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Abstract

While probabilistic modelling has been widely used in the last decades, the quantitative prediction
in stochastic modelling of real physical problems remains a great challenge and requires sophisticated
mathematical models and advanced numerical algorithms.
In this study, we developed the mathematical tools for solving three long-standing problems in Poly-
mer Science and Quantum Measurement theory.
The question, “Why kinetic models cannot reproduce experimental observations in Controlled Radical
Polymerization (CRP)?” has been answered by introducing in the kinetic model a delay and treating
CRP as a non-Markovian process. The efficient stochastic simulation (SS) approach allowing for an
accurate description of CRP has been formulated, theoretically grounded and tested using experimen-
tal data and the less advanced SS algorithms.
An accurate prediction of a morphology development in multi-phase polymers is vital for synthesis of
new materials but still not feasible due to its complexity. We proposed a Population Balance Equa-
tions (PBE)-based model and derived a conceptually new and computationally tractable numerical
approach for its solution in order to provide a systematic tool for a morphology prediction in composite
polymers.
Finally, we designed a stochastic simulation framework for continuous measurements performed on
quantum systems of theoretical and experimental interest, which helped us to re-examine the “fuzzy
continuous measurements” theory by Audretsch and Mensky (1997) and expose some of its deficien-
cies, while making amendments where necessary.
All developed modelling approaches are general enough to be applied to the broad range of physi-
cal applications and thus ultimately to contribute to the understanding and prediction of complex
chemical and physical processes.
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y las técnicas consolidadas se muestran en blanco, mientras que las formulaciones e
implantaciones novedosas se destacan en amarillo. El icono “New” indica ideas concep-
tualmente nuevas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 The propagation process consists in the addition of a monomer unit (black sphere) to a
polymer chain. The radical (red sphere) located at the chain end creates the bond (red
line) between the polymer chain and the added monomer. The propagation reaction also
regenerates the active radical (red sphere) at the new tail of the chain. The backbiting
reaction can occur after the polymer chain starts rolling. The bend allows the radical
(red sphere) being transferred to a monomer unit within the polymer chain, producing
the mid-chain radical. Successive propagations from the mid-chain radical result in the
formation of a branched structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Figure (a) shows the mean length of the polymer chain versus time for different values
of the delay τ . Figure (b) shows the short time limit (1.31) for infinite τ and the large
time limit (1.32) of the mean length of the polymer chain. . . . . . . . . . . . . . . . . 24

1.3 Comparison of the delayed PDF f̄branch(t, n0) (1.36) (implicit constraints) with its
linear-exponential approximation f̄LEbranch(t) (1.46) for two values of the ratio cbranch/cadd
and n0 = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4 The ratio of the mean number of branches to the mean total length of the chain (the
branching fraction) simulated using the algorithms presented in subsubsection 1.3.5.1
(solid line), subsubsection 1.3.5.2 (circles) and subsubsection 1.3.5.4 (dashed line) for
two values of the ratio cbranch/cadd and n0 = 3. . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Computational cost of simulation approaches discussed in subsubsection 1.3.5.1 (cir-
cles), subsubsection 1.3.5.2 (triangles) and subsubsection 1.3.5.4 (crosses) for two values
of the ratio cbranch/cadd and n0 = 3. The approximated method given in subsubsec-
tion 1.3.5.4 is the most computationally efficient, especially for big sample sizes. . . . . 28

1.6 Comparison between the analytical solution (1.67) (lines) and corresponding statistics
(crosses) obtained by the Monte Carlo (MC) method proposed in subsubsection 1.3.5.2.
Five independent runs are performed for two different parameters sets: n0 = 3, c2/c1 =
1 (solid line) and n0 = 3, c2/c1 = 0.2 (dashed line). The MC sample size is equal to
G = 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.7 Experimental branching fractions and corresponding uncertainty intervals, provided by
the research group of Prof. J. M. Asua in POLYMAT. . . . . . . . . . . . . . . . . . . 36

v



List of Figures

1.8 Comparison between the accuracy and efficiency of the Monte Carlo (MC) method and
the Analytical Solution (AS) for matching the experimental branching fractions (Bulk
and Solution Polymerization). The settings of the compared tests T1-T8 are available
in Table 1.1. The fitting achieved in Figure 1.8a corresponds to the parameters values
given in Table 1.2. The computational times shown in Figure 1.8b are required by the
optimisation algorithm performed with an increasing number of iterations. The AS
speeds up the procedure by the factor of 104 compared with the MC method of the
same level of accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.9 Comparison between the accuracy and efficiency of the Monte Carlo (MC) method and
the Analytical Solution (AS) for matching the experimental branching fractions (Bulk
and Solution Polymerization). The settings of the compared tests T9-T16 are available
in Table 1.1. The fitting achieved in Figure 1.9a corresponds to the parameters values
given in Table 1.3. The computational times shown in Figure 1.9b are required by the
optimisation algorithm performed with an increasing number of iterations. The AS
speeds up the procedure by the factor of 104 compared with the MC method of the
same level of accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1 Examples of particle morphologies: (A) core-shell with transition layer, (B) “rasp-
berry” morphology, (C) “salt-and-pepper” morphology, (D) interpenetrating network,
(E) lobed particle. The white and black areas indicate the phase-separated domains
comprising the polymer particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Reaction mechanisms driving the evolution of the polymer clusters composing the mor-
phology of a single polymer particle [•]: (a) the polymerization of the Monomer 2 [ ]
into the Polymer 2 chains [ ], (b) the nucleation of the Polymer 2 agglomerates [ ]
into the non-equilibrium clusters [•], (c) the growth of the clusters volume [•], (d) the
aggregation of the clusters with sizes v and u, (e) the migration of the non-equilibrium
clusters [•] to the equilibrium position [•]. . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Initial condition ω0(v) (2.140) (dashed) and equilibrium solution m∗(v) (solid) of Model
I for the rates (2.139). The equilibrium solution m∗(v) is obtained using LTT, followed
by inverting the Laplace transform m̄(λ) (2.84) with the MATLAB function nilt, revised
in subsubsection 2.3.1.4. The numerical routine requires 2 × 10−3 sec of computation
of a 2.70GHz processor, running a 64-bit Linux operating system. . . . . . . . . . . . . 81

2.4 Comparison of (a) LISM, (b) GMOC and (c) SSA with LTT in computation of the
solution m(v, t) of (2.25), with rates (2.139) and initial condition (2.140). The error
ε(v, t) is defined as in (2.137). Table 2.2 reports simulation settings and computational
times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.5 Comparison of LISM and LTT in computation of the solution m(v, t) of (2.25), with
rates (2.139), initial data (2.140) and ε(v, t) (2.137). Table 2.3 reports settings and
computational times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.6 Comparison of (a) LISM, (b) GMOC and (c) SSA with LTT in computation of the
solution m(v, t) of (2.25), with rates (2.143) and initial condition (2.144). The error
ε(v, t) is defined as in (2.137). Table 2.4 reports simulation settings and computational
times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.7 Comparison of (a) LISM and (b) GMOC with LTT in computation of the solution
m(v, t) of (2.25), with rates (2.148), initial condition (2.147) and error ε(v, t) (2.137).
Table 2.5 shows simulation settings and computational times. . . . . . . . . . . . . . . 87

2.C.1Factors building the aggregation rates am,w(v, u, t) = fm,w(t) fa(v, u) in Eq. (2.C.2).
Figure 2.C.1a shows the volume-dependent factor fa(v, u), whose order of magnitude
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with a2 = −a1 = 1, Ĥ = 0 and ∆f/(a2 − a1) = 250. The histograms show the corre-
sponding results of numerical simulations involving 2×104 random realisations, obtained
with the help of Algorithm 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

vii



List of Figures

3.6 (a) A randomly chosen readout fk/∆a, ∆a ≡ a2−a1, for K = 109 Gaussian meters (only
105 values are shown). The system is prepared in the initial state |ψ0〉 = (|a1〉+|a2〉)/

√
2,
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Summary

Natural phenomena and physical systems usually involve processes, characterised by randomness.
Probabilistic modelling is a powerful tool, providing a rich description of such processes. The under-
lying randomness in a probabilistic model is represented by the means of a probability distribution
function, which maps any possible outcome of a given event to its occurrence probability.
The set of all possible outcomes of the observed phenomenon is known as the sample space. A proba-
bility distribution function must be non-negative and return the total probability, if the entire sample
space is considered. Then, the shape of the function indicates the way the probability is distributed
over the various outcomes.
The objective of probabilistic modelling consists in inferring the probability distributions governing
the considered systems. Such description gives the full range of probabilities for any state of the
system, accounting for the inherent randomness.

In this Thesis, we focus on the time evolution of the probability distributions describing various physi-
cal and chemical processes in classical and quantum systems. We develop novel modelling approaches,
which ultimately will contribute to understanding and prediction of such processes. In particular,
the Thesis investigates probabilistic models and simulations techniques addressing the following ap-
plications: (i) Controlled Radical Polymerization, (ii) Multi-phase Polymers Morphology and (iii)
Continuous Fuzzy Measurements made of elementary quantum systems.
Controlled Radical Polymerization (CRP) is a chain-growth process that proceeds by addition
of monomer units to a growing polymer chain. CRP is a special type of polymerization which is
conducted in the presence of an additional chemical reagent known as a control agent. The presence
of such agent allows one to control the molecular weight of the polymer chain.
The available experimental data show that the introduction of control agents in Radical Polymerization
can change the relative frequencies of the competitive reactions, resulting in a significant reduction of
the polymers branching. The interest in new modelling arises from the reported contradiction between
experimental evidences and classical modelling of chemical kinetics.
The Multi-phase Polymers Morphology (MPM) can be defined as the pattern of phase-separated
domains comprising a multi-phase polymers particle. Properties of such a particle strongly depend on
its morphology, and thus the control of particle morphology is a key factor for success in producing
high quality polymers materials.
The synthesis of new morphologies is time and resources consuming, as it largely relies on heuristic
knowledge. Therefore, the predictive modelling of such processes is of great interest to the prac-
titioners. No general methodology is currently available for predicting the morphology of realistic
multi-phase systems. Several modelling approaches, describing the dynamics of the morphology of
a single particle, have been suggested in the last few years (ref. in Section 2.1.1). However, the
single-particle approaches only provide a partial view of realistic systems, containing many particles.
Furthermore, such models are computationally demanding even with the use of High Performance
Computers.
Continuous Fuzzy Measurements (CFM) consist of observations performed on quantum systems
of experimental and theoretical interests. In contrast to the classical case, quantum measurements
have to perturb the system evolution, or no information can, in general, be gathered. In other words,
accurate observations can be only obtained at the price of a strong influence on the free dynamics of
the studied system.
In the nineties of the last century, Mensky reconsidered the need for a compromise between the ac-
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curacy and the perturbation incurred. His proposal consisted in using a sequence of less accurate
(fuzzy) meters, employed ever frequently, ultimately tending to a continuous limit. We will refer to
this technique as Continuous Fuzzy Measurements (CFM). For such a regime, Audretsch and Mensky
(1997) predicted the possibility to detect the system state by direct inspection of the meter outcomes,
eventually aligning with one of the eigenvalues of the measured quantity. We notice that this is not
what happens even if a system is prepared in an eigenstate, in which it will then remain at all times.
This observation motivated our interest in the re-examination of the Mensky’s theory of the CFM,
using the techniques of probabilistic modelling.
The objective of this Thesis is to shed light on some of the questions mentioned above. For that, we
propose to develop probabilistic frameworks for (i) the quantitative modelling of Controlled Radical
Polymerization, which would agree with the experimental evidence, (ii) the on-the-fly prediction of
Multi-phase Polymers Morphology for systems of many particles and (iii) the modelling and analysis
of Continuous Fuzzy Measurements for the re-examination of the Mensky’s theory.
Probabilistic models and simulation algorithms advanced dramatically over the past few decades. To-
day one of the major challenges is to turn the mathematical methods into practical tools. Such tools
should be fast, accurate and made suitable for integration into the modern technological processes.
The algorithms being implemented in the original software package should provide the level of accu-
racy and efficiency required for the study of real-world processes.
With these goals in mind, we have chosen two probabilistic modelling frameworks: (a) Stochastic
Simulations (SS) and (b) Population Balance Equations (PBE).

(a) Research Lines of SS Framework. (b) Research Lines of PBE Framework.

Figure S.1: Probabilistic modelling frameworks proposed in this study: (a) Stochastic Simulations
(SS) and (b) Population Balance Equations (PBE). Known features and well-established techniques
are shown in white, while novel formulations and implementations are highlighted in yellow. The icon
“New” indicates conceptually new ideas.

While Stochastic Simulations strategy is employed in all considered studies, i.e. for the CRP, MPM
and CFM, the Population Balance Equations-based model was only proposed for the prediction
of the development of multi-phase morphologies, i.e. for the MPM.
We consider Stochastic Simulations models in two regimes: Markovian (for the MPM, CFM)
and non-Markovian (for the CRP, CFM). The development of non-Markovian models was crucial
for reproducing the delays, present in chemical reactions of Controlled Radical Polymerization, and
for a reconstruction of non-Markovian, in general, behaviour of meter readings in the CFM. On the
other hand, the evolution of the particles morphology development in the MPM, and highly accurate
measurements in the CFM, are pure Markovian processes, and can be fully described by Markovian
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models.
Several different formulations and implementations of the Monte Carlo algorithm, e.g. Markov Chain
Monte Carlo (MCMC), Stochastic Simulation Algorithm (SSA), random walk Monte Carlo (MC),
have been proposed for the use in Stochastic Simulations within this Thesis, in order to achieve the
best accuracy and performance for each specific application. In addition, the advanced optimisation
procedures, combined with either Monte Carlo or a novel analytical approach, have been developed
for tuning parameters of probability density functions in non-Markovian models.
Figure S.1a summarises the Stochastic Simulations (SS) framework developed, implemented and ap-
plied within this Thesis. The applications of specific components are labelled by an encircled appli-
cation name. The known features and well-established techniques are shown in white, whereas the
novel formulations, derivations or implementations are highlighted in yellow. An icon “New” indicates
where conceptually new ideas have been proposed.
One of such ideas is to assume non-Markovian kinetics, and introduce delays among the competitive
processes of Controlled Radical Polymerization. This assumption, and a thorough analysis of the
statistics of the polymers chains growth in the presence of delays, have led us to yet another two new
findings. First, we identified the effective way to implicitly define a probability distribution function
in a stochastic simulation of delayed processes, even if the precise amount of delay is unknown. Then,
the optimisation algorithm, which secures such identification, has been dramatically improved by re-
placing its Monte Carlo core with an analytical solution.
The Population Balance Equations (PBE)-based framework for prediction of the Multi-phase
Polymers Morphology development in multiple particles systems is explained in Figure S.1b. The
notations similar to those in Figure S.1a are used.
In contrast to currently available computationally expensive and restricted single-particle approaches,
the proposed PBE-based model provides a view of the whole population of polymers particles, taking
into account Physics and Chemistry behind the morphology formation. The novel model has been
presented in dimensionless and computationally tractable variables using our new optimisation algo-
rithm. In addition to the Stochastic Simulation Algorithm (SSA) falling into Stochastic Simulations
framework, we developed three original numerical methods for solving the PBE model for MPM: the
discretization based Generalised Method Of Characteristics (GMOC), the Laplace Transform Tech-
nique (LTT), which analytically derives the Laplace transforms of the PBE solutions, and the Laplace
Induced Splitting Method (LISM). The latter is based on the idea, which, to our knowledge, has never
been explored in numerical methods for PBE. More specifically, we combine a splitting integration
scheme with Laplace induced analytical solutions derived for the simplified PBEs, which together
compose the PBE of interest.
In the following we provide further details about the proposed solutions for each application under
consideration, i.e. CRP, MPM and CFM, while in Table S.1 we outline the objectives, state-of-the-art,
new ideas and major achievements specific to those applications.

Chapter 1 focuses on the quantitative modelling of Controlled Radical Polymerization (CRP). As
stated before, experimental evidence indicates that the introduction of control agents can change the
relative frequencies of the competitive reactions, resulting in a significant reduction of the polymer’s
branching. However, no theoretical or modelling / simulation proofs were presented to date in the
support of this claim. In this study, we suggest that classical kinetics theories cannot predict the
observed reduction, because of the underlying hypothesis of memoryless dynamics. In Chapter 1, we
show that such a reduction can be explained by assuming the non-Markovian kinetics, accounting for
the delays caused by the chemical reactions.
To prove this idea, we select the probabilistic framework of the Stochastic Simulation Algorithm
(SSA), because it can account for the constraints characterising the CRP reaction. In addition, it
can potentially estimate any quantity of interest by the computation of the corresponding statistics.
However, the formulation of SSA requires the choice of the distributions of inter-event times.
Based on the above, we provide the analytical representation of distributions modelling polymerization
reactions with delaying events. We propose mathematical models for Markovian and non-Markovian
growth of a polymer chain, showing that the introduction of delays significantly changes the statistics
of the grown polymer. Our analysis also results in (i) the functional expression of suitable distribu-
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Chapter 1 Chapter 2 Chapter 3

Application Controlled Radical Polymer-
ization (CRP)

Multi-phase Polymers Mor-
phology (MPM)

Continuous Fuzzy Measure-
ments (CFM)

Objective Quantitative Modelling of
CRP

On-the-fly Prediction of
MPM

Modelling & Analysis of
CFM

State-of-the-
art

Kinetic Modelling disagree
with Experiments

Morphology Prediction for a
Single Particle

Mensky’s Theory on CFM

Fresh Ideas CRP is a non-Markovian
Process with Delays

Calculate the Distribution of
Morphologies for the Whole
Population

Some Statements in Men-
sky’s Theory are Incorrect

Results Stochastic Approach for
Modelling CRP in Agree-
ment with Experiments

Computationally Efficient
Modelling Framework for
Prediction of MPM

Re-examination of Mensky’s
Theory

Table S.1: Outline of the Thesis.

tions to embed the required delays and (ii) the SSA-based methodology to simulate the polymerization
reactions of interest.
Since our objective is to explain the reduction in relative frequencies of the competitive reactions,
we then apply the simulation methodology to the computation of relative frequencies of constrained
events. In particular, we design a Monte Carlo (MC) method for evaluation of the quantities of inter-
est. We also derive the corresponding analytical approach, providing a formula for the rate of polymers
branching in CRP of acrylic monomers.
We demonstrate in Chapter 1 that our analytical procedure is free of statistical errors, and thus guar-
antees more accurate estimations, than those provided by an MC simulation. In addition, the method
is significantly (an order of the sample size ≥ 104) faster than the MC approach.
The analytical and Monte Carlo procedures are used as a core of the optimisation routine designed
for refining the parameters of the delayed distributions with the help of available experimental data.
The delayed density functions, with the optimised parameters, complete the formulation of our stochas-
tic approach for modelling the CRP reaction in agreement with experimental observations. The sim-
ulated branching levels correctly reproduce the available data, as shown in Chapter 1.

The goal of Chapter 2 is to develop a modelling framework allowing a fast and accurate prediction of
Multi-phase Polymers Morphology (MPM). The speed of the predictive simulations technique should
be high enough for enabling on-the-fly recommendations for technological conditions in the synthesis
of new multi-phase morphologies.
Contrarily to the available single-particle approaches, we propose to calculate the distribution of mor-
phologies for the whole population of polymer particles, taking into account the relevant kinetic and
thermodynamic effects.
We start with the derivation of a model describing the physics of the process through the distribution
of the expected size of polymers agglomerates. The model is formulated in terms of integro-differential
equations known as Population Balance Equations (PBE). The PBE model accounts for the mecha-
nisms of the considered reaction: aggregation, growth, nucleation and phase transition.
We propose an original procedure for the automatic scaling of the PBE model to dimensionless and
computationally tractable variables. The technique relies on the optimisation routine for finding
proper scaling factors, embedding the information carried by experimental rates expressed in physical
units. We demonstrate that for the latex polymers, the scaling procedure results in reducing the ratio
between maximal and minimal parameters values from 1057 (original) to 105 (dimensionless).
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We also perform an analysis of the derived model, showing the non-negativity of the unknown solution,
characterising its first-orders moments, and studying its asymptotic behaviour.
We develop four approaches for integrating the PBE model: Stochastic Simulation Algorithm (SSA),
Generalised Method Of Characteristics (GMOC), Laplace Transform Technique (LTT) and Laplace
Induced Splitting Method (LISM). The features of each method are analysed in Chapter 2, outlining
benefits and drawbacks.
Although LTT provides high levels of precision and speed for the tested models, its applicability is
limited by the required assumptions. The numerical experiments show that SSA is a robust integra-
tion technique, but computational inefficiencies make the approach not competitive for solving the
addressed PBE model. In the performed experiments, GMOC ensures good accuracy and efficiency
of simulation. However, LISM outperforms GMOC in computational speed by up to a factor of two
orders of magnitude, while guaranteeing the same accuracy for the tested cases.
On the basis of the performed experiments, we conclude that the developed LISM methodology is a
promising technique for prediction of multi-phase polymers morphology in systems of many particles.

Chapter 3 aims to model and analyse the behaviour of measurements performed on quantum systems.
In particular, we consider frequent observations, continuous in the limit, such as Continuous Fuzzy
Measurements (CFM).
By their very nature, continuous quantum measurements are not amenable to an analytical treatment,
but are well suited for numerical simulations. Thus, we propose a stochastic model and a Monte Carlo
(MC) method to study the dynamics of the observations. The measurements behaviour is described
through the knowledge of the distribution of their outcomes.
The developed MC algorithm allows estimating the outcomes of the performed measurements and the
density matrix, describing the state of the monitored quantum system. We validate the accuracy and
the expected convergence rate of the designed MC method, comparing it with the analytical solutions,
whenever these are available. In particular, we obtain an analytical expression for the expectation of
the first meter reading, valid for any level of accuracy of the performed measurements. In addition, the
analytical solution for the density matrix is available, if the taken observations are accurate enough.
In such a case, the meter readings behave like a Markov chain, whose transition probability matrix is
readily derived.
Different regimes of the taken observations are characterised by their accuracy and the corresponding
influence on the system dynamics. In particular, accurate measurements lead to the Markovian be-
haviour of the meters, but affect the natural dynamics of the quantum system. On the other hand,
infrequent imprecise observations result in the non-Markovian regime of the meters. The natural
evolution is unaltered, but very little is known about the actual state of the system. We provide
the proof and the validating tests for the Markovian and non-Markovian behaviour of the quantum
measurements. Both regimes can be successfully simulated using the designed MC method.
The Monte Carlo technique helped us to re-examine the theory by Audretsch and Mensky (1997)
on CFM, often seen as a universal model-free approach to continuous quantum measurements. In
particular, we demonstrate that a Gaussian restriction, resulting in a sequence of many highly inac-
curate measurements, is not sufficiently strong to ensure proximity between the observations and the
Feynman paths along which the monitored system evolves. In the continuous limit, the variations of a
typical measurement become much larger than the separation between the eigenvalues of the measured
quantity. Therefore, we revise the statements of the Mensky’s theory, proposing a different mechanism
for the decoherence in a free system and the Zeno effect in a driven system, when its Rabi oscillations
are quenched by monitoring.

In summary, the methodologies developed within this Thesis have been inspired by several particular
applications and unresolved issues. However, the proposed novel approaches, such as, the mathe-
matical analysis of delayed reactions, the parameter estimation procedure with the analytical core,
the scaling technique to computationally tractable variables, the Laplace induced splitting integration
method, the stochastic model for quantum observations or the revised theory of Continuous Fuzzy
Measurements, can be applied to a broader range of problems in physics, chemistry, and biology. Our
results have been presented in four scientific papers published in the high impact journals [1, 2, 3, 4].
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Resumen

Los fenómenos naturales y los sistemas f́ısicos suelen implicar procesos caracterizados por su aleato-
riedad. La modelización probabiĺıstica es una herramienta potente que proporciona una rica des-
cripción de tales procesos. En un modelo probabiĺıstico, la aleatoriedad subyacente se representa por
medio de una función de distribución de probabilidad, que realiza un mapa de todos los resultados
posibles de un evento dado en función de la probabilidad de sus ocurrencias.
El conjunto de todos los resultados posibles del fenómeno observado se conoce como “espacio mues-
tral”. Una función de distribución de probabilidad debe ser no negativa y reflejar la probabilidad total
si se toma en consideración todo el espacio muestral. En ese caso, la forma de la función indica la
manera en que se distribuye la probabilidad entre los distintos resultados.
El objetivo de la modelización probabiĺıstica consiste en inferir las distribuciones de probabilidad que
rigen los sistemas considerados. Esta descripción proporciona la gama completa de probabilidades
para cualquier estado del sistema, teniendo en cuenta la aleatoriedad inherente.

En esta Tesis nos centramos en la evolución en el tiempo de las distribuciones de probabilidades que
describen varios procesos qúımicos y f́ısicos en sistemas clásicos y cuánticos. Desarrollamos enfoques
de modelización novedosos, que, en última instancia, contribuirán al entendimiento y predicción de
dichos procesos. En concreto, la Tesis investiga modelos probabiĺısticos y técnicas de simulaciones que
tratan las siguientes aplicaciones: (i) Controlled Radical Polymerization, (ii) Multi-phase Polymers
Morphology y (iii) Continuous Fuzzy Measurements realizadas sobre sistemas cuánticos elementales.
Controlled Radical Polymerization (CRP) es un proceso de crecimiento en cadena que actúa
mediante adición de unidades monoméricas a una cadena de poĺımeros en crecimiento. CRP es un
tipo especial de polimerización que se realiza en presencia de un reactivo qúımico adicional conocido
como agente de control. La presencia de dicho agente permite que se controle el peso molecular de la
cadena de poĺımeros.
Los datos experimentales disponibles muestran que la introducción de agentes de control en el proceso
de polimerización puede cambiar las frecuencias relativas de las reacciones competitivas, lo que da
como resultado una reducción significativa de la ramificación de poĺımeros. El interés por nuevas mo-
delizaciones deriva de la contradicción observada entre las evidencias experimentales y la modelización
clásica de la cinética qúımica.
Multi-phase Polymers Morphology (MPM) puede definirse como el patrón de dominios separa-
dos por fases que incluye una part́ıcula de poĺımeros multifásicos. Las propiedades de dicha part́ıcula
dependen en gran medida de su morfoloǵıa y, por tanto, el control de la morfoloǵıa de las part́ıculas
es un factor clave para el éxito en la producción de materiales poliméricos de alta calidad.
La śıntesis de nuevas morfoloǵıas consume tiempo y recursos, puesto que se basa en gran medida
en el conocimiento heuŕıstico. Por tanto, la modelización predictiva de dichos procesos es de gran
interés. En la actualidad, no existe una metodoloǵıa general para predecir la morfoloǵıa de sistemas
multifásicos realistas. En los últimos años, se han sugerido varios métodos de modelización que des-
criben la dinámica de la morfoloǵıa de una única part́ıcula (ref. en Section 2.1.1). No obstante, los
métodos que enfocan una única part́ıcula solo proporcionan una visión parcial de los sistemas reales,
que contienen muchas part́ıculas. Además, dichos modelos son computacionalmente exigentes, incluso
con el uso de ordenadores de alto rendimimento.
Continuous Fuzzy Measurements (CFM) consisten en observaciones realizadas en sistemas
cuánticos con interés experimental y teórico. En contraposición al caso clásico, las mediciones cuánticas
tienen que perturbar la evolución del sistema o, por lo general, no se puede compilar información. En
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otras palabras, solo se pueden obtener observaciones precisas a costa de una fuerte influencia sobre la
dinámica libre del sistema estudiado.
En los años noventa del siglo pasado, Mensky reconsideró la necesidad de un compromiso entre la
precisión y la perturbación incurrida. Su propuesta consist́ıa en el uso de una secuencia de mediciones
menos precisas (fuzzy) empleada con frecuencia y que en última instancia tend́ıa a un ĺımite continuo.
Nos referiremos a esta técnica como Continuous Fuzzy Measurements (CFM). Para dicho régimen,
Audretsch y Mensky (1997) predijeron la posibilidad de detectar el estado del sistema mediante ins-
pección directa de los resultados de medición, que convergeŕıan a uno de los autovalores de la cantidad
medida. Apreciamos que esto no es lo que ocurre aunque se prepare el sistema en un estado propio, en
el que después permanecerá en todo momento. Esta observación motivó nuestro interés en el examen
de la teoŕıa de Mensky sobre las CFM con el uso de las técnicas de modelización probabiĺıstica.
El objetivo de esta Tesis es el de aportar luz sobre algunas de las cuestiones mencionadas anterior-
mente. Para ello, proponemos desarrollar marcos probabiĺısticos para (i) la modelización cuantitativa
de CRP, que estaŕıan de acuerdo con la evidencia experimental, (ii) la predicción sobre la marcha de
MPM para sistemas de muchas part́ıculas y (iii) la modelización y análisis de CFM para el reexamen
de la teoŕıa de Mensky.
Los modelos probabiĺısticos y los algoritmos de simulación han avanzado much́ısimo en las últimas
décadas. En la actualidad, uno de los principales retos consiste en convertir los métodos matemáticos
en herramientas prácticas. Dichas herramientas debeŕıan ser rápidas, precisas y aptas para su inte-
gración en los modernos procesos tecnológicos. Los algoritmos que se implementan en los paquetes
de software debeŕıan proporcionar el grado de precisión y eficiencia que se requiere para el estudio de
procesos reales.
Con estos objetivos en mente, hemos elegido dos marcos de modelización probabiĺıstica: (a) Stochas-
tic Simulations (SS) y (b) Population Balance Equations (PBE).

(a) Ĺıneas de Investigación del Marco SS. (b) Ĺıneas de Investigación del Marco PBE.

Figure R.1: Marcos de modelización probabiĺıstica propuestos en este estudio: (a) Stochastic Simu-
lations (SS) y (b) Population Balance Equations (PBE). Las caracteŕısticas conocidas y las técnicas
consolidadas se muestran en blanco, mientras que las formulaciones e implantaciones novedosas se
destacan en amarillo. El icono “New” indica ideas conceptualmente nuevas.

Si bien la estrategia de Stochastic Simulations se emplea en todos los estudios considerados, i.e.
para CRP, MPM y CFM, el modelo basado en Population Balance Equations únicamente se pro-
puso para la predicción del desarrollo de morfoloǵıas multifásicas, i.e. para MPM.
Consideramos los modelos de Stochastic Simulations en dos reǵımenes: markoviano (para MPM,
CFM) y no markoviano (para CRP, CFM). El desarrollo de modelos no markovianos fue crucial
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para reproducir los retrasos, presentes en reacciones qúımicas de CRP, y para reconstruir del com-
portamiento no markoviano, en general, de las mediciones en CFM. Por otro lado, la evolución del
desarrollo de la morfoloǵıa de part́ıculas en MPM y las mediciones sumamente precisas de CFM son
procesos markovianos puros y pueden describirse completamente mediante modelos markovianos.
Se han propuesto varias formulaciones e implantaciones diferentes del algoritmo Monte Carlo, e.g.,
Markov Chain Monte Carlo (MCMC), Stochastic Simulation Algorithm (SSA), random walk Monte
Carlo (MC), para el uso en el marco SS de esta Tesis con el fin de optimizar la precisión y rendimiento
para cada aplicación espećıfica. Además, se han desarrollado procedimientos avanzados de opti-
mización, combinados con un enfoque Monte Carlo o un novedoso enfoque anaĺıtico, para ajustar
los parámetros de funciones de densidad de probabilidades en modelos no markovianos.
Figure R.1a resume el marco de Stochastic Simulations (SS) desarrollado, implementado y aplicado
en esta Tesis. Las aplicaciones de componentes espećıficos se etiquetan con un nombre de aplicación
rodeado por un ćırculo. Las caracteŕısticas conocidas y las técnicas consolidadas se muestran en blanco,
mientras que las formulaciones, derivaciones e implementaciones novedosas se destacan en amarillo.
Un icono “New” indica dónde se han propuesto ideas conceptualmente nuevas.
Una de dichas ideas consiste en asumir la cinética no markoviana e introducir retrasos entre los proce-
sos competitivos de CRP. Esta asunción y un análisis de las estad́ısticas del crecimiento de las cadenas
de poĺımeros en presencia de retrasos nos ha llevado a otros dos nuevos hallazgos. En primer lugar,
hemos identificado la forma efectiva de definir impĺıcitamente una función de distribución de proba-
bilidades en una simulación estocástica de procesos retrasados, incluso aunque la cantidad precisa de
retraso sea desconocida. Aśı pues, el algoritmo de optimización, que garantiza dicha identificación, ha
mejorado mucho con el reemplazo de su núcleo Monte Carlo por una solución anaĺıtica.
El marco basado en Population Balance Equations (PBE) para la predicción del desarrollo de
la morfoloǵıa de poĺımeros multifásicos en sistemas de múltiples part́ıculas se explica en Figure R.1b.
Se usan notaciones similares a las de Figure R.1a.
Como contraposición a los enfoques actuales, caros desde el punto de vista computacional y restringi-
dos a una única part́ıcula, el modelo propuesto de PBE proporciona una visión de toda la población de
part́ıculas de poĺımeros, teniendo en cuenta los aspectos f́ısicos y qúımicos subyacentes a la formación
morfológica. Este novedoso modelo se ha presentado en variables sin dimensión y computacionalmente
rastreables, puesto que se ha aplicado nuestro nuevo algoritmo de optimización. Además del Stochas-
tic Simulation Algorithm (SSA), que recae dentro del marco SS, hemos desarrollado tres métodos
numéricos originales para resolver el modelo PBE para MPM: Generalised Method Of Characteristics
(GMOC), basado en discretización, Laplace Transform Technique (LTT), que deriva anaĺıticamente
las transformadas de Laplace de las soluciones de PBE, y Laplace Induced Splitting Method (LISM).
El último se basa en la idea de que, a nuestro saber, nunca se ha explorado en métodos numéricos
para PBE. Más espećıficamente, combinamos un método de integración de “splitting” con soluciones
anaĺıticas inducidas por las transformadas de Laplace de PBEs simplificadas, que en conjunto compo-
nen la PBE de interés.
A continuación, damos más detalles sobre las soluciones propuestas para cada aplicación considerada,
i.e. CRP, MPM y CFM, mientras que en Table R.1 describimos los objetivos, estado actual, nuevas
ideas y principales logros espećıficos para tales aplicaciones.

Chapter 1 se centra en la modelización cuantitativa de Controlled Radical Polymerization (CRP).
Como se ha indicado anteriormente, la evidencia experimental muestra que la introducción de agentes
de control puede cambiar las frecuencias relativas de las reacciones competitivas, lo que da como re-
sultado una reducción significativa de la ramificación de poĺımeros. No obstante, no se han presentado
hasta la fecha pruebas teóricas o de modelización/simulación que apoyen de esta afirmación. En este
estudio, sugerimos que las teoŕıas cinéticas clásicas no pueden predecir la reducción observada a causa
de la hipótesis subyacente de dinámicas sin memoria. En Chapter 1, mostramos que dicha reducción
puede explicarse asumiendo la cinética no markoviana, que tiene en cuenta los retrasos ocasionados
por las reacciones qúımicas.
Para demostrar esta idea, seleccionamos el marco probabiĺıstico de Stochastic Simulation Algorithm
(SSA), porque puede dar cuenta de las restricciónes que caracterizan a la reacción CRP. Además, puede
calcular potencialmente cualquier cantidad de interés a través de la computación de las estad́ısticas
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Chapter 1 Chapter 2 Chapter 3

Aplicación Controlled Radical Polymer-
ization (CRP)

Multi-phase Polymers Mor-
phology (MPM)

Continuous Fuzzy Measure-
ments (CFM)

Objetivo Modelización Cuantitativa
de CRP

Predicción sobre la Marcha
de MPM

Modelización y Análisis de
CFM

Estado
Actual

Disconformidad de la Mode-
lización Cinética con los Ex-
perimentos

Predicción Morfológica para
una Única Part́ıcula

Teoŕıa de Mensky sobre
CFM

Ideas
Nuevas

CRP es un Proceso Marko-
viano con Retrasos

Calcular la Distribución de
Morfoloǵıas para Toda la
Población

Algunos Resultados de la
Teoŕıa de Mensky son Inco-
rrectos

Resultados Enfoque Estocástico para
Modelización de CRP Con-
forme a los Experimentos

Marco de Modelización
Computacionalmente Efi-
ciente para Predicción de
MPM

Reexamen de la Teoŕıa de
Mensky

Table R.1: Descripción de la Tesis.

correspondientes. No obstante, la formulación de SSA requiere la elección de las distribuciones de los
tiempos transcurridos entre eventos.
Basándonos en lo anterior, proporcionamos la representación anaĺıtica de distribuciones que mode-
lizan reacciones de polimerización con eventos retardantes. Proponemos modelos matemáticos para
crecimiento markoviano y no markoviano de una cadena de poĺımeros, lo que demuestra que la in-
troducción de retrasos modifica significativamente las estad́ısticas del poĺımero desarrollado. Nuestro
análisis también da como resultado (i) la expresión funcional de distribuciones adecuadas para in-
crustar los retrasos requeridos y (ii) la metodoloǵıa basada en SSA para simular las reacciones de
polimerización de interés.
Dado que nuestro objetivo es explicar la reducción en frecuencias relativas de las reacciones compe-
titivas, aplicamos la metodoloǵıa de simulación a la computación de frecuencias relativas de eventos
constreñidos. En concreto, diseñamos un método Monte Carlo (MC) para la evaluación de las canti-
dades de interés. También derivamos el método anaĺıtico correspondiente, proporcionando una fórmula
para la tasa de ramificación de poĺımeros en CRP de monómeros acŕılicos.
Demostramos en Chapter 1 que nuestro procedimiento anaĺıtico está libre de errores estad́ısticos y,
por tanto, garantiza estimaciones más precisas que las proporcionadas por simulaciónes MC. Además,
el método es significativamente más rápido (en orden del tamaño de muestra ≥ 104) que el enfoque
MC.
Los procedimientos anaĺıtico y Monte Carlo se usan como núcleo de la rutina de optimización diseñada
para refinar los parámetros de las distribuciones retrasadas con la ayuda de datos experimentales
disponibles.
Las funciones de densidad retrasadas, con los parámetros optimizados, competan la formulación de
nuestro enfoque estocástico para modelizar la reacción CRP de conformidad con las observaciones ex-
perimentales. Los niveles de ramificación simulados reproducen correctamente los datos disponibles,
como se muestran en Chapter 1.

El objetivo de Chapter 2 es desarrollar un marco de modelización que permita una predicción rápida y
precisa de Multi-phase Polymers Morphology (MPM). La velocidad de la técnica de simulacion predic-
tiva debeŕıa ser lo suficientemente alta para permitir recomendaciones sobre la marcha de condiciones
tecnológicas en la śıntesis de nuevas morfoloǵıas multifase.
Contrariamente a los enfoques actuales de part́ıcula única, proponemos calcular la distribución de
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morfoloǵıas para toda la población de part́ıculas de poĺımeros, teniendo en cuenta los efectos cinéticos
y termodinámicos relevantes.
Comenzamos con la derivación de un modelo que describe la f́ısica del proceso a través de la dis-
tribución del tamaño previsto para los aglomerados de poĺımeros. El modelo se formula en términos
de ecuaciones integro-diferenciales conocidas como Population Balance Equations (PBE). El modelo
PBE da cuenta de los mecanismos de la reacción considerada: agregación, crecimiento, nucleación y
transición de fases.
Proponemos un procedimiento original para escalar automáticamente el modelo PBE en variables sin
dimensiones y computacionalmente rastreables. La técnica se basa en la rutina de optimización para
encontrar factores de escalado adecuados, incrustando la información proporcionada por parámetros
experimentales expresados en unidades f́ısicas. Demostramos que, para los poĺımeros de látex, el
procedimiento de escalado da como resultado la reducción de la relación entre los valores máximos y
mı́nimos de los parámetros desde 1057 (original) hasta 105 (sin dimensión).
También realizamos un análisis del modelo derivado, que muestra la no negatividad de la solución,
caracteriza sus momentos de los dos primeros órdenes y estudia su comportamiento asintótico.
Desarrollamos cuatro enfoques para integrar el modelo PBE: Stochastic Simulation Algorithm (SSA),
Generalised Method Of Characteristics (GMOC), Laplace Transform Technique (LTT) y Laplace
Induced Splitting Method (LISM). Las caracteŕısticas de cada método se analizan en Chapter 2, des-
cribiendo sus ventajas e inconvenientes.
A pesar de que LTT proporciona altos niveles de precisión y velocidad para los modelos probados, su
aplicabilidad está limitada por las condiciones requeridas. Los experimentos numéricos muestran que
SSA es una técnica de integración sólida, pero las ineficiencias computacionales hacen que el enfoque
no resulte competitivo para resolver el modelo PBE tratado. En los experimentos realizados, GMOC
garantiza una buena precisión y eficiencia de simulación. No obstante, LISM supera a GMOC en
rapidez computacional en hasta dos órdenes de magnitud, garantizando la misma precisión para los
casos probados.
A partir de los experimentos realizados, concluimos que la desarrollada metodoloǵıa LISM es una
técnica prometedora para la predicción de la morfoloǵıa de poĺımeros multifásicos en sistemas de
muchas part́ıculas.

Chapter 3 tiene por objeto modelizar y analizar el comportamiento de mediciones realizadas en sis-
temas cuánticos. En particular, consideramos observaciones frecuentes, continuas en el ĺımite, tales
como Continuous Fuzzy Measurements (CFM).
Por su naturaleza, las mediciones cuánticas continuas no son aptas para un tratamiento anaĺıtico, pero
se pueden describir a través de simulaciones numéricas. Por tanto, proponemos un modelo estocástico
y un método Monte Carlo (MC) para estudiar la dinámica de las observaciones. El comportamiento
de las mediciones se describe a través del conocimiento de la distribución de sus resultados.
El algoritmo MC desarrollado permite calcular los resultados de las mediciones realizadas y la ma-
triz de densidad, que describe el estado del sistema cuántico de interés. Validamos la precisión y la
tasa de convergencia esperada del método MC diseñado, comparándolo con las soluciones anaĺıticas
disponibles. En concreto, obtenemos una expresión anaĺıtica para la previsión de la primera lectura de
mediciones, válida para cualquier nivel de precisión de las mediciones realizadas. Además, se dispone
de la solución anaĺıtica para la matriz de densidad si las observaciones realizadas son los suficiente-
mente precisas. En tal caso, las lecturas de mediciones se comportan como una cadena de Markov,
cuya matriz de probabilidad de transición es derivada.
Diferentes reǵımenes de las observaciones realizadas se caracterizan por su precisión y la influencia co-
rrespondiente en la dinámica de el sistema. En concreto, mediciones precisas llevan al comportamiento
markoviano de las mediciones, pero afectan a la dinámica natural del sistema cuántico. Por otro lado,
observaciones imprecisas dan como resultado el régimen no markoviano de las mediciones. La evolución
natural no se ve alterada, pero se sabe muy poco sobre el estado real del sistema. Proporcionamos
las pruebas y los ensayos de validación para el comportamiento markoviano y no markoviano de las
mediciones cuánticas. Ambos reǵımenes pueden simularse con éxito usando el método MC diseñado.
La técnica Monte Carlo nos ayudó a reexaminar la teoŕıa de Audretsch y Mensky (1997) sobre CFM,
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entendida con frecuencia como un enfoque universal para realizar mediciones cuánticas continuas. En
concreto, demostramos que una restricción gaussiana, que da como resultado una secuencia de muchas
mediciones altamente imprecisas, no es suficiente para garantizar proximidad entre las observaciones
y las rutas (Feynman paths) a través de las que avanza el sistema de interés. En el ĺımite continuo,
las variaciones de una medición t́ıpica resultan mucho más grandes que la separación entre los va-
lores propios de la cantidad medida. Por tanto, revisamos las afirmaciones de la teoŕıa de Mensky,
proponiendo un mecanismo diferente para la decoherencia cuántica y el efecto Zeno.

En resumen, las metodoloǵıas desarrolladas en esta Tesis se inspiran en varias aplicaciones particu-
lares y cuestiones sin resolver. No obstante, los enfoques novedosos propuestos, tales como el análisis
matemático de reacciones retardadas, el procedimiento de estimación de parámetros con el núcleo
analtico, la técnica de escalado para variables computacionalmente rastreables, el método de inte-
gración de splitting inducido por transformadas de Laplace, el modelo estocástico para observaciones
cuánticas o la teoŕıa revisada sobre CFM, pueden aplicarse a otros problemas de f́ısica, qúımica y
bioloǵıa. Nuestros resultados se han presentado en cuatro estudios cient́ıficos publicados en revistas
de gran difusión [1, 2, 3, 4].
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Chapter 1

Stochastic Modelling of Polymerization
Reactions with Delays

1.1 Motivation

1.1.1 Controlled Radical Polymerization: Unresolved Issues

A substantial part of the polymer market is produced by free radical polymerization (FRP). This
is a chain-growth process that proceeds by addition of monomer units to a growing polymer chain.
The addition of monomer units is called propagation. In radical polymerization of monomers, each
propagation outcome regenerates the active radical species at the chain end, and the chain continues
to grow, forming high molecular weight polymer molecules. Chain growth may be terminated by
bimolecular reaction of two growing chains and by transfer of the radical to monomer or to polymer
[5].
Alternatively, the reactive radical at the end of the chain can be transferred to a carbon atom within
the chain, thus generating a so called mid-chain radical. It occurs via a process known as backbiting
[6]. Due to the specific molecular configuration required for the backbiting to occur, at least three
propagation outcomes must take place before the next backbiting outcome occurs. Hence, the reactive
radical is transferred from the polymer chain tail to a monomer unit located at least two positions
behind.
The mid-chain radical formed by backbiting may (i) react with a monomer, thus continuing the chain
growth [6, 7], (ii) migrate along the chain [8], (iii) undergo a beta-scission [9], i.e. a conversion of the
mid-chain radical into a free radical by splitting a carbon-carbon bond [10], and (iv) react with other
species present in the medium [11]. The addition of monomer units to the mid-chain radical, which is
formed by backbiting, generates a branched structure. The reactions of propagation and backbiting,
with the formation of the branched structure, are schematically illustrated in Figure 1.1.

In the last two decades, Controlled Radical Polymerization (CRP) of monomers [12] has revolutionised
FRP, allowing an unprecedented control of the polymer micro-structure. Controlled Radical Polymer-
ization is a special type of radical polymerization which is conducted in the presence of an additional
chemical reagent known as a control agent. In CRP, the reactive radical chain end is subjected to fre-
quent deactivation and reactivation steps, allowing one to control the molecular weight of the polymer
chain. Reversible deactivation of the reactive chain end is an outcome which occurs in competition
with propagation and backbiting.
Obtaining information about the kinetics of the process as well as predicting relative rates of reactions
between backbiting and propagation are important for understanding polymerization of monomers.
The ratio of the two competitive outcomes has a strong impact on the micro-structure and mechanical
properties of the resulting polymer. It can be measured by evaluating the branching fraction, which
is determined experimentally as the ratio of the number of branches to the number of propagation
outcomes that have occurred.
In a conventional radical polymerization there exists a competition between several potential kinetic
events a growing propagating radical can undergo. The most notable ones are propagation, termina-
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Figure 1.1: The propagation process consists in the addition of a monomer unit (black sphere) to a
polymer chain. The radical (red sphere) located at the chain end creates the bond (red line) between
the polymer chain and the added monomer. The propagation reaction also regenerates the active
radical (red sphere) at the new tail of the chain. The backbiting reaction can occur after the polymer
chain starts rolling. The bend allows the radical (red sphere) being transferred to a monomer unit
within the polymer chain, producing the mid-chain radical. Successive propagations from the mid-
chain radical result in the formation of a branched structure.

tion and backbiting. The characteristic time for termination is much longer than that of propagation
and backbiting, and therefore is not expected to affect the relative number of backbitings and propaga-
tions. On the other hand, the introduction of an intermittent deactivation stage in controlled radical
polymerization, imposes an additional event taking place at a time scale similar to that of backbiting
and propagation. Although classical chemical reaction kinetics dictates that the imposition of the ad-
ditional competitive process should not impact the ratio of backbitings to propagations, experimental
evidences have shown that there is a strong reduction in branching fraction under CRP conditions
[13, 14]. Furthermore, it has been reported that the rate of backbiting and the branching fraction
may be affected by the presence of polar solvents [15] and high concentrations of chain transfer agent
[14, 16].
The kinetics of radical polymerization have been systematically studied for nearly a century and in
general are well understood. However, in light of recent developments in controlled radical polymer-
ization many kinetic anomalies have arisen. One of such unexplained results, namely, a decrease of
the branching level in CRP observed in multiple experiments but not understood theoretically or
predicted by simulations has prompted a lively debate on the causes of such findings.
Initially, it was suggested that the change in branching fraction in controlled radical polymerization is
caused by differences in the concentrations of highly reactive short chain radicals between controlled
and conventional radical polymerization [13]. However, both stochastic [17] and deterministic models
[18] have shown that the chain-length-dependent rate constants have a minimal effect on the branch-
ing fraction. The authors of these studies have nominated three possible causes for the reduction in
branching such as (i) a decrease in the backbiting reaction under controlled radical polymerization
conditions, (ii) a fast and virtually irreversible deactivation of the tertiary radical formed by backbit-
ing, or (iii) a combination of the above.
Reyes and Asua [17] suggested that the reduction in branching fraction may be caused by a decrease
in the backbiting reaction because the time scale for deactivation of the active radical is faster than
the time scale for backbiting. However, the stochastic modelling assuming the Gaussian distributions
for the probability density functions of the different reactions did not confirm this hypothesis and led
to the conclusion that backbiting can never occur.
Konkolewicz et al. [18] studied the decrease of branching fraction in atom transfer radical polymer-
ization (ATRP) of acrylates. Choosing in their model the probability function to be an exponential
function they observed no variation in the backbiting relative to propagation and thus concluded that
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the decrease in branching fraction was caused by irreversible deactivation of some tertiary radicals.
This hypothesis, however, has been disproved by experiments of Ballard et al. [14] who demonstrated
that the irreversible capping of the mid-chain radical is not the reason for the branching reduction in
ATRP. This left a reduction in the backbiting relative to propagation to be the only factor responsible
for the lower branching in ATRP and arose the question why such reduction is not confirmed by the
study of Konkolewicz et al. [18].
The reduction in branching fraction for high chain transfer agent (CTA) concentrations [14, 16] was
attributed to a patching mechanism in which the tertiary radical tends to undergo chain transfer to
CTA instead of propagation [19, 20, 21]. This hypothesis also has been refuted by Agirre et al. [16]
who demonstrated a significant reduction in branching fraction compared to a conventional radical
polymerization in the presence of large amounts of CBr4 as a chain transfer agent, with no patched
structure found. Therefore, similar to the case of ATRP, the only possible reason for lower branching
can be a smaller backbiting/propagation ratio, but this is not confirmed by the conventional stochastic
and deterministic simulations.
Therefore, although many experiments indicate that in controlled radical polymerization reduction in
branching fraction must be due to reduction in the rate of backbiting with respect to propagation, no
theoretical or modelling-simulation proofs were presented to date in the support of this claim.

1.1.2 Modelling Controlled Radical Polymerization: A Proposed Solution

The discussed above studies are based on an intrinsic assumption that the CRP process is memoryless,
and hence the probability density functions, that are the distributions of possible reaction times, fol-
low an exponential decay. We argue that in radical polymerizations, particularly in controlled radical
polymerization, where the leading reaction, i.e. backbiting, depends on the preceding events, and
the radical intermediate is intermittently deactivated, models without memory cannot explain the
observed kinetic anomalies. Instead, the memory models should be developed. More precisely, we will
show that the reduction of the branching level in radical polymerization can be explained by assuming
a non-Markovian kinetics and introducing delays among the competitive processes.
The objective of this chapter is to (i) propose a stochastic model for the polymerization reactions with
delays, (ii) provide the efficient methods for solving such a model for a broad range of applications
and (iii) implement the developed model to a study of the branching reduction in CRP of acrylic
monomers.
Keeping this in mind, we organise the chapter as follows.
Section 1.2 reviews the Stochastic Simulation Algorithm (SSA) [22, 23] as a possible modelling frame-
work for the simulation of polymerization reactions with delays. SSA is a natural method of choice
for the simulation of systems characterised by competitive processes, such as the considered chemical
reactions. Its flexibility will allow us to introduce non-Markovian kinetics either through the modifi-
cation of the inter-event time distribution or by the addition of constraints among the possible events
in an SSA algorithm.
In Section 1.3, the mathematical models for Markovian and non-Markovian growth of a polymer chain
are discussed. We provide the mathematical grounds for derivation of probability density functions
modelling polymerization reactions with delaying events. We show that the introduction of delays
significantly changes the statistics of polymer chain growth. Furthermore, we explain how to simulate
the given processes by introducing delays in the formulation of SSA.
In Section 1.4, the delayed SSA provides the Monte Carlo (MC) framework to compute the relative
frequencies of constrained events in stochastic processes. The proposed technique can be applied to
any system with well-posed constraints. In particular, it is suitable for explaining the reduction in
relative frequencies of propagations and backbitings experimentally observed in CRP.
Section 1.5 derives the analytical alternative to the MC method for the computation of the relative
frequencies of constrained events in stochastic processes. The approach is free of statistical errors
affecting MC methods and faster by a factor of the MC sample size. The derivation is valid for any
stochastic process with well-posed constraints among the possible events, making the method useful
for various applications. Then, the result is formulated for the prediction of the branching fraction
in CRP of acrylic monomers. The proposed analytical approach also helps to prove that memoryless
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models are not able to explain the observed reduction of the branching fraction, and thus only models
with delays should be applied for study of CRP.
For this reason, Section 1.6 focuses on the delayed densities suitable for the prediction of branching
fractions in Controlled Radical Polymerization. In particular, the Monte Carlo method and the an-
alytical approach are specifically formulated for the estimation of the branching fraction in CRP of
acrylic monomers. A fitting scheme is designed for refining the parameters of the proposed probability
density functions using the available experimental data. Finally, the SSA routine for modelling CRP
of acrylic monomers is proposed.
In Section 1.7, we test the accuracy and efficiency of the developed methodologies on the computation
of the branching fraction in Controlled Radical Polymerization of acrylic monomers.
Section 1.8 provides conclusions and discussion.

