBP 

levels are higher in AD remain unclear. 

 

Surprisingly, it has recently been shown that MBP is able to bind to Aβ and inhibit its 

fibril formation, possibly playing a role in regulating its deposition and formation of senile 

plaques in parenchyma (Dean et al., 2017; Hoos, Ahmed, Smith, & Van Nostrand, 2009; 

Liao, Ahmed, Smith, & Van Nostrand, 2009).  

 

5.1. Oligodendrocyte and amyloid β peptide. 

 

In spite of the relevance that the white matter and myelin seem to have in AD 

pathology, only a few studies have analyzed the effect of Aβ peptide on oligodendrocytes 

in the context of this disorder. In fact, it has been described that oligodendrocytes 

express APP and therefore, are able to produce Aβ that may exacerbate the ongoing 

pathology (Skaper et al., 2009). Overall, previously reported in vitro studies have 

illustrated that various forms of Aβ peptide are able to induce toxicity on 

oligodendrocytes. As above mentioned, Aβ becomes toxic when it oligomerizes (McKee, 

Kowall, Schumacher, & Beal, 1998) and myelin can be directly damaged by oligomerized 

forms of the peptide (Xu et al., 2001).  

 

Precisely, treatment of rat neonate-derived oligodendrocytes with 0.2-20 µM of Aβ1-

40 or Aβ25-35 results in dose-dependent cell death, characterized by nuclear and 

cytoskeletal disintegration, DNA fragmentation, and mitochondrial dysfunction. In 

addition, cells treated with Aβ25-35 for 24 h resulted in the breakdown and dissolution of 

oligodendrocyte processes and appearance of shrunken cell bodies (Xu et al., 2001). 

Moreover, the use of Aβ25-35 at 10 µM induces ceramide-mediated apoptosis in 

oligodendrocytes (J.-T. Lee et al., 2004). Interestingly, in vivo experiments analyzing the 

effects of stereotaxic injection of Aβ1-42 at high concentration (500 µM) in rat corpus 

callosum resulted in considerable axonal damage, and loss of myelin and mature 

oligodendrocytes (Jantaratnotai, Ryu, Kim, & McLarnon, 2003).  
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On the other hand, contradictory results have been reported when analyzing 

whether differentiation stage in the oligodendroglial linage plays a role in cell 

susceptibility. In this sense, after Aβ1-42 treatment for 4 h both immature and mature 

oligodendrocyte cell population presented an increased abundance of cells with pyknotic 

nuclei (Desai et al., 2010). These data indicate that cultured oligodendrocytes exhibit a 

differentiation state-independent sensitivity to Aβ toxicity. However, two years later it 

was described that when using Aβ1-42 10 µM for 48 h the treatment promote cytotoxicity 

in mature oligodendrocytes, but not to OPCs (Horiuchi et al., 2012). In the same study, it 

was shown that the presence of 1 µM of Aβ peptide in the differentiation medium for 4 

days reduces OPCs myelin sheath formation by inhibition of F-actin distribution. However, 

no changes were observed in the number of MBP+ cells or in the expression of MBP and 

PLP (Horiuchi et al., 2012). Additionally, Aβ peptide may lead to increase caspase-3 

expression and apoptotic cell death in progenitor and differentiated cells (Desai et al., 

2010). 
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Hypothesis and Objectives 

 

Oligodendrocytes are glial cells in charge of developing myelin sheaths in the central 

nervous system. The presence of oligodendrocyte progenitor cells and the generation of 

new mature oligodendrocytes in the adult brain contribute to myelin maintenance and 

regeneration. However, under pathological conditions, as in Alzheimer´s disease, it is 

observed a myelin and white matter decline that may be related to the cognitive 

impairment associated with the disorder. In addition to this, oligodendrocytes have been 

shown to be vulnerable to amyloid β peptide, one of the main hallmarks of Alzheimer´s 

disease. Therefore, we hypothesize that oligomeric amyloid β peptide directly modulates 

oligodendrocyte proliferation and differentiation, altering myelin maintenance and 

contributing to white matter impairment in the progression of Alzheimer´s disease.  

 

To that end, the following specific objectives were designed: 

 

Aim 1. To characterize the changes of myelin-related proteins expression triggered 

by oligomeric amyloid β peptide in primary oligodendrocyte culture and cerebellar 

organotypic slices. 

 

Aim 2. To describe the molecular mechanisms underlying amyloid β oligomer-

mediated changes in myelin basic protein synthesis in cultured oligodendrocytes. 

 

Aim 3. To evaluate molecular and functional features of oligodendrocytes and 

myelin in a triple transgenic Alzheimer’s disease mouse model. 

 

Aim 4. To study myelin integrity at ultrastructural level in a triple transgenic 

mouse model of Alzheimer’s disease. 

 

Aim 5. To analyze myelin-related protein alterations in white matter and 

cerebrospinal fluid of Alzheimer’s disease patients. 
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Experimental procedures 

 

1. Animals. 

 

All experimental procedures followed the European Directive 2010/63/EU, and were 

approved by the Ethic Committees of the University of the Basque Country UPV/EHU. 

Animals were housed in standard conditions with 12 h light cycle and with ad libitum 

access to food and water. All possible efforts were made to minimize animal suffering and 

the number of animals used. 

 

Experiments were performed in Sprague Dawley rats and in the triple transgenic 

mouse model of Alzheimer´s disease (3xTg-AD), which harbours the Swedish mutation in 

the human amyloid precursor protein (APPSwe), presenilin knock-in mutation 

(PS1M146V), and tau P301L mutant transgene (tauP301L) (Oddo et al., 2003). 

 

2. Cell Culture. 

 

2.1. Optic nerve-derived primary oligodendrocyte culture. 

 

Primary oligodendrocyte cultures were performed as previously described (Barres et 

al., 1992) with modifications (Matute, Sánchez-Gómez, Martínez-Millán, & Miledi, 1997). 

Optic nerves were extracted from P12 Sprague Dawley rats and meninges were removed 

in supplemented (2 µl/ml gentamicin, 1 mg/ml BSA and 2 mM glutamine) HBSS (Sigma-

Aldrich) under magnifying scope. Then, optic nerves were cut in small pieces and 

enzymatically digested with collagenase (1.25 mg/ml; Sigma-Aldrich), trypsin (0.125%; 

Sigma-Aldrich) and deoxyribonuclease (0.004%; Sigma-Aldrich) for 40 min at 37°C. 

Afterwards, the enzymatic reaction was stopped by 10% FBS in DMEM (Gibco), 

centrifuged at 1000 rpm for 5 min and the pellet was resuspended in 1 ml of the same 

solution. By using needles (23, 25 and 27G), mechanical dissociation was performed and 

the resulting cell suspension was filtered through a 40 µm nylon mesh (Millipore). 
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Cell number was determined by tripan blue staining (Sigma-Aldrich) with 10 µl of 

sample and the rest of the cell suspension was centrifuged at 1000 rpm for 10 min. The 

obtained pellet was resuspended in chemically defined Sato medium, consisting of a 

supplemented (4.5 g/l glucose and 0.11 g/l sodium piruvate) DMEM base with several 

factors that favour oligodendrocyte survival and development (Table 2). Cells were plated 

(104-105 cells per well) on poly-D-Lysine-coated coverslips (12 or 14-mm-diameter) resting 

in 24-well plates and maintained at 37°C and 5% CO2 in chemically defined Sato medium. 

Cultured oligodendrocytes were allowed to adhere for 24 h before corresponding 

treatments. 

 

Table 2. Sato medium composition 

Reagent Concentration 

Dulbecco’s Modified Eagle Medium (DMEM) Base medium 

Insulin 5 µg/ml 

Penicillin/Streptomycin 100 U/ml 

BSA 1 mg/ml 

L-Glutamine 2 mM 

N-Acetyl L-Cystein 6.3 mg/ml 

Ciliary neurotrophic factor (CNTF) 10 ng/ml 

Neurotrophin 3 (NT-3) 1 ng/ml 

Transferrin 100 µg/ml 

Putrescine 16 ng/ml 

Progesterone 60 ng/ml 

Sodium selenite 40 ng/ml 

Triiodotironine (T3) 30 ng/ml 

L-Tyroxine (T4) 40 g/ml 
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2.2. Organotypic cerebellar slice culture. 

 

Organotypic cerebellar slice culture were prepared from cerebellar sections of P5-P7 

or P12 Sprague Dawley rat pups according to previously described procedures (Stoppini, 

Buchs, & Muller, 1991)(Dusart, Airaksinen, & Sotelo, 1997). Briefly, after decapitation, 

cerebella were extracted and cut into 350 μm parasagittal slices using a tissue chopper 

(McIlwain) and meninges were removed. Slices were transferred to 0.4 μm culture 

membranes inserts (Millipore), each containing three slices. Slices were maintained in 6-

well plates for seven days in 50% basal medium with Earle´s salt (Life technologies), 25% 

Hank´s buffered salt solution (Life technologies), 25% inactivated horse serum (Life 

technologies), 5 mg/ml glucose (Panreac), 0,25 mM L-glutamine (Sigma-Aldrich) and 

Antibiotic-Antimycotic solution (100 units/ml of penicillin, 100 μg/ml of streptomycin and 

25 μg/ml of amphotericin B, Life Technologies) at 37°C in a humidified atmosphere with 

5% CO2. Slices were kept in culture for 7 days before performing the experiments. 

 

3. Human samples. 

 

Patients gave informed consent to all clinical investigations, which were performed in 

accordance with the principles embodied in the Declaration of Helsinki. 

 

3.1. Brain tissue. 

 

Frozen samples and formalin-fixed paraffin-embedded sections from prefrontal 

cortex and hippocampus of 15 subject controls and 30 AD patients were obtained from 

the Neurological Tissue Bank Hospital Clinic-IDIBAPS Biobank (Table 3). AD samples were 

grouped by Braak and Braak (Braak & Braak, 1995) into AD-II, AD-III, AD-IV and AD-V-VI, 

and by CERAD classification (Mirra et al., 1991) into AD-A, AD-B and AD-C. 
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Table 3. Characteristics of controls and AD subjects, categorized as stages I to VI of Braak and Braak and A,B 

or C of CERAD criteria. 

 
 

Braak 
stage 

CERAD      

Case 
number 

Ref. 
number 

NFT Aβ Gender Age 
Age 

(mean±S.D.M.) 
Postmortem 

delay* 
Regions 
analyzed 

C1 1378 - - M 78 79.1±4.55 6:00 Cx 

C2 1405 II - M 80  5:30 Hp 

C3 1423 - A F 82  5:00 Cx and Hp 

C4 1491 - - M 83  13:00 Cx 

C5 1536 - - M 79  4:45 Cx and Hp 

C6 1543 II - M 80  4:30 Hp 

C7 1557 III - M 86  10:15 Cx and Hp 

C8 1687 II - F 69  12:00 Cx and Hp 

C9 1697 I-II - M 78  6:00 Hp 

C10 1733 - - M 76  11:30 Cx and Hp 

AD1 0575 II - F 86 76.83±7.50 13:30 Cx 

AD2 1109 II A F 75  16:20 Cx 

AD3 1357 II - F 79  10:30 Cx 

AD4 1468 II - M 64  10:00 Cx 

AD5 754 III B M 87  2:30 Cx 

AD6 1022 III B M 71  10:30 Cx 

AD7 1144 III A M 73  4:20 Cx 

AD8 1759 III - M 74  9:00 Cx 

AD9 774 IV B M 75  10:00 Cx 

AD10 849 IV B M 70  5:00 Cx 

AD11 948 IV B M 79  5:30 Cx 

AD12 1255 IV C M 89  7:00 Cx 

AD13 1230 V C M 79 76.5±1.95 4:15 Cx 

AD14 1286 V C M 79  5:00 Cx and Hp 

AD15 1622 V C M 76  5:00 Cx 

AD16 1198 VI C F 77  5:00 Cx and Hp 

AD17 1392 VI C M 77  5:00 Cx and Hp 

AD18 1445 VI C F 74  6:30 Cx and Hp 

AD19 1456 VI C F 74  3:30 Cx and Hp 

AD20 1585 VI C F 74  6:30 Cx and Hp 

AD21 1637 VI C M 78  7:00 Cx and Hp 

AD22 1645 VI C F 77  5:30 Cx and Hp 

*Time elapsed between death and sample extraction. 

Cx, frontal cortex; Hp, hippocampus. 
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3.2. Cerebrospinal fluid samples. 

 

Cerebrospinal fluid samples from 26 individuals per group with subjective cognitive 

impairment (SCI), mild cognitive impairment (MCI) and established AD were kindly 

provided by Prof. Angel Cedazo Minguez (Karolinska Institutet, Stockholm, Sweden).  

 

4. Preparation of Aβ1-42 oligomers. 

 

Aβ1-42 oligomers were prepared as reported previously (Dahlgren et al., 2002). Briefly, 

Aβ1-42 (ABX) was initially dissolved to 1 mM in hexafluoroisopropanol (Sigma-Aldrich) and 

separated into aliquots in sterile microcentrifuge tubes. Hexafluoroisopropanol was 

totally removed under vacuum in a speed vac system and the peptide film was stored 

desiccated at -80°C. For the aggregation protocol, the peptide was first resuspended in 

dry DMSO (Sigma-Aldrich) to a concentration of 5 mM, and Hams F-12 (PromoCell) was 

added to bring the peptide to a final concentration of 100 μM and incubated at 4°C for 24 

h. The preparation was then centrifuged at 14,000 g for 10 min at 4°C to remove insoluble 

aggregates and the supernatants containing soluble Aβ1-42 were transferred to clean tubes 

and stored at 4°C. 

 

5. Protein extract preparation and detection by western blot. 

 

5.1. Oligodendrocyte protein preparation. 

 

After each treatment, cultured oligodendrocytes were washed in cold 0.1 M 

phosphate buffered saline (PBS) twice and cells were scraped in 40 µl of sample buffer 

(62.5 mM Tris pH 6.8, 10% glycerol, 2% SDS, 0.002% bromophenol blue and 5.7% β-

mercaptoethanol in dH2O) per treatment (2 wells/treatment and 80,000 cells/well). All 

this process was performed on ice to enhance the lysis process and avoid protein 

degradation. After that, samples were boiled at 95°C for 10 min. 
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5.2. Organotypic slice protein extract preparation. 

 

After 7 days in culture, cerebellar slices were exposed Aβ1-42 oligomers for 48h. Then, 

each slice was resuspended in 80 μl of sample buffer and then, samples were boiled at 

95°C for 10 min. 

 

5.3. Protein preparation from animal tissue and human samples. 

 

Mice were anesthetized with isofluorane (Schering-Plough) and optic nerve, corpus 

callosum and hippocampus were extracted, placed on dry ice and stored at -80ºC.  

 

Animal and human tissue samples were resuspended in 200 µl of RIPA buffer (50 mM 

Tris pH 7.5, 150 mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 1% NP-40 in 0.1 M PBS) 

supplemented with protease inhibitor cocktails (Roche), and were homogenized with a 

douncer. Afterwards, they were sonicated for 25 cycles at 80% amplitude (Labsonic M, 

Sartorius), centrifuged for 10 min, at 1,200 rpm and 4°C, and then supernatants were 

collected. Total protein content was quantified through Bradford assay (Bio-Rad). Protein 

extracts from tissues (10 µg per sample) and from CSF samples (11.25 µl) were analyzed 

by western blot. 

 

5.4. Western blotting. 

 

Protein samples were separated by SDS-PAGE in 3-8% Tris-Acetate and 4-20% Tris-

Glycine polyacrylamide gels (Bio-Rad), according to the molecular weight of proteins. 

Electrophoresis was conducted in a Tris-Tricine buffer (100 mM Tris, 100 mM Tricine, 0.1 

SDS% in dH2O, pH 8.3 ) or in a Tris-Glycine buffer (25 mM Tris, 192 mM glycine, 0.1 % SDS 

in dH2O, pH 8.3) by using the Criterion cell system (Bio-Rad). Gels were transferred to 

nitrocellulose membrane by using a Trans-Blot® Turbo™ Transfer System (Bio-Rad).  

 

Membranes were blocked for 1 h at room temperature (RT) in blocking solution, 

which consisted of TBST buffer (20 mM Tris, 137 mM NaCl, 0.1% Tween-20 in dH2O, pH 

7.6) supplemented with either 5% bovine serum albumin (Sigma-Aldrich) or with 5% 
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PhosphoBlocker Blocking Reagent (Cell Biolabs) for phosphorylated protein detection. 

Then, they were incubated with specific primary antibodies in the same solution 

overnight at 4°C with gentle shaking. Afterwards, membranes were washed three times 

with TBST and incubated in blocking solution containing secondary antibody conjugated 

to horseradish peroxidase (HRP) for 1h at RT. 

 

Immunoreactive proteins were detected by using enhanced electrochemical 

luminescence (Super Signal West Dura or Femto, Pierce) and ChemiDoc XRS Imaging 

System (Bio-Rad). Band signal was quantified by densitometry using Image Lab software 

(Bio-Rad) and were normalized and provided as the mean ± S.E.M of at least three 

independent experiments. 

 

Membranes were stripped of antibodies using Restore Western Blot Stripping Buffer 

(Thermo Fisher Scientific) for 10 min at RT. Membranes were then washed in TBST for 

three times, blocked and incubated with other primary antibodies. 

 

5.5. Antibodies for Western blot. 

 

The following antibodies were used for protein detection, mouse anti-MBP (1:1000; 

Biolegend), rabbit anti-Src [pY418] (pSFK; 1:500; Invitrogen), rabbit-Fyn (1:500; Santa Cruz), 

mouse anti-LCK (1:500; BD Bioscience), mouse anti-SRC (1:1000; Cell Signaling), rabbit 

anti-integrin β1 (1:1000; Cell Signaling), rabbit anti-phospho-CREB (1:1000; Cell Signaling), 

rabbit anti-CREB (1:1000; Cell Signaling), mouse anti-CNPase (1:500; Sigma Aldrich), 

hamster anti-CD81 (1:1000; Bio-Rad), mouse anti-CD63 (1:1000; BD Biosciences), rabbit 

anti-PDGFR-α (1:200; Santa Cruz), rabbit anti-neurofilament heavy polipeptide (1:1000; 

Abcam), mouse anti-neurofilament H non- phosphorylated, SMI-32 (1:1000; Biolegend), 

rabbit anti-PDGFr (1:200; Santa Cruz), rabbit anti-Olig2 (1:1000; Millipore), mouse anti-

GAPDH (1:2000; Millipore) and rabbit anti-β-actin (1:5000; Sigma-Aldrich).  
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6. Immunoprecipitation. 

 

Immunoprecipitation assays were performed to determine which specific protein of 

SFK family kinase was involved in Aβ-triggered signaling in cultured oligodendrocytes. 

