
University of the Basque Country
Euskal Herriko Unibertsitatea

MASTER’S DEGREE IN COMPUTATIONAL ENGINEERING AND

INTELLIGENT SYSTEMS

THESIS

Massive Finite Element Computations for
Deep Learning Inversion

Author:
Carlos Uriarte Baranda

Supervisors:
Dr. David Pardo Zubiaur

Dr. Elisabete Alberdi Celaya

A thesis submitted in fulfillment of the requirements
for the Master’s degree in Computational Engineering and Intelligent Systems

of the

Master and Doctoral School - UPV/EHU

taught in the

Faculty of Informatics - UPV/EHU
by the

Department of Computer Science and Artificial Intelligence

SEPTEMBER, 2019

https://www.ehu.eus/es/
https://www.ehu.eus/es/
https://www.ehu.eus/en/web/mde/home
https://www.ehu.eus/en/web/informatika-fakultatea/home
https://www.ehu.eus/es/web/ccia-kzaa/home

ii

«Mathematics is the language in which God has written the universe.»

Galileo Galilei

iii

Acknowledgments
First, I would like to thank infinitely my supervisor David Pardo for his time and ded-

ication this year and for everything he has taught me. I also want to strongly thank my
supervisor Elisabete Alberdi for advising me and helping me whenever I have needed.
Furthermore, I wish to express my gratitude to BCAM - Basque Center for Applied Mathe-
matics for the grant and to all its members for their hospitality. In particular, I especially
appreciate the close and professional treatment of my colleagues in the Simulation of Wave
Propagation group to which I belonged at BCAM during the development of this thesis.
Finally, I wish to thank my parents and brother for their support.

v

Abstract
We focus on the inversion of borehole resistivity measurements in real time. To perform
this task, we propose the use of Deep Learning methods. One critical task on this en-
deavor is to produce a large database that can be used to train Deep Neural Networks.
In this work, we explore different venues to obtain such database conforming the ground
truth data via massive finite element computer simulations of the so-called forward prob-
lem. This consists of solving multiple Boundary Value Problems governed by a Partial
Differential Equation with different material coefficients. After describing the Finite Ele-
ment Method, we investigate a venue to achieve high performance for performing a large
amount of simulations using a Fourier approximation based Finite Element Method. The
idea is to exploit the orthogonality of Fourier basis functions under reasonable assumptions
often satisfied in our geophysics applications to reduce the computational cost of building
the corresponding systems of linear equations. Solving such systems requires the use of
advanced iterative solvers, which will be analyzed during the Ph.D. studies of Carlos Uri-
arte.

vii

Contents

Acknowledgments iii

Abstract v

1 Introduction 1
1.1 Motivation and background . 1
1.2 Main contributions and structure of the thesis 2

2 From Partial Differential Equations to Neural Networks 5
2.1 Partial Differential Equations and mathematical modeling 5
2.2 Forward and inverse problems . 6
2.3 Deep Learning as a method for solving inverse Problems 8

2.3.1 Basic architecture of Neural Networks 8
2.3.2 Construction of Neural Networks . 9

2.4 Solving a large number of forward problems 11
2.5 A simple model problem: heat propagation 11

3 A mathematical review of the Finite Element Method 13
3.1 Basic concepts . 13

3.1.1 Variational formulation of Boundary Value Problems 13
3.1.2 Ritz-Galerkin approximation and error estimates 15
3.1.3 Picewise polynomial spaces for the FEM 17

3.2 Sobolev spaces . 18
3.2.1 Lebesgue integration theory . 18
3.2.2 Weak derivatives . 19
3.2.3 Sobolev norms, Sobolev spaces and some properties 20
3.2.4 Review of section 3.1 . 22

3.3 Variational Formulation of elliptic Boundary Value Problems 22
3.3.1 Inner-product and Hilbert spaces . 23
3.3.2 Projections onto subspaces and Riesz’s Representation Theorem . . . 24
3.3.3 Formulation of symmetric variational problems 25
3.3.4 Formulation of non-symmetric variational problems 27
3.3.5 Error estimates for the general Finite Element Method 28

3.4 Variational formulation of Poisson’s equation BVP 28

viii

4 Fourier summation approximation for Finite Element computations 31
4.1 Variational Formulation in an arbitrary Coordinate System 31
4.2 Fourier summation approximation . 33
4.3 Poisson’s equation with Fourier summation approximation 34

4.3.1 General development . 34
4.3.2 Example in one dimension . 37
4.3.3 Some comments for higher dimension problems 40
4.3.4 Construction of a two dimensional tensor 41
4.3.5 Example in general dimension. Methodology 42
4.3.6 Rapid generation of stiffness matrices 43

5 Conclusions and Future Work 45
5.1 Review and conclusions . 45
5.2 Future work . 46

A Construction of a Finite Element space 49
A.1 Finite Element . 49
A.2 Examples of triangular FEs in two dimensions 49
A.3 The interpolant . 51

Bibliography 53

1

Chapter 1

Introduction

«There is nothing more difficult to take
in hand, more perilous to conduct, or
more certain in its success, than to take
lead in the introduction of a new order
of things.»

Niccolo Machiavelli

This chapter aims to motivate the work and present its structure. The first section raises
a case of application and exposes the state of the art of the research work. The second
section presents the contribution of the developed work and describes the thesis’ structure.

1.1 Motivation and background

The exploration of the surface and subsoil is fundamental in today’s society. Its knowledge
allows us to take measures in: (i) earthquake predictions or seismic hazards [6,31], (ii) min-
ing [38], (iii) geothermal energy production [15], and (iv) massive construction projects [13,
14], among other applications. Surface measurements are routinely acquired through dif-
ferent measurement systems or techniques (e.g., Logging-While-Drilling –LWD–, Ground-
Penetrating Radar –GPR–, or Electrical Resistivity Tomography –ERT–). These measure-
ments are subsequently interpreted (inverted) using different numerical methods or ma-
chine learning techniques to generate maps of the subsoil composition.

The above application is given by a Boundary Value Problem (abbrev., BVP) governed
by Partial Differential Equations (abbrev., PDEs). Measurements are thus associated with
samples of solutions of the PDE, and their corresponding inversions, with parameters in-
volved in the equation. The problem of predicting results in the form of measurements
is called forward problem, and an inverse problem consists in using given measurements to
infer the values of the parameters that characterize the system [28, 53]. For example, in the
aforementioned geoterrestrial application framework, the phenomena correspond to wave
propagations, and parameters to characteristics of the materials through which the waves
are propagated (e.g., resistivity, electromagnetic permeability, Lame coefficients, etc.) [33].

2 Chapter 1. Introduction

Thanks to the current computing capabilities, one way to address these inverse prob-
lems is through the use of Deep Learning architectures [52, 53]. The current interest in these
computational models is big, growing and with a great scientific prospect. In particular, in
the MATHMODE research group of the UPV/EHU there are some of the first proposals of
these inversion models for subsoil applications [48]. In addition, this type of models are
relatively new and there is still a large room for improvement. The topic that concerns this
master’s thesis is the creation of synthetic databases so that later they can be used for the
creation of inverse problem models based on Deep Learning architectures.

A simple way to generate these databases is to perform simulations (i.e., solve forward
problems) with computers when the parameters of the PDEs have been fixed. That is: first
we select some parameters, then we perform a simulation for that parameter selection,
and as a result, we obtain measurements. In this way, each parameters-measurements pair
corresponds to a sample of the database. Repeating this process iteratively a sufficiently
large number of times (e.g., performing one million simulations) modifying the choice of
parameters, we obtain the desired database. A possible numerical method to carry out
these simulations is the Finite Element Method (abbrev., FEM) [26,32]. Performing a single
simulation with this method does not generally require excessive execution times in the
considered applications (e.g., a few minutes). But if this procedure needs to be repeated
a considerable number of times (e.g., one million repetitions), the execution time becomes
unaffordable (in the previous example, several years). Therefore, in a context in which
problems must be solved in real times of execution, the way to deal with the problem must
be different from simply repeating simulations iteratively with the FEM.

Examples of current proposals that favor execution times in Finite Element simula-
tions are: (i) Dimensionally Adaptive Methods (e.g., [2]), (ii) hp-Adaptivity (e.g., [42]), (iii)
Proper Generalized Decomposition (abbrev., PGD) (e.g., [61]), and (iv) Alternating Direc-
tion Implicit (abbrev., ADI) method (e.g., [10]), among others. Generally, these proposals
are usually presented in the scientific literature in a sense of “individual” optimization
times rather than in a “global” sense of solving large families of forward problems. This is
the starting point and research motivation of the proposed work.

1.2 Main contributions and structure of the thesis

The work has been developed in a preliminary sense with the aim to describe the mathe-
matical and computational frameworks, and to present and analyze the very first propos-
als of solution methods for the concerned problem. No computational experiments have
been carried out in this project. This means that the approach along the thesis is theoret-
ical, although by its nature it is expected to obtain the first numerical results in a short time.

The current work has two main contributions:

1.2. Main contributions and structure of the thesis 3

(i) Study and review of the concerned mathematical and computational frameworks,
and formalization of the involved mathematical and computational ingredients. It
is divided in chapters 2 and 3. Chapter 2 introduces the mathematical and computa-
tional general frameworks more exhaustively. We give formal definitions of essential
ingredients such as forward and inverse problems and Deep Learning architectures.
At the end of the chapter we motivate and deduce a model problem from a physical
phenomenon: Poisson’s equation Boundary Value Problem. This model problem is
used in the remaining chapters as an illustrative example of the developed theory. In
chapter 3, we present, study and describe the FEM from a high mathematical and ab-
stract perspective. In particular, we review the theory of Lebesgue integration, weak
derivatives, and Hilbert and Sobolev spaces. Then, we introduce the variational for-
mulation concept and we apply it to the aforementioned model problem. Thereafter,
we also establish existence and uniqueness of solutions to the model problem.

(ii) Proposal and analysis of a Fourier summation based Finite Element Method for
massive computations. This part is contained in chapter 4. In it, we consider the
previously worked model problem in Fourier summation terms. Then, we make
the necessary calculations so as to express the model problem in a finite element
variational formulation. Then, we particularize the calculations for a 1D case and
comment some important observations of the obtained results. Later, we generalize
the used methodology to an arbitrary dimension Poisson’s equation problem. At the
end of the chapter, we emphasize the main characteristics of the obtained results and
their relation with massive computations.

In the last chapter, we summarize the general and particular conclusions of the devel-
oped work, and we present a future research project.

This thesis has been mainly developed at BCAM - Basque Center for Applied Mathematics
within the Simulation of Wave Propagation research group. The current work is intended to
be continued by a Ph.D. program in the next academic year at the same center and under
the supervision of the same directors of this master’s thesis, Dr. David Pardo and Dr.
Elisabete Alberdi.

5

Chapter 2

From Partial Differential Equations to
Neural Networks

«The mathematician plays a game in
which he himself invents the rules
while the physicist plays a game in
which the rules are provided by nature,
but as time goes on it becomes
increasingly evident that the rules
which the mathematician finds
interesting are the same as those which
nature has chosen.»

Paul A.M. Dirac

This chapter provides formal definitions of some critical aspects of the research such
as forward and inverse problems, and Neural Networks architectures. It is divided in five
sections.

The first and second sections introduce the mathematical framework of the work, and
the third section does so with the computational one. The fourth section presents the gen-
eral problem we aim to solve and the fifth one deduces from a physical phenomenon a
particular model problem in which the whole project will later be focused on.

2.1 Partial Differential Equations and mathematical modeling

From the very basic linear equations learned at school to the still unsolved millenium prize
Navier-Stokes’ equation [12], equations are, without doubt, the quintessential ingredient
of mathematics [51].

In simple terms, equations are equalities where some unknowns are involved. De-
termining which values do solve the considered equality (in case it is solvable), finding
general patterns for solving similar model equations, and discussing their solutions’ prop-
erties, are still some of the main concerns in mathematics.

In this project, we will deal with Partial Differential Equations [11]. This kind of equa-
tions specify a relation between functions of more than one variable and their (partial)

6 Chapter 2. From Partial Differential Equations to Neural Networks

derivatives. In mathematical terms: if u = u(x1, x2, . . . , xd) is a function with d variables, a
PDE for u is an equation of the form,

D(x1, x2, . . . , xd; u; ux1 , ux2 , . . . , uxd ; ux1x1 , ux1x2 , . . . , uxdxd−1 , uxdxd ; . . .) = C, (2.1)

for a certain functionD, a constant C, and where uxi1 xi2 ···xik
is the abbreviate form of denot-

ing the k-th order derivative of u with respect to the xi1 , xi2 , . . . , xik variables, i.e.,

uxi1 xi2 ···xik
=

∂ku
∂xi1 ∂xi2 · · · ∂xik

. (2.2)

The order of a Partial Differential Equation is the order of the highest derivative involved.
A particular solution is a function that verifies the PDE. A solution is called general if it con-
tains all the particular solutions of the concerned PDE. Moreover, ifD is a linear mapping
with respect to u, we say that the corresponding PDE is linear.

Many ideas in mathematics arose because of the interest generated in certain physi-
cal phenomena. For example, calculus has its origins in efforts to accurately describe the
motion of bodies [4]. In consequence, mathematical equations have provided a context to
formulate concepts in physics. In recent years, the interest in promoting and using mathe-
matics as a tool to explain phenomena in natural sciences has increased notably because of
the desire to understand, and as consequence also be able to take advantage of, the world in
which we live in. This effort to understand and interpret the environment that surrounds
us from a mathematical point of view has crystallized in a growing field called mathematical
modeling.

A mathematical model is an equation or a set of equations whose solutions describe
the physical behavior of a related physical system [56]; and finding the appropriate model
involves physical observation, selection of the relevant physical variables, formulation and
analysis of the proposed equations, simulation, and finally, its validation.

In this context, and as we will later see, PDEs are useful for modeling a large class of
physical phenomena [58]; and therefore, being able to solve PDEs is a powerful tool to
understand the behavior of important physical systems.

2.2 Forward and inverse problems

Given a complete description of a physical system, we can predict the outcome of some
measurement functions. This problem of predicting results in the form of measurements
is called forward problem. An inverse problem consists in using the actual measurements to
infer the values of some parameters that characterize the system [28, 53].

If we assume that the considered system can be modeled by a partial differential equa-
tion, we can describe the forward and inverse problems in the following way: let u be a

2.2. Forward and inverse problems 7

θ u MSolve PDE
D(u; θ) = C

Forward problem

Post-processing

Inverse problem

FIGURE 2.1: Forward and inverse problems sketch

function representing a certain physical phenomenon, let D be a partial differential op-
erator in the sense explained at (2.1), and let θ be a set of parameters taking part in the
considered model. We briefly denote by

D(u; θ) = C (2.3)

to the considered PDE. Then, two kind of problems arise from model (2.3):

• Forward problem. Given a set of parameters θ, find a (numerical) solution u of (2.3).
Later, the solution u is post-processed in order to extract certain useful information
from it. We call measurements to the post-processed values of u and denote them by
M =M(u). In some cases, and depending on the context in which the problem is
presented, solving the forward problem refers directly to obtain the measurements
from the model where the involved parameters are known.

• Inverse problem. Given a set of measurementsM, find the set of parameters θ such
that when solving equation (2.3) with it, the obtained u solution satisfies M =

M(u).

There is a fundamental difference between forward and inverse problems. The inverse
problem is often ill-posed in the Hadamard’s sense, while the forward problem is well-posed.
In his lectures [20], Hadamard claims that the mathematical model of a physical problem
is well-posed when it satisfies the following three conditions: (i) a solution exists, (ii) it is
unique, and (iii) the solution’s behavior changes continuously with the initial conditions
(given data).

In this sense, the inverse problem is not well-defined since, for a given measurements
set, there may not exist a corresponding set of parameters or, as it is more usual, there
could exist multiple sets of parameters. These undesirable properties of inverse problems
(e.g., see [53, 57]) make them very difficult to treat, since there is not an “effectively clear”
procedure to follow in the aim of finding good solutions to them.

In a physical phenomenon problem modeled with PDEs, parameters usually describe
properties about the media or material. If in particular we consider the heat equation, the

8 Chapter 2. From Partial Differential Equations to Neural Networks

involved set of parameters could be the thermal conductivity of the media. Being able to
characterize those parameters from the existing measurements is the goal of inverse prob-
lems; and having these characterizations could later be useful for other fields of knowledge.

2.3 Deep Learning as a method for solving inverse Problems

Let us assume we have a PDE model from which we are able to perform several simula-
tions (solve forward problems) for distinct set of parameters and obtain simulated mea-
surements. Let us denote by {θi,Mi}N

i=1 to the obtained database, where N is the number
of simulations performed andMi denotes the set of measurements obtained in the i-th
simulation employing the θi set of parameters.

Then, if N is large enough, it would be possible to use the corresponding database to
generate a model that, based on the measurements, provides the associated parameters.
Thanks to the current computation capabilities, these kind of problems could be efficiently
approximated with an appropriate Deep Learning architecture.

2.3.1 Basic architecture of Neural Networks

In simple terms, a Neural Network (abbrev., NN) is a mapping whose architecture has been
designed as a composition of multiple mappings, i.e.,

N = L(r) ◦ · · · ◦L(i) ◦ · · · ◦L(2) ◦L(1), (2.4)

where r is the number of mappings involved in the composition; and if r ≥ 2, we often
refer to it as a Deep Neural Networks (abbrev., DNN) instead of a NN.

Each L(i) is commonly called a layer of the NN. In the most fundamental case, when
the NN is a Multilayer Perceptron (abbrev., MLP) [16, 45], each L(i) is of the form:

L(i)(x(i−1)) = a(i)(W (i)x(i−1) + b(i)), (2.5)

where W (i) and b(i) are, respectively, a matrix and a vector, suitable for the input vec-
tor x(i−1). Thus, W (i)x(i−1) + b(i) is an affine transformation where the output vector’s size,
commonly known as layer’s size or dimension, is chosen according to a certain convenient ar-
chitectural criterion. The a(i) mapping is non-linear and componentwise, commonly called
an activation function, which typically is a so-known rectified linear unit (abbrev., ReLU),
sigmoid (σ), hyperbolic tangent (tanh), etc.

In this way, given an input vector for the MLP, the result is another vector which has
been produced according to a series of paired linear and non-linear transformations [17,48].

Figure 2.2 shows an example of a MLP with 6 layers (r = 6), with a 4-dimensional
input, 5-dimensional intermediate (hidden) layers, and a 1-dimensional output.

2.3. Deep Learning as a method for solving inverse Problems 9

Input #1

Input #2

Input #3

Input #4

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Hidden
layer 4

Hidden
layer 5

Output

Input
layer

Output
layer

FIGURE 2.2: Illustration of a Multilayer Perceptron

The amount of needed parameters to set (weights —W (i)— and biases —b(i)—) in fig-
ure 2.2 is: 20 + 5 for the first layer; 25 + 5 for the second, third, fourth and fifth layers; and
5 + 1 for the sixth. That is, a total of 151 parameters.

2.3.2 Construction of Neural Networks

Let us consider the database introduced at the beginning of section 2.3, {θi,Mi}N
i=1. The

idea of a NN in our concerned kind of problems is to approximate a hypothetical mapping
I such that I(Mi) = θi for all i = 1, 2, . . . , N [25]. Nevertheless, as we mentioned in
section 2.2, the problem we want to address is ill-posed. That is, such mapping is not
ensured to be well-defined. However, because of the great adaptation capability NNs have
for fitting a dataset, these models have shown in practice to be efficient enough in these
tasks so as to obtain very acceptable solutions to problems that are not necesarily well-
defined.

The key point for obtaining a good NN model is to set an appropriate cost or loss function
[30]. This function aims at measuring the discrepancy between the solutions obtained by
the NN and the real ones. Depending on the magnitude of the discrepancy obtained in
each case, the parameters of the NN are re-adjusted in order to minimize such discrepancy.

Gradient descent algorithm

Let ` be a real-valued loss function of a given NN. Assume that both ` and all non-linear
mappings taking part in the NN’s architecture are differentiable and easy to derivate. Then,
the chain rule allows us to calculate the partial derivatives of ` with respect to the adjustable
parameters (entries of W (i) and b(i)) [55], i.e.,

∂`

∂W (i)
and

∂`

∂b(i)
, for i = 1, 2, . . . , r. (2.6)

10 Chapter 2. From Partial Differential Equations to Neural Networks

In this way, after initialized the parameters of the NN, forward-passed the data and com-
puted the corresponding derivatives, we re-adjust the parameters toward the negative gra-
dient sense:

W (i)
new := W (i)

current − λ
∂`

∂W (i)

∣∣∣∣
data

and b(i)
new := b(i)

current − λ
∂`

∂b(i)

∣∣∣∣
data

, (2.7)

where ∂`
∂W (i) |data and ∂`

∂b(i) |data denote the evaluated derivatives of ` with respect to the cor-
responding parameters, and λ is a sufficiently small and positive hyperparameter of the
NN, commonly called learning-rate [29]. Each time the parameters are re-adjusted with the
backwards criterion, it is said that the NN is backpropagated [3, 23].

The main idea in this method is that, since all the employed functions are differen-
tiable (except perhaps at some points of the activation function whose derivative is ap-
proximated), we are able to minimize the loss function by following small steps against
the gradient. Following this path allows us to approximate to a zero-valued point of the
derivative (in case it exists), where if the cost function has been conveniently posed, it will
coincide with a local minimum of the loss function.

Training and validating Neural Networks

The most common way to train and validate the NN requires a data partition into three
sets: training, validating and testing sets.

The first set is used to iteratively re-adjust the parameters. If the training data is parti-
tioned into smaller (and possibly equal sized) subsets, known as batches, and the backprop-
agation is performed after the forward-pass of each batch, we say that the gradient-based
algorithm is a stochastic gradient descent [3, 60].

The validation data is used to perform some high-level NN design decision, e.g., to
modify the network architecture (layers’ dimensions) [27] or numerical optimization crite-
ria. For example, since NNs have a great capability to adapt to the training data (memo-
rization), in order to avoid a disproportionate adjustment in detriment of the generalization
capacity (overfitting) [22,54], the validation data is employed to control it and stop if neces-
sary, e.g., when the NN does not improve significantly the accuracy of the validation data
when the trainig data does so (early-stopping) [43].

The testing data is employed only when the final model is constructed (no more pa-
rameters are re-adjusted). We say that the NN generalizes properly when the accuracy of
forward-passing the testing set is similar to the accuracy obtained when doing it with the
training and validating sets.

2.4. Solving a large number of forward problems 11

2.4 Solving a large number of forward problems

In section 2.3 we briefly explained one of the current methods for solving inverse problems,
provided a paired database of parameters and measurements is given.

The main concern is then that, for applying the previous method, a huge amount of
forward problems need to be solved, which in essence it reduces to solving the associated
PDE problem modifying in each case the corresponding parameters set θi.

Traditional methods of application in engineering for solving PDE problems are the
Finite Difference Method (abbrev., FDM) [49] and the Finite Element Method (abbrev.,
FEM) [19, 59]. The latter is the most used in academia and we focus on it on this work.
The FEM partitions a possibly irregular domain in a finite number of more simple subdo-
mains, commonly called elements. Next, a set of approximating functions are constructed
systematically for each of these subdomains in order to approximate the solution of the
given problem with a desired degree of precision.