1.2 Stochastic Simulation Algorithm

Stochastic Simulation Algorithm (SSA) [22, 23] is one of the most common approaches for study
of stochastic processes describing the evolution of various phenomena in natural and human-made
systems. It relies on the knowledge of inter-event probability density functions, and on the information
about dependencies between all possible events. SSA is a Monte Carlo based method: it draws multiple
realisations of the process and then computes statistics on them. The conventional SSA is based on
the assumption that the studied system is well-mixed and memoryless. These assumptions lead to
independent exponentially distributed inter-event times. As intuition suggests, this set of hypothesis
does not hold for all phenomena of practical interest. One such example is a constrained stochastic
process, where the occurrence of some events may depend on the previous history of the process [24].
In these cases, the SSA algorithm can be easily adapted in such a way that the dependencies are
realised either explicitly by introducing constraints in the SSA algorithm, or implicitly, through a
modification of inter-event times probability distributions.
In this work, we have chosen to use the SSA method for simulation of polymerization reactions with
delays due to its ability to follow the kinetics of competitive processes and to deal with non-Markovian
dynamics in the evolution of the system. Section 1.2.1 provides a revision of SSA methods and discusses
the Stochastic Simulation Algorithm as a possible methodology for the simulation of polymerization
reactions with delays.

1.2.1 SSA Review

Let us consider a well-mixed and thermally equilibrated chemical system of N ≥ 1 species {S1, .., SN},
which interact through M ≥ 1 chemical reactions {R1, .., RM}. The purpose of the Stochastic Simu-
lation Algorithm (SSA) is to estimate the state vector

X(t) ≡ [X1(t), .., XN (t)] ∈ NN , (1.1)

where Xi(t) is the number of molecules of the species Si at time t, ∀i = 1, .., N . Each chemical reaction
Rj is characterised by the state-change vector νj ∈ ZN and the propensity function pj(x) ≥ 0, with
j = 1, ..,M . The state-change vector νj is defined as the variation of the system state x caused by
one occurrence of the reaction Rj , i.e.

x
Rj−→ x + νj , ∀j = 1, ..,M. (1.2)

The propensity function pj(x) corresponds to the occurrence rate of the reaction Rj , given X(t) = x.
In other words, the function pj(x) is defined so that

pj(x) dt ≡ the probability that one Rj reaction will occur during

the infinitesimal interval [t, t+ dt], given X(t) = x. (1.3)
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Having the system state and all possible reactions defined, one might be interested in inferring the
probability P(x, t|x0, t0) to find the system in the state X(t) = x at time t, given X(t0) = x0 at the
initial time t0. The time-evolution equation for P(x, t|x0, t0) relies on the definition (1.3) and has been
derived in [22]:

∂P(x, t|x0, t0)

∂t
=

M∑
j=1

[pj(x− νj)P(x− νj , t|x0, t0)− pj(x)P(x, t|x0, t0)] . (1.4)

Equation (1.4) is known as the Chemical Master Equation (CME).
The CME equation can also serve as a starting point in estimating the average of a given function h
of the system state X(t), i.e. 〈h(X(t))〉 ≡

∑
x h(x)P(x, t|x0, t0). For example, the time derivative of

the expected system state 〈X(t)〉 can be obtained by summing (1.4), multiplied by x, over all possible
system states x:

d〈X(t)〉
dt

=

M∑
j=1

νj 〈pj(X(t))〉. (1.5)

In the hypothetical case, random fluctuations can be neglected, i.e. 〈h(X(t))〉 = h(X(t)) for any
function h, and thus (1.5) leads to the Reaction Rate Equation (RRE):

dX(t)

dt
=

M∑
j=1

νj pj(X(t)). (1.6)

Analytical solutions of (1.4) and (1.6) are rarely available and numerical methods are needed to
estimate the state vector X(t). SSA is one of such methods, which provides realisations of X(t)
with time t evolving. Any quantity of interest 〈h(X(t))〉 can be then estimated by averaging the
accumulated samples.
The key means of the SSA algorithm is the joint probability distribution P (τ, j|x, t) of two random
variables: the time τ > 0 needed for the next reaction to occur and the label j = 1, ..,M of the next
occurring reaction, given X(t) = x. As shown in [22], the definition (1.3) yields:

P (τ, j|x, t) = pj(x) exp (−p0(x)τ), p0(x) ≡
M∑
j=1

pj(x). (1.7)

Equation (1.7) implies (i) τ and j to be statistically independent, (ii) the time τ to be an exponential
random variable with mean (and standard deviation) 1/p0(x) and (iii) the reaction label j to be
chosen with probability pj(x)/p0(x).
The introduced in such a way P (τ, j|x, t) suggests the SSA procedure [22] reported in Algorithm 1.1
for generating a single trajectory of the system state x, starting from the initial condition X(t0) = x0.

Algorithm 1.1: The Stochastic Simulation Algorithm (SSA) for simulating the state X(t) (1.1)
of a well-mixed and thermally equilibrated chemical system. The procedure generates a single
trajectory of X(t) = x during the time interval [t0, tmax], starting from X(t0) = x0.

1 Assign the state-change vector νj (1.2) for each reaction Rj , j = 1, ..,M ;
2 Assign the occurrence rate pj(x) (1.3) for each reaction Rj , given X(t) = x;
3 Initialise the time t = t0 and the system state x = x0;
4 while t < tmax do

5 Draw τ ∈ R+ from an exponential distribution with mean 1/p0(x), p0(x) ≡
∑M

j=1 pj(x);

6 Select the index j with probability pj(x)/p0(x), for j = 1, ..,M ;
7 Update the time t← t+ τ and the system state x← x + νj ;

8 end

SSA numerically simulates chemical systems by stepping in time to consecutive events, randomly
chosen according to (1.7). As explained above, the distribution (1.7) arises from the same premise
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(1.3) that gave rise to the CME (1.4). This guarantees the exactness of the proposed sampling.
An equivalent elaboration of SSA was introduced in [25] and it is known as the First Reaction Method.
The procedure to generate trajectories of the system state is explained in Algorithm 1.2. It can be
proved that Algorithms 1.1 and 1.2 are equivalent, generating values for τ and j in agreement with the
joint density function (1.7). However, if the system has many reaction channels, the First Reaction
Method will be computationally less efficient than the procedure given in Algorithm 1.1.

Algorithm 1.2: The First Reaction Method for simulating the state X(t) (1.1) of a well-mixed
and thermally equilibrated chemical system. The procedure generates a single trajectory of
X(t) = x during the time interval [t0, tmax], starting from X(t0) = x0.

1 Assign the state-change vector νj (1.2) for each reaction Rj , j = 1, ..,M ;
2 Assign the occurrence rate pj(x) (1.3) for each reaction Rj , given X(t) = x;
3 Initialise the time t = t0 and the system state x = x0;
4 while t < tmax do
5 Draw τj ∈ R+ from an exponential distribution with mean 1/pj(x), for all j = 1, ..,M ;
6 Select the index jm corresponding to the smallest τj for j = 1, ..,M ;
7 Update the time t← t+ τjm and the system state x← x + νjm ;

8 end

More advanced formulations of the presented above algorithms have been proposed in [26], [27]. De-
spite the computational improvements offered in these works, the generation of every reaction event
remains often too slow for practical simulations of realistic systems, no matter how efficiently it is
done. For this reason, we revise further developments of the SSA methods, proposed with the aim
either to speed up the simulations (tau-leaping procedure) or to deal with stiff systems.

Tau-leaping. In order to speed up the simulation, it might be possible to sacrifice some of the
exactness of SSA and follow approximated methods, such as the tau-leaping procedure [28]. For any
time t, it considers the time interval with the preselected length τ > 0, such that the rates remain
essentially constant during [t, t + τ). The firing of all possible reactions is performed for [t, t + τ),
without updating the propensity functions. The number of occurred reactions is distributed as a
Poisson random variable. The less frequent computation of the rate functions may allow for more
efficient simulations, especially in the case of complex systems. If the number of occurrences during
the preselected interval is big enough, the Poisson random numbers are well approximated by Normal
random numbers, leading to the Chemical Langevin Equation (CLE), corresponding to a differential
equation driven by zero-mean Gaussian noise [29]. In the limit, when the species populations and the
system volume approach infinity, which result in constant species concentrations, the noise terms in
the CLE can be neglected and the CLE reduces to the RRE (1.6).

The tau-leaping approximation leads to the following updating scheme for the system state X(t) =
x ∈ NN (1.1):

X(t+ τ) = x +
M∑
j=1

Pj(pj(x)τ)νj , (1.8)

where Pj(mj) ∈ N is an independent Poisson random variable with mean (and variance) mj , νj is
the state-change vector (1.2) and pj(x) is the propensity function (1.3). The time step size τ > 0
corresponds to the preselected length of the interval between updates of the system state. Some
practical issues should be resolved to implement the scheme (1.8). First, one should explain how to
select the largest value of τ such that the rates pj(x) remain essentially constant during [t, t+τ). Then,
large values of the drawn Poisson random numbers Pj may lead to negative values of the populations
X(t). Consequently, care has to be taken of guaranteeing non-negative values for the state X(t) for
any drawn random number Pj .
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A fast and accurate strategy for the estimation of τ is suggested in [30]. It computes the largest
value of τ , for which the estimated fractional change in each propensity function during [t, t + τ) is
bounded by a user-specified accuracy-control parameter. Then, [31] discusses a procedure to ensure
non-negative values of the state X(t) for any drawn Poisson random number. Given a user-specified
integer Nc ≥ 1, it labels as critical (or currently in danger of exhausting any of its reactants) all those
reactions for which the maximum number of permitted firings during τ is not exceeding Nc. The
distribution (1.7) is used to draw the required time τc and the index jc of the next critical reaction.
The time step size τn for the non-critical reactions is computed as described in [30]. If τc < τn, the
critical reaction Rjc fires at time t+τ , τ ≡ τc, and the system state is updated accordingly. Otherwise,
the scheme (1.8) is used to update the reactant populations of the non-critical reactions, with the time
step size τ ≡ τn. As a result, at most one occurrence of any critical reaction is possible during [t, t+τ)
and the reactant populations are guaranteed to be non-negative. Numerical tests in [30] indicate the
ability of the tau-leaping technique to simulate faster than SSA with only a slight loss of accuracy,
especially in the case of large species populations.

Stiff systems. Finally, we review some techniques to deal with stiff systems, characterised by well-
separated fast and slow dynamical modes. The SSA simulation of successive reactions is only able
to reproduce properly the fast dynamics of a stiff system, leaving unexplored the slow dynamics. In
the light of deterministic approaches, stiff systems can be treated by implementing implicit updating
schemes, as proposed in [32]. In addition, the slow-scale SSA (ssSSA) [33] provides a novel strategy
to deal with stiff systems. The reactions are labelled as fast or slow, according to the order of
magnitude of the respective rate functions. If changed by a fast reaction, the species populations
are classified as fast, otherwise as slow. Under some stiffness conditions [33], the ssSSA allows us to
ignore the fast reactions and to simulate the system state X(t) through only the slow reactions, with
modified propensity functions. In other words, the ssSSA only simulates the slow reactions following
Algorithm 1.1 with modified rate functions. The fast reactions are ignored and the populations of
the fast species can be recovered by Monte Carlo sampling from the corresponding distributions. The
applications provided in [33] show an increase in the simulation speed over the exact SSA with no
perceptible loss of accuracy.

The methodology presented in the following sections is primarily aimed to study the Controlled Radical
Polymerization, which, we argue, can be fully described by a very few (not exceeding three) competitive
reactions. For this purpose, we choose to use the Stochastic Simulation Algorithm presented in
Algorithm 1.2. For more complex processes involving many reaction channels the advanced methods,
such as tau-leaping or ssSSA should be applied. The ideas presented in this chapter can be extended
to those methods but this is beyond the scope of this study.

1.3 Non-Markovian Models of the Growth of a Polymer Chain

In this section we provide the mathematical grounds for modelling polymerization reactions with de-
lays. In particular, we describe the non-Markovian growth of a polymer chain. In Section 1.3.1, we
define the probabilities for different growth scenarios. In Section 1.3.2, we briefly review growth with-
out a delay, leading to Markovian master equations for the probabilities of interest. In Section 1.3.3,
we consider linear growth with a fixed downtime introduced after each attachment of a monomer. We
show that such a delay leads to a non-Poisson distribution of the polymer length, and a set of time-
delayed differential equations for the relevant probabilities. In Section 1.3.4, we study the short- and
long-time limits of the mean length of the grown polymer. In Section 1.3.5, we explain how to numer-
ically simulate the delayed growth, by formulating three suitable implementations of the Stochastic
Simulation Algorithm (SSA), reviewed in Section 1.2.1. The accuracy and efficiency of the proposed
methods are compared. Finally, Section 1.3.6 discusses the presented results and puts them in the
context of the applications considered in the following sections of the chapter.
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1.3.1 Linear Growth

Consider the growth of a linear polymer which proceeds by attaching monomers to, say, its right end
at discreet times tj = jdt. We begin with a single monomer. At each tj an extra monomer is added
with the probability pj , or else nothing happens with the probability 1− pj . Thus, the probability to

add a monomer after J − 1 unsuccessful attempts is f(tJ) = pJ
∏J−1
j=1 (1 − pj), while the probability

for not adding a monomer up to and including tJ , is g(tJ) =
∏J
j=1(1− pj). In general, we may start

the process at some ti and let the probabilities depend on both tj and ti, p = pj,i. In the continuum
limit, we should send dt→ 0 and introduce the growth rate c(tj , ti)dt ≡ pj,i, assuming c to be a slowly
varying function. The probability to add nothing for t′ ≤ t′′ ≤ t is then given by

g(t, t′) = exp

[
−
∫ t

t′
c(t′′, t′) dt′′

]
, (1.9)

while for the probability density function (PDF) to start at t′, and add the first monomer in the
interval [t, t+ dt], we have

f(t, t′) = c(t, t′) exp

[
−
∫ t

t′
c(t′′, t′) dt′′

]
= −∂tg(t, t′). (1.10)

By a given t, the monomer is either attached or not, so the two corresponding probabilities add to
one, ∫ t

t′
f(t′′, t′) dt′′ + g(t, t′) = 1. (1.11)

With many monomers able to join the polymer chain between t′ and t, we are looking for the probability
P (n, t, t′) to have n new additions by the time t. This is just the probability for adding monomers at
t′ ≤ t1 ≤ t2 ≤ .. ≤ tn ≤ t, multiplied by the probability that no more monomers are added between tn
and t, and summed over all ti, i = 1, 2, ..n,

P (n, t, t′) =

∫ t

t′
dtn ..

∫ t2

t′
dt1 g(t, tn) f(tn, tn−1) .. f(t1, t

′), n ≥ 1,

P (0, t, t′) = g(t, t′).

 (1.12)

One can check that Equation (1.11) ensures the correct normalisation of the probabilities P (n, t, t′),∑∞
n=0 P (n, t, t′) = 1. Another useful quantity is the probability density W (n, t, t′) for n monomers to

be attached in the interval [t′, t], with the last of them added in [t, t+ dt],

W (n, t, t′) =

∫ t

t′
dtn−1 ..

∫ t2

t′
dt1 f(t, tn−1) .. f(t1, t

′), n ≥ 1, (1.13)

in terms of which P (n, t, t′) is expressed as

P (n, t, t′) =

∫ t

t′
dt′′ g(t, t′′)W (n, t′′, t′), n ≥ 1. (1.14)

The quantities W (n, t, t′) have the advantage that they satisfy the simple evolution equations,

∂tW (n, t, t′) = f(t, t)W (n− 1, t, t′) +

∫ t

t′
dt′′ ∂tf(t, t′′)W (n− 1, t′′, t′). (1.15)

Their use will be described below. At least three cases need to be distinguished.
A. The growth rate depends only on the current time, and not on the previous history of the chain,

c(t, t′) = c(t), f(t, t′) = c(t) exp

[
−
∫ t

t′
c(t′′) dt′′

]
. (1.16)

This is the Markovian case we will briefly review in Section 1.3.2.
B. The growth rate depends only on the chain’s past, and is not manipulated externally.
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c(t, t′) = c(t− t′), f(t, t′) = f(t− t′) = c(t− t′) exp

[
−
∫ t−t′

0
c(t′′) dt′′

]
. (1.17)

Here one may think that after each time a monomer is added, some additional time is needed before
the next monomer can be attached. This the non-Markovian case is the main subject of this chapter.
C. Finally, the growth rate, which depends on the polymer’s history in the sense outlined above, may
also be manipulated externally. In this case c is a function of both t and t′, and the process is also
non-Markovian.

1.3.2 Markovian Growth

Consider the case when there is an unlimited supply of monomers to be added to the chain, and the
probability to add one at a given time is modified externally, e.g. by varying the temperature at which
the process takes place. The growth begins at some t′, and we are interested in the length of a polymer
at a time t. The probability for adding a monomer in [t, t + dt] is c(t)dt, and the function g and the
PDF f in (1.9) and (1.10) are of the form

g(t, t′) = exp

[
−
∫ t

t′
c(t′′) dt′′

]
, f(t, t′) = c(t) exp

[
−
∫ t

t′
c(t′′) dt′′

]
. (1.18)

Inserting (1.18) into (1.12), and recalling that
∫ t
t′dtn ..

∫ t2
t′ dt1 c(tn) .. c(t1) = [

∫ t
t′c(t

′′) dt′′]n/n!, we re-
cover a Poisson distribution [34] (the subscript M stand for Markovian),

PM (n, t, t′) =
I(t)n

n!
exp(−I(t)), n ≥ 1,

PM (0, t, t′) = exp(−I(t)),

 (1.19)

where

I(t) =

∫ t

t′
c(t′′) dt′′. (1.20)

From (1.19)-(1.20), it follows that the mean length of the chain,

〈n(t)〉 = c̄(t, t′) (t− t′), (1.21)

where c̄(t, t′) = (t − t′)−1
∫ t
t′c(t

′′) dt′′ is the average of the growth rate over the growth period. If the
external conditions remain unchanged, c(t) = c, the growth is linear with time, 〈n(t)〉 = c (t − t′).
Differentiation of (1.19) yields a closed master equation for the probabilities PM (n, t, t′)

∂tPM (n, t, t′) = c(t) [PM (n− 1, t, t′)− PM (n, t, t′)], n ≥ 1

∂tPM (0, t, t′) = −c(t)PM (0, t, t′),

}
(1.22)

to be solved with the initial condition

PM (n, t′, t′) = δn0, (1.23)

where δnm is the Kronecker delta. Equations (1.22) are obviously Markovian, as the rate at which a
PM (n, t, t′) changes depends only on the current state of the system, {PM (n, t, t′)}n∈N.

1.3.3 Non-Markovian Growth with Delays

Suppose next that, as in the previous Section, there is an unlimited supply of monomers, and the
external conditions remain unchanged. But each added monomer, except the first, now needs a time
τ to properly settle into the chain structure, only after which the chain is ready to attach again, with
the same constant growth rate c. The process is now explicitly non-Markovian: to check whether a
monomer can be added, one needs to know the history of the chain. Accordingly, the rate c(t) depends
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not on the time elapsed since t′, but on the time elapsed since the last monomer was added. In (1.9)
we, therefore have c(t, t′) = c(t− t′). Explicitly, we obtain (NM stands for Non-Markovian)

c(t− t′) =

{
0, 0 ≤ t− t′ < τ,

c, t− t′ ≥ τ,
(1.24)

and

gNM (t, t′) = gNM (t− t′) =

{
1, 0 ≤ t− t′ < τ,

exp[−c(t− t′ − τ)], t− t′ ≥ τ.
(1.25)

From (1.10) we also have

fNM (t, t′) = fNM (t− t′) = c θ(t− t′ − τ) exp[−c(t− t′ − τ)], (1.26)

where θ(z) = 1 for z ≥ 0 and 0 otherwise. In the case of the monomer initiating the polymer
chain, the value of τ = 0 must be imposed in (1.24)-(1.26), since no settling time is required. The
physical background of (1.24)-(1.26) is as follows. In classical kinetics, the pseudo-first order processes
are considered purely stochastic, i.e., described by an exponential probability distribution function.
However, this is intuitively difficult to justify because the probability density that a reaction occurs at
t = 0 should be 0, since instantaneous reactions do not occur. This concept will be used to analyse the
competitive processes occurring in CRP and to explain the reduction of branching in CRP of acrylic
monomers. Equation (1.26) can be considered a simplification of the linear-exponential distribution
we proposed for CRP, as explained in Section 1.6.2.
Returning to (1.13) and putting t′ = 0, we note that the probability W (n, t, t′ = 0) ≡ W (n, t) is the
same as for growth with a constant c, but for a shorter time. The effective time of growth, teff , is,
therefore, the elapsed time t minus the total time the growth was shut down due to adding n − 1
monomers, i.e., teff = t − (n − 1)τ . Should (n − 1)τ exceed t, the process is not possible, and the
corresponding probability is zero. From (1.13) and (1.26) we easily find

WNM (n, t|τ) = c
[In(t, τ)]n−1

(n− 1)!
exp[−In(t, τ)], n ≥ 1, (n− 1)τ < t,

In(t, τ) = c [t− (n− 1)τ ].

 (1.27)

The physical probabilities P (n, t, t′ = 0) ≡ P (n, t) are no longer given by a Poisson distribution, but
can be obtained as quadratures using (1.14), (1.25) and (1.27)

PNM (n, t|τ) =

∫ t−τ

0
exp[−c(t− t′ − τ)]WNM (n, t′|τ) dt′

+

∫ t

t−τ
WNM (n, t′|τ) dt′, n ≥ 1,

PNM (0, t|τ) = exp(−ct).


(1.28)

It is instructive to look at the evolution equations (EE) satisfied by the probabilities. There are no
simple EE, similar to (1.22), for PNM (n, t|τ) in (1.28). There are, however, EE (1.15) which, as
∂tf(t) = cδ(t− τ)− cf(t), read

∂tWNM (n, t|τ) = c [WNM (n− 1, t− τ |τ)−WNM (n, t|τ)],

n ≥ 2, 0 < (n− 1)τ < t,

WNM (1, t) = c exp(−ct).

 (1.29)

Unlike (1.22) in the Markovian case, equations (1.29) depend on the state of the system in the past
through WNM (n− 1, t− τ |τ) and their properties may differ significantly from those of (1.22), as will
be illustrated in Section 1.3.4.
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1.3.4 Mean Chain Length for a Delayed Growth

One quantity of practical interest is the mean length of the chain grown in the presence of a delay,

〈n(t, τ)〉NM =

∞∑
n=1

nPNM (n, t|τ), (1.30)

shown in Figure 1.2a for various values of the parameters cτ . We note that cτ < 1 implies that the
delay is shorter than the average reaction time. Similarly, cτ ≥ 1 indicates that the delay is longer, or
equal, than the average reaction time. As cτ → 0 we recover the Poisson distribution (1.19), and for
ct� 1, 〈n(t, τ)〉NM grows linearly at the rate close to c. In the opposite limit, cτ � 1, the behaviour
is more interesting with the curves showing a steplike variation at short times before settling into
a linear behaviour later. This has a simple physical explanation. The time it takes the chain to
add one monomer at a constant growth rate c, tadd, is approximately 1/c. If cτ � 1, a monomer is
added quickly, but then the system has to wait long until another one can be attached. Thus, for
tadd < t < τ , it behaves as if the delay were infinite, i.e. as if the only two possible outcomes were
one or none monomers added, with the probabilities P (one) = 1− exp(−ct) and P (none) = exp(−ct),
respectively. The mean length

〈n(t, τ)〉NM ≈ 1− exp(−ct), tadd < t < τ (1.31)

reaches the value of 1, and remains unity until t ≈ τ , when the system recalls that the delay is not
infinite after all. A second monomer is added quickly, and 〈n(t, τ)〉NM remains flat and close to 2 until
t ≈ 2τ , and so on. This behaviour can be expected from the way we have constructed our model.
As t/τ → ∞ the steps are smoothed out, and the mean length of the polymer grows linearly with
time (K is a positive constant),

〈n(t, τ)〉NM ≈ c̃t+K, t→∞, (1.32)

at a constant rate c̃ > 0. The value of c̃ is found by recalling that in our model adding 〈n(t)〉 monomers
is accompanied by switching off the growth for a duration of approximately 〈n(t)〉τ − τ/2. The last
addition may occur close to t, so its delay is, on average, shorter. Thus, the growth is similar to the
growth without delay over a time [t−〈n(t)〉τ+τ/2] at the rate c. Equating 〈n(t)〉 to c[t−〈n(t)〉τ+τ/2]
yields

c̃ =
c

1 + cτ
, K =

cτ

2(1 + cτ)
. (1.33)

The two limiting cases, (1.31) and (1.32), are illustrated in Figure 1.2b.

1.3.5 Stochastic Simulation of Delayed Growth

Next, we consider the delay in backbiting, caused by the fact that in order to form the six-membered
ring required for the backbiting reaction, a minimum of n0 = 3 monomer units is needed in a linear
segment of the chain. It is assumed that the backbiting reaction, which forms branches, occurs at a
constant rate cbranch but can only happen if at least n0 monomer units have been previously added.
For growth occurring at a constant rate cadd, the probability to add n0 monomers within a time τ is

wn0(τ) =

∫ τ

0
dτn0−1 ..

∫ τ2

0
dτ1 fadd(τ − τn0−1) .. fadd(τ1)

= cn0
add

τn0−1

(n0 − 1)!
exp(−caddτ), (1.34)

where we have used fadd(t) = cadd exp[−caddt]. Next we average the delayed PDF for branching,

fbranch(t, τ) ≡ cbranch θ(t− τ) exp[−cbranch(t− τ)], (1.35)
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Figure 1.2: Figure (a) shows the mean length of the polymer chain versus time for different values of
the delay τ . Figure (b) shows the short time limit (1.31) for infinite τ and the large time limit (1.32)
of the mean length of the polymer chain.

over all possible delays, thus obtaining

f̄branch(t, n0) ≡
∫ ∞

0
wn0(τ) fbranch(t, τ) dτ =

=
cbranchc

n0
add

(n0 − 1)!
exp(−cbrancht)

dn0−1

dβn0−1

[
exp(βt)− 1

β

]
β=cbranch−cadd

. (1.36)

Then we replace f in the equation (1.13) with f̄branch and use it to generate the statistics for branching
events. As no simple analytic solution is available for the resulting non-Markovian equations, we
consider a numerical stochastic algorithm, namely SSA.
Two equivalent formulations of the SSA method are possible to simulate the delayed branching of
a polymer chain due to the alternative occurrence of monomer additions and backbiting reactions.
In particular, the delay can be either implicitly or explicitly introduced in the simulated systems.
The modification of the inter-event time distribution implicitly accounts for the required delay. In
Section 1.3.5.1, we discuss the implicit approach, considering a single delayed process, with the delay
built into the corresponding probability density function. Alternatively, it is possible to add the
explicit constraints among the possible events. The explicit method simulating two Poisson processes
with an additional constraint, accounting for the required delay is described in Section 1.3.5.2. The
equivalence of the discussed methods is proven in Section 1.3.5.3. In Section 1.3.5.4, an approximated
simulation method is proposed and all three suggested approaches are compared in accuracy and
efficiency.

1.3.5.1 Stochastic Simulation of a Single Delayed Process

Following Algorithm 1.1, a random number generator is prepared, so that it draws a random number
tj , j = 1, 2, ...K with a probability

ωj = f(tj) dt, (1.37)

where f(t) ≡ f̄branch(t, n0) (1.36), for a given n0 ∈ N. The number of branches is set to zero, and then
the first value t1 is drawn. If it lies between 0 and the time t at which the growth is stopped, the
number of branches is increased by 1, and t1 becomes the new starting time. This step is repeated
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until the k-th step yields tk > t, at which point the drawing stops, and the vector t̂ = (t1, t2, ..., tk−1)
corresponding to this particular realisation of the system’s history is stored. Repeating the simulation
a large number of times N , one obtains a collection of histories, from which the probability of any
particular property can be obtained as the relative frequency with which the property occurs. For
example, the probability to have n branches by a time t is given by

P (n, t) = Nn/N, (1.38)

where Nn the number of realisations with exactly n events. The accuracy and efficiency of the approach
for the PDF (1.36) are presented in Figure 1.4 and Figure 1.5.

1.3.5.2 Stochastic Simulation of two Poisson Processes with an Additional Constraint

Based on the formulation of SSA given in Algorithm 1.2, one can perform a simulation of two simul-
taneous Poisson processes with their respective PDFs defined as follows:

fadd(t) = cadd exp(−caddt), and fbranch(t) = cbranch exp(−cbrancht), (1.39)

and impose an additional constraint that a branching can only occur after n0 monomers have been
added previously. Without such a constraint the processes are independent, and the ratio of the mean
number of branchings to the mean length of a polymer is a constant equal to cbranch/cadd at all times.
Now in each step of the simulation, one draws random values of taddk and tbranchk from the probability
distributions fadd and fbranch in (1.39), respectively. If taddk < tbranchk , a growth event is recorded
at tk = tk−1 + taddk . Otherwise the recorded event is the branching of the chain appearing at tk =
tk−1 + tbranchk . The step is repeated until tk is found to be greater than t, and a history consisting
of branching events interspersed among acts of growth is stored. With many histories collected,
average values of observables are evaluated as in Section 1.3.5.1. The comparison shown in Figure 1.4
demonstrates a good agreement between the single- and two-processes simulations of branching events.
However, the approach of Section 1.3.5.1 is more efficient than the straightforward algorithm described
here, since it reduces the number of simulated processes to one. The computational cost is compared
in Figure 1.5.

1.3.5.3 Equivalence Proof

The aim of this section is to prove that stochastic simulation of two explicitly constrained Poisson
processes (Section 1.3.5.2) is equivalent to simulating a single delayed process (Section 1.3.5.1), with
the delay built into the probability density function (1.36).
Let us consider two competing Poisson processes, an addition and a branching, which occur at constant
rates cadd and cbranch respectively, with a branching event possible only after at least n0 additions. We
are interested in the time T̄branch needed for the next branching event to happen, whose distribution
ḡbranch(t, n0) we want to establish. With n0 initial additions required, T̄branch has the form

T̄branch =

n0∑
i=1

T iadd + Tbranch, (1.40)

where T 1
add, T

2
add, .., T

n0
add are the times required for the 1st, 2nd, .., nth0 addition respectively and Tbranch

is a time for the next branching event to occur if no delay is imposed.
First, we derive the corresponding PDFs for each term of the r.h.s of (1.40) and then find the resulting
PDF for the sum of random variables in equation (1.40).
As addition is a Poisson process, its probability density function is

f
T iadd
add (t) = cadd exp(−caddt) θ(t) = g(t; 1, cadd), ∀i = 1, .., n0, (1.41)

where g(t;α, β) = (βα/Γ(α)) tα−1 exp(−βt) θ(t) is the density of the Gamma distribution Gamma(α, β),
Γ(α) is the gamma function, with Γ(α) = (α− 1)! if α ∈ N, and θ(t) is 1 if t ≥ 0, and 0 otherwise.
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The moment generating functions (mgf) of m independent random variables Ti
ind.∼ Gamma(αi, β),

i = 1, ..,m, are given by

ψTi(λ) ≡
∫ +∞

0
exp(λt)

βαi

Γ(αi)
tαi−1 exp(−βt) dt =

(
1− λ

β

)−αi
, ∀i = 1, ..,m. (1.42)

The product
∏m
i=1 ψTi(λ) yields the mgf ψT (λ) for the sum T ≡

∑m
i=1 Ti, i.e. ψT (λ) = (1−λ/β)−

∑
i αi .

Comparing again with (1.42), we have T ∼ Gamma (
∑m

i=1 αi, β). It follows that the sum
∑n0

i=1 T
i
add

in (1.40) is distributed as

f
∑n0
i=1 T

i
add

add (t) = g(t;n0, cadd) =
cn0
add

(n0 − 1)!
tn0−1 exp(−caddt) θ(t). (1.43)

Once the required minimal number n0 of additions is achieved, branching is also a Poisson process,
and Tbranch is distributed as

fbranch(t) = cbranch exp(−cbrancht) θ(t). (1.44)

The density ḡbranch(t, n0) of T̄branch (1.40) can now be found as the convolution of the distributions of
its constituent parts:

ḡbranch(t, n0) ≡
∫ +∞

0
f
∑n0
i=1 T

i
add

add (τ) fbranch(t− τ) dτ =

=
cbranch c

n0
add

(n0 − 1)!
exp(−cbrancht)

∫ t

0
τn0−1 exp[(cbranch − cadd)τ ] dτ =

=
cbranch c

n0
add

(n0 − 1)!
exp(−cbrancht)

dn0−1

dβn0−1

[
exp(βt)− 1

β

]
β=cbranch−cadd

. (1.45)

Since the distributions ḡbranch(t, n0) (1.45) and f̄branch(t, n0) (1.36) are identical, we can conclude that
the simulation of the two explicitly constrained Poisson processes is equivalent to simulating a single
delayed process with the modified density (1.36).

1.3.5.4 Stochastic Simulation of Delayed Processes with an Approximated PDF

The algorithm outlined in Section 1.3.5.1 suggests an efficient way of simulating delayed processes, if
the amount of delay is known a priori. In practice, however, it is often not the case. If so, one may use
a set of experimental data to tune the distributions parameters taking an appropriate optimisation
route, as will be discussed later in Section 1.6.2. Optimisation is most easily achieved for distributions
having simple analytical representations and depending only on a small number of parameters. Here
we propose to use a simple two-parametric analytical PDF broadly similar to (1.36) for simulating
delayed processes with the unknown amount of delay:

f̄LEbranch(t) =


kt for 0 ≤ t < b,

kb exp
[
− (t−b)

τ

]
for t ≥ b,

0 otherwise,

(1.46)

where t = b corresponds to the argument of the maximum of f̄branch(t, n0) in (1.36), k = f̄branch(b, n0)/b
and τ = (1− kb2/2)/kb. From now on we will refer to such distribution as linear-exponential (LE).
Figure 1.3 compares the probability density function f̄branch(t, n0) (1.36) with its LE approximation
(1.46) for two values of the ratio cbranch/cadd and n0 = 3, while Figure 1.4 illustrates the level of accu-
racy achieved by the approximated distribution (1.46) in computation of the branching fraction. The
LE approximation accurately reproduces the short time behaviour of the branching fraction curve,
while in the long time limit it underestimates its value by less than 8%.
Finally, the comparison of computational efficiency of three simulation approaches proposed in Sec-
tion 1.3.5.1, Section 1.3.5.2 and Section 1.3.5.4 is presented in Figure 1.5. The approximated approach
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outperforms two other proposed methods by up to two orders of magnitude, which will become more
dramatic with increasing size and complexity of simulated processes.
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Figure 1.3: Comparison of the delayed PDF f̄branch(t, n0) (1.36) (implicit constraints) with its linear-
exponential approximation f̄LEbranch(t) (1.46) for two values of the ratio cbranch/cadd and n0 = 3.
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Figure 1.4: The ratio of the mean number of branches to the mean total length of the chain (the branch-
ing fraction) simulated using the algorithms presented in Section 1.3.5.1 (solid line), Section 1.3.5.2
(circles) and Section 1.3.5.4 (dashed line) for two values of the ratio cbranch/cadd and n0 = 3.

1.3.6 Summary

We proposed the mathematical models of the growth of a polymer chain for two different regimes,
Markovian and non-Markovian, and derived the evolution equations for the probability distributions
modelling the growth process in both scenarios. We proved that the equations and the statistics
characterising the Markovian growth differ significantly from those describing a non-Markovian regime.
The predicted time evolution of the mean lengths of the grown chain for different amounts of delay
clearly demonstrate such differences. While in the Markovian case, the mean length is linear in time,
the presence of delays may force the growth to show step-like variations at short times before settling
into a linear behaviour later.
Further we explained how to simulate the delayed growth by formulating two suitable implementations
of the Stochastic Simulation Algorithm (SSA). The first approach simulates a single delayed process,
with the delay built into the probability density function as was proposed for the non-Markovian
growth model. The second methodology corresponds to the stochastic simulation of two Poisson
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Figure 1.5: Computational cost of simulation approaches discussed in Section 1.3.5.1 (circles), Sec-
tion 1.3.5.2 (triangles) and Section 1.3.5.4 (crosses) for two values of the ratio cbranch/cadd and n0 = 3.
The approximated method given in Section 1.3.5.4 is the most computationally efficient, especially for
big sample sizes.

processes. The delay is introduced by adding explicit constraints among the possible events. We
proved the equivalence of two proposed techniques but found the first approach computationally more
sound. We also proposed the approximated distribution (1.46) for modelling non-Markovian processes
and compared accuracy and efficiency of all designed approaches. The comparison revealed that the
approximated method enhances the simulation speed, especially for big sample sizes while maintaining
a proper accuracy.
We published the results presented in this section in [2].
In the next sections, we show how the proposed mathematical framework can be applied in practice.
In particular, in Section 1.4 and Section 1.5 we develop a Monte Carlo and analytical methods,
respectively, for computation of the relative frequencies of constrained events in stochastic processes.
Both methodologies arise from the approaches discussed in this section for the simulation of stochastic
processes with the additional constraints among the possible events.

1.4 Relative Frequencies of Constrained Events in Stochastic Pro-
cesses: A Monte Carlo Approach

Our intention now is to demonstrate how the proposed analysis of the non-Markovian processes can
be applied in practice. Since, as stated above, our objective is to explain the reduction in relative
frequencies of propagations and backbitings experimentally observed in the Controlled Radical Poly-
merization, we concentrate on simulation of relative frequencies of constrained events. In this section
we discuss a Monte Carlo approach for evaluation of relative frequencies of constrained events in
stochastic processes.
First, in Section 1.4.1 we formulate the SSA procedure for calculating the quantity of interest by using
explicit constraints among the possible events, as suggested in Section 1.3.5.2.
Then, Section 1.4.2 presents a formulation of SSA for the computation of the relative frequencies,
where the constraints are implicitly built in the density functions, as proposed in Section 1.3.5.1.
Finally, Section 1.4.3 discusses the presented methodologies and provides the motivation for the fol-
lowing sections of this chapter.

1.4.1 SSA Algorithm with Explicit Constraints

We consider a stochastic process during the time interval [t0, tmax]. The realisations of the random
variables building the stochastic process correspond to the events occurring during [t0, tmax]. Each
event may have N possible outcomes. The outcome i = 1, .., N corresponds to a possible value assumed
by the random variables. The outcomes are constrained, i.e.
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the outcome i = 1, .., N can occur if and only if at least cij ∈ N outcomes j = 1, .., N

have already occurred after the previous occurrence of the outcome i. (1.47)

If the outcome i is possible, the required time Ti = τ for its occurrence is distributed according to the
known probability density function (PDF)

fi(τ), τ ∈ R+, i = 1, .., N. (1.48)

The objective is to compute the ratio between final numbers ni1 and ni2 of occurred outcomes i1 and
i2 ∈ {1, .., N}.
It is worth noting that there are the conditions the system needs to satisfy in order to be able to
evolve its state. First, each outcome must not be constrained by itself, or

cii = 0, ∀i = 1, .., N, (1.49)

and second, there is at least one outcome free to occur, or (s.t. is a shorthand for “such that”)

∃i ∈ {1, .., N} s.t. cij = 0, ∀j = 1, .., N. (1.50)

Otherwise, if cij 6= 0 for all i, j, none of the events are possible.
Given a well-posed set of constraints (1.47), Algorithm 1.3 presents a Monte Carlo (MC) procedure
for computing a single realisation of the relative frequency of the outcomes i1 and i2. The constraints
are explicitly accounted during the evolution of the process, as suggested in Section 1.3.5.2.

Algorithm 1.3: The MC procedure for computing a single realisation of the relative frequency
ni1/ni2 of the outcomes i1 and i2 ∈ {1, .., N} during the time interval [t0, tmax]. The algorithm
explicitly accounts for the constraints (1.47) (s.t. stands for “such that”).

1 Define the initial time t = t0 and final time tmax > t0;
2 Given N ∈ N, set the number of occurred outcomes ni = 0, ∀i = 1, .., N ;
3 Initialise the label ji = 0 for the possible occurrence of the outcome i, ∀i = 1, .., N ;
4 Assign the constraints cij ∈ N, ∀i, j = 1, .., N ;
5 while t < tmax do
6 Reset ji = 0, ∀i = 1, .., N ;
7 for i = 1, .., N do
8 if outcome i satisfies all the constraints (1.47) then
9 Set the label ji = 1;

10 Draw a realization τi from Ti ∼ fi(τ) (1.48), with τ ∈ R+;

11 end

12 end
13 Select the outcome i0 ∈ {1, .., N} such that τi0 = mini=1,..,N s.t. ji=1 τi;

14 Update the time t← t+ τi0 ;
15 Update the occurred outcomes ni0 ← ni0 + 1;

16 end
17 Return the final ratio ni1/ni2 ;

1.4.2 SSA Algorithm with Implicit Constraints

We consider the stochastic process described in Section 1.4.1, addressing the relative frequency of the
occurred outcomes i1 and i2 ∈ {1, .., N}.
Given the constraints (1.47) and the PDF (1.48), we define the distribution

f̄ik (τ ; {cij , fi(·)}i,j=1,..,N ) , τ ∈ R+, k = 1, 2, (1.51)
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of the values T̄ik = τ of the required time for the occurrence of the outcome ik, k = 1, 2, accounting
for all the possible events with the relative constraints. An illustrative example for (1.51) is given by
the density (1.36) for the constrained branching presented in Section 1.3.5.
Following Section 1.3.5.1, Algorithm 1.4 describes an MC procedure for computing a single realisation
of the relative frequency of the outcomes i1 and i2. The PDF (1.51) implicitly accounts for the
constraints (1.47) and the distributions (1.48).

Algorithm 1.4: The MC procedure for computing a single realisation of the relative frequency
ni1/ni2 of the outcomes i1 and i2 ∈ {1, .., N} during the time interval [t0, tmax]. The density f̄ik
(1.51) implicitly accounts for the constraints among the possible events and their required times.

1 Define the initial times t1 = t2 = t0 and final time tmax > t0;
2 Set the number of occurred outcomes ni1 = ni2 = 0;
3 for k = 1, 2 do
4 while tk < tmax do
5 Draw a realization τk from T̄ik ∼ f̄ik (1.51);
6 Update the time tk ← tk + τk;
7 Update the occurred outcomes nik ← nik + 1;

8 end

9 end
10 Return the final ratio ni1/ni2 ;

1.4.3 Summary

In this section we have formulated SSA-based algorithms for calculating relative frequencies of con-
strained events in stochastic processes. The algorithms can be applied in any study where relative
frequencies of constrained events are of interest.
The constraints among the possible events can be introduced either explicitly (Algorithm 1.3) or im-
plicitly (Algorithm 1.4). In the general case, it looks difficult to show the equivalence among the
presented algorithms. Once the constraints (1.47) and the PDF (1.48) are specified, the equivalence
can be shown by recovering the density (1.51) from the procedure given in Algorithm 1.3, as discussed
in Section 1.3.5.3. Figure 1.4 verifies the agreement between the two approaches in the computation
of the branching fraction.
Algorithm 1.4 (implicit constraints) is expected to improve the computational efficiency of Algo-
rithm 1.3 (explicit constraints). If the number N of outcomes is very large, Algorithm 1.4 requires
a significantly smaller number of random generations and conditional statements than Algorithm 1.3
does. The enhanced efficiency of the implicit approach is confirmed in Figure 1.5. However, it may be
not always possible, or convenient, to apply Algorithm 1.4. Indeed, it requires samples drawn from the
density (1.51). Particular shapes of the PDF (1.48) and complex structures of the constraints (1.47)
may lead to non-closed form expressions of (1.51) and expensive procedures for the samples drawing.
Regardless of the distinctiveness, both MC algorithms 1.3 and 1.4 suffer from the same drawback:
they are computationally expensive. For this reason, we show in Section 1.5 how to directly solve
the dynamics of the system without having to resort to any MC method. In particular, we derive
a significantly more effective analytical approach for computing relative frequencies of constrained
events in stochastic processes. The analytical formula is obtained in the same terms as Monte Carlo
routine is defined, ensuring the equivalence of the two methodologies.

1.5 Relative Frequencies of Constrained Events in Stochastic Pro-
cesses: An Analytical Approach

In Section 1.4, we suggested Monte Carlo (MC) based approaches for study of constrained stochastic
processes. Such methodologies, however, are computationally demanding. The aim of this section is
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to show that it is possible to replace heavy MC methods with the analytical expression for the asymp-
totic relative frequencies of constrained events. The replacement not only provides more accurate
estimation of the properties of the process, but also reduces the simulation time by a factor of order
of the sample size (at least ≈ 104). The method is validated using the exactly solvable model intro-
duced in Section 1.3 and then applied to the evaluation of branching fractions in Controlled Radical
Polymerization (CRP) of acrylic monomers. The proposed method does not depend on a choice of a
PDF or properties of a constrained system and thus is suitable for the wide range of applications (see
[24] for examples of constrained systems).
The section is organised as follows. In Section 1.5.1, we derive the analytical expression for the rela-
tive asymptotic frequency of constrained events in general stochastic processes. The result is tested in
Section 1.5.2 for the exactly solvable case of a process with a single constraint. The comparison with
the MC method from Section 1.3.5.2 validates the obtained formula. Following the ideas described
in Section 1.5.1, we derive in Section 1.5.3 the analytical expression for the asymptotic branching
fraction in CRP of acrylic monomers. Section 1.5.4 discusses the presented results and provides the
connections with the rest of the chapter.

1.5.1 Relative Asymptotic Frequencies of Constrained Events in Stochastic Pro-
cesses

Consider a stochastic process with a given total number of events nT � 1. These events correspond
to the realizations of the random variables building the stochastic process. Each event may have
N possible outcomes. A particular outcome is given by a possible value assumed by the random
variables. The outcomes are constrained (1.47): the outcome i = 1, .., N can occur if and only if at
least cij ∈ N outcomes j = 1, .., N have already occurred after the previous occurrence of the outcome
i. As specified in Section 1.4.1, the system needs to satisfy the conditions (1.49) and (1.50) in order
to be able to evolve its state. Our objective is to compute ratios between asymptotic numbers ni and
nj of occurred outcomes i and j.
The nT events can be partitioned as follows. Let us divide all events into 2N non-overlapping subsets
labelled (j1, j2, .., jN ), where jk = 0, 1 and k = 1, 2, .., N . jk = 1 means that the k-th outcome is
possible, whereas if jk = 0 it is not possible due to constraints. Let n(j1, j2, .., jN ) be the number of
events in a subset, e.g. n(1, 0, ..., 0) is the number of events for which the outcome i = 1 is possible,
but the rest of them are not. Obviously∑

j1,..,jN=0,1

n(j1, j2, .., jN ) = nT . (1.52)

Let ni(j1, j2, .., jN ) be the number of outcomes of a kind i in the subset (j1, j2, .., jN ). The assumption
is that the events belonging to each subset (j1, j2, .., jN ) are independent (unconstrained). Such an
assumption does not lead to loss of generality because the constraints used in building different subsets
can contain the information about the dependencies between events.
Then if n(j1, j2, .., jN )→ +∞, the probability Pi(j1, j2, .., jN ) for the i-th outcome to occur in the set
(j1, j2, .., jN ) corresponds to the limit of frequency of the i-th outcome, i.e.

Pi(j1, j2, .., jN ) =
ni(j1, j2, .., jN )

n(j1, j2, .., jN )
, ∀i ∈ {1, .., N}. (1.53)

A formulation of the Gillespie Stochastic Simulation Algorithm (SSA) [25] can be used to define the
probability Pi(j1, j2, .., jN ). Let independent random variables T1, T2, .., TN be the times required for
the next occurrence of the respective outcome, if it is possible. SSA suggests to pick the outcome that
realizes the minimal occurrence time among the possible ones, as summarised in Algorithm 1.2. In
other words,

Pi(j1, j2, .., jN ) =


0 if ji = 0,

P (Ti < Tk : ∀k 6= i s.t. jk = 1) if ji = 1 ∧ ∃k 6= i s.t. jk = 1,

1 if ji = 1 ∧ jk = 0, ∀k 6= i.

(1.54)

31



Relative Frequencies of Constrained Events in Stochastic Processes: An Analytical Approach

Equations (1.53) and (1.54) offer the way for calculation of the asymptotic numbers of outcomes of a
kind i, ni, for any i:

ni =
∑

j1,..,jN

Pi(j1, j2, .., jN )n(j1, j2, .., jN ), ∀i ∈ {1, .., N}. (1.55)

The ratio between ni and nj for any i and j can be immediately obtained from (1.55) and (1.54). The
number of possible outcomes N should not be crucial for the proposed approach. In particular, the
proposed solution holds for big values of N . More important for the applicability of the method are the
possible dependencies between different events. In general, complex dependencies between different
subsets may lead to non-converged asymptotic behaviour of the ratios of interest. However, when the
constraints are limited and well defined, as in the examples presented in the following sections, the
ratios of interest can be evaluated exactly for any value of N .

1.5.2 A Process with a Single Constraint

The analytical approach of Section 1.5.1 can be tested on the simple model introduced in [2]. We
consider the case of a stochastic process with only two possible outcomes, 1 and 2. The first one is
free to occur with the occurrence rate c1, but the second one must wait till at least n0 occurrences of
kind 1 after its own previous occurrence. Its occurrence rate is c2. There are only two possible subsets
in this case (the order of events is preserved as described above):

(1, 0), (1, 1). (1.56)

The corresponding probabilities are given by

P1(1, 0) = 1, P1(1, 1) = P(T1 < T2),

P2(1, 0) = 0, P2(1, 1) = P(T2 < T1). (1.57)

The total number of events n(1, 0) in the subset (1, 0) is given by n0 outcomes 1 for each occurrence
of the outcome 2:

n(1, 0) = n2n0, (1.58)

where n2 is the asymptotic total number of outcomes 2. The total number of events in the comple-
mentary subset n(1, 1) can be computed by subtraction:

n(1, 1) = nT − n2n0. (1.59)

Equation (1.55) gives

n1 = n2n0 + P(T1 < T2)(nT − n2n0), (1.60)

n2 = P(T2 < T1)(nT − n2n0), (1.61)

where Ti is the time required to fire the next occurrence of kind i = 1, 2 (if possible). Equations (1.60)
and (1.61) can be rewritten as

n1 =
P(T1 < T2) + n0P(T2 < T1)

1 + n0P(T2 < T1)
nT , (1.62)

n2 =
P(T2 < T1)

1 + n0P(T2 < T1)
nT . (1.63)

Equations (1.62) and (1.63) show that, as nT → ∞, the asymptotic fraction n2/n1 reaches the fixed
asymptotic value. In particular
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n2

n1
=

P(T2 < T1)

P(T1 < T2) + n0P(T2 < T1)
. (1.64)

Following [25], we assign independent exponentially distributed probability density functions fi(t) to
the random variables Ti, i = 1, 2:

fi(t) = ci exp(−cit), t, ci ∈ R+, i = 1, 2. (1.65)

The probabilities in (1.64) can be computed as

P(T1 < T2) =

∫ +∞

0
f1(t)

[
1−

∫ t

0
f2(τ) dτ

]
dt =

c1

c1 + c2
. (1.66)

Thus, the asymptotic ratio between the number of outcomes 2 and the number of outcomes 1 becomes

n2

n1
=

c2

c1 + n0c2
. (1.67)

This result is in good agreement with the data obtained using the Monte Carlo method proposed in
Section 1.3.5.2, as is shown in Figure 1.6.
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Figure 1.6: Comparison between the analytical solution (1.67) (lines) and corresponding statistics
(crosses) obtained by the Monte Carlo (MC) method proposed in Section 1.3.5.2. Five independent
runs are performed for two different parameters sets: n0 = 3, c2/c1 = 1 (solid line) and n0 = 3,
c2/c1 = 0.2 (dashed line). The MC sample size is equal to G = 104.