First, 50 µl of protein A-sepharose beads (Abcam) were incubated with 1 µg of antibody 

(anti-Fyn, 1:100, Santa Cruz Biotechnology; or anti-phosphotyrosine, 1:500, Sigma-

Aldrich) for 4 h at 4°C. Then, samples were centrifuged at 2,000 g for 2 min and 

supernatants discarded to keep the antibody-beads complex. After that, cells were 

treated with Aβ at 200 nM for 15 min and were washed with cold 0.1M PBS twice. Cells 

were scraped in 500 µl RIPA buffer supplemented with protease and phosphate inhibitor 

cocktail (ThermoFisher Scientific) and were incubated with the antibody-protein A beads 

complex previously obtained, in RIPA buffer with protease and phosphate inhibitors 

overnight at 4°C under rotary agitation. The lysate-antibody-beads complex was 

centrifuged at 4,000 rpm and washed with RIPA buffer for three times followed by other 

centrifugation to obtain the immunocomplex. Finally, protein elution was carried out in 

2x sample buffer after boiling the sample at 95°C for 5 min and centrifugated at 12,000g 

for 1 min. After elution, proteins were analyzed by Western blot. 

 

7. Inhibitors. 

 

The following inhibitors were used: PP2 (10 µM; Selleckchem), RGDS (100 µM; 

Tocris), hamster anti- rat CD29 (0.25 mg/ml; BD Pharmingen), hamster IgM (0.25 mg/ml; 

BD Pharmingen), Ryanodine (50 µM; Sigma), AIP (1 µM, Anaspec), Nifedipine (10 µM; 

Sigma-Aldrich), Memantine (10 µM; Tocris), AP-5 (100 µM; Tocris), MK801 (50 µM; 

Tocris), α-bungarotoxin (10 nM; Tocris), CNQX (30 µM; Tocris) 

 

8. Immunofluorescence. 

 

8.1. Cultured oligodendrocytes. 

 

Cells were fixed in 4% paraformaldehyde (PFA) for 10 min, washed in 0.1 M PBS for 

three times and then stored at 4°C. Cells were permeabilized and blocked in 4% normal 
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goat serum (NGS, Palex), 0.1% Triton X-100 (Sigma-Aldrich) in 0.1 M PBS (blocking buffer) 

for 1 h and incubated with primary antibodies overnight at 4°C. Then, cells were washed 

in 0.1% Triton X-100 in 0.1 M PBS (washing buffer) and incubated with the fluorochrome-

conjugated antibodies in blocking solution for 1 h at RT. After that, cells were washed and 

incubated with DAPI (4 µg/ml, Sigma-Aldrich) for 10 min. Then, cells were washed again 

twice and coverslips were mounted on glass slides with Fluoromount-G mounting 

medium (SouthernBiotech).  

 

8.2. Animal tissue and organotypic slices. 

 

Mice were anesthetized with avertine and perfused with 30 ml of PB followed by 30 

ml of 4% PFA in 0.4 M PB. The brains were extracted and postfixed with the same fixative 

solution for 4 h at RT, placed in 30% sucrose in 0.1 M PBS at 4°C and then kept in 

cryoprotectant solution (30% ethylene glycol, 30% glycerol and 10% PB 0.4 M in dH2O) at -

20°C. The tissue was cut using a Leica VT 1200S vibrating blade microtome (Leica 

microsystems) to obtain coronal 40 µm-thick sections. In the case of cerebellar 

organotypic slices, they were fixed in 4% PFA for 40 min at RT followed by washing in 0.1 

M PBS for three times. Slices were then taken off the membranes and kept in 0.1 M PBS 

at 4°C. Free-floating vibratome sections or cerebellar slices were permeabilized and 

blocked with 0.1% Triton X-100, 4% NGS in 0.1 M PBS for 1 h at RT and were incubated 

with primary antibodies overnight at 4°C with gently shaken. Slices were then washed 

three times in 0.1% Triton X-100 in 0.1 M PBS and were incubated with blocking solution 

containing fluorochrome-conjugated antibodies and DAPI (4 µg/ml) at RT for 1 h. After 

that, slices were washed for three times in 0.1% Triton X-100 in 0.1 M PBS and were 

mounted on glass slides with Fluoromount-G mounting medium.  

 

For labeling specific oligodendrocyte lineage markers, an antigen retrieval protocol 

was performed. Free-floating sections were incubated in R-Universal epitope recovery 

buffer for heat-induced antigen unmasking (Aptum) for 5 min at 95°C followed by 5 min 

at RT and then were washed in cold 0.1 M PBS twice. Then, slices were permeabilized in 

100% ethanol at -20°C for 10 min and washed in 0.1 M PBS for three times. Sections were 

permeabilized and blocked in 10% NGS, 0.1% Triton X-100 in 0.1 M PBS for 30 min at RT 
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and incubated with specific antibodies overnight at 4°C with gentle shaking. Afterwards, 

slices were washed three times in 0.1 M PBS and incubated with blocking solution 

containing fluorochrome-conjugated antibodies and DAPI (4 µg/ml) at RT for 1 h. Slices 

were washed for three times in 0.1 M PBS and were mounted on glass slides with 

Fluoromount-G mounting medium. For PDGFr-α labeling antigen retrieval protocol was 

not utilized and Triton X-100 was only used for permeabilization.  

 

8.3. Paraffin-embedded human sections. 

 

Paraffin-embedded human sections (10 µm-thick) were deparaffinized and 

rehydrated by immersing in xylene followed by incubations with alcohol content solutions 

(100°, 96° and 75° diluted in dH2O) and TBS (100 mM Tris-Cl, 300mM NaCl, 4.25 mM 

MgCl2 and 1.5 mM CaCl2; ph 7.4) for 10 min in each solution. Samples were then boiled in 

Universal Buffer (Aptum) by using antigen retriever for 20 min and allowed to cool down 

during 30 min to promote epitope unmasking. After section retrieval, samples were 

washed in TBS for three times and blocked in 4% BSA in TBS for 1 h at RT and were 

incubated with the primary antibody mouse anti-MBP (BioLeyend, 1:400) in blocking 

solution overnight at RT. Then, samples were washed in TBS twice and incubated in 

blocking solution containing DAPI (4 µg/ml) and the fluorochrome-conjugated antibody, 

donkey anti-mouse Alexa 647 (Jackson Immunoresearch) for 1 h at RT. After that, samples 

were washed in TBS and treated with Autofluorescence Eliminator Reagent according to 

the manufacturer’s instructions (Millipore) to reduce lipofuscin-like autofluorescence. 

Finally, sections were washed and mounted with Fluoromount-G mounting medium. 

 

8.4. Analysis of fluorescence immunostaining images. 

 

Fluorescence immunostaining for cultured oligodendrocytes and cerebellar 

organotypic slices were examined under a fluorescence microscope (Cell observer. Z1, 

Zeiss) and the micrographs were taken using the Axiocam digital camera. For 

oligodendrocyte differentiation analysis in cultured oligodendrocytes, 20-50 fields (524.19 

x 524.19 µm per field) per coverslip were counted. To measure MBP occupied area, 43-52 
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cells were analyzed per condition. The number of oligodendrocyte cells and the area 

occupied by each MBP+ cell were determined with the Image J software. 

 

Fluorescence immunostaining images from mouse and human tissue were taken with 

Leica TCS SP8 laser scanning microscope using 20X objective (human samples), 40X or 63X 

oil-immersion objectives (mouse experiments) to generate z-stack projections. Images 

analysis was carried out in 2-3 sections per subject. For MBP and NFL fluorescence 

intensity analysis, images were taken with the same setting for all experiment and mean 

value along the stack profile was quantified with LAS AF Lite software (Leica).  

 

To analyze oligodendrocyte stages, 4 random areas of corpus callosum and 2 of DG 

and CA3 were used per section, containing each ROI 91.39 x 79.81 µm. For nodes of 

Ranvier abundance analysis, 5 random areas of 44.97 x 43.85 µm per section were 

counted and to measure node of Ranvier length 50 nodes per animal were randomly 

selected and analyzed.  

 

8.5. Antibodies. 

 

The following primary antibodies were used: mouse anti-MBP (1:500, BioLegend), 

mouse-CNPase (1:500, Sigma-Aldrich), rat anti-O4 (1:500, kindly supplied by Dr. Chistine 

Thompson, University of Glasgow), mouse anti-Olig2 (1:200, Millipore), rabbit anti-NFL 

(1:200, Cell Signaling), mouse anti-CC1 (1:200, Millipore), rat anti-PDGFr-α (1:300, BD 

Pharmingen), mouse anti-Nav1.6 (1:250, Alomone Labs) and rabbit anti-Caspr (1:500, 

Neuromab). Secondary antibodies coupled to Alexa 488, Alexa 594, Texas Red and Alexa 

647 were purchased from Invitrogen, Millipore or Jackson Immunoresearch. (1:500).  

 

9. RNA extraction and quantification. 

 

9.1. RNA isolation. 

 

Cultured oligodendrocytes were treated with Aβ at 1 µM for 24 h and total RNA was 

isolated using PureLink RNA Mini Kit (Ambion) according to manufacturer’s instructions. 
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Cerebellar organotypic slices were treated with Aβ at 200 nM for 48 h and previous to the 

RNA extraction, organotypic slices were homogenized with 18 and 21G needles and 3 

slices were used per condition. RNA was extracted by using the same kit. RNA 

concentration and integrity was measured by a spectrophotometer Nano Drop™ 2000 

(ThermoFisher Scientific).  

 

9.2. Retrotranscription and Real Time-Polymerase Chain Reaction (RT-qPCR). 

 

RNA was reverse transcribed in a 20 µl reaction containing 5X Buffer (Invitrogen), 0.1 

M DTT, random primers (Promega), dNTPs (Invitrogen), RNase OUT and Superscript II 

retrotranscriptase (Invitrogen) following manufacturer’s instructions in a Veriti Thermal 

Cycler (Applied Biosystems). Resulting cDNA samples were diluted in sterile Mili-Q H2O.  

 

Quantitative Polymerase Chain Reaction (qPCR) was performed in 11.8 µl RNAse-free 

water (Promega), 5.2 µl SsoFast Evagreen Supermix (Bio-Rad), 1.35 µl properly diluted 

primers and 0.5 µl cDNA sample. All reaction were performed by triplicates and carried 

out in cDNA CFX96 Touch Real-Time PCR Detection System (Bio-Rad). Amplification 

reactions were optimized and 3 min 95°C, and 40 cycles of 10 s at 95°C, 30 s at 60°C. 

Primers were designed and synthesized by Quiagen or designed to amplify exon-exon 

junctions using Primer Express (Applied Biosystems) and PrimerBlast (NIH). PCR product 

specificity was checked by melting curves. Data were normalized to a normalization factor 

obtained in geNorm Software through the analysis of the expression of four 

housekeeping genes. Primer sequences are detailed in the Table 4. 
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Table 4. Sequences of primers used in this study. 

Gene Gene Bank No. 
Amplicon 

size 
Sequence 

Reference genes 

Hprt1 NM_012583 85 
Fwd ATGGACTGATTATGGACAGGACTGA 
Rev ACACAGAGGGCCACAATGTG 

B2m NM_012512.2 84 
Fwd ACCGAGACCGATGTATATGCTT 
Rev TTACATGTCTCGGTCCCAGG 

Cyclophilin A NM_017101.1 114 
Fwd CAAAGTTCCAAAGACAGCAGAAAA 
Rev CCACCCTGGCACATGAATC 

GAPDH NM_017008.4 80 
Fwd GAAGGTCGGTGTCAACGGATTT 
Rev CAATGTCCACTTTGTCACAAGAGA 

Cerebellar organotypic 

MBP NM_001025291.1 114 
Fwd CATCCCAAGGAAAGGGGAGAG 
Rev TGTGAGCCGATTTATAGTCGGAA 

CNPase NM_012809.2 86 
Fwd CGCCCACTCATCATGAGCAC 
Rev CCTGAGGATGACATTTTTCTGAAGA 

PDGFr-α NM_012802.1 146 
Fwd TTATGCCTTGAAAGCCACGTC 
Rev TCACCTCTCCAGGGTAAGTCCA 

Cultured oligodendrocytes 

Itgb1 Purchased from QIAGEN Cat no: QT0018756 

Itgb3 Purchased from QIAGEN Cat no: QT02376241 

Itgb5 Purchased from QIAGEN Cat no: QT01570828 

Itgb8 Purchased from QIAGEN Cat no: QT01790313 

Itga5 Purchased from QIAGEN Cat no: QT02344944 

Itga6 Purchased from QIAGEN Cat no: QT01600158 

 

10. Gene silencing by lentivirus infection. 

 

After 4 h of cell seeding, oligodendrocytes were transduced with lentivirus containing 

non-targeting or Itgb1-targeting shRNA (12 µl/ml; Santa Cruz Biotechnology) for 24 h in 

SATO culture media. On the next day, cells were selected by puromycin (1 µg/ml) for 12 h 

and were treated in fresh media with Aβ at 1 µM for 24 h and subsequently protein 

extraction was carried out.  
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11.  mRNA fluorescent in situ hybridization (FISH). 

 

After Aβ exposure (1 µM, 24 h) cultured oligodendrocytes were fixed in 4% PFA for 10 

min, followed by dehydration with ethanol content solutions (50°, 70° and 100° diluted in 

dH2O) and storage at -20°C. Coverslips were rehydrated by incubations with decreasing 

concentration of alcohol solution and detection of MBP mRNA was carried out using the 

QuantiGene ViewRNA ISH Cell Assay (Affymetrix Panomics) according to manufacturer’s 

instructions with minor modifications. FISH assay was performed in presence and absence 

of protease treatment. Background fluorescence was established with a negative probe 

(BACILLUS S. dapB dihydopicolinate reductase L38424, VF1-11712) and MBP detection 

was performed using a specific MBP-targeting probe (NM_017026 VC1-15251), both 

purchased from Affymetrix Panomics. Following in situ hybridization, non protease-

treated-cells were blocked with 3 mg/ml BSA, 100 mM glycine and 0.25% Triton X-100 in 

0.1M PBS and incubated with an anti-MBP antibody (1:500, Bioleyend) overnignt at 4℃. 

After several washes cells were incubated with secondary antibody for 1h and were 

washed in 0.1M PBS. Finally, coverslips were incubated with DAPI in 0.1M PBS for 10 min, 

were washed for three times and mounted with Fluoromount-G mounting medium. 

 

11.1. Image analysis. 

 

Images were acquired with a fluorescence microscope (Cell observer. Z1, Zeiss) using 

40X oil-immersion objective. Image acquisition was determined automatically on a 

random field and pixel intensities were within the linear range, being these settings 

applied for all samples. Image analysis of experiments carried out with protease was 

performed using the Radial Profile Angle plugin of Image J software and values of 

normalized integrated intensity were obtained. Concerning the experiments carried 

without protease, Image J macro was designed and used to automate the analysis. MBP 

labeling allowed us to select the cell occupied area and to determine RNA fluorescence 

intensity only inside cells. In both cases, concentric circles at 10 µm intervals emerging 

from the center of the cell nucleus were generated and MBP mRNA and protein 

fluorescence signals were quantified. Results were expressed as fluorescence intensity in 
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nuclear area (round zone with a 20-µm radius from the nucleus) and periphery (from 20 

µm to the end of the cell) (Figure 11).  

 

 

Figure 11. Image analysis of FISH experiments. (A) Fluorescence intensity of MBP mRNA was measured by 

using Radial Profile Angle when protease was applied to samples. (B) In the absence of protease, MBP 

protein labeling was used to determine by threshold the area occupied by cell and then, MBP mRNA 

fluorescence intensity values were acquired. 

 

 

12. Lysophosphatidylcholine (LPC)-induced organotypic demyelination. 

 

LPC-induced demyelination experiments were performed in cerebellar organotypic 

slices from P12 rats (Birgbauer, Rao, & Webb, 2004). Slices were cultured 7 days in vitro 

and treated 15-16 h with LPC 0.5 mg/ml. After that, slices were exposed to Aβ 200 nM for 

48h and were fixed or proteins were extracted 1 and 6 days after Aβ treatment exposure. 

PP2 inhibitor (10 µM, Selleckchem) was added 30 min before Aβ insult. 

 

13. Cell viability assay. 

 

Cultured oligodendrocyte cell viability was measured 24 h after Aβ treatment by 

Calcein-AM method (Life Technologies). Cells were incubated with Calcein-AM at 1 µM 

and 37°C for 30 min in fresh culture medium and then, were washed in pre-warmed 0.1 

M PBS for three times. Emitted fluorescence was measured by a Synergy HT (Biotek) 

spectrophotometer using excitation wavelength at 485 nm and emission at 528 nm. 

Values were represented as means or a percentage of cell survival in comparison with 

control cells (control cells, 100% viability). 
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14. Extracellular vesicles (EVs) purification. 

 

Cultured oligodendrocytes were exposed to Aβ 1 µM for 24 h (520,000 

cells/condition) and then, oligodendrocyte protein extraction was performed (as 

described previously) and culture media collected to EVs isolation (Royo et al., 2017). 

Culture supernatants were centrifuged at 1,500  g for 10 min to remove lifted cells and 

cellular debris. The resultant supernatant was centrifuged at 10,000   g for 30 min and the 

pellet was resuspended in 15 µl 0.1M PBS (microvesicle enriched fraction). Next, the 

supernatant was ultra-centrifuged at 100,000  g and 250,000 g for 75 min, and the final 

pellets containig small EVs and exosomes were resuspended in 15 µl 0.1M PBS. For 

analysis, the pellets were resuspended in non-reducing 1X sample Buffer (without β-

mercaptoethanol) and boiled at 37°C for 5 min, at 65°C for 10 min and at 95°C for 15 min, 

followed by centrifugation at 13,000 rpm for 15 min. Cell lysates and the supernatants 

were analyzed by Western blot.  

