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Abstract 

In the work compiled in this thesis, different methodologies have been 

developed based on the organocatalytic activation of substrates through covalent 

intermediates in order to obtain enantioenriched interesting products. In 

particular, chiral N-Heterocyclic carbenes and secondary amines has been used as 

catalysis. 

In this sense, first we evaluated α’- and β- substituted ynones as activated 

electrophilic partners in benzoin reactions with aldehydes. On the one hand, their 

ability as electrophilic counterpart in the enantioselective aldehyde-ketone cross-

benzoin reaction has been established, using a variety of aldehydes as acyl anion 

equivalent precursors. In addition, this transformation has been postulated as an 

interesting alternative for the synthesis of enantioenriched propargylic alcohols, 

and the value of the obtained adducts as building block has been demonstrated 

in a series of transformations. 

Secondly, the synthetic potential of donor-acceptor cyclopropanes has 

been studied under organocatalytic activation. On the one hand, 

formylcyclopropanes have been activated towards the ring-opening and 

subsequent formal (4+2) cycloaddition employing N-Heterocyclic carbene 

catalysis in highly enantioselective processes. Additionally, the potential of 

cyclopropaneacetaldehydes in ring-opening/Michael initiated cascade reactions 

has been demonstrated under iminium catalysis. This methodology has given 



straightforward access to different complex heterocyclic structures, such as 

quinolines and pyrroloquinolines in highly enantioselective reaction sequences. 

 Finally, and as part of a short stay carried out in the laboratories of Prof. F. 

D. Toste in the University of California, Berkeley, I collaborated in a project 

directed towards the enantioselective aminofluorination of β-fluorostyrenes. This 

objective was approached employing high oxidation state palladium catalysis and 

using employing N-fluorobenzenesulfonimide as electrophilic fluorine source. 

 

 

 

 

 

 

 

 

 

 



Resumen 

En el trabajo de investigación recogido en la presente memoria, se han 

desarrollado nuevas metodologías en la activación organocatalítica de sustratos a 

través de intermedios covalentes para la obtención de productos 

enantioenriquecidos de interés. En particular, se han empleado tanto carbenos 

N-heterociclicos quirales como aminas secundarias quirales como catalizadores. 

En este sentido, en primer lugar diferentes inonas α’- y β- sustituidas 

fueron testadas como reactivos electrófilos en la condensación benzoínica con 

aldehídos. Por un lado, se ha demostrado que estos compuestos son capaces de 

actuar como electrófilos en la condensación benzoínica cruzada enantioselectiva 

entre aldehídos y cetonas frente a diversos aldehídos empleados como 

precursores de equivalentes anión acilo. Además, esta transformación se 

presenta como una alternativa a la síntesis de alcoholes propargílicos 

enantioenriquecidos, al tiempo que mediante una serie de transformaciones de 

los aductos obtenidos, se ha demostrado el valor de estos como “building blocks”  

En segundo lugar, se ha estudiado el potencial sintético de los 

cyclopropanos dadores-aceptores mediante el empleo de la organocátalisis como 

método de activación. Por un lado, se han empleado carbenos N-heterocíclicos 

en la activación de formilciclopropanos para su apertura y posterior participación 

en cicloadiciones formales (4+2) dentro de procesos altamente enantioselectivos. 

Por otro lado, el potencial de los ciclopropanoacetaldehídos para dar lugar a 

reacciones en cascada iniciadas por una secuencia de apertura de anillo seguida 

de una adición tipo Michael ha sido demostratada mediante el empleo de 



catálisis via iones iminio. Esta metodología ha sido aplicada a la obtención de 

estructuras heterocíclicas complejas, como quinolinas y pirroloquinolinas, de 

manera directa y por medio de sequencias de reaction altamente 

enantioselectivas. 

Por último y en el contexto de una estancia de corta duración en el grupo 

de investigación dirigido por el Prof. F. Dean Toste en la Universidad de California, 

Berkeley, se realizaron estudios sobre la aminofluorinación enantioselectiva de β-

fluoroestirenos. Con este fin, se empleo una fuente de paladio como catalizador 

para que en presencia de N-fluorobencenosulfonamida como agente oxidante y 

fuente de fluor, tenga lugar la reacción a través de un mecanismo en el que 

participen especies catalíticas con estados de oxidación altos. 

 

 

 

 

 

 

 

 



Laburpena 

Doktorego tesi honetan, metodologia berriak garatu dira organokatalitikoki 

aktibatuta dauden substrato moldakorrak erabiliz. Horretarako, amina 

sekundarioen katalisian eta karbeno N-heteroziklikoko katalisian oinarrituta 

erreakzio enantioselektiboak garatu dira produktu interesgarriak sintetizatzeko.  

Lehenik eta behin, α’,β-ordezkaturiko inonak substrato egokiak direla 

egiaztatu da, zetona eta aldehido bitarteko “cross-benzoin” erreakzioa burutzeko, 

karbeno N-heteroziklikoak erabiliz katalitzaile gisa. Honela, hainbat ynona eta 

aldehido desberdinen arteko erreakzioak alkohol propargilikoak modu 

enantioselektiboan eta etekin altuarekin sintetizatzea ahalbidetzen du. Lortutako 

aduktuekin transformazio ugari egin dira, produktu hauen balio sintetikoa agerian 

utziz. 

Bestalde, zikloadizio eta kaskada prozesuetarako erreaktibo multifuntzional 

gisa, formilziklopropanoak eta ziklopropanoazetaldehidoak erabili dira 

organokatilikoki eragindako eraztun irekieraz baliatuz. Alde batetik, karbeno N-

heteroziklikoak erabili dira oxadienoekin batera [4+2] zikloadizioak burutzeko. 

Horrela, ketoester ugari erabilita piranona ezberdinak sintetizatu dira etekin 

altuekin. Bestalde, ziklopropanoazetaldehidoen balioa aza-Michael/aldol bidezko 

kaskada erreakzioetan frogatu da, hasierako emaile bezala aminobenzaldehidoak 

erabiliz eta iminio eta enamina bidezko aktibazioak konbinatuz. Gainera, 

pirrolokinolina eratorri sintetikoak modu estereokontrolatuan prestatu dira, one-

pot bidezko aza-Michael/aldol/lakatmizazioa prozesuaren bitartez.  



Azkenik, F. D. Tosteren taldean (University of California, Berkeley) 

buruturiko egonaldi laburrean, fluoroestirenoen aminofluorinazioan lan egiteko 

aukera izan nuen. Honelako transformazioa lortzeko paladio (IV) espeziek partu 

hartu behar dute eta horretarako N-fluorobenzenosulfonamida erabili izan da 

oxidatzaile eta fluor-iturri gisa.  
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Introduction 
 

 

 

1.- ASYMMETRIC ORGANOCATALYSIS 
 

The increased interest in asymmetric synthesis has led to the development of 

new strategies to satisfy the high demand of chiral compounds. In a field that has 

been dominated by enzymatic transformations1 and metal catalysis,2 asymmetric 

organocatalysis has emerged as a complementary methodology, as it has been 

stated by the large number of publications in the last two decades.3 This method 

consists on the capability of small organic molecules that do not contain any metal 

1  Enzymatic catalysis: a) Enzyme Catalysis in Organic Chemistry, 3rd ed. (Eds.: Drauz, K.; Waldmann, 
H.), Wiley-VCH, Weinheim, 2012; b) Muhammad, M.; Noriho, K.; Masahiro, G. Org. Biomol. Chem. 
2010, 8, 2887; c) Junhua, T.; Zhao, L.; Ran, N. Org. Process Res. Dev. 2007, 11, 259. 

2  Metal catalysis: a) Metal Catalyzed Reactions in Water (Eds.: Dixneuf, P. H.; Cadierno, V.), Wiley-
VCH, Weinheim, 2013; b) Homogeneus Catalysis with Metal Complexes (Ed.: Temkin, O. N.), Wiley, 
2012; c) Transition Metals for Organic Synthesis, 2nd ed. (Eds.: Beller, M.; Bolm, C.), Wiley-VCH, 
Weinheim, 2004; d) Catalytic Asymmetric Synthesis, 2nd ed. (Ed.: Ojima, I.), Wiley-VCH, New York, 
2000. 

3  General reviews on organocatalysis: a) Marson, C. M. Chem. Rev. 2012, 41, 7712; b) Jacobsen, E. N.; 
MacMillan, D. W. C. Proc. Natl. Acad. Sci. USA 2010, 107, 20618; c) Marqués-Lopez, E.; Herrera, R. 
P.; Christmann, M. Nat. Prod. Rep. 2010, 27, 1138; d) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. Rev. 
2009, 38, 2178; e) MacMillan, D. W. C. Nature 2008, 455, 304; f) Special issue on organocatalysis: 
Chem. Rev. 2007, 107, 5413; g) Yang, J. W.; List, B. Science 2006, 1584. See also: h) Stereoselective 
Organocatalysis. Bond Formation and Activation Modes (Ed.: Rios Torres, R.), Wiley, 2013; i) 
Asymmetric Organocatalysis in Natural Product Syntheses. (Ed.: Waser, M.), Springer, Wien, 2012; j) 
Organocatalytic Enantioselective Conjugate Addition Reactions: A Powerful Tool for the 
Stereocontrolled Synthesis of Complex Molecules (Eds.: Vicario, J. L.; Badía, D.; Carrillo, L.; Reyes, E.), 
RSC Publishing, Cambridge, 2010.  
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atom in their active site to act as highly selective and efficient catalyst in a variety of 

organic transformations. 

 The first organocatalytic enantioselective reaction dates back to 1904,4 when 

Marckwald obtained a slight excess of the levorotatory form of α-methylbutyric acid 

in the enantioselective decarboxylation of 2-ethyl-2-methylmalonic acid upon 

heating the starting material in the presence of brucine (Scheme 1.1). 

HO2C CO2H CO2H

N

MeO

MeO
H

H

N

OO
H

∆

10% excess 
of levorotatory  

Scheme 1. 1 

On the other hand, the first organocatalytic enantioselective C-C bond 

formation reaction has been attributed to Bredig and Fiske for their work on the 

synthesis of mandelonitrile in 1913. Although the addition of HCN to benzaldehyde 

in the presence of quinine or quinidine rendered the corresponding cyanohydrins 

with poor enantiocontrol (up to 8% ee) (Scheme 1.2),5 this example is considered as 

an important precedent in the field. 

H

O

+   HCN
N

OMe

OH

NH

CN

OH

*

3-8% ee  
Scheme 1. 2 

4  a) Marckwald, W. Ber. Dtsch. Chem. Ges. 1904, 37, 349; b) Marckwald, W. Ber. Dtsch. Chem. Ges. 
1904, 37, 1368. 

5  Bredig, G.; Fiske, P. S. Biochem. Z. 1913, 46, 7. 
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Later on, in 1949, Wolfgang Langebeck referred to those reactions promoted 

by organic molecules with the term “organic catalyst” for the first time.6 In 1960 

Pracejus published the addition of methanol to methylphenylketene in the presence 

of O-acetylquinine, which can be considered as the first organocatalytic 

transformation that proceeded with a significant levels of enantioselectivity (Scheme 

1.3).7 

N

OMe

OAc

NH

MeOH (1.1 eq.)
C

Me

O
O

O

MeH
(10 mol%)

Yield: 93% 
74% ee

Toluene, -111ºC

 
Scheme 1. 3 

In 1971 two industry research groups at Hoffmann-La Roche8 and Schering-

Plough9 reported independently an L-proline catalyzed intramolecular aldol reaction, 

which gave access to chiral bicyclic intermediates employed in the synthesis of 

steroids and terpenes (Scheme 1.4). The reaction, nowadays known as the Hajos-

Parrish-Eder-Sauer-Wiechert reaction, is considered as an important landmark for 

the development of organocatalysis, since a reversibly formed nucleophilic enamine 

was tagged as a key intermediate in the catalytic cycle. This finding set the basis for 

what is nowadays known as aminocatalysis. 

6  Die Organiche Katalysatoren und ihre Beziehungen zu den Fermenten (Ed.: Langebeck, W.), 
Springer-Verlag, Berlin, 1949. 

7  Pracejus, H. Justus Liebigs Ann. Chem. 1960, 634, 9. 
8  a) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615; b) Hajos, Z. G.; Parrish, D. R. German 

Patent DE 2102623, 1971. 
9  a) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem. Int. Ed. 1971, 10, 496; b) Eder, U.; Sauer, G.; 

Wiechert, R. German Patent DE 2014757, 1971. 
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DMF, rt

N
H

CO2H

(3 mol%)
O

O
OH

Yield: 99%
93% ee

O

O

O

 
Scheme 1. 4 

In the period from the 1980s to the late 1990s significant progresses were 

made in this field. For instance, chiral Brønsted acids were employed for the 

asymmetric hydrocyanation of aldehydes and imines described by Inoue10 and 

Jacobsen11. Another example is the use of quaternary ammonium salts based on 

cinchona alkaloids for the enantioselective alkylation of enolates, under phase-

transfer-catalysis conditions.12 

Nevertheless, organocatalysis remained as a very limited research topic until 

2000, when the first enantioselective intermolecular aldol reaction employing L-

proline as catalyst was published by List, Lerner and Barbas III in an attempt to 

mimic the behaviour of the enzymes (Scheme 1.5).13 Interestingly, this work was the 

culmination of a research that started with the use of aldolase antibodies as 

catalysts for aldol reactions.14 Mechanistic studies on the aldolase catalyzed reaction 

gave proof of the participation of enamine intermediates in the reaction. Based on 

this fact, it was found out that a simple aminoacid (L-proline) was able to catalyze 

the aldol reaction between acetone and different aldehydes to obtain excellent 

yields and enantioselectivities.  

10  Oku, J.; Inoue, S. J. Chem. Soc. Chem. Commun. 1981, 229. 
11  a) Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 10012; b) Sigman, M. N.; Pederson, R. L.; 

Wang, Y. F.; Wong, C. H. J. Am. Chem. Soc. 1998, 120, 4901. 
12  a) Conn, R. S. E.; Lovell, A. V.; Karady, S.; Weinstock, L. M. J. Org. Chem. 1986, 51, 4710; b) Dolling, 

U. H.; Davis, P.; Grabowski, E. J. J. J. Am. Chem. Soc., 1984, 106, 446. 
13   List, B.; Lerner, R. A.; Barbas III, C. F. J. Am. Chem. Soc. 2000, 122, 2395.  
14   Notz, W.; Tanaka, F.; Barbas III, C. F. Acc. Chem. Res. 2004, 37, 580. 
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DMSO, rt

N
H

CO2H

(30 mol%)

Yield: 97%
96% ee

O

H

O O OH
+

 
Scheme 1. 5 

On the other hand, that same year, MacMillan published the first 

enantioselective organocatalytic Diels-Alder reaction catalyzed by a chiral 

imidazolidinone salt. The secondary amine was able to reversibly condense with 

enals leading to a new activation concept named after the reactive intermediate 

generated, iminium catalysis (Scheme 1.6).15 The generated iminium ion has a LUMO 

lower in energy in comparison with the starting α,β-unsaturated aldehyde, which 

results in a diene more reactive towards the Diels-Alder reaction, or in a more 

general way, a β-carbon more susceptible to nucleophilic attack.  

N
H

N

(5-20 mol%)

O

Ph

MeOH/H2O, rt
R1

O

R2

R1
CHO

R2

Yield: 72-90%
exo/endo: 35:1 to 1:5

83-96% ee

+

·HCl

 
Scheme 1. 6 

These pioneering works on enamine and iminium catalysis have served as a 

precedent for the application of this concept leading to a high number of 

publications.16 In addition, other organocatytic activation manifolds (for instance, 

hydrogen-bonding catalysis, PTC, NHC catalysis) has also contributed to expand the 

15   Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243. 
16  For some recent reviews exclusively focused on asymmetric aminocatalysis, see: a) Li, J. L.; Liu, T. Y.; 

Chen, Y. C. Acc. Chem. Res. 2012, 45, 1491; b) Arceo, E.; Melchiorre, P. Angew. Chem. Int. Ed. 2012, 
51, 5290; c) Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Noto, R. Chem. Soc. Rev. 2012, 41, 2406; 
d) Rueping, M.; Dufour, J.; Schoepke, F. R. Green Chem. 2011, 13, 1084; e) Nielsen, M.; Worgull, D.; 
Zweifel, T.; Gschwend, B.; Bertelsen, S.; Jørgensen, K. A. Chem. Commun. 2011, 47, 632. 
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range of organic reactions that are amenable to be catalyzed using a small chiral 

organic molecule. Nowadays organocatalysis is considered as a powerful tool in the 

area of asymmetric synthesis, together with already mentioned metal and enzymatic 

catalysis, for its application in basic and applied research.17 The exponential 

development of this methodology relies on its numerous advantages when 

compared with other types of catalysis. In this regard, organocatalysts can be 

employed under milder and less rigorous conditions,3f,18 as in general they are stable 

and insensitive to oxygen and moisture. Those are also the reasons why those 

catalysts are usually cheap and readily available. Moreover, the absence of metals in 

the reaction media makes this methodology environmentally friendly and of 

particular interest for certain porpoises, such as the synthesis of pharmaceutical 

drugs. All in all, it can be affirmed that this methodology falls under the banner of 

green chemistry. In addition, it should be mention that compared to highly specific 

enzymatic catalysts, organocatalysts are more stable and generic. 

Despite of the abovementioned advantages, this synthetic strategy has several 

drawbacks that should be considered as well. Especially when compared to metal 

catalysis, organocatalyzed transformations typically require longer reaction times 

and higher catalyst loadings. On the other hand, its application in industry is rather 

limited, being the insufficient efficiency at large scale one of the main problems. 

Recently, this area has brought more interest with studies regarding the scale-up of 

the reactions and the recovery of the catalyst.19 

 

 

 

17  a) Howell, G. P. Org. Process. Res. Dev. 2012, 16, 1258; b) Busacca, C. A.; Frandrick, D. R.; Song, J. J.; 
Senanayake, C. H. Adv. Synth. Catal. 2011, 353, 1825. 

18  Gaunt, M. J.; Johansson, C. C. C.; McNally, A.; Vo, N. T. Drug Discov. Today, 2007, 12, 8. 
19  a) Shaikh, I. R. J. Catal. 2014, 402860; b) Li, S.; Wu, C.; Long, X.; Fu, X.; Chen, G.; Liu, Z. Catal. Sci. 

Tech. 2012, 2, 1068. 
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2.- ORGANOCATALYTIC ACTIVATION MECHANISMS 

One of the reasons for the success of this methodology arises from the variety 

of generic modes of activation, asymmetric induction and reactivity exhibited by 

organocatalysts within the catalytic cycle. The value of those generic models is based 

on their simplicity and applicability for the design of new enantioselective 

transformations. Based on the interactions between the catalyst and the substrate, 

the most common generic activation modes have been classified on two groups. 

Processes which involve the formation of catalyst-substrate covalent adducts, will be 

included into the covalent catalysis, whilst those in which the catalyst activates the 

substrate via weaker interactions, such as ion pairs or hydrogen bonds, may be 

considered as a non-covalent catalysis. Some representative organic catalyst 

employed under different activation modes are shown in Figure 1.1 and divided 

attending to the already established classification. 

N
H

CO2H N

N
H

Bn

O

Aminocatalysis: enamine, iminium, 
dienamine, trienamine, SOMO

N-Heterocyclic carbene catalysis

A) 
 
Covalent catalysis

Hydrogen bond catalysis

Br
-

Phase transfer catalysis

B) 
 
Non-covalent catalysis

Catalysis through chiral 
ammonium enolate formation

Others: tertiary amines, phosphines, 
ylides...

N N MesMes

N
H

S

N
H N

N N
N

O

Ar

NH

O
N

NH

OAc
N

OMe

F3C

CF3

OMe

O
BocHN

PPh2
 

Figure 1. 1 
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The majority of reports on the field of organocatalysis refer to covalent 

catalysis. This activation relies on the capability of the catalyst to reversibly form a 

covalent bond with the substrate, assuring the generation of the activated catalyst-

substrate adduct and enabling the catalyst turnover through the cleavage of that 

bond. An efficient transfer of the chiral information from the catalyst to the 

substrate can be achieved as a result of the strong interaction that binds them. 

However, this strong interaction may negatively affect the catalyst turnover step, 

requiring typically high catalyst loadings and longer reaction times.  

Aminocatalysis and N-heterocyclic carbene catalysis are the most studied 

fields in the covalent catalysis. The first one, which consists on the use of chiral 

primary or secondary amines as catalyst, has been widely employed in a number of 

transformations through the reversible formation of enamine/iminium type 

intermediates.16 The second is based on the use of N-heterocyclic carbenes (NHCs) in 

the generation of a nucleophilic intermediate (Breslow intermediate) upon 

condensation of the catalyst with an aldehyde. This species may attack an 

electrophile in an overall process that implies an inversion of the classical reactivity 

of aldehydes.20 Those activation modes, due to their importance in the present 

work, will be later discussed in more detail. Other activation modes including the use 

of phosphines and tertiary amines acting as Lewis bases belong to this group. This 

manifold consists on the activation of multiple C-C bonds by conjugate addition of 

those nucleophilic catalyst to form ylides as reactive intermediates.  

20  For selected reviews on the use of NHCs as organocatalyst, see: a) Wang, M. H.; Scheidt, K. A. 
Angew. Chem. Int. Ed. 2016, 55, 14912; b) Walden, D. M.; Ogba, O. M.; Johnston, R. C.; Cheong, P. 
H. Acc. Chem. Res. 2016, 49, 1279; c) Flanigan, D. M.; Romanov-Michaidilis, F.; White, N. A.; Rovis, 
T. Chem. Rev. 2015, 115, 9307; d) Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013, 42, 
4906;. e) Chen, X.-Y.; Ye, S. Org. Biomol. Chem. 2013, 11, 7991; f) Bugaut, X.; Glorius, F. Chem. Soc. 
Rev. 2012, 41, 3511; g) Biju, A. K.; Kuhl, N.; Glorius, F. Acc. Chem. Res. 2011, 44, 1182; h) Marion, N.; 
Díez-González, S.; Nolan, S. P. Angew. Chem. Int. Ed. 2007, 46, 2988; i) Enders, D.; Niemeier, O.; 
Henseler, A. Chem. Rev. 2007, 107, 5606. 
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On the other hand, non-covalent catalysis comprehends all the 

organocatalytic transformation based on weaker interactions. Thus, the catalyst 

turnover is not affected to the same extent as in covalent catalysis, resulting in lower 

catalyst loadings and shorter reaction times. Despite the advantages of this 

approach regarding the thoroughly criticized aspects of organocatalysis, the weak 

catalyst-substrate interaction, which implies a higher conformational freedom, may 

pose a problem with respect to stereocontrol.  

Hydrogen bonding catalysis21 stands as one of the most relevant activation 

modes under non-covalent catalysis. Molecules bearing different hydrogen-bond 

donor motifs, such as ureas and thioureas,22 squaramides,23 and phosphoric acids,24 

are able to through the formation of this kind of interactions with several functional 

groups in the substrate catalyze a manifold of reactions. These interactions release 

electronic density from the substrate and simultaneously define the spacial 

disposition of the catalyst and substrate for the formation of new bonds, allowing 

for a high stereochemical control.25 Phase transfer catalysis (PTC)26 is another 

important activation method based on non-covalent catalysis. This particular mode 

consists on a two or three phase system, in which the formed catalyst-substrate ion 

pair migrates from one phase to the other in a reversible manner. Another relevant 

21  For recent reviews on hydrogen-bonding catalysis, see: a) Siau, W. Y.; Wang, J. Catal. Sci. Technol. 
2011, 1, 1298; b) Hydrogen Bonding in Organic Synthesis (Ed.: Pihko, P. M.), Wiley-VCH, Weinheim, 
2009; c) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713; d) Taylor, M. S.; Jacobsen, E. N. 
Angew. Chem. Int. Ed. 2006, 45, 1520. 

22  For specific review on ureas and thioureas as catalysts, see: Zhang, Z.; Schreiner, P. R. Chem. Soc. 
Rev. 2009, 38, 1187. 

23  For specific review on squaramides as catalysts, see: Alemán, J.; Parra, A.; Jiang, H.; Jørgensen, K. A. 
Chem. Eur. J. 2011, 17, 6890. 

24  For specific review on phosphoric acids as catalysts, see: a) Rueping, M.; Kuenkel, A.; Atodiresei, I. 
Chem. Soc. Rev. 2011, 40, 4539; b) Terada, M. Curr. Org. Chem. 2011, 15, 2227. 

25  Bastida, D.; Liu, Y.; Tian, X.; Escudero-Adan, E.; Melchiorre, P. Org. Lett. 2013, 15, 220. 
26  For specific review on chiral phase-transfer catalysis, see: a) Kaneko, S.; Kumatabara, Y.; Shirakawa, 

S. Org. Biomol. Chem. 2016, 14, 5367; b) Shirakawa, S.; Maruoka, K. Angew. Chem. Int. Ed. 2013, 52, 
4312; c) Jew. S.; Park, H. Chem. Commun. 2009, 7090; d) Ooi, T.; Maruoka, K. Angew. Chem. Int. Ed. 
2007, 46, 4222. 
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type of ion-pairing catalysis is based on the use of tertiary amines as Brønsted bases 

for the activation of nucleophiles by the formation of a chiral ammonium salt.27  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

27  For a selected review on chiral Brønsted base catalysis, see: Palomo, C.; Oiarbide, M.; López, R. 
Chem. Soc. Rev. 2009, 38, 632. 
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3.- AMINOCATALYSIS 

As stated before, aminocatalysis is a dominating activation mode in the field 

of asymmetric organocatalysis. Chiral primary and secondary amines are employed 

as catalyst based on their ability to reversibly condense with carbonyl compounds 

leading to active species. In this sense, the catalyst-substrate covalent interaction 

may lead to two different azomethine species; enamine and iminium ion. Thus, 

depending on which of those species promotes the catalyzed reaction, 

aminocatalysis may be classified into two main activation modes: enamine28 and 

iminium29 catalysis. Some variants of this activation have also been described, 

including the corresponding vinylogous versions; dienamine, trienamine and 

vinylogous iminium catalysis,30 as well as SOMO catalysis.31 The α, β, γ and 

 δ functionalization of carbonyl compounds have been achieved in an efficient 

manner making use of this methodology. 

3.1. Enamine catalysis 

The term enamine catalysis refers to a catalytic transformation in which the 

reactive species is an enamine intermediate, generated through the condensation of 

28  For some general reviews on enamine catalysis, see: a) Desmarchelier, A.; Coeffard, V.; Moreau, X.; 
Greck, C. Tetrahedron 2014, 70, 2491; b) Kano, T; Maruoka, K. Chem. Sci. 2013, 4, 907; c) Rios, R.; 
Moyano, A. Catalytic Asymmetric Conjugate Reactions (Ed.: Córdova, A.), Wiley-VCH, Weinheim, 
2010; d) Kano, T.; Maruoka, K. Chem. Commun. 2008, 5465; e) Sulzer-Mossé, S.; Alexakis, A. Chem. 
Commun. 2007, 3123; f) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 
5471. 

29  For some reviews in iminium catalysis, see: a) Vicario, J. L.; Reyes, E.; Badía, D.; Carrillo, L. Catalytic 
Asymmetric Conjugate Reactions p. 219-294 (Ed.: Córdova, A.), Wiley-VCH, Weinheim, 2010; b) 
Erkkilae, A.; Majander, I.; Pihko, P. M. Chem. Rev. 2007, 107, 5416; c) Lelais, G.; MacMillan, D. W. C. 
Aldrichim. Acta 2006, 39, 79. 

30  Some recent reviews on vinylogous aminocatalysis: a) Jiang, H. J.; Albrech, L.; Jørgensen, K. A. 
Chem. Sci. 2013, 4, 2287; b) Juberg, I. D.; Chatterjee, I.; Tannert, R.; Melchiorre, P. Chem. Commun. 
2013, 49, 4869; c) Li, J. L.; Liu, T. Y.; Chen. Y. C. Acc. Chem. Res. 2012, 45, 1491. 

31  For a review in SOMO catalysis, see: a) MacMillan, D. W. C.; Rendlen, S. Asymmetric Synthesis II. p. 
87-94 (Eds.: Christmann, M.; Brase, S.), Wiley-VCH, Weinheim, 2012. For some examples, see: b) 
Comito, R. J.; Finelli, F. G.; MacMillan, D. W. C. J. Am. Chem. Soc. 2013, 135, 9358; c) Pham, P. V.; 
Ashton, K.; MacMillan, D. W. C. Chem. Sci. 2011, 2, 1470; d) Graham, T. H.; Jones, C. M.; Jui, N. T.; 
MacMillan, D. W. C. J. Am. Chem. Soc. 2008, 130, 16494; e) Beeson, T. D.; Mastracchio, A.; Hong, J.-
B.; Ashton, K.; MacMillan, D. W. C. Science 2007, 316, 582. 
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a primary or secondary amine with an enolizable ketone or aldehyde. The activation 

of the substrate is based on that the generated catalyst-substrate iminium type 

adduct has a LUMO lower in energy, compared to the starting carbonyl compound, 

and therefore a more acidic proton at α–position. This will result in the formation of 

an enamine with a HOMO higher in energy, which results in an active species of 

enhanced nucleophilicity compared to the corresponding aldehyde or ketone. After 

the reaction with an electrophile a hydrolysis step is required to release the catalyst 

for another run of the catalytic cycle and generate the α–functionalized product 

(Scheme 1.7). 
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Scheme 1. 7 

Regarding the stereochemistry of the aminocatalyzed reaction, intensive work 

has been done in the study of the structure of the enamine intermediates. 32 Thus, in 

a enantiocontrolled transformation, both the conformational structure of the 

enamine and the approach of the incoming electrophile should be controlled. First, 

the system should be restricted by introducing steric hindrance through a wise 

design of the catalyst in order to guarantee that among all possible enamine 

intermediates only one is formed (Scheme 1.8a). On the other hand, the chiral 

32  Dinér, P.; Kjaersgaard, A.; Lie, M. A.; Jørgensen, K. A. Chem. Eur. J. 2008, 14, 122. 
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element within the catalyst structure is responsible for the differentiation of the two 

faces of the enamine nucleophile. In this sense, two strategies have been developed 

to control the trajectory of the electrophile, H-bond directing stereoinduction and 

steric shielding (Scheme 1.8b). 
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Scheme 1. 8 

 

As a variant of the enamine activation, MacMillan introduced in 2007 the 

concept of SOMO catalysis. This manifold is based on the fact that enamine 

intermediates are prone to be oxidized and to form a radical-cation with an 

individually occupied orbital (SOMO). A SOMO-phile is able to trap this radical 

species to form a new radical intermediate, which upon further oxidation will return 

to the closed shell configuration (Scheme 1.9). This approach enables the 

functionalization at α position of the aldehyde or ketone compound in the presence 

of weak nucleophiles. 

 



 
16 Chapter 1 

O

R1

N
H R*

oxidant or
photoredox

catalysis

N R*

R1

N R*

R1

R2R2
O

R1

R2 **

N
H R*

radical 
cation  

Scheme 1. 9 

3.2. Iminium catalysis 

This activation mode is based on the reversible condensation of the amine 

catalyst with a α,β-unsaturated carbonyl compound to form an iminium ion that 

would participate in the reaction as an electrophilic intermediate. The increased 

reactivity of this intermediate is explained by the LUMO energy lowering effect that, 

as it happened in the case of enamine activation, takes place upon condensation of 

the catalyst to form the iminium species. In this case α,β-unsaturated aldehydes or 

ketones are employed as substrates leading to an intermediate of increased 

electrophilic character at the β-position. Upon nucleophilic attack, an enamine type 

intermediate is generated, which at the final step is hydrolysed to render the β–

functionalized product and the catalyst is released (Scheme 1.10).  
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So as to reach high levels of stereocontrol, the catalyst has to differentiate 

between the two diastereotopic faces of the Michael acceptor. On the one hand, 
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this selectivity can be achieved based on steric hindrance if a large substituent is 

introduced in the catalyst scaffold to shield one of the faces. Alternatively, the 

presence of a stereodirecting element on the catalyst may control the trajectory of 

the nucleophile through a secondary interaction of the catalyst (Figure 1.2).  

Additionally, the geometry of the iminium ion (Z or E) has to be controlled if a 

highly stereoselective process is desired. In this regard, when the addition of the 

nucleophile is controlled by an stereodirecting group, this interaction would also 

define the configuration of the Michael acceptor. When the face selectivity is control 

by steric hindrance, the geometry of the iminium ion will be given by the stability of 

the possible isomers based on the interaction with the bulky substituent located 

within the catalyst or by the kinetic preference for one of the isomers to undergo 

reaction faster with the nucleophile. Thus, a substituent bulky enough would be able 

to provide a good π-facial discrimination as well as determine the geometry of the 

intermediate.  
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Figure 1. 2 

 

As it has been stated in the previous pages, aminocatalysts can promote 

diverse reactivity patterns through the formation of species of different nature, such 

as electrophilic iminium ions or nucleophilic enamines. Moreover, those species are 

common intermediates of the different catalytic cycles (Scheme 1. 7 and Scheme 1. 

10). The ability shown by the reaction itself to move from one intermediate to the 

other enables the combination of both catalytic cycles to promote a cascade 
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sequence (Scheme 1.11).33 Thus, the enamine intermediate, generated after the 

nucleophilic addition to the β-position of the iminium intermediate, can be 

subsequently trapped by an electrophile leading to an α,β-difunctionalized 

compound. As in other cases, a final hydrolysis step renders the product and 

releases the catalyst to restart the catalytic cycle. 
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Scheme 1. 11 

 

Importantly the reversibility of the reaction steps should be considered as it 

may lead to epimerization of the generated stereocentres. Indeed, hetero-Michael 

reactions, in which the addition step is reversible, are usually performed at low 

temperatures to avoid the epimerization (Scheme 1.12). 

33  For some reviews on organocatalytic cascade reactions, see: a) Vetica, F.; de Figueriedo, R. 
M.;Orsini, M.; Tofani, D.; Gasperi, T. Synthesis 2015, 47, 2139; b) Volla, C. M. R.; Atodiresei, L.; 
Rueping, M. Chem. Rev. 2014, 114, 2390; c) Pellissier, H. Chem. Rev. 2013, 113, 442; d) Pellissier, H. 
Adv. Synth. Catal. 2012, 354, 237; e) Enders, D.; Grondal, C.; Hütl, M. R. M. Angew Chem. Int. Ed. 
2007, 46, 1570. For specific reviews on aminocatalysis cascade reactions, see: f) Song, A.; Wang, W. 
Catalytic Cascade Reactions (Eds.: Xu, P.-F.; Wang, W.), John Wiley & Sons, p. 1-52, New Jersey, 
2014; g) Yu, X.; Wang, W. Org. Biomol. Chem. 2008, 6, 2037.  
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Scheme 1. 12 

 
3.3 Dienamine, trienamine and vinilogous iminium ion activation 

 

Another variation of the methodology arose from the combination of the 

vinilogy concept with the two aminocatalytic activation manifolds. The effect of the 

catalyst is extended through the conjugated π-system leading to the activation of 

remote position.34 Thus, the use of γ-enolizable α,β-unsaturated aldehydes or 

ketones based on the LUMO-lowering and HOMO-raising effects renders 

nucleophilic dienamine type intermediates. This concept has also been extended to 

the formation of trienamine35 and tetraenamine36 intermediates as well as the 

development of vinylogous iminium ions (Scheme 1.13). 37 

34  Ramachary, D. B.; Reddy, Y. V. Eur. J. Org. Chem. 2012, 865. 
35  Pionering work on trienamine catalysis: Jia, Z. J.; Jiang, J.; Li, J. L.; Gschwend, N.; Li, Q. Z.; Yin, X.; 

Grouleff, J.; Chen, Y. C.; Jørgensen, K. A. J. Am. Chem. Soc. 2011, 133, 5053. A review on trienamine 
catalysis: Kumar, I.; Ramaraju, P.; Mir, N. A. Org. Biomol. Chem. 2013, 11, 709. 

36  Tetraenamine catalysis: Stiller, J.; Poulsen, P. H.; Cruz, D. C.; Dourado, J.; Davis, R. L.; Jørgensen, K. 
A. Chem. Sci. 2014, 5, 2052. 

37  Tian, X.; Liu, Y.; Melchiorre, P. Angew. Chem. Int. Ed. 2012, 51, 6439. 
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4.- N-HETEROCYCLIC CARBENE CATALYSIS 

Carbenes, defined as neutral compounds bearing a bivalent carbon atom with 

a six electron valence shell, are in general, unstable species due to their incomplete 

electron octet. In contrast, molecules with at least one nitrogen adjacent to the 

open shell atom, referred to as N-heterocyclic carbenes (NHC),38 are particularly 

stable and included in the subcategory of persistent carbenes.39 NHCs are spin-

paired systems in the ground state, showing a lone electron pair in a formal sp2 

orbital (HOMO) and an empty p-orbital (LUMO). The increased stability of this 

species, as well as the relative stabilization of the singlet state compared to the 

triplet one is mainly attributed to the ability of contiguous nitrogen atoms to donate 

electron density to the unoccupied p-orbital (LUMO) and concurrently to remove 

electron density from the carbene carbon through a σ-bond. The synergy of those 

mesomeric and inductive interactions results in a lowering of the HOMO energy 

whilst increasing the electron density at the empty LUMO. The singlet state is also 

favoured by the cyclic structure that forces the carbene to a more sp2 like 

hybridation (Scheme 1.14).40,41 
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38  N-Heterocyclic carbene: a) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 
485; b) Cazin, C. S. J. N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis; 
Springer : London, 2011; c) Díez-Gónzalez, S. From Laboratory Curiosities to Efficient Synthetic 
Tools; RSC Publishing: Cambridge, 2011. 

39  a) Bourissou, D.; Guerret, O.; Gabbaï,F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39; b) de Frémont, P.; 
Marion, N.; Nolan, S. P. Coord. Chem. Rev. 2009, 253, 862. 

40  a) Dixon, D. A.; Arduengo, A. J. III. J. Phys. Chem. 1991, 95, 4180; b) Arduengo, A. J. III. Acc. Chem. 
Res. 1999, 32, 913. 

41  Runyon, J. W.; Steinhof, O.; Dias, H. V. R.; Calabrese, J. C.; Marshall, W. J.; Arduengo, A. J. Aust. J. 
Chem. 2011, 64, 1165. 
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In addition to the stabilization through electronic effects, vicinal atoms are 

usually substituted with bulky groups to hinder the tendency to undergo 

dimerization towards the formation of alkenes (the Wanzlick equilibrium)42. In this 

regard, both the steric and electronic properties of those species are closely related 

to the substitution patterns, ring size and the contribution of the heteroatoms to 

stabilization.43 Although a variety of NHCs have been design by modifying all these 

aspects, the scaffolds shown in Scheme 1.15 comprise the wide majority of them.    
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N-Heterocyclic carbenes have gathered an increasing relevance in the field of 

organocatalysis,20 leading the subcategory of covalent catalysis in conjunction with 

aminocatalysis. However, the applicability of these compounds extends beyond their 

role in this field. As it has been stated, NHCs are nucleophilic species bearing a lone 

pair of electrons, thus can feature as sigma-donor ligands.44 Moreover, NHCs are 

considered as sterically demanding ligands due to its sp2 hybridation, where the 

nitrogen atoms are oriented towards the metal centre. The ease to modify the 

structure and properties of NHCs has allowed for their application in a variety of 

reactions through the formation of unalike metal complexes. 

42  a) Wanzlick, H.-W. Angew. Chem. Int. Ed. 1962, 1, 75; b) Wanzlick, H.-W.; Kleiner, H.-J. Angew. 
Chem. Int. Ed. 1964, 3, 65. 

43  Hermann, W. A.; Köcher, C. Angew. Chem. Int. Edn. Engl. 1997, 36, 2162. 
44  For the use of NHCs as ligand, see: a) Ritleng, V.; Henrion, M.; Chetcuti, M. J. ACS Catal. 2016, 6, 

890; b) Zhao, D.; Candish, L.; Paul, D.; Glorius, F. ACS Catal. 2016, 6, 5972; c) Visbal, R.; Concepcion 
Gimeno, M. Chem. Soc. Rev. 2014, 43, 355; d) Schaper, L.-A.; Hock, S. J.; Hermann, W. A.; Kühn, F. E. 
Angew. Chem. Int. Ed. 2013, 52, 270; e) Díez-González, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009, 
109, 3612; f) Hahn, F. E.; Jahnke, M. C. Angew. Chem. Int. Ed. 2008, 47, 3122; g) Nolan, S. P. N-
Heterocyclic Carbenes in Synthesis; Wiley-VCH; Weinheim, 2006. 
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Back to their capability as organocatalysts, the first example employing this 

activation mode dates back to 1943, when Ukai reported the benzoin condensation 

of benzaldehyde in the presence of a thiazolium salt (Scheme 1.16).45 
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Scheme 1. 16 

 
Later on, Breslow46 helped in the understanding of this transformation with a 

mechanistic proposal (Scheme 1.17) based on the generation of a nucleophilic 

intermediate, nowadays known as the Breslow intermediate, as the active species 

for the generation of the new C-C bond. First the actual catalyst is generated upon 

deprotonation of the thiazolium salt. Then the generated nucleophilic carbene 

catalyst undergoes 1,2-addition over the aldehyde. As a result, the acidity of the 

formerly aldehydic proton is dramatically increased, allowing a 1,2-proton shift 

process from the ipso position to the alkoxide moiety. Thus, an enaminol 

intermediate is generated as the result of the condensation of the carbene with an 

aldehyde. This covalent catalyst-substrate adduct is activated towards the reaction 

with an electrophile, in a transformation that involves a polarity reversal of the 

carbonyl group (umpollung).47 Subsequent proton transfer leads to the formation of 

the product, concurrently to the elimination of the thiazolium moiety as a good 

leaving group so that it can restart the catalytic cycle. This mechanism will be further 

discussed in the context of the asymmetric benzoin condensation in the next 

chapter. 

45  Ukai, T.; Tanaka, R.; Dokawa, T. J. Pharm. Soc. Jpn. 1943, 63, 296. 
46  Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719. 
47  Seebach, D.; Corey, E. J. J. Org. Chem. 1975, 40, 231. 
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Scheme 1. 17 

This mechanistic proposal was crucial for the development of the reaction as 

well as to envision the possibility of an asymmetric version. Thus, in a 

enantiocontrolled transformation, both the conformational aspects of the enaminol 

intermediate and the trajectory of the approaching electrophile must be controlled. 

The geometry of the Breslow intermediate will be defined by the steric and 

electronic interactions between the substrate and the catalyst (Figure 1.3). First, the 

interactions between the lone electron pairs of the hydroxyl group and the nitrogen 

atoms may provide destabilising effect, that implies that, configurations in which the 

hydroxyl group is located at the same side of the molecule as other areas of high 

electron density will be disfavoured. However, this electronic interaction might be of 

little effect compared to introducing bulky substituents at the nitrogen atoms, being 

this steric effect particularly important for the substitution at the N1 position of 

imidazolium type carbenes. This is explained by the fact that N1 will preferentially 

adopt a sp2 hybridisation and N3 would turn to sp3 hybridisation.48 Thus, the 

conformational freedom of the system should be restricted by introducing steric 

hindrance through a wise design of the catalyst. It should also be considered that the 

formation of the enaminol intermediates is reversible and despite the preferential 

48  Hawkes, K. J.; Yates, B. F. Eur. J. Org. Chem. 2008, 5563. 
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formation of one diastereomer the reactivity of the different isomeric intermediates 

will determine which one participates in the catalytic cycle. On the other hand, the 

chiral element within the catalyst structure is responsible for the differentiation of 

the two diastereotopic faces of the enaminol intermediate. Hindering the approach 

of the electrophile by steric bias is the generally employed strategy for this purpose. 
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Figure 1. 3 

 

Besides the acyl anion chemistry (d1)49,50 that can be directly promoted 

through the Breslow intermediate, this activation mode may lead to different 

intermediates depending on the nature of the substrate (Scheme 1.18). Thus, the 

use of α,β-unsaturated aldehydes renders a Breslow intermediate with extended 

conjugation, that may react with electrophiles at the β-position, showing 

homoenolate reactivity (d1 type synthon). This intermediate can be protonated to 

form an acyl azolium intermediate (a1 type synthon) or lead to an azolium enolate 

type intermediate (d2 type synthon) through a proton transfer step. Alternatively, 

aldehydes with a leaving group at the α-position, or aliphatic aldehydes under 

oxidative conditions can be also employed as acyl azolium/azolium enolate 

precursors. Finally, subjecting the homologated Breslow intermediate to oxidation 

49  For reviews on NHC catalyzed benzoin reactions, see: a) Ref. 21i b) Menon, R. S.; Biju, A. T.; Nair, V 
Beilstein J. Org. Chem. 2016, 12, 444. 

50  a) Stetter, H. Angew. Chem. Int. Ed. 1976, 15, 639. For a review on Stetter reaction, see: b) De 
Alaniz, J. R.; Rovis, T. Synlett 2009, 8, 1189. 
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conditions gives access to the corresponding unsaturated acyl azolium and dienolate 

intermediates. The ipso, α,β and even γ functionalization of carbonyl compounds 

could be achieved employing this methodology. This implies a very rich reactivity 

profile and a wide world of possible organic transformations that can be promoted 

by NHCs through this variety of reactive intermediates. 
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In fact, NHC-promoted reactions have experienced a renaissance since these 

reactions that extend beyond the long-studied generation of acyl anion equivalents, 
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were discovered in 2004.51 In the last decade, the activation modes presented on 

Scheme 1.18 together with the new discrete reactive species involved in those 

transformations have been studied in depth.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

51  a) Sohn, S.; Rosen, E. L.; Bode, J. J. Am. Chem. Soc. 2004, 126, 14370; b) Burstein, C.; Glorius, F. 
Angew. Chem. Int. Ed. 2004, 116, 6331. 
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5.- PRECEDENTS OF THE GROUP 

Historically, our research group is primarily aimed toward the development of 

new methodologies in the field of asymmetric synthesis and their application to the 

synthesis of chiral building blocks, drugs and natural products. Initially, the chiral 

auxiliary strategy was employed for this task, leading to satisfactory results in the use 

of β-aminoalcohol (S,S)-(+)-pseudoephedrine in a variety of transformations, such as 

enolate chemistry52 and several conjugate additions.53 

 

More recently, we moved to the field of asymmetric catalysis focusing on the 

organocatalytic approach. In this regard, the first work in the area consisted in an 

aminocatalyzed Michael reaction between enolizable aldehydes and β-nitroacroleine 

dimethyl acetal, employing prolinol derivatives for the generation of the key 

enamine intermediate (Scheme 1.19).54 A protocol for the preparation of highly 

functionalized pyrrolidines by further transformation of the obtained Michael 

adducts was designed.55   

52  Most recent aldol reaction: a) Ocejo, M.; Carrillo, L.; Vicario, J. L.; Badía, D.; Reyes, E. J. Org. Chem. 
2011, 76, 460. Most recent Mannich reaction: b) Iza, A.; Vicario, J. L.; Badía, D.; Carrillo, L. Synthesis 
2006, 4065. Most recent electrophilic amination reaction: c) Vicario, J. L.; Badía, D.; Carrillo, L. 
Tetrahedron: Asymmetry 2002, 13, 745. Aziridine ring opening reaction: d) Vicario, J. L.; Badía, D.; 
Carrillo, L. J. Org. Chem. 2001, 66, 5801. Tandem reaction: e) Reyes, E.; Vicario, J. L.; Carrillo, L.; 
Badía, D.; Iza, A.; Uria, U. Org. Lett. 2006, 8, 2535. 

53  Conjugate addition reactions: a) Ocejo, M.; Carrillo, L.; Badía, D.; Vicario, J. L.; Fernández, N.; Reyes, 
E. J. Org. Chem. 2009, 74, 4404; b) Reyes, E.; Vicario, J. L.; Carrillo, L.; Badía, D.; Uria, U.; Iza, A. J. 
Org. Chem. 2006, 71, 7763. Aza-Michael reactions: c) Etxebarria, J.; Vicario, J. L.; Badía, D.; Carrillo, 
L.; Ruiz, N. J. Org. Chem. 2005, 70, 8790; d) Etxebarria, J.; Vicario, J. L.; Badía, D.; Carrillo, L. J. Org. 
Chem. 2004, 69, 2588. 

54  Reyes, E.; Vicario, J. L.; Badía, D.; Carrillo, L. Org. Lett. 2006, 8, 6135. 
55  Ruiz, N.; Reyes, E.; Vicario, J.; Badía, D.; Carrillo, L.; Uria, U. Chem. Eur. 2008, 14, 9357. 
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Scheme 1. 19 

Iminium catalysis has been also studied leading to a variety of transformations 

on α,β-unsaturated aldehydes and ketones (Scheme 1.20). Initially, we centered our 

efforts on aza-Michael type reactions employing tetrazoles as nucleophiles.56 

Furthermore, N-nitromethylphthalimide and hydrazones were successfully 

employed as hydroxymetanimidoyl anion and glyoxyl anion equivalents respectively, 

in an umpolung enantioselective conjugate addition to enals.57, 58 On the other hand, 

this activation mode has been applied to the use of bis-nucleophiles, such as 

aminoketones,59 hydrazides60 and dialkyl aminomalonate.61 After an initial (aza)-

Michael addition over the activated conjugated acceptor, those substrates bearing a 

nucleophilic nitrogen atom, are able to undergo an intramolecular 

hemiaminalization step to yield the corresponding cyclic adducts.  

56  a) Uria, U; Reyes, E.; Vicario, J. L.; Badía, D.; Carrillo, L. Org. Lett. 2011, 13, 336; b) Uria, U.; Vicario, J. 
L.; Badía, D.; Carrillo, L. Chem. Commun. 2007, 2509. 

57  Alonso, B.; Reyes, E.; Carrillo, L.; Vicario, J. L.; Badía, D. Chem. Eur. J. 2011, 17, 6048. 
58  Fernández, M.; Uria, U.; Vicario, J. L.; Reyes, E; Carrillo, L. J. Am. Chem. Soc. 2012, 134, 11872. 
59  Talavera, G.; Reyes, E.; Vicario, J. L.; Carrillo, L.; Uria, U. Adv. Synth. Catal. 2013, 355, 653. 
60  Fernandez, M.; Reyes, E.; Vicario, J. L.; Badia, D.; Carrillo, L. Adv. Synth. Catal. 2012, 354, 371. 
61  Riaño, I.; Díaz, E.; Uria, U.; Reyes, E.; Carrillo, L.; Vicario, J. L. Chem. Commun. 2016, 52, 2330. 
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Scheme 1. 20 

The LUMO lowering effect observed on iminium activated conjugated systems 

makes them suitable for cycloaddition reactions. This approach was applied by our 

group for the development of the first [3+2] cycloaddition employing azomethine 

ylides as 1,3-dipoles (Scheme 1.21).62 This transformation has shown good tolerance 

to modifications in the substrates, which has been exhibited in variants of the initial 

reaction63 and the application of the methodology to the synthesis of diverse 

heterocyclic structures.64 Computational studies, carried out in collaboration with 

Prof. Fernando Cossio, proved that the reaction actually proceeded through a 

stepwise mechanism.65 The proposed Michael/Mannich cascade sequence is 

62  a) Reboredo, S.; Vicario, J. L.; Badía, D.; Carrillo, L.; Reyes, E. Adv. Synth. Cat. 2011, 353, 3307; b) 
Vicario, J. L.; Reboredo, S.; Badía, D.; Carrillo, L. Angew. Chem. Int. Ed. 2007, 46, 5168. 

63  a) Reboredo, S.; Vicario, J. L.; Badía, D.; Carrillo, L.; Reyes, E. Adv. Synth. Cat. 2011, 353, 3307; b) 
Fernandez, N.; Carrilo, L.; Vicario, J. L.; Badia, D.; Reyes, E.Chem.Commun. 2011, 47, 12313; c) 
Reboredo, S.; Vicario, J. L.; Carrillo, L.; Reyes, E.; Uria, U. Synthesis 2013, 2669. 

64  a) Iza, A.; Carrillo, L.; Vicario, J. L.; Badia, D.; Reyes, E.; Martinez, J. I. Org. Biomol. Chem. 2010, 8, 
2238; b) Iza, A.; Ugarriza, I.; Uria, U.; Reyes, E.; Carrillo, L.; Vicario, J. L. Tetrahedron 2013, 69, 8878. 

65  Reboredo, S.; Reyes, E.; Vicario, J. L.; Badía, D.; Carrillo, L.; de Cozar, A.; Cossio, F. P. Chem. Eur. J. 
2012, 18, 7179. 
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initiated by a conjugated addition of the 1,3-dipole to the α,β-unsaturated iminium 

ion, which renders the corresponding enamine that undergoes intramolecular 

cyclization with the azomethine. The combination of the iminium/enamine 

activation has been employed to promote a variety of cascade sequences such as 

oxa-Michael/aldol/hemiacetalization,66 oxa-Michael/Michael,67 

Michael/aldol/dehydration,68 Michael/Michael,69 Michael/α-alkylation.70 More 

recently, we have developed a (3+2) cycloaddition with nitrones through a 

cooperative hydrogen-bonding catalysis/Iminium activation.71  

66  Reyes, E.; Talavera, G.; Vicario, J. L.; Badia, D.; Carrillo, L. Angew. Chem. Int. Ed. 2009, 48, 5701. 
67  Orue, A.; Uria, U.; Roca-López, D.; Delso, I.; Reyes, E.; Carrillo, L.; Merino, P.; Vicario, J. L. Chem. Sci. 

2017, in press. DOI: 10.1039/c7sc00009j 
68  Fernandez, M.; Vicario, J. L.; Reyes, E.; Carrillo, L; Badía, D. Chem. Commun. 2012, 48, 2092. 
69  Riaño, I.; Uria, U.; Carrillo, L.; Reyes, E.; Vicario, J. L. Org. Chem. Front. 2015, 2, 206. 
70  a) Uria, U.; Vicario, J. L.; Badía, D.; Carrillo, L.; Reyes, E.; Pesquera, A. Synthesis 2010, 4, 701; b) 

Martinez, J. I.; Reyes, E.; Uria, U.; Carrillo, L.; Vicario, J. L. ChemCatChem 2013, 5, 2240. 
71  Prieto, L.; Yuste, V.; Uria, U.; Delso, I.; Reyes, E.; Tejero, T.; Carrillo, L.; Merino, P.; Vicario, J. L. 

Chem. Eur. J. 2017, 23, 2764. 
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Scheme 1. 21 

 

On the other hand, we have successfully developed formal (2+2)72 and (5+2)73 

cycloadditions by applying the concept of vinilogy to aminocatalysis, which enables 

the functionalization of carbonyl compounds at more remote positions (Scheme 

1.22). Thus, nitroalkenes and oxidopyrilium ylides proved to be suitable for the 

reaction with extended conjugated π-systems under dienamine catalysis. 

72  Talavera, G.; Reyes, E.; Vicario, J. L.; Carrillo, L. Angew. Chem. Int. Ed. 2012, 51, 4104. 
73  a) Orue, A.; Uria, U.; Reyes, E.; Carrillo, L.; Vicario, J.L. Angew. Chem. Int. 2015, 54, 3043; b) Roca-

López, D.; Uria, U.; Reyes, E.; Carrillo, L.; Jørgensen, K. A.; Vicario, J. L.; Merino, P. Chem. Eur. J.2016, 
18, 884. 
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Morevover, this approach was extended to the use of unsaturated enals as dienes y 

Diels-Alder type reaction employing dienamine and trienamine catalysis.74,75 
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Scheme 1. 22 

 
In the context of non-covalent activation modes, hydrogen-bond catalysis has 

been employed in the development of a diastereodivergent strategy for the 

enantioselective synthesis of densely functionalized cyclohexanes through a 

Michael/Henry cascade between alkyl nitroacetates and enals and  nitroalkenes 

employing a bifunctional tertiary amine/squaramide catalyst (Scheme 1.23).76 

74  Orue, A.; Reyes, E.; Vicario, J. L.; Carrillo, L.; Uria, U. Org. Lett. 2012, 14, 3740. 
75  Prieto, L.; Talavera, G.; Uria, U.; Reyes, E.; Vicario, J. L.; Carrillo, L. Chem. Eur. J. 2014, 20, 2145. 
76  a) Martinez, J. I.; Villar, L.; Uria, U.; Carrillo, L.; Reyes, E.; Vicario, J. L. Adv. Synth. Catal. 2014, 356, 

3627; b) Martinez, J. I.; Uria, U.; Muñiz, M.; Reyes, E.; Vicario, J. L. Beils. J. Org. Chem. 2015, 11, 
2577. 
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6.- GENERAL OBJECTIVES OF THE PRESENT WORK 

The work comprised in this thesis has been developed in line with the current 

research activity of the group. Thereby, it is oriented to the study of new asymmetric 

methodologies within the field of organocatalysis. In this sense, we wish to find 

solutions to challenging reactions for which nowadays there is no general approach, 

as it is the case of the cross-benzoin condensation under NHC catalysis. On the other 

hand, we also wish to explore the potencial of D-A cyclopropane precursors as 

unconventional substrates undergoing organocatalyzed activation. This research 

work will be presented in three different parts. 

 

In the first part, based on the limited number of reports on the 

enantioselective intermolecular aldehyde-ketone cross-benzoin reaction and the 

lack of examples employing functionalized carbonyl compounds, the ability of 

ynones to perform as the electrophilic counterpart in the N-heterocyclic carbene 

catalyzed benzoin reaction will be studied (Scheme 1. 24). Additionally, the reaction 

will give access to enantioenriched tertiary propargylic alcohols, considered as 

important chiral building blocks. 
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Scheme 1. 24 

On the second part, the catalytic generation of D-A cyclopropanes from 

suitably substituted and functionalized cyclopropanes will surveyed under two 

organocatalytic activation manifolds that involve covalent interactions, namely, NHC 

catalysis and iminium activation. Once the catalytically generated D-A cyclopropane 

is generated, a ring-opening event is expected to occur to form an active 
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intermediate that will be reacted with additional reagents towards the development 

of cycloaddition chemistry. In particular, formyl cyclopropanes, that have been 

described as potential acyl azolium/azolium enolate precursos under N-heterocyclic 

carbene catalysis, will be employed to explore this kind of reactivity in cycloaddition 

reactions employing electron-poor dienes (Scheme 1. 25). 
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Scheme 1. 25 

On the other hand, the capability of cycloprpaneacetaldehydes to undergo 

ring-opening in the presence of chiral secondary amines will be surveyed. The ring 

opening process may take place through the activation of the cyclopropane as an 

enamine intermediate, that upon the C-C bond cleavage would render an iminium 

species suitable for Michael/Aldol cascade reactions (Scheme 1. 26). 
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Finally a short chapter including the work performed in the context of a short 

stay at the University of California, Berkeley under the supervision of Prof. F. Dean 

Toste is included. Considering that the participation of high oxidation palladium 

species (Pd IV) has been crucial in the C-F bond formation chemistry, the possibility 

to access α-amino geminal difluoro derivatives from fluorstyrenes will be surveyed 
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employing N-fluorobenzenesulfonimide as both strong oxidant and fluorine source.  

(Scheme 1.27). 
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NHC catalyzed Enantioselective Cross-
Benzoin Reaction with Ynones 

 

 

 

 

1.- INTRODUCTION 
 

The benzoin reaction (condensation), named after the product that is 

generated at the end of the process, consists on the formation of benzoin through 

the assembly of two molecules of benzaldehyde. This reaction that can be promoted 

by cyanide or N-heterocyclic carbene (NHC), can also be described, in a more general 

way, as the coupling of an aldehyde with a carbonyl compound in the synthesis of α-

hydroxyketones. The generated product is particularly interesting as the new 

carbon-carbon bond formed would imply an anomalous disconnection from the 

retrosynthetic1 point of view. In addition to this, a perfect atom-economy, the 

generation of a new stereogenic centre as well as the use of reaction partners 

ubiquitous in organic chemistry, have promoted intensive investigations on this 

topic.2 

Discovered in 1832 by Friedrch Wöhler (1800-1882) and Justus von Liebig 

(1803-1873)3 the benzoin condensation is among the earliest known carbon-carbon 

1  Corey, E. J.; Cheng, X-M. The Logic of Chemical Synthesis; Wiley: New York, 1995. 
2  For reviews on benzoin condensation or acyloin chemistry see: a) Enders, D.; Balensiefer, T. Acc. 

Chem. Res. 2004, 37, 534; b) Johnson, J. S. Angew. Chem. Int. Ed. 2004, 43, 1326; c) Enders, D.; 
Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606; d) Menon, R. S.; Biju, A. T.; Nair, V Beilstein 
J. Org. Chem. 2016, 12, 444. e) Suzuki, K.; Takikawa, H. Carbene-Catalyzed Benzoin Reactions; Eds.: 
List, B.; Georg Thieme Verlag KG: Stuttgart, 2012, p. 591-618. 

3  Wöhler, F.; Liebig, J. Ann. Pharm. 1832, 3, 249. 
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bond-forming reactions, that has recently found the corresponding catalytic 

enantioselective version under NHC catalysis. Despite this, the first example using 

thiazolium salts as promoters of a benzoin reaction was reported by Ukai in 1943.4 

From the very beginning, Lapworth considered a polarity reversal of the aldehyde for 

the transformation under cyanide anion catalysis.5 In the 1950s, Mizuhara 

demonstrated that the thiazolium unit of thiamine (vitamine B1) was responsible for 

its catalytic activity;6 whilst based on the work of Lapworth, R. Breslow7 proposed in 

1958 a mechanistic model for the NHC-catalyzed benzoin condensation which 

involved the participation of a carbene generated after deprotonation of the 

thiazolium salt (Scheme 2.1).  
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Scheme 2. 1 

 

In this mechanism, the thiazolium salt (I) is deprotonated to form in situ the 

catalytically active species (II). It is assumed that this thiazolin-2-ylidene undergoes 

nucleophilic attack over the aldehyde to generate adduct (IV) after a 

4  Ukai, T.; Tanaka, R.; Dokawa, T. J. Pharm. Soc. Jpn. 1943, 63, 296 (Chem. Abstr. 1951, 45, 5148). 
5  Lapworth, A. J. Chem. Soc. 1903, 83, 995. 
6  Mizuhara, S.; Handler, P. J. Am. Chem. Soc. 1954, 76, 571. 
7  Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719. 
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deprotonation/reprotonation sequence.8 Being this key step of the mechanism and 

involving a polarity reversal (umpolung) of the aldehyde.9 The enaminol 

intermediate (IV) is an acyl anion equivalent, known as the “Breslow intermediate”, 

that reacts with an electrophile such as another molecule of aldehyde. An internal 

proton transfer step and subsequent release of the catalyst affords the final product 

and the active carbene ready to participate in a new cycle. The stereochemistry of 

the reaction is defined in the formation of intermediate (V), proving that the NHC 

backbone incorporates a stereodirecting element that differentiates both 

prostereogenic faces.8a,10 

Those significant discoveries, in conjunction with the work of Bertrand11 and 

Arduengo,12 to isolate stable NHCs, paved the way for further developments in the 

area of carbene catalysis. Since then, a number of NHCs have been synthesized and 

applied in benzoin type and many other reactions.13 

 
The first enantioselective benzoin reaction date back to 1966, when Sheehan 

obtained (S)-benzoin with poor enantiocontrol using a chiral thiazolium salt as 

catalyst (Scheme 2.2).14 Years later, by using a modified thiazolium salt, (S)-benzoin 

8  a) Hawkes, K. J.; Yates, B. F. Eur. J. Org. Chem. 2008, 55, 63; b) He, Y.; Xue, Y. J. Phys. Chem. 2011, 
115, 1408.  