1.5.3 Analytical Expression for Asymptotic Relative Frequencies of Constrained
Events in CRP

Following the ideas described in Section 1.5.1, we want to derive the analytical expression for the
asymptotic branching fraction in Controlled Radical Polymerization (CRP) of acrylic monomers. In
particular, let np, nd and nr respectively be the asymptotic mean number of occurred propagations,
deactivations and backbitings. Then the branching fraction can be calculated as a ratio between nr
and np using equations (1.54) and (1.55). As stated in the beginning of the chapter, propagation and
deactivation are always possible, whereas backbiting needs at least n0 = 3 previous propagations to
occur. Hence, we have two subsets (the order is: propagation (p), deactivation (d), backbiting (r)):

(1, 1, 0), (1, 1, 1). (1.68)
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The following are the probabilities for each outcome in each subset:

Pp(1, 1, 0) = P(Tp < Td), Pp(1, 1, 1) = P(Tp < Td, Tr),

Pd(1, 1, 0) = P(Td < Tp), Pd(1, 1, 1) = P(Td < Tp, Tr),

Pr(1, 1, 0) = 0, Pr(1, 1, 1) = P(Tr < Tp, Td). (1.69)

The total number of events that cannot be a backbiting, n(1, 1, 0), is given by n0 propagations for each
occurred backbiting, and by the number of deactivations occurred when backbiting is not possible:

n(1, 1, 0) = n0nr + nd(1, 1, 0) = n0nr + P(Td < Tp)n(1, 1, 0). (1.70)

Equation (1.70) can be rewritten as

n(1, 1, 0) =
n0nr

P(Tp < Td)
. (1.71)

Apparently,

n(1, 1, 1) = nT − n(1, 1, 0). (1.72)

Then, Equation (1.55) yields

np = P(Tp < Td)n(1, 1, 0) + P(Tp < Td, Tr)[nT − n(1, 1, 0)], (1.73)

nd = P(Td < Tp)n(1, 1, 0) + P(Td < Tp, Tr)[nT − n(1, 1, 0)], (1.74)

nr = P(Tr < Tp, Td)[nT − n(1, 1, 0)]. (1.75)

From Eqs. (1.73) and (1.75) we have:

nr =
P(Tp < Td)P(Tr < Tp, Td)

P(Tp < Td) + n0P(Tr < Tp, Td)
nT , (1.76)

np =
P(Tp < Td)[P(Tp < Td, Tr) + n0P(Tr < Tp, Td)]

P(Tp < Td) + n0P(Tr < Tp, Td)
nT . (1.77)

Equations (1.76) and (1.77) show that, as nT → ∞, the branching fraction nr/np reaches the fixed
asymptotic value

nr
np

=
P(Tr < Tp, Td)

P(Tp < Td, Tr) + n0P(Tr < Tp, Td)
. (1.78)

In particular, the ratio (1.78) is a function of the probabilities involving the random variables Tp, Td and
Tr only. This implies two important consequences: (i) our solution holds for any choice of inter-event
times PDF and (ii) it is possible to express the branching fraction as a function of the PDF parameters,
once the probabilities of interest are computed. In the general case, the probabilities in (1.78) can be
calculated as follows. Given N ≥ 2 independent random variables T1, .., TN with distributions fi(t),
i = 1, ..N , the probability P(Tk < Tj , ∀j 6= k), with k, j = 1, .., N , can be computed as

P(Tk < Tj , ∀j 6= k) =

∫ +∞

0
fk(t)

∏
j 6=k

[
1−

∫ t

0
fj(τ) dτ

]
dt, k, j = 1, .., N. (1.79)

As summarised in Section 1.1, classical theories of chemical kinetics assume the memoryless exponential
distributions fp(t), fd(t) and fr(t) for the value t of the required times Tp, Td and Tr respectively, i.e.

fi(t) = ci exp(−cit), t, ci ∈ R+, i = p, d, r, (1.80)
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where cp, cd and cr are the corresponding occurrence rates. Given (1.80), we compute the probabilities
in (1.78) following the formula (1.79):

P(Tr < Tp, Td) =
cr

cp + cd + cr
, P(Tp < Td, Tr) =

cp
cp + cd + cr

. (1.81)

Equation (1.78) gives

nr
np

=
cr

cp + n0cr
, (1.82)

showing that the resulting branching fraction nr/np is independent from the additional process of chain
deactivation. In other words, (1.82) suggests that the classical mathematical framework, assuming the
memoryless exponential distributions, is not able to explain the reduction of the branching fraction,
experimentally observed in the presence of the control agent. Our analytical approach is valid for
any choice of inter-event PDF, allowing to extend the classical modelling to delayed PDF. To explain
the experimentally observed reduction of the branching fraction, we will consider in Section 1.6 non-
exponentially distributed random variables, allowing the presence of delays among the possible events.

1.5.4 Summary

In this section, we have derived the analytical expression for the relative asymptotic frequency of
constrained events in general stochastic processes. The proposed analytical approach is based on the
assumption that the asymptotic limit is reached. Thus, it describes the statistics of the asymptotic
states of a stochastic process. Reaching the asymptotic limit via Monte Carlo (MC) simulations is
costly, since also the transient dynamics need to be performed. In the considered application (CRP),
the reactions continue until all the reactants are used up. For this reason, our method is appropriate
for a study of CRP, where reactions may be seen as reaching their asymptotic state.
The analytical formula stands for any choice of inter-event PDF and well-posed constraints, being
suitable for a wide range of applications. The result has been tested on an exactly solvable model
and validated by comparison with the corresponding MC approach. Then, the general formula has
been applied for the computation of the asymptotic branching fraction in Controlled Radical Poly-
merization (CRP) of acrylic monomers, assuming an arbitrary choice of PDFs. In addition, using the
developed analytical approach we prove that memoryless models are not able to explain the experi-
mentally observed reduction of branching fraction in CRP. We published in [3] the results presented
in Section 1.5.
The next step will be to combine the mathematical framework, derived in Section 1.3, with the ap-
proaches, proposed in Section 1.4 and Section 1.5 for calculation of relative frequencies of constrained
events, in order to develop a methodology for modelling CRP of acrylic monomers.

1.6 SSA for Modelling of Constrained Events in CRP

Our goal is to design a Stochastic Simulation Algorithm (SSA) based method for simulating the
constrained events of Controlled Radical Polymerization (CRP). Such a method should be able to
predict any quantity of interest in agreement with experimental evidences.
Section 1.6.1 discusses the inter-event PDFs to be used in SSA. The experimental trend of branching
fractions motivates the need for delays in the PDF shape, as shown in Section 1.5. The required delays
can be efficiently accounted for, as suggested in Section 1.3.5.4.
Section 1.6.2 designs the procedure for refining the parameters of the proposed delayed PDFs with
the help of the available experimental data.
Section 1.6.3 employs the delayed PDFs, with optimal parameters, to build the SSA-based method
simulating the CRP process in agreement with experimental evidences. The methodology is based on
the MC framework suggested in Section 1.4.
Section 1.6.4 discusses the presented methodologies and provides the connections with the rest of the
chapter.
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1.6.1 Delayed Probability Density Functions

This section addresses the choice of the inter-event distributions to perform SSA simulating the CRP
reaction in agreement with the experimental data.
The experimental branching fractions shown in Figure 1.7 present the example of the available data.
The two sets of values, with corresponding uncertainty intervals, were obtained by performing the
polymerization of n-Butyl Acrylate, under two different experimental conditions, known as bulk (80
◦C) and solution (110 ◦C) polymerization. The trithiocarbonate RAFT agent, DTTC, was used as
the control agent. Each polymerization was conducted at different control agent concentrations, thus
giving a range of data points for analysing the effect of the deactivation event. Figure 1.7 shows that
for the trithiocarbonate RAFT agent, DTTC, in both solution and bulk polymerizations the branching
fraction decreases with increasing DTTC concentration. The results were supplied by the group of
Prof. J. M. Asua in POLYMAT.
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Figure 1.7: Experimental branching fractions and corresponding uncertainty intervals, provided by
the research group of Prof. J. M. Asua in POLYMAT.

The inspection of Figure 1.7 confirms the strong reduction in branching fraction under CRP conditions,
which cannot be predicted by simulating a (memoryless) Markovian process, as shown in Section 1.5.
This motivates us to view a CRP process as non-Markovian and to assume delayed probability density
functions.
In particular, we consider independent linear exponential distributions for the required times of the
possible reactions, as proposed in Section 1.3.5.4. It means that the time required for a propagation is
Tp ∼ Linexp(bp, τp), for a backbiting is Tr ∼ Linexp(br, τr) and for a deactivation is Td ∼ Linexp(bd, τd).
The linear exponential PDF is defined as:

Ti ∼ Linexp(bi, τi)⇔ fLE(t; bi, τi) =


2

b2i+2biτi
t, if 0 ≤ t < bi,

2bi
b2i+2biτi

exp
[
− (t−bi)

τi

]
, if t ≥ bi,

(1.83)

where i = p, r, d and the indices p, r, d stand for propagation, backbiting and deactivation respectively.
The parameters bi > 0 quantify the amount of delay for the different reactions. In the absence of delay,
i.e. bi → 0, the PDF (1.83) correctly recovers the memoryless exponential distribution.

1.6.2 Using Experimental Data for PDFs Parameters Quantification

The data, such as shown in Figure 1.7, allow for quantifying the parameters of the delayed PDFs.
In particular, an optimisation scheme can be designed for a proper fitting of the simulated branching
fractions into the experimentally measured data of Controlled Radical Polymerization.
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Let us recall that the Monte Carlo (MC) framework of Section 1.4 and the analytical approach of
Section 1.5 are able, in principle, to predict the data of Figure 1.7, provided the knowledge of inter-
event PDFs. One can choose a particular functional shape for these PDFs, following the suggestions
in Section 1.6.1. Assigning the constraint n0 = 3 and assuming the PDF (1.83), either Algorithm 1.5
or Algorithm 1.6 can be readily used for a stochastic or analytical evaluation, respectively, of the final
branching fraction of the created polymer chain for a given set of PDFs parameters values.

Algorithm 1.5: The MC method for computation of the final branching fraction ρ in CRP,
corresponding to the parameters values bp, τp, br, τr, bd, τd ∈ R+.

1 Define the random variables Ti ∼ Linexp(bi, τi) (1.83), for i = p, d, r;
2 Set the numbers np = nr = 0 of occurred propagations (p) and backbitings (r);
3 Assign the number n0 = 3 of required propagations to have a backbiting;
4 Initialise the propagations counter kp = 0 and set the sample size G ∈ N;
5 for j = 1, .., G do
6 if kp < n0 then
7 Draw an independent realization ti from Ti, for i = p, d;
8 if tp = min{tp, td} then
9 Propagation has occurred: np ← np + 1 and kp ← kp + 1;

10 end

11 else
12 Draw an independent realization ti from Ti, for i = p, d, r;
13 if tp = min{tp, td, tr} then
14 Propagation has occurred: np ← np + 1;
15 end
16 if tr = min{tp, td, tr} then
17 Backbiting has occurred: nr ← nr + 1 and kp = 0;
18 end

19 end

20 end
21 Return the value of the branching fraction ρ ≡ nr/np;

Algorithm 1.6: The analytical approach for computation of the final branching fraction ρ in
CRP, corresponding to the parameters values bp, τp, br, τr, bd, τd ∈ R+.

1 Define the random variables Ti ∼ Linexp(bi, τi) (1.83), for i = p, d, r;
2 Assign the number n0 = 3 of required propagations to have a backbiting;
3 Using the formula (1.79), compute the probabilities P(Tp < Td, Tr) and P(Tr < Tp, Td);
4 Apply (1.78) to calculate the ratio nr/np;
5 Return the value of the branching fraction ρ ≡ nr/np;

Algorithm 1.5 and Algorithm 1.6 rely on the knowledge of the parameters bp, τp, br, τr, bd, τd ∈ R+

to compute the corresponding branching fraction ρ. In practice, appropriate PDFs parameters are
difficult to identify, and the available experimental data may be taken into consideration to resolve this
problem. Sometimes, the PDFs parameters can be obtained using the rate coefficients determined from
experimental measurements. If the kinetic rate coefficient of a given reaction is independent of other
processes, the PDF parameters and experimentally measured rate coefficient are explicitly related.
This is the case of the propagation rate coefficient for linear polymer growth. However, when, as in
the case of backbiting in CRP, the rate coefficient is determined in the presence of other competitive
processes, then the relationship between the PDFs parameters and experimentally measured rate
coefficients is not straightforward.
One possible way to estimate the unknown PDFs parameters is to employ an optimisation scheme,
which uses available experimental data. The idea behind a fitting scheme is to build a cost function J
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for measuring the disagreement between experimental and simulated branching fractions. The fitting
scheme minimises the cost function J , in order to find such a set of PDFs parameters that gives the
best agreement with the experimental data. The ability of the method to reproduce the experimental
trend will serve as a proof of the reliability of our non-Markovian model for CRP, as will be shown in
Section 1.7.
Algorithm 1.7 presents the scheme for fitting the simulated branching fractions ρ in CRP. The cost
function J evaluates ρ by performing either the MC method described by Algorithm 1.5, or the
analytical approach summarised in Algorithm 1.6. We have to stress that there are no particular
restrictions on the choice of an optimisation algorithm. However, in practice one should go for the
most efficient one available, since this would help to reduce the number of iterations required for
finding the optimal parameters.

Algorithm 1.7: The scheme for fitting the simulated branching fractions ρ to the experimental
data. The method returns the tuned parameters b̂p, τ̂p, b̂r, τ̂r, b̂d, τ̂d ∈ R+ of the PDFs (1.83).

1 Define the cost function J measuring the disagreement between ρ and the experimental
branching fractions, e.g. the data shown in Figure 1.7;

2 Set either the label M = 1 for the MC method, or M = 2 for the analytical approach;
3 Initialise the parameters bp, τp, br, τr, bd, τd ∈ R+ of the PDFs (1.83);
4 while J is not minimised do
5 if M = 1 then
6 Run Algorithm 1.5 to calculate ρ;
7 end
8 if M = 2 then
9 Run Algorithm 1.6 to calculate ρ;

10 end
11 Compute J corresponding to ρ;
12 Update bp, τp, br, τr, bd, τd ∈ R+ according to the chosen optimisation algorithm;

13 end

14 Return the optimal values b̂p = bp, τ̂p = τp, b̂r = br, τ̂r = τr, b̂d = bd, τ̂d = τd;

The fitting scheme presented in Algorithm 1.7 computes the branching fractions ρ by applying either
the MC method (Algorithm 1.5), or the analytical approach (Algorithm 1.6). The analytical formula is
obtained in the same terms as MC routine is defined, ensuring the equivalence of the two methodologies.
However, the analytical approach is free of the statistical errors affecting MC-based simulations, and
it can speed up the simulation by a factor of order of the sample size (at least ≈ 104, as shown in
Section 1.7).
In conclusion, the purpose of such a fitting scheme is twofold. On the one hand, we want to closely
reproduce the observed experimental data and thus prove that the proposed model is a proper tool
for studying CRP. On the other hand, the suggested scheme provides us with the refined parameters
of the model that can be used for evaluation of other important properties of CRP, as discussed in
Section 1.6.3.

1.6.3 SSA for Modelling of Constrained Events in CRP

This section designs the Stochastic Simulation Algorithm (SSA) for modelling the constrained events in
Controlled Radical Polymerization (CRP). The method aims to prediction of any quantity of interest
in agreement with experimental evidences. The routine can be divided in two consecutive stages.
First, the scheme presented in Section 1.6.2 allows tuning the parameters of PDFs (1.83) for better
fitting of the simulated properties into the experimental branching fractions. Algorithm 1.7 can be
used as an efficient tool for finding optimal values of the parameters in agreement with experimental
data. The second stage of the simulation consists in using the tuned PDFs to perform a detailed MC
simulation of CRP, in the line of Algorithm 1.3 formulated in Section 1.4.1.
Algorithm 1.8 presents the described method, summarising the routine to draw a single realisation of
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the sequence of events and occurrence times building the polymer chain. The constraint of n0 = 3
propagations to have a backbiting is taken into account as proposed in Algorithm 1.3. The inter-event
PDFs are assumed linear exponential (1.83), as motivated in Section 1.6.1. The information provided
by the experimental branching fractions is embedded in the optimal PDFs parameters, found by
Algorithm 1.7. In order to save computational effort, we recommend to use the accurate and efficient
analytical approach for optimising the PDFs parameters, i.e. M = 2 in Algorithm 1.7. In conclusion,
the sequence of events and times, drawn according Algorithm 1.8, allows estimating any quantity of
interest in agreement with experimental evidences.

1.6.4 Summary

This section has been devoted to the design of an SSA-based method for simulating the CRP process
in agreement with available experimental evidences.
The decreasing trend of the experimental branching fraction, shown in Figure 1.7, imposes the intro-
duction of delays in the inter-event PDFs of the SSA method, as proven in Section 1.5. The linear
exponential PDF (1.83) accounts for the required delays, as motivated in Section 1.3.5.4.
The competitive nature of the processes building the CRP reaction makes the values of the delayed
PDFs parameters difficult to identify. Algorithm 1.7 tunes the parameters of the PDFs (1.83) for the
better matching of simulated and experimental branching fractions. As will be shown in Section 1.7,
the resulting fitting validates our non-Markovian model for CRP of acrylic monomers.
Algorithm 1.8 summarises all these findings and describes the SSA-based method for simulating the
CRP process in agreement with experimental evidences. The methodology relies on the MC framework
discussed in Section 1.4, employing the linear exponential PDFs (1.83) with the optimal parameters
values found by Algorithm 1.7.
The described in Algorithm 1.7 method, performed with Algorithm 1.5 (M = 1) and the Nelder-Mead
optimisation scheme [35], has been successfully applied to the study of branching in Controlled Radical
Polymerization of acrylic monomers. We published the results in [1].
The simulated branching fractions can be computed by either the MC method (Algorithm 1.5), or the
analytical approach (Algorithm 1.6). The two methodologies are equivalent, since derived from the
same rules. Section 1.7 will test the accuracy and the computational efficiency of the MC method and
the analytical approach, for the evaluation of branching fractions in Controlled Radical Polymerization
of acrylic monomers. As will be shown in Section 1.7, the analytical approach should be the method
of choice because (i) it avoids the statistical errors affecting MC-based simulations and (ii) it speeds
up the simulation by a factor of order of the sample size (at least ≈ 104).

39



SSA for Modelling of Constrained Events in CRP

Algorithm 1.8: The Stochastic Simulation Algorithm (SSA) for modelling the constrained
events in Controlled Radical Polymerization. SSA returns a single realisation of events and
occurrence times building the polymer chain during the time interval [t0, tmax].

1 Set the initial time t0 and final time tmax > t0;
2 Define the occurrence time tk ∈ [t0, tmax] of the k-th event, with k ∈ N;
3 Define ik = p, d, r to label the k-th event as propagation (p), deactivation (d) or backbiting (r);
4 Assign the number n0 = 3 of required propagations to have a backbiting;
5 Initialise the propagations counter kp = 0 and the index k = 0;

6 Run Algorithm 1.7 to find the optimal parameters b̂p, τ̂p, b̂r, τ̂r, b̂d, τ̂d ∈ R+ of the PDFs (1.83);

7 Define the random variables Ti ∼ Linexp(b̂i, τ̂i) (1.83), for i = p, d, r;
8 while tk < tmax do
9 if kp < n0 then

10 Draw an independent realization τi from Ti, for i = p, d;
11 Compute the occurrence time tk+1 = tk + min{τp, τd} of the k + 1-th event;
12 if τp = min{τp, τd} then
13 Propagation has occurred: ik+1 = p and kp ← kp + 1;
14 end
15 if τd = min{τp, τd} then
16 Deactivation has occurred: ik+1 = d;
17 end

18 else
19 Draw an independent realization τi from Ti, for i = p, d, r;
20 Compute the occurrence time tk+1 = tk + min{τp, τd, τr} of the k + 1-th event;
21 if τp = min{τp, τd, τr} then
22 Propagation has occurred: ik+1 = p;
23 end
24 if τd = min{τp, τd, τr} then
25 Deactivation has occurred: ik+1 = d;
26 end
27 if τr = min{τp, τd, τr} then
28 Backbiting has occurred: ik+1 = r and kp = 0;
29 end

30 end
31 Update k ← k + 1;

32 end
33 Return the sequence {ik}k∈N of events occurred at times {tk}k∈N;
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1.7 Branching Fraction in Controlled Radical Polymerization: Nu-
merical Experiments

This section tests the accuracy and computational efficiency of the Monte Carlo (MC) procedure,
designed in Section 1.4, and the analytical approach, proposed in Section 1.5, for the evaluation of
branching fractions in Controlled Radical Polymerization (CRP) of acrylic monomers.
As discussed in Section 1.6, Algorithm 1.5 and Algorithm 1.6 allow us computing the branching
fractions by means of the MC framework of Section 1.4 and the analytical approach of Section 1.5
respectively. The metrics of the tests will be the performances of Algorithm 1.5 and Algorithm 1.6 in
the fitting of experimental branching fractions shown in Figure 1.7. The fitting of the available data
can be achieved by optimisation schemes similar to Algorithm 1.7. Different settings are tested, as
summarised in Table 1.1.

Tests Simulated ρ PDFs Experimental
Branch. Fr.

Cost Fun. J Optimisation
Algorithm

Results

T1: Accuracy
T2: Accuracy
T3: Efficiency
T4: Efficiency

Analytical
Solution (Al-
gorithm 1.6)

Linexp (1.83)
for all events

T1: Solution
T2: Bulk
T3: Solution
T4: Bulk

Mean Squared
Error (MSE)

Nelder-Mead
method [35]

T1-T2: Data Fitting
(Fig. 1.8a) and Tuned
Param. (Tab. 1.2)
T3-T4: Comput.
Times (Fig. 1.8b)

T5: Accuracy
T6: Accuracy
T7: Efficiency
T8: Efficiency

Monte Carlo
method (Al-
gorithm 1.5,
sample size
G = 104)

Linexp (1.83)
for all events

T5: Solution
T6: Bulk
T7: Solution
T8: Bulk

Mean Squared
Error (MSE)

Nelder-Mead
method [35]

T5-T6: Data Fitting
(Fig. 1.8a) and Tuned
Param. (Tab. 1.2)
T7-T8: Comput.
Times (Fig. 1.8b)

T9: Accuracy
T10: Accuracy
T11: Efficiency
T12: Efficiency

Analytical
Solution (Al-
gorithm 1.6)

Exponential
for prop. and
deact.
Linexp (1.83)
for backbiting

T9: Solution
T10: Bulk
T11: Solution
T12: Bulk

Mean Squared
Error (MSE)

Genetic Algo-
rithm [36]

T9-T10: Data Fitting
(Fig. 1.9a) and Tuned
Param. (Tab. 1.3)
T11-T12: Comput.
Times (Fig. 1.9b)

T13: Accuracy
T14: Accuracy
T15: Efficiency
T16: Efficiency

Monte Carlo
method (Al-
gorithm 1.5,
sample size
G = 104)

Exponential
for prop. and
deact.
Linexp (1.83)
for backbiting

T13: Solution
T14: Bulk
T15: Solution
T16: Bulk

T13-T14:
not employed
T15-T16:
Mean Squared
Error (MSE)

T13-T14:
not employed
T15-T16:
Genetic Algo-
rithm [36]

T13-T14: Data Fit-
ting (Fig. 1.9a)
T15-T16: Comput.
Times (Fig. 1.9b)

Table 1.1: The settings of the tests T1-T16 to evaluate the performances of Algorithm 1.5 and
Algorithm 1.6 in the simulation of the branching fractions ρ. Following Algorithm 1.7, the simulated
values of ρ fit the experimental branching fractions, given as the middle points of the uncertainty
intervals in Figure 1.7. The tests T13-T14 use the tuned parameters, found by T9-T10, to verify
the fitting achievable by the Monte Carlo method, as shown in Figure 1.9a. In particular, the tests
T13-T14 do not employ any optimisation algorithm minimising the cost function J . The numerical
experiments have been performed with in-house packages written for this Thesis in the C++ language.
The simulations have been run on a 2.70GHz processor with a 64-bit Linux operating system.

In Figure 1.8a, we assess the accuracy provided by Algorithm 1.5 and Algorithm 1.6 in the fitting
of experimental branching fractions. The results of the tests T1-T2 and T5-T6 (Table 1.1) are
compared. As it follows from Figure 1.8a, the sample size G = 104 in the Monte Carlo approach
guarantees the same level of accuracy provided by the analytical method. Both, the Monte Carlo
method and the analytical approach, use linear exponential PDFs (1.83) for all possible events. The
achieved fitting validates our non-Markovian model for Controlled Radical Polymerization. Table 1.2
shows the optimised parameters for the linear exponential PDFs (1.83).
Although both methods can offer comparable accuracies, it is not the case for the computational cost.
The optimisation routine performed with the analytical approach is up to 104 times faster than the
one using the MC method of the same level of accuracy (MC sample size G = 104). The computational
times are shown in Figure 1.8b comparing the results of tests T3-T4 and T7-T8 (Table 1.1).
It is clear that the degree of speed-up provided by the analytical approach over the MC method is
determined by the MC sample size G. Indeed, the computational complexity of the analytical method
is O(1) whereas it is O(G) in the case of Monte Carlo. This is confirmed by the numerical tests.
The proposed methodologies are general enough for evaluating the behaviour of different optimisation
algorithms and inter-event PDFs. In Figure 1.9a, Figure 1.9b and Table 1.3, we present the results
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obtained by Algorithm 1.7 in which both the optimisation routine and the inter-event PDFs differ
from those applied in the previous tests, as specified for T9-T16 in Table 1.1. In particular, a Genetic
Algorithm [36] has been selected for optimisation. Exponential PDFs are assigned to propagation and
deactivation, whereas linear exponential PDF (1.83) is chosen for backbiting. The rationale behind
the choice of PDFs for propagation and deactivation is confirmed by our previous tests, described
above, which result in very small optimal parameters bp and bd, shown in Table 1.2. This suggests
that the optimal PDF choice for propagation and deactivation is very close to an exponential dis-
tribution. The results shown in Figure 1.9a justify this choice. Also, these results confirm that the
proposed methodologies are valid for various choices of optimisation routines and inter-event PDFs.
We published the presented results in [3].
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Figure 1.8: Comparison between the accuracy and efficiency of the Monte Carlo (MC) method and
the Analytical Solution (AS) for matching the experimental branching fractions (Bulk and Solution
Polymerization). The settings of the compared tests T1-T8 are available in Table 1.1. The fitting
achieved in Figure 1.8a corresponds to the parameters values given in Table 1.2. The computational
times shown in Figure 1.8b are required by the optimisation algorithm performed with an increasing
number of iterations. The AS speeds up the procedure by the factor of 104 compared with the MC
method of the same level of accuracy.

Test Polym. Fitting bp br bd τp τr τd
T1 Solution AS 1.74× 10−1 6.53 2.28× 10−4 9.1× 10−1 1.31 3.58× 10−2

T5 Solution MC 1.74× 10−1 6.53 2.28× 10−4 9.1× 10−1 1.31 3.58× 10−2

T2 Bulk AS 2.8× 10−1 1.58× 10−1 1.57× 10−2 8.53× 10−1 11.54 3.43× 10−2

T6 Bulk MC 1.64× 10−1 1.40× 10−1 3.56× 10−2 9.16× 10−1 12.01 2.56× 10−2

Table 1.2: Optimised parameters obtained by the Analytical Solution fitting (AS) and the Monte
Carlo fitting (MC) with the settings of tests T1-T2 and T5-T6 (Table 1.1). The computations have
been performed using variables normalised over the propagation rate for a unitary concentration of
monomers. The shown parameters correspond to unitary concentrations of monomers and control
agent. Different concentrations are simulated by scaling such parameters, as proposed in the support-
ing information of [1].
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Figure 1.9: Comparison between the accuracy and efficiency of the Monte Carlo (MC) method and
the Analytical Solution (AS) for matching the experimental branching fractions (Bulk and Solution
Polymerization). The settings of the compared tests T9-T16 are available in Table 1.1. The fitting
achieved in Figure 1.9a corresponds to the parameters values given in Table 1.3. The computational
times shown in Figure 1.9b are required by the optimisation algorithm performed with an increasing
number of iterations. The AS speeds up the procedure by the factor of 104 compared with the MC
method of the same level of accuracy.

Test Polym. Fitting bp br bd τp τr τd
T9 Solution AS - 5.94 - 1 5.97 4.78× 10−2

T10 Bulk AS - 3.82× 10−1 - 1 8.80 1.33

Table 1.3: Optimised parameters obtained by the Analytical Solution fitting (AS) with the settings
of tests T9-T10 (Table 1.1). The required times for backbiting (r) are distributed according to the
Linexp PDF (1.83), while propagation (p) and deactivation (d) follow exponential distributions with
expectations τp and τd respectively. The computations have been performed using variables normalised
over the propagation rate for a unitary concentration of monomers. The shown parameters correspond
to unitary concentrations of monomers and control agent. Different concentrations are simulated by
scaling such parameters, as proposed in the supporting information of [1].
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1.8 Conclusions & Discussion

Aiming to understand the reasons behind inconsistencies between the classical kinetics predictions
and experimental evidences in Controlled Radical Polymerization (CRP), we develop the methodology
which explains such inconsistencies and provides the accurate prediction of experimental observations.
The key idea of this methodology is to assume non-Markovian kinetics and introduce delays among
the competitive processes in CRP.
In Section 1.2, we propose (and review) the Stochastic Simulation Algorithm (SSA) as a possible
framework for the modelling of the considered chemical reactions. SSA-based methods are ones of
the most common approaches for studying stochastic processes. The non-Markovian kinetics and the
delays can be accounted for in SSA either explicitly by introducing constraints, or implicitly, through a
modification of inter-event time distributions. Thus, the SSA method is a good candidate for simulat-
ing the polymerization reactions with delays, being able to follow the kinetics of competitive processes
and to introduce non-Markovian dynamics in the evolution of the system.
We show then in Section 1.3 that the introduction of delays significantly changes the statistics of the
polymers chains growth. The equations and the corresponding properties derived for predicting the
Markovian growth differ significantly from those describing a non-Markovian regime. The predicted
time evolution of the mean lengths of the grown chain for different amounts of delay clearly demon-
strate such differences. While in the Markovian case, the mean length is linear in time, the presence
of delays may force the growth to show step-like variations at short times before settling into a linear
behaviour later.
We also explain in Section 1.3 how to simulate the delayed growth, by formulating suitable imple-
mentations of the Stochastic Simulation Algorithm (SSA). A first methodology corresponds to the
stochastic simulation of two Poisson processes. The delay is introduced by adding explicit constraints
among the possible events. An equivalent approach simulates a single delayed process, with the delay
built into the probability density function. We prove the equivalence between the two techniques.
In addition, we propose an approximated methodology using linear exponential PDFs, and compare
accuracy and efficiency of all three designed approaches. The approximated method enhances the
simulation speed, especially for big sample sizes, still being able to reproduce the results of the other
methods, guaranteeing a reasonable accuracy.
Since our objective is to explain the reduction in relative frequencies of propagations and backbitings
experimentally observed in CRP, we concentrate on simulation of relative frequencies of constrained
events. Following the SSA formulation of Section 1.3, we propose in Section 1.4 a Monte Carlo (MC)
approach for the evaluation of relative frequencies of constrained events in stochastic processes. The
technique can be applied to any system with well-posed constraints. The constraints among the pos-
sible events can be introduced either explicitly (Algorithm 1.3) or implicitly (Algorithm 1.4). Once
the process properties are specified, it should be possible to show the equivalence between explicit
and implicit approaches, by recovering the corresponding probability density functions. The implicit
formulation can achieve better computational efficiency compared with the explicit method, especially
for processes with a large number of events, provided computationally tractable PDFs.
Both proposed in Section 1.4 methodologies are Monte Carlo based, and thus inevitably computa-
tionally demanding. For this reason, we derive in Section 1.5 a significantly more effective analytical
approach for computing the relative frequencies of constrained events in stochastic processes. The an-
alytical formula is obtained in the same terms as the MC routine is defined, ensuring the equivalence of
the two methodologies. The derivation is valid for any stochastic process with well-posed constraints
among the possible events, making the method useful for various applications. The method is vali-
dated using the exactly solvable model introduced in Section 1.3 and then applied to the evaluation of
branching fractions in CRP. With the derived approach we were also able to prove that memoryless
models are not able to explain the experimentally observed reduction of the branching fraction, and
thus only models with delays should be applied for study of CRP.
Section 1.6 presents an SSA-based method for simulating the CRP process in agreement with available
experimental data. First, we discuss a choice of the delayed distributions to be used in the Monte
Carlo method (Algorithm 1.5) and in the analytical approach (Algorithm 1.6) for the computation
of the branching fraction in CRP. The linear exponential density (1.83) is chosen to account for the
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required delays, as motivated in Section 1.3.5.4. The parameters of the given distributions are defined
by Algorithm 1.7, maximising the fitting to available experimental data of the simulated branching
fractions. Then, we formulate the SSA-based method for CRP modelling, which takes advantage of
available experimental data. Algorithm 1.8 summarises the method, and uses the linear exponential
densities (1.83), with the optimal parameters found by Algorithm 1.7. The algorithm can potentially
provide a systematic study of all properties of the simulated system.
Finally, we investigate in Section 1.7 the performance and accuracy of the proposed algorithms, on the
example of CRP of acrylic monomers. We demonstrate that the analytical approach (Algorithm 1.6)
is free of statistical errors, and thus guarantees more accurate estimations, than those provided by
a Monte Carlo simulation (Algorithm 1.5). In addition, the method is significantly (an order of the
sample size ≥ 104) faster than the Monte Carlo approach. As a result, we suggest the analytical
approach as an efficient tool for finding, with Algorithm 1.7, the optimal set of parameters for inter-
event distributions, to be further utilised in detailed Monte Carlo simulations (Algorithm 1.8). The
performed tests show that the choice of optimisation algorithm is not important and the proposed
methodologies work for several choices of the inter-event distributions.
In conclusion, we were able to explain the inconsistencies between the classical kinetics predictions
and experimental evidences in CRP. Assuming non-Markovian kinetics and introducing delays among
the competitive processes, we can provide the accurate prediction of such experimental observations.
As shown in Section 1.7, the achieved fitting of experimental branching fractions validates our non-
Markovian model for CRP of acrylic monomers.
The results derived in this Chapter have been published in:
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Chapter 2

Population Balance Approach for
Predicting Polymer Particles
Morphology

2.1 Motivation

2.1.1 Multi-Phase Polymer Particle Morphology

As a result of performance superiority of multi-phase particles over particles with uniform composi-
tions, assembling the composite (multi-phase) polymer particles is of great practical interest in many
important applications, such as, coatings, additives for constructing materials, cosmetics, diagnostic
tests and drug delivery. Properties of a multi-phase polymer particle strongly depend on the particle
morphology, and thus the control of particle morphology is a key factor for success in producing high
quality polymer materials. The particle morphology is defined by the pattern formed by the phase-
separated domains comprising the polymer particle [37]. Examples of particle morphologies are shown
in Figure 2.1.
The synthesis of new morphologies is time and resources consuming, as it largely relies on heuris-
tic knowledge. Thus, the predictive modelling of such processes is of great interest to practition-
ers. No general methodology is currently available for predicting the particles morphology in multi-
phase systems. Several modelling approaches describing the dynamic development of a single par-
ticle morphology in 2- and 3- phase composite systems have been suggested in the last few years
[38, 39, 40, 41, 42, 43]. The most recent ones, [41, 42, 43], offer, for the first time, an accurate predic-
tion of the morphology dynamics of a single particle in the composite waterborne systems, including
the systems with in situ formation of graft copolymer [42]. In these studies, the proposed models
utilise the stochastic dynamics (SD), and account for the effect of phase compatibility and internal
viscosity of the particles. The deficit of these models, however, that they provide a detailed description
of the morphology of a single particle, which is only a partial view of a real system. Better insight
would be obtained by applying such methodologies to simulation of at least few particles but ideally
of millions particles. However, a single particle simulations are computationally very demanding even
with the use of High Performance Computers and just more realistic simulations of multiple particles
do not look feasible with the suggested models.
In this Chapter we propose an alternative approach for modelling particles morphology, which calcu-
lates the distribution of morphologies for the whole population of polymer particles taking into account
the relevant kinetic and thermodynamic effects.

2.1.2 Reaction Mechanisms of Particles Morphologies Development

From now on we focus on two-phase polymer systems, for which the formation of particles morpholo-
gies are better studied and understood than for any other multi-phase polymer [45].
The reaction mechanisms driving the development of two-phase polymer particles morphology has
been proposed in [45] and can be described with help of the illustrative sketch presented in Figure 2.2
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Figure 2.1: Examples of particle morphologies [44]: (A) core-shell with transition layer, (B) “rasp-
berry” morphology, (C) “salt-and-pepper” morphology, (D) interpenetrating network, (E) lobed parti-
cle. The white and black areas indicate the phase-separated domains comprising the polymer particle.

as follows.
Let Np be a number of particles placed in the polymerization reactor. At the beginning of the process,
the particles are only made by the pre-formed Polymer 1, swollen with Monomer 2. The amount
of Polymer 1 is equally distributed among the particulate matter and it does not change with time.
The constant amount of Polymer 1 belongs to the so-called matrix phase during the full evolution
of the process. Monomer 2 gradually polymerises into Polymer 2 chains, as the reaction is evolving
(Figure 2.2 (a)). The Polymer 2 chains form agglomerates belonging to the matrix phase, until they
reach the critical size vc > 0 to change their phase and to nucleate into clusters (Figure 2.2 (b)).
As a result, the matrix phase contains the total amount of Polymer 1, a part of the Monomer 2 and
the Polymer 2 agglomerates with volumes smaller than vc. On the other hand, the clusters phase
holds the remaining amount of Monomer 2 and the Polymer 2 agglomerates of sizes exceeding vc. The
amount of Monomer 2 is uniformly distributed between the matrix and clusters phases. Given such
compositions, the unswollen volume ṽ of any cluster is defined as the volume of Polymer 2 belonging
to the considered cluster, without accounting for the amount of swelling Monomer 2. The clusters
can increase their unswollen volume ṽ (Figure 2.2 (c)) because of (i) the polymerization of Monomer
2 with already clustered Polymer 2 chains and (ii) the diffusion of Polymer 2 chains from the matrix
to the clusters phase. Two clusters can coagulate building an aggregated cluster with a size equal to
the sum of volumes of the aggregating clusters (Figure 2.2 (d)). The clusters can be found in two
positions: non-equilibrium and equilibrium. The equilibrium clusters have already reached the equi-
librium position. The non-equilibrium clusters can migrate to the equilibrium position and become
irreversibly equilibrium clusters (Figure 2.2 (e)). In summary, the clusters dynamics is driven by (i)
the nucleation of non-equilibrium clusters from the matrix phase, (ii) the growth of the unswollen
volume, (iii) the aggregation of clusters and (iv) the migration of clusters from non-equilibrium to
equilibrium position. The different sizes and the distribution of the produced polymers clusters com-
pose a particles morphology.
Our goal is to develop an efficient population-based method for predicting the Dynamic Development
of Particles Morphology (DDPM) described above and provide computationally tractable algorithms
for solving such a model. The speed of proposed predictive simulation techniques should be high
enough for enabling on-the-fly recommendations for technological conditions in the synthesis of new
multi-phase morphologies. To follow this strategy, we will derive a systematic modelling approach for
the prediction of the kinetics of the expected size distribution of the polymer clusters, and thus the
particles morphology. The large scale resolution of such approach should permit practical and efficient
simulations of systems comprising many particles.
Four different numerical algorithms for solution of the proposed model will be then developed, imple-
mented for particular choices of reaction rates and compared in accuracy and performance.
The chapter is organised as follows. Section 2.2 formulates the population-based model for predicting
DDPM. The integration methods are presented in Section 2.3 and tested in Section 2.4. Conclusions
and discussion are provided in Section 2.5. Potentially promising future developments are discussed
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Figure 2.2: Reaction mechanisms driving the evolution of the polymer clusters composing the mor-
phology of a single polymer particle [•]: (a) the polymerization of the Monomer 2 [ ] into the Polymer
2 chains [ ], (b) the nucleation of the Polymer 2 agglomerates [ ] into the non-equilibrium clusters
[•], (c) the growth of the clusters volume [•], (d) the aggregation of the clusters with sizes v and u, (e)
the migration of the non-equilibrium clusters [•] to the equilibrium position [•].

in Section 2.6.

2.2 Population Balance Equations Model for Development of Par-
ticles Morphology: Formulation

The aim of this section is to formulate a Population Balance Equations (PBE) [46] model for the
size distribution of the polymer clusters, in order to describe the Dynamic Development of Particles
Morphology (DDPM).
Section 2.2.1 derives a PBE model for the prediction of DDPM. Section 2.2.2 presents the novel proce-
dure for scaling a PBE model to a dimensionless and computationally tractable model. Section 2.2.3
provides the analysis of the developed dimensionless PBE model.

2.2.1 PBE Model: Derivation

Aiming to derive a PBE model for predicting DDPM, we focus on the distributions m̃(ṽ, t̃) [L−1] and
w̃(ṽ, t̃) [L−1] of the unswollen volume ṽ [L] at time t̃ [s] of non-equilibrium and equilibrium clusters
respectively. The volume ṽ is measured in Litres [L] and the elapsed time t̃ in seconds [s]. For any
fixed time t̃, the expected number of non-equilibrium and equilibrium clusters with unswollen volume
ṽ in the interval [α, β] is provided by∫ β

α
m̃(ṽ, t̃) dṽ and

∫ β

α
w̃(ṽ, t̃) dṽ (2.1)

respectively. The distributions m̃(ṽ, t̃) and w̃(ṽ, t̃) are not normalised to 1, but their zero-order mo-
ment corresponds to the expected total number of clusters, for any given time t̃. Our objective is
to derive the evolution equations for the variables m̃(ṽ, t̃) and w̃(ṽ, t̃) and thus the PBE model for
DDPM.
The following derivation stands for any set of particles involved in the dynamical mechanisms driving
the evolution of the polymer clusters, as stated in Section 2.1.2 and illustrated in Figure 2.2. Such
mechanisms include aggregation, growth, nucleation and migration. The non-equilibrium and equi-
librium clusters can be viewed as distinct sets of particles belonging to separated phases. In fact, the
migration of the non-equilibrium clusters to the equilibrium position can be interpreted as an irre-
versible transition of a phase. For the sake of generality, we will refer to the clusters as particles, the
unswollen volume ṽ will be denoted as size (or simply volume) and we will keep the phase transition
nomenclature for the migration reaction.
Since the derivation of PBE for equilibrium and non-equilibrium clusters follows the same route, we
limit our discussion to study of non-equilibrium clusters and provide the final results for equilibrium
clusters when necessary.
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We consider a set of particles, whose size distribution m̃(ṽ, t̃) [L−1] is defined as (2.1). The particles
dynamics and the time evolution of m̃(ṽ, t̃) are driven by aggregation, growth, nucleation and dis-
sipative transition of phase. First, we introduce the mathematical formulation of the rate functions
for each of those processes, i.e. ã(ṽ, ũ, t̃) for aggregation, g̃(ṽ, t̃) for growth, ñ(ṽ, t̃) for nucleation and
µ̃(ṽ, t̃) for phase transition. Then, the evolution equation for m̃(ṽ, t̃) will be obtained by means of a
balance equation accounting for all the introduced variables.
The aggregation rate ã(ṽ, ũ, t̃) [s−1] expresses the expected frequency of coagulations between parti-
cles with volumes ṽ and ũ at time t̃. The reasonable assumption is that it corresponds to a non-negative
symmetric function:

ã(ṽ, ũ, t̃) = ã(ũ, ṽ, t̃) ≥ 0, ∀ṽ, ũ, t̃ ≥ 0. (2.2)

The assumption (2.2) means that two aggregating particles possess the same aggregation frequency,
no matter the order in which they are considered. The symmetric shape of the rate ã prevents
non-physical behaviours of the zero- and first-order moments of the density m̃(ṽ, t̃), as explained in
Section 2.2.3.2.
The growth rate g̃(ṽ, t̃) [L s−1] corresponds to the expected variation of volume ṽ per unit of time:

dṽ

dt̃
= g̃(ṽ, t̃), [L s−1]. (2.3)

The nucleation rate ñ(ṽ, t̃) [L−1 s−1] describes the volume distribution of nucleating particles. The
particles nucleation mechanism corresponds to the birth of new particles from the reaction solvent.
Such new particles give rise to the further dynamical processes. Given any fixed time t̃ ≥ 0 and the
non-negative function ñ(ṽ, t̃), the expected number of particles, created per unit of time, with volume
ṽ ∈ [α, β], can be computed as: ∫ β

α
ñ(ṽ, t̃) dṽ, [s−1]. (2.4)

The phase transition rate µ̃(ṽ, t̃) [s−1] provides the expected proportion of particles, with volume
ṽ at time t̃, changing their phase per unit of time. Given any fixed time t̃ ≥ 0 and the non-negative
function µ̃(ṽ, t̃), the expected number of particles, with volume ṽ ∈ [α, β], moving to a different phase
per unit of time, is given by: ∫ β

α
µ̃(ṽ, t̃) m̃(ṽ, t̃) dṽ, [s−1]. (2.5)

All the variables defined above will be used for derivation of (2.14).

Derivation of Balance Equation. We consider the expected number of particles with volume in
the infinitesimal interval [ṽ, ṽ + dṽ], ∀ṽ ∈ R+ and 0 < dṽ � 1. Its variation during the infinitesimal
time interval [t̃, t̃+ dt̃], ∀t̃ ∈ R+ and 0 < dt̃� 1, is given by:∫ ṽ+dṽ

ṽ
m̃(ν̃, t̃+ dt̃) dν̃ −

∫ ṽ+dṽ

ṽ
m̃(ν̃, t̃) dν̃, ∀ṽ, t̃ ∈ R+. (2.6)

Following [46], we write down a balance equation for the considered number of particles by equating
the expression (2.6) to the sum of the variations of the expected number of particles, associated with
the processes of aggregation, growth, nucleation and phase transition. The PBE for m̃(ṽ, t̃) is then
obtained by dividing the derived balance equation by dt̃ dṽ > 0 and by taking the limit for dt̃ → 0
and dṽ → 0.
Below, we discuss the variation of the particles number associated with each process separately:
particles formation and consumption by aggregation, particles volumetric growth, particles nucleation
and particles transition of phase.
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Particles Formation by Aggregation. Given any time s̃ ∈ R+, the distribution of the particles
with volume ν̃ ∈ R+, created per unit of time by the aggregation of two particles with volumes
ũ ∈ (0, ν̃) and ν̃ − ũ ∈ (0, ν̃) can be computed as:

1

2

∫ ν̃

0
ã(ν̃ − ũ, ũ, s̃) m̃(ν̃ − ũ, s̃) m̃(ũ, s̃) dũ [L−1 s−1], ∀ν̃, s̃ ∈ R+. (2.7)

Since the resulting particle volume ν̃ is the sum of the aggregating particles volumes ũ and ν̃ − ũ,
its distribution (2.7) corresponds to the convolution of the distribution m̃ with itself, weighted by
the kernel ã to account for the particles aggregation frequency. The pre-factor 1/2 is needed to avoid
double counting of pairs of aggregating particles. As a result, the variation of the expected number of
particles, with volume in [ṽ, ṽ + dṽ], during the time interval [t̃, t̃+ dt̃], provided by the formation of
the aggregated particles, can be computed as:∫ t̃+dt̃

t̃

[ ∫ ṽ+dṽ

ṽ

[
1

2

∫ ν̃

0
ã(ν̃ − ũ, ũ, s̃) m̃(ν̃ − ũ, s̃) m̃(ũ, s̃) dũ

]
dν̃

]
ds̃, ∀ṽ, t̃ ∈ R+. (2.8)

Particles Consumption by Aggregation. Given any time s̃ ∈ R+, the distribution of the particles
with volume ν̃ ∈ R+, aggregating per unit of time with any other possible particle can be expressed
as:

m̃(ν̃, s̃)

∫ +∞

0
ã(ν̃, ũ, s̃) m̃(ũ, s̃) dũ [L−1 s−1], ∀ν̃, s̃ ∈ R+. (2.9)

The product of the densities m̃(ν̃, s̃) and m̃(ũ, s̃) provides the joint distribution of the pairs of particles
with volumes ν̃ and ũ. The kernel ã accounts for the particles aggregation frequency. The resulting
term is integrated with respect to ũ ∈ R+, to allow any particle to aggregate. As a result, the quantity

−
∫ t̃+dt̃

t̃

[ ∫ ṽ+dṽ

ṽ

[
m̃(ν̃, s̃)

∫ +∞

0
ã(ν̃, ũ, s̃) m̃(ũ, s̃) dũ

]
dν̃

]
ds̃, ∀ṽ, t̃ ∈ R+, (2.10)

provides the variation of the expected number of particles, with volume in [ṽ, ṽ+ dṽ], during the time
interval [t̃, t̃+ dt̃], caused by the departure of the aggregating particles.

Particles Volumetric Growth. Given the growth velocity g̃(ṽ, s̃) [L s−1] and the particles density
m̃(ṽ, s̃) [L−1], the product g̃(ṽ, s̃) m̃(ṽ, s̃) [s−1] corresponds to the particles growth flux: the expected
number of particles, with volume ṽ at time s̃, flowing per unit of time, driven by the growth mechanism.
As a result, the net variation of the expected number of particles, with volume in [ṽ, ṽ + dṽ], during
the time interval [t̃, t̃+ dt̃], can be computed as the difference of the particles fluxes, evaluated at the
bounds of the interval [ṽ, ṽ + dṽ] and integrated over the time interval [t̃, t̃+ dt̃]:∫ t̃+dt̃

t̃
g̃(ṽ, s̃) m̃(ṽ, s̃) ds̃−

∫ t̃+dt̃

t̃
g̃(ṽ + dṽ, s̃) m̃(ṽ + dṽ, s̃) ds̃, ∀ṽ, t̃ ∈ R+. (2.11)

The sign of the particles flux g̃(ṽ, s̃) m̃(ṽ, s̃) must be in agreement with the sign of the growth velocity
g̃(ṽ, s̃), because it accounts for the arrival of new particles, in the case of g̃(ṽ, s̃) > 0, and the departure
of particles, in the case of g̃(ṽ, s̃) < 0. On the other hand, the flux g̃(ṽ + dṽ, s̃) m̃(ṽ + dṽ, s̃) and the
velocity g̃(ṽ+dṽ, s̃) must have an opposite sign, because of the departure of particles, if g̃(ṽ+dṽ, s̃) > 0,
and the arrival of new particles, if g̃(ṽ + dṽ, s̃) < 0.

Particles Nucleation. Using the definition (2.4), the variation of the expected number of particles,
with volume in [ṽ, ṽ+ dṽ], during the time interval [t̃, t̃+ dt̃], caused by the nucleation process can be
computed as: ∫ t̃+dt̃

t̃

[ ∫ ṽ+dṽ

ṽ
ñ(ν̃, s̃) dν̃

]
ds̃, ∀ṽ, t̃ ∈ R+. (2.12)
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Since the function ñ is always non-negative, the contribution of (2.12) to the variation (2.6) is non-
negative as well. In other words, the nucleation process is a source mechanism for the dynamics of
the unknown distribution m̃.

Particles Phase Transition. With the help of (2.5), the variation of the expected number of
particles, with volume in [ṽ, ṽ+ dṽ], during the time interval [t̃, t̃+ dt̃], caused by the phase transition
mechanism can be obtained as:

−
∫ t̃+dt̃

t̃

[ ∫ ṽ+dṽ

ṽ
µ̃(ν̃, s̃) m̃(ν̃, s̃) dν̃

]
ds̃, ∀ṽ, t̃ ∈ R+. (2.13)

The quantity (2.13) cannot be positive because the phase transition process decreases the number of
particles in the system, being a dissipative mechanism for dynamics of unknown distribution m̃.

The balance equation for the expected number of particles with volume in the infinitesimal interval
[ṽ, ṽ + dṽ], during the infinitesimal time interval [t̃, t̃ + dt̃], now can be obtained by equating (2.6)
to the sum of the quantities (2.8), (2.10), (2.11), (2.12) and (2.13). Under regularity conditions, the
Mean Value Theorem for definite integrals along with the definition of partial derivatives ensure that
the limit for dt̃→ 0 and dṽ → 0 of the derived balance equation, divided by dt̃ dṽ > 0, is given by:

∂m̃(ṽ, t̃)

∂t̃
=− ∂( g̃(ṽ, t̃) m̃(ṽ, t̃) )

∂ṽ︸ ︷︷ ︸
Transport

+ ñ(ṽ, t̃)︸ ︷︷ ︸
Source

− µ̃(ṽ, t̃) m̃(ṽ, t̃)︸ ︷︷ ︸
Dissipation

− m̃(ṽ, t̃)

∫ +∞

0
ã(ṽ, ũ, t̃) m̃(ũ, t̃) dũ︸ ︷︷ ︸

Integral Term

+
1

2

∫ ṽ

0
ã(ṽ − ũ, ũ, t̃) m̃(ṽ − ũ, t̃) m̃(ũ, t̃) dũ︸ ︷︷ ︸

Integral Term

, ∀ṽ, t̃ ∈ R+. (2.14)

We have derived the PBE (2.14) for the size distribution m̃(ṽ, t̃), whose evolution is driven by par-
ticles aggregation, growth, nucleation and phase transition. Equation (2.14) can be understood as a
non-linear partial integro-differential equation with transport, source, dissipation and integral terms.
The particles growth drives the transport, shifting the volume distribution m̃(ṽ, t̃) from left to right.
Nucleation provides the non-negative source term, with the creation of the new particles. The dissi-
pative term accounts for the particles phase transition and the corresponding loss of particles. The
integral terms correspond to the Smoluchowski coagulation equation [47].

The initial condition for (2.14) is provided by a non-negative distribution ω̃0(ṽ):

m̃(ṽ, 0) = ω̃0(ṽ) ≥ 0 [L−1], ∀ṽ ∈ R+. (2.15)

The boundary condition is specified by imposing the particles growth flux to be equal to zero, if
evaluated at ṽ = 0:

g̃(0, t̃) m̃(0, t̃) = 0 [s−1], ∀t̃ ∈ R+. (2.16)

Such a choice assures non-negative values of the particles size ṽ.

Dynamic Development of Particles Morphology (DDPM). The PBE model (2.14)-(2.16) allows
us to describe the volume distribution m̃(ṽ, t̃) (2.1) of the non-equilibrium clusters, composing DDPM
introduced in Section 2.1.2. Similarly, it can be shown that the volume distribution w̃(ṽ, t̃) of the
equilibrium clusters is the solution of the PBE:
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∂w̃(ṽ, t̃)

∂t̃
=− ∂( g̃(ṽ, t̃) w̃(ṽ, t̃) )

∂ṽ︸ ︷︷ ︸
Transport

+ µ̃(ṽ, t̃) m̃(ṽ, t̃)︸ ︷︷ ︸
Source

− w̃(ṽ, t̃)

∫ +∞

0
ã(ṽ, ũ, t̃) w̃(ũ, t̃) dũ︸ ︷︷ ︸

Integral Term

+
1

2

∫ ṽ

0
ã(ṽ − ũ, ũ, t̃) w̃(ṽ − ũ, t̃) w̃(ũ, t̃) dũ︸ ︷︷ ︸

Integral Term

, ∀ṽ, t̃ ∈ R+. (2.17)

Equations (2.14) and (2.17) possess a similar structure. We remark the difference in the source
terms between (2.14) and (2.17), which is in agreement with the reaction mechanisms illustrated in
Section 2.1.2. The source term in (2.14) is formed by the nucleation rate ñ(ṽ, t̃) for non-equilibrium
clusters, while in (2.17) it is given by the migration rate µ̃(ṽ, t̃) m̃(ṽ, t̃) of the non-equilibrium clusters.
We note that the equilibrium clusters are not affected by transitions of phase and thus (2.17) does not
account for the corresponding term.
Since no clusters are formed at the beginning of the polymerization, the initial conditions are zero
everywhere, i.e. m̃(ṽ, 0) = w̃(ṽ, 0) = 0, ∀ṽ ∈ R+. The boundary condition for (2.17) is analogous to
(2.16), i.e. g̃(0, t̃) w̃(0, t̃) = 0, ∀t̃ ∈ R+.
The rate functions appearing in (2.14) and (2.17) strongly depend on the simulated system. In
Appendix 2.A, we derive the chemical rates of the processes involved in the development of latex
particles morphology.