 

15. Electrophisiology. 

 

After being anesthetized with isofluorane, brain and optic nerves from 18-month old 

mice WT and 3xTg-AD were rapidly removed and optic nerves were placed in an interface 

perfusion chamber with artificial cerebrospinal fluid (aCSF) containing 126 mM NaCl, 3 

mM KCl, 2 mM CaCl2, 1.25 mM NaH2PO4, 2 mM MgSO4, 26 mM NaHCO3, 10 mM d-glucose 

in H2O bubbled with a mixture of 95% O2 and 5% CO2 at 37ºC at least for 30 min before 

evoked compound potentials (CAPs) recordings. Then, propagated compound action 

potentials (CAPs) were evoked using a bipolar silver electrode placed on one end of the 

optic nerve. Stimulus pulse (30 µs duration delivered every 15 s) strength was adjusted to 

evoke supramaximal stimulation (Tekkök & Goldberg, 2001). CAPs were recorded at 37°C 

with a suction electrode connected at the opposite end of the optic nerve and back-filled 

with aCSF. Optic nerves were perfused (1 mL/min) with aCSF continuously bubbled with 

95% O2/5% CO2. The signal was amplified 5.0003 and filtered at 30 kHz and control CAPs 

were recorded for 30 min. TTX (1 µM) was applied at the end of the experiment to obtain 

the stimulus artifact, which was subtracted from all the records. 
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For corpus callosum recordings, brain was cut in coronal 400 µm-thick sections by 

using a Leica VT 1200S vibrating blade microtome (Leica microsystems) in a cutting 

solution at 0°C (215 mM sucrose, 2.5 mM KCl, 26 mM NaHCO3, 1.6 mM NaH2PO4, 1 mM 

CaCl2, 4 mM MgCl2, 4 mM MgSO4, 20 mM glucose and 1.3 mM ascorbic acid). Then, after 

preincubation with low calcium solution for 30 min at 32°C, sections were incubated in 

aCFS containing 124 mM NaCl, 2.5 mM KCl, 10 mM glucose, 25 mM NaHCO3, 1.25 mM 

NaH2PO4, 2.5 mM CaCl2, and 1.3 mM MgCl2 for 30 min. Then, evoked compound 

potentials (CAPs) were recorded with a pulled borosilicate glass pipette (≈ 1 MΩ 

resistance) by electrically stimulating corpus callosum with a bipolar tungsten wire 

electrode, stimulation intensities ranging from 30 to 3000 μA. After this, input-output 

curves were generated by recording the amplitudes of N1 and N2 as a function of 

stimulation intensity. Using the difference between the corresponding trough and a 

straight line drawn between the adjacent peaks, the amplitude of each response was 

obtained. Three to five responses were averaged for each measurement. Conduction 

velocity values for myelinated and unmyelinated fibers were calculated as the slope of a 

straight line fitted through a plot of the distance between the recording and stimulating 

electrodes versus the response latency (time to N1 or N2, respectively). Peak amplitudes 

and onset latencies were calculated using custom written routines in pCLAMP 10.0 

(Molecular Devises) 

 

16. Electron microscopy. 

 

Mice were anesthetized with avertine and perfused with 4% formaldehyde, 2.5% 

glutaraldehyde (Electron Microscopy Sciences) and 0.5% NaCl in phosphate buffer, pH 

7.4, according to Karlsson and Schultz (1965) as described (Möbius et al., 2010). The 

brains were extracted and postfixed with the same fixative solution overnight at 4ºC and 

fixative solution was replace by 1% formaldehyde. The tissue was sagitally cut using a 

Leica VT 1200S vibrating blade microtome (Leica microsystems) to obtain 200 µm-thick 

sections, regions of interest were punched and incubated in 2% OsO4 for 4h followed by 

dehydration with ethanol and propylenoxide. Afterwards, selected tissue areas were 

embedded in EPON (Serva) for 24h at 60ºC and EPON-block was trimmed using a Leica 

EM TRIM (Leica). Ultrathin sections (50 nm thickness) were obtained by Leica Ultracut S 
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ultramicrotome (Leica) and contrasted with 4% uranyl acetate for 30 min followed by lead 

citrate for 6 min (according to Reynolds, 1963). EM pictures were taken with a Zeiss 

EM900 electron microscope (Zeiss). Images obtained for g-ratio value and inner tongue 

area quantification were taken at 12,000x, while those for myelin sheath degenerative 

events counting were taken at 7,000x magnification. 

 

16.1. Analysis of electron microscopy images. 

 

Electron microscopy images of rostral and caudal corpus callosum were taken from 

randomly selected fields, being 10 images per animal studied (3 animals per group). 

Electron micrographs were analyzed using NIH ImageJ software. Axonal, inner tongue 

(including axon) and myelinated fiber areas were measured and used to determine their 

diameter. The g-ratio value was quantified as the fraction of axonal (A) plus inner tongue 

(I) diameter divided by whole fiber diameter (M). To randomly select fibers, grids were 

overlaid onto images, and all axons intersecting with grid lines cross were counted (150-

300 myelinated axons per animal). Inner tongue area was also measured as inner tongue 

area (including axon) minus axonal area.  

 

For myelin sheath degenerative events analysis, 10 micrographs per animal were 

analyzed to determine the abundance of four types of events: myelin fibers with enlarged 

inner tongue, dense cytoplasm, empty fiber or myelin degenerated. All myelinated axons 

were counted to calculate the percentage of each degenerative event per total 

myelinated axons.  

 

17. Statistical analysis. 

 

All data were expressed as mean ± S.E.M. Statistical analysis were performed using 

absolute values and GraphPad Prism software (GraphPad Software) applying the 

corresponding statistical treatment for each experiment, as mentioned in figure captions.  
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Results 

 

1. Aβ1-42 oligomers promote oligodendrocyte maturation in vitro.  

 

We investigated the role of Aβ oligomers on oligodendrocyte differentiation and 

maturation in vitro. For that, we used primary cultured oligodendrocytes derived from rat 

optic nerves. During development, these cells present several morphologies and express 

stage-specific antigenic markers, being oligodendrocyte transcription factor (Olig2) a 

marker that is maintained throughout oligodendroglial lineage. Late progenitors are 

characterized by having simple processes and are recognized by the O4 antibody (Bansal 

et al., 1992). When the myelin protein 2’,3’-Cyclic-nucleotide 3’-phophodiesterase 

(CNPase) begin to be expressed and cells adopt a more rounded morphology then they 

are considered immature cells. Finally, immature cells differentiate into mature myelin-

producing oligodendrocytes which have more complex branched processes and express 

myelin basic protein (MBP) (Figure 12A). In order to evaluate the differentiation state of 

cells after Aβ exposure, we performed immunocytochemistry for the abovementioned 

stage-specific cell surface antigens and we analyzed the number of cells present in the 

different stages of development. Unexpectedly, after Aβ 200 nM treatment for 24 h, the 

number of O4+ and MBP+ cells per mm2 (49.07 ± 9.36 and 10.91 ± 1.48, respectively) 

increased significantly compared to non-treated cells (33.48 ± 8.16 and 5.95 ± 0.76, 

respectively), while the number of immature cells (CNPase+) remained unchanged (Figure 

12B, C). Morphological complexity of oligodendrocytes is proportional to their 

differentiation state, so to further analyze morphological differences the MBP-occupied 

area was quantified. Aβ induced an increase in mature cell size indicating a more mature 

morphological state (Figure 12D, E). These results suggest that Aβ induces changes in the 

development stages, promoting oligodendrocyte differentiation and maturation. 
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Figure 12. Aβ1-42 oligomers promote oligodendrocyte maturation in vitro. (A) Diagram of oligodendrocyte 

development stages. (B) Representative micrographs showing double-immunostaining for oligodendrocyte 

linage marker Olig2, and O4 (red, late progenitors), CNPase (green, immature oligodendrocytes), or MBP 

(green, mature oligodendrocytes). Cells were treated with Aβ at 200 nM for 24 h. (C) The number of specific 

positive cells was counted after treatment (n=4 cultures). (D) Representative immunofluorescence image 

for MBP staining. (E) Analysis of the occupied area by the MBP staining per cell (n=4 cultures.). Data are 

represented as means ± S.E.M. *p<0.05, **p<0.01 compared to non-treated cells; paired Student´s t test. 

Scale bar, 25 µm. 
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2. Aβ1-42 oligomers upregulate MBP expression in oligodendrocyte peripheral areas. 

 

To further study the Aβ-induced oligodendrocyte maturation, we analyzed by 

western blot the expression levels of MBP after Aβ treatment at different concentrations 

(200 nM and 1 µM) for 24 h (Figure 13A). Oligodendrocyte total protein extracts showed 

increased levels of MBP protein after Aβ exposure (2.78 ± 0.22 and 2.98 ± 0.27 after 200 

nM and 1 µM treatment, respectively) compared to non-treated cells (2.28 ± 0.16). 

However, no significant differences were found between the two Aβ doses used (Figure 

13B). Regarding the preparation of Aβ1-42 oligomers used in this study, it was mainly 

composed by Aβ oligomers (trimers and tetramers) but also by large fibrils and monomer 

forms (Lambert et al., 1998; Chromy et al., 2003; Alberdi et al., 2013). Thus, to asses 

which molecular form of Aβ was responsible for inducing oligodendrocyte maturation, we 

treated cultured oligodendrocyte with monomeric, oligomeric or fibrillar Aβ preparation 

using specific protocols as abovementioned (Figure 13C). MBP levels were only increased 

by Aβ oligomeric forms compared to control cells, while Aβ fibrils and monomers did not 

have effect on MBP expression (Figure 13D). Moreover, to assess if Aβ could modulate 

MBP distribution along the cell, we analyzed this protein levels around the nucleus and at 

peripheral areas (Figure 13E). We tested the effect of Aβ oligomers in cultured 

oligodendrocytes at 1 µM for 24 h and found that Aβ increased the MBP fluorescence 

intensity only at peripheral areas, while no significant differences were found at nuclear 

area (Figure 13F). These results indicated that oligomeric Aβ forms upregulate 

oligodendrocyte MBP expression but only at peripheral areas. 
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Figure 13. MBP levels are increased after Aβ1-42 oligomers treatment in peripheral areas of cultured 

oligodendrocytes. (A) Western blotting of MBP expression in total cell extracts treated with Aβ 200 nM or 1 

µM for 24 h. (B) Analysis of MBP levels is shown (n=10-20 cultures). (C, D) Cells were treated with fibrillar, 

monomeric  or oligomeric Aβ peptide at 1 µM for 24 h, and MBP levels of total extracts were quantified and 

detected by western blot (n=3 cultures). Data are represented as means ± S.E.M. of optical density values 

normalized to corresponding GAPDH. (E) Representative MBP-immunolabeled micrographs of Aβ-treated 

(Aβ) or non-treated (Ctrl) cultured oligodendrocytes. (F) Analysis of MBP fluorescence intensity at nuclear 

and peripheral areas is shown (n=4 cultures). Scale bar, 10 µm. Data are represented as means ± S.E.M. 

*p<0.05, ***p<0.001 compared to non-treated cells; paired Student´s t test. 

 

 

3. Aβ1-42 oligomers increase MBP mRNA local translation at peripheral areas in 

primary cultured oligodendrocytes. 

 

Since Aβ oligomers induce MBP upregulation in oligodendrocytes, we asked whether 

the increase of MBP levels may be due to transcriptional or translational regulation 

leaded by Aβ oligomers. First, to examine the possible role of Aβ as a transcriptional 
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regulator, we measured MBP mRNA by quantitative FISH in the presence of protease. The 

prehybridization proteolytic digestion step with protease would allow us to unmask all 

mRNA molecules present in the cell and then enhance its detection. We focused on two 

cell areas, around the nucleus and the cell periphery, and found that Aβ treatment (1 µM 

for 24 h) did not change MBP mRNA fluorescence intensity in either areas comparing to 

non-treated cells (Figure 14A, B). Therefore, Aβ oligomers do not regulate MBP mRNA 

synthesis and transport in oligodendrocytes. 

 

 

Figure 14. Aβ1–42 oligomers do not regulate MBP mRNA synthesis and transport in oligodendrocytes. Cells 

were treated with Aβ 1 µM for 24 h and MBP mRNA levels were measured by quantitative FISH in the 

presence of protease. (A) Representative epifluorescence images of cultured oligodendrocytes showing 

MBP positive probe (top panels) and non-targeting probe (bottom panels). (B) Quantitative analysis of MBP 

mRNA fluorescence intensity of peripheral and nuclear areas (n=3 cultures). Scale bar, 10 µm. Data are 

represented as means ± S.E.M.; repeated-measures ANOVA followed by Bonferroni posttest. 

 

 

In addition, MBP mRNA has been shown to be transported from the nucleus to 

oligodendrocyte processes (Trapp et al., 1987; Ainger et al., 1993, 1997) and there, at cell 

periphery is translated. Next, we quantified the MBP mRNA levels after Aβ exposure (1 

µM, 24h) by quantitative FISH in the absence of protease to analyze whether MBP mRNA 

might be locally translated in oligodendrocytes. Labeling of MBP mRNA showed that Aβ 

promoted an increase in the amount of unmasked MBP mRNA in oligodendrocyte 

peripheral areas compared to non-treated cells, while no differences were found in 

nuclear areas (Figure 15A, B). These results strongly suggest that Aβ increase MBP mRNA 

local translation in cultured oligodendrocytes. 
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Figure 15. Aβ1–42 oligomers increase MBP mRNA local translation in primary oligodendrocyte cultures. (A) 

Representative micrographs of oligodendrocytes treated with Aβ 1 µM for 24 h. MBP mRNA was visualized 

by fluorescent probe (red) and MBP protein expression by immunolabeling (green). (B) MBP mRNA levels of 

peripheral and nuclear areas were measured by quantitative FISH (n=3 cultures). Scale bar, 10 µm. Data are 

represented as means ± S.E.M.; repeated-measures ANOVA followed by Bonferroni posttest. 

 

 

4. Aβ1-42 upregulates MBP expression via integrin β1/Fyn/CREB signaling pathway. 

 

4.1. Integrin β1 mediates Aβ-induced MBP upregulation through Fyn activation in 

oligodendrocytes. 

 

In order to investigate the molecular pathway underlying Aβ-induced MBP 

upregulation, we focused on a key protein involved in myelin synthesis, the tyrosine-

protein kinase Fyn. In oligodendrocytes, Fyn is the predominant Src family kinase (SFK) 

that is upregulated during oligodendrocyte differentiation and has been related to 

myelination process (Kramer-Albers and White, 2011). Moreover, Fyn activation results in 

local MBP synthesis by regulation of mRNA translation (White et al., 2008; Wake et al., 

2011). To analyze the putative role of Fyn during Aβ-induced MBP increase, we first 

examined the SFK phosphorylation after exposure of oligodendrocytes to Aβ 200 nM. Cell 

treatment for 5 and 15 min increased SFK phosphorylation (pSFK) to 145.8 ± 14.65 and 

138.20 ± 17.84, respectively, with respect to control levels, 100% (Figure 16A). By 

immunoprecipitation assays, we demonstrated that Fyn was the specific member of SFKs 

which was activated by Aβ, since kinase Fyn was the one phosphorylated upon Aβ 

exposure (Figure 16B). In contrast, Aβ did not promote tyrosine phosphorylation of LCK 

and SRC, two members of SFK (Figure 16C). We also observed that using PP2, a SFK 



 Results 

63 
 

inhibitor, Fyn phosphorylation after Aβ treatment for 5 and 15 min was significantly 

blocked (Figure 16C, D). 

 

 

Figure 16. Aβ1–42 oligomers induce Fyn kinase activation in cultured oligodendrocytes. (A) Cells were 

exposed to Aβ 200 nM for 5 or 15 min, and phosphorylation of Src family kinases was examined (pSFK) by 

western blot. (B) Immunoprecipitation (IP) of cells treated with Aβ 200 nM for 15 min was performed with 

anti-Fyn, followed by immunoblotting with anti-pSFK. (C) Western blotting of LCK and SRC in cells 

immunoprecipitated with phospho-tyrosine antibody after Aβ exposure (Aβ 200 nM for 5 min). Total cell 

lysates were immunoblotted with the previous antibodies. (D, E) Total protein samples were extracted 5 

and 15 min after Aβ treatment in the presence or absence of PP2, a SFK inhibitor (30 min), and Fyn 

phosphorylation was analyzed by western blot (n=5). Data are represented as means ± S.E.M. of optical 

density values normalized to corresponding Fyn. *p<0.05, compared to non-treated cells; #p<0.05 

compared to Aβ alone; paired Student´s t test.  

 

 

Next, the involvement of a receptor mediating Aβ-induced Fyn activation was 

studied. One possible candidate for this process could be integrin β1 (Itgb1). It has been 

shown that in astrocytes Itgb1 activity is modulated by Aβ, promoting astrogliosis 

(Wyssenbach et al, 2016). Moreover, Itgb1 stimulation increases Fyn activity (Lisbeth 

Schmidt Laursen, Chan, & ffrench-Constant, 2009) and enhances MBP expression of 

oligodendrocytes (Lisbeth S Laursen, Chan, & Ffrench-Constant, 2011). Thus, to determine 

if integrin receptors mediate Fyn activation triggered by Aβ, first expression of several 

integrins subunits was analyzed by RT-qPCR and western blot in isolated 
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oligodendrocytes. Aβ-induced mRNA expression increase of Itgb1 and integrin β8 (Itgb8), 

being 139.1 ± 25.42 and 118.8 ± 7.83 vs. 100% of control, respectively (Figure 17A). Since 

Itgb8 has been described to be strongly expressed during oligodendrocyte maturation 

(Milner et al., 1997), and our results show that Aβ induces this maturation, it is difficult to 

attribute the Itgb8 increase as a direct response to Aβ. Therefore, we focused on studying 

Itgb1 protein expression and found that its levels were increased up to 56.62% over 

control after Aβ exposure at 200 nM and 1 µM for 24 h (Figure 17B, C). 

 

 

Figure 17. Integrin β1 receptor expression is upregulated after Aβ1–42 oligomers treatment. (A) Integrin 

receptor subunit expression levels in cells treated with Aβ (200 nM, 24 h) were analyzed by RT-qPCR (n=3-

4). (B) Western blotting of Itbβ1 receptor in total protein extracts of cells treated with Aβ 200 nM or 1 µM 

for 24 h. (C) Quantification of Itbβ1 protein levels is shown (n=3). Data are represented as means ± S.E.M. of 

optical density values normalized to corresponding GAPDH. *p<0.05, compared to non-treated cells; paired 

Student´s t test.  

 

 

Next, we investigated whether this receptor contributes to Fyn activation by Aβ. 

Western blot analysis showed that Aβ 200 nM for 5 and 15 min induced Fyn 

phosphorylation (145.8% ± 14.62 and 138.2% ± 17.84 vs. 100% of control, respectively) 

that was attenuated by preincubation with RGDS peptide (111.8 ± 3.77% and 117 ± 

11.92% vs. 100% of control, respectively) which contains the integrin binding sequence 

and inhibits its function (Wright & Meyer., 1985). Similarly, treatment with an antibody 

αCD29 (that specifically binds Itgb1) (Mendrick & Kelly., 1993) blocked Fyn 

phosphorylation (109.5 ± 12.22% and 77.66 ± 14.05%) (Figure 18A, B). Overall, these 

results showed that Itgb1 mediates Aβ-modulated Fyn phosphorylation. 

 

http://onlinelibrary.wiley.com/doi/10.1111/acel.12521/full#acel12521-bib-0042
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Figure 18. Inhibition of integrin β1 receptor reduces Aβ-induced Fyn phosphorylation in oligodendrocytes. 

Cells were exposed to Aβ 200 nM for 5 and 15 min after preincubation with RGDS (100 µM, integrin 

inhibitor) or CD29 antibody (0.25 µg/ml, specific integrin β1 inhibitor). (A) Total protein samples were 

extracted and Fyn levels were detected by western blot. (B) Histogram of Fyn levels analysis is shown (n=4). 

Data are represented as means ± S.E.M. of optical density values normalized to corresponding Fyn. *p<0.05, 

compared to non-treated cells; #p<0.05, ##p<0.01 compared to Aβ alone; paired Student´s t test.  