9  Seebach, D.; Corey, E. J. J. Org. Chem. 1975, 40, 231. 
10  Dudding, T.; Houk, K. N. Proc. Natl. Acad. Sci. 2004, 101, 5770. 
11 Igau, A.; Baceiredo, A.; Trinquier,G.; Betrand, G. Angew. Chem. Int. Ed. 1989, 28, 621. 
12  Arduengo III, A. J.; Dias, H. V. R.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1992, 114, 5530. 
13  a) Arduengo III, A. J.; Kraftczyk, R. Chem. Unserer Zeit 1998, 32, 6; b) Hermann, W. A. Angew. Chem. 

Int. Ed. 2002, 41, 1290; c) César, V.; Bellemin-Laponnaz, S.; Gade, L. H. Chem. Soc. Rev. 2004, 33, 
619; d) Nair, V.; Santhamma, B.; Vellalath, S. Angew. Chem., Int. Ed. 2004, 43, 5130; e) Garrison, J. 
C.; Youngs, W. J. Chem. Rev. 2005, 105, 3978; f) Tekavec, T. N.; Louie, J. Top. Organomet. Chem. 
2007, 21, 195; g) Crabtree, R. H. Coord. Chem. Rev. 2007, 251, 5; h) Herrmann, W. A.; Koecher, C. 
Angew. Chem., Int. Ed. 1997, 36, 2162; i) Arduengo III, A. J. Acc. Chem. Res. 1999, 32, 913; j) 
Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39; k) Perry, M. C.; 
Burgess, K. Tetrahedron: Asymmetry 2003, 14, 951; l) Korotkikh, N. I.; Shvaika, O. P.; Rayenko, G. F.; 
Kiselyov, A. V.; Knishevitsky, A. V.; Cowley, A. H.; Jones, J. N.; Macdonald, C. L. B. Arkivoc 2005, 8, 
10; m) Hahn, F. E. Angew. Chem., Int. Ed. 2006, 45, 1348; n) Bertrand, G. Carbene Chemistry; Marcel 
Dekker: New York, 2002. 

14  Sheehan, J.; Hunneman, D. H. J. Am. Chem. Soc. 1966, 88, 3666. 
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was isolated in a 52% ee,15 yet in a very low yield.16 These examples open the 

opportunity for further design of new catalysts. 

Ph H

O

S

N Ph

O

O

Br

Et3N (10 mol%)
MeOH

Ph
Ph

O

OH

(+) 9%, 22% ee

(+) (10 mol%)

 
Scheme 2. 2 

 

It was not until the 1990s, when after a series of failed attempts to increase 

the enantiocontrol of the reaction by using different thiazolium salts,17,18,19 Enders, 

who have excelled in the field of the synthesis and application of triazolium salts,20 

reported the ability of those to promote the benzoin condensation leading to a 

significant improvement in the yield and the enantioselectivity for the synthesis of 

benzoin (66% yield, 75% ee) (Scheme 2. 3), whereas the asymmetric inductions 

achieved with electron deficient aldehydes were lower.21 

 

15  Sheehan, J.; Hara, T. J. Org. Chem. 1974, 39, 1196. 
16  Further studies improved the yield up to 48%: Dvorak, C.; Rawal, V. H. Tetrahedron Lett. 1998, 39, 

2925. 
17  Takagi, W.; Tamura, Y.; Yano, Y. Bull. Chem. Soc. Jpn. 1980, 53, 478. 
18  Zhao, C.; Chen, S.; Wu, P.; Wen, Z. Huaxue Xuebao 1988, 46, 784. 
19  Martí, J.; Castells, J.; López Calahorra, F. Tetrahedron Lett. 1993, 34, 521. 
20  a) Enders, D.; Breuer, K.; Raabe, G.; Runsink, J.; Teles, J. H.; Melder, J.-P.; Ebel, K.; Brode, S. Angew. 

Chem. Int. Ed. 1995, 34, 1021; b) Enders, D.; Breuer, K.; Runsik, J.; Teles, J. H. Liebigs Ann. 
Naturforsch. 1996, 2019; c) Raabe, G.; Runsik, J.; Enders, Z. Z. Naturfrosch. 1996, 51a, 95; d) Enders, 
D.; Breuer, K.; Teles, J. H.; Ebel, K. J Prakt. Chem. 1997, 339, 397; e) Enders, D.; Breuer, K.; Raabe, G.; 
Simonet, J.; Ghanimi, A.; Stegmann, H. B.; Teles, J. H. Tetrahedron Lett. 1997, 38, 2833; f) Teles, J. 
H.; Melder, J.-P.; Ebel, K.; Schneider, R.; Gehrer, E.; Harder, W.; Brode, S.; Enders, D.; Breuer, K.; 
Raabe, G. Helv. Chim. Acta 1996, 79, 61; g) Teles, J. H.; Breuer, K.; Enders, D.; Gielen, H. Synth. 
Commun. 1999, 29, 1; h) Enders, D.; Breuer, K.; Kallfass, U.; Balensiefer, T. Synthesis 2003, 1292 

 
21  Enders, D.; Breuer, K.; Teles, J. H. Helv. Chim. Acta 1996, 79, 1217. 
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Scheme 2. 3 

 

In contrast to previously developed catalyst, which bear a chiral group 

attached solely to the nitrogen atom and thus allow the free rotation of this 

stereodirecting element, Leeper synthesized a variety of conformationally-restricted 

chiral bicylic catalysts in which the chiral group is part of a further ring.22 In 1998, a 

novel chiral bicyclic triazolium salt that produced benzoin with good enantiocontrol 

(45% yield, 80% ee) served as proof of the applicability of this concept (Scheme 2. 

4).23  

O

H
R

N
N N Ph
Cl

Yield: 11-45%
76-82% ee

O

R

R

OH

(1.25 mol%)
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THF, rt

O

Ph

 
Scheme 2. 4 

 
Based on this protocol, another chiral byclic triazolium catalyst was 

developed by Enders in 2002, which enable the production of (S)-benzoin in a very 

good enantioselectivity (90% ee, 83% yield) as well as the successful extension of the 

22  a) Knight, R. L.; Leeper, F. Tetrahedron Lett. 1997, 38, 3611; b) Gerhards, A. U.; Leeper, F. 
Tetrahedron Lett. 1997, 38, 3615. 

23  Knight, R. L.; Leeper, F. J. Chem. Soc, Perkin Trans. 1 1998, 1891. 
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methodology to synthesis a variety of hydroxyketones as almost enantiopure 

compounds (Scheme 2. 5).24 

 

(Het)Ar
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N N Ph

BF4

Yield: up to 100%
80-95% ee
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O
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Scheme 2. 5 

 

Although, other forms of chirality, such as axial chirality, have been explored 

in the design of new catalysts,25 central chirality based triazolium-derived NHCs 

remain as the best in both terms of yield and enantiocontrol, see (Scheme 2. 6).26 In 

an attempt to reach high levels of enantiocontrol several modifications have been 

introduced in the chiral scaffold of the triazolium catalyst so as to efficiently block 

one of the faces of the Breslow intermediate due to steric hindrance. Alternatively, 

hydrogen bond donating substituents have been incorporated, in catalyst such as 

those reported by Connon,26b Zeitler27 and Waser,26c to improve the enantiocontrol 

based on this new interaction. The bis-triazolium catalyst of You (95% ee, 95% 

yield)28 and the bifunctional triazolium catalyst of Zeitler and Connon (>99% ee, 90% 

yield)27 featured in the most efficient synthesis of benzoin reported so far.  

24  Enders, D.; Kallfass, U. Angew. Chem. Int. Ed. 2002, 41, 1743. 
25  a) Pesch, J.; Harms, K.; Bach, T. Eur. J. Org. Chem. 2004, 2025; b) Orlandi, S.; Caporale, M.; Benagli, 

M.; Annunziata, R. Tetrahedron: Asymmetry 2003, 14, 3827; c) Tachibana, Y.; Kihara, N.; Takaka, T.; 
J. Am. Chem. Soc. 2004, 126, 3438.  

26  a) Enders, D.; Han, J. Tetrahedron: Asymmetry 2008, 19, 1367; b) O’Toole, S. E.; Connon, S. J. Org. 
Biomol.Chem. 2009, 7, 3584; c) Brand, J. P.; Osuna Siles, J. I.; Waser, J. Synlett 2010, 881; d) Soeta, 
T.; Tabatake,Y.; Inomata, K.; Ukaji, Y. Tetrahedron 2012, 68, 894; e) Rafinski, Z.; Kozakiewicz, A.; 
Rafinska, K. Tetrahedron 2014, 70, 5739; f) Rafinski, Z. Tetrahedron 2016, 72, 1860.  

27  Baragwanath, L.; Rose, C. A.; Zeitler, K.; Connon, S. J. J. Org. Chem. 2009, 74, 9214. 
28  Ma, Y.; Wei, S.; Wu, J.; Yang, F.; Liu, B.; Lan, J.; Yang, S; You, J. Adv. Synth. Catal. 2008, 350, 2645. 
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Scheme 2. 6 

 
An obvious extension of the benzoin reaction is the cross-benzoin reaction, 

which consists on the coupling of two different aldehydes. This transformation 

presents important challenges as now four possible products of similar 

thermodynamic stability, namely the two possible homo-benzoin adducts and the 

corresponding cross-benzoin adducts, can be obtain. Indeed, the main problem can 

be attributed to reactivity of the aldehydes, since if one of them is preferred for the 

formation of the Breslow intermediate due to a greater electrophilicity or for being 

more accessible, that aldehyde should be also preferred for the carbon-carbon bond 

formation as well. Although different strategies have been employed to approach 

the chemoselectivity problem, the enantioselective cross-benzoin reaction of 

aldehydes remains as a challenge. 
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Initial studies in this context focused on substrate-driven selectivity, based 

on using two aldehydes with different reactivity in terms of steric or electronic 

properties,29 and in some cases making use of a considerable excess of one of the 

coupling reagents, the latter resulting in the formation of self-condensation product 

of the aldehyde in higher ratio. An illustrative example of this approach is the early 

work reported by Stetter, in which the chemoselectivity of the reaction vary strongly 

depending on the nature of the substrates, thus, aromatic aldehydes can perform as 

nucleophilic or electrophilic counterpart in the present of different aliphatic 

aldehydes (Scheme 2. 7).29a 

O

Cl

S N

HO

I

(10 mol%)

Et3N (0.6 equiv.)
EtOH, 80ºC

H

O

(3 equiv.)

H

O
Pr

(3 equiv.)

O

OH

O

OH
Pr

Cl
Yield: 52%

Yield: 85%  
Scheme 2. 7 

The idea of considering a synergistic combination of the steric effect of the 

substrate and the catalyst control was first developed by Zeitler and Connon, who in 

2011 envisioned that a removable directing group could be introduced in the 

substrate to regulate the chemoselectivity of the reaction based on its ability to tune 

the electronic and steric properties of the aldehyde and how this effect could be 

enhanced by interaction with the a bulky catalyst. Thus, it was demonstrated that 

the highly chemoselective cross-benzoin reaction between o-substituted 

benzaldehyde derivatives and aliphatic aldehydes could be promoted by a triazolium 

29  a) Stetter, H.; Dämbkes, G. Synthesis 1977, 403; b) Stetter, H.; Dämbkes, G. Synthesis 1980, 309; c) 
Heck, R.; Henderson, A. P.; Köhler, B.; Rétey, J.; Golding, B. T. Eur. J. Org. Chem. 2001, 2623. For 
examples employing formaldehyde as electrophilic counterpart, see: d) Matsumoto, T.; Ohishi, M.; 
Inoue, S. J. Org. Chem. 1985, 50, 603; e)Kuhl, N.; Glorius, F. Chem. Commun. 2011, 47, 573 
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precatalyst.30 Noteworthy, it was proved that the directing group could be removed 

in a palladium catalyzed debromination when o-bromo benzaldehydes were 

employed. Moreover, preliminary studies regarding the asymmetric version were 

carried out employing a chiral triazolium salt for the cross-coupling of 2-

trifluoromethyl benzaldehyde and propanal (81% ee) (Scheme 2. 8). 
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Scheme 2. 8 

 

Almost simultaneously, Yang reported a catalyst controlled regiodivergent 

cross-benzoin reaction between p-chlorobenzaldehyde and ethanal, in which the 

regioselectivity is determined by the stability of the possible aldehyde-catalyst 

enaminol adducts (Scheme 2. 9).31 In this work, the thiazolium based catalyst was 

found to preferentially attack the aromatic aldehyde since it leads to the more 

resonance-stabilized Breslow intermediate and subsequently undergo nucleophilic 

30  O’Toole, S.; Rose, C. A.; Gundala, S.; Zeitler, K., Connon, S. J. J. Org. Chem. 2011, 76, 347. 
31  Jin, M. Y.; Kim, S. M.; Han, H.; Ryu, D. H.; Yang, J. W. Org. Lett. 2011, 13, 880. 
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attack on the acetaldehyde, whilst negative aldehyde-catalyst steric interactions, 

when employing the triazolium catalyst, disfavor the formation of the adduct 

between the latter and aromatic aldehydes, which perform solely as electrophilic 

counterpart to render the other possible regioisomer. Noteworthy, no product of 

the homo-benzoin condensation of the p-chlorobenzaldehyde is observed as a 

consequence of the large excess of acetaldehyde employed, yet no reference to the 

self-condensation of ethanal is included. 
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The development of the regioselective cross-benzoin reaction  has been 

centered on the application of thiazolium and triazolium catalyst to particular 

systems utilizing substrate control,32, until that very recently Gravel reported a highly 

chemoselective coupling of a variety of benzaldehyde derivatives and aliphatic 

aldehydes and attributed this selectivity to the size of the fused ring in the triazolium 

salt, being this the first general approach which relied exclusively in catalyst control  

Thus, a catalyst bearing a six-membered fused ring showed higher selectivity 

towards the alkyl-aryl cross-benzoin product than the catalysts with a five- and 

seven-membered fused ring, the latter leading to higher amounts of the self-

condensation product. Moreover, a morpholine derived chiral catalyst was 

employed in preliminary experiments of the enantioselective that coursed with 

moderate enantioselectivity (40% ee) (Scheme 2. 10).33 

32  a) Rose, C. A.; Gundala, S.; Connon, S.; Zeitler, K. Synthesis 2011, 190; b) Piel, I.; Pawelczyk, M. D.; 
Hirano, K.; Fröhlich, R.; Glorius, F. Eur. J. Org. Chem. 2011, 5475; c) Jin, M. Y.; Kim, S. M.; Mao, H.; 
Ryu, D. H.; Song, C. E.; Yang, J. W. Org. Biomol. Chem. 2014, 12, 1547; d) Haghshenas, P.; Gravel, M. 
Org. Lett. 2016, 18, 4518; e) Haghshenas, P.; Quail, J. W.; Gravel, M. J. Org. Chem. 2016, 81, 12075  

33  Langdon, S. M.; Wilde, M. M.; Thai, K.; Gravel, M. J. Am. Chem. Soc. 2014, 136, 7539 
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Scheme 2. 10 

 

Mechanistic studies regarding the chemoselectivity of this reaction,34 

showed that the chemoselectivity in the piperidinone-based triazolium catalyst is 

kinetically derived and that the C-C bond formation is the rate limiting step for three 

potential pathways: the homo-alkyl and both cross-benzoin reactions. Moreover, the 

importance of the fused ring was evaluated and although the pyrrolidinone-based 

34  a) Langdon, S. M.; Legault, C. Y.; Gravel, M. J. Org. Chem. 2015, 80, 3597; b) Liu, T.; Han, S.-M-; Han, 
L.-L.; Wang, L.; Cui, X.-Y.; Du, C.-Y.; Bi, S. Org. Biomol. Chem. 2015, 13, 3654. 
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precatalyst was found to display a similar energy profile, experimentally a less 

chemoselective reaction was observed. However, under thermodynamic control 

both pyrrolidine and piperidine-based precatalys are able to achieve a 

chemoselective cross-benzoin reaction towards the formation of the alkyl-aryl cross-

benzoin product. An evaluation of the transition states for pyrolidinone-, 

piperidinone- and caprolactam-derived catalysts suggested that steric interactions 

with the catalyst backbone are responsible for the chemoselectivity, leading to non 

selective transformations when the interactions are too little or to slow reactions 

and concomitant side reactions and degradation when the interactions are too 

strong. 

 

Whilst, the asymmetric aldehyde-aldehyde35 coupling remains limited to 

those particular examples there are also intramolecular versions of the cross-

benzoin reaction between unsymmetrical dialdehydes. This reaction still stands as a 

problematic issue because of the lack of chemoselectivity control and only non-

asymmetric version has been reported to date. In 1976, Cookson36 reported the 

benzoin cyclization of aliphatic dialdehydes tethered by aliphatic carbon chains of 

different length employing a thiazolium based catalyst (Scheme 2. 11). The 

corresponding carbocycles were obtained as a mixture of regioisomers that are 

equilibrated under the reaction conditions. 
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Scheme 2. 11 

35  Asymmetric cross-benzoin condensation between acylsilanes (donor) and aldehydes (acceptor) with 
chiral phosphates: Linghu, X.; Potnick,J. R.; Johnson, J. S. J. Am. Chem. Soc. 2004, 126, 3070. 

36  Cookson, R.; Lane, R. M. J. Chem. Soc., Chem. Commun. 1976, 804. 
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Another intramolecular version involving coupling of one aromatic aldehyde 

with an aliphatic one was applied by Miller37 to the synthesis of macrocyclic trans-

resorcylide. Although the adduct was obtained in low yield, even in the presence of 

equimolar amount of precatalyst, the benzoin reaction proceeded with high 

chemoselectivity (Scheme 12). 
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Scheme 2. 12 

 
A soon alternative to carry out cross-benzoin reactions relies on the use of a 

ketone as a potential electrophilic counterpart. Compared to the coupling between 

two aldehydes this reduces the chemoselectivity issues, since only one possible 

acyloin anion equivalent can be generated. However the high tendency of aldehydes 

to undergo self-condensation is a significant problem in this variant of the reaction. 

An additional problem of the reaction consists on the lower reactivity of ketones 

towards the addition of the acyloin/benzoin equivalent compared to aldehydes. 

In 2009, Enders published the first NHC catalyzed intermolecular aldehyde-

ketone cross-benzoin reaction.38 Although the methodology was limited to the 

coupling of (hetero)aryl aldehydes with aryl trifluoromethyl ketones, this report 

proved the synthetic potential of the benzoin reaction to synthesize tertiary 

alcohols. Later, it was found that in the presence of a chiral triazolium salt, moderate 

to good enantioselectivities could be achieved when heteroaryl aldehydes were 

37  Mennen, S. M.; Miller, S. J. J. Org. Chem. 2007, 72, 5260. 
38  Enders, D.; Henseler, A. Adv. Synth, Catal. 2009, 351, 1749. 
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employed (39-85% ee) (Scheme 2. 13).39 An excess of the trifluoromethyl ketone was 

employed to accelerate the reaction. 1H-NMR experiments revealed that the 

reversible homobenzoin reaction of the aldehyde takes place prior to the formation 

of the cross-benzoin product which is irreversibly formed under kinetic control. 
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Following the precedent settled by Enders in the use of activated carbonyl 

compounds,38,39 the efficient cross-coupling of a variety of aldehydes with α-

ketoesters to produce acyloin products was reported.40 Those products are 

particularly interesting as by a simple decarboxylation process analogous aldehyde-

aldehyde coupling adduct can be obtained. Therefore, α-ketoesters can be 

employed as aldehyde surrogates. Despite of the novelty of the work and the wide 

scope regarding both the nature of the aldehyde and the ketoester counterpart, only 

a particular example of the enantioselective version was reported. A good level of 

asymmetric induction (up to 76% ee) was achieved when sterically hindered non-

enolizable aryl ketoester was coupled with acetaldehyde (Scheme 2. 14a). This first 

example was followed by a high yielding enantioselective coupling of a series of 

aliphatic aldehydes and aryl α-ketoesters published by Gravel (Scheme 2. 14b).41 

39  Enders, D.; Grossmann, A.; Fronert, J.; Raabe, G. Chem. Commun. 2010, 46, 6282. 
40  Rose, C. A.; Gundala, S.; Fagan, C.-L., Franz, J. F.; Connon, S. J.; Zeitler, K. Chem. Sci. 2012, 3, 735.  
41  Thai, K.; Langdon, S. M.; Bilodeau, F.; Gravel, M. Org. Lett. 2013, 15, 2214. 
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Although, high enantioselectivity values were reported, the scope was not extended 

further than the use of non-enolizable ketoesters and aliphatic aldehydes.  
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Scheme 2. 14 

 

 

In the same context, Johnson42 proposed the dynamic kinetic resolution of β-

halo-α-ketoesters through an asymmetric cross-benzoin reaction (Scheme 2. 15). 

The use of enolizable ketoester bearing an acidic proton enables the racemization of 

the substrate to render a stereoconvergent benzoin reaction. Thus, a series of 

chloro- and bromo-ketoesters were successfully coupled with different aldehydes to 

yield fully substituted β-halo-α-glycolic acid derivatives in high diastereoselectivity 

and enantioselectivity using an amino-indanol derived chiral triazolium salt as 

catalyst.  

42  Goodman, C. G.; Johnson, J. S. J. Am. Chem. Soc. 2014, 136, 14698. 
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Scheme 2. 15 

 

In contrast to the limitations for the intermolecular aldehyde-ketone 

benzoin reaction, a significant progress has been made regarding the intramolecular 

variant. It took almost forty years since the report of Cookson36 on the cyclization 

glutaraldehyde shown in Scheme 2. 11, until Suzuki applied the aldehyde-ketone 

cross-benzoin intramolecular condensation to the synthesis of preantraquinones 

(Scheme 2. 16a) ponía 2.13a.43 Despite possible homobenzoin or intramolecular 

aldol reactions, further studies revealed that the reaction was general for different 

medium-sized cyclic α–hydroxy ketones.44 In 2006, an enantioselective version of 

the reaction was realized using an amino-indanol derived catalyst, generating highly 

enantioenriched tertiary alcohols, however observing lower enantioselectivities in 

the formation of five-membered rings compared to the six-membered counterparts. 

Moreover, the reactions conditions were successfully extended for the selective 

cyclization of a aliphatic, and therefore enolizable, ketoaldehyde,45 although the 

corresponding homo-acyloin product was also formed (Scheme 2. 16b)45 

 

43  Hachisu, Y.; Bode, J. W.; Suzuki, K. J. Am. Chem. Soc. 2003, 125, 8432. 
44  a) Hachisu, Y.; Bode, J. W.; Suzuki, K. Adv. Synth. Catal. 2004, 346, 1097; b) Enders, D.; Niemeier, O. 

Synlett 2004, 2111. 
45  Takikawa, H.; Hachisu, Y.; Bode, J. W.; Suzuki, K. Angew. Chem. Int. Ed. 2006, 45, 3492. 
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Scheme 2. 16 

 
The intramolecular aldehyde-ketone cross-benzoin reaction has been 

extended to the use of other catalyst and applied to a variety of substrates.46 

Additionally, Ema47 reported an elegant process for the desymmetrization of 1,3-

diketones with a lateral chain at the 2-position, which contains a terminal formyl 

46  a) Enders, D.; Niemeier, O.; Balensiefer, T. Angew. Chem. Int. Ed. 2006, 45, 1463; b) Enders, D.; 
Niemeier, O.; Raabe, G. Synlett 2006, 2431; c) Li, Y.; Feng, Z.; You, S.-L. Chem. Commun. 2008, 2263; 
d) Rafinski, Z.; Kozakiewicz, A. J. Org. Chem. 2015, 80, 7468; e) Wen, G.; Su, Y.; Zhang, Lin, Q.; Zhu, 
Y.; Zhang, Q.; Fang, X. Org. Lett. 2016, 18, 3980; f) Ema, T.; Nanjo, Y.; Shiratori, S.; Terao, Y.; Kimura, 
R. Org. Lett. 2016, 18, 5764. 

47  Ema, T.; Oue, Y.; Akihara, K.; Miyazaki, Y.; Sakai, T. Org. Lett. 2009, 11, 4866 
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moiety, as suitable substrates to undergo intramolecular cross-benzoin reaction.48 

Even if the scope was limited it was proven that contiguous quaternary 

estereocenters could be generated with high selectivities (Scheme 2. 17).  

 

(30 mol%)

Cs2CO3
 
(30 mol%)

DCM, reflux
n = 1,2

Yield: 43-57
95-99% ee

N
N N Mes

O

Cl

n

O
H

O

O

OH
O

O

n

 
Scheme 2. 17 

 

Later on, Fang reported the dynamic kinetic resolution (DKR) of β-ketoester 

and 1,3-diketones employing this methodology. Those highly acidic dicarbonylic 

compounds can lead to a unique enantiomer upon benzoin condensation in the 

presence of a chiral triazolium catalyst (Scheme 2. 18). 49  

(15 mol%)

K2CO3
 
(1 equiv.)

THF, -20ºC

Yield: up to 99
up to >99% ee

N
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O
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Cl
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Scheme 2. 18 

 
Intramolecular version of the aldehyde-ketone cross-benzoin cyclization has 

also been employed as key step in the synthesis of complex of several natural 

48  a) Ema, T.; Akihara, K.; Obayashi, R.; Sakai, T. Adv. Synth. Catal. 2012, 354, 3283; b) Li, Y.; Yang, S.; 
Wen, G.; Lin, Q.; Zhang, G.; Qiu, L.; Zhang, X.; Du, G.; Fang, X. J. Org. Chem. 2016, 81, 2763. 

49  Zhang, G.; Yang, S.; Zhang, X.; Lin, Q.; Das, D. K.; Liu, J.; Fang, X. J. Am. Chem. Soc. 2016, 178, 7932. 
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products.50 Suzuki was the pioneer applying this methodology, thus the synthesis of 

(+)-sapanone B was accomplished with execellent enantioselectivity (Scheme 2. 

19).51 The same group achieved the first asymmetric total synthesis of seragakinone 

A in a seven step sequence in which the key cross-benzoin reaction occurred with 

excellent enantiocontrol and that also included a second cross-benzoin 

condensation in the synthetic route (Scheme 2. 20).52 
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Yield: 92%
95% ee
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Et3N (7.5 mol%)
toluene, rt

O

HO

OHO
OH

OH

(+)-sapanona B
Yield:85% 
95% ee

CF3

CF3

O

MeO

OHO

OMe

OMe

OMe

O
O

OMe

OMe
O

 

Scheme 2. 19 
 

50  a) Lathrop, S. P.; Rovis, T. J. Am. Chem. Soc. 2011, 131, 13628; b) Ozboya, K. E.; Rovis, T. Chem. Sci. 
2011, 2, 1835; c) Enders, D.; Grossmann, A.; Huang, H.; Raabe, G. Eur. J. Org. Chem. 2011, 4298; d) 
Liu, Y.; Nappi, M.; Escudero-Adán, E. C.; Melchiorre, P. Org. Lett. 2012, 14, 1310; e) Ma, C.; Gu, J.; 
Teng, B.; Zhou, Q.-Q.; Li, R.; Chen, Y.-C. Org. Lett. 2013, 15, 6206. 

51  Takikawa, H.; Suzuki, K. Org. Lett. 2007, 9, 14. 
52  Takada, A.; Hashimoto, Y.; Takikawa, H.; Hikita,Y.; Suzuki, K. Angew. Chem. Int. Ed. 2011, 50, 2297. 
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Scheme 2. 20 
 

From this literature survey, it can be concluded that NHC catalysis is an 

excellent approach to carry out umpollung reactivity on demanding transformations. 

In the last decades the knowledge gathered on the enantioselective benzoin 

condensation has been exponential, thus, a wide variety of aldehydes and 

electrophiles have been successfully employed. However, the number of reported 

examples for the intermolecular aldehyde-ketone coupling is limited and the use of 

non-activated ketones remains elusive. For this reason, research in this topic 

directed to broaden the scope of the reaction stands as an interesting area of study.  
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2.- SPECIFIC OBJECTIVES AND WORK PLAN 

From the literature summary presented in the introduction it can be 

appreciated that the enantioselective intermolecular aldehyde-ketone coupling is an 

area of great interest. Remarkably, this methodology has been exclusively developed 

in recent years and the number of examples is rather low and limited to the use of a 

highly electrophilic ketones as substrates. In this sense, alkynones stand as an 

interesting alternative possessing a carbonyl group with significant electrophilicity 

and highly exposed towards the attack of the Breslow intermediate due to the 

intrinsic planarity of the molecule. Furthermore, the use of these functionalized 

carbonyl compounds is expected to increase the interest of this methodology due to 

the possibility of further transformations available to be carried out on the alkyne 

functionality that can be directed to diverse oriented synthesis. 

R1
R2

Suitable electrophiles

- Unhindered access
- Enhanced electrophilicity

Transformations:
Posibilities to introduce

multiple FG

O

 
Scheme 2. 21 

The enantioselective cross-benzoin reaction of alkynones would provide an 

easy access to enantioenriched tertiary propargylic alcohols bearing a carbonyl 

moiety at the tetrasubstitued stereocentre. Although considered as important chiral 

building blocks,53 the asymmetric synthesis of this particular group of α-

53  For some selected examples see: a) Kusakabe, T.; Kawai, Y.; Kato, K. Org. Lett. 2013, 15, 5102; b) Lu, 
S.; Poh, S. B.; Siau, W.-Y.; Zhao, Y. Angew. Chem. Int. Ed. 2013, 52, 1731; c) Adachi, S.; Watanabe, K.; 
Iwata, Y.; Kameda, S.; Miyaoka, Y.; Onozuka, M.; Mitsui, R.; Saikawa, Y.; Nakata, M. Angew. Chem. 
Int. Ed. 2013, 52, 2087; d) Ghosh, S.; Kinthada, L. K.; Bhunia, S.; Bisai, A. Chem. Commun. 2012, 48, 
10132; e) Ghosh, A. K.; Kass, J. Org. Lett. 2012, 14, 510; f) Nicolau, K. C.; Sanchini, S.; Sarlah, D.; Lu, 
G.; Wu, T. R.; Nomura, D. K.; Cravatt, B. F.; Cubitt, B.; de La Torre, J. C.; Hessel, A. J.; Burton, D. R. 
Proc. Natl. Acad. Sci. USA 2011, 108, 6715; g) Aikawa, K.; Hioki, Y.; Mikami, K. Org. Lett. 2010, 12, 
5716; h) Urgaonkar, S.; Cortese, J. F.; Barker, R. H.; Cromwell, M.; Serra, A. E.; Wirth, D. F.; Clardy, J.; 
Mazitschek, R. Org. Lett. 2010, 12, 3998; i) Yoshida, S.; Fukui, K.; Kikuchi, S.; Yamada, T. J. Am. 
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hydroxyketones is limited to metal mediated asymmetric alkynylation of 

ketoeshters54 and trifluoromethylpyruvates (Scheme 2. 22a).55  
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Scheme 2. 22 

Considering these limitations, we decided to direct our efforts to the 

development of a cross-benzoin condensation of aldehydes and a variety of α’- 

and β- substituted ynones employing chiral triazolium salts as organocatalysts 

(Scheme 2. 22b). In order to carry out the proposed transformations, different 

challenges have to be faced: on the one hand, the chemoselectivity issue intrinsic to 

the cross-benzoin reaction, as a result of the tendency of aldehydes to yield the 

homo-benzoin adduct has to be overcome. On the other hand, the regioselectivity of 

the reaction has to be controlled as the bidentate electrophilic ynones can render 

either the 1,2-desired product or the competitive 1,4-addition of the acyl anion 

equivalent, also known as the Stetter reaction (Scheme 2. 23). 

Chem. Soc. 2010, 132, 4072; j) Fortner, K. C.; Kato, D.; Tanaka, Y.; Shair, M. D. J. Am. Chem. Soc.; k) 
Knueppel, D.; Martin, S. F. Angew. Chem. Int. Ed. 2009, 48, 2569; l) Ogawa, K.; Koyama, Y.; Ohashi, 
I.; Sato, I.; Hirama, M. Angew. Chem. Int. Ed. 2009, 48, 1110; m) Trost, B. M.; Xu, J.; Reichle, M. J. 
Am. Chem. Soc. 2007, 129, 282. 

54  Jiang, B.; Chen, Z.; Tang, X. Org. Lett. 2002, 4, 3451. 
55  a) Ohshima, T.; Kawabata, T.; Takeuchi, Y.; Kakinuma, T.; Iwasaki, T.; Yonezawa, T.; Murakami, H.; 

Nishiyama, H.; Mashima, K. Angew. Chem. Int. Ed. 2011, 50, 6296; b) Wang, T.; Niu, J.-L.; Liu, S.-L.; 
Huang, J.-J.; Gong, J.-F.; Song, M.-P. Adv. Synth. Catal. 2013, 355, 927. 
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Scheme 2. 23 

In order to achieve the stated objective, the following work plan was 

designed: 

1. Proof of concept: First of all, the viability of the reaction employing ynones 

as electrophiles will be studied with a model system employing activated 

ynones (R1 = CO2R). In case the desired products are successfully obtained, 

the use of non-activated ynones (R1 = Me) to confirm if these ynones are 

reactive enough. 

R3 H

O NHC*
Base

R1
R2

O

R1

R2 OH
R3

O

R1 = CO2Et, Me  
Scheme 2. 24 

2. Optimization of the reaction: Once the viability of the reaction has been 

proved, different reaction parameters will have to be optimized for the 

best possible performance. We will start surveying chiral triazolium salts 

will be performed to identify the best catalyst in terms of regio- chemo- 

and stereocontrol. Afterwards, other experimental variables will be 

studied, such as the solvent, the temperature or the use of additives, in an 

attempt to obtain the optimal experimental conditions. 
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Scheme 2. 25 

3. Scope of the reaction: With the best conditions in hand, the scope and 

limitations of the methodology will be studied. In this sense, different 

alkyl and aryl aldehydes as well as a variety of α’- alkyl and trifluoromethyl 

ynones will be tested. Additionally, the substitution at the β- position of 

the electrophile will be modified. 

4. Transformations of the cycloadducts: Since the obtained adducts are 

interesting polyfunctional molecules, bearing alkyne, ketone and alcohol 

moieties, we will proceed to explore their reactivity performing different 

transformations to demonstrate their applicability as intermediates in 

complex molecule synthesis (Scheme 2. 26). 
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Scheme 2. 26 
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3.- RESULTS AND DISCUSSION 
 
3.1. PROOF OF CONCEPT 

Inspired by the successful use of α-ketoesters as electrophiles in the cross-

benzoin condensation with NHC catalysts,40,41,42 an activated ynone bearing the 

ketoester moiety was chosen for some preliminary studies. Regarding the 

nucleophilic counterpart and considering the different performance of aldehydes 

depending on the reaction conditions, benzaldehyde as well as both linear and 

branched aliphatic aldehydes were tested as representative substrates. Thus, the 

reaction between ethyl 2-oxopent-3-ynoate (2) with a variety of aldehydes (1) 

catalyzed by 6,7-dihydro-2-pentafluorophenyl-5H-pyrrolo[2,1-c]-1,2,4-triazolium 

tetrafluoroborate (3a) in the presence of DBU for the generation of the carbene 

catalyst was evaluated. Complete regioselectivity was observed towards the 

formation of 1,2-addition products (4) although in moderate yield, not observing in 

any case the product corresponding to the Stetter reaction (Table 2. 1, Entries 1-4). 

In addition, no product arising from the self-benzoin condensation was observed 

when employing cyclopropane carbonxaldehyde, leading to an increase of the yield 

(Entry 4).  
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Table 2. 1: Preliminary studies 

41 2

R H

O

Me
CO2Et

O

Me

EtO2C OH
R

O

N
N+

N
F F

F

FF
-
BF4

DBU
 
(10 mol%)

Toluene, rt

3a (10 mol%)

 

Entry R Yield (%)a 
1 Ph (1a) 31 
2 Pr (1b) 28 
3 -CH2CH2Ph (1c) 30 
4 Cyclopropyl (1d) 53 

a Yield of pure product isolated after flash chromatography. b Determined by 
HPLC analysis of the pure product. 

The good performance of ynone (2), especially when cyclopropane 

carboxaldehyde was employed as nucleophilic counterpart (Entry 4), prompted us to 

explore the use of more challenging non-activated ynones. As the model reaction, 

we chose the condensation of cyclopropane carboxaldehyde and 4-phenyl-3-butyn-

2-one (5a). An aryl substituent at the terminal position leads to a less volatile 

substrate and therefore more convenient for the study of the reaction. Preliminary 

results summarized in (Table 2. 2) showed that, in the conditions previously 

employed, the triazolium salt-based precatalyst 3a provided the cross-benzoin 

condensation adduct in moderate yield in the presence of DBU and using toluene as 

solvent (Entry 1). Employing a more polar solvent as tetrahydrofuran resulted in a 

decrease of the yield (Entry 2), whilst running the reaction in chlorinated solvents 

led to moderate yield similar to the result obtained in toluene (Entry 3-4). Since, 

dichloromethane proved to be slightly better (Entry 4), it was employed to test the 

influence of the base. The use of another organic base, as N,N-diisopropylethylamine 

did not result in any change (Entry 5), whereas strong inorganic bases led to a slight 

decrease in the yield (entry 6-7). The reaction coursed slightly better when 
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employing potassium carbonate, however it can be affirmed that no significant 

differences were observed among the tested bases. The volatile character of the 

product prompted us to exchange toluene for benzene, which indeed led to an 

improvement of the yield (Entry 9). It is worth noting that no product from the 

possible competitive Stetter or homo-benzoin side reaction was detected. 

Table 2. 2: Solvent and base effect 

H

O

Base
 
(20 mol%)

Solvent, rt.Ph
Me

O

Ph

Me OH

O

N
N+

N
F F

F

FF
-
BF4

(10 mol%)

6a4a 5a

3a

 

Entry Base Solvent Yield (%)a 
1 DBU Toluene 53 
2 DBU THF 45 
3 DBU CHCl3 50 
4 DBU CH2Cl2 62 
5 DIPEA CH2Cl2 62 
6 KOt-Bu CH2Cl2 42 
7 KHMDS CH2Cl2 47 
8 K2CO3 CH2Cl2 54 
9 K2CO3 Benzene 60 

a Yield of pure product isolated after flash chromatography. 
 

 
3.2. OPTIMIZATION OF THE REACTION CONDITIONS 

Once that a triazolium salt was identified as suitable precatalysts for this 

transformation, a variety of chiral triazolium salts were tested to carry out the 

asymmetric version of reaction. In accordance to the results obtained previously, 

potassium carbonate was chosen as base for experimental convenience and 

benzene employed as solvent to reduce losses of product due to the already 

mentioned volatile character of the product (Table 2. 3).  
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Table 2. 3: Evaluation of a series of catalyst. 

H

O

K2CO3
 
(20 mol%)

benzene, r.t.Ph
Me

O

Ph

Me OH

O

3b-m 
(10 mol%)

6a

N
N

N
Ar

BF4

OTBS
Ph

Ph

-
BF4

-
BF4

3b: Ar: C6H5
3c: Ar: C6F5

3h

3g

5a1d

3i: Ar: C6F5; X: BF4
3j: Ar: 2,4,6-(Cl)3C6H2; X: BF4
3k: Ar: 3,5-(CF3)2C6H3; X: BF4
3l: Ar: naphtyl; X: BF4
3m: Ar: naphtyl; X: BF4

N
N

N
Ar

BF4

R

3d: R: Bn; Ar: C6H5
3e: R: Bn; Ar: C6F5
3f: R: iPr; Ar: C6F5

-
BF4

N
N N

O
Ph

Ph

N
N N

O

Bn

N
N N

O

Ar

 
Entry Catalyst Yield (%)a ee (%)b 

1 3b <10 n.d.c 
2 3c 11 33 
3 3d <10 -14 
4 3e 12 -6 
5 3f 23 -40 
6 3g 12 42 
7 3h <10 n.d.c 
8 3i 30 4 
9 3j 36 43 

10 3k <10 n.d.c 
11 3l 10 80 
12 3m 39 80 

a Yield of pure product isolated after flash chromatography. b Determined by HPLC analysis  
of the pure product. c Not determined. 

 
 

An obvious attempt to develop the asymmetric version of the reaction was 

to test some chiral triazolium based precatalysts (3b-3f) containing a fused 
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dihydropyrrol ring analogous to the successfully employed catalyst 3a. A dramatic 

drop of the yield was observed when introducing a bulky substituent in the α-

position to the N3 of the triazolium ring (Entries 1-2), yet the product could be 

obtained with a promising enantiocontrol (3c, Entry 2). Exchanging the substitution 

at the dihydropyrrol ring did not led to significant improvement on the yield (Entries 

3-4 vs Entry 2). However, modifying the aryl substituent at the triazol ring resulted in 

a slight improvement of the yield and enantiocontrol (Entry 5). The exchange of the 

dihydropyrrol ring for a morpholine did not improve the results (Entries 6-7). 

However, the use of aminoindanol based precatalyst, which did not lead to such a 

congestionated reactive centre compared to previous catalysts allowed to obtain the 

product with better yield (Entry 8). Exchanging the arene substituent resulted in a 

significant improvement in the enantiocontrol (Entry 9) and thus highlighted the 

influence of the substituent in N1-position. Bulky groups lead to a decrease of the 

yield (Entries 10-11) whilst regarding the enantiocontrol the negative effect of 

electron-poor arenes at this position was confirmed (3i, 3j, 3k, 3l). Thus, precatalyst 

3m bearing a mesityl moiety lead us to obtain the product in a moderate yield but 

importantly with good levels of enantiocontrol (Entry 12).  

In view of these results, it was decided to employ catalyst 3m for the study 

of other experimental parameters. We started evaluating the influence of running 

the reaction in solvents of different nature (Table 2. 4). 
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Table 2. 4: Solvent effect 

H

O

K2CO3
 
(20 mol%)

Solvent, rt.Ph
Me

O

Ph

Me OH

O

(10 mol%)

6a1d 5a

3m

-
Cl

N
N N

O

 

Entry Solvent Yield (%)a ee (%)b 
1 THF 31 70 
2 CHCl3 28 60 
3 CH2Cl2 37 64 
4 Benzene 39 80 
5 Toluene 39 82 
6 Chlorobenzene 30 74 
7 Trifluorotoluene 23 72 
8 Pyridine 30 74 
9 o-xylene 23 72 

a Yield of pure product isolated after flash chromatography. b Determined by HPLC analysis  
of the pure product. 
 

From the experiments carried out it can be highlighted that the 

enantiocontrol is slightly affected by the nature of the solvents. While the reaction 

could be carried out in THF and chlorinated solvents without compromising the yield 

(Entries 1-3), none of the tested solvents proved to be better that benzene and 

toluene regarding the enantiocontrol of the reaction (Entries 4-5). A decrease in 

both yield and enantioselectivity was observed when other aromatic solvents were 

employed (Entries 6-9). 

At this stage, it was decided to study the influence of the base employed to 

generate the carbene, on the performance of the reaction. Representative bases 

used in other benzoin-type reactions, such as DBU, K2CO3 or KOtBu, were tested. 

Among all bases shown in this table no significant difference was observed, which 

was in concordance with the preliminary results obtained when employing non-

chiral catalyst 3a, which indicates that the base is only acting in the triazolium salt 
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deprotonation. Those experiments indicated that in terms of practical utility 

potassium carbonate was more appropriate for the generation of the catalytically 

active species, in general observing cleaner reactions than those carried out using 

other bases.  

 
Table 2. 5: Influence of the base 

H

O

Base
 
(20 mol%)

Benzene, rtPh
Me

O

Ph

Me OH

O

(10 mol%)

6a1d 5a

3m

-
Cl

N
N N

O

 

Entry Base Yield (%)a ee (%)b 
1 K2CO3 39 80 
2 KOtBu 34 82 
3 KHMDS 33 80 
4 DBU 34 72 

a Yield of pure product isolated after flash chromatography. b Determined by HPLC analysis  
of the pure product. 

 

Since no significant improvement was observed after this first stage of the 

screening and in view of the moderate yield obtained, the catalyst loading was 

increased up to 20 mol% (Table 2. 6, Entry 1). In addition, the use of a small excess of 

ynone accelerated the reaction, which allowed us to perform the reaction at lower 

temperatures without this affecting the yield. Thus, decreasing the temperature to 

0°C together with employing 2 equivalents of ynone, allowed to obtain the product 

in good yield and an increase on the enantioselectivity was observed (Entry 2). As a 

result of lowering the temperature below 5°C, the use of a toluene/benzene solvent 

mixture to prevent freezing was required. Decreasing the temperature even more, 

resulted in an increase of the enantiocontrol (Entries 3-4), which resulted in 

obtaining the product in good yield and excellent enantiomeric excess values when 
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the reaction was carried out at -15ºC (Entry 4). No further improvement was 

observed when the reaction was set up at 20°C (Entry 5).  

 

Table 2. 6: Influence of the temperature and other experimental parameters 

H

O

K2CO3
 
(20 mol%)

Toluene:Benzene
1:3

Ph
Me

O

Ph

Me OH

O

(20 mol%)

6a1d 5a

3m

-
Cl

N
N N

O

 

Entry 5a (equiv.) T (ºC)a Yield (%)b ee (%)c 
1 1 rt 75 80 
2 2 0 83 87 
3 2 -10 82 89 
4 2 -15 79 91 
5 2 -20 74 90 

a Benzene was used as solvent.  b Yield of pure product isolated after flash chromatography. 

c Determined by HPLC analysis of the pure product.  
 

The study of all those parameters led us to establish a robust protocol for 

the cross-benzoin reaction of aldehydes and ynones as it is shown in Scheme 2. 27. 

The absolute configuration of the adduct will be confirmed later by X-ray analysis. 

H

O

K2CO3
 
(20 mol%)

Toluene:Benzene
1:3, -15ºC

Ph
Me

O

Ph

Me OH

O

(20 mol%)

6a1d 5a

3m

-
Cl

N
N N

O

Yield: 79%
91% ee  

Scheme 2. 27 
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3.3. SCOPE OF THE REACTION  
 

With the best conditions in hand, we proceeded to explore other aldehydes 

and alkynones with different substitution patterns so as to determine the scope of 

the reaction  

 First a variety of ynones with different substituents at the β-position were 

surveyed. As it is shown in Table 2. 7 although the reaction performed with excellent 

levels of enantiocontrol for a variety of γ-(hetero)aryl-ynones regardless the nature 

of the substituent (Entries 1-5) the yield of the reaction was compromised. In this 

regard, introducing electron-donating substituents at the terminal position of the 

alkyne, including electron-rich arenes and heteroarenes, allowed to obtain the 

propargylic alcohols in moderate yield (Entries 2-3 and Entry 5). On the other hand, 

the yield was especially affected when an electron-withdrawing group containing 

arene was introduced (Entry 4). Noteworthy, the product was satisfactorily obtained 

when a silyl-protected alkynone was employed, which may led to interesting 

transformations in that position (Entry 6). However, introducing a group different 

from an aromatic ring significantly affected the stereoselectivity. 

Additionally, we proved that more challenging substrates, such as ynone 5g 

with a bulkier substituent at the carbonyl group, could be selectively led to the 

formation of the corresponding adduct 6g in moderate yield and with good 

enantiocontrol (Entry 7). Linear aliphatic aldehydes showed a higher tendency to 

undergo self-condensation which resulted in a dramatic drop in the yield of cross-

benzoin product (Entries 8-9). 
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Table 2. 7: Scope of the reaction using α’,γ-substitued alkynones 

R1 H

O

K2CO3
 
(40 mol%)

Toluene:Benzene (1:3)
-15ºC

R2
R3

O

R2

R3 OH
R1

O

(20 mol%)

6a-i1b-e 5a-g

3m

-
Cl

N
N N

O

 

Entry R1 R2 R3 Product Yield 
(%)a 

ee (%)b 

1 cyclopropyl Ph Me 6a 79 91 
2 cyclopropyl p-MeC6H4 Me 6b 55 94 
3 cyclopropyl p-MeOC6H4 Me 6c 53 93 
4 cyclopropyl p-BrC6H4 Me 6d 30 92 
5 cyclopropyl 3-thiophenyl Me 6e 59 93 
6 cyclopropyl TIPS Me 6f 46 78 
7 cyclopropyl Ph Et 6g 40 83 
8 Pr Ph Me 6h 30 82 
9 Et Ph Me 6i 25 75 

a Yield of pure product isolated after flash chromatography. b Determined by HPLC analysis of the pure product. 
 

In view of these results, we explored the possibility of extending the 

methodology to more reactive trifluoromethyl alkynones, and therefore to reverse 

the tendency of the acyl anion equivalent to undergo self-condensation (Table 2. 8). 

In general the reaction of the trifluoromethyl alkynones with aromatic aldehydes 

performed better in terms of yield and selectivity. First, we surveyed the use of 

different aromatic aldehydes and observed that in all the cases, the propargyl 

alcohols were obtained with excellent enantioselectivities. Thus, aldehydes bearing 

an electron-withdrawing group gave better results than benzaldehyde (Entries 1-5), 

leading to the formation of the products in good yields. Electron-rich heteroaromatic 

aldehydes successfully employed in cross-benzoin condensation reactions,38,39,56 

render excellent yields (Entries 6-8). In addition, this cross-benzoin reaction showed 

good tolerance to introduce substituents at the acetylenic position; indeed both 

56  Enders, D.; Henseler, A.; Lowins, S. Synthesis, 2009, 4125. 
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compounds incorporating aryl and alkyl groups at this position could be obtained in 

good to excellent yields (Entries 3, 7 and 9-12). It should be mentioned that no 

product derived from the Stetter or homobenzoin reactions was observed in the 

stated conditions.  

Table 2. 8: Scope of the reaction using trifluoromethyl ynones 

R1 H

O

K2CO3
 
(40 mol%)

Toluene:Benzene (1:3)
-15ºC

R2
CF3

O

R2

F3C OH
R1

O

(20 mol%)

6j-u1a-j 5h-l

3m

-
Cl

N
N N

O

 

Entry R1 R2 Product Yield (%)a ee (%)b 
1 Ph Ph 6j 59 99 
2 p-F-C6H4 Ph 6k 71 >99 
3 p-F-C6H4 p-MeC6H4 6l 93 98 
4 p-Br-C6H4 Ph 6m 74 99 
5 p-CF3-C6H4 Ph 6n 69 99 
6 furyl Ph 6o 86 87 
7 furyl p-MeC6H4 6p 96 84 
8 thiophenyl Ph 6q 99 97 
9 thiophenyl p-MeC6H4 6r 99 95 

10 thiophenyl TIPS 6s 83 89 
11 thiophenyl Pr 6t 51 98 
12 thiophenyl Cy 6u 72 98 

a Yield of pure product isolated after flash chromatography. b Determined by HPLC analysis of the pure product.  
 

As a last remark, the reaction of a series of representative substrates (6l, 6o, 

6p, 6q and 6r) was carried out using a catalyst loading of 10 mol% in order to 

demonstrate that the reaction performed with similar levels of enantiocontrol under 

these conditions and even if a decrease in the yield was observed in some cases, the 

products were obtained in good to excellent yields (Table 2. 9). 
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Table 2. 9: 

R1 H

O

K2CO3
 
(40 mol%)

Toluene:Benzene (1:3)
-15ºC

R2
CF3

O

R2

F3C OH
R1

O

(10 mol%)

6j-u1a-j 5h-l

3m

-
Cl

N
N N

O

 

Entry R1 R2 Product Yield (%)a ee (%)b 
1 p-F-C6H4 p-MeC6H4 6l 67 99 
2 furyl Ph 6o 89 86 
3 furyl p-MeC6H4 6p 93 88 
4 thiophenyl Ph 6q 72 96 
5 thiophenyl p-MeC6H4 6r 89 97 

a Yield of pure product isolated after flash chromatography. b Determined by HPLC analysis of the pure product.  
 

In view of these results and that lowering the catalyst loading resulted in a 

decrease of the yield, we designed an experiment to prove the living nature of the 

carbene catalyst and to highlight the efficiency of the methodology. The experiment 

consisted on a successive feeding of the system with additional aldehyde (1j) and 

alkynone (5h) upon full conversion of the initial aldehyde was observed. The 

experiment is based on that a lower catalyst/substrate ratio (<0.2) results in lower 

efficiency (Table 2. 8, Entry 8 vs Table 2. 9, Entry 4) and therefore this ratio should be 

maintained. Experimentally, a first run of the reaction was carried out in the 

conditions defined as optimal in the screening. The reaction was monitored by TLC 

and GC-MS until complete consumption of the aldehyde was achieved (Table 2. 10, 

Entry 1, 48h). At this point, once that 1 equivalent (0.3 mmol) of the aldehyde have 

reacted, an additional equivalent of both reagents is added for a second run, to the 

system already containing a mixture of the catalyst, the cross-benzoin adduct and 

the remaining ynone (Entry 2). The reaction was again monitored until completion 

and this cycle was repeated several times.  

As shown in Table 2. 10, up to three consecutive batch cycles of the process 

were accomplished without significantly affecting the overall yield while maintaining 
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an excellent enantiocontrol. At the end, we checked that up to 0.9 mmol of starting 

material could be converted employing the same amount of catalyst. Therefore, two 

possibilities are available for carrying out the reaction, either use of higher catalyst 

loading in favour of shorter reaction times or work with a low catalyst loading at 

longer reaction time. 

Table 2. 10: Successive feeding of the system 

H

O

K2CO3
 
(40 mol%)

Toluene:Benzene (1:3)
-15ºC

Ph
CF3

O

Ph

F3C OH

O

(20 mol%)

6q1j 5h

3m

SS

-
Cl

N
N N

O

 

Number of 
batch cycles 

Time [mmol]     
of 1j 

Overall cat. 
loading 

Yielda of 6q  eeb 

1 48h 0.3 20 mol% 99% 97% 
2 96h 0.6 10 mol% 87% 97% 
3 144h 0.9 6.7 mol% 67% 97% 

a Yield of pure product isolated after flash chromatography. b Determined by HPLC analysis of the pure product.  
 

3.4. MECHANISTIC PROPOSAL 
 

Based on the obtained stereochemical outcome of the products and in 

agreement with the studies of Ronald Breslow in 1958, our mechanism proposal for 

the aldehyde-ynone cross-benzoin condensation is showed is presented in Scheme 

2. 28. 
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Intermedio de 
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Scheme 2. 28 

 

First, the catalytically active carbene species (II) might be generated after a 

potassium carbonate mediated deprotonation of the chiral triazolium salt (I). The 

reversible condensation of the aldehyde (1d) with the carbene (II) would form the 

initial adduct (III), which through a (1,2) proton shift would lead to the formation of 

the Breslow intermediate (IV). The addition of this nucleophilic enaminol type 

intermediate to the electrophilic ynone (5a) would form the stereocenter of the 

reaction, which will be controlled by the catalyst in the generation of the C-C bond. A 

last elimination step would yield the product (6a) of the benzoin reaction and 

release the catalyst. 
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In order to explain the stereochemistry of the reaction, we propose the model 

in Scheme 2. 29. The high electron density on the sp3 N added to the bulky chiral 

scaffold of the catalyst disfavour the Z isomer of the enaminol.8a Therefore, 

considering that the E isomer is participating in the hypothetical catalytic cycle, the 

Re face would be shielded by the aminoindanol moiety, then the reaction with the 

ynone would take place through the Si face. Under the stated premise and based on 

that the C-C formation event takes place through a five-membered transition state,10 

the two possible transition states are depicted. 

R2
R3

O

N

O

NAr
N

R1HO

E-Breslow intermediate

N

O

N
N

O R1
R3

O
H Ar

R2

N

O

N
N

O R1
R3O

H

R2

R1

O R2

HO R
3

major enantiomer

R1

O R2

HO R3

minor enantiomer

+

Ar

 
Scheme 2. 29 

 

In the first case, while there is an H-bonding between the hydroxyl group 

and the ketone moiety, the R2 substituent of the ynone is oriented away from the 

carbene catalyst to minimize steric interactions. In addition, the alkyne moiety, 

placed towards the carbene, may lead to some π-iminium interactions favouring this 

transition state, as it was reported by Houk et al.10 On the other hand, the 

approaching of the ynone through its Re face would lead to the formation of the 

minor enantiomer due to steric repulsion between the catalyst and the R2 

substituent. 
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3.5. TRANSFORMATIONS OF THE ADDUCTS 
 
 The newly developed cross-benzoin reaction afforded propargyl alcohols 

with multiple functionalities, such as an alkyne, a ketone and a hydroxyl group. With 

the aim of demonstrating their potential as chiral building blocks, compound 6q was 

elected as representative model to be subjected to different modifications 

 
First, the transformation of the alkyne moiety was approached (Scheme 2. 

30). In this sense, the cis-alkene (7) was selectively afforded by semi-hydrogenation 

with Lindlar catalyst. Noteworthy, the use of methanol as solvent was required to 

reach full conversion. Alternatively, the use of Red-Al as reducing agent was 

employed to access the corresponding trans diastereomer 8, but in this case, in 

addition to the selective hydrogenation of the triple bond the concomitant 

diastereoselective reduction of the ketone moiety was observed.  

 

Ph

F3C OH

O

Red-Al
H2

 
(3.7 bar)

Lindlar cat.
F3C OH

OH

F3C OH

O

73% 86%

SS S
Et2O

0ºC to r.t.
MeOH, r.t.

Ph Ph
6q7 8

 
Scheme 2. 30 

 

On the other hand, Luche reduction of the ketone moiety was carried out to 

obtain the corresponding acetylenic diol as a single diastereomer (9) (Scheme 2. 31). 

The reaction proceeded smoothly in ethanol at 0ºC in the presence of NaBH4 and 

CeCl3, the former being able to activate sodium borohydride towards the selective 

1,2-reduction of the ynone. 

 

Ph

F3C OH

O Ph

F3C OH

OH86%
S S

NaBH4/CeCl3
EtOH, 0ºC 30min

6q 9  
Scheme 2. 31 
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This diol 9 was further reacted in the presence of silver nitrate, undergoing a 

cycloisomerization process that rendered the dihydrofuran 10 in a 89% yield. The 

silver catalyst is expected to coordinate the alkyne moiety, activating the triple bond 

towards an intramolecular nucleophilic attack in a 5-endo-dig type cyclization. Then 

the catalyst is released and the final dihydrofuran product is formed (Scheme 2. 32). 

 

Ph

F3C OH

OH O
Ph

AgNO3
 

(12 mol%)

89%

S S
OHF3C

DMF, 70ºC

9 10

AgNO3
Ph

F3C OH

OH
S

Ph

F3C OH

OH
S

Ag
O

Ph

S
OHF3C

Ag

O
Ph

S
OHF3C

 
Scheme 2. 32 

 
 

Diol 8 could be crystallized, thus the absolute configuration of all the 

stereogenic centers could be determined at this point by X-ray analysis. Based on 

mechanistic analogy, this absolute configuration was extended to its precursor 6q 

and to all the other propargylic alcohols (6a-u) (Scheme 2. 33). 
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F3C OH

OH
S

Ph
8

 
Scheme 2. 33 

 

As a last remark, in consideration of our participation in the “Lilly Open 

Innovation Drug Discovery (OIDD)” program implemented by Lilly, the 

pharmaceutical company, the therapeutic potential of the synthesized propargylic 

alcohols was evaluated. Different adducts presented activity towards the stimulation 

of GLP-1 (Glucagon-like Peptide 1). Among them, compound 6j showed promising 

results (EC50 = 2.35µM) and further in vivo studies are ongoing. 

GLP- 1 is a potent antihyperglycemic hormone, inducing the release of 

insulin in response to rising glucose, while suppressing glucagon secretion. Such 

glucose-dependent action is particularly interesting for the GLP-1, since it no longer 

stimulates the release of insulin when the levels of glucose in the plasma are in the 

fasting rate. The GLP-1 secretion is measured in a Lily patented test named ELISA 

(enzyme-linked immunosorbent assay), specially designed to detect the GLP-1 

secreted in the gastrointestinal tissue of mice and humans. 
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4.- CONCLUSIONS 
 
 

1. It has been probed that alkynones are a competent partner in the cross-

benzoin reaction, thus, the limited scope for the aldehyde-ketone has 

been widen, being this the first example employing non activated 

ketones in the NHC catalyzed intermolecular cross-benzoin reaction. 

Under NHC catalysis the reaction proceeds with complete 

chemoselectivity avoiding the formation of self-benzoin and Stetter side 

products.  

2. A new organocatalytic route for the enantioselective synthesis of tertiary 

propargylic alcohol has been described, through the NHC catalyzed 

cross-benzoin reaction employing ynones as electrophiles.  

3. The scope of the methodology has been demonstrated as a variety of 

substituents in the α’- and γ-positions of the alkynones, in addition to 

the use of different alkyl- and aryl- aldehydes is well tolerated. 

4. The value of the synthetized carbinols as building block has been proved 

through a series of transformation.  

5. Noteworthy, some of the synthesized propargylic alcohols present 

interesting levels of activity towards the stimulation of GLP-1 secretion. 