Models Under Study. Aimed to search for the most efficient approach for solving the derived
PBE, we propose three models which use less advanced chemical rates compared with the latex model
presented in Appendix 2.A. Still, they can be viewed as coarse approximations of the DDPM process.
In particular, the reaction mechanisms, discussed in Section 2.1.2 and Appendix 2.A, are mimicked in
the simple models, as specified below.

(i) Model I. The reaction is simultaneously driven by aggregation, growth, nucleation and phase
transition. The PBE model (2.14)-(2.16) is considered with the rate functions:

ã(ṽ, ũ, t̃) = ã0, g̃(ṽ, t̃) = g̃0, ñ(ṽ, t̃) = ñ0 δ̃(ṽ − vc), µ̃(ṽ, t̃) = µ̃0, (2.18)

where δ̃(x̃) [L−1] is the Dirac delta function. The positive constants ã0 [s−1], g̃0 [L s−1] and µ̃0

[s−1] express the particles uniform tendency to aggregate, to increase their size and to migrate
to other phases respectively. On the other hand, the rate ñ(ṽ, t̃) in (2.18) models the constant
frequency ñ0 > 0 [s−1] of the particles nucleation at the critical size vc > 0 [L].
Similar models have been studied previously [48, 49], but in contrast to Model I, none of these
models simultaneously includes all the considered here dynamical processes. Still, the constant
values of the rate functions and required additional hypothesis in Model I lead to a limited
description of the reaction physics, as will be shown further.

(ii) Model II. We consider the reaction driven by aggregation, growth and phase transition. The
nucleation process is neglected and the rate functions in (2.14)-(2.16) are chosen as:

ã(ṽ, ũ, t̃) = ã0, g̃(ṽ, t̃) = g̃0 ṽ, ñ(ṽ, t̃) = 0, µ̃(ṽ, t̃) = µ̃0. (2.19)

The positive constants ã0 [s−1] and µ̃0 [s−1] express the particles uniform tendency to aggregate
and to change their phases respectively. The rate g̃(ṽ, t̃) is assumed directly proportional to ṽ,
with g̃0 > 0 [L s−1].
Model II corresponds to the study case 3 in [48] and the study case 5 in [49], with the addition
of the phase transition process.
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(iii) Model III. The processes of the particles aggregation, growth and phase transition are consid-
ered, whereas the nucleation mechanism is neglected. The uniform tendencies of the particles to
aggregate, to increase their size and to change their phase are described by the corresponding
rate functions in (2.14)-(2.16):

ã(ṽ, ũ, t̃) = ã0, g̃(ṽ, t̃) = g̃0, ñ(ṽ, t̃) = 0, µ̃(ṽ, t̃) = µ̃0, (2.20)

where ã0 [s−1], g̃0 [L s−1] and µ̃0 [s−1] are positive constants characterising the system behaviour.
Model III corresponds to the study case 1 in [48] and [49], with the addition of the growth and
phase transition processes.

2.2.2 Dimensionless Model: Optimal Scaling

Experimental values of the parameters in a PBE model may lead to computationally intractable orders
of magnitude of the involved variables, e.g. ṽ ∝ ν0 ≈ 10−21 L and m̃ ∝ m0 ≈ 10+36 L−1, as shown in
Table 2.1. Here we propose the novel scaling procedure which allows us to address such a problem.
Our aim is to derive from (2.14)-(2.17) the corresponding dimensionless model with computationally
tractable orders of magnitude for parameters and involved variables.
Let us consider the equation

f̃
(
x̃1, .., x̃Nx ; p̃1, .., p̃Np

)
= 0, (2.21)

where x̃1, .., x̃Nx correspond to the unknown variables and the independent quantities, while p̃1, .., p̃Np
are the parameters assuming experimental values. All variables and parameters in (2.21) are expressed
in their physical units.
The PBE system (2.14)-(2.17) can be written in the form of (2.21), given x̃1 = t̃, x̃2 = ṽ, x̃3 = m̃,
x̃4 = w̃ and the appropriate choice of f̃ . The auxiliary functions ã, g̃, ñ and µ̃ can be expressed in
terms of the variables x̃1, .., x̃Nx and the physical parameters p̃1, .., p̃Np .
The dimensionless counterparts of the variables x̃1, .., x̃Nx are defined as:

x1 ≡ x̃1/θ1, .. , xNx ≡ x̃Nx/θNx , (2.22)

where θ ≡ {θ1, .., θNx} are strictly positive characteristic constants with the same dimensions and
orders of magnitude of the corresponding variables. The change of variables (2.22) allows rewriting
(2.21) as the dimensionless equation

f (x1, .., xNx ;λ1, .., λNd) = 0, (2.23)

where the dimensionless coefficients λ ≡ {λ1, .., λNd} are functions of the characteristic constants θ
and the physical parameters p̃ ≡ {p̃1, .., p̃Np}, i.e. λi = λi(θ; p̃), ∀i = 1, .., Nd. Given the physical
parameters p̃, the characteristic constants θ should be proposed by the user in order to specify the
coefficients λ, i.e. λi = λi(θ), ∀i = 1, .., Nd. In other words, the characteristic constants θ correspond
to the degrees of freedom in the scaling procedure.
One of the most common approaches for the definition of the characteristic constants θ consists
in imposing as many λ as possible equal to 1, starting from the coefficients of the highest orders
polynomial or derivative terms in (2.23), as explained in [50]. In the case Nd ≤ Nx, it is possible to
impose λi(θ) = 1, ∀i = 1, .., Nd, and the constants θ are defined by solving a system of Nd equations
with Nx unknowns. However, such a case rarely corresponds to realistic models, whose complexity
leads to Nd > Nx. As a result, it is impossible to solve the system of equations λi(θ) = 1, ∀i = 1, .., Nd.
If Nd > Nx, the approach proposed in [50] ensures at most Nx coefficients λ equal to 1, while the
remaining Nd − Nx > 0 are defined by plugging the computed θ, with no control on their orders of
magnitude.
For this reason, we propose the alternative approach. More specifically, we suggest to look for the
constants θ such that all the coefficients λ are of the order of O(1). Given Nd > Nx, we define
the constants θ as the optimal scaling factors θopt ∈ (0,+∞)Nx , in the sense that they minimise the
distance of the coefficients λ from 1, i.e.
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θopt ≡ argmin
θ∈(0,+∞)Nx

C(θ), C(θ) ≡
Nd∑
i=1

H(λi(θ)) [log10(λi(θ))−Θi]
2 , (2.24)

with H(x) = 1 if x > 0, and zero otherwise. The cost function C(θ) (2.24) measures the Euclidean
distance between the vector {log10(λ1), .., log10(λNd)}, holding the orders of magnitude of the coef-
ficients λ, and the vector {Θ1, ..,ΘNd}, holding the desired orders of magnitude Θi = log10(1) = 0,
∀i = 1, .., Nd. In the general case, it is possible to apply numerical optimisation methods to find θopt.
For example, the Simulated Annealing Algorithm [51, 52] can be successfully applied for this purpose.
The novel scaling procedure is summarised in Algorithm 2.1, while it is tested in Section 2.2.2.1 on
the PBE system (2.14)-(2.17), with the rate functions derived in Appendix 2.A.

Algorithm 2.1: The procedure to scale the equation f̃(x̃1, .., x̃Nx ; p̃1, .., p̃Np) = 0 to dimension-
less and computationally tractable variables, when the physical parameters p̃1, .., p̃Np are known
experimental values.

1 Given f̃(x̃; p̃) = 0, where x̃ ≡ {x̃1, .., x̃Nx} correspond to unknown variables and independent
quantities, expressed in physical units, and p̃ ≡ {p̃1, .., p̃Np} are known physical parameters,
introduce the strictly positive constants θ ≡ {θ1, .., θNx} with the same dimensions as x̃1, .., x̃Nx ;

2 Define the dimensionless variables x ≡ {x1 = x̃1/θ1, .., xNx = x̃Nx/θNx};
3 Rewrite f̃(x̃; p̃) = 0 in the dimensionless form f(x;λ) = 0, with λ(θ) ≡ {λ1(θ; p̃), .., λNd(θ; p̃)}

being the dimensionless coefficients of the equation f(x;λ) = 0;
4 Define the cost function C(θ) (2.24), measuring the distance of λi(θ) from 1, ∀i = 1, .., Nd;
5 Compute θopt = argminθ∈(0,+∞)Nx C(θ), using the appropriate minimisation algorithm;

6 Return the dimensionless and computationally tractable equation f(x;λ(θopt)) = 0;

2.2.2.1 Optimal Scaling: Application to DDPM for Latex

To test the derived scaling procedure, we consider the PBE system (2.14)-(2.17) with the rate functions
ñ(ṽ, t̃) (2.A.1), g̃(ṽ, t̃) (2.A.2), µ̃(ṽ, t̃) (2.A.3), ã(ṽ, ũ, t̃) (2.A.4), describing the Dynamic Development
of latex Particles Morphology discussed in Appendix 2.A. The values of the physical parameters given
in Table 2.A.1 lead to computationally intractable orders of magnitude of the involved variables, e.g.
ṽ ∝ ν0 ≈ 10−21 L, m̃ ∝ m0 ≈ 10+36 L−1 and w̃ ∝ w0 ≈ 10+35 L−1, as shown in Table 2.1. The scaling
procedure described in Algorithm 2.1 can address the problem by providing the feasible values for
the dimensionless parameters λ and the corresponding variables. The derivation of the dimensionless
counterpart of the PBE model (2.14)-(2.17) is presented in Appendix 2.B along with the resulting
equations (2.B.6)-(2.B.18).
The Simulated Annealing Algorithm [51, 52] was used to perform the optimisation of the score function
C(θ) (2.24), when the physical parameters assumed the experimental values provided in Table 2.A.1.
Algorithm 2.1 has been implemented in MATLAB and used the function simulannealbnd [53] for
Simulated Annealing. The numerical routine required less than 5 sec of computation of a 2.70GHz
processor, running a 64-bit Linux operating system. Table 2.1 reports the numerical values θopt of the
scaling factors θ ≡ {t0, ν0,m0, w0, V0, δ0} and the dimensionless parameters λ(θopt), returned by the
execution of Algorithm 2.1.
As shown in Table 2.1, the ratio between the maximum and the minimum parameter λ is ≈ 105,
i.e. λd/λ

m
µ ≈ 105. Such a difference looks computationally tractable, especially if compared with

the original equation, where m0/ν0 ≈ 1057 L−2. Clearly, the proposed scaling procedure is able to
reduce the computationally intractable orders of magnitude, caused by the experimental values of the
physical parameters. From now on, we will consider the dimensionless and computationally tractable
PBE model (2.25), assuming that the the optimal scaling (Algorithm 2.1) has been performed.
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Factors θ Value θopt
ν0 9.110× 10−21 L
m0 1.671× 1036 L−1

V0 7.687× 10−2 L

Param. λ λ(θ) Value λ(θopt)

λma
kam0 ν

2/3
0 t0

Np
5.157

λmd
3√36π kd ν

5/3
0 m0 t0

V0
2.069

λmµ kµ t0 0.010

λd
3√36π kd t0

3√ν0
1146.944

λf
Fmon2 V̄mon2 t0

V0
0

λc vc/ν0 0.027
λs ks t0/V0 0.322

Other Param. Definition Value

Φs - 0.001
Ψ0

M0 V̄mon2/Vpol1 1

Factors θ Value θopt
t0 9.907× 102 s
w0 1.512× 1035 L−1

δ0 1.930× 1016 L−1

Param. λ λ(θ) Value λ(θopt)

λwa
ka w0 ν

2/3
0 t0

Np
0.467

λwd
3√36π kd ν

5/3
0 w0 t0

V0
0.187

λwµ
kµm0 t0
w0

0.110

λp
kp R t0 V̄pol2
V̄mon2 V0

2.393

λn
ks δ0 t0
vcm0

1.144

λpol1 Vpol1/V0 3.252

Other Param. Definition Value

Ψr
V̄mon2/V̄pol2 1.05

Table 2.1: Factors θ ≡ {t0, ν0,m0, w0, V0, δ0} and dimensionless parameters λ(θ) derived in Ap-
pendix 2.B for scaling the PBE model (2.14)-(2.17), with the rates ã, g̃, ñ and µ̃, driving the Dynamic
Development of latex Particles Morphology (Appendix 2.A).

2.2.3 Dimensionless Model: Analysis

Consider the distribution m(v, t) of the particles volume v at time t, whose evolution is driven by
aggregation, growth, nucleation and phase transition. The density m(v, t) corresponds to the solution
of the dimensionless and computationally tractable counterpart of the PBE system (2.14)-(2.16):



∂m(v,t)
∂t = − ∂( g(v, t)m(v, t) )

∂v︸ ︷︷ ︸
Transport

+ n(v, t)︸ ︷︷ ︸
Source

− µ(v, t)m(v, t)︸ ︷︷ ︸
Dissipation

− m(v, t)

∫ +∞

0
a(v, u, t)m(u, t) du︸ ︷︷ ︸

Integral Term

+
1

2

∫ v

0
a(v − u, u, t)m(v − u, t)m(u, t) du︸ ︷︷ ︸

Integral Term

, ∀v, t ∈ R+,

m(v, 0) = ω0(v) ≥ 0, ∀v ∈ R+, g(0, t)m(0, t) = 0, ∀t ∈ R+.

(2.25)

The following section describes some properties of the solution m(v, t) of (2.25). In Section 2.2.3.1, we
show that the distribution m(v, t) cannot assume negative values. The zero- and first-order moments
are analysed in Section 2.2.3.2. The asymptotic behaviour for v → +∞ is discussed in Section 2.2.3.3.

2.2.3.1 Non-Negativity of m(v, t)

In agreement with the physical meaning of m(v, t), it is possible to show that the distribution m(v, t)
is always non-negative:

m(v, t) ≥ 0, ∀v, t ∈ R+. (2.26)

Let us define t∗ ≥ 0 as the minimal time at which there exists such a volume v = v∗ ∈ R+ that
m(v∗, t∗) = 0. Assuming the continuous evolution of m(v, t) from the non-negative initial data of
(2.25), we have

m(v, t∗) > 0, ∀v ∈ R+ \ {v∗} , m(v∗, t∗) = 0. (2.27)

Equation (2.27) indicates v∗ as a point of minimum for the function m(v, t∗) of volume v. Under
regularity assumptions, (2.27) implies ∂m(v, t)/∂v|v=v∗

t=t∗
= 0 and the transport term in (2.25) vanishes

for v = v∗ and t = t∗.
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Given the null transport term and the non-negative rates a and n, the time derivative of m(v, t) is
non-negative at v = v∗ and t = t∗:

∂m(v, t)

∂t

∣∣∣∣
v=v∗
t=t∗

= n(v∗, t∗) +
1

2

∫ v∗

0
a(v∗ − u, u, t∗)m(v∗ − u, t∗)m(u, t∗) du ≥ 0. (2.28)

As soon as m(v, t) touches the zero level, its time derivative (2.28) becomes non-negative, repulsing
m to positive values. In other words, (2.26) follows.
The statement (2.26) can be generalised to the cases (i) the growth rate g explicitly depends on
the solution m, i.e. g = g(m, v, t), and (ii) the extra term ∂2m(v, t)/∂v2 is considered in (2.25).
The previous argument follows because the transport term is still null, for v = v∗ and t = t∗, and
∂2m(v, t)/∂v2 only adds a non-negative term in (2.28), with v∗ being a point of minimum value.

2.2.3.2 Moments of m(v, t)

The zero-order moment M(t) of the distribution m(v, t) corresponds to the expected total number of
particles in the system, whereas the first-order moment V (t) provides the expected total volume of
the particles. The moments are defined respectively as

M(t) ≡
∫ +∞

0
m(v, t) dv and V (t) ≡

∫ +∞

0
vm(v, t) dv, ∀t ∈ R+. (2.29)

The Zero-Order Moment. Integrating (2.25) with respect to v over R+, it is possible to get the
evolution equation for the total number M(t) of particles:

M ′(t) =

∫ +∞

0
n(v, t) dv −

∫ +∞

0
µ(v, t)m(v, t) dv − 1

2

∫ +∞

0
m(v, t)

[∫ +∞

0
a(v, u, t)m(u, t) du

]
dv.

(2.30)

The Right-Hand Side (RHS) of (2.30) correctly models the dynamics of M(t). The first term corre-
sponds to the expected total number of particles, created per unit of time by the nucleation mechanism.
The second term corresponds to the expected total loss of particles per unit of time due to the phase
transition process. The last term is the expected total loss of particles per unit of time caused by the
aggregation mechanism. In fact, the quantity∫ +∞

0
m(v, t)

[∫ +∞

0
a(v, u, t)m(u, t) du

]
dv (2.31)

corresponds to the expected total number of aggregating particles. The pre-factor 1/2 is placed because
one particle is lost for each couple of aggregating particles. The last term in the RHS of (2.30) is
obtained by taking advantage of the symmetric structure (2.2) of the rate function a(v, u, t), validating
the need for such a hypothesis to avoid non-physical behaviours of the zero-order moment M(t).
The physics of the reaction suggests that the total number M(t) of particles does not change if the
particles grow or not. In other words, (2.30) must not account for the growth rate g(v, t). For any
fixed time t ∈ R+, the integration of the transport term in (2.25) provides

−
∫ +∞

0

∂( g(v, t)m(v, t) )

∂v
dv = − lim

v→+∞
g(v, t)m(v, t), (2.32)

where the boundary condition g(0, t)m(0, t) = 0 has been imposed. For any fixed time t ∈ R+, we
assume

lim
v→+∞

g(v, t)m(v, t) = 0 (2.33)

to neglect any possible effect of the growth process on the particles number M(t).
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The First-Order Moment. The evolution equation for V (t) is obtained by integrating (2.25),
multiplied by v, with respect to v over R+:

V ′(t) =

∫ +∞

0
g(v, t)m(v, t) dv +

∫ +∞

0
v n(v, t) dv −

∫ +∞

0
v µ(v, t)m(v, t) dv. (2.34)

The first term in the RHS of (2.34) corresponds to the expected total volume variation per unit of time
caused by the particles growth, in agreement with the dynamics of V (t). The second and third terms
in the RHS of (2.34) provide the expected total volume variation per unit of time, given by nucleation
and phase transition respectively. Since the total volume of particles does not change if the particles
aggregate or not, the dynamics of V (t) must not be affected by the aggregation rate a(v, u, t). The
physical intuition is confirmed by assuming the symmetric shape (2.2) of the rate a. Given (2.2), it
is possible to show that the integral terms in (2.25) cancel out, if multiplied by v and integrated with
respect to v over R+. This validates the need for the symmetric structure (2.2) to avoid non-physical
behaviours of the first-order moment V (t).
We note that the first term in the RHS of (2.34) was obtained by integrating the transport term in
(2.25) as follows

−
∫ +∞

0
v
∂( g(v, t)m(v, t) )

∂v
dv = − lim

v→+∞
v g(v, t)m(v, t) +

∫ +∞

0
g(v, t)m(v, t) dv. (2.35)

Remembering that v g(v, t)m(v, t) is the flux of volume given by particles with size v at time t, we
assume

lim
v→+∞

v g(v, t)m(v, t) = 0, (2.36)

for any fixed time t ∈ R+, to discard the flux of particles with infinite volume.

2.2.3.3 Asymptotic Behaviour of m(v, t)

The assumption (2.36) provides information on the asymptotic behaviour of the solution m(v, t) of
(2.25), for v → +∞ and fixed time t ∈ R+. As v → +∞, the distribution m(v, t) should decrease to
zero faster than (v g(v, t))−1 to ensure (2.36), i.e.

m(v, t) = o((v g(v, t))−1), v → +∞, (2.37)

for any fixed time t ∈ R+. For example, the growth rate g(v, t) (2.B.8), such that g(v, t) = O(v) as
v → +∞, leads to m(v, t) = o(v−2) for v → +∞ and fixed time t ∈ R+.

2.3 Population Balance Equations Model for Development of Par-
ticles Morphology: Solution

This section is devoted to the design of an accurate and efficient methodology for solving the Population
Balance Equations (PBE) model which describes the Dynamic Development of Particles Morphology
(DDPM). In the light of the scaling procedure of Section 2.2.2, from now on, we consider the dimen-
sionless and computationally tractable PBE system (2.25).
Section 2.3.1 revises some available methods for the integration of a PBE system. Then, we concen-
trate on the most promising ideas for our purposes and consequently develop four approaches in the
following sections. Advantages and limitations of the presented methodologies are also discussed.
Section 2.3.2 proposes a suitable implementation of the Stochastic Simulation Algorithm (SSA) for the
integration of the PBE system (2.25). SSA provides a robust integration technique, potentially able to
estimate any quantity of interest for the considered system. However, limitations and computational
inefficiencies make the approach not competitive for solving (2.25).
Section 2.3.3 designs the Generalised Method Of Characteristics (GMOC). It presents a deterministic
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discretization scheme for the integration of (2.25). GMOC ensures better accuracy and less computa-
tional effort than SSA can achieve, and thus is more preferable for our purposes.
Section 2.3.4 presents the Laplace Transform Technique (LTT) which inverts the analytical Laplace
transformed solutions of (2.25), specifically obtained for the Models I-III of Section 2.2.1. The ap-
proach provides accurate and efficient solutions for the considered models, as demonstrated in Sec-
tion 2.4. However, the required assumptions and comparatively simple choices of rate functions lead
to a limited description of the physics of the process.
Section 2.3.5 proposes the Laplace Induced Splitting Method (LISM) to integrate the system (2.25)
when realistic cases are addressed. The novel LISM is a splitting methodology, which takes advantage
of Laplace induced analytical solutions of (2.25). It simultaneously accounts for all the considered
dynamical processes, removing hypothesis and limitations of LTT. The requirements of accuracy and
efficiency are also fulfilled by LISM, as will be shown in Section 2.4.

2.3.1 Revision of the Available Methods

An extensive revision of integration methods for PBE systems can be found in [54, 55, 56, 57]. Here
we touch only those concepts which we use in our search for an optimal solver of (2.25). Solving the
PBE (2.25) is far from being a trivial task, because of numerical and modelling complexities. For
reactive particulate systems, the calculation of the rate functions may depend on bulk and particles
concentrations, which change with time. As described in Appendix 2.A, the reactor and particles
kinetics are coupled, leading to a challenging integration of the resulting system of equations, due to
the increased problem size, but also due to a possible increase in the numerical stiffness.
The numerical difficulties include (i) potential inaccuracies in a computed solution m(v, t) for highly
aggregating processes, (ii) numerical instabilities for growth-dominated systems, (iii) increased stiff-
ness for processes involving rapid particles nucleation, (iv) numerical implementation of singular nu-
cleation rates in the presence of aggregation and growth mechanisms, (v) domain errors for high-order
aggregation kernels. In addition, the inclusion of the particles growth mechanism in PBE gives rise
to a notoriously difficult to solve numerical problem, imparting PBE with a hyperbolic nature. More-
over, numerical solutions require substantial computational resources since, in practical engineering
processes, the particles size distribution may extend over several orders of magnitude and can be very
sharp.
Several integration methods have been proposed in the past years, underlining the inherent difficulties
in obtaining accurate and efficient numerical solutions. The majority of such numerical methods,
however, is able to deal only with a limited range of variations of the rate functions.
The integration methods for PBE systems can be categorised as Stochastic Algorithms, Discretization
Methods and Analytical Techniques.
Section 2.3.1.1 reviews the Monte Carlo (MC) approach for PBE systems, belonging to the family of
Stochastic Algorithms. Such methods estimate the density m(v, t) by computing statistics on properly
drawn random samples. In general, they provide accurate results, at the cost of demanding computa-
tions.
Section 2.3.1.2 discusses available Discretization Methods. Such approaches solve PBE systems by dis-
cretization of the particles volume domain followed by integration of the resulting system of algebraic-
differential equations. Usually, these methodologies provide a good compromise between precision
and efficiency of the numerical solution of the one-dimensional problem (2.25). However, the stiffness
of the equations to solve may lead to computational times exceeding the requirements of efficiency
motivated at the beginning of the chapter.
Section 2.3.1.3 presents available Analytical Techniques for solving PBE systems, by means of vari-
ables manipulations and closed-form expressions. The Analytical Techniques allow for accurate and
efficient solutions, but their applicability is often limited by the required assumptions.

2.3.1.1 Stochastic Algorithms

Spielman and Levenspiel [58] were the first to employ a Monte Carlo (MC) approach to study the
effect of particle coalescence in a two-phase particulate reactive system. A general MC algorithm
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for time varying particulate processes was developed in [59] and the precise mathematical connection
between population balance and the MC approach was established in [60].
The leading idea of MC methods consists in drawing the events driving the dynamics of a sample
of particles. The MC simulations can be time-driven [61], in the case the time step size ∆t > 0 is
explicitly specified and, subsequently, a number of events (e.g. particles growth, aggregation) are
carried out during the assigned time interval. On the other hand, the MC simulations can be event-
driven [62], if a single event is first selected and, subsequently, the time required for its occurrence
is calculated based on a known event probability. Below, we describe a general process involving
coagulation, growth and nucleation events in the context of the Stochastic Algorithms.
The initial condition ω0(v) in (2.25) is imposed by assigning each particle in the sample to a selected
volume vi, such that the resulting size distribution closely follows ω0(v).
The particles coagulation event fires if the following condition is met by any randomly selected pair of
particles, with volumes vi and vj :

a(vi, vi, t)

maxi,j a(vi, vi, t)
≥ u ∼ U(0, 1), (2.38)

where a is the coagulation kernel in (2.25) and u is an independent realisation from the uniform
distribution U(0, 1) over the interval [0, 1]. If the criterion (2.38) is satisfied, the particles with volumes
vi and vj are removed from the sample and the new particle with the volume vi + vj is added.
The particles growth rate g(v, t) in (2.25) updates the volume vi during the time interval [t, t + ∆t],
∆t > 0:

vi ← vi +

∫ t+∆t

t
g(vi, s) ds. (2.39)

The particles nucleation adds new particles to the sample, in agreement with the volume distribution
specified by the rate n(v, t) in (2.25).
The density m(v, t) is recovered by computing statistics on the resulting samples of particles.
The number of sampled particles should be large enough to guarantee statistical accuracy, i.e. 104−106

as suggested in [57]. Several approaches have been proposed to keep the particles number at desired
levels. In the constant-number approach [63], the total number of particles is kept constant throughout
the simulation by using either a random particle insertion when a successful particle aggregation event
occurs or random particles removal process when new particles are generated due to particle nucleation.
In another approach [62], the particles population is duplicated when the total number of particles in
the sample population has been reduced to half of its initial value.
In general, the MC approaches are able to provide accurate estimations of the solution m(v, t) of
(2.25). This has been demonstrated, e.g. in [64], through comparison with experimental data [65].
However, the effectiveness of MC methods is limited by the size of the simulated systems.
Nevertheless, stochastic simulations offer several advantages when applied to the solution of the general
PBE. First, they provide information about the history of each particle in the population and second,
their implementation to higher dimensional problems can be easily realised, though often leading to
high computational costs.

2.3.1.2 Discretization Methods

A numerical solution of the PBE (2.25) can be obtained by the discretization of the particle volume
domain into a number of elements that results in a system of non-linear differential equations to be
subsequently integrated. Several discretization methods have been developed for solving PBE sys-
tems. These include the fully discrete method [66], the finite difference methods [67], the discretized
PBE [68], the high-order discretized PBE methods [69], the fixed and moving pivot discretized PBE
methods [70, 71, 72], the Method of Characteristics (MOC) [73], the Orthogonal Collocation on Finite
Elements (OCFE) [74] and the Galerkin method [75]. Based on the comparative studies presented in
[76, 77, 78], the discretized PBE method [79], the pivot method [70], the Galerkin [75] and the OCFE
[54] methods can be suggested as accurate and stable techniques for PBE systems.
The discretized PBE method [80] solves the evolution equation for the representative value mi(t) of
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the density m(v, t) in the volume interval (vi, vi+1). Finite difference schemes and quadrature rules
approximate the partial derivatives and the integral terms in (2.25).
The Method of Characteristics [73] is based on the Lagrangian approach, describing the particles along
their characteristics in the size-time plane. PBE systems are transformed into Ordinary Differential
Equations by evaluation on the characteristic curves v′i(t) = g(vi(t), t), ∀i = 1, .., N , with g the growth
rate in (2.25).
The pivot technique [70, 71, 72] imposes the particles with size in (vi, vi+1) to assume the volume
xi, called the i-th pivot, with vi < xi < vi+1. The distribution m(v, t) is written as m(v, t) =∑

iMi(t) δ(v − xi), where δ(x) is the Dirac delta and Mi(t) is the expected number of particles with
size xi. The time derivative of

∫ vi+1

vi
m(v, t) dv leads to an evolution equation for Mi(t). The moving

pivot approach [72] allows the pivot xi to evolve with time, following the characteristic curve defined
by MOC, i.e. x′i(t) = g(xi(t), t).

A solution m(v, t) of (2.25) can be approximated by the finite sum mk(v, t) ≡
∑k

j=0 uj(t)φj(v), where
φj(v) are basis functions and uj(t) are expansion coefficients. Once the basis functions are chosen,
the expansion coefficients should be determined. The residual function R[mk](v, t) of a trial solution
mk(v, t) is defined as ∂mk(v, t)/∂t − R[mk](v, t), where R[mk] is the Right Hand Side of the PBE
system, computed for mk. In the Galerkin approach, the basis functions are recombined to satisfy the
boundary conditions. Then, the expansion coefficients are found so that the residual R is orthogonal
to as many of the recombined basis functions as possible. In the Collocation approach, the coefficients
uj are selected to satisfy the boundary conditions and to make the residual R vanish at as many grid
points as possible.
The OCFE method is employed in [74] for solving time-dependent PBE systems. The Lagrange basis
functions φj(v) are chosen in [54] and the Collocation procedure allows transforming PBE into a sys-
tem of differential equations to be solved using the Petzold-Gear method [81].
The Galerkin formulation with piecewise linear basis functions is applied in [75] to solve PBE in the
presence of aggregation and growth mechanisms. The Lagrange basis functions φj(v) are chosen in
[56] and the Galerkin method transforms PBE in a system of differential equations, which can be
solved using the Petzold-Gear method [81].
Discretization Methods usually require special attention to (i) a choice of the volume discretization
rule, (ii) a selection of the finite difference scheme, (iii) a treatment of aggregation terms and (iv) an
implementation of the nucleation mechanism.
The discretization rule of the volume domain is found to affect significantly the performance of the
numerical solution. The geometric rule vi+1 = 2vi is proposed in [68]. However, the resulting volume
grid is often inadequate for the accurate calculation of the density m(v, t). Alternatively, the fractional
geometric rule vi+1 = 21/qvi was suggested in [79], with q being an integer positive number. Aggrega-
tion dominated cases are treated in [54] using a logarithmic discretization of the volume domain. For
growth dominated processes, the strategy of [54] consists in using a logarithmic volume discretization
at small volumes and a constant discretization at larger volumes.
Finite difference schemes can approximate the partial derivatives accounting for convective flows, such
as the growth mechanism. The first-order upwind scheme suffers from numerical diffusion unless a
fine grid is used, as stated in [80]. To overcome the numerical diffusion problem, higher order approx-
imation schemes can be used, as proposed in [69] and Section 2.3.3.1.
The aggregation terms require special treatment, when non-uniform grids are implemented. In the
pivots approach, the particles can only assume the sizes {xi}i∈N, while the aggregation process can
produce volumes v 6= xi, ∀i ∈ N. As explained in [70], the aggregation terms can be modified to
account for the produced particles with volume v 6= xi, ∀i ∈ N. The formation of aggregated particles
with size v ∈ (xi, xi+1) is represented by assigning the fractions p(v, xi) and q(v, xi+1) to the particles
populations at xi and xi+1 respectively. The unknowns p(v, xi) and q(v, xi+1) are obtained by the
conservation of the pre-chosen functions fk(v), i.e.

p(v, xi)f1(xi) + q(v, xi+1)f1(xi+1) = f1(v),

p(v, xi)f2(xi) + q(v, xi+1)f2(xi+1) = f2(v), (2.40)
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and thus the corresponding moments Fk(t) =
∫ +∞

0 fk(v)m(v, t) dv, with k = 1, 2.
The particles nucleation at the fixed size v0 > 0 is not accurately represented by adaptive discretiza-
tion grids, when v0 falls outside the grid domain. In such a case, it is suggested in [72] to add new grid
points where needed, while eliminating the grid points with the largest values. The particles density
of the eliminated points has to be redistributed to preserve some quantities of interest.
It is observed in [55] that the choice of continuous basis functions for the OCFE and Galerkin methods
cannot resolve impulsive nucleation terms, such as n(v, t) ∝ δ(v− v0), with v0 > 0 and δ(x) the Dirac
delta. This can be treated by assuming that the nucleation spreads over a specified size range, as pro-
posed in [55] and used for the approximation of the nucleation rate in this dissertation (Section 2.4.1).
The typical problems and benefits associated with discretization schemes are summarised below.
The discretized PBE method is found to be robust for dealing with numerical oscillations of the com-
puted solutions, but it suffers from poor accuracy in the case of growth dominated systems [54]. The
finite difference schemes, usually employed to simulate particles growth, are likely to introduce nu-
merical instabilities caused by diffusion and dispersion errors [54].
The Method of Characteristics (MOC) avoids the numerical errors caused by the discretization of
the growth term, because the partial derivatives are analytically accounted for in the resulting ODE
system. However, the characteristics grid may lead to the inefficient integration of the PBE system
(2.25), if the other dynamical mechanisms make the particles sizes behave differently from what pre-
scribed by the transport rate g(v, t) [72]. In addition, MOC can only work if the characteristic curves
are not crossings each other, with the consequent formation of a shock [73]. The characteristics may
also fail to cover some parts of the volume domain, if the given curves are diverging in the size-time
plane [73].
The pivot technique shows accuracy and efficiency, when performed with geometrically distributed
pivots [70, 71, 72]. The method is able to overcome the problems of diffusion and stability [72], af-
fecting other discretization techniques [68, 82, 83]. The pivot methodology is also validated in [64],
by comparison with experimental data available in [65]. The shown results suggest that the method
is computationally efficient, but its accuracy is highly dependent on the discretization of the particles
volume domain. The pivot technique was used in [45] to predict the Dynamic Development of latex
Particles Morphology.
The Orthogonal Collocation on Finite Elements (OCFE) method is in general more accurate than the
discretized PBE methods, providing an excellent agreement between numerical and analytical results,
as shown in [54]. However, a numerical solution may be affected by strong oscillations. A common
approach to the problem consists in adding an artificial term of diffusion, as suggested in [80].
The Galerkin method is found to be more robust than the OCFE method for the simulation of par-
ticulate systems [56]. However, the Galerkin method may suffer from tracking moving discontinuities
that commonly arise for seeded particles processes and discontinuous initial distributions [56]. For
dealing with moving discontinuities, additional nodal points can be placed and moved according to
the particle growth rate, as proposed in [75]. The approach shows to improve the accuracy of the
solution at the expense of a small increase in the computational time [75].

2.3.1.3 Analytical Techniques

Analytical Techniques offer accurate and fast solutions to the PBE (2.25), by solving analytically the
dynamics of m(v, t). Here we review three such techniques. The Method of Moments (MOM) derives
closed-form evolution equations for chosen moments of the density m(v, t). The Laplace Transform
Technique provides an analytical formula for the Laplace transform of m(v, t). The Auxiliary Equation
Method deals with parametric solutions of (2.25).
The Method Of Moments (MOM) calculates some selected moments of the distribution m(v, t):

mk(t) ≡
∫ +∞

0
vkm(v, t) dv, (2.41)

with k ∈ N and m(v, t) the solution of (2.25). Equation (2.25) is multiplied by vk and then integrated
with respect to v ∈ R+. With some particular choices of rate functions, the derived equation can
be written in a closed form and integrated in time. However, it is not always the case and then
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closure techniques such as (i) methods assuming the form of the unknown distribution [84] and (ii)
interpolative closure methods [85] can be applied.
The MOM is proved to be fast and accurate in the calculation of the distribution moments [57].
However, its main challenge consists in the reconstruction of m(v, t) from a finite set of moments.
The problem can be addressed through approximation of the density m(v, t) by a sum of known
distributions, with coefficients expressed in terms of the calculated moments [57].
The Laplace Transform Technique [48, 86] analytically solves the dynamics of the Laplace transform

m̂(λ, t) ≡
∫ +∞

0
e−λvm(v, t) dv (2.42)

of the solution m(v, t) of the PBE system (2.25). Closed-form expressions of the Laplace transform
(2.42) are only available for particular choices of rate functions, limiting the applicability of the method.
The studies presented in [48, 86] consider simple PBE systems, simultaneously accounting for few
dynamical mechanisms governed by constant or linear rates. The original variables can be recovered
by using numerical methods for the inversion of the Laplace transform functions (see Section 2.3.1.4 for
details). Such approaches can be more computationally expensive than those using updating schemes
in time, but they have the advantage of allowing evaluation at any time, without evolving from an
initial condition.
The Auxiliary Equation Method [87, 88, 89] reduces PBE systems to ordinary integro-differential
equations, using the independent variable ξ, where ξ = ξ(v, t) is a function of the particles volume v
and time t. The choice of ξ = ξ(v, t) should be suitable to track the convective particles flux and to
solve the problem in the new coordinate system. The solution of the resulting equations is defined in
the form of the finite sum

m(ξ) =

N∑
i=0

ai z
i(ξ), (2.43)

where a0, .., aN are constants to be further determined, N is an integer fixed by balancing principles and
z(ξ) is a solution of the auxiliary equation to be considered. The coefficients a0, .., aN are determined
by inserting (2.43) into the ordinary integro-differential equation arising from the PBE system. The
function z(ξ) can be defined as a solution of an auxiliary differential equation with a second-, or
fourth-, order non-linear term. Using the described methodology, the parametric solution of the PBE
system can be computed for various cases of study [88, 89]. However, the derived solutions depend on
the non-trivial choices of the auxiliary quantities and the discussed technique only works for simple
rate functions, as presented in [88, 89].

2.3.1.4 Numerical Methods for Inverse Laplace Transform

The numerical inverse Laplace transform is, in general, an ill-posed problem and no single method
gives optimal results for all possible situations, leading to the diversity of viable numerical approaches
in the literature [90]. This section reviews numerical methods for inversion of the Laplace transform
function

L{f(v)} ≡ f̂(λ) =

∫ +∞

0
f(v) e−λv dv. (2.44)

Our interest in such methods arises from the need to invert the Laplace transform m̂(λ, t) of the
solution m(v, t) of (2.25), derived for Models I-III in Section 2.3.4. A closed-form expression for the
inverse of m̂(λ, t) seems to be not available in the most of the cases, and thus numerical routines
should be applied.
The inverse Laplace transform function f(v) of f̂(λ) (2.44) is defined as the Bromwich contour integral
[91]:

L−1{f̂(λ)} = f(v) =
1

2πi

∫ σ+i∞

σ−i∞
f̂(λ) eλv dλ, (2.45)
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where i ∈ C is the imaginary unit and σ ∈ R must be greater than the real part of all the singularities
of f̂(λ).
Given f̂(λ), (2.45) should be solved for the unknown f(v). The numerical solution approaches can
be broadly split into two categories: (i) methods based on quadrature rules and (ii) expansions using
analytically invertible basis functions. Quadrature-based examples are the Fourier series [92] and the
Talbot methods [93]. The Weeks method [94] expands f(v) using Laguerre polynomials [95], whose
Laplace transform is known and used to recover (2.44). The Schapery method [96] applies the same
principle, using exponential basis functions. An extensive review is presented in [97], focusing on the
numerical accuracy of the inversion methods for a set of test functions. The conclusion is that the
methods based on Laguerre polynomials and Fourier series provide accurate results for the most of
the tested cases. In another review [98], the authors investigate numerical inverse Laplace transform
methods, focusing on their ability to calculate the inverted function values using the fewest Laplace
function evaluations. The authors of [98] find Fourier series based inversion algorithms to provide the
best performance, among the compared approaches.
Following the conclusions of [97, 98], we consider Fourier series methods suitable for our purposes.
In particular, we will use in Section 2.4 the MATLAB routine nilt [99] for the numerical inversion
of the Laplace transforms m̂(λ, t) derived in Section 2.3.4. The routine nilt implements the Fourier
series method, expanding (2.45) into real and imaginary parts. Then, the trapezoid rule [100] and
further manipulations lead to the corresponding Fourier series. The derived formula requires several
evaluations of the Laplace transform functions. In order to accelerate the convergence of the sum to
be computed, the routine nilt uses the ε-algorithm discussed in [101].

In the following sections, we develop three methods for solving (2.25). Each method represents one of
the three classes of numerical approaches reviewed in this section, namely, stochastic, discretization
and analytical. In addition, we propose a method which does not fit into any described class and
is based on the idea which, to our knowledge, has never been explored in numerical methods for
PBE. More specifically, we propose to combine a splitting integration scheme with Laplace induced
analytical solutions derived for simplified PBEs, composing the PBE of interest.

2.3.2 Stochastic Simulation Algorithm

The aim of this section consists in formulating a suitable implementation of the Stochastic Simulation
Algorithm (SSA) for integration of the PBE system (2.25). In particular, we consider the SSA formu-
lation presented in Algorithm 1.1 of Section 1.2.1.
Given the volume grid v ≡ {ϕk}Nk=0, with 0 = ϕ0 < ϕ1 < .. < ϕN , we define Xk(t) ∈ N as the
number of particles with volume v ∈ [ϕk, ϕk+1) at time t, for all k = 0, .., N−1. The expected number
Mk(t) ∈ R+ of particles with volume v ∈ [ϕk, ϕk+1) at time t is given by:

Mk(t) ≡ 〈Xk(t)〉 ≡
∫ ϕk+1

ϕk

m(v, t) dv, ∀k = 0, .., N − 1, (2.46)

where m(v, t) is the solution of (2.25). The volume grid v should be chosen such that the density
m(v, t) has no structure within each interval [ϕk, ϕk+1), for all k = 0, .., N − 1. In other words, the
distribution m(v, t) is presumed to be uniform within the interval [ϕk, ϕk+1):

m(v, t) = mk(t) =
Mk(t)

ϕk+1 − ϕk
, ∀v ∈ [ϕk, ϕk+1), ∀k = 0, .., N − 1. (2.47)

Assuming (2.47), it is possible to select the value v = ϕk as the representative volume of the particles
with size in [ϕk, ϕk+1). For any time t ∈ R+, the system state

X(t) ≡ {Xk(t)}N−1
k=0 ∈ NN (2.48)

provides the numbers of particles with the volumes {ϕk}N−1
k=0 . Following the definitions (1.2)-(1.3)

given in Section 1.2.1, we derive the propensity functions and state-change vectors driving the state
(2.48) in agreement with the PBE system (2.25). We remark that the proposed derivation is based on
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the intuitive meaning of the rate functions g, n, µ and a in (2.25).
Particles Growth. Given the state X(t) = x (2.48), the propensity function Gk(x) for the growth
of any particle from the volume ϕk to the successive volume value can be computed as:

Gk(x) ≡ g(ϕk, t)
Xk(t)

∆ϕk
, ∆ϕk ≡ ϕk+1 − ϕk > 0, ∀k = 0, .., N − 1, (2.49)

where the growth speed g(ϕk, t) of the particles with volume ϕk is multiplied by the density Xk(t)/∆ϕk
of the considered particles at time t. The resulting quantity corresponds to the particles growth flux,
or the number of particles flowing per unit of time to the next volume value. In other words, it gives
the desired propensity function Gk(x). The system state X(t) (2.48) must be updated as

Xk(t)← Xk(t)− 1, Xk+1(t)← Xk+1(t) + 1, (2.50)

in correspondence with the growth of any particle with size ϕk to the next volume value.
Particles Nucleation. Given X(t) = x (2.48), the propensity function Nk(x) for the nucleation of
the particles with volume in [ϕk, ϕk+1) is computed as

Nk(x) ≡
∫ ϕk+1

ϕk

n(v, t) dv, ∀k = 0, .., N − 1, (2.51)

where the function n(v, t) provides the size distribution of the particles nucleating per unit of time, in
agreement with the definition (2.4). The system state X(t) (2.48) must be updated as

Xk(t)← Xk(t) + 1 (2.52)

in correspondence with the nucleation of any particle with volume in [ϕk, ϕk+1).
Particles Phase Transition. For any time t ∈ R+, the function µ(v, t) in (2.25) provides the
proportion of the particles with volume v changing their phase per unit of time. Consequently, the
propensity function Πk(x) for the phase transition of the particles with volume ϕk is given by

Πk(x) ≡ µ(ϕk, t)Xk(t), ∀k = 0, .., N − 1, (2.53)

where the system state X(t) = x (2.48) provides the number Xk(t) of the particles with volume ϕk at
time t, updated as

Xk(t)← Xk(t)− 1 (2.54)

if the phase transition reaction occurs.
Particles Aggregation. The propensity function Ak,j(x) for the aggregation of the particles with
volumes ϕk and ϕj is computed as

Ak,j(x) ≡

{
a(ϕk, ϕj , t)Xk(t)Xj(t), ∀k = 0, .., N − 1, ∀j = k + 1, .., N − 1,

a(ϕk, ϕk, t) (Xk(t)− 1)Xk(t) / 2, ∀k = 0, .., N − 1, with j = k,
(2.55)

where the system state x = X(t) (2.48) provides the numbers Xk(t) and Xj(t) of particles with
volumes ϕk and ϕj at time t respectively. For any time t ∈ R+, the function a(v, u, t) in (2.25) gives
the proportion of the particles with volumes v and u aggregating per unit of time. The propensity
Ak,j(x) (2.55) is obtained by multiplying the number of all the possible couples of particles by the
proportion a. With the assumption of uniform volume grid, i.e.

ϕk+1 − ϕk = h > 0, ∀k = 0, .., N − 1, (2.56)

the system state X(t) (2.48) can be updated as

Xk(t)← Xk(t)− 1, Xj(t)← Xj(t)− 1, Xk+j(t)← Xk+j(t) + 1, (2.57)
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in correspondence with the aggregation of the particles with volumes ϕk and ϕj . The scheme (2.57)
relies on (2.56) that ensures the volume of the resulting particle to be ϕk + ϕj = (k + j)h = ϕk+j .
The initial condition ω0(v) of (2.25) is imposed by neglecting random fluctuations of the initial
state, i.e. X(0) = 〈X(0)〉 ∈ NN , and by taking the integer part of the computed integral:

Xk(0) = 〈Xk(0)〉 =

∫ ϕk+1

ϕk

ω0(v) dv ≈ bω0(ϕk)hc ∈ N, ∀k = 0, .., N − 1, (2.58)

where h is given by (2.56) and bxc ≡ maxi∈N{i ≤ x}, ∀x ∈ R+.
The approximation (2.58) may lead to inaccurate estimations of the initial state. As h → 0, the
product ω0(ϕk)h can be arbitrarily small, and thus giving Xk(0) = 0, where the initial condition
puts a non-negligible mass, i.e. for ω0(ϕk) � 0. The problem can be addressed by scaling the initial
condition such that

ω̂0(v̂)h� 1, ω̂0(v) ≡ κω0(v), ∀v ∈ R+, (2.59)

where κ > 0 is a tunable constant and v̂ ∈ R+ is a point of local maximum of ω0(v). Condition
(2.59) guarantees accurate estimations of the initial state, where the non-negligible mass is placed
(the local maxima). The scaling (2.59) must be applied to the PBE system (2.25), and thus SSA will
be implemented using the transformed variables:

m̂(v, t) ≡ κm(v, t), ĝ(v, t) ≡ g(v, t), n̂(v, t) ≡ κn(v, t),

µ̂(v, t) ≡ µ(v, t), â(v, u, t) ≡ a(v, u, t)/κ, ∀v, u, t ∈ R+. (2.60)

The boundary condition in (2.25) is imposed by ensuring g(0, t)X0(t) = 0, for all t ∈ R+.
The derived propensity functions and state-change vectors allow us to integrate (2.25) by implementing
SSA formulated in Algorithm 1.1 of Section 1.2.1. The algorithm is used to draw a sample of S > 0
independent trajectories of X(t) (2.48), t ∈ [0, Tmax]. The solution m(v, t) of (2.25) is recovered by
(2.47), with Mk(t) computed as the sample average of Xk(t). Numerical experiments are presented in
Section 2.4.

2.3.2.1 Benefits & Drawbacks

We have proposed the Stochastic Simulation Algorithm (SSA) for integration of the PBE system
(2.25). The formulation of SSA is based on Algorithm 1.1, reviewed in Section 1.2.1. The main
benefits of the presented SSA are summarised here:

1. Algorithm 1.1 guarantees unbiased estimations of the solution of the CME (1.4), as motivated
in Section 1.2.1.

2. The definition (2.51) of the propensity function Nk(x) allows us to analytically account for
impulsive nucleation rates, such as n(v, t) ∝ δ(v − v0) with v0 > 0 and δ(x) the Dirac delta.

3. The drawn sample of trajectories of X(t) can potentially provide the estimation of any quantity
of interest by the computation of the corresponding statistics.

The drawbacks of the proposed approach are outlined below:

1. The derivation of the propensity functions is based on the intuitive meaning of the rates a, g,
n and µ. As will be shown in Section 2.4, the tested choices of the rate functions allow the
convergence of SSA to the solution of the PBE system (2.25). However, no rigorous proof is
provided in the general case.

2. Despite the simplified choices of the rate functions in Models I-III of Section 2.2.1, the SSA
method shows to be computationally demanding (≈ 102 sec to generate a single trajectory of
X(t)). See Section 2.4 for more details.
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3. Following Algorithm 1.1, the time step size τ is automatically drawn from the distribution (1.7).
The resulting step size can be particularly small, leading to the significant effort to produce a
single trajectory of X(t).

4. The proposed implementation of the aggregation process requires the uniform grid (2.56), which
may lead to the inefficient integration of the considered equations.

In conclusion, SSA provides a robust integration technique, potentially able to estimate any quantity
of interest for the considered system. However, limitations and computational inefficiencies make
the approach not competitive for solving (2.25). In order to overcome these issues, we explore the
possibility to develop the discretization method for solving (2.25).

2.3.3 Generalised Method Of Characteristics

Our objective is to transform the PBE (2.25) to a corresponding system of Ordinary Differential
Equations (ODE). We propose a discretization method which we called Generalised Method Of Char-
acteristics (GMOC). As the name suggests, the Method Of Characteristics (MOC) [73] is a special
case of GMOC, as will be shown below. The rest of this section is devoted to the derivation and imple-
mentation of GMOC. The numerical results for GMOC, in comparison with other proposed method,
are shown in Section 2.4.

The solution m(v, t) of (2.25) is evaluated along N curves, belonging to P =
{

(v, t) ∈ R2 : v, t ≥ 0
}

,
with the prescribed form v = ϕk(t), ∀k = 1, .., N . Given mk(t) ≡ m(v, t)|v=ϕk(t), the chain rule [102]
provides the time derivative of mk(t). As a result, we get the ODE system arising from (2.25) by
evaluating the solution m(v, t) on the curves v = ϕk(t), ∀k = 1, .., N , ∀t ∈ R+:

dmk(t)

dt
=

[
dϕk(t)

dt
− g(ϕk(t), t)

]
∂m(v, t)

∂v

∣∣∣∣
v=ϕk(t)

− [ρ(ϕk(t), t) + µ(ϕk(t), t)] mk(t) +

+ n(ϕk(t), t) + A+(ϕk(t), t;m(·, t))− A−(ϕk(t), t;m(·, t)), (2.61)

where ρ(v, t) ≡ ∂g(v, t)/∂v and

A+(v, t;m(·, t)) ≡ 1

2

∫ v

0
a(v − u, u, t)m(v − u, t)m(u, t) du, (2.62)

A−(v, t;m(·, t)) ≡ m(v, t)

∫ +∞

0
a(v, u, t)m(u, t) du. (2.63)

The particular choice of the curves v = ϕk(t), for k = 1, .., N , as the solutions of the Cauchy problems

ϕ′k(t) = g(ϕk(t), t), ∀t ∈ R+, ϕk(0) = ϕ̄k > 0, ∀k = 1, .., N, (2.64)

allows cancelling the partial derivatives with respect to v in (2.61). The curves v = ϕk(t) in (2.64)
correspond to the characteristics defined by MOC, showing that GMOC embeds MOC. Moreover, the
Method of Lines (ML) [103] can be also recovered from GMOC by imposing:

ϕk(t) = ϕk(0), ∀t ∈ R+, ∀k = 1, .., N. (2.65)

The novelty of GMOC consists in the freedom of a choice of the curves v = ϕk(t). This can be
beneficial for the case when the solution m(v, t) has a complex shape potentially leading to numerical
instabilities. The flexible choice of v = ϕk(t) can address such a problem.
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2.3.3.1 GMOC Implementation

The implementation of GMOC includes imposing the initial and boundary conditions of (2.25) in the
ODE (2.61), as well as a numerical treatment of the partial derivatives with respect to v and the
integral terms. Finally, the discretization scheme for simulating the time evolution in (2.61) is also
required.
Initial and Boundary Conditions. The initial condition of (2.25) imposes:

mk(0) = ω0(ϕk(0)), ∀k = 1, .., N. (2.66)

The curve ϕ0(t) = 0, ∀t ∈ R+, is defined to prescribe the boundary condition of (2.25):

g(ϕ0(t), t)m0(t) = 0, ∀t ∈ R+. (2.67)

The information carried by ϕ0(t) and m0(t) is used to approximate the partial derivatives and the
integral terms, as explained below. As a result, the boundary condition of (2.25) is imposed in the
ODE system (2.61).
Partial Derivatives. Given {ϕk(t),mk(t)}Nk=0 for all t ∈ R+, finite difference schemes can approxi-
mate the partial derivatives ∂m(v,t)/∂v|v=ϕk(t), ∀k = 1, .., N . As stated in [80], such schemes may suffer
from numerical diffusion and a common solution consists in using high-order approximation schemes.
Motivated by the statement, we select a fourth-order accurate scheme.
Given the hyperbolic Partial Differential Equation (2.25), it is possible to define the domain of de-
pendence D(v, t) as the subset of P =

{
(v, t) ∈ R2 : v, t ≥ 0

}
, such that m(v, t) only depends on the

values of the solution inside D(v, t). The negative integral term in (2.25) makes the domain D(v, t)
be the set R+ × [0, t). Both forward and backwards points have an influence on the solution at (v, t),
motivating the choice of a central scheme for approximating the partial derivatives with respect to v.
Assuming the condition

ϕk(t)− ϕk−1(t) = h(t) > 0, ∀k = 1, .., N, ∀t ∈ R+, (2.68)

we propose the following fourth-order accurate scheme [104]:

∂m(v, t)

∂v

∣∣∣∣
v=ϕk(t)

≈



−mk+2(t)+8mk+1(t)−8mk−1(t)+mk−2(t)
12h(t) , ∀k = 2, .., N − 2,

25mN (t)−48mN−1(t)+36mN−2(t)−16mN−3(t)+3mN−4(t)
12h(t) , if k = N,

3mN (t)+10mN−1(t)−18mN−2(t)+6mN−3(t)−mN−4(t)
12h(t) , if k = N − 1,

m4(t)−6m3(t)+18m2(t)−10m1(t)−3m0(t)
12h(t) , if k = 1.