2.5 A simple model problem: heat propagation

Let Ω ⊂ Rd be our domain of interest in a d spatial dimension and let u : Ω −→ R be
the temperature at each point x = (x1, x2, . . . , xd) ∈ Ω. Let q : Ω −→ Rd be the heat flux
in the domain and let f : Ω −→ R be the heat source. If ω ⊂ Ω is a small test volume,
conservation of energy principle gives:

dE
dt

=
∫

∂ω
q · n ds−

∫

ω
f dx = 0, (2.8)

where n ∈ Rd denotes the outer normal vector in Ω and · : Rd × Rd −→ R denotes the
Euclidean scalar product. In other words, equation (2.8) represents that the outflow of
energy over the boundary ∂ω, q · n, equals the energy emitted by the heat source function,
f . Fourier’s law relates this heat flux to the temperature in the following way:

q = −σ∇u, (2.9)

where ∇ := (∂x1 , ∂x2 , · · · , ∂xd)
T is the gradient operator and σ = σ(x1, x2, . . . , xd) ∈ Rd×d is

a coefficients matrix according to the domain heat propagation properties. Therefore,

∫

∂ω
−σ∇u · n ds =

∫

ω
f dx. (2.10)

Because of Gauss’ Divergence Theorem, we can rewrite this expression as follows:

∫

∂ω
−σ∇u · n ds =

∫

ω
∇ · (−σ∇u) dx =⇒

∫

ω
(−∇ · (σ∇u)− f) dx = 0. (2.11)

12 Chapter 2. From Partial Differential Equations to Neural Networks

Since equality (2.11) holds for all test volumes w ⊂ Ω, if u, σ and f are regular enough, we
recover the so-called Poisson’s Equation for the heat propagation:

−∇ · (σ∇u) = f in Ω. (2.12)

Now assume that ∂Ω = ∂ΩN∪̇ ∂ΩD and that some information about the temperature
(and its derivative) is known on these two subboundaries (i.e., sections of the boundary):

u = uD in ∂ΩD, (2.13)

− σ∇u · n = g in ∂ΩN , (2.14)

with uD : ∂ΩD −→ R and g : ∂ΩN −→ R. This way, the problem of knowing the tem-
perature at each point of the body is reduced to solving the following Boundary Value
Problem:

−∇ · (σ∇u) = f in Ω, (2.15)

u = uD in ∂ΩD, (2.16)

−σ∇u · n = g in ∂ΩN . (2.17)

Equations (2.16) and (2.17) are known as Dirichlet and Neumann boundary conditions, re-
spectively. Similarly, ∂ΩD and ∂ΩN are the corresponding Dirichlet and Neumann bound-
aries of the BVP.

This model problem will be exhaustively used in the subsequent chapters.

13

Chapter 3

A mathematical review of the Finite
Element Method

«In theory, there is no difference between
theory and practice. But in practice, there
is.»

Albert Einstein

The Finite Element Method employs a formalism for generating discrete (finite) algo-
rithms for approximating the solutions of differential equations. It is a method that given
a Partial Differential Equation, it delivers an approximation of the corresponding solution.
Such a task could conceivably be done automatically by a computer, but it requires an
amount of mathematical skill that today still requires human involvement. The purpose
of this chapter is to help on the comprehension of this method, presenting (and sometimes
justifying) its mathematical bases.

3.1 Basic concepts

In this section we present and develop a one-dimensional BVP. We leave many loose ends
(indicated in footnotes along the section), which most of them will be tied up in the subse-
quent sections, in order to motivate and briefly present the necessary ingredients so as to
later properly introduce the FEM.

3.1.1 Variational formulation of Boundary Value Problems

Consider the following two-point BVP (case d = 1 of Poisson’s Equation):

−(σ u′)′ = f in [0, 1]

u(0) = 0, (σu′)(1) = 0,
(3.1)

where u : [0, 1] −→ R is the solution and σ, f : [0, 1] −→ R are given. Then, if v is any
(sufficiently regular) function such that v(0) = 0, integration by parts yields:

14 Chapter 3. A mathematical review of the Finite Element Method

∫ 1

0
−(σ u′)′ v dx =

∫ 1

0
f v dx, (3.2)

∫ 1

0
σ u′ v′ dx =

∫ 1

0
f v dx. (3.3)

We denote by L(u, v) and by R(f , v) to the left and right hand side of (3.3) respectively.
Let us define (formally for the moment since the notion of derivative has not been made
precise)∗

V := {v ∈ L2([0, 1])† : L(v, v) < ∞ and v(0) = 0}. (3.4)

Then, we can characterize the solution u of (3.1) —in a necessary condition sense— by

u ∈ V such that L(u, v) = R(f , v) for all v ∈ V, (3.5)

which is called the weak or variatiational formulation of (3.1). The relationship (3.5) is called
“variational” because the function v is allowed to vary arbitrarily. It seems somewhat
unusual at first, but later we will see that it has a natural interpretation in the setting of
Hilbert spaces.

The following theorem states that, under some strong regularity assumptions, finding
u verifying (3.5) provides a solution for (3.1).

Theorem 3.1. Let f ∈ C0([0, 1]), σ ∈ C1([0, 1]), σ > 0 and u ∈ C2([0, 1]) verifying (3.5). Then,
u solves (3.1).

Proof. Let v ∈ V ∩ C1([0, 1]). Then, since L(u, v) = R(f , v), integration by parts gives:

R(f , v) =
∫ 1

0
−(σ u′)′ v + σ(1) u′(1) v(1). (3.6)

Thus, if we write w = f + (σ u′)′, we get R(w, v) = 0 for all v ∈ V ∩ C1([0, 1]) such that
v(1) = 0. If w 6≡ 0, then there exists an interval [x0, x1] ⊂ [0, 1] where w(x) maintains
the sign (because w ∈ C0([0, 1])). Take v(x) = (x − x0)2(x − x1)

2 in [x0, x1] and v ≡ 0
otherwise. Since R(w, v) 6= 0, we arrive to a contradiction. Therefore w ≡ 0, or equiva-
lently, −(σu′)′ = f . Now, we apply (3.6) with v(x) = x to obtain (σu′)(1) = 0 and see that
u(0) = 0 because u ∈ V.

Assumptions f ∈ C0([0, 1]), σ ∈ C1([0, 1]) and u ∈ C2([0, 1]) in the theorem allow us to
interpret (3.1) in the classic sense (strong formulation). Nevertheless, these requirements for
the solution and the given functions are not always possible to assure. Therefore, the vari-
ational formulation (3.5) will provide an alternative interpretation to the solution of (3.1)
that, on the one hand, it requires less restrictive assumptions on the concerned functions,
and on the other hand, it generalizes the approach to the same problem from a weaker per-
spective (i.e., it maintains the strong formulation interpretation when the involved func-
tions meet the continuity/derivability conditions).
∗Later we will see that ∅ 6= V ({v ∈ L2([0, 1]) : L(v, v) < ∞ and v(0) = 0}.
†In section 3.2 we will formally define the Lp spaces for p ≥ 1.

3.1. Basic concepts 15

3.1.2 Ritz-Galerkin approximation and error estimates

Let S ⊂ V be a finite dimensional space and let us consider (3.5) replacing V by S:

uS ∈ S such that L(uS, v) = R(f , v) for all v ∈ S. (3.7)

We will now see that (3.7) does actually define an object. In fact, we will show that (3.7)
can be represented as a system of equations and prove that uS is the best approximation to
u. The existence and uniqueness of uS is given in the following theorem:

Theorem 3.2. Let f ∈ L2([0, 1]) and σ > 0. Then, (3.7) has a unique solution.

Proof. Let {φi}n
i=1 be a basis for S and let us write uS = ∑n

j=1 Ujφj. Let Kij = L(φj, φi)

and let Fi = R(f , φi) for i, j ∈ {1, 2, . . . , n}. Set U = [Uj], K = [Kij] and F = [Fi]. Then,
solving (3.7) is equivalent to solving KU = F. Since it represents a finite dimensional
square linear system, uniqueness and existence are equivalent. If the solution was not
unique, it would imply that there exists a non-zero V = [Vj] such that KV = 0. We write
v = ∑n

j=1 Vjφj and check that the previous homogeneous system implies L(v, ψj) = 0 for all
j = 1, 2, . . . , n because of the linearity of L(·, ·) in the first component. Noticing that L(·, ·)
is also linear on the second component, multiplying each term by Vj and summing over j
yields 0 = L(v, v) =

∫ 1
0 σ (v′)2dx. Then v′ ≡ 0 and since v(0) = 0, we conclude v ≡ 0.‡

That is, V = 0, which means that the solution to KU = F is unique (and hence it must
exist). Equivalently, the solution uS to (3.7) exists and it is unique.

Observation 3.1. The matrix K is often referred to as the stiffness matrix, a name coming
from the context of structural problems. It is clearly symmetric since so is L(·, ·).

Now let us check the Galerkin orthogonality relation between u and uS. To do so, we
check that

L(u− uS, w) = L(u, w)− L(uS, w) = R(f , w)−R(f , w) = 0, for all w ∈ S. (3.8)

We define by ‖v‖E :=
√

L(v, v) for v ∈ V to the energy norm. An interesting relationship
between the energy norm and L is thanks to Schwarz’s inequality§: |L(v, w)| ≤ ‖v‖E ‖w‖E

for all v, w ∈ V. Then, for any v ∈ S, we have:

‖u− uS‖2
E = L(u− uS, u− uS) = L(u− uS, u− v) + L(u− uS, v− uS) = (3.9)

= L(u− uS, u− v) ≤ ‖u− uS‖E ‖u− v‖E . (3.10)

‡Why v′ ≡ 0 implies v being constant? For those familiar with the Cantor function, whose derivative is zero
almost everywhere but it is certainly not constant, the previous implication is not sufficiently clear. However,
V is a subspace of a Sobolev space and we will see that such situations do not occur in these spaces.

§Schwarz’s inequality is stated and proved in section 3.3 under the hypothesis of the corresponding linear
functional being an inner-product. Is L(·, ·) an inner product in V? No. However, as it will later be clarified,
Schwarz’s inequality also holds in a lesser restrictive kind of functionals than inner-products.

16 Chapter 3. A mathematical review of the Finite Element Method

If ‖u− uS‖2
E 6= 0, we divide inequality (3.10) by it to obtain ‖u− uS‖E ≤ ‖u− v‖E for any

v ∈ S. If ‖u− uS‖2
E = 0, this inequality is trivial. Taking the infimum over v ∈ S yields

‖u− uS‖E ≤ inf{‖u− v‖E : v ∈ S}. (3.11)

The converse inequality is trivial because uS ∈ S. Therefore,

‖u− uS‖E = inf{‖u− v‖E : v ∈ S}. (3.12)

Since there is an element for which the infimum is attained, uS, we have proved the follow-
ing result:

Theorem 3.3. The solution uS of (3.7) verifies ‖u− uS‖E = min{‖u− v‖E : v ∈ S}.

This is the basic error estimate for the Ritz-Galerkin method, which states that the error
is optimal in the energy norm. Now we consider another norm and study its error estimate:

let ‖v‖L2 :=
√

R(v, v) =
√∫ 1

0 v2dx be the L2([0, 1]) norm. In an intuitive approach, one
could think that the L2-norm is weaker than the energy norm, as the latter is a kind of
L2-norm of the derivative.

To estimate ‖u− uS‖L2([0,1]), we proceed using what it is known as a “duality” argu-
ment: let w be the solution of −(σw′)′ = u− uS on [0, 1] with w(0) = (σw′)′(1) = 0. Then,
integration by parts lets us find:

‖u− uS‖2
L2([0,1]) = R(u− uS,−(σw′)′) = L(u− uS, w) = L(u− uS, w− v), (3.13)

for all v ∈ S because (3.8). Thus, assuming ‖u− uS‖L2([0,1]) 6= 0 (the case equal to zero is
trivial), Schwarz’s inequality implies

‖u− uS‖L2([0,1]) ≤
‖u− uS‖E ‖w− v‖E
‖u− uS‖L2([0,1])

(3.14)

≤ ‖u− uS‖E ‖w− v‖E
‖(σw′)′‖L2([0,1])

. (3.15)

Taking the infimum over v ∈ S, we obtain

‖u− uS‖L2([0,1]) ≤
‖u− uS‖E

‖(σw′)′‖L2([0,1])
inf{‖w− v‖E : v ∈ S}. (3.16)

Now assume that we can take v ∈ S close to w ∈ V in the following sense:

inf{‖w− v‖E : v ∈ S} ≤ ε
∥∥(σw′)′

∥∥
L2([0,1]) for some ε > 0. (3.17)

Then, we conclude:
‖u− uS‖L2([0,1]) ≤ ε ‖u− uS‖E . (3.18)

3.1. Basic concepts 17

Retaking (3.17), replacing w by u, considering theorem 3.3 and recalling (3.1), we obtain:

‖u− uS‖E ≤ ε
∥∥(σu′)′

∥∥
L2([0,1]) = ε ‖ f ‖L2([0,1]) . (3.19)

The following theorem summarizes the error estimate relationships developed so far.

Theorem 3.4. Assumption (3.16) implies

‖u− uS‖L2 ≤ ε ‖u− uS‖E ≤ ε2 ‖ f ‖L2 . (3.20)

The point is that ‖u− uS‖E is of order ε whereas ‖u− uS‖L2 is of order ε2. In the fol-
lowing subsection we will introduce a family of spaces S for which ε may be arbitrarily
small.

3.1.3 Picewise polynomial spaces for the FEM

Let 0 = x0 < x1 < · · · < xn = 1 and let S be the set of picewise linear space functions over
[0, 1] such that: (i) v ∈ C0([0, 1]), (ii) v|[xi−1,xi] is a linear polynomial for i = 1, 2, . . . , n, and
(iii) v(0) = 0.¶

0.4 Piecewise Polynomial Spaces 7

0.4 Piecewise Polynomial Spaces – The Finite Element

Method

Let 0 = x0 < x1 < ... < xn = 1 be a partition of [0, 1], and let S be the
linear space of functions v such that

i) v ∈ C 0([0, 1])
ii) v|[xi−1,xi] is a linear polynomial, i = 1, ..., n, and
iii) v(0) = 0.

We will see later that S ⊂ V . For each i = 1, .., n define φi by the require-
ment that φi(xj) = δij = the Kronecker delta, as shown in Fig. 0.1.

i0 1x i

Fig. 0.1. piecewise linear basis function φi

(0.4.1) Lemma. {φi : 1 ≤ i ≤ n} is a basis for S.

(0.4.2) Remark. {φi} is called a nodal basis for S, and {v(xi)} are the nodal
values of a function v. (The points {xi} are called the nodes.)

Proof. The set {φi} is linearly independent since
∑n

i=1 ciφi(xj) = 0 implies
cj = 0. To see that it spans S, consider the following:

(0.4.3) Definition. Given v ∈ C 0([0, 1]), the interpolant vI ∈ S of v is
determined by vI : =

∑n
i=1 v(xi)φi.

Clearly, the set {φi} spans S if the following is true.

(0.4.4) Lemma. v ∈ S ⇒ v = vI .

Proof. v − vI is linear on each [xi−1, xi] and zero at the endpoints, hence
must be identically zero. ⊓'

We will now prove the following approximation theorem for the interpolant.

(0.4.5) Theorem. Let h = max1≤i≤n

(
xi − xi−1

)
. Then

∥u − uI∥E ≤ Ch∥u′′∥
for all u ∈ V , where C is independent of h and u.

FIGURE 3.1: Piecewise linear basis function φi

Define φi ∈ S for each i = 1, 2, . . . , n by the requirement φi(xj) = δij, i.e., δij = 1 if i = j
and δij = 0 otherwise (δij is known as Kronecker’s delta). Then:

Theorem 3.5. {φi}n
i=1 is a basis for S.

Proof. We need to see that {φi : i = 1, 2, . . . , n} is both a linearly independent and a span-
ning set of S. It is linearly independent because ∑n

i=1 ciφi(xj) = 0 implies cj = 0. To see it
spans S, we consider an arbitrary v ∈ S and define vI = ∑n

i=1 v(xi)φi ∈ S. Since v− vI ∈ S
is linear on each [xi−1, xi] and equal to zero at the endpoints, it must be identically zero,
i.e., v ≡ vI .

In our case, each segment [xi−1, xi] is called an element and the set of all the elements,
{[xi−1, xi] : i = 1, 2, . . . , n}, is known as a grid for [0, 1]. The xi endpoints are called nodes,
the set {φi}n

i=1 is a nodal basis for S, and given any v ∈ S, the values v(xi) are called the
nodal values of v. In general, when v does not belong to S, we call the interpolant of v by S
to the function defined by vI := ∑n

i=1 v(xi)φi ∈ S.
The following theorem connects the relation between the error estimate of (3.20) and

the grid size.

¶We will later show that S ⊂ V.

18 Chapter 3. A mathematical review of the Finite Element Method

Theorem 3.6. Let h = max1≤i≤n{xi − xi−1}. Then,

‖u− uS‖E ≤
h√
2

∥∥(−σu′)′
∥∥

L2([0,1]) =
h√
2
‖ f ‖L2([0,1]) , for all u ∈ V. (3.21)

Proof. See [7, p. 7-9]

Noticing that the above inequality’s upper bound depends on h, we realize that we can
obtain the desired accuracy on ‖u− uS‖E just by adjusting the grid size, i.e., considering a
properly distributed (e.g., uniformly) large number of nodes.

3.2 Sobolev spaces

This section introduces proper function spaces that are used in the variational formula-
tions of differential equations. We begin with a review of Lebesgue integration theory,
upon which the notion of “variational” or “weak” derivatives rests. Functions with such
“generalized derivatives” conform the so-called Sobolev spaces.

3.2.1 Lebesgue integration theory

We start reviewing the basic concepts of Lebesgue integration, [21,44,46]. In what follows,
by “domain” we refer to a Lebesgue-measurable subset of Rd with non-empty interior and
by “function” to a real valued and Lebesgue-measurable function. Then, for a function f
with these characteristics we denote by

∫

Ω
f (x)dx (3.22)

to its Lebesgue integral over the domain Ω (dx denotes the Lebesgue measure). We denote
by

‖ f ‖Lp(Ω) :=
(∫

Ω
| f (x)|pdx

)1/p

, if 1 ≤ p < ∞, (3.23)

‖ f ‖L∞(Ω) := sup{| f (x)| : x ∈ Ω} (3.24)

to the Lp-functionals of f over Ω and by

Lp(Ω) := { f : Ω −→ R : ‖ f ‖Lp(Ω < ∞} (3.25)

to its associated Lebesgue spaces.
To avoid “almost everywhere” differences, we identify couples of functions f and g as

“the same” (with respect to the concerned Lp-functional) when they satisfy ‖ f − g‖Lp(Ω) =

0. With a small ambiguity of notation, we think of Lp(Ω) as a set of equivalence classes of
functions with respect to this identification.

3.2. Sobolev spaces 19

We cite below some famous and useful inequalities that hold for the above defined
functionals:

‖ f + g‖Lp(Ω) ≤ ‖ f ‖Lp(Ω) + ‖g‖Lp(Ω) , (3.26)

‖ f g‖L1(Ω) ≤ ‖ f ‖Lp(Ω) ‖g‖Lq(Ω) . (3.27)

In both cases, the hypotheses are that the functions taking part in the right hand side of
the inequalities belong to the corresponding Lebesgue space (i.e., have a finite functional
value), 1 ≤ p ≤ ∞ and 1/p + 1/q = 1. Inequality (3.26) is known as Minkoski’s inequality
and (3.27) is called Hölder’s inequality. The particular case p = q = 2 of (3.27) is more
commonly known as Schwartz’s inequality, and later its equivalent form will be proved in
the framework of inner-product spaces.

One interesting consequence of (3.26) is that it shows that Lebesgue spaces are closed
under linear combinations, and thereby, it proves that they are vector spaces. Moreover, the
Lp-functionals have the sufficient properties to endow the Lp-spaces of being normed spaces.
In addition, we obtain that the Lp-spaces are complete for 1 ≤ p ≤ ∞ (i.e., every Cauchy
sequence is convergent). Complete normed spaces are called Banach spaces, and thereby,
so are Lp-spaces endowed with Lp-norms. This is the key reason that “explains” why the
Lebesgue integral is preferred over the Riemann integral: limits of integrable functions are
integrable in the Lebesgue’s sense, but this is not always the case in the Riemann’s sense.

3.2.2 Weak derivatives

The so-typical definition of derivative for a univariate function u(x) is

u′(x) = lim
h→0

u(x + h)− u(x)
h

. (3.28)

As we may see, this definition is “local” in the sense that it deals with each x point and
its proximities. The variational formulation developed in section 3.1 takes a more global
point of view: pointwise values of derivatives are not needed at all points. In the previous
section, we have seen that pointwise values of functions in Lebesgue spaces are irrelevant
since “almost everywhere” differences are omitted. Hence, it is sensible to develop a global
notion of derivative, more suitable to Lebesgue spaces. To do so, we introduce the follow-
ing three ingredients:

• A multi-index is a d-tuple α = (α1, α2, . . . , αd) with αi ∈ N∪{0} for each i = 1, 2, . . . , d.
Its order is given by |α| := ∑d

i=1 αi. Then, if f = f (x) with x = (x1, x2, . . . , xd) is a
sufficiently differentiable function (for the moment, for the classical sense), we denote
its α-th derivative by

∂α f :=
∂α f
∂xα

:=

(
∂α1

∂xα1
1
◦ ∂α2

∂xα2
2
◦ · · · ◦ ∂αd

∂xαd
d

)
(f). (3.29)

Note that the order of this derivative is given by the order of α, |α|.

20 Chapter 3. A mathematical review of the Finite Element Method

• Given a function f defined over a domain Ω, we call support of f to the set

supp f := {x ∈ Ω : f (x) 6= 0}, (3.30)

where the top bar denotes the closure. If this set is bounded and it is a subset of the
interior of Ω, we say that the support is compact. When Ω is bounded, it is equivalent
to say that f vanishes in a neighborhood of ∂Ω. We denote by C∞

0 (Ω) to the set of
functions in C∞(Ω) with compact support.

• We restrict to the following set of locally integrable functions (for a more general defi-
nition, see [47]):

L1
loc(Ω) :=

{
f : Ω −→ R : f|K ∈ L1(K) for all K ⊂ int(Ω) with K compact

}
. (3.31)

Under these conditions, we define weak derivatives as follows: we say f ∈ L1
loc(Ω) is

weakly derivable when there exists a function g ∈ L1
loc(Ω) such that

∫

Ω
g(x)φ(x) dx = (−1)|α|

∫

Ω
f (x)∂αφ dx, for all φ ∈ C∞

0 (Ω). (3.32)

If this is the case, we define by ∂α
w f := g to the weak derivative of f .

The following fact shows that this definition is a generalization of the classical notion
of derivative.

Theorem 3.7. Let α be a multi-index according to the function f ∈ C|α|(Ω). Then, f is weakly
derivable and ∂α

w f is given by ∂α f .

As a consequence of this theorem, we ignore henceforth the differences in notation
between ∂α

w f and ∂α f , denoting always the derivative by the latter. That is, the derivative
symbol will refer to weak derivatives in general, but with the possibility of interpreting
them with the classical definition if the function is derivable in that sense.