In particular in vivo experiments are ongoing employing adduct 6j. 
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Organocatalytic generation of  
donor-acceptor cyclopropanes  

in cycloaddition reactions 
 

 

 

 

1.- INTRODUCTION 
 

Cyclopropanes occupy a privileged position in organic chemistry1,2 due to their 

intrinsic characteristics; such as conformational rigidity, ring strain energy and π-

character.3 Despite their strain, cyclopropanes are rather kinetically inert molecules 

that can only react under particular conditions.4 However through the strategic 

placement of substituents on the ring, the strain on the cycle can be increased 

leading to a more easily cleavage of the C-C bond and therefore interesting reactivity 

profiles. Thus, these three-membered rings have the ability to act as γ-carbonyl 

cation equivalents/homologous Michael acceptors when substituted by a carbonyl 

group or related functionality (Scheme 3. 1(a)) or homologous enolate equivalents 

when bearing a OR, NR or SR substituent (Scheme 3. 1(b)). More interestingly, a 

synergistic effect can be observed in cyclopropanes with both an electron-

1  a) Reissig, H. U. In The Chemistry of the Cyclopropyl Group; Rappoport, Z., Ed.; John Wiley & Sons: 
Chichester, 1987, 375-443; b) Carbocyclic Three- and Four- Membered Ring Compounds, In Houben-
Weyl Methods of Organic Chemistry, Vol. E17a-d; de Meijere, A., Ed.: Thieme: Stuttgart, 1997. 

2  For cyclopropanes in medicinal chemistry and natural products: a) Donaldson, W. A. Tetrahedron 
2000, 56, 8589; b) Faust, R. Angew. Chem. Int. Ed. 2001, 40, 2251; c) Chen, D. Y.-K.; Pouwer, R. H.; 
Richard, J.-A. Chem. Soc. Rev. 2012, 41, 4631. 

3  De Meijere, A. Angew. Chem. Int. Ed. 1979, 18, 809. 
4  a) Schlag, E. W.; Rabinovitch, B. S. J. Am. Chem. Soc. 1960, 82, 5996; b) Goldschmidt, Z.; Crammer, 

B. Chem. Soc. Rev. 1988, 17, 229; c) Gajewski, J. J.; Olson, L. P.; Willcott, M. R. J. Am. Chem. Soc. 
1996, 118, 299; d) Houk, K. N.; Nendel, M.; Wiest, O.; Storer, J. W. J. Am. Chem. Soc. 1997, 119, 
10545; e) Baldwin, J. E. Chem. Rev. 2003, 103, 1197. 
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withdrawing and electron-donating group in vicinal position, since a push-pull effect 

results in a particularly weak C-C bond to an extent that those molecules can be 

depicted as source of 1,3 zwiterionic reactive species (Scheme 3. 1(c)). Therefore, 

those reagents are referred as Donor-Acceptor (D-A) cyclopropanes and much of 

their chemistry derives from their use as versatile building blocks through ring-

opening processes.5,6 Their intrinsic bifunctional nature made them suitable for 

reactions involving the formation of multiple bonds, for instance as source of dipolar 

reagents in cycloaddition reactions. 

   

Nu
Nu

R

O

EE X
X

EDG EWG
EWGEDG

(a)

(b)

(c)

O

R

X = OR, SR, NR2

E O

X = OH

Nu, E

EDG EWG

Nu E

 
Scheme 3. 1 

 

Despite pioneering work of Danishefsky and Corey,5 among others, “activated 

cyclopropanes”, in particular donor-acceptor cyclopropanes, has exploded in 

popularity in the last few years.6 Moreover, new activation modes have been 

5  For a review on early work on acceptor-substituted cyclopropanes, see: a) Danishefsky, S. Acc. 
Chem. Res. 1979, 12, 66. For early work on donor-substituted cyclopropanes, see: b) Saluan, J. R. Y. 
Top. Curr. Chem. 1988, 144, 1; c) Kuwajima, I.; Nakamura, E. Top. Curr. Chem. 1990, 155, 1; d) 
Kulinkovich, O. G.; Chem. Rev. 2003, 103, 1071. For early work on donor-acceptor cyclopropanes, 
see: e) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151. f) Yu, M.; Pagenkopf, B. L. 
Tetrahedron 2005, 61, 321. 

6  For selected review on recent advances in ring opening of activated cyclopropanes, see: a) De 
Simone, F.; Waser, J. Synthesis 2009, 3353; b) Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem. 
Int. Ed. 2014, 53, 5504; c) Wang, L.; Tang, Y. Isr. J. Chem. 2016, 56, 463; d) Ganesh, V.; 
Chandrasekaran, S. Synthesis 2016, 4347. 
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explored for promoting ring-opening of the D-A cyclopropane,7,8 resulting in an 

extension of the range of transformation in which these reactive intermediates can 

be employed. 

 

In this sense, Lewis acid catalysis has been the most prolific approach to the 

activation of cyclopropanes as stated by the number of publications on this field. The 

catalyst, typically a metal based Lewis acid, interacts with the electron-withdrawing 

group(s) present in the molecule, increasing the polarization of the C-C bond which 

serves to promote the ring-opening event and to form virtual 1,3-dipoles that 

subsequently react with an external reagent. Whilst a variety of donor groups have 

been reported, the geminal ester groups are virtually the only acceptors described 

to date. The widespread use of Lewis acids in this field has defined D-A 

cyclopropanes as suitable source of three carbon dipoles for their reaction with a 

variety of dipolarophiles in a variety of [3+n] cycloaddition reactions that will be 

surveyed in the following pages. Furthermore, D-A cyclopropanes have also served 

as precursors of a variety of intermediates that also including their use as two and 

four carbon synthons in other related cycloadditions. 

 

1.1. [3+2] Cycloaddition 

Since the first reports on [3+2] cycloadditions between D-A cyclopropanes and 

carbonyl compounds,9 that were almost limited to the use of alkoxy groups as 

donors on the cyclopropane scaffold, several recent advances have been made 

7  For H-bonding activation manifold on ring-opening event, see:a) Dickmeiss, G.; De Sio, V.; Udmark, 
J.; Poulsen, T. B.; Marcos, V.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2009, 48, 6650. b) So, S. S.; 
Auvil, T. J.; Garza, V. J.; Mattson, A. E. Org. Lett. 2012, 14, 444;  c) Hardman, A. M.; So, S. S.; 
Mattson, A. E. Org. Biomol. Chem. 2013, 11, 5793. 

8  For iminium catalysis promoted ring-opening, see: a) Xie, H.; Zu, L.; Li, H.; Wang, J.; Wang, W. J. Am. 
Chem. Soc. 2007, 129, 10886; b) Sparr, C.; Gilmour, R. Angew. Chem. Int. Ed. 2011, 50, 8391; c) 
Wallbaum, J.; Garve, L. K. B.; Jones, P. G.; Werz, D. B. Chem. Eur. J. 2016, 22, 18756. 

9  a) Reissig, H. U. Tetrahedron Lett. 1981, 22, 2981; b) Shimada, S.; Hashimoto, Y.; Sudo, A.; 
Hasegawa, M.; Saigo, K. J. Org. Chem. 1992, 57, 7126; c) Shimada, S.; Hashimoto, Y.; Saigo, K. J. Org. 
Chem. 1993, 58, 5226; d) Shimada, S.; Hashimoto, Y.; Nagashima, T.; Hasegawa, M.; Saigo, K. 
Tetrahedron 1993, 49, 1589. 
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towards the extension of the methodology.10,11,12,13 In 2009, Johnson14 reported a 

dynamic kinetic asymmetric transformation (DyKAT) as an alternative to the use of 

enantiopure cyclopropanes10 for obtaining enantioenriched tetrahydrofurans 

(Scheme 3. 2). Based on the interconversion of cyclopropane enantiomers that takes 

places by action of the (4-Cl-tBu-pybox)MgII catalyst when electron donor 

substituted cyclopropanes are employed, the racemic mixture can be resolved. The 

chiral catalyst leads to the cycloaddition reaction of the aldehyde with one of the 

two enantiomers of the cyclopropane to render the final thetrahydrofurane adduct 

with high enantiomeric excess. Previous reports of Johnson and co-workers10 

proposed a tight ion-pair intermediate for this transformation. Later on, the 

methodology was applied successfully to the use of imines to form the 

corresponding pyrrolidines.15 Other electrophiles, such as nitriles16 or electron-poor 

pyridines and quinolines,17 have featured in [3+2] cycloaddition, however in most of 

the cases only limited studies have been carried out.18 

10  a) Pohlhaus, P. D.; Johnson, J. S. J. Am. Chem. Soc. 2005, 127, 16014; b) Pohlhaus, P. D.; Johnson, J. 
S. J. Org. Chem. 2005, 70, 1057; c) Pohlhaus, P. D.; Sanders, S. D.; Parsons, A. T.; Li, W.; Johnson, J. S. 
J. Am. Chem. Soc. 2008, 130, 8642.  

11  a) Benfatti, F.; de Nanteuil, F.; Waser, J. Org. Lett. 2012, 14, 386; b) Haubenreisser, S.; Hensenne, P.; 
Schröfder, S.; Niggermann, M. Org. Lett. 2013, 15, 2262. 

12  Tropone as carbonyl counterpart lead to formal [8+3] cycloadditions: Rivero, A. R.; Fernández, I.; 
Sierra, M. Á. Org. Lett. 2013, 15, 4928. 

13  Cyclopropyl acetal: Sabbatani, J.; Maulide, N. Angew. Chem. Int. Ed. 2016, 55, 6780. 
14  Parsons, A. T.; Johnson, J. S. J. Am. Chem. Soc. 2009, 131, 3122. 
15  Enantioselective [3+2] cycloaddition with imines: a) Parsons, A. T.; Smith, A. G.; Neel, A. J.; Johnson, 

J. S. J. Am. Chem. Soc. 2010, 132, 9688. Early work with imines: b) Alper, P. B.; Meyers, C.; Lerchner, 
A.; Siegel, D. R.; Carreira, E. M. Angew. Chem. Int. Ed. 1999, 38, 3186; c) Jackson, S. K.; Karadeolian, 
A.; Driega, A. B.; Kerr, M. A. J. Am. Chem. Soc. 2008, 130, 4196. 

16  a) Yu, M.; Pagenkopf, B. L. Org. Lett. 2003, 5, 5099;. b) Sathishkannan, G.; Srinivasan, K. Org. Lett. 
2011, 13, 6002. 

17  Morra, N. A.; Morales, C. L.; Bajitos, B.; Wang, X.; Jang, H.; Wang, J.; Yu, M.; Pagenkopf, B. L. Adv. 
Synth. Catal. 2006, 348, 2385. 

18  Carbon disulfide: a) Bruckner, C.; Reissig, H. U. Angew. Chem. Int. Ed. Engl. 1985, 24, 588. 
Isocyanates and isothiocyanates: b) Graziano, M. L.; Iesce, M. R. J. Chem. Res., Synop. 1987, 362; c) 
Graziano, M. L.; Cimminiello, G. J. Chem. Res., Synop. 1989, 42; d) Goldberg, A. F. G.; O’Connor, N. 
R.; Craig, R. A.; Stoltz, B. M. Org. Lett. 2012, 14, 5314. Diazenes: e) Graziano, M. L.; Iesce, M. R.; 
Cermola, F. J. Chem. Res., Synop. 1996, 82; f) Korotkov, V. S.; Larionav, O. V.; Hoftneister, A.; Magul, 
J.; De Meijere, A. J. Org. Chem. 2007, 72, 7504. Nitrosyl chloride: g) Cermola, F.; Di Gioia, L.; 
Graziano, M. L.; Iesce, M. R. J. Chem. Res., Synop. 2005, 677. Isonitriles: Korotkov, V. S.; Larionov, O. 
V.; De Meijere, A. Synthesis 2006, 3542. In situ generated hydrazones h) Lebold, T. P.; Ker, M. A. 
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Scheme 3. 2 
 

Alternatively transition metals have been employed as catalysts involved in 

the activation of the cyclopropanes bearing alkyne and alkene moieties through the 

formation of organometallic species. Thus, in 2008 Johnson19 reported the use of a. 

Pd(0) based catalyst for the activation of a cyclopropane through the formation of a 

stabilized palladium-allyl intermediate (Scheme 3. 3). This species undergoes 

nucleophilic attack over the aldehyde and subsequent final cyclization to yield the 

corresponding tetrahydrofuran. Based on this work, Trost19b,c developed a 

vinylogous asymmetric version of the reaction employing a phosphine based chiral 

ligand (Scheme 3. 3). A series of Michael acceptors were employed as dipolarophiles 

leading to a family of spirocyclic compounds. Those examples served as precedent 

for new studies employing different metal catalysts, such as ruthenium and nickel.20 

Org. Lett. 2009, 11, 4354. Nitrosoarenes: Chakrabarty, S.; Chatterjee, I.; Wibbeling, B.; Daniliuc, C. 
G.; Studer, A. Angew. Chem. Int. Ed. 2014, 53, 5964. Acetylenes: Yadav, V. K.; Sriramurthy, V. 
Angew. Chem. Int. Ed. 2004, 43, 2669. 

19  a) Parsons, A. T.; Campbell, M. J.; Johnson, J. S. Org. Lett. 2008, 10, 2541; b) Trost, B. M.; Morris, P. 
J. Angew. Chem. Int. Ed. 2011, 50, 6167; c) Trost, B. M.; Morris, P. J.; Sprague, S. J. J. Am. Chem. Soc. 
2012, 134, 17823. 

20  Palladium activation of vinyl cyclopropanes: a) Goldberg, A. F. G.; Stoltz, B. M. Org. Lett. 2011, 13, 
4474; b) Mei, L.-y.; Wei, Y.; Xu, Q.; Shi, M. Organometallics 2012, 31, 7591; c) Wei, F.; Ren, C.-L.; 
Wang, D.; Liu, L. Chem. Eur. J. 2015, 21, 2335; d) Xie, M.-S.; Wang, Y.; Li, J.-P.; Du, C.; Zhang, Y.-Y.; 
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Scheme 3. 3 
 

In a conceptually different approach, the cycloaddition of enals with 

acylcyclopropanes has been described based on the oxidative insertion of Ni(0) 

across the C-C bond to generate nickelacycles enolates.21 THis intermediate has the 

ability to subsequently react with the enal in an insertion/reductive elimination 

sequence that enables the access to densely substituted cyclopentanes in a single 

Hao, E.-J.; Zhang, Y.-M.; Qu, G.-R.; Guo, H.-M. Chem. Commun. 2015, 51, 12451; e) Ma, C.; Huang, 
Y.; Zhao, Y. ACS Catal. 2016, 6, 6408. Ruthenium activation of alkynyl cyclopropanes: f) Miyake, Y.; 
Endo, S.; Moriyama, T.; Sakata, K.; Nishibayashi, Y. Angew. Chem. Int. Ed. 2012 52, 1758. Nickel 
activation of vinyl cyclopropanes: g) Tombe, R.; Iwamoto, T.; Kurahashi, T.; Matsubara, S. Synlett 
2014, 2281. 

21  a) Liu, L.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 5348; b) Liu, L.; Montgomery, J. Org. Lett. 
2007, 9, 3885. 
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step (Scheme 3. 4). This methodology is particularly interesting as it allowed the use 

of simple non-activated cyclopropyl ketones in the reaction. 
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Scheme 3. 4 

 

The use of electron-rich olefins to initiate the ring-opening event enables the 

access to carbocyclic products. In particular, a good example is the report by Tang22 

showing the enantioselective cycloaddition of silyl enol ethers with aryl substituted 

D-A cyclopropanes under Lewis Acid catalysis (Scheme 3. 5). The initial nucleophilic 

ring opening step is followed by intramolecular cyclization, defined as the rate-

limiting step. After some early work and examples that highlighted the need of bulky 

acceptor groups in the ester substituents of the cyclopaprane as well as in the silyl 

22  Xu, H.; Qu, J.-P.; Liao, S.; Xiong, H.; Tang, Y. Angew. Chem. Int. Ed. 2013, 52, 4004. 
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group,23 DFT studies led to conclude that a stepwise process would explain this 

formal cycloadittion.24  

DCM, 4A MS, 30ºC
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91-99% ee
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Scheme 3. 5 

 

The copper catalyzed formation of highly enantioenriched carbobicycles was 

extended to the synthesis of tricylic systems by employing enol silyl ethers with a 

fused benzene ring. Further investigations have lead to enantioselective 

cycloadditions with indoles25 and the use of other electron-rich arenes26 and 

particular electron-rich alkenes.27  

23  a) Komatsu, M.; Suehiro, I.; Horiguchi, Y.; Kuwajima, I. Synlett 1991, 771; b) Saigo, K.; Shimada, S.; 
Shibasaki, T.; Hasegawa, M. Chem. Lett. 1990, 1093. Enantiospecific cycloadditions: c) Qu, J.-P.; 
Deng, C.; Zhou, J.; Sun, X.-L.; Tang, Y. J. Org. Chem. 2009, 74, 7684; d) de Nanteuil, F.; Waser, J. 
Angew. Chem. Int. Ed. 2011, 50, 12075. More recent work of Waser e) Racine, S.; de Nanteuil, F.; 
Serrano, E.; Waser, J. Angew. Chem. Int. Ed. 2014, 53, 8484.  

24  Qu, J.-P.; Liang, Y.; Xu, H.; Sun, X.-L.; Yu, Z.-X.; Tang, Y. Chem. Eur. J. 2012, 18, 2196. 
25  a) Xiong, H.; Xu, H.; Liao, S.; Xie, Z.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 7851; b) de Nanteuil, F.; 

Waser, J. J. Am. Chem. Soc. 2014, 136, 6239. 
26  Furans: a) Chagarovskiy, A. O.; Budynina, E. M.; Ivvanova, O. A.; Grishin, Y. K.; Trushkov, I. V.; 

Verteletskii, P. V. Tetrahedron 2009, 65, 5385. 2-Naphthols: b) Kaicharla, T.; Roy, T.; Thangaraj, M.; 
Gonnade, R. G.; Biju, A. T. Angew. Chem. Int. Ed. 2016, 55, 10061. 

27  Enamine: a) Verma, K.; Banerjee, P. Adv. Synth. Catal. 2016, 358, 2053. Vinyl azides: Dey, R.; 
Banerjee, P. Org. Lett. 2017, 19, 304. Enoldiazoacetates: Cheng, Q.-Q.; Qian, Y.; Zavalij, P. Y.; Doyle, 
M. P. Org. Lett. 2015, 17, 3568. 
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1.2. [3+3] Cycloaddition 

As stated previously the use of cyclopropanes in cycloaddition reactions has 

been extended to the synthesis of other ring systems by exchanging the previously 

used 1,2 dipolarophiles for 1,3 and 1,4 homologues. Notwithstandingly, formal [3+3] 

cycloaddition reactions of D-A cyclopropanes with 1,3 dipoles as nitrones and 

azomethine imines has only very recently been developed. In this regard, great 

effort was made by Kerr28 and co-workers to get an insight into the performance of 

nitrones in the reaction and the possible mechanistic pathway.29 Following to these 

initial studies, in 2005, Sibi30 reported the first enantioselective method for the 

preparation of tetrahydro-1,2-oxazines, although with problems with the 

diastereoselectivity, employing a chiral NiII complex through a mechanism involving 

an extensive or total ring opening to a zwitterionic species trapped by the nitrone 

(SN1).  

Almost simultaneously, Tang31 reported a versatile chiral trisoxazoline/NiII 

catalytic system employed in both enantioselective synthesis of 1,2-isoxazines and 

the kinetic resolution of racemic mixtures of cyclopropanes. Thus, the asymmetric 

[3+3] cycloaddition with nitrones could be carried out resulting in the synthesis of 

highly enantioenriched 3,6-substitued-(3R,6R)-tetrahydro-1,2-oxazine-4,4-

dicarboxylates with good levels of diastereoslectivity (Scheme 3. 6a).   Alternatively, 

racemic mixtures of cyclopropanes bearing a phenyl or electron-poor arenes as 

substituents could be resolved to obtain chiral cyclopropanes with high 

enantiomeric excess and later on access the oxazines of inverse configuration 

(Scheme 3. 6b).  

28  a) Young, I. S.; Kerr, M. A. Angew. Chem. Int. Ed. 2003, 42, 3023; b) Young, I. S.; Kerr, M. A. Org. Lett. 
2004, 6, 139; c) Ganton, M. D.; Kerr, M. A. J. Org. Chem. 2004, 69, 8554. 

29  a) Wanapun, D.; Van Gorp, K. A.; Mosey, N. J.; Kerr, M. A.; Woo, T. K. Can. J. Chem. 2005, 83, 1752; 
b) Karadeolian, A.; Kerr, M. A. J. Org. Chem. 2007, 72, 10251. 

30  Sibi, M. P.; Ma, Z. H.; Jasperse, C. P. J. Am. Chem. Soc. 2005, 127, 5764. 
31  Kang, Y. B.; Sun, X. L.; Tang, Y. Angew. Chem. Int. Ed. 2007, 46, 3918. 
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Scheme 3. 6 

 

 
This chemistry has also been extended to the use of azomethine imines as 1,3-

dipoles reacting with the D-A cyclopropane.32 The first report of enantioselective 

cycloaddition involving D-A cyclopropanes and those ylides was reported by Tang32b 

employing a chiral indanyl trioxazoline ligand in combination with Ni(ClO4)2. Tricyclic 

dihydro(iso)quinoline derivates bearing a hydropyridazine ring were obtained in high 

yields and with excellent diastereo- and enantioselectivities (Scheme 3. 7). The size 

of the aliphatic chains in the ester moieties of the cyclopropane, the role of the 

sidearm of the ligand32b and the presence of a trifluoromethyl group in the 

azomethine imine proved to be crucial for the high enantioselectivity values 

obtained. In this sense, a π-π interaction between the indane group at the sidearm 

and the aromatic group of the cyclopropane was proposed. 

32  a) Perreault, C.; Goudreau, S. R.; Zimmer, L. E.Charette, A. B. Org. Lett. 2008, 10, 689; b) Zhou, Y. Y.; 
Li, J.; Ling, L.; Liao, S. H.; Sun, X. L.;Li, Y. X.; Wang, L. J.; Tang, Y. Angew. Chem. Int. Ed. 2013, 52, 
1452. 
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Scheme 3. 7 

1.3. [3+3] Annulation 

In a different context, cyclopropanes may feature in processes that have a 

ring-opening event clearly distinguished from the later cyclization step. Those 

transformations may occur in a domino sequence33 or in other cases a change of the 

reaction conditions is required.34 Thus, Kerr et al have had significant relevance in 

this kind of [3+3] annulations, such as the synthesis of highly substituted piperidines 

employing propargyl amines (Scheme 3. 8).33a An inicial nucleophilic attack over the 

sufficiently electrophilic cyclopropane due to the activation of the esters by the zinc 

catalyst forces the ring-opening. This linear intermediate undergoes a Conia-ene 

reaction to form the annulation product. Noteworthy, enantioenriched piperidines 

could be successfully accessed by employing chiral cyclopropanes. 

33  Selected examples of nucleophilic ring-opening promoted intermolecular cascades. a) Lebold, T. P.; 
Leduc, A. B.; Kerr, M. A. Org. Lett. 2009, 11, 3770; b) Ghorai, M. K.; Talukdar, R.; Tiwari, D. P. Chem. 
Commun. 2013, 49, 8205; c) Taludkar, R.; Tiwari, D. P.; Saha, A.; Ghorai, M. K. Org. Lett. 2014, 16, 
3954; d) Sin, S.; Kim, S.-G. Adv. Synth. Catal. 2016, 358, 2701.    

34  a) Sapeta, K.; Kerr, M. A. Org. Lett. 2009, 11, 2081; b) Leduc, A. B.; Lebold, T. P.; Kerr, M. A. J. Org. 
Chem. 2009, 74, 8414; c) Liu, Q.-J.; Yan, W.-G.; Wang, L.; Zhang, X. P.; Tang, Y. Org. Lett. 2015, 17, 
4014. 
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1.4. [3+4] Cycloaddition 

Formal [3+4] cycloadditions of cyclopropanes that entail the reaction of the 

zwitterionic intermediate generated after the ring opening event with a suitable 

diene as  the four carbon counterpart remain almost limited to the pioneering work 

of Budynina.35 Dienes, such as 1,2-diphenylisobenzofurans, with a high reactivity as 

well as considerable steric hindrance are required for this transformation .36 The 

predominant formation of the less stable exo isomer supports the theory of a 

concerted mechanism, in which the stereochemistry is given by orbital control in a 

diastereospecific transformation (Scheme 3. 9).35a 

35  a) Ivanova, O. A.; Budynina, E. M.; Grishin, Y. K.; Trushkov, I. V.; Verteletskii, P. V. Angew. Chem. Int. 
Ed. 2008, 47, 1107; b) Ivanova, O. A.; Budynina, E. M.; Grishin, Y. K.; Trushkov, I. V.; Verteletskii, P. 
V. Eur. J. Org. Chem. 2008, 53, 5329; c) Garve, L. K. B.; Pawliczek, M.; Wallbaum, J.; Jones, P. G.; 
Werz, D. B. Chem. Eur.J. 2016, 22, 521. 

36  Asymmetric [4+3] annulations via [3+2] cycloaddition/ring-opening/cyclization sequence: Xu, H., 
Hu, J.-L.; Wang, L.; Liao, S.; Tang, Y. J. Am. Chem. Soc. 2015, 137, 8006. 
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In 2009, Wang et al published an example of [3+4] annulation employing 

cyclopropanes (Scheme 3. 10).37 Although as in the abovementioned examples the 

reaction sequence is initiated by a nucleophilic ring opening event, in contrast to 

them a secondary amine was employed to activate a formylcyclopropane through 

the formation of an iminium ion species, which plays the role of the acceptor 

group.8 Under this covalent catalyst o-thiosalicylaldehydes were employed in an 

homoconjugated addition/aldol sequence to render benzo[b]thiephines in moderate 

yields. The SN2 type attack of the mercapto moiety rules the stereochemistry of the 

reaction, which is given by the configuration of the starting cyclopropane (92% ee), 

leading to a highly enantioespecific transformation (up to 88% ee). The generated 

linear enamine type intermediate further reacts with the aldehyde moiety of the 

salicylaldehyde to render the corresponding seven-membered ring. 

37  Li, L.; Li, Z.; Wang, Q. Synlett 2009, 11, 1830. 
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1.5. [2+3] Cycloaddition 

The activation of formylcyclopropnaes has been studied under the strategy of 

N-heterocyclic carbene catalysis. In this sense, the acyl azolium equivalent generated 

upon NHC mediated38 ring-opening has been employed as a two carbon synthon in 

formal [2+3] and [2+4] cycloadditions. Thus, Wang39 reported the formal [2+3] 

cycloaddition of formylcyclopropane 1,1-diesters and 1H-indole-2-carbaldehyde in 

the presence of a benzimidazolium catalyst (Scheme 3. 11). Upon condensation of 

the catalyst and the formylcyclopropane, a D-A cyclopropane is formed, activated 

with a donor group (the enaminol moiety) and two electron-withdrawing esters. The 

strained three-membered ring undergoes spontaneous ring-opening and azolium 

enolate type intermediate is generated. Authors postulated that a redox amination 

that releases the catalyst is followed by Knoevenagel type reaction between the 

enolate of the new amide and the aldehyde. This methodology gives straightforward 

access to pyrroloindole skeleton, yet with limited scope and only in moderate yields.    

 

38  a) Sohn, S. S.; Bode, J. W. Angew. Chem. Int. Ed. 2006, 45, 6021; b) Bode, J. W.; Sohn, S. S. J. Am. 
Chem. Soc. 2007, 129, 13798; c) Vesely, J.; Zhao, G.-L.; Bartoszewicz, A.; Cordova, A. Tetrahedron 
Lett. 2008, 49, 4209. 

39  Li, L.; Du, D.; Ren, J.; Wang, Z. J. Org. Chem. 2011, 614. 
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1.6. [2+4] Cycloaddition 

Wang group excelled in the synthesis of heteroaromatic scaffolds from 

FCP,40,41 thus previously a domino sequence for the synthesis of coumarins was 

reported based on a similar mechanistic pathway. In this example the hydroxyl 

group of salicylaldehyde is responsible for the release of the catalyst and the formal 

[2+4] cycloaddition is achieved through a redox  lactonization process that includes a 

Knoevenagel type reaction for the final cyclization (Scheme 3. 12).40  
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40  Du, D.; Wang, Z. Eur. J. Org. Chem. 2008, 4949. 
41  Du, D.; Li, L.; Wang, Z. J. Org. Chem. 2009, 74, 4379. 
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Inspired by previous work on azolium enolate chemistry to develop Diels-

Alder type cycloadditions,42 Chi et al43 published the first enantioselective formal 

[2+4] cycloaddition employing cyclopropanes. The stereochemistry of this inverse 

electron-demand Hetero-Diels-Alder reaction of chalcones and formylcyclopropanes 

is defined by the aminoindanol derived chiral catalyst that remains attached to the 

substrate blocking one of the faces of the enol in the formation of the new two 

bonds. It is worth noting, the convenient use of FCP as precursors enabled the use of 

less reactive α’-β-substitued chalcones as oxodienes, in contrast to the use of enals 

that may lead to dimerization side reactions.42a Nevertheless, multisubstitued 

formylcyclopropanes were not well tolerated and no example of alkyl substituted 

unsaturated ketones was reported. In addition, a base promoted 

transesterification/aldol reaction was performed leading to the formation of formal 

[3+3] cycloaddition product (Scheme 3. 13). 
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42  a) He, M.; Struble, J. R.; Bode, J.W. J. Am. Chem. Soc. 2006, 128, 8418; b) He, M.; Uc, G. J.; Bode, J. 
W. J. Am. Chem. Soc. 2006, 128, 15088; c) Fang, X.; Chen, X.; Chi, R. Y. Org. Lett. 2011, 13, 4708; d) 
Yang, L.; Wang, F.; Chua, P. J.; Lv, Y.; Zhong, L.-J.; Zhong, G. Org. Lett. 2012, 14, 2894. 

43  Lv, H.; Mo, J.; Fang, X.; Chi, Y. R. Org. Lett. 2011, 13, 5366. 
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1.7. [2+2] Cycloaddition 

Very recently, Jørgensen and co-workers44 carried out a formal 

enantioselective [2+2] cycloaddition with a variety of 3-olefinic oxindoles (Scheme 3. 

14). The aminocatalyzed ring-opening of cyclopropaneacetaldehydes is based on the 

formation of a D-A cyclopropane bearing an enamine moiety that activates the 

cyclopropane in synergy with the acceptor groups. Thus, a new class of 

cyclopropanes stands as suitable substrate for the development of complex reaction 

sequences based on opening D-A cyclopropanes. Noteworthy, interesting 

spirocyclobutaneoxindoles could be obtained in a highly enantioselective process 

mediated by a chiral pyrrolidine derivative. 
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Scheme 3. 14 
 

 

 

 

44  Halskov, K.S.; Kniep, F.; Lauridsen, V. H.; Iversen, E. H.; Donslund, B. S.; Jørgensen, K. A. J. Am. Chem. 
Soc. 2015, 137, 1685. 
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1.8. [4+2] Cycloaddition 

The use of cyclopropanes as 1,4 dipoles was explored by Wang41 in a formal 

[4+2] cycloaddition. In the presense of 2-chloro-1H-indole-3-carboaldehyde FCP 1,1-

diesters upon addition of the amine moiety to form the linear amide, react through 

the malonate moiety on the pendant alkylic displacing the halogen atom at the 2 

position, to form a six-membered ring that contains the whole cyclopropane 

structure. Thus, the synthesis of hydropyrido[1,2-a]indoles through a domino ring-

opening/redox amination/cyclization sequence was achieved in moderate yields 

(Scheme 3. 15). 
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Scheme 3. 15 

 

The performance of the most common intermediates generated in the ring-

opening of D-A cyclopropanes45 has been reviewed probing their value as versatile 

precursors in cycloaddition reactions. The variety of strategies to activate 

cyclopropanes has been highlighted. In this sense, organocatalysis, especially NHC 

45  Upon ring-opening the generated 1,3 dipoles can lead to transposition and elimination reaction and 
thus render even membered dipoles or alkenes respectively. For 1,2 and 1,4 dipoles, see: a) 
Novikov, R. A.; Tarasova, A. V.; Korolev, V. A.; Timofeev, V. P.; Tomilov, Y. V. Angew. Chem. Int. Ed. 
2014, 53, 3187. For alkene precursors: b) Zhu, M.; Liu, J.; Yu, J.; Chen, L.; Zhang, C.; Wang, L. Org. 
Lett. 2014, 16, 1856; c) Borisov, D. B.; Novikov, R. A.; Tomilov, Y. V. Angew. Chem. Int. Ed. 2016, 55, 
12233.  
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catalysis, is emerging as an alternative to the long-studied Lewis acid promoted ring-

opening reaction, by leading to interesting active species such azolium enolates or 

enamine type intermediates. Covalent catalysis, due to its capability to render highly 

enantioselective processes stands as an appealing strategy considering the rather 

limited number of examples in this field, mainly limited to [3+2] cycloadditions. 
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2.- SPECIFIC OBJECTIVES AND WORK PLAN 

From the presented literature review, it can be appreciated that Lewis Acids 

have been widely used for initiating a cyclopropane ring-opening event followed by 

a subsequent reaction. In contrast to the this well established chemistry the use of 

organocatalysis is underdeveloped. Approaching the activation of cyclopropanes to 

promote ring-opening processes from different strategies would lead to expand the 

range of transformations those molecules can take part in. On the other hand, when 

seeking for enantioenriched products, employing chiral cyclopropanes has been a 

recurring strategy whilst the development of asymmetric transformations is rather 

limited to [3+2] cycloadditions. In this sense, a covalent interaction between the 

catalyst and the substrate may result in a more efficient transfer of the chiral 

information.  

Considering the potencial of organocatalysis, we decided to focus on the 

generation of D-A cyclopropanes following this approach for the development of 

new enantioselective complex cycloadditions. With this aim in mind, we set two 

more specific objectives employing NHC and secondary amine catalysis respectively. 

 

2.1. Specific objectives:  NHC promoted formation of D-A cyclopropanes 

 

 N-heterocyclic carbene mediated activation of formylcyclopropanes remains 

as the most popular approach in the field of the organocatalysis, since it converged 

with the emergence of new reactive intermediates in this type of catalysis, azolium 

enolates. Since the early work of Bode38a probing that formylcyclopropanes may 

serve as acyl azolium precursors under NHC catalysis, the performance of those in 

different reactions including formal cycloadditions have been studied.39,40,41,43  
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Nevertheless, despite the benefits of this methodology (atom economy, 

stability),46 NHC promoted cycloadditions is a relatively unexplored field. Thus we 

decided to focus on the development of the [2+4] cycloaddition reaction between 

polysubstitued formylcyclopropanes and oxadienes, under NHC catalysis 

employing chiral triazolium salts as organocatalysts (Scheme 3. 16).  
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Scheme 3. 16 

The main aim will be to develop a methodology of wide scope, especially 

regarding the potential use of polysubstitued cyclopropanes and the substituents at 

the terminal position of the diene, till now nearly limited to arenes and esters in the 

reported Diels-Alder cycloadditions. In order to achieve the stated objective, the 

following work plan was designed: 

1. Proof of concept: First of all, the viability of the reaction will be studied 

employing activated formylcyclopropanes. Initially formylcyclopropane 

mono and di-esters will be evaluated towards the ring-opening event, in 

order to test their performance in the cycloaddition reaction with 

different oxadienes, among which β-γ unsaturated α-ketoesters will be 

firstly studied (Scheme 3. 17). 

46  In comparision with other precursors there is no need for a leaving group and formylcyclopropanes 
are relatively more stable than enals, ketenes or α-chloroaldehydes 
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Scheme 3. 17 

 

2. Optimization of the reaction: The reaction between diethyl-2-

formylcyclopropane-1,1-dicarboxylate 11a and methyl (E)-2-oxo-4-

phenylbut-3-enoate 12a will be chosen as model reaction for the study of 

a variety of chiral triazolium salts. Once that the catalyst which provides 

the best results in terms of yield and enantioselectivity has been 

identified, other parameters will be studied to obtain the optimal 

experimental conditions for the selected system. 

 

3. Scope of the reaction: With the best conditions in hand, the extension of 

the methodology will be studied. In this sense, the substitution at the γ-

position of the ketoesters will be modified and different cyclopropanes 

will be tested. 
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Scheme 3. 18 
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2.2. Specific objective: aminocatalytic activation of cyclopropylacetaldehydes. 

The lack of examples on aminocatalyzed cyclopropane ring-opening processes 

is in great contrast with the number of reports proficiently employing this activation 

mode in cycloaddition reactions. Interestingly, those catalysts may lead to the 

formation of different intermediates, as iminium ion and enamine, that can be 

combined in complex reaction sequences, such as Michael initiated cascade 

reactions. 

In this context, we envisioned that a Michael-acceptor intermediate 

generated upon an aminocatalysis promoted cyclopropane ring-opening would serve 

as platform for domino sequences. With this aim in mind, it was decided to focus on 

the development of an aminocatalyzed ring-opening initiated cascade reaction 

using cyclopropaneacetaldehydes (Scheme 3. 19).  

N

CO2Et

CO2Et

N

CO2EtEtO2C

N

CO2EtEtO2CCO2R

CO2R

O

II IIII  
Scheme 3. 19 

We envisioned the possibility of using aminobenzaldehydes, successfully 

employed in iminium promoted aza-Michael reactions.47 In such a complex 

47  a) Sundén, H.; Rios, R.; Ibrahem, I.; Zhao, G.-L.; Eriksson, L.; Córdova, A. Adv. Synth. Catal. 2007, 
349, 827. b) Li, H.; Wang, J.; Xie, H.; Zu, L.; Jiang, W.; Duesler, E. N.; Wang, W. c) Yoshitomi, Y.; Arai, 
H.; Makino, K.; Hamada, Y. Tetrahedron 2008, 64, 11568. d) Enders, D.; Wang, C.; Raabe, G. 
Synthesis 2009, 24, 4119. e) Hong, L.; Sun, W.; Liu, C.; Wang, L.; Wang, R. Chem. Eur. J. 2010, 16, 
440. f) Bae, J.-Y.; Lee, H.-J.; Youn, S.-H.; Kwon, S.-H.; Cho, C.-W. Org. Lett. 2010, 12, 4352. g) 
Fernández, M.; Vicario, J. L.; Reyes, E.; Carrillo, L.; Badía, D. Chem. Commun. 2012, 48, 2092. h) 
Zhang, X.; Song, X.; Li, H.; Zhang, S.; Chen, X.; Yu, X.; Wang, W. Angew. Chem. Int. Ed. 2012, 51, 
7282. i) Qian, H.; Zhao, W.; Sung, H. H.-Y.; Williams, I. D.; Sun, J. Chem. Commun. 2013, 49, 4361. j) 
Lee, H.-J.; Cho, C.-W. J. Org. Chem. 2013, 78, 3306. k) Lee, H.-J.; Cho, C.-W. Eur. J. Org. Chem. 2014, 
387. l) Joie, C.; Deckers, K.; Enders, D. Synthesis 2014, 46, 799. 
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sequence several selectivity problems have to be faced, including the possible 

competitive pathways through enamine type intermediates (III) as well as 

stereoselectivity issues. Furthermore, the possible condensation of the catalyst with 

the aldehyde moiety of the aminobenzaldehyde should be taken into account as 

well. The selectivity problems inherent to the aza-Michael reaction that arises from 

the possibility of the aminobenzaldehyde to condense with the 

cyclopropaneacetalhyde and render a non-enantiocontrolled processes are an 

additional challenge. 

Donor-Acceptor cyclopropanes have been depicted as polyfunctional 

intermediate precursors, however, some of those functionalities may be considered 

as innocent elements along the processes the cyclopropane takes part in after the 

ring-opening event. In this sense, we direct our efforts to make good use of these 

innocent functionalities in further transformations (Scheme 3. 20). Tuning the 

reaction conditions to selectively afford a single product, in addition to control 

functionalization at remote positions are the main challenges regarding this 

objective. 
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Scheme 3. 20 

In order to achieve the stated objective, the following work plan was 

designed: 
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1. Proof of concept: The ability of the cyclopropaneacetaldehyde to undergo 

ring-opening under aminocatalysis will be studied towards the reaction 

with 2-aminobenzaldehyde.  

 

2. Optimization of the reaction: Once the right reactivity has been observed 

the performance of different chiral amines in order to identify the best 

catalyst in terms of yields, regio- and stereoselectivity. Right after, a series 

of experimental parameters will be optimized for the defined reaction 

system. 
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Scheme 3. 21 

 

3. Scope of the reaction: Once that the optimal conditions have been 

defined, the extension of the methodology to other 

cyclopropaneacetaldehydes and aminobenzaldehydes will be studied. 

 

4. Chemical manipulations: The reactivity of other functional groups present 

in the molecule so as to incorporate them into the final product through 

possible multiple bond forming reaction sequences, such as triple cascade 

or subsequent reactions will be explored. Additional aldol and 

lactamization reactions that can render complex tricyclic scaffolds will be 

evaluated. The extension of the new methodologies to other substrates 

will also be studied. 
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3.- RESULTS AND DISCUSSION 
 
3.1  FORMAL [2+4] CYCLOADDITION OF β-γ-UNSATURATED α-KETOESTERS 

THROUGH NHC-MEDIATED CYCLOPROPANE RING OPENING. 
 
 
3.1.1. PROOF OF CONCEPT 

In initial trials it was decided to evaluate the performance of 

formylcyclopropane with one or two ester substituents as potential electron-

withdrawing groups towards the projected cycloaddition reaction, with β,γ-

unsaturated α-ketoesters in the presence of a series of triazolium based carbene 

catalysts. To our delight the desired dihydropyranone 13a was obtained, yet in a 

very low yield and no other major products could be indetified besides complex 

mixtures of byproducts attributed to cyclopropane and product decomposition. 

Apparently, the formed product was unstable under reaction conditions, and further 

studies, probed that by decreasing the temperature, decomposition of the product 

could be avoided leading to the obtention of 13a in moderate yields and as a single 

diastereomer (Scheme 3. 22). The reaction proceeds via a formal [2+4] cycloaddition 

of the acyl enolate, generated upon ring opening of the cyclopropane 11a, with 

unsaturated α-ketoester 12a. Based on the literature42,43 reports for this type of 

inverse electron demand hetero-Diels-Alder cycloaddition the formation (R,R)-

configured pyranone is postulated. 
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Scheme 3. 22 

 
3.1.2. OPTIMIZATION OF THE REACTION 

As stated in the work plan and once that the viability of the reaction has been 

proved, a variety of standard experimental parameters were studied employing the 

diethyl 2-formylcyclopropane-1,1-dicarboxylate and methyl (E)-2-oxo-4-phenylbut-3-

enoate as substrates in the model reaction. 

Initially, a variety of chiral triazolium salts were synthetized and tested to find 

out the catalyst that performs better. Although chiral triazolium based precatalysts 

bearing a morpholine fused ring (3g-3h) performed well in terms of enantiocontrol, 

the product was obtained in low yield. By extending the number of fused ring to 

tetracyclic aminoindanol based catalysts (3i, 3j, 3m, 3n) the enantiopure 

dihydropyranone could be obtained in moderate yield. Modifications at the aryl 

substituent of the triazol ring showed that only when a very electron poor arene was 

introduced as slight decrease in the yield was observed (3i vs 3j, 3n). On the other 

hand, no significant change was observed when modifying the counteranion of the 
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triazolium salt (3m, 3n) under these conditions. In view of these results, triazolium 

salt 3n was chosen as the best catalyst for further optimization studies. 

Table 3. 1: Evaluation of a series of catalysts. 
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Toluene (0.25M), 4ºC

3g-m
 
(10 mol%)

N
N+

N

BF4

O

Bn

N
N+

N

BF4

O

Ph
Ph

N N+

N
ClO

3h3g

3m

Yield: 41%
dr: >20:1
-92% ee

Yield: 21%
dr: >20:1
97% ee

Yield: 54%
dr: >20:!
99% ee

Ph CO2Me

O
OHC

O OMeO2C

Ph
CO2Et

CO2Et
CO2Et

CO2Et

11a 12a 13a

N N+

N Cl

ClCl

BF4O

3j

Yield: 59%
dr: >20:1
99% ee

N N+

N
O

3n

Yield: 55%
dr: >20:1
99% ee

BF4

N N+

N F

FF

BF4O

3i

Yield: 46%
dr: >20:1
99% ee

F

F

 

 

Next, the importance of the employed base to generate the carbene in the 

performance of the reaction was evaluated (Table 3. 2). Representative bases in acyl 

azolium/azolium enolate chemistry,39,40,41,42a such as KHMDS, K2CO3 or DIPEA, were 

tested, observing little effect on the reaction. As complete consumption of the 

aldehyde was observed whilst only moderate conversion of the ketoester was 

observed that led to moderate yields of the adduct 13a. Higher amounts of base (up 

to 1 equiv.) as well as stronger bases (LDA) were tested in an attempt to ensure the 

presence of the azolium enolate species in the media by preventing its protonation 

that would quench the reactivity towards the diene, not observing in any case better 
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yields. In view of these results, an easy to handle salt as potassium carbonate was 

chosen as base for convenience. 

 

Table 3. 2: Influence of the base 

Base
 
(20 mol%)

Toluene, 4ºC

(10 mol%)
3m

N N+

N-
ClO

Ph CO2Me

O
OHC

O OMeO2C

Ph
CO2Et

CO2Et
C
O
2E
tCO2

Et
11a 12a 13a  

 
Entry Base dra Yield (%)b ee (%)c 

1 KHMDS >20:1 55 99 
2 K2CO3 >20:1 54 99 
3 DIPEA >20:1 52 99 

a Determined by 1H-NMR analysis of the crude reaction mixture. b Yield of pure product isolated after flash 
chromatography. c Determined by HPLC analysis of the pure product. 

 

At this stage solvents of different nature were tested without this parameter 

affecting significantly the enantioselectivity (Table 3. 3, Entries 1-4). When carrying 

out the reaction in dichloromethane a slight improve in the yield was observed 

(Entry 2), whilst the use of more polar solvents resulted in lower yields (Entries 3-4). 

Thus, dichloromethane was employed in further screening of reaction parameters, 

with selected results summarized in Table 3. 3. Due to changes in the performance 

of the base depending on the reaction solvent, a reevaluation of this parameter was 

carried out (Entries 5-6). In addition, the effect of the counterion of the catalyst and 

the base seemed to be not orthogonal parameters, due to electrostatic interactions, 

that can be more significant in the case of inorganic bases. The combination of using 

DIPEA and a less coordinating counteranion, in addition to increasing the 

formylcyclopropane/ketoester ratio resulted in the obtention of the [2+4] 

cycoaddition adduct in good yield and excellent enantiocontrol (Entries 6-7). 
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Table 3. 3: Selected optimization studies 

Base
 
(20 mol%)

Solvent, 4ºC

(10 mol%)

3m: X = Cl
3n: X = BF4

N N+

N-
XO

Ph CO2Me

O
OHC

O OMeO2C

Ph
CO2Et

CO2Et
CO2Et

CO2Et

11a 12a 13a

 

Entry Catalyst Solvent Base dr a Yield (%)b ee (%)c 
1 3m Toluene K2CO3 >20:1 54 99 
2 3m CH2Cl2 K2CO3 >20:1 58 97 
3 3m CHCl3 K2CO3 >20:1 30 99 
4 3m THF K2CO3 >20:1 26 99 
5 3n CH2Cl2 K2CO3 >20:1 62 97 
6 3n CH2Cl2 DIPEA >20:1 65 97 
7d 3n CH2Cl2 DIPEA >20:1 73 97 

a Determined by 1H-NMR analysis of the crude reaction mixture. b Yield of pure product isolated after flash 
chromatography. c Determined by HPLC analysis of the pure product. d 1.5 equivalents of formylcyclopropane were 
employed.  
 

The study of all those parameters led us to establish a robust protocol for the 

formal [2+4] cycloaddition of formylcyclopropanes and β,γ-unsaturated α-

ketoesters. Following the stated work plan, the extension of the methodology will be 

studied for the obtention of a variety of chiral dihydropyranones. 

 

3.1.3. SCOPE OF THE REACTION  
 

Once the optimal conditions were defined, a variety of β,γ-unsaturated α-

ketoesters were tested to evaluate the scope and limitations of the reaction (Table 

3. 4). First, the influence of the ester substituent of the electrophile was studied 

using both ethyl and methyl esters 12a and 12b (Entries 1-2), and it was observed 

that the reaction performed excellently in both cases. Regarding the substituents, a 

variety of ketoesters with γ-aryl groups were tested, observing that electron-donor 
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substituents at the para-position of the arene led to final product in good yields and 

with excellent enantioselectivity (Entries 3,4). Moreover, it was observed that the 

reaction could be carried out using a lower catalyst loading (Entry 5, 5 mol%) only 

requiring for slightly longer reaction time. Different substitutions patterns at the aryl 

substituent were well tolerated (Entries 6-8). However, introducing a bulky 2-ortho 

substitued aryl group (Entry 7) in the reactive γ-position resulted in significantly less 

reactive ketoester, which was not completely consumed even in the presence of an 

excess of formylcyclopropane. It should be highlighted as well, that high yields and 

enantiocontrol could be achieved even when a strong donor substituent was 

introduced (Entry 8). The reaction proceeded satisfactorily when p-fluorophenyl was 

introduced in the alkene as an example of electron-poor substituted unsaturated α-

ketoesters (Entry 9).  

Table 3. 4: Scope of γ-aryl substitued β,γ-unsaturated α-ketoesters 

DIPEA
 
(20 mol%)

DCM, 4ºC

(10 mol%)
3n

N N+

N-
BF4O

R1 CO2R3

O
OHC

O OR3O2C

R1

CO2Et
CO2Et

CO2Et

CO2Et

11a 12a-l 13a-j

R2
R2

 

Entry R1 R3 R3 Product dra Yield 
(%)b 

ee (%)c 

1 Ph H Me 13a >20:1 73 97 
2 Ph H Et 13b >20:1 77 >99 
3 p-MeOC6H4 H Me 13c >20:1 81 >99 
4 p-MeC6H4 H Me 13d >20:1 85 99 
5d p-MeC6H4 H Me 13d >20:1 82 99 
6 m-MeC6H4 H Me 13e >20:1 82 99 
7 o-MeC6H4 H Me 13f >20:1 66 >99 
8 3,4-OCH2OC6H3 H Me 13g >20:1 78 >99 
9 p-FC6H4 H Me 13h >20:1 72 >99 

10 2-furyl H Me 13i 2:1 46 >99 
11 2-thienyl H Me 13j 2:1 68 >99 
12 Ph Me Me   n.r.e  
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13 Me Ph Me   n.r.e  
a Determined by 1H-NMR analysis of the crude reaction mixture. b Yield of pure product isolated after flash 
chromatography. c Determined by HPLC analysis of the pure product. d The reaction was carried out in the presence of  
5 mol% of 3n. e No reaction. 

 

Substrates with heteroaryl substituents led to the formation of the 

corresponding adducts in good yield and high enantiocontrol, yet as 2:1 mixture of 

diastereomers (Entries 10-11). Further experiments showed that the corresponding 

adducts were unstable leading to epimerization and dehydrogenation reaction with 

the concomitant loss of the chiral information. As a limitation of the system, it was 

observed that γ,γ-aryl, alkyl substituted ketoesters which would render a quaternary 

estereocenter did not react under the described conditions (Entries 12-13). 

 
Next, the use of those more challenging γ-alkyl-substitued β,γ-unsaturated-α-

ketoesters was also surveyed, as it is shown in Table 3. 5. The reaction performed 

efficiently in both terms of yield and diastereo- and enantioselectivity, for substrates 

bearing either linear or branched alkyl substituents (Entries 1-2) as well as when 

functionalized alkyl chains were introduced (Entries 3-4). By correlation of the NMR 

data it can be concluded that the same diastereoisomer is obtained when using 

either γ-alkyl or γ-aryl ketoesters. 
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Table 3. 5: Scope of γ-alkyl substituted β,γ-unsaturated α-ketoesters 

DIPEA
 
(20 mol%)

DCM (0.1M), 4ºC

(10 mol%)
3n

N N+

N-
BF4O

R CO2Et

O
OHC

O OEtO2C

Alk
CO2Et

CO2Et
CO2Et

CO2Et

11a 12k-n 13k-n  

Entry R Product dra Yield (%)b ee (%)c 
1 Me 13k >20:1 83 >99 
2 iPr 13l >20:1 85 >99 
3 CH2OBn 13m >20:1 58 >99 
4 CH2CH2Ph 13n >20:1 72 97 

aDetermined by 1H-NMR analysis of the crude reaction mixture. bYield of pure product isolated after 
flash chromatography. cDetermined by HPLC analysis of the pure product. 

 

One of the products, 3,4-dihydro-2H-pyran-2-one 13b could be crystallized, thus the 

absolute configuration of all the stereogenic centers could be determined by X-ray 

analysis (Scheme 3. 23). The absolute stereostructure could be extended to all other 

dihydro-2H-pyran-2-one (13a-o) assuming the same reaction mechanism. 
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Scheme 3. 23 
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3.1.4. MECHANISTIC PROPOSAL 
 

Considering that the obtained stereochemical outcome was in agreement 

with the examples of hetero Diels-Alder in the literature, the possible reaction 

pathways are depicted in Scheme 3. 24. 
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Scheme 3. 24 

 
First, the catalytic species (I) is generated after a Hünig’s base mediated 

deprotonation of the chiral triazolium salt (3n). The reversible condensation of the 

aldehyde (11a) with the carbene (I) would lead to the formation of enaminol (II), 

known as Breslow intermediate. This intermediate might lead to a ring-opening 

process to generate the achiral acyl azolium equivalent (III), which through the 
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subsequent proton transfer step would form the enolate (IV). At this point two 

alternative reaction pathways (a) and (b) serve as explanation for the formal [2+4] 

cycloaddition product. On the one hand, a reverse-electron demand Diels-Alder 

reaction with ketoester (12b) would take place to render pyran (V) from 

intermediate IV. Alternatively, a less likely42 sequential Michael addition/C-O bond 

formation pathway through intermediate (VI) is shown. In a common final step, the 

dihydropyranone (13b) is formed and the catalyst is released.  

The stereochemistry of the reaction may be explained considering the high 

preference for the endo transition state in a Diels-Alder reaction. The s-cis isomer 

(IV) were the alkyl chain of the aldehyde is set away from the aminoindanol moiety 

is favoured. Considering that the Z-configurated enolate would react, the Re face of 

the azolium enolate would be shielded by the catalyst. Thus, the formation of the C-

C bond would take place through the Si face of the β,γ-unsaturated-α-ketoesters in 

an endo fashion (Scheme 3. 25). 

NN

N OHEtO2C

EtO2C
O

Ar

R1 O

CO2Et

 
Scheme 3. 25 
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3.2. AMINOCATALYTIC ACTIVATION OF CYCLOPROPANES TOWARDS 
DOMINO SYNTHESIS OF QUINOLINE DERIVATIVES 

 

Prior to conduct the preliminary studies directed towards the possibility of 

using cyclopropaneacetaldehydes as starting material undergoing ring opening 

under enamine activation, the starting material had to be prepared. This was carried 

out through a 3 step synthetic route. In a first step vinylcyclopropanes (IIa-d) were 

obtained following literature procedures in a SN2 and SN2’ sequence. Next, an 

hydroboration/oxidation of those alkenes employing borane dimethylsulfide 

complex lead us to obtain the corresponding primary alcohols (IIIa-d) in moderate 

yields while the cyclopropane ring remained inaltered.48 Finally, 2-iodoxobenzoic 

acid proved to be a suitable oxidizing agent for the preparation of the final 

aldehydes (Table 3. 6).49. 

Table 3. 6: Synthesis of cyclopropaneacetaldehydes 

CO2EtEtO2C

Br

Br

EtO2C CO2Et

EtO2C CO2Et

OH

IBX,

EtOAc, reflux

EtO2C CO2Et

O

14a
Yield: 88%

CsCO3
,

THF, 60ºC, 12 h 1. BH3·SMe2,
 
THF, 0ºC

2. NaOH, H2O2,
 
50ºC

IIa

IIIa
Yield: 56%

 
 

Entry R1 Product Yield II (%)a Yield 14 (%)a 

1 
EtO2C CO2Et

O  
14a 56 88 

2 
MeO2C CO2Me

O  
14b 33 92 

48  A modified of the following procedure has been used: Jackson, S. K.; Karadeolian, A.; Driega, A. B.; 
Kerr, M. A. J. Am. Chem. Soc. 2008, 130, 4196. 

49  Ocejo, M.; Vicario, J. L.; Carrillo, L.; Badia, D.; Reyes, E. Synlett. 2005, 2110. 
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2 
BnO2C CO2Bn

O  
14c 57 80 

3 
EtO2C CO2Me

O  
14d 18 70 

a Yield of pure product isolated after flash chromatography. 
 
3.2.1. PROOF OF CONCEPT 

With key cyclopropylacetaldehyde 14 in hand, we moved next to evaluate the 

projected cascade ring-opening/aza-michael/aldol between these derivatives and o-

amonibenzaldehyde under aminocatalytic activation. Based on literature precedents 

on other cases of aza-Michael/aldol reactions,47a we decided to carry out the 

reaction in dimethylformamide (DMF) as solvent in the presence of the archetypical 

O-TMS diphenylprolinol catalyst (17a) and substoichiometric amounts of benzoic 

acid under these conditions, the selective formation of dihydroquinoline (16a) was 

observed with promising results (71% yield, 65% ee) (Scheme 3. 26). Noteworthy, no 

evidence other side products that may arise from 1,2-additon over the 

cyclopropaneacetaldehyde were observed. 

14a 15a 16a

20 mol%

N
H

O

CO2EtEtO2C

O

NH2

CO2Et

CO2Et

O
N
H

Ph

OTMS
Ph

PhCO2H (40 mol%)
DMF, rt

Yield: 71%
65% ee  

Scheme 3. 26 

 



 
Chapter 3  124 

3.2.2. OPTIMIZATION OF THE REACTION CONDITIONS 

Once that the feasibility of the reaction was demonstrated we proceeded to 

identify the best catalyst and reaction conditions to carry out this reaction (Table 3. 

7).  

Table 3. 7: Evaluation of a series of catalyst and the influence of the solvent. 

N
H

Bn t-Bu

MeO
N

N
H

Ar
Ar

OTMS

17a: Ar=Ph
17b: Ar=3,5-(CF3)2C6H3

NH2 N
H

EtO2C CO2E
t

O

O
17 

(20 mol%),
Solvent, rt

O

CO2Et
CO2Et

14a 15a

+

16a

N
H

COOH 17c 17d

TFA  

Entry Catalyst Solvent Yield (%)a ee (%)b 
1 17a EtOH 60 76 
2 17a THF 54 89 
3 17a CHCl3 72 89 
4 17a CH2Cl2 66 91 
5 17a (CH2)2Cl2 57 88 
6 17a Toluene 40 88 
7 17b CHCl3 10 n.d.c 

8 17c CHCl3 <5  
9 17d CHCl3 <5  

a Yield of pure product isolated after flash chromatography. b Determined by HPLC analysis of the pure product. cNot 
determined. 

 

Considering the high polarity of the solvent employed in preliminary 

experiments the influence of this parameter was studied first. Indeed using catalyst 

17a, the reaction proceeded with high levels of enantiocontrol but when a protic 

polar solvent as ethanol was employed (Entries 1-6). On the other hand, chlorinated 

solvents proved to be the best regarding the yield (Entries 3-5). L-proline 17c as well 
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as imidazolidinone 17d performed poorly compared to (S)-diphenylprolinol 

trimethylsilyl ether when using chloroform, whilst the prolinol derivative 17b only 

render the product in low yield.  

 
Further screening of standard reaction parameters resulted in an 

improvement of the yield when acid additives where employed (Entries 1-2). This is 

in good accordance with the reported capability of mild acids such as carboxylics 

acids to favour the condensation of the aldehyde with the catalyst, increasing the 

amount of active species present in the reaction. Moreover, the influence of the acid 

additive in this kind of transformation has already been considered,47a as it can push 

the equilibrium of the catalyst towards the iminium ion formation and/or favour an 

irreversible dehydratation step of the reaction sequence. The good performance of 

benzoic acid prompted us to evaluate other aromatic carboxylic acids. In contrast, 

the presence of a base inhibits the reaction (Entries 7-9), which was confirmed when 

a suppression of the reactivity was observed after replacing acetic acid by its 

conjugated base (Entries 1 and 9). 

 

Table 3. 8: Effect of acidic and basic additives 

NH2 N
H

EtO2C CO2Et

O

O
(20 mol%),

Additive (20 mol%)

O

CO2Et
CO2Et

14a 15a

+

16a

CHCl3,
 rt

N
H

Ph

OTMS
Ph

 

 
Entry Additive pKa Yield (%)a ee (%)b 

1 AcOH 4.76 80 82 
2 PhCO2H 4.19 88 93 
3 p-NO2C6H4CO2H 3.41 99 90 
4 o-IC6H4CO2H 2.85 99 89 
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5 o-BrC6H4CO2H 2.84 84 88 
6 o-NO2C6H4CO2H 2.16 >99 83 
7 DBU  <5 n.d.c 

8 DABCO  8 85 
9 AcOLi  10 90 

a Yield of pure product isolated after flash chromatography. b Determined by HPLC analysis 
of the pure product. c Not determined. 

 

Thus, employing p-nitrobenzoic acid and chloroform as solvent in the 

presence of 17a resulted in a high yielding and highly enantioselective protocol for 

the synthesis of 16a (Entry 3), which was selected to evaluate the scope of the 

reaction. 