(2.69)

The lack of either backwards or forward grid points does not allow the central scheme for k = 1, N −
1, N , being replaced by asymmetric formulas.
Integral Terms. Known {ϕk(t),mk(t)}Nk=0 for all t ∈ R+, we approximate the integral terms A−

and A+ in (2.61) by the quadrature rules

∫ +∞

0
l(u, t)m(u, t) du ≈

N∑
j=0

pj(t) l(ϕj(t), t)mj(t), ∀t ∈ R+, (2.70)

where the function l(u, t) is defined as

l(u, t) ≡ 1(0,+∞)(u) a(ϕk(t), u, t), ∀k = 1, .., N, (2.71)

for A− (2.63), while

l(u, t) ≡ 1(0,ϕk(t))(u) a(ϕk(t)− u, u, t)m(ϕk(t)− u, t), ∀k = 1, .., N, (2.72)

for A+ (2.62), with 1X(x) = 1 if x ∈ X, zero otherwise. The weights pj(t), j = 0, .., N , in (2.70) specify
the quadrature rule to be used. Assumed (2.68), the fourth-order accurate composite Simpson’s rule
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[105] is chosen in agreement with the accuracy of the numerical scheme (2.69). Taking advantage of
(2.68), it is possible to evaluate m(ϕk(t)− u, t) for all u = ϕj(t), such that ϕj(t) ∈ (0, ϕk(t)):

m(ϕk(t)− ϕj(t), t) = m(ϕk−j(t), t) = mk−j(t). (2.73)

In the case the hypothesis (2.68) does not hold, the evaluation of m(ϕk(t) − ϕj(t), t) requires the

interpolation of the data {ϕk(t),mk(t)}Nk=0.
Time Evolution. The state vector y(t) ≡ [m1(t), ..,mN (t)] corresponds to the solution of the Cauchy
problem:

y′ = F (y), y(t0) = y0, (2.74)

where the function F : [0,+∞)N → RN is defined by the Right-Hand Side of (2.61), provided the
approximation schemes (2.69) and (2.70). In agreement with the accuracy of the considered schemes,
the fourth-order accurate Runge-Kutta method (RK4) [106] is chosen to integrate (2.74). For the sake
of simplicity, the time step size τ > 0 is assumed to be constant for all time t.

2.3.3.2 Benefits & Drawbacks

We have formulated the new discretization method for the integration of the PBE system (2.25), the
Generalised Method Of Characteristics (GMOC). The main advantages of the presented GMOC are
the following:

1. Under regularity assumptions, it is possible to rigorously prove the convergence of GMOC to
the solution of (2.25). The same cannot be said for SSA, as outlined in Section 2.3.2.1.

2. The flexible choice of the curves v = ϕk(t) can be beneficial for the case when the solution m(v, t)
of (2.25) has a complex shape potentially leading to numerical instabilities.

3. Given the simplified choices of the rate functions in Models I-III of Section 2.2.1, GMOC ensures
a competitive speed of simulations. Section 2.4 will show that GMOC is faster than SSA in
providing the same level of accuracy.

The limitations of GMOC are summarised here:

1. The point-wise evaluation of n(ϕk(t), t) in (2.61) requires the approximation of impulsive nucle-
ation rates, such as n(v, t) ∝ δ(v−v0) with v0 > 0 and δ(x) the Dirac delta. See Section 2.4.1 for
a possible approach. We remark that SSA analytically accounts for impulsive rates, as discussed
in Section 2.3.2.1.

2. The finite difference scheme (2.69) and the evaluation (2.73) require the uniform grid (2.68),
which may lead to the inefficient integration of the considered equations.

3. The appropriate choice of the curves v = ϕk(t) is a non-trivial and problem-specific task. The
numerical experiments shown in Section 2.4 will rely on the constant curves (2.65).

We have applied the proposed here GMOC along with the PBE model (2.25) to the Study Group
Problem Size Focussing of Nanoparticles, at the European Study Group with Industry (ESGI 2016)
[107].

2.3.4 Laplace Transform Technique

We present the Laplace Transform Technique (LTT) for solving the PBE system (2.25), in the cases
of the Models I-III of Section 2.2.1. Given the scaling procedure of Section 2.2.2, we consider the
dimensionless and computationally tractable counterparts of the rates defined by Models I-III.
The simple choices of the rate functions allow us to analytically derive the Laplace transform m̂(λ, t)
of the unknown solution m(v, t) of (2.25). Numerical routines can be applied to recover the density
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m(v, t) if a closed-form expression is not available, as discussed in Section 2.3.1.4.
The approach is similar to the proposed in [48, 86] and revised in Section 2.3.1.3. However, we extend
the derivation of [48], as detailed in Section 2.2.1. In addition, Model II accounts for a size-dependent
growth, forbidden in [86]. Numerical results are shown in Section 2.4.

2.3.4.1 Model I: Constant Aggregation, Growth, Nucleation and Phase Transition

In this section we consider the Model I, described in Section 2.2.1. The model simultaneously accounts
for aggregation, growth, nucleation and phase transition. The processes are driven by the following
dimensionless and computationally tractable rates:

a(v, u, t) = a0 > 0, g(v, t) = g0 > 0, n(v, t) = n0 δ(v − v0), µ(v, t) = µ0 > 0, (2.75)

with n0, v0 > 0 and δ(x) the Dirac delta function. Given (2.75), the Laplace transform m̂(λ, t) ≡∫ +∞
0 e−λvm(v, t) dv of the solution m(v, t) of (2.25) satisfies

∂m̂(λ, t)

∂t
= n0 e

−v0λ − (g0λ+ µ0 + a0M(t)) m̂(λ, t) +
a0

2
m̂2(λ, t), (2.76)

where M(t) corresponds to the zero-order moment (2.29). The moment M(t) can be computed as the
solution of the following Riccati differential equation [108] with constant coefficients:

M ′(t) = n0 − µ0M(t)− a0

2
M2(t), ∀t ∈ R+, M(0) = M0 ≥ 0. (2.77)

Given the unique positive equilibrium solution M̄ of (2.77), i.e.

M̄ ≡

√
µ2

0

a2
0

+
2n0

a0
− µ0

a0
> 0, (2.78)

it is possible to get the general solution of (2.77) with the help of the auxiliary variable z(t) ≡
e−(µ0+a0M̄)t/(M(t)− M̄):

M(t) = M̄ +
2 (M0 − M̄) (µ0 + a0M̄) e−(µ0+a0M̄)t

2µ0 + a0 (M0 + M̄) − a0 (M0 − M̄) e−(µ0+a0M̄)t
, ∀t ∈ R+. (2.79)

Equation (2.76) can be interpreted as a family of non-autonomous Riccati differential equations [108],
parametrized on λ ∈ C:

y′(t) = a− b(t) y(t) + c y2(t), (2.80)

where

y(t) ≡ m̂(λ, t), a ≡ n0 e
−v0λ, b(t) ≡ g0λ+ µ0 + a0M(t), c ≡ a0/2. (2.81)

For the sake of availability of the analytical solution of (2.80), we assume

M(t) = M̄ > 0, ∀t ∈ R+. (2.82)

Given (2.82), it follows b(t) = b̄ ≡ g0λ + µ0 + a0M̄ , ∀t ∈ R+, and (2.80) reads as a family of Riccati
differential equations with time-independent coefficients, admitting two equilibrium solutions

m̄±(λ) =

(
g0

a0
λ+

µ0

a0
+ M̄

)
±

√(
g0

a0
λ+

µ0

a0
+ M̄

)2

− 2n0

a0
e−v0λ. (2.83)

Remembering that m̂(0, t) = M(t), ∀t ∈ R+, we must discard m̄+(λ) because m̄+(0) 6= M̄ . Hence, it
is possible to only accept m̄−(λ) as the equilibrium solution m̄(λ) of (2.80):
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m̄(λ) ≡
(
g0

a0
λ+

µ0

a0
+ M̄

)
−

√(
g0

a0
λ+

µ0

a0
+ M̄

)2

− 2n0

a0
e−v0λ. (2.84)

Provided m̄(λ) (2.84), it is possible to get y(t) as the general solution of (2.80), invoking the auxiliary
variable z(t) ≡ e(b̄+2cm̄)t/(y(t)− m̄). Then, the Laplace transform m̂(λ, t) = y(t) reads

m̂(λ, t) =

[
a0
2 (ω̂0(λ) + m̄(λ))− r(λ)

]
m̄(λ) e(r(λ)−a0m̄(λ))t +

(
a0
2 m̄(λ)− r(λ)

)
(ω̂0(λ)− m̄(λ))[

a0
2 (ω̂0(λ) + m̄(λ))− r(λ)

]
e(r(λ)−a0m̄(λ))t − a0

2 (ω̂0(λ)− m̄(λ))
, (2.85)

where r(λ) ≡ g0λ+µ0+a0M̄ and ω̂0(λ) is the Laplace transform of the initial condition ω0(v) in (2.25).
Given the rate functions (2.75) and the assumption (2.82), we have derived the analytical expressions
for (i) the Laplace transform m̄(λ) of the equilibrium solution m∗(v) of (2.25) and (ii) the Laplace
transform m̂(λ, t) of the time-dependent solution m(v, t) of (2.25). The closed-form expressions for
the inverse of the derived Laplace transforms seem to be not available. Aimed to recover the functions
m∗(v) and m(v, t), it is possible to use numerical routines to compute values of the corresponding
inverse Laplace transforms, as it was discussed in Section 2.3.1.4.
We remark that the equilibrium solution m∗(v) will be used to select realistic orders of magnitude of
initial condition and volume domain for the numerical experiments presented in Section 2.4.1.

2.3.4.2 Model II: Constant Aggregation, Linear Growth and Constant Phase Transition

We consider the Model II of Section 2.2.1, accounting for aggregation, growth and phase transition.
The dimensionless and computationally tractable rates in (2.25) are defined as:

a(v, u, t) = a0 > 0, g(v, t) = g0 v, g0 > 0, n(v, t) = 0, µ(v, t) = µ0 > 0. (2.86)

Given the nucleation rate n(v, t) = 0, ∀v, t ∈ R+, we must assume the initial condition ω0(v) in (2.25)
not to be zero everywhere. Otherwise, it follows m(v, t) = 0, ∀v, t ∈ R+.
Provided the rate functions (2.86), the Laplace transform m̂(λ, t) ≡

∫ +∞
0 e−λvm(v, t) dv of the solution

m(v, t) of (2.25) satisfies

∂m̂(λ, t)

∂t
− g0λ

∂m̂(λ, t)

∂λ
= −(µ0 + a0M(t)) m̂(λ, t) +

a0

2
m̂2(λ, t), (2.87)

where M(t) ≡ m̂(0, t) can be computed as the solution of the following Bernoulli differential equation
[109]:

M ′(t) = −µ0M(t)− a0

2
M2(t), ∀t ∈ R+, M(0) = M0 ≥ 0. (2.88)

With the help of the auxiliary variable z(t) ≡ e−µ0t/M(t), it is possible to find the general solution of
(2.88):

M(t) =
2µ0M0 e

−µ0t

2µ0 + a0M0(1− e−µ0t)
, ∀t ∈ R+. (2.89)

We solve (2.87) using the Method of Characteristics [73]. Given y(t) ≡ m̂(λ, t)|λ=ϕ(t), with

ϕ′(s) = −g0 ϕ(s), ∀s ∈ [0, t], ϕ(t) = λ, (2.90)

we have ϕ(s) = λ eg0(t−s), ∀s ∈ [0, t], and the chain rule [102] provides the derivative of y(s) with
respect to s:

y′(s) = −(µ0 + a0M(s)) y(s) +
a0

2
y2(s), ∀s ∈ [0, t], y(0) = m̂(ϕ(0), 0) = ω̂0(λeg0t), (2.91)

where ω̂0(λ) corresponds to the Laplace transform of the initial condition ω0(v) in (2.25).
With the help of the auxiliary variable z(s) ≡ e−µ0s−a0

∫ s
0 M(σ)dσ/y(s), it is possible to find y(s) as the
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general solution of (2.91) for all s ∈ [0, t]. The Laplace transform m̂(λ, t) is recovered by evaluating
the found y(s) at the final time s = t:

m̂(λ, t) =
4µ2

0 e
−µ0t ω̂0(λeg0t)

[2µ0 + a0M0(1− e−µ0t)] [2µ0 + a0(1− e−µ0t)(M0 − ω̂0(λeg0t))]
, (2.92)

where ω̂0(λ) is the Laplace transform of the initial condition ω0(v) in (2.25).
In a general case, it is not possible to find the closed-form inverse m(v, t) of the Laplace transform
m̂(λ, t) (2.92), and thus numerical routines should be used. However, some particular choices of the
initial condition ω0(v) allow us to analytically solve the inversion problem and to get an expression
for the solution m(v, t) of (2.25). In particular, the initial condition

ω0(v) = α e−βv sinh(γv), α ≥ 0, β > γ > 0, (2.93)

leads to

m(v, t) = α̂(t) e− β̂(t) v sinh (γ̂(t) v), ∀v, t ∈ R+, (2.94)

where

α̂(t) ≡ 4αγ1/2 µ2
0 e
−(g0+µ0)t

(2µ0 + a0M0(1− e−µ0t))2

(
γ +

αa0 (1− e−µ0t)

2µ0 + a0M0(1− e−µ0t)

)−1/2

> 0, ∀t ∈ R+, (2.95)

β̂(t) ≡ β e−g0t > γ̂(t) > 0, ∀t ∈ R+, (2.96)

γ̂(t) ≡ γ
1/2 e−g0t

√
γ +

αa0 (1− e−µ0t)

2µ0 + a0M0(1− e−µ0t)
> 0, ∀t ∈ R+. (2.97)

The flexibility in the choice of parameters α, β and γ in (2.93) allows us to control the shape of the
initial condition. The values of α, β and γ can be selected to mimic the neglected nucleation process,
as will be discussed in Section 2.4.2.

2.3.4.3 Model III: Constant Aggregation, Growth and Phase Transition

This section addresses the Model III of Section 2.2.1. We consider the particles aggregation, growth
and phase transition, whereas the nucleation mechanism is neglected. The dimensionless and compu-
tationally tractable rates in (2.25) are defined as:

a(v, u, t) = a0 > 0, g(v, t) = g0 > 0, n(v, t) = 0, µ(v, t) = µ0 > 0, (2.98)

where the null nucleation rate n(v, t) implies the assumption of a non-null initial condition in (2.25),
as discussed in Section 2.3.4.2.
Given (2.98), the Laplace transform m̂(λ, t) ≡

∫ +∞
0 e−λvm(v, t) dv of the solution m(v, t) of (2.25)

satisfies

∂m̂(λ, t)

∂t
= − (g0 λ+ µ0 + a0M(t)) m̂(λ, t) +

a0

2
m̂2(λ, t), ∀λ ∈ C, ∀t ∈ R+, (2.99)

where the zero-order moment M(t) ≡ m̂(0, t) can be computed as (2.89).
Equation (2.99) corresponds to a family of Bernoulli differential equations [109], parametrized on

λ ∈ C. With the help of the auxiliary variable z(t) ≡ e−(g0λ+µ0)t−a0

∫ t
0M(s) ds / m̂(λ, t), it is possible to

obtain the general solution of (2.99):

m̂(λ, t) =
4µ2

0 e
−µ0t e−(g0t)λ

(2µ0 + a0M0(1− e−µ0t))2

(g0λ− µ0) ω̂0(λ)

(g0λ− µ0) + 2 a0 µ2
0 ω̂0(λ) F̂ (λ, t)

, ∀λ ∈ C, ∀t ∈ R+, (2.100)
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where ω̂0(λ) corresponds to the Laplace transform of the initial condition ω0(v) in (2.25). The function
F̂ (λ, t) is defined as

F̂ (λ, t) ≡

x
µ0+g0λ
µ0 2F1

(
1, 2; 2µ0−g0λ

µ0
; 2µ0+a0M0

2µ0+a0M0(1−x)

)
(2µ0 + a0M0(1− x))2


x=e−µ0t

x=1

, ∀λ ∈ C, ∀t ∈ R+, (2.101)

with 2F1(a, b; c; z) the Gauss’s Hypergeometric Function [110]. Equation (2.101) is obtained by using
the symbolic tool Integrate, available in the Wolfram Language [111]. A closed-form expression for the
inverse m(v, t) of the Laplace transform (2.100) seems not to be available. Numerical routines should
be used to recover the unknown solution m(v, t) of (2.25), as it was discussed in Section 2.3.1.4.

2.3.4.4 Benefits & Drawbacks

We have presented the Laplace Transform Technique (LTT) for solving the PBE system (2.25), in
the cases of the Models I-III of Section 2.2.1. The main benefits of LTT developed in this section are
outlined here:

1. We have extended the derivation of LTT to a broader range of rate functions than has been
previously available in the literature [48, 86].

2. The derived solutions analytically account for impulsive nucleation rates, such as n(v, t) ∝
δ(v − v0) with v0 > 0 and δ(x) the Dirac delta. As discussed in Section 2.3.3.2, GMOC cannot
analytically account for such impulsive rates.

3. The presented LTT allows the evaluation of the Laplace transformed solution of (2.25) at any
time, without evolving from an initial condition, as required by GMOC.

4. LTT provides accurate and efficient solutions of the PBE (2.25), as will be shown in Section 2.4.
The obtained results can be used as baselines for validation and evaluation of other numerical
methods.

The principal drawbacks of LTT are discussed below:

1. The flexibility in the choice of the initial condition ω0(v) for Model I is limited by the hypothesis
(2.82), imposing the zero-order moment to its asymptotic value. In particular, (2.82) requires∫ +∞

0 ω0(v) dv = M̄ > 0, with M̄ defined as (2.78). We remark that such an assumption is not
needed by GMOC.

2. The analytical solution m(v, t) (2.94) for Model II assumes the initial condition (2.93). In a
general case, it is not possible to find the closed-form expression for m(v, t). On the other hand,
GMOC works for any choice of (suitable) initial condition.

3. The simplified choices of the rate functions and the required hypothesis lead to a limited de-
scription of the reaction physics.

4. LTT may result in complicated expressions for the derived Laplace transforms, such as (2.100).
The numerical inversion of these functions is a challenging task, as will be discussed in Section 2.4.

The presented here LTT will be used in Section 2.4 as a baseline for validation, evaluation and
comparison of the other methodologies derived in this Thesis.
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2.3.5 Laplace Induced Splitting Method

Section 2.3.4 provides an efficient tool for solving (2.25) in the cases of Models I-III described in
Section 2.2.1. However, this approach is only available under specific restrictive assumptions and for
the limited choices of the rate functions. With the purpose to derive an efficient methodology for more
realistic models, we design a novel splitting approach, which we call Laplace Induced Splitting Method
(LISM).
The idea behind LISM is the following. First, one decomposes the PBE (2.25) into a sum of simpler
sub-problems and solves them individually using the most efficient method available for simplified
problems, i.e. LTT. Then, a splitting algorithm recovers the solution of the complete system (2.25)
with the help of the derived solutions for the partial problems. In principle, the splitting of (2.25) into
simpler sub-problems should support complex physical rate functions in (2.25), being only limited by
the availability of efficient solutions for the considered sub-problems.
The idea of using splitting methodologies is not new, and it has been proposed previously for solving
integro-differential equations, such as, e.g., Fokker-Planck equation [112, 113, 114]. However, to our
knowledge, this is the first time when splitting schemes have been combined with Laplace induced
analytical solutions for integrating PBE systems.
The section is structured as follows. Section 2.3.5.1 suggests the sub-problems the PBE (2.25) can
be divided into, when the rates of Models I-III are considered. In addition, Section 2.3.5.1 presents
the splitting methodology to recover the solution of the complete problem (2.25). As a splitting
scheme, we choose the second-order accurate Symmetrized Strang Splitting Method (SSSM) [115],
though other splitting algorithms can be considered within LISM. Then, Section 2.3.5.2, Section 2.3.5.3
and Section 2.3.5.4 provide the Laplace induced solutions for the defined sub-problems. Section 2.3.5.5
discusses a possible choice of volume grid to deal efficiently with the nucleation terms. Benefits and
drawbacks of LISM are outlined in Section 2.3.5.6.

2.3.5.1 Splitting of PBE (2.25) for Models I-III

Let us decompose the PBE (2.25) into a sum of integral and differential operators:

∂m(v, t)

∂t
= Dm(v, t) + Im(v, t), ∀v, t ∈ R+, (2.102)

where the differential operator D and the integral operator I are defined as

Dm(v, t) ≡ −∂( g(v, t)m(v, t) )

∂v
+ n(v, t)− µ(v, t)m(v, t), ∀v, t ∈ R+, (2.103)

Im(v, t) ≡ 1

2

∫ v

0
a(v − u, u, t)m(v − u, t)m(u, t) du

− m(v, t)

∫ +∞

0
a(v, u, t)m(u, t) du, ∀v, t ∈ R+. (2.104)

In order to address the Models I-III, we consider the following sub-problems:

A :

{
∂m(v,t)
∂t = Dm(v, t), ∀v, t ∈ R+,

g(v, t) = g0 v, n(v, t) = n0 δ(v − v0), µ(v, t) = µ0, ∀v, t ∈ R+,
(2.105)

B :

{
∂m(v,t)
∂t = Dm(v, t), ∀v, t ∈ R+,

g(v, t) = g0, n(v, t) = n0 δ(v − v0), µ(v, t) = µ0, ∀v, t ∈ R+,
(2.106)

C :

{
∂m(v,t)
∂t = Im(v, t), ∀v, t ∈ R+,

a(v, u, t) = a0, ∀v, u, t ∈ R+,
(2.107)

with a0, g0, v0, µ0 > 0, n0 ≥ 0 and δ(x) the Dirac delta.
The solution of Model I can be recovered by combining the solutions of B (2.106) and C (2.107). The
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Model II is given by the composition of A (2.105) and C (2.107), with n0 = 0. The Model III is
obtained from B (2.106) and C (2.107), with n0 = 0.
In the following sections, we derive the solutions m(v, t;ω0(·)) of the sub-problems A (2.105), B (2.106)
and C (2.107), for any choice of the initial condition m(v, 0) = ω0(v).
These solutions will be used for recovering, with the help of SSSM, the solution m(v, t) of the complete
problem (2.25).
In particular, let yi ≡ {mk,i}Nk=0 be the values of the solution of (2.25) evaluated at time ti = iτ ,

with i ∈ N and a time step τ > 0, along the volume grid v ≡ {ϕk}Nk=0, i.e. mk,i ≡ m(ϕk, ti), ∀i ∈ N,
∀k = 0, .., N .
The volume grid v is chosen such that 0 = ϕ0 < ϕ1 < .. < ϕN . For the sake of simplicity, the time
step τ > 0 is constant.
Then, we define the operator LX : [0,+∞)N+2 → [0,+∞)N+1 as the element-wise application of the
solution mX(·, τ ;ω0(·)) of a problem X = A,B,C to a vector yi:

LX(yi, τ) ≡ mX(v, τ ;ω0(v)), ω0(v) ≡ yi, (2.108)

where the function mX(·, τ ;ω0(·)) is computed for each element of the grid v, i.e. mX(v, τ ;ω0(v)) ≡
{mX(ϕk, τ ;ω0(v))}Nk=0 and ω0(v) ≡ {ω0(ϕk)}Nk=0 for a sub-problem X = A,B,C.
Given definition (2.108), the solution values yi of Models I-III can be updated according to the SSSM
scheme as:

yi+1/2 = LX(yi, τ/2), ỹi+1 = LY (yi+1/2, τ), yi+1 = LX(ỹi+1, τ/2), (2.109)

with (i) X = B, Y = C for Model I, (ii) X = A, Y = C, n0 = 0 for Model II and (iii) X = B, Y = C,
n0 = 0 for Model III.

2.3.5.2 Solution of Sub-Problem A

Here, we derive the analytical solution of the sub-problem A (2.105), for any choice of the initial
condition m(v, 0) = ω0(v). The Laplace transform m̂(λ, t) ≡

∫ +∞
0 e−λvm(v, t) dv of the solution

m(v, t) of (2.105) satisfies:

∂m̂(λ, t)

∂t
− g0λ

∂m̂(λ, t)

∂λ
= −µ0 m̂(λ, t) + n0 e

−v0λ, m̂(λ, 0) = ω̂0(λ), ∀λ ∈ C, ∀t ∈ R+. (2.110)

Following the Method of Characteristics [73], we define y(t) ≡ m̂(λ, t)|λ=ϕ(t), where

ϕ′(s) = −g0 ϕ(s), ∀s ∈ [0, t], ϕ(t) = λ. (2.111)

It follows ϕ(s) = λ eg0(t−s), ∀s ∈ [0, t], and the chain rule [102] provides the derivative of y(s) with
respect to s:

y′(s) = −µ0 y(s) + n0 e
−λ v0 eg0(t−s)

, ∀s ∈ [0, t], y(0) = ω̂0(λeg0t). (2.112)

With the help of auxiliary variable z(s) ≡ y(s) eµ0s, it is possible to obtain the general solution y(s) of
(2.112) for all s ∈ [0, t]. The Laplace transform m̂(λ, t) = y(t) is computed by evaluating the derived
y(s) at the final time s = t:

m̂(λ, t) = ω̂0(λeg0t) e−µ0t +
n0

g0

[
E g0+µ0

g0

(v0λ) − E g0+µ0
g0

(
v0e

g0tλ
)
e−µ0t

]
, (2.113)

where Ea(z) corresponds to the Exponential Integral function [116], defined as

Ea(z) ≡
∫ +∞

1
e−zv v−a dv, ∀a, z ∈ C. (2.114)

We rewrite (2.113) as
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m̂(λ, t) =

∫ +∞

0
e−λv F (v, t) dv, (2.115)

where

F (v, t) ≡ ω0(ve−g0t) e−(g0+µ0) t + g−1
0 n0 v

µ0/g0

0 v−(g0+µ0)/g0 1[v0,v0 eg0t)(v), (2.116)

and 1X(x) = 1 if x ∈ X, zero otherwise. By definition of the Laplace transform, the solution m(v, t)
of (2.105) must be equal to the function F (v, t) (2.116) up to a set of zero measure:

m(v, t) = ω0(ve−g0t) e−(g0+µ0) t + g−1
0 n0 v

µ0/g0

0 v−(g0+µ0)/g0 1[v0,v0 eg0t)(v), (2.117)

where ω0(v) corresponds to any given initial condition of (2.105).

Operator LA. The formula (2.117) allows us to update the defined in Section 2.3.5.1 vector yi ∈
[0,+∞)N+1 according to the sub-problem A (2.105). As introduced before, we define the operator
LA : [0,+∞)N+2 → [0,+∞)N+1 as the element-wise application of m(·, τ) (2.117), τ > 0, to the vector
yi:

LA(yi, τ) ≡ m(v, τ), ω0(v) ≡ yi, (2.118)

where the functions m(·, τ) and ω0(·) in (2.117) are computed for each element of the grid v, i.e.
m(v, τ) ≡ {m(ϕk, τ)}Nk=0 and ω0(v) ≡ {ω0(ϕk)}Nk=0.
Formula (2.117) implies that the initial condition must be evaluated on the shifted grid

vs1 ≡ v e−g0τ ≡ {ϕk e−g0τ}Nk=0. (2.119)

A linear interpolation of the initial data yi allows us to obtain the required values of the initial
condition. Since 0 < e−g0τ < 1, one gets 0 = ϕ0 ≤ ϕk e

−g0τ < ϕN , ∀k = 0, .., N . As a result, the
proposed interpolation is computed without any data extrapolation.

2.3.5.3 Solution of Sub-Problem B

In this section we derive the analytical solution m(v, t) of the sub-problem B (2.106), for any choice of
the initial condition m(v, 0) = ω0(v). The Laplace transform m̂(λ, t) ≡

∫ +∞
0 e−λvm(v, t) dv satisfies:

∂m̂(λ, t)

∂t
= − (g0 λ+ µ0) m̂(λ, t) + n0 e

−v0λ, m̂(λ, 0) = ω̂0(λ), ∀λ ∈ C, ∀t ∈ R+. (2.120)

The equilibrium solution of (2.120) is given by m̄(λ):

m̄(λ) =
n0 e

−v0λ

g0 λ+ µ0
. (2.121)

The inverse function of m̄(λ) provides the equilibrium solution m∗(v) of (2.106):

m∗(v) = g−1
0 n0 e

−µ0
g0

(v−v0)
1[v0,+∞)(v), (2.122)

where 1X(x) = 1 if x ∈ X, zero otherwise. Equation (2.120) corresponds to a family of linear
Ordinary Differential Equations [117], parametrized on λ ∈ C. With the help of the auxiliary variable
z(t) ≡ m̂(λ, t) e(g0λ+µ0)t, we obtain the general solution m̂(λ, t):

m̂(λ, t) = (ω̂0(λ)− m̄(λ)) e−(g0λ+µ0)t + m̄(λ), (2.123)

with m̄(λ) (2.121). The inverse function of m̂(λ, t) (2.123) provides the general solution m(v, t) of B
(2.106):

m(v, t) = e−µ0t ω0(v − g0t)1[g0t,+∞)(v) + g−1
0 n0 e

−µ0
g0

(v−v0)
1[v0,v0+g0t)(v), (2.124)
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where 1X(x) = 1 if x ∈ X, zero otherwise. The solution (2.124) stands for any choice of the initial
condition m(v, 0) = ω0(v) of (2.106).

Operator LB. The formula (2.124) allows us to update the solution vector yi ∈ [0,+∞)N+1 according
to the sub-problem B (2.106). As before, we define the operator LB : [0,+∞)N+2 → [0,+∞)N+1 as
the element-wise application of m(·, τ) (2.124), τ > 0, to the vector yi:

LB(yi, τ) ≡ m(v, τ), ω0(v) ≡ yi, (2.125)

where the functions m(·, τ) and ω0(·) in (2.124) are computed for each element of the grid v, i.e.
m(v, τ) ≡ {m(ϕk, τ)}Nk=0 and ω0(v) ≡ {ω0(ϕk)}Nk=0.
Formula (2.124) implies that the initial condition must be evaluated on the shifted grid

vs2 ≡ (v− g0τ)1[g0τ,+∞)(v) ≡ {(ϕk − g0τ)1[g0τ,+∞)(ϕk)}Nk=0. (2.126)

A linear interpolation of the initial data yi allows us to get the required values of the initial condition.
Since g0, τ > 0, one gets 0 = ϕ0 ≤ (ϕk − g0τ)1[g0τ,+∞)(ϕk) < ϕN , ∀k = 0, .., N . As a result, the
proposed interpolation is computed without any data extrapolation.

2.3.5.4 Solution of Sub-Problem C

The Laplace transform m̂(λ, t) ≡
∫ +∞

0 e−λvm(v, t) dv of the solution m(v, t) of C (2.107) satisfies the
following differential equation:

∂m̂(λ, t)

∂t
= − a0M(t) m̂(λ, t) +

a0

2
m̂2(λ, t), m̂(λ, 0) = ω̂0(λ), ∀λ ∈ C, ∀t ∈ R+, (2.127)

where M(t) ≡ m̂(0, t). The moment M(t) can be computed as the solution of the Bernoulli differential
equation [109]:

M ′(t) = −a0

2
M2(t), ∀t ∈ R+, M(0) = M0 ≥ 0. (2.128)

With the help of the auxiliary variable z(t) ≡ 1/M(t), it is possible to obtain the general solution of
(2.128):

M(t) =
2M0

2 + a0M0 t
, ∀t ∈ R+. (2.129)

Equation (2.127) corresponds to a family of Bernoulli differential equations [109], parametrized on

λ ∈ C. The change of variable z(t) ≡ e−a0

∫ t
0M(s) ds/m̂(λ, t) allows solving (2.127):

m̂(λ, t) =
4 ω̂0(λ)

(2 + a0M0t) [2 + a0(M0 − ω̂0(λ))t]
, (2.130)

where ω̂0(λ) is the Laplace transform of the initial condition m(v, 0) = ω0(v) of (2.107). Without
specifying the initial condition ω0(v), it is not possible to invert (2.130) in a closed form.
Assuming the dynamics during only a small time interval, (2.130) leads to the following second-order
accurate approximation:

m̂(λ, t) = (1− a0M0t) ω̂0(λ) +
a0

2
t ω̂2

0(λ) +O(t2). (2.131)

The inverse function of (2.131) gives an approximation of the solution of C (2.107), for any choice of
the initial condition ω0(v), with M0 ≡

∫ +∞
0 ω0(v) dv:

m(v, t) = (1− a0M0t)ω0(v) +
a0

2
t

∫ v

0
ω0(v − u)ω0(u) du+O(t2). (2.132)

Re-arranging (2.132) as
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m(v, t)− ω0(v)

t
= −a0M0 ω0(v) +

a0

2

∫ v

0
ω0(v − u)ω0(u) du+O(t), (2.133)

we notice that (2.132) arises from the first-order accurate discretization in time of (2.107).

Operator LC . The formula (2.132) updates the solution vector yi ∈ [0,+∞)N+1 according to the sub-
problem C (2.107), within a small interval of time. Thus, we define the operator LC : [0,+∞)N+2 →
[0,+∞)N+1 as the element-wise application of m(·, τ) (2.132), τ > 0, to the vector yi:

LC(yi, τ) ≡ m(v, τ), ω0(v) ≡ yi, (2.134)

where the functions m(·, τ) and ω0(·) in (2.132) are computed for each element of the grid v, i.e.
m(v, τ) ≡ {m(ϕk, τ)}Nk=0 and ω0(v) ≡ {ω0(ϕk)}Nk=0.
The convolution term is approximated by using the Trapezoidal quadrature rule [100], evaluating the
initial condition at ϕk − ϕj , ∀k = 0, .., N , ∀j = 0, .., k. The required values are computed by linear
interpolation of yi, without any data extrapolation, since 0 = ϕ0 ≤ ϕk − ϕj ≤ ϕN , ∀k = 0, .., N ,
∀j = 0, .., k. The proposed interpolation can be avoided by choosing the uniform volume grid v ≡
{ϕk = kh}Nk=0, h > 0, as shown by (2.73). However, v should be kept without any particular structure,
for the reason specified below.

2.3.5.5 Volume Grid for Nucleation

If the nucleation process is considered, i.e. n0 > 0, the following remark should be made for the choice
of the time step size τ and the volume grid v. Given τ > 0, the formulas (2.117) and (2.124), when
incorporated in the scheme (2.109), imply that the grid v must contain some points in the intervals

I ≡ [v0, v0 e
g0τ/2) and J ≡ [v0, v0 + g0τ/2) (2.135)

respectively. Otherwise, the corresponding terms in (2.117) and (2.124) are discarded.
Taking τ → 0, the intervals (2.135) can be arbitrarily small, not holding any point of the grid v, if
the latter is not properly chosen. On the other hand, it is possible to fill in advance the intervals
(2.135) with a reasonable amount of grid points. The resulting grid step size would be particularly
small, especially if τ → 0. As a consequence, the uniform grid is not affordable and an uneven choice
of points should be more efficient, providing the reason to keep v without any particular structure.
As already stated, the drawback consists in the interpolation required for computing the convolution
term.
Given n0 > 0 and the volume domain [0, vmax], with I, J ⊂ [0, vmax], we propose the following uneven
grid

v̂ ≡ v1 ∪ v2 ∪ v3. (2.136)

The grid v1 spreads over the interval [0, v0), placing N1 > 0 uniformly distributed points with step
size h1 > 0. The grid v2 covers the intervals (2.135) with N2 > 0 points equally spaced by h2 > 0.
The grid v3 ranges in the remaining part of the volume domain [0, vmax], with N3 > 0 uniformly
distributed points with step size h3 > 0. The step sizes h1 and h3 can be chosen bigger than h2. The
proposed grid (2.136) covers the volume intervals (2.135) for any τ > 0, without being affected by the
small step size h2.

2.3.5.6 Benefits & Drawbacks

We have presented the Laplace Induced Splitting Method (LISM) to integrate the PBE (2.25) in the
cases of Models I-III. The main advantages of LISM are discussed here:

1. The presented LISM extends the LTT solutions of Models I-III, derived in Section 2.3.4. In
particular, LISM simultaneously accounts for the processes of aggregation, growth, nucleation
and phase transition. Also, it allows us to relax additional hypothesis, such as (2.82), and to
consider any possible initial condition.
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2. The novel LISM analytically accounts for impulsive nucleation rates, such as n(v, t) ∝ δ(v− v0)
with v0 > 0 and δ(x) the Dirac delta.

3. The analytical expressions (2.117) and (2.124) allow us to design the grid (2.136), carrying
information on the solution of the PBE (2.25).

4. In the tested cases, LISM provides accurate and efficient solutions of the PBE (2.25). See
Section 2.4 for more details.

5. The splitting of (2.25) into simpler sub-problems suggests a way for improving the accuracy
of solutions of the PBE (2.25) in the case of the realistic shapes of the rate functions. See
Section 2.6 for further discussion.

The principal limitations of the presented LISM method are summarised below:

1. The solutions of the sub-problems must be obtained for any choice of the initial condition ω0(v).
In fact, this is the requirement for using such formulas as the updating schemes of generic values
of the solution of the complete problem.

2. The sub-problem C (2.107) can be solved analytically only for some particular shapes of ω0(v),
such as, e.g., (2.93). Otherwise, the numerical schemes should be applied, as discussed in
Section 2.3.5.4.

3. The evaluation of (2.117), (2.124) and (2.132) requires the interpolation of the initial data, which
potentially may affect the quality of the integration. An introduction of the control over such
an error is advised.

Section 2.4 presents numerical experiments for testing LISM in comparison with the other approaches
proposed in this Thesis.
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2.4 Numerical Experiments

In this section we test the developed and presented in Section 2.3 methodologies for solving the PBE
system (2.25). As motivated at the beginning of the chapter, special attention is paid to the efficiency
of the methods in providing accurate results.
We use the solutions obtained with the Laplace Transform Technique (LTT) of Section 2.3.4 as base-
lines for the validation and comparative analysis of (a) the Laplace Induced Splitting Method (LISM)
of Section 2.3.5, (b) the Generalised Method Of Characteristics (GMOC) of Section 2.3.3 and (c) the
Stochastic Simulation Algorithm (SSA) of Section 2.3.2.
The accuracy of the solutions m(v, t) provided by LISM, GMOC and SSA is quantified by the error
function

ε(v, t) ≡ |mLTT (v, t)−m(v, t)|[∫ vmax

0 mLTT (v, t)2 dv
]1/2 , ∀v ∈ [0, vmax], ∀t ∈ [0, Tmax], (2.137)

where mLTT (v, t) is defined as the LTT solution, [0, vmax] and [0, Tmax] are the integration domains of
volume and time respectively.
The computational efficiency of the tested methodologies is measured by recording the computational
times required to fulfil the following criterion:

max
v∈[0,vmax]
t∈[0,Tmax]

ε(v, t) ∝ εmax, (2.138)

with εmax > 0 a tunable order of magnitude and ε(v, t) defined as (2.137).
In order to judge the performance of the different approaches for realistic settings, we employ the
rate functions, modelling the Dynamic Development of latex Particles Morphology, discussed in Ap-
pendix 2.A. In particular, the parameters of Models I-III assume the orders of magnitude achieved by
the dimensionless counterparts of the DDPM rates, summarised in Table 2.C.1 of Appendix 2.C.
Section 2.4.1 presents the proposed tests for the Model I introduced in Section 2.3.4.1. Section 2.4.2
analyses the performance of the new methods when applied to Model II from Section 2.3.4.2, whereas
Section 2.4.3 uses the Model III of Section 2.3.4.3 as a benchmark for the evaluation of the derived
numerical approaches.

2.4.1 Model I: Constant Aggregation, Growth, Nucleation and Phase Transition

This section investigates the accuracy (2.137) and the computational effort to meet (2.138) of the
designed methodologies in the case of the Model I discussed in Section 2.3.4.1. The definition of
Model I is completed by a choice of the rates parameters and the initial condition.
As discussed before, the parameters of Model I assume the orders of magnitude of the dimensionless
rate functions summarised in Table 2.C.1 of Appendix 2.C and are chosen to be:

a(v, u, t) = a0 = 102, g(v, t) = g0 = 103, µ(v, t) = µ0 = 10−2,

n(v, t) = n0 δ(v − v0), n0 = 10−1, v0 = 0.027, (2.139)

with δ(x) the Dirac delta.
The initial condition ω0(v) in (2.25) is set to

ω0(v) = α vβ e−γv, ∀v ∈ R+, (2.140)

with β = 10−1, γ = 10−2 and α guaranteeing (2.82). As shown in Figure 2.3, the initial condition
ω0(v) (2.140) assumes the same orders of magnitude as of the equilibrium solution m∗(v) of Model I
for the rates (2.139). The equilibrium solution m∗(v) is obtained using LTT, followed by inverting the
Laplace transform m̄(λ) (2.84) with the MATLAB function nilt, revised in Section 2.3.1.4.
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Figure 2.3: Initial condition ω0(v) (2.140) (dashed) and equilibrium solution m∗(v) (solid) of Model
I for the rates (2.139). The equilibrium solution m∗(v) is obtained using LTT, followed by inverting
the Laplace transform m̄(λ) (2.84) with the MATLAB function nilt, revised in Section 2.3.1.4. The
numerical routine requires 2×10−3 sec of computation of a 2.70GHz processor, running a 64-bit Linux
operating system.

The defined in such a way model was then solved using three different numerical methods LISM,
GMOC and SSA applied to the PBE system (2.25). We monitor the accuracy (2.137) and the com-
putational effort required to fulfil (2.138) for

vmax = 2, Tmax = 10−3, εmax = 10−1. (2.141)

The integration of (2.25) by GMOC requires the point-wise evaluation (2.61) of the rate n(v, t) (2.139).
The numerical evaluation of the Dirac delta δ(v−v0) in (2.139) is performed by assuming that the nu-
cleation process spreads over a specified size range, as suggested in [55] and discussed in Section 2.3.1.2.
In particular, we propose the following approximation:

δ(v − v0) ≈ N (v; v0, σ0), ∀v ∈ R+, v0 � σ0 > 0, (2.142)

where N (v;µ, σ) denotes the probability density function of a Gaussian with mean µ and standard
deviation σ. In order to make the Gaussian very narrow, the standard deviation σ0 should be chosen
much smaller than v0.
Table 2.2 summarises the settings for the integration methods meeting the criterion (2.138) with the
choices of (2.141) and provides the required computational time in each case. The computed solutions
m(v, t) and the corresponding errors ε(v, t) (2.137) are shown in Figure 2.4.
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Method Technical
Details

Time Step τ Volume Grid &
Grid Step h

Software &
Hardware

Error ε CPU
Time

LTT Inversion of
m̂(λ, t) (2.85)
with nilt [99]

- - MATLAB
BCAM code
64-bit Linux OS
2.70GHz proc.

- 6×10−3 sec

LISM Updating
Scheme (2.109)
for Model I

Constant τ =
10−5

Uneven grid v̂ (2.136)
h1 ≈ 5.5× 10−4, N1 = 50
h2 ≈ 5× 10−5, N2 = 100
h3 ≈ 5× 10−4, N3 = 4000

C++
BCAM code
64-bit Linux OS
2.40GHz proc.

Fig. 2.4a 103 sec

GMOC Approximation
(2.142) with
v0 = 0.027 and
σ0 = 0.001

Constant τ =
2.5× 10−8

Grid v = {ϕk = kh}Nk=0

h = 2.5× 10−4, N = 8000
C++
BCAM code
64-bit Linux OS
2.40GHz proc.

Fig. 2.4b 7.5×103 sec

SSA Scaling (2.60)
with κ = 107

Sample Size
S = 103

Sampled τ ∈
(0, 4)× 10−8

Grid v = {ϕk = kh}Nk=0

h = 8× 10−3, N = 250
C++
BCAM code
64-bit Linux OS
2.40GHz proc.

Fig. 2.4c 2.1×105 sec

Table 2.2: Settings and computational times for the integration methods meeting (2.138) at vmax = 2,
Tmax = 10−3 and εmax = 10−1, in the case of Model I with rates (2.139) and initial condition (2.140).
All BCAM codes were developed within this Thesis.
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(b) GMOC (dashed) vs. LTT (solid).
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(c) SSA (dashed) vs. LTT (solid).

Figure 2.4: Comparison of (a) LISM, (b) GMOC and (c) SSA with LTT in computation of the solution
m(v, t) of (2.25), with rates (2.139) and initial condition (2.140). The error ε(v, t) is defined as in
(2.137). Table 2.2 reports simulation settings and computational times.
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As shown in Table 2.2 and Figure 2.4, SSA turned to be computationally demanding and not able to
provide the level of accuracy achieved by LISM and GMOC. In particular, SSA fails in detecting the
peaks of the solution m(v, t) and returns a bigger error ε(v, t) than LISM and GMOC commit.
GMOC provides competitive speed and accuracy of simulation. However, small values of h and τ
(Table 2.2) are required to deal with the steep distribution N (v; v0, σ0), plugged in the derivative of
m(v, t) through the approximation (2.142), with v0 = 0.027 and σ0 = 0.001. This negatively affects
the overall simulation time.
LISM allows a bigger time step τ and a volume grid with a smaller number of points than required by
GMOC. In addition, LISM eliminates the numerical oscillations affecting GMOC, as shown in Figures
2.4a and 2.4b. In conclusion, LISM is more accurate than GMOC, and ≈ 7.5 times faster in fulfilling
the required accuracy.
The solutions shown in Figure 2.4 explore the small scales of volume and time, if compared to the
equilibrium solution m∗(v) in Figure 2.3. Thus, we now want to investigate the bigger volume and
time values, i.e. v ∈ [0, vmax], t ∈ [0, Tmax], with vmax = 103 and Tmax = 0.4.
Both, SSA and GMOC, failed to provide the solutions of the required accuracy within the feasible
computational time. The problem is that the desired accuracy and the simulated interval of time
require from both methods to perform ≈ 2× 107 time steps. In addition, GMOC needs a volume grid
with 4 × 106 points equally spaced by h = 2.5 × 10−4. Such grids are too demanding and lead to
computational times exceeding 106 seconds for both GMOC and SSA.
On the contrary, LISM allows us to explore the equilibrium solution scales with a feasible effort, as
demonstrated in Table 2.3 and Figure 2.5.

Method Technical
Details

Time Step τ Volume Grid &
Grid Step h

Software &
Hardware

Error ε CPU
Time

LTT Inversion of
m̂(λ, t) (2.85)
with nilt [99]

- - MATLAB
BCAM code
64-bit Linux OS
2.70GHz proc.

- 7×10−2 sec

LISM Updating
Scheme (2.109)
for Model I

Constant τ =
8× 10−4

Uneven grid v̂ (2.136)
h1 ≈ 2.7× 10−4, N1 = 100
h2 ≈ 8× 10−4, N2 = 500
h3 ≈ 5× 10−1, N3 = 2000

C++
BCAM code
64-bit Linux OS
2.40GHz proc.

Fig. 2.5 1.3×103 sec

Table 2.3: Settings and computational times for the integration methods meeting (2.138) at vmax =
103, Tmax = 0.4 and εmax = 10−2, in the case of Model I with rates (2.139) and initial condition
(2.140). All BCAM codes were developed within this Thesis.
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Figure 2.5: Comparison of LISM and LTT in computation of the solution m(v, t) of (2.25), with rates
(2.139), initial data (2.140) and ε(v, t) (2.137). Table 2.3 reports settings and computational times.
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2.4.2 Model II: Constant Aggregation, Linear Growth and Constant Phase Tran-
sition

In this section, we test the accuracy (2.137) and the computational effort to fulfil (2.138) of the
proposed approaches in the case of the Model II discussed in Section 2.3.4.2. The definition of Model
II is completed by a choice of the rates parameters and initial condition.
Aimed to evaluate the performance of the integration methods for realistic settings, the parameters of
Models II assume the orders of magnitude achieved by the dimensionless counterparts of the DDPM
rates, summarised in Table 2.C.1 of Appendix 2.C:

a(v, u, t) = a0 = 102, g(v, t) = g0 v, g0 = 102, n(v, t) = 0, µ(v, t) = µ0 = 10−2. (2.143)

As proved in Section 2.3.4.2, the initial condition

ω0(v) = α e−βv sinh(γv), α = 105, β = 5, γ = 1, (2.144)

allows for the analytical solution (2.94) of the PBE (2.25) with rates (2.143). In order to mimic the
nucleation process neglected by Model II, we select the values of α, β and γ in (2.144) to make the
initial condition a narrow distribution on small values of volume v, as shown in Figure 2.6 for t = 0.
Then, we employ the designed methodologies to integrate the PBE system (2.25) for the defined in
such a way Model II.
We monitor the accuracy (2.137) and the computational effort required to fulfil (2.138) for

vmax = 102, Tmax = 10−5, εmax = 10−2. (2.145)

The proposed implementations of GMOC and SSA require the equally spaced grid v = {ϕk = kh}Nk=0

for the volume interval [0, 100]. On the contrary, LISM allows for a flexible choice of the integration
grid. In particular, it can be unevenly spaced for better dealing with the narrow initial condition
(2.144) on the volume domain [0, 100]. With such purpose, we define the volume grid

v̂ ≡ v1 ∪ v2 ∪ v3. (2.146)

The grid v1 spreads over [0, 1), placing N1 > 0 uniformly distributed points with step size h1 > 0.
The grid v2 covers the interval [1, 3) with N2 > 0 points equally spaced by h2 > 0. The grid v3 ranges
in [3, 100] with N3 > 0 uniformly distributed points with step size h3 > 0.
Table 2.4 summarises the settings for the integration methods meeting the criterion (2.138) for (2.145)
and provides the required computational time for each method. The computed solutions m(v, t) and
the corresponding errors ε(v, t) (2.137) are shown in Figure 2.6.
As for Model I, SSA is computationally expensive. In addition, it is not able to provide the accuracy
of LISM and GMOC, returning bigger values of the error ε(v, t).
The GMOC method ensures accurate results with a competitive speed of simulation. However, the
small time step τ and the demanding integration grid v (Table 2.4) are required to deal with the steep
initial condition (2.144).
The LISM approach allows a bigger time step τ and a coarser volume grid than GMOC requires, as
reported in Table 2.4. For this reason, LISM is ≈ 10 times faster than GMOC in fulfilling the criterion
(2.138) for (2.145).
By inspecting Figures 2.6a and 2.6b, we remark that the error ε(v, t) is growing faster for LISM than
for GMOC, as the time is evolving. This effect is explained by the spreading of the solution m(v, t) to
the volume values v ∈ [1, 100], for which LISM employs coarse grids, i.e. h3 > h2 > h1 in Table 2.4.
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Method Technical
Details

Time Step τ Volume Grid &
Grid Step h

Software &
Hardware

Error ε CPU
Time

LTT Analytical So-
lution (2.94)

- - - - -

LISM Updating
Scheme (2.109)
for Model II

Constant τ =
2× 10−8

Uneven grid v̂ (2.146)
h1 ≈ 2.5× 10−2, N1 = 40
h2 ≈ 5× 10−2, N2 = 40
h3 ≈ 1.6× 100, N3 = 60

C++
BCAM code
64-bit Linux OS
2.40GHz proc.

Fig. 2.6a 6×10−1 sec

GMOC Constant τ =
10−8

Grid v = {ϕk = kh}Nk=0

h = 10−1, N = 1000
C++
BCAM code
64-bit Linux OS
2.40GHz proc.

Fig. 2.6b 5.3×100 sec

SSA Scaling (2.60)
with κ = 1
Sample Size
S = 102

Sampled τ ∈
(0, 1)× 10−7

Grid v = {ϕk = kh}Nk=0

h = 10−1, N = 1000
C++
BCAM code
64-bit Linux OS
2.40GHz proc.