3.2.3 Sobolev norms, Sobolev spaces and some properties

Using this new notion of (general/weak) derivative, we generalize the Lebesgue norms
and spaces in order to include the derivatives.

Let k ≥ 0 and let f ∈ L1
loc(Ω). Suppose that the (weak) derivatives ∂α f exist for all α

such that |α| ≤ k. Then, we define by

‖ f ‖Wk
p(Ω) :=

(
∑
|α|≤k
‖∂α f ‖p

Lp(Ω)

)1/p

, 1 ≤ p < ∞, (3.33)

‖ f ‖Wk
∞(Ω) := max

{
‖∂α f ‖L∞(Ω) : |α| ≤ k

}
, (3.34)

to the Sobolev Wk
p-functional. In each case, we define the associated Sobolev space via

Wk
p(Ω) :=

{
f ∈ L1

loc(Ω) : ‖ f ‖Wk
p(Ω) < ∞

}
. (3.35)

3.2. Sobolev spaces 21

As it happens with Lebesgue spaces, it is easy to see that the Wk
p-functionals are norms.

Therefore, Sobolev spaces are normed vector spaces and it can also be checked that they are
Banach spaces.

There is an alternative potential definition of Sobolev spaces for 1 ≤ p < ∞: the cor-
responding closures of Ck(Ω) with respect to the Wk

p-functional. In the case p = ∞, that
closure coincides with Ck(Ω), which is not the same as Wk

∞(Ω). We state below some in-
clusion relations among Sobolev spaces:

Theorem 3.8. Let Ω be a domain, let 1 ≤ p ≤ q ≤ ∞ be real numbers and let 0 ≤ k ≤ m be
integers. Then,

Wm
p (Ω) ⊂Wk

p(Ω), (3.36)

Wk
q (Ω) ⊂Wk

p(Ω). (3.37)

The following result was proved in [37] and shows that infinitely-derivable continuous
functions are dense in Sobolev spaces:

Theorem 3.9. Let Ω be an open set. Then C∞(Ω) ∩Wk
p(Ω) is dense in Wk

p(Ω) for 1 ≤ p < ∞,
i.e., for each f ∈ Wk

p(Ω) and each ε > 0, there exists some g ∈ C∞(Ω) ∩Wk
p(Ω) (depending on f

and ε) such that ‖ f − g‖Wk
p(Ω) < ε.

Unfortunately, this result does not hold in general when Ω is not open, e.g., with C∞(Ω)

and ∅ (Ω (Rd. The density does not happen whenever part of the boundary belongs
to the domain, as it occurs with a slit domain that is frequently used to model crack prop-
agation problems. In order for this stronger density result to hold, some sort of regularity
conditions must also hold. For example, it is known to be valid when Ω satisfies the segment
condition, i.e., if for each x ∈ ∂Ω there exists an open ball Bx centered at x and a non-zero
vector nx such that if z ∈ Ω ∩ Bx, then z + tnx ∈ Ω for t ∈ (0, 1) [1].

The following kind of domains satisfy the segment condition, and thereby, the density
of the infinitely derivable functions is ensured in them. A bounded domain Ω ⊂ Rd is said
to have a Lipschitz boundary ∂Ω if there exist constants α, β > 0, a finite number of local
coordinate system {(xr

1, xr
2, · · · , xr

d)}R
r=1 and local Lipschitz continuous mappings

ar : {x̂r = (xr
2, · · · , xr

d) ∈ Rd−1 : |xr
i | ≤ α for 2 ≤ i ≤ d} −→ R, 1 ≤ r ≤ R, (3.38)

such that

∂Ω =
R⋃

r=1

{(xr
1, x̂r) : xr

1 = ar(x̂r) with |x̂r| < α}, (3.39)

{(xr
1, x̂r) : ar(x̂r) < xr

1 < ar(x̂r) + β with |x̂r| < α} ⊂ Ω, 1 ≤ r ≤ R, (3.40)

{(xr
1, x̂r) : ar(x̂r)− β < xr

1 < ar(x̂r) with |x̂r| < α} ⊂ Rd \Ω, 1 ≤ r ≤ R. (3.41)

Roughly speaking, a domain Ω ⊂ Rd is called a Lipschitz domain (with a Lipschitz bound-
ary) if its boundary can be locally represented by a Lipschitz continuous function, i.e., if for
any x ∈ ∂Ω, there exists an open neighborhood of x, U ⊂ Rd, such that U ∩ ∂Ω is the graph

22 Chapter 3. A mathematical review of the Finite Element Method

of a Lipschitz continuous function under a proper local coordinate system. Of course, all
smooth domains are Lipschitz. Significant non-smooth and Lipschitz domain examples are
polygonals in R2 or polyhedrons in R3. A more interesting example are convex domains
in Rd. A simple example of non-Lipschitz domains is two polygons touching at one vertex
only.

The following theorem, that holds for Lipschitz domains, provides a rule for “viewing”
sufficiently weak derivable functions as continuous and bounded. For a proof of this result,
as well as more details concerning other material in this sections, see [50]:

Theorem 3.10 (Sobolev’s Inequality). Let Ω ⊂ Rd be a Lipschitz domain, let k ∈ N and let
1 ≤ p < ∞ such that k ≥ d if p = 1 or k > d/p if p > 1. Then there exists a constant C such that
for every u ∈Wk

p(Ω) it satifies

‖u‖L∞(Ω) ≤ C ‖u‖Wk
p(Ω) . (3.42)

Furthermore, there is a continuous function in the L∞(Ω) equivalence class of u.

3.2.4 Review of section 3.1

At this point, we can tie up many loose ends of the previous section. First, we see that the
V space introduced there can now rigorously be set as (reduced to)

V := {v ∈W1
2 (Ω) : v(0) = 0}, (3.43)

with Ω = [0, 1]. We check that this makes sense since Sobolev’s inequality (d = 1, k =

1, p = 2) guarantees that pointwise values are well defined for functions in W1
2 (Ω).

The derivation of the variational formulation of (3.3) is now also rigorous in the setting
of weak derivatives, i.e., u′ = ∂1

wu and v′ = ∂1
wv. Moreover, it is easy to check that piece-

wise linear functions have piecewise constant and bounded weak derivatives. Thus, we
can now ensure that the S spaces constructed in the previous section satisfy S ⊂ W1

∞(Ω).
Because of inclusion relation (3.37), we get S ⊂ V, a fact that was not proved until now.

Because Sobolev’s inequality, we also deduce that w in the duality argument leading
to theorem 3.4 is well defined. In fact, in the error estimate of u− uS we used the L2(Ω)

norm of the second derivative of functions (of w). Now, we can re-state the approximation
assumption (3.17) by

∃ε > 0 such that inf{‖w− v‖E : v ∈ S} ≤ ε
∥∥(σw′)′

∥∥
L2(Ω)

for all w ∈W2
2 (Ω). (3.44)

3.3 Variational Formulation of elliptic Boundary Value Problems

This third section of the chapter is devoted to the functional analysis tools required for
developing the variational formulation of differential equations. Its objective is to provide

3.3. Variational Formulation of elliptic Boundary Value Problems 23

a framework in which existence and uniqueness of solutions to variational problems is
established.

3.3.1 Inner-product and Hilbert spaces

Let V be a vector space. We say that b : V×V −→ R is a bilinear functional if each univariate
mapping u 7→ b(u, v) and v 7→ b(u, v) is linear. Moreover, if the bilinear functional verifies
b(v, u) = b(u, v) for all v, u ∈ V, we say that it is symmetric. An inner-product is a symmetric
bilinear functional over V that verifies: (i) b(v, v) ≥ 0 for all v ∈ V and (ii) b(v, v) = 0 if and
only if v ≡ 0 ∈ V. A vector space endowed with an inner-product is called an inner-product
space.

Examples of inner product spaces are L2(Ω) and Wk
2 (Ω) with Ω ⊂ Rd endowed by

〈u, v〉L2(Ω) :=
∫

Ω u(x)v(x)dx and 〈u, v〉Wk
2 (Ω) := ∑|α|≤k〈∂αu, ∂αv〉L2(Ω), respectively. More

commonly, the latter inner-product space is denoted by Hk(Ω) instead of by Wk
2 (Ω).

Theorem 3.11 (Schwarz’s inequality). Let (V, 〈·, ·〉) be an inner product space. Then,

|〈u, v〉| ≤
√
〈u, u〉

√
〈v, v〉 for all u, v ∈ V, (3.45)

and the equality holds if and only if u and v are linearly dependent.

Proof. Let t ∈ R. Then, 0 ≤ 〈u − tv, u − tv〉 = 〈u, u〉 − 2t〈u, v〉 + t2〈v, v〉. If 〈v, v〉 = 0,
we have 0 ≤ 〈u, u〉 − 2t〈u, v〉. Since t is arbitrary, for that inequality to hold, necessarily
〈u, v〉 = 0 because 〈u, u〉 ≥ 0. Then the inequality is trivial in this case (and in fact it is
an equality). Now assume 〈v, v〉 > 0 and substitute t = 〈u, v〉/〈v, v〉 into the previous
inequality. We obtain 0 ≤ 〈u, u〉 − |〈u, v〉|2/〈v, v〉, which is equivalent to (3.45).

Let us now check the equality result. If u = λv for some λ ∈ R, doing the replacement
in (3.45) one gets the equality. To check the converse, assume the equality and first suppose
v = 0. Then v = 0 · u is a linear combination of u. Otherwise, take λ = 〈u, v〉/〈v, v〉 and
consider 〈u−λv, u−λv〉 under the equality assumption of (3.45). Then, 〈u−λv, u−λv〉 =
0. This implies u− λv = 0 because of property (ii) of inner-products.

Remark. In the proof of Schwarz’s inequality (not in the equality part) it does not require
property (ii) of inner products, and in consequence, other less restrictive bilinear func-
tionals than inner-products can verify this inequality. For example, b(u, v) =

∫
Ω∇u(x) ·

∇v(x) dx on H1(Ω), which in case Ω = [0, 1], it coincides with the bilinear functional L(·, ·)
of section 3.1. Thus,

b(u, v) ≤
√

b(u, u)
√

b(v, v) for all u, v ∈ H1(Ω), (3.46)

even though b(·, ·) is not an inner-product.

An interesting fact of inner-product spaces (V, 〈·, ·〉) is that they are also normed spaces.
This is because the induced functional defined by ‖v‖ :=

√
〈v, v〉 for all v ∈ V is a norm. In

case the induced normed space (V, ‖·‖) derived from the previous law is a Banach space,

24 Chapter 3. A mathematical review of the Finite Element Method

we say that the corresponding inner-product space (V, 〈·, ·〉) is a Hilbert space. The con-
verse, i.e., that normed spaces are inner-product spaces, is false in general. However, there
is a sufficent condition that assures normed spaces being inner-product spaces: the Paral-
lelogram Law, i.e., ‖v + u‖2 + ‖v− u‖2 = 2(‖v‖2 + ‖u‖2) for all v, u ∈ V with (V, ‖·‖) a
normed space.

If (H, 〈·, ·〉) is a Hilbert space and S ⊂ H is linearly closed, i.e., αu + βv ∈ S for all
u, v ∈ S and α, β ∈ R, we say that S is a subspace of H. Furthermore, because of the
mentioned closedness, it verifies that S is a Hilbert space. Examples of subspaces of H are
(i) {0} and H (trivial subspaces), (ii) kernels of continuous linear mappings between H and
another vector space, (iii) the set x⊥ := {v ∈ H : 〈x, v〉 = 0} for each x ∈ H, and (iv) the
set M⊥ := {v ∈ H : 〈x, v〉 = 0 for all x ∈ M} = ⋂

x∈M x⊥ where M ⊂ H.
Example (iv), which is a generalization of example (iii) when M = {x}, is a remarkable

case which conforms the starting point of the next subsection. Elements in x⊥ are called
orthogonal to x and M⊥ is said to be the orthogonal set of M. The following theorem about
orthogonality relations concludes this subsection.

Theorem 3.12. Let H be a Hilbert space. Then,

(i) for M, N ⊂ H such that M ⊂ N, it verifies N⊥ ⊂ M⊥;

(ii) for M ⊂ H such that 0 ∈ M, it verifies M ∩M⊥ = {0};

(iii) H⊥ = {0} and {0}⊥ = H.

3.3.2 Projections onto subspaces and Riesz’s Representation Theorem

We begin stating the following theorem that connects the notion of closest elements in
Hilbert subspaces with the notion of orthogonality introduced above.

Theorem 3.13. Let (H, 〈·, ·〉) be a Hilbert space and let M ⊂ H be a subspace. Let v ∈ H \M
and set δ := inf{‖v− w‖ : w ∈ M} with ‖·‖ being the induced norm of the inner-product. Then,
there exists w0 ∈ M such that (i) ‖v− w0‖ = δ and (ii) v− w0 ∈ M⊥.

The previous theorem states that whenever we consider a subspace of a Hilbert space,
there exists a closest element to another element non-belonging to the concerned subspace,
and whose difference is orthogonal to it. Equivalently, any v ∈ H can be written in the
form v = w0 + w1 with w0 ∈ M and w1 ∈ M⊥. Furthermore, the decomposition is unique.
To show it, assume there exist two possible decomposition of v, w0 +w1 = v = z0 + z1 with
w0, z0 ∈ M and w1, z1 ∈ M⊥, and check that M 3 w0 − z0 = −(w1 − z1) ∈ M⊥. Because
M ∩M⊥ = {0}, we deduce the uniqueness. The following theorem is then a corollary of
the previous one.

Theorem 3.14. Let H be a Hilbert space and M ⊂ H a subspace. Then, H = M⊕M⊥.

3.3. Variational Formulation of elliptic Boundary Value Problems 25

At this point, we introduce PM : H −→ M and PM⊥ : H −→ M⊥ defined by

PM(v) :=

v, if v ∈ M,

w0, if v ∈ H \M,
PM⊥(v) :=

0, if v ∈ M,

v− w0, if v ∈ H \M,
(3.47)

where w0 is the closest element to v in M according to theorem (3.13)’s sense. These two
operators are called orthogonal projections of H onto M and M⊥, respectively.

The dual space V∗ of a vector space V is the set of all linear functionals on V, i.e.,
V∗ = {L : V −→ R : L is linear}. If we now consider more particularly a Banach
space (B, ‖·‖), we distinguish between the set of all linear functionals on B, B∗, and the
subspace B′ ⊂ B∗ of all continuous functionals on B. One interesting characterization
of these linear functionals on Banach spaces is the fact that they are continuous if and
only if they are bounded, i.e., if there exists some C ≥ 0 such that |L(v)| ≤ C ‖v‖ for
all v ∈ B. Then, B′ = {L : B −→ R : L is bounded}. We define the norm of B′ by
‖L‖B′ := inf{C ≥ 0 : |L(v)| ≤ C ‖v‖B for all v ∈ B} for each L ∈ B′.

If (H, 〈·, ·〉) is a Hilbert space, it is clear that Lu : H −→ R defined by Lu(v) := 〈u, v〉 for
some u ∈ H is a continuous linear functional. The following results provides the converse
fact: every continuous linear functional on a Hilbert space can be represented uniquely by
a one-fixed-element inner-product.

Theorem 3.15 (Riesz’s Representation Theorem). Let (H, 〈·, ·〉) be a Hilbert space and let L be
a continuous linear functional on H. Then, there exists a unique u ∈ H such that L(v) = 〈u, v〉
for all v ∈ H. Moreover, ‖L‖H′ = ‖u‖H.

Proof. See, for example, [9, p. 11-13]

3.3.3 Formulation of symmetric variational problems

The remaining of section 3.3 applies all the abstract Hilbert theory developed so far to ob-
tain the existence and uniqueness for variational formulations of BVPs.

From the example developed in section 3.1, we recall that H1([0, 1]) = W1
2 ([0, 1]) is a

Hilbert space under the inner product

〈v1, v2〉 :=
∫ 1

0
v1(x) v2(x) dx +

∫ 1

0
v′1(x) v′2(x) dx. (3.48)

In subsection 3.2.4, we set V := {v ∈ H1([0, 1]) : v(0) = 0}. To see that it is indeed a
subspace of H1([0, 1]), we consider δ0 : H1([0, 1]) −→ R defined by δ0(v) = v(0). From
Sobolev’s inequality 3.10, we obtain that δ0 is bounded and linear and thus continuous.
Hence, V = δ−1

0 ({0}) is closed in H1([0, 1]) and in particular a subspace. Nevertheless,
the bilinear symmetric functional L(u, v) =

∫ 1
0 σ u′ v′ dx is not an inner-product because

L(1, 1) = 0 (it does not fulfill property (ii) of inner-products). The following property will

26 Chapter 3. A mathematical review of the Finite Element Method

solve the problem of symmetric bilinear functionals on subspaces of Hilbert spaces that are
not inner-products.

A bilinear functional b(·, ·) on a normed space (V, ‖·‖) is said to be bounded (or contin-
uous) if there exists C ≥ 0 such that |b(u, v)| ≤ C ‖u‖ ‖v‖ for all u, v ∈ V. If U ⊂ V, we say
that b(·, ·) is coercive on U if there exists α > 0 such that b(v, v) ≥ α ‖v‖2 for all v ∈ U.

Theorem 3.16. Let (H, 〈·, ·〉) be a Hilbert space and suppose b(·, ·) is a symmetric continuous
bilinear functional on H and coercive on a subspace V of H. Then (V, b(·, ·)) is a Hilbert space.

Proof. The coercivity of b(·, ·) implies that if v ∈ V such that b(v, v) = 0, then v ≡ 0. Thus,
b(·, ·) is an inner product over V.

Now define ‖v‖V = b(v, v) and let {vn}n be a Cauchy sequence in (V, ‖·‖V). By coer-
civity, {vn}n is also Cauchy in (H, ‖·‖). Because H is complete, there exists v limit element
of {vn}n in the ‖·‖ norm. The closedness of V in H implies v ∈ V, and the boundedness of
b(·, ·) implies that exists some C > 0 such that ‖v− vn‖ ≤

√
C ‖v− vn‖H. Hence, v is also

a limit point of {vn} in the norm ‖·‖V , which means that (V, ‖·‖V) is complete.

In general, a symmetric variational problem is posed in the following way: let (H, 〈·, ·〉) be
a Hilbert space, let V ⊂ H be a subspace of H and let b(·, ·) be a continuous, symmetric
and coercive bilinear functional on V. Then, given F ∈ V ′, we want to find

u ∈ V such that b(u, v) = F(v) for all v ∈ V. (3.49)

In fact, because all the previous discussion, the solution to the problem exists and it is
unique as a consequence of Riesz’s Representation Theorem on (V, b(·, ·)).

Similarly, the Ritz-Galerkin approximation problem to the symmetric variational problem
is posed as follows: let (V, b(·, ·)) be a Hilbert space, let Vh ⊂ V be a finite-dimensional
subspace and let b(·, ·) be a continuous, symmetric and coercive bilinear functional on
Vh. Then, given F ∈ V ′, we want to find

uh ∈ Vh such that b(uh, vh) = F(v) for all vh ∈ Vh. (3.50)

As before, the solution to it exists and it is unique because F|Vh ∈ (Vh)′.

Error estimates for u − uh are a consequence of Galerkin’s Orthogonality, i.e., b(u −
uh, v) = 0 for all v ∈ Vh where u and uh are the solutions to (3.49) and (3.50), respec-
tively. In fact, ‖u− uh‖E = min{‖u− v‖E : v ∈ Vh} where ‖·‖E denotes the energy norm
introduced at section 3.1. Moreover, it can be checked that uh minimizes the quadratic
functional Q : Vh −→ R defined by Q(v) = b(v, v)− 2F(v), i.e., Ritz’s Method.

3.3. Variational Formulation of elliptic Boundary Value Problems 27

3.3.4 Formulation of non-symmetric variational problems

The purpose of this subsection is to obtain the same result as before, existence and unique-
ness of variational problems, but without the symmetry condition.

A non-symmetric variational problem is posed in the same way as in (3.49) but without
the symmetry condition: let (H, 〈·, ·〉) be a Hilbert space, let V ⊂ H de a subspace and
let b(·, ·) be a continuous and coercive bilinear functional on V. Then, given F ∈ V ′, we
want to find

u ∈ V such that b(u, v) = F(v) for all v ∈ V. (3.51)

The Galerkin approximation (note that we do not say Ritz-Galerkin approximation be-
cause of the non-symetry) is then the same as before but replacing the subspace V of H by
a finite-dimensional subspace Vh of V.

An example of a non-symmetric formulation of a boundary value problem is the fol-
lowing: let us consider the BVP given by

−u′′ + u′ + u = f on [0, 1], (3.52)

u′(0) = u′(1) = 0, (3.53)

and consider the Hilbert space H = H1([0, 1]), the subspace V = H1([0, 1]), the bilinear
form b(u, v) =

∫ 1
0 (u

′v′ + u′v + uv) dx, and the linear functional F ∈ H′ defined by F(v) =
〈 f , v〉H1([0,1]). Note that b(·, ·) is not symmetric because of the u′v term. However, it is
continuous because

|b(u, v)| ≤
∣∣∣〈u, v〉H1([0,1])

∣∣∣+
∣∣∣∣
∫ 1

0
u′vdx

∣∣∣∣ ≤ ‖u‖H1([0,1]) ‖v‖H1([0,1]) +
∥∥u′
∥∥

L2([0,1]) ‖v‖L2([0,1]) ≤

≤ 2 ‖u‖H1([0,1]) ‖v‖H1([0,1]) , (3.54)

and coercive since we can write

b(v, v) =
∫ 1

0
(v′2 + v′v + v2) dx =

1
2

(∫ 1

0
(v′ + v)2 dx +

∫ 1

0
(v′2 + v2) dx

)
≥

≥ 1
2
‖v‖2

H1([0,1]) . (3.55)

Note that if the above differential equation is changed to −u′′ + ku′ + u = f , then the cor-
responding bilinear functional b(·, ·) may not be coercive if k ∈ R is large enough.

Next theorem guarantees the existence and uniqueness of non-symmetric variational
problems. It is interesting to mention that the proof of this result is based on the Contraction
Mapping Principle. To see a detailed proof of both theorems, see [7, p. 60-63].

Theorem 3.17 (Lax-Milagram). Let (V, 〈·, ·〉) be a Hilbert space, let b(·, ·) be a continuous and
coercive bilinear functional on V, and let F ∈ V ′. Then, there exists a unique u ∈ V such that
b(u, v) = F(v) for all v ∈ V.

28 Chapter 3. A mathematical review of the Finite Element Method

3.3.5 Error estimates for the general Finite Element Method

Let u be the solution to the (symmetric or non-symmetric) variational problem on V and
let uh be the solution to its associated approximation problem (on Vh). Then, the following
result provides an estimate for the error term

∥∥u− uh
∥∥

V .

Theorem 3.18 (Céa). In the previous set conditions, it verifies

∥∥∥u− uh
∥∥∥

V
≤ C

α
min

{∥∥∥u− vh
∥∥∥

V
: vh ∈ Vh

}
, (3.56)

where C and α are the continuity and coercivity constants of b(·, ·), respectively.