 

3.2.3. SCOPE OF THE REACTION  
 

With the optimal conditions in hand, we first decided to evaluate several 

aminobenzaldehydes with a variety of substitution patterns (Table 3. 9). Thus, 

aminobenzaldehydes with either electro-withdrawing or electron-donating 

substituents at 4- and 5-positions were well tolerated (Entries 1-9). High yields and 

enantiocontrol were achieved in all the cases yet slightly lower enantiopurities were 

observed with electron-donating groups (Entries 5, 6 and 9). Importantly, even the 

more sterically hindered 3- and 6- substituted aminobenzaldehydes rendered the 

product in good yield (Entries 10-12). Significantly lower enantioselectivity values 

were observed when a substituent was introduced in a vicinal position to the 

carbonyl moiety (Entry 12), as well as for the 4,5-dimethoxy aminobenzaldehyde 

(Entry 13). Benzoquinoline 16o could be obtained with the same level of efficiency 

and enantioselectivity when 3-amino-2-naphtaldehyde was employed as starting 

material (Entry 14). 
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Table 3. 9: Scope of aminobenzaldehydes 

NH2 N
H

EtO2C CO
2Et

O

O
(20 mol%),

o-NO2.C6H4-CO2H
 
(20 mol%)

O

CO2Et
CO2Et

14a 15b-o

+

16b-o

CHCl3,
 rt

N
H

Ph

OTMS
Ph

R R

 

Entry R Product Yield (%)a ee (%)b 
1 4-F 16b 86 95 
2 4-Cl 16c 97 96 
3 4-Br 16d 87 89 
4 4-CF3 16e 90 96 
5 4-Me 16f 91 85 
6 4-MeO 16g 81 80 
7 5-Cl 16h 93 95 
8 5-Br 16i 89 94 
9 5-Me 16j 80 81 

10 3-Me 16k 64 97 
11 3-MeO 16l 64 79 
12 6-Cl 16m 53 69 
13 4,5-(MeO)2 16n 71 64 
14 Benzo[d] 16o 93 85 

aYield of pure product isolated after flash chromatography. bDetermined by HPLC analysis of the pure product. cNot 
determined. 
 

On the other hand, different electron-withdrawing substituents at the 

cyclopropane ring were surveyed. As shown in Table 3. 10, the reaction proceeded 

with good yield and excellent levels of enantioselectivity regardless the nature of the 

alkoxide moiety of the ester substituents at the ring (Entries 1-3). 
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Table 3. 10: Scope of cyclopropaneacetaldehydes 

NH2 N
H

RO2C CO
2R

O

O
(20 mol%),

o-NO2.C6H4-CO2H
 
(20 mol%)

O

CO2R
CO2R

14a-c 15a

+

16a-q

CHCl3,
 rt

N
H

Ph

OTMS
Ph

 

Entry R Product Yield (%)a ee (%)b 
1 Et 16a 99 90 
2 Me 16p 86 91 
3 Bn 16q 69 88 

a Yield of pure product isolated after flash chromatography. b Determined by HPLC analysis of the pure product. c Not 
determined. 

 

It was also decided to survey the possibility of employing asymmetrically 

substituted cyclopropaneacetaldehydes. In this sense, it was decided to evaluate the 

performance of aldehyde 1d bearing an alkoxycarbonyl group and an acyl moiety. 

The ketone moiety proved to be reactive enough to undergo an hemiaminal 

formation/dehydratation sequence. Thus, after the formation of the quinoline an 

intramolecular attack of the nitrogen led to the formation of the enantiopure 

pyrroloquinoline 18 in moderate yield but excellent ee (Scheme 3. 27). 

14d 15a 18
60% yield
>99% ee

(20 mol%)

p-NO2-C6H4CO2H (20 mol%)
CHCl3, 

 rt

O

NH2

CO2Et

COMe

O

N

N
H

Ph

OTMS
Ph

CO2Et

O

 
Scheme 3. 27 
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3.2.4. CHEMICAL MANIPULATION OF THE ADDUCTS 
 

The aza-Michael/aldol cascade adducts 16 present different functionalities 

within the structure that upon further intramolecular transformations would lead to 

more complex structures. With the aim of incorporating the whole cyclopropane 

structure and its functionalities into the final product, we envisioned that an aldol 

reaction between the pendant malonate and the aldehyde or a lactamization 

reaction with the ester group would be plausible transformations. However, none of 

the abovementioned reactions took place under the conditions defined as optimal 

for the domino aza-Michael/aldol reaction even in the presence of the screened acid 

additives (Table 3. 8) or at higher temperatures. Therefore, to evaluate the viability 

of these reactions it was decided to carry out an extensive screening of conditions 

employing dihydroquinoline 16a as model substrate (Scheme 3. 28). 

 

N
H

O

CO2R

CO2R

Lactamization

Aldol reaction

 
Scheme 3. 28 

 

Initial trials employing DBU as a base to promote the cyclization step resulted 

in the formation of both the aldol 19a and lactamization 20a products, yet in low 

yields (Table 3. 12, Entry 1). The intramolecular reaction between the aldehyde 

moiety and the pendant alkyl malonate formed cyclopentaquinoline (19a), which 

was isolated as a racemic mixture since an aromatization of the quinoline ring took 

place concomitant to the aldol cyclization leading to a loss of the chiral information. 

Thus, in order to selectively access the aldol product different additives were 

evaluated. When carrying out the reaction in the presence of Brønsted acid the aldol 

product could be obtained in moderate yield, however, significant amounts of the 
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lactam 20a were observed (Entry 2). Moving from acetic acid to Lewis acids resulted 

in a completely chemoselective transformation towards the 

cyclocyclopentaquinoline formation (Entries 3-5), which proceed with excellent yield 

when cerium (III) chloride was employed (Entry 4).  

 

Table 3. 11: Selected optimization studies 
 

16a 20a

Basic/Acid
Solvent, T N

O

N
CO2Et

CO2Et
OH

O CO2R

19a

N
H

O

EtO2C CO2Et

 

Entry Reagent (equiv.) Yield (%)a 
  19a 20a 

1 DBU (0.2) 12 26 
2 AcOH (2) 54 34 
3 MgI2 (1) 43 - 
4 CeCl3 (1) 94 - 
5 FeCl3 (1) 24 - 

aYield of pure product isolated after flash chromatography. 
 

Noteworthy, the complete ring-opening/aza-Michael/aldol/aldol sequence 

could be performed in a single step from the starting cyclopropane acetalhyde and 

aminobenzaldehyde, however, also in that case the aromatization step was taking 

place prior to the aldol cyclization step leading to 19a as racemic material (Scheme 

3. 29). Further experiments proved that when the oxidation step could not take 

place, for instance in the absence of atmospheric oxygen or for N-substituted 

quinolines, only starting material was isolated. 
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14a 15a 19a
85% yield

0% ee

(20 mol%)

p-NO2-C6H4CO2H (20 mol%)
CeCl3

 
(20 mol%), CHCl3, 

 rt

O

NH2

CO2Et

CO2Et

O

N

N
H

Ph

OTMS
Ph

CO2Et
CO2Et

OH

 
Scheme 3. 29 

 
 

On the other hand, selected results of the extensive screening of the standard 

reaction parameters performed for the attempts directed to carry out the selective 

lactamization are summarized in Table 3. 13. As it is shown in this table, the 

formation of pyrroloquinoline 19a could be promoted by using a variety of organic 

and inorganic bases (Entries 1-6) yet only in low to moderate yields. Similar results 

were obtained when camphorsulfonic acid (CSA) was employed, although in this 

case degasification of the solvent was required to avoid the formation of aromatic 

side product 19a (Entry 7). Considering that the reaction proceeded with better 

yields at higher temperatures and that the replacement of the solvent could be 

problematic when trying to combine the lactamization step with the cascade 

reaction in a one-pot sequence, a neat process was considered. Thus, the reaction 

proceeded with good yield in refluxing acetic acid (Entry 8).   

 
Table 3. 12: Selected optimization studies 

16a 20a

Basic/Acid
Solvent, T

N

O

O CO2R

N
H

O

EtO2C CO2Et

 

Entry Reagent (equiv.) Solvent T(ºC) Yield (%)a 
1 DBU (2) Toluene reflux 46 
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2 TBD (1) CHCl3 r.t. 37 
3 NaOH (1) CHCl3 r.t. 47 
4 KOtBu (1) CHCl3 r.t. 33 
5 NaH (1) CHCl3 r.t. 50 
6 LiHMDS (1.1) THF 60 67 
7 CSA (1) Tolueneb reflux 62 
8 AcOH (175) . reflux 80 

aYield of pure product isolated after flash chromatography. bDegased toluene. 
 

In view of this results, a protocol for the sequential synthesis of pyrrolo[1,2-

a]quinolines from cyclopropaneacetaldehydes was evaluated. Thus, the 

lactamization conditions could be applied to the efficient and highly enantioselective 

one-pot synthesis of 19a from 14a and 15a (Table 3. 14, Entry 1). Importantly this 

protocol enables the straightforward enantioselective synthesis of complex 

quinoline based structures. Moreover, this protocol could be extended to a variety 

of aminobenzaldehydes and different cyclopropanes (Table 3. 13) 

Table 3. 13: One-pot synthesis of pyrroloquinolines 

14a-c 15a-o 20a-o

20 mol%
CHCl3, p-NO2-C6H4CO2H, rtO

NH2

CO2R1

CO2R1

O

N

O

O CO2R1

N
H

Ph

OTMS
Ph

1.

AcOH, reflux2.

R2 R2

 

Entry R1 R2 20 Yield (%)a ee (%)b,c 
1 Et H 20a 81 91/87 
2 Me H 20b 81 91/89 
3 Bn H 20c 60 90/89 
4 Et 4-F 20d 77 95/95 
5 Et 4-Cl 20e 83 97/97 
6 Et 4-Br 20f 86 96/96 
7 Et 4-CF3 20g 74 94/96 
8 Et 4-Me 20h 69 85/87 
9 Et 4-MeO 20i 48 75/78 

10 Et 5-Cl 20j 75 94/91 
11 Et 5-Br 20k 79 96/94 
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12 Et 5-Me 20l 81 84/87 
13 Et 6-Cl 20m 53 69/70 
14 Et 4,5-(MeO)2 20n 38 63/63 
15 Et Benzo[d] 20o 69 84/85 

a Yield of pure product isolated after flash chromatography. b Determined by HPLC analysis of the pure product. c The 
ee of each diastereoisomer is given. 
 

Compared to the aza-Michael/aldol reaction that led to adducts 16, the one-

pot cyclopropane ring-opening aza-Michae/aldol lactamization process reaction 

performed equally well. This comparable behavior of the reaction prompted us to 

consider that the in situ acid-promoted lactamization proceeds almost 

quantitatively. In this sense, aminobenzaldehydes with either electro-withdrawing or 

electron-donating substituents at 4- and 5-positions were well tolerated leading to 

moderate to good yields (Entries 4-12). Even more sterically hindered 6-substitued 

aminobenzaldehyde and electron rich 4,5-dimethoxy aminobenzaldehyde render the 

product in moderate yield (Entries 13-14). Nevertheless, 8-substitued quinolines 

(16m, 16n) did not afford the lactamization product due to the proximity of the 

substituents to the reactive amine. More importantly, despite the acidic thermal 

conditions employed in the transformation, the stereochemical integrity was no 

compromised. The configurational lability of the new stereocentre generated 

resulted in mixture of diastereoisomers. In this regard, a one-pot 

hydrolysis/decarboxylation process was developed so as to obtain pyrroloquinolines 

21 that ease the characterization of the final products (Table 3. 15). 

 

 

  

 



 
Chapter 3  134 

Table 3. 14: One-pot hydrolisis/decarboxylation of adduct 17. 
 

20a-o 21a-m

1. KOH (1M), THF/H2O (1:1), rt

2. pH = 1
3. toluene, reflux

N

O

O

R2

N

O

O CO2R1

R2

 

Entry R1 R2 21 Yield (%)a ee (%)b 
1 Et H 21a 87 89 
2 Me H 21a 63 87 
3 Bn H 21a 45 90 
4 Et 8-F 21b 53 93 
5 Et 8-Cl 21c 72 94 
6 Et 8-Br 21d 69 95 
7 Et 8-CF3 21e 35 97 
8 Et 8-Me 21f 74 84 
9 Et 8-MeO 21g 75 73 

10 Et 7-Cl 21h 66 94 
11 Et 7-Br 21i 56 94 
12 Et 7-Me 21j 64 83 
13 Et 6-Cl 21k 44 68 
14 Et 7,8-(MeO)2 21l 53 65 
15 Et Benzo[g] 21m 63 87 

a Yield of pure product isolated after flash chromatography. b Determined by HPLC analysis of the pure product. 
 

The decarboxylated adducts were obtained in moderate yields and no 

evidence of racemization was observed. At this stage, the absolute configuration of 

the product 21h could be determined by X-ray analysis (Scheme 3. 30). Based on 

mechanistic analogy, this absolute configuration could be extended to all other 

dihydroquinoline (16a-q) and pyrroloquinoline adducts (20a-o, 21a-m). 
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N

O

O

H

Cl

(R)-21h
 

Scheme 3. 30 
 

 
3.2.5. MECHANISTIC PROPOSAL 
 
 

Considering that the obtained stereochemical outcome was in agreement 

with the examples in the literature,47a the proposal for the reaction mechanism is 

presented in Scheme 3. 31. 
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Scheme 3. 31 
First, the chiral amine (17a) would condense with the 

cyclopropaneacetaldehyde (14a) to generate the activated corresponding Donor-

Acceptor cyclopropane (I). The cascade sequence starts with an enamine promoted 

ring-opening step that leads to the formation of iminium ion (II). Then an aza-

Michael type addition from the less hindered face of the iminium species renders 

the enamine intermediate (III), which upon subsequent aldol cyclization forms the 

tetrahydroquinoline scaffold. Finally the catalyst is released and the dehydration of 

IV yields the final dihydroquinoline 16a. It should be mention, that the role of the 

acid additive is not clear, as it can take part in different steps. While it is known that 

the condensation of the catalyst with the aldehyde moiety is favoured in an acidic 

media, the additive can also increase the rate of iminium species by pushing the 
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equilibrium of the catalyst. In addition, the Brønsted acid may favour the final 

dehydration step avoiding possible retro-aldo/retro-aza-Michael reactions. 

The stereochemistry of the reaction may be explained considering that the 

more stable E,s-trans iminium species is participating in the hypothetical catalytic 

cycle. Thus, the aminobenzaldehyde approaches the Si face of the iminium ion to 

form the new C-N bond that defines the stereochemistry of the final quinoline, 

whilst the Re face remains blocked by effect of the catalyst. 
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4.- CONCLUSIONS 
 

From the results obtained during the research presented in this chapter the 

following conclusions can be drawn:  

 

A new enantioselective formal [4+2] cycloaddition between multisubstitued 

formylcyclopropane 1,1-diesters and a variety of (hetero)aryl and alkyl γ-substitued 

β,γ-unsaturated-α-ketoesters has been described. It has been probed that formyl 

cyclopropanes bearing two electron-withdrawing alkoxycarbonyl substituents can 

lead to acyl azolium equivalents upon a NHC mediated ring-opening process that 

undergo a hetero-Diels-Alder cycloaddition to render a variety of 3,4-dihydro-2H-

pyran-2-one adducts in good yield and excellent enantiocontrol. 

The value of formylcyclopropanes as azolium enolate precursors has been 

highlighted and the use of multisubstitued formylcyclopropane in enantioselective 

cycloadditions has been implemented. 

 

A cyclopropane ring-opening/aza-Michael/aldol/dehydration cascade 

reaction for the formation of highly enantioenriched dihydroquinolines has been 

developed. Thus, the capability of aminocatalysis promoted cyclopropane ring-

openings as suitable platform for domino sequences has been proved. In particular, 

it has been shown that the intermediate formed can also show iminium-type 

reactivity. 

Moreover, different strategies have been applied to make full use of all the 

functionalities present in the cyclopropane. A one-pot synthesis of enantioenriched 

pyrroloquinolines has been achieved in a process that combines the aza-

Michael/aldol domino reaction with an acid-promoted lactamization step. 

Alternatively, the pyrroloquinoline scaffold could be accessed in a triple cascade 

sequence straight from ethyl 1-acetyl-2-(2-oxoethyl)cyclopropane-1-carboxylate 

(14d) and aminobenzaldehyde (15a). Additionally, the synthesis of 
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cyclopentaquinole 19a through an aminocatalysis/Lewis-Acid promoted aza-

Michael/aldol/aldol sequence has been reported.   

The reported transformations have been successfully extended to the use of 

a variety of aminobenzaldehydes and cyclopropaneacetaldehydes. 
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Enantioselective aminofluorination  
of β-fluorostyrenes 

 

 

 

1.- INTRODUCTION 
 

Incorporation of fluorine atom(s) or fluorinated moieties into organic 

molecules causes significant changes in their physical, chemical and biological 

properties.1 The high electronegativity and small size of fluorine might be 

responsible for improvements in solubility, bioavailability and metabolic stability, 

thus proving the importance of fluorinated compounds in pharmaceuticals.2 Despite 

the utility of organofluorine compounds, relatively few methods exist for the 

generation of carbon-fluorine bonds3 in organic building blocks in comparison with 

the number of transformations for the generation of other carbon-halogen bonds. In 

this sense, difunctionalization of alkenes, which has received increased attention in 

1  a) Gouverneur, V.; Seppelt, K. Chem. Rev. 2015, 115, 563; b) Bégué, J.-P.; Bonnet-Delpon, D. 
Bioorganic and Medicinal Chemistry of Fluorine; Wiley-VCH; Weinheim, 2008; c) Kirsch, P. Modern 
Fluoroorganic Chemistry: Synthesis, Reactiviy and Applications; Wiley-VCH; Weinheim, 2004; d) 
Organofluorine Compounds: Chemistry and Applications (Eds.: Hiyama, T.), Springer, New York , 
2000. 

2  a) Fluorine in Bioorganic Chemistry Chemistry (Eds.: Welch, J. T.; Eswarakrishman, S.), Wiley, New 
York, 1991; b) Organofluorine Chemistry: Principles and Commercial Applications (Eds.: Banks, R. E.; 
Smart, B. E.; Tatlow, J. C.) Plenum Press, New York, 1994; c) Muller, K.; Faeh, C.; Diederich, F. 
Science 2007, 317, 1881. 

3  a) Baudoux, J.; Cahard, D. Org. React. 2007, 69, 347; b) Kirk, K. L. Org. Process. Res. Dev. 2008, 12, 
305; c) Furuya, T.; Kuttruff, C. A.; Ritter, T. Curr. Opin. Drug Discovery Dev. 2008, 11, 803; d) Furuya, 
T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470; e) Studer, A. Angew. Chem. Int. Ed. 2012, 51, 
8950.  
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recent years,4 stands as an appealing transformation for the simultaneous 

introduction of fluorine together with other functionalities in organic compounds.5 

In this regard, alkene aminofluorination processes are of particular interest 

since they give access to β-fluoroamines, which are considered as class of key 

moieties in bioactive compounds (Scheme 4. 1).6 It has been proven that the 

biological properties of the amine are strongly affected by the presence of a vicinal 

fluorine atom.7 

4  a) Jacques, B.; Muñiz, K. in Catalyzed Carbon Heteroatom Bond Formation (Ed.: Yuding, A. K.), 
Wiley-VCH Verlag GmbH & Co., KGaA, 2010, p. 119-131; b) Jensen, K. H.; Sigman, M. S. Org. Biomol. 
Chem. 2008, 6, 4083. 

5  For recent reviews on Pd-catalyzed oxidative difunctionalization of alkenes, see: a) Yin, G.; Mu, X.; 
Liu, G. Acc. Chem. Res. 2016, 49, 2413; b) Chemler, S. R.; Bovino, M. T. ACS Catal. 2013, 3, 1076. 
Fluoroesterification: c) Peng, H.-H.; Yuan, Z.-L.; Wang, H.-Y.; Guo, Y.-L.; Liu, G. S. Chem. Sci. 2013, 4, 
3172. Flurorosulfonylation: d) Yuan, Z.-L.; Wang, H.-Y.; Mu, X.; Chen, P.-H.; Guo, Y.-L.; Liu, G.S. J. 
Am. Chem. Soc. 2015, 137, 2468. Fluoroarylation: e) Talbot, E. P. A.; Fernandes, T. A.; McKenna, J. 
M.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 4101; f) He, Y.; Yang, Z.; Thornbury, R. T.; Toste, F. D. J. 
Am. Chem. Soc. 2015, 137, 12207; g) Miró, J.; del Pozo, C.; Toste, F. D.; Fustero, S. Angew. Chem. 
Int. Ed. 2016, 55, 9045. Silver catalyzed Phosphosofluorination: h) Zhang, C.-W.; Li, Z.-D.; Zhu, L.; Yu, 
L.-M.; Wang, Z.-T.; Li, C.-Z. J. Am. Chem. Soc. 2013, 135, 14082. 

6  McCarthy, J. R. Fluorine in Drug Design: A Tutorial Review; 17th Winter Fluorine Conference; St. Pete 
Beach, FL, 2005. 

7  a) Donetti, A.; Cereda, E.; Ezhaya, A.; Micheetti,R. J. Med. Chem. 1989, 32, 957; b) van Niel, M. B.; 
Collins, I.; Beer, M. S.; Broughton, H. B.; Cheng, S. K. F.; Goodacre, S. C.; Heald, A.; Locker, K. L.; 
MacLeod, A. M.; Morrison, D.; Moyes, C. R.; O´Connor, D.; Pike, A.; Rowley, M.; Russel, M. G. N.; 
Sohal, B.; Stanton, J. A.; S. Thomas, Verrier, H.; Watt, A. P.; Castro, J. L. J. Med. Chem. 1999, 42, 
2087; c) Böhm, H.-J.; Banner, D.; Bendels, S.; Bendels, M.; Kansy, M.; Kuhn, B.; Müller, K.; 
ObstSander, U.; Stahl, M. ChemBioChem 2004, 5, 637. 
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Scheme 4. 1 

 

Since traditional methodologies to access β-fluoroamines from alkenes imply 

several multi-step transformations, direct aminofluorination of alkenes has focused 

the attention of several studies in recent years.8 However, the highly desirable and 

more challenging use of non-activated alkenes stands as an interesting topic, and in 

this way, it has been demonstrated that the introduction of the required 

functionalization has been made possible by operating through different 

mechanisms depending on the nature of the fluorine source (electrophilic, 

nucleophilic, radical and metal-mediated reactions).9  

In this regard, transition-metal catalysis is a valuable approach to the 

synthesis of organofluorine compounds, especially when seeking for milder reaction 

conditions in the C-F bond formation. In comparison with the classic electrophilic 

8  a) Andrews, P. C.; Bhaskar, V.; Bromfield, K. M.; Dodd, A. M.; Duggan, P. J.; Duggan, S. A. M.; 
McCarthy, T. D. Synlett 2004, 791; b) Appayee, C.; Brenner-Moyer, S. E. Org. Lett. 2010, 12, 3356. 

9  a) Kong, W.; Merino, E.; Nevado, C. Chimia 2014, 68, 430; b) Chen, P.; Liu, G. Eur. J. Org. Chem. 
2015, 4295. 
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fluorination, a selective process can be achieved by choosing a correct metal-ligand 

combination, and although a variety of catalysts have been employed in fluorination 

chemistry, only a few of them have proved their efficiency in the functionalization of 

multiple carbon-carbon bonds.10  

In this context, Liu and co-workers reported the first selective 

aminofluorination of alkenes promoted by a transition metal.11 This reaction consists 

on a intramolecular example in which as in other functionalization of alkenes4,5 an 

initial nucleopalladation leads to a new sp3 C-PdII bond after a six-endo or seven-

endo cyclization. Then the oxidating system PhI(OPiv)2/AgF further oxidizes the 

metal centre to form a Pd (IV) species. This high–valent complex undergoes 

reductive elimination to render the sp3 C-F bond Scheme 4. 2. 
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Scheme 4. 2 

 
Later, it was proven that by introducing a chelating group in the nitrogen atom 

the  regioselectivity of the transaminopalladation could be switched from 6-endo to 

5-exo cyclization (Scheme 4. 3).12 The chelating group coordinates the palladium 

10  For reviews on fluorinations of alkenes, see: Liu, G. Org. Biomol. Chem. 2012, 10, 6243. 
11  Wu, T.; Cheng, J.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2009, 131, 16354. 
12  Wu, T.; Cheng, J.; Chen, P.; Liu, G. Chem. Commun. 2013, 49, 8707. 
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centre promoting the kinetically favoured and irreversible 5-exo aminopalladation. 

This way it was proved that the methodology allowed the formation of different 

heterocycles with the concomitant fluorination of the primary carbon just by 

modifying the substrate. Recently, this methodology was extended to the synthesis 

of fluorinated cyclic sulfamide derivates13 and to the total synthesis of 6-(R)-

Fluoroswainsonine and 5-(R)-Fluorofebrifugine.14 

33-82%
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Scheme 4. 3 

 
Another 5-exo cyclization/fluorination sequence was reported by Li in 2013 

for the synthesis of fluorinated lactams.15a N-arylpent-4-enamides were successfully 

employed in a radical-involving transformation16,17 under silver catalysis (Scheme 4. 

4). Selectfluor oxidizes the silver (I) complex to silver (III), which gets an electron 

from the enamide to form a Ag(II)-F complex and an arene radical cation. This is 

13  Cheng, J.; Chen, P.; Liu, G. Chin. J. Catal. 2015, 36, 40. 
14  Wu, L.; Chen, P.; Liu, G. Org. Lett. 2016, 18, 960. 
15  a) Li, Z.; Song, L.; Li, C. J. Am. Chem. Soc. 2013, 135, 4640; b) Zhang, X. J. Phys. Org. Chem. 2016, 1. 
16  Cooper catalyzed radical mediated aminofluorination of styrenes Zhang, H.; Song, Y.; Zhao, J.; 

Zhang, J.; Zhang, Q. Angew. Chem. Int. Ed. 2014, 53, 11079. 
17  For copper catalysis in radical aminofluorination, see: a) Saavedra-Olavarría, J.; Arteaga, G. C.; 

López, J. J.; Pérez, E. G. For iron catalysis in radical aminofluorination, see: b) Lu, D.-F.; Liu, G.-S.; 
Zhu, C.-L.; Yuan, B.; Xu, H. Org. Lett. 2014, 16, 2912; c) Lu, D.-F.; Zhu, C.-L.; Sears, J. D.; Xu, H. J. Am. 
Chem. Soc. 2016, 138, 11360.  
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deprotonated to render an amidyl radical that gives intramolecular 5-exo addition to 

onto the alkene. The generated carbon-centered radical undergoes a fluorination 

step with Ag(II)-F to form the final lactam and recover the catalyst.15b  
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Scheme 4. 4 

 

In 2012, Liu et al reported the intermolecular aminofluorination of styrenes 

under similar conditions employing sulfonamides. An anti-Markovnikov 

aminopalladation, which was stabilized by a π–benzylic intermediate, led to the α-

fluorination of styrenes in moderate yields (Scheme 4. 5).18 The regioselectivity is 

given by the starting material that favours the fluorination of the internal position of 

the alkene. 

18  Zhu, H.; Liu, G. Acta Chim. Sinica 2012, 70, 2404. 

 

                                                 



 
Chapter 4  149 

R = H, t-Bu, AcO, F
49-64%

PdCl2(MeCN)2
 
(10 mol%)

PhI(OPiv)2
 
(2 equiv.)

AgF (3 equiv.)
MeCN, 0-35ºCR

SO NHMe
O

OMe

R

F
N

S
O

O

OMe

 
Scheme 4. 5 

 

On the other hand, a completely new pathway for the aminofluorination 

reaction was postulated by Liu and co-workers,19 which involves fluoropalladation of 

styrenes for the C-F bond formation (Scheme 4. 6). Remarkably, this was the first 

report on nucleophilic attack of fluorine on a Pd-coordinated alkene, a particularly 

challenging possibility due to its low nucleophilicity. N-fluorobenzenesulfonimide 

(NFSI), which was employed as the fluorine and amine source, was responsible for 

the oxidation of palladium (0)-bathocuproine (BC) complex to form the catalytically 

active (BC)PdIIF complex. In contrast with other examples in which the nucleophilic 

attack of the amine moiety promoted the palladium insertion, in this case is the 

fluorine atom coming from the metal complex the one able to react with the alkene 

moiety. A PdII/PdIV mechanism initiated by the fluoropalladation of (BC)PdIIF complex 

was proposed. NFSI would further oxidize the resulting species to a PdIV 

intermediate that undergoes reductive elimination to form the C-N bond.20 

19  Qiu, S.; Xu, T.; Zhou, J.; Guo, Y.; Liu, G. J. Am. Chem. Soc. 2010, 132, 2856. 
20  For related examples of this model on fluorooxylation processes, see: a) Peng, H.; Yuan, Z.; Wang, 

H.-Y.; Guo, Y.-L.; Liu, G. Chem. Sci. 2013, 4, 3172; b) Yuan, Z.; Peng, H.; Liu, G. Chin. J. Chem. 2013, 
31, 908.  
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Scheme 4. 6 

 

By applying this strategy, Liu and co-workers developed an intramolecular 

endo-selective version of the reaction with amine-tethered styrenes to afford a 

series of fluorinated pyrrolidines.21 The reaction followed the same mechanism and 

lead to obtain the 5-endo product (Scheme 4. 7a), although the reaction proceeded 

with low levels of diastereoselectivity. When a chiral pincer-Pd catalyst was 

employed in the asymmetric version a promising enantioselectivity (up to 44% ee) 

was obtained for the cis diastereomer. However the reaction did not proceed 

diastereoselectively, thus the trans diastereomer was obtained as the major product 

in a 21% ee (Scheme 4. 7b). 

21  Xu, T.; Qiu, S.; Liu, G. Chin. J. Chem. 2011, 29, 2785. 
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Scheme 4. 7 

 

Significant advances have been made in the use of other unsaturated 

coumpounds such as allenes and alkynes. In this context, other metals than 

palladium, for instance silver and gold are of great importance in those 

aminofluorinations. Thus, in 2011 Liu et al published an intramolecular 

aminofluorination of allenes employing silver nitrate as catalyst. The synthesis of 4-

fluoro-2,5-dyhydropyrroles can be explained based on a AgI/AgII mechanistic 

proposal.  Analogously to the methodology applied in Pd-catalyzed reactions, a 

nucleophilic amination of allene results in the new C-Ag bond formation, which upon 

oxidation of the metal centre is cleaved to form the fluorination product (Scheme 4. 

8).22 

22  Xu, T.; Mu, X.; Peng, H., Liu, G. Angew. Chem. Int. Ed. 2011, 50, 8176. 
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Different authors have proved that intramolecular aminofluorination of 

alkynes can be performed under similar reaction conditions. In this sense, silver (I)23 

and gold (I)24 catalysts, which are particularly effective in the electrophilic activation 

of alkynes, featured efficiently in the synthesis of fluorinated cyclic compounds. For 

instance, a gold(I)-catalyzed intramolecular aminofluorination of alkynes was 

reported by Xu, Liu and co-workers in 2011. The reaction proceeds under analogous 

Au(I)/Au(III) mechanism, yet the high tendency of C-Au bond to undergo 

protonolysis results in the formation of hydroaminated products. Those products 

can be converted to the fluorinated pyrazoles in the presence of selectfluor (Scheme 

4. 9).  
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23  a) Xu, T.; Liu, G. Org. Lett. 2012, 14, 5416; b) Liu, Q.; Wu, Y.; Chen, P.; Liu, G. Org. Lett. 2013, 15, 
6210. 

24  a) Qian, J.; Liu, Y.; Zhu, J.; Jiang, B.; Xu, Z. Org. Lett. 2011, 13, 4220; b) Li, S.; Li, Z.; Yuan, Y.; Li,Y.; 
Zhang, L.; Wu, Y. Chem. Eur. J. 2013, 19, 1496; c) Arcadi, A.; Pietropaolo, E.; Alvino, A.; Michelet, V. 
Org. Lett. 2013, 15, 2766; d) Arcadi, A.; Pietropaolo, E.; Alvino, A.; Michelet, V. Beilstein J. Org. 
Chem. 2014, 10, 449. 
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Noteworthy, recent experimental and mechanistic studies25 on the silver 

catalyzed reaction support a reaction pathway which involves mesoionic carbene 

silver complexes as the generated intermediate after the amination step. 

 

In summary, the reviewed literature shows the value of aminofluorination as 

an efficient strategy for fluorination of C-C multiple bonds, yet there is still a lack of 

enantioselective examples, being the preliminary results of Liu with a 44% ee one of 

those.21 The F. D. Toste research group, aware of the importance of the synthesis of 

organofluorine compounds, have centered his activity in the formation of new C-F 

bonds and reported several examples in fluorination of alkenes employing high 

oxidation state palladium. In this regard, the use of both activated alkenes and non-

activated ones has been studied. In the latter case, employing directing groups has 

been an successful approach for selectively obtain vicinal functionalization in 

fluoroarylation reactions. However, the 1,1-fluoroarylation proved to be possible 

employing similar conditions when aliphatic alkenes were employed (Scheme 4. 

10).26,5e,f,g However, much of this effort has been directed to the synthesis of 

monofluorinated compounds, whilst the synthesis of geminal-difluorinated 

compounds27 remains as a challenging task to be studied.  

25  a) Liu, Q.; Yuan, Z.; Wang, H.-y.; Li, Y.; Wu, Y.; Xu, T.; Leng, X.; Chen, P.;  Guo, Y.-l.; Lin, Z.; Liu, G. ACS 
Catal. 2015, 5, 6732; b) Xu, T.; Wu, Y.; Yuan, Z.; Guan, H.; Liu, G. Organometallics 2016, 35, 1347. 

26  For recent examples, see: a) Thornbury, R. T.; Toste, F. D. Angew. Chem. Int. Ed. 2016, 55, 11629; b) 
Hiramatsu, K.; Honjo, T.; Rauniyar, V.; Toste, F. D. ACS Catal. 2016, 6, 161. 

27  Difluorination of  alkenes: a) Kitamura, T.; Muta, K.; Oyamada, J. J. Org. Chem. 2015, 80, 10431; b) 
Banik, S. M.; Medley, J. W.; Jacobsen, E. N. Science 2016, 353, 51; c) Arimitsu, S.; Nakasone, M. J. 
Org. Chem. 2016, 81, 6707; d) Zhou, B.; Yan, T.; Xue, X.-S.; Cheng, J.-P. Org. Lett. 2016, 18, 6128. 
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2.- SPECIFIC OBJECTIVES AND WORK PLAN  

From the presented literature review, it can be appreciated that the metal-

mediated aminofluorination of alkenes is an interesting approach for the direct 

access to 1,2-aminofluorinated compounds. Additionally, it has been mentioned the 

wide experience of the Toste research group in the field of fluorination. In this 

context, I joined the University of California for a three month short stay, from 

September to December of 2015. 

In this regard, the difluoromethyl group is also able to modify the biological 

properties of the compounds, and event show enhanced activity when compared to 

monofluoro- or trifluoromethyl moieties.28 In addition, it can work as chemically 

inert surrogate of alcohol, thiols and other polar functional groups.29   

Considering the great interest of this family of compounds, we decided to 

direct our efforts to the enantioselective synthesis of 1-amine-2,2-difluoroethyl 

arenes through a palladium catalyzed aminofluorination of monofluorostyrenes 

(Scheme 4. 11).  

N(SO2Ph)2
F

R R
[Pd]F

F  
Scheme 4. 11 

 

The possible formation of difluoroalkenes through a β-hydride elimination 

step that may compete with the oxidation of Pd(II) to the relatively unstable Pd(IV) 

species, is one of the main challenges for this transformation, as well as developing a 

robust protocol and reaching high levels on enantiocontrol will be the main 

challenges to be faced. In order to do this, first a screening of the reaction conditions 

for the non-asymmetric version will be performed so as to have an insight of the 

performance of different substrates and catalytic systems. 

28  Rueeger, H.; Lueoend, R.; Rogel, O.; Rondeau, J.-M.; Möbitz, H.; Machauer, R.; Jacobson, L.; 
Staufenbiel, M.; Desrayaud, S.; Neumann, U. J. Med. Chem. 2012, 55, 3364. 

29  Meanwell, N. A. J. Med. Chem. 2011, 54, 2529. 
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3.- RESULTS AND DISCUSSION 
 
3.1. OPTIMIZATION OF THE REACTION 

Once that the objectives have been stated, the most relevant results from this 

part of the research will be presented and discussed in this section. (E)-1-(2-

fluorovinyl)-2-methoxybenzene30 was chosen as a model substrate for the palladium 

catalyzed aminofluorination reaction.  

Based on literature precedents for the initial test experiments,19 it was 

observed that carrying out the reaction in a mixture of 1,4-dioxane and acetonitrile5f 

as solvent and in the presence of bathocuproine (BC) and Pd(OAc)2 as palladium 

source resulted in the formation of the desired difluorocompound (23a) in moderate 

yield (Scheme 4. 12). 
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Scheme 4. 12 

 

After having demonstrated the feasibility of the reaction, a screening of 

standard experimental parameters was performed. Several preliminary experiments 

were performed modifying the palladium source only observing similar results when 

Pd(TFA)2 was employed, yet a cleaner reaction was observed when employing 

Pd(OAc)2. 

30  a) Zhao, Y.; Huang, W.; Zhu, L.; Hu, J. Org. Lett. 2010, 12, 1444; b) Wu, J.; Xiao, J.; Dai, W.; Cao,S. 
RSC. Adv. 2015, 5, 34498. 
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This palladium source was chosen for further studies on the solvent effect 

(Table 4. 1). Previous work performed in the group had indentified the 1,4-

dioxane/MeCN solvent system as the only one that led to obtain the product in 

reasonable yields. Based on these results, selected experiments regarding the 

performance of each component of this mixture were performed. Thus, different 

ethers were tested to evaluate the influence of the 1,4-dioxane (Entries 1-4). It was 

observed that more polar ethers such as THF and dimethoxyethane (DME) resulted 

in no product formation, whilst a decrease in the yield was observed when 

performing the reaction in methyl tert-butyl ether. Based on precedent studies, in 

which no improvement was observed when other nitriles were observed it was 

decided to evaluate a more polar solvent like dimethylformamide (Entry 5). As no 

reaction was observed, it cannot be discarded that the effect of using acetonitrile is 

not entirely related to its role as co-solvent.  

Table 4. 1: Effect of solvent 

Pd(OAc)2
 
(10 mol%)

bathocuproine (23a) (11 mol%)

NFSI (1.5 equiv.)
solvent mixture (10:1), 

50ºC

N(SO2Ph)2
F

O
F

22a 24a

O

F

 

Entry Solvent Co-solvent Yield (%)a 
1 1,4-dioxane MeCN 37 
2 THF MeCN - 
3 DME MeCN <5 
4 MTBE MeCN 20 
5 1,4-dioxane DMF <5 

aYield of pure product isolated after flash chromatography. 
 

From the previous results, it was decided to employ the 1,4-dioxane/MeCN 

solvent mixture to evaluate the influence of the temperature on the performance of 

the reaction (Table 4. 2). In this table, it can be seen that the yield of the reaction 

was not significantly affected by the temperature, and only slightly better results 
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were obtained when carrying the reaction at room temperature or 40ºC (Entries 1-

2). However, when the temperature of the system was set below 40ºC a drop on the 

reaction rate was observed, whilst running the reaction at 50ºC or 70ºC (Entries 3-4) 

only resulted in slightly lower reaction times yet in more complex mixture of 

products. Thus, carrying out the reaction at 40ºC was defined as the optimal 

conditions. 

Table 4. 2: Effect of the temperature 

Pd(OAc)2
 
(10 mol%)

bathocuproine (23a) (11 mol%)

NFSI (1.5 equiv.)
1,4-dioxane/MeCN (10:1), T

N(SO2Ph)2
F

O
F

22a 24a

O

F

 

Entry T (ºC) t (h) Yield (%)a 
1 r.t. 42 41 
2 40 14 43 
3 50 12 36 
4 70 11 35 

aYield of pure product isolated after flash chromatography. 
 

At this stage we considered that we had to explore the use of different 

substrates30,31 in order to develop the asymmetric version of the reaction and to 

guarantee the best performing or most suitable one in terms of reactivity. For this 

reason, other styrenes bearing different substituents were surveyed (Table 4. 3). 

First prospective studies on the achiral version showed that the reaction performed 

with good yield when an electron-donating group was installed at the para- position 

of the phenyl ring (Entry 2), thus leading to a less bulky alkene and an significant 

increase of the yield compared to the ortho-methoxy substitued fluorostyrene. 

Nevertheless, when fluoroalkenes bearing a more electron-rich arene were 

31  a) Hu, M.; He, Z.; Gao, B.; Li, L.; Ni, C.; Hu, J. J. Am. Chem. Soc. 2013, 135, 17302; b) Hu, M.; Ni, C.; Li, 
L. Han, Y.; Hu, J. J. Am. Chem. Soc. 2015, 137, 14496; c) Thomoson, C. S.; Martinez, H.; Dolbier Jr., 
W. R. J. Fluorine Chem. 2013, 150, 53. 
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employed an increased reactivity was observed which unfortunately resulted in the 

formation of complex mixtures of products (Entries 4-5). Only when the reaction was 

carried out at room temperature the product could be obtained in low yield (Entry 

6). Although fluorostyrenes with different substitutions patterns could be employed, 

introducing electron-withdrawing substituents affected negatively to the yield 

(Entries 7-9). The reaction of α,α-disubstitued fluoroalkenes did not lead to the 

formation of the product (Entry 10). It is worth noting, that (E)-1-(tert-butyl)-4-(2-

fluorovinyl)benzene performed equally well when the reaction was performed at 

room temperature (Entry 3), this is particularly interesting in connection to an 

enantioselective transformation.  

Table 4. 3: Evaluation of fluorostyrenes 

Pd(OAc)2
 
(10 mol%)

bathocuproine (23a) (11 mol%)

NFSI (1.5 equiv.)
1,4-dioxane/MeCN (10:1), T

F

22a-h 24a.g

R
F

R

N(SO2Ph)2

F

 

Entry R1 R2 Product T (ºC) Yield (%)a 
1 o-MeO H 24a 40 43 
2 p-tBu H 24b 40 75 
3 p-tBu H 24b rt 75 
4 3,4-OCH2O- H 24c 40 -b 
5 3,4-MeO H 24d 40 -b  
6 3,4-MeO H 24d rt <10 
7 o-Br H 24e 40 21 
8 p-Br H 24f 40 29 
9 m-Cl H 24g 40 20 

10 Ph Ph - 40 . 
aYield of pure product isolated after flash chromatography. bComplex mixture of compounds 

 

In view of these results, para-t-Bu substituted fluorostyrene was considered 

suitable for studying the asymmetric version of the reaction. Thus, 

monofluoroalkene 24b was chosen for a screening of the catalytic systems in order 

to find out which type of ligands may be suitable for the developing an 

 



 
160  Chapter 4 

enantioselective transformation. Thus a series of ligands were synthetized and 

tested in the reaction with (E)-1-(tert-butyl)-4-(2-fluorovinyl)benzene (Table 4. 4). 

Based on the good performance of the bathocuproine, different N-based ligands 

were tested (23b-e). However, when another relatively rigid and bulky N-based 

ligand, such as diimine 23b was employed no product formation was observed. 

Hydrazone based ligands 23c and 23d were not suitable for this transformation and 

we decided to focus our study in oxazoline based ligands previously employed in the 

group for the fluorination of alkenes.5e,f,g After unfruitful results employing some 

commercial oxazolines, the use of a pyridine ring flanked by an oxazoline, pyrOX 

(23e) led us to obtain small amounts of the aminofluorination product. Alternatively, 

NHC type ligands, for instance triazolium salt 23f, were tested with unsatisfactory 

results, same as when phosphoramidite 23g and (R)-BINAP 23h were employed.  
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Table 4. 4: Evaluation of ligands of different nature 

-
Cl

N
N N

O

Mes
O
O

P N

Ph

Ph

N N
Ph Ph

Pd(OAc)2
 
(10 mol%)

L (11 mol%)

NFSI (1.5 equiv.)
1,4-dioxane, 50ºC

N(SO2Ph)2
FF

22b 24b

F

23f
Yield: -

23g
Yield: -

23b 
Yield: -

PPh2
PPh2

23h
Yield: -

N N N N

Ph

Ph

Ph

Ph

23d
Yield: -

N
N

N

Ph

Ph

23c
Yield: -

N
N

O

t-Bu

23e
Yield: <5%

 
Since, oxazoline based ligands proved to be the only ones to promote the 

reaction, and by. analogy to the bathocuproine scaffold, oxazoline based ligands 

bearing methylpyridine and quinoline substituents were studied (23i-n) (Table 4. 5). 

Oxazoline 23i with a methylpyridine substituent and i-Pr as a bulky substituent to 

induce a enantioselective process, led to the aminofluorination product in good yield 

and an interesting 20% ee. Modiying the oxazoline ring by introducing substituentes 

with arene moieties (23j-k) resulted in a slight decrease in the yield and the 

enantiocontrol. Exchanging the methylpyridine ring for a quinoline resulted in a 

better enantiocontrol albeit a decrease in the yield was observed (23i vs 23l). More 

bulky t-Bu substituted ligand 23m led to a dramatic drop of both the yield and the 

enantiomeric excess. The later might be explained by a non-efficient coordination of 
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the ligand due to sterics, resulting in a poor enantiocontrol. On the other hand, a 

phenyl substituent also gave a poor enantiocontrol even if the yield was slightly 

better in comparision with other quinoline oxazolines (23n).  

 

Table 4. 5: Evaluation of N-based chiral ligands 
Pd(OAc)2

 
(10 mol%)

L (11 mol%)

NFSI (1.5 equiv.)
1,4-dioxane, 50ºC

N(SO2Ph)2
FF

22b 24b

F

N
N

O

R

N
N

O

R

23i, R
 = i-Pr, Yield: 60%, 20% ee

23j, R
 = Bn, Yield: 49%, 10% ee

23k, R
 = 1-naphtyl, Yield: 37%, 6% ee

23l, R
 = i-Pr, Yield: 12%, 32% ee

23m R
 = t-Bu, Yield: <5%, 9% ee

23n, R
 = Ph, Yield: 31%, 10% ee  

Therefore methylpyridine and quinoline substituted oxazolines 23m and 23p 

led to promising results in the aminofluorination of fluorostyrenes, that encourage 

continuing with the study of the asymmetric version. 

 

3.2. MECHANISTIC PROPOSAL 
 

Based on the mechanism proposal of Liu19 a possible reaction pathway is 

depicted in Scheme 4. 13. First, the LnPd(0) species I is oxidized by NFSI to form the 

PdII active species II. This undergoes an insertion reaction over the 

monofluoroalkene to render intermediate III. The stereochemistry of the reaction is 

defined at this fluoropalladation step, in which the new C-F and C-Pd bonds are 

formed. Then, in the strong oxidant media a PdIV species (IV) can be formed in a 

oxidative addition step. This high valent complex leads to a reductive elimination to 

form the C-N and generate the aminofluorinated product.   
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N
N

O

i-Pr

o
r

NFSI

F
NZ2Pd

N

Pd
N
N

N
Ar

Ar
NZ2Pd

N
N

NZ2

F
Ar

NZ2Pd
N
N

Fluoropalladation

F
NZ2

Ar

NFSI

NFSI = F-NZ2
(Z = SO2Ph)

Reductive
elimination

N
N

N N

Ph Ph

=

F

FH
F

FH
F

 

Scheme 4. 13 
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4.- CONCLUSIONS 
 

From the work presented in this chapter, the following conclusions can be 

outlined:  

1. A new method for the synthesis of geminal difluorinated compounds 

bearing a vicinal amino moiety has been studied starting from a variety of 

monofluorostyrenes.  

2. Promising results regarding the palladium catalyzed enantioselective 

aminofluorination of alkenes have been achieved. In this regard, 

methylpyridine oxazolines and quinoline oxazolines are presented as 

interesting scaffold as chiral ligands for this transformation. 

 

It should be mentionted that this work was developed in collaboration with 

Richard T. Thornbury, who currently continues with the study of the reaction in 

Toste’s group. 
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Final conclusions 
 

 

 

 

CONCLUSIONS 
 

Throughout the present work it has been demonstrated that covalent 

catalysis, in particular, N-Heterocyclic carbine catalysis and aminocatalysis, is a 

versatile tool for the discovery of new methodologies and the enantioselective 

synthesis of building blocks as well as complex polycyclic compounds in a simple 

way. From all the obtained results, we could conclude the following: 

a) Ynones as electrophilic counterparts in aldehyde-ketone cross-benzoin 

reactions. It has been probed that alkynones are a competent partner in the cross-

benzoin reaction, thus, the limited scope for the aldehyde-ketone has been widen. 

Employing an aminoindanol based triazolium salt as precatalyst the reaction 

proceeds with complete chemoselectivity avoiding the formation of self-benzoin and 

Stetter side products. For the first time non-activated ketones have been 

successfully employed in the intramolecular cross-benzoin reaction of aldehydes and 

ketones. Moreover, a new organocatalytic route for the enantioselective synthesis 

of tertiary propargylic alcohols has been described, and the value of the obtained 

adducts as building block has been proved through a series of transformation. 
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b) Formylcyclopropanes in N-Heterocyclic carbene promoted ring-

opening/formal (4+2) cycloaddition. A new enantioselective formal [4+2] 

cycloaddition between multisubstitued formylcyclopropane 1,1-diesters and a 

variety of (hetero)aryl and alkyl γ-substitued β,γ-unsaturated-α-ketoesters has been 

described. It has been probed that formyl cyclopropanes bearing two electron-

withdrawing alkoxycarbonyl substituents can lead to azolium enolate equivalents 

upon a NHC mediated ring-opening process that undergo a hetero-Diels-Alder 

cycloaddition to render a variety of 3,4-dihydro-2H-pyran-2-one adducts in good 

yield and excellent enantiocontrol. 

 

c) Cyclopropaneacetaldehydes in aminocatalyzed ring-opening/aza-

Michael/aldol cascade sequences. A variety of new cyclopropane acetaldehydes 

have been synthesized and their value as donor-acceptor cyclopropane precursors 

has been demonstrated. Moreover, the synthetic power of those molecules has 

been explored in aza-Michael/aldol domino reactions towards the synthesis of highly 

enantioenriched quinolines and pyrroloquinolines. Moreover, the whole scaffold of 

the cycloprane and all the functionalities in there has been included into the final 

structure of the studied reactions in both one-pot and cascade reactions.  

 d) Finally, in a different field, the asymmetric aminofluorination of β-

fluorostyrenes has been studied in the research group of Prof. F. D. Toste in 

University of California, Berkeley. A new method for the synthesis of geminal 

difluorinated compounds bearing a vicinal amino moiety has been reported starting 

from a variety of monofluorostyrenes. Promising results regarding the palladium 

catalyzed enantioselective aminofluorination of alkenes have been achieved. In this 

regard, methylpyridine oxazolines and quinoline oxazolines are presented as 

interesting scaffold as chiral ligands for this transformation. 
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Experimental 
 

 

 

 

1.- GENERAL METHODS AND MATERIALS 

 

Monodimensional and/or bidimensional nuclear magnetic resonance proton 

carbon and fluorine spectra (1H NMR, 13C NMR, 19F NMR) were acquired at 25ºC on 

a Bruker AC-300 spectrometer (300 MHz for 1H, 75.5 MHz for 13C and 283 MHz for 
19F) or a Bruker AC-500 spectrometer (500 MHz for 1H and 125.7 MHz for 13C). 

Chemical shifts (δ) are reported in ppm relative to residual solvent signals1 (CHCl3, 

7.26 ppm for 1H NMR, CDCl3, 77.0 ppm for 13C NMR) and coupling constants (J) in 

hertz (Hz). The following abbreviations are used to indicate the multiplicity in 1H 

NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; bs, broad 

signal, app, apparent. 13C NMR spectra were acquired on a broad band decoupled 

mode using DEPT experiments (Distortionless Enhancement by Polarization 

Transfer) for assigning different types of carbon environment. Selective n.O.e., 

NOESY, COSY and HSQC experiments were acquired to confirm precise molecular 

configuration and to assist in convoluting complex multiplet signals.2 Infrared 

spectra (IR) were measured in a Jasco FT/IR 4100 (ATR), in the interval between 

1  H. E. Gottlieb, V. Kotlyar, A. Nudelman J. Org. Chem. 1997, 62, 7512.  
2  Kinss, M.; Sanders, J. K. M. J. Mag. Res. 1984, 56, 518. 
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4000 and 400 cm-1 with a 4 cm-1 resolution. Only characteristic bands are given in 

each case. Mass spectra (MS) were recorded on an Agilent 7890A gas 

chromatograph coupled to an Agilent 5975 mass spectrometer under electronic 

impact (EI) conditions (70eV). The obtained data is presented in mass units (m/z) 

and the values found in brackets belong to the relative intensities comparing to the 

base peak (100%). High-resolution mass spectra (HRMS) were recorded on an 

Acquity GC coupled to a TOF mass spectrometer (GCT Micromass) using chemical 

ionization (CI) or an Acquity UPLC coupled to a QTOF mass spectrometer (SYNAPT 

G2 HDMS) using electrospray ionization (ESI+ or ESI-) at the SGIker Unit of the 

University of the Basque Country (UPV/EHU). Melting points (M.p.) were measured 

in a Stuart SMP30 apparatus in open capillary tubes and are uncorrected. The 

enantiomeric excess (ee) of the products was determined by chiral stationary phase 

HPLC performed in a Waters 2695 chromatograph coupled to a Waters 2998 

photodiode array detector. Daicel Chiralpak ADH, ASH, AZ-3 and Chiralcel OZ-3, OD-

3, OD, OJH columns (0.46 cm x 25 cm) were used; specific conditions are indicated 

for each case. Optical rotations ([α]D
rt) were measured at 20ºC on a Jasco P-2000 

polarimeter with a sodium lamp at 589 nm and a path length of 1 dm. Solvent and 

concentration are specified in each case. X-ray data collections were performed in 

an Agilent Supernova diffractometer equipped with an Atlas CCD area detector, and 

a CuKα micro-focus source with multilayer optics (λ = 1.54184 Å, 250 µm FWHM 

beam size). The sample was kept at 120 K with a Oxford Cryosystems Cryostream 

700 cooler. The quality of the crystals was checked under a polarizing miscroscope, 

and a suitable crystal or fragment was mounted on a Mitegen MicromountTM using 

Paratone N inert oil and transferred to the diffractometer. 

Analytical grade solvents and commercially available reagents were used 

without further purification. Anhydrous solvents were purified and dried with 

activated molecular sieves prior to use. For reactions carried out under inert 
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conditions, the argon was previously dried through a column of P2O5 and a column 

of KOH and CaCl2. All the glassware was dried for 12 hours prior to use in an oven at 

140ºC, and allowed to cool under a dehumidified atmosphere.3 Reactions were 

monitored using analytical thin layer chromatography (TLC), in pre-coated silica-

backed plates (Merck Kieselgel 60 F254). These were visualized by ultraviolet 

irradiation, phosphomolybdic acid, potasium permanganate or p-anisaldehyde dips.4 

For flash chromatography Merck 60, 230-400 mesh or Silicycle 40-63, 230-400 mesh 

silica gel was used.5 For the removal of solvents under reduced pressure Büchi R-210 

rotary evaporators were used. 

 

 

 

 

 

 

 

3  G. W. Kramer, A. B. Levy, M. M. Midland Organic Synthesis via Boranes, John Wiley & 
Sons, New York, 1975. 

4  E. Stahl, Thin Layer Chromatography, Springer-Verlag, Berlin, 1969. 
5  W. C. Still, H. Kahn, A. J. Mitra J. Org. Chem. 1978, 43, 2923. 
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2.- NHC CATALYZED ENANTIOSELECTIVE CROSS-BENZOIN REACTION WITH YNONES 

 

2.1. Synthesis of 1’-alkyl 3-butyn-2-ones (5a-g) 

General Procedure: Activated MnO2 (8.6 equiv.) was added in small portions over 12 

min to a stirred solution of the appropriate propargylic alcohol6 (1 equiv.) in CHCl3 

(0.17M) at r.t.. Once the addition was finished the reaction was stirred over night at 

r.t. and then filtered through a short pad of Celite®. EtOAc was employed to wash 

the ynone down and after removing the solvent in vacuo. The crude was then 

purified by flash column chromatography to afford pure ynones (5).  

Compounds 5a-g were prepared according to the general procedure and 

spectroscopic data were identical to those previously reported.7 

 

4-(thiophen-3-yl)-3-butyn-2-one (5e). Following the general 

procedure, 5e (957 mg, 5.70 mmol) was isolated by FC (n-

hexane/EtOAc 8:2) in 83% yield as a yellow oil starting from 4- 

(thiophen-3-yl)-3-butyn-2-ol8 (1.05 g, 6.90 mmol) and MnO2 (5.15 

g, 59.3 mmol). 1H NMR (300 MHz, CDCl3) (δ, ppm): 7.58 (dd, J = 2.9, 1.1 Hz, 1H, S-

Carom.-H-C≡C), 7.18 (dd, J = 5.0, 3.0 Hz, 1H, S- Carom.-H Carom.-H), 7.03 (dd, J = 5.0, 1.1 

Hz, 1H, CH- Carom.-H-C≡C), 2.25 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3) (δ, ppm) 184.5 

(C=O), 133.9 (Carom.-H), 130.2 (Carom.-H), 126.2 (Carom.-H), 119.2 (Carom.), 88.5 (C≡C), 

85.7 (C≡C), 73.0 (C-OH), 32.6 (CH3). IR (ATR): 3106, 2187, 1666 cm-1. MS (EI) m/z (%): 

150 (M+, 60), 135 (100), 63 (22) cm-1. HRMS: Calculated for [C8H7OS]+: 151.0218 (M+); 

found: 151.0203. 

 

6  a) Collins, B. S. L.; Suero, M. G.; Gaunt, M. J. Angew. Chem. Int. Ed. 2013, 52, 5799; b) Schurbert, T.; 
Hummel, W.; Kula, M-R.; Müller, M. Eur. J. Org. Chem. 2001, 4181 

7  a) Marshall, J. A.; Eidam, P.; Eidam, H. S. J. Org. Chem. 2006, 71, 4840; b) Lee, K. Y.; Lee, M. Y.; 
GowriSankar, S.; Kim, J. N. Tetrahedron Lett. 2004, 45, 5043; c) Shatskiy, A.; Kivijärvi, T.; Lundberg, 
H.; Tinnis, F.; Adolfsson, H. ChemCatChem 2015, 7, 3818. 

8  Panteleev, J.; Huang, R. Y.; Lui, E. K. J.; Lautens, M. Org. Lett. 2011, 13, 5314. 

O
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2.2. Synthesis of 1,1,1-trifluoromethyl-3-butyn-2-ones (5h-l) 

General procedure:9 An n-hexane solution of n-BuLi (16.5 mmol) was added to a 

solution of the alkyne derivatives (15 mmol) in 22 mL of dry THF at -78 °C. The 

solution was stirred for 30 min at -78 °C, and ethyl trifluoroacetate (16.5 mmol, 2.34 

g) as a solution in THF (30 mL) and boron trifluoride etherate (2.09 mL) were added 

successively. The reaction mixture was stirred an additional 90 min at -78 °C, 

saturated NH4Cl aq. (8 mL) was then added, and the slurry was allowed to warm to 

room temperature. The THF was removed in vacuo, and the residue was diluted with 

ether (75 mL), washed with water and brine (25 mL, 2 times), and dried over 

anhydrous MgSO4 and then evaporated. The residue was purified by distillation 

under reduced pressure. 

Compounds 5h-k were prepared according to the general procedure and 

spectroscopic data were identical to those previously reported.9,10 

 

4-cyclohexyl-1,1,1-trifluorobut-3-yn-2-one (5l). Following the 

general procedure, 5l (505 mg, 2.47 mmol) was isolated after 

distillation under reduced pressure in 55% yield as a 

colourless oil starting from cyclohexylacetylene (0.500 g, 4.53 

mmol), ethyl trifluoroacetate (716 mg, 4.98 mmol) and boron trifluoride etherate 

(0.64 mL, 4.98 mmol). 1H NMR (300 MHz, CDCl3) (δ, ppm): 2.70 (tt, J = 8.5, 3.9 Hz, 1H, 

C≡C-CH), 1.95-1.82 (m, 2H, CHaHb-CH-CHaHb), 1.80-1.67 (m, 2H, CHaHb-CH-CHaHb), 

1.67-1.31 (m, 6H, CHaHb-CH2-CH2-CH2). 13C NMR (75 MHz, CDCl3) (δ, ppm) 167.3 (q, J 

= 41.8 Hz, C=O), 114.7 (q, J = 288.4 Hz, CF3), 108.6 (C≡C), 76.1 (C≡C), 31.0 (CH2-CH-

CH2), 29.5 (CH), 25.4 (CH2-CH2-CH-CH2-CH2), 24.4 (CH-CH2-CH2-CH2). IR (ATR): 3100, 

9  Linderman R. J.; Lonikar, M. S. J. Org. Chem. 1988, 53, 6013. 
10  a) Aristov, S.A.; Vasil’ev, A. V.; Fukin, G. K.; Rudenko, A.P.; Russ. J. Org. Chem., 2007, 43, 691; b) 

Maraval, V.; Leroyer, L.; Harano, A.;Barthes, C.; Saquet, Al.; Duhayon, C.; Shinmyozu, T.; Chauvin, R. 
Chem. Eur. J., 2011, 17, 5086. 

CF3

O
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1645 cm-1. MS (EI) m/z (%): 204 (M+, 40), 107 (25), 83 (100) cm-1. HRMS: Calculated 

for [C8H7OS]+: 205.0845 (M+); found: 205.0840. 

 

2.3. Synthesis of propargylic alcohols 6a-u 

General procedure: An ordinary vial was charged with pre-catalyst 3m (0.06 mmol, 

20 mol%) and K2CO3 (0.12 mmol, 40 mol%), equipped with a magnetic stirring bar 

and put under an argon atmosphere. A mixture of benzene/toluene (3:1, 1 mL) was 

added and the mixture was stirred for 10 min at room temperature. The vial was the 

placed at -15 ºC and stirred for further 10 min prior to the addition of the aldehyde 1 

(0.30 mmol) and ynone 5 (0.60 mmol). The stirring was maintained at this 

temperature until the reaction was complete. Solvents were evaporated and the 

crude was charged onto silica gel and subjected to FC. Racemic standards for HPLC 

separation conditions were prepared using pre-catalyst 3a (0.06 mmol, 10 mol%) 

and running the reaction at room temperature.  