Fig. 2.6c 9.6×103 sec

Table 2.4: Settings and computational times for the integration methods meeting (2.138) at vmax =
102, Tmax = 10−5 and εmax = 10−2, in the case of Model II with rates (2.143) and initial condition
(2.144). All BCAM codes were developed within this Thesis.
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Figure 2.6: Comparison of (a) LISM, (b) GMOC and (c) SSA with LTT in computation of the solution
m(v, t) of (2.25), with rates (2.143) and initial condition (2.144). The error ε(v, t) is defined as in
(2.137). Table 2.4 reports simulation settings and computational times.
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2.4.3 Model III: Constant Aggregation, Growth and Phase Transition

This section investigates the accuracy (2.137) and the computational effort to meet (2.138) of the
designed methodologies, in the case of the Model III (Section 2.3.4.3) with initial condition

ω0(v) = α e−βv sinh(γv), α = β = 1, γ = 1/4. (2.147)

The rate parameters assume the orders of magnitude provided in Table 2.C.1 of Appendix 2.C:

a(v, u, t) = a0 = 102, g(v, t) = g0 = 103, n(v, t) = 0, µ(v, t) = µ0 = 10−2. (2.148)

We test the accuracy (2.137) of the integration methods and their efficiency in satisfying (2.138) for

vmax = 20, Tmax = 10−2, εmax = 10−2. (2.149)

For this model, LTT requires the evaluation of the Hypergeometric function 2F1 in (2.101). A fast
and reliable computation of 2F1 is a challenging task [118]. We first investigated the applicability of
the built-in MATLAB routine hypergeom [119], but we found that it returned undefined values (NaN)
when employed for evaluating 2F1 in (2.101), with parameters (2.147)-(2.149). Thus, we incorporated
in our code the function singlefraction2f1 [118], specifically designed for dealing with such a range of
parameters values as in (2.147)-(2.149).
Table 2.5 summarises the settings for the integration methods meeting (2.138) at (2.149) and provides
the required computational times. The computed solutions m(v, t) and corresponding errors ε(v, t)
(2.137) are shown in Figure 2.7.
The numerical experiments with SSA demonstrated that, in order to achieve the required accuracy
εmax = 10−2, the computations significantly longer than 104 seconds may be needed. It was a serious
argument for stopping the experiments and concluding that the SSA method in its current formulation
and implementation is not an appropriate choice for solving (2.25) in the case of Model III.
GMOC was able to satisfy the condition (2.138) for (2.149). However, we remark the appearance of
numerical oscillations for v ∈ [0, 10] and m ≈ 0 in Figure 2.7b. Such fluctuations are better visible
when inspecting the error ε(v, t) committed by GMOC for v ∈ [0, 10] and t = 10−2 (in red). Such
error ε(v, t) is several orders of magnitude bigger than the generated by LISM in these ranges of v
and t, i.e. 10−3 against 10−15. The small values of τ and h chosen for GMOC are motivated by the
attempt to reduce the oscillations. Despite such numerical issues, the computational time required by
GMOC is comparatively small.
The LISM approach allows us to eliminate the numerical fluctuations affecting GMOC, as shown in
Figure 2.7. Moreover, LISM employs coarser grids of integration in volume and time than GMOC
does. As a result, LISM enhances the simulation speed by a factor of two orders of magnitude, if
compared to GMOC under conditions (2.138) and (2.149). LTT is comparatively expensive because
of the demanding evaluation of the Hypergeometric function 2F1.

To conclude, LTT ensures a high level of precision and speed, but its applicability is limited by the
required assumptions, such as the simplified choices of initial condition and rate functions. The LTT
approach may result in complicated expressions of Laplace transformed solutions, whose numerical
inversion can slow down the speed of the methodology.
The numerical experiments show that SSA is a robust technique, potentially able to estimate any
quantity of interest. However, its level of accuracy is lower than the achievable by LISM and GMOC.
In addition, the computations are demanding and the simulation speed may not satisfy practitioners,
facing real life applications.
GMOC provides competitive speed and accuracy of simulation. However, it may be affected by
numerical oscillations, in the presence of moving fronts of the solution m(v, t). Then, the GMOC
efficiency is limited by the simultaneous presence of small nucleation sizes and large volume domains,
demanding fine grid steps for the whole intervals of simulation.
LISM can eliminate the numerical oscillations affecting GMOC, through analytical solutions derived
for the transport terms. In addition, LISM requires a smaller computational effort than GMOC does,
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since bigger time steps and coarser volume grids are allowed.
In order to control the committed error, one should pay attention to the placement of volume grid
points for the LISM approach. The analytical solutions derived for LISM allow us to design volume
grids carrying information on the unknown m(v, t).
Finally, LISM can efficiently deal with small nucleation sizes and large volume domains, through
analytical solutions derived for impulsive rates of nucleation. LISM can remove additional hypothesis,
applying to any initial condition with realistic shapes of the rate functions.

Method Technical
Details

Time Step τ Volume Grid &
Grid Step h

Software &
Hardware

Error ε CPU
Time

LTT Inversion of
m̂(λ, t) (2.100)
with nilt [99]
Evaluate 2F1

by singlefrac-
tion2f1 [118]

- - MATLAB
BCAM code
64-bit Linux OS
2.70GHz proc.

- 2.3×100 sec

LISM Updating
Scheme (2.109)
for Model III

Constant τ =
2× 10−4

Grid v = {ϕk = kh}Nk=0

h = 10−1, N = 200
C++
BCAM code
64-bit Linux OS
2.70GHz proc.

Fig. 2.7a 3×10−2 sec

GMOC Constant τ =
10−5

Grid v = {ϕk = kh}Nk=0

h = 2× 10−2, N = 1000
C++
BCAM code
64-bit Linux OS
2.70GHz proc.

Fig. 2.7b 5.2×100 sec

SSA Scaling (2.60)
with κ = 104

Sample Size
S = 1

Sampled τ ∈
(0, 4)× 10−7

Grid v = {ϕk = kh}Nk=0

h = 8× 10−2, N = 250
C++
BCAM code
64-bit Linux OS
2.70GHz proc.

maxv,t
ε(v, t) ∝
10−1 >
εmax

9.8×101 sec

Table 2.5: Settings and computational times for the integration methods meeting (2.138) at vmax = 20,
Tmax = 10−2 and εmax = 10−2, in the case of Model III with rates (2.148) and initial condition (2.147).
All BCAM codes were developed within this Thesis.
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Figure 2.7: Comparison of (a) LISM and (b) GMOC with LTT in computation of the solution m(v, t) of
(2.25), with rates (2.148), initial condition (2.147) and error ε(v, t) (2.137). Table 2.5 shows simulation
settings and computational times.
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2.5 Conclusions & Discussion

The objective of this chapter is to develop an accurate and efficient methodology for modelling the
Dynamic Development of Particles Morphology (DDPM), introduced in Section 2.1.2. The first task
consists in deriving a Population Balance Equations (PBE) based model for the distribution of the
expected size of the polymer clusters, composing the particles morphology. Our second purpose is to
develop an accurate and efficient methodology for the solution of the proposed model. The speed of
the predictive simulations technique should be high enough for enabling on-the-fly recommendations
for technological conditions in the synthesis of new multi-phase morphologies.
The introduced in Section 2.2.1 PBE model for the considered distributions accounts for the mecha-
nisms driving the DDPM reaction: (i) aggregation of particles, (ii) volumetric growth, (iii) nucleation
of particles and (iv) transition of phase. Under the assumptions of [45] summarised in Section 2.1.2,
we derive in Appendix 2.A the chemical rates of the processes involved in the Dynamic Development
of latex Particles Morphology. Aimed to search for the most efficient approach for solving the derived
PBE, we also introduced the Models I-III of Section 2.2.1, which use less advanced chemical rates, but
can be viewed as coarse approximations of the DDPM process.
Since the rates derived in Appendix 2.A lead to computationally intractable quantities, we propose in
Section 2.2.2 a novel and automatic procedure for reducing the PBE model to dimensionless variables.
In particular, Algorithm 2.1 summarises the steps needed for finding optimal scaling factors leading to
a dimensionless PBE with computationally tractable parameters. The proposed optimisation scheme
is not computationally demanding, provided the use of an efficient built-in optimisation routine. More-
over, it is performed once and does not interfere with the solver of a PBE. The validation of the scaling
procedure is carried out using the Dynamic Development of latex Particles Morphology model, and
results in decreasing a ratio between maximal and minimal parameters values from 1057 (original) to
105 (dimensionless).
In Section 2.2.3, we provide the analysis of the dimensionless PBE (2.25) describing the DDPM pro-
cess. We show that the solution m(v, t) of (2.25) must be non-negative. We also characterise the
time evolution of the zero- and first-order moments of the distribution m(v, t). Then, the asymptotic
behaviour of m(v, t) is discussed for v → +∞ and fixed time t ∈ R+.
Section 2.3 is devoted to the design of an accurate and efficient methodology for integrating the dimen-
sionless PBE model describing the DDPM reaction. We develop three approaches belonging to the
classes of methods revised in Section 2.3.1: the Stochastic Simulation Algorithm (SSA), the Gener-
alised Method of Characteristics (GMOC) and the Laplace Transform Technique (LTT). In addition,
we propose the Laplace Induced Splitting Method (LISM) which does not fit into any described class
and is based on the idea which, to our knowledge, has never been explored in numerical methods for
PBE. More specifically, we combine a splitting integration scheme with Laplace induced analytical
solutions derived for simplified PBEs, composing the PBE for DDPM.
In order to judge the performance of the derived approaches for realistic settings, we employ the rate
functions, modelling the morphology of latex particles, discussed in Appendix 2.A. In the tests of Sec-
tion 2.4, the parameters of Models I-III assume the orders of magnitude achieved by the dimensionless
counterparts of the DDPM rates, summarised in Table 2.C.1 of Appendix 2.C.
Although LTT provides high levels of precision and speed, its applicability is limited by the required
assumptions and it should not be able to deal with more complicated models than the discussed in
Section 2.3.4. However, it played an important role in the validation and comparison procedure ap-
plied to other three developed methods, i.e. SSA, GMOC and LISM. Moreover, it is a vital part of
the LISM approach.
The experiments of Section 2.4 show that SSA is a robust integration technique, but limitations and
computational inefficiencies make the approach not competitive for solving (2.25).
The numerical results of Section 2.4 allow us to illustrate the main features of GMOC and LISM, and
compare their performance. In particular, the following conclusions are made:

• LISM eliminates the numerical oscillations affecting GMOC, because the transport terms of PBE
and the moving fronts of the solution m(v, t) are analytically accounted for.

• LISM can simultaneously deal with small nucleation sizes and large volume domains, since it
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analytically accounts for impulsive rates of nucleation. On the contrary, GMOC is limited by
the requirements of uniform grid and small step sizes.

• In the performed experiments, LISM outperforms GMOC in computational speed by up to a
factor of two orders of magnitude, still guaranteeing the same accuracy.

In summary, we derived and analysed a computationally tractable PBE-based model for predicting
the DDPM reaction, and proposed and implemented four different numerical approaches for solving
such a model. The comparative analysis and numerical experiments confirm that the conceptually
new LISM is the most promising approach for solving accurately and efficiently the PBE for DDPM.
Due to its robustness and flexibility, it can potentially deal with realistic models, as will be discussed
in Section 2.6.
The methodologies and results derived in this Chapter have been presented in four invited talks
delivered in International Conferences, as reported in Contributions & Developed Software. The
proposed GMOC and the PBE model (2.25) have been included in the final report [107] at ESGI
2016.

2.6 Future Developments

We discuss some potentially promising directions to take in the future. Based on the shown per-
formance, we plan to use LISM for the integration of the complex DDPM model summarised in
Appendix 2.B. In particular, the solution of the PBE system (2.B.6) can be approximated by LISM,
using the rate functions with the same volume dependencies as in (2.B.7)-(2.B.10):

am,w(v, u, t) = am,w0

[
v−

1/3 + u−
1/3
]
, g(v, t) = g1 v + g2 v

2/3,

n(v, t) = n0 δ(v − v0), µm,w(v, t) = µm,w0 , (2.150)

where δ(x) is the Dirac delta. The values of the constants am,w0 , v0, µ
m,w
0 > 0 and g1,2, n0 ≥ 0 should

be updated at each time step to fit to the evolution of the rates shown in Appendix 2.C. However, the
given parameters are assumed to be constant during each time step and the corresponding solutions
can be used to update the computed distributions m(v, t) and w(v, t).
To take advantage of analytical solutions of simplified PBEs composing the system (2.B.6) with rates
(2.150), we can split (2.B.6) in three sub-problems:

∂m(v,t)
∂t = −∂( g(v,t)m(v,t) )

∂v + n(v, t) − µm(v, t)m(v, t), ∀v, t ∈ R+,
∂w(v,t)
∂t = −∂( g(v,t)w(v,t) )

∂v + µw(v, t)m(v, t), ∀v, t ∈ R+,

g(v, t) = g1 v, n(v, t) = n0 δ(v − v0), µm,w(v, t) = µm,w0 , ∀v, t ∈ R+,

(2.151)


∂m(v,t)
∂t = −∂( g(v,t)m(v,t) )

∂v , ∀v, t ∈ R+,
∂w(v,t)
∂t = −∂( g(v,t)w(v,t) )

∂v , ∀v, t ∈ R+,

g(v, t) = g2 v
2/3, ∀v, t ∈ R+,

(2.152)



∂m(v,t)
∂t = −m(v, t)

∫ +∞
0 am(v, u, t)m(u, t) du

+1
2

∫ v
0 am(v − u, u, t)m(v − u, t)m(u, t) du, ∀v, t ∈ R+,

∂w(v,t)
∂t = −w(v, t)

∫ +∞
0 aw(v, u, t)w(u, t) du

+1
2

∫ v
0 aw(v − u, u, t)w(v − u, t)w(u, t) du, ∀v, t ∈ R+,

am,w(v, u, t) = am,w0

[
v−1/3 + u−1/3

]
, ∀v, u, t ∈ R+.

(2.153)

The first equation in the sub-problem (2.151) can be analytically solved for any choice of the initial
condition m(v, 0) = ω0(v), as already proved in Section 2.3.5.2. The second equation in (2.151) and
the sub-problem (2.152) are analytically solvable by the Method of Characteristics, for any choice of
the initial conditions m(v, 0) = ω0(v) and w(v, 0) = ψ0(v). Finally, the sub-problem (2.153) can be
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solved using numerical schemes, as suggested in Section 2.3.5.4.
The solution of the complete PBE system (2.B.6), with rates (2.150), can be recovered by a splitting
integration scheme that combines the solutions of the sub-problems (2.151), (2.152) and (2.153), as
proposed in Section 2.3.5.1.
The solution of (2.B.6), obtained with GMOC of Section 2.3.3, can be used as a baseline for compar-
ison.

As detailed in Section 2.3.5, we have selected the Symmetrized Strang Splitting Method (SSSM) to
recover the solutions of Models I-III with the use of the Laplace induced solutions of the sub-problems
(2.105), (2.106) and (2.107). However, this is not the only possible choice and similar splitting schemes
[120, 121, 122] can be applied within LISM.
The selection of the most appropriate splitting methodology for LISM will be yet another area of
research in future work. Convergence, order of accuracy, non-negativity and conservativeness of the
different schemes should be investigated.
The realistic settings of Model I-III employed in Section 2.4 give us the appropriate benchmark to
judge the efficiency of different splitting approaches. The similar analysis can also be performed on
the discussed above splitting of the system (2.B.6).

Another possible direction for the future work is the further improvement of the scaling procedure
introduced in Section 2.2.2. As discussed in Section 2.2.2, the application of the scaling procedure to
the DDPM model summarised in Appendix 2.A resulted in computationally tractable parameters, with
the ratio rp between the maximum and minimum parameters values being ≈ 105. Such a difference
looks computationally tractable, especially if compared with the original equation, where rp ≈ 1057

L−2.
In order to reduce further the ratio rp, the following modification of the scaling procedure can be
explored. The cost function C(θ) (2.24), which takes into account all the characteristic constants and
physical parameters through the Euclidean distance, can be replaced by the more stringent maximum
norm

Cmax(θ) ≡ max
i=1,..,Nd

H(λi(θ)) | log10(λi(θ))−Θi|, (2.154)

with H(x) = 1 if x > 0, and zero otherwise. The functional (2.154) is less regular than (2.24), but the
Simulated Annealing Algorithm [51, 52] can successfully deal with non-smooth cost functions.

A more efficient approach for computation of the rate functions (2.B.7)-(2.B.10) than proposed in this
Thesis can be yet another task for the future research.
As discussed in Appendix 2.C, the computation of the rate functions (2.B.7)-(2.B.10) depends on the
knowledge of the solution of the PBE system (2.B.6).
One possible approach to decouple the considered quantities is proposed in Appendix 2.C and validated
in Figure 2.C.3. However, it is based on the crude approximation (2.C.6), without any justification
other than the decoupling itself. In addition, Figure 2.C.3 only stands for a small interval of time, as
outlined in Appendix 2.C.
Clearly, finer approximations providing independent calculation of the rate functions are required.
The Method of Moments revised in Section 2.3.1.3 suggests a promising line of research, assisting
in deriving closed-form evolution equations for the first-order and two-thirds-order moments of the
distributions m(v, t) and w(v, t).

Finally, the experimental values of the parameters in Table 2.A.1 are taken as known constants.
However, they are far from being exact and they can introduce significant errors in the model. Once all
the modelling issues are resolved and the suitable integration method is designed, the resulting solution
can be used as a core for optimisation schemes refining the values of the considered parameters. The
criterion of optimality can be given by the fitting of the computed solution to accessible experimental
data. The speed and precision of the integration method will be crucial for avoiding a heavy resolution
core and for making the optimisation routine a viable approach.
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2.A PBE Model for Latex Particles: Rate Functions Definition

We introduce the rate functions for modelling the Dynamic Development of latex Particles Morphology.
The rates ñ(ṽ, t̃), g̃(ṽ, t̃), µ̃(ṽ, t̃) and ã(ṽ, ũ, t̃) in the PBE system (2.14)-(2.17) are proposed taking into
account the assumptions of [45], summarised in Section 2.1.2. Table 2.A.1 provides the nomenclature
of all physical quantities involved in the computation of the rates, with the corresponding definitions,
and the experimental values of the parameters.

The nucleation rate ñ(ṽ, t̃) [L−1 s−1] accounts for the expected number of non-equilibrium clusters,
created per second by the phase separation of the Polymer 2 agglomerates from the matrix to the
clusters domain. The Polymer 2 agglomerates belong to the matrix phase until the critical volume vc
[L] is reached. Then, the agglomerates change their phase, becoming non-equilibrium clusters. The
rate ñ(ṽ, t̃) can be computed as:

ñ(ṽ, t̃) = ks v
−1
c Φ̃(t̃) δ̃(ṽ − vc) [L−1 s−1], (2.A.1)

where δ̃(x̃) [L−1] is the Dirac delta function.
The growth rate g̃(ṽ, t̃) [L s−1] corresponds to the expected unswollen volume increase per second
of clusters with unswollen volume ṽ at time t̃. The growth is driven by the diffusion of the Polymer
2 chains from the matrix to the clusters, assumed to be spherically shaped. In addition, the clusters
increase their unswollen volume ṽ because Monomer 2 polymerises with already clustered Polymer 2
chains. The expression

g̃(ṽ, t̃) =
3
√

36π kd Φ̃(t̃) (Ψ̃(t̃) + 1)
2/3 ṽ

2/3 +
kpRV̄pol2
V̄mon2

Ψ̃(t̃)

Ṽp(t̃)
ṽ [L s−1] (2.A.2)

provides the volumetric growth rate g̃(ṽ, t̃).
The migration rate µ̃(ṽ, t̃) [s−1] is the expected proportion of non-equilibrium clusters moving per
second to the equilibrium position. We have

µ̃(ṽ, t̃) = kµ [s−1], (2.A.3)

since µ̃(ṽ, t̃) is assumed to be volume and time independent.
The aggregation rate ã(ṽ, ũ, t̃) [s−1] corresponds to the expected frequency of coagulations between
clusters with unswollen volumes ṽ and ũ at time t̃. Assuming spherically shaped clusters, the rate ã
accounts for the clusters diffusivity in the matrix phase. The Stokes-Einstein equation [123] specifies
the diffusivity to be inversely proportional to the clusters actual radius and the matrix viscosity,
empirically estimated by the Van Krevelen-Hoftyzer method [124]. As a result, the rate ã(ṽ, ũ, t̃) is
given by:

ã(ṽ, ũ, t̃) = kaN
−1
p (Ψ̃(t̃) + 1)

14/3
[
ṽ−

1/3 + ũ−
1/3
]

[s−1]. (2.A.4)

The factor N−1
p in (2.A.4) accounts for the partitioning of the clusters into Np non-communicating

particles.
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Below we explain how the non-constant physical quantities, listed in Table 2.A.1, can be computed in
order to generate (2.A.1)-(2.A.4).
Expected Total Volume Ṽ mat

pol2 (t̃) [L] of Polymer 2 in Matrix. Time evolution driven by (i)
polymerization of Monomer 2, (ii) nucleation of non-equilibrium clusters and (iii) diffusion of Polymer
2 chains from matrix to clusters:


dṼmatpol2 (t̃)

dt̃
=

kpRV̄pol2
V̄mon2

Ψ̃(t̃)

Ṽp(t̃)

[
Ṽ mat
pol2 (t̃) + Vpol1

]
− ks Φ̃(t̃)− kd Φ̃(t̃)

[
Σ̃m(t̃) + Σ̃w(t̃)

]
[L s−1],

Ṽ mat
pol2 (0) = 0 [L],

(2.A.5)

where Ṽ mat
pol2 (0) = 0 [L] because there is no Polymer 2 at t̃ = 0 [s].

Expected Total Volume Ṽ cm
pol2(t̃) [L] of Polymer 2 in Non-Equilibrium Clusters. Time evo-

lution driven by (i) polymerization of Monomer 2, (ii) nucleation of non-equilibrium clusters, (iii)
diffusion of Polymer 2 chains from matrix to clusters and (iv) migration of non-equilibrium clusters
to equilibrium stage:


dṼ cmpol2(t̃)

dt̃
=

kpRV̄pol2
V̄mon2

Ψ̃(t̃)

Ṽp(t̃)
Ṽ cm
pol2(t̃) + ks Φ̃(t̃) + kd Φ̃(t̃) Σ̃m(t̃)− kµṼ cm

pol2(t̃) [L s−1],

Ṽ cm
pol2(0) = 0 [L],

(2.A.6)

where Ṽ cm
pol2(0) = 0 [L] because there is no Polymer 2 at t̃ = 0 [s].

Expected Total Volume Ṽ cw
pol2(t̃) [L] of Polymer 2 in Equilibrium Clusters. Time evolution

driven by (i) polymerization of Monomer 2, (ii) diffusion of Polymer 2 chains from matrix to clusters
and (iii) migration of non-equilibrium clusters to equilibrium stage:

dṼ cwpol2(t̃)

dt̃
=

kpRV̄pol2
V̄mon2

Ψ̃(t̃)

Ṽp(t̃)
Ṽ cw
pol2(t̃) + kd Φ̃(t̃) Σ̃w(t̃) + kµṼ

cm
pol2(t̃) [L s−1],

Ṽ cw
pol2(0) = 0 [L],

(2.A.7)

where Ṽ cw
pol2(0) = 0 [L] because there is no Polymer 2 at t̃ = 0 [s].

Expected Odds Monomers-Polymers Ψ̃(t̃). Defined as the ratio between the volume fractions of
Monomer 2 and polymers, simultaneously accounting for Polymer 1 and Polymer 2. The assumption
of uniform concentration of Monomer 2 implies Ψ̃(t̃) to be equal in all the phases. The time derivative
is given by a polymerization term and a feeding term. The initial value can be computed as the ratio
between the initial volume of Monomer 2 and the initial volume of Polymer 1:

dΨ̃(t̃)

dt̃
= −kpRV̄pol2

V̄mon2

Ψ̃(t̃)

Ψ̃(t̃)+1

Ψ̃(t̃)+V̄mon2/V̄pol2
Ṽpol2(t̃)+Vpol1

+ Fmon2 V̄mon2

Ṽpol2(t̃)+Vpol1
[s−1],

Ψ̃(0) = M0 V̄mon2
Vpol1

.
(2.A.8)

Expected Total Volume Ṽpol2(t̃) [L] of Polymer 2. Time evolution driven by the polymerization
of Monomer 2: 

dṼpol2(t̃)

dt̃
=

kpRV̄pol2
V̄mon2

Ψ̃(t̃)

Ψ̃(t̃)+1
[L s−1],

Ṽpol2(0) = 0 [L],
(2.A.9)

where Ṽpol2(0) = 0 [L] because there is no Polymer 2 at t̃ = 0 [s].
The following definitions complete the presented model:

Φ̃(t̃) ≡

[
Ṽ mat
pol2 (t̃)

(Ψ̃(t̃) + 1)(Ṽ mat
pol2 (t̃) + Vpol1)

− Φs

]+

, with x+ ≡ max {x, 0}, (2.A.10)

Ṽp(t̃) ≡
(

Ψ̃(t̃) + 1
) [

Ṽ mat
pol2 (t̃) + Ṽ cm

pol2(t̃) + Ṽ cw
pol2(t̃) + Vpol1

]
[L], (2.A.11)
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Σ̃m,w(t̃) ≡ 3
√

36π (Ψ̃(t̃) + 1)
2/3

∫ +∞

0
ṽ

2/3 m̃, w̃(ṽ, t̃) dṽ [dm2], (2.A.12)

where m̃ and w̃ are the solutions of (2.14)-(2.17).

Nomenclature Definition Value

ṽ [L] unswollen volume of Polymer 2 in a given cluster -
t̃ [s] elapsed time -
ñ(ṽ, t̃) [L−1 s−1] expected distribution of nucleation frequency of -

non-equilibrium clusters with unswollen volume ṽ at time t̃
g̃(ṽ, t̃) [L s−1] expected unswollen volume growth speed of clusters -

with unswollen volume ṽ at time t̃
µ̃(ṽ, t̃) [s−1] expected frequency of non-equilibrium clusters with unswollen -

volume ṽ, migrating to equilibrium stage at time t̃
ã(ṽ, ũ, t̃) [s−1] expected frequency of aggregations between clusters -

with unswollen volumes ṽ and ũ at time t̃

Ṽ mat
pol2 (t̃) [L] expected total volume of Polymer 2 in the matrix at time t̃ -

Ṽ cm
pol2(t̃) [L] expected total volume of Polymer 2 in non-equilibrium -

clusters at time t̃

Ṽ cw
pol2(t̃) [L] expected total volume of Polymer 2 in equilibrium -

clusters at time t̃

Ψ̃(t̃) expected odds monomers-polymers at time t̃ -

Ṽpol2(t̃) [L] expected total volume of Polymer 2 at time t̃ -

Φ̃(t̃) expected Polymer 2 volume fraction excess in matrix at time t̃ -

Ṽp(t̃) [L] expected total volume of particles at time t̃ -

Σ̃m(t̃) [dm2] expected total surface of non-equilibrium clusters at time t̃ -

Σ̃w(t̃) [dm2] expected total surface of equilibrium clusters at time t̃ -
m̃(ṽ, t̃) [L−1] expected distribution of non-equilibrium clusters with -

unswollen volume ṽ at time t̃
w̃(ṽ, t̃) [L−1] expected distribution of equilibrium clusters with -

unswollen volume ṽ at time t̃

ka [L1/3 s−1] aggregation rate of clusters 2× 10−8 L1/3 s−1

kd [L1/3 s−1] diffusion rate of Polymer 2 volume 5× 10−8 L1/3 s−1

kp [L mol−1 s−1] polymerization rate of Monomer 2 850 L mol−1 s−1

ks [L s−1] phase separation rate of Polymer 2 volume 2.5× 10−5 L s−1

kµ [s−1] migration frequency of non-equilibrium clusters 10−5 s−1

Fmon2 [mol s−1] feeding rate of Monomer 2 amount 0 mol s−1

M0 [mol] initial amount of Monomer 2 2.5 mol
V̄mon2 [L mol−1] molar volume of Monomer 2 0.1 L mol−1

Vpol1 [L] total volume of Polymer 1 0.25 L
vc [L] critical Polymer 2 volume for phase separation 2.5× 10−22 L
V̄pol2 [L mol−1] molar volume of Polymer 2 0.095 L mol−1

Φs saturation volume fraction of Polymer 2 in the matrix 10−3

Np total number of particles in the reactor 2.8× 1017

R [mol] expected total amount of radicals in the particles 2.3× 10−7 mol

Table 2.A.1: Nomenclature of the physical quantities involved in the computation of the rates (2.A.1)-
(2.A.4), with the corresponding definitions, and the experimental values of the parameters. The
symbols s, L, mol and dm stand for second, Litre, mole and decimetre respectively. The data were
provided by the research group POLYMAT, led by Prof. J. M. Asua.
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2.B Dimensionless PBE Model for Latex Particles

We derive the dimensionless PBE model for the Dynamic Development of latex Particles Morphology,
using the rate functions defined in Appendix 2.A.
The scaled counterparts of the variables in the PBE system (2.14)-(2.17) are defined as:

t ≡ t̃/t0, v ≡ ṽ/ν0, m(v, t) ≡ m̃(ṽ,t̃)/m0, w(v, t) ≡ w̃(ṽ,t̃)/w0, (2.B.1)

where t0 [s], ν0 [L], m0 [L−1] and w0 [L−1] belong to the set of the strictly positive characteristic
constants θ defined by Algorithm 2.1. The variables Ψ̃(t̃) (2.A.8) and Φ̃(t̃) (2.A.10) are dimensionless
and computationally tractable since they are given by the ratios between quantities of the same
dimensions and orders of magnitude. Then

Ψ(t) ≡ Ψ̃(t̃), Φ(t) ≡ Φ̃(t̃), (2.B.2)

where Ψ(t) and Φ(t) are the dimensionless counterparts of Ψ̃(t̃) and Φ̃(t̃). For the sake of simplicity,
the quantities Ṽ mat

pol2 (t̃) (2.A.5), Ṽ cm
pol2(t̃) (2.A.6), Ṽ cw

pol2(t̃) (2.A.7), Ṽpol2(t̃) (2.A.9), Ṽp(t̃)(2.A.11) and
Vpol1 are scaled by the same factor V0 [L]:

V mat
pol2 (t) ≡

Ṽ mat
pol2 (t̃)

V0
, V

cm,w
pol2 (t) ≡

Ṽ
cm,w
pol2 (t̃)

V0
, Vpol2(t) ≡

Ṽpol2(t̃)

V0
, Vp(t) ≡

Ṽp(t̃)

V0
, λpol1 ≡

Vpol1
V0

.

(2.B.3)
The definitions (2.A.12) of the variables Σ̃m(t̃) and Σ̃w(t̃) suggest the proper scaling factors:

Σm(t) ≡ Σ̃m(t̃)
3
√

36π ν
5/3
0 m0

, Σw(t) ≡ Σ̃w(t̃)
3
√

36π ν
5/3
0 w0

. (2.B.4)

The Dirac delta function δ̃(ṽ − vc) [L−1] is scaled by the factor δ0 [L−1]:

δ(v − λc) ≡ δ̃(ṽ−vc)/δ0, with λc ≡ vc/ν0. (2.B.5)

Given the characteristic constants θ ≡ {t0, ν0,m0, w0, V0, δ0} and the corresponding scaled quantities,
it is possible to rewrite the PBE system (2.14)-(2.17) and the rate functions of Appendix 2.A in
terms of the defined dimensionless variables. The equations (2.B.6)-(2.B.18) summarise the arising
dimensionless model, where the parameters values are specified in Table 2.1.



∂m(v,t)
∂t = −∂( g(v,t)m(v,t) )

∂v + n(v, t) − µm(v, t)m(v, t)− m(v, t)
∫ +∞

0 am(v, u, t)m(u, t) du

+1
2

∫ v
0 am(v − u, u, t)m(v − u, t)m(u, t) du, ∀v, t ∈ R+,

∂w(v,t)
∂t = −∂( g(v,t)w(v,t) )

∂v + µw(v, t)m(v, t)− w(v, t)
∫ +∞

0 aw(v, u, t)w(u, t) du

+1
2

∫ v
0 aw(v − u, u, t)w(v − u, t)w(u, t) du, ∀v, t ∈ R+,

m(v, 0) = w(v, 0) = 0, ∀v ∈ R+, m(0, t) = w(0, t) = 0, ∀t ∈ R+,

(2.B.6)

am,w(v, u, t) ≡ λm,wa (Ψ(t) + 1)
14/3
[
v−

1/3 + u−
1/3
]
, (2.B.7)

g(v, t) ≡ λd Φ(t) (Ψ(t) + 1)
2/3 v

2/3 + λp Ψ(t)Vp(t)
−1 v, (2.B.8)

n(v, t) ≡ λn Φ(t) δ(v − λc), with δ(x) the Dirac delta, (2.B.9)

µm,w(v, t) ≡ λm,wµ , (2.B.10)
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
dVmatpol2 (t)

dt = λp Ψ(t)Vp(t)
−1
[
V mat
pol2 (t) + λpol1

]
− Φ(t) [λs + λmd Σm(t) + λwd Σw(t)] ,

V mat
pol2 (0) = 0,

(2.B.11)

{
dV cmpol2(t)

dt = λp Ψ(t)Vp(t)
−1 V cm

pol2(t) + Φ(t) [λs + λmd Σm(t) ]− λmµ V
cm
pol2(t),

V cm
pol2(0) = 0,

(2.B.12)

{
dV cwpol2(t)

dt = λp Ψ(t)Vp(t)
−1 V cw

pol2(t) + λwd Φ(t) Σw(t) + λmµ V
cm
pol2(t),

V cw
pol2(0) = 0,

(2.B.13)

{
dΨ(t)
dt = −λp Ψ(t)

Ψ(t)+1
Ψ(t)+Ψr

Vpol2(t)+λpol1
+

λf
Vpol2(t)+λpol1

,

Ψ(0) = Ψ0,
(2.B.14)

{
dVpol2(t)

dt = λp
Ψ(t)

Ψ(t)+1 ,

Vpol2(0) = 0,
(2.B.15)

Φ(t) ≡

[
V mat
pol2 (t)

(Ψ(t) + 1)(V mat
pol2 (t) + λpol1)

− Φs

]+

, with x+ ≡ max {x, 0}, (2.B.16)

Vp(t) ≡ (Ψ(t) + 1)
[
V mat
pol2 (t) + V cm

pol2(t) + V cw
pol2(t) + λpol1

]
, (2.B.17)

Σm,w(t) ≡ (Ψ(t) + 1)
2/3

∫ +∞

0
v

2/3 m,w(v, t) dv. (2.B.18)

2.C PBE Model for Latex Particles: Rate Functions Analysis

We provide the analysis of the dimensionless rate functions (2.B.7)-(2.B.10), when the parameters
assume the values specified in Table 2.1. The evolution and the orders of magnitude of the arising
rates are monitored and then summarised in Table 2.C.1.
The phase transition rates µm,w(v, t) (2.B.10) are constants whose orders of magnitude are available
in Table 2.1:

µm(v, t) = λmµ ∝ µ0 = 10−2 and µw(v, t) = λwµ ∝ µ̂0 = 10−1. (2.C.1)

The aggregation rates am,w(v, u, t) (2.B.7) can be factorised into the time-dependent factors fm,w(t)
multiplied by the volume-dependent factor fa(v, u):

am,w(v, u, t) = fm,w(t) fa(v, u), fm,w(t) ≡ λm,wa (Ψ(t) + 1)
14/3, fa(v, u) ≡ v−1/3 + u−

1/3. (2.C.2)

Figure 2.C.1a shows the factor fa(v, u), whose order of magnitude can be estimated by the average
value ā over the volume domain [0, vmax]2, with vmax = 10:

ā ≡ 1

v2
max

∫ vmax

0

∫ vmax

0
fa(v, u) dv du = 3 v−

1/3
max ≈ 100. (2.C.3)

The factors fm,w(t) in Eq. (2.C.2) depend on the solution of (2.B.14)-(2.B.15), obtained by the
MATLAB solver ode45 [125]. Figure 2.C.1b shows the time evolution of fm,w(t). After a monotonic
decay, the time-dependent factors fm,w(t) stabilise on positive constant values. Given ā ∝ 100, the
shown trends allow us to estimate the orders of magnitude of the aggregation rates am,w(v, u, t) (2.B.7):

am(v, u, t) ∝ a0 = 102 and aw(v, u, t) ∝ â0 = 101. (2.C.4)
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Figure 2.C.1: Factors building the aggregation rates am,w(v, u, t) = fm,w(t) fa(v, u) in Eq. (2.C.2).
Figure 2.C.1a shows the volume-dependent factor fa(v, u), whose order of magnitude can be estimated
by the average value ā ∝ 100 (2.C.3). After a monotonic decrease, the time-dependent factors fm,w(t)
(Figure 2.C.1b) stabilise on positive constant values. Given ā ∝ 100, the order of magnitude of the
aggregation rate am(v, u, t) is a0 = 102, while aw(v, u, t) ∝ â0 = 101.

The nucleation rate n(v, t) (2.B.9) can be factorised into the nucleation frequency η(t) multiplied by
the Dirac delta δ(v − λc):

n(v, t) = η(t) δ(v − λc), η(t) ≡ λn Φ(t). (2.C.5)

The computation of the growth rate g(v, t) (2.B.8) and the nucleation frequency η(t) (2.C.5) depends
on the solution of (2.B.6) through the quantities Σm,w(t) (2.B.18). The numerical solution of (2.B.6)
can be obtained by GMOC presented in Section 2.3.3. However, the computations are time-consuming,
allowing for an exploration of small domains of volume and time.
The complete evolution of the rates g(v, t) and η(t) can be analysed by decoupling their computation
from the solution of (2.B.6) (Uncoupled Computation). Since it is possible to show that V

cm,w
pol2 (t) ∝∫ +∞

0 vm,w(v, t) dv, the 2/3-th order moments of the densities m(v, t) and w(v, t) can be approximated
by the first-order moments V cm

pol2(t) (2.B.12) and V cw
pol2(t) (2.B.13) respectively:

Σm,w(t) ≡ (Ψ(t) + 1)
2/3

∫ +∞

0
v

2/3 m,w(v, t) dv ≈ Zm,w(t) ≡ zm,w (Ψ(t) + 1)
2/3 V

cm,w
pol2 (t), (2.C.6)

where zm,w are positive constants tuned to fit Σm,w(t) (2.B.18). By replacing the variables Σm,w(t)
with the fitted quantities Zm,w(t), the ODE system (2.B.11)-(2.B.15) becomes independent from the
solution of (2.B.6), allowing the Uncoupled Computation of the rates g(v, t) and η(t).
The numerical solution of (2.B.11)-(2.B.15), with Zm,w(t) in place of Σm,w(t), can be efficiently ob-
tained by the MATLAB solver ode45 [125]. Such integration is repeated for different choices of zm,w
(2.C.6), targeting the fitting of Zm,w(t) (2.C.6) to Σm,w(t) (2.B.18). The quantities Σm,w(t) (2.B.18)
are obtained by solving (2.B.6) with GMOC applied to small intervals of volume v and time t:

v ∈ [0, Vmax], t ∈ [0, Tmax], Vmax = 0.4, Tmax = 0.2. (2.C.7)

The resulting fitting and the chosen constants zm,w (2.C.6) are shown in Figure 2.C.2.
The approximation Σm,w(t) ≈ Zm,w(t) (2.C.6) allows us to compute the rates g(v, t) (2.B.8) and
η(t) (2.C.5), without knowing the solution of (2.B.6) (Uncoupled Computation). For t ∈ [0, Tmax]
(2.C.7), it is also possible to compute g(v, t) (2.B.8) and η(t) (2.C.5) by using the values of Σm,w(t)
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(2.B.18) provided by the numerical solution of (2.B.6) (Coupled Computation). Figure 2.C.3 shows
the comparison between the Coupled and the Uncoupled Computation of the rates g(v, t) and η(t).
The achieved match validates the uncoupled approach to calculate g(v, t) and η(t) for

v ∈ [0, vmax], t ∈ [0, Tmax], vmax = 10, Tmax = 0.2. (2.C.8)

Comparing (2.C.7) to (2.C.8), we notice that the presented validation stands for a volume domain with
reasonable size, i.e. vmax = 10 � Vmax = 0.4. However, the explored time interval (2.C.8) does not
allow us to validate the uncoupled approach during the complete evolution of the involved quantities,
as will be shown in Figure 2.C.4.
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Figure 2.C.2: Variables Zm,w(t) (2.C.6) fitted to Σm,w(t) (2.B.18), with Σm,w(t) obtained by the
numerical solution of (2.B.6). The values of Zm,w(t) are computed by solving (2.B.11)-(2.B.15), with
Σm,w(t) replaced by Zm,w(t) (2.C.6), zm = 0.8 and zw = 10. The variables Σm,w(t) assume unreliable
values for t ≥ 0.1 because the support of the solution of (2.B.6) exceeds the integration domain (2.C.7).

Given Tmax = 0.2, the errors εm,w(t) are computed as |Σm,w(t)− Zm,w(t)|/(
∫ Tmax

0 Σm,w(t)2 dt)1/2.
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Figure 2.C.3: Comparison between the Coupled and the Uncoupled Computation of (a) g(v, t) (2.B.8)
and (b) η(t) (2.C.5), obtained for zm = 0.8 and zw = 10 in (2.C.6). The error εg(v, t) is defined

as |gu(v, t) − gc(v, t)|/(
∫ vmax

0 gc(v, t)
2 dv)1/2, while εη(t) ≡ |ηu(t) − ηc(t)|/(

∫ Tmax

0 ηc(t)
2 dt)1/2, where

vmax = 10 and Tmax = 0.2. The subscripts c and u stand for Coupled and Uncoupled Computation of
g(v, t) and η(t) respectively.
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The Uncoupled Computation can provide the complete evolution of the rates g(v, t) (2.B.8) and η(t)
(2.C.5), as shown in Figure 2.C.4.
The presented data allow us to estimate the orders of magnitude of the constant and the linear
functions approximating the rate g(v, t):

g(v, t) ∝ g0 = 103 and g(v, t) ∝ g0 v, with g0 = 102. (2.C.9)

It is also possible to estimate the order of magnitude of the nucleation rate n(v, t) (2.B.9):

n(v, t) = η(t) δ(v − λc) ∝ n0 δ(v − v0), n0 = 10−1, v0 = λc = 0.027, (2.C.10)

with δ(x) the Dirac delta and λc taken from Table 2.1. Table 2.C.1 summarises the approximating
functions and the corresponding orders of magnitude of all the considered rates.
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(a) Full Dynamics of g(v, t) (2.B.8).
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Figure 2.C.4: Complete evolution of (a) the growth rate g(v, t) (2.B.8) and (b) the nucleation frequency
η(t) (2.C.5), provided by the Uncoupled Computation and validated for v ∈ [0, vmax] and t ∈ [0, Tmax],
where vmax = 10 and Tmax = 0.2. The rate g(v, t) can be approximated by the constant g0 = 103, or
by the linear function g0v, with g0 = 102. The nucleation frequency η(t) is of the order of n0 = 10−1.

Rate Approximation Order of Magnitude

am(v, u, t) a0 a0 = 102

aw(v, u, t) â0 â0 = 101

g0 g0 = 103

g(v, t)
g0 v g0 = 102

n(v, t) n0 δ(v − v0)
n0 = 10−1

v0 = 0.027
µm(v, t) µ0 µ0 = 10−2

µw(v, t) µ̂0 µ̂0 = 10−1

Table 2.C.1: Approximating functions and corresponding orders of magnitude for the rates (2.B.7)-
(2.B.10), when the parameters assume the values specified in Table 2.1. The arising rates have been
monitored for v, u ∈ [0, vmax] and t ∈ [0, TM ], with vmax = 10 and TM = 20. The values of g(v, t)
and n(v, t) have been estimated through the Uncoupled Computation, validated for v ∈ [0, vmax] and
t ∈ [0, Tmax], where Tmax = 0.2.
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Chapter 3

Stochastic Simulation of Continuous
Quantum Measurements

3.1 Motivation

3.1.1 Continuous Quantum Measurements

This Chapter is dedicated to continuous quantum measurements and stochastic simulation of such
measurements on a computer. We start with some introductory notes. In a classical world we can
monitor the progress of a billiard ball as it rolls along the surface of the table, falls off its edge,
and continues on the floor. Our observation can be sufficiently discreet so as not to alter the ball’s
motion, and the moment finally drops off. In the quantum world, with objects of the size of atoms,
the situation is by far more complex. Consider a two-level atom, initially in its excited upper state,
dropping down to its lower state after emitting a photon. When precisely did the transition occur? To
know it, we need to subject the atom to continuous monitoring. In the simplest case, the monitoring
can consist of a series of measurements, in each of which a detector would tell us whether the atom
is still in the upper, or already in the lower state. It is reasonable to neglect the duration of each
measurement (von Neumann’s impulsive limit [126]), and assume that a measurement occurs every
τ seconds. The sequence of the meter’s readings, say fk = upper or lower, will then constitute a
measurement readout.
The main difference from the classical case is that the measurements will have to perturb the atom’s
evolution, or no information about the measured system would, in general, be gathered. The best
known example is the Zeno effect [127]. If the measurements are too dense, τ → 0, the atom will
always be found in upper state, will not decay at all. If, on the other hand the measurements are to
be made “weak”, so as to not perturb the atom’s evolution, we will never know which state it is in.
Thus, there is a need to find an optimal regime where the information about a phenomenon can be
obtained without “killing” the phenomenon we set out to study.
The theory and practice of such (quasi-) continuous measurements is an important and popular subject
(see, for example, [128]), recently helped by the advances of modern technology. An easily accessible
yet extensive introduction to continuous measurements of two-state systems can be found in [129].
A straightforward introduction to measurements of more general observable was given in [130]. A
mathematical formalism, presented in [131], allows one to treat imprecise measurements distributed
in time. Possible applications of continuous measurements include quantum state estimation [132],
the preparation of entangled states [133], and the feedback control in quantum systems [134]. The
measurements formalism was also used in studying the dynamics of electronic charge [135], in the
analysis of neural networks [136] and in the study of large deviations from typical behaviours [137].
Other applications of continuous measurements can be found in quantum optics [138], experiments
with ions in traps [139] and electromagnetic fields [140].
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3.1.2 Mensky’s Measurements & Question Marks Over Them

The scope of our discussion is, however, much narrower, and concerns only one aspect of the theory.
In the nineties of the last century, Mensky [141] reconsidered the need for a compromise between
the accuracy and the perturbation incurred. His proposal consisted in using a sequence of weakly
perturbing meters, with a large uncertainty ∆f in their pointer position. In the limit ∆f →∞, such
a meter decouples from the measured system, and yields no useful information about it. However, if
many such meters are used ever more densely, τ → 0, their combined effect, which depends on ∆fτ1/2,
may not be negligible. In the limit τ → 0, the readout fk can then be replaced by a function f(t),
and the measurement becomes truly continuous. The approach relied on the Feynman path integral
formulation of quantum mechanics, which is of no particular interest to us here.
As an application of the theory, Audretsch and Mensky (later referred to as AM) considered in [142]
a two-level system in a superposition of the eigenstates of a variable Â, subjected it to a “fuzzy”
continuous monitoring discussed above. They suggested that, after a sufficiently long time, two things
should happen:

(i) the system’s pure state will be turned into a density matrix, diagonal in the chosen representation
(decoherence);

(ii) every readout f(t) will eventually align with one of the eigenvalues of Â, indicating the eigenstate
into which the system is driven as a result of being monitored.

Certain importance was later ascribed by Mensky [143] to the fact that the obtained information (the
readout f(t)), may be seen to determine the final state of the observed system.
It is the statement (ii) which needs to be subjected to scrutiny. Why should a readout become a
constant curve (with possible deviations for short periods of time (AM)) if we wait long enough? This
certainly will not be the case for a system prepared in an eigenstate of Â, in which it will then remain
at all times. The readings of different meters will be independent of each other, and will simply reflect
the large initial uncertainty of the position of each pointer. In other words, a typical readout will have
to remain extremely “hairy” at all times, and not tend to the constant eigenvalue curve.
One may, therefore, ask whether AM are correct in their predictions about the decoherence (i)? And
if they are right about the decoherence, but wrong about the long-time behaviour of readouts, how
can we know into which of the two eigenstates the system ends up driven into? In other words, how
the information about the final state of the system can be extracted from a wildly fluctuating readout,
showing no sign of settling into one of the constant curves?
These are the questions we will be answering in what follows. To do so we will require a reliable, if
simple, computational algorithm, capable of modelling the behaviour of a quantum system under a
continuous observation in the Mensky’s regime.

3.1.3 Brief Summary of Our Results

Below we will show that while AM are correct in their analysis of the decoherence process, they fail
to correctly describe the properties of the observed readouts. The fallacy is in neglecting the density
of states available to the readouts f1, f2, ..., fK in a K-dimensional space. While a constant readout
does have the largest statistical weight, it is vastly outnumbered by highly irregular ones, which will be
observed in almost every run of the experiment. This is even more true in the Mensky limit K →∞,
∆f → ∞, where the chance of obtaining an almost constant (or, indeed, a smooth) readout curve is
virtually null.
The same argument applies to a system prepared in a superposition of the eigenstates of the measured
operator. Numerical simulation of a “free” two-level system (i.e., of a system, whose own Hamiltonian
is identically zero) reveals decoherence on the time scale, predicted by AM. At the same time, the
measurement readouts remain highly irregular throughout the monitoring, and offer no obvious clue as
to the final destination of the measured system. We will show that this information can be extracted
from a particular readout, although the manner in which it can be done depends on the properties of
the meter(s) employed. We will consider two particular cases, one in which the meter’s initial state
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has a sharp cut-off and vanishes outside an interval of a width ∆f . In the other example, similar to
the case studied by AM, this state is chosen to be a Gaussian of a width of ∆f .
In the first case reduction of the initial state is sudden, and occurs at the moment a fluctuation sends
the corresponding meter reading outside the specified range for the first time. Thus, to determine the
result of decoherence, one needs to inspect the readout, find the first value outside the range, and use
its sign to decide in which of the two eigenstates the system will henceforth reside. In the second case,
the reduction is gradual, and can be seen as driven by a Gaussian walk with a drift, in which the sum
of all readings (rescaled and shifted) represents the final position of the walker. The walks, ending
far to the left or to the right, indicate whether the system has been directed towards the first or the
second eigenstate of the measured operator Â.
A similar analysis applies also in the case the system is “driven”, and would perform Rabi oscillations
if left on its own. We will model such systems, in different measurement regimes, using the same
stochastic algorithm. Increasing the accuracy of Mensky’s meters (e.g., choosing a smaller value of
∆fτ1/2 in the Gaussian case) will at first de-phase Rabi oscillations of the system. In the high accuracy
limit, the decoherence of the initial superposition will eventually be completed at times much shorter
than the Rabi period, much like in the case of a “free” system. After that Zeno effect will “freeze” the
system in one of the eigenstates for the foreseeable future. In the near-Zeno regime the system resides
in an eigenstate for a considerable period of time, before making a rapid transition into the other state
available. The probability of remaining in a given state will, therefore, show the typical “telegraph
noise” behaviour, with additional “spikes” corresponding to aborted transitions [144, 145, 146]. While
the “sudden reduction” model allows for an analytical description of these features, the Gaussian case
requires a numerical treatment.
In summary, we revisited the analysis of the “fuzzy continuous measurements” proposed by AM, ex-
posed some of its deficiencies, and made amendments where necessary. Our results are published in
[4].
The chapter is organised as follows. Basic principles of elementary quantum mechanics are reviewed
in Appendix 3.A. Classical meters, individual and successive von Neumann quantum measurements
are reviewed in Appendix 3.B. A stochastic algorithm for modelling successive quantum measure-
ments of finite-dimensional quantum systems is proposed and tested in Section 3.2. In Section 3.3
we consider fuzzy continuous measurements performed on a two-level system, as presented by AM.
In Section 3.4 we re-examine the fuzzy measurements of two-level systems. Section 3.5 contains our
detailed conclusions.

3.2 Monte Carlo Method for Quantum Measurements

This section proposes a stochastic model and corresponding Monte Carlo (MC) method to simulate
the quantum measurements described in Appendix 3.B. The probabilistic model and the MC method
are formulated in Section 3.2.1. The simulation method is validated in Section 3.2.2 by comparison
with available analytical solutions. The proposed MC method is used to verify the non-Markovian
behaviour of the quantum meters, as shown in Section 3.2.3.