Proof. Since b(u, v) = F(v) for all v ∈ V and b(uh, vh) = F(vh) for all vh ∈ Vh ⊂ V, we have
b(u− uh, vh) = 0 for all vh ∈ Vh. Moreover, for each vh ∈ Vh, we have

α
∥∥∥u− uh

∥∥∥
2

V
≤ b(u− uh, u− uh) = b(u− uh, u− vh) + b(u− uh, vh − uh) = (3.57)

= b(u− uh, u− vh) ≤ C
∥∥∥u− uh

∥∥∥
V

∥∥∥u− vh
∥∥∥

V
. (3.58)

Hence, assuming
∥∥u− uh

∥∥
V 6= 0, we obtain

∥∥u− uh
∥∥

V ≤ C
α

∥∥u− vh
∥∥

V for all vh ∈ Vh (the
case

∥∥u− uh
∥∥

V = 0 is trivial). We take the infimum over vh ∈ Vh in the previous expression
and, since Vh is closed, we get the desired inequality (the infimum is attained and becomes
a minimum).

Céa’s theorem shows that uh is quasi-optimal, i.e., the error
∥∥u− uh

∥∥
V is proportional

to the best approximation error over the subspace Vh. In the symmetric and coercive case,
we showed

∥∥u− uh
∥∥

E = min{
∥∥u− vh

∥∥
E : vh ∈ Vh}. Then,

∥∥∥u− uh
∥∥∥

V
≤ α−1/2

∥∥∥u− uh
∥∥∥

E
= α−1/2 min

{∥∥∥u− vh
∥∥∥

E
: vh ∈ Vh

}
≤ (3.59)

≤
√

C
α

min
{∥∥∥u− vh

∥∥∥
V

: vh ∈ Vh
}
≤ C

α
min

{∥∥∥u− vh
∥∥∥

V
: vh ∈ Vh

}
, (3.60)

which is really the remark about the relationships between the two formulations, i.e., that
one can be derived from the other.

3.4 Variational formulation of Poisson’s equation BVP

We now illustrate the above theory to a particular BVP. Let us recall the heat propagation
BVP introduced at subsection 2.5:

−∇ · (σ∇u) = f in Ω ⊂ Rd,

u = uD in ∂ΩD,

−σ∇u · n = g in ∂ΩN .

(3.61)

We now follow a similar path to the previously followed one with (3.1). We multiply
by a test function v ∈ V := H1

0(Ω) = {v ∈ H1(Ω) : v = 0 in ∂ΩD}, which is a subspace of

3.4. Variational formulation of Poisson’s equation BVP 29

the Sobolev space H = H1(Ω), and integrate over Ω to obtain:

∫

Ω
−∇ · σ∇u v dx =

∫

Ω
f v dx, for all v ∈ V. (3.62)

We remark that ∇ · σ∇u v := (∇ · (σ∇u)) v 6= ∇ · ((σ∇u) v) =: ∇ · (σ∇u v). Then, since
it verifies ∇ · (σ∇u v) = σ∇u · ∇v +∇ · (σ∇u v), we obtain:

∫

Ω
σ∇u · ∇v dx−

∫

Ω
∇ · (σ∇u v) dx =

∫

Ω
f v dx, for all v ∈ V. (3.63)

The second integral of the left hand side can be replaced by its equivalent form applying
Gauss’ divergence theorem:

∫

Ω
σ∇u · ∇v dx−

∫

∂Ω
(σ∇u · n) v ds =

∫

Ω
f v dx, for all v ∈ V. (3.64)

Because the test functions are set equal to zero in ∂ΩD, the second integral of the left hand
side becomes:

∫

∂Ω
−(σ∇u · n) v dx =

∫

∂ΩN

−(σ∇u · n) v ds =
∫

∂ΩN

g v ds for all v ∈ V. (3.65)

In consequence, we arrive to the following formulation:

Find u ∈ U := {u ∈ H1(Ω) : u = uD in ∂ΩD} such that

∫

Ω
σ∇u · ∇v dx =

∫

Ω
f v dx−

∫

∂ΩN

g v ds (3.66)

holds for all v ∈ V := H1
0(Ω) := {v ∈ H1(Ω) : v = 0 in ∂ΩD}.

There are two main differences between the variational formulation of Poisson’s BVP
and the variational formulation developed in the previous subsections:

(i) The space U of possible solutions (trial space) is a translation of the space V of testing
functions (testing space). Such translation is performed according to a lift of the Dirich-
let condition function (i.e., U := ũD + V = {ũD + v : v ∈ V} where ũD|∂ΩD = uD).

(ii) There appears an extra integral term in the right hand side of equation (3.66).

To write equation (3.66) in terms of a bilinear functional on V × V in the left hand
side and a linear functional in the right hand side, we proceed as follows. We decompose
u = ũD + w with w ∈ V and consider the bilinear functional b(w, v) :=

∫
Ω σ∇w · ∇v dx

on V × V, and the linear functional F ∈ V∗ defined by F(v) :=
∫

Ω f v dx −
∫

∂ΩN
g v ds−∫

Ω σ∇ũD · ∇v dx. Hence, the variational formulation to the concerned problem is rewritten
in the following more usual terms:

30 Chapter 3. A mathematical review of the Finite Element Method

Find w ∈ V such that b(w, v) = F(v) for all v ∈ V where

b(w, v) :=
∫

Ω
σ∇w · ∇v dx, (3.67)

F(v) :=
∫

Ω
f v dx−

∫

∂ΩN

g v ds−
∫

Ω
σ∇ũD · ∇v dx. (3.68)

The solution to the variational formulation of Poisson’s BVP is then u := ũD + w.

To guarantee existence and uniquness to the problem, it rests to check the continuity of
F(·) and b(·, ·), and the coercivity of the latter. To see the continuity of b(·, ·), we assume
that the entries of σ are bounded by a certain C > 0, and consider Hölder’s inequality
conveniently:

|b(w, v)| ≤ C
∣∣∣〈∇w,∇v〉L2(Ω)

∣∣∣ ≤ C ‖∇w‖L2(Ω) ‖∇v‖L2(Ω) ≤ C ‖∇w‖H1(Ω) ‖∇v‖H1(Ω) .

The continuity of F(·) may be showed following a similar argument as above under the
assumption that f and g are bounded in Ω. Nevertheless, proving the coercivity of b(·, ·)
requires technical details that go beyond the theory developed so far (sequences of func-
tions in H1(Ω), compactness arguments, Friedrich’s inequality, etc.). In any case, the coer-
civity property is satisfied for b(·, ·) when the domain is sufficiently regular (find a proof
of coercivity of Laplace’s Equation with Robin boundary conditions at [5]).

In conclusion, the existence and uniqueness for the variational formulation of Poisson’s
equation BVP is assured. Furthermore, for any (finite-dimensional) subspace Vh of H1(Ω),
there exists a unique solution uh = ũD + w to the given problem with w ∈ Vh and whose
error estimate verifies

∥∥u− uh
∥∥

E = min{‖u− v‖E : v ∈ ũD +Vh} because of the symmetry
of b(·, ·).

31

Chapter 4

Fourier summation approximation for
Finite Element computations

«Mathematics compares the most
diverse phenomena and discovers the
secret analogies that unite them.»

Joseph Fourier

In [41], D. Pardo adresses a 3D problem making a cylindrical change of coordinates
and considers a Fourier summation expression in one of the three variables for the func-
tions involved in the variational formulation. The orthogonality of the Fourier system and
its exponential convergence becomes useful for a self-adaptive goal-oriented hp-FEM.

In this chapter we consider a Fourier summation approximation in order to take advan-
tage of the orthogonality of the Fourier system. To do so, we organize it as follows. At first
and second sections we make a brief review on change of coordinates systems and Fourier
summation approximation theory, respectively. Then, we perform a Fourier approximation
in all the variables of Poisson’s equation BVP, and as a result, we find an explicit analytic
expression for all the entries in the stiffness matrix. We describe the structure of the result-
ing stiffness matrix in one dimension and the corresponding generalization is performed
for arbitrary dimension employing tensors. At the end of the chapter, we emphasize the
benefits of the obtained structures for massive computations.

4.1 Variational Formulation in an arbitrary Coordinate System

Let x = (x1, x2, · · · , xd) be the Cartesian coordinate system for Rd and let α = (α1, α2, · · · , αd)

be another (possibly non-orthogonal) coordinate system related to the first by x = ψ(α).
We assume ψ to be an almost everywhere diffeomorphism with non-zero Jacobian deter-
minant J =

(∂xi
∂αj

)
, i.e., detJ 6= 0 [36, p. 139-160].

If w = w(x) is a real-valued function on the Cartesian coordinate system, we denote by
ŵ := w ◦ ψ to the corresponding function in the new coordinate system. The hat notation
will be used in what follows to express the coordinate system change in the subsequent
functions.

32 Chapter 4. Fourier summation approximation for Finite Element computations

Applying the chain rule, we calculate the gradient of w in terms of the new coordinate
system:

∇w =

(d

∑
j=1

∂ŵ
∂αj

∂αj

∂x1
,

d

∑
j=1

∂ŵ
∂αj

∂αj

∂x2
, · · · ,

d

∑
j=1

∂ŵ
∂αj

∂αj

∂xd

)T

= (J −1)T ∇ŵ, (4.1)

where ∇w = (∂x1 w, ∂x2 w, . . . , ∂xd w)T and ∇ŵ = (∂α1 ŵ, ∂α2 ŵ, . . . , ∂αd ŵ)T.

Now, we retake Poisson’s d-dimensional BVP in its variational formulation and write
it in the new coordinate system. To do so, we first write the bilinear form (3.67) and the
linear functional (3.68) making use of the Change of Variable theorem [36, p. 139-160]:

b(w, v) =
∫

Ω
σ∇w · ∇v dx =

∫

Ω̂
σ̂(J −1)T∇ŵ · (J −1)T∇v̂ |detJ | dα = (4.2)

=
∫

Ω̂
J −1σ̂(J −1)T∇ŵ · ∇v̂ |detJ | dα =

∫

Ω̂
ŝ∇ŵ · ∇v̂ dα =: b̂(ŵ, v̂), (4.3)

where ŝ := J −1σ̂(J −1)T|detJ | and

F(v) =
∫

Ω
f v dx−

∫

∂ΩN

g v ds−
∫

Ω
σ∇ũD · ∇v dx = (4.4)

=
∫

Ω̂
f̂s v̂ dα−

∫

∂Ω̂N

ĝn v̂ dαn −
∫

Ω̂
ŝ∇ûD · ∇v̂ dα =: F̂(v̂), (4.5)

where f̂s := f̂ |detJ |, ĝn := f̂ |detJ n| with J n being the Jacobian associated to the
change of variables of the (d− 1)-dimensional ∂ΩN surface, and ûD is a shortcut for ũD ◦ψ.

At this point, the testing space V = H1
0(Ω) is actualized by V̂ = {v ◦ ψ : v ∈ H1

0(Ω)}
and the coordinate system change equivalent variational formulation for Poisson’s BVP
becomes as follows: find ŵ ∈ V̂ such that b̂(ŵ, v̂) = F̂(v̂) holds for all v̂ ∈ V̂.

Once such ŵ is found, the solution to the problem in the original Cartesian coordinate
system is u = ŵ ◦ ψ−1 + ũD.

Summarizing, following the previously developed path, we are able to: (i) take the con-
sidered BVP’s variational formulation in the Cartesian coordinate system, (ii) translate it to
another (possibly) more convenient coordinate system, (iii) solve the equivalent problem
taking advantage of the properties of the new system, and finally, (iv) recover the obtained
solution but in the original terms.

In what follows, we will assume that the BVP’s domain Ω verifies the Cartesian product
splitting property, i.e., Ω = Ω1×Ω2× · · · ×Ωd ⊂ Rd. In case the domain is not of this form,
we could assume that there exists a certain coordinate change system whose corresponding
domain satisfies so (i.e., there exists an almost everywhere diffeomorphism ψ : D −→ Ω
such that D = D1 × D2 × · · · × Dd). Commonly used examples for transforming circular
(in 2D), spherical or cylindrical (in 3D) domains into Cartesian product domains are the

4.2. Fourier summation approximation 33

polar, spherical and cylindrical change coordinate systems, respectively [39]. In the current
project we will not deal with the problem of finding the appropriate change of variables
system.

4.2 Fourier summation approximation

Fourier summation approximation theory allows us to approximate periodic functions as
sums of trigonometric functions. In case the functions are defined in a bounded domain,
they could be thought as periodic with a domain periodic extension (e.g., if f has a bounded
domain Ω ⊂ R, we can periodic-extend it to R utilizing a function f̃ such that f̃ (x) =

f̃ (x + Ω) for all x ∈ R —in particular, f̃ |Ω = f —).
If we restrict to one-dimensional functions, we formally define the Fourier sum approx-

imation as follows: let s : I −→ R with I ⊂ R being a bounded interval, assume that s(x)
belongs to L2(I), and denote by L to the length of I. Then, the Fourier’s N-th sum approxi-
mation of s(x) is given by the expression

sN(x) :=
a0

2
+

N

∑
n=1

(
an cos

(
2πnx

L

)
+ bn sin

(
2πnx

L

))
, (4.6)

where an and bn are the Fourier coefficients given by

an :=
2
L

∫

I
s(x) cos

(
2πnx

L

)
dx, bn :=

2
L

∫

I
s(x) sin

(
2πnx

L

)
dx. (4.7)

In theory, integer N may be infinite even so the series might not converge or exactly
be equal to s(x) at all values of x in I (e.g., at discontinuity single-points). Avoiding these
almost everywhere exceptions (which we already commented at subsection 3.2.2 that they
are not important in our established mathematical framework), the bigger N is, the better
the approximation performs in general.

Thanks to Euler’s identity, we are able to write (4.6) in a more abbreviated way:

sN(x) =
N

∑
n=−N

cn e
2πinx

L =
N

∑
n=−N

cn exp
(

2πi n x
L

)
, (4.8)

where the coefficients are given by cn = 1
L

∫
I s(x) exp(−2πi n x/L)dx, which in the previ-

ous developed terms equals to

cn =

a0/2, if n = 0,
1
2 (an − ibn), if n > 0,

c|n| = 1
2 (an + ibn), if n < 0,

(4.9)

where the top bar denotes complex conjugation.

34 Chapter 4. Fourier summation approximation for Finite Element computations

For a more detailed theory development about Fourier series and their convergence
results, see [34].

4.3 Poisson’s equation with Fourier summation approximation

We now consider solutions to Poisson’s equation BVP in the Fourier approximation form
and take advantage of the orthogonality of the employed system and the domain’s Carte-
sian product structure. To do so, we consider certain simplifying assumptions with respect
to the initial ones considered at subsection 2.5. The first one involves the σ parameter. We
relax its structural complexity by reconsidering it as a scalar function σ(x) ∈ R. This way,
the σ∇u product is understood as componentwise between the scalar σ and the vector∇u.
Furthermore, the source function – f – and the boundary condition functions –g, uD and h–
are going to be displayed (assumed) in a finite Fourier sum form.

4.3.1 General development

Let Ω = Ω1 × Ω2 × · · · × Ωd ⊂ Rd be a domain with corresponding Cartesian product
domain lengths L1, L2, . . . , Ld, and let us consider the variational formulation of Poisson’s
equation developed at chapter 3: find w ∈ V such that b(w, v) = F(v) for all v ∈ V where
b(·, ·) and F(·) are given by (3.67) and (3.68), respectively. In our case, Vh will denote
the subspace of H1

0(Ω) such that its elements are expressible in finite Fourier summation
terms. Henceforth, we drop the superindex h notation in the approximation space denoting
it simply by V.

Formally, w ∈ V if and only if for a certain variable indexes reordering {j1, j2, . . . , jd},
there exist running indexes {n(j1), n(j1,j2), . . . , n(j1,j2,··· ,jd)}with corresponding running ranges
{R1, R2, . . . , Rd} such that

w = ∑
n(j1)
∈R1

∑
n(j1,j2)

∈R2

· · · ∑
n(j1,j2,··· ,jd)∈Rd

wn(j1,j2,··· ,jd)

d

∏
k=1

exp
(2πi n(j1,j2,··· ,jk) xjk

Ljk

)

= ∑
n(j1)
∈R1

∑
n(j1,j2)

∈R2

· · · ∑
n(j1,j2,··· ,jd)∈Rd

wn(j1,j2,··· ,jd)
exp

(
2πi

d

∑
k=1

n(j1,j2,··· ,jk) xjk

Ljk

)
∈ H1

0(Ω),

where each wn(j1,j2,··· ,jd)
denotes the Fourier coefficient given by the last term of the following

recurrence relation:

wn(j1,j2,··· ,jk)
=

1
Ljk

∫

Ωjk

wn(j1,j2,··· ,jk−1)
exp

(−2πi n(j1,j2,··· ,jk) xjk

Ljk

)
dxjk , for 1 ≤ k ≤ d. (4.10)

Check that from the above definition it follows that a basis of V is given by

{
exp

(
2πi

d

∑
k=1

n(j1,j2,...,jd)xjk

Ljk

)
: −N ≤ n(j1,j2,...,jk) ≤ N for all 1 ≤ k ≤ d

}
. (4.11)

4.3. Poisson’s equation with Fourier summation approximation 35

Moreover, because all the elements w ∈ V need to satisfy the condition w = 0 in the
Dirichlet boundary, we must have into account that probably some exponential functions
may not be considered in the above summation. For instance, in the so far developed 1D
problem (3.1), the function exp(2πi 0 x) ≡ 1 must not be considered as a basis function in
the Fourier summation because it does not belong to H1

0([0, 1]).

For the notation to be easy to follow in the subsequent development, we consider the
following criteria: for distinct finite Fourier summation expressions (where distinct indexes
summation ranges may be considered), we will assume all of them to have the same run-
ning range (assuming the biggest range for all the summations and completing, if neces-
sary, with null Fourier coefficients). The Fourier summations ranges are always going to be
considered symmetric with respect to zero (i.e., they will always run from −N to N for a
certain N ∈ N). In addition, we are going to drop (queued) subindexes of indexes notation.
This way, the jk subindexes are simply replaced by k and n(j1,j2,··· ,jk) by nk. Thereby, with-
out loss of generality, the variables ordering selection is assumed to be the typical (natural)
one. Furthermore, queues of summatories such as ∑n1 ∑n2

· · ·∑nd
are going to be expressed

more compactly by ∑n1,n2,...,nd
.

Under the previous considerations, a general element w of V is written by

w = ∑
−N≤n1,n2,...,nd≤N

Wn1,n2,··· ,nd exp

(
d

∑
k=1

2πi nk xk

Lk

)
, (4.12)

with possibly more restriction conditions in the indexes running ranges.
To simplify even more the notation, we substitute n1, n2, . . . , nd by the multindex n so as

to write Wn instead of Wn1,n2,...,nd and consider en as a shortcut of exp(∑d
k=1 2πi nk xk/Lk).

Hence, w is written in simple terms by ∑−N≤n≤N Wn en which, by abuse of notation, the
−N ≤ n ≤ N expression refers to −N ≤ n1, n2, . . . , nd ≤ N.

Let w = ∑−N≤m≤N Wm em and v = ∑−N≤n≤N Vn en belong to V. Taking conjugate
exponentials in the test function bases is done for convenience to obtain at the end a better
final presentation of the solution. Recall that {en : −N ≤ n ≤ N} and {en : −N ≤ n ≤ N}
conform bases of the same space V since they are sets containing the same elements but
ordered reversely, one with respect to the other (i.e., en = e−n for all 0 ≤ n ≤ N). Then, if
we denote by

W =
[
Wm

]
, K =

[
b(em, en)

]T
and F =

[
F(en)

]
, (4.13)

with W and F being column vectors, K being a matrix, and −N ≤ n, m ≤ N, we have that
equality b(w, v) = F(v) is equivalent to KW = F. In what rests of subsection, we assemble
the K stiffness matrix and F vector.

36 Chapter 4. Fourier summation approximation for Finite Element computations

To calculate the entries of K, we first check that

∇em = em

[
2πi m1

L1
,

2πi m2

L2
, . . . ,

2πi md

Ld

]T

, (4.14)

with the product being componentwise between the exponential and the vector. Then,

∇em · ∇en = em−n

d

∑
s=1

4π2 ms ns

L2
s

, (4.15)

where em−n is a shortcut for exp(∑d
k=1 2πi (mk − nk) xk/Lk).

We write now the parameter function in Fourier summation terms, σ = ∑−N≤l≤N Sl el ,
and thus need to calculate the integral

b(em, en) =
∫

Ω
σ∇em · ∇en dx =

(
d

∑
s=1

4π2 ms ns

L2
s

)(
∑

−N≤l≤N
Sl

∫

Ω
em−n+l dx

)
, (4.16)

where l = (l1, l2, . . . , ld) is a multindex and s (and implicitly k in em−n+l) are ordinary
indexes.

If we assume that σ∇em · ∇en is integrable over Ω (i.e., σ∇em · ∇en is measurable and
its corresponding absolute value function has finite integral over Ω), then we can apply
Fubini’s Theorem in (4.16) and thereby take advantage of the Cartesian product domain
assumption,

b(em, en) =

(
d

∑
s=1

4π2 ms ns

L2
s

)(
∑

−N≤l≤N
Sl

∫

Ω1

∫

Ω2

· · ·
∫

Ωd

em−n+l dxd · · · dx2dx1

)
=

=

(
d

∑
s=1

4π2 ms ns

L2
s

)(
∑

−N≤l≤N
Sl

d

∏
k=1

∫

Ωk

exp
(

2πi (mk − nk + lk) xk

Lk

)
dxk

)
.

Because each
∫

Ωk
exp(2πi (mk − nk + lk) xk/Lk) dxk equals 1 if mk − nk + lk = 0 and

equals 0 otherwise, we have that all the terms of the sum associated to the multindex l =
(l1, l2, . . . , ld) vanish except for those that satisfy lk = nk −mk.

Hence,

b(em, en) = 4π2

(
d

∑
s=1

ns ms

L2
s

)
Sn−m, (4.17)

where n−m denotes the multindex (n1 −m1, n2 −m2, . . . , nd −md).

This way, displaying the (4.17) values in a matrix, we assemble the desired stiffness
matrix. To assemble the F vector, we need to calculate three integrals per entry of the
vector:

F(en) =
∫

Ω
f en dx−

∫

∂ΩN

g en ds−
∫

Ω
σ∇ũD · ∇en dx. (4.18)

4.3. Poisson’s equation with Fourier summation approximation 37

To do so, we proceed as above writing the concerned functions in their Fourier summa-
tion forms: f = ∑−N≤l≤N Fl el , g = ∑−N≤l≤N Gl el and ũD = ∑−N≤l≤N Ul el . Then, the first
and second integrals are immediate and the third integral equals the linear combination of
bilinear forms ∑−N≤l≤N Ul b(el , en) that are already solved:

∫

Ω
f en dx = ∑

−N≤l≤N
Fl

∫

Ω
el−n dx = Fn, (4.19)

∫

∂ΩN

g en ds = ∑
−N≤l≤N

Gl

∫

∂ΩN

el−n ds = Gn, (4.20)

∫

Ω
σ∇ũD · ∇en dx = 4π2 ∑

−N≤l≤N
Ul Sl−n

d

∑
s=1

ls ns

L2
s

. (4.21)

Hence,

F(en) = Fn − Gn − 4π2
d

∑
s=1

(
ls ns

L2
s

)
∑

l
Ul Sl−n. (4.22)

Displaying these results in each entry of the right hand side vector of the matricial
equation, we obtain the linear system to be solved.