 

(R)-1-cyclopropyl-2-hydroxy-2-methyl-4-phenylbut-3-yn-

1-one (6a). Following the general procedure 6a (51 mg, 

0.24 mmol) was isolated after 16h by FC (n-hexane/Et2O 

8:2) in 79% yield starting from aldehyde 1d (23 µL, 0.30 

mmol) and ynone 5a (92 mg, 0.60 mmol) in the presence of 3m (22 mg, 0.06 mmol) 

and K2CO3 (17 mg, 0.12 mmol) and using benzene/toluene mixture (3:1, 1 mL) as 

solvent. 1H NMR (300 MHz, CDCl3) (δ, ppm) 7.50–7.39 (m, 2H, Carom.-H), 7.36–7.27 

(m, 3H, Carom.-H), 4.29 (s, 1H, OH), 2.61–2.34 (m, 1H, CO-CH), 1.78 (s, 3H, CH3), 1.35–

1.24 (m, 1H, (CHaHb), 1.18–1.08 (m, 3H, (CHaHb-CH2). 13C NMR (75 MHz, CDCl3) (δ, 

ppm) 208.4 (C=O), 131.8 (Carom.-H), 128.7 (Carom.-H), 128.3 (Carom.-H), 122.1 (Carom.), 

88.2 (C≡C), 85.5 (C≡C), 73.0 (C-OH), 27.6 (CH3), 16.0 (CH), 13.2 (CH2), 12.4 (CH2). IR: 

3450, 1699 cm-1. MS (EI) m/z (%): 213 (M+ - H, 7), 171 (14), 145 (100), 129 (25), 115 

(9), 102 (11), 69 (26), 43 (64). HRMS: Calculated for [C14H15O2]+: 215.1072 [(M+H)+]; 

O

OH
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found: 215.1090. The ee was determined by HPLC using a Chiralcel OD-3 column [n-

hexane/i-PrOH (98:2)]; flow rate 1.0 mL/min; τmajor = 11.48 min, τminor = 10.31 min 

(91% ee). [α]D
rt: -182.5 (c = 0.9, CH2Cl2). 

 

(R)-1-cyclopropyl-2-hydroxy-2-methyl-4-(p-tolyl)but-3-

yn-1-one (6b). Following the general procedure 6b (38 

mg, 0.16 mmol) was isolated after 72h by FC (n-

hexane/Et2O gradient from 9:1 to 8:2) in 55% yield 

starting from aldehyde 1d (23 µL, 0.30 mmol) and ynone 5b (95 mg, 0.60 mmol) in 

the presence of 3m (22 mg, 0.06 mmol) and K2CO3 (17  mg, 0.12 mmol) and using 

benzene/toluene mixture (3:1, 1 mL) as solvent. 1H NMR (300 MHz, CDCl3) (δ, ppm) 

7.34 (d, J = 8.1 Hz, 2H, Carom.-H), 7.12 (d, J = 7.9 Hz, 2H, Carom.-H), 4,28 (s, 1H, OH), 

2.53-2.40 (m, 1H, CH), 2.35 (s, 3H, Carom.-CH3), 1.78 (s, 3H, HO-C-CH3), 1.33-1.23 (m, 

1H, CHaHb), 1.17-1.08 (m, 3H, CHaHb-CH2). 13C NMR (75 MHz, CDCl3) (δ, ppm) 208.6 

(C=O), 138.9 (Me-Carom.), 131.7 (Carom.-H), 129.1 (Carom.-H), 119.1 (Carom.), 87.6 (C≡C), 

85.8 (C≡C), 73.0 (C-OH), 27.7 (OH-C-CH3), 21.5 (Carom.-CH3), 16.0 (CO-CH), 13.2 (CH2), 

12.4 (CH2). IR (ATR): 3451, 1702 cm-1. MS (EI) m/z (%): 228 (M+, 3), 213 (7), 185 (15), 

159 (100), 143 (24), 115 (32), 91 (6), 69 (20), 43 (72). HRMS: Calculated for 

[C15H17O2]+: 229.1229 [(M+H)+]; found: 229.1238. The ee was determined by HPLC 

using a Chiralcel OD-3 column [n-hexane/i-PrOH (98:2)]; flow rate 1.0 mL/min; τmajor 

= 9.64 min, τminor = 9.02 min (94% ee). [α]D
rt: -168.0 (c = 1.0, CH2Cl2).  

 

(R)-1-cyclopropyl-2-hydroxy-4-(4-methoxyphenyl)-

2-methylbut-3-yn-1-one (6c). Following the general 

procedure 6c (39 mg, 0.16 mmol) was isolated after 

72h by FC (n-hexane/Et2O gradient from 9:1 to 8:2) 

in 53% yield starting from aldehyde 1d (23 µL, 0.30 mmol) and ynone 5c (104 mg, 

0.60 mmol) in the presence of 3m (22 mg, 0.06 mmol) and K2CO3 (17 mg, 0.12 mmol) 

O

OH
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and using benzene/toluene mixture (3:1, 1 mL) as solvent. 1H NMR (300 MHz, CDCl3) 

(δ, ppm) 7.38 (d, J = 8.9 Hz, 2H, Carom.-H), 6.84 (d, J = 8.9 Hz, 2H, Carom.-H), 4.27 (s, 1H, 

OH), 3.81 (s, 3H, O-CH3), 2.60-2.30 (m, 1H, CO-CH), 1.77 (s, 3H, C-CH3), 1.34-1.23 (m, 

1H, CO-CH(CHaHb)), 1.19-1.06 (m, 3H, CHaHb-CH2). 13C NMR (75 MHz, CDCl3) (δ, ppm) 

208.6 (C=O), 159.9 (MeO-Carom.), 133.3 (Carom.-H), 114.2 (Carom.), 114.0 (Carom.-H), 86.9 

(C≡C), 85.6 (C≡C), 73.0 (C-OH), 55.3 (Carom.-CH3), 27.7 (OH-C-CH3), 16.0 (CO-CH), 13.2 

(CH2), 12.4 (CH2). IR (ATR): 3451, 1702 cm-1. MS (EI) m/z (%): 244 (M+, 4), 201 (5), 175 

(100), 159 (9), 133 (8), 43 (29). HRMS: Calculated for [C15H17O3]+: 245.1178 [(M+H)+]; 

found: 245.1189. The ee was determined by HPLC using a Chiralcel OD-3 column [n-

hexane/i-PrOH (98:2)]; flow rate 1.0 mL/min; τmajor = 18.96 min, τminor = 13.11 min 

(93% ee). [α]D
rt: -124.3 (c = 0.9, CH2Cl2).  

 

 (R)-1-cyclopropyl-2-hydroxy-4-(4-bromophenyl)-2-

methylbut-3-yn-1-one (6d). Following the general 

procedure 6d (36 mg, 0.12 mmol) was isolated after 

88h by FC (n-hexane/Et2O gradient from 9:1 to 8:2) in 

41% yield starting from aldehyde 1d (23 µL, 0.30 mmol) and ynone 5d (134 mg, 0.60 

mmol) in the presence of 3m (22 mg, 0.06 mmol) and K2CO3 (17 mg, 0.12 mmol) and 

using benzene/toluene mixture (3:1, 1 mL) as solvent. 1H NMR (300 MHz, CDCl3) (δ, 

ppm) 7.45 (d, J = 8.5 Hz, 2H, Carom.-H), 7.30 (d, J = 8.5 Hz, 2H, Carom.-H), 4.30 (s, 1H, 

OH), 2.52-2.34 (m, 1H, CH), 1.77 (s, 3H, CH3), 1.34-1.24 (m, 1H, CHaHb), 1.18-1.06 (m, 

3H, CHaHb-CH2). 13C NMR (75 MHz, CDCl3) (δ, ppm) 208.2 (C=O), 133.2 (Carom.-H), 

131.6 (Carom.-H), 123.1 (Carom.), 121.1 (Carom.), 89.4 (C≡C), 84.5 (C≡C), 73.0 (C-OH), 27.6 

(OH-C-CH3), 16.0 (CO-CH), 13.3 (CH2), 12.5 (CH2). IR (ATR): 3468, 2166, 1695 cm-1. MS 

(EI) m/z (%): 294 and 292 (M+, 1 and 1), 251 (5), 223 (100), 209 (9), 69 (40), 43 (52). 

HRMS: Calculated for [C14H14O2]+: 293.0177 [(M+H)+]; found: 293.0168. The ee was 

determined by HPLC using a Chiralcel OD-3 column [n-hexane/i-PrOH (98:2)]; flow 
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rate 1.0 mL/min; τmajor = 9.39 min, τminor = 8.77 min (91% ee). [α]D
rt: -152.5 (c = 1.0, 

CH2Cl2).  

 

 (R)-1-cyclopropyl-2-hydroxy-2-methyl-4-(thiophen-3-

yl)but-3-yn-1-one (6e). Following the general procedure 6e 

(39 mg, 0.18 mmol) was isolated after 48h by FC (n-

hexane/Et2O gradient from 9:1 to 8:2) in 59% yield starting 

from aldehyde 1d (23 µL, 0.30 mmol) and ynone 5e (90 mg, 0.60 mmol) in the 

presence of 3m (22 mg, 0.06 mmol) and K2CO3 (17 mg, 0.12 mmol) and using 

benzene/toluene mixture (3:1, 1 mL) as solvent. 1H NMR (300 MHz, CDCl3) (δ, ppm) 

7.47 (dd, J = 3.0, 1.1 Hz, 1H, S-Carom.-H-Carom.), 7.26 (dd, J = 4.9, 3.1 Hz, 1H, S-Carom.-H-

Carom.-H), 7.11 (dd, J = 5.0, 1.1 Hz, 1H, S-Carom.-H-Carom.-H.) 4.28 (s, 1H, OH), 2.50-2.38 

(m, 1H, CH), 1.77 (s, 3H, CH3), 1.34-1.23 (m, 1H, CHaHb), 1.19-1.06 (m, 3H, CHaHb-

CH2). 13C NMR (75 MHz, CDCl3) (δ, ppm) 208.4 (C=O), 129.9 (S-Carom.-H), 129.6 (S-

Carom.-H), 125.4 (S-Carom.-H-Carom.), 121.2 (Carom.), 87.9 (C≡C), 80.8 (C≡C), 73.0 (C-OH), 

27.7 (OH-C-CH3), 16.0 (CO-CH), 13.3 (CH2), 12.5 (CH2). IR (ATR): 3443, 1702 cm-1. MS 

(EI) m/z (%): 220 (M+, 4), 192 (6), 177 (9), 151 (100), 135 (21), 109 (10), 69 (28), 43 

(59). HRMS: Calculated for [C12H13O2S]+: 221.0636 [(M+H)+]; found: 221.0645. The ee 

was determined by HPLC using a Chiralcel OD-3 column [n-hexane/i-PrOH (98:2)]; 

flow rate 1.0 mL/min; τmajor = 16.49 min, τminor = 14.82 min (93% ee). [α]D
rt: -166.6 (c = 

1.0, CH2Cl2). 

 

 (R)-1-cyclopropyl-2-hydroxy-2-methyl-4-

(triisopropylsilyl)but-3-yn-1-one (6f). Following the general 

procedure 6f (41 mg, 0.14 mmol) was isolated by FC (n-

hexane/Et2O gradient from 19:1 to 9:1) in 46% yield starting from aldehyde 1d (23 

µL, 0.30 mmol) and ynone 5f (135 mg, 0.60 mmol) in the presence of 3m (22 mg, 

0.06 mmol) and K2CO3 (17 mg, 0.12 mmol) and using benzene/toluene mixture (3:1, 
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1 mL) as solvent. 1H NMR (300 MHz, CDCl3) (δ, ppm) 4.13 (bs, 1H), 2.51 – 2.22 (m, 

1H, CO-CH), 1.70 (s, 3H, C-CH3), 1.29 – 0.90 (m, 25H, CH2CH2 + (CH(CH3)2)3). 13C NMR 

(75 MHz, CDCl3) (δ, ppm) 208.4 (C=O), 106.6 (C≡C), 87.1 (C≡C), 73.0 (C-OH), 27.7 (OH-

C-CH3), 18.5 (Si-CH), 16.0 (CO-CH), 13.0 (CH2), 12.7 (CH2), 11.1 (Si-CH-(CH3)2). IR: 

3454, 1706 cm-1. MS (EI) m/z (%): 279 (M+, M+- CH3, 10), 251 (100), 225 (46), 209 (7), 

181 (7), 157 (35), 127 (40), 91 (25), 87 (20), 75 (65), 61 (30). HRMS: Calculated for 

[C17H31O2Si]+: 295.2100 [(M+H)+]; found: 295.2093. The ee was determined by HPLC 

using a Chiralcel OD-3 column [n-hexane/i-PrOH (99.5:0.05)]; flow rate 0.5 mL/min; 

τmajor = 12.64 min, τminor = 16.44 min (78% ee). [α]D
rt: -109.8 (c = 1.0, CH2Cl2). 

 

 (R)-1-cyclopropyl-2-ethyl-2-hydroxy-4-phenylbut-3-yn-1-

one (6g). Following the general procedure 6g (18 mg, 0.08 

mmol) was isolated after 72h by FC (n-hexane/Et2O 8:2) in 

40% yield starting from aldehyde 1d (15 µL, 0.20 mmol) 

and ynone 5g (63 mg, 0.40 mmol) in the presence of 3m (15 mg, 0.04 mmol) and 

K2CO3 (11 mg, 0.08 mmol) and using benzene/toluene mixture (3:1, 0.7 mL) as 

solvent. 1H NMR (300 MHz, CDCl3) (δ, ppm) 7.52–7.40 (m, 2H, Carom.-H), 7.37–7.27 

(m, 3H, Carom.-H), 4.22 (s, 1H, OH), 2.47 (tt, J = 7.4, 5.4, 1H, CO-CH), 2.21 (dq, J = 14.9, 

7.5 Hz, 1H, CH3-CHaHb), 1.99 (dq, J = 14.3, 7.3 Hz, 1H, CH3-CHaHb), 1.34–1.24 (m, 1H, 

HC-CHaHb), 1.18–1.09 (m, 3H, CHaHb-CH2), 1.04 (t, J = 7.4 Hz, 3H, CH3). 13C NMR (75 

MHz, CDCl3) (δ, ppm) 208.4 (C=O), 131.8 (Carom.-H), 128.7 (Carom.-H), 128.3 (Carom.-H), 

122.3 (Carom.-H), 87.7 (C≡C), 86.1 (C≡C), 76.6 (C-OH), 33.5 (CH2-CH3), 16.3 (CH), 13.1 

(HC-CH2), 12.4 (HC-CH2), 7.9 (CH3). IR (ATR): 3447, 1702 cm-1. MS (EI) m/z (%): 228 

(M+, 1), 227 (M+-H, 3), 199 (5), 171 (7), 159 (100), 129 (26), 115 (17), 102 (9), 91 (12), 

77 (9), 69 (20), 57 (27). HRMS: Calculated for [C15H17O2]+: 229.1225 [(M+H)+]; found: 

229.1229. The ee was determined by HPLC using a Chiralcel OD-3 column [n-

hexane/i-PrOH (99:1)]; flow rate 1.0 mL/min; τmajor = 11.42 min, τminor = 12.21 min 

(83% ee). [α]D
rt: -140.0 (c = 0.5, CH2Cl2).  
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 (R)-4-hydroxy-4-methyl-6-phenylhex-5-yn-3-one (6h). 

Following the general procedure 6h (18 mg, 0.09 mmol) 

was isolated after 16h by FC (n-hexane/Et2O gradient from 

9:1 to 8:2) in 30% yield starting from aldehyde 1b (23 µL, 

0.30 mmol) and ynone 5a (92 mg, 0.60 mmol) in the presence of 3m (22 mg, 0.06 

mmol) and K2CO3 (17 mg, 0.12 mmol) and using benzene/toluene mixture (3:1, 1 mL) 

as solvent. 1H NMR (300 MHz, CDCl3) (δ, ppm) 7.43 (dd, J = 6.9, 2.0 Hz, 2H, Carom.-H), 

7.36-7-28 (m, 3H, Carom.-H), 4.23 (s, 1H, OH), 3.03 (dq, J = 17.3, 7.3 Hz, 1H, CHaHb), 

2.72 (dq, J = 17.4, 7.0 Hz, 1H, CHaHb), 1.71 (s, 3H, HO-C-CH3), 1.21 (t, J = 7.3 Hz, 3H, 

CH2CH3). 13C NMR (75 MHz, CDCl3) (δ, ppm): 208.9 (C=O), 131.8 (Carom.-H), 128.8 

(Carom.-H), 128.3 (Carom.-H), 122.0 (Carom.), 88.3 (C≡C), 85.3 (C≡C), 72.7 (C-OH), 29.1 

(CO-CH2CH3), 27.3 (HO-C-CH3), 8.3 (CO-CH2CH3). IR (ATR): 3451, 2230, 1720 cm-1. MS 

(EI) m/z (%): 201 (M+-H, 3), 173 (6), 159 (27), 145 (100), 129 (25), 115 (11), 102 (19), 

91 (14), 77 (14), 57 (15), 43 (83), 29 (11). HRMS: Calculated for [C13H15O2]+: 203.1072 

[(M+H)+]; found: 203.1087. The ee was determined by HPLC using a Chiralcel OD-3 

column [n-hexane/i-PrOH (98:2)]; flow rate 1.0 mL/min; τmajor = 12.39 min, τminor = 

10.13 min (82% ee). [α]D
rt: -164.4 (c = 0.7, CH2Cl2). 

 

 (R)-3-hydroxy-3-methyl-1-phenylhept-1-yn-4-one (6i). 

Following the general procedure 6i (16 mg, 0.07 mmol) 

was isolated after 16h by FC (n-hexane/Et2O gradient 

from 19:1 to 8:2) in 25% yield starting from aldehyde 1e 

(40 µL, 0.30 mmol) and ynone 5a (92 mg, 0.60 mmol) in the presence of 3m (22 mg, 

0.06 mmol) and K2CO3 (17 mg, 0.12 mmol) and using benzene/toluene mixture (3:1, 

1 mL) as solvent. 1H NMR (300 MHz, CDCl3) (δ, ppm) 7.43 (dt, J = 6.4, 2.7 Hz, 2H, 

Carom.-H), 7.35–7.29 (m, 3H, Carom.-H), 4.24 (s, 1H, OH), 2.96 (dt, J = 17.3, 7.3Hz, 1H, 
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CO-CHaHb), 2.66 (dt, J = 17.4, 7.0 Hz, 1H, CO- CHaHb), 1.80–1.72 (m, 2H, CO-

CH2CH2CH3), 1.70 (s, 3H, HO-C-CH3), 0.98 (t, J = 7.4 Hz, 3H, CH2CH3). 13C NMR (75 

MHz, CDCl3) (δ, ppm) 208.1 (C=O), 131.8 (Carom.-H), 128.8 (Carom.-H), 128.3 (Carom.-H), 

122.0 (Carom.), 88.2 (C≡C), 85.4 (C≡C), 72.8 (C-OH), 37.5 (CO-CH2CH2CH3), 27.1 (HO-C-

CH3), 17.6 (CO-CH2CH2CH3), 13.6 (CO-CH2CH2CH3). IR (ATR): 3447, 2205, 1720 cm-1. 

MS (EI) m/z (%): 215 (M+-H, 2), 173 (16), 145 (100), 129 (16), 115 (7), 102 (11), 77 (9), 

43 (59). HRMS: Calculated for [C14H17O2]+: 217.1229 [(M+H)+]; found: 217.1241. The 

ee was determined by HPLC using a Chiralcel OD-3 column [n-hexane/i-PrOH (98:2)]; 

flow rate 1.0 mL/min; τmajor = 11.56 min, τminor = 9.33 min (75% ee). [α]D
rt: -97.4 (c = 

0.9, CH2Cl2). 

 

(R)-2-hydroxy-1,4-diphenyl-2-(trifluoromethyl)but-3-

yn-1-one (6j). Following the general procedure with 6j 

(54 mg, 0.18 mmol) was isolated after 16h by FC (n-

hexane/EtOAc gradient from 19:1 to 9:1) in 59% yield 

starting from aldehyde 1a (32 µL, 0.30 mmol) and ynone 5h (119 mg, 0.60 mmol) in 

the presence of 3m (22 mg, 0.06 mmol) and K2CO3 (17 mg, 0.12 mmol) and using 

benzene/toluene mixture (3:1, 1 mL) as solvent. 1H NMR (300 MHz, CDCl3) δ 8.47 (d, 

J = 7.9 Hz, 2H, CO-Carom.-Carom.-H), 7.69 (t, J = 7.4 Hz, 1H, CO-Carom.-Carom.-H-Carom.-H- 

Carom.-H), 7.57-7.46 (m, 4H), 7.45-7.30 (m, 3H, C≡C-Carom.-Carom.-H-Carom.-H-Carom.-H), 

5.36 (s, 1H, OH). 13C NMR (75 MHz, CDCl3) δ 189.9 (C=O), 135.2 (Carom.-H), 132.0 

(Carom.-H), 131.8 (Carom.), 131.5 (q, J = 0.8 Hz, Carom.-H), 129.9 (Carom.-H), 128.6 (Carom.-

H), 128.5 (Carom.-H), 122.0 (q, J = 286.6 Hz, CF3), 120.6 (Carom.), 90.2 (C≡C), 81.6 (C≡C), 

74.4 (q, J = 33.2 Hz, CF3-C). IR (ATR): 3401, 1687, 1264, 1221, 1185, 1114 cm-1. MS 

(EI) m/z (%): 304 (M+, 2), 288 (2), 129 (32), 105 (100), 77 (38), 51 (9). HRMS: 

Calculated for [C17H12O2F3]+: 305.0789 [(M+H)+]; found: 305.0775. The ee was 

determined by HPLC using a Chiralcel OD-3 column [n-hexane/i-PrOH (98:2)]; flow 
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rate 1.0 mL/min; τmajor = 9.78 min, τminor = 11.20 min (99% ee). [α]D
rt: +55.8 (c = 0.8, 

CH2Cl2). 

 

(R)-1-(4-fluorophenyl)-2-hydroxy-4-phenyl-2-

(trifluoromethyl)but-3-yn-1-one (6k). Following the 

general procedure 6k (69 mg, 0.21 mmol) was 

isolated after 48h by FC (n-hexane/EtOAc gradient 

from 19:1 to 9:1) in 71% yield starting from aldehyde 1f (32 µL, 0.30 mmol) and 

ynone 5h (119 mg, 0.60 mmol) in the presence of 3m (22 mg, 0.06 mmol) and K2CO3 

(17 mg, 0.12 mmol) and using benzene/toluene mixture (3:1, 1 mL) as solvent. 1H 

NMR (300 MHz, CDCl3) δ 8.53 (dd, J = 8.9, 5.4 Hz, 2H, CO-Carom.-Carom.-H), 7.54-7.46 

(m, 2H, C≡C-Carom.-Carom.-H), 7.44-7.30 (m, 3H, C≡C-Carom.-Carom.-H-Carom.-H-Carom.-H), 

7.24-7.14 (m, 2H, F-Carom.-Carom.-H), 5.32 (s, 1H, OH). 13C NMR (75 MHz, CDCl3) δ 188.3 

(C=O), 166.9 (d,  J = 259.7 Hz, F-Carom.), 134.5 (d, J = 9.9 Hz, CO-Carom.-Carom.-H), 131.9 

(C≡C-Carom.-Carom.-H), 129.9 (C≡C-Carom.-Carom.-H-Carom.-H-Carom.-H), 128.6 (C≡C-Carom.-

Carom.-H-Carom.-H), 128.1 (d, J = 2.9 Hz, CO-Carom.), 120.4 (C≡C-Carom.), 121.9 (q, J = 

286.7 Hz, HO-C-CF3), 115.9 (d, J = 22.1 Hz, F-Carom.-Carom.-H),  90.5 (C≡C), 81.4 (C≡C), 

74.4 (q, J = 33.2 Hz, C-CF3). IR (ATR): 3404, 1688, 1598, 1221, 1189, 1160, 1114 cm-1. 

MS (EI) m/z (%): 322 (M+, 5), 306 (2), 123 (100), 95 (26), 75 (8), 51 (2). HRMS: 

Calculated for [C17H11O2F4]+: 323.0695 [(M+H)+]; found: 323.0688. The ee was 

determined by HPLC using a Chiralcel OD-3 column [n-hexane/i-PrOH (98:2)]; flow 

rate 1.0 mL/min; τmajor = 9.18 min, τminor = 10.53 min (>99% ee). [α]D
rt: +40.4 (c = 1.0, 

CH2Cl2). 

 

 

 

(R)-1-(4-fluorophenyl)-2-hydroxy-4-p-tolyl-2-

(trifluoromethyl)but-3-yn-1-one (6l). Following 
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the general procedure 6l (94 mg, 0.28 mmol) was isolated after 48h by FC (n-

hexane/EtOAc gradient from 19:1 to 9:1) in 93% yield starting from aldehyde 1f (32 

µL, 0.30 mmol) and ynone 5i (127 mg, 0.60 mmol) in the presence of 3m (22 mg, 

0.06 mmol) and K2CO3 (17 mg, 0.12 mmol) and using benzene/toluene mixture (3:1, 

1 mL) as solvent. 1H NMR (300 MHz, CDCl3) δ 8.54 (dd, J = 8.8, 5.4 Hz, 2H, CO-Carom.-

Carom.-H), 7.39 (d, J = 8.1 Hz, 2H, C≡C-Carom.-Carom.-H), 7.24-7.12 (m, 4H, Carom.-H), 5.34 

(s, 1H, OH), 2.37 (s, 3H, Me). 13C NMR (75 MHz, CDCl3) δ 188.4 (C=O), 166.9 (d, J = 

259.6 Hz, F-Carom.), 140.4 (Me-Carom.), 134.5 (d, J = 9.1 Hz, CO-Carom.-Carom.-H), 131.9 

(C≡C-Carom.-Carom.-H), 129.3 (C≡C-Carom.-Carom.-H-Carom.-H), 128.1 (d, J = 2.9 Hz, CO-

Carom.), 121.9 (q, J = 286.7 Hz, HO-C-CF3), 117.3 (C≡C-Carom.), 115.9 (d, J = 22.0 Hz, F-

Carom.-Carom.-H),  90.8 (C≡C), 80.8 (C≡C), 74.4 (q, J = 33.1 Hz, C-CF3). IR (ATR): 3408, 

1687, 1598, 1508, 1221, 1189, 1164, 1117 cm-1. MS (EI) m/z (%): 336 (M+, 6), 143 

(21), 123 (100), 95 (24), 75 (5). HRMS: Calculated for [C18H13O2F4]+: 337.0852 

[(M+H)+]; found: 337.0835. The ee was determined by HPLC using a Chiralcel OD-3 

column [n-hexane/i-PrOH (99.5:0.5)]; flow rate 0.5 mL/min; τmajor = 32.26 min, τminor = 

35.47 min (98% ee). [α]D
rt: +25.0 (c = 1.0, CH2Cl2). 

 

 (R)-1-(4-bromophenyl)-2-hydroxy-4-phenyl-2-

(trifluoromethyl)but-3-yn-1-one (6m). Following the 

general procedure 6m (85 mg, 0.22 mmol) was 

isolated after 48h by FC (n-hexane/EtOAc gradient 

from 19:1 to 9:1) in 74% yield starting from aldehyde 1g (56 mg, 0.30 mmol) and 

ynone 5h (119 mg, 0.60 mmol) in the presence of 3m (22 mg, 0.06 mmol) and K2CO3 

(17 mg, 0.12 mmol) and using benzene/toluene mixture (6:4, 1 mL) as solvent. 1H 

NMR (300 MHz, CDCl3) δ 8.33 (d, J = 8.6 Hz, 2H, CO-Carom.-Carom.-H), 7.72-7.64 (m, 2H, 

Br-Carom.-Carom.-H), 7.49 (dd, J = 8.0, 1.6 Hz, 2H, C≡C-Carom.-Carom.-H), 7.46-7.31 (m, 3H, 

C≡C-Carom.-Carom.-H.-Carom.-H-Carom.-H) 5.25 (s, 1H, OH). 13C NMR (75 MHz, CDCl3) δ 

189.1 (C=O), 132.7 (Carom.-H), 132.0 (Carom.), 132.0 (Carom.), 131.1 (CO-Carom.), 130.4 
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(C≡C-Carom.), 130.0 (Carom.-H), 121.8 (q, J = 286.7 Hz, CF3), 120.0 (Carom.), 90.6 (C≡C), 

81.2 (C≡C), 74.4 (q, J = 33.2 Hz, C-CF3). IR (ATR): 3412, 1687, 1580, 1260, 1221, 1181, 

1117 cm-1. MS (EI) m/z (%): 384 (M+, 2), 382 (M+, 2), 368 (7), 183 (100), 157 (27), 155 

(25), 129 (35), 105 (8), 75 (14), 51 (5). HRMS: Calculated for [C17H11O2F3Br]+: 

382.9895 [(M+H)+]; found: 382.9879. The ee was determined by HPLC using a 

Chiralcel OD-3 column [n-hexane/i-PrOH (98:2)]; flow rate 1.0 mL/min; τmajor = 10.45 

min, τminor = 12.88 min (99% ee). [α]D
rt: 55.8 (c = 1.0, CH2Cl2). 

 

 (R)-2-hydroxy-4-phenyl-2-(trifluoromethyl)-1-(4-

(trifluoromethyl)phenyl)but-3-yn-1-one (6n). 

Following the general procedure 6n (77 mg, 0.21 

mmol) was isolated after 48h by FC (n-

hexane/EtOAc gradient from 19:1 to 9:1) in 69% yield starting from aldehyde 1h (41 

µL, 0.30 mmol) and ynone 5h (119 mg, 0.60 mmol) in the presence of 3m (22 mg, 

0.06 mmol) and K2CO3 (17 mg, 0.12 mmol) and using benzene/toluene mixture (3:1, 

1 mL) as solvent. 1H NMR (300 MHz, CDCl3) δ 8.56 (dd, J = 8.4 Hz, 2H, CF3-Carom.-Carom.-

H), 7.79 (d, J = 8.4 Hz, 2H, CO-Carom.-Carom.-H), 7.53-7.48 (m, 2H, C≡C-Carom.-Carom.-H), 

7.47-7.32 (m, 3H, C≡C-Carom.-Carom.-H-Carom.-H-Carom.-H), 5.16 (s, 1H, OH). 13C NMR (75 

MHz, CDCl3) δ 189.5 (C=O), 136.0 (q, J = 33.2 Hz, CF3-Carom.), 134.8 (CO-Carom.), 131.9 

(C≡C-Carom.-Carom.-H), 131.6 (C≡C-Carom.-Carom.-H-Carom.-H), 130.2 (C≡C-Carom.-Carom.-H-

Carom.-H-Carom.-H), 128.6 (CO-Carom.-Carom.-H), 125.6 (q, J = 3.7 Hz, CF3-Carom.-Carom.-H), 

123.2 (q, J = 273.0 Hz, CF3-Carom.), 121.8 (q, J = 286.7 Hz, HO-C-CF3), 91.0 (C≡C), 80.8 

(C≡C), 74.8 (q, J = 33.3 Hz, C-CF3). IR (ATR): 3418, 1699, 1325, 1221, 1171, 1117, 1066 

cm-1. MS (EI) m/z (%): 372 (M+, 1), 275 (1), 173 (100), 145 (39), 129 (33), 95 (4), 75 

(8), 51 (3). HRMS: Calculated for [C18H11O2F6]+: 373.0663 [(M+H)+]; found: 373.0664. 

The ee was determined by HPLC using a Chiralcel OD-3 column [n-hexane/i-PrOH 

(98:2)]; flow rate 1.0 mL/min; τmajor = 11.05 min, τminor = 14.02 min (99% ee). [α]D
rt: 

16.9 (c = 1.0, CH2Cl2). 
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 (R)-1-(furan-2-yl)-2-hydroxy-4-phenyl-2-

(trifluoromethyl)but-3-yn-1-one (6o). Following the 

general procedure  with 6o (76 mg, 0.26 mmol) was 

isolated after 48h by FC (n-hexane/EtOAc gradient from 

19:1 to 8:2) in 86% yield starting from aldehyde 1i (25 µL, 0.30 mmol) and ynone 5h 

(119 mg, 0.60 mmol) in the presence of 3m (22 mg, 0.06 mmol) and K2CO3 (17 mg, 

0.12 mmol) and using benzene/toluene mixture (3:1, 1 mL) as solvent. 1H NMR (300 

MHz, CDCl3) δ 7.89 (d, J = 3.8 Hz, 1H, O-Carom.-Carom.-H), 7.82 (dd, J = 1.6, 0.6 Hz, 1H, 

O-Carom.-H), 7.51-7.46 (m, 2H, C≡C-Carom.-Carom.-H), 7.44-7.30 (m, 3H, C≡C-Carom.-Carom.-

H-Carom.-H-Carom.-H), 6.67 (dd, J = 3.8, 1.7 Hz, 1H, O-Carom.-H-Carom.-H), 5.36 (s, 1H, OH). 

13C NMR (75 MHz, CDCl3) δ 177.1 (C=O), 150.0 (O-Carom.-H), 147.6 (O-Carom.), 140.3 

(Me-Carom.), 132.0 (C≡C-Carom.-Carom.-H), 129.9 (C≡C-Carom.-Carom.-H-Carom.-H-Carom.-H), 

128.5 (C≡C-Carom.-Carom.-H-Carom.-H), 126.0 (q, J = 1.7 Hz, O-Carom.-Carom.-H), 121.8 (q, J = 

286.8 Hz, CF3), 120.5 (C≡C-Carom.), 113.2 (O-Carom.-H-Carom.-H), 89.2 (C≡C), 81.5 (C≡C), 

73.8 (q, J = 33.5 Hz, C-CF3). IR (ATR): 3397, 1674, 1462, 1235, 1193, 1128 cm-1. MS 

(EI) m/z (%): 294 (M+, 2), 278 (2), 266 (12), 129 (30), 95 (100), 75 (4), 51 (3). HRMS: 

Calculated for [C15H10O3F3]+: 295.0576 [(M+H)+]; found: 295.0582. The ee was 

determined by HPLC using a Chiralcel OD-3 column [n-hexane/i-PrOH (98:2)]; flow 

rate 1.0 mL/min; τmajor = 13.86 min, τminor = 15.68 min (87% ee). [α]D
rt: +6.1 (c = 1.0, 

CH2Cl2).  

 

 (R)-1-(furan-2-yl)-2-hydroxy-4-p-tolyl-2-

(trifluoromethyl)but-2-yn-1-one (6p). Following the 

general procedure 6p (89 mg, 0.29 mmol) was isolated 

after 48h by FC (n-hexane/EtOAc gradient from 19:1 

to 9:1) in 96% yield starting from aldehyde 1i (25 µL, 0.30 mmol) and ynone 5i (127 

mg, 0.60 mmol) in the presence of 3m (22 mg, 0.06 mmol) and K2CO3 (17 mg, 0.12 
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mmol) and using benzene/toluene mixture (3:1, 1 mL) as solvent. 1H NMR (300 MHz, 

CDCl3) δ 7.89 (d, J = 3.7 Hz, 1H, O-Carom.-Carom.-H), 7.81 (dd, J = 1.6, 0.6 Hz, 1H, O-

Carom.-H), 7.38 (d, J = 7.9 Hz, 2H, C≡C-Carom.-Carom.-H), 7.16 (d, J = 8.3 Hz, 2H, Me-Carom.-

Carom.-H), 6.66 (dd, J = 3.8, 1.7 Hz, 1H, O-Carom.-H-Carom.-H), 5.24 (s, 1H, OH), 2.37 (s, 

3H, Me). 13C NMR (75 MHz, CDCl3) δ 177.2 (C=O), 149.9 (O-Carom.-H), 147.6 (O-Carom.), 

140.3 (Me-Carom.), 131.9 (C≡C-Carom.-Carom.-H), 129.3 (Me-Carom.-Carom.-H), 125.9 (q, J = 

1.9 Hz, O-Carom.-Carom.-H), 121.8 (q, J = 286.8 Hz, CF3), 117.4 (C≡C-Carom.), 113.2 (O-

Carom.-H-Carom.-H), 89.4 (C≡C), 80.9 (C≡C), 73.8 (q, J = 33.5 Hz, C-CF3) 21.6 (CH3). IR 

(ATR): 3401, 1670, 1458, 1235, 1189, 1124, 1031 cm-1. MS (EI) m/z (%): 308 (M+, 5), 

293 (9), 280 (20), 213 (16), 197 (13), 143 (76), 115 (13), 95 (100). HRMS: Calculated 

for [C16H12O3F3]+: 309.1739 [(M+H)+]; found: 309.0729. The ee was determined by 

HPLC using a Chiralcel OD-3 column [n-hexane/i-PrOH (98:2)]; flow rate 1.0 mL/min; 

τmajor = 12.31 min, τminor = 11.47 min (84% ee). [α]D
rt: +28.0 (c = 1.0, CH2Cl2). 

 

(R)-2-hydroxy-4-phenyl-1-(thiophen-2-yl)-2-

(trifluoromethyl)but-3-yn-1-one (6q). Following the 

general procedure 6q (92 mg, 0.30 mmol) was isolated 

after 48h by FC (n-hexane/EtOAc gradient from 19:1 to 

8:2) in 99% yield starting from aldehyde 1j (29 µL, 0.30 mmol) and ynone 5h (119 

mg, 0.60 mmol) in the presence of 3m (22 mg, 0.06 mmol) and K2CO3 (17 mg, 0.12 

mmol) and using benzene/toluene mixture (3:1, 1 mL) as solvent. 1H NMR (300 MHz, 

CDCl3) δ 8.44 (d, J = 3.0, 1.0 Hz, 1H, S-Carom.-Carom.-H), 7.89 (dd, J = 4.9, 1.0 Hz, 1H, S-

Carom.-H), 7.55-7.48 (m, 2H, C≡C-Carom.-Carom.-H), 7.45-7.32 (m, 3H, C≡C-Carom.-Carom.-H-

Carom.-H-Carom.-H), 7.25 (m, 1H, S-Carom.-H-Carom.-H), 5.26 (s, 1H, OH). 13C NMR (75 MHz, 

CDCl3) δ 182.3 (C=O), 138.3 (q, J = 2.2 Hz, S-Carom.-Carom.-H ), 138.2 (S-Carom.H), 137.0 

(S-Carom.-CO), 132.0 (C≡C-Carom.-Carom.-H), 129.9 (C≡C-Carom.-Carom.-H-Carom.-H-Carom.-H), 

128.9 (S-Carom.-H-Carom.-H), 128.5 (C≡C-Carom.-Carom.-H-Carom.-H), 121.9 (q, J = 286.9 Hz, 

CF3), 120.5 (C≡C-Carom.), 89.7 (C≡C), 81.8 (C≡C), 74.3 (q, J = 33.4 Hz, C-CF3). IR (ATR): 
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3404, 1656, 1412, 1354, 1228, 1189, 1120 cm-1. MS (EI) m/z (%): 310 (M+, 2), 294 (1), 

129 (24), 111 (100), 83 (6), 75 (4), 51 (2). HRMS: Calculated for [C15H10O2F3S]+: 

311.0354 [(M+H)+]; found: 311.0360. The ee was determined by HPLC using a 

Chiralcel OD-3 column [n-hexane/i-PrOH (98:2)]; flow rate 1.0 mL/min; τmajor = 13.04  

min, τminor = 14.85 min (97% ee). [α]D
rt: +46.1 (c = 1.0, CH2Cl2). 

 

(R)-2-hydroxy-1-(thiophen-2-yl)-4-p-tolyl-2-

(trifluoromethyl)but-3-yn-1-one (6r). Following the 

general procedure 6r (98 mg, 0.30 mmol) was isolated 

after 48h by FC (n-hexane/EtOAc gradient from 19:1 to 

9:1) in >99% yield starting from aldehyde 1j (29 µL, 0.30 mmol) and ynone 5i (127 

mg, 0.60 mmol) in the presence of 3m (22 mg, 0.06 mmol) and K2CO3 (17 mg, 0.12 

mmol) and using benzene/toluene mixture (3:1, 1 mL) as solvent. 1H NMR (300 MHz, 

CDCl3) δ 8.45 (d, J = 3.8 Hz, 1H, S-Carom.-Carom.-H), 7.87 (dd, J = 4.9, 0.7 Hz, 1H, S-Carom.-

H), 7.40 (d, J = 8.1 Hz, 2H, C≡C-Carom.-Carom.-H), 7.22 (m, 1H, S-Carom.-H-Carom.-H), 7.16 

(d, J = 8.0 Hz, 2H, Me-Carom.-Carom.-H ), 5.27 (s, 1H, OH), 2.37 (s, 3H, Me). 13C NMR (75 

MHz, CDCl3) δ 182.4 (C=O), 140.4 (CO-Carom.), 138.3 (q, J = 2.0 Hz, S-Carom.-Carom.-H), 

138.2 (S-Carom.-H), 137.1 (Me-Carom.), 131.9 (C≡C-Carom.-Carom.-H), 129.3 (Me-Carom.-

Carom.-H), 128.8 (S-Carom.-H-Carom.-H), 121.9 (q, J = 287.0 Hz, CF3), 117.4 (C≡C-Carom.), 

90.0 (C≡C), 81.2 (C≡C), 74.4 (q, J = 33.3 Hz, C-CF3) 21.6 (CH3). IR (ATR): 3386, 1656, 

1508, 1412, 1354, 1228, 1185, 1117 cm-1. MS (EI) m/z (%): 324 (M+, 34), 308 (15), 

212 (9), 197 (33), 143 (54), 111 (100), 91 (13), 65 (7), 51 (2). HRMS: Calculated for 

[C16H12O2F3S]+: 325.0510 [(M+H)+]; found: 325.0501. The ee was determined by HPLC 

using a Chiralcel OD-3 column [n-hexane/i-PrOH (99.5:0.5)]; flow rate 0.5 mL/min; 

τmajor = 53.72 min, τminor = 50.70 min (95% ee). [α]D
rt: +34.3 (c = 1.0, CH2Cl2). 

 

 (R)-2-hydroxy-1-(thiophen-2-yl)-4-p-tolyl-2-

(trifluoromethyl)but-3-yn-1-one (6s). Following the 
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general procedure 6s (97 mg, 0.25 mmol) was isolated after 48h by FC (n-

hexane/EtOAc gradient from 49:1 to 9:1) in 83% yield starting from aldehyde 1j (29 

µL, 0.30 mmol) and ynone 5j (127 mg, 0.60 mmol) in the presence of 3m (22 mg, 

0.06 mmol) and K2CO3 (17 mg, 0.12 mmol) and using benzene/toluene mixture (3:1, 

1 mL) as solvent. 1H NMR (300 MHz, CDCl3) δ 8.54-8.38 (m, 1H, S-Carom.-Carom.-H), 7.87 

(dd, J = 4.9, 1.0 Hz, 1H, S-Carom.-H), 7.19 (dd, J = 4.9, 4.1 Hz, 1H, S-Carom.-H-Carom.-H), 

5.12 (s, 1H, OH), 1.14-1.00 (m, 21H, (CH(CH3)2)3)). 13C NMR (75 MHz, CDCl3) δ 182.2 

(C=O), 138.6 (q, J = 2.4 Hz, S-Carom.-Carom.-H), 138.2 (S-Carom.H), 137.0 (S-Carom.-CO), 

128.5 (S-Carom.-H-Carom.-H), 121.8 (q, J = 286.8 Hz, CF3), 99.2 (C≡C), 93.9 (C≡C), 74.1 (q, 

J = 33.2 Hz, C-CF3), 18.4 (CH3), 11.0 (CH). IR (ATR): 3404, 2945, 2869, 1656, 1466, 

1412, 1246, 1196, 1135, 1056 cm-1. MS (EI) m/z (%): 347 (M+, 21), 185 (3), 157 (2), 

129 (2), 77 (6), 111 (100). HRMS: Calculated for [C18H26O2F3SSi]+: 391.1375 [(M+H)+]; 

found: 391.1362. The ee was determined by HPLC using a Chiralcel OD-3 column [n-

hexane/i-PrOH (99.5:0.5)]; flow rate 0.5 mL/min; τmajor = 12.7 min, τminor = 13.9 min 

(89% ee). [α]D
rt: +41.1 (c = 1.0, CH2Cl2). 

 

 (R)-2-hydroxy-1-(thiophen-2-yl)-2-

(trifluoromethyl)hept-3-yn-1-one (6t). Following the 

general procedure 6t (42 mg, 0.15 mmol) was isolated 

after 24h by FC (n-hexane/EtOAc gradient from 49:1 to 9:1) in 51% yield starting 

from aldehyde 1j (29 µL, 0.30 mmol) and ynone 5k (98 mg, 0.60 mmol) in the 

presence of 3m (22 mg, 0.06 mmol) and K2CO3 (17 mg, 0.12 mmol) and using 

benzene/toluene mixture (3:1, 1 mL) as solvent. 1H NMR (300 MHz, CDCl3) δ 8.42-

8.30 (m, 1H, S-Carom.-Carom.-H), 7.86 (dd, J = 5.0, 1.1 Hz, 1H, S-Carom.-H), 7.21 (dd, J = 

4.9, 4.0 Hz, 1H, S-Carom.-H-Carom.-H), 5.10 (s, 1H, OH), 2.30 (t, J = 7.0 Hz, 2H, C≡C-CH2), 

1.85-1.37 (m, 2H, CH2-CH3), 0.99 (t, J = 7.4 Hz, 2H, CH3) 13C NMR (75 MHz, CDCl3) δ 

182.8 (C=O), 138.3 (q, J = 2.1 Hz, S-Carom.-Carom.-H), 137.9 (S-Carom.-H), 137.1 (S-Carom.), 

128.6 (S-Carom.-H-Carom.-H), 121.9 (q, J = 286.6 Hz, CF3), 91.6 (Pr-C≡C), 73.9 (q, J = 33.2 
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Hz, C-CF3), 73.7 (C≡C-COH), 21.2 (CH2-CH3), 20.7 (C≡C-CH2), 13.4 (CH3). IR (ATR): 3401, 

2970, 1656, 1408, 1354, 1250, 1193, 1164, 1060 cm-1. MS (EI) m/z (%): 276 (M+, 1), 

258 (1), 248 (3), 233 (1), 207 (1), 165 (1), 111 (100), 95 (2), 83 (6), 69 (2), 57 (1). 

HRMS: Calculated for [C12H12O2F3S]+: 277.0510 [(M+H)+]; found: 277.0497. The ee 

was determined by HPLC using a Chiralcel OD-3 column [n-hexane/i-PrOH (98:2)]; 

flow rate 1.0 mL/min; τmajor = 6.86 min, τminor = 7.60 min (98% ee). [α]D
rt: +76.9 (c = 

1.0, CH2Cl2). 

 

 (R)-4-cyclohexyl-2-hydroxy-1-(thiophen-2-yl)-2-

(trifluoromethyl)but-3-yn-1-one  (6u). Following the 

general procedure 6u (68 mg, 0.22 mmol) was isolated 

after 24h by FC (n-hexane/EtOAc gradient from 49:1 to 

9:1) in 72% yield starting from aldehyde 1j (29 µL, 0.30 mmol) and ynone 5l (126 mg, 

0.60 mmol) in the presence of 3m (22 mg, 0.06 mmol) and K2CO3 (17 mg, 0.12 mmol) 

and using benzene/toluene mixture (3:1, 1 mL) as solvent. 1H NMR (300 MHz, CDCl3) 

(δ, ppm) 8.43-8.29 (m, 1H, S-Carom.-Carom.-H), 7.86 (dd, J = 5.0, 1.1 Hz, 1H, S-Carom.-H), 

7.21 (dd, J = 5.0, 4.0 Hz, 1H, S-Carom.-H-Carom.-H), 5.10 (s, 1H), 2.51 (tt, J = 9.1, 3.8 Hz, 

1H, C≡C-CH), 1.89-1.76 (m, 2H, CHaHb-CH-CHaHb), 1.74-1.63 (m, 2H, CHaHb-CH-CHaHb), 

1.58-1.23 (m, 6H, CHaHb-CH2-CH2-CH2). 13C NMR (75 MHz, CDCl3) (δ, ppm) 182.9 

(C=O), 138.3 (q, J = 2.5 Hz, S-Carom.-Carom.-H), 137.8 (S-Carom.-H), 137.2 (S-Carom.), 128.5 

(S-Carom.-H-Carom.-H), 121.9 (q, J = 286.6 Hz, CF3), 95.2 (Pr-C≡C), 73.9 (q, J = 33.0 Hz, C-

CF3), 73.6 (C≡C-COH), 31.6 (CH2-CH-CH2), 29.0 (CH), 25.6 (CH2-CH2-CH-CH2-CH2), 24.6 

(CH-CH2-CH2-CH2). IR (ATR): 3401, 2934, 1652, 1408, 1354, 1246, 1193, 1164, 1064 

cm-1. MS (EI) m/z (%): 316 (M+, 1), 288 (2), 234 (3), 111 (100), 83 (12), 67 (2), 53 (3). 

HRMS: Calculated for [C15H16O2F3S]+: 317.0823 [(M+H)+]; found: 317.0828. The ee 

was determined by HPLC using a Chiralcel OD-3 column [n-hexane/i-PrOH (99:1)]; 

flow rate 1.0 mL/min; τmajor = 8.30 min, τminor = 9.08 min (98% ee). [α]D
rt: +100.0 (c = 

1.0, CH2Cl2). 
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2.4. General procedure for the reaction under conditions shown in Table 

2.10 (three consecutive batch cycles) 

An ordinary vial was charged with pre-catalyst 3m (0.06 mmol, 20 mol%) and K2CO3 

(0.12 mmol, 40 mol%), equipped with a magnetic stirring bar and under an argon 

atmosphere. A mixture of benzene/toluene (3:1, 1 mL) was added and the mixture 

was stirred for 10 min at room temperature. The vial was then placed at -15 ºC and 

stirred for further 10 min prior to the addition of the aldehyde 1j (29 µL, 0.30 mmol) 

and ynone 5h (59 mg, 0.60 mmol). The stirring was maintained at this temperature 

for 48h. Then additional 29 µL, 0.30 mmol of aldehyde 1j, immediately followed by 

59 mg, 0.3 mmol of ynone 5h were added to the crude reaction mixture and the 

reaction was stirred for further 48h. Afterwards, additional 29 µL, 0.30 mmol of 

aldehyde 1j immediately followed by 59 mg, 0.3 mmol of ynone 5h were added to 

the crude reaction mixture and the reaction was stirred for further 96h. Solvents 

were evaporated and the crude was directly subjected to FC isolating 6q (187 mg, 

0.60 mmol) in 67% yield. 

 

2.5. Reduction of propargylic alcohol adducts (7-9) 

  

 (R,Z)-2-hydroxy-4-phenyl-1-(thiophen-2-yl)-2-

(trifluoromethyl)but-3-en-1-one (7). To a solution of the 

propargylic alcohol 6q (45.8 mg, 0.15 mmol) in MeOH (1.5 mL) 

Lindlar catalyst (17 mg, 0.008 mmol). The argon atmosphere 

was replaced with hydrogen and the reaction mixture was stirred at room 

temperature under hydrogen (5.0 bar) for 62h. The suspension was then filtered 

through a celite pad, the filtrate was concentrated in vacuo. The crude was then 

purified by flash column chromatography (n-hexane/EtOAc gradient from 49:1 to 

9:1) to afford the pure cis-alkene 5 (40 mg, 0.13 mmol) in 85% yield. 1H NMR (300 
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MHz, CDCl3) (δ, ppm) 7.98-7.85 (m, 1H, S-Carom.-Carom.-H), 7.68 (dd, J = 5.0, 1.0 Hz, 1H, 

S-Carom.-H), 7.22-7.13 (m, 3H, Carom.-H), 7.11-7.03 (m, 3H, S-Carom.-H-Carom.-H + Carom.-

H), 6.99 (d, J = 12.2 Hz, 1H, HC=CH-Carom.), 6.43 (d, J = 12.2 Hz, 1H, HC=CH-Carom.), 5.07 

(s, 1H, OH). 13C NMR (75 MHz, CDCl3) (δ, ppm) 186.3 (C=O), 139.3 (S-Carom.-H), 138.4 

(S-Carom.-CO), 137.0 (HC=CH-Carom.), 136,6 (q, J = 3.0 Hz, S-Carom.-Carom.-H), 135.0 

(HC=CH-Carom.), 128.7 (Carom.-H), 128.2 (C=C-Carom.-Carom.-H-Carom.-H-Carom.-H), 128.1 (S-

Carom.-H-Carom.-H), 127.9 (Carom.-H), 124.3 (q, J = 1.4 Hz, HC=CH-Carom.), 123.5 (q, J = 

287.1 Hz, CF3), 79.3 (q, J = 28.5 Hz, C-CF3). IR (ATR): 3412, 1645, 1408, 1275, 1243, 

1174, 1166, 1064 cm-1. MS (EI) m/z (%): 324 (M+-H2O, 11), 197 (13), 183 (5), 152 (4), 

131 (16), 111 (100), 103 (16), 83 (9), 77 (18), 63 (4), 51 (8). HRMS: Calculated for 

[C15H12O2F3S]+: 313.0510 [(M+H)+]; found: 313.0499. The ee was determined by HPLC 

using a Chiralcel OD-3 column [n-hexane/i-PrOH (99:1)]; flow rate 0.8 mL/min; τmajor 

= 14.99 min, τminor = 13.79 min (95% ee). [α]D
rt: +108.9 (c = 1.0, CH2Cl2). 

 

(1S,2R,E)-4-phenyl-1-(thiophen-2-yl)-2-

(trifluoromethyl)but-3-ene-1,2-diol (8). A 3.07 M 

solution of Red-Al (140 µL, 0.44 mmol) in toluene was 

diluted in anhydrous Et2O (0.83 mL) under an argon atmosphere and cooled down to 

0ºC. A solution of propargylic alcohol 6q (63 mg, 0.2 mmol) in Et2O (0.43 mL) was 

introduced dropwise. After stirring for further 30 min at 0ºC the temperature was 

gradually raised to room temperature and the reaction stirred for an additional 3h. 

Afterwards the reaction was quenched with 2 mL of aq. saturated NH4Cl solution. 

The phases were separated and the aqueous layer was extracted with EtOAc (3 x 4 

mL) and then with CH2Cl2 (3 x 4 mL). The combined organic fractions were dried over 

Na2SO4, filtered and concentrated in vacuo. The crude was then purified by flash 

column chromatography (n-hexane/EtOAc gradient from 9:1 to 8:2) to afford the 

pure diol 6 (54mg, 0.17 mmol) in 86% yield. 1H NMR (300 MHz, CDCl3) δ 7.48-7.41 

(m, 2H, Carom.-H), 7.40-7-27 (m, 4H, S-Carom.-H + Carom.-H), 7.16-7.12 (m, 1H, S-Carom.-
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Carom.-H), 7.01 (dd, J = 5.1, 3.5 Hz, 1H, S-Carom.-H-Carom.-H), 6.85 (d, J = 16.1 Hz, 1H, 

HC=CH-Carom.), 6.57 (d, J = 16.1 Hz, 1H, HC=CH-Carom.), 5.40 (d, J = 3.6 Hz, 1H, HC-OH.),  

2.54 (d, J = 3.8 Hz, 1H, HC-OH), 2.51 (s, 1H, CF3-C-OH). 13C NMR (75 MHz, CDCl3) δ 

140.3 (S-Carom.), 135,6 (HC=CH-Carom.), 135,4 (HC=CH-Carom.), 128.7 (Carom.-H), 128.6 

(C=C-Carom.-Carom.-H-Carom.-H-Carom.-H), 127.3 (S-Carom.-Carom.-H), 127.0 (Carom.-H), 126.8 

(S-Carom.-H), 126.6 (S-Carom.-H-Carom.-H), 123.6 (q, J = 286.3 Hz, CF3), 121.5 (HC=CH-

Carom.), 77.6 (q, J = 26.9 Hz, C-CF3), 72.7 (CH). IR (ATR): 3501.1, 3479.0, 3120.3, 

1386.6, 1282.4, 1195.6, 1178.3, 1160.0, 1138.8, 1026.9 cm-1. MS (EI) m/z (%): 296 

(M+-H2O, 1) 199 (34), 165 (27), 131 (39), 113 (100), 103 (40), 77 (39), 51 (23). HRMS: 

Calculated for [C15H14OF3S]+: 297.0561 [(M+H)+]; found: 297.0561. M.p. (n-

hexane/Et2O): 113-115 ºC. The ee was determined by HPLC using a Chiralcel OD-3 

column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 12.29 min, τminor = 

32.02 min (97% ee). [α]D
rt: -234.04 (c = 1.0, CH2Cl2). 

 

(1S,2R)-4-phenyl-1-(thiophen-2-yl)-2-

(trifluoromethyl)but-3-yne-1,2-diol (9). To a solution of 

6q (62 mg, 0.2 mmol) in EtOH (0.7 mL) NaBH4 (12 mg, 0.4 

mmol) and CeCl3 (74 mg, 0.3 mmol) were added at 0ºC. 

The reaction was stirred at 0ºC for 30 min. Then 2 mL of water were added and the 

reaction mixture was extracted with EtOAc (3 x 4 mL) and then with CH2Cl2 (3 x 4 

mL). The combined organic fractions were dried over Na2SO4, filtered and 

concentrated in vacuo. The crude was then purified by flash column chromatography 

(n-hexane/EtOAc 8:2) to afford the pure diol 7 (54 mg, 0.17 mmol) in 86% yield. 1H 

NMR (300 MHz, CDCl3) (δ, ppm) 7.56-7.48 (m, 2H, C≡C-Carom.-Carom.-H-Carom.-H-Carom.-H 

+ S-Carom.-H), 7.42-7-31 (m, 4H, C≡C-Carom.-Carom.-H-Carom.-H), 7.46-7-31 (m, 3H, C≡C-

Carom.-Carom.-H-Carom.-H-Carom.-H), 7.29-7.22 (m, 1H, S-Carom.-Carom.-H), 7.05 (dd, J = 5.1, 

3.6 Hz, 1H, S-Carom.-H-Carom.-H), 5.36 (d, J = 5.9 Hz, 1H, HC-OH), 2.92 (s, 1H, CF3-C-OH), 

2.68 (d, J =6.0 Hz, 1H, HC-OH). 13C NMR (75 MHz, CDCl3) δ 140.3 (S-Carom.), 132.2 

OH

F3C OH

S
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(Carom.-H), 129.7 (C≡C-Carom.-Carom.-H-Carom.-H-Carom.-H), 128.4 (C≡C-Carom.-Carom.-H-Carom.-

H), 127.5 (S-Carom.-Carom.-H), 126.7 (S-Carom.-H), 126.5 (S-Carom.-H-Carom.-H), 123.6 (q, J = 

286.3 Hz, CF3), 120.7 (C≡C-Carom.), 89.8 (C≡C), 81.3 (C≡C), 74.3 (q, J = 29.6 Hz, C-CF3), 

72.2 (CH). IR (ATR): 3501, 3433, 1235, 1203, 1185, 1164, 1103, 10356 cm-1. MS (EI) 

m/z (%): 312 (M+, 1), 294 (100), 275 (5), 215 (11), 197 (36), 139 (10), 105 (67), 77 

(35), 51 (12). HRMS: Calculated for [C15H12O2F3S]+: 313.0510 [(M+H)+]; found: 

313.0512. M.p. (n-hexane/EtOAc): 131-133 ºC. The ee was determined by HPLC 

using a Chiralcel OD-3 column [n-hexane/i-PrOH (95:5)]; flow rate 1.0 mL/min; τmajor 

= 15.80 min, τminor = 22.44 min (98% ee). [α]D
rt: -104.4 (c = 1.0, CH2Cl2). 

 

 

 

 

2.6. Silver catalyzed cycloisomerization of propargylic alcohol 9. Synthesis of 

dihydrofuran 10. 

 

 (2S,3R)-5-phenyl-2-(thiophen-2-yl)-3-(trifluoromethyl)-2,3-

dihydrofuran-3-ol (10). To a solution of the propargylic alcohol 9 

(72 mg, 0.23 mmol) in DMF (0.23 mL) AgNO3 (5 mg, 0.028 mmol) 

was added. The reaction mixture was then heated at 70ºC for 

16h, before being cooled and diluted with water (1 mL). The resulting mixture was 

then extracted with EtOAc (3 x 5 mL). The combined organic fractions were dried 

and the solvent was removed in vacuo. The crude was then purified by flash column 

chromatography (n-hexane/EtOAc 8:2) to afford the pure dihydrofuran 10 (64 mg, 

0.20 mmol) in 89% yield. 1H NMR (300 MHz, CDCl3) (δ, ppm) 7.62-7.27 (m, 2H, Carom.-

H), 7.49-7-36 (m, 4H, S-Carom.-H + Carom.-H), 7.21 (dd, J = 3.5, 1.0 Hz, 1H, S-Carom.-Carom.-

H), 7.12 (dd, J = 5.1, 3.6 Hz, 1H, S-Carom.-H-Carom.-H), 6.10 (s, 1H, C=CH), 5.57 (s, 1H, 

OCH), 2.21 (s, 1H, OH). 13C NMR (75 MHz, CDCl3) (δ, ppm) 162.4 (C=CO), 135.2 (S-

O

Ph

S
F3C OH
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Carom.), 130.4 (Carom.-H), 128.7 (Carom.), 128.6 (Carom.-H), 127.4 (Cheterarom.-H), 127.2 

(Cheterarom.-H), 127.1 (Cheterarom.-H), 126.2 (Carom.-H), 124.7 (q, J = 287.1 Hz, CF3), 93.5 

(q, J = 1.6 Hz, C=CH), 84.4 (q, J = 30.1 Hz, C-CF3), 82.3 (q, J = 1.8 Hz, HC-O). IR (ATR): 

3727, 1646, 1450, 1167, 1092, 1051 cm-1. MS (EI) m/z (%): 324 (M+, 3), 294 (100), 

265 (4), 215 (23), 197 (25), 189 (10), 147 (10), 131 (8), 105 (92), 77 (27), 63 (2), 51 

(6). HRMS: Calculated for [C15H12O2F3S]+: 313.0510 [(M+H)+]; found: 313.0510. The ee 

was determined by HPLC using a Chiralcel OD-3 column [n-hexane/i-PrOH (95:5)]; 

flow rate 1.0 mL/min; τmajor = 10.11 min, τminor = 25.66 min (97% ee). [α]D
rt: -78.4 (c = 

1.0, CH2Cl2). 
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3.- ORGANOCATALYTIC GENERATION OF DONOR ACCEPTOR CYCLOPROPANES IN 

CYCLOADDITION REACTIONS 

 

3.1. Formal [2+4] cycloaddition of β-γ-unsaturated α-ketoesters through 

NHC-mediated cyclopropane ring opening 

3.1.1. Synthesis of γ-aryl-β,γ-unsaturated-α-keto esters 12a-n 

 

12a: R1 = Ph; R2 = Me
12b: R1 = Ph; R2 = Et
12c: R1 = p-MeOC6H4; R2 = Me
12d: R1 = p-MeC6H4; R2 = Me
12e: R1 = m-MeC6H4; R2 = Me
12f: R1 = o-MeC6H4; R2 = Me
12g: R1 = 3,4-(OCH2O)C6H3; R2 = Me

Ia-j

R1 O

O
OH

O

O
OK

O
R1

O
OEt

O

Ph3P

KOH, MeOH

General Procedure A

MeCOCl, R2OH, reflux
General Procedure B (for 12a-h)

or
CH3I, DMF, 75ºC

General Procedure C (for 12i-j)

O
OR2

O
R1

12a-n

DCM, PhCO2H (0 or 10 mol%)

rt or reflux
General Procedure D (for 12k-n)

12h: R1 = p-FC6H4; R2 = Me
12i: R1 = 2-furyl; R2 = Me
12j: R1 = 2-thienyl; R2 = Me
12k: R1 = Me; R2 = Et
12l: R1 = iPr; R2 = Et
12m: R1 = BnOCH2; R2 = Et
12n: R1 = PhCH2CH2; R2 = Et

 

General Procedure A 

The preparation of potassium salts Ia-j was accomplished using a modified 

procedure to the one outlined by Smith et al.11 A solution of potassium hydroxide 

(1.85 equiv) in MeOH (3.7 M), was added dropewise over a solution of solution of 

11  Belmessieri, D.; Morrill, C.; Simal, L. C.; Slawin, A. M. Z.; Smith, A. D. J. Am. Chem. Soc. 2011, 133, 
2714. 
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pyruvic acid (1 equiv) in MeOH (2 M) at 0ºC while stirring vigorously. Then a solution 

of (hetero)arylaldehyde (1.1 equiv) in MeOH (1 M) was added dropewise. The 

reaction was stirred at 0ºC for 15 min followed by rt overnight. The precipitate was 

collected by filtration, washed twice with cold MeOH, once with ether and dried 

under vacuum to furnish potassium salt which was used as an intermediate, without 

further purification. 