 

 

To investigate the function of integrin receptors and Fyn activation on Aβ-mediated 

oligodendrocyte differentiation, we analyzed MBP expression of cultured 

oligodendrocytes by western blot. MBP-increased levels induced by Aβ (200 nM for 24 h) 

were completely blocked after preincubation with RGDS or PP2 (Figure 19A, B), 

suggesting that Fyn and integrin receptors were involved in Aβ-modulated MBP 

expression. Then, to confirm the physiological role of the specific receptor Itgb1 in the 

Aβ-induced MBP upregulation, a lentiviral vector was used to silence Itgb1 and then MBP 

levels were analyzed. First, we verified that treatment of cells with Itgb1 shRNA lentivirus 

blocked Itgb1 expression (66.67 ± 7.94% of control and 53.24 ± 7.57% of Aβ) compared to 

cells treated with control shRNA lentivirus (100%) (Figure 19C, E). Moreover, cells with 

Itgb1 silenced and treated with Aβ did not exhibit increased MBP levels compared to non-

silencing cells (Figure 19C, D). In summary, these results showed that Aβ treatment 

increase MBP expression through Itgb1 and Fyn activation in cultured oligodendrocytes. 
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Figure 19. Integrin β1 receptor mediates Aβ-induced MBP upregulation in cultured oligodendrocytes. (A, 

B) Western blot and quantification analysis  of MBP expression in total protein extracts of cells treated with 

Aβ 200 nM for 24 h and preincubated with RGDS (integrin inhibitor) or PP2 (SFK inhibitor) (n=4 cultures). (C) 

Oligodendrocytes were transfected with control shRNA (sh ctrl) or shRNA targeting Itgb1 (sh Itgb1) for 24 h. 

After transfection, cells were treated with Aβ for 24 h, and MBP and Itbβ1 protein levels were measured by 

western blot. (D) Histograms show MBP and (E) Itgb1 levels after silencing (n=4 cultures). Data are 

represented as means ± S.E.M. of optical density values normalized to GAPDH. *p<0.05, **p<0.01, 

***p<0.001 compared to non-treated cells; #p<0.05 compared to sh ctrl; paired Student´s t test.  

 

 

4.2. Aβ-induced ER calcium release activates CREB and upregulates MBP expression 

in cultured oligodendrocytes. 

 

The transcription factor cAMP response element-binding protein (CREB) plays an 

important role in myelination by stimulating MBP expression and inducing 

oligodendrocyte proliferation and maturation (Sato-Bigbee and DeVries, 1996; Afshari et 

al., 2001; Meffre et al., 2015). To further investigate the possible involvement of CREB in 

the signaling cascade triggered by Aβ, we analyzed CREB activation after Aβ exposure. 

CREB was strongly phosphorylated after Aβ 200nM insults for 5 and 15 min. Besides, the 

Aβ-induced CREB activation was significantly attenuated by RGDS and PP2 preincubation 

(Figure 20A, B), these data indicate that Aβ promoted CREB phosphorylation through 

integrin receptors and Fyn activation. 

 

http://onlinelibrary.wiley.com/doi/10.1002/jnr.1195/full#bib31
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Figure 20. Blockade of integrin receptor and SFK activation attenuates Aβ-induced CREB phosphorylation. 

(A, B) Cells were preincubated with RGDS (integrin inhibitor) or PP2 (SFK inhibitor) and treated with Aβ 200 

nM for 5 or 15 min. CREB activation was detected by western blot. Analysis of CREB phosphorylation after 

Aβ treatment is shown (n=4-6). Data are represented as means ± S.E.M. of optical density values normalized 

to total CREB. *p<0.05, compared to non-treated cells; #p<0.05 compared to Aβ alone; paired Student´s t 

test. 

 

 

CREB can be activated by Ca2+ signaling through Ca2+/calmodulin-dependent protein 

kinase (CAMK) activation. Moreover, Aβ has been related to produce Ca2+ homeostasis 

impairment in neurons (Hashimoto et al., 2003) and astrocytes (Abramov et al., 2003; 

Alberdi et al., 2013). Thus, we asked whether Aβ stimuli triggered CREB phosphorylation 

by increasing Ca2+ flux in oligodendrocytes. For that, we treated cultured 

oligodendrocytes with Aβ 200 nM and preincubated with PP2 and ryanodine (blocker of 

endoplasmic reticulum ryanodine receptor). By using fluorometric measurements, it was 

observed an increase in intracellular Ca2+ concentration in response to Aβ, which was 

blocked after PP2 and ryanodine treatment (Figure 21A). Moreover, western blot analysis 

showed that Aβ-induced CREB activation was blocked by using ryanodine and AIP (CAMKII 

blocker) inhibitors (Figure 21B, C). Overall, these results indicate that Aβ activates Fyn 

through Itgb1, leading a Ca2+-dependent CREB activation. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2692277/#R73
http://onlinelibrary.wiley.com/doi/10.1111/acel.12521/full#acel12521-bib-0003
http://onlinelibrary.wiley.com/doi/10.1111/acel.12521/full#acel12521-bib-0004
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Figure 21. Aβ1–42 oligomers induce CREB activation through Ca
2+

 release from the endoplasmic reticulum. 

(A) Cells, loaded with Fura 2-AM, were preincubated with PP2 (SFK inhibitor) or ryanodine (ryanodine 

receptor blocker) and exposed to Aβ 200 nM. Intracellular Ca
2+

 was measured by microfluorimetry. (B) 

Western blot of phospho-CREB in total protein extracts of cells treated with Aβ 200 nM for 5 or 15 min, and 

preincubated with ryanodine and AIP (CaMKII inhibitor). (C) Quantification of phospho-CREB levels is shown 

(n=3). Data are represented as means ± S.E.M. of optical density values normalized to total CREB. *p<0.05 

compared to non-treated cells; #p<0.05 and ##p<0.01 compared to Aβ alone; paired Student´s t test. 

 

 

Finally, we determined whether Ca2+ release from endoplasmic reticulum (ER) 

induced by Aβ would contribute to the MBP upregulation. Thus, we preincubated 

oligodendrocyte cultures with ryanodine and AIP and then treated with Aβ at 200 nM for 

24 h. Western blot analysis showed that increase of MBP levels induced by Aβ were 

blocked by addition of ryanodine receptor and CAMKII inhibitors (Figure 22A, B). These 

data suggest that ER Ca2+ release induced by Aβ upregulates MBP expression in 

oligodendrocytes. 
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Figure 22. Endoplasmic reticulum Ca
2+

 release promotes Aβ-induced MBP upregulation. (A) 

Oligodendrocytes, incubated with ryanodine (ryanodine receptor blocker) or AIP (CaMKII inhibitor), were 

treated with Aβ 200 nM for 24 h and. MBP expression levels in total protein samples were detected by 

western blot. (B) Quantification of MBP levels obtained by western blot (n=3-4 cultures). Data are 

represented as means ± S.E.M. of optical density values normalized to GAPDH. *p<0.05 compared to non-

treated cells; #p<0.05 compared to Aβ alone; paired Student´s t test. 

 

 

In summary, these results demonstrate that Aβ acts directly on oligodendrocytes to 

trigger MBP upregulation. Specifically, Aβ activates kinase Fyn through Itgb1, followed by 

ER Ca2+-dependent CREB activation, resulting in MBP expression increment (Figure 23). 

 

 

Figure 23. Aβ-signaling pathway underlying MBP upregulation. Model diagram of the signaling cascade 

activated by Aβ oligomers in oligodendrocytes. 
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5. Aβ1-42 oligomers stimulate extracellular vesicles release containing MBP and CNPase 

in oligodendrocyte culture. 

 

It has been shown that oligodendrocytes are able to release extracellular vesicles 

(EVs) which carry myelin-related proteins as MBP (Krämer-Albers et al., 2007). Since we 

observed an Aβ-induced MBP overexpression, we asked whether Aβ could stimulate the 

secretion of EVs containing myelin proteins. For this purpose, primary cultured 

oligodendrocytes were treated with Aβ 1 µM for 24 h and EVs were isolated from culture 

media by differential centrifugation, finally obtaining microvesicle- (10,000 g) or 

exosome-enriched fractions (100,000 and 250,000 g) (Figure 24A). The western blot 

analysis showed that MBP and CNPase levels were significantly increased in microvesicle-

enriched pellet obtained from supernatants of Aβ-treated cells. In addition, CNPase 

expression was also detected in 100,000 g pellets and it was observed a 98.11% increase 

in CNPase amount after Aβ treatment as compared to supernatants of control cells, while 

MBP was not detectable in this EVs fraction. No MBP and CNPase levels were found in 

250,000 g supernatants (Figure 24B, C). Consistently, after Aβ treatment we observed 

higher levels of exosomal marker proteins CD81 and CD63, in 10,000, 100,000 and 

250,000 g pellets (Figure 24D, E), indicating that more EVs were secreted. Thus, these 

results demonstrate that Aβ promote oligodendrocyte secretion of EVs containing myelin 

proteins. 
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Figure 24. Aβ stimulates cultured oligodendrocyte EVs release containing MBP and CNPase. (A) Western 

blot of MBP, CNPase, CD81, CD63 and GAPDH in total cell lysate and EVs pelleted by differential 

centrifugation from culture media of cultured oligodendrocytes treated with Aβ (1 µM, 24 h) (B-E) 

Quantification of these protein levels obtained by western blot (n=4). Data are represented as means ± 

S.E.M. *p<0.05 compared to non-treated cells; paired Student´s t test. 

 

 

6. Aβ1-42 oligomers enhance oligodendrocyte survival in vitro. 

 

To examine the role of Aβ1-42 oligomers in oligodendrocyte survival, cell viability was 

determined by using the fluorescent vital staining Calcein-AM. Since oligodendrocyte 

basal death is observed due to culture-induced stress, we were able to observe that Aβ 

treatment significantly increased oligodendrocyte survival, in a dose-dependent manner, 

reaching a protection plateau at 10 µM (Figure 25A). In addition, to discard any unspecific 

signal due to an interaction between the Calcein-AM probe and Aβ, we added Aβ 

oligomers to culture media for 24 h in absence of cells and Calcein fluorescence intensity 

was measured. No differences were found between non-treated and Aβ-treated media 

(Figure 25B). Then, we investigated the molecular mechanisms underlying Aβ-enhanced 

viability. Thus, cells were treated with Aβ at 1 µM for 24 h and preincubated with PP2, 

AIP, ryanodine or nifedipine (Ca2+-channel blocker). We found that Aβ-promoted cell 
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viability was blocked by using indicated inhibitors, indicating that Fyn activation and 

intracellular Ca2+-increase are important to oligodendrocyte survival (Figure 25C).  

 

Finally, we examined the oligodendrocyte culture viability in the presence of naturally 

Aβ peptide secreted to the conditioned media of N2a neuroblastoma cells that 

overexpress wild-type human APP (WT) or 670/671 Swedish mutation human APP (SWE) 

(Wang et al., 2006). We observed that natural Aβ improved the cellular viability of 

cultured oligodendrocytes in a similar way of synthetic peptide preparation, indicating 

that endogenous overproduction of Aβ also enhance oligodendrocyte survival (Figure 

25D).  

 

These results demonstrate that natural and synthetic Aβ peptides have a protective 

effect on cultured oligodendrocyte by enhancing its cell viability. 

 

 

Figure 25. Aβ1-42 oligomer treatment protects cultured oligodendrocytes against culture basal death. (A)  

Cells were treated with increasing concentrations of Aβ (200 nM-10 µM) for 24 h and viability was 

quantified by Calcein-AM assay (n=6-20). (B) Cell culture medium without cells in the presence or absence 

of Aβ was incubated for 24 h and chemical interaction between Aβ and Calcein-AM was analyzed (n=3). (C) 

Oligodendrocyte viability was measured by Calcein-AM method after incubation with Aβ 1 µM alone or 

combined with intracellular inhibitors, PP2, AIP, nifedipine (calcium channels, 10 µM) or ryanodine (D) 

Cultured oligodendrocytes were incubated for 24 h with diluted conditioned media (1:20 in SATO) from N2a 
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cells transfected with wild-type human APP (APPwt) or the 670/671 Swedish mutation human APP 

(APPswe), and cell viability was measured by Calcein-AM assay (n=4). Data are represented as means ± 

S.E.M. *p<0.05, ** p<0.01, ***p<0.001 compared to non-treated cells; #p<0.05, ##p<0.01, ###p<0.001 

compared to Aβ alone; one-way Anova (A, B); paired Student´s t test (C, D). 

 

 

7. Aβ1-42 oligomers upregulate myelin-related protein expression in cerebellar 

organotypic cultures.  

 

In order to corroborate the results observed in isolated oligodendrocytes and to 

assess the contribution of Aβ to myelination process, we used rat cerebellar organotypic 

cultures as a more complex cellular system and an alternative to animal models. 

Organotypic cultures are a useful approach for pharmacological and myelination studies 

as they partially maintain tissue architecture, anatomical relations and network 

connections (Stoppini et al., 1991). Moreover, they are increasingly being used as models 

to investigate underlying mechanisms of and treatment strategies for neurodegenerative 

disorders. Thus, we treated rat cerebellar slices after 7 days in vitro (7DIV) with Aβ at 200 

nM for 48 h, and we analyzed the expression of the myelin-related proteins MBP and 

CNPase, and oligodendrocyte progenitor receptor PDGFr-α (platelet-derived growth 

factor receptor α). Aβ induced a significant increase in the expression of these 

oligodendrocyte-related proteins, as shown by both RT-qPCR (Figure 26A) and western 

blot (Figure 26B, C). Among these data, the greatest increment was observed in MBP 

protein levels, being 66.4 ± 22.59% higher in Aβ-treated slices compared to untreated 

ones. Then, morphological studies were performed to analyze the integrity of organotypic 

cerebellar slices. We identified myelin sheaths and axons by immunofluorescence staining 

using antibodies against MBP and neurofilament-L (NFL), respectively. First, 

epifluorescence micrographs showed that correct myelination process was occurring in 

cerebellar slices as shown by the co-localization between myelin (MBP) and axons (NFL). 

Moreover, an increase in MBP abundance associated with NFL was observed in 

organotypic slices exposed to Aβ (Figure 26D). Therefore, these results verify that Aβ 

promotes myelin-related protein upregulation, which may be related to myelination 

process in organotypic culture. 
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Figure 26. Aβ1–42 oligomers upregulate myelin-related protein expression in cerebellar slices. (A) RT-qPCR 

analysis of oligodendrocyte-related mRNA levels, MBP, CNPase and PDGFr-α in cerebellar slices treated with 

Aβ at 200 nM for 48 h. (B) Western blot for the indicated proteins in total protein extracts from cerebellar 

slices (n=3 cultures). (C) Protein expression analysis is shown (n=4-13 cultures). Data are represented as 

means ± S.E.M. of optical density values normalized to GAPDH. *p<0.05, **p<0.01 compared to non-treated 

cells; paired Student´s t test. (D) Representative immunofluorescence micrographs of cerebellar 

organotypic slices with or without Aβ. Immunostaining for the axonal marker neurofilament L (NFL, red), 

myelin marker (MBP, green), and colocalization of these markers is shown in merge images (yellow). Scale 

bar, 50 µm. 

 

 

We previously found that Aβ activates kinase Fyn to increase MBP protein expression 

in primary oligodendrocyte cultures. Therefore, to examine whether MBP upregulation 

induced by Aβ in organotypic slices is mediated by SFK, we treated cerebellar slices with 

Aβ together to PP2. Aβ-induced increased levels of MBP were blocked after PP2 

treatment, with 156.2 ± 26.40 vs. 95.13 ± 3.46 of MBP expression in Aβ vs. Aβ with PP2, 

respectively (Figure 27A, B). 
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Figure 27. SFK activation participates in Aβ-induced MBP upregulation in organotypic slices. (A, B) MBP 

expression was analyzed by western blot (n=4) after A  (200 nM for 48 h) and A  together PP2 inhibitor 

(SFK inhibitor) exposure of cerebellar organotypic slices. Data are represented as means ± S.E.M. of optical 

density values normalized to GAPDH. **p<0.01 compared to non-treated cells; #p<0.05 compared to Aβ 

alone; paired Student´s t test. 

 

 

As it is shown above, Aβ promoted MBP synthesis in physiological conditions, so we 

asked if Aβ could enhance remyelination in a pathological context, such as 

lysophosphatidylcholine (LPC)-induced demyelination model (Figure 28A). LPC is a 

bioactive lipid with detergent-like properties and its use is well established as 

demyelination model in rat cerebellar slices, in which remyelination occurs spontaneously 

after LPC insult (Birgbauer et al., 2004). In this sense, it has been widely used to 

investigate the capacity of exogenous molecules to modulate remyelination process 

(Huang et al., 2011; Mi et al., 2009; Miron et al., 2010). Therefore, we first characterized 

the LPC model to assess myelin recovery after LPC insult. We induced demyelination with 

a 16 h treatment of LPC (0.5 mg/ml), showing a sustained MBP level decrease 1 day after 

(1DIV) LPC removal (27.76% over normally myelinated control). Then, it was observed an 

incomplete myelin recovery 6 days (6DIV) after LPC insult (37.96% over normally 

myelinated control) (Figure 28B, C). Moreover, to assess the role of Aβ on remyelination, 

cerebellar slices were exposed to Aβ at 200 nM after LPC exposure and MBP levels were 

analyzed 1 and 6 days after Aβ application. Importantly, slices treated with Aβ showed a 

significant increase in MBP expression relative to controls  at same time points.  

 

Furthermore, to investigate if SFK activity modulated the MBP increase leaded by Aβ 

after LPC-induced demyelination, slices were treated with Aβ in the presence or absence 

of PP2 and results showed that Aβ-induced MBP upregulation was attenuated by PP2 
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treatment (Figure 28D, E). Finally, epifluorescence images of MBP staining revealed that 

Aβ treatment subsequent to LPC-induced demyelination enhances remyelination by SFK 

activation (Figure 28F).  

 

In conclusion, these data corroborates that Aβ induces MBP upregulation and 

enhances remyelination after demyelination process in cerebellar organotypic culture. 

 

 

Figure 28. SFK activation by Aβ1–42 oligomers enhances remyelination following lysolecithin-induced 

demyelination in cerebellar slices. (A) Schematic diagram of experimental paradigm. (B) Characterization of 

LPC-induced demyelination model by western blot. (C) Cerebellar slices were treated with LPC for 16 h and 

total protein samples were extracted 1 (1 DIV) and 6 (6 DIV) days after LPC treatment and MBP expression 

was analyzed (n=6-9 cultures). (D) Western blot of MBP expression was analyzed after LPC treatment in the 
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presence or absence of Aβ (200 nM) and PP2 (SFK inhibitor). (E) Data analysis of MBP expression in 1DIV 

and 6DIV after LPC exposure (n=3-7 cultures). Data are represented as means ± S.E.M. of optical density 

values normalized to GAPDH. *p<0.05, **p<0.01 compared to non-treated cells; +p<0.05 compared to 1DIV; 

#p<0.05 compared to Aβ alone; paired Student´s t test. (F) Representative images of MBP levels from 

cerebellar slices treated with LPC, Aβ and PP2 at two different time points. Scale bar, 50 µm. 