4.3.2 Example in one dimension

If we go to problem (3.1) in chapter 3 (with d = 1), the calculations reduce to

b(em, en) = 4π2 n m Sn−m and F(en) = Fn, −N ≤ n, m ≤ N, (4.23)

with n 6= 0 6= m because of the Dirichlet condition at zero.

The resulting 2N× 2N sized stiffness matrix K, with N being the number of modes con-
sidered in Fourier summation, satisfies the following structure: it has a four block structure
(TL, top-left; BL, bottom-left; TR, top-right; and BR, bottom-right), i.e.,

K = 4π2

[
TL TR
BL BR

]
, (4.24)

such that BL = TR∗ is triangular superior with null entries in the main diagonal, and if
TL = [C1, C2, . . . , CN] with Cj being column vectors, then BR = [CN , . . . , C2, C1]

T. Hence,
for determining the whole matrix, it suffices to (for instance) simply calculate the entries of
(4.23) when they belong to the lower triangular part of TL (including the main diagonal)
and when they belong to the upper triangular part of BL (excluding the main diagonal),
and take into account the previous considerations.

38 Chapter 4. Fourier summation approximation for Finite Element computations

Below we include an example of the stiffness matrix for this problem when N = 4. We
mark in bold the previously commented as “sufficient to calculate” entries.

K = 4π2

16S0 12S−1 8S−2 4S−3 0 0 0 0
12S1 9S0 6S−1 3S−2 −3S−4 0 0 0
8S2 6S1 4S0 2S−1 −2S−3 −4S−4 0 0
4S3 3S2 2S1 S0 −S−2 −2S−3 −3S−4 0

0 −3S4 −2S3 −S2 S0 2S−1 3S−2 4S−3

0 0 −4S4 −2S3 2S1 4S0 6S−1 8S−2

0 0 0 −3S4 3S2 6S1 9S0 12S−1

0 0 0 0 4S3 8S2 12S1 16S0

Rows correspond to index n and columns correspond to index m. The first row (respec-
tively, column) is for n = −4 (respectively, m = −4), the second for n = −3 (m = −3), . . . ,
the fourth for n = −1 (m = −1), the fifth for n = 1 (m = 1), . . . , and the eight for
n = 4 (m = 4).

Let us call by t-diagonal, for 1 ≤ ±t ≤ 2N − 1, to the set of entries of K given by the
following rule: letO = (−N,−N + 1, . . . ,−2,−1, 1, 2, . . . , N− 1, N) be an array/ordering.
If t ≥ 0, the t-diagonal consists on the elements

K(−N,−N+r), . . . , K(n,m), K(n∗,m∗), . . . , K(N−r,N), (4.25)

where n∗ and m∗ denote the following elements of n and m in O, respectively. If t < 0, the
t-diagonal consists on the elements

K(−N−r,−N), . . . , K(n,m), K(n∗,m∗), . . . , K(N,N+r), (4.26)

with n∗ and m∗ having the same interpretation as before.
If t = 0, the 0-diagonal is the main diagonal of K. If t = 1, it is the diagonal immediately

above the main one. If t = −1, it is the diagonal immediately below the main one. The rest
of t-diagonals follow the same rule but being “more far away” (above or below) from the
main diagonal. If t 6= 0, we also call semidiagonals to the t-diagonals.

According to this formalization, the stiffness matrix has the following “diagonalwise”
structure: if t = 0, the main diagonal consists on multiples of S0 Fourier coefficients. If
0 < ±t < N, the corresponding t-diagonals are formed by multiples of S−t and S−t(1+1/|t|)
coefficients. The amount of S−t and S−t(1+1/|t) coefficients in the t-diagonal is of N − 2|t|
and |t|, respectively, being the latters distributed in the middle of it. When ±t ≥ N, the
corresponding t-diagonals have null entries. Hence, the resulting matrix is said to have a
(2N − 1)-diagonal structure (i.e., with non-null 2N − 1 middle diagonals).

4.3. Poisson’s equation with Fourier summation approximation 39

In consequence, we can express the K matrix as a sum of semidiagonal matrices:

K = 4π2
N

∑
r=−N

Kr, (4.27)

where each term of the sum can be split as a componentwise product between a Fourier
coefficient and a matrix with at most two non-null semidiagonals: Kr = Sr Cr for −N ≤
r ≤ N. At the last section of the chapter we are going to explain the importance of the Cr

matrices that we have obtained. In this context, we call these matrices as elemental matrices

Below we show the representations of the Cr matrices of the previous example. In
representations Cr for r 6= 0 we have utilized a color criterion to depict both matrices in the
same display. If r > 0 (colored in blue), the purple upper semidiagonal must be thought
of with null entries; and when r < 0 (in purple), the blue lower semidiagonal must be
thought of with null entries. The gray zeros indicate diagonal gaps that are filled in a
posterior indexed matrix.

C0 =

16 0 0 0 0 0 0 0
0 9 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 9 0
0 0 0 0 0 0 0 16

C−1, C1 =

0 12 0 0 0 0 0 0
12 0 6 0 0 0 0 0
0 6 0 2 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 2 0 6 0
0 0 0 0 0 6 0 12
0 0 0 0 0 0 12 0

(4.28)

C−2, C2 =

0 0 8 0 0 0 0 0
0 0 0 3 0 0 0 0
8 0 0 0 0 0 0 0
0 3 0 0 −1 0 0 0
0 0 0 −1 0 0 3 0
0 0 0 0 0 0 0 8
0 0 0 0 3 0 0 0
0 0 0 0 0 8 0 0

(4.29)

40 Chapter 4. Fourier summation approximation for Finite Element computations

C−3, C3 =

0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −2 0 0 0
4 0 0 0 0 −2 0 0
0 0 −2 0 0 0 0 4
0 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0

(4.30)

C−4, C4 =

0 0 0 0 0 0 0 0
0 0 0 0 −3 0 0 0
0 0 0 0 0 −4 0 0
0 0 0 0 0 0 −3 0
0 −3 0 0 0 0 0 0
0 0 −4 0 0 0 0 0
0 0 0 −3 0 0 0 0
0 0 0 0 0 0 0 0

(4.31)

Regarding the F vector, we have that it is just a column vector with entries F−N , . . . , F−1,
F1, . . . , FN from top to bottom. In fact, these entries are conjugate-symmetric with respect
to the middle (i.e., Fn = F−n for 1 ≤ n ≤ N). Below we include an example for N = 4.

F =
[

F−4 F−3 F−2 F−1 F1 F2 F3 F4

]T
(4.32)

4.3.3 Some comments for higher dimension problems

If the dimension is higher than one (d ≥ 2), the number of Fourier coefficients increases
with respect to the 1D problem by a power equal to the concerned dimension. If we con-
sider the Poisson’s equation BVPs in a [0, 1]d domain, we need to calculate (2N)d real co-
efficients to determine the solution (under the assumption that on each variable we have
utilized a Fourier summation range precision of N).

In principle, because the only differences are the number of coefficients to determine,
a possible alternative to solve these problems is to proceed as in the 1D problem but with
powered sized matrices and vectors. Then, in a first approach, we could think on solving
the general problem as an ordinary system of linear equations with a stiffness matrix of
size (2N)d × (2N)d, and input and output (2N)d sized vectors. The crux of the matter is
then how we control what entry of the matrix represents what Fourier coefficient. The
indexing is not as obvious as it was in the 1D case, where each entry was indexed by the
pair row-column position of the matrix according to the results of the bilinear form when
it was applied to the testing and training basis functions.

To deal with this indexing issue, it is convenient to introduce the concept of tensor [24,
35, 40]. Roughly speaking, and in what our topic concerns, a tensor is a generalization of

4.3. Poisson’s equation with Fourier summation approximation 41

vectors and matrices structures. In the following subsection we describe briefly (and quite
formally) the notion of tensor focusing on our particular problem in two dimensions.

4.3.4 Construction of a two dimensional tensor

Let V1 and V2 be two finite dimensional vector spaces with bases {e1
i }i and {e2

j }j. Mak-
ing abuse of notation, consider the vector coordinate representations of e1

i and e2
j for the

aforementioned bases maintaining the same symbology (i.e., e1
i and e2

j are the canonical
basis vectors, that is, their entries are the Kronecker deltas). Let us perform the products
Ti,j := e1

i (e
2
j)

T for all the possible pairs of canonical column vectors. Then, the assembled
matrices Ti,j are made up of zeros and a single one placed in the (i, j) row-column position.
Take two vectors, v1 ∈ V1 and v2 ∈ V2, and calculate (v1)Te1

i (e
2
j)

Tv2 to get the scalar value
of the i-th coordinate of v1 multiplied by the j-th coordinate of v2.

Formally, e1
i ⊗ e2

j := e1
i (e

2
j)

T is called the outer product between e1
i and e2

j and it may
be performed for arbitrary (not necessarily canonical) vectors. The resulting Ti,j matrix
could be thought of as a mapping which is expected to be fed by two vectors, each of
them belonging to its corresponding vector space, v1 ∈ V1 and v2 ∈ V2, so as to pro-
duce a scalar value, Ti,j(v1, v2) := (v1)Te1

i (e
2
j)

Tv2. It is straightforward to check that the
obtained mapping Ti,j : V1 × V2 −→ R is in fact a bilinear form. From now on, we pre-
fer to call tensors to these bilinear functionals. The tensor product V1 ⊗ V2 consists on the
set of all the tensors made up as before by all the possible pairs of vectors of V1 and V2.
Obviously, all these tensors are linear combinations of the Ti,j tensors, and thus, {Ti,j}i,j

conforms a basis of the vector space V1 ⊗ V2. By construction it is easy to check that
dim(V1 ⊗ V2) = dim(V1)dim(V2). In some sense, we could say that the outer prod-
uct mapping (which is bilinear), ⊗ : V1 × V2 −→ V1 ⊗ V2, takes two elements in differ-
ent spaces and performs a “dimensionalization” to produce a kind of “product element”.
It is important not to confuse cartesian products, × or ⊕, with tensor products, ⊗ (e.g.,
R15 ≡ R3×5 ≡ R3 ⊗ R5 6≡ R3 × R5 ≡ R8).

Now it is time to associate this special construction with the considered problem: let
V1 be the 2N-dimensional vector space of functions expressed in Fourier summation for
the (first) x1 variable in the previously presented problem, and let V2 be the one of the
(second) x2 variable. We have that {exp(2πi n1 x1) : −N ≤ n1 ≤ N, n1 6= 0} and
{exp(2πi n2 x2) : −N ≤ n2 ≤ N, n2 6= 0} are bases for V1 and V2, respectively. Let us
denote by en1 and en2 the previous bases functions in shortcut mode. Then, the Tn1,n2 :≡
en1 ⊗ en2 tensor represents the bilinear mapping that returns the coordinate corresponding
to the exp(2πi (n1x1 + n2x2)) basis term (coefficient Wn1,n2 in (4.12)) in the V1 ⊗ V2 space.
In simple words, the constructed tensors allow us to connect each univariate-Fourier-space
in the joint bivariate-Fourier-space.

In the context of vector spaces, the tensor product V1 ⊗ V2 and the associated bilinear
mapping ⊗ : V1 × V2 −→ V1 ⊗ V2 are characterized up to isomorphism by a universal
property regarding bilinear maps. Informally, ⊗ is the most general bilinear map out of
V1 ×V2.

42 Chapter 4. Fourier summation approximation for Finite Element computations

Theorem 4.1. Let V1, V2 and W be vector spaces. Then, for any bilinear mapping b : V1×V2 −→
W, there exists a unique linear mapping l : V1 ⊗V2 −→W such that b = l ◦ ⊗.

V1 ⊗V2

V1 ×V2 W

l⊗
b

FIGURE 4.1: Theorem 4.1’s representation

If W = V1 ⊗ V2, this theorem aims to “justify” the following informal thinking about
the problem: taking the elements in the univariate-Fourier-spaces (for x1 and x2) and
solving a bilinear mapping, is equivalent to making a “dimensionalization” of the two
univariate-Fourier-spaces and later solving the linear system in the powered space.

4.3.5 Example in general dimension. Methodology

Let us consider the Poisson’s equation BVPs with null Dirichlet and Neumann boundary
conditions in a [0, 1]d domain. Let V1, V2, . . . , Vd be the 2N-dimensional vector space of
functions in Fourier summation for the x1, x2, . . . , xd variables of the presented problem,
respectively. Hence, we have that {exp(2πi ni xi) : −N ≤ ni ≤ N, ni 6= 0} conforms a
basis of Vi for each 1 ≤ i ≤ d.

Following a similar path as in the previous subsection, we are able to “dimensional-
ize” the spaces constructing the “product elements” (constructing kinds of d-multimatrices
structures). We employ the outer product for constructing this space,

⊗ : V1 ×V2 × · · · ×Vd −→ V1 ⊗V2 ⊗ · · · ⊗Vd. (4.33)

The basis tensors Tn1,n2,...,nd (the multilinear forms that indicate the n1, n2, . . . , nd indexed
entry of the d-multimatrix) are given by

Tn1,n2,...,nd : v = ((v1
−N , . . . , v1

N), (v
2
−N , . . . , v2

N), . . . , (vd
−N , . . . , vd

N)) 7−→
d

∏
j=1

vs
ns

. (4.34)

We remark that to determine each element of each Vi in the cartesian product we need
2N real values (coordinates). Then, an element of V1 ⊗ V2 ⊗ · · · ⊗ Vd needs (2N)d real
values to be determined.

V1 ⊗V2 ⊗ · · · ⊗Vd

V1 ×V2 × · · · ×Vd V1 ⊗V2 ⊗ · · · ⊗Vd

K⊗
M

FIGURE 4.2: Problem representation

We now just want to solve the M multilinear mapping depicted in figure 4.2. To do so,
we solve the K ◦ ⊗ composition where K is the linear transformation already calculated in

4.3. Poisson’s equation with Fourier summation approximation 43

(4.17). Hence, if we denote by e(n1,n2,...,nd) := Tn1,n2,...,nd(en1 ⊗ en2 ⊗ · · · ⊗ end), where eni =

exp(2πi ni xi) are the basis functions of the Vi space for 1 ≤ i ≤ d and −N ≤ ni ≤ N with
ni 6= 0, we have that the linear transformation multimatrix K = [K(n1,n2,...,nd),(m1,m2,...,md)] has
entries

K(n1,n2,...,nd),(m1,m2,...,md) := b
(

e(m1,m2,...,md), e(n1,n2,...,nd)

)
=

= 4π2

(
d

∑
s=1

ns ms

L2
s

)
S(n1−m1,n2−m2,...,nd−md), (4.35)

where S(n1−m1,n2−m2,...,nd−md) = Tn1,n2,...,nd(σ), being σ the parameter function written in
Fourier summation.

The “system” we want to solve is KW = F, with multivectors W = [W(m1,m2,...,md)] and
F = [F(n1,n2,...,nd)] such that

F(n1,n2,...,nd) := F
(

e(n1,n2,...,nd)

)
= Fn1,n2,...,nd , (4.36)

with fn1,n2,...,nd = Tn1,n2,...,nd(f), being f the source function written in Fourier summation.
The “system” is equivalently written in constraint terms by

N

∑
m1=−N

m1 6=0

N

∑
m2=−N

m2 6=0

· · ·
N

∑
md=−N

md 6=0

K(n1,n2,...,nd),(m1,m2,...,md) W(m1,m2,...,md) = F(n1,n2,...,nd), (4.37)

for all −N ≤ ni ≤ N, ni 6= 0 and 1 ≤ i ≤ d.

As in the one dimensional example, we can split the K multimatrix as a sum of elemen-
tal matrices from which we can take out common factor the parameter function’s Fourier
coefficients:

K = 4π2
N

∑
r1=−N

N

∑
r2=−N

· · ·
N

∑
rd=−N

K(r1,r2,...,rd)

= 4π2
N

∑
r1=−N

N

∑
r2=−N

· · ·
N

∑
rd=−N

S(r1,r2,...,rd) C(r1,r2,...,rd), (4.38)

with C(r1,r2,...,rd) ∈ R(2N)d×(2N)d
for each −N ≤ r1, r2, . . . , rd ≤ N being a completely deter-

mined multimatrix (with no parameters inside).

4.3.6 Rapid generation of stiffness matrices

Our BVP reads now as follows: find W of size (2N)d such that KW = F, where W and F
are given by (4.35) and (4.36), respectively.

Moreover, we have that: (i) choices of σ are equivalent to choices of the S(r1,r2,...,rd) co-
efficients, and (ii) entries of K are already determined in an analytic way. Furthermore,

44 Chapter 4. Fourier summation approximation for Finite Element computations

we have expressed the stiffness matrix as a sum of parameters coefficients times elemental
matrices.

In addition, we consider a lower number of modes in the Fourier summation approx-
imation of the σ parameter function in comparison to the solution function. Generally,
parameter functions are piecewise constant functions because they represent physical co-
efficients that characterize the media. On the other side, solution functions usually have
localized gradient peaks as a result of antenna sources. Material coefficients are well ap-
proximated with few Fourier modes except in the discontinuity points where they present
the Gibbs effect. On the other hand, solutions require a significantly greater amount of
Fourier modes. We select a 30% of material coefficient Fourier modes with respect to those
employed in the solution. That is, if N = 100 (the solutions of the BVPs are represented by
100 modes in Fourier summation), we consider only 30 modes to approximate the mate-
rial coefficients. Therefore, in the sum representation of the stiffness matrix (4.38), the only
non-zero elemental matrices C(r1,r2,...,rd) are those that satisfy |rk| ≤ 30.

In the above setting, we conclude:

• Each parameter σ corresponds to 60d real coefficients, S(r1,r2,...,rd) such that |rk| ≤ 30
for each 1 ≤ k ≤ d. For each coefficient, we have associated an elemental matrix
C(r1,r2,...,rd) which does not depend on the choice of the coefficients. Hence, if we pre-
compute the elemental matrices and store them, the structure of the stiffness matrix
is mostly set except for the componentwise products, S(r1,r2,...,rd) C(r1,r2,...,rd), and the
final addition. The assembly of the K matrix is then faster than calculating all the
entries of the matrix iteration by iteration.

• The sampling of the S(r1,r2,...,rd) coefficients needs to be both fast solvable and sufficiently
representative

The fast solvability refers to be able to find the solutions of the linear system rapidly
in two possible ways: (i) the matrix has a form that can be fastly inverted (e.g., if we
select the coefficients with rk 6= 0 to be equal to zero, K is diagonal —in the d = 1
case, K = S0 C0—, and thus the solution is trivial), or (ii) previous computations
provide useful information to solve more complex form matrices in a shorter time.

The sufficient sampling representation means that the whole set of selected parame-
ters coefficients is a representative set of the population of possible parameters coef-
ficients.

The above statements are the starting point of the posterior research during the Ph.D.
studies of Carlos Uriarte.

45

Chapter 5

Conclusions and Future Work

«Life is the art of drawing sufficient
conclusions from insufficient
premises.»

Samuel Butler

«I don’t want happy-face conclusions. I
want the truth.»

Elizabeth Warren

We have developed the current work in three main parts of content: (i) presentation and
formalization of the research project and problem to be solved, (ii) technical and general
introduction of the considered mathematical tool to be exploited, and finally, (iii) first pro-
posal to solve the problem. The following two sections review the development performed
in the last part and plans a future research work, respectively.

5.1 Review and conclusions

The development carried out in chapter 4 is theoretical and the obtained results are based
on the following premises: (a) assumption of a Cartesian product domain, (b) Fourier sum-
mation representation of the functions involved in the problem, and (c) supposition that
the parameter functions need an smaller proportion range of modes in Fourier summation
than the solution function.

In the geoterrestrial framework of application, we justify premise (a) because most of
the scenarios for mapping the subsoil deal with depth, length and/or width magnitudes
variables, which are commonly represented in real Cartesian product domains. The same
happens in premise (c), where the supposition is made in line with the nature of the piece-
wise constant form of parameter functions and the location of gradient peaks in the solu-
tion functions. Premise (b) allows to take advantage of the orthogonality of the Fourier
system to calculate the analytic integrals.

From these hypotheses, we have obtained an explicit (analytic) expression of the en-
tries of the stiffness matrix. This analytic expression avoids numerical integration when

46 Chapter 5. Conclusions and Future Work

building the stiffness matrix. Moreover, the stiffness matrix is represented as a linear sum
of elemental matrices, each of them with an almost diagonal form. In addition, assumption
(c) leads us to avoid calculating many of these elemental matrices.

In conclusion, we have managed to formulate the problem in a computational mathe-
matics framework where FEM computations are need for creating DNN based inversion
models. The analysis has led us to write a resolution methodology in very particular math-
ematical terms for the concerned problem: Fourier approximation based FEM (abbrev.,
Fourier-FEM). In consequence, the proposed methodology has some characteristics that, a
priori, seem beneficial to the purpose of massive finite element computations: analytical
expression of the stiffness matrix, and almost diagonal expression of it.

5.2 Future work

We plan now the future tasks to do in the already presented research project:

• To study and propose change of coordinates systems for non-Cartesian 2D and 3D
product domains for subsoil mapping applications. The previously developed the-
ory is consistent under assumption (a) at section 5.1. All the applications desired
to be solved with the Fourier-FEM need to accomplish it. A field of interest is then
how to model applications in these terms. The change of variable permits to solve
these problems when the modeling has not been made in a Cartesian product do-
main. We want to find appropriate change of coordinates systems able to make those
transformations. Moreover, alternative modelling techniques may be used to obtain
Cartesian product domains in the concerned applications.

• To study the parameters space in Fourier coefficients terms in 2D and 3D domains
for subsoil mapping applications. To be able to make a proper sampling of the
problem, we need to first know the range the raw parameters have (domain), and
then study their behaviour in such domain (parameter function’s shape). Depending
on the behavior, their corresponding Fourier coefficients have some behaviour or
another. We want to know which is the domain for the Fourier coefficients. It varies
from one applications to others.

• To study and present parameters sampling options for the Fourier-FEM proposal
in 2D and 3D domains for subsoil mapping applications. The sampling needs to be
both representative in the parameters population space and fast solvable in the sense
explained in chapter 4. This part implies to know about both sampling techniques
and (rapid) numerical linear systems solvability methods.

• To study and propose fast solvers for massive computations of Fourier-FEM. Once
the sampling of the Fourier coefficients parameters space is established, we need to
perform the simulations with high-performance. The fast solvability is going to be
aimed in the following two lines: (i) to take advantage of the almost diagonal form

5.2. Future work 47

of the stiffness matrix, and (ii) to employ solver’s first computations to extract useful
information to solve more rapidly the posterior matrices which have a more complex
structure.

• To implement the Fourier-FEM algorithm. Firstly, do it in a 1D problem and later
generalize it to arbitrary dimensions employing convenient tensor libraries or mod-
ules. It is desirable to make the implementation in compiled languages (e.g., For-
trand, C or C++) instead of in interpreted languages (e.g., Python, Mathematica or
MATLAB). Compiled languages assure a high and fast performance in the execu-
tion in detriment of a much more sophisticated coding compared to interpreted lan-
guages one. We propose to implement in Fortrand the computationally intensive
routines and later wrap them with a Python interface. We recall that the research
group in which this thesis has been developed has previously developed a Finite
Element solver called pFEM (see [18] for more information).