 

General Procedure B  

The preparation of γ-aryl-β,γ-unsaturated-α-keto esters 12a-h was accomplished 

using a modified procedure to the one outlined by Smith et al.11 Acetyl chloride (11.5 

equiv) was added to the desired alcohol at 0°C to generate hydrochloric acid. 

Potassium salt (1 equiv) was added and the mixture stirred at 0°C for 30 min then 

warmed to rt for 2h before heating at reflux overnight. Concentration in vacuo gave 

a solid which was dissolved in water and extracted twice with DCM. The combined 

organics were washed with sat. aq. NaHCO3, water and brine before being dried over 

Na2SO4, filtered and concentrated in vacuo. The crude was then purified by flash 

column chromatography to afford pure γ-aryl-β,γ-unsaturated-α-keto esters (12a-

h).11,12 

 

General Procedure C 

The preparation of potassium salts 12i-j was accomplished using a modified 

procedure to the one outlined by Smith et al.11 To a solution of the corresponding 

potassium salt (1equiv) in DMF (0.4 M) iodomethane (1.5 equiv) was added. The 

reaction was stirred at 75ºC for 4 h and then cooled to rt. The reaction mixture was 

poured into water and extracted 3 times with CH2Cl2. The combined extracts were 

washed with water and brine, dried over Na2SO4, filtered and concentrated in vacuo. 

12  (a) Y-Z. Hua, M-M. Liu, P-J. Huang, X. Song, M-C. Wang, J-B. Chang, Chem. Eur. J. 2015, 21, 
11994. (b) E. Li, Y. Huang, Chem. Eur. J. 2014, 20, 3520. 
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The crude was then purified by flash column chromatography to afford pure γ-aryl-

β,γ-unsaturated-α-keto esters (12i and 12j).11,12 

General Procedure D  

The Preparation of γ-alkyl-β,γ-unsaturated-α-keto esters 12k-n was accomplished 

using the procedure outlined by Jørgensen et al.13 A solution of the “Wittig reagent” 

oxo-(triphenyl-λ5-phosphanylidene)propionic acid ethyl ester (1 equiv) and aldehyde 

(1.5 equiv) in DCM (1 M) was stirred at rt (reflux and 10 mol % of benzoic acid may 

be needed depending on the aldehyde) until complete consumption of the ylide. The 

solvent is then removed in vacuo and the crude purified by flash column 

chromatography to afford pure γ-alkyl-β,γ-unsaturated-α-keto esters (12k,13 12l,14 

12m,13 and 12n15) 

 

3.1.2. Synthesis of lactones 13a-o 

 

General Procedure: An ordinary vial was charged with pre-catalyst 3n (0.02 mmol, 10 

mol%), equipped with a magnetic stirring bar and placed under an argon 

atmosphere. Dichloromethane (1 mL) and N,N-diisopropylethylamine (7 µL, 20 

mol%) were added at once and the mixture was stirred for 10 min at room 

temperature. The mixture was next cooled down to 5 ºC and stirred for further 10 

min prior to the addition of aldehyde 11 (0.30 mmol as a solution in 1 mL of 

dichloromethane) and ketoester 12 (0.20 mmol). The stirring was maintained at this 

temperature until the reaction was completed (TLC analysis). Solvents were 

evaporated and the crude was charged onto silica gel and subjected to flash column 

chromatography purification. Racemic standards for HPLC separation conditions 

were prepared using 2-(pentafluorophenyl)-6,7-dihydro-5H-pyrrolo[2,1-

c][1,2,4]triazol-2-ium tetrafluoroborate (0.02 mmol, 10 mol%) as pre-catalyst. 

13  K. B. Jensen, J. Thorhauge, R. G. Hazell, K. A. Jørgensen, Angew. Chem. Int. Ed. 2001, 40, 160. 
14  C. Allais, F. Liéby-Muller, J. Rodriguez, T. Constantieux, Eur. J. Org. Chem. 2013, 4131. 
15  H. Sugimura, K. Yoshida, Bull. Chem. Soc. Jpn. 1992, 62, 3209. 

 
 

                                                 



 
Chapter 6  199   

Diethyl 2-(((3R,4R)-6-(methoxycarbonyl)-2-oxo-4-phenyl-

3,4-dihydro-2H-pyran-3-yl)methyl)malonate (13a). 

Following the general procedure 13a (59 mg, 0.15 mmol) 

was isolated by FC (n-hexane/EtOAc gradient from 8:2 to 

7:3) after 36 h in 73% yield starting from aldehyde 11a (64 

mg, 0.30 mmol) and ketoester 12a (38 mg, 0.20 mmol) in the presence of 3n (8 mg, 

0.02 mmol) and N,N-diisopropylethylamine (7 µL, 0.04 mmol) and using 

dichloromethane (2 mL) as solvent. 1H NMR (300 MHz, CDCl3) (* denotes partially 

overlapped signals) δ 7.38–7.15 (m, 3H, Carom.-H-Carom.-H-Carom.-H-Carom.-H-Carom.-H), 

7.05 (dd, J = 7.3, 2.2 Hz, 2H, Carom.-H-Carom.-Carom.-H), 6.66 (d, J = 6.6 Hz, 1H, CH5), 

4.23–3.99 (m, 4H, 2 x CO2CH2), 3.80* (s, 3H, CO2CH3), 3.84-3-75* (m, 1H, CH4), 3.66 

(dd, J = 9.3, 5.6 Hz, 1H, HC-CO2Et), 3.02 (ddd, J = 8.6, 7.1, 4.5 Hz, 1H, CH3), 2.05-1.72 

(m, 2H, CH3), 1.28-1.12 (m, 6H, 2x CH2CH3). 13C NMR (75 MHz, CDCl3) (δ, ppm) 169.0 

(CO2Et), 168.8 (CO2Et), 168.2 (C2), 160.7 (CO2Me), 142.0 (C6
.), 135.2 (Carom.), 129.3 

(Carom.-H), 128.4 (Carom.-Carom.-H-Carom.-H-Carom.-H), 128.0 (Carom.-H), 118.3 (C5), 61.6 

(CO2CH2), 52.6 (CO2CH3), 49.5 (HC-CO2Et), 42.4 (C4), 40.7 (C3), 26.5 (C3-CH2), 14.0 

(CH3). IR (ATR): 1766, 1724, 1656, 1443, 1325, 1243, 1106 cm-1. MS (EI) m/z (%): 404 

(M+, 1), 376 (6), 359 (12), 344 (11), 313 (11), 231 (56), 214 (18), 186 (100), 157 (17), 

141 (27), 131 (79), 115 (33), 77 (17), 55 (18). HRMS (ESI+): Calculated for [C21H25O8]+: 

405.1549 [(M+H)+]; found: 405.1555. The ee was determined by HPLC using a 

Chiralpak ASH column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 18.18 

min, τminor = 33.91 min (97% ee). [α]D
rt: -24.7 (c = 1.0, CH2Cl2). M.p.: 94-96ºC. 

 

Diethyl 2-(((3R,4R)-6-(ethoxycarbonyl)-2-oxo-4-phenyl-

3,4-dihydro-2H-pyran-3-yl)methyl)malonate (13b). 

Following the general procedure 13b (64 mg, 0.15 mmol) 

was isolated by FC (n-hexane/EtOAc gradient from 8:2 to 

7:3) after 36 h in 77% yield starting from aldehyde 11a (64 

O

CO2Me

O
CO2Et

CO2Et

O

CO2Et

O
CO2Et

CO2Et
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mg, 0.30 mmol) and ketoester 12b (41 mg, 0.20 mmol) in the presence of 3n (8 mg, 

0.02 mmol) and N,N-diisopropylethylamine (7 µL, 0.04 mmol) and using 

dichloromethane (2 mL) as solvent. 1H NMR (300 MHz, CDCl3) δ 1H NMR (300 MHz, 

CDCl3) (δ, ppm) 7.36–7.23 (m, 3H, Carom.-H-Carom.-H-Carom.-H-Carom.-H-Carom.-H), 7.14-7-

04 (m, 2H, Carom.-H-Carom.-Carom.-H), 6.69 (d, J = 6.7 Hz, 1H, CH5), 4.30 (q, J = 7.1 Hz, 2H, 

C6-CO2CH2), 4.24–4.05 (m, 4H, CH(CO2CH2CH3)2), 3.80 (appt, J = 6.9 Hz, 1H, CH4), 3.69 

(dd, J = 9.4, 5.6 Hz, 1H, CHCO2Et), 3.03 (ddd, J = 8.7, 7.2, 4.5 Hz, 1H, CH3), 2.04-1.79 

(m, 2H, C3-CH2), 1.32 (t, J = 7.1 Hz, 3H, C6-CO2CH2CH3), 1.27-1.18 (m, 6H, 

CH(CO2CH2CH3)2). 13C NMR (75 MHz, CDCl3) (δ, ppm) 169.1 (CO2Et), 168.8 (CO2Et), 

168.3 (C2), 160.3 (C6-CO), 142.2 (C6
.), 135.3 (Carom.), 129.3 (Carom.-H), 128.4 (Carom.-

Carom.-H-Carom.-H-Carom.-H), 128.1 (Carom.-H), 118.0 (C5), 62.0 (C6-CO2CH2), 61.7 (CO2CH2), 

49.5 (CHCO2), 42.5 (C4), 40.8 (C3), 26.6 (C3-CH2), 14.1 (C=C-CO2CH2CH3), 14.0 

(CO2CH2CH3). IR (ATR): 1774, 1727, 1659, 1368, 1253, 1099 cm-1. MS (EI) m/z (%): 418 

(M+, 1), 389 (7), 373 (8), 343 (7), 327 (7), 299 (10), 258 (10), 245 (26), 214 (16), 186 

(96), 171 (14), 157 (17), 141 (25), 131 (100), 115 (48), 103 (39), 77 (19), 55 (19). 

HRMS (ESI+): Calculated for [C22H27O8]+: 419.1706 [(M+H)+]; found: 419.1710. The ee 

was determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (85:15)]; 

flow rate 1.0 mL/min; τmajor = 12.85 min, τminor = 21.68 min (>99% ee). [α]D
rt: -182.0 (c 

= 1.0, CH2Cl2). 

 

Diethyl 2-(((3R,4R)-6-(methoxycarbonyl)-4-(4-

methoxyphenyl)-2-oxo-3,4-dihydro-2H-pyran-3-

yl)methyl)malonate (13c). Following the general 

procedure 13c (70 mg, 0.16 mmol) was isolated by 

FC (n-hexane/EtOAc gradient from 8:2 to 7:3) after 

36 h in 81% yield starting from aldehyde 11a (43 

mg, 0.20 mmol) and ketoester 12c (44 mg, 0.20 mmol) in the presence of 3n (8 mg, 

0.02 mmol) and N,N-diisopropylethylamine (7 µL, 0.04 mmol) and using 

O

CO2Me

O
CO2Et

CO2Et
O
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dichloromethane (2 mL) as solvent. 1H NMR (300 MHz, CDCl3) (* denotes partially 

overlapped signals) δ 1H NMR (300 MHz, CDCl3) (δ, ppm) (* denotes partially 

overlapped signals) 7.00 (d, J = 8.7 Hz, 2H, MeO-Carom.-Carom.-H-Carom.-H), 6.83 (dd, J = 

8.7 Hz, 2H, MeO-Carom.-Carom.-H), 6.69 (d, J = 6.7 Hz, 1H, CH5), 4.25–4.08 (m, 4H, 

CO2CH2), 3.85 (s, 3H, CO2CH3), 3.78* (s, 3H, MeO), 3.76* (appt, J = 7.0 Hz, 1H, CH4), 

3.70 (dd, J = 9.5, 5.6 Hz, 1H, CHCO2Et), 3.00 (ddd, J = 8.8, 7.2, 4.4 Hz, 1H, CH3), 2.05-

1.81 (m, 2H, C3-CH2), 1.25* (t, J = 7.1 Hz, 3H, CH2CH3), 1.23* (t, J = 7.1 Hz, 3H, 

CH2CH3). 13C NMR (75 MHz, CDCl3) (δ, ppm) 169.1 (CO2Et), 168.9 (CO2Et), 168.3 (C2), 

160.9 (C6-CO), 159.6 (MeO-Carom.), 141.8 (C6
.), 129.2 (MeO-Carom.-Carom.-H-Carom.-H), 

126.9 (HC-Carom.), 118.6 (C5), 114.7 (MeO-Carom.-Carom.-H), 61.7 (CO2CH2), 55.3 (MeO), 

52.7 (CO2CH3), 49.5 (CHCO2), 41.8 (C4), 41.0 (C3), 26.6 (C3-CH2), 14.0 (CH2CH3). IR 

(ATR): 1766, 1727, 1512, 1437, 1322, 1254, 1099 cm-1. MS (EI) m/z (%): 434 (M+, 1), 

273 (4), 261 (14), 221 (3), 187 (4), 161 (100), 133 (9), 115 (5), 77 (3), 55 (4). HRMS 

(ESI+): Calculated for [C22H27O9]+: 435.1655 [(M+H)+]; found: 435.1648. The ee was 

determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (85:15)]; flow 

rate 1.0 mL/min; τmajor = 26.19 min, τminor = 43.43 min (>99% ee). [α]D
rt: -228.4 (c = 

1.0, CH2Cl2).  

 

Diethyl 2-(((3R,4R)-6-(methoxycarbonyl)-2-oxo-4-(p-

tolyl)-3,4-dihydro-2H-pyran-3-yl)methyl)malonate 

(13d). Following the general procedure 13d (71 mg, 

0.17 mmol) was isolated by FC (n-hexane/EtOAc 

gradient from 8:2 to 7:3) after 36 h in 85% yield 

starting from aldehyde 11a (43 mg, 0.20 mmol) and ketoester 12d (41 mg, 0.20 

mmol) in the presence of 3n (8 mg, 0.02 mmol) and N,N-diisopropylethylamine (7 

µL, 0.04 mmol) and using dichloromethane (2 mL) as solvent. 1H NMR (300 MHz, 

CDCl3) (* denotes partially overlapped signals) δ 7.11 (d, J = 7.8 Hz, 2H, Me-Carom.-

Carom.-H-Carom.-H), 6.96 (dd, J = 8.1 Hz, 2H, Me-Carom.-Carom.-H), 6.69 (d, J = 6.7 Hz, 1H, 

O

CO2Me

O
CO2Et

CO2Et
Me
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CH5), 4.28–4.02 (m, 4H, CO2CH2), 3.85 (s, 3H, CO2CH3), 3.77 (appt, J = 7.0 Hz, 1H, 

CH4), 3.70 (dd, J = 9.4, 5.6 Hz, 1H, HC-CO2Et), 3.01 (ddd, J = 8.8, 7.2, 4.4 Hz, 1H, CH3), 

2.30 (s, 3H, H3C-Carom.), 2.11-1.72 (m, 2H, C3-CH2), 1.24* (t, J = 7.1 Hz, 3H, CH2CH3), 

1.23* (t, J = 7.1 Hz, 3H, CH2CH3). 13C NMR (75 MHz, CDCl3) (δ, ppm) 169.1 (CO2Et), 

168.9 (CO2Et), 168.2 (C2), 160.8 (C6-CO), 141.9 (C6
.), 138.3 (HC-Carom.), 132.0 (Me-

Carom.), 130.0 (Me-Carom.-Carom.-H), 127.9 (Me-Carom.-Carom.-H-Carom.-H), 118.5 (C5), 61.6 

(CO2CH2), 52.7 (CO2CH3), 49.5 (CHCO2), 42.2 (C4), 40.8 (C3), 26.5 (C3-CH2), 21.0 (H3C-

Carom.), 14.0 (CH2CH3). IR (ATR): 1766, 1727, 1437, 1325, 1260, 1099 cm-1. MS (EI) m/z 

(%): 418 (M+, 1), 358 (5), 257 (6), 245 (27), 214 (6), 186 (48), 145 (100), 115 (35), 91 

(11), 55 (9). HRMS (ESI+): Calculated for [C22H27O8]+: 419.1706 [(M+H)+]; found: 

419.1704. The ee was determined by HPLC using a Chiralpak ASH column [n-

hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 14.22 min, τminor = 25.90 min 

(99% ee). [α]D
rt: -209.8 (c = 1.0, CH2Cl2).  

 

Diethyl 2-(((3R,4R)-6-(methoxycarbonyl)-2-oxo-4-(m-

tolyl)-3,4-dihydro-2H-pyran-3-yl)methyl)malonate 

(13e). Following the general procedure 13e (69 mg, 

0.16 mmol) was isolated by FC (n-hexane/EtOAc 

gradient from 8:2 to 7:3) after 36 h in 82% yield 

starting from aldehyde 11a (64 mg, 0.30 mmol) and ketoester 12e (41 mg, 0.20 

mmol) in the presence of 3n (8 mg, 0.02 mmol) and N,N-diisopropylethylamine (7 

µL, 0.04 mmol) and using dichloromethane (2 mL) as solvent. 1H NMR (300 MHz, 

CDCl3) (* denotes partially overlapped signals) δ 7.20 (t, J = 7.3 Hz, 1H, Me-Carom.-

Carom.-H-Carom.-H), 7.09 (d, J = 7.6 Hz, 1H, Me-Carom.-Carom.-H-Carom.-H-Carom.-H), 6.93-6.83 

(m, 2H, Carom.-H-Me-Carom.-Carom.-H-Carom.-H-Carom.-H), 6.69 (d, J = 6.6 Hz, 1H, CH5), 

4.27–4.07 (m, 4H, CO2CH2), 3.86 (s, 3H, CO2CH3), 3.77 (appt, J = 7.0 Hz, CH4), 3.71 

(dd, J = 9.4, 5.5 Hz, 1H, HC-CO2Et), 3.09 (ddd, J = 8.8, 7.2, 4.3 Hz, 1H, CH3), 2.31 (s, 3H, 

H3C-Carom.), 2.08-1.80 (ddd, m, 2H, C3-CH2), 1.25* (t, J = 7.1 Hz, 3H, CH2CH3), 1.23* (t, J 
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= 7.1 Hz, 3H, CH2CH3). 13C NMR (75 MHz, CDCl3) (δ, ppm) 169.1 (CO2Et), 168.9 

(CO2Et), 168.2 (C2), 160.9 (C6-CO), 141.9 (C6), 139.2 (Me-Carom.), 135.1 (HC-Carom.), 

129.2 (Carom.-H), 129.2 (Carom.-H), 128.5 (Carom.-H), 125.2 (Carom.-H), 118.4 (C5), 61.7 

(CO2CH2), 52.7 (CO2CH3), 49.6 (HC-CO2Et), 42.5 (C4
.), 40.7 (C3), 26.5 (C3-CH2), 21.4 

(H3C-Carom.), 14.0 (CH2CH3). IR (ATR): 1770, 1727, 1437, 1368, 1322, 1268, 1089 cm-1. 

MS (EI) m/z (%): 418 (M+, 2), 373 (7), 358 (7), 327 (14), 258 (11), 245 (42), 214 (14), 

199 (12), 186 (99), 171 (17), 145 (100), 129 (24), 115 (49), 91 (17), 55 (16). HRMS 

(ESI+): Calculated for [C22H27O8]+: 419.1706 [(M+H)+]; found: 419.1711. The ee was 

determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (85:15)]; flow 

rate 1.0 mL/min; τmajor = 12.49 min, τminor = 23.79 min (99% ee). [α]D
rt: -205.8 (c = 1.0, 

CH2Cl2). 

 

Diethyl 2-(((3R,4R)-6-(methoxycarbonyl)-2-oxo-4-(2-tolyl)-

3,4-dihydro-2H-pyran-3-yl)methyl)malonate (13f). 

Following the general procedure 13f (55 mg, 0.13 mmol) 

was isolated by FC (n-hexane/EtOAc gradient from 8:2 to 

7:3) after 36 h in 66% yield starting from aldehyde 11a (64 

mg, 0.30 mmol) and ketoester 12f (41 mg, 0.20 mmol) in the presence of 3c (8 mg, 

0.02 mmol) and N,N-diisopropylethylamine (7 µL, 0.04 mmol) and using 

dichloromethane (2 mL) as solvent. 1H NMR (300 MHz, CDCl3) (* denotes partially 

overlapped signals) δ 7.22-7.10 (m, 3H, Carom.-H), 7.00-6.92 (m, 1H, Carom.-H), 6.65 (d, J 

= 6.3 Hz, 1H, CH5), 4.29–4.07 (m, 5H, 2 x CO2CH2, CH4), 3.84 (s, 3H, CO2CH3), 3.66 (dd, 

J = 9.8, 5.0 Hz, 1H, HC-CO2Et), 3.09 (ddd, J = 9.4, 7.6, 3.7 Hz, 1H, CH3), 2.42 (s, 3H, 

H3C-Carom.), 2.09 (ddd, J = 14.4, 9.5, 5.0 Hz, 1H, C3-CHaHb), 1.85 (ddd, J = 14.0, 9.8, 3.7 

Hz, 1H, C3-CHaHb), 1.24* (t, J = 7.1 Hz, 3H, CH2CH3), 1.23* (t, J = 7.1 Hz, 3H, CH2CH3). 
13C NMR (75 MHz, CDCl3) (δ, ppm) 169.1 (CO2Et), 168.9 (CO2Et), 168.6 (C2), 160.8 (C6-

CO), 141.6 (C6), 135.9 (Carom.), 134.3 (Carom.), 131.2 (Carom.-H), 128.1 (Carom.-H), 127.3 

(Carom.-H), 126.8 (Carom.-H), 118.1 (C5), 61.7 (CO2CH2), 52.7 (CO2CH3), 49.7 (HC-CO2Et), 
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40.2 (C3), 37.6 (C4), 26.2 (C3-CH2), 19.9 (H3C-Carom.), 14.0 (CH2CH3). IR (ATR): 1767, 

1731, 1440, 1368, 1322, 1260, 1095 cm-1. MS (EI) m/z (%): 418 (M+, 3), 373 (9), 327 

(10), 245 (37), 214 (13), 186 (91), 171 (18), 145 (100), 128 (29), 115 (63), 91 (20), 77 

(4), 55 (16). HRMS (ESI+): Calculated for [C22H27O8]+: 419.1706 [(M+H)+]; found: 

419.1707. The ee was determined by HPLC using a Chiralpak ASH column [n-

hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 13.58 min, τminor = 21.68 min 

(>99% ee). [α]D
rt: -113.5 (c = 1.0, CH2Cl2).  

 

Diethyl 2-(((3R,4R)-4-(benzo[d][1,3]dioxol-5-yl)-6-

(methoxycarbonyl)-2-oxo-3,4-dihydro-2H-pyran-3-

yl)methyl)malonate (13g). Following the general 

procedure 13g (71 mg, 0.16 mmol) was isolated by FC 

(n-hexane/EtOAc gradient from 8:2 to 1:1) after 36 h 

in 79% yield starting from aldehyde 11a (43 mg, 0.20 mmol) and ketoester 12g (47 

mg, 0.20 mmol) in the presence of 3n (8 mg, 0.02 mmol) and N,N-

diisopropylethylamine (7 µL, 0.04 mmol) and using dichloromethane (2 mL) as 

solvent. 1H NMR (300 MHz, CDCl3) (* denotes partially overlapped signals) δ 6.71 (d, 

J = 7.8 Hz, 1H, OCH2O-Carom.-Carom.-H-Carom.-H), 6.65 (d, J = 6.7 Hz, 1H, CH5), 6.59-6.50 

(m, 2H, Carom.-H-Carom.-OCH2O-Carom.-Carom.-H-Carom.-H), 5.93 (s, 2H, OCH2O), 4.26–4.06 

(m, 4H, CO2CH2), 3.84 (s, 3H, CO2CH3), 3.77-3.63 (m, 2H, CH4, CHCO2Et), 2.97 (ddd, J = 

8.9, 7.2, 4.3 Hz, 1H, CH3), 2.07-1.80 (m, 2H, C3-CH2), 1.23* (t, J = 7.1 Hz, 3H, CH2CH3), 

1.22* (t, J = 7.1 Hz, 3H, CH2CH3). 13C NMR (75 MHz, CDCl3) (δ, ppm) 169.1 (CO2Et), 

168.9 (CO2Et), 168.1 (C2), 160.8 (C6-CO), 148.4 (Carom.-H-Carom.-OCH2O-Carom.-Carom.-H-

Carom.-H), 147.7 (OCH2O-Carom.-Carom.-H-Carom.-H), 141.9 (C6
.), 128.6 (HC-Carom.), 121.6 

(OCH2O-Carom.-Carom.-H-Carom.-H), 118.3 (C5), 108.8 (Carom.-H-Carom.-OCH2O-Carom.-Carom.-

H-Carom.-H), 108.0 (OCH2O-Carom.-Carom.-H), 101.4 (OCH2O), 61.7 (CO2CH2), 52.7 

(CO2CH3), 49.5 (HC-CO2Et), 42.2 (C4), 40.9 (C3), 26.5 (C3-CH2), 14.0 (CH2CH3). IR (ATR): 

1774, 1731, 1656, 1487, 1324, 1246, 1095 cm-1. MS (EI) m/z (%): 448 (M+, 24), 403 
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(19), 357 (26), 329 (32), 301 (90), 288 (100), 269 (24), 256 (16), 241 (55), 229 (42), 

213 (54), 207 (33), 199 (55), 185 (28), 175 (54), 156 (17), 143 (20), 127 (21), 115 (34), 

99 (13), 77 (13), 55 (20). HRMS (ESI+): Calculated for [C22H25O10]+: 449.1448 [(M+H)+]; 

found: 449.1460. The ee was determined by HPLC using a Chiralpak ASH column [n-

hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 37.48 min, τminor = 60.59 min 

(>99% ee). [α]D
rt: -204.4 (c = 1.0, CH2Cl2).  

 

Diethyl 2-(((3R,4R)-4-(4-fluorophenyl)-6-

(methoxycarbonyl)-2-oxo-3,4-dihydro-2H-pyran-3-

yl)methyl)malonate (13h). Following the general 

procedure 13h (61 mg, 0.14 mmol) was isolated by FC 

(n-hexane/EtOAc gradient from 8:2 to 7:3) after 36 h in 

72% yield starting from aldehyde 11a (43 mg, 0.20 mmol) and ketoester 12h (42 mg, 

0.20 mmol) in the presence of 3n (8 mg, 0.02 mmol) and N,N-diisopropylethylamine 

(7 µL, 0.04 mmol) and using dichloromethane (2 mL) as solvent. 1H NMR (300 MHz, 

CDCl3) (* denotes partially overlapped signals) δ 7.12–6.95 (m, 4H, Carom.-H), 6.69 (dd, 

J = 6.6 Hz, 1H, CH5), 4.27–4.06 (m, 4H, CO2CH2), 3.87* (s, 3H, CH3), 3.89-3-78* (m, 1H, 

CH4
.), 3.70 (dd, J = 9.3, 5.6 Hz, 1H, CHCO2Et), 3.03 (ddd, J = 8.8, 7.2, 4.5 Hz, 1H, CH3), 

2.02-1.76 (m, 2H, C3-CH2), 1.25* (t, J = 7.0 Hz, 3H, CH2CH3), 1.23* (t, J = 7.2 Hz, 3H, 

CH2CH3). 13C NMR (75 MHz, CDCl3) (δ, ppm) 169.1 (CO2Et), 168.8 (CO2Et), 168.0 (C2), 

162.6 (d, J = 248.0 Hz, F- Carom.), 160.7 (C6-CO), 142.1 (C6), 130.9 (d, J = 3.3 Hz, HC-

Carom.), 129.7 (d, J = 8.2 Hz, F-Carom.-Carom.-Carom.-H), 118.0 (C5), 116.3 (d, J = 21.7 Hz, F-

Carom.-Carom.-H), 61.7 (CO2CH2), 52.8 (CO2CH3), 49.5 (HC-CO2Et), 41.8 (C4), 40.8 (C3), 

26.6 (C3-CH2), 14.0 (CH3). 19F NMR (283 MHz, CDCl3) (δ, ppm) -113.1.IR (ATR): 1770, 

1727, 1508, 1437, 1322, 1228, 1160, 1095 cm-1. MS (EI) m/z (%): 422 (M+ , 1), 377 

(10), 362 (9), 331 (6), 317 (6), 270 (10), 261 (12), 249 (56), 214 (13), 203 (17), 186 

(87), 175 (16), 161 (19), 149 (100), 133 (42), 127 (17), 121 (31), 115 (27), 101 (31), 85 

(10), 55 (23). HRMS (ESI+): Calculated for [C21H24FO8]+: 423.1455 [(M+H)+]; found: 

O

CO2Me

O
CO2Et

CO2Et
F

 



 
206  Chapter 6 

423.1458. The ee was determined by HPLC using a Chiralpak ASH column [n-

hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 17.60 min, τminor = 28.89 min 

(>99% ee). [α]D
rt: -113.9 (c = 1.0, CH2Cl2).  

 

Diethyl 2-((4-(furan-2-yl)-6-(methoxycarbonyl)-2-oxo-3,4-

dihydro-2H-pyran-3-yl)methyl)malonate (13i). Following 

the general procedure 13i (36 mg, 0.09 mmol) was isolated 

by FC (n-hexane/EtOAc gradient from 8:2 to 7:3) after 36 h 

in 46% yield (dr: 1:1.5) starting from aldehyde 11a (64 mg, 

0.30 mmol) and ketoester 5i (36 mg, 0.20 mmol) in the presence of 3n (8 mg, 0.02 

mmol) and N,N-diisopropylethylamine (7 µL, 0.04 mmol) and using dichloromethane 

(2 mL) as solvent. Mayor diastereoisomer 3R,4R: 1H NMR (300 MHz, CDCl3) (* 

denotes partially overlapped signals) δ 7.33 (dd, J = 1.9, 0.8 Hz, 1H, O-Carom.-H), 6.58 

(d, J = 6.7 Hz, 1H, CH5), 6.29 (dd, J = 3.3, 1.9 Hz, 1H, O-Carom.-H-Carom.-H), 6.19 (dd, J = 

3.3, 0.8 Hz, 1H, O-Carom.-Carom.-H), 4.27–4.11 (m, 4H, 2 × CO2CH2), 3.93 (appt, J = 6.8 

Hz, 1H, CH4),  3.85 (s, 3H, CH3), 3.73 (dd, J = 9.1, 6.0 Hz, 1H, HC-CO2Et), 2.96 (ddd, J = 

8.5, 6.9, 4.9 Hz, 1H, CH3), 2.18 (ddd, J = 14.6, 8.6, 6.1 Hz, 1H, C3-CHaHb), 1.93 (ddd, J = 

14.3, 9.1, 4.9 Hz, 1H, C3-CHaHb), 1.25* (t, J = 7.1 Hz, 3H, CH2CH3), 1.25* (t, J = 7.1 Hz, 

3H, CH2CH3). 13C NMR (75 MHz, CDCl3) (δ, ppm) 169.0 (CO2Et), 168.8 (CO2Et), 167.7 

(C2), 160.7 (C6-CO), 148.4 (O-Carom.), 143.3 (O-Carom.-H), 142.7 (C6), 114.9 (C5), 110.5 

(O-Carom.-H-Carom.-H), 108.8 (O-Carom.-Carom.-H), 61.7 (CO2CH2), 61.7 (CO2CH2), 52.7 

(CO2CH3), 49.5 (HC-CO2Et), 39.5 (C3), 35.6 (C4), 26.4 (C3-CH2), 14.0 (CH3). IR (ATR): 

1741, 1731, 1368, 1264, 1203, 1156 cm-1. MS (EI) m/z (%): 394 (M+, 5), 349 (26), 320 

(29), 302 (100), 288 (17), 275 (46), 247 (53), 215 (91), 187 (47), 175 (44), 159 (43), 

131 (46), 91 (42), 77 (34), 55 (30). HRMS (ESI+): Calculated for [C19H23O9]+: 395.1342 

[(M+H)+]; found: 395.1348. The ee was determined by HPLC using a Chiralpak ASH 

column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 24.75 min, τminor = 

42.25 min (>99% ee). [α]D
rt: -201.2 (c = 1.0, CH2Cl2). Minor diastereoisomer 3R,4S: 1H 
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NMR (300 MHz, CDCl3) δ 7.42 (d, J = 1.8 Hz, 1H, O-Carom.-H), 6.85 (d, J = 3.5 Hz, 1H, O-

Carom.-Carom.-H), 6.45 (dd, J = 3.5, 1.8 Hz, 1H, O-Carom.-H-Carom.-H), 6.41 (d, J = 5.3 Hz, 

1H, CH5), 5.52 (dd, J = 5.4, 1.5 Hz, 1H, CH4), 4.39–4.29 (m, 2H, CO2CH2), 4.17 (q, J = 

7.1 Hz, 2H, CO2CH2), 3.97 (dd, J = 11.9, 3.4 Hz, 1H, HC-CO2Et), 3.82 (s, 3H, CH3), 3.63 

(ddd, J = 12.1, 3.9, 1.6 Hz, 1H, CH3), 2.55 (ddd, J = 14.1, 11.8, 3.9 Hz, 1H, C3-CHaHb), 

2.22 (ddd, J = 14.0, 12.1, 3.4 Hz, 1H, C3-CHaHb), 1.33 (t, J = 7.1 Hz, 3H, CH2CH3), 1.25 

(t, J = 7.1 Hz, 3H, CH2CH3). 13C NMR (75 MHz, CDCl3) (δ, ppm) 169.2 (CO2Et), 168.9 

(CO2Et), 168.5 (C2), 168.2 (C6-CO), 149.4 (O-Carom.), 143.4 (O-Carom.-H), 129.9 (C6), 

111.9 (C5), 111.9 (O-Carom.-H-Carom.-H), 109.2 (O-Carom.-Carom.-H), 76.4 (C4), 61.7 

(CO2CH2), 61.7 (CO2CH2), 53.1 (CO2CH3), 49.2 (HC-CO2Et), 38.7 (C3), 32.0 (C3-CH2), 14.1 

(CH3), 14.0 (CH3). IR (ATR): 1741, 1727, 1440, 1372, 1268, 1257, 1156 cm-1. MS (EI) 

m/z (%): 394 (M+ - H, 6), 349 (24), 302 (100), 275 (46), 247 (59), 215 (99), 186 (46), 

175 (49), 159 (45), 131 (42), 91 (42), 55 (30). HRMS (ESI+): Calculated for [C19H23O9]+: 

395.1342 [(M+H)+]; found: 395.1346. The ee was determined by HPLC using a 

Chiralpak ASH column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 28.99 

min, τminor = 50.56 min (93% ee). [α]D
rt: -3.4 (c = 0.5, CH2Cl2). M.p.: 92-94ºC. 

 

Diethyl 2-((6-(methoxycarbonyl)-2-oxo-4-(thiophen-2-yl)-

3,4-dihydro-2H-pyran-3-yl)methyl)malonate (13j). 

Following the general procedure 13j (56 mg, 0.14 mmol) 

was isolated by FC (n-hexane/Et2O gradient from 7:3 to 1:1) 

after 36 h in 68% yield (dr: 1.5:1) starting from aldehyde 

11a (64 mg, 0.30 mmol) and ketoester 12j (40 mg, 0.20 mmol) in the presence of 3c 

(8 mg, 0.02 mmol) and N,N-diisopropylethylamine (7 µL, 0.04 mmol) and using 

dichloromethane (2 mL) as solvent. Mayor diastereoisomer 3R,4R: 1H NMR (300 

MHz, CDCl3) (* denotes partially overlapped signals) δ 7.23 (dd, J = 5.1, 1.2 Hz, 1H, S-

Carom.-Carom.-H), 6.96 (dd, J = 5.2, 3.5 Hz, 1H, S-Carom.-H-Carom.-H), 6.86 (dd, J = 3.6, 1.2 

Hz, 1H, S-Carom.-H), 6.74 (d, J = 6.7 Hz, 1H, CH5), 4.29–4.06 (m, 4H, 2 × CO2CH2, CH4), 
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3.86 (s, 3H, CH3), 3.72 (dd, J = 9.4, 5.6 Hz, 1H, HC-CO2Et), 3.02 (ddd, J = 8.8, 6.8, 4.4 

Hz, 1H, CH3), 2.15 (ddd, J = 14.4, 8.9, 5.6 Hz, 1H, C3-CHaHb), 1.99 (ddd, J = 14.2, 9.4, 

4.4 Hz, 1H, C3-CHaHb), 1.25* (t, J = 7.1 Hz, 3H, CH2CH3), 1.24* (t, J = 7.1 Hz, 3H, 

CH2CH3). 13C NMR (75 MHz, CDCl3) (δ, ppm) 169.0 (CO2Et), 168.8 (CO2Et), 167.7 (C2), 

160.7 (C6-CO), 141.9 (S-Carom.), 137.0 (C6), 127.6 (S-Carom.-H-Carom.-H), 126.5 (S-Carom.-

Carom.-H), 125.8 (S-Carom.-H), 117.8 (C5), 61.7 (CO2CH2), 61.7 (CO2CH2), 52.8 (CO2CH3), 

49.5 (HC-CO2Et), 41.4 (C3), 37.2 (C4), 26.6 (C3-CH2), 14.0 (CH3). IR (ATR): 1770, 1720, 

1662, 1437, 1368, 1314, 1282, 1239, 1210, 1174, 1109 cm-1. MS (EI) m/z (%): 410 

(M+, 2), 382 (6), 350 (4), 319 (10), 258 (9), 249 (11), 237 (29), 186 (29), 163 (8), 137 

(100), 109 (19), 55 (10). HRMS (ESI+): Calculated for [C19H23O8S]+: 411.1114 [(M+H)+]; 

found: 411.1117. The ee was determined by HPLC using a Chiralpak ASH column [n-

hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 21.56 min, τminor = 41.55 min 

(>99% ee). [α]D
rt: -219.9 (c = 0.3, CH2Cl2). M.p.: 95-97ºC. Minor diastereoisomer 

3R,4S: 1H NMR (300 MHz, CDCl3) (* denotes partially overlapped signals) δ 7.44 (dd, J 

= 3.7, 1.1 Hz, 1H, S-Carom.-H), 7.28 (dd, J = 5.2, 1.1 Hz, 1H, S-Carom.-Carom.-H), 7.05 (dd, J 

= 5.1, 3.7 Hz, 1H, S-Carom.-H-Carom.-H), 6.28 (d, J = 5.4 Hz, 1H, CH5), 5.49 (dd, J = 5.4, 1.5 

Hz, 1H, CH4), 4.40–4.22 (m, 2H, CO2CH2), 4.16 (q, J = 7.1 Hz, 2H, CO2CH2), 3.94 (dd, J = 

11.8, 3.5 Hz, 1H, HC-CO2Et), 3.84* (s, 3H, CH3), 3.82* (ddd, J = 11.8, 4.1, 1.5 Hz, 1H, 

CH3), 2.59 (ddd, J = 14.0, 11.8, 4.1 Hz, 1H, C3-CHaHb), 2.20 (ddd, J = 14.1, 12.1, 3.5 Hz, 

1H, C3-CHaHb), 1.33* (t, J = 7.2 Hz, 3H, CH2CH3), 1.25* (t, J = 7.1 Hz, 3H, CH2CH3). 13C 

NMR (75 MHz, CDCl3) (δ, ppm) 169.1 (CO2Et), 168.9 (CO2Et), 168.6 (C2), 168.1 (C6-

CO), 139.2 (S-Carom.), 134.3 (C6), 128.2 (S-Carom.-H-Carom.-H), 126.2 (S-Carom.-Carom.-H), 

125.7 (S-Carom.-H), 113.2 (C5), 76.1 (C4), 61.7 (CO2CH2), 61.7 (CO2CH2), 53.2 (CO2CH3), 

49.2 (HC-CO2Et), 40.4 (C3), 31.8 (C3-CH2), 14.1 (CH3), 14.0 (CH3). IR (ATR): 1752, 1727, 

1441, 1372, 1311, 1264, 1225, 1164, 1135, 1099 cm-1. MS (EI) m/z (%): 410 (M+, 5), 

392 (8), 365 (35), 319 (96), 291 (61), 263 (89), 231 (100), 203 (90), 191 (60), 175 (57), 

147 (66), 115 (30), 91 (25), 55 (27). HRMS (ESI+): Calculated for [C19H23O8S]+: 

411.1114 [(M+H)+]; found: 411.1124. The ee was determined by HPLC using a 
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Chiralcel OD3 column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 20.46 

min, τminor = 32.81 min (61% ee). [α]D
rt: -13.8 (c = 0.5, CH2Cl2). M.p.: 86-88ºC 

 

Diethyl 2-(((3R,4R)-6-(ethoxycarbonyl)-4-methyl-2-oxo-3,4-

dihydro-2H-pyran-3-yl)methyl)malonate (13k). Following the 

general procedure 13k (59 mg, 0.17 mmol) was isolated by FC 

(n-hexane/EtOAc gradient from 9:1 to 8:2) after 24 h in 83% 

yield starting from aldehyde 11a (64 mg, 0.30 mmol) and 

ketoester 12k (28 mg, 0.20 mmol) in the presence of 3n (8 mg, 0.02 mmol) and N,N-

diisopropylethylamine (7 µL, 0.04 mmol) and using dichloromethane (2 mL) as 

solvent. 1H NMR (300 MHz, CDCl3) (* denotes partially overlapped signals) δ 6.58 (d, 

J = 6.2 Hz, 1H, CH5), 4.28 (q, J = 7.2 Hz, 2H, C6-CO2CH2), 4.24–4.11 (m, 4H, HC-

CO2CH2), 3.67 (dd, J = 9.5, 5.4 Hz, 1H, HC-CO2Et), 2.82-2.60 (m, 1H, CH3, CH4), 2.40 

(ddd, J = 14.2, 8.8, 5.4 Hz, 1H, C3-CHaHb), 2.01 (ddd, J = 14.0, 9.5, 3.9 Hz, 1H, C3-

CHaHb), 1.32* (t, J = 7.1 Hz, 3H, C6-CO2CH2CH3), 1.26* (t, J = 7.1 Hz, 3H, HC-

CO2CH2CH3), 1.25* (t, J = 7.1 Hz, 3H, HC-CO2CH2CH3), 1.02 (d, J = 6.8 Hz, 3H, C4-CH3). 
13C NMR (75 MHz, CDCl3) (δ, ppm) 169.1 (CO2Et), 168.8 (CO2Et), 168.8 (C2), 160.3 (C6-

CO), 141.7 (C6), 120.5 (C5), 61.9 (C6-CO2CH2), 61.7 (CO2CH2), 61.7 (CO2CH2), 49.7 (HC-

CO2Et), 40.5 (C3), 30.5 (C4), 26.1 (C3-CH2), 14.1 (CO2CH2CH3), 14.0 (CO2CH2CH3), 13.5 

(C4-CH3).IR (ATR): 1765, 1727, 1372, 1304, 1254, 1092 cm-1. MS (EI) m/z (%): 341 (M+ 

- H, 1), 327 (20), 311 (), 281 (29), 246 (10), 237 (34), 209 (20), 186 (100), 161 (34), 

140 (33), 115 (23), 95 (38), 81 (16), 69 (86), 55 (38). HRMS (ESI+): Calculated for 

[C17H25O8]+: 357.1549 [(M+H)+]; found: 357.1559. The ee was determined by HPLC 

using a Chiralpak ASH column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor 

= 14.47 min, τminor = 20.99 min (>99% ee). [α]D
rt: -53.4 (c = 1.0, CH2Cl2).  
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Diethyl 2-(((3R,4R)-6-(ethoxycarbonyl)-4-isopropyl-2-oxo-

3,4-dihydro-2H-pyran-3-yl)methyl)malonate (13l). 

Following the general procedure 13l (65 mg, 0.17 mmol) 

was isolated by FC (n-hexane/EtOAc gradient from 9:1 to 

8:2) after 24 h in 85% yield starting from aldehyde 11a (64 

mg, 0.30 mmol) and ketoester 12l (34 mg, 0.20 mmol) in the presence of 3n (8 mg, 

0.02 mmol) and N,N-diisopropylethylamine (7 µL, 0.04 mmol) and using 

dichloromethane (2 mL) as solvent. 1H NMR (300 MHz, CDCl3) (* denotes partially 

overlapped signals) δ 6.48 (d, J = 6.1 Hz, 1H, CH5), 4.30 (q, J = 7.2 Hz, 2H, C6-CO2CH2), 

4.26–4.09 (m, 4H, CH(CO2CH2CH3)2), 3.71 (dd, J = 9.9, 5.2 Hz, 1H, HC-CO2Et), 2.72 

(ddd, J = 9.4, 7.2, 4.0 Hz, 1H, CH3), 2.62 (ddd, J = 7.2, 6.2, 4.6 Hz, 1H, CH4), 2.37 (ddd, 

J = 14.6, 9.5, 5.2 Hz, 1H, C3-CHaHb), 2.16-1.94 (m, 2H, C3-CHaHb, C4-CH), 1.34 (t, J = 7.1 

Hz, 3H, C6-CO2CH2CH3), 1.26* (t, J = 7.1 Hz, 3H, HC-CO2CH2CH3), 1.25* (t, J = 7.1 Hz, 

3H, HC-CO2CH2CH3), 0.98 (d, J = 6.9 Hz, 3H, HC-CH3), 0.78 (d, J = 6.7 Hz, 3H, HC-CH3). 
13C NMR (75 MHz, CDCl3) (δ, ppm) 169.7 (CO2Et), 169.1 (CO2Et), 168.8 (C2), 160.2 (C6-

CO), 142.9 (C6), 116.0 (C5), 61.9 (C6-CO2CH2), 61.7 (CO2CH2), 61.7 (CO2CH2), 49.8 (HC-

CO2Et), 41.7 (C3), 38.8 (C4), 27.6 (C4-CH), 25.7 (C3-CH2), 21.1 (CH3CH), 14.1 

(CO2CH2CH3), 14.0 (CO2CH2CH3). IR (ATR): 1770, 1727, 1659, 1368, 1307, 1250, 1124, 

1095 cm-1. MS (EI) m/z (%): 355 (M+ - Me, 16), 339 (11), 309 (18), 295 (48), 265 (21), 

249 (100), 221 (21), 211 (52), 186 (66), 161 (16), 141 (24), 125 (36), 115 (25), 95 (53), 

81 (14), 55 (36). HRMS (ESI+): Calculated for [C19H29O8]+: 385.1862 [(M+H)+]; found: 

385.1871. The ee was determined by HPLC using a Chiralpak ASH column [n-

hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 9.10 min, τminor = 13.10 min 

(>99% ee). [α]D
rt: -90.9 (c = 1.0, CH2Cl2).  
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Diethyl 2-(((3R,4R)-6-(ethoxycarbonyl)-4-isopropyl-2-oxo-

3,4-dihydro-2H-pyran-3-yl)methyl)malonate (13m). 

Following the general procedure 13m (54 mg, 0.12 mmol) 

was isolated by FC (n-hexane/EtOAc gradient from 9:1 to 

8:2) after 24 h in 58% yield starting from aldehyde 11a (64 

mg, 0.30 mmol) and ketoester 12m (50 mg, 0.20 mmol) in the presence of 3n (8 mg, 

0.02 mmol) and N,N-diisopropylethylamine (7 µL, 0.04 mmol) and using 

dichloromethane (2 mL) as solvent. 1H NMR (300 MHz, CDCl3) (* denotes partially 

overlapped signals) δ 7.36-7.19 (m, 5H, Carom.-H), 6.45 (d, J = 6.1 Hz, 1H, CH5), 4.53-

4.57 (m, 2H, PhCH2), 4.29 (q, J = 7.1 Hz, 2H, C6-CO2CH2), 4.26–4.04 (m, 4H, 

CH(CO2CH2CH3)2), 3.77 (dd, J = 9.7, 5.4 Hz, 1H, HC-CO2Et), 3.55 (dd, J = 9.7, 3.2 Hz, 

1H, CHaHb-O), 3.43 (dd, J = 9.7, 2.2 Hz, 1H, C4-CHaHb), 2.81-2.65 (m, 2H, CH3, CH4), 

2.40 (ddd, J = 13.8, 8.5, 5.3 Hz, 1H, C3-CHaHb), 2.03 (ddd, J = 13.3, 9.7, 3.4 Hz, 1H, C3-

CHaHb), 1.33 (t, J = 7.1 Hz, 3H, C=C-CO2CH2CH3), 1.26* (t, J = 7.2 Hz, 3H, HC-

CO2CH2CH3), 1.24* (t, J = 7.1 Hz, 3H, HC-CO2CH2CH3). 13C NMR (75 MHz, CDCl3) (δ, 

ppm) 169.2 (CO2Et), 168.9 (CO2Et), 168.7 (C2), 160.4 (C6-CO), 143.5 (C6), 137.3 (Carom.), 

128.4 (Carom.-H), 127.7 (Carom.-H-Carom.-H-Carom.-H-Carom.-H-Carom.-H), 127.6 (Carom.-H), 

115.7 (C5), 73.4 (Ph-CH2-O), 66.8 (C4-CH2), 61.8 (C6-CO2CH2), 61.6 (CO2CH2), 49.8 (HC-

CO2Et), 37.5 (C3), 37.0 (C4), 25.9 (C3-CH2), 14.1 (CO2CH2CH3), 14.0 (CO2CH2CH3), 14.0 

(CO2CH2CH3). IR (ATR): 1770, 1727, 1451, 1372, 1257, 1095 cm-1. MS (EI) m/z (%): 371 

(M+ - C2H11, 2), 353 (2), 325 (5), 295 (6), 279 (100), 249 (25), 181 (4), 125 (3), 91 (100), 

65 (3). HRMS (ESI+): Calculated for [C24H31O9]+: 447.2019 [(M+H)+]; found: 447.2018. 

The ee was determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH 

(85:15)]; flow rate 1.0 mL/min; τmajor = 19.40 min, τminor = 29.08 min (>99% ee). [α]D
rt: 

-35.0 (c = 1.0, CH2Cl2).  
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Diethyl 2-(((3R,4R)-6-(ethoxycarbonyl)-2-oxo-4-

phenethyl-3,4-dihydro-2H-pyran-3-yl)methyl)malonate 

(13n). Following the general procedure 13n (64 mg, 0.14 

mmol) was isolated by FC (n-hexane/EtOAc gradient from 

9:1 to 8:2) after 24 h in 72% yield starting from aldehyde 

11a (64 mg, 0.30 mmol) and ketoester 5n (46 mg, 0.20 mmol) in the presence of 3n 

(8 mg, 0.02 mmol) and N,N-diisopropylethylamine (7 µL, 0.04 mmol) and using 

dichloromethane (2 mL) as solvent. 1H NMR (300 MHz, CDCl3) (* denotes partially 

overlapped signals) δ 7.33-7.23 (m, 2H, Carom.-H), 7.23-7.11 (m, 3H, Carom.-H), 6.63 (d, J 

= 6.3 Hz, 1H, CH5), 4.30 (q, J = 7.3 Hz, 2H, C6-CO2CH2), 4.25–4.08 (m, 4H, 

CH(CO2CH2CH3)2), 3.61 (dd, J = 9.7, 5.1 Hz, 1H, HC-CO2Et), 2.82-2.67 (m, 2H, PhCHaHb, 

CH3), 2.67-2.49 (m, 2H, CH4, PhCHaHb), 2.37 (ddd, J = 14.6, 9.6, 5.2 Hz, 1H, C3-CHaHb), 

2.03 (ddd, J = 14.1, 9.7, 4.1 Hz, 1H, C3-CHaHb), 1.96-1.81 (C4-CHaHb), 1.65-1.46 (m, 1H, 

C4-CHaHb), 1.34 (t, J = 7.1 Hz, 3H, C6-CO2CH2CH3), 1.25* (t, J = 7.1 Hz, 3H, HC-

CO2CH2CH3), 1.25* (t, J = 7.1 Hz, 3H, HC-CO2CH2CH3). 13C NMR (75 MHz, CDCl3) (δ, 

ppm) 169.0 (CO2Et), 168.9 (CO2Et), 168.8 (C2), 160.2 (C6-CO), 142.0 (C6), 140.6 (Carom.), 

128.6 (Carom.-H), 128.2 (Carom.-H), 126.4 (Carom.-H-Carom.-H-Carom.-H-Carom.-H-Carom.-H), 

119.2 (C5), 62.0 (C6-CO2CH2), 61.7 (CO2CH2), 61.7 (CO2CH2), 49.7 (HC-CO2Et), 39.9 (C3), 

34.9 (C4), 32.8 (PhCH2), 30.8 (C4-CH2), 26.0 (C3-CH2), 14.1 (CO2CH2CH3), 14.0 

(CO2CH2CH3). IR (ATR): 1770, 1727, 1372, 1308, 1268, 1095 cm-1. MS (EI) m/z (%): 446 

(M+, 1), 417 (11), 371 (14), 325 (10), 295 (9), 273 (29), 249 (15), 186 (34), 159 (12), 

129 (14), 115 (13), 105 (18), 91 (100), 77 (7), 65 (8), 55 (17). HRMS (ESI+): Calculated 

for [C24H31O8]+: 447.2019 [(M+H)+]; found: 447.2018. The ee was determined by 

HPLC using a Chiralcel OD3 column [n-hexane/i-PrOH (98:2)]; flow rate 1.0 mL/min; 

τmajor = 17.28 min, τminor = 20.52 min (97% ee). [α]D
rt: -73.3 (c = 1.0, CH2Cl2).  
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3.2. Aminocatalytic activation of cyclopropanes towards domino synthesis 

of quinoline derivatives 

COR2R1OC
Br

Br

+
R1OC COR2

R1OC COR2

OH

IBX,

EtOAc, reflux

R1OC COR2

O
14a-d

CsCO3
,

THF, 60ºC, 12 h

or
K2CO3,

 

EtOH, reflux, 16h

1. BH3·SMe2,
 
THF, 0ºC

2. NaOH, H2O2,
 
50ºC

14a: R1 = R2= OEt
14b: R1 = R2= OMe
14c: R1 = R2= OBn
14d: R1 = Me, R2= OEt

IIa-d

IIIa-d

 

3.2.1. Synthesis of vynilcyclopropanes IIa-d 

General procedure (A):16 To a solution of the corresponding malonate (10 mmol, 1 

eq) and (E)-1,4-dibromobut-2-ene (10 mmol, 1 eq) in dry THF (50 mL) was added 

cesium carbonate (25 mmol, 2.5 eq). The reaction mixture was then heated to 60ºC 

over night. After cooling down to r.t., the reaction was filtered over celite washed 

with Et2O. The organic phase was washed with satured aq. NaHCO3 (20 mL), 

followed by water (20 mL) and brine (20 mL). After filtration over anh. Na2SO4, the 

solvent was removed under reduced pressure. Pure products were isolated after 

flash column chromatography purification. 

General procedure (B):17 To a solution of the corresponding malonate (5 mmol, 1 eq) 

and (E)-1,4-dibromobut-2-ene (5.5 mmol, 1.1 eq) in dry EtOH (15 mL) was added 

potassium carbonate (10 mmol, 2 eq). The reaction mixture was then heated to 

reflux temperature and stirred for 16 h. After cooling down to r.t., the reaction was 

16 Plietker, B.; Holzwarth, M. S.; Dieskau, A. P. J. Am. Chem. Soc. 2012, 134, 5048. 
17 Bowman, R. K.; Johnson, J.S. Org. Lett. 2006, 8, 573. 
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filtered through celite and the organic layer was washed with satured aq. NH4Cl (20 

mL) and extracted with EtOAc (3x15 mL). The combined organics layers were dried 

over anhydrous Na2SO4, the solvent was removed under reduced pressure. The 

product was isolated after flash column chromatography purification as a mixture of 

diastereoisomers. 

Diethyl 2-vinylcyclopropane-1,1-dicarboxylate (IIa). Following the 

general procedure (A) IIa (3.498 g, 16.48 mmol) was isolated by FC 

(hexanes/Et2O gradient from 9:1 to 8:2) after 48 h in 82% yield as a colorless oil 

starting from diethyl malonate (3.0 mL, 20 mmol), (E)-1,4-dibromobut-2-ene (4.28 g, 

20 mmol) and cesium carbonate (16.30 g, 50 mmol) in THF (100 mL). 1H NMR (300 

MHz, CDCl3) (* denotes partially solaped signals) δ 5.51–5.35 (m, 1H, CHa=CHbHc ), 

5.28 (dd, J = 17.0, 1.7 Hz, 1H, CHa=CHbHc), 5.12 (dd, J = 10.0, 1.5 Hz, 1H, CHa=CHbHc), 

4.34–4.01 (m, 4H, CH2CH3), 2.56 (q, J = 8.2 Hz, 1H, CHCH=CH2), 1.71-1.62 (m, 1H, 

CHaHbC), 1.54 (dd, J = 9.0, 4.9 Hz, 1H, CHaHbC), 1.26* (t, J = 7.1, 3H, CH3), 1.25* (t, J = 

7.1, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ 168.3, 166.1 (C=O), 132.8 (CH=CH2), 117.2 

(CH=CH2), 60.5, 60.3 (CH2), 35.1 (C-CO), 29.8 (CHCH=CH2), 19.1 (C-CH2), 13.3, 13.2 

(CH3). IR (ATR): 2984, 1724, 1637, 1268, 1196 cm-1. MS (EI) m/z (%): 212 (M+, 19), 166 

(73), 138 (45), 121 (100), 110 (41), 94 (55), 79 (48), 66 (92), 55 (20). 

Dimethyl 2-vinylcyclopropane-1,1-dicarboxylate (IIb). 

Following the general procedure IIb (1.583 g, 8.59 mmol) was 

isolated by FC (hexanes/Et2O gradient from 9:1 to 8:2) after 48 h in 86% yield as a 

colorless oil starting from dimethyl malonate (1.1 mL, 10 mmol), (E)-1,4-dibromobut-

2-ene (2.14 g, 10 mmol) and cesium carbonate (8.15 g, 25 mmol) in THF (50 mL). 1H 

NMR (300 MHz, CDCl3) δ 5.51–5.36 (m, 1H, CHa=CHbHc), 5.29 (dd, J = 17.0, 1.6 Hz, 1H, 

CHa=CHbHc), 5.14 (dd, J = 9.9, 1.7 Hz, 1H, CHa=CHbHc), 3.74 (s, 6H, CH3), 2.58 (q, J = 

8.2 Hz, 1H, CHCH=CH2), 1.72 (dd, J = 7.5, 5.0 Hz, 1H, CHaHbC), 1.64–1.52 (m, 1H, 

EtO2C CO2Et

MeO2C CO2Me
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CHaHbC). 13C NMR (75 MHz, CDCl3) δ 170.1, 167.8 (C=O), 133.0 (CH=CH2), 118.7 

(CH=CH2), 52.8, 52.6 (CH3), 35.8 (CCO), 31.5 (CHCH=CH2), 20.6 (CCH2). IR (ATR): 2955, 

1720, 1634, 1267, 1207 cm-1. MS (70 eV) m/z (%): 184 (M+, 15), 169 (7), 152 (94), 124 

(100), 121 (77), 113 (13), 93 (67), 79 (65), 71 (65), 65 (77), 59 (97), 53 (33). 

Dibenzyl 2-vinylcyclopropane-1,1-dicarboxylate (IIc). Following 

the general procedure IIc (3.037 g, 9.04 mmol) was isolated by 

FC (hexanes/Et2O gradient from 9:1 to 8:2) after 48 h in 90% yield as a colorless oil 

starting from dibenzyl malonate (2.5 mL, 10 mmol), (E)-1,4-dibromobut-2-ene (2.14 

g, 10 mmol) and cesium carbonate (8.15 g, 25 mmol) in THF (50 mL). 1H NMR (300 

MHz, CDCl3) δ 7.35 (s, 10H, CHarom), 5.61–5.43 (m, 1H, CHa=CHbHc), 5.36 (s, 1H, 

CHa=CHbHc), 5.29 (dd, J = 9.62, 3.0 Hz, 1H, CHa=CHbHc), 5.26–5.11 (m, 4H, OCH2), 2.75 

(q, J = 8.3 Hz, 1H, CHCH=CH2), 1.84 (dd, J = 7.5, 4.9 Hz, 1H, CHaHbC), 1.66 (dd, J = 9.0, 

4.8 Hz, 1H, CHaHbC). 13C NMR (75 MHz, CDCl3) δ 168.8, 166.7 (C=O), 135.3, 135.2 

(Carom), 132.7 (CH=CH2), 128.2, 128.1, 128.0, 127.9, 127.8, 127.7 (CHarom), 118.4 

(CH=CH2), 66.9, 66.8 (CH2), 35.6 (CCO), 31.2 (CHCH=CH2), 20.3 (CCH2). IR (ATR): 3031, 

1720, 1501, 1268, 1188 cm-1. MS (70 eV) m/z (%): 107 (M+-C14H3O3
·, 2), 91 (100), 77 

(6), 65 (11), 51 (3). 