 

 

8. AD transgenic mice exhibit MBP increased levels in hippocampus and corpus 

callosum at adult ages.  

 

To further assess oligodendrocyte differentiation and myelination in in vivo AD model 

we used the triple transgenic mouse (3xTg-AD), a murine model of this pathology. MBP is 

an essential myelin protein for generating and maintaining compact myelin sheaths, thus 

we first analyzed its expression by western blot in hippocampal samples of 6-, 12- and 18-

month-old 3xTg-AD and wild-type mice (WT) (Figure 29A). It was observed that, at all 

ages with the exception of 3 months, MBP expression levels were increased in 3xTg-AD 

compared to WT mice, reaching up to 117.57 % over WT at 18 months (Figure 29B). 

Moreover, MBP increased levels were localized at specific areas of 18-month-old 

transgenic mice hippocampus, dentate gyrus (DG), CA2-3 and CA3. No differences in MBP 

expression were found in CA1 and CA2 hippocampal regions comparing 3xTg-AD and WT 

(Figure 29D, E).  

 

In addition, Aβ is accumulated in an age-dependent manner in this AD model having 

remarkable increased levels from 15 months of age (Oddo et al., 2006). Thus, to examine 

whether Aβ amount correlates with MBP levels, we measured Aβ expression at 18 

month-old mice and found a significant positive correlation between MBP and Aβ levels 

(r=0.9249, p=0.0122) (Figure 29C). Thereby, these results indicate that MBP is 

upregulated in the hippocampus of AD transgenic mice and this expression is positively 

associated with Aβ oligomer levels.  
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Figure 29. MBP expression is upregulated in AD transgenic mice hippocampus. (A) Western blot of MBP 

expression in hippocampus of 18-month-old 3xTg-AD mice compared to WT. (B) Quantification of MBP 

levels in hippocampus of 6-, 12- and 18-month-old 3xTg-AD mice in comparison with WT is shown (n=5-6 

animals per age). Data are represented as means ± S.E.M. of optical density values normalized to 

corresponding β-actin. *p<0.05, **p<0.01 compared to WT; paired Student´s t test. (C) Correlation between 

MBP and Aβ oligomer levels in hippocampus of 18-month-old 3xTg-AD mice (n=5 animals). (D) 

Representative confocal z-stack projections of MBP in the dentate gyrus (DG), CA2-3 and CA3 regions of 

sections taken form 18-month-old transgenic and WT mice. (E) Analysis of hippocampus MBP fluorescence 

intensity is shown (n=5-6 animals). Scale bar, 40 µm. Data are represented as means ± S.E.M. *p<0.05, 

**p<0.01 compared to WT; paired Student´s t test.  

 

 

Next, we tested by western blot a non-phosphorylated form of neurofilament heavy 

chain at 18-month-old mice. SMI-32 antibody is used to detect axonal damage as maker 

of neurodegeneration (Su, Cummings, & Cotman, 1996), since in healthy axons 

neurofilament heavy chain (NFH-200) is phosphorylated and this correlates with accurate 

axonal transport (Watson, Fittro, Hoffman, & Griffin, 1991). No significant differences 

were found in SMI-32 immunoreactivity between hippocampus samples of 3xTg-AD and 

WT. (Figure 30A, B). Moreover, hippocampal histological sections stained for light 

neurofilament (NFL) were analyzed and no differences were found in NFL intensity 
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fluorescence (Figure 30C, D). These results suggest that 3xTg-AD hippocampus do not 

present compromising axons, being MBP upregulation independent of axonal integrity. 

 

 

Figure 30. Hippocampus of AD transgenic mice does not present aberrant phosphorylation in axonal 

neurofilaments. (A) Non-phosphorylated neurofilament H (non-pNFH) and neurofilament H (NFH-200) 

levels in hippocampus of 18-month-old 3xTg-AD and WT mice were detected by western blot. (B) 

Quantification of SMI-32 immunoreactivity is shown (n=6). Data are represented as means ± S.E.M. of 

optical density values normalized to corresponding β-actin. (C) Representative confocal z-stack projections 

of neurofilament-L (NFL) in the dentate gyrus (DG), CA2-3 and CA3 regions of 18-month-old transgenic and 

WT mice hippocampus. (D) Analysis of NFL fluorescence intensity of hippocampus regions (n=6). Scale bar, 

40 µm. Data are represented as means ± S.E.M; paired Student´s t test. 

 

 

In order to extend the study of MBP expression pattern in white matter regions of AD 

in vivo, we also quantified MBP levels in transgenic and WT corpus callosum. 3xTg-AD 

mice present significant MBP overexpression at 12- and 18-month-old (181.1 ± 22.28 and 

165.4 ± 19.98 vs. 100% of control, respectively), while a strong tendency was observed 

since 6 months (128 ± 7.5) and no significant differences were found in 3-month-old mice 

(Figure 31A, B). Accordingly, this MBP increment observed in 3xTg-AD was corroborated 
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after quantifying MBP intensity by immunofluorescence of 18-month-old mice (Figure 

31C, D). 

 

Figure 31. AD transgenic mice present MBP increased levels in corpus callosum. (A) Western blot of MBP 

expression in corpus callosum of 18-month-old 3xTg-AD and WT mice. (B) MBP expression analysis of 

corpus callosum from 6-, 12- and 18-month-old 3xTg-AD compared to WT mice (n=5-8 animals per group). 

Data are represented as means ± S.E.M. of optical density values normalized to corresponding β-actin. (C) 

Representative confocal z-stack projections of the corpus callosum of 18–month-old transgenic and WT 

mice showing MBP. (D) Quantification of MBP fluorescence intensity of corpus callosum (n=5 animals). 

Scale bar, 25 µm. Data are represented as means ± S.E.M; *p<0.05 compared to WT; paired Student´s t test. 

 

 

Next, non-phosphorylated NFH expression was quantified in corpus callosum and 

similarly to what occurred in hippocampus, no differences were found in WT and 3xTg-AD 

at 18 months (Figure 32A, B). Concordantly, the quantification of NFL fluorescence 

intensity remained unchanged (Figure 32C, D).  

 

Overall, these data indicate that adult 3xTg-AD mice present changes on MBP 

synthesis in absence of axonal damage in hippocampus and corpus callosum.  
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Figure 32. Corpus callosum of AD transgenic mice does not present changes in non-phosphorylated NFH 

levels. (A) Western blot showing non-phosphorylated neurofilament H (non-pNFH) and neurofilament H 

(NFH-200) levels in corpus callosum of 18month-old 3xTg-AD and WT mice. (B) Quantitative analysis of SMI-

32 immunoreactivity in corpus callosum is shown (n=7-8). Data are represented as means ± S.E.M. of optical 

density values normalized to corresponding β-actin. (C) Representative confocal z-stack projections of MBP 

in the corpus callosum of 18month-old transgenic and WT mice. (D) MBP fluorescence intensity 

quantification of corpus callosum (n=6). Scale bar, 25 µm. Data are represented as means ± S.E.M; paired 

Student´s t test. 

 

 

9. Oligodendrocyte proliferation and differentiation are impaired in AD transgenic 

mice hippocampus and corpus callosum. 

 

As MBP synthesis upregulation occurs in 3xTg-AD mice hippocampus and corpus 

callosum, we determined if the MBP expression increase was due to oligodendrocyte 

proliferation and subsequent differentiation in myelin-forming cells. For this purpose, we 

analyzed oligodendrocyte lineage cells with olig2 antibody, oligodendrocyte progenitor 

cells with PDGFr-α antibody and mature cells with CC1 antibody to specifically examine 

each cell population density per mm3. According to the hippocampal regions where MBP 

levels are increased in 3xTg-AD, dentate gyrus (Figure 33A, B) and CA3 (Figure 34A, B) of 

6- and 18-month-old mice were analyzed. First, we observed that the density of PDGFr-α+ 

cells significantly increased 2-fold in 3xTg-AD dentate gyrus at 6 months compared to WT 
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(Figure 33E), while the proportion of Olig2+ and CC1+ cells remained unchanged (Figure 

33C, D). In contrast, at 18 months, dentate gyrus of 3xTg-AD did not present a greater 

number of PDGFr-α+ cell compared to WT. Interestingly, Olig2+ cells density was 43.16 ± 

1.24 in 3xTg-AD and significantly increased to 65.6 ± 1.45 in WT, whereas it was observed 

a marked increasing tendency of CC1+ cells abundance (37.89% over WT). Finally, no 

significant differences were found in the number of total cells per mm3 among WT and 

3xTg-AD mice (Figure 33F).  

 

Moreover, we analyzed the density of oligodendrocyte cells during aging and 

observed a significant loss of Olig2+ cells comparing 6- and 18-month-old mice, which was 

attenuated in 3xTg-AD mice (Figure 33C). Additionally, there was a decreasing tendency 

in the abundance of total and CC1+cells, but it was not significant (Figure 33D, F). 
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Figure 33. Dentate gyrus of AD transgenic mice presents an increase in the density of OPCs and mature 

oligodendrocyte at adult ages. Representative confocal z-stack projections of 3xTg-AD and WT 

hippocampal dentate gyrus at 6 and 18 months. Mature oligodendrocytes were visualized with CC1 (red) 

and total oligodendrocyte lineage cells with Olig2 (green) (A), and oligodendrocyte progenitor cells with 

PDGFr-α (green) (B). DAPI staining was used to observe cell nuclei (white). Quantification of Olig2
+
 cells (C), 

CC1
+
 cells (D), PDGFr-α

+
 cells (E), and total cells (F) per mm

3
 in the dentate gyrus at both ages (n=3 per 

group). Scale bar, 25 µm. Data are represented as means ± S.E.M; *p<0.05 compared to WT; # p<0.05 

significantly over time; two-way ANOVA followed by Bonferroni posttest. 

 

 

Moreover, we examined the density of oligodendrocyte populations in CA3 region of 

WT and 3xTg-AD. Similarly to what we observed in dentate gyrus, a subtle increasing 

tendency was also observed in Olig2+ and CC1+ cells at 18-month-old 3xTg-AD mice as 

compared to WT, but it was not significant (Figure 34C, D). In addition, no significant 

differences were found in the proportion of PDGFr-α+ cells at any ages (Figure 34E). 

Moreover, no differences were observed in the number of total cells per mm3 among WT 

and 3xTg-AD mice (Figure 34F).  

 

Regarding cell population dynamics during ageing, a significant decrease was 

observed between 6- and 18-month-old mice in the number of CC1+, although this 

oligodendrocyte loss was not reflected in the density of total cells (Figure 34C-F). 

 

These data indicate that hippocampal dentate gyrus of 3xTg-AD mice present higher 

density of oligodendrocyte progenitor cells at 6 months which may be leading to a higher 

abundance of oligodendrocyte lineage cells, including a subtle increment in mature 

oligodendrocyte cells at 18 months. In contrast, no significant changes were observed in 

the density of oligodendrocyte populations in CA3.  
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Figure 34. Hippocampal CA3 of AD transgenic mice present an increase in the density of OPCs and mature 

oligodendrocyte at adult ages. Representative confocal z-stack projections of 3xTg-AD and WT 

hippocampal CA3 at 6 and 18 months. Mature oligodendrocytes were visualized with CC1 (red) and total 

oligodendrocyte lineage cells with Olig2 (green) (A), and oligodendrocyte progenitor cells with PDGFr-α 

(green) (B). DAPI staining was used to observed cell nuclei (white). Quantification of Olig2+ cells (C), CC1+ 

cells (D), PDGFr-α+ cells (E), and total cells (F) per mm
3
 in CA3 at both ages (n=3 per group). Scale bar, 25 

µm. Data are represented as means ± S.E.M; *p<0.05 compared to WT; # p<0.05, ## p<0.01 significantly 

over time; two-way ANOVA followed by Bonferroni posttest. 

 

 

In addition, corpus callosum of 6- and 18-month-old mice was also examined (Figure 

35A, B). Unlike what we observed in the hippocampus, the density of PDGFr-α+ cells 

remained unaltered at both ages. Nevertheless, the number Olig2+ and CC1+ cells 

increased a 30.73% and 29.65% in corpus callosum of 3xTg-AD mice at 18 months, while 

no significant changes were found at 6 months (Figure 35C, D). Interestingly, while the 
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number of the oligodendroglial lineage is higher in 3xTg-AD, the proportion of each 

subpopulation remained similar, being 80.71 or 80.04% CC1+ cells and 14.85 or 13.8% 

PDGFr-α+ cells in WT or 3xTg-AD, respectively 

 

Moreover, corpus callosum showed a significant decrease in the number of total cells 

with aging (Figure 35F). Concordantly, a 49.91 and 33% of Olig2+ cells was reduced in WT 

and 3xTg-AD, as well as, the 56.26% and 38.23% of CC1+ cells were loss in WT and 3xTg-AD 

compared 6 and 18 months mice (Figure 35C, D). Similarly, a reduction in PDGFr-α+ cells 

was observed with aging (Figure 35E). These data suggest that the oligodendrocyte loss 

occurred in WT due to aging was attenuated in 3xTg-AD mice.  

 

Overall, our results indicate that 3xTg-AD mice exhibit increased densities of 

oligodendroglial cells, although their progression differs between hippocampus and 

corpus callosum. While in the first progenitor cells are the ones that are in higher 

abundance, in corpus callosum we found mature cells to be increased. Regarding cell 

death, only corpus callosum seems to suffer loss of cell density associated with ageing. 

Interestingly, this process was shown to be attenuated in transgenic mice and might be 

mainly affecting cells of the oligodendrocyte lineage. 
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Figure 35. Corpus callosum of AD transgenic mice shows an increase in the density of mature 

oligodendrocyte and a decrease in oligodendrocyte loss due to aging at adult ages. Representative 

confocal z-stack projections of 3xTg-AD and WT corpus callosum at 6 and 18 months. Mature 

oligodendrocytes were visualized with CC1 (red) and total oligodendrocyte lineage cells with Olig2 (green) 

(A), and oligodendrocyte progenitor cells with PDGFr-α (green) (B). DAPI staining was used to observed cell 

nuclei (white). Quantification of Olig2+ cells (C), CC1+ cells (D), PDGFr-α+ cells (E), and total cells (F) per 

mm
3
 in the corpus callosum at both ages (n=3 per group).Scale bar, 25 µm. Data are represented as means 

± S.E.M; *p<0.05, **p<0.01 compared to WT; ## p<0.01, ### p<0.001 significantly over time; two-way 

ANOVA followed by Bonferroni posttest. 
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10. The density and the structure of nodes of Ranvier are impaired in the corpus 

callosum of AD transgenic mice. 

 

Since it is described that mature oligodendrocytes generated in adult ages produce 

more and shorter internodes (Young et al., 2013), we characterized nodes of Ranvier in 

the corpus callosum of adult mice. For that, individual nodes were identified by 

immunolabeling of the nodal channel Nav1.6 and the paranodal protein Caspr. First, while 

no differences were found in 6-month-old mice, we found a higher density of nodes of 

Ranvier in 3xTg-AD at 18 months compared to WT mice (Figure 36A, B). Moreover, we 

observed that the length of nodes of Ranvier was shorter in 3xTg-AD corpus callosum in 

18-month-old mice compared to WT, whereas no differences were found at 6 months 

(Figure 36C, D). Accordingly, the distribution of node lengths revealed a significant 

increase in the number of small nodes (<1 µm) in 18-month-old 3xTg-AD, as well as a 

severe decrease in intermediate size nodes (1-1.5 µm) in comparison with WT (Figure 

36F). In contrast, 6-month-old mice did not present differences (Figure 36E). Thus, these 

results demonstrate that corpus callosum of aged 3xTg-AD show more and shorter nodes 

of Ranvier, in accordance with the increase of mature oligodendrocytes observed in these 

AD mice.  
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Figure 36. The density and the structure of nodes of Ranvier are impaired in the corpus callosum of AD 

transgenic mice. (A) Representative confocal z-stack projections of nodes of Ranvier in 3xTg-AD and WT 

corpus callosum at 6 and 18 months, identified by immunofluorescence labeling for the paranodal protein 

Caspr (red) and the nodal channel Nav1.6 (green). Scale bar, 25 µm (B) Analysis of the number of node of 

Ranvier at both ages (n=4-5 animals per age). (C) Representative micrograph of node length measurement 

example. Immunostaining for Caspr (red) and Nav1.6 (green). (D) Quantification of node lengths in corpus 

callosum from 3xTg-AD compared to WT mice at 6 and 18 months (n=3 per group). (E) Distribution of node 

lengths at 6 moth-old mice and (F) at 18 month-old mice in 3xTg-AD mice comparing with WT mice. Scale 

bar, 25 µm. Data are represented as means ± S.E.M; *p<0.05, **p<0.01 compared to WT; two-way ANOVA 

followed by Bonferroni posttest (B, D); paired Student´s t test (E, F).  
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11. Slow conduction velocity in myelinated axons of AD transgenic mice. 

 

To determine the functional consequences of oligodendrocyte differentiation 

impairment, we assessed optic nerve conduction at 18-month-old mice by recording 

compound action potentials (CAPs) comparing WT to 3xTg-AD. First, increase of MBP 

expression in optic nerves from 18-month-old mice was corroborated (Figure 37A, B). 

Then, optic nerves were acutely isolated from 3xTg-AD and WT mice and CAPs were 

recorded ex vivo (Figure 37C). CAP profiles revealed a significantly reduced conduction 

velocity in 3xTg-AD, as observed by the decrease in the area and in maximum peak of CAP 

(Figure 37D, E).  

 

In order to determine whether axonal dysfunction observed in 3xTg-AD optic nerve is 

dependent on myelin sheath presence, we examined the conduction velocity in corpus 

callosum the largest white matter structure in the brain, in which myelinated and non-

myelinated axons are present (Figure 37F). Thus, we observed that axonal conduction 

velocity is significantly slower in myelinated 3xTg-AD axons (N1) compared to WT, while 

no differences were found in unmyelinated ones (N2) (Figure 37G, H). These data, 

combined with our previous results, indicate that white matter abnormalities found in the 

AD transgenic mice contribute to structural and functional defects in neurotransmission. 
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Figure 37. AD transgenic mice present slow conduction velocity in myelinated axons of optic nerve and 

corpus callosum. (A) Western blot of MBP expression in optic nerve of 18 month-old 3xTg-AD and WT mice 

(n=3 animals per age). (B) MBP expression analysis was shown. Data are represented as means ± S.E.M. of 

optical density values normalized to corresponding β-actin. (C) Scheme of recording compound action 

potentials (CAPs) from acutely isolated optic nerves. Representative recording traces from control mice. (D) 

Measurement of maximum peak CAP and (E) area underneath CAPs in optic nerves. (F) Experimental setup 

showing the stimulating electrode (on the left) and recording electrode (on the right) within corpus 

callosum of a coronal section. Corpus callosum from WT mice-evoked CAP showing the components arising 

from myelinated fibers (N1) and unmyelinated fibers (N2). (G) Measurement of corpus callosum peak 

latency of transgenic mice myelinated fibers (N1) and (H) unmyelinated fibers (N2). Scale bar, 1 mm. Data 

are represented as means; *p<0.05, **p<0.01, ***p<0.001 compared to WT; unpaired Student´s t test. 
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12. AD transgenic mice present myelin-related abnormalities at ultrastructural level. 