• To perform benchmarks of the presented methods. We want to make comparisons
among distinct proposed alternatives for sampling or solvavility criteria employing
the Fourier-FEM.

49

Appendix A

Construction of a Finite Element space

To approximate the solution of the variational problem developed in section 3.1 we built
a finite-dimensional subspace of H1([0, 1]) composed by piecewise-linear polynomials. In
this appendix, we construct function spaces that are similar to that one, but which are
defined on more general regions. We begin introducing the formal definition of a single
finite element. This definition was originally given by Ciarlet in 1978 [8].

A.1 Finite Element

Let (K,P ,N) be a 3-tuple (or triple) such that: (i) K ⊂ Rd is bounded and closed, with
non-empty interior, and piecewise smooth boundary, (ii) P is a finite-dimensional space
of functions on K, and (iii) N = {N0, N1, . . . , Nk} is a basis of P ′. The set K is called the
element domain, P is known as the space of shape functions, and the functionals belonging
to N are called nodal variables. The system endowed by these three ingredients is called a
Finite Element (abbrev., FE).

It is implicitly assumed that the nodal variables Ni lie in the dual space of some larger
function space (e.g., a Sobolev space). Furthermore, the set {φ0, φ1, . . . , φk}whose elements
verify Ni(φj) = δij is a basis of P dual to N and it is called the nodal basis of P .

An example of a one-dimensional FE is the following: let K = [a, b] ⊂ R with a < b,
let P be the set of univariate polynomials with degree less than or equal to p, and let
N = {Ni}p

i=0 be determined by Ni(f) = f
(

a + (b−a)i
k

)
for each f ∈ P and each i =

0, 1, . . . , p. Then, (K,P ,N) is known as a Lagrange interval. In particular, if K = [0, 1],
p = 1,N = {N0, N1} such that N0(f) = f (0) and N1(f) = f (1) for all f ∈ P , then {φ0, φ1}
with φ0(x) = 1− x and φ1(x) = x is a nodal basis of (K,P ,N).

A.2 Examples of triangular FEs in two dimensions

In the previous section we provided a simple example of a FE in one dimension. We now
construct two more examples of FEs in two dimensions with triangular shapes.

50 Appendix A. Construction of a Finite Element space

Let us denote by P2
p to the space of bivariate polynomials with degree less than or equal

to p, i.e., P2
p = {∑p−j

i=0 ∑
p
j=0 Aijxiyj : Aij ∈ R}. Then, it is easy to check that the dimension

of P2
p equals dp = (p + 1)(p + 2)/2.

The following triangular FEs examples depend on the p parameter, nodal point po-
sitions and some directional derivatives criteria. In all the cases, they are of the form
(K,P ,N) with K ⊂ R2 being a triangle with vertices {v1, v2, v3} and edges {E1 = [v1, v2], E2 =

[v2, v3], E3 = [v3, v1]},P = P2
p for some p ∈ N, and the nodal variablesN = {N1, N2, . . . , Ndp},

Ni : P ′ −→ R, are determined by the laws described below.

• Lagrange triangles (p ≥ 1). Let {ni}dp
i=1 denote the set of nodes. Then: (i) (n1, n2, n3) =

(v1, v2, v3), (ii) nodes n4 to n3p lie in the three edges of K (p − 1 per edge), and (iii)
nodes n3p+1 to ndp are located in the interior of K. Overlappings are not allowed and
the nodal variables are determined by Ni(f) = f (ni) for i ∈ {1, 2, · · · , dp}. In figure
A.1 are depicted examples of representations of Lagrange Triangles for p = 1, 2, 3. “•”
symbols indicate nodal variable evaluations at the point where the dots are located.

n1
<latexit sha1_base64="S321ZNT4OeMH+dOSCHwd5bOkwys=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmkESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6lwNvUK64VXchsgpeDhXI1RyUP/vDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYsyhphNrPFqvOyFkYK2LGSBbv39mMRlpPo8BmImrGetmbD//zeqkJr/yMyyQ1KJmNWC9MBTExmTcmQ66QGTG1QJnidkvCxlRRZuxdSra+t1x2Fdq1qndRrd3VK43r/BBFOIFTOAcPLqEBt9CEFjAYwTO8wbsTOk/Oi/P6Ey04+Z9j+CPn4xvvg4sv</latexit>

n2
<latexit sha1_base64="eq/Q/s/MmH8JHCnTM7Vu2Qt5gP0=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmkESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6l4PaoFxxq+5CZBW8HCqQqzkof/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLVadkbMwVsSMkSzev7MZjbSeRoHNRNSM9bI3H/7n9VITXvkZl0lqUDIbsV6YCmJiMm9MhlwhM2JqgTLF7ZaEjamizNi7lGx9b7nsKrRrVe+iWrurVxrX+SGKcAKncA4eXEIDbqEJLWAwgmd4g3cndJ6cF+f1J1pw8j/H8EfOxzfxAYsw</latexit>

n3
<latexit sha1_base64="Rr9k4A0gv/ddAC2cTgmRyF8jpSk=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmwESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6l4P6oFxxq+5CZBW8HCqQqzkof/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLVadkbMwVsSMkSzev7MZjbSeRoHNRNSM9bI3H/7n9VITXvkZl0lqUDIbsV6YCmJiMm9MhlwhM2JqgTLF7ZaEjamizNi7lGx9b7nsKrRrVa9erd1dVBrX+SGKcAKncA4eXEIDbqEJLWAwgmd4g3cndJ6cF+f1J1pw8j/H8EfOxzfyf4sx</latexit>

E1
<latexit sha1_base64="JJshp9xxRPuZNPjfPEGoSTO6JC4=">AAAB5HicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZKuiyKILLivYC7VAy6Zk2NHMhyQhl6BvoStSdT+QL+DamdRba+q++nP8PnP/4iRTaOM4XKaysrq1vFDdLW9s7u3vl/YOWjlPFscljGauOzzRKEWHTCCOxkyhkoS+x7Y+vZ377EZUWcfRgJgl6IRtGIhCcGTu6v+m7/XLFqTpz0WVwc6hArka//NkbxDwNMTJcMq27rpMYL2PKCC5xWuqlGhPGx2yIXYsRC1F72XzVKT0JYkXNCOn8/TubsVDrSejbTMjMSC96s+F/Xjc1waWXiShJDUbcRqwXpJKamM4a04FQyI2cWGBcCbsl5SOmGDf2LiVb310suwytWtU9q9buziv1q/wQRTiCYzgFFy6gDrfQgCZwGMIzvME7CcgTeSGvP9ECyf8cwh+Rj2+yA4sG</latexit>

E2
<latexit sha1_base64="ys8sCKSJeBz/rTvd/Cz/5Kikqwc=">AAAB5HicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZKuiyKILLivYC7VAy6Zk2NHMhyQhl6BvoStSdT+QL+DamdRba+q++nP8PnP/4iRTaOM4XKaysrq1vFDdLW9s7u3vl/YOWjlPFscljGauOzzRKEWHTCCOxkyhkoS+x7Y+vZ377EZUWcfRgJgl6IRtGIhCcGTu6v+nX+uWKU3Xmosvg5lCBXI1++bM3iHkaYmS4ZFp3XScxXsaUEVzitNRLNSaMj9kQuxYjFqL2svmqU3oSxIqaEdL5+3c2Y6HWk9C3mZCZkV70ZsP/vG5qgksvE1GSGoy4jVgvSCU1MZ01pgOhkBs5scC4EnZLykdMMW7sXUq2vrtYdhlatap7Vq3dnVfqV/khinAEx3AKLlxAHW6hAU3gMIRneIN3EpAn8kJef6IFkv85hD8iH9+zgYsH</latexit>

E3
<latexit sha1_base64="bkgetFlBb43i+McHuIAog9hkXik=">AAAB5HicbZDNTsJAFIVv8Q/xD3XpZiIxcUVaMNEl0Zi4xChCAg2ZDrcwYdppZqYmpOENdGXUnU/kC/g2DtiFgmf1zT1nkntukAiujet+OYWV1bX1jeJmaWt7Z3evvH/woGWqGLaYFFJ1AqpR8BhbhhuBnUQhjQKB7WB8NfPbj6g0l/G9mSToR3QY85Azauzo7rpf75crbtWdiyyDl0MFcjX75c/eQLI0wtgwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi3GNELtZ/NVp+QklIqYEZL5+3c2o5HWkyiwmYiakV70ZsP/vG5qwgs/43GSGoyZjVgvTAUxkswakwFXyIyYWKBMcbslYSOqKDP2LiVb31ssuwwPtapXr9ZuzyqNy/wQRTiCYzgFD86hATfQhBYwGMIzvMG7EzpPzovz+hMtOPmfQ/gj5+MbtP+LCA==</latexit>

n1
<latexit sha1_base64="S321ZNT4OeMH+dOSCHwd5bOkwys=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmkESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6lwNvUK64VXchsgpeDhXI1RyUP/vDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYsyhphNrPFqvOyFkYK2LGSBbv39mMRlpPo8BmImrGetmbD//zeqkJr/yMyyQ1KJmNWC9MBTExmTcmQ66QGTG1QJnidkvCxlRRZuxdSra+t1x2Fdq1qndRrd3VK43r/BBFOIFTOAcPLqEBt9CEFjAYwTO8wbsTOk/Oi/P6Ey04+Z9j+CPn4xvvg4sv</latexit>

n2
<latexit sha1_base64="eq/Q/s/MmH8JHCnTM7Vu2Qt5gP0=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmkESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6l4PaoFxxq+5CZBW8HCqQqzkof/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLVadkbMwVsSMkSzev7MZjbSeRoHNRNSM9bI3H/7n9VITXvkZl0lqUDIbsV6YCmJiMm9MhlwhM2JqgTLF7ZaEjamizNi7lGx9b7nsKrRrVe+iWrurVxrX+SGKcAKncA4eXEIDbqEJLWAwgmd4g3cndJ6cF+f1J1pw8j/H8EfOxzfxAYsw</latexit>

n3
<latexit sha1_base64="Rr9k4A0gv/ddAC2cTgmRyF8jpSk=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmwESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6l4P6oFxxq+5CZBW8HCqQqzkof/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLVadkbMwVsSMkSzev7MZjbSeRoHNRNSM9bI3H/7n9VITXvkZl0lqUDIbsV6YCmJiMm9MhlwhM2JqgTLF7ZaEjamizNi7lGx9b7nsKrRrVa9erd1dVBrX+SGKcAKncA4eXEIDbqEJLWAwgmd4g3cndJ6cF+f1J1pw8j/H8EfOxzfyf4sx</latexit>

E1
<latexit sha1_base64="JJshp9xxRPuZNPjfPEGoSTO6JC4=">AAAB5HicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZKuiyKILLivYC7VAy6Zk2NHMhyQhl6BvoStSdT+QL+DamdRba+q++nP8PnP/4iRTaOM4XKaysrq1vFDdLW9s7u3vl/YOWjlPFscljGauOzzRKEWHTCCOxkyhkoS+x7Y+vZ377EZUWcfRgJgl6IRtGIhCcGTu6v+m7/XLFqTpz0WVwc6hArka//NkbxDwNMTJcMq27rpMYL2PKCC5xWuqlGhPGx2yIXYsRC1F72XzVKT0JYkXNCOn8/TubsVDrSejbTMjMSC96s+F/Xjc1waWXiShJDUbcRqwXpJKamM4a04FQyI2cWGBcCbsl5SOmGDf2LiVb310suwytWtU9q9buziv1q/wQRTiCYzgFFy6gDrfQgCZwGMIzvME7CcgTeSGvP9ECyf8cwh+Rj2+yA4sG</latexit>

E2
<latexit sha1_base64="ys8sCKSJeBz/rTvd/Cz/5Kikqwc=">AAAB5HicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZKuiyKILLivYC7VAy6Zk2NHMhyQhl6BvoStSdT+QL+DamdRba+q++nP8PnP/4iRTaOM4XKaysrq1vFDdLW9s7u3vl/YOWjlPFscljGauOzzRKEWHTCCOxkyhkoS+x7Y+vZ377EZUWcfRgJgl6IRtGIhCcGTu6v+nX+uWKU3Xmosvg5lCBXI1++bM3iHkaYmS4ZFp3XScxXsaUEVzitNRLNSaMj9kQuxYjFqL2svmqU3oSxIqaEdL5+3c2Y6HWk9C3mZCZkV70ZsP/vG5qgksvE1GSGoy4jVgvSCU1MZ01pgOhkBs5scC4EnZLykdMMW7sXUq2vrtYdhlatap7Vq3dnVfqV/khinAEx3AKLlxAHW6hAU3gMIRneIN3EpAn8kJef6IFkv85hD8iH9+zgYsH</latexit>

E3
<latexit sha1_base64="bkgetFlBb43i+McHuIAog9hkXik=">AAAB5HicbZDNTsJAFIVv8Q/xD3XpZiIxcUVaMNEl0Zi4xChCAg2ZDrcwYdppZqYmpOENdGXUnU/kC/g2DtiFgmf1zT1nkntukAiujet+OYWV1bX1jeJmaWt7Z3evvH/woGWqGLaYFFJ1AqpR8BhbhhuBnUQhjQKB7WB8NfPbj6g0l/G9mSToR3QY85Azauzo7rpf75crbtWdiyyDl0MFcjX75c/eQLI0wtgwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi3GNELtZ/NVp+QklIqYEZL5+3c2o5HWkyiwmYiakV70ZsP/vG5qwgs/43GSGoyZjVgvTAUxkswakwFXyIyYWKBMcbslYSOqKDP2LiVb31ssuwwPtapXr9ZuzyqNy/wQRTiCYzgFD86hATfQhBYwGMIzvMG7EzpPzovz+hMtOPmfQ/gj5+MbtP+LCA==</latexit>

n4
<latexit sha1_base64="bjwdXzrbeopL+8oQMDezjlVtg0M=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmkESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6l4P6oFxxq+5CZBW8HCqQqzkof/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLVadkbMwVsSMkSzev7MZjbSeRoHNRNSM9bI3H/7n9VITXvkZl0lqUDIbsV6YCmJiMm9MhlwhM2JqgTLF7ZaEjamizNi7lGx9b7nsKrRrVe+iWrurVxrX+SGKcAKncA4eXEIDbqEJLWAwgmd4g3cndJ6cF+f1J1pw8j/H8EfOxzfz/Ysy</latexit>

n5
<latexit sha1_base64="9ipboYZ5JUwgmwgagDptxJNJMm4=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmUKNLohuXGOUngQnplDvQ0OlM2o4JmfAGujLqzifyBXwbC85CwbP6es9pcs8NEsG1cd0vp7Cyura+UdwsbW3v7O6V9w9aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzPz2IyrNY/lgJgn6ER1KHnJGjR3dy/5Fv1xxq+5cZBm8HCqQq9Evf/YGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa1HSCLWfzVedkpMwVsSMkMzfv7MZjbSeRIHNRNSM9KI3G/7ndVMTXvkZl0lqUDIbsV6YCmJiMmtMBlwhM2JigTLF7ZaEjaiizNi7lGx9b7HsMrRqVe+sWrs7r9Sv80MU4QiO4RQ8uIQ63EIDmsBgCM/wBu9O6Dw5L87rT7Tg5H8O4Y+cj2/1e4sz</latexit>

n6
<latexit sha1_base64="GsfDCIRrVif3fYNOivKp8TOud5Q=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVm0KhLohuXGOUngQnplDvQ0OlM2o4JmfAGujLqzifyBXwbC85CwbP6es9pcs8NEsG1cd0vp7Cyura+UdwsbW3v7O6V9w9aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzPz2IyrNY/lgJgn6ER1KHnJGjR3dy/5Fv1xxq+5cZBm8HCqQq9Evf/YGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa1HSCLWfzVedkpMwVsSMkMzfv7MZjbSeRIHNRNSM9KI3G/7ndVMTXvkZl0lqUDIbsV6YCmJiMmtMBlwhM2JigTLF7ZaEjaiizNi7lGx9b7HsMrRqVe+sWrs7r9Sv80MU4QiO4RQ8uIQ63EIDmsBgCM/wBu9O6Dw5L87rT7Tg5H8O4Y+cj2/2+Ys0</latexit>

n1
<latexit sha1_base64="S321ZNT4OeMH+dOSCHwd5bOkwys=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmkESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6lwNvUK64VXchsgpeDhXI1RyUP/vDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYsyhphNrPFqvOyFkYK2LGSBbv39mMRlpPo8BmImrGetmbD//zeqkJr/yMyyQ1KJmNWC9MBTExmTcmQ66QGTG1QJnidkvCxlRRZuxdSra+t1x2Fdq1qndRrd3VK43r/BBFOIFTOAcPLqEBt9CEFjAYwTO8wbsTOk/Oi/P6Ey04+Z9j+CPn4xvvg4sv</latexit>

n2
<latexit sha1_base64="eq/Q/s/MmH8JHCnTM7Vu2Qt5gP0=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmkESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6l4PaoFxxq+5CZBW8HCqQqzkof/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLVadkbMwVsSMkSzev7MZjbSeRoHNRNSM9bI3H/7n9VITXvkZl0lqUDIbsV6YCmJiMm9MhlwhM2JqgTLF7ZaEjamizNi7lGx9b7nsKrRrVe+iWrurVxrX+SGKcAKncA4eXEIDbqEJLWAwgmd4g3cndJ6cF+f1J1pw8j/H8EfOxzfxAYsw</latexit>

n3
<latexit sha1_base64="Rr9k4A0gv/ddAC2cTgmRyF8jpSk=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmwESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6l4P6oFxxq+5CZBW8HCqQqzkof/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLVadkbMwVsSMkSzev7MZjbSeRoHNRNSM9bI3H/7n9VITXvkZl0lqUDIbsV6YCmJiMm9MhlwhM2JqgTLF7ZaEjamizNi7lGx9b7nsKrRrVa9erd1dVBrX+SGKcAKncA4eXEIDbqEJLWAwgmd4g3cndJ6cF+f1J1pw8j/H8EfOxzfyf4sx</latexit>

E1
<latexit sha1_base64="JJshp9xxRPuZNPjfPEGoSTO6JC4=">AAAB5HicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZKuiyKILLivYC7VAy6Zk2NHMhyQhl6BvoStSdT+QL+DamdRba+q++nP8PnP/4iRTaOM4XKaysrq1vFDdLW9s7u3vl/YOWjlPFscljGauOzzRKEWHTCCOxkyhkoS+x7Y+vZ377EZUWcfRgJgl6IRtGIhCcGTu6v+m7/XLFqTpz0WVwc6hArka//NkbxDwNMTJcMq27rpMYL2PKCC5xWuqlGhPGx2yIXYsRC1F72XzVKT0JYkXNCOn8/TubsVDrSejbTMjMSC96s+F/Xjc1waWXiShJDUbcRqwXpJKamM4a04FQyI2cWGBcCbsl5SOmGDf2LiVb310suwytWtU9q9buziv1q/wQRTiCYzgFFy6gDrfQgCZwGMIzvME7CcgTeSGvP9ECyf8cwh+Rj2+yA4sG</latexit>

E2
<latexit sha1_base64="ys8sCKSJeBz/rTvd/Cz/5Kikqwc=">AAAB5HicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZKuiyKILLivYC7VAy6Zk2NHMhyQhl6BvoStSdT+QL+DamdRba+q++nP8PnP/4iRTaOM4XKaysrq1vFDdLW9s7u3vl/YOWjlPFscljGauOzzRKEWHTCCOxkyhkoS+x7Y+vZ377EZUWcfRgJgl6IRtGIhCcGTu6v+nX+uWKU3Xmosvg5lCBXI1++bM3iHkaYmS4ZFp3XScxXsaUEVzitNRLNSaMj9kQuxYjFqL2svmqU3oSxIqaEdL5+3c2Y6HWk9C3mZCZkV70ZsP/vG5qgksvE1GSGoy4jVgvSCU1MZ01pgOhkBs5scC4EnZLykdMMW7sXUq2vrtYdhlatap7Vq3dnVfqV/khinAEx3AKLlxAHW6hAU3gMIRneIN3EpAn8kJef6IFkv85hD8iH9+zgYsH</latexit>