Ethyl 1-acetyl-2-vinylcyclopropane-1-carboxylate (IId): Following 

the general procedure (B) IId (710mg, 3.9 mmol) was isolated by FC (hexanes/Et2O 

gradient from 19:1 to 9:1) after 16h in 78% yield as a colorless oil starting from ethyl 

acetoacetate (886 µL, 5 mmol), (E)-1,4-dibromobut-2-ene (1.17 g, 5.5 mmol) and 

potassium carbonate (1.38 g, 10 mmol) in EtOH (15 mL). 1H NMR (300 MHz, CDCl3) (* 

denotes minor diastereoisomer) δ 5.62-5.42 (m, 0.6H, Calkene-H), 5.37-5.22 (m, 1.4H, 

Calkene-H), 5.20-5.08 (m, 0.9H, Calkene-H), 4.33–4.13 (m, 2H, OCH2), 2.71-2.54 (m, 1H, 

CH), 2.40 (s, 1.8H, COCH3), 2.32* (s, 1.0H, COCH3), 1.84 (dd, J = 7.5, 4.6 Hz, 0.4H, CH-

CH2), 1.76* (dd, J = 7.7, 4.3 Hz, 0.6H, CH-CH2), 1.65-1.49 (m, 1H, CH-CH2), 1.37-1.21 

BnO2C CO2Bn

MeOC CO2Et
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(m, 3H, OCH2CH3). 13C NMR (75 MHz, CDCl3) δ 201.5 (COMe), 200.5*(COMe), 170.1* 

(CO2Et), 168.5 (CO2Et), 133.0 (HC=CH2), 132.7* (HC=CH2), 118.7* (HC=CH2), 118.6 

(HC=CH2), 61.3*(OCH2), 61.2 (OCH2), 43.0 (C-CO2Et), 42.5* (C-CO2Et), 34.0 (COCH3), 

33.3*(COCH3), 30.3*(CH-CH2), 29.3 (CH-CH2), 22.8 (CH), 19.9* (CH), 14.1 (OCH2CH3), 

14.0*(OCH2CH3). IR (ATR): 2984, 1724, 1699, 1639, 1260, 1181 cm-1. MS (70 eV) m/z 

(%): 182 (M+, 3), 167 (2), 139 (61), 121 (100), 109 (21), 94 (54), 66 (72), 55 (12). 

 

3.2.2. Synthesis of hydroxyethylcyclopropane carboxylates IIIa-d 

 

General procedure: A borane dimethylsulfide complex (2M in THF) (1.2 eq) was 

added to a solution of the corresponding vinylcyclopropane (IIa-d) (1 eq) in dry THF 

(0,53M) at 0ºC. The reaction mixture was stirred at 0ºC for 3h. Then NaOH 3M (1.2 

eq) was added dropwise, followed by H2O2 (1.2 eq). The mixture was then heated to 

50ºC over night. The reaction was quenched with H2O (5 mL) and extracted with 

EtOAc (3 x 15 mL). The organic extracts were washed with brine (20 mL). After 

filtration over anh. Na2SO4, the solvent was removed under reduced pressure. Pure 

products (IIIa-d) were isolated after flash column chromatography purification. 

Diethyl 2-(2-hydroxyethyl)cyclopropane-1,1-dicarboxylate 

(IIIa). Following the general procedure IIIa (660 mg, 2.87 

mmol) was isolated by FC (hexanes/EtOAc gradient from 8:2 to 1:1) after 16 h in 56% 

yield as a colorless oil starting from IIa (1.093 g, 5.15 mmol), borane dimethylsulfide 

complex (3.09 mL, 6.18 mmol), NaOH (2.06 mL, 6.18 mmol), and H2O2 (2.06mL 6.18 

mmol) in THF (9.71 mL) 1H NMR (300 MHz, CDCl3) δ 4.09–3.81 (m, 4H, CH2), 3.43 (t, J 

= 6.4 Hz, 2H, CH2OH), 1.81–1.66 (m, 1H, CHaHbC), 1.54-1.38 (m, 1H, CHaHbC), 1.31–

1.09 (m, 3H, CHCH2CH2), 1.09-0.97 (m, 6H, CH3). 13C NMR (75 MHz, CDCl3) δ 170.1, 

167.9 (C=O), 61.1, 61.0 (OCH2), 60.9 (CH2OH), 33.4 (CCO), 31.4 (CH2CH2OH), 24.7 

(CHCH2CH2), 20.1 (CCH2), 13.7, 13.6 (CH3). IR (ATR): 2922, 1720, 1285, 1203, 1041, 

EtO2C CO2Et

OH
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1024 cm-1. MS (70 eV) m/z (%): 185 (M+-C2H5O·, 19), 160 (43), 139 (53), 125 (24), 108 

(100), 97 (15), 81 (23), 67(23), 53 (45). 

Dimethyl 2-(2-hydroxyethyl)cyclopropane-1,1-

dicarboxylate (IIIb). Following the general procedure IIIb 

(172 mg, 0.85 mmol) was isolated by FC (hexanes/EtOAc 

gradient from 8:2 to 1:1) after 16 h in 33% yield as a colorless oil starting from IIb 

(471 mg, 2.55 mmol), borane dimethylsulfide complex (1.53 mL, 3.06 mmol), NaOH 

(1.02 mL, 3.06 mmol), and H2O2 (1.02 mL 3.06 mmol) in THF (4.81 mL). 1H NMR (300 

MHz, CDCl3) δ 3.69–3.51 (m, 8H, CH3, CH2OH), 2.89-2.77 (bs, 1H, OH), 1.96–1.76 (m, 

1H, CHaHbC), 1.65–1.49 (m, 1H, CHaHbC), 1.46–1.20 (m, 3H, CHCH2CH2). 13C NMR (75 

MHz, CDCl3) δ 170.7, 168.7 (C=O), 61.3 (CH2OH), 52.5, 52.4 (CH3), 33.4 (CCO), 31.6 

(CH2CH2OH), 25.5 (CHCH2CH2), 20.7 (CCH2). IR (ATR): 3441, 1719, 1282, 1214 cm-1. 

MS (70 eV) m/z (%): 171 (M+-CH3O·, 7), 152 (8), 139 (50), 132 (53), 124 (11), 97 (8), 

80 (30), 67(20), 53 (52). HRMS: Calculated for [C9H15O5]+: 203.0919 [(M+H)+]; found: 

203.0927. 

Dibenzyl 2-(2-hydroxyethyl)cyclopropane-1,1-dicarboxylate 

(IIIc). Following the general procedure IIIc (1.47 g, 4.16 mmol) was isolated by FC (n-

hexane/EtOAc gradient from 8:2 to 1:1) after 16 h in 57% yield as a colorless oil 

starting from IIc (2.45 g, 7.28 mmol), borane dimethylsulfide complex (4.37 mL, 8.74 

mmol), NaOH (2.91 mL, 8.74 mmol), and H2O2 2.91 mL 8.74 mmol) in THF (13.74 mL) 
1H NMR (300 MHz, CDCl3) δ 7.43–7.19 (m, 10H, CHarom), 5.23–5.06 (m, 4H, OCH2), 

3.70–3.50 (m, 2H, CH2OH), 2.08-1.96 (m, 1H, CHaHbC), 1.70–1.52 (m, 1H, CHaHbC), 

1.51-1.37 (m, 3H, CHCH2CH2). 13C NMR (75 MHz, CDCl3) δ 170.1, 168.2 (C=O), 135.6, 

135.5 (Carom), 128.6, 128.6, 128.6, 128.6, 128.5, 128.4, 128.2, 128.0 (CHarom), 67.6, 

67.3 (OCH2), 61.9 (CH2OH), 33.91 (CCO), 31.7 (CH2CH2OH), 25.8 (CHCH2CH), 21.0 

(CCH2). IR (ATR): 3487, 1720, 1285, 1192, 1070, 1038 cm-1. MS (70 eV) m/z (%): 247 

MeO2C CO2Me

OH

BnO2C CO2Bn

OH
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(M+-C7H7O·, 1), 140 (43), 112 (82), 91 (100), 77 (18), 65 (26), 51 (13). HRMS: 

Calculated for [C14H15O4]+: 247.0970 [(M+H)-BnOH+]; found: 247.0985. 

Ethyl 1-acetyl-2-(2-hydroxyethyl)cyclopropane-1-

carboxylate (IIId). Following the general procedure IIId (275 

mg, 1.38 mmol) was isolated by FC (hexanes/EtOAc gradient 

from 9:1 to 1:1) after 1 h in 18% yield as a colorless oil starting from IId (1.01g, 6.0 

mmol), borane dimethylsulfide complex (3.60 mL, 7.20 mmol), NaOH (2.4 mL, 7.20 

mmol), and H2O2 (2.4 mL 7.20 mmol) in THF (11.3 mL). 1H NMR (300 MHz, CDCl3) (* 

denotes minor diastereoisomer signals) δ 4.23–4.07 (m, 2H, COCH2), 3.56 (t, J = 6.5 

Hz, 2H, CH2OH), 2.97-2.81 (bs, 1H, OH), 2.30* (s, 3H, COCH3), 2.25 (s, 3H, COCH3), 

2.00–1.83 (m, 1H, CHaHbC), 1.71-1.39 (m, 2H, CHaHbC), 1.41–1.27 (m, 2H, CHCH2CH2), 

1.21 (t, J = 7.1 Hz, 3H, CH2CH3). 13C NMR (75 MHz, CDCl3) (* denotes minor 

diastereoisomer signals) δ 203.1, 202.3*, 171.1*, 169.7, 61.7*, 61.5, 61.4, 61.3*, 

41.2, 40.2*, 31.3, 30.7*, 30.2*, 29.1, 28.6*, 28.0, 23.1, 20.4*, 14.1, 14.0*. IR (ATR): 

3422, 2926, 1720, 1695, 1311, 1189 cm-1. MS (70 eV) m/z (%): 185 (M+-OH·, 2), 169 

(12), 154 (41), 139 (56), 135 (17), 130 (100), 124 (80), 109 (51), 102 (21), 97 (54), 81 

(82), 67 (54), 55 (59), 53 (56). HRMS: Calculated for [C10H17O4]+: 201.1127 [(M+H)+]; 

found: 201.1132. 

 

3.2.3. Synthesis of cyclopropaneacetaldehydes 14a-d 

General procedure: IBX (2.5 eq) was added to a solution of the corresponding alcohol 

(IIIa-d) (1 eq) in EtOAc (0.1M). The reaction mixture was stirred at reflux for 3h. 

Afterwards, the reaction was filtered through a celite pad. The solvent was removed 

under reduced pressure and pure products were isolated after flash column 

chromatography purification. 

MeOC CO2Et

OH
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Diethyl 2-(2-oxoethyl)cyclopropane-1,1-dicarboxylate (14a). Following the general 

procedure 14a (1.13 g, 4.93 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 7:3 to 1:1) after 3 h in 88% yield 

as a yellow oil starting from IIIa (1.30 g, 5.62 mmol) and IBX 

(3.94 g, 14.05 mmol) in EtOAc (56.2 mL). 1H NMR (300 MHz, CDCl3) δ 9.77 (s, 1H, 

CHO), 4.42 – 3.86 (m, 4H, OCH2), 2.64-2.41 (m, 2H, CH2CHO), 2.26–2.11 (m, 

1H,CHCH2CHO), 1.54 (dd, J = 9.0, 4.8 Hz, 1H, CHaHbC), 1.38 (dd, J = 7.2, 5.1 Hz, 1H, 

CHaHbC), 1.32-1.18 (m, 6H, CH3). 13C NMR (75 MHz, CDCl3) δ 199.2 (CHO), 168.9, 

167.2 (C=O), 60.8, 60.8 (OCH2), 41.9 (CH2CHO), 32.4 (CCO), 20.2 (CH2CHCH2), 19.2 

(CHCH2CHO), 13.3, 13.2 (CH3). IR (ATR): 2984, 1724, 1275, 1207 cm-1. MS (70 eV) m/z 

(%): 183 (M+-C2H5O·, 15), 160 (41), 136 (47), 108 (100), 81 (46), 53 (26). HRMS: 

Calculated for [C11H17O5]+: 229.1076 [(M+H)+]; found: 229.1091. 

 

Dimethyl 2-(2-oxoethyl)cyclopropane-1,1-dicarboxylate (3b). 

Following the general procedure 14b (56 mg, 0.28 mmol) was 

isolated by FC (hexanes/EtOAc gradient from 7:3 to 1:1) after 

3 h in 92% yield as a yellow oil starting from IIIb (59 mg, 0.30 mmol), and IBX (202 

mg, 0.72 mmol) in EtOAc (3 mL). 1H NMR (300 MHz, CDCl3) (* denotes partially 

solaped signals) δ 9.75 (s, 1H, CHO), 3.74* (s, 3H, CH3), 3.73* (s, 3H, CH3), 2.66–2.38 

(m, 2H, CH2CHO), 2.20 (dq, J = 14.8, 7.4 Hz, 1H, CHCH2CHO), 1.57 (dd, J = 9.1, 4.9 Hz, 

1H, CHaHbC), 1.41 (dd, J = 7.5, 5.0 Hz, 1H, CHaHbC). 13C NMR (75 MHz, CDCl3) δ 199.6 

(CHO), 170.0, 168.5 (C=O), 52.9, 52.8 (OCH3), 42.8 (CH2CHO), 32.9 (CCO), 21.4 

(CHCH2CHO), 20.5 (CH2CHCH2). IR (ATR): 2923, 1716, 1282, 1218 cm-1. MS (70 eV) 

m/z (%): 169 (M+-CH3O·, 29), 157 (10), 140 (35), 108 (100), 97 (7), 81 (29), 69 (12), 59 

(31), 53 (31). HRMS: Calculated for [C9H12O5]+: 200.0685 [(M+H)+-H]; found: 

200.0624. 

EtO2C CO2Et

O

MeO2C CO2Me

O
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Dibenzyl 2-(2-oxoethyl)cyclopropane-1,1-dicarboxylate (14c). Following the general 

procedure 14c (1.17 g, 3.33 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 1:1) after 3 h in 80% yield 

as a yellow oil starting from IIIc (1.47 g, 4.16 mmol), and IBX 

(2.91 g, 10.40 mmol) in EtOAc (41.6 mL). 1H NMR (300 MHz, CDCl3) δ 9.65 (s, 1H, 

CHO), 7.42–7.07 (m, 10H, CHarom), 5.23-5.09 (m, 4H, OCH2), 2.60–2.34 (m, 2H, 

CH2CHO), 2.25 (dq, J = 14.8, 7.4 Hz, 1H, CHCH2CHO), 1.60 (dd, J = 9.1, 4.9 Hz, 1H, 

CHaHbC), 1.45 (dd, J = 7.6, 5.0 Hz, 1H, CHaHbC). 13C NMR (75 MHz, CDCl3) δ 199.3 

(CHO), 169.2, 167.7 (C=O), 135.3, 135.2 (Carom), 128.4, 128.3, 128.3, 128.2, 128.1, 

128.9 (CHarom), 67.4, 67.2 (OCH2), 42.4 (CH2CHO), 33.0 (CCO), 21.5 (CHCH2CHO), 20.5 

(CH2CHCH2). IR (ATR): 2955, 1720, 1274, 1199 cm-1. MS (70 eV) m/z (%): 246 (M+-

C7H6O·, 1), 140 (37), 112 (78), 91 (100), 79 (22), 65 (24), 53 (11). HRMS: Calculated 

for [C11H17O5]+: 229.1076 [(M+H)+]; found: 229.1091. 

Ethyl 1-acetyl-2-(2-oxoethyl)cyclopropane-1-carboxylate (14d). 

Following the general procedure 14d (157 mg, 0.79 mmol) was 

isolated by FC (hexanes/EtOAc gradient from 8:2 to 7:3) after 3 h in 70% yield as a 

yellow oil starting from IIId (227 mg, 1.13 mmol), and IBX (794 mg, 2.84 mmol) in 

EtOAc (11.3 mL). 1H NMR (300 MHz, CDCl3) (* denotes minor diastereoisomer), (** 

denotes the ring-opened isomer) δ 9.76 (s, 1H, CHO), 9.71* (s, 1H, CHO), 9.49** (dd, 

J = 7.7 Hz, 1H, CHO), 6.78** (dt, 15.6, 6.8 Hz, 1H, CHO-CH), 6.13** (dd, J = 15.7, 7.7 

Hz, 1H, CHO-CH=CH), 4.31-4.11 (m, 2H, OCH2), 3.64** (t, J = 7.2 Hz, 1H, CO-CH), 

2.86** (td, J = 7.0, 1.4 Hz, 2H, HC-CH2), 2.67 (dd, J = 7.2, 0.9 Hz, 2H, CHO-CH2), 2.43 

(s, 3H, COCH3), 2.41* (s, 3H, COCH3), 2.29** (s, 3H, COCH3), 2.10 (dd, J = 9.0, 7.4 Hz, 

1H, CH), 1.60 (dd, J = 9.1, 4.4 Hz, 1H, CHaHb), 1.41 (dd, J = 7.7, 4.4 Hz, 1H, CHaHb, 

1.34-1.23 (m, 3H). 13C NMR (75 MHz, CDCl3) (* denotes minor diastereoisomer), (** 

denotes the ring-opened isomer) δ 202.1* (COMe), 202.0 (COMe), 201.0** (COMe), 

199.7 (CHO), 199.3* (CHO), 193.3** (CHO), 170.4* (CO2Et), 169.3 (CO2Et), 168.4** 

BnO2C CO2Bn

O

MeOC CO2Et

O
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(CO2Et), 153.3** (C=C), 134.4** (C=C), 61.8** (OCH2), 61.6 (OCH2), 61.4* (OCH2), 

57.7** (CO-HC-CO), 42.4 (CH2CHO), 41.6* (CH2CHO), 40.0 (CCO), 39.5* (CCO), 30.5** 

(COCH3), 30.4** (C=C-CH2), 29.2 (CHCH2CHO), 29.1** (CHCH2CHO), 24.3* (COCH3), 

23.4 (COCH3), 22.0 (CH2CHCH2), 20.4* (CH2CHCH2), 14.0* (CH2CH3), 14.0 (CH2CH3), 

14.0** (CH2CH3). IR (ATR): 2920, 1724, 1699, 1264, 1196 cm-1. MS (70 eV) m/z (%): 

198 (M+, 8), 170 (9), 154 (97), 125 (100), 69 (109), 99 (27), 81 (84), 68 (55), 55 (51), 

53 (55). HRMS: Calculated for [C10H15O4]+: 199.0970 [(M+H)+]; found: 199.0974. 

OH

O

NH2
R3

R4

R5
R6

OH

NH2
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R5
R6 O

NH2
R3

R4

R5
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[Red] [Oxid]

IVb-o 15b-o
 

3.2.4. Synthesis of aminobenzyl alcohols Iva-o 

General procedure (A): To a solution of the corresponding anthranilic acid derivative 

(1 eq) in THF (1.75M) was added dropwise 1.08M borane dimethyl sulfide complex 

in THF (3 eq) at 0ºC under argon atmosphere for 10 min. After 24 h with stirring at 

30ºC, the reaction mixture was cooled to 0ºC, added aqueous THF (THF/H2O 1:1.4) 

and K2CO3 (1 eq) in portions. The reaction was extracted with Et2O (3 x 15 mL). The 

combined organic extracts were washed with brine (20 mL), dried over anh. Na2SO4 

and evaporated in vacuo. Pure products were isolated after flash column 

chromatography purification. 

General procedure (B): To a suspension of LAH (9 mmol, 3 eq) in dry THF (0.33M) 

cooled at -10ºC, the corresponding 2-aminobenzoic acid (3.3 mmol, 1eq) was added 

portion-wise under argon atmosphere. The reaction mixture was warmed slowly to 

ambient temperature and stirred at r.t. for 4 h. The reaction was quenched slowly 

with sat. NH4Cl (3 mL) at -10ºC and then warmed to ambient temperature. 
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Afterwards it was diluted with EtOAc and filtered over celite. The filtrate was 

successively washed with water and brine solution and dried over anh. Na2SO4. The 

solvent was  removed under reduced pressure and pure products were isolated after 

flash column chromatography purification. 

 

 (2-Amino-4-fluorophenyl)methanol (IVb). Following the general 

procedure (B) IVb (382 mg, 2.71 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 7:3 to 3:7) after 2.5 h in 84% yield as a white solid 

starting from LAH (368 mg, 9.7 mmol) in THF (9.8 mL) and 2-amino-4-fluorobenzoic 

acid (500 mg, 3.22 mmol). 1H NMR (300 MHz, CDCl3) δ 7.04-6.94 (m, 1H, 

CaromHCaromCH2), 6.49 – 6.23 (m, 2H, CaromHCaromFCaromH), 4.63 (s, 2H, CH2), 4.56-3.96 

(bs, 2H, NH2), 2.01-1.22 (bs, 1H, OH). 13C NMR (75 MHz, CDCl3) δ163.8 (d, J=244.2 Hz, 

CaromF), 147.9 (d, J=11.1 Hz, CaromNH2), 130.5 (d, J=10.3 Hz, CaromHCaromHCaromF), 120.5 

(d, J=2.9 Hz, CaromCH2), 104.3 (d, J=21.5 Hz, CaromHCaromHCaromF), 102.6 (d, J=24.6 Hz, 

CaromHCaromNH2), 63.8 (CH2OH). IR (ATR): 3389, 3156, 1612, 1598, 1511, 1160, 991 

cm-1. MS (70 eV) m/z (%): 140 (M+-H, 6), 139 (93), 122 (5), 111 (100), 94 (20), 83 (67), 

57 (20). M.p.: 45-47ºC.  

 (2-Amino-4-chlorophenyl)methanol (IVc). Following the general 

procedure (A1) IVc (297 mg, 1.88 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 7:3 to 6:4) after 24 h in 32% yield 

as a white solid starting from 2-amino-5-chlorobenzoic acid (1g, 5.83 mmol) in THF 

(3.3 mL) and a solution of borane-tetrahidrofuran complex (8.7 mL) in THF (7.4 mL). 
1H NMR (300 MHz, MeOD) δ 7.02 (d, J = 8.0 Hz, 1H, CaromHCaromCH2), 6.72 (d, J = 2.0 

Hz, 1H, CaromHCaromHCaromCl), 6.60 (dd, J = 8.0, 2.0 Hz, 1H, CaromHCaromNH2), 4.52 (s, 2H, 

CH2). 13C NMR (75 MHz, MeOD) δ 147.6 (CaromNH2), 133.6 (CaromCH2), 129.5 

OH

NH2F

OH

NH2Cl
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(CaromHCaromCH2), 123.8 (CaromCl), 116.7 (CaromHCaromHCaromCl), 114.8 (CaromHCaromNH2), 

61.5 (CH2OH). IR (ATR): 3383, 3285, 1605, 1583, 1494, 1074, 999 cm-1. MS (70 eV) 

m/z (%): 159 (M+, 29), 157 (M+, 100), 139 (98), 138 (100), 127 (51), 112 (24), 93 (36), 

83 (65), 63 (34), 51 (22). M.p.: 138-140ºC.  

 (2-Amino-4-bromophenyl)methanol (IVd). Following the 

general procedure (B) IVd (406 mg, 2.01 mmol) was isolated by 

FC (hexanes/EtOAc 3:7) after 2.5 h in 87% yield as a white solid 

starting from LAH (262 mg, 6.9 mmol) in THF (7.0 mL) and 2-amino-4-bromobenzoic 

acid (500 mg, 2.30 mmol). 1H NMR (300 MHz, MeOD) δ 6.97 (d, J = 8.0 Hz, 1H, 

CaromHCaromCH2), 6.88 (d, J = 1.9 Hz, 1H, CaromHCaromNH2), 6.74 (dd, J = 8.0, 1.9 Hz, 1H, 

CaromHCaromHCaromBr), 4.51 (s, 2H, CH2). 13C NMR (75 MHz, MeOD) δ 147.9 (CaromNH2), 

129.7 (CaromHCaromCH2), 124.2 (CaromCH2), 121.6 (CaromBr), 119.7 (CaromHCaromHCaromBr), 

117.7 (CaromHCaromNH2), 61.6 (CH2OH). IR (ATR): 3361, 3297, 3149, 1602, 1573, 1487, 

1060, 991 cm-1. MS (70 eV) m/z (%): 203 (M+, 31), 201 (100), 183 (66), 173 (85), 127 

(10), 92 (87), 75 (28), 65 (82), 52 (43). M.p.: 140-142ºC.  

 (2-Amino-4-methylphenyl)methanol (IVf). Following the general 

procedure (A) IVf (273 mg, 1.99 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 7:3 to 1:1) after 24 h in 60% yield as 

a white solid starting from 2-amino-4-methylbenzoic acid (500 mg, 3.30 mmol) in 

THF (4.2 mL) and a solution of borane-tetrahidrofuran complex (4.9 mL) in THF (4.2 

mL). 1H NMR (300 MHz, MeOD) δ 6.95 (d, J = 7.5 Hz, 1H,CaromHCaromCH2), 6.59 (s, 1H, 

CaromHCaromNH2), 6.50 (d, J = 7.4 Hz, 1H, CaromHCaromHCaromCH3), 4.54 (s, 2H, CH2), 2.22 

(s, 3H, CH3). 13C NMR (70 MHz, MeOD) δ 147.1 (CaromNH2), 139.6 (CaromCH3), 130.0 

(CaromHCaromCH2), 124.3 (CaromCH2), 120.0 (CaromHCaromHCaromCH3), 118.0 

(CaromHCaromNH2), 63.4 (CH2OH), 21.3(CH3). IR (ATR): 3379, 3095, 1622, 1587, 1515, 

OH

NH2Br

OH

NH2

 



 
224  Chapter 6 

1002 cm-1. MS (70 eV) m/z (%): 137 (M+, 74), 118 (100), 106 (27), 91 (51), 77 (21), 65 

(14), 51 (8). M.p.: 138-140ºC.  

 (2-Amino-4-methoxyphenyl)methanol (IVg). Following the 

general procedure (2) 4j (338 mg, 2.20 mmol) was isolated by 

FC (hexanes/EtOAc gradient from 7:3 to 3:7) after 2.5 h in 74% 

yield as a white solid starting from LAH (340 mg, 8.97 mmol) in THF (9.0 mL) and 2-

amino-6-chlorobenzoic acid (500 mg, 2.99 mmol). 1H NMR (300 MHz, CDCl3) δ 6.93 

(d, J = 8.1 Hz, 1H, CaromHCaromCH2), 6.24 (m,2H, CaromHCaromCaromH), 4.54 (s, 2H, CH2), 

3.74 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ160.8 (CaromOCH3), 147.4 (CaromNH2), 

130.4 (CaromHCaromCH2), 118.1 (CaromCH2), 103.3 (CaromHCaromHCaromOCH3), 101.8 

(CaromHCaromNH2), 63.7 (CH2OH), 55.2 (CH3). IR (ATR): 3397, 3206, 1622, 1583, 1512, 

1196, 1089, 984 cm-1. MS (70 eV) m/z (%): 153 (M+, 19), 137 (63), 122 (34), 105 (57), 

92 (25), 83 (100), 65 (27), 51 (25). M.p.: 78-80ºC.  

 (2-Amino-5-chlorophenyl)methanol (IVh). Following the general 

procedure (A) IVh (800 mg, 5.08 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 7:3 to EtOAc) after 24 h in 87% 

yield as a white solid starting from 2-amino-5-chlorobenzoic acid (1g, 5.83 mmol) in 

THF (3.3 mL) and a solution of borane-tetrahidrofuran complex (8.7 mL) in THF (7.4 

mL). 1H NMR(300 MHz, CDCl3) δ 7.07 (m, 2H, CaromHCaromClCaromH), 6.62 (d, J = 8.3 Hz, 

1H, CaromHCaromNH2), 4.61 (s, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ 144.6 (CaromNH2), 

129.0 (CaromHCaromHCaromCl), 128.8 (CaromHCaromCH2), 126.1 (CaromCH2), 122.6 (CaromCl), 

117.1 (CaromHCaromNH2), 63.8 (CH2OH). IR (ATR): 3383, 3116, 1493, 1099, 1006 cm-1. 

MS (70 eV) m/z (%): 159 (M+, 20), 157 (M+, 74), 138 (100), 127 (47), 112 (37), 93 (34), 

77 (38), 65 (25), 51 (17). M.p.: 106-108ºC. 
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(2-Amino-5-bromophenyl)methanol (IVi). Following the general procedure (B) IVi 

(383 mg, 1.90 mmol) was isolated by FC (hexanes/EtOAc gradient 

from 8:2 to 7:3) after 2.5 h in 77% yield as a white solid starting 

from LAH (282 mg, 7.42 mmol) in THF (7.5 mL) and 2-amino-5-

bromobenzoic acid (500 mg, 2.47mmol). 1H NMR (300 MHz, 

CDCl3) δ 7.22 (d, J = 2.3 Hz, 1H, CaromHCaromCH2), 7.13 (dd, J = 8.5, 2.4 Hz, 1H, 

CaromHCaromHCaromBr), 6.64 (d, J = 8.5 Hz, 1H, CaromHCaromNH2), 4.51 (s, 2H, CH2). 13C 

NMR (75 MHz, CDCl3) δ 145.1 (CaromNH2), 130.6 (CaromHCaromCH2), 130.4 

(CaromHCaromHCaromBr), 127.6 (CaromCH2), 117.1 (CaromHCaromNH2), 108.6 (CaromBr), 61.3 

(CH2OH). IR (ATR): 3354, 3268, 1598, 1472, 1002 cm-1. MS (70 eV) m/z (%): 203 (M+, 

55), 201 (M+, 96), 185 (100), 171 (81), 156 (25), 147 (12), 117 (10), 92 (69), 85 (27), 

77 (80), 65 (76), 52 (43). M.p.: 105-109ºC. 

(2-Amino-5-methylphenyl)methanol (IVj). Following the general 

procedure (B) IVj (197 mg, 1.45 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 7:3 to 3:7) after 2.5 h in 73% yield as 

a white solid starting from LAH (226 mg, 5.95mmol) in THF (6.0 mL) and 2-amino-5-

methylbenzoic acid (300 mg, 1.98 mmol). 1H NMR (300 MHz, CDCl3) δ 6.95 (d, J = 8.0 

Hz, 1H, CaromHCaromHCaromCH3), 6.89 (s, 1H, CaromHCaromCH2), 6.62 (d, J = 7.9 Hz, 1H, 

CaromHCaromNH2), 4.63 (s, 2H, CH2), 3.27 (bs, 2H, NH2), 2.24 (s, 3H, CH3). 13C NMR (75 

MHz, CDCl3) δ 143.5 (CaromNH2), 130.0 (CaromHCaromCH2), 129.9 (CaromCH2), 127.6 

(CaromCH3), 125.2 (CaromHCaromHCaromCH3), 116.4 (CaromHCaromNH2), 64.5 (CH2OH), 20.5 

(CH3). IR (ATR): 3389, 3120, 1637, 1508, 1020 cm-1. MS (70 eV) m/z (%): 137 (M+, 66), 

118 (100), 106 (65), 91 (52), 77 (29), 65 (15), 51 (13). M.p.: 122-124ºC. 
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(2-Amino-3-methylphenyl)methanol (IVk). Following the general 

procedure (B) IVk (355 mg, 2.59 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 7:3 to 1:1) after 4 h in 78% yield as a 

white solid starting from LAH (376 mg, 9.9 mmol) in THF (10.0 mL) 

and 2-amino-3-methylbenzoic acid (500 mg, 3.30 mmol). 1H NMR (300 MHz, CDCl3) δ 

7.05 (d, J = 7.5 Hz, 1H, CaromHCaromCH2), 6.92 (d, J = 7.5 Hz, 1H, CaromHCaromCH3), 6.66 

(t, J = 7.5 Hz, 1H, CaromHCaromHCaromH), 4.61 (s, 2H, CH2), 4.17-2.97 (bs, 2H, NH2), 2.18 

(s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ 144.0 (CaromNH2), 130.5 (CaromHCaromCH3), 

127.2 (CaromHCaromCH2), 124.6 (CaromCH2), 122.9 (CaromCH3), 117.9 (CaromHCaromHCaromH), 

64.0 (CH2OH), 17.3 (CH3). IR (ATR): 3404, 3322, 3278, 1634, 1469, 1020 cm-1. MS (70 

eV) m/z (%): 137 (M+, 77), 119 (100), 106 (31), 91 (61), 77 (23), 65 (14), 51 (10). M.p.: 

62-66ºC. 

 (2-Amino-3-methoxyphenyl)methanol (IVl). Following the 

general procedure (A) IVl (335 mg, 2.19 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 7:3 to 3:7) after 24 h in 73% yield 

as a brown oil from 2-amino-3-methoxybenzoic acid (500 mg, 2.99 

mmol) in THF (1.8 mL) and a solution of borane-tetrahidrofuran complex (4.5 mL) in 

THF (3.8 mL). 1H NMR (300 MHz, CDCl3) δ 6.79 (dd, J = 7.5, 1.8 Hz, 1H, 

CaromHCaromCH2), 6.73 (dd, J = 7.5, 1.8 Hz, 1H, CaromHCaromOCH3), 6.71–6.64 (m, 1H, 

CaromHCaromHCaromH), 4.67 (s, 2H, CH2), 3.86 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ 

147.3 (CaromOCH3), 134.9 (CaromCH2), 125.3 (CaromNH2), 121.0 (CaromHCaromCH2), 117.4 

(CaromHCaromHCaromCH2), 109.9 (CaromHCaromOCH3), 62.8 (CH2OH), 55.47 (CH3). IR (ATR): 

3364, 1612, 1482, 1239, 1000 cm-1. MS (70 eV) m/z (%): 153 (M+, 100), 134 (22), 120 

(16), 106 (72), 92 (77), 80 (12), 65 (40), 52 (12).  
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 (2-Amino-6-chlorophenyl)metanol (IVm). Following the general procedure (B ) IVm 

(400 mg, 2.54 mmol) was isolated by FC (hexanes/EtOAc gradient 

from 7:3 to 3:7) after 1.5 h in 88% yield as a white solid starting 

from  LAH (332mg, 8.7mmol) in THF (3.3 mL) and 2-amino-6-

chlorobenzoic acid (500 mg, 2.90 mmol). 1H NMR (300 MHz, CDCl3) 

δ 7.02 (t, J = 8.0 Hz, 1H, CaromHCaromHCaromCl), 6.76 (d, J = 8.0 Hz, 1H, CaromHCaromCl), 

6.60 (d, J = 7.8 Hz, 1H, CaromHCaromNH2), 4.90 (s, 2H, CH2), 1.80-1.39 (bs, 2H, NH2). 13C 

NMR (75 MHz, CDCl3) δ148.0 (CaromNH2), 134.1 (CaromCl), 129.6(CaromHCaromHCaromCl), 

122.1 (CaromCH2), 119.2 (CaromHCaromCl), 114.7 (CaromHCaromNH2), 59.5 (CH2OH). IR 

(ATR): 3386, 3285, 1601, 1577, 1451, 1006, 991 cm-1. MS (70 eV) m/z (%): 159 (M+, 

24), 157 (M+, 76), 138 (100), 127 (18), 112 (39), 104 (18), 93 (24), 85 (6), 77 (37), 65 

(28), 51 (17). M.p.: 82-84ºC. 

 (2-Amino-4,5-dimethoxyphenyl)methanol (IVn). Following the 

general procedure (B) IVn (169 mg, 0.92 mmol) was isolated by 

FC (hexanes/EtOAc gradient from 3:7 to 2:8) after 4 h in 28% 

yield as a brown oil starting from LAH (376 mg, 9.90 mmol) in THF (10.0 ml) and 2-

amino-4,5-dimethoxybenzoic acid (631 mg, 3.30 mmol). 1H NMR (300 MHz, CDCl3) δ 

6.58 (s, 1H, CaromHCaromCH2), 6.23 (s, 1H, CaromHCaromNH2), 4.49 (s, 2H, CH2), 3.77 (s, 

3H, CH3), 3.74 (s, 3H, CH3), 3.56–3.31 (bs, 2H, NH2). 13C NMR (75 MHz, CDCl3) δ149.8 

(NH2CaromCaromHCaromH), 141.4 (CaromCaromHCaromCH2), 139.9 (CaromNH2), 116.8 

(CaromCH2), 114.1 (CaromHCaromCH2), 101.4 (CaromHCaromNH2), 63.5 (CH2OH), 56.8 (CH3), 

55.9 (CH3). IR (ATR): 3368, 1616, 1511, 1454, 1203 , 1124, 998 cm-1. MS (70 eV) m/z 

(%): 183 (M+, 2), 181 (100), 166 (91), 138 (48), 110 (19), 94 (34), 83 (83), 65 (16), 52 

(22). 

 

 (2-aminonaphthalen-3-yl)methanol (IVo). Following the 

general procedure (B) IVo (270 mg, 1.56 mmol) was isolated by 
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FC (hexanes/EtOAc gradient from 8:2 to 1:1) after 2.5 h in 59% yield as a yellow-

brown solid starting from LAH (304 mg, 8.00 mmol) in THF (8.0 mL) and 3-

aminonaphthalene-2-carboxylic acid (500 mg, 2.67 mmol). 1H NMR (300 MHz, CDCl3) 

δ 7.68 (d, J = 8.2 Hz, 1H, CaromHCaromCaromHCaromNH2), 7.63 (s, 1H, CaromHCaromCH2), 7.57 

(d, J = 8.3 Hz, 1H, CaromHCaromCaromHCaromCH2), 7.31 (t, J = 7.2 Hz, 1H, 

CaromHCaromHCaromCaromHCaromCaromH2), 7.18 (t, J = 7.4 Hz, 1H, 

CaromHCaromHCaromCaromHCaromNH2), 7.09 (s, 1H, CaromHCaromNH2), 4.76 (s, 2H, CH2). 13C 

NMR (75 MHz, CDCl3) δ 145.6 (CaromNH2), 136.2 (CaromCaromHCaromNH2), 130.1 

(CaromCaromHCaromCH2), 129.3 (CaromCH2), 128.6 (CaromHCaromCaromHCaromCH2), 128.5 

(CaromHCaromHCaromCaromHCaromNH2), 127 (CaromHCaromCH2), 126.4 

(CaromHCaromCaromHCaromNH2), 123.3 (CaromHCaromHCaromCaromHCaromCH2), 110.9 

(CaromHCaromNH2),63.9 (CH2OH). IR (ATR): 3407, 3386, 3285, 1637, 1508, 1466, 1012 

cm-1. MS (70 eV) m/z (%): 173 (M+, 55), 155 (M+, 83), 143 (27), 128 (100), 115 (29), 

102 (5), 89 (6), 85 (6), 77 (10), 64 (9), 51 (6). M.p.: 179-182ºC. 

 

3.2.5. Synthesis of aminobenzaldehydes (15b-o) 

General procedure: MnO2 (4 eq) was added in five portions to a solution of the 

corresponding 2-aminobenzyl alcohol (Ivb-o) (1 eq) in dry DCM under argon 

atmosphere. The reaction mixture was stirred at room temperature for 24h. 

Afterwards, the reaction mixture was filtered over celite, washed with EtOAc. The 

solvent was removed under reduced pressure and pure products were isolated after 

flash column chromatography purification. 

2-Amino-4-fluorobenzaldehyde (15b). Following the general 

procedure 15b (252 mg, 1.81 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 1:1) after 16 h in 85% yield as 

a orange solid starting from (2-Amino-4-fluorophenyl)methanol (300 mg, 2.13 mmol) 

O

NH2F
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in CH2Cl2 (7.6 mL) and MnO2 (727 mg, 14.70 mmol). 1H NMR (300 MHz, CDCl3)(* 

denotes partially solaped signals) δ 9.80 (s, 1H, CHO), 7.47 (dd, J = 8.6, 6.4 Hz, 1H, 

CaromHCaromCHO), 6.45 (td, J = 8.4, 2.3 Hz, 1H, CaromHCaromHCaromF), 6.39-6.09* (bs, 2H, 

NH2), 6.31* (dd, J = 10.9, 2.2 Hz, 1H, CaromHCaromNH2). 13C NMR (75 MHz, CDCl3) δ 

192.7 (CHO), 167.3 (d, J = 254.2 Hz, CaromF), 152.3 (d, J = 13.5 Hz, CaromNH2), 138.7 (d, 

J = 12.6 Hz, CaromHCaromCHO), 116.1 (s, CaromCHO), 104.8 (d, J = 23.6 Hz, 

CaromHCaromHCaromF), 101.7 (d, J = 24.8 Hz, CaromHCaromNH2). IR (ATR): 3476, 3350, 

1656, 1623, 1558, 1497, 984 cm-1. MS (70 eV) m/z (%): 139 (M+, 94), 122 (4), 111 

(100), 94 (19), 83 (47), 75 (4), 63 (14), 57 (19), 52 (8). M.p.: 99-103ºC.  

2-Amino-4-chlorobenzaldehyde (15c). Following the general 

procedure 15c (202 mg, 1.30 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 7:3) after 24 h in 84% yield 

as a yellow solid starting from (2-Amino-4-chlorophenyl)methanol (243 mg, 1.54 

mmol) in CH2Cl2 (3.3 mL) and MnO2 (527 mg, 6.10 mmol). 1H NMR (300 MHz, CDCl3) 

δ 9.76 (s, 1H, CHO), 7.34 (d, J = 8.3 Hz, 1H, CaromHCaromCO), 6.75 – 6.48 (m, 2H, 

CaromHCaromClCaromH), 6.48-5.98 (bs, 2H, NH2). 13C NMR (75 MHz, CDCl3) δ 193.0 (CHO), 

150.6 (CaromNH2), 141.5 (CaromCl), 137.0 (CaromHCaromCHO), 117.3 (CaromCHO), 116.9 

(CaromHCaromHCaromCl), 115.5 (CaromHCaromNH2). IR (ATR): 3433, 3329, 1666, 1612, 1587, 

1541, 1089 cm-1. MS (70 eV) m/z (%): 157 (M+, 23), 155 (M+, 70), 138 (2), 127 (100), 

110 (9), 99 (16), 92 (23), 75 (9), 63 (19), 52 (9). M.p.: 80-82ºC. 

 

2-Amino-4-bromobenzaldehyde (15d). Following the general 

procedure 5d (287 mg, 1.44 mmol) was isolated by FC 

(hexanes/EtOAc 9:1) after 24 h in 93% yield as a yellow solid 

starting from (2-Amino-4-bromophenyl)methanol (309 mg, 1.53 mmol) in CH2Cl2 (7.6 

mL) and MnO2 (930 mg, 10.70 mmol). 1H NMR (300 MHz, CDCl3) δ 9.85 (s, 1H, CHO), 
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7.33 (d, J = 8.2 Hz, 1H, CaromHCaromCHO), 6.89 (d, J = 1.7 Hz, 1H, CaromHCaromNH2), 6.87-

6.83 (m, 1H, CaromHCaromBr), 6.31-6.04 (bs, 2H, NH2). 13C NMR (75 MHz, CDCl3) δ 193.3 

(CHO), 150.5 (CaromNH2), 137.0 (CaromHCaromCHO), 130.5 (CaromBr), 119.7 

(CaromHCaromHCaromBr), 119.0 (CaromHCaromNH2), 117.6 (CaromCHO). IR (ATR): 3249, 3322, 

1659, 1605, 1533, 1476, 905 cm-1. MS (70 eV) m/z (%): 201 (M+, 72), 199 (M+, 74), 

173 (97), 171 (100), 156 (8), 154 (8), 145 (9), 143 (9), 92 (89), 75 (16), 65 (55), 52 

(24). M.p.: 84-85ºC.  

2-Amino-4-methylbenzaldehyde (15f). Following the general 

procedure 15f (218 mg, 1.61 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 7:3) after 24 h in 87% yield as 

a golden solid starting from (2-Amino-4-methylphenyl)methanol (255 mg, 

1.86mmol) in CH2Cl2 (12 mL) and MnO2 (641 mg, 7.37 mmol). 1H NMR (300 MHz, 

CDCl3) δ 9.77 (s, 1H, CHO), 7.30 (d, J = 7.9 Hz, 1H, CaromHCaromCHO), 6.52 (d, J = 7.9 Hz, 

1H, CaromHCaromHCaromCH3),6.41 (s, 1H, CaromCaromHCarom),6.31-5.96 (bs, 2H, NH2), 2.24 

(s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ 193.2 (CHO), 150.1 (CaromNH2), 146.3 

(CaromCH3), 135.6 (CaromHCaromCHO), 117.8 (CaromHCaromCH3), 116.9 (CaromCHO), 116.0 

(CaromHCaromNH2), 21.8 (CH3). IR (ATR): 3389, 1724, 1659, 1634, 1573, 1257 cm-1. MS 

(70 eV) m/z (%): 135 (M+, 74), 106 (100), 89 (13), 77 (22), 63 (6),51 (7). M.p.: 73-

74ºC.  

2-Amino-4-methoxybenzaldehyde (15g). Following the general 

procedure 15g (217 mg, 1.44 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 7:3) after 24 h in 68% 

yield as a yellow solid starting from (2-Amino-4-methoxyphenyl)methanol (326 mg, 

2.12 mmol) in CH2Cl2 (5.6 mL) and MnO2 (725 mg, 8.42 mmol). 1H NMR (300 MHz, 

CDCl3) δ 9.62 (s, 1H, CHO), 7.27 (d, J = 8.7 Hz, 1H, CaromHCaromCHO), 6.46-6.27 (bs, 2H, 

NH2), 6.23 (dd, J = 8.7, 2.3 Hz, 1H, CaromHCaromHCaromOCH3), 6.02 (d, J = 2.2 Hz, 1H, 
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CaromHCaromNH2), 3.70 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ 191.8 (CHO), 165.1 

(CaromOCH3), 152.4 (CaromNH2), 137.6 (CaromHCaromCHO), 113.6 (CaromCHO), 105.0 

(CaromHCaromHCaromOCH3), 98.2 (CaromHCaromNH2), 55.1 (CH3). IR (ATR): 3423, 3316, 

1645, 1615, 1542, 1465, 1205 cm-1. MS (70 eV) m/z (%): 151 (M+, 100), 123 (35), 106 

(18), 94 (40), 80 (17), 63 15), 52 (13). M.p.: 70-72ºC. 

2-Amino-5-chlorobenzaldehyde (15h). Following the general 

procedure 15h (573 mg, 3.68 mmol) was isolated by FC (n-

hexane/EtOAc gradient from 9:1 to 8:2) after 24 h in 79% yield as 

a yellow solid starting from (2-Amino-5-chlorophenyl)methanol (736 mg, 4.67 mmol) 

in CH2Cl2 (12.0 mL) and MnO2 (853 mg, 9.81 mmol). 1H NMR (300 MHz, CDCl3) δ 9.76 

(s, 1H, CHO), 7.40 (d, J = 2.5 Hz, 1H, CaromHCaromCHO), 7.21 (dd, J = 8.8, 2.5 Hz, 1H, 

CaromHCaromHCaromCl), 6.59 (d, J = 8.8 Hz, 1H, CaromHNH2), 6.38-5.87 (bs, 2H, NH2). 13C 

NMR (75 MHz, CDCl3) δ192.9 (CHO), 148.4 (CaromNH2), 135.2 (CaromHCaromHCaromCl), 

134.3 (CaromHCaromCHO), 120.7(CaromCHO), 119.2 (CaromCl), 117.7 (CaromHCaromNH2). IR 

(ATR): 3440, 3339, 1685,1583, 1545, 1469,1149 cm-1. MS (70 eV) m/z (%): 157 (M+, 

19), 155 (M+, 60), 127 (100), 110 (9), 92 (21), 75 (9), 63 (18), 52 (7). M.p.: 69-73ºC.  

2-Amino-5-bromobenzaldehyde (15i). Following the general 

procedure 15i (326 mg, 1.62 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 7:3) after 24 h in 85% yield 

as a yellow solid starting from (2-Amino-5-bromophenyl)methanol (383 mg, 1.90 

mmol) in CH2Cl2 (5 mL) and MnO2 (649 mg, 7.51 mmol). 1H NMR (300 MHz, CDCl3) δ 

9.77 (s, 1H, CHO), 7.55 (d, J = 2.4 Hz, 1H, CaromHCaromCHO), 7.34 (dd, J = 8.8, 2.4 Hz, 

1H, CaromHCaromHCaromBr), 6.55 (d, J = 8.8 Hz, 1H, CaromHCaromNH2), 6.38-5.90 (bs, 2H, 

NH2). 13C NMR (75 MHz, CDCl3) δ 192.8 (CHO), 148.8 (CaromNH2), 137.9 

(CaromHCaromHCaromBr), 137.4 (CaromHCaromCHO), 119.9 (CaromCHO), 118.0 

(CaromCaromNH2), 107.1 (CaromBr). IR (ATR): 3429, 3325, 1648, 1612, 1545, 1466, 819 

O

NH2

Cl

O

NH2

Br

 



 
232  Chapter 6 

cm-1. MS (70 eV) m/z (%): 201 (M+, 61), 199 (M+, 62), 173 (96), 171 (17), 156 (8), 154 

(8), 145 (9), 143 (9), 92 (63), 75 (15), 65 (55), 52 (17). M.p.: 75-77ºC. 

2-Amino-5-methylbenzaldehyde (15j). Following the general 

procedure 15j (143 mg, 1.06 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 7:3) after 24 h in 66% yield as 

a yellow solid starting from (2-Amino-5-methylphenyl)methanol (221 mg, 1.61 

mmol) in CH2Cl2 (8.0 mL) and MnO2 (980 mg, 11.27 mmol). 1H NMR (300 MHz, CDCl3) 

δ 9.83 (s, 1H, CHO), 7.26 (s, 1H, CaromHCaromCHO), 7.14 (dd, J = 8.3, 1.8 Hz, 1H, 

CaromHCaromHCaromCH3), 6.58 (d, J = 8.4 Hz, 1H, CaromHCaromNH2), 6.16-5.73 (bs, 2H, 

NH2), 2.27 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ194.1 (CHO), 147.9 (NH2), 136.5 

(CaromCaromHCaromCH3), 135.2 (CaromHCaromCHO), 125.5 (CaromCHO), 118.8 (CaromCH3), 

116.2 (CaromHCNH2), 20.1 (CH3). IR (ATR): 3468, 3347, 1656, 1576, 1555, 1483,1225 

cm-1. MS (70 eV) m/z (%): 135 (M+, 82), 106 (100), 89 (16), 77 (26), 63 (6), 51 (9). 

M.p.: 47-49ºC. 

2-Amino-3-methylbenzaldehyde (15k). Following the general 

procedure 15k (282 mg, 2.09 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 7:3) after 24 h in 83% yield as a 

yellow oil starting from (2-Amino-3-methylphenyl)methanol (347 mg, 

2.53 mmol) in CH2Cl2 (6.6 mL) and MnO2 (866 g, 14.70 mmol). 1H NMR (300 MHz, 

CDCl3) δ 9.81 (s, 1H, CHO), 7.29 (d, J = 7.4 Hz, 1H, CaromHCaromCHO), 7.15 (d, J = 7.1 Hz, 

1H, CaromHCaromCH3), 6.64 (t, J = 7.5 Hz, 1H, CaromHCaromHCaromH), 6.40-6.07 (bs, 2H, 

NH2), 2.09 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ194.0 (CHO), 148.3 (CaromNH2), 

135.6 (CaromHCaromCH3), 133.6 (CaromHCaromCHO), 122.5 (CaromCHO), 118.0 (CaromCH3), 

115.7 (CaromHCaromHCaromH), 16.3 (CH3). IR (ATR): 3479, 3347, 1656, 1612, 1558, 1218 

cm-1. MS (70 eV) m/z (%): 135 (M+, 87), 106 (100), 89 (21), 77 (29), 68 (4), 63 (7), 51 

(10). 
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2-Amino-3-methoxybenzaldehyde (15l). Following the general procedure 15l (290 

mg, 1.92 mmol) was isolated by FC (hexanes/EtOAc 9:1) after 24 h in 

90% yield as a yellow oil starting from (2-Amino-3-

methoxyphenyl)methanol (325 mg, 2.12 mmol) in CH2Cl2 (7.4 mL) and 

MnO2 (737 mg, 8.5 mmol). 1H NMR (300 MHz, CDCl3) δ 9.85 (s, 

1H,CHO), 7.07 (dd, J = 7.9, 1.2 Hz, 1H, CaromHCaromCHO), 6.82 (d, J = 7.7 Hz, 1H, 

CaromHCaromOCH3), 6.63 (t, 1H, CaromHCaromHCaromH), 6.55-6.19 (bs, 2H, NH2), 3.81 (s, 

1H, CH3). 13C NMR (75 MHz, CDCl3) δ 193.7 (CHO), 146.4 (CaromOCH3), 140.8 

(CaromNH2), 126.3 (CaromHCaromCHO), 118.0 (CaromCHO), 114.9 (CaromHCaromOCH3), 113.5 

(CaromHCaromHCaromH), 55.5 (CH3). IR (ATR): 3483, 3353, 1659, 1616, 1548, 1476, 1210 

cm-1. MS (70 eV) m/z (%): 151 (M+, 100), 136 (38), 123 (62), 108 (72), 90 (18), 80 (20), 

63 (8), 52 (16).  

2-Amino-6-chlorobenzaldehyde (15m).Following the general 

procedure 15m (294 mg, 1.89 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 1:1) after 24 h in 90% yield 

as a yellow solid starting from (2-Amino-6-chlorophenyl)methanol (333 mg, 2.10 

mmol) in CH2Cl2 (10.4 mL) and MnO2 (1.278 g, 14.70 mmol). 1H NMR (300 MHz, 

CDCl3)(* denotes partially solaped signals) δ 10.48 (s, 1H, CHO), 7.18 (t, J = 8.1 Hz, 

1H, CaromHCaromHCaromH), 6.67 (d, J = 7.7 Hz, 1H, CaromHCaromCl), 6.54* (d, J = 8.5 Hz, 

1H, CaromHCaromNH2), 6.59 – 6.34* (bs, 2H, NH2). 13C NMR (75 MHz, CDCl3) δ 192.7 

(CHO), 152.1 (CaromNH2), 139.5 (CaromCl), 135.5 (CaromHCaromHCaromH), 117.6 

(CaromHCaromCl), 115.6 (CaromHCaromNH2), 114.3 (CaromCHO). IR (ATR): 3418, 3314, 1645, 

1580, 1537, 1458, 1035 cm-1. MS (70 eV) m/z (%): 157 (M+, 22), 155 (M+, 68), 127 

(100), 110 (11), 100 (13), 90 (26),  75 (10), 65 (23), 52 (7). M.p.: 92-95ºC.  
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2-amino-4,5-dimethoxybenzaldehyde (15n). Following the 

general procedure 15n (25 mg, 0.14 mmol) was isolated by FC 

(n-hexane/EtOAc gradient from 7:3 to 1:1) after 24 h in 23% 

yield as a brown oil starting from (2-Amino-4,5-dimethoxyphenyl)methanol (110 mg, 

0.60 mmol) in CH2Cl2 (1.6 mL) and MnO2 (206 mg, 2.38 mmol). 1H NMR (300 MHz, 

CDCl3) (* denotes partially solaped signals) δ 9.68 (s, 1H, CHO), 6.87 (s, 1H, 

CaromHCaromCHO), 6.11* (s, 1H, CaromHCaromNH2), 6.15-6.04 (bs, 2H, NH2), 3.87 (s, 3H, 

CH3), 3.83 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ191.5 (CHO), 156.2 

(CaromCaromHCaromNH2), 147.4 (CaromNH2), 141.0 (CaromCHCaromCHO), 116.1 

(CaromHCaromCHO), 111.4 (CaromCHO), 98.5 (CaromHCaromNH2), 56.6 (CH3), 56.1 (CH3). IR 

(ATR): 3454, 3343, 3339, 1649, 1551, 1505, 1465, 1239, 1143 cm-1. MS (70 eV) m/z 

(%): 181 (M+, 100), 166 (80), 138 (43), 123 (10), 110 (13), 94 (23), 78 (9), 65 (8), 52 

(10).  

3-aminonaphthalene-2-carbaldehyde (15o). Following the 

general procedure 15o (130 mg, 0.76 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 19:1 to 9:1) after 24 h in 49% 

yield as a orange solid starting from (2-aminonaphthalen-3-yl)methanol (270 mg, 

1.56 mmol) in CH2Cl2 (5.5 mL) and MnO2 (542 mg, 6.24 mmol). 1H NMR (300 MHz, 

CDCl3) δ 10.10 (s, 1H, CHO), 8.07 (s, 1H, CaromHCaromCHO), 7.77 (d, J = 8.3 Hz, 1H, 

CaromHCaromCaromHCaromCHO), 7.54 (t, J = 9.4 Hz, 1H, CaromHCaromCaromHCaromNH2), 7.47 

(m, 1H, CaromHCaromHCaromCaromHCaromNH2), 7.25 (m, 1H, 

CaromHCaromHCaromCaromHCaromCHO), 6.92 (s, 1H, CaromHCaromNH2), 6.00-5.99 (bs, 2H, 

NH2). 13C NMR (75 MHz, CDCl3) δ 194.7 (CHO), 145.3 (CaromNH2), 139.8 

(CaromHCaromCHO), 137.9 (CaromCaromHCaromNH2), 129.9 (CaromHCaromCaromHCaromCHO), 

129.4 (CaromHCaromHCaromCaromHCaromNH2), 126.2 (CaromCaromHCaromCHO), 125.6 

(CaromHCaromCaromHCaromNH2), 122.9 (CaromHCaromHCaromCaromHCaromCHO), 122.4 

(CaromCHO), 109.6 (CaromCaromNH2). IR (ATR): 3472, 3357, 1685, 1630, 1580, 1497 cm-1. 
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MS (70 eV) m/z (%): 171 (M+, 86), 143 (100), 126 (57), 115 (65), 89 (10), 72 (9), 63 

(10). M.p.: 164-167ºC. 

 

 Synthesis of 2-Amino-4-trifluoromethylbenzaldehyde (15e): 

2-Amino-4-trifluoromethylbenzaldehyde (15e). To a solution of 

EtOH/H2O (3:1) (25 mL), (2-amino-4-

trifluoromethyl)phenyl)methanol (500 mg, 2.28 mmol) was 

added with electrolytic iron powder (1.273 g, 22.8 mmol) and conc. HCl (3 drops). 

The resultant mixture was heated at 70ºC for 60 min. The reaction mass was allowed 

to cool to rt and then diluted with ethyl acetate and filtered over celite bed. The 

filtrate was concentrated under vacuum and the resultant residue was diluted with 

ethyl acetate and washed successively with water and then brine solution. The 

organic layer was dried over anh. Na2SO4 and evaporated ander reduced pressure. 

The final product 15e (300 mg, 1.59 mmol) was isolated in 70% as a yellow solid. 1H 

NMR (300 MHz, CDCl3) δ 9.92 (s, 1H, CHO), 7.59 (d, J = 8.0 Hz, 1H,CaromHCaromCHO), 

6.94 (d, J = 9.1 Hz, 1H, CaromHCaromHCCaromF3), 6.90 (s, 1H, CaromHCaromNH2), 6.55-6.10 

(s, 2H, NH2). 13C NMR (75 MHz, CDCl3) δ 193.8 (CHO), 149.66 (CaromNH2), 136.5 

(CaromCHO), 136.3 (q, J = 32 Hz, CaromCF3), 123.5 (q, J = 273.1 Hz, CF3), 120.3 

(CaromHCaromCHO), 113.2 (q, J = 4.1 Hz, CaromHCaromHCaromCF3), 112.6 (q, J = 3.5 Hz, 

CaromHCaromNH2). IR (ATR): 3447, 3343, 1666, 1558, 1501, 1447, 1124, 783 cm-1. MS 

(70 eV) m/z (%): 189 (M+, 65), 161 (100), 142 (25), 114 (35), 95 (4), 83 (6), 75 (8), 63 

(11), 52 (6). M.p.: 42-44ºC. 
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3.2.6. Organocatalytic aza-Michael/Aldol Cascade reaction (16a-q and 18) 

General procedure: To a solution of catalyst 17 (0.02 mmol, 20 mol%), p-nitrobenzoic 

acid (0.02 mmol, 20 mol%) and aldehyde 14 in CHCl3 (1 mL) at room temperature, 

aminobenzaldehyde 15 was added. The stirring was maintained at this temperature 

until the reaction was complete by TLC. Solvent was evaporated and the crude was 

directly subjected to FC.  