 

Our data demonstrate that the density of mature myelin-producing oligodendrocytes 

and MBP synthesis are markedly increased in adult AD transgenic mice, raising the 

possibility that oligodendrocyte differentiation impairment affects myelin formation. To 

explore this hypothesis, we carried out electron microscopy imaging in rostral and caudal 

corpus callosum of WT and 3xTg-AD mice at 6-, 12- and 18-month-old mice.  

 

First, we analyzed myelin thickness by measuring the g-ratio value (Figure 38I). 

Remarkably, rostral corpus callosum cross-sections showed a significant decrease in the 

g-ratio of 3xTg-AD in comparison with WT at all ages, indicating an increment in myelin 

thickness (Figure 38A-E). Specifically, it was observed that only axons with small caliber 

ranging from 0.5 to 1 and 0 to 0.5 µm showed increased myelin thickness at 12 and 18 

months 3xTg-AD, respectively, compared to WT (Figure 38G, H). In contrast, the decrease 

in the g-ratio value was independent of the axon diameter size in 6-month-old 3xTg-AD in 

comparison to WT (Figure 38F).  
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Figure 38. Rostral corpus callosum of AD transgenic mice shows an increased myelin thickness at adult 

ages. (A) Representative electron micrographs of rostral corpus callosum cross-sections from WT and 3xTg-

AD at 6, 12 and 18 months. (B) Scatter plots of g-ratio of individual axons (y axis) and the corresponding 

diameter for all axons assessed at 6, (C) 12 and (D) 18-month-old mice. (E) Analysis of g-ratio value at all 

ages (n=3 per group). (F) Histograms showing g-ratio grouped by axon diameter in 6-, (G) 12- and (H) 18-

month old WT and 3xTg-AD. (I) Schematic cross-section of a myelinated axon illustrating the measured 

parameters, being g-ratio value as I/M. Scale bar, 1 µm. Data are represented as means ± S.E.M; *p<0.05, 

**p<0.01 compared to WT; unpaired Student´s t test. 

 

 

Similarly to the outcome observed in the rostral corpus callosum, the caudal zone of 

3xTg-AD (Figure 39A) showed an increase in myelin thickness at 6 (Figure 39B) and 12 

months (Figure 39C) which was statistically significant compared to WT (Figure 39E). 

However, no significant differences were found at 18 months (Figure 39D, E). Moreover, 

the myelinated axons with 1-1.5 caliber showed myelin thickness differences in 3xTg-AD 

compared to WT at 6 and 12 months (Figure 39F, G). 
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Overall, these data indicate that corpus callosum of adult 3xTg-AD show an increase 

in myelin thickness which is mostly present in small-caliber axons.  

 

 

Figure 39. Caudal corpus callosum of AD transgenic mice shows an increased myelin thickness at adult 

ages. (A) Representative electron micrographs of caudal corpus callosum cross-sections from WT and 3xTg-

AD at 6, 12 and 18 months. (B) Scatter plots of g-ratio of individual axons (y axis) and the corresponding 

diameter for all axons assessed at 6, (C) 12 and (D) 18-month-old mice. (E) Analysis of g-ratio value at all 

ages (n=3 per group). (F) Histograms showing g-ratio grouped by axon diameter in 6-, (G) 12- and (H) 18-

month old WT and 3xTg-AD. Scale bar, 1 µm. Data are represented as means ± S.E.M; *p<0.05, **p<0.01 

compared to WT; unpaired Student´s t test. 

 

 

To further examine the integrity of myelin sheath in WT and 3xTg-AD, we analyzed 

the inner tongue size of rostral corpus callosum at 6, 12 and 18 months (Figure 40A). 

3xTg-AD mice showed increased inner tongue size at all ages compared to WT, reaching 
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up to 263.28% over WT at 18 months (Figure 40B). The enlargement of inner tongue 

observed in 3xTg-AD was strongly associated with small caliber axons (0-0.4 µm) in all 

ages. In addition, axons with higher diameter also showed myelin with enlarged inner 

tongue, being affected those from 0.4-0.8 in 6 and 18 months, and all the size range in 12-

month-old mice.  

 

 

Figure 40. Rostral corpus callosum of AD transgenic mice shows an increment in the inner tongue size at 

adult ages. (A) Representative electron micrographs of rostral corpus callosum cross-sections from WT and 

3xTg-AD at 6, 12 and 18 months. Stars label the myelin fibers with enlarged inner tongue. (B) Analysis of 

inner tongue size from WT and 3xTg-AD mice, measured as inner tongue / axon area (n=3 per group). Data 

are represented as means ± S.E.M; one-way ANOVA followed by Bonferroni posttest. (C) Quantification of 

inner tongue area grouped by axon area in 6-, (D) 12- and (E) 18-month old WT and 3xTg-AD. Scale bar, 1 

µm. Data are represented as means ± S.E.M; *p<0.05, **p<0.01, ***p<0.001 compared to WT; unpaired 

Student´s t test. 

 

 

Moreover, we quantified the inner tongue size in caudal corpus callosum and found 

that inner tongue area of 3xTg.-AD was increased at 12 and 18 months comparing with 

WT, while no differences were found in 6-month-old mice (Figure 41A, B). Specifically, it 

was only observed a significant increment of inner tongue size in 3xTg-AD small caliber 

axons (0-0.4 µm) at 12 and 18 months (Figure 41D, E). 



 Results 

95 
 

 

Figure 41. Caudal corpus callosum of AD transgenic mice shows an increment in the inner tongue size at 

adult ages. (A) Representative electron micrographs of caudal corpus callosum cross-sections from WT and 

3xTg-AD at 6, 12 and 18 months. Stars label the myelin fibers with enlarged inner tongue. (B) Analysis of 

inner tongue size from WT and 3xTg-AD mice, measured as inner tongue / axon area (n=3 per group). Data 

are represented as means ± S.E.M; one-way ANOVA followed by Bonferroni posttest. (C) Quantification of 

inner tongue area grouped by axon area in 6-, (D) 12- and (E) 18-month old WT and 3xTg-AD. Scale bar, 1 

µm. Data are represented as means ± S.E.M; *p<0.05, ***p<0.001 compared to WT; unpaired Student´s t 

test. 

 

 

Finally, to extend the analysis of myelin fiber status in the corpus callosum, we 

evaluated ultrastructural features related to myelin degeneration in 3xTg-AD during 

ageing. For this purpose, we quantified the following events: enlarged myelin inner 

tongue (Figure 42A), axons with dense cytoplasm (Figure 42D), empty fibers (Figure 42G), 

and myelin sheath degeneration (Figure 42J) in 6, 12 and 18 month-old mice. First, we 

observed that the density of myelin fibers with enlarged inner tongue was increased in 

rostral corpus callosum 3xTg-AD as compared to WT at all ages, reaching up to 23.8% of 

total myelin sheath in 3xTg-AD, while it only occurred in 12.7% in WT at 18 months. 

Moreover, the proportion of myelinated axon with enlarged inner tongue increased in an 

age-dependent manner regardless of genotype (Figure 42B), as well as we observed in 

the caudal zone (Figure 42C). In contrast, axons with dense cytoplasm were significantly 
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increased in 3xTg-AD in comparison with WT at 12 and 18 months in rostral corpus 

callosum, while were not a pathological feature dependent of age (Figure 42E). However, 

this increment was only observed at 12-month-old 3xTg-AD mice in caudal area (Figure 

42F). Furthermore, empty myelin sheaths of rostral corpus callosum were examined and 

found that the proportion of this event was 4.42 fold higher in 3xTg-AD compared to WT 

at 12 months (Figure 42H). No differences were found in the caudal zone of the corpus 

callosum (Figure 42I). Ultimately, since 12-month-old mice degenerative myelin event 

was significantly increased in 3xTg-AD compared to WT in rostral corpus callosum, 

maintaining this increment to 18 months (Figure 42K). In addition, the incidence of this 

pathological event was increased with aging. Similarly, it was observed a significant 

increment in caudal area from 3xTg-AD and WT at 12 months, which in this case was not 

present in 18-month-old mice (Figure 42L). No differences were found in the number of 

total myelinated axons in 3xTg-AD as compared to WT at all ages in either rostral and 

caudal corpus callosum (Figure 42M, N). 
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Figure 42. Increased myelin pathology in rostral and caudal corpus callosum of AD transgenic mice. 

Representative electron micrographs of cross-sections of corpus callosum degenerative events including 

enlarged inner tongue (A), axon with dense cytoplasm (D), empty fibers (G) and degenerative myelin sheath 

(J). Quantification of enlarged inner tongue (B, C), axon with dense cytoplasm (E, F), empty myelinated 

fibers (H, I) and degenerated myelin sheath (K, L) events (n=3 animals per group). Total area analyzed, 
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2189.71 µm
2
. Data are represented as means ± S.E.M; *p<0.05, **p<0.01 compared to WT; #p<0.05, 

###p<0.0001 significantly over time; two-way ANOVA followed by Bonferroni posttest. 

 

 

In summary, the incidence of myelin sheath degenerative events observed in the 

rostral (Figure 43A) and caudal (Figure 43B) corpus callosum increased progressively 

during aging and, remarkably was higher in 3xTg-AD. Concretely, the most common event 

observed was myelin sheaths with enlarged inner tongue which was detected since 6 

months of age, affecting up to 23.8% of myelinated axons in 3xTg-AD. In turn, the 

prevalence of the other axon and myelin aberrations was smaller, even though it was at 

least 2 fold higher in 3xTg-AD mice. Moreover, we observed that myelin sheath-

associated pathology was more severe in the rostral than in caudal corpus callosum.  

 

Overall, these results demonstrate that oligodendrocyte differentiation and myelin 

structure are impaired in AD transgenic mice, especially in aged mice. Furthermore, these 

results suggest that these white matter abnormalities might contribute to the reduction 

of the conduction velocity in this AD murine model.  



 Results 

99 
 

 

Figure 43. Myelin sheath degeneration in corpus callosum of AD transgenic mice during aging. Pie charts 

showing the incidence of myelin sheath degenerative events in rostral (A) and caudal (B) corpus callosum of 

6-, 12- and 18-month-old mice WT and 3xTg-AD. 

 

 

13. Prefrontal cortex and hippocampus of Alzheimer´s disease patients present an 

increment of MBP levels at advanced stages. 

 

To assess whether oligodendrocyte-produced MBP synthesis is impaired in 

Alzheimer´s disease, its expression was examined in human postmortem samples of 

prefrontal cortex and hippocampus from healthy subjects and AD patients. Samples from 
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AD subjects were classified according to Braak stages (II, III, IV or V-VI) (Braak & Braak, 

1995) and CERAD criteria (A, B or C) (Mirra et al., 1991). Interestingly, western blot 

analysis revealed a robust increase of MBP expression in prefrontal cortex of AD patients 

at CERAD C/Braak V-VI stage as compared to control subjects (Figure 44A-C). However, no 

differences were found at early stages as we observed at CERAD A-B/Braak II, III and V-VI 

stage. Accordingly, MBP fluorescence intensity was also quantified in prefrontal cortex of 

last stages and found a 35.77% increase in AD in comparison with control subjects (Figure 

44D, E). Next, expression of PDGFr-α and Olig2 were examined and it was observed no 

significant changes in prefrontal cortex of control and AD patients, suggesting that total 

oligodendrocyte lineage and progenitor cells remained unchanged (Figure 44F-H). 

 

 

Figure 44. MBP increased levels in prefrontal cortex from AD patients at advanced stages. (A) Western 

blot of MBP expression in postmortem prefrontal cortex from controls (Ctrl) and AD patients at CERAD 

C/Braak V-VI stage. (B, C) Scatter plot showing MBP levels in Ctrl and AD subjects classified into different 

Braak stages or according to CERAD criteria (n=10-12 per group). Data are represented as means ± S.E.M. 
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*p<0.05 compared to Ctrl; Kruskal-Wallis test following by Dunn´s multiple comparison tests. (D) 

Representative confocal z-stack projections showing MBP labeling (red) of prefrontal cortex from Ctrl and 

AD subjects at CERAD C/Braak V-VI stage. Cell nuclei were visualized with DAPI (white). (E) Analysis of MBP 

fluorescence intensity in human prefrontal cortex (n=4 per group). (F) PDGFr-α and Olig2 levels in prefrontal 

cortex of Ctrl and AD patients at CERAD C/Braak V-VI were detected by western blot. (G, H) Scatter plot 

analysis of PDGFr-α and Olig2 protein expression (n=8 per group). Scale bar, 50 µm. Data are represented as 

means ± S.E.M. *p<0.05 compared to Ctrl; unpaired Student´s t test.  

 

 

Indeed, MBP expression analysis in hippocampus of healthy and AD individuals was 

analyzed, observing a marked increased of MBP levels in AD subjects at late stage (CERAD 

C) as compared to controls (2.364 ± 0.32 vs. 3.99 ± 0.8, respectively) (Figure 45A, B). 

Then, to describe the specific areas of hippocampus associated with MBP upregulation, 

immunofluorescence assay was performed (Figure 45C). It was observed a significant 

increment in MBP fluorescence intensity of AD hippocampus at dentate gyrus and CA3, 

while no differences were found at CA1 and fimbria (Figure 45D, E). Moreover, PDGFr-α 

and Olig2 expression was analyzed and found no significant changes between control and 

AD subjects (Figure 45E, F). Importantly, these results demonstrate a MBP synthesis 

deregulation in Alzheimer´s disease prefrontral cortex and hippocampus at advanced 

stages.  
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Figure 45. Hippocampus from AD patients show increased levels of MBP at advanced stages. (A) Western 

blot of MBP expression in postmortem hippocampus from controls (Ctrl) and AD patients at CERAD C/Braak 

V-VI stage. (B) Scatter plot of MBP levels in Ctrl and AD subjects classified according to CERAD criteria (n=8 

per group). (C) Tile-scan confocal images showing the distribution of MBP expression along the 

hippocampus of a Ctrl subject. (D) Representative confocal z-stack projections showing MBP labeling (red) 

in the CA1, CA3, dentate gyrus (DG) and fimbria from Ctrl and AD subjects at CERAD C/Braak V-VI stage 

hippocampus. Cell nuclei were visualized with DAPI (white). (E) Quantification of MBP fluorescence intensity 

in human hippocampus (n=3 per group). (F) PDGFr-α and Olig2 levels in hippocampus of Ctrl and AD 

patients at CERAD C/Braak V-VI were detected by western blot. (G, H) Scatter plot analysis of PDGFr-α and 

Olig2 protein expression (n=6-7 per group). Scale bar, 50 µm. Data are represented as means ± S.E.M. 

*p<0.05 compared to Ctrl; unpaired Student´s t test.  
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14. Cerebrospinal fluid of mild cognitive impairment patients presents MBP and 

CNPase increased levels. 

 

It has been identified myelin-related proteins, as MBP and CNPase in human 

cerebrospinal fluid (CSF) (Banik, Mauldin, & Hogan, 1979; Whitaker, 1998). Since we have 

detected increased levels of MBP in the brain of AD patients, we asked whether the 

amount of this myelin protein was also modified in the CSF samples. For that, we 

analyzed MBP and CNPase levels in CSF samples from controls, mild cognitive impairment 

and AD subjects. Western blot analysis showed that MCI patients had remarkably higher 

levels of MBP and CNPase as compared to controls, while no differences were found 

between AD and controls samples (Figure 46A). In addition, both proteins correlate 

positively in CSF samples of each diagnostic group, being the correlation higher in MCI 

and AD groups (Figure 46B). 

 

These data indicate that myelin proteins such as MBP and CNPase are present in the 

CSF from controls subjects, as well as from MCI and AD patients, being significantly 

increased in MCI (Figure 46C). 

 

 

Figure 46. MBP and CNPase levels are increased in MCI cerebrospinal fluid. (A) Western blot of MBP and 

CNPase expression in CSF from SCI, MCI and AD patients (B) Scatter plot analysis of MBP and CNPase levels 

obtained by Western blot (n=25-26 per group). Data are represented as means ± S.E.M. *p<0.05, **p<0.01 

compared to SCI; one-way ANOVA followed by Bonferroni posttest. (C) Correlation analysis between MBP 
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and CNPase levels from SCI, MCI and AD subjects. Each symbol represents an individual (SCI, black; MCI, 

red; AD, grey). Spearman correlation test. 
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Discussion 

 

AD is characterized by a progressive evolution of cognitive deficits which correlate 

with the amount of Aβ soluble oligomers. Although it is a disorder mainly associated to 

neuronal damage, evidences of white matter (WM) disruption previous to neuronal 

damage have been observed in AD brains (Roher et al., 2002). In the present study we 

showed that pathogenic Aβ-mediated activity modulates oligodendrocyte differentiation 

and myelination, promoting MBP upregulation by regulating local mRNA translation. 

Specifically, we have described the molecular pathways underlying this modulation in 

which integrin β1 and Fyn are involved. Interestingly, oligodendrocyte differentiation 

impairment leads to disruption in myelin integrity resulting in failures in 

neurotransmission in vivo in AD model. Moreover, AD patients exhibited increased MBP 

levels, being myelin proteins dysregulation observed in CSF samples from patients with 

mild cognitive impairment, expanding the knowledge of new biomarkers for AD. These 

results strongly support the role of Aβ over oligodendrocytes function as key piece in the 

progression of AD.  

 

1. Aβ1-42 oligomers regulate oligodendrocyte MBP synthesis by promoting mRNA local 

translation in vitro.  

 

The presence of senile plaques composed by insoluble aggregates of the amyloid β 

peptide (Aβ) is considered one of the main pathological features of AD. It has been 

described that soluble forms of this peptide are toxic and its presence correlates with the 

progression of the disease, becoming Aβ a key feature in AD (Santos et al., 2012). 

Classically, AD studies have been focused on understanding neuron pathology and 

describing Aβ-mediated neuronal loss. However, white matter damage (WM) is an 

important feature in AD patients and several evidences have established a direct relation 

between Aβ and myelin disruption (Desai et al., 2010; Roher et al., 2002b). In spite of the 

importance that WM and myelin has in AD, a few studies have analyzed the Aβ 

involvement in the alteration of glial cells function is still poorly studied. 
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In this thesis, we first analyzed the role of Aβ1-42 oligomers in oligodendrocyte 

differentiation and myelination. Interestingly, we observed that low concentrations of 

oligomeric Aβ promote myelin-related proteins synthesis, increasing the expression of 

MBP and CNPase, as well as oligodendrocyte progenitor receptor PDGFr-α. This protein 

upregulation was observed after stimulating cerebellar organotypic slices with Aβ. In 

accordance with this, Aβ oligomers also promoted MBP synthesis increase in primary 

oligodendrocyte culture, in which these glial cells are isolated, indicating that Aβ-

mediated MBP upregulation is due to a direct effect on oligodendrocytes. Increased levels 

of MBP synthesis triggered by Aβ were accompanied by a larger occupied area by cell 

bodies and processes of individual mature oligodendrocyte. This morphological aspect 

observed in response to Aβ may reflect later stages of oligodendrocyte maturation 

characterized by processes extension and MBP synthesis.  