E3
<latexit sha1_base64="bkgetFlBb43i+McHuIAog9hkXik=">AAAB5HicbZDNTsJAFIVv8Q/xD3XpZiIxcUVaMNEl0Zi4xChCAg2ZDrcwYdppZqYmpOENdGXUnU/kC/g2DtiFgmf1zT1nkntukAiujet+OYWV1bX1jeJmaWt7Z3evvH/woGWqGLaYFFJ1AqpR8BhbhhuBnUQhjQKB7WB8NfPbj6g0l/G9mSToR3QY85Azauzo7rpf75crbtWdiyyDl0MFcjX75c/eQLI0wtgwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi3GNELtZ/NVp+QklIqYEZL5+3c2o5HWkyiwmYiakV70ZsP/vG5qwgs/43GSGoyZjVgvTAUxkswakwFXyIyYWKBMcbslYSOqKDP2LiVb31ssuwwPtapXr9ZuzyqNy/wQRTiCYzgFD86hATfQhBYwGMIzvMG7EzpPzovz+hMtOPmfQ/gj5+MbtP+LCA==</latexit>

n4
<latexit sha1_base64="bjwdXzrbeopL+8oQMDezjlVtg0M=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmkESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6l4P6oFxxq+5CZBW8HCqQqzkof/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLVadkbMwVsSMkSzev7MZjbSeRoHNRNSM9bI3H/7n9VITXvkZl0lqUDIbsV6YCmJiMm9MhlwhM2JqgTLF7ZaEjamizNi7lGx9b7nsKrRrVe+iWrurVxrX+SGKcAKncA4eXEIDbqEJLWAwgmd4g3cndJ6cF+f1J1pw8j/H8EfOxzfz/Ysy</latexit>

n5
<latexit sha1_base64="9ipboYZ5JUwgmwgagDptxJNJMm4=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmUKNLohuXGOUngQnplDvQ0OlM2o4JmfAGujLqzifyBXwbC85CwbP6es9pcs8NEsG1cd0vp7Cyura+UdwsbW3v7O6V9w9aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzPz2IyrNY/lgJgn6ER1KHnJGjR3dy/5Fv1xxq+5cZBm8HCqQq9Evf/YGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa1HSCLWfzVedkpMwVsSMkMzfv7MZjbSeRIHNRNSM9KI3G/7ndVMTXvkZl0lqUDIbsV6YCmJiMmtMBlwhM2JigTLF7ZaEjaiizNi7lGx9b7HsMrRqVe+sWrs7r9Sv80MU4QiO4RQ8uIQ63EIDmsBgCM/wBu9O6Dw5L87rT7Tg5H8O4Y+cj2/1e4sz</latexit>

n6
<latexit sha1_base64="GsfDCIRrVif3fYNOivKp8TOud5Q=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVm0KhLohuXGOUngQnplDvQ0OlM2o4JmfAGujLqzifyBXwbC85CwbP6es9pcs8NEsG1cd0vp7Cyura+UdwsbW3v7O6V9w9aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzPz2IyrNY/lgJgn6ER1KHnJGjR3dy/5Fv1xxq+5cZBm8HCqQq9Evf/YGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa1HSCLWfzVedkpMwVsSMkMzfv7MZjbSeRIHNRNSM9KI3G/7ndVMTXvkZl0lqUDIbsV6YCmJiMmtMBlwhM2JigTLF7ZaEjaiizNi7lGx9b7HsMrRqVe+sWrs7r9Sv80MU4QiO4RQ8uIQ63EIDmsBgCM/wBu9O6Dw5L87rT7Tg5H8O4Y+cj2/2+Ys0</latexit>

n7
<latexit sha1_base64="u3qjwsedll9LFnL/6rkivW1NQnE=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVm0ASXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6l4P6oFxxq+5CZBW8HCqQqzkof/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLVadkbMwVsSMkSzev7MZjbSeRoHNRNSM9bI3H/7n9VITXvkZl0lqUDIbsV6YCmJiMm9MhlwhM2JqgTLF7ZaEjamizNi7lGx9b7nsKrRrVe+iWru7rDSu80MU4QRO4Rw8qEMDbqEJLWAwgmd4g3cndJ6cF+f1J1pw8j/H8EfOxzf4d4s1</latexit>

n8
<latexit sha1_base64="g32rZOBarbigaUgOg1O/099WrCU=">AAAB5XicbZDNTsJAFIVv8Q/xD3XpZiIxcUVaJJEl0Y1LTOQngYZMh1s6YTptZqYmpOERdGXUnS/kC/g2ttiFgmf1zT1nknuuFwuujW1/WaWNza3tnfJuZW//4PCoenzS01GiGHZZJCI18KhGwSV2DTcCB7FCGnoC+97sNvf7j6g0j+SDmcfohnQquc8ZNflIjluVcbVm1+2lyDo4BdSgUGdc/RxNIpaEKA0TVOuhY8fGTakynAlcVEaJxpiyGZ3iMENJQ9Ruutx1QS78SBETIFm+f2dTGmo9D70sE1IT6FUvH/7nDRPjt9yUyzgxKFkWyTw/EcREJK9MJlwhM2KeAWWKZ1sSFlBFmckOk9d3VsuuQ69Rd67qjftmrX1THKIMZ3AOl+DANbThDjrQBQYBPMMbvFtT68l6sV5/oiWr+HMKf2R9fAMu14tK</latexit>

n9
<latexit sha1_base64="JdU083P31Awyo6KMuK94oxjNRx8=">AAAB5nicbZDNSsNAFIVv/K3xr+rSTbAIrkpSBXVXdOOygmkLbSiT6U0zdDIJMxOhlL6CrkTd+UC+gG/jpGahrWf1zT1n4J4bZpwp7bpf1srq2vrGZmXL3t7Z3duvHhy2VZpLij5NeSq7IVHImUBfM82xm0kkScixE45vC7/ziFKxVDzoSYZBQkaCRYwSbUa+GFzb9qBac+vuXM4yeCXUoFRrUP3sD1OaJyg05USpnudmOpgSqRnlOLP7ucKM0DEZYc+gIAmqYDpfduacRql0dIzO/P07OyWJUpMkNJmE6FgtesXwP6+X6+gqmDKR5RoFNRHjRTl3dOoUnZ0hk0g1nxggVDKzpUNjIgnV5jJFfW+x7DK0G3XvvN64v6g1b8pDVOAYTuAMPLiEJtxBC3ygwOAZ3uDdiq0n68V6/YmuWOWfI/gj6+MbZTaLXw==</latexit>

n10
<latexit sha1_base64="Xu8nj1wiB4AqUcWbMYt69lwc4P0=">AAAB6XicbZDNSsNAFIVv6l+tf1WXbgaL4KokVdBl0Y3LCvYH2lAm05t26GQSZiZCCX0IXYm683V8Ad/GSc1CW8/qm3vOwD03SATXxnW/nNLa+sbmVnm7srO7t39QPTzq6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WB6m/vdR1Sax/LBzBL0IzqWPOSMGjvqyWHmufNKZVituXV3IbIKXgE1KNQaVj8Ho5ilEUrDBNW677mJ8TOqDGcC55VBqjGhbErH2LcoaYTazxb7zslZGCtiJkgW79/ZjEZaz6LAZiJqJnrZy4f/ef3UhNd+xmWSGpTMRqwXpoKYmOS1yYgrZEbMLFCmuN2SsAlVlBl7nLy+t1x2FTqNundRb9xf1po3xSHKcAKncA4eXEET7qAFbWAg4Bne4N2ZOk/Oi/P6Ey05xZ9j+CPn4xuIdoyd</latexit>

FIGURE A.1: Representations of Lagrange triangles for p = 1, 2, 3 from left
to right, respectively

• Hermite triangles (p ≥ 3). Let {ni}dp−6
i=1 denote the set of nodes. Then: (i) (n1, n2, n3) =

(v1, v2, v3), (ii) nodes n4 to n3p−6 are located in the interior of K, and (iii) nodes n3p−5

to ndp−6 are placed in the edges of K (p− 3 per edge). Overlappings are not allowed
and the nodal variables are determined by: (i) Ni(f) = f (ni) for i ∈ {1, 2, · · · , dp− 6},
and (ii) Ni(∂Ej f) = (∂Ej f)(ni) for i ∈ {1, 2, 3} where ∂Ej f denotes the Ej’s directional
derivative of f and j is chosen according to the edges of K that intersect in vi (three
evaluations per vertex —one normal and two of the directional derivatives—).

See figure A.2 for a better comprehension of Hermite triangles structure. Red circles
denote directional first derviatives (gradient) evaluations at the center of the circle.

A.3. The interpolant 51

n1
<latexit sha1_base64="S321ZNT4OeMH+dOSCHwd5bOkwys=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmkESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6lwNvUK64VXchsgpeDhXI1RyUP/vDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYsyhphNrPFqvOyFkYK2LGSBbv39mMRlpPo8BmImrGetmbD//zeqkJr/yMyyQ1KJmNWC9MBTExmTcmQ66QGTG1QJnidkvCxlRRZuxdSra+t1x2Fdq1qndRrd3VK43r/BBFOIFTOAcPLqEBt9CEFjAYwTO8wbsTOk/Oi/P6Ey04+Z9j+CPn4xvvg4sv</latexit>

n2
<latexit sha1_base64="eq/Q/s/MmH8JHCnTM7Vu2Qt5gP0=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmkESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6l4PaoFxxq+5CZBW8HCqQqzkof/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLVadkbMwVsSMkSzev7MZjbSeRoHNRNSM9bI3H/7n9VITXvkZl0lqUDIbsV6YCmJiMm9MhlwhM2JqgTLF7ZaEjamizNi7lGx9b7nsKrRrVe+iWrurVxrX+SGKcAKncA4eXEIDbqEJLWAwgmd4g3cndJ6cF+f1J1pw8j/H8EfOxzfxAYsw</latexit>

n3
<latexit sha1_base64="Rr9k4A0gv/ddAC2cTgmRyF8jpSk=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmwESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6l4P6oFxxq+5CZBW8HCqQqzkof/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLVadkbMwVsSMkSzev7MZjbSeRoHNRNSM9bI3H/7n9VITXvkZl0lqUDIbsV6YCmJiMm9MhlwhM2JqgTLF7ZaEjamizNi7lGx9b7nsKrRrVa9erd1dVBrX+SGKcAKncA4eXEIDbqEJLWAwgmd4g3cndJ6cF+f1J1pw8j/H8EfOxzfyf4sx</latexit>

E1
<latexit sha1_base64="JJshp9xxRPuZNPjfPEGoSTO6JC4=">AAAB5HicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZKuiyKILLivYC7VAy6Zk2NHMhyQhl6BvoStSdT+QL+DamdRba+q++nP8PnP/4iRTaOM4XKaysrq1vFDdLW9s7u3vl/YOWjlPFscljGauOzzRKEWHTCCOxkyhkoS+x7Y+vZ377EZUWcfRgJgl6IRtGIhCcGTu6v+m7/XLFqTpz0WVwc6hArka//NkbxDwNMTJcMq27rpMYL2PKCC5xWuqlGhPGx2yIXYsRC1F72XzVKT0JYkXNCOn8/TubsVDrSejbTMjMSC96s+F/Xjc1waWXiShJDUbcRqwXpJKamM4a04FQyI2cWGBcCbsl5SOmGDf2LiVb310suwytWtU9q9buziv1q/wQRTiCYzgFFy6gDrfQgCZwGMIzvME7CcgTeSGvP9ECyf8cwh+Rj2+yA4sG</latexit>

E2
<latexit sha1_base64="ys8sCKSJeBz/rTvd/Cz/5Kikqwc=">AAAB5HicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZKuiyKILLivYC7VAy6Zk2NHMhyQhl6BvoStSdT+QL+DamdRba+q++nP8PnP/4iRTaOM4XKaysrq1vFDdLW9s7u3vl/YOWjlPFscljGauOzzRKEWHTCCOxkyhkoS+x7Y+vZ377EZUWcfRgJgl6IRtGIhCcGTu6v+nX+uWKU3Xmosvg5lCBXI1++bM3iHkaYmS4ZFp3XScxXsaUEVzitNRLNSaMj9kQuxYjFqL2svmqU3oSxIqaEdL5+3c2Y6HWk9C3mZCZkV70ZsP/vG5qgksvE1GSGoy4jVgvSCU1MZ01pgOhkBs5scC4EnZLykdMMW7sXUq2vrtYdhlatap7Vq3dnVfqV/khinAEx3AKLlxAHW6hAU3gMIRneIN3EpAn8kJef6IFkv85hD8iH9+zgYsH</latexit>

E3
<latexit sha1_base64="bkgetFlBb43i+McHuIAog9hkXik=">AAAB5HicbZDNTsJAFIVv8Q/xD3XpZiIxcUVaMNEl0Zi4xChCAg2ZDrcwYdppZqYmpOENdGXUnU/kC/g2DtiFgmf1zT1nkntukAiujet+OYWV1bX1jeJmaWt7Z3evvH/woGWqGLaYFFJ1AqpR8BhbhhuBnUQhjQKB7WB8NfPbj6g0l/G9mSToR3QY85Azauzo7rpf75crbtWdiyyDl0MFcjX75c/eQLI0wtgwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi3GNELtZ/NVp+QklIqYEZL5+3c2o5HWkyiwmYiakV70ZsP/vG5qwgs/43GSGoyZjVgvTAUxkswakwFXyIyYWKBMcbslYSOqKDP2LiVb31ssuwwPtapXr9ZuzyqNy/wQRTiCYzgFD86hATfQhBYwGMIzvMG7EzpPzovz+hMtOPmfQ/gj5+MbtP+LCA==</latexit>

n4
<latexit sha1_base64="K3S+0Etx2T/myM6DV6S9MQcWWBk=">AAAB6HicbZDNTsJAFIVv8Q/rH+rSTSMxcUVaJNEl0Y1LTOQngYZMh1sYmU6bmakJaXgHXRl15/P4Ar6NU+xCwbP65p4zyT03SDhT2nW/rNLa+sbmVnnb3tnd2z+oHB51VJxKim0a81j2AqKQM4FtzTTHXiKRRAHHbjC9yf3uI0rFYnGvZwn6ERkLFjJKtBl1xTBrzG17WKm6NXchZxW8AqpQqDWsfA5GMU0jFJpyolTfcxPtZ0RqRjnO7UGqMCF0SsbYNyhIhMrPFuvOnbMwlo6eoLN4/85mJFJqFgUmExE9UctePvzP66c6vPIzJpJUo6AmYrww5Y6Onby1M2ISqeYzA4RKZrZ06IRIQrW5TV7fWy67Cp16zbuo1e8a1eZ1cYgynMApnIMHl9CEW2hBGyhM4Rne4N16sJ6sF+v1J1qyij/H8EfWxzceZoxm</latexit>

n1
<latexit sha1_base64="S321ZNT4OeMH+dOSCHwd5bOkwys=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmkESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6lwNvUK64VXchsgpeDhXI1RyUP/vDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYsyhphNrPFqvOyFkYK2LGSBbv39mMRlpPo8BmImrGetmbD//zeqkJr/yMyyQ1KJmNWC9MBTExmTcmQ66QGTG1QJnidkvCxlRRZuxdSra+t1x2Fdq1qndRrd3VK43r/BBFOIFTOAcPLqEBt9CEFjAYwTO8wbsTOk/Oi/P6Ey04+Z9j+CPn4xvvg4sv</latexit>

n2
<latexit sha1_base64="eq/Q/s/MmH8JHCnTM7Vu2Qt5gP0=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmkESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6l4PaoFxxq+5CZBW8HCqQqzkof/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLVadkbMwVsSMkSzev7MZjbSeRoHNRNSM9bI3H/7n9VITXvkZl0lqUDIbsV6YCmJiMm9MhlwhM2JqgTLF7ZaEjamizNi7lGx9b7nsKrRrVe+iWrurVxrX+SGKcAKncA4eXEIDbqEJLWAwgmd4g3cndJ6cF+f1J1pw8j/H8EfOxzfxAYsw</latexit>

n3
<latexit sha1_base64="Rr9k4A0gv/ddAC2cTgmRyF8jpSk=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmwESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6l4P6oFxxq+5CZBW8HCqQqzkof/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLVadkbMwVsSMkSzev7MZjbSeRoHNRNSM9bI3H/7n9VITXvkZl0lqUDIbsV6YCmJiMm9MhlwhM2JqgTLF7ZaEjamizNi7lGx9b7nsKrRrVa9erd1dVBrX+SGKcAKncA4eXEIDbqEJLWAwgmd4g3cndJ6cF+f1J1pw8j/H8EfOxzfyf4sx</latexit>

E1
<latexit sha1_base64="JJshp9xxRPuZNPjfPEGoSTO6JC4=">AAAB5HicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZKuiyKILLivYC7VAy6Zk2NHMhyQhl6BvoStSdT+QL+DamdRba+q++nP8PnP/4iRTaOM4XKaysrq1vFDdLW9s7u3vl/YOWjlPFscljGauOzzRKEWHTCCOxkyhkoS+x7Y+vZ377EZUWcfRgJgl6IRtGIhCcGTu6v+m7/XLFqTpz0WVwc6hArka//NkbxDwNMTJcMq27rpMYL2PKCC5xWuqlGhPGx2yIXYsRC1F72XzVKT0JYkXNCOn8/TubsVDrSejbTMjMSC96s+F/Xjc1waWXiShJDUbcRqwXpJKamM4a04FQyI2cWGBcCbsl5SOmGDf2LiVb310suwytWtU9q9buziv1q/wQRTiCYzgFFy6gDrfQgCZwGMIzvME7CcgTeSGvP9ECyf8cwh+Rj2+yA4sG</latexit>

E2
<latexit sha1_base64="ys8sCKSJeBz/rTvd/Cz/5Kikqwc=">AAAB5HicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZKuiyKILLivYC7VAy6Zk2NHMhyQhl6BvoStSdT+QL+DamdRba+q++nP8PnP/4iRTaOM4XKaysrq1vFDdLW9s7u3vl/YOWjlPFscljGauOzzRKEWHTCCOxkyhkoS+x7Y+vZ377EZUWcfRgJgl6IRtGIhCcGTu6v+nX+uWKU3Xmosvg5lCBXI1++bM3iHkaYmS4ZFp3XScxXsaUEVzitNRLNSaMj9kQuxYjFqL2svmqU3oSxIqaEdL5+3c2Y6HWk9C3mZCZkV70ZsP/vG5qgksvE1GSGoy4jVgvSCU1MZ01pgOhkBs5scC4EnZLykdMMW7sXUq2vrtYdhlatap7Vq3dnVfqV/khinAEx3AKLlxAHW6hAU3gMIRneIN3EpAn8kJef6IFkv85hD8iH9+zgYsH</latexit>

E3
<latexit sha1_base64="bkgetFlBb43i+McHuIAog9hkXik=">AAAB5HicbZDNTsJAFIVv8Q/xD3XpZiIxcUVaMNEl0Zi4xChCAg2ZDrcwYdppZqYmpOENdGXUnU/kC/g2DtiFgmf1zT1nkntukAiujet+OYWV1bX1jeJmaWt7Z3evvH/woGWqGLaYFFJ1AqpR8BhbhhuBnUQhjQKB7WB8NfPbj6g0l/G9mSToR3QY85Azauzo7rpf75crbtWdiyyDl0MFcjX75c/eQLI0wtgwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi3GNELtZ/NVp+QklIqYEZL5+3c2o5HWkyiwmYiakV70ZsP/vG5qwgs/43GSGoyZjVgvTAUxkswakwFXyIyYWKBMcbslYSOqKDP2LiVb31ssuwwPtapXr9ZuzyqNy/wQRTiCYzgFD86hATfQhBYwGMIzvMG7EzpPzovz+hMtOPmfQ/gj5+MbtP+LCA==</latexit>

n4
<latexit sha1_base64="K3S+0Etx2T/myM6DV6S9MQcWWBk=">AAAB6HicbZDNTsJAFIVv8Q/rH+rSTSMxcUVaJNEl0Y1LTOQngYZMh1sYmU6bmakJaXgHXRl15/P4Ar6NU+xCwbP65p4zyT03SDhT2nW/rNLa+sbmVnnb3tnd2z+oHB51VJxKim0a81j2AqKQM4FtzTTHXiKRRAHHbjC9yf3uI0rFYnGvZwn6ERkLFjJKtBl1xTBrzG17WKm6NXchZxW8AqpQqDWsfA5GMU0jFJpyolTfcxPtZ0RqRjnO7UGqMCF0SsbYNyhIhMrPFuvOnbMwlo6eoLN4/85mJFJqFgUmExE9UctePvzP66c6vPIzJpJUo6AmYrww5Y6Onby1M2ISqeYzA4RKZrZ06IRIQrW5TV7fWy67Cp16zbuo1e8a1eZ1cYgynMApnIMHl9CEW2hBGyhM4Rne4N16sJ6sF+v1J1qyij/H8EfWxzceZoxm</latexit>

n1
<latexit sha1_base64="S321ZNT4OeMH+dOSCHwd5bOkwys=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmkESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6lwNvUK64VXchsgpeDhXI1RyUP/vDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYsyhphNrPFqvOyFkYK2LGSBbv39mMRlpPo8BmImrGetmbD//zeqkJr/yMyyQ1KJmNWC9MBTExmTcmQ66QGTG1QJnidkvCxlRRZuxdSra+t1x2Fdq1qndRrd3VK43r/BBFOIFTOAcPLqEBt9CEFjAYwTO8wbsTOk/Oi/P6Ey04+Z9j+CPn4xvvg4sv</latexit>

n2
<latexit sha1_base64="eq/Q/s/MmH8JHCnTM7Vu2Qt5gP0=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmkESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6l4PaoFxxq+5CZBW8HCqQqzkof/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLVadkbMwVsSMkSzev7MZjbSeRoHNRNSM9bI3H/7n9VITXvkZl0lqUDIbsV6YCmJiMm9MhlwhM2JqgTLF7ZaEjamizNi7lGx9b7nsKrRrVe+iWrurVxrX+SGKcAKncA4eXEIDbqEJLWAwgmd4g3cndJ6cF+f1J1pw8j/H8EfOxzfxAYsw</latexit>

n3
<latexit sha1_base64="Rr9k4A0gv/ddAC2cTgmRyF8jpSk=">AAAB5HicbZDNTgIxFIXv4B/iH+rSTSMxcUVmwESXRDcuMcpPAhPSKXegodOZtB0TMuENdGXUnU/kC/g2FpyFgmf19Z7T5J4bJIJr47pfTmFtfWNzq7hd2tnd2z8oHx61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5mfudR1Sax/LBTBP0IzqSPOSMGju6l4P6oFxxq+5CZBW8HCqQqzkof/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLVadkbMwVsSMkSzev7MZjbSeRoHNRNSM9bI3H/7n9VITXvkZl0lqUDIbsV6YCmJiMm9MhlwhM2JqgTLF7ZaEjamizNi7lGx9b7nsKrRrVa9erd1dVBrX+SGKcAKncA4eXEIDbqEJLWAwgmd4g3cndJ6cF+f1J1pw8j/H8EfOxzfyf4sx</latexit>

E1
<latexit sha1_base64="JJshp9xxRPuZNPjfPEGoSTO6JC4=">AAAB5HicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZKuiyKILLivYC7VAy6Zk2NHMhyQhl6BvoStSdT+QL+DamdRba+q++nP8PnP/4iRTaOM4XKaysrq1vFDdLW9s7u3vl/YOWjlPFscljGauOzzRKEWHTCCOxkyhkoS+x7Y+vZ377EZUWcfRgJgl6IRtGIhCcGTu6v+m7/XLFqTpz0WVwc6hArka//NkbxDwNMTJcMq27rpMYL2PKCC5xWuqlGhPGx2yIXYsRC1F72XzVKT0JYkXNCOn8/TubsVDrSejbTMjMSC96s+F/Xjc1waWXiShJDUbcRqwXpJKamM4a04FQyI2cWGBcCbsl5SOmGDf2LiVb310suwytWtU9q9buziv1q/wQRTiCYzgFFy6gDrfQgCZwGMIzvME7CcgTeSGvP9ECyf8cwh+Rj2+yA4sG</latexit>

E2
<latexit sha1_base64="ys8sCKSJeBz/rTvd/Cz/5Kikqwc=">AAAB5HicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZKuiyKILLivYC7VAy6Zk2NHMhyQhl6BvoStSdT+QL+DamdRba+q++nP8PnP/4iRTaOM4XKaysrq1vFDdLW9s7u3vl/YOWjlPFscljGauOzzRKEWHTCCOxkyhkoS+x7Y+vZ377EZUWcfRgJgl6IRtGIhCcGTu6v+nX+uWKU3Xmosvg5lCBXI1++bM3iHkaYmS4ZFp3XScxXsaUEVzitNRLNSaMj9kQuxYjFqL2svmqU3oSxIqaEdL5+3c2Y6HWk9C3mZCZkV70ZsP/vG5qgksvE1GSGoy4jVgvSCU1MZ01pgOhkBs5scC4EnZLykdMMW7sXUq2vrtYdhlatap7Vq3dnVfqV/khinAEx3AKLlxAHW6hAU3gMIRneIN3EpAn8kJef6IFkv85hD8iH9+zgYsH</latexit>