3.2.1 Monte Carlo Method Formulation

Based on the formalism discussed in Appendix 3.B.3, we propose a stochastic model and correspond-
ing Monte Carlo (MC) method to simulate the continuous quantum measurements and to provide
estimations of quantities of interest.
Defining |ψ(tk)〉 as the state of the quantum system just before the meter firing at time tk = kτ ,
τ = T/K > 0, k = 1, ..,K, we can rewrite (3.B.15) as

|ψ(tk+1)〉 = exp(−iĤτ)G(fk − Â) |ψ(tk)〉, ∀k = 1, ..,K − 1, (3.1)

where |ψ(t1)〉 = exp(−iĤτ)|ψ0〉 and |ψ0〉 is the initial state of the quantum system. By plugging the
identity operator

∑
n |an〉〈an|, (3.1) is rewritten in matrix form:
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|ψ(tk+1)〉 =
∑

n1,n2,n3

|an3〉〈an3 | exp(−iĤτ)|an2〉〈an2 |G(fk − Â)|an1〉〈an1 |ψ(tk)〉 =

=
∑
n3

|an3〉
∑
n2

〈an3 | exp(−iĤτ)|an2〉
∑
n1

〈an2 |G(fk − Â)|an1〉〈an1 |ψ(tk)〉 =

=
∑
n3

|an3〉
∑
n2

Ûn3,n2(τ)
∑
n1

Ĝn2,n1(fk) cn1(tk), (3.2)

where cn1(tk) ≡ 〈an1 |ψ(tk)〉 is the n1-th component of the vector |ψ(tk)〉 in the basis of the eigenvectors
|an〉. Ĝn2,n1(fk) is the element of row n2 and column n1 of the matrix Ĝ(fk) = G(fk − Â) in the
basis of the eigenvectors |an〉. Ûn3,n2(τ) is the element of row n3 and column n2 of the matrix
Û(τ) = exp(−iĤτ) in the basis of the eigenvectors |an〉. Equation (3.2) corresponds to the explicit
expression of the matrix product in the basis of the eigenvectors |an〉:

|ψ(tk+1)〉 = Û(τ) Ĝ(fk) |ψ(tk)〉, ∀k = 1, ..,K − 1, (3.3)

where |ψ(tk)〉 =
∑

n cn(tk) |an〉 and cn(tk) = 〈an|ψ(tk)〉 ∈ C. In the chosen basis, the matrix Ĝ(fk) is
diagonal (δi,j is the Kronecker delta):

Ĝi,j(fk) ≡ 〈ai|G(fk − Â)|aj〉 = 〈ai|
∑
n

|an〉G(fk − an)〈an|aj〉 = G(fk − ai) δi,j . (3.4)

The stochastic model is formulated in the basis of the eigenvectors |an〉 and the evolution of the state
vector |ψ(tk)〉 is given by the matrices multiplication (3.3).
The definition of the meter reading fk provides the stochastic nature of the model. Just after the
meter impulsive firing at time tk, with the pointer value fk, the quantum state |ψ(tk)〉 =

∑
n cn(tk)|an〉

becomes |ϕ(fk)〉:

|ϕ(fk)〉 ≡ Ĝ(fk) |ψ(tk)〉 =
∑
n

G(fk − an) cn(tk) |an〉, (3.5)

in agreement with the diagonal form of the matrix Ĝ(fk). Following the Born postulate (ii) from
Appendix 3.A.3, the probability density of the meter readout fk is given by p(fk):

p(fk) ≡ 〈ϕ(fk)|ϕ(fk)〉 =
∑
n

|cn(tk)|2G2(fk − an). (3.6)

In other words, the meter reading fk can be understood as an independent realisation of the random
variable distributed according to the mixture (3.6) of the measures G2(fk − an) with corresponding
weights |cn(tk)|2. In summary, the stochastic model can be written for all k = 1, ..,K as:

|ψ(tk)〉 =
∑

n cn(tk) |an〉,
fk

ind.∼ p(fk) =
∑

n |cn(tk)|2G2(fk − an),

|ϕ(fk)〉 = p(fk)
−1/2

∑
nG(fk − an) cn(tk) |an〉,

|ψ(tk+1)〉 = exp(−iĤτ) |ϕ(fk)〉,

(3.7)

where |ψ(t1)〉 = exp(−iĤτ)|ψ0〉 and |ψ0〉 is the initial state of the quantum system living in the Hilbert
space H. The factor p(fk)

−1/2 ensures the normalisation of the state |ϕ(fk)〉, i.e. 〈ϕ(fk)|ϕ(fk)〉 = 1.
Given the Hamiltonian Ĥ : H → H and the time step τ > 0, the operator exp(−iĤτ) provides the
evolution of the system state |ψ(t)〉 ∈ H driven by the Schrödinger Equation (SE), with ~ = 1:

i∂t|ψ(t)〉 = Ĥ|ψ(t)〉. (3.8)

In the stochastic model (3.7), the operator exp(−iĤτ) must be thought as a matrix in the basis of
the eigenvectors |an〉.
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The stochastic model (3.7) can be solved using the Monte Carlo (MC) method proposed in Algo-
rithm 3.1 for simulating quantum measurements. Algorithm 3.1 obtains a single realisation of the
system dynamics by iterating over the index k the procedure (3.7).
Sampling of the random process is obtained by the independent repetition of the procedure described
in Algorithm 3.1 for S ≥ 1 times. The quantities of interest can be approximated by averaging com-
puted statistics on the drawn MC sample with the size S.
For example, the density matrix ρ(tk) discussed in Appendix 3.A.5,

ρ(tk) ≡
∫
p(fk) |ϕ(fk)〉 〈ϕ(fk)| dfk, ∀k = 1, ..,K, (3.9)

with |ϕ(fk)〉 defined in (3.7) and p(fk) in (3.6), can be estimated as

ρ(tk) ≈ ρ̃k ≡
1

S

S∑
j=1

|ϕjk〉〈ϕ
j
k|, ∀k = 1, ..,K, (3.10)

where {|ϕjk〉}
S
j=1 is the MC sample drawn by Algorithm 3.1 and ρ̃k is the classical MC estimator [147]

of ρ(tk).
Analogously, we approximate the expected meter reading F (tk) using the MC estimator F̃k:

F (tk) ≡
∫
fk p(fk) dfk ≈ F̃k ≡

1

S

S∑
j=1

f jk , ∀k = 1, ..,K, (3.11)

with {f jk}
S
j=1 being the MC sample of the meter readings fk, drawn by Algorithm 3.1.

Algorithm 3.1: The Monte Carlo (MC) method to draw one realisation of the dynamics of the
N ≥ 1 levels quantum system, during the time interval [0, T ]. The evolution is driven by the
Hamiltonian Ĥ and the operator Â represents the measured quantity, [Â, Ĥ] 6= 0, Â|an〉 = an|an〉.
1 Assign the measured operator Â =

∑N
n=1 |an〉an〈an|;

2 Assign the number K ≥ 1 of measurements and the time step size τ = T/K > 0;

3 Assign the evolution operator Û = exp(−iĤτ);
4 Assign the measure G(f),

∫
G2(f) df = 1, with

∫
f G2(f) df = 0;

5 Assign the initial state of the system |ϕ0〉 =
∑N

n=1 c
n
0 |an〉, with

∑N
n=1 |cn0 |2 = 1;

6 for k = 1, ..,K do
7 Assign time tk = kτ ;

8 Evolve the state of the system: |ψk〉 = Û |ϕk−1〉 =
∑N

n=1 c
n
k |an〉;

9 Compute the probabilities p
k

=
{
|c1
k|2, .., |cNk |2

}
;

10 Select the state index ik ∈ {1, .., N} with the probabilities p
k
;

11 Draw the observed value fk ∼ G2(f − aik), with f ∈ R;

12 Compute the normalisation factor Mfk =
∑N

n=1G
2(fk − an) |cnk |2;

13 Use fk to construct |ϕk〉: |ϕk〉 = M
−1/2
fk

∑N
n=1G(fk − an) cnk |an〉;

14 end

3.2.2 Monte Carlo Method Validation

The MC method of Section 3.2.1 is validated by comparison with available analytical solutions. In
particular, we compute the expected meter reading F (τ) defined in (3.11), for any time step size
τ = t1 > 0 and any square-integrable measure G, with

∫
f G2(f) df = 0. The MC estimator F̃1 defined

in (3.11) is validated by comparison with the derived below solution F (τ). The width ∆f > 0 of the
chosen Gaussian measure

G(f) ≡ C−1/2 exp(−f2/2∆f2), C ≡ (π∆f2)1/2, (3.12)

103



Monte Carlo Method for Quantum Measurements

quantifies the accuracy of the measurements. Since the MC estimator F̃1 and the derived analytical
solution F (τ) stand for any ∆f > 0 in (3.12), we perform the validation for different levels of accuracy
and corresponding values of ∆f , as shown in Figure 3.1a.
Then, we test the convergence rate of the MC estimator ρ̃k defined in (3.10). Such rate is quantified
by the speed at which the error function

ε(S) ≡ max
k,m,n

|〈am|ρ̃k(S)− ρ(tk)|an〉| (3.13)

converges to zero as the sample size S increases. The density matrix ρ(tk) in (3.13) is given by the
analytical solution (3.26) derived in Section 3.2.3, under the condition (3.20). The rectangular measure

G(f) =

{
1/
√

∆f, for |f | ≤ ∆f/2,

0, otherwise,
(3.14)

and the value of ∆f > 0 are chosen to ensure the assumption (3.20). Figure 3.1b shows that the
convergence rate of the estimator ρ̃k (3.10) is of order O(S−1/2), in agreement with the Central Limit
Theorem [147].

As stated above, we derive the analytical formula to compute the expected meter reading F (τ) in
(3.11), for any τ = t1 > 0 and any square-integrable measure G, with

∫
f G2(f) df = 0. Given the

initial condition |ψ0〉 =
∑

n cn(0)|an〉, with
∑

n |cn(0)|2 = 1, (3.7) leads to

|ψ(τ)〉 = Û(τ) |ψ0〉 =
∑
n

cn(τ) |an〉, cn(τ) ≡
∑
m

Ûn,m(τ) cm(0), (3.15)

where Ûn,m(τ) is the element of row n and column m of the evolution matrix Û(τ) = exp(−iĤτ)
in the basis of the eigenvectors |an〉, i.e. Ûn,m(τ) ≡ 〈an| exp(−iĤτ)|am〉. Following (3.7), the meter
readout f1 is drawn from the distribution

f1 ∼
∑
n

|cn(τ)|2G2(f1 − an), (3.16)

whose expectation is

F (τ) =
∑
n

|cn(τ)|2 an, cn(τ) =
∑
m

Ûn,m(τ) cm(0). (3.17)

Figure 3.1a shows the comparison between the MC estimator F̃1 in (3.11) and the analytical solution
F (τ) (3.17) for different values of the width ∆f > 0 of the measure G(f) (3.12). The performed
measurements monitor the observable Â of a two-level system:

Â|an〉 = an|an〉, n = 1, 2. (3.18)

The system is driven by the evolution matrix Û(τ), with

Û1,1(τ) = Û2,2(τ) = cos τ, Û1,2(τ) = Û2,1(τ) = −i sin τ, (3.19)

starting from the initial state |ψ0〉 = |a1〉. As shown in Figure 3.1a, the sample size S = 107 ensures
the good accuracy of F̃1, for the tested values of ∆f .
Figure 3.1b shows the convergence rate O(S−1/2) of the MC estimator ρ̃k in (3.10) for different numbers
K ≥ 1 of performed measurements. The measure G(f) (3.14) inspects the observable Â (3.18), with
a2 = −a1 = 1 and ∆f = 1 fulfilling (3.20). The initial state |ψ0〉 = |a1〉 is evolved by the matrix Û(τ)
(3.19), with τ = 1. The shown error ε(S) is defined in (3.13).
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Figure 3.1: Figure (a) shows the comparison between the MC estimator F̃1 (3.11) (diamonds and
crosses) and the analytical solution F (τ) (3.17) (solid line), when the measure G(f) (3.12) monitors
the observable Â (3.18), with a1 = 0 and a2 = 1. The system is driven by Û(τ) (3.19), starting
from |ψ0〉 = |a1〉. The sample size S = 107 ensures the good accuracy of F̃1 (3.11), for the tested
values of ∆f > 0 in (3.12). Figure (b) shows the convergence rate O(S−1/2) of the MC estimator ρ̃k
(3.10) for different numbers K ≥ 1 of performed measurements. The measure G(f) (3.14) inspects
the observable Â (3.18), with a2 = −a1 = 1 and ∆f = 1 fulfilling (3.20). The initial state |ψ0〉 = |a1〉
is evolved by Û(τ) (3.19), with τ = 1. The shown error ε(S) is defined in (3.13).

3.2.3 Non-Markovian Behaviour of Meter Reading

The meter reading fk in (3.7) follows, in general, a non-Markovian behaviour. In fact, the weights
|cn(tk)|2 of the distribution p(fk) are determined by the complete history of the process. However,
particular choices of the measure G can destroy the dependency on the history, leading to the Marko-
vian behaviour shown below. The MC method designed in Section 3.2.1 is used to verify the different
regimes of the meter reading fk, as shown in Figure 3.2.
The meter reading fk in (3.7) follows a Markovian behaviour, in the case the function G = G(f) is
narrow enough. In particular, the meter readouts {f1, .., fK} form a Markov chain over the eigenvalues
an of the measured operator Â, Â|an〉 = an|an〉, with P̂ (τ) being the transition probability matrix for
a time step of length τ > 0.
If G is narrow enough, with

∫
f G2(f) df = 0, the mixture p(fk) in (3.7) draws the meter readout fk

close to the expectation of each component, i.e. fk ≈ an. The proximity of fk to an is determined by
the width of the measure G. We assume G(f) narrow enough to give

G(f − an)G(f − am) ≈ 0, ∀f ∈ R, ∀n 6= m. (3.20)

Condition (3.20) means that the sets Sn ≡ {f ∈ R, G(f−an)� 0} and Sm ≡ {f ∈ R, G(f−am)� 0}
are non-overlapping for all n 6= m. Any drawn value of fk can be associated to a unique an, falling in
the corresponding set Sn. In this sense, we say that fk ≈ an and the Markov chain moves across the
eigenvalues an.
Then, the mixture p(fk) in (3.7) draws the meter readout fk ≈ an with probability (w.p.) proportional
to the corresponding weight:
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fk ≈ an, w.p. |cn(tk)|2, cn(tk) = 〈an|ψ(tk)〉, ∀k = 1, ..,K. (3.21)

Provided fk ≈ am, the state |ϕ(fk)〉 in (3.7) reduces to the eigenstate |am〉 because (3.20) implies

G(fk − am)� 0, and G(fk − an) ≈ 0, ∀n 6= m. (3.22)

Thus, (3.7) leads to

|ψ(tk+1)〉 = exp(−iĤτ)|am〉. (3.23)

Given fk ≈ am, (3.21) provides the distribution of the readout fk+1:

fk+1 ≈ an, w.p. P̂n,m(τ), P̂n,m(τ) ≡ |〈an| exp(−iĤτ)|am〉|2, (3.24)

where P̂n,m(τ) corresponds to the probability for the transition from state fk ≈ am to state fk+1 ≈ an
within a time step of length τ . In other words, P̂n,m(τ) is the element of row n and column m of the
transition matrix P̂ (τ) in the basis of the eigenvectors |an〉, i.e. P̂n,m(τ) = 〈an|P̂ (τ)|am〉.
In summary, the meter reading fk can be understood as a realisation of the Markov chain visiting the
eigenvalues an, whose distribution can be computed as

πk = P̂ (τ)k−1π1, ∀k = 1, ..,K, (3.25)

with π1 the distribution at time t1 = τ , i.e. π1(an) = |〈an| exp(−iĤτ)|ψ0〉|2, and |ψ0〉 the initial state
of the quantum system.
Assuming (3.20), the analytical solution for the density matrix ρ(tk) (3.9) is also available. The state
|ϕ(fk)〉 is found to be the eigenvector |an〉 with probability πk(an), i.e. if fk ≈ an. As explained in
Appendix 3.A.5, the quantum system is found in the mixed state

ρ(tk) =
∑
n

πk(an)|an〉〈an|, ∀k = 1, ..,K, (3.26)

where πk(an) is given by (3.25).
We now use the MC method formulated in Section 3.2.1 to verify the different regimes of the meter
reading fk. In particular, the width of the measure G(f −an) can determine the Markovian behaviour
of the meter reading fk, by ensuring the condition (3.20). On the other hand, the measure G(f − an)
can be broad enough to reject the hypothesis (3.20), leading to the non-Markovian behaviour of the
meter reading fk.
With the aim to verify the discussed regimes, we propose the following experiment. Chosen the broad-
ness of the measure G, Algorithm 3.1 draws two independent realisations {f1, .., fk} and {g1, .., gh} of
the meter readings, such that the readouts fk and gh are found close enough, i.e. |fk − gh| < ε, with
0 < ε � 1. The corresponding states of the system are stored. The computation of the next time
steps is performed for S ≥ 1 independent times, providing samples of the readouts fk+1 and gh+1.
Given fk ≈ gh, the samples can approximate the distributions of the next meter readings fk+1 and
gh+1.
In the Markovian regime, the distributions of fk+1 and gh+1 must depend only on the previous read-
outs fk and gh respectively. Since fk ≈ gh, the distributions of fk+1 and gh+1 must be similar, as
shown in Figure 3.2a verifying the Markovian nature of the meter. In the non-Markovian regime,
the distributions of fk+1 and gh+1 depend on the full histories {f1, .., fk} and {g1, .., gh} respectively.
Since {f1, .., fk} 6= {g1, .., gh}, the distributions of fk+1 and gh+1 can be significantly different, as
demonstrated in Figure 3.2b, thus confirming the non-Markovian behaviour of the meter.

106



Continuous Fuzzy Measurement on Two-Level Systems

Meter Reading

D
e

n
s
it
y

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
fk+1 Histogram

gh+1 Histogram

(a) Markovian Regime.

Meter Reading
D

e
n

s
it
y

−2 −1 0 1 2

0.0

0.1

0.2

0.3

0.4
fk+1 Histogram

gh+1 Histogram

(b) Non-Markovian Regime.

Figure 3.2: Given the measurements histories {f1, .., fk} 6= {g1, .., gh}, with |fk − gh| < ε = 10−3, the
shown histograms approximate the densities of the meter readings fk+1 and gh+1 by samples with
size S = 105. The rectangular measure G (3.14) monitors the observable Â, Â|an〉 = an|an〉, of a
two-level system, with a2 = −a1 = 1. The dynamics is driven by the matrix Û(τ), with Û1,1(τ) =
Û∗2,2(τ) = cos τ − i

√
1/2 sin τ , Û1,2(τ) = Û2,1(τ) = −i

√
1/2 sin τ and τ = 1, starting from the initial

state |ψ0〉 = |a1〉. Since fk ≈ gh, the Markovian regime imposes the similar distribution for the
next meter readings fk+1 and gh+1, as shown in Figure 3.2a for ∆f = 1. Depending on the full
histories {f1, .., fk} 6= {g1, .., gh}, the densities of fk+1 and gh+1 can be significantly different in the
non-Markovian case, as shown in Figure 3.2b for ∆f = 2.5.

3.3 Continuous Fuzzy Measurement on Two-Level Systems

As discussed in Appendix 3.B.2 and Appendix 3.B.3, the width ∆f > 0 of the meter measure G(f)
characterises the regime of the performed measurements. Two limiting cases can be distinguished. A
broad measure G, i.e. ∆f → +∞, gives rise to inaccurate measurements, allowing the system natural
evolution. The paths travelled by the system, within the large width ∆f , cannot be distinguished,
since the corresponding routes are allowed to interfere. On the other hand, a narrow measure G, i.e.
∆f → 0, produces accurate measurements, obtained at the price of a strong influence of the meters
on the free evolution of the system. The travelled paths can be distinguished, because the interference
among the corresponding routes is destroyed.
As introduced in Section 3.1.2, Mensky [141] reconsidered the need for a compromise between the
accuracy and the perturbation incurred. A sequence of weakly perturbing meters, with large ∆f ,
allows the free dynamics, yielding no useful information about the measured system. However, if
many such meters are used ever more densely, their combined effect may not be negligible, providing
some useful information. In particular, Audretsch and Mensky [142] suggested that such a dense
sequence of weakly perturbing meters would allow one to read off the system state directly from the
registered readouts. They also predicted a rapid decoherence of a pure initial state if the measured
quantity Â commutes with the Hamiltonian Ĥ of the system, and formulated the conditions for the
Zeno effect in case the two do not commute.
We explain in Section 3.3.1 what stated by Audretsch and Mensky, outlining the main conclusions
of [142]. Section 3.3.2 proves one statement to be incorrect, providing a counterexample. The other
conclusions are reconsidered in Section 3.4.
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3.3.1 Mensky Regime & Conclusions

Audretsch and Mensky considered in [142] a regime of measurements becoming more inaccurate as
they are more frequently performed (Mensky regime). The Gaussian measure G(f) (3.12) is chosen
to monitor the observable Â : H → H, Â|an〉 = an|an〉, of a two-level system in the Hilbert space H,
with Hamiltonian Ĥ and initial state

|ψ0〉 = α0|a1〉+ β0|a2〉, 〈ψ0|ψ0〉 = 1. (3.27)

The amplitude 〈an|ψ(T ; f)〉 (3.B.18) reads

〈an|ψ(T ; f)〉 = C−K/2
∑

m1,..,mK−1

Fn(m1, ..,mK−1) exp

[
−

τ
T

∑K
k=1(fk − amk)2

∆a2
T

]
, n = 1, 2, (3.28)

with ∆a2
T ≡ 2τ∆f2/T > 0. The Mensky regime is reached for

τ → 0, ∆f → +∞, 2τ∆f2 = κ−1, (3.29)

where κ > 0 is a tunable constant. As proposed in [131], the limit (3.29) leads to the continuous
formulation of the amplitude (3.28):

〈an|ψ(T ; f)〉 =
∑
∀a(t)

Fn[a(t)] exp

[
−

1
T

∫ T
0 [f(t)− a(t))]2 dt

∆a2
T

]
, n = 1, 2, (3.30)

where the path a(t) is a function taking only the values a1 or a2 at any time 0 ≤ t ≤ T . The factor

Fn[a(t)] ≡ lim
K→+∞

〈an| exp(−iĤτ)|amK−1〉 .. 〈am1 | exp(−iĤτ)|ψ0〉, n = 1, 2, (3.31)

is the probability amplitude to reach |an〉 from |ψ0〉 via a(t) with no meters present. Finally,

∆aT = 1/
√
κT (3.32)

and the factor divided by ∆a2
T is the time averaged square of the deviation of the path a(t) from the

observed readout f(t).
The role of the meters is to modify the amplitudes of the system’s Feynman paths, suppressing them
for the paths deviating from a readout f(t), and leaving them untouched for a(t) close to f(t). Given
(3.30), it is tempting to assume, as was done in [142], that for ∆aT � |a1 − a2|, f(t) and a(t) must
be point-wise close, with a(t) rarely differing from f(t) by more than ∆aT . By the same token, one
may expect the observed readouts to be not too different from one of the Feynman paths a(t), i.e. to
alternate between the values a1 and a2.
Based on the above, the authors of [142] predicted the following conclusions for Â and Ĥ commuting:

(i) for a small ∆aT � |a1 − a2|, e.g. in the case of T → ∞, one would observe only the readouts
lying in very narrow bands close to the constant curves f(t) ≡ ai, such that for most of the
monitoring one has |f(t)− ai| . ∆aT � |a1 − a2|.

(ii) The initial superposition (3.27) would undergo complete decoherence if the duration of the
monitoring exceeds 1/κ|a1 − a2|2, i.e. a pure state |ψ0〉 will be turned into a mixture ρ(T ) =
|a1〉|α0|2〈a1|+ |a2〉|β0|2〈a2| for T & 1/κ|a1 − a2|2.

We show in Section 3.3.2 that the assumption (i) is incorrect, and we explain in Section 3.4.1 how (ii)
is possible without (i). In [142] the authors considered also monitoring of a system, capable of making
transitions between the states |a1〉 and |a2〉, described by the Hamiltonian Ĥ:

〈an|Ĥ|an〉 = 0, 〈a1|Ĥ|a2〉 = 〈a2|Ĥ|a1〉 ≡ ω. (3.33)
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In the absence of the meters, such a system performs Rabi oscillations with a period TR = 2π/ω.
Following [142], we choose to measure an operator Â, 〈ai|Â|aj〉 = aiδij . In the Zeno regime, i.e. for
1/κ|a1 − a2|2 � TR � T , the authors of [142] made the following suggestions:

(I) Only those measurement outputs f(t) that are close to one of the constant curves f(t) = a1 and
f(t) = a2 have high probability.

(II) The probability of the output to be close to a1 or a2 is given by the initial values of the decom-
position coefficients |α0|2 or |β0|2 correspondingly.

(III) In the case of the output being close to a1 or a2, the final state is correspondingly the eigenstate
|a1〉 or |a2〉.

The statements (I)-(III) are reconsidered in Section 3.4.2.

3.3.2 The Single Path Case

This section shows that the conclusion (i) of Section 3.3.1 is incorrect. Being κ a given constant, the
factor ∆a2

T (3.32) is decreasing to zero, as T → +∞. Motivated by the form of (3.30), the statement
(i) ensures the point-wise convergence of the meter reading f(t) to the path a(t). This disagrees
with the highly inaccurate nature of the performed measurements, i.e. ∆f → +∞ in (3.29). In fact,
the meter readouts f(t), with mean squared deviation from a(t) greater than ∆a2

T , are by far more
numerous than the ones with squared deviation less than ∆a2

T . As a consequence, the former kind of
readouts is way more likely than the latter, solving the apparent paradox. In other words, the distance
|f(t)− a(t)|2 is allowed to exceed the small value of ∆a2

T , rejecting the conclusion (i).

To quantify the discussed criticism to the conclusion (i), we assume that |ψ0〉 = |a1〉 and Ĥ ≡ 0.
Then, we subject the system permanently residing in the state |a1〉 to monitoring by a set of identical
Gaussian meters, as discussed above. If the statement (i) of Section 3.3.1 is correct, we should observe
only the readouts clinging to the constant curve f(t) = a1, by choosing a T sufficiently large. This
appears to be unlikely, since now we have K � 1 independent measurements of a normally distributed
variable f . The meter firing at a time tk has no knowledge of what has happened in the past, at ti,
1 ≤ i < k. Thus, there is no reason to expect its output to fit into a narrow band around a1. Rather,
the mean value of |f(t)− a1|2 should be determined only by ∆f = 1/

√
2κτ , which is very large if τ is

small. Returning to (3.28), we have that the distribution W (f) of the meter readings f ≡ {f1, .., fK}
is given by:

W (f) ≡ 〈ψ(T ; f)|ψ(T ; f)〉 = C−K exp

[
−

1
K

∑K
k=1(fk − a1)2

∆a2
T /2

]
. (3.34)

Now the statement (i) is equivalent to the assertion that the most probable readouts are those for
which Θ(f) ≡

∑K
k=1(fk − a1)2/K . ∆a2

T , but this is incorrect. To determine the most probable
value of Θ we also need to take into account the density of states available for f . An output f

is represented by a point in a K-dimensional space, and R2 ≡
∑K

k=1(fk − a1)2 is just the square
of its distance from a1. Other readouts sharing the same value of the R2 lie on an K-dimensional
sphere centred at a1, and the probability to find a value of R between r and r + dr is, therefore,
given by C−K dVK(r)/dr exp(−2r2/∆a2

TK) dr, where VK is the volume a K-dimensional ball. The
derivative is just the surface area of a K−1-dimensional sphere, and is well known to be dVK(r)/dr =
2πK/2rK−1/Γ(K/2), where Γ(z) =

∫∞
0 yz−1 exp(−y)dy is the Gamma function [148]. Thus, for the

probability dP (x) to have the value of Θ between x and x+ dx, we find

dP

dx
=

(∆a2
T /2)−1

Γ(K/2)

(
x

∆a2
T /2

)K/2−1

exp

(
− x

∆a2
T /2

)
. (3.35)

The r.h.s. of (3.35) peaks at x0 = (∆a2
T /2)(K/2− 1) ≈ ∆f2/2, which means that we are most likely

to see the readouts wildly fluctuating around a1 on the scale of ±∆f , rather than those lying in a
narrow band of a width ≈ ∆aT , as shown by Figure 3.3.
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The behaviour of the meter readings fk is also confirmed by the stochastic formulation (3.7) of the
two-level system permanently residing in the state |a1〉, i.e. |ψ0〉 = |a1〉 and Ĥ ≡ 0. Being G(f) (3.12),
the meter readouts f1, .., fK correspond to independent realisations of the random variables

f1, .., fK
ind.∼ N (f |a1,∆f/

√
2), (3.36)

where N (x|µ, σ) denotes a normal distribution [149] with mean µ and standard deviation σ > 0:

N (x|µ, σ) ≡ (2πσ2)−1/2 exp[−(x− µ)2/2σ2]. (3.37)

It follows that the meter readings fk deviate from their mean a1 on the scale of the standard deviation
≈ ∆f , rather than converge in a narrow band of width ≈ ∆aT , as guaranteed by the conclusion (i).
The analytical finding (3.35) is obtained from (3.36) by applying the change of variable formula for
probability density functions and by using the definition of Chi-squared distribution, as shown in [150].
In conclusion, while it is true that the contribution of the constant readout f(t) = a1 is far greater than

the one from a readout for which
∫ T

0 [f(t) − a1]2 dt/T � ∆a2
T , the contribution itself vanishes as the

number K of meters increases. At the same time, the readouts with smaller individual probabilities
are by far more numerous, and therefore more likely. The same argument applies in the two paths
case, where |ψ0〉 is chosen to be a superposition (3.27). Also in this case, by choosing ∆aT � |a1−a2|,
one would not obtain readouts clinging to the constant curves f(t) = ai. Rather, the spread of the
readings would greatly exceed the separation between the eigenvalues a1 and a2, making it impossible
to decide immediately which of the two states the system is in. This poses a further question. If the
readouts were an eigenvalue curve f(t) = a1 or f(t) = a2, it would be easy to conclude that, as a result
of the decoherence, the system has indeed settled into one of the eigenstates of Â. But since this is
not the case, how sure can we be that decoherence has taken place? In other words, is statement (ii)
of Section 3.3.1 correct, and if it is, what is the precise mechanism of the decoherence? We answer
these questions in Section 3.4.1.

Figure 3.3: A randomly chosen readout fk/∆a, ∆a ≡ a2 − a1 = 2, for K = 109 Gaussian meters
defined by (3.12) (only 105 values are shown), for the system in the first state |a1〉, β0 = 0, Ĥ = 0,
and ∆aT = 0.03. Also shown by a horizontal white line is a1/∆a = −1/2.
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3.4 Reexamination of Continuous Fuzzy Measurement on Two-Level
Systems

The purpose of this section is to reexamine the propositions given in [142] and summarised in Sec-
tion 3.3.1. We have shown in Section 3.3.2 that the Gaussian restriction imposed on Feynman paths
cannot guarantee their closeness to readouts which, in the continuous limit, tend to become infinite,
rather than lie close to one of the eigenvalues of Â. In other words, the statement (i) of Section 3.3.1
is incorrect. With this, the estimates of the decoherence rates and Zeno times, based on the constant
readouts which align with one of the eigenvalues of Â, become inconclusive. Therefore, we propose
in Section 3.4.1 a different decoherence mechanism in a free system, while Section 3.4.2 provides a
different reason for the Zeno effect in a driven system.

3.4.1 Decoherence of a Free System

First we check whether the statement (ii) of Section 3.3.1 is correct. If Ĥ commutes with Â,
〈ai|Ĥ|aj〉 = Eiδij , for |ψ(T ; f)〉 in (3.B.15) we have

|ψ(T ; f)〉 =α0 exp(−iE1Kτ)
K∏
k=1

G(fk − a1) |a1〉

+ β0 exp(−iE2Kτ)
K∏
k=1

G(fk − a2) |a2〉. (3.38)

In the case of a free system, i.e. E1 = E2 = 0, the density matrix ρ(T ) ≡
∫
df |ψ(T ; f)〉 〈ψ(T ; f)|

yields

〈a1|ρ(T )|a2〉 = α0 β
∗
0

[∫
df G(f − a1)G(f − a2)

]K
= α0 β

∗
0 exp[−κT |a1 − a2|2/2], (3.39)

where we have evaluated the Gaussian integral, and used (3.29). If Ĥ 6= 0, with 〈ai|Ĥ|aj〉 = Eiδij , the
off-diagonal element (3.39) is multiplied by the factor exp(−i(E1−E2)T ), but the conclusion remains
the same. The coherence 〈a1|ρ(T )|a2〉 vanishes if κT = ∆a2

T � 1/|a1 − a2|2, leaving the system in a
mixed state

ρ(T ) = |a1〉|α0|2〈a1|+ |a2〉|β0|2〈a2|. (3.40)

Thus, the assumption (ii) of Section 3.3.1 is indeed correct. We still need to see how this is possible.
Instead of aligning with one of the eigenvalues of Â, a typical readout would alternate wildly, and
give no apparent indication as to the state the system has ended up in. Yet such information must be
available since, according to (3.B.15), a given readout uniquely determines the system’s final destina-
tion.

3.4.1.1 Decoherence by “Sudden Reduction”

To see how this happens, we first resort to a simpler model similar to the one used in [151]. The
measuring medium consists of a set of non-Gaussian meters, with G(f) (3.14) having the shape of a
rectangular window of a width ∆f > |a1 − a2|, i.e.

G(f) =

{
1/
√

∆f, for |f | ≤ ∆f/2,

0, otherwise.
(3.41)

Following the derivation discussed in Appendix 3.B.2, the firing of the k-th meter, with the pointer
value fk, transforms the quantum state |ψk−1〉 = αk−1|a1〉+ βk−1|a2〉 into (assuming a2 > a1):
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|ψk〉 =


αk−1|a1〉/

√
∆f, if fk ∈ [a1 −∆f/2, a2 −∆f/2] ≡ A,

|ψk−1〉/
√

∆f, if fk ∈ [a2 −∆f/2, a1 + ∆f/2] ≡ C,
βk−1|a2〉/

√
∆f, if fk ∈ [a1 + ∆f/2, a2 + ∆f/2] ≡ B.

(3.42)

Here C is the region where G(f − a1) and G(f − a2) overlap, and if fk happens to lie there, the
state before the meter has fired, |ψk−1〉, remains unaltered. If fk falls into the regions A or B,
|ψk−1〉 is reduced to |a1〉, or |a2〉, respectively. With no Hamiltonian to rotate the state between the
measurements, it will remain the same for the rest of the monitoring. An elementary calculation shows
that the probabilities P (J) ≡

∫
J 〈ψk|ψk〉 dfk to have fk in a region J = A,B,C are

P (A) = |a1 − a2||αk−1|2/∆f,
P (B) = |a1 − a2||βk−1|2/∆f,
P (C) = 1− |a1 − a2|/∆f. (3.43)

As before, we wish to lower the measurements resolution, and increase their number, albeit in a slightly
different manner:

τ → 0, ∆f → +∞, τ ∆f = κ′−1, (3.44)

where κ′ is a tunable constant. With P (A) and P (B) extremely small, each meter is now likely to leave
the state of the system unchanged. It will, therefore, propagate unaltered until an unlikely fluctuation
will put fk in, say, the region A. After that the system will continue in the state |a1〉, and subsequent
meters will produce the reading in a very broad interval [a1 − ∆f/2, a1 + ∆f/2], as illustrated in
Figure 3.4. Thus, the reduction of |ψ0〉 to |a1〉 is achieved instantaneously, but the precise moment
at which it occurs is hidden from the viewer by the noise of the readout and, thus, remains unknown
without further analysis. It is easy to evaluate the number of measurements and, therefore, the time
after which the system will have collapsed into one of the two states almost certainly. From (3.43),
the probability to survive in the initial state |ψ0〉 after K measurements is

Psurv(T ) = P (C)K = (1− κ′T |a1 − a2|/K)K
K→+∞−−−−−→ exp(−κ′T |a1 − a2|), (3.45)

and after waiting for T � κ′|a1 − a2| one can be sure that either region A or B has been hit, the
initial state has been reduced, and system’s density matrix is given by (3.40).

3.4.1.2 Decoherence by “Random Walk”

A somewhat similar mechanism must be responsible for the decoherence of a system monitored by a
set of Gaussian meters (3.12). In this case it is unrealistic to expect a single fluctuation capable of
eliminating one of the states from the superposition (3.27). Indeed, for ∆f � |a1 − a2| to have, for
example, G(f−a1)� G(f−a2) requires an f � f0 ≡ ∆f2/|a1−a2|. The probability to have any f >
f0 is then expressed in terms of the complimentary error function [148], P (f > f0) ∼ erfc(f0/∆f) ≈
(∆f/f0) exp(−f2

0 /∆f
2) ∼ exp(−∆f2/|a1−a2|2) and is extremely small. With decoherence by “sudden

death” unlikely, we should find another mechanism.
Consider the ratio ξk ≡ |αk/βk|2, such that ξk = 0 if the particle is in the state |a2〉 and ξk = +∞, if
it is in the state |a1〉. By plug (3.12) in (3.38), with E1 = E2 = 0, we have

ξK = exp(−XK)|α0/β0|2, (3.46)

where

XK ≡
2(a2 − a1)

∆f2

K∑
k=1

(
fk −

a1 + a2

2

)
, (3.47)

so that the ratio is determined by the value of the sum Xk. For the system to be ultimately driven
into one of the eigenstates of Â, Xk must be a large positive or a large negative number. To show
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Figure 3.4: Figure (a) shows a randomly chosen readout fk/∆a, ∆a ≡ a2 − a1, for K = 109 non-
Gaussian meters defined by (3.41) (only 105 values are shown). The system is prepared in the initial
state |ψ0〉 = (|a1〉+ |a2〉)/

√
2, with a2 = −a1 = 1, Ĥ = 0 and ∆f/∆a = 4× 108. Figure (b) provides

the probability to find the system in the state |a1〉 after k meters have fired.

that this is always the case, we look at the distribution of the random variable Xk.
Using (3.38), with E1 = E2 = 0, we get the probability density function p(f) of the meter readings
f ≡ {f1, .., fK}:

p(f) = 〈ψ(T ; f)|ψ(T ; f)〉 = |α0|2
K∏
k=1

G2(fk − a1) + |β0|2
K∏
k=1

G2(fk − a2), (3.48)

where G(f) is defined by (3.12). The distribution of the values y assumed by the sum YK(f) ≡
∑K

k=1 fk
can be computed as

WYK (y) =

∫
df p(f) δ(YK(f)− y), (3.49)

where p(f) is given by (3.48) and δ(x) is the Dirac delta. The expression (3.49) requires the compu-
tation of the integrals

In(y) ≡
∫
dx1..dxK

K∏
k=1

G2(xk − an) δ

(
K∑
k=1

xk − y

)
, n = 1, 2. (3.50)

Given G(f) (3.12), the product
∏K
k=1G

2(xk − an) corresponds to the probability density function
(PDF) of the random vector x ≡ {x1, .., xK}, whose components are independent and normally dis-
tributed variables, with mean an and standard deviation ∆f/

√
2, i.e.

x1, .., xK
ind.∼ N (x|an,∆f/

√
2), (3.51)

where N (x|µ, σ) is defined by (3.37). Provided that In(y) is the PDF of the sum
∑K

k=1 xk, and

x1, .., xK
ind.∼ N (x|µ, σ) ⇒

K∑
k=1

xk ∼ N (x|Kµ,
√
Kσ), (3.52)

as shown in [152], it follows
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In(y) = N (y|Kan,K∆aT /2), n = 1, 2, (3.53)

where we have used (3.29). As a result, the distribution WYK (y) (3.49) reads

WYK (y) = |α0|2N (y|Ka1,K∆aT /2) + |β0|2N (y|Ka2,K∆aT /2). (3.54)

Given the function

x = g(y) ≡ 2(a2 − a1)

∆f2

[
y − K(a1 + a2)

2

]
, (3.55)

such that XK = g(YK), the distribution W (x) of the values x assumed by X(T ) ≡ XK (3.47) can be
found by the change of variable formula:

W (x) = WYK (g−1(x))

∣∣∣∣ ddx(g−1(x))

∣∣∣∣ = |α0|2N (x| − 2κT (a1 − a2)2, 2
√
κT |a1 − a2|)

+ |β0|2N (x|2κT (a1 − a2)2, 2
√
κT |a1 − a2|), (3.56)

where we have used (3.29) and g−1 denotes the inverse function of g (3.55).
A brief inspection shows that we have a case of two Gaussian random walks with opposite drifts.
A walk can be visualised as a process, in which the displacement of a walker at the k-th step con-
sists of a constant “drift” ±2κτ(a1 − a2)2 and a random shift y, drawn from a normal distribution
N (y|0, 2

√
κτ |a1−a2|). The sum X(T ) is then the displacement of the walker at a time T . It is readily

seen that the distribution of X(T ) consists of two Gaussians moving, as time progresses, in opposite
directions, and becoming broader at the same time. The broadening, however, is much slower then
the separation, and for T � 1/κ(a1 − a2)2, i.e., for ∆aT � |a1 − a2|, the Gaussians are separated
completely, as shown in Figure 3.5.
Thus, there are just two possibilities. Either a walk ends far to the right, X(T ) � 1, and leaves the
system in the state |a2〉 since ξ(T ) ≡ ξT/τ → 0, or it ends far to the left, X(T )� −1, and leaves the
system in the state |a1〉, because ξ(T ) → +∞. The relative frequency, with which both types of the
walks occur, is given by the ratio |α0|2/|β0|2, in accordance with (3.40).
In summary, for a free system, complete decoherence of an arbitrary pure state (3.27) is indeed
achieved for T � 1/κ(a1−a2)2, but by a mechanism different from the one proposed in [142]. A typi-
cal readout does not align with one of the eigenvalues of the measured operator, and remains irregular
at all times as shown in Figure 3.6a. To find out into which of the two states the system is driven
as a result, we must use all the readings to evaluate the exponent in (3.46), and then see whether
the result is a large positive, or a large negative number (see Figure 3.6b). This analysis is easily
generalised to systems with any number of states N > 2, in which case the large-time distribution
of X(T ) will be a multi-modal sum of Gaussians. The random walk will choose a single component
of the Gaussian mixture, driving the system to the corresponding state. A randomly chosen graph
|αk|2 = ξ0 exp(−Xk)/[1 + ξ0 exp(−Xk)] versus k is shown in Figure 3.6c. The irregular patterns, with
clearly visible ups and downs, reflect, albeit indirectly, the behaviour of the underlying random walk
Xk in Figure 3.6b. As Xk increases, its fluctuations are damped be the factor exp(−Xk), and the
curve |αk|2 becomes smoother.
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Figure 3.5: The distribution (3.56) of the sum X(T ) ≡ XK (3.47) for different values of the parameter
γ = 2κT (a1 − a2)2. The system is prepared in the initial state |ψ0〉 = (|a1〉 + |a2〉)/

√
2, with a2 =

−a1 = 1, Ĥ = 0 and ∆f/(a2−a1) = 250. The histograms show the corresponding results of numerical
simulations involving 2× 104 random realisations, obtained with the help of Algorithm 3.1.

Figure 3.6: (a) A randomly chosen readout fk/∆a, ∆a ≡ a2 − a1, for K = 109 Gaussian meters
(only 105 values are shown). The system is prepared in the initial state |ψ0〉 = (|a1〉+ |a2〉)/

√
2, with

a2 = −a1 = 1, Ĥ = 0 and ∆f/∆a = 104. (b) Displacement of the random walker Xk, defined in
(3.47). (c) The probability to find the system in the state |a1〉 after k meters have fired.
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3.4.2 Zeno Effect in a Driven System

This section reconsiders the propositions (I)-(III) of Section 3.3.1. The operator Â, Â|an〉 = an|an〉,
is monitored in a two-level system, with Hamiltonian Ĥ:

〈a1|Ĥ|a1〉 = 〈a2|Ĥ|a2〉 = 0, 〈a1|Ĥ|a2〉 = 〈a2|Ĥ|a1〉 ≡ ω. (3.57)

In the absence of the meters, the probability P0(t) to start from any initial state |ψ0〉 = α0|a1〉+β0|a2〉,
with 〈ψ0|ψ0〉 = 1, and to return to the state |ψ0〉 at time t > 0 is given by

P0(t) = |〈ψ0| exp(−iĤt)|ψ0〉|2 = cos2(ωt) + (α∗0β0 + α0β
∗
0)2 sin2(ωt), (3.58)

where z∗ is the complex conjugate of z ∈ C. If (α∗0β0 +α0β
∗
0)2 6= 1, (3.58) shows that the system per-

forms Rabi oscillations with a period TR = 2π/ω. The oscillations (3.58) can be quenched by the Zeno
effect [127], that corresponds to an artificial freezing of the natural dynamics, obtained by frequent
measurements, i.e. τ → 0. In the Zeno regime, the authors of [142] made the statements (I)-(III),
we want to reconsider. The case of the rectangular measure G (3.41) is discussed in Section 3.4.2.1.
The Gaussian measure G (3.12) is considered in Section 3.4.2.2 to revise the propositions (I)-(III).

3.4.2.1 Zeno Effect by “Sudden Reduction”

We start with the simple model (3.41)-(3.44) of Section 3.4.1.1. As before, the reduction of the state
to either |a1〉 or |a2〉 is achieved whenever a rare fluctuation puts an fk into the regions A or B. A
typical time between two fluctuations is of the order of T ′LR (LR stands for “level resolution”), where
T ′LR is the average time after which the first fluctuation occurs,

T ′LR = −
∫ ∞

0
t
d

dt
Psurv(t) dt =

1

κ′|a1 − a2|
. (3.59)

What happens to the system between two subsequent reductions depends on the relation between
T ′LR and the Rabi period TR. For TR . T ′LR, the system may have a chance to perform a number
of Rabi oscillations, as shown in Figure 3.7a. Given |ψ0〉 = |a1〉 in (3.58), the probability |α(t, [f ])|2
to arrive in the state |a1〉 at time t will consist of several pieces of regular oscillation ∼ cos2(ωt),
with arbitrary relative phases. The curve |α(t, [f ])|2 becomes discontinuous because of the sudden
reductions to either |a1〉 or |a2〉, caused by the occurrence of a meter reading fk into the regions A or
B (vertical dashed lines in Figure 3.7a).
For TR & T ′LR, the system would, on average, have no time to complete a single oscillation before it
is interrupted by the next reduction, and the curve will typically have an irregular shape shown in
Figure 3.7b.
The behaviour is pushed to the limit if TR � T ′LR. The system state is reduced to either |a1〉 or |a2〉
with the time scale T ′LR way faster than the time scale TR of the Rabi oscillations. In other words, the
probability |α(t, [f ])|2 is continuously forced to the values 0 or 1 by the frequent reductions, destroying
the natural oscillations. The curve |α(t, [f ])|2 takes the characteristic form of telegraph noise [153]
shown in Figure 3.7c. In this regime, the system spends, on average, a duration T stay in |a1〉, then it
makes a sudden transition to spend a similar amount of time in |a2〉, as shown in Figure 3.7c. The
time T stay can be evaluated by noting that after free evolution during T ′LR, the probability for the
system to have changed its state is

|〈ai| exp(−iĤT ′LR)|aj〉|2 ≈ |〈ai|1− iĤT ′LR|aj〉|2 = ω2T ′LR
2
, j 6= i. (3.60)

The system succeeds in changing its state after approximately natt ≈ 1/ω2T ′LR
2 attempts, and

T stay ≈ nattT ′LR =
T 2
R

4π2T ′LR
. (3.61)

Thus, the Zeno regime is reached as TR/T
′
LR →∞, and the system remains in one state for any finite

time t.
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Figure 3.7: Probabilities |α(t, [f ])|2 versus t for a randomly chosen set of readouts [f ]. A “driven”
system, with Ĥ given by (3.57), is monitored for 0 ≤ t ≤ T , ωT = 25, by K = 109 rectangular meters
(3.41). The system’s initial state is |ψ0〉 = |a1〉, and T ′LR/TR = a) 0.5, b) 0.08, and c) 0.008. The
dashed lines show the Rabi oscillations of the system with no meters present. The vertical dashed
lines in (a) indicate the moments the system’s state is suddenly reduced to |a1〉 or |a2〉.

3.4.2.2 Zeno Effect by “Random Walk”

In general, it is impossible to consider separately the system evolution driven by Ĥ (3.57) and the
Gaussian pointers (3.12), as was done in Section 3.4.1.2. The rest of the analysis will have to be
performed numerically by taking advantage of the designed Algorithm 3.1.
The results, shown in Figures 3.8 and 3.9, are broadly similar to those presented in Figure 3.7.
Following [142], we can introduce a time TLR, similar to T ′LR in (3.59),

TLR = 1/κ(a1 − a2)2, (3.62)

and study the evolution of the system’s state as function of TLR/TR.
For TR ∼ TLR � T , the system performs regular oscillations which gradually get out of phase with
the uncoupled Rabi oscillations (Figure 3.8a). For TR & TLR, the curve |α(t, [f ])|2 is highly irregular
(Figure 3.8b). For TR � TLR, the system is near a Zeno regime, and the |α(t, [f ])|2 curve has a
telegraph noise shape (Figure 3.9b), although we cannot easily evaluate the typical duration of T stay,
as done in Section 3.4.2.1.
Figure 3.9c shows that each time the system changes the state, the corresponding random walk changes
direction. With evolutions of the system and the pointers intertwined, we are unable to say whether
the change of the system state affects the direction of the walk, or if the change of direction causes
the system to alter its state. As in Section 3.4.2.1, the Zeno regime is reached when T stay →∞, and
the system remains in one state for any finite t.
In summary, for TLR � TR � T , we do have a Zeno effect, although the conclusions (I)-(III) of [142]
must be modified as follows:

(I ′) The measurement outputs f(t) that are close to one of the constant curves f(t) = a1 and
f(t) = a2 are by far not the most probable ones. A typical readout will look like the ones shown
in Figure 3.9a.

(II ′) The probability of a readout being close to a1 or a2 is negligible. An analysis of the evolutions,
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induced by these constant readouts, does not explain the mechanism of the Zeno effect, since
such scenarios will never occur in practice.

(III ′) Even with most readouts not close to a1 or a2, the Rabi oscillations are quenched, and final state
is the eigenstate |a1〉 or |a2〉.

Figure 3.8: Probabilities |α(t, [f ])|2 vs. t for a randomly chosen set of readouts [f ]. A “driven” system,
with Ĥ (3.57), is monitored for 0 ≤ t ≤ T , ωT = 10π, by K = 109 Gaussian meters (3.12). The initial
state is |ψ0〉 = |a1〉, and TLR/TR = a) 0.4; and b) 0.03. The dashed lines show the Rabi oscillations
of the system with no meters present.

Figure 3.9: a) A randomly chosen readout f(t)/∆a, ∆a ≡ a2 − a1, a2 = −a1 = 1, for K = 109 (only
105 shown) Gaussian meters (3.12). b) Corresponding probability |α(t, [f ])|2 vs. t for a system driven
by Ĥ (3.57). The initial state is |ψ0〉 = |a1〉, and TLR/TR =0.002. The dashed lines show the Rabi
oscillations of the system with no meters present. c) Displacement of the random walker (3.47).
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3.5 Conclusions & Discussion

The chapter focuses on the stochastic simulation of continuous quantum measurements. In Ap-
pendix 3.B, we provide the basic mathematical formalism, starting from the Hamilton equations
for a classical meter. A classical system can be accurately monitored, without any perturbation of the
natural dynamics, as shown in Appendix 3.B.1. However, it is not possible to do the same in the case of
quantum systems. The equations modelling a single quantum meter are discussed in Appendix 3.B.2,
showing that the meter readings affect the state of the coupled quantum system. The derivation
is extended in Appendix 3.B.3 to the case of K identical impulsive quantum meters, performed at
uniform intervals with length τ > 0. The continuous measurements are reached in the limit K → +∞
and τ → 0, as suggested in [131]. Different regimes of the taken observations can be characterised by
their accuracy and the corresponding influence on the system dynamics.
On the basis of the equations derived in Appendix 3.B, Section 3.2 designs the stochastic model and
the corresponding Monte Carlo (MC) method to simulate the continuous quantum measurements.
The probabilistic model is described by (3.7) and the MC method is summarised in Algorithm 3.1.
Quantities of interest can be approximated by statistics computed on the drawn samples with size
S ≥ 1. The simulation method is validated through comparison with the available analytical solution
(3.17) of the expected meter reading F (τ), as shown in Figure 3.1a. The order O(S−1/2) of the con-
vergence rate is confirmed in Figure 3.1b, using the analytical formula (3.26) for the density matrix
ρ(tk). The MC method also verifies the non-Markovian behaviour of the quantum meters, as shown
in Figure 3.2.
The MC method helps us in reconsidering the conclusions of the seminal paper on continuous fuzzy
measurements [142] for a large number of impulsive meters of accuracy ∆f , imposing a Gaussian re-
striction on the Feynman paths of a two-level system, as summarised in Section 3.3.1. In Section 3.3.2,
we show that, for a fixed period of monitoring, T , as the number of meters, K, increases, typical read-
outs fk become highly irregular, and do not align with one of the eigenvalues of the measured quantity,
as suggested in [142]. The same behaviour of the meter readings is observed when decoherence of an
initial state is achieved (Figure 3.6a), or Zeno effect is imposed on the system (Figure 3.9a). Thus, a
different description of the decoherence process and the Zeno effect is required, and we present it in
Section 3.4, using a fully tractable non-Gaussian model as a guide.
In particular, for a system prepared in a pure state (3.27), in the case its Hamiltonian Ĥ does not
facilitate transitions between the eigenstates of the measured quantity Â, decoherence can be linked
to a fictitious random walk, which is bound to lead to one of two outcomes, which, in turn, determine
the final state of the system. More precisely, we have shown that for ∆aT = ∆f/

√
2/K � |a1 − a2|,

the restriction imposed on the paths in (3.30) does not limit the readouts f(t), to the classes (i = 1, 2)

f(t) ∈ Fi, Fi ≡
{
f(t) : T−1

∫ T

0
(f(t)− ai)2 dt . ∆a2

T

}
, (3.63)

as proposed in [142]. Given (3.54), the distribution of K−1
∑K

k=1(fk − ai) shows that, in the limit
(3.29), a readout f would belong to one of the two classes

f(t) ∈ F ′i , F ′i ≡

{
f(t) :

[
T−1

∫ T

0
(f(t)− ai) dt

]2

. ∆a2
T

}
. (3.64)

Condition (3.64) is weaker than (3.63) and it allows a typical readout fluctuating on the scale ∆f →
+∞, rather than aligning with an eigenvalue ai, as it would do if (3.63) were true. To find out in
which of the two eigenstates our monitoring has left the system, we would need to evaluate the (finite)
sum

∑K
k=1 fk/K, in order to see whether its value is closer to a1 and a2. However, this procedure

would become problematic in the limit K → ∞, since then each term of the sum can be arbitrary
large.
The random walk analogy remains useful also in a case of a driven system, subject to Rabi oscillations.
For such a system, a typical readout is highly irregular (see Figure 3.9a) even in a near-Zeno regime,
where Rabi oscillations of the system’s state are replaced by a telegraph noise (Figure 3.9b). In this
case, as seen in Figure 3.9c, the corresponding random walk changes direction every time the system
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jumps from one state to the other. The two evolutions should be considered together, and it is difficult
to say whether it is the walker, which causes the system to change its state, or the system, which
causes the walker to change direction. The derived results have been published in:

1. D. Sokolovski, S. Rusconi, S. Brouard, and E. Akhmatskaya. Reexamination of continuous fuzzy
measurement on two-level systems. Phys. Rev. A, 95:042111, 2017.