 

In relation with this, cells treated with Aβ showed significant increased levels of MBP 

only at peripheral areas, raising the possibility of mRNA local translation. Thus, since it is 

known that MBP mRNA is transported from the nucleus to the oligodendrocyte processes 

where it is translated locally (Trapp et al., 1987; Ainger et al., 1993, 1997), we analyzed 

MBP expressing-mRNA by FISH and found that, indeed, Aβ induced MBP mRNA 

translation at a local level in cultured oligodendrocytes. However, we did not observe an 

Aβ-mediated regulation of MBP mRNA synthesis in cultured oligodendrocytes, although 

number of MBP transcripts was increased in Aβ-treated organotypic slices, as measured 

by RT-qPCR. In this sense, it is possible that modulation of RNA synthesis highly depends 

on the duration of Aβ treatment. While organotypic slices were stimulated with Aβ for 48 

h, the treatment period in cultured oligodendrocytes was shorter (24 h), which may 

contribute to the opposing results obtained in relation to induction of MBP transcription. 

Alternatively, Aβ effects may vary depending on the culture method; while cultured 

oligodendrocytes are isolated cells, organotypic slices are three-dimensional structures 

composed of different cell types that may also react to Aβ stimuli.  

 

To further analyze the role of Aβ in AD, we induced lysophosphatidylcholine-mediated 

demyelination to cerebellar organotypic slices (Birgbauer et al., 2004). Since alterations in 

myelination patterns in AD have been reported observing focal demyelinated areas (Desai 
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et al., 2009), we used this well-established model to examine the Aβ-mediated effects on 

oligodendrocytes under pathological conditions. Remarkably, after demyelination Aβ 

enhanced remyelination process which is in line with our previous results, pointing to Aβ 

as a positive modulator of oligodendrocyte myelination. In contrast, a previous in vitro 

study showed that treatment with 1 µM Aβ1-42 for 4 days reduced oligodendrocyte myelin 

sheath formation, while no changes were observed in the number of MBP+ cells and in 

MBP expression (Horiuchi, Maezawa, Itoh, Wakayama, Jin, et al., 2012). These differences 

could be due to methological issues; in this report by Horiuchi and co-workers both Aβ 

time exposure and oligodendrocyte differentiation stage in which stimuli was added were 

different in comparison with our study. Therefore, this data may indicate that the 

sensitivity to Aβ depends on the oligodendrocyte differentiation stage. This hypothesis is 

in accordance with results observed in the same study in which Aβ for 48 h promote 

cytotoxicity in mature oligodendrocytes, but not to OPCs (Horiuchi, Maezawa, Itoh, 

Wakayama, Jin, et al., 2012).  

 

In addition, it has been proposed that oligodendrocytes are able to dispose of 

overproduced myelin components by releasing extracellular vesicles (EVs) with myelin-

specific cargo (Krämer-Albers et al., 2007). As MBP upregulation is observed after Aβ 

exposure, we also analyzed oligodendroglial EVs release in response to oligomeric Aβ. For 

that, specific EVs markers and myelin-related proteins, such as MBP and CNPase, were 

examined in EV-enriched fraction. MBP and CNPase levels were increased after Aβ stimuli, 

as well as the EV specific markers CD81 and CD63, suggesting that Aβ stimulate the 

release of EVs containing MBP and CNPase. The increase in EVs release in response to Aβ 

could be a cellular mechanism to maintain myelin production balance and avoid cellular 

damage, as reported previously (Frühbeis, Fröhlich, & Krämer-Albers, 2012). However, 

due to the role of oligodendrocyte EVs in promoting and maintaining neuronal viability 

(Frühbeis et al., 2013), the dysregulation in oligodendroglial EV secretion triggered by Aβ 

may contribute to neuronal pathology in AD.  

 

Overall, these findings provide a specific role of Aβ in MBP synthesis regulation by 

promoting local mRNA translation and stimulating its release including in EVs.  
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2. Integrin β1 mediate oligomeric Aβ-promote MBP upregulation through Fyn and 

CaMKII activation. 

 

In this study we have demonstrated for the first time that oligomeric Aβ directly act 

on oligodendrocytes to induce MBP synthesis. In addition to this, we have described the 

molecular pathway underlying this protein modulation. Our data indicate that integrin β1 

(Itgb1) receptor participates in Aβ-mediated MBP expression increase through Fyn 

activation. Aβ signaling also induces the release of Ca2+ from the endoplasmic reticulum 

(ER) followed by CaMKII activation, finally resulting in MBP synthesis increase.  

 

Several Aβ oligomer receptors have been described through which this peptide 

promotes a wide range of cellular effects (Viola & Klein, 2015). Among them, integrin 

receptors have been proposed to interact with Aβ oligomers. Various properties have 

been attributed to integrin activity in oligodendrocyte, as its role in oligodendrocyte 

proliferation and survival, or its influence on cytoskeletal remodeling to permit a correct 

differentiation and myelination (O’Meara, Michalski, & Kothary, 2011). Remarkably, Itgb1 

is involved in synaptic dysfunction triggered by Aβ signaling (Woo et al., 2015). Moreover, 

Itgb1 is activated by Aβ in isolated astrocytes leading to oxidative stress and astrogliosis 

(Wyssenbach et al., 2016). However, the activation of integrin receptor by oligomeric Aβ 

in oligodendrocytes has not been reported up to now.  

 

In this study, we found that Itgb1 and Itgb8 mRNA expression increased in the 

presence of Aβ. As previously mentioned, Itgb8 has been found to be highly expressed 

along oligodendrocyte maturation process, while Itgb1 expression decreases (Milner et 

al., 1997). In this sense, since Aβ induces cell maturation in vitro, it is likely that the 

observed Itgb8 upregulation is an indirect consequence of Aβ-promoted oligodendrocyte 

differentiation. Thus, we focused our research efforts on analyzing the role of Itgb1 in 

MBP regulation and found that, in the presence of Aβ oligomers, its protein levels were 

increased. Therefore, this increment in Itgb1 protein expression may result in an 

increased abundance and availability of molecules of this receptor in the cell surface, 

exacerbating Aβ-induced MBP upregulation. In addition, due to the influence of Itgb1 on 

cytoskeleton-remodeling proteins, which are necessary for myelin processes outgrowth 
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(O’Meara et al., 2011), Itgb1 may also be responsible for the increased occupied area in 

Aβ-treated oligodendrocytes.  

 

Since Aβ did not modulate MBP mRNA synthesis and transport, MBP upregulation in 

cultured oligodendrocytes is probably due to mRNA local translation. Integrin α6β1 is 

known to directly associate with Fyn in oligodendrocytes to mediate oligodendrocyte 

maturation and local translation of MBP (Colognato, Ramachandrappa, Olsen, & ffrench-

Constant, 2004; Laursen, Chan, & Ffrench-Constant, 2011). Fyn activation results in a 

breakdown of the specialized RNA transport granules by phosphorylation of granule 

specific proteins, releasing MBP mRNA from its inhibitors and allowing its translation. 

Thus, we analyzed the role of Fyn in Aβ-mediated MBP synthesis and found that after Aβ 

stimuli Fyn was phosphorylated and its inhibition, together with iItgb1 blockade, resulted 

in MBP synthesis reduction. Thus, these data suggest that oligomeric Aβ promotes MBP 

upregulation by inducing MBP local translation leaded by activated Itgb1 and kinase Fyn. 

 

On the other hand, we analyzed intracellular Ca2+ levels in cultured oligodendrocytes 

and found a disturbance in cellular Ca2+ homeostasis in response to Aβ, increasing 

cytosolic Ca2+ amount by releasing it from ER. These results are in accordance with the 

role of Aβ in regulating intracellular Ca2+ flux described in neurons and in astrocytes 

(Alberdi et al., 2010; Suen et al., 2003; Wyssenbach et al., 2016). In neurons, Aβ-triggered 

Ca2+ intracellular increment is also released from the ER and specifically, through 

ryanodine receptors (Resende, Ferreiro, Pereira, & Resende de Oliveira, 2008; Suen et al., 

2003). According to this, after blocking ryanodine receptors in cultured oligodendrocytes, 

the increased Ca2+ levels triggered by oligomeric Aβ were attenuated, suggesting that ER 

ryanodine receptors are involved in Aβ-mediated Ca2+ mobilization. Remarkably, cytosolic 

Ca2+ increase was promoted by Aβ-induced Fyn activation and its inhibition results in MBP 

levels decrease, pointing to Ca2+ as MBP synthesis modulator. Similarly, it has been 

described the role of Ca2+ in local translation after nerve injury (Yudin et al., 2008). Thus, 

these data suggest that MBP was locally synthesized in a calcium-dependent manner after 

Aβ stimuli. In addition, we observed that this secondary messenger promoted CaMKII 

activation, being also implicated in Aβ-mediated MBP upregulation. In this sense, it have 

been described the role of CaMKII in local translation in hippocampal dendrites. CaMKII 
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phosphorylates cytoplasmic polyadenylation element-binding protein (CPEB), which binds 

to a specific region of mRNA the cytoplasmic polyadenylation element CPE, allowing 

translation initiation (Atkins, Nozaki, Shigeri, & Soderling, 2004). Interestingly, CPE region 

is also present in MBP mRNA (Carson et al., 2008). Thus, since we described that CaMKII is 

involved in MBP synthesis and it is known that the process of transmission of RNA 

molecules from nucleus to periphery and its local translation is quite analogous in 

neurons and oligodendrocytes, it is possible that the mechanisms by which CaMKII is 

mediating MBP synthesis involve CPEG phosphorylation.  

 

On the other hand, CAMKII also regulates CNS myelination and oligodendrocyte 

maturation, which require a dynamic process extension through activating cytoskeletal 

remodeling proteins in which CAMKII participates (Waggener, Dupree, Elgersma, & Fuss, 

2013). Thus, similarly to Fyn, this protein could be taking part on the increase in the 

occupied area in oligodendrocytes treated with Aβ in addition to MBP upregulation. 

 

Taken together, we have described that oligomeric Aβ through integrin β1 receptor 

and subsequent Fyn activation promotes MBP upregulation by mechanisms that involve 

Ca2+ signaling.   

 

3. Aβ1-42 oligomers promote oligodendrocyte differentiation and survival. 

 

To further investigate the role of Aβ in oligodendrocyte differentiation, we analyzed 

oligodendrocyte lineage differentiation patterns after Aβ exposure. Low concentration of 

oligomeric Aβ promoted an increase in the number of late progenitor O4+ cells and 

mature MBP+ cells in primary oligodendrocyte cultures. These data suggest that 

depending on oligodendrocyte stage of development, Aβ promotes oligodendrocyte 

differentiation. Thus, Aβ specifically induce the maturation of early to late progenitor and 

immature to mature cells.  

 

In addition to regulating oligodendrocyte maturation, Aβ also modulates cell survival. 

In this sense, we observed that oligomeric Aβ has a protective effect on cultured 

oligodendrocytes by enhancing its cell viability in a dose-dependent manner. 
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Interestingly, we observed that the molecular mechanisms Aβ-leaded cell death 

protection are similar to those described for Aβ-mediated MBP synthesis increase, being 

Src family kinase and CaMKII also relevant in this process. Since we observed that Aβ 

activates Fyn, and evidences of the role of Fyn kinase in oligodendrocyte survival have 

been described (O’Meara et al., 2011), it is possible that Fyn is also involved in 

oligodendrocyte death protection triggered by Aβ.  

 

Similarly to the synthetic oligomeric peptide, natural Aβ secreted from neurons 

overexpressing human APP with Swedish mutation (SWE) also improved the cultured 

oligodendrocyte viability. In contrast, a few studies have illustrated that Aβ peptides are 

able to induce toxicity in oligodendrocytes (Horiuchi, Maezawa, Itoh, Wakayama, & Jin, 

2012; J.-T. Lee et al., 2004). However, differences in the forms of Aβ or in the timing of 

treatment could explain these contradictory results.  

 

On the other hand, since we observed that oligomeric Aβ is able to enhance 

oligodendrocyte survival as well as to promote its differentiation, these data may suggest 

a physiological role of Aβ in oligodendrocytes. In this sense, several reports have 

described that low doses of Aβ enhance memory in young mice, and facilitate induction 

and maintenance of long term potentiation (Morley et al., 2010). Moreover, it has been 

described that Aβ is secreted by neurons during excitatory neuronal activity to maintain 

its appropriate levels and control synaptic activity (Cirrito et al., 2005; Kamenetz et al., 

2003). Thus, it seems possible that low concentrations of Aβ have a potential gliotrophic 

role acting as a survival modulator and enhancer of MBP synthesis in cultured 

oligodendrocytes. However, as previously discussed, Aβ promotes MBP expression 

through Itgb1, but also induces this receptor upregulation. This may contribute to a 

positive feedback amplifying intracellular signals. Therefore, in the context of AD, where a 

chronic exposition to Aβ occurs, a major dysregulation of MBP synthesis and 

oligodendrocyte differentiation can take place.  

 

Overall, our results highlight the involvement of soluble Aβ1-42 oligomers in 

oligodendrocyte regulation, including MBP synthesis, cell differentiation and survival, and 
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further suggest that this peptide may have a relevant role in oligodendrocyte pathology in 

AD. 

 

4. Oligodendrocyte differentiation is impaired in triple transgenic AD mice at adult 

ages.  

 

Several animal models have been used to mimic AD disorder and facilitate its study. 

However, none of them have been successfully able to recapitulate all the pathological 

features of this disease. The generation of AD triple transgenic mice (3xTg-AD) has 

brought a great advance in AD research since it develops both amyloid plaque and 

neurofibrillary tangle pathology in AD-relevant brain regions. In turn, this model acquires 

extracellular Aβ deposits prior to tangle formation, which is consistent with the amyloid 

cascade hypothesis.  

 

Although AD has been traditionally considered to be a gray matter (GM) disease, 

evidence of white matter (WM) pathology from animal models and AD patients have also 

been reported (Firbank et al., 2007; Kavcic, Ni, Zhu, Zhong, & Duffy, 2008; Roher et al., 

2002b). Moreover, early stages of AD pathology show WM atrophy prior to observing GM 

degeneration suggesting that axonal or myelin chemical abnormalities provoke neuronal 

loss degeneration (Bartzokis et al., 2003, 2004; Brun & Englund, 1986; Kavcic et al., 2008; 

Price et al., 2001). Thus, by using this AD mouse model we further examined 

oligodendrocyte differentiation and myelination. To this purpose, MBP expression was 

first analyzed specifically in corpus callosum and hippocampus, WM and GM regions 

which are affected in AD and their impairment correlates with the progression and 

severity of the disease (Teipel et al., 2002). As AD is an aging-related disorder, we focused 

our analysis in several ages covering from early AD stage in adult mice to advanced stages 

observed in older mice. Here, we demonstrated that in 3xTg-AD a marked increase in 

MBP expression both in corpus callosum and hippocampus is occurring. This increment 

was observed since 6 months of age and is maintained until 18 months, without any 

significant differences in axonal damage between wild-type and transgenic mice. 

Hippocampal MBP expression was analyzed in detail at 18 month-old mice, observing 

increased levels only in CA3 and dentate gyrus, while CA1 did not show changes. Similarly, 
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a recent study demonstrated that APP/PS1 transgenic mice show MBP upregulation in 

hippocampus at early AD stages (Wu et al., 2017a). However, in our model the MBP 

increase associated with the pathology has not been described to the date, being 

reported a decrease in 3xTg-AD entorhinal cortex (Desai et al., 2009). Thus, it seems that 

MBP level alterations, which are not accompanied by axonal damage at early stages of 

AD, may be region-specific, as previously proposed (Desai et al., 2009). However, in 

contrast with our results, Desai and coworkers did not observe significant changes in the 

hippocampus of 6-month-old mice. Therefore, our data suggest that an upregulation of 

MBP expression occurs in 3xTg-AD since early stages of the pathology, preceding axonal 

damage and likely being related to primary white matter changes associated with the 

disease.  

 

The significant increased levels of MBP observed in 3xTg-AD mice may be due to a 

greater density of mature oligodendrocyte population and/or to an increment in MBP 

synthesis. To address these possibilities, first we analyzed the number of oligodendrocyte 

lineage cells, specifically PDGFr-α+ progenitor cells and CC1+ mature oligodendrocyte cells 

and found that 3xTg-AD have a higher number of PDGFr-α+ cells at 6 months of age, while 

at 18 months they remained unchanged. In contrast, the density of CC1+ mature cells is 

only increased in 18 month-old mice in the corpus callosum and in hippocampal DG of 

transgenic mice. However, 3xTg-AD show increased levels of MBP since 6 months of age. 

This suggests that, while at 6 months MBP alterations occurs mainly through upregulation 

of its synthesis, at 18 months both MBP synthesis and the number of mature 

oligodendrocyte population may take part on this process. 

 

In addition, as a result of aging it was observed a marked loss of oligodendrocytes 

(Olig2+ cells) and specifically mature population. Interestingly, this aging-associated death 

is attenuated in transgenic mice. One possibility is that the higher number of mature 

oligodendrocytes observed in 3xTg-AD at 18 months may derive from oligodendrocyte 

proliferation and subsequent differentiation in mature cells. Alternatively, an enhanced 

survival of oligodendrocytes may be occurring. These two possibilities, oligodendrocyte 

maturation and survival are not mutually exclusive. In accordance with our results, 

increased number of CC1+ mature cells was also detected in hippocampal CA1 in 3xTg-AD 
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mice (Desai et al., 2010). Similarly, APP/PS1 mice exhibit increased proliferation of NG2+ 

cells followed by generation of mature oligodendrocytes in corpus callosum (Behrendt et 

al., 2013). Thus, these evidences reveal the generation of new mature oligodendrocyte in 

AD mouse model. In fact, our in vitro results demonstrate that Aβ oligomers are able to 

directly enhance oligodendrocyte survival and promote its maturation. Taking this into 

account, it seems very likely that both oligodendrocyte maturation and survival may be 

contributing to oligodendrocyte increase observed in 3xTg-AD mice.  

 

Hypothetically, these changes in oligodendrocyte lineage population are leaded by 

AD-related pathophysiological mechanisms. However, it is possible that a compensatory 

response to brain damage is also occurring. In this model it has been observed a 

demyelination process in specific areas as hippocampal CA1 and enthorhinal cortex (Desai 

et al., 2009). As occurs in other lesions, adult progenitors are able to differentiate into 

oligodendrocytes capable of remyelinating axons (Zawadzka et al., 2010). Although, we 

cannot completely rule out this hypothesis, strong evidences point to AD-mediated 

oligodendrocyte changes, specifically involving the role of Aβ.  