E3
<latexit sha1_base64="bkgetFlBb43i+McHuIAog9hkXik=">AAAB5HicbZDNTsJAFIVv8Q/xD3XpZiIxcUVaMNEl0Zi4xChCAg2ZDrcwYdppZqYmpOENdGXUnU/kC/g2DtiFgmf1zT1nkntukAiujet+OYWV1bX1jeJmaWt7Z3evvH/woGWqGLaYFFJ1AqpR8BhbhhuBnUQhjQKB7WB8NfPbj6g0l/G9mSToR3QY85Azauzo7rpf75crbtWdiyyDl0MFcjX75c/eQLI0wtgwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi3GNELtZ/NVp+QklIqYEZL5+3c2o5HWkyiwmYiakV70ZsP/vG5qwgs/43GSGoyZjVgvTAUxkswakwFXyIyYWKBMcbslYSOqKDP2LiVb31ssuwwPtapXr9ZuzyqNy/wQRTiCYzgFD86hATfQhBYwGMIzvMG7EzpPzovz+hMtOPmfQ/gj5+MbtP+LCA==</latexit>

n4
<latexit sha1_base64="K3S+0Etx2T/myM6DV6S9MQcWWBk=">AAAB6HicbZDNTsJAFIVv8Q/rH+rSTSMxcUVaJNEl0Y1LTOQngYZMh1sYmU6bmakJaXgHXRl15/P4Ar6NU+xCwbP65p4zyT03SDhT2nW/rNLa+sbmVnnb3tnd2z+oHB51VJxKim0a81j2AqKQM4FtzTTHXiKRRAHHbjC9yf3uI0rFYnGvZwn6ERkLFjJKtBl1xTBrzG17WKm6NXchZxW8AqpQqDWsfA5GMU0jFJpyolTfcxPtZ0RqRjnO7UGqMCF0SsbYNyhIhMrPFuvOnbMwlo6eoLN4/85mJFJqFgUmExE9UctePvzP66c6vPIzJpJUo6AmYrww5Y6Onby1M2ISqeYzA4RKZrZ06IRIQrW5TV7fWy67Cp16zbuo1e8a1eZ1cYgynMApnIMHl9CEW2hBGyhM4Rne4N16sJ6sF+v1J1qyij/H8EfWxzceZoxm</latexit>

n5
<latexit sha1_base64="P+6ZmlgyJSJL8PnzswHO+ESPcuQ=">AAAB6HicbZDLTsMwEEUn5VXCq8CSjUWFxKpKCgiWFWxYFok+pDaqHHfSmjoP2Q5SFfUfYIWAHd/DD/A3OCULaLmr47nX0tzxE8GVdpwvq7Syura+Ud60t7Z3dvcq+wdtFaeSYYvFIpZdnyoUPMKW5lpgN5FIQ19gx5/c5H7nEaXicXSvpwl6IR1FPOCMajPqRIPsYmbbg0rVqTlzkWVwC6hCoeag8tkfxiwNMdJMUKV6rpNoL6NScyZwZvdThQllEzrCnsGIhqi8bL7ujJwEsSR6jGT+/p3NaKjUNPRNJqR6rBa9fPif10t1cOVlPEpSjREzEeMFqSA6JnlrMuQSmRZTA5RJbrYkbEwlZdrcJq/vLpZdhna95p7V6nfn1cZ1cYgyHMExnIILl9CAW2hCCxhM4Bne4N16sJ6sF+v1J1qyij+H8EfWxzcf54xn</latexit>

n6
<latexit sha1_base64="8bl8iX/GZt4c7EtamE8b28G1lQs=">AAAB6HicbZDLTsMwEEUn5VXCq8CSjUWFxKpKCgKWFWxYFok+pDaqHHfSmjoP2Q5SFfUfYIWAHd/DD/A3OCULaLmr47nX0tzxE8GVdpwvq7Syura+Ud60t7Z3dvcq+wdtFaeSYYvFIpZdnyoUPMKW5lpgN5FIQ19gx5/c5H7nEaXicXSvpwl6IR1FPOCMajPqRIPsYmbbg0rVqTlzkWVwC6hCoeag8tkfxiwNMdJMUKV6rpNoL6NScyZwZvdThQllEzrCnsGIhqi8bL7ujJwEsSR6jGT+/p3NaKjUNPRNJqR6rBa9fPif10t1cOVlPEpSjREzEeMFqSA6JnlrMuQSmRZTA5RJbrYkbEwlZdrcJq/vLpZdhna95p7V6nfn1cZ1cYgyHMExnIILl9CAW2hCCxhM4Bne4N16sJ6sF+v1J1qyij+H8EfWxzchaIxo</latexit>

n7
<latexit sha1_base64="RT73kRrb5kEVCNArdqu70BBgUBo=">AAAB6HicbZDNTsJAFIVv8Q/rH+rSTSMxcUVaNMEl0Y1LTOQngYZMh1sYmU6bmakJaXgHXRl15/P4Ar6NU+xCwbP65p4zyT03SDhT2nW/rNLa+sbmVnnb3tnd2z+oHB51VJxKim0a81j2AqKQM4FtzTTHXiKRRAHHbjC9yf3uI0rFYnGvZwn6ERkLFjJKtBl1xTBrzG17WKm6NXchZxW8AqpQqDWsfA5GMU0jFJpyolTfcxPtZ0RqRjnO7UGqMCF0SsbYNyhIhMrPFuvOnbMwlo6eoLN4/85mJFJqFgUmExE9UctePvzP66c6vPIzJpJUo6AmYrww5Y6Onby1M2ISqeYzA4RKZrZ06IRIQrW5TV7fWy67Cp16zbuo1e8uq83r4hBlOIFTOAcPGtCEW2hBGyhM4Rne4N16sJ6sF+v1J1qyij/H8EfWxzci6Yxp</latexit> n8

<latexit sha1_base64="PBHsm55ZvWm+lGogONy8OM5Bx/s=">AAAB6HicbZDNTsJAFIVv8Q/rH+rSTSMxcUVaNJEl0Y1LTOQngYZMh1sYmU6bmakJaXgHXRl15/P4Ar6NU+xCwbP65p4zyT03SDhT2nW/rNLa+sbmVnnb3tnd2z+oHB51VJxKim0a81j2AqKQM4FtzTTHXiKRRAHHbjC9yf3uI0rFYnGvZwn6ERkLFjJKtBl1xTBrzG17WKm6NXchZxW8AqpQqDWsfA5GMU0jFJpyolTfcxPtZ0RqRjnO7UGqMCF0SsbYNyhIhMrPFuvOnbMwlo6eoLN4/85mJFJqFgUmExE9UctePvzP66c6bPgZE0mqUVATMV6YckfHTt7aGTGJVPOZAUIlM1s6dEIkodrcJq/vLZddhU695l3U6neX1eZ1cYgynMApnIMHV9CEW2hBGyhM4Rne4N16sJ6sF+v1J1qyij/H8EfWxzckaoxq</latexit>

n9
<latexit sha1_base64="xgV+zP1uxO7w8akqSqiS0WGgPk8=">AAAB6HicbZDLSsNAFIZP6q3GW9Wlm8EiuCpJFdRd0Y3LCvYCbSiT6Uk7dnJhZiKU0HfQlag7n8cX8G2c1Cy09V99c/5/4PzHTwRX2nG+rNLK6tr6RnnT3tre2d2r7B+0VZxKhi0Wi1h2fapQ8AhbmmuB3UQiDX2BHX9yk/udR5SKx9G9nibohXQU8YAzqs2oEw2yq5ltDypVp+bMRZbBLaAKhZqDymd/GLM0xEgzQZXquU6ivYxKzZnAmd1PFSaUTegIewYjGqLysvm6M3ISxJLoMZL5+3c2o6FS09A3mZDqsVr08uF/Xi/VwaWX8ShJNUbMRIwXpILomOStyZBLZFpMDVAmudmSsDGVlGlzm7y+u1h2Gdr1mntWq9+dVxvXxSHKcATHcAouXEADbqEJLWAwgWd4g3frwXqyXqzXn2jJKv4cwh9ZH98l64xr</latexit>

FIGURE A.2: Gradient evaluations depicted at left, and representations of
Hermite triangles for p = 3, 4 at middle and right, respectively

A.3 The interpolant

Once we have introduced and examined a number of FEs, we join them together so as to
construct subspaces of Sobolev spaces. In order to do it, we define the (local) interpolant
of a FE (it was firstly introduced at subsection 3.1.3 in the particular case of Poisson’s one-
dimensional BVP).

Let (K,P ,N) be a FE, let {φ}k
i=0 be a nodal basis of P , and let m be the order of the

highest partial derivative involved in the nodal variables of N = {Ni : P ′ −→ R : 0 ≤
i ≤ k}. In what follows, we will refer to m as the order of N . Then, the interpolant of a
real-valued function f ∈ Cm(K) is defined by

IK f :=
k

∑
i=0

Ni(f)φi. (A.1)

It is immediate to check that IK is linear, idempotent (i.e., I2
K ≡ IK or IK f = f for all

f ∈ P), and such that it verifies Ni(IK f) = Ni(f) for all 0 ≤ i ≤ k. The latter property has
the interpretation that IK f is the unique shape function which has the same nodal values
as f .

We now formally define the concept of splitting a domain into subdomains: let Ω ⊂ Rd

be a domain and let {Kt}T
t=1 be a finite collection of subsets of Ω such that: (i) int Kt1 ∩

int Kt2 = ∅ for all t1 6= t2 and (ii)
⋃T

t=1 Kt = Ω. Then, we say that {Kt}T
t=1 is a subdivision

of Ω. Furthermore, if for each t ∈ {1, 2, . . . , T} the triple (Kt,P t,N t) conforms a FE (i.e.,
there exist a space of functions P t and a collection of nodal variables N t associated to the
element domain Kt), we say that G = {(Kt,P t,N t) : 0 ≤ t ≤ T} is a finite element grid (or
simply a grid) for Ω. In this setting, we call order of G, and denote it by m, to the highest
order of the collections of nodal variables (i.e., m = max1≤t≤T{mt : mt is the order of N t}).

Putting the previous ingredients together, we are able to generalize globally the previ-
ous (local) interpolant: let Ω be a domain and let G = {(Kt,P t,N t)}T

t=1 be a grid for Ω
with order m. If f : Ω −→ R such that f ∈ Cm(Ω), then the global interpolant of f with

52 Appendix A. Construction of a Finite Element space

respect to G is denoted by IG f and defined by IG f |Kt = IKt f for all t ∈ {1, 2, . . . , T}.

Thereby, in the setting developed at chapter 3 for the Galerkin approximation, we may
use a finite-dimensional space of piecewise polynomial functions as the testing space:

Vh = {IG f : f ∈ Cm(Ω) and f |∂ΩD ≡ 0}, (A.2)

with G being a grid for Ω, m its order, and IG the global interpolant operator.

Without further assumptions on the subdivision, no continuity properties can be as-
sured for the global interpolant. However, when it does, we say that a global interpolant
has continuity order r whenever IG f ∈ Cr(Ω) for all f ∈ Cm(Ω). Likewise, the space of
piecewise polynomial functions {IG f : f ∈ Cm(Ω)} is said to be a Cr finite element space.

We now formally present a particular kind of two-dimensional domain subdivision in
triangular subdomains: if Ω ⊂ R2 is a polygonal domain and T = {(Kt,P t,N t)}T

t=1 is a
grid for Ω, then T is called a triangulation of Ω when each Kt is a triangle and no of its
vertices lie in the interior of an edge of another triangle for 1 ≤ t ≤ T.

The following theorem states a result according to the degree of continuity the space of
interpolant functions have when a triangulation with the previous introduced triangles is
performed in a polygonal domain.

Theorem A.1. The Lagrange and Hermite elements are C0. If Ω ⊂ R2 is a polygonal domain
and T = {(Kt,P t,N t)}T

t=1 is a triangulation of Ω made up of Lagrange or Hermite elements
(all the elements are of the same kind in the triangulation), then it is possible to choose edge nodes
in the triangles Kt such that the global interpolant is C1 and such that the order of G is equal to
m = 0 or m = 1, respectively. Furthermore, it suffices for each edge with vertices v1

i and v2
i to have

p− 1− 2m nodes {θ j
i (v

1
i − v2

i) + v1
i }j with the set of real parameters {θ j

i : 1 ≤ j ≤ p− 1− 2m}
being symmetric around 1/2.

Moreover, under these hypotheses, IT f ∈Wr+1
∞ (Ω).

Proof. See [7, p. 81]

In essence, this is the general structure to follow on a FEM based on the Galerkin’s ap-
proximation theory: first we divide a domain into (possibly simpler) subdomains, then we
solve in each subdomain the corresponding subproblem by employing the Galerkin’s ap-
proximation method, and finally, we piece together all the subsolutions in a global solution
through the global interpolant function.

Generally, polynomial functions are the most used to approximate the subsolutions
elementwise. However, other kind of approximating shape functions may be considered,
as it was the case with the Fourier system in chapter 4.

53

Bibliography

[1] R. A. Adams and J. Fournier. Sobolev spaces, volume 140. Elsevier, 2003.

[2] J. Alvarez-Aramberri and D. Pardo. Dimensionally adaptive hp-finite element sim-
ulation and inversion of 2d magnetotelluric measurements. Journal of Computational
Science, 18:95–105, 2017.

[3] S. Amari. Backpropagation and stochastic gradient descent method. Neurocomputing,
5(4-5):185–196, 1993.

[4] M. E. Baron. The origins of the infinitesimal calculus. Courier Corporation, 2003.

[5] B. Bogosel. Weak formulation for Laplace Equation with Robin bound-
ary conditions. https://mathproblems123.wordpress.com/2012/10/22/

weak-formulation-for-laplace-equation-with-robin-boundary-conditions/,
2012. [Last Accessed: 21th June 2019].

[6] B. A. Bolt, W. L. Horn, G. A. MacDonald, and R. F. Scott. Geological Hazards:
Earthquakes-tsunamis-volcanoes-avalanches-landslides-floods. Springer Science & Busi-
ness Media, 2013.

[7] S. Brenner and R. Scott. The mathematical theory of finite element methods, volume 15.
Springer Science & Business Media, 2007.

[8] P. G. Ciarlet. The finite element method for elliptic problems, volume 40. SIAM, 2002.

[9] John B Conway. A course in functional analysis, volume 96. Springer Science & Business
Media, 2013.

[10] N. Diamanti and A. Giannopoulos. Implementation of adi-fdtd subgrids in ground
penetrating radar fdtd models. Journal of Applied Geophysics, 67(4):309–317, 2009.

[11] Y. V. Egorov and M. A. Shubin. Foundations of the classical theory of partial differential
equations, volume 30. Springer Science & Business Media, 2013.

[12] C. L. Fefferman. Existence and smoothness of the Navier-Stokes equation. The millen-
nium prize problems, 57:57–67, 2006.

[13] P. G. Fookes. Geology for engineers: the geological model, prediction and perfor-
mance. Quarterly Journal of Engineering Geology and Hydrogeology, 30(4):293–424, 1997.

[14] A. Fournier. Review of machine-learning applications in exploration geophysics, 10
2017.

https://mathproblems123.wordpress.com/2012/10/22/weak-formulation-for-laplace-equation-with-robin-boundary-conditions/
https://mathproblems123.wordpress.com/2012/10/22/weak-formulation-for-laplace-equation-with-robin-boundary-conditions/

54 BIBLIOGRAPHY

[15] I. B. Fridleifsson. Geothermal energy for the benefit of the people. Renewable and
sustainable energy reviews, 5(3):299–312, 2001.

[16] M. W. Gardner and S. R. Dorling. Artificial neural networks (the multilayer percep-
tron)—a review of applications in the atmospheric sciences. Atmospheric environment,
32(14-15):2627–2636, 1998.

[17] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

[18] Mathmode Research Group. MATHMODE Website. https://sites.google.com/

prod/view/mathmode, 2018. [Last Accessed: 5th September 2019].

[19] K. K. Gupta and J. L. Meek. A brief history of the beginning of the finite element
method. International journal for numerical methods in engineering, 39(22):3761–3774,
1996.

[20] J. Hadamard. Lectures on Cauchy’s problem in linear partial differential equations, vol-
ume 37. Yale University Press, 1923.

[21] P. R. Halmos. Measure theory, volume 18. Springer, 2013.

[22] D. M. Hawkins. The problem of overfitting. Journal of chemical information and computer
sciences, 44(1):1–12, 2004.

[23] R. Hecht-Nielsen. Theory of the backpropagation neural network. In Neural networks
for perception, pages 65–93. Elsevier, 1992.

[24] L. Hogben. Handbook of linear algebra. Chapman and Hall/CRC, 2013.

[25] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural
networks, 4(2):251–257, 1991.

[26] T. J. R. Hughes. The finite element method: linear static and dynamic finite element analysis.
Courier Corporation, 2012.

[27] D. Hunter, H. Yu, M. S. Pukish III, J. Kolbusz, and B. M. Wilamowski. Selection of
proper neural network sizes and architectures—a comparative study. IEEE Transac-
tions on Industrial Informatics, 8(2):228–240, 2012.

[28] V. Isakov. Inverse problems for partial differential equations, volume 127. Springer, 2006.

[29] R. A. Jacobs. Increased rates of convergence through learning rate adaptation. Neural
networks, 1(4):295–307, 1988.

[30] K. Janocha and W. M. Czarnecki. On loss functions for deep neural networks in clas-
sification. arXiv preprint arXiv:1702.05659, 2017.

[31] V. Keilis-Borok and A. A. Soloviev. Nonlinear dynamics of the lithosphere and earthquake
prediction. Springer Science & Business Media, 2013.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://sites.google.com/prod/view/mathmode
https://sites.google.com/prod/view/mathmode

BIBLIOGRAPHY 55

[32] K. Key and J. Ovall. A parallel goal-oriented adaptive finite element method for 2.5-d
electromagnetic modelling. Geophysical Journal International, 186(1):137–154, 2011.

[33] Y. Kim and N. Nakata. Geophysical inversion versus machine learning in inverse
problems. The Leading Edge, 37(12):894–901, 2018.

[34] T. W. Körner. Fourier analysis. Cambridge university press, 1989.

[35] J. M. Landsberg. Tensors: geometry and applications. Representation theory, 381(402):3,
2012.

[36] V. Mackevicius. Integral and Measure: From Rather Simple to Rather Complex. John Wiley
& Sons, 2014.

[37] N. G. Meyers and J. Serrin. H = W, PYOC. In Nat. Acad. Sci. USA, volume 51, pages
1055–1056, 1964.

[38] M. N. Nabighian and M. W. Asten. Metalliferous mining geophysics—state of the
art in the last decade of the 20th century and the beginning of the new millennium.
Geophysics, 67(3):964–978, 2002.

[39] T. M. Nguyen. N-dimensional quasipolar coordinates-theory and application. 2125,
2014.

[40] University of Cambridge. What is a Tensor? https://www.doitpoms.ac.uk/tlplib/

tensors/index.php, 2008. [Last Accessed: 25th August 2019].

[41] D. Pardo, V.M. Calo, C. Torres-Verdín, and M. J. Nam. Fourier series expansion in
a non-orthogonal system of coordinates for the simulation of 3d-dc borehole resis-
tivity measurements. Computer Methods in Applied Mechanics and Engineering, 197(21-
24):1906–1925, 2008.

[42] D. Pardo, L. Demkowicz, C. Torres-Verdín, and L. Tabarovsky. A goal-oriented hp-
adaptive finite element method with electromagnetic applications. part i: electrostat-
ics. International Journal for Numerical Methods in Engineering, 65(8):1269–1309, 2006.

[43] L. Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pages
55–69. Springer, 1998.

[44] H. L. Royden. Real analysis. Krishna Prakashan Media, 1968.

[45] D. W. Ruck, S. K. Rogers, and M. Kabrisky. Feature selection using a multilayer per-
ceptron. Journal of Neural Network Computing, 2(2):40–48, 1990.

[46] W. Rudin. Real and complex analysis. Tata McGraw-hill education, 2006.

[47] L. Schwartz and Institut de mathématique (Strasbourg). Théorie des distributions, vol-
ume 2. Hermann Paris, 1957.

https://www.doitpoms.ac.uk/tlplib/tensors/index.php
https://www.doitpoms.ac.uk/tlplib/tensors/index.php

56 BIBLIOGRAPHY

[48] M. Shahriari, D. Pardo, A. Picón, A. Galdrán, J. Del Ser, and C. Torres-Verdín. A Deep
Learning Approach to the Inversion of Borehole Resistivity Measurements. arXiv
preprint arXiv:1810.04522, 2018.

[49] G. D. Smith. Numerical solution of partial differential equations: finite difference methods.
Oxford university press, 1985.

[50] Elias M Stein. Singular integrals and differentiability properties of functions, volume 2.
Princeton university press, 1970.

[51] J. Stillwell. Mathematics and its history. The Australian Mathem. Soc, page 168, 2002.

[52] A. Tarantola. A strategy for nonlinear elastic inversion of seismic reflection data. Geo-
physics, 51(10):1893–1903, 1986.

[53] A. Tarantola. Inverse problem theory and methods for model parameter estimation, vol-
ume 89. siam, 2005.

[54] I. V. Tetko, D. J. Livingstone, and A. I. Luik. Neural network studies. 1. comparison
of overfitting and overtraining. Journal of chemical information and computer sciences,
35(5):826–833, 1995.

[55] P. Vanapalli. Backprop is very simple. Who made it Complicated?
https://github.com/Prakashvanapalli/TensorFlow/blob/master/Blogposts/

Backpropogation_with_Images.ipynb, 2017. [Last Accessed: 4th June 2019].

[56] V. S. Vladimirov. Equations of mathematical physics. Moscow Izdatel Nauka, 1976.

[57] Curtis R Vogel. Computational methods for inverse problems, volume 23. Siam, 2002.

[58] E. Zauderer. Partial differential equations of applied mathematics, volume 71. John Wiley
& Sons, 2011.

[59] O. C. Zienkiewicz, R. L. Taylor, P. Nithiarasu, and J. Z. Zhu. The finite element method,
volume 3. McGraw-hill London, 1977.

[60] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. Parallelized stochastic gradient
descent. In Advances in neural information processing systems, pages 2595–2603, 2010.

[61] S. Zlotnik, P. Díez, D. Modesto, and A. Huerta. Proper generalized decomposition of a
geometrically parametrized heat problem with geophysical applications. International
Journal for Numerical Methods in Engineering, 103(10):737–758, 2015.

https://github.com/Prakashvanapalli/TensorFlow/blob/master/Blogposts/Backpropogation_with_Images.ipynb
https://github.com/Prakashvanapalli/TensorFlow/blob/master/Blogposts/Backpropogation_with_Images.ipynb

	Acknowledgments
	Abstract
	Introduction
	Motivation and background
	Main contributions and structure of the thesis

	From Partial Differential Equations to Neural Networks
	Partial Differential Equations and mathematical modeling
	Forward and inverse problems
	Deep Learning as a method for solving inverse Problems
	Basic architecture of Neural Networks
	Construction of Neural Networks

	Solving a large number of forward problems
	A simple model problem: heat propagation

	A mathematical review of the Finite Element Method
	Basic concepts
	Variational formulation of Boundary Value Problems
	Ritz-Galerkin approximation and error estimates
	Picewise polynomial spaces for the FEM

	Sobolev spaces
	Lebesgue integration theory
	Weak derivatives
	Sobolev norms, Sobolev spaces and some properties
	Review of section 3.1

	Variational Formulation of elliptic Boundary Value Problems
	Inner-product and Hilbert spaces
	Projections onto subspaces and Riesz's Representation Theorem
	Formulation of symmetric variational problems
	Formulation of non-symmetric variational problems
	Error estimates for the general Finite Element Method

	Variational formulation of Poisson's equation BVP

	Fourier summation approximation for Finite Element computations
	Variational Formulation in an arbitrary Coordinate System
	Fourier summation approximation
	Poisson's equation with Fourier summation approximation
	General development
	Example in one dimension
	Some comments for higher dimension problems
	Construction of a two dimensional tensor
	Example in general dimension. Methodology
	Rapid generation of stiffness matrices

	Conclusions and Future Work
	Review and conclusions
	Future work

	Construction of a Finite Element space
	Finite Element
	Examples of triangular FEs in two dimensions
	The interpolant

	Bibliography