Using the stochastic framework described in this chapter, we plan further to analyse the behaviour
of distinguishable and identical particles (bosons), trapped in a double well potential, and to study
ensembles of frequently observed two-level systems as detectors for the appearance of the Zeno effect.
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Appendix

3.A Basic Principles of Elementary Quantum Mechanics

This appendix provides some basic knowledge of quantum mechanics. In particular, we present in Ap-
pendix 3.A.1 the role of the operators associated with measurable quantities of a quantum system. The
illustrative example of the momentum operator is discussed. Commuting operators are characterised
in Appendix 3.A.2, focussing on the case of the measured operator commuting with the Hamiltonian
of the quantum system. Appendix 3.A.3 summarises the Born postulates and the thought experiment
of the Schrödinger’s cat. The entanglement phenomenon is also explained, outlining the difference be-
tween product and entangled states. In Appendix 3.A.4, we present the definition and some properties
of the probability amplitude, applying the concept in the example of the Young double-slit experiment.
Finally, Appendix 3.A.5 discusses the density operator, explaining the difference between pure and
mixed states. The physical meaning of the density matrix entries is explained in the example of the
stochastic model (3.7).

3.A.1 Measurable Quantities

Given a quantum system in the Hilbert space H, over the complex set C, any measurable quantity
x ∈ R, or observable, is associated with a Hermitian (self-adjoint) operator X̂ : H → H, whose
eigenvalues correspond to the possible outcomes of the observable x. The quantum state or wave-
function |x〉 ∈ H provides the state of the system, in case the observable x is measured. The set
X ≡ {|x〉}x∈R establishes a complete orthonormal basis of H, i.e. 1̂|ψ〉 = |ψ〉, ∀|ψ〉 ∈ H, with

1̂ ≡
∫
|x〉 〈x| dx, and 〈x|y〉 = δ(x − y), for any |x〉 and |y〉 ∈ X, with δ(x) the Dirac delta. Any

quantum state of the system can be written as superposition, or linear combination, of the basis
elements, i.e. |ψ〉 =

∫
ψ(x) |x〉 dx, ψ(x) ≡ 〈x|ψ〉, ∀|ψ〉 ∈ H.

The operator X̂ can be defined such that the wave-functions |x〉 ∈ X correspond to its eigenvectors:

X̂ ≡
∫
dx |x〉x 〈x|. (3.A.1)

From previous definitions, it easily follows X̂|x〉 = x|x〉. In addition, it is possible to verify that the
operator X̂ is Hermitian. For any |v〉 and |w〉 ∈ H, we have 〈Xv|w〉 = 〈v|Xw〉, where |Xv〉 ≡ X̂|v〉 ∈ H
and |Xw〉 ≡ X̂|w〉 ∈ H.
An illustrative example is given by the momentum operator λ̂ : H → H. It corresponds to the operator
associated with the momentum λ of a particle with position f . Consider the operator K̂ : H → H
defined as K̂ ≡ −i∂f , with i the imaginary unit. First, we show that operator K̂ is Hermitian. For
any

|ψn〉 ≡
∫
ψn(f) |f〉 df ∈ H, ψn(f) ≡ 〈f |ψn〉 ∈ C, n = 1, 2, (3.A.2)

we have:

〈ψ1|K2〉 = −i
∫
ψ∗1(f) ∂fψ2(f) df = i

∫
∂fψ

∗
1(f)ψ2(f) df =

=

∫
(−i∂fψ1(f))∗ ψ2(f) df = 〈K1|ψ2〉, (3.A.3)
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where |Kn〉 ≡ K̂|ψn〉 ∈ H, for n = 1, 2, and z∗ is the complex conjugate of z ∈ C. Then, we consider
the spectrum of operator K̂:

− i∂fψ(f) = kψ(f), ψ(f) ≡ 〈f |ψ〉 ∈ C, |ψ〉 ≡
∫
ψ(f) |f〉 df ∈ H. (3.A.4)

It follows

ψ(f) ∝ exp(ikf) = cos(kf) + i sin(kf). (3.A.5)

The eigenfunction ψ(f) is proportional to (∝) a plane wave with wavelength l = 2π/k. By De Broglie
formula λ = 2π~/l, we have λ = k, if ~ = 1. In other words, the eigenvalue k of the operator
K̂ = −i∂f is given by the momentum λ of the particle with position f . Given ~ = 1, the Hermitian

operator −i∂f corresponds to the momentum operator λ̂, expressed in the position f coordinate, whose
eigenfunctions 〈f |λ〉 are proportional to exp(iλf).

3.A.2 Commuting Operators

The operators Â, B̂ : H → H on the Hilbert space H are commuting in the case the commutator

[Â, B̂] ≡ ÂB̂ − B̂Â = 0. (3.A.6)

The definition (3.A.6) can be generalised. In particular, the operators Â and B̂ commute if and only
if

f(Â)g(B̂)− g(B̂)f(Â) = 0, (3.A.7)

for any function f and g. Two operators are commuting if and only if they share the same eigenvectors.
Given Â : H → H, Â|a〉 = a|a〉, commuting with the operator B̂ : H → H, we have that B̂|a〉 must
be an eigenvector of the operator Â relative to the eigenvalue a:

ÂB̂|a〉 = B̂Â|a〉 = aB̂|a〉. (3.A.8)

In other words, B̂|a〉 must differ from |a〉 only by a constant factor b, i.e. B̂|a〉 = b|a〉, showing that
|a〉 is an eigenvector of the operator B̂ with corresponding eigenvalue b.
Given the operators Â, B̂ : H → H with the same eigenvectors, i.e. Â|x〉 = ax|x〉 and B̂|x〉 = bx|x〉, it
is possible to show that Â and B̂ commute. In the complete basis of the eigenvectors |x〉, we have

(ÂB̂ − B̂Â)|ψ〉 =

∫
ψ(x) (ÂB̂ − B̂Â) |x〉 dx =

∫
ψ(x) (axbx − axbx) |x〉 dx = 0, ∀|ψ〉 ∈ H, (3.A.9)

where ψ(x) = 〈x|ψ〉.
Then, we consider the observable x, represented by the operator X̂ : H → H, of a quantum system in
the Hilbert space H. The quantum state |ψ(t)〉 ∈ H is driven by the Hamiltonian Ĥ (~ = 1):

i∂t|ψ(t)〉 = Ĥ|ψ(t)〉, |ψ(0)〉 = |ψ0〉. (3.A.10)

Provided the quantum state |ψ(t)〉 ∈ H, the n-th order moment of the observable x is given by

E[xn] ≡
∫
xn p(x) dx = 〈ψ(t)|X̂n|ψ(t)〉, (3.A.11)

since p(x) = 〈ψ(t)|x〉〈x|ψ(t)〉, see Appendix 3.A.3 for further explanations. Expression (3.A.11) leads
to

∂t E[xn] = ∂t〈ψ(t)|X̂n|ψ(t)〉 = (∂t〈ψ(t)|) X̂n|ψ(t)〉+ 〈ψ(t)|X̂n (∂t|ψ(t)〉) =

=
(
〈ψ(t)|Ĥi

)
X̂n|ψ(t)〉+ 〈ψ(t)|X̂n

(
−iĤ|ψ(t)〉

)
= i〈ψ(t)|[Ĥ, X̂n]|ψ(t)〉, (3.A.12)
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where [Ĥ, X̂n] ≡ ĤX̂n − X̂nĤ. If the operators Ĥ and X̂ commute, the observable x is a conserved
quantity, being any order moment constant in time. If the interest is in the observable dynamics, one
should assume [Ĥ, X̂] 6= 0, as often done in the chapter.

3.A.3 Born Postulates

Let |Ψ〉 ∈ H be the state of a system, composed by the compound of K ≥ 1 quantum systems, living
in the Hilbert spaces H1, ..,HK , i.e. H ≡ H1 ⊗ .. ⊗HK . We consider the observable ϕ ∈ R and the
corresponding quantum state |ϕ〉 ∈ H1 ⊗ .. ⊗Hk, 1 ≤ k ≤ K, as explained in Appendix 3.A.1. The
Born Postulates can be summarised by the following statements.

(i) The quantum state |ψ(ϕ)〉 ≡ 〈ϕ|Ψ〉 expresses the state of the subsystem living in the Hilbert
space Hk+1 ⊗ ..⊗HK . In the case k = K, 〈ϕ|Ψ〉 ∈ C is defined as the probability amplitude to
find the quantum system in the state |ϕ〉 ∈ H, being its state |Ψ〉 ∈ H.

(ii) The function p(ϕ) ≡ 〈Ψ|ϕ〉〈ϕ|Ψ〉 : R→ R+ provides the probability density function to measure
observable ϕ ∈ R, corresponding to the quantum state |ϕ〉 ∈ H1 ⊗ ..⊗Hk, 1 ≤ k ≤ K.

(iii) After measuring the observable ϕ0 ∈ R, the quantum systems collapse to the states |ϕ0〉 ∈
H1 ⊗ ..⊗Hk, |ψ(ϕ0)〉 ≡ 〈ϕ0|Ψ〉 ∈ Hk+1 ⊗ ..⊗HK and |ϕ0〉|ψ(ϕ0)〉 ∈ H.

The collapse of the wave-function allows us discussing the thought experiment of the Schrödinger’s
cat. A cat is placed in a box, together with a radioactive atom. If the atom decays, a mechanism
is prepared to kill the cat. Before opening the box, the cat’s fate is tied to the wave-function of the
atom, which is in a superposition of decayed and undecayed states. Thus, the cat must itself be in
a superposition of dead and alive states, before the observer opens the box, “observes” the cat, and
“collapses” its wave-function to either the dead or the alive state.
The Born postulates can also explain a curious phenomenon, known as entanglement. Quantum
entanglement occurs when two systems are generated, or interact, in ways such that the quantum state
of each system cannot be described independently of the other. Even when the systems are separated
by a large distance, the two systems must be described as a whole. To explain such phenomenon, we
provide the following example.
Consider two quantum systems living in the separable Hilbert spaces Ha and Hb, with orthonormal
complete basis {|an〉}n=1,2 and {|bn〉}n=1,2 respectively. The quantum state |Ψ〉 = |a1〉|b2〉+ |a2〉|b1〉 ∈
Ha ⊗ Hb is prepared and the systems are separated by a large distance. Suppose to find the first
system in the state |a1〉 ∈ Ha. The second system must be in the state 〈a1|Ψ〉 = |b2〉 ∈ Hb. Despite
the two systems are very far, the second system is forced to be in state |b2〉, just because the first
system is in state |a1〉. As a result, each system cannot be fully described without considering the
other and they must be considered as a whole. The reason lies in the way how state |Ψ〉 is built. The
quantum state |Ψ〉 is not a product state, because it cannot be factorised as a product of states of its
single constituents. Thus, it corresponds to an entangled state, that must be described as a whole.

3.A.4 Probability Amplitudes

Given |ψ〉 ∈ H the state of a quantum system, living in the Hilbert space H, the probability amplitude
to find the system in state |ϕ〉 ∈ H is computed as 〈ϕ|ψ〉 ∈ C. In the case the system evolves without
been measured, or observed, the following laws apply.

(i) The probability density function for the occurrence of an event is the square of the absolute
value of the corresponding probability amplitude.

(ii) If there exist mutually exclusive alternatives in which an event might occur, the probability
amplitude for the event is given by the sum of probability amplitudes of the distinct alternatives.

(iii) In the case an event is composed by a succession of sub-events, then the probability amplitude
for the complete event is the product of the sub-events amplitudes.
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(iv) Any product state of a composite quantum system has probability amplitude equal to the product
of the amplitudes of the states of constituent subsystems.

If an experiment is performed to decide between mutually exclusive alternatives, the probability of
each alternative is given by the squared modulus of the corresponding amplitude. However, it is not
possible to sum the amplitudes of the mutually exclusive alternatives.
The concept is better understood by means of the Young double-slit experiment. Electrons are fired
against a plate pierced by two parallel slits. The experiment investigates the probability distribution
of detecting electrons on a large screen placed behind the plate. Intuition suggests computing the
probability of interest as the sum of the probabilities to pass through one of the two slits. However, if
one assumes this law to be true, the observed interference pattern on the screen cannot be understood.
The correct explanation is provided by probability amplitudes. Let ψi ∈ C be the amplitude for an
electron to pass through the slit i = 1, 2. The amplitude for pass through either slit is given by
ψ = ψ1 +ψ2 ∈ C and the corresponding probability is given by P = |ψ|2 = |ψ1|2 + |ψ2|2 +ψ∗1ψ2 +ψ∗2ψ1,
with z∗ the complex conjugate of z ∈ C. The term ψ∗1ψ2 + ψ∗2ψ1 is called the interference term and it
would be missing, if we had added the probabilities |ψ1|2 and |ψ2|2. The interference term is capable
of explaining the observed pattern on the screen, not understandable by the real probabilities. In the
case a detector is placed to observe in which slit each electron goes through, the interference pattern on
the screen is destroyed and the probabilities |ψ1|2 and |ψ2|2 can be added, yielding P = |ψ1|2 + |ψ2|2.

3.A.5 Density Operator

The density operator can be understood as the observer knowledge of the quantum system. Given the
state vector |ψ〉 belonging to the Hilbert space H, the density operator is defined as

ρ ≡ |ψ〉〈ψ|. (3.A.13)

The density operator should be used when the quantum state inherits a certain uncertainty, with
respect to some observables. Given the state vector |ψ(x)〉 ∈ H depending on the observable x, the
density operator

ρ ≡
∑
x

px|ψ(x)〉〈ψ(x)| (3.A.14)

models a quantum system found in the state |ψ(x)〉 with probability px. Equivalently, the density
operator can represent an ensemble of identical systems in different states. The form (3.A.13) of the
density operator indicates a pure state of the quantum system, while (3.A.14) corresponds to a mixed
state.
The physical content of the density operator appears by computing the elements ρxy of the density
matrix, with respect to the complete orthonormal basis X:

ρxy = 〈x|ρ|y〉, ∀|x〉, |y〉 ∈ X. (3.A.15)

To analyse these matrix elements, we assume the simple form ρ = |ψ〉〈ψ| (3.A.13) of the density
operator, though the arguments easily generalise to arbitrary density operators. As discussed in
Appendix 3.A.3, the diagonal element ρxx provides the probability of being in the state |x〉 ∈ X:

ρxx = 〈x|ψ〉〈ψ|x〉 = |〈x|ψ〉|2. (3.A.16)

The off-diagonal elements ρxy, ∀x 6= y, are referred as coherences, since they give information about
the relative phase of the states |x〉 and |y〉 ∈ X. Provided the state vector

|ψ〉 =
∑
x

cx|x〉 ∈ H, cx = |cx| exp(iφx) ∈ C, |x〉 ∈ X, (3.A.17)

the coherence

ρxy = 〈x|ψ〉〈ψ|y〉 = |cxcy| exp[i(φx − φy)] (3.A.18)
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accounts for the difference in phase of the states |x〉 and |y〉 ∈ X. The coherence between different
states enables their interference, making them indistinguishable, as stated by Feynman’s Uncertainty
Principle (FUP): interfering routes cannot be told apart, and should be considered as one single real
route. On the other hand, it is possible to distinguish incoherent states, because they are not able to
interfere.
The role of the entries of the density matrix ρ(tk) (3.9) is particularly clear in the example of the
stochastic model (3.7). In the orthonormal basis of the eigenvectors |an〉 of the operator Â, Â|an〉 =
an|an〉, the element of row i and column j of the density matrix ρ(tk) (3.9) can be written as

〈ai|ρ(tk)|aj〉 =

∫
p(fk) 〈ai|ϕ(fk)〉 〈ϕ(fk)|aj〉 dfk ∈ C. (3.A.19)

By plugging |ϕ(fk)〉 (3.7) in (3.A.19), we have

〈ai|ρ(tk)|aj〉 = Θi,j ci(tk) c
∗
j (tk), Θi,j ≡

∫
G(f − ai)G(f − aj) df ≥ 0. (3.A.20)

In the Markovian regime explained in Section 3.2.3, the real-valued measure G(f), with
∫
G2(f) df = 1,

is narrow enough to satisfy the condition (3.20). The diagonal element 〈ai|ρ(tk)|ai〉 provides the
probability |ci(tk)|2 to find the quantum system in the eigenstate |ai〉, whereas the assumption (3.20)
imposes 〈ai|ρ(tk)|aj〉 ≈ 0, ∀i 6= j. The negligible coherences reflect the destruction of the interference
among the system states. As a result, it is possible to recognise the travelled paths by the narrow
measure G(f) (3.20).
If (3.20) does not hold, the supports of the densities G(f − ai) and G(f − aj), i 6= j, are overlapping,
as discussed in Section 3.2.3. The factor Θi,j in (3.A.20) accounts for the amount of overlap. A
broad measure G(f) implies big values of Θi,j . The strong coherence 〈ai|ρ(tk)|aj〉 ∝ Θi,j allows the
interference among the system states, making them indistinguishable by the broad measure G(f), as
specified by the FUP.

3.B Basic Mathematics of Continuous Quantum Measurements

This appendix presents a brief overview of the mathematical formalism used to analyse continuous
quantum measurements. In particular, we describe the measurements apparatus (meter) coupled with
the observed system. Appendix 3.B.1 reviews the Hamilton equations for a classical meter. As shown in
Appendix 3.B.1, it is possible to monitor a classical system without perturbing its evolution. However,
the same is not true for quantum systems. Appendix 3.B.2 discusses the equations modelling a single
quantum meter, showing that the observations affect the state of the coupled quantum system. In
Appendix 3.B.3, we extend the derivation to the case of K identical impulsive von Neumann quantum
meters, coupled with a given quantum system. According to the spreading of the meters measure
distribution, different regimes can be characterised.

3.B.1 Classical Meter

Let the system of interest, S, be a classical particle with mass m, position x, momentum p and

Hamiltonian h(x, p) = p2

2m+V (x). Suppose we are interested in a certain quantity (dynamical variable)
A(x, p), which cannot be measured by a direct inspection. One possible strategy consists of building
an apparatus, whose direct inspection can provide the value of A. We can use a second particle, with
mass M , position f and momentum λ, to play the role of the pointer P . We couple P to the system
S so that the total Hamiltonian Ĥ takes the form

Ĥ = h(x, p) +
λ2

2M
+ g λA(x, p), (3.B.1)

where the time dependent variable g(t) models the way how the pointer observation is performed.
The coupled systems can be tuned in such a way that the displacement of the pointer would be equal
to the desired quantity A. For a massive pointer, M → ∞, the second term in the R.H.S. of (3.B.1)
may be neglected, and the equations of motion of the composite system become
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
ẋ = ∂pĤ = p

m + g λ ∂pA(x, p),

ḟ = ∂λĤ = g A(x, p),

ṗ = −∂xĤ = −dV (x)
dx − g λ ∂xA(x, p),

λ̇ = −∂f Ĥ = 0.

(3.B.2)

The pointer’s momentum is conserved, and setting λ(0) = 0, we also have λ(t) = 0, ∀t ∈ R+.
Equation (3.B.2) leads to:

ẋ =
p

m
, ṗ = −dV (x)

dx
, ḟ = g A(x, p). (3.B.3)

The first two equations in (3.B.3) correspond to the Hamilton equations of the particle with mass m,
not perturbed by the presence of the pointer. Note that this would not be the case, if λ(0) 6= 0. Then,
we also have

f(t)− f(0) =

∫ t

0
g(s)A(x(s), p(s)) ds, ∀t ∈ R+. (3.B.4)

Setting f(0) = 0 and choosing g(t) = c δ(t− t0), where δ(x) is the Dirac delta, yields

f(t) = A(x(t0), p(t0)), (3.B.5)

where the constant c is selected unitary. The final displacement f(t) of the pointer returns the desired
value A(x(t0), p(t0)).

3.B.2 Quantum Meter: Von Neumann Measurements

In the following we will be interested in measurements performed on a quantum system in N -
dimensional Hilbert space, with finite N . To analyse the work of a quantum (von Neumann [126])
measurement of an operator Â, with the eigenvalues and eigenvectors an and |an〉, n = 1, .., N , re-
spectively, we need to find a quantum analog of the equations of motion (3.B.2).
The evolution of the composite system S + P , prepared at t = 0 in the product state (ψ is for the
system, and G is for the pointer, which we continue to consider very heavy),

|Ψ(0)〉 = |ψ(0)〉|G〉, |ψ(0)〉 =
∑
n

cn(0)|an〉, |G〉 =

∫
G(f) |f〉 df, (3.B.6)

is governed by the Schrödinger Equation (SE)

i∂t|Ψ(t)〉 =
[
ĥ+ g λ̂ Â

]
|Ψ(t)〉, (3.B.7)

where ĥ is the system’s Hamiltonian operator, λ̂ is the operator representing the pointer’s momentum,
and g(t) is defined analogously to (3.B.1). Normalisation of the two initial states implies

〈ψ(0)|ψ(0)〉 =
N∑
n=1

|cn(0)|2 = 1, and 〈G|G〉 =

∫
|G(f)|2 df = 1. (3.B.8)

Now we set the clock as in the classical case, ensuring first that the pointer is pointing at zero. This
would require G(f) = δ(f), which is impossible, since 〈G|G〉 in (3.B.8) will then be infinite. So we
must choose G(f) to be peaked around zero with some finite width ∆f > 0. Secondly, we want the
pointer momentum to be zero, in order to avoid perturbing the system’s evolution, as proposed in
Appendix 3.B.1. But then we run into difficulty with the Heisenberg’s Uncertainty Principle (UP).
The pointer state |G〉 can be written as superposition of the eigenstates |λ〉 of the momentum operator
λ̂:

|G〉 =

∫
G̃(λ) |λ〉 dλ, |λ〉 = (2π)−1/2

∫
exp(iλf) |f〉 df, (3.B.9)
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where G̃(λ) ≡ 〈λ|G〉 is the probability amplitude of the pointer momentum λ and 〈f |λ〉 ∝ exp(iλf), as
shown at the end of Appendix 3.A.1 (~ = 1). Equation (3.B.9) provides the amplitude G(f) ≡ 〈f |G〉
to measure the pointer position f :

G(f) = (2π)−1/2

∫
G̃(λ) exp(iλf) dλ. (3.B.10)

It is a well known property of the Fourier transform (3.B.10) that a narrow G(f) implies a broad
G̃(λ) and vice versa. In other words, a precise choice of the pointer position, ∆f → 0, implies the
impossibility to set accurately its momentum and vice versa (UP).
Thus, the best we can do is to require that the average position of the pointer is zero, 〈f(0)〉 ≡∫
f |G(f)|2df = 0, or |G(f)| = |G(−f)|. By setting the pointer to zero more accurately, we will

inevitably perturb the system more. The best we can do is to ensure that the average pointer mo-
mentum is zero, 〈λ(0)〉 ≡

∫
λ|G̃(λ)|2dλ = 0, i.e. |G̃(λ)| = |G̃(−λ)|, or G(f) ∈ R, ∀f ∈ R. These two

requirements stipulate our choice of G(f) as a symmetric real function, whose width ∆f determines
both the accuracy of the measurement, and the inevitable perturbation the measurement produces on
the system.
Finally, we are interested in an impulsive von Neumann measurement. The choice of g(t) = c δ(t− t0)
allows neglecting ĥ in (3.B.7). The system state 〈f |Ψ(t)〉 is evolved by the Schrödinger Equation (SE)

i∂t〈f |Ψ(t)〉 = g λ̂ Â 〈f |Ψ(t)〉, for t ∈ [t0 − ε, t0 + ε], (3.B.11)

with infinitesimal ε > 0. The initial condition corresponds to the system state just before the meter
firing:

〈f |Ψ(t0 − ε)〉 = G(f)|ψ(t0 − ε)〉, G(f) = 〈f |G〉, |ψ(t0 − ε)〉 =
∑
n

cn(t0)|an〉. (3.B.12)

Just after the measurement, the system state 〈f |Ψ(t0 + ε)〉 becomes entangled with the pointer (λ̂ =
−i∂f , as shown in Appendix 3.A.1),

〈f |Ψ(t0 + ε)〉 ≈ exp(−iλ̂Â)〈f |Ψ(t0 − ε)〉 =
∑
n

cn(t0)|an〉 exp(−∂fan)G(f) =

=
∑
n

G(f − an)cn(t0)|an〉 = G(f − Â)|ψ(t0 − ε)〉, (3.B.13)

where we have used the expansion (3.B.10) of G(f) and the equality y(X̂)|x〉 = y(x)|x〉 for the
operators X̂ = Â and X̂ = ∂f , X̂|x〉 = x|x〉, with the corresponding definitions of the function y(x).
The constant c is chosen unitary.
By the Born postulate (ii) in Appendix 3.A.3, the final probability distribution of the pointer positions
is given by

p(f) ≡ 〈Ψ(t0 + ε)|f〉〈f |Ψ(t0 + ε)〉 =
∑
n

|cn(t0)|2G2(f − an), (3.B.14)

and we can define a measurement which can be considered accurate. Namely, we consider a measure-
ment accurate, if ∆f � |an − am| and G(f − an)G(f − am) ≈ 0, ∀f ∈ R, ∀m 6= n, as discussed for
the Markovian regime in Section 3.2.3. Such a measurement produces a result f ≈ an, and leaves
the system in a state |an〉, with a probability |cn(t0)|2. In the opposite limit, ∆f � |an − am|, and
G(f−an) ≈ G(f−am), ∀f ∈ R, ∀m 6= n, the measurement is “weak” or “fuzzy”. A fuzzy measurement
perturbs the system only slightly, but provide little information about the value of Â.
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3.B.3 Multiple Quantum Meters: Sequential Measurements

Ultimately, we want to study a quantum system subjected, for a period of time T , to an impulsive
von Neumann measurement of Appendix 3.B.2 every τ = T/K units of time. There will, therefore,
be K pointers, all prepared in the same state G(fk), and a measurement readout f will consist of K
values fk. Between the measurements at tk = kτ and tk+1 = (k + 1)τ the system will evolve with an
evolution operator Û(τ) = exp(−iĤτ). The results of Appendix 3.B.2 are easily generalised to such
sequential measurements.
If a readout f has been recorded, the (unnormalised) state of the system at t = T is given by

|ψ(T, f)〉 =

K∏
k=1

G(fk − Â) exp(−iĤτ)|ψ0〉, (3.B.15)

where |ψ0〉 ∈ H is the initial condition of the measured system. By the Born postulate (ii) in
Appendix 3.A.3, the probability distribution of the readout f is given by

P (T, f) = 〈ψ(T, f)|ψ(T, f)〉, (3.B.16)

so that at t = T the system is described by a density operator

ρ(T ) =

∫
df1...fK |ψ(T, f)〉 〈ψ(T, f)|. (3.B.17)

By plugging G(fk − Â) =
∑

mk
|amk〉G(fk − amk)〈amk | into (3.B.15), it is possible to obtain the

amplitude 〈an|ψ(T ; f)〉 to arrive in the state |an〉 at time t = T , by previously passing through a

sequence of states (a path)
{
|am1〉, |am2〉, .., |amK−1〉

}
〈an|ψ(T ; f)〉 =

∑
m1,..,mK−1

Fn(m1, ..,mK−1)

K∏
k=1

G(fk − amk), (3.B.18)

where Fn(m1, ..,mK−1) ≡ 〈an| exp(−iĤτ)|amK−1〉〈amK−1 |..|am1〉〈am1 | exp(−iĤτ)|ψ0〉.
Two limiting cases should be distinguished. In the absence of meters, the paths are virtual, and the
probability to find the system in |an〉 at t = T is given by

Pn(T ) ≡ |〈an|ψ(T ; f)〉|2 =

∣∣∣∣ ∑
m1,..,mK−1

Fn(m1, ..,mK−1)

∣∣∣∣2. (3.B.19)

The same result is obtained for highly inaccurate meters, ∆f � |an− am|, where all G’s are so broad
that G(fk − am) ≈ G(fk).
Highly accurate meters, with ∆f � |an − am|, completely destroy interference between the virtual
parts, turning them intoNK real routes, travelled with the probabilities Pn(T, f) = |Fn(m1, ..,mK−1)|2.
The probability to reach |an〉, regardless of what the meters read, is now the sum of all such proba-
bilities, and we have

Pn(T ) =
∑

m1,..,mK−1

|Fn(m1, ..,mK−1)|2 . (3.B.20)
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We conclude the Thesis by summing up objectives, modelling frameworks, tools, methodologies and
major achievements for each chapter. Table C.1 provides a schematic view of the developed lines of
research.

Chapter 1 aims to understand the reasons behind the inconsistencies between the classical kinetics
predictions and experimental evidence in Controlled Radical Polymerization (CRP). We develop the
methodology which explains such discrepancies, and provides the accurate prediction of experimental
observations. The key idea of this methodology is to assume non-Markovian kinetics and introduce
delays among the competitive processes in CRP.
To prove this idea, we propose the Stochastic Simulation Algorithm (SSA) as a possible modelling
framework, being able to introduce non-Markovian dynamics in the evolution of the considered reac-
tions.
We show that the introduction of delays significantly changes the statistics of the polymer chains
growth. The equations, and the corresponding properties, derived for predicting Markovian growth,
differ significantly from those describing a non-Markovian regime.
We also explain how to simulate the delayed growth, by formulating suitable implementations of the
Stochastic Simulation Algorithm. In addition, we propose an approximated methodology using Lin-
ear Exponential distributions to embed the delays caused by chemical reactions. The approximated
method enhances the simulation speed, especially for big sample sizes, still being able to reproduce
the results of the other methods, guaranteeing a reasonable accuracy.
Since our objective is to explain the reduction in relative frequencies of propagations and backbitings
(branching fractions) experimentally observed in CRP, we concentrate on simulation of relative fre-
quencies of constrained events. Thus, we propose a Monte Carlo (MC) approach for the evaluation of
relative frequencies of constrained events in stochastic processes. We also derive a significantly more
efficient analytical formula for computing the frequencies of interest.
The methods are then applied to the evaluation of branching fractions in the CRP. With the derived
approaches we were also able to prove that memoryless models are not able to explain the experi-
mentally observed reduction of the branching fraction, and thus only models with delays should be
applied for study of CRP.
We investigate the performance and accuracy of the proposed methodologies on the example of CRP
of acrylic monomers. We demonstrate that the analytical approach is free of statistical errors, and
thus guarantees more accurate estimations, than those provided by MC simulations. In addition, the
method is significantly (an order of the sample size ≥ 104) faster than the MC approach.
Finally, Chapter 1 presents an SSA-based method for simulating the CRP process in agreement with
the available experimental data. First, we discuss a choice of the delayed distributions to be used in
the Monte Carlo method and in the analytical approach for the computation of the branching fraction
in CRP. The Linear Exponential density is chosen to account for the required delays, as motivated
before. The parameters of the given distributions are defined by an optimisation routine, maximising
the fitting to available experimental data of the simulated branching fractions. Then, we formulate
the SSA-based method for CRP modelling, which takes advantage of the available experimental data.
Algorithm 1.8 summarises the method, and uses the Linear Exponential densities, with the optimised
values of the parameters. The algorithm can potentially be used for a systematic study of all proper-
ties of the simulated system.
In conclusion, we were able to explain the inconsistencies between the classical kinetics predictions
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and experimental evidences in the CRP. Assuming non-Markovian kinetics and introducing delays
among the competitive processes, we can provide the accurate prediction of such experimental ob-
servations. As shown in Section 1.7, the agreement between predicted and experimental branching
fractions validates our non-Markovian model for CRP of acrylic monomers.

The objective of Chapter 2 is to develop a modelling framework allowing for a fast and accurate predic-
tion of Multi-phase Polymers Morphology (MPM). To do so, we derive a Population Balance Equations
(PBE) based model for the distribution of the expected size of the polymer clusters, contributing to
the morphology of interest. Then, we aim to develop an accurate and efficient methodology for the
solution of the proposed model. The speed of the predictive simulations technique should be high
enough for enabling on-the-fly recommendations for technological conditions in the synthesis of new
multi-phase morphologies.
The introduced PBE model accounts for the mechanisms driving the considered reaction: aggregation,
growth, nucleation and phase-transition. Under the assumptions of [45] summarised in Section 2.1.2,
we derive the chemical rates of the processes involved in the development of latex particles morphol-
ogy. Aiming to search for the most efficient approach for solving the derived PBE, we also introduce
the Models I-III of Section 2.2.1, which use less advanced chemical rates, but can be viewed as coarse
approximations to the addressed process.
Since the latex particles rates lead to computationally intractable quantities, we propose a novel and
automatic procedure for reducing the PBE model to dimensionless variables. In particular, Algo-
rithm 2.1 summarises the steps needed for finding optimal scaling factors leading to a dimensionless
PBE with computationally tractable parameters. The proposed optimisation scheme is not compu-
tationally demanding, provided one makes the use of an efficient built-in optimisation routine. The
validation of the scaling procedure is carried out using the latex particles model, and results in reducing
the ratio between maximal and minimal parameters values from 1057 (original) to 105 (dimensionless).
Then, we provide an analysis of the addressed PBE model (2.25). We show that the solution m(v, t) of
(2.25) must be non-negative. We also characterise the time evolution of the zero- and first-order mo-
ments of the distribution m(v, t). Then, the asymptotic behaviour of m(v, t) is discussed for v → +∞
and a fixed time t ∈ R+.
Section 2.3 is devoted to the design of an accurate and efficient methodology for integrating the PBE
(2.25). We develop three approaches belonging to the classes of methods revised in Section 2.3.1: the
Stochastic Simulation Algorithm (SSA), the Generalised Method Of Characteristics (GMOC) and the
Laplace Transform Technique (LTT). In addition, we propose the Laplace Induced Splitting Method
(LISM) which does not fit into any described class and is based on the idea which, to our knowledge,
has never been explored in the numerical methods for solving PBE. More specifically, we combine a
splitting integration scheme with Laplace induced analytical solutions derived for simplified PBEs,
composing the PBE of interest.
In order to judge the performance of the derived approaches for realistic settings, we employ the rate
functions modelling the morphology of latex particles. In the tests of Section 2.4, the parameters of
Models I-III assume the orders of magnitude achieved by the dimensionless counterparts of the latex
particles rates.
Although LTT provides high levels of precision and speed for the tested models, its applicability is
limited by the assumptions we made. Our numerical experiments show that the SSA is a robust
integration technique, but computational inefficiencies make the approach not competitive for solving
the addressed PBE system. In the performed experiments, the GMOC ensures good accuracy and
efficiency of the simulation. However, the LISM outperforms the GMOC in computational speed by
up to a factor of two orders of magnitude, while achieving the same accuracy in all tested cases.
On the basis of the performed experiments, we conclude that the developed LISM methodology is a
promising technique for prediction of multi-phase polymers morphology in systems of many particles.

Chapter 3 aims to model and analyse the behaviour of measurements performed on quantum systems.
In particular, we consider frequent observations, continuous in the limit, such as Continuous Fuzzy
Measurements (CFM). By their very nature, continuous quantum measurements are not amenable to
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an analytical treatment, but are well suited for numerical simulations. Thus, we propose a stochastic
model and a Monte Carlo (MC) method to study the dynamics of the observations. The measurements
behaviour is described through the knowledge of the distribution of their outcomes.
Quantities of interest can be approximated by MC estimators computed on the drawn samples with
size S ≥ 1. The simulation method is validated through comparison with the available analytical
solution (3.17) of the expected meter reading (3.11). The order O(S−1/2) of the convergence rate is
confirmed, using the analytical formula (3.26) for the density matrix (3.9).
Different measurement regimes are characterised by their accuracy and the corresponding influence
on the system’s dynamics. In particular, accurate measurements lead to the Markovian behaviour of
the meters, but affect the natural dynamics of the quantum system. On the other hand, imprecise
observations result in a non-Markovian regime of the meters. The natural evolution is unaltered, but
very little is known about the actual state of the system. We provide the proof and the validating
tests for the Markovian and non-Markovian behaviour of the quantum measurements. Both regimes
can be successfully simulated using the designed MC method.
The MC method helped us in reconsidering the Mensky’s theory on CFM [142] for a large number of
impulsive meters of accuracy ∆f , imposing a Gaussian restriction on the Feynman paths of a two-level
system. In the case of the system in a superposition of the eigenstates of a variable Â, the authors of
[142] suggested that two things should happen if the CFM monitoring is performed:

(i) the system’s pure state will be turned into a density matrix, diagonal in the chosen representation
(decoherence);

(ii) every readout will eventually align with one of the eigenvalues of Â, indicating the eigenstate
into which the system is driven as a result of being monitored.

We show that while the authors of [142] are correct in their analysis of the decoherence process,
they fail to correctly describe the properties of the observed readouts. The fallacy is in neglecting
the density of states available to the readouts f1, .., fK in a K-dimensional space. While a constant
readout does have the largest statistical weight, it is vastly outnumbered by highly irregular ones,
which will be observed in almost every run of the experiment. This is even more true in the limit
K →∞, ∆f →∞, where the chance of obtaining an almost constant (or, indeed, a smooth) readout
curve is virtually null.
We show that, for a fixed period of monitoring, T , as the number of meters, K, increases, typical
readouts fk become highly irregular, and do not align with one of the eigenvalues of the measured
quantity, as suggested in [142]. The same behaviour of the meter readings is observed when decoherence
of an initial state is achieved, or Zeno effect is imposed on the system. Thus, a different description
of the decoherence process and the Zeno effect is required.
For a system prepared in a pure state, in the case its Hamiltonian Ĥ does not facilitate transitions
between the eigenstates of the measured quantity Â, decoherence can be linked to a fictitious random
walk, which is bound to lead to one of two outcomes, which, in turn, determine the final state of the
system.
The random walk analogy remains useful also in a case of a driven system, subject to Rabi oscillations.
For such a system, a typical readout is highly irregular even in a near-Zeno regime, where Rabi
oscillations of the system’s state are replaced by a telegraph noise. In this case, the corresponding
random walk changes direction every time the system jumps from one state to the other. The two
evolutions should be considered together, and it is difficult to say whether it is the walker, which
causes the system to change its state, or the system, which causes the walker to change direction.

In conclusion, the methodologies developed within this Thesis have been inspired by some particular
applications and unresolved issues. However, the proposed novel approaches can be applied to a
broad range of physical, chemical and biological systems. Our results have been presented in (i) four
scientific papers published in the high impact journals [1, 2, 3, 4] and (ii) eight invited talks delivered
in International Conferences, as reported in Contributions & Developed Software.
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Chapter 1 Chapter 2 Chapter 3

Application Controlled Radical Polymeriza-
tion (CRP)

Multi-phase Polymers Morphol-
ogy (MPM)

Continuous Fuzzy Measurements
(CFM)

Objective Quantitative Modelling of CRP On-the-fly Prediction of MPM Modelling & Analysis of CFM

Modelling
Framework

. Stochastic Simulation Algo-
rithm (SSA) [Section 1.2.1]

. Population Balance Equations
(PBE) [Section 2.2.1]
. SSA [Section 2.3.2]

. Stochastic Model [Section 3.2.1]

Analytical
Treatment

. Derivation of Density Distri-
butions for Modelling Polymers
Growth:

◦ Markovian Growth, Distribu-
tion (1.19) of Monomers At-
tachment

◦ Non-Markovian Growth,
Distributions (1.27)-(1.28) of
Monomers Attachment

. Analysis of Solution of PBE
(2.25) [Section 2.2.3]:

◦ Non-Negativity

◦ First-Orders Moments

◦ Asymptotic Behaviour

. Laplace Transformed Solutions
(LTS) of PBE (2.25) for Models
I-III [Section 2.3.4]

. Analysis of Markovian and Non-
Markovian Regimes of Quantum
Measurements [Section 3.2.3]
. Proof & Analysis of [Sec-
tion 3.3.2]:

◦ Density of Available States for
CFM

◦ Fallacy of CFM Convergence
Predicted by Mensky’s The-
ory

Numerical
Treatment

. SSA-based Methods for Sim-
ulating Delayed Growth [Sec-
tion 1.3.5]
. Linear Exponential Approxima-
tion of Delayed Distributions [Sec-
tion 1.3.5.4]

. Development of Numerical
Methodologies for Solving PBE
(2.25) [Section 2.3]:

◦ Stochastic [SSA]

◦ Discretization [GMOC]

◦ LTS Inversion [LTT]

◦ Splitting [LISM]

. Monte Carlo (MC) Method [Al-
gorithm 3.1] for Simulating:

◦ Quantum System Dynamics

◦ Measurements Distributions

Computed
Properties

. Polymers Mean Length (1.30)
for Delayed Growth [Figure 1.2]
. Relative Frequencies of Con-
strained Events:

◦ MC [Section 1.4]

◦ Analytical [Section 1.5]

. Branching Fractions in CRP:

◦ MC [Algorithm 1.5]

◦ Analytical [Algorithm 1.6]

. Characteristic Constants θ,
Scaled Parameters λ and Rates of
PBE (2.14)-(2.17) for Latex Par-
ticles Model [Table 2.1]
. Distributions of Expected Size
of Polymers Agglomerates for
Models I-III [Fig. 2.3-2.7]
. Rates for Latex Particles:

◦ Derivation [Appendix 2.A]

◦ Scaling To Dimensionless
Variables [Table 2.C.1]

. Density Matrix (3.9):

◦ MC Estimator (3.10)

◦ Analytical Solution (3.26)

. Expected Measurements (3.11):

◦ MC Estimator (3.11)

◦ Analytical Solution (3.17)

Parameter
Estimation

. Tuning Parameters of Delayed
Distributions w.r.t. Experimental
Data [Algorithm 1.7]

. Optimal Scaling of PBE Param-
eters to Dimensionless and Com-
putationally Tractable Values [Al-
gorithm 2.1]

Tests &
Analysis

. Prediction of Branching Frac-
tions in CRP:

◦ Accuracy [Fig. 1.8a, 1.9a]

◦ Efficiency [Fig. 1.8b, 1.9b]

. Comparative Analysis of Devel-
oped Numerical Methodologies:

◦ Accuracy [Fig. 2.4-2.7]

◦ Efficiency [Tab. 2.2-2.5]

. Analysis of Mensky’s Theory on
CFM [Section 3.4]: Decoherence
and Zeno Effect by Random Walk

Major Result Stochastic Approach for Mod-
elling CRP in Agreement with Ex-
periments [Algorithm 1.8]

Computationally Efficient PBE-
based Framework for MPM Pre-
diction using LISM methodology

Re-examination of Mensky’s The-
ory on CFM

Table C.1: Outline of the Thesis: objectives, modelling frameworks, tools, methodologies and results.
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Controlled Radical Polymerization

Publications & Presentations

S. Rusconi, E. Akhmatskaya, D. Sokolovski, J.M. Asua. Study on Controlled Radical
Polymerization. Workshop on Dynamical Systems and Applications, BCAM, Bilbao,
Spain, 2013.
Abstract: Controlled radical polymerization (CRP) is a process to form polymers by successive
monomers additions. This growing process is mainly made by three events: propagation, if the next
monomer is linearly added to the chain, backbiting, when the free radical changes its position and a
new branch will start growing perpendicular to the previous one, and termination, if the chain stops
to grow. We have proposed a model describing the CRP process and offered two different approaches
for solving it: Partial Differential Equations solutions (PDE) and stochastic simulation algorithm
based on Monte Carlo estimations (MC). In this presentation, the model and the two approaches are
summarized and their benefits as well as drawbacks are discussed. The future developments with the
focus on the real applications are outlined.

S. Rusconi, E. Akhmatskaya, D. Sokolovski, J.M. Asua. Mathematical Modeling of
Chemical Reactions Kinetics. IV Workshop Quantum Days in Bilbao, BCAM, Bilbao,
Spain, 2014.
Abstract: Chemical Reactions Kinetics (CRK) mostly consists in the study of chemical processes
evolution. In this presentation, a stochastic memoryless kinetics model is summarized. Then, we
introduce the Controlled Radical Polymerization (CRP) process and we explain why the memoryless
model is not the proper tool to correctly describe this phenomenon. We propose a modification of
the model, with the loss of the memoryless property. The modified models provides a good fit of ex-
isting experimental data provided by the Basque Center for Macromolecular Design and Engineering
(POLYMAT).

N. Ballard, S. Rusconi, E. Akhmatskaya, D. Sokolovski, J. C. de la Cal, J. M. Asua. Im-
pact of Competitive Processes on Controlled Radical Polymerization. Macromolecules,
47(19):6580-6590, 2014.
Abstract: The kinetics of radical polymerization have been systematically studied for nearly a cen-
tury and in general are well understood. However, in light of recent developments in controlled radical
polymerization many kinetic anomalies have arisen. These unexpected results have been largely con-
sidered separate, and various, as yet inconclusive, debates as to the cause of these anomalies are
ongoing. Herein we present a new theory on the cause of changes in kinetics under controlled rad-
ical polymerization conditions. We show that where the fast, intermittent deactivation of radical
species takes place, changes in the relative rates of the competitive reactions that exist in radical
polymerization can occur. To highlight the applicability of the model, we demonstrate that the model
explains well the reduction in branching in acrylic polymers in RAFT polymerization. We further
show that such a theory may explain various phenomena in controlled radical polymerization and may
be exploited to design precise macromolecular architectures.
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S. Rusconi, E. Akhmatskaya, D. Sokolovski, J.M. Asua. Modelling of Delayed Processes
in Controlled Radical Polymerization. LAMA - Laboratorie de Mathématiques, Uni-
veristé de Savoie, Le Bourget-du-Lac, France, 2015.
Abstract: The normal practice in modelling of Controlled Radical Polymerization (CRP) is to apply
Monte Carlo based stochastic simulation algorithms assuming the processes to be Markovian. We
argue that such an approach overlooks the delayed nature of some processes involved in CRP and do
suggest the methodology that overcomes this deficit. The proposed methodology offers the analytical
representations for the probability density functions corresponding to the delayed processes as in the
cases when the amount of delay is known exactly as it is unknown. Moreover, to improve the accuracy
and efficiency of our modelling approach for computation of branching fraction in CRP, we replace
the random walk Monte Carlo with the analytical solution. The comparison of the novel methodology
with the traditional simulation methods and the experimental data is provided.

D. Sokolovski, S. Rusconi, E. Akhmatskaya, J. M. Asua. Non-markovian models of the
growth of a polymer chain. Proc. R. Soc. A, 471(2180), 2015.
Abstract: Using simple exactly solvable models, we show that event-dependent time delays may lead
to significant non-Poisson effects in the statistics of polymer chain growth. The results are confirmed
by stochastic simulation of various growth scenarios. Our interest in mathematical aspects of non-
Markovian growth arises from recent successful application of delayed probability density functions in
stochastic modelling of controlled radical polymerization.

S. Rusconi, E. Akhmatskaya, D. Sokolovski, N. Ballard, J. C. de la Cal. Relative fre-
quencies of constrained events in stochastic processes: An analytical approach. Phys.
Rev. E, 92:043306, 2015.
Abstract: The stochastic simulation algorithm (SSA) and the corresponding Monte Carlo (MC)
method are among the most common approaches for studying stochastic processes. They relies on
knowledge of inter-event probability density functions (PDFs) and on information about dependencies
between all possible events. Analytical representations of a PDF are difficult to specify in advance,
in many real life applications. Knowing the shapes of PDFs, and using experimental data, different
optimization schemes can be applied in order to evaluate probability density functions and, therefore,
the properties of the studied system. Such methods, however, are computationally demanding, and
often not feasible. We show that, in the case where experimentally accessed properties are directly
related to the frequencies of events involved, it may be possible to replace the heavy Monte Carlo core
of optimization schemes with an analytical solution. Such a replacement not only provides a more
accurate estimation of the properties of the process, but also reduces the simulation time by a factor
of order of the sample size (at least ≈ 104). The proposed analytical approach is valid for any choice
of PDF. The accuracy, computational efficiency, and advantages of the method over MC procedures
are demonstrated in the exactly solvable case and in the evaluation of branching fractions in con-
trolled radical polymerization (CRP) of acrylic monomers. This polymerization can be modeled by a
constrained stochastic process. Constrained systems are quite common, and this makes the method
useful for various applications.

Developed Software

Computation of Branching Fractions in Controlled Radical Polymerization.
Program Name: Optimise
Author: S. Rusconi
License: N/A
Programming Language: C++
Operating System: Linux
Description: The package provides the implementation of Analytical Solution and Monte Carlo
method for computation of branching fractions in Controlled Radical Polymerization (CRP). The
solution is computed for the case of Linear Exponential kernels. Different optimisation algorithms are
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implemented for searching optimal parameters to achieve the best fit to available experimental data
of branching fractions.

Multi-phase Polymers Morphology

Publications, Presentations & Preprints

S. Rusconi, E. Akhmatskaya, D. Sokolovski, D. Dutykh, J.M. Asua, S. Hamzehlou. Dy-
namic Development of Particles Morphology. UCSB - University of California, Santa
Barbara, USA, 2015.

S. Rusconi, E. Akhmatskaya, D. Dutykh, D. Sokolovski, J. M. Asua. Mathematical
Modelling of Polymers Particles Production. Minisymposium Success Stories of Spanish
Industrial Mathematics with Industry, ICIAM 2015, Beijing, China, 2015.
Astract: We present the novel stochastic approach for polymers particles production modelling and
numerical simulations amenable to high performance computing. The goal is to enable on-the-fly
recommendations for technological conditions in polymerization processes. The focus is on algorithms
for prediction of particle morphology development. The work has been done in collaboration with
Basque Center for Macromolecular Design and Engineering (POLYMAT), partner of a consortium of
companies including some of the major producers of dispersed polymers.

S. Rusconi, E. Akhmatskaya, D. Sokolovski, D. Dutykh, J.M. Asua, S. Hamzehlou. Math-
ematical Modeling of Chemical Reactions at Basque Center for Applied Mathematics.
Workshop on Mathematical Technology Transfer: CTA- IMUS-math-in, Sevilla, Spain,
2015.

R. Bacsa, W. Bacsa, M.C. Schwarzwälder, V. Cregan, M. Fernández-Pendás, S. Fernandez-
Mendez, B. Florio, A. Marquina, I. Moyles, T. Myers, H. Ribera Ponsa, S. Rusconi, S.
Serna, C. Vázquez-Cendón. Synthesis of Monodisperse Spherical Nanocrystals. ESGI
report [107], Centre de Recerca Matemàtica, Barcelona, Spain, 2016.
Abstract: Nano-particles, small units of matter with dimensions in the range 1-100 nm, exhibit
many advantageous size-dependent magnetic, electrical, chemical and optical properties, which are
not observed at the micro-scale or bulk. These properties are extremely sensitive to particle size, and
thus the ability to produce mono-disperse particles is critical. Due to its ease of use and flexibility,
precipitation of nano-particles from solution is one of the most widely used synthesis method. The
main disadvantage of this method is that the relationship between particle growth and system con-
ditions is not fully understood. In practice, the optimal reaction conditions are usually ascertained
empirically or intuitively. In this report we consider several different applied mathematical techniques
to explain nano-particle growth via the precipitation method. In particular, we describe the impact
of size focussing and defocussing (or Ostwald ripening) on the evolution of the nano-particle size
distribution.

S. Rusconi, E. Akhmatskaya, D. Dutykh, J.M. Asua, S. Hamzehlou. Prediction of
Polymers Particles Morphology Development: Models and Methods. Fourth Interna-
tional Congress on Multiphysics, Multiscale, and Optimization Problems, BCAM, Bil-
bao, Spain, 2016.

Developed Software

Dynamic Development of Particles Morphology.
Program Name: DDPM
Author: S. Rusconi
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License: N/A
Programming Language: C++ & Matlab
Operating System: Linux
Description: The aim of this package is to implement various numerical algorithms for simulation
of the dynamic development of polymers particles morphology. The implemented routines provide
estimations for the density functions of the particles volume.

Continuous Fuzzy Measurements

Publications & Presentations

D. Sokolovski, S. Rusconi, S. Brouard, E. Akhmatskaya. Reexamination of continuous
fuzzy measurement on two-level systems. Phys. Rev. A, 95:042111, 2017.
Abstract: Imposing restrictions on the Feynman paths of the monitored system has in the past
been proposed as a universal model-free approach to continuous quantum measurements. Here we
revisit this proposition and demonstrate that a Gaussian restriction, resulting in a sequence of many
highly inaccurate (weak) von Neumann measurements, is not sufficiently strong to ensure proximity
between a readout and the Feynman paths along which the monitored system evolves. Rather, in
the continuous limit, the variations of a typical readout become much larger than the separation
between the eigenvalues of the measured quantity. Thus, a typical readout is not represented by a
nearly constant curve, correlating with one of the eigenvalues of the measured quantity Â, even when
decoherence or Zeno effect is achieved for the observed two-level system, and does not point directly
to the system’s final state. We show that the decoherence in a “free” system can be seen as induced by
a Gaussian random walk with a drift, eventually directing the system towards one of the eigenstates
of Â. A similar mechanism appears to be responsible for the Zeno effect in a driven system, when
its Rabi oscillations are quenched by monitoring. Alongside the Gaussian case, which can only be
studied numerically, we also consider a fully tractable model with a “hard wall” restriction and show
the results to be similar.

S. Rusconi , D. Sokolovski, E. Akhmatskaya. Stochastic Simulation of Continuous Quan-
tum Measurements. LAMA - Laboratorie de Mathématiques, Univeristé de Savoie, Le
Bourget-du-Lac, France, 2017.

Developed Software

Weak Measurements of Quantum Particles Trapped in a Double Well Potential.
Program Name: meter
Author: S. Rusconi
License: N/A
Programming Language: C++
Operating System: Linux
Description: The package provides the implementation of Monte Carlo algorithms for simulation of
the behaviour of a meter measuring a quantum system. The considered system describes the dynamics
of quantum particles trapped in a double well potential. The developed routine allows estimating the
outcomes of the performed measurements and the density matrix, describing the state of the monitored
quantum system.
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[39] L. J. González-Ortiz and J. M. Asua. Development of Particle Morphology in Emulsion Poly-
merization. 2. Cluster Dynamics in Reacting Systems. Macromolecules, 29(1):383–389, 1996.
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[48] C. d. S. Batista, E. N. Macêdo, and J. N. N. Quaresma. Solution of a general population balance
equation by the Laplace transform technique. Proceedings of ENCIT, 2010.

[49] D. Bertin, I. Cotabarren, J. Piña, and V. Bucalá. Population balance discretization for growth,
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