 

In this sense, white matter abnormalities have been reported in the 3xTg-AD and 

APP/PS1 transgenic mice correlating with elevated levels of intracellular Aβ prior to the 

manifestation of plaque and tangle pathology (Desai et al., 2010; Wirths, Weis, 

Szczygielski, Multhaup, & Bayer, 2006). According to this, we observed by western blot a 

positive correlation between MBP upregulated levels and Aβ amount in the hippocampus 

of 18-month-old transgenic mice. In addition, we detected alterations in oligodendrocyte 

population and MBP synthesis at a time point when high amounts of Aβ oligomers and 

few amyloid plaques are reported, and no signs of concomitant Tau pathology is observed 

(Oddo et al., 2006). More interestingly, Desai and coworkers described elevated CC1+ 

mature cells in hippocampal CA1 of 3xTg-AD, similarly to what we observed in corpus 

callosum, which were reduced by injection with an anti-Aβ1-42 engineered intrabody, 

indicating a direct effect of Aβ in oligodendrocyte survival or differentiation. On the basis 

of the above and our results obtained in vitro in which Aβ directly regulated 

oligodendrocyte differentiation, we can conclude that impaired oligodendrocyte 
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differentiation observed in triple transgenic mouse model is mainly triggered by Aβ 

pathology. 

 

Triple transgenic mice (3xTg-AD) harbor three mutations: human tau (htaup30L), 

human amyloid precursor protein Swedish mutation (hAPPSwe) and human presenilin-1 

(hPS1M146V). hAPPSwe and htaup30L mutant transgenes are expressed exclusively in 

neurons, while hPS1M146V can be ubiquitously expressed,  including in oligodendrocytes. 

PS1 is the catalytic component of γ-secretase complex, mainly known for its role in 

amyloidogenic processing of APP (Scheuner et al., 1996). Previous studies have also 

described that γ-secretase is involved in oligodendrocyte maturation but contradictory 

results have been reported in oligodendrocyte primary cells and co-cultured with neurons 

(Lai & Feng, 2004; Watkins, Emery, Mulinyawe, & Barres, 2008). In addition, this familial 

AD mutation has been shown to increasing oligodendrocyte vulnerability to several 

insults associated with AD, including Aβ (Desai, Guercio, Narrow, & Bowers, 2011; Pak, 

Chan, & Mattson, 2003). Previous studies have revealed that oligodendrocyte cells 

transfected with PS1M146V  show no differences in the number of CC1+ cells and MBP 

expression (Desai et al., 2011). This suggests that alterations in oligodendrocyte 

differentiation patterns observed in 3xTg-AD mice are not directly triggered by PS1M146V 

mutation expressed in oligodendrocytes. Remarkably, after Aβ treatment the density of 

mature cells are increased in PS1M146V–expressing oligodendrocyte cells, while MBP 

expression decrease, which highlights the role of Aβ in oligodendrocyte differentiation. In 

this sense, our results are in accordance with observations about oligodendrocyte lineage 

in APP/PS1 mice (Behrendt et al., 2013; Wu et al., 2017a), a mouse model of AD in which 

both mutations are exclusively expressed in neurons, which helps to exclude direct effects 

of the PS1 mutations in oligodendrocyte lineage. In conclusion, these evidences suggest 

that Aβ-related insults impact oligodendrocyte independent of PS1 mutant expression, 

although PS1 mutation may exacerbate Aβ effects.  
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5. Oligodendrocyte myelination impairment contributes to reduced conduction 

velocity in AD mice. 

 

AD is characterized by the impairment of several neural processes, including 

attention, visual-spatial processing and generalized processing speed, in which the correct 

functioning of WM is essential. Since 3xTg-AD exhibit oligodendrocyte lineage 

impairment, we aimed to measure the axon impulse transmission in 3xTg-AD. Thus, we 

analyzed the conduction velocity in optic nerve and corpus callosum of 18-month-old 

mice by recording compound action potentials (CAPs), both areas being affected by MBP 

upregulation.  First, we observed a significantly reduced conduction velocity in 3xTg-AD 

optic nerve, raising the possibility that myelin impairment is the main cause of axonal 

dysfunction in this AD mouse model. According to this hypothesis, we observed that 

axonal conduction velocity of corpus callosum was markedly slower in myelinated 3xTg-

AD axons (N1), while no differences were found in unmyelinated ones (N2). As exclusively 

myelinated axons show functional failures related to AD pathology, these data suggest 

that 3xTg-AD develop functional defects in axonal conduction as a result of myelin 

alterations. 

 

Several factors related to myelin structure can determine and affect the velocity of 

axonal conduction. Among them, the length and the density of nodes of Ranvier along a 

fiber markedly influence conduction velocity (Arancibia-Cárcamo et al., 2017). Therefore, 

to determine in detail the myelin features involved in reducing conduction velocity in AD 

mouse model, we first examined nodes of Ranvier in the corpus callosum of adult mice 

and found increased density in 3xTg-AD at 18 months mice, also showing shorter length. 

At this time, coinciding with this node structure impairment, an elevated density of 

oligodendrocyte mature cells was detected in transgenic mice. It is described that mature 

oligodendrocytes generated in adult ages produce more and shorter internodes (Young et 

al., 2013). Therefore, these findings are consistent with the idea of new mature 

oligodendrocytes leaded by increasing oligodendrocyte differentiation in AD mice. Thus, 

these data suggest that the higher number in the nodes of Ranvier observed in 3xTg-AD 

may be produced by newly generated mature oligodendrocyte, consistent with the idea 

of increased oligodendrocyte differentiation in this AD mouse model. The increase of 



 Discussion 

119 
 

nodes of Ranvier in transgenic mice may result in shorter internodal length which is 

associated with a reduction in conduction velocity (Seidl, 2014; Young et al., 2013). 

 

It has been reported that subtle changes in myelin thickness and integrity are also 

able to determine axonal function (Waxman, 1997). In addition, several evidences of 

alterations in myelin structure as node impairment and MBP upregulation are observed in 

adult AD transgenic mice. To address this issue, myelin structure of corpus callosum was 

examined by electron microscopy approach. Since patients with AD show corpus callosum 

atrophy, predominantly in anterior and posterior areas (Teipel et al., 2002), analysis was 

carried out specifically in both zones. First, we analyzed myelin thickness by measuring 

the g-ratio value and found that 3xTg-AD show thicker myelin sheath at 6-, 12- and 18-

month-old mice in corpus callosum. Exceptionally, no significant differences were found 

at 18 months in caudal zone which may be explained by strong decrease in WT myelin 

thickness detected in this area. We also observed that myelin thickness increase was 

independent of the axon diameter size. However, in older transgenic mice thicker myelin 

sheaths were mostly present in small-caliber axons. The thickness of myelin sheath can 

have a dominant influence on conduction velocity, leading to conduction velocity 

reduction when myelin thickness is deviated from the optimal value (Waxman, 1997). 

These alterations in myelin sheath are not accompanied by axon fiber loss, as proved by 

both electron microscopy and NFL immunohistochemistry. Thus, hypermyelination 

observed in the corpus callosum of this AD mice model may negatively affect to axonal 

transmission.  

 

Similarly to our results, APP/PS1 mice also show increased myelin thickness at early 

stages of AD (Wu et al., 2017b), pointing to Aβ as a clear candidate in myelin thickness 

regulation. In this sense, our results in vitro demonstrate that Aβ can activate and 

regulate Itgb1 availability to exacerbate intracellular signals, as CAMKII and leading to 

MBP upregulation. Since, Itgb1 and CAMKII are also required in myelin thickness 

determination (Barros et al., 2009; K. K. Lee et al., 2006; Waggener et al., 2013), it is 

possible that the increased levels of Aβ reported in our mouse model, promote Itgb1 

overexpression resulting in myelin thickness increase through CAMKII involvement. 

However, further research should be conducted to prove this hypothesis. 
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Appart from hypermyelination, several myelin abnormalities related to aging 

(Hinman & Abraham, 2007) were observed in 3xTg-AD corpus callosum. A higher density 

of fibers with enlarged myelin inner tongue, axons with dense cytoplasm, empty fibers 

and myelin sheath degeneration was found in transgenic mice as compared to WT. We 

observed that the proportion of myelinated axons with neurodegenerative events 

increased progressively in an age-dependent manner, but it is exacerbated and 

accelerated by AD. These results are in accordance with brain imaging studies of AD 

patients in which WM degenerates with normal aging but it is more severe in AD subjects 

(Bartzokis et al., 2003; de la Monte, 1989; Stricker et al., 2009). In addition, these results 

support previous studies focused on 3xTg-AD and APP/PS1, in which they also observed 

myelin aberrations (Behrendt et al., 2013; Desai et al., 2009, 2010). More interestingly, 

Desai and co-workers showed a decrease in myelin disruptions in 3xTg-AD by using an 

anti-Aβ1-42 engineered intrabody, demonstrating signs of myelin sheath integrity 

restoration as compared with WT and mice treated with an irrelevant intrabody (Desai et 

al., 2010). These data strongly supports the role of Aβ in myelin pathology in AD.  

 

Remarkably, enlarged inner tongue were a consistent feature at all ages examined 

although appears later in caudal corpus callosum of transgenic mice. Precisely, in both 

areas, small caliber axons are selectively affected by this enlargement of inner tongue. In 

this sense, late-myelinating regions that are characterized by the presence of small caliber 

fibers, are the first to be affected by AD degenerative process (Bartzokis et al., 2003; 

Stricker et al., 2009; Teipel et al., 2007). Thus, it seems that it could be a relation between 

axon caliber and the severity of myelin sheath degeneration. However, the precise cause 

of this fact remains to be fully understood.  

 

In addition to myelin production and maintenance, oligodendrocytes preserve 

functional axon integrity by providing trophic and metabolic support to neurons through 

cytoplasmic channels (Philips & Rothstein, 2017). A balance between MBP and CNPase 

levels is necessary for cytoplasmic channels preservation (Snaidero et al., 2017). In fact, 

CNPase deficient mice show axonal damage produced by altered cytoplasmic channels, 

observing a rescue of this axonal alteration when CNPase and MBP levels were restored 

(Snaidero et al., 2017). In our model, MBP upregulation detected in transgenic mice is not 
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accompanied by changes in CNPase levels (data not shown). Therefore, the balance 

between both proteins could be altered, consequently resulting in cytoplasmic channel 

loss. In this sense, the marked enlargement of inner tongue size presented in 3xTg-AD can 

be explained by the traffic blockade of the cytosolic cargo due to cytoplasmic channel 

alteration, leading to secondary swelling of the inner tongue, as observed in the CNPase 

deficient mice (Rasband et al., 2005). Thus, we propose that MBP upregulation results in 

an imbalance between MBP and CNPase levels that may lead to myelin sheath 

alterations, hampering oligodendrocyte-neuron support and influencing disease 

progression.  

 

Overall, our results show a deregulation of MBP and myelin integrity that promotes 

hypermyelination associated with AD pathology, which lead to axonal dysfunction. In this 

sense, evidences observed in different myelin models suggest that the presence of 

defective myelin sheath is even worse for correct axonal functionality than its absence, 

since this aberrant myelin is related to  uncoupling of oligodendrocyte support of axons 

(Simons & Nave, 2015).  

 

 

6. Alzheimer´s disease patients present an increment of MBP levels in prefrontal 

cortex and hippocampus at advanced stages. 

 

Since, 3xTg-AD mouse model exhibit oligodendrocyte differentiation impairment 

showing alterations in MBP levels that correlate with Aβ pathology, we analyzed the 

expression of MBP in control subjects and AD patients at different stages of the 

pathology. It has been described that prefrontal cortex and hippocampal formation are 

severe affected in AD, which is reflected in memory impairment observed in patients 

suffering from the disease (Sampath et al., 2017). Thus, we focused our study on 

examining MBP levels in these specific areas and found that AD patients showed MBP 

upregulation both in prefrontal cortex and hippocampal formation at advanced stages of 

the disease. Specifically, increased levels of MBP were observed in hippocampal DG and 

CA3, as we observed in 3xTg-AD. Interestingly, MBP expression increase was not 

accompanied by changes in PDGFr-α and Olig2, which may indicate that no changes in 
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oligodendrocyte population density, specifically in progenitor cells, were occurring. 

However, counting of oligodendroglial lineage cells would be necessary to confirm this 

hypothesis.  

 

In addition, biochemical analysis of total myelin fraction in AD patients revealed 

increased Aβ1-42 levels accompanied by a significant decrease in the amount of MBP 

(Roher et al., 2002). However, a more detailed analysis of MBP levels have showed that 

depending on the area, the expression pattern of this protein is different. Precisely, 

cortical GM and frontal lobe from AD patients exhibit a marked MBP expression increase 

(Selkoe et al., 1981; Ihara et al., 2010; Zhan et al., 2015). Remarkably, increased levels of 

MBP were associated with high amount of degraded MBP, which has been related to 

myelin damage (Ihara et al., 2010). Thus, according to these data, it is possible that MBP 

upregulation observed in frontal cortex and hippocampal formation of AD patients may 

be partially related to alterations in myelin integrity as we observed in 3xTg-AD, which 

may contribute to cognitive impairment in AD patients. However, the mechanisms by 

which MBP levels are higher in AD remain unclear. It is possible that increased MBP levels 

are associated with remyelination process after myelin injury in AD brain. Nevertheless, 

taking together the data obtained in this study in relation with the animal model of the 

disease and the effects of Aβ directly on oligodendrocytes in vitro, we suggest that one of 

the mechanisms by which MBP protein is upregulated is the direct effect of Aβ. In this 

sense, further research should be conducted in order to unveil the complete role of Aβ in 

AD. 

 

On the other hand, several interesting studies have demonstrated that MBP binds to 

Aβ1-42 and inhibits its fibrillar assembly (Hoos et al., 2009). Moreover, diffuse and non-

fibrillar deposits of Aβ are often found in region with high abundance of myelinated 

axons, as white matter (Behrouz et al., 1991). Thus, it may be possible that the inhibition 

of fibril formation by MBP results in maintaining soluble oligomers and thereby, 

exacerbate disease pathology as Hoos and coworkers proposed (Hoos et al., 2009). 

Therefore, since we have described that oligomeric Aβ directly acts on myelin-producing 

oligodendrocytes and contributes to formation of additional MBP, increased levels of 

MBP observed in AD patients may contribute to disease progression by inhibiting plaque 
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formation and promoting the presence of higher concentrations of oligomeric Aβ. In this 

sense, MBP would not be just a pathogenic hallmark of AD, but a promoter of this 

pathology progression. 

 

7. Cerebrospinal fluid of MCI patients show increased levels of MBP and CNPase. 

 

It has been reported that white matter and myelin damage may result in an increase 

of myelin-related proteins in the CSF, specially MBP (Whitaker, 1998; Su et al., 2012). 

Since we observed MBP upregulation in AD patients, we considered to evaluate myelin 

proteins as potential candidate biomarkers for AD. For this purpose, we examined MBP 

and CNPase levels in CSF samples from control subjects, mild cognitive impairment (MCI) 

and AD patients (AD). Notably, MBP and CNPase levels were significantly increased in CSF 

from MCI patients, while no differences were found in AD subjects. Interestingly, levels of 

both myelin-related proteins correlate positively in each group, being more strongly 

correlated in MCI and AD subjects. Since MBP upregulation was only present in advanced 

stages of AD brain, we also expected to find high levels of myelin proteins in CSF from AD 

patients. Surprisingly, only MCI subjects exhibited greater amounts. It is possible that 

oligodendrocyte and MBP synthesis dysregulation begin at early stages of AD, as 

previously reported. However, this may be compensated by an efficient mechanism of 

protein clearance through CSF resulting in elevated MBP levels in preclinical patients, as 

we have observed. By contrast, as previous studies have described, protein clearance at 

advanced stages of AD may be diminished (Mawuenyega et al., 2010; de Leon et al., 

2017) and consequently, MBP accumulation was detected in the brain of these patients. 

Additionally, since oligomeric Aβ stimulates oligodendrocyte MBP and CNPase release in 

EVs, and it has been identified that EVs from human CSF may carry myelin-related 

proteins, as MBP and CNPase (Chiasserini et al., 2014), it could possible that these 

proteins detected in CSF are included in EVs and participate in the progression of the 

disease. In this sense, a recent study demonstrated that EVs isolated from CSF from AD 

patients, destabilize neuronal Ca+ homeostasis and are toxic to neurons (Eitan et al., 

2016). Thus, future studies will be required to elucidate the role of myelin proteins and 

EVs in AD pathogenesis.  
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Overall, we propose that oligomeric Aβ modulates oligodendrocyte differentiation 

resulting in myelin integrity impairment and contributing to axonal dysfunction, being 

crucial for AD. Therefore, the comprehension of the mechanisms that regulate 

oligodendrocyte dysfunction in AD, which results in MBP upregulation and 

oligodendrocyte lineage impairment, will be crucial for the development of new therapies 

based on the modulation of oligodendrocyte myelination. In addition, focusing research 

on finding new biomarkers on oligodendrocyte-related proteins could contribute to early 

diagnostic of the disease.  

 



 



 

 

 

 

 

 

 

 

 

Conclusions 



 



  Conclusions 

127 
 

Conclusions 

 

1. Amyloid β oligomers promote an increase in oligodendrocyte differentiation and MBP 

synthesis by modulating mRNA local translation in cultured oligodendrocytes. The 

mechanism underlying amyloid β -induced MBP upregulation is mediated by integrin β1 

receptor followed by Fyn and CaMKII activation. 

 

2. Treatment of oligodendrocyte primary cultures with amyloid β stimulates the release 

of MBP included in microvesicles and CNPase in both microvesicles and exosomes. 

 

3. Oligodendrocyte primary cell survival was enhanced in the presence of endogenously-

produced and synthetic amyloid β. Inhibition of Src-family kinase, ryanodine receptors 

and CaMKII blocked cell death protection. 

 

4. Amyloid β oligomers upregulate myelin-related proteins expression in cerebellar 

organotypic slices, being Src-family kinase activation involved in MBP increase. In 

addition, under pathological conditions after LPC-induced demyelination amyloid β 

oligomers also enhanced MBP synthesis.  

 

4. In vivo analyses of 3xTg-AD showed increased levels of MBP that correlate with Aβ 

amount, occurring previously to neurofilament damage. These MBP alterations in corpus 

callosum and hippocampus were accompanied by an increase in oligodendrocyte 

progenitor cells in early stages, while mature cells were more abundant of old mice. 

 

5. Corpus callosum of 3xTg-AD exhibits impaired myelin integrity, showing more density 

of nodes of Ranvier and increased thickness of myelin sheaths. Precisely, 

electrophysiological analysis determined that only myelinated fibers present slow 

conduction velocity in these mice. 

 

6. Ultrastructural analysis of rostral and caudal corpus callosum of triple transgenic AD 

mice showed higher abundance of myelin sheath-associated degenerative events, 

including enlarged inner tongue, dense cytoplasm, empty fibers and myelin degeneration. 
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7. Frontal cortex and hippocampal formation of AD patients exhibit increased MBP 

expression. Moreover, higher levels of MBP and CNPase are detected in cerebrospinal 

fluid of MCI patients in comparison with control subjects. 
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