+

O

NH2 N
H

O

R1O2C CO2R1

N
H

Ph

OTMS
Ph

(20 mol%)

 
p-NO2-C6H5COOH (20 mol%) 

CHCl3,
 
r.t., 16 h

R1O2C CO2R1

O
R2 R2

16a-p

6
5 4a 4 3

27
8 8a

 

Diethyl 2-(((R)-3-formyl-1,2-dihydroquinolin-2-

yl)methyl)malonate (16a). Following the general 

procedure 16a (33 mg, 0.10 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 7:3) after 16 h in 99% 

yield as an orange oil starting from aldehyde 14a (23 mg, 0.10 mmol) and 

aminobenzaldehyde 15a (12 mg, 0.10 mmol) in the presence of 17a (7 mg, 0.02 

mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), using CHCl3 (1 mL) as solvent. 1H 

NMR (300 MHz, CDCl3) δ 9.47 (s, 1H, CHO), 7.19 (s, 1H, CH4), 7.17–7.02 (m, 2H, 

CH5CH6CH7), 6.62 (td, J = 7.5, 1.1 Hz, 1H, CH6), 6.46 (d, J = 8.1 Hz, 1H, CH8), 4.76-4.71 

(ddd, J = 7.1, 4.6, 2.0, 1H, CH2), 4.65-4.49 (bs, 1H, NH), 4.25-4.01 (m, 4H, OCH2), 3.48 

(t, J = 7.2 Hz, 1H, OCCHCO), 2.22 (ddd, J = 14.1, 7.4, 6.7 Hz, 1H, CHaHb), 2.06 (ddd, J = 

14.3, 7.8, 4.5 Hz, 1H, CHaHb), 1.32-1.15 (m, 6H, CH3). 13C NMR (75 MHz, CDCl3) δ 

190.4 (CHO), 169.5, 169.4 (C=O), 145.4 (C8a), 144.6 (C4H), 133.3 (C7H), 132.7 (C3), 

130.2 (C5H), 117.9 (C6H), 117.8 (C4a), 114.0 (C8H), 61.8, 61.7 (OCH2), 48.5 (CHCO2Et), 
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47.9 (C2H), 35.2 (CH2CCO2Et), 14.0 , 14.0 (CH3). IR (ATR): 3382, 2980, 1724, 1659, 

1627, 1605, 1570, 1164, 1143 cm-1. MS (70 eV) m/z (%): 331 (M+, 5), 171 (5), 158 

(100), 143 (7), 130 (8). HRMS: Calculated for [C18H22NO5]+: 332.1498 [(M+H)+]; found: 

332.1499. The ee was determined by HPLC using a Chiralpak ASH column [n-

hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 41.46 min, τminor = 51.77 min 

(90% ee). [α]D
20: +41.3 (c = 1.0, CH2Cl2). 

Diethyl 2-(((R)-7-fluoro-3-formyl-1,2-dihydroquinolin-

2-yl)methyl)malonate (16b). Following the general 

procedure 16b (30 mg, 0.09 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 7:3) after 16 h in 

86% yield as an orange oil starting from aldehyde 14a (23 mg, 0.10 mmol) and 

aminobenzaldehyde 15b (14 mg, 0.10 mmol) in the presence of 17a (7 mg, 0.02 

mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), using CHCl3 (1 mL) as solvent. 1H 

NMR (300 MHz, CDCl3) δ 9.46 (s, 1H, CHO), 7.16 (s, 1H, CH4), 7.05 (dd, J = 8.4, 6.3 Hz, 

1H, CH5), 6.34 (td, J = 8.6, 2.4 Hz, 1H, CH6), 6.17 (dd, J = 10.5, 2.2 Hz, 1H, CH8), 4.77–

4.68 (m, 1H, CH2), 4.29–4.00 (m, 4H, OCH2), 3.48 (dd, J = 7.6, 6.7 Hz, 1H, OCCHCO), 

2.21 (dt, J = 13.6, 6.8 Hz, 1H, CHaHb), 2.08 (ddd, J = 14.3, 7.7, 4.3 Hz, 1H, CHaHb), 

1.33–1.15 (m, 1H, CH3). 13C NMR (75 MHz, CDCl3) δ 190.22 (CHO), 169.5, 169.4 (C=O), 

166.38 (d, J = 251.0 Hz, C7F), 147.19 (d, J = 12.5 Hz, C8a), 143.7 (C4H), 132.21 (d, J = 

11.2 Hz, C5H), 131.90 (d, J = 2.2 Hz, C3), 114.3 (d, J = 1.8 Hz, C4a), 105.7 (d, J = 23.1 Hz, 

C6H), 100.4 (d, J = 25.6 Hz, C8H). 61.9, 61.8 (OCH2), 48.5 (CHCO2Et), 47.9 (C2H), 35.3 

(CH2CHCO2Et), 14.1, 14.1 (CH3). 19F NMR (283 MHz, CDCl3) δ -105.6 (C7F). IR (ATR): 

3378, 2980, 1720, 1666, 1630, 1580, 1511, 1260, 1163, 1149 cm-1. MS (70 eV) m/z 

(%): 349 (M+, 4), 274 (5), 256 (5), 228 (9), 200 (7), 176 (100), 161 (8), 146 (10). HRMS: 

Calculated for [C18H21NO5F]+: 350.1404 [(M+H)+]; found: 350.1417. The ee was 

determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (85:15)]; flow 
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rate 1.0 mL/min; τmajor = 28.17 min, τminor = 35.63 min (95% ee). [α]D
20: +56.3 (c = 1.0, 

CH2Cl2). 

Diethyl 2-(((R)-7-chloro-3-formyl-1,2-dihydroquinolin-

2-yl)methyl)malonate (16c). Following the general 

procedure 16c (35 mg, 0.10 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 7:3) after 16 h in 

97% yield as an orange oil starting from aldehyde 14a (23 mg, 0.10 mmol) and 

aminobenzaldehyde 15c (16 mg, 0.10 mmol) in the presence of 17a (7 mg, 0.02 

mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol) and using CHCl3 (1 mL) as solvent. 1H 

NMR (300 MHz, CDCl3) δ 9.47 (s, 1H, CHO), 7.16 (s, 1H, CH4), 7.00 (d, J = 8.1 Hz, 1H, 

CH5), 6.59 (dd, J = 8.1, 1.9 Hz, 1H, CH6), 6.48 (d, J = 1,9 Hz, 1H, CH8), 4.72 (ddd, J = 7.1, 

4.5, 2.6, 1H, CH2), 4.68-4.59 (bs, 1H, NH), 4.26-4.00 (m, 4H, OCH2), 3.47 (dd, J = 7.7, 

6.5 Hz, 1H, OCCHCO), 2.20 (dt, J = 13.9, 6.8 Hz, 1H, CHaHb), 2.08 (ddd, J = 14.2, 7.8, 

4.4 Hz, 1H, CHaHb), 1.27-1.17 (m, 6H, CH3). 13C NMR (75 MHz, CDCl3) δ 190.0 (CHO), 

169.3, 169.2 (C=O), 146.0 (C8a), 143.2 (C4H), 138.8 (C7Cl), 132.6 (C3
.), 131.0 (C5H), 

118.1 (C6H), 116.2 (C4a), 113.4 (C8H), 61.8, 61.7 (OCH2), 48.3 (CHCO2Et), 47.8 (C2H), 

35.2 (CH2CHCO2Et), 13.9, 13.9 (CH3). IR (ATR): 3379, 2926, 1724, 1662, 1631, 1598, 

1483, 1145, 1041 cm-1. MS (70 eV) m/z (%): 367 (M+, 2), 365 (M+, 5), 290 (10), 281 

(26) 244 (13), 215 (10), 207 (67), 194 (35), 192 (100), 177 (10), 164 (8), 128 (11), 83 

(28), 73(10). HRMS: Calculated for [C18H21NO5Cl]+: 366.1108 [(M+H)+]; found: 

366.1103. The ee was determined by HPLC using a Chiralpak ASH column [n-

hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 47.94 min, τminor = 74.95 min 

(96% ee). [α]D
20: -6.9 (c = 1.0, CH2Cl2).  

 

N
H

O

EtO2C CO2Et

Cl

 
 



 
Chapter 6  239   

Diethyl 2-(((R)-7-bromo-3-formyl-1,2-dihydroquinolin-2-yl)methyl)malonate (16d). 

Following the general procedure 16d (36 mg, 0.09 

mmol) was isolated by FC (hexanes/EtOAc gradient 

from 8:2 to 7:3) after 16 h in 87% yield as an orange oil 

starting from aldehyde 14a (23 mg, 0.10 mmol) and 

aminobenzaldehyde 15d (16 mg, 0.10 mmol) in the 

presence of 17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol) and 

using CHCl3 (1 mL) as solvent. 1H NMR (300 MHz, CDCl3) δ 9.47 (s, 1H, CHO), 7.15 (s, 

1H, CH4), 6.92 (d, J = 8.1 Hz, 1H, CH5), 6.74 (dd, J = 8.1, 1.8 Hz, 1H, CH6), 6.64 (d, J = 

1,8 Hz, 1H, CH8), 4.72 (ddd, J = 7.2, 4.4, 2.7, 1H, CH2), 4.63 (d, J = 2.7 Hz, 1H, NH), 

4.25-4.00 (m, 4H, OCH2), 3.47 (dd, J = 7.8, 6.5 Hz, 1H, OCCHCO), 2.20 (dt, J = 13.9, 6.8 

Hz, 1H, CHaHb), 2.07 (ddd, J = 14.3, 7.8, 4.5 Hz, 1H, CHaHb), 1.28-1.16 (m, 6H, CH3). 13C 

NMR (75 MHz, CDCl3) δ 190.1 (CHO), 169.3, 169.2 (C=O), 146.0 (C8a), 143.2 (C4H), 

132.8 (C3
.), 131.1 (C5H), 127.3 (C7Br), 121.0 (C6H), 116.6 (C4a), 116.5 (C8H), 61.8 

(OCH2), 61.7 (O-CH2), 48.4 (CHCO2E), 47.8 (C2H t), 35.2 (CH2CHCO2Et), 14.0, 14.0 

(CH3). IR (ATR): 3379, 2976, 1716, 1662, 1623, 1595, 1455, 1143, 1038 cm-1. MS (70 

eV) m/z (%): 411 (M+, 3), 409 (M+, 4), 336 (5), 318 (7), 290 (10), 238 (91), 236 (100), 

157 (19), 129 (14). HRMS: Calculated for [C18H21NO5Br]+: 410.0603 [(M+H)+]; found: 

410.0619. The ee was determined by HPLC using a Chiralpak ASH column [n-

hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 27.09 min, τminor = 44.74 min 

(95% ee). [α]D
20: -24.2 (c = 1.0, CH2Cl2). 

Diethyl 2-(((R)-3-formyl-7-(trifluoromethyl)-1,2-

dihydroquinolin-2-yl)methyl)malonate (16e). 

Following the general procedure 16e (34 mg, 0.09 

mmol) was isolated by FC (hexanes/EtOAc gradient 

from 8:2 to 7:3) after 16 h in 90% yield as an orange oil starting from aldehyde 14a 

(23 mg, 0.10 mmol) and aminobenzaldehyde 15e (19 mg, 0.10 mmol) in the 
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presence of 17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol) and 

using CHCl3 (1 mL) as solvent. 1H NMR (300 MHz, CDCl3) δ 9.53 (s, 1H, CHO), 7.20 (s, 

1H, CH4), 7.17 (d, J = 8.0 Hz, 1H, CH5), 6.85 (d, J = 7.9, 0.8 Hz, 1H, CH6), 6.70 (s, 1H, 

CH8), 4.83–4.68 (m, 2H, NHCH2), 4.30–3.96 (m, 4H, OCH2), 3.48 (dd, J = 7.6, 6.6 Hz, 

1H, OCCHCO), 2.23 (dt, J = 13.7, 6.8 Hz, 1H, CHaHb), 2.15–2.00 (m, 1H, CHaHb), 1.29–

1.11 (m, 6H, CH3). 13C NMR (75 MHz, CDCl3) δ 190.4 (CHO), 169.5, 169.4 (C=O), 145.3 

(C8a), 142.8 (C4H), 134.4 (C3), 134.3 (q, J = 32 Hz, C7CF3), 130.5 (C5H), 123.7 (q, J = 

272.7 Hz, CF3), 120.2 (C4a), 114.0 (q, J = 3.8 Hz, C6H), 110.6 (q, J = 4.0 Hz, C8H), 61.9, 

61.8 (OCH2), 48.4 (CHCO2Et), 48.0 (C2H), 35.3 (CH2CHCO2Et), 14.0, 13.8 (CH3). 19F 

NMR (283 MHz, CDCl3) δ -63.7 (C7CF3). IR (ATR): 3379, 2984, 1724, 1670, 1641, 1519, 

1483, 1243, 1149, 1120 cm-1. MS (70 eV) m/z (%): 399 (M+, 3), 278 (4), 239 (6), 226 

(100), 211 (12), 197 (7), 55 (4). HRMS: Calculated for [C19H21NO5F3]+: 400.1372 

[(M+H)+]; found: 400.1388. The ee was determined by HPLC using a Chiralpak ASH 

column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 14.95 min, τminor = 

17.42 min (96% ee). [α]D
20: -22.8 (c = 1.0, CH2Cl2).  

Diethyl 2-(((R)-3-formyl-1,2-dihydro-7-methylquinolin-

2-yl)methyl)malonate (16f). Following the general 

procedure 16f (32 mg, 0.09 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 7:3) after 16 h in 

91% yield as an orange oil starting from aldehyde 14a (23 mg, 0.10 mmol) and 

aminobenzaldehyde 15f (14 mg, 0.10 mmol) in the presence of 17a (7 mg, 0.02 

mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), using CHCl3 (1 mL) as solvent. 1H 

NMR (300 MHz, CDCl3) (* denotes partially solaped signals) δ 9.44 (s, 1H, CHO), 7.16 

(s, 1H, CH4), 6.96 (d, J = 7.7 Hz, 1H, CH5), 6.45 (d, J = 7.7 Hz, 1H, CH6), 6.29 (s, 1H, 

CH8), 4.69 (t, J = 4.8 Hz, 1H, CH2), 4.57-4.41 (bs, 1H, NH), 4.34–3.89 (m, 4H, OCH2), 

3.47 (t, J = 7.2 Hz, 1H, OCCHCO), 2.31–2.13* (m, 1H, CHaHb), 2.21* (s, 1H, CH3CH7) 

2.04 (ddd, J = 20.6, 12.6, 8.7 Hz, 1H, CHaHb), 1.38–1.04 (m, 6H, CH3). 13C NMR (75 

N
H

O

EtO2C CO2Et

 
 



 
Chapter 6  241   

MHz, CDCl3) δ 190.2 (CHO), 169.5, 169.4 (C=O), 145.4 (C8a), 144.6 (C4H), 144.3 

(CH3C7), 131.8 (C3), 130.2 (C5H), 119.3 (C6H), 115.6 (C4a), 114.3 (C8H), 61.7, 61.7 

(OCH2), 48.5 (CHCO2Et), 47.8 (C2H), 35.1 (CH2CHCO2Et), 21.9 (CH3C7), 14.0, 14.0 (CH3). 

IR (ATR): 3383, 2984, 1724, 1662, 1623, 1558, 1476, 1167, 1145 cm-1. MS (70 eV) m/z 

(%): 345 (M+, 3), 270 (4), 253 (5), 224 (7), 208 (3), 196 (5), 180 (8), 172 (100), 142 (9), 

115 (6). HRMS: Calculated for [C19H24NO5]+: 346.1654 [(M+H)+]; found: 36.1656. The 

ee was determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH 

(90:10)]; flow rate 1.0 mL/min; τmajor = 44.99 min, τminor = 77.90 min (85% ee). [α]D
20: 

+43.7 (c = 1.0, CH2Cl2).  

Diethyl 2-(((R)-3-formyl-1,2-dihydro-7-methoxyquinolin-2-yl)methyl)malonate 

(16g). Following the general procedure 16g (29 mg, 

0.08 mmol) was isolated by FC (hexanes/EtOAc 

gradient from 8:2 to 7:3) after 16 h in 81% yield as an 

orange oil starting from aldehyde 14a (23 mg, 0.10 

mmol) and aminobenzaldehyde 15g (15 mg, 0.10 

mmol) in the presence of 17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 

mmol), using CHCl3 (1 mL) as solvent. 1H NMR (300 MHz, CDCl3) δ 9.41 (s, 1H, CHO), 

7.15 (s, 1H, CH4), 7.00 (d, J = 8.5 Hz, 1H, CH5), 6.22 (dd, J = 8.5, 2.3 Hz, 1H, CH6), 5.97 

(d, J = 2.2 Hz, 1H, CH8), 4.70 (ddd, J = 7.0, 4.5, 2.4 Hz, 1H, CH2), 4.63-4.55 (bs, 1H, 

NH), 4.24–3.99 (m, 4H, OCH2), 3.76 (s, 3H, OCH3), 3.49 (t, J = 7.2 Hz, 1H, OCCHCO), 

2.21 (dt, J = 13.9, 6.9 Hz, 1H, CHaHb), 2.08 (ddd, J = 14.1, 7.8, 4.6 Hz, 1H, CHaHb), 

1.46–0.78 (m, 6H, CH3). 13C NMR (75 MHz, CDCl3) δ 189.9 (CHO), 169.6, 169.4 (C=O), 

164.3 (C7OCH3), 147.2 (C8a), 144.6 (C4H), 131.9 (C5H), 130.1 (C3), 111.7 (C4a), 105.6 

(C6H), 97.8 (C8H), 61.7, 61.7 (OCH2), 55.3 (OCH3), 48.4 (CHCO2Et), 47.9 (C2H), 35.3 

(CH2CHCO2Et), 14.0, 14.0 (CH3). IR (ATR): 3382, 2984, 1724, 1656, 1616, 1565, 1512, 

1272, 1174, 1143, 1031 cm-1. MS (70 eV) m/z (%): 361 (M+, 2), 269 (6), 242 (4), 207 

(5), 188 (100), 173 (6), 145 (9), 127 (4). HRMS: Calculated for [C19H24NO6]+: 362.1604 
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[(M+H)+]; found: 362.1603. The ee was determined by HPLC using a Chiralpak ASH 

column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 83.53 min, τminor = 

254.01 min (80% ee). [α]D
20: +53.4 (c = 1.0, CH2Cl2).  

Diethyl 2-(((R)-6-chloro-3-formyl-1,2-dihydroquinolin-

2-yl)methyl)malonate (16h). Following the general 

procedure 16h (34 mg, 0.09 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 7:3) after 16 h in 

93% yield as an orange oil starting from aldehyde 14a (23 mg, 0.10 mmol) and 

aminobenzaldehyde 15h (16 mg, 0.10 mmol) in the presence of 17a (7 mg, 0.02 

mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol) and using CHCl3 (1 mL) as solvent. 1H 

NMR (300 MHz, CDCl3) δ 9.50 (s, 1H, CHO), 7.12 (s, CH4), 7.10–7.01 (m, 2H, 

CH5CH6CH7), 6.48-6-37 (m, 1H, CH8), 4.71 (ddd, J = 7.3, 4.4, 2.7, 1H, CH2), 4.62-4.54 

(bs, 1H, NH), 4.25-4.01 (m, 4H, OCH2), 3.46 (dd, J = 7.6, 6.7 Hz, 1H, OCCHCO), 2.20 

(dt, J = 14.2, 7.1 Hz, 1H, CHaHb), 2.04 (ddd, J = 14.2, 7.7, 4.5 Hz, 1H, CHaHb), 1.28-1.17 

(m, 6H, CH3). 13C NMR (75 MHz, CDCl3) δ 190.1 (CHO), 169.2, 169.2 (C=O), 143.6 

(C8a
.), 142.7 (C4H), 133.4 (C3), 132.6 (C5H), 128.9 (C7H), 122.2 (C6Cl), 118.7 (C4a), 115.1 

(C8H), 61.7, 61.6 (OCH2), 48.3 (CHCO2Et), 47.8 (C2H), 34.9 (CH2CHCO2Et), 13.9, 13.9 

(CH3). IR (ATR): 3376, 2980, 1724, 1662, 1631, 1566, 1480, 1156, 1031 cm-1. MS (70 

eV) m/z (%): 367 (M+, 2), 365 (M+, 5), 274 (5), 246 (6), 205 (6), 194 (32), 192 (100), 

177 (7), 164 (7), 128 (8). HRMS: Calculated for [C18H21NO5Cl]+: 366.1108 [(M+H)+]; 

found: 366.1101. The ee was determined by HPLC using a Chiralcel OZ-3 column [n-

hexane/i-PrOH (95:05)]; flow rate 1.0 mL/min; τmajor = 97.04 min, τminor = 158.28 min 

(95% ee). [α]D
20: -34.5 (c = 1.0, CH2Cl2).  
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Diethyl 2-(((R)-6-bromo-3-formyl-1,2-dihydroquinolin-2-yl)methyl)malonate (16i). 

Following the general procedure 16i (37 mg, 0.09 

mmol) was isolated by FC (hexanes/EtOAc gradient 

from 8:2 to 7:3) after 16 h in 89% yield as an orange oil 

starting from aldehyde 14a (23 mg, 0.10 mmol) and 

aminobenzaldehyde 15i (20 mg, 0.10 mmol) in the 

presence of 17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol) and 

using CHCl3 (1 mL) as solvent. 1H NMR (300 MHz, CDCl3) δ 9.49 (s, 1H, CHO), 7.22-

7.15 (m, 2H, CH4C4aCH5C6CH7), 7.11 (s, 1H, CH5), 6.37 (d, J = 8.1 Hz, 1H, CH8), 4.71 

(ddd, J = 7.2, 4.4, 2.2 Hz, 1H, CH2), 4.67-4.55 (bs, 1H, NH), 4.25-3.99 (m, 4H, OCH2), 

3.46 (dd, J = 7.7, 6.6 Hz, 1H, OCCHCO), 2.20 (ddd, J = 14.2, 7.5, 6.7 Hz, 1H, CHaHb), 

2.04 (ddd, J = 14.3, 7.7, 4.4 Hz, 1H, CHaHb), 1.29-1.16 (m, 6H, CH3). 13C NMR (75 MHz, 

CDCl3) δ 190.1 (CHO), 169.3, 169.2 (C=O), 144.0 (C8a), 142.6 (C4H), 135.4 (C7H), 133.4 

(C3), 131.9 (C5H), 119.3 (C4a), 115.5 (C8H), 109.0 (C6Br), 61.8, 61.7 (OCH2), 48.4 

(CHCO2Et), 47.8 (C2H), 35.0 (CH2CCO2Et), 14.0, 13.9 (CH3). IR (ATR): 3375, 2984, 1727, 

1666, 1631, 1562, 1476, 1156, 1131, 1038 cm-1. MS (70 eV) m/z (%): 411 (M+, 4), 409 

(M+, 5), 336 (5), 318 (8), 288 (9), 238 (90), 236 (100), 157 (20), 129 (17). HRMS: 

Calculated for [C18H21NO5Br]+: 410.0603 [(M+H)+]; found: 410.0619. The ee was 

determined by HPLC using a Chiralcel OZ-3 column [n-hexane/i-PrOH (85:15)]; flow 

rate 1.0 mL/min; τmajor = 28.45 min, τminor = 36.27 min (94% ee). [α]D
20: +27.9 (c = 1.0, 

CH2Cl2). 

Diethyl 2-(((R)-3-formyl-1,2-dihydro-6-methylquinolin-

2-yl)methyl)malonate (16j). Following the general 

procedure 16j (28 mg, 0.08 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 7:3) after 16 h in 

80% yield as an orange oil starting from aldehyde 14a (23 mg, 0.10 mmol) and 

aminobenzaldehyde 15j (14 mg, 0.10 mmol) in the presence of 17a (7 mg, 0.02 
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mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), using CHCl3 (1 mL) as solvent. 1H 

NMR (300 MHz, CDCl3) (* denotes partially solaped signals) δ 9.48 (s, 1H, CHO), 7.16 

(s, 1H, CH4), 6.95 (dd, J = 8.2, 1.6 Hz, 1H, CH7), 6.90 (s, 1H, CH5), 6.41 (d, J = 8.2 Hz, 

1H, CH8), 4.74–4.62 (m, 1H, NCH), 4.45-4.33 (bs, 1H, NH), 4.27–4.00 (m, 4H, OCH2), 

3.47 (dd, J = 7.5, 7.0 Hz, 1H, OCCHCO), 2.27–2.12* (m, 1H, CHaHb), 2.20* (s, 1H, 

CH3C6), 2.03 (ddd, J = 14.2, 7.7, 4.5 Hz, 1H, CHaHb), 1.31–1.08 (m, 6H, CH3). 13C NMR 

(75 MHz, CDCl3) δ 190.4 (CHO), 169.5, 169.4 (C=O), 144.6 (C4H), 143.1 (C8a), 134.3 

(C7H), 133.0 (C3), 130.2 (C5H), 127.2 (C6CH3), 118.1 (C4a), 114.1 (C8H), 61.8, 61.7 

(OCH2), 48.6 (CHCO2Et), 47.9 (C2H), 34.9 (CH2CHCO2Et), 20.32 (C6CH3), 14.1, 14.1 

(CH3). IR (ATR): 3389, 2923, 1724, 1659, 1634, 1572, 1497, 1156, 1128 cm-1. MS (70 

eV) m/z (%): 345 (M+, 4), 270 (6), 253 (8), 224 (10), 208 (5), 196 (7), 180 (13), 172 

(100), 142 (11), 115 (7). HRMS: Calculated for [C19H24NO5]+: 346.1654 [(M+H)+]; 

found: 36.1654. The ee was determined by HPLC using a Chiralpak ASH column [n-

hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 63.33 min, τminor = 44.83 min 

(81% ee). [α]D
20: -6.88 (c = 1.0, CH2Cl2). 

Diethyl 2-(((R)-3-formyl-8-methyl-1,2-dihydroquinolin-2-

yl)methyl)malonate (16k). Following the general 

procedure 16k (22 mg, 0.06 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 7:3) after 16 h in 64% 

yield as an orange oil starting from aldehyde 14a (23 mg, 0.10 mmol) and 

aminobenzaldehyde 15k (15 mg, 0.10 mmol) in the presence of 17a (7 mg, 0.02 

mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol) and using CHCl3 (1 mL) as solvent. 1H 

NMR (300 MHz, CDCl3) (* denotes partially solaped signals) δ 9.50 (s, 1H, CHO), 7.22 

(s, 1H, CH4), 7.06–6.65 (m, 2H, CH5CH6CH7), 6.57 (t, J = 7.5 Hz, 1H, CH6), 4.81 (ddd, J = 

7.3, 4.7, 2.8, 1H, CH2), 4.45-4.37 (bs, 1H, NH), 4.23-3.97 (m, 4H, OCH2), 3.48 (dd, J = 

8.3, 6.4 Hz, 1H, OCCHCO), 2.19 (dt, J = 13.7, 6.6 Hz, 1H, CHaHb), 2.15-2-03* (m, 1H, 

CHaHb), 2.10* (s, 3H, CH3CH8), 1.26-1.28 (m, 6H, CH3). 13C NMR (75 MHz, CDCl3) δ 
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190.2 (CHO), 169.4, 169.1 (C=O), 145.0 (C4H), 143.4 (C8a), 134.2 (C7H), 132.0 (C3), 

128.2 (C5H), 121.2 (CH3C8), 117.2 (C6H), 117.1 (C4a), 61.6, 61.6 (OCH2), 48.2 

(CHCO2Et), 47.8 (C2H), 35.4 (CH2CCO2Et), 16.5 (CH3C8), 14.1, 14.0. (CH3). IR (ATR): 

3383, 2923, 1724, 1662, 1627, 1580, 1466, 1145 cm-1. MS (70 eV) m/z (%): 345 (M+, 

4), 254 (4), 185 (4), 172 (100), 157 (5), 143 (5), 115 (5). HRMS: Calculated for 

[C19H24NO5]+: 346.1654 [(M+H)+]; found: 36.1655. The ee was determined by HPLC 

using a Chiralpak ASH column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor 

= 41.48 min, τminor = 136.52 min (97% ee). [α]D
20: +24.0 (c = 1.0, CH2Cl2). 

Diethyl 2-(((R)-3-formyl-8-methoxy-1,2-dihydroquinolin-2-

yl)methyl)malonate (16l). Following the general procedure 

16l (23 mg, 0.06 mmol) was isolated by FC (hexanes/EtOAc 

gradient from 8:2 to 7:3) after 16 h in 64% yield as a red 

solid starting from aldehyde 14a (23 mg, 0.10 mmol) and aminobenzaldehyde 15l 

(15 mg, 0.10 mmol) in the presence of 17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H 

(3 mg, 0.02 mmol) and using CHCl3 (1 mL) as solvent. 1H NMR (300 MHz, CDCl3) δ 

9.49 (s, 1H, CHO), 7.21 (s, 1H, CH4), 6.80–6.69 (m, 2H, CH5CH6CH7), 6.58 (t, J = 7.8 Hz, 

1H, CH6), 4.94-4.86 (bs, 1H, NH), 4.79 (ddd, J = 7.3, 4.7, 2.6, 1H, CH2), 4.26-4.01 (m, 

4H, OCH2), 3.83 (s, 3H, OCH3), 3.48 (dd, J = 8.1, 6.8 Hz, 1H, OCCHCO), 2.21 (dt, J = 

14.2, 7.3 Hz, 1H, CHaHb), 2.04 (ddd, J = 14.1, 8.1, 4.7 Hz, 1H, CHaHb), 1.26-1.21 (m, 6H, 

CH3). 13C NMR (75 MHz, CDCl3) δ 190.5 (CHO), 169.3, 169.2 (C=O), 146.1 (C8OCH3), 

144.6 (C4H), 135.8 (C8a), 132.5 (C3), 122.0 (C5H), 117.4 (C4a), 116.7 (C6H), 112.8 (C7H), 

61.7, 61.6 (OCH2), 55.7 (OCH3), 48.2 (CHCO2Et), 47.4 (C2H), 35.3 (CH2CHCO2Et), 14.1 

(CH3). IR (ATR): 3411, 2923, 1724, 1652, 1620, 1565, 1512, 1250, 1174, 1143, 1041 

cm-1. MS (70 eV) m/z (%): 361 (M+, 3), 316 (3), 201 (4), 188 (100), 173 (25), 145 (5), 

127 (3). HRMS: Calculated for [C19H24NO6]+: 362.1604 [(M+H)+]; found: 362.1600. The 

ee was determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH 
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(90:10)]; flow rate 1.0 mL/min; τmajor = 46.07 min, τminor = 194.45 min (79% ee). [α]D
20: 

-26.0 (c = 1.0, CH2Cl2). M.p.: 87-89ºC.  

Diethyl 2-(((R)-5-chloro-3-formyl-1,2-dihydroquinolin-2-

yl)methyl)malonate (16m). Following the general 

procedure 16m (19 mg, 0.05 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 7:3) after 16 h in 53% 

yield as an orange oil starting from aldehyde 14a (23 mg, 0.10 mmol) and 

aminobenzaldehyde 15m (16 mg, 0.10 mmol) in the presence of 17a (7 mg, 0.02 

mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), using CHCl3 (1 mL) as solvent. 1H 

NMR (300 MHz, CDCl3) δ 9.55 (s, 1H, CHO), 7.60 (s, 1H, CH4), 7.02 (t, J = 8.0 Hz, 1H, 

CH7), 6.67 (dd, J = 7.9, 0.9 Hz, 1H, CH6), 6.39 (d, J = 8.2 Hz, 1H, CH8), 4.78–4.63 (m, 

2H, NHCH2), 4.27–3.95 (m, 4H, OCH2), 3.47 (t, J = 7.2 Hz, 1H, OCCHCO), 2.31–2.12 (m, 

1H, CHaHb), 2.04 (ddd, J = 14.3, 7.5, 4.3 Hz, 1H, CHaHb), 1.32 – 1.15 (m, 6H, CH3). 13C 

NMR (75 MHz, CDCl3) δ 190.5 (CHO), 169.4, 169.4 (C=O), 146.6 (C8a), 140.1 (C4H), 

134.8 (C3), 133.4 (C5HCl), 133.3 (C7H), 118.5 (C6H), 115.9 (C4a), 112.8 (C8H), 61.9, 61.9 

(OCH2), 48.6 (CHCO2Et), 47.5 (C2H), 35.1 (CH2CHCO2Et), 14.1, 14.1 (CH3). IR (ATR): 

3386, 2977, 1724, 1662, 1626, 1497, 1138, 1045 cm-1. MS (70 eV) m/z (%): 367 (M+, 

1), 365 (M+, 4), 290 (6), 273 (6), 244 (9), 216 (7), 192 (100), 164 (10), 128 (9), 99 (6), 

55(4). HRMS: Calculated for [C18H21NO5Cl]+: 366.1108 [(M+H)+]; found: 366.1124. The 

ee was determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH 

(85:15)]; flow rate 1.0 mL/min; τmajor = 21.8 min, τminor = 29.91 min (69% ee). [α]D
20: 

+18.3 (c = 1.0, CH2Cl2). 

Diethyl 2-(((R)-3-formyl-6,7-dimethoxy-1,2-

dihydroquinolin-2-yl)methyl)malonate (16n). 

Following the general procedure 16n (28 mg, 0.07 N
H

O
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mmol) was isolated by FC (hexanes/EtOAc gradient from 8:2 to 7:3) after 16 h in 71% 

yield as an orange oil starting from aldehyde 14a (23 mg, 0.10 mmol) and 

aminobenzaldehyde 15n (18 mg, 0.10 mmol) in the presence of 17a (7 mg, 0.02 

mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol) and using CHCl3 (1 mL) as solvent. 1H 

NMR (300 MHz, CDCl3) δ 9.40 (s, 1H, CHO), 7.11 (s, 1H, CH4), 6.58 (s, 1H, CH5), 6.03 

(s, 1H, CH8), 4.67 (ddd, J = 7.2, 4.7, 1.8, 1H, CH2), 4.52-4.44 (bs, 1H, NH), 4.31-3.95 

(m, 4H, OCH2), 3.83 (s, 3H, C6OCH3), 3.78 (s, 3H, C7OCH3), 3.47 (dd, J = 7.6, 6.8 Hz, 1H, 

OCCHCO), 2.25-2.12 (m, 1H, CHaHb), 2.01 (ddd, J = 14.1, 7.7, 4.7, 1H, CHaHb), 1.26-

1.16 (m, 6H, CH3). 13C NMR (75 MHz, CDCl3) δ 189.5 (CHO), 169.4, 169.4 (C=O), 154.4 

(C7OCH3), 144.2 (C4H), 142.2 (C3), 141.4 (C8a), 129.7 (C6OCH3), 112.3 (C5H), 109.9 (C4a), 

97.4 (C8H), 61.6, 61.5 (OCH2), 56.5, 55.9 (OCH3), 48.4 (CHCO2Et), 47.6 (C2H), 34.6 

(CH2CHCO2Et), 14.0, 14.0 (CH3). IR (ATR): 3372, 2934, 1727, 1656, 1627, 1570, 1505, 

1242, 1139, 1027 cm-1. MS (70 eV) m/z (%): 299 (M+- 2 x C2H5OH, 100), 272 (22), 254 

(20), 226 (53), 212 (13), 183 (16), 141 (12). HRMS: Calculated for [C20H26NO7]+: 

392.1709 [(M+H)+]; found: 392.1702. The ee was determined by HPLC using a 

Chiralpak ADH column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 

39.89 min, τminor = 64.27 min (64% ee). [α]D
20: +32.2 (c = 1.0, CH2Cl2). 

Diethyl 2-(((R)-3-formyl-1,2 dihydrobenzo[g]quinolin-2-yl)methyl)malonate (16o). 

Following the general procedure 16o (35 mg, 0.09 

mmol) was isolated by FC (hexanes/EtOAc gradient 

from 8:2 to 7:3) after 16 h in 93% yield as a red solid 

starting from aldehyde 14a (23 mg, 0.10 mmol) and 

aminobenzaldehyde 15o (17 mg, 0.10 mmol) in the presence of 17a (7 mg, 0.02 

mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol) and using CHCl3 (1 mL) as solvent. 1H 

NMR (300 MHz, CDCl3) δ 9.56 (s, 1H, CHO),  partially overlapped signals 7.63;7.60 (d, 

J = 8.5 Hz, 1H, CH6); (s, 1H, CH5), 7.46 (d, J = 8.0 Hz, 1H, CH9), 7.38; 7.33 partially 

overlapped signals (s, 1H, CH4); (m, 1H, CH7), 7.16 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H, CH8), 
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6.73 (s, 1H, CH10), 4.72 (t, J = 5.7, 1H, CH2), 4.56 (bs, 1H, NH), 4.26-3.93 (m, 4H, 

OCH2), 3.49 (dd, J = 7.8, 6.5 Hz, 1H, OC-CH-CO), 2.29-2.13 (m, 2H, CH2-CH2), 1.21 (t, J 

= 7.1 Hz, 3H, CH3), 1.09 (t, J = 7.1 Hz, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ 190.4 

(CHO), 169.3, 169.2 (CO2Et), 143.9 (C4H), 141.8 (C4a), 137.1 (C5a), 136.7 (C3), 130.5 

(C5H), 128.6 (C6H), 128.2 (C7H), 127.7 (C9a), 125.4 (C9H), 122.8 (C8H), 120.7 (C10a), 

107.2 (C10H), 61.7, 61.6 (OCH2), 48.5 (CHCO2Et), 48.1 (C2H) 35.4 (C2HCH2), 13.9 (CH3), 

13.8 (CH3). IR (ATR): 3347, 2984, 1745, 1713, 1662, 1634, 1156, 1135 cm-1. MS (70 

eV) m/z (%): 208 (M+- C8H13O4, 82), 178 (43), 151 (38), 126 (6), 103 (12), 83 (10), 77 

(8), 55(6). HRMS: Calculated for [C20H18NO4] •: 336.1236 [(M+-C2H5O)•]; found: 

336.0874. The ee was determined by HPLC using a Chiralpak ASH column [n-

hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 49.45 min, τminor = 70.19 min 

(85% ee). [α]D
20: -326.6 (c = 1.0, CH2Cl2). M.p.: 113-115ºC.  

 

Dimethyl 2-(((R)-3-formyl-1,2-dihydroquinolin-2-

yl)methyl)malonate (16p). Following the general 

procedure 16p (26 mg, 0.09 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 7:3) after 16 h in 

86% yield as an orange oil starting from aldehyde 14b (19 mg, 0.10 mmol) and 

aminobenzaldehyde 15a (12 mg, 0.10 mmol) in the presence of 17a (7 mg, 0.02 

mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), using CHCl3 (1 mL) as solvent. 1H 

NMR (300 MHz, CDCl3) δ 9.49 (s, 1H, CHO), 7.21 (s, 1H, CH4), 7.17–7.03 (m, 2H, 

CH5CH6CH7), 6.65 (t, J = 7.4 Hz, 1H, CH6), 6.48 (d, J = 8.1 Hz, 1H, CH8), 4.73 (ddd, J = 

7.2, 4.6, 2.7 Hz, 1H, CH2), 4.53-4.38 (bs, 1H, NH), 3.73 (s, 3H, CH3), 3.66 (s, 3H, CH3), 

3.52 (t, J = 7.2 Hz, 1H, OCCHCO), 2.24 (dt, J = 14.1, 7.0 Hz, 1H, CHaHb), 2.09 (ddd, J = 

14.2, 7.6, 4.7 Hz, 1H, CHaHb). 13C NMR (75 MHz, CDCl3) δ 190.5 (CHO), 169.9, 169.8 

(C=O), 145.3 (C8a), 144.7 (C4H), 133.4 (C7H), 132.6 (C3), 130.3 (C5H), 118.1 (C6H), 117.9 

(C4aH), 114.1 (C8H), 52.8 (OCH3), 48.1 (CHCO2Me), 47.9 (C2H), 35.4 (CH2CCO2Me). IR 

(ATR): 3382, 2955, 1727, 1662, 1627, 1566, 1158, 1146 cm-1. MS (70 eV) m/z (%): 303 
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(M+, 4), 241 (4), 225 (5), 210 (7), 181 (5), 166 (7), 158 (100), 130 (10), 102 (5), 77 (6), 

59 (6). HRMS: Calculated for [C16H18NO5]+: 304.1185 [(M+H)+]; found: 304.1179. The 

ee was determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH 

(85:15)]; flow rate 1.0 mL/min; τmajor = 57.52 min, τminor = 83.68 min (91% ee). [α]D
20: 

+26.3 (c = 1.0, CH2Cl2). 

Dibenzyl 2-(((R)-3-formyl-1,2-dihydroquinolin-2-

yl)methyl)malonate (16q). Following the general 

procedure 16q (31 mg, 0.07 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 7:3) after 16 h in 69% 

yield as an orange oil starting from aldehyde 14c (35 mg, 0.10 mmol) and 

aminobenzaldehyde 15a (12 mg, 0.10 mmol) in the presence of 17a (7 mg, 0.02 

mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), using CHCl3 (1 mL) as solvent. 1H 

NMR (300 MHz, CDCl3) δ 9.46 (s, 1H, CHO ), 7.38–7.19 (m, 10H, CaromH), 7.15 (s, 1H, 

CH4), 7.14–7.04 (m, 2H, CH5CH6CH7), 6.63 (td, J = 7.6, 0.9 Hz, 1H, CH6), 6.41 (d, J = 8.1 

Hz, 1H, CH8), 5.18–4.95 (m, 4H, CH2Ph), 4.76 (ddd, J = 7.2, 4.5, 2.7 Hz, 1H, CH2), 4.49-

4.38 (bs, 1H, NH), 3.62 (t, J = 7.2 Hz, 1H, OCCHCO), 2.29 (dt, J = 14.1, 7.0 Hz, 1H, 

CHaHb), 2.13 (ddd, J = 14.2, 7.5, 4.6 Hz, 1H, CHaHb). 13C NMR (75 MHz, CDCl3) δ 190.4 

(CHO), 169.2, 169.1 (C=O), 145.2 (C8a), 144.6 (C4H), 135.3, 135.2 (OCH2Ph), 133.4 

(C7H), 132.6 (C3), 130.3 (C5H), 128.7, 128.5, 128.4, 128.4 (CaromH) 118.0 (C6H), 117.7 

(C4aH), 113.9 (C8H), 67.4, 67.4 (OCH2Ph), 48.5 (CHCO2Bn), 48.0 (C2H), 35.3 

(CH2CHCO2Bn). IR (ATR): 3386, 3024, 1730, 1662, 1627, 1164, 1143 cm-1. MS (70 eV) 

m/z (%): 107 (M+-C21H18NO4
·, 58), 91 (30), 82 (46), 79 (100), 63 (10), 51 (31). HRMS: 

Calculated for [C28H26NO5]+: 456.1811 [(M+H)+]; found: 456.1829. The ee was 

determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (90:10)]; flow 

rate 1.0 mL/min; τmajor = 80.41 min, τminor = 201.79 min (88% ee). [α]D
20: +31.2 (c = 

1.0, CH2Cl2). 
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Ethyl (R)-4-formyl-1-methyl-3,3a-dihydropyrrolo[1,2-

a]quinoline-2-carboxylate (18). Following the general 

procedure 18 (17 mg, 0.06 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 7:3) after 16 h in 60% 

yield as an orange oil starting from aldehyde 14d (20 mg, 0.10 

mmol) and aminobenzaldehyde 15a (12 mg, 0.10 mmol) in the presence of 17a (7 

mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), using CHCl3 (1 mL) as 

solvent. 1H NMR (300 MHz, CDCl3) δ 9.58 (s, 1H, CHO), 7.38-7.27 (m, 2H, CH6CH7CH8), 

7.25-7.17 (m, 2H, CH5 + CH9), 7.04 (t, J = 7.4 Hz, 1H, CH7), 4.88-4.72 (m, 1H, CH3a), 

4.30-4-00 (m, 2H, OCH2), 3.42 (dd, J = 16.1, 12.1 Hz, 1H, CH3
a), 3.12-2.89 (m, 1H, 

CH3
b), 2.51 (s, 3H, CCH3), 1.28 (t, J = 7.2 Hz, 3H, CH2-CH3). 13C NMR (75 MHz, CDCl3) δ 

189.8 (CHO), 167.0 (C=O), 155.2 (N-C=C), 142.8 (C5), 139.3 (C4), 139.0 (C9a), 131.5 

(C6), 130.0 (C8), 125.5 (C5a), 122.8 (C7), 119.9 (C9), 103.0 (C=C-CO), 59.2 (OCH2), 57.8 

(C3a), 33.9 (C3), 14.6 (CH3),14.4 (CH3). IR (ATR): 2926, 1670, 1598, 1483, 1387, 1225, 

1149 cm-1. MS (70 eV) m/z (%): 283 (M+, 2), 281 (66), 252 (100), 178 (34), 152 (13), 

128 (7), 89 (10), 77 (7). HRMS: Calculated for [C17H18NO3]+: 284.1287 [(M+H)+]; 

found: 284.1298. The ee was determined by HPLC using a Chiralpak IC column [n-

hexane/i-PrOH (40:60)]; flow rate 1.0 mL/min; τmajor = 62.06 min, τminor = 49.28 min 

(>99% ee). [α]D
20: +1548.1 (c = 1.0, CH2Cl2). 
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3.2.7. Synthesis of cyclopentaquinoline (19) 

Diethyl 1-hydroxy-1,3-dihydro-2H-cyclopenta[b]quinoline-2,2-dicarboxylate (19a).  

To a solution of catalyst 19a (7 mg, 0.02 mmol, 20 

mol%), p-nitrobenzoic acid (3 mg, 0.02 mmol, 20 mol%), 

cerium(III) chloride (5mg, 0.02 mmol, 20 mol%) and 

aldehyde 14a (23mg, 0.10 mmol) in CHCl3 (1 mL) at room temperature, 

aminobenzaldehyde 15a (12 mg, 0.10 mmol) was added. The stirring was maintained 

at this temperature until the reaction was complete by TLC. Solvent was evaporated 

and the crude was directly subjected to FC (hexanes/EtOAc gradient from 8:2 to 7:3) 

to afford the pure cyclopentaquinoline 19a (28 mg, 0.08 mmol) in 85% yield. 1H NMR 

(300 MHz, CDCl3) δ 8.13 (s, 1H, CH9), 8.03 (d, J = 8.1 Hz, 1H, CH5), 7.81 (dd, J = 8.1, 1.4 

Hz, 1H, CH8), 7.68 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H, CH6), 7.50 (ddd, J = 8.1, 6.9, 1.2 Hz, 

1H, CH7), 5.77 (d, J = 6.6 Hz, 1H, CH1), 4.36-4.13 (m, 4H, COCH2), 3.93 (bs, 1H, OH), 

3.88 (d, J = 17.4 Hz, 1H, CHaHb
3), 3.65 (d, J = 17.5 Hz, 1H, CHaHb

3), 1.29 (t, J = 7.1 Hz, 

3H, CH3),  1.23 (t, J = 7.1 Hz, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ 170.0 (CO), 169.9 

(CO), 161.3 (C3a), 148.8 (C4a), 133.8 (C9a), 131.8 (C9), 129.6 (C6), 128.8 (C5), 128.2 (C8), 

127.6 (C8a), 126.2 (C7), 77.6 (C1), 64.4 (C2), 62.2 (COCH2), 62.1 (COCH2), 39.8 (C3), 14.0 

(CH3), 14.0 (CH3). IR (ATR): 3118, 1650, 1607 cm-1. HRMS: Calculated for [C16H16NO4]+: 

330.1342 [(M+H)+]; found: 330.1346.  

 

3.2.8. Synthesis of lactams (20a-o) 

General procedure: To a solution of catalyst 17a (0.02 mmol, 20 mol%), p-

nitrobenzoic acid (0.02 mmol, 20 mol%) and aldehyde 14 in CHCl3 (1 mL) at room 

temperature, aminobenzaldehyde 15 was added. The reaction mixture was stirred 

for 16 h. Then acetic acid (578 eq, 57.80 mmol) was added and the reaction was 
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heated to reflux until it was complete by TLC (time given in each case). Solvent was 

removed and the crude was directly subjected to FC.  
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 (R)-Ethyl 4-formyl-1,2,3,3a-tetrahydro-1-oxopyrrolo[1,2-

a]quinoline-2-carboxylate (20a). Following the general 

procedure 20a (23 mg, 0.08 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 1:1) after 3h in 81% yield 

as a yellow solid starting from aldehyde 14a (23 mg, 0.10 

mmol) and aminobenzaldehyde 15a (12 mg, 0.10 mmol) in the presence of 17a (7 

mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), using CHCl3 (1 mL) as 

solvent, and HOAc (3.3 mL, 57.80 mmol). 1H NMR (300 MHz, CDCl3) (* denotes minor 

diastereoisomer signals) δ 9.58 (s, 1H, CHO), 9.56* (s, 1H, CHO), 8.24 (d, J = 8.2 Hz, 

1H, CH6), 7.49–7.39 (m, 1H, CH7), 7.35-7.30 (m, 1H, CH9), 7.27–7.14 (m, 2H, CH5CH8), 

5.19* (ddd, J = 9.9, 6.3, 1.8 Hz, 1H, CH3a), 4.89 (ddd, J = 10.4, 6.0, 1.6 Hz, 1H, CH3a), 

4.35–4.17 (m, 2H, OCH2), 3.64 (dd, J = 12.2, 8.0 Hz, 1H, CH2), 3.55-3.48* (m, 1H, CH2), 

3.26-3.17 (m, 1H, CH3), 2.61-2.49 (m, 1H, CH3´), 2.37* (m, 1H, CH3´), 1.37-1.28 (m, 3H, 

CH3). 13C NMR (75 MHz, CDCl3) (* denotes minor diastereoisomer signals) δ 190.0*, 

190.0 (CHO), 170.0, 169.7* (C1=O), 169.5*, 168.9 (CO2Et), 143.3*, 143.2 (C5H), 

137.6*, 137.2 (C4), 136.0*, 136.0 (C9a), 132.5 (C8H), 129.7*, 129.7 (C6H), 125.4*, 

125.3 (C7H), 124.0*, 123.9 (C5a), 120.9*, 120.4 (C9H), 61.9*, 61.8 (OCH2), 54.8*, 54.5 
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(C2H), 49.1*, 49.0 (C3aH), 30.7*, 30.7 (C3H2), 14.2*,14.1 (CH3). IR (ATR): 2987, 1720, 

1695, 1662, 1631, 1570, 1364, 1170 cm-1. MS (70 eV) m/z (%): 285 (M+, 98), 256 (17), 

238 (46), 212 (100), 184 (29), 166 (10), 156 (85), 142 (23), 128 (79), 115 (13), 101 

(32), 77 (19), 55 (76). HRMS: Calculated for [C16H16NO4]+: 286.1079 [(M+H)+]; found: 

286.1094. The ee was determined by HPLC using a Chiralpak ASH column [n-

hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor,7 = 66.02 min, τminor,7 = 88.94 min 

(91% ee); τmajor,7* = 176.14 min, τminor,7*  = 53.07 min (87% ee). M.p.: 145-147ºC. 

 (R)-Methyl 4-formyl-1,2,3,3a-tetrahydro-1-oxopyrrolo[1,2-

a]quinoline-2-carboxylate (20b). Following the general 

procedure 20b (22 mg, 0.08 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 1:1) after 1 h 45 min 

81% yield as a yellow solid starting from aldehyde 14b (19 

mg, 0.10 mmol) and aminobenzaldehyde 15a (12 mg, 0.10 mmol) in the presence of 

17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), using CHCl3 (1 mL) 

as solvent, and HOAc (3.3 mL, 57.80 mmol). 1H NMR (300 MHz, CDCl3) (* denotes 

minor diastereoisomer signals) δ 9.58 (s, 1H, CHO), 9.57* (s, 1H, CHO), 8.25 (d, J = 

8.3 Hz, 1H, CH6), 7.48-7.42 (m, 1H, CH7), 7.35-7.30 (m, 1H, CH9), 7.28–7.13 (m, 2H, 

CH5CH8), 5.19* (ddd, J = 9.8, 6.3, 1.7 Hz, 1H, CH3a), 4.90 (ddd, J = 10.3, 6.0, 1.4 Hz, 1H, 

CH3a), 3.81 (d, J = 1.2 Hz, 3H, CH3), 3.68 (dd, J = 12.1, 7.9 Hz, 1H, CH2), 3.53-3.50* (m, 

1H, CH2), 3.31–3.14 (m, 1H, CH3), 2.62-2.50 (m, 1H, CH3´), 2.43-2.32* (m, 1H, CH3´). 
13C NMR (75 MHz, CDCl3) (* denotes minor diastereoisomer signals) δ 190.0 (CHO), 

169.9, 169.8* (C1=O), 169.5*, 168.3 (CO2Et), 143.3*, 143.2 (C5H), 137.6*, 137.2 (C4), 

136.0 (C9a), 132.7 (C8H), 129.7*, 129.7 (C6), 125.4*, 125.3 (C7H), 124.1*, 123.8 (C5a), 

120.9*, 120.5 (C9H), 55.8*, 54.6 (C2H), 52.9*, 52.8 (CH3). 49.0*, 48.8 (C3aH), 30.6 

(C3H2). IR (ATR): 2951, 1741, 1702, 1670, 1630, 1368, 1170 cm-1. MS (70 eV) m/z (%): 

271 (M+, 91), 238 (27), 212 (82), 184 (44), 156 (100), 142 (32),128 (95), 115 (17), 101 

(40), 77 (28), 55 (60). HRMS: Calculated for [C15H14NO4]+: 272.0923 [(M+H)+]; found: 

N

O

O CO2Me

 



 
254  Chapter 6 

272.0933. The ee of both diastereoisomers were determined by HPLC using a 

Chiralpak AZ-3 column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor,7 = 

154.18 min, τminor,7 = 165.33 min (91% ee); τmajor,7* = 92.62 min, τminor,7*  = 111.27 min 

(89% ee). M.p.: 157-159ºC 

 (R)-Benzyl 4-formyl-1,2,3,3a-tetrahydro-1-oxopyrrolo[1,2-

a]quinoline-2-carboxylate (20c). Following the general 

procedure 20c (21 mg, 0.06 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 1:1) after 2 h 15min in 

60% yield as a brown oil starting from aldehyde 14c (35 mg, 

0.10 mmol) and aminobenzaldehyde 15a (12 mg, 0.10 mmol) in the presence of 17a 

(7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), using CHCl3 (1 mL) as 

solvent, and HOAc (3.3 mL, 57.80 mmol). 1H NMR (300 MHz, CDCl3) (* denotes minor 

diastereoisomer signals) δ 9.56 (s, 1H, CHO), 9.55* (s, 1H, CHO), 8.26-8.22 (m, 1H, 

CH6), 7.51–7.11 (m, 9H, Carom.-H), 5.31–5.19 (m, 2H, CH2), 5.19–5.11 (m, 1H, CH3a), 

4.94–4.83* (m, 1H, CH3a), 3.71 (dd, J = 12.1, 8.0 Hz, 1H, CH2), 3.59* (d, J = 9.4 Hz, 1H, 

CH2), 3.31–3.11 (m, 2H, CH3), 2.63-2.51 (m, 1H, CH3´), 2.38 (m, 1H, CH3´). 13C NMR (75 

MHz, CDCl3) (* denotes minor diastereoisomer signals) δ 190.1 (CHO), 169.9, 169.6* 

(C1=O), 169.4*, 168.9 (CO2Et), 143.4* (C5H), 143.3 (C5H), 137.7* (C4), 137.3 (C4), 

136.1 (C9a), 135.5, 135.4* (CH2Carom), 132.8, 132.7* (C8H), 129.8, 129.7* (C6H), 

128.8*, 128.7, 128.6*, 128.5, 128.4, 128.2* (CaromH), 125.5*, 125.4 (CH7), 124.2*, 

124.0 (C5a), 121.1*, 120.6 (CH9), 67.7 (OCH2), 67.6* (OCH2), 55.9* (C2H), 54.7 (C2H), 

49.3* (C3aH), 49.1 (C3aH), 30.8 (C3H2). IR (ATR): 2955, 1734, 1701, 1670, 1626, 1572, 

1364, 1163 cm-1. MS (70 eV) m/z (%): 107 (M+-C14H10NO3
·, 54), 91 (28), 83 (78), 79 

(100), 51 (29). HRMS: Calculated for [C21H18NO4]+: 348.1236 [(M+H)+]; found: 

348.1255. The ee of both diastereoisomers were determined by HPLC using a 

Chiralpak ASH column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor,7  = 
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109.42 min, τminor,7 = 145.78 min (90% ee), τmajor,7* = 295.66 min, τminor,7* = 85.64 min 

(89% ee). 

 (R)-Ethyl 8-fluoro-4-formyl-1,2,3,3a-tetrahydro-1-

oxopyrrolo[1,2-a]quinoline-2-carboxylate (20d). Following 

the general procedure 20d (23 mg, 0.08 mmol) was 

isolated by FC (hexanes/EtOAc gradient from 8:2 to 1:1) 

after 9 h in 77% yield as a yellow oil starting from aldehyde 

14a (23 mg, 0.10 mmol) and aminobenzaldehyde 15b (14 mg, 0.10 mmol) in the 

presence of 17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), using 

CHCl3 (1 mL) as solvent, and HOAc (3.3 mL, 57.80 mmol). 1H NMR (300 MHz, CDCl3) 

(* denotes minor diastereoisomer signals) δ 9.57 (s, 1H, CHO), 9.55* (s, 1H, CHO), 

8.09 (dd, J = 10.7, 2.3 Hz, 1H, CH9), 7.33-7.28 (m, 1H, CH6), 7.22 (d, J = 1.4 Hz, 1H, 

CH9), 7.19* (d, J = 1.5 Hz, 1H, CH9), 6.93–6.82 (m, 1H, CH7), 5.18* (ddd, J = 10.2, 6.2, 

1.8 Hz, 1H, CH3a), 4.88 (ddd, J = 10.3, 5.8, 1.5 Hz, 1H, CH3a), 4.35–4.18 (m, 2H, OCH2), 

3.64 (dd, J = 12.2, 8.0 Hz, 1H, CH2), 3.59-3.51* (m, 1H, CH2), 3.32–3.16 (m, 1H, CH3), 

2.60-2.48 (m, 1H, CH3´), 2.37* (dt, J = 13.6, 9.9 Hz, 1H, CH3´), 1.35-1.30 (m, 3H, CH3). 
13C NMR (75 MHz, CDCl3) (* denotes minor diastereoisomer signals) δ 189.9*, 189.9 

(CHO), 170.3, 170.0* (C1=O), 169.3*, 168.8 (CO2Et), 165.1 (d, J = 253.2 Hz, C8F), 

142.5* (d, J = 1.4 Hz), 142.4 (d, J = 1.4 Hz) (C5H), 137.9* (d, J = 12.1 Hz), 137.8* (d, J = 

12.2 Hz) (C9a), 136.4* (d, J = 2.6 Hz), 136.0 (d, J = 2.5 Hz) (C4), 131.4 (d, J = 10.1 Hz), 

131.4* (d, J = 10.2 Hz) (C6H), 120.4* (d, J = 3.2 Hz), 120.2 (d, J = 3.2 Hz) (C5a), 112.6* 

(d, J = 22.7 Hz), 112.6* (d, J = 22.7 Hz) (C7H), 109.0* (d, J = 28 Hz), 108.6* (d, J = 28.1 

Hz) (C9H), 62.2*, 62.1 (OCH2), 55.8*, 54.6 (C3aH), 49.2*, 49.1 (C2H), 30.9*, 30.8* 

(C3H2), 14.2 (CH3). 19F NMR (283 MHz, CDCl3) (* denotes minor diastereoisomer 

signals) δ -103.1, -103.2* (C8F). IR (ATR): 2984, 1735, 1706, 1670, 1634, 1605, 1577, 

1372, 1189, 1164 cm-1. MS (70 eV) m/z (%): 303 (M+, 58), 256 (40), 230 (86), 207 

(94), 176 (100), 146 (80), 119 (23), 83 (66), 55 (59). HRMS: Calculated for 
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[C16H15NO4F]+: 304.0985 [(M+H)+]; found: 304.0994. The ee was determined by HPLC 

using a Chiralpak AZ-3 column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; 

τmajor,7  = 105.46 min, τminor,7 = 89.41 min (95% ee), τmajor,7* = 63.41 min, τminor,7* = 68.31 

min (95% ee).  

 (R)-Ethyl 8-chloro-4-formyl-1,2,3,3a-tetrahydro-1-

oxopyrrolo[1,2-a]quinoline-2-carboxylate (20e). 

Following the general procedure 20e (26 mg, 0.08 mmol) 

was isolated by FC (hexanes/EtOAc gradient from 9:1 to 

1:1) after 8 h 30min in 83% yield as a yellow solid starting 

from aldehyde 14a (23 mg, 0.10 mmol) and aminobenzaldehyde 15c (16 mg, 0.10 

mmol) in the presence of 17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 

mmol), using CHCl3 (1 mL) as solvent, and HOAc (3.3 mL, 57.80 mmol). 1H NMR (300 

MHz, CDCl3) (* denotes minor diastereoisomer signals) δ 9.57 (s, 1H, CHO), 9.55* (s, 

1H, CHO), 8.32 (d, J = 2.0 Hz, 1H, CH9), 7.28-7.12 (m, 3H, CH5CH6CH7), 7.21-7.19 (m, 

1H, CH7), 7.17-7.13 (m, 1H, CH6), 5.16* (ddd, J = 9.9, 6.1, 1.7 Hz, 1H, CH3a), 4.87 (ddd, 

J = 9.9, 6.1, 1.7 Hz, 1H, CH3a), 4.37–4.15 (m, 2H, OCH2), 3.64 (dd, J = 12.2, 8.0 Hz, 1H, 

CH2), 3.54-3.51* (m, 1H, CH2), 3.30–3.16 (m, 1H, CH3), 2.59-2.47 (m, 1H, CH3´), 2.41-

2.31* (m, 1H, CH3´), 1.37–1.29 (m, 3H, CH3). 13C NMR (75 MHz, CDCl3) (* denotes 

minor diastereoisomer signals) δ 189.9 (CHO), 170.2, 169.9* (C1=O), 169.3*, 168.7 

(CO2Et), 142.2*, 142.1 (C5H), 138.7 (C8Cl), 137.4*, 137.0 (C4), 136.9*, 136.8 (C9a), 

130.5, 130.4* (C6H), 125.7*, 125.6 (C7H), 122.5*, 122.3 (C5a), 121.3*, 120.9 (C9H), 

62.2*, 62.1 (OCH2), 55.9*, 54.6 (C3aH), 49.2*, 49.0 (C2H), 30.9*, 30.8 (C3H2), 14.3 

(CH3). IR (ATR): 2987, 1724, 1702, 1666, 1627, 1590, 1361, 1163, 1118 cm-1. MS (70 

eV) m/z (%): 321 (M+, 2), 319 (M+, 13), 281 (28), 273 (16), 246 (34), 218 (41), 207 

(100), 192 (93), 163 (33), 135 (11), 128 (31), 96 (22), 85 (67), 55 (44). HRMS: 

Calculated for [C16H15NO4Cl]+: 320.0690 [(M+H)+]; found: 320.0700 The ee of both 

diastereoisomers were determined by HPLC using a Chiralpak ASH column [n-
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hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor,7 = 60.19 min, τminor,7 = 38.98 min 

(97% ee); τmajor,7* = 109.55 min, τminor,7*  = 45.93 min (97% ee). M.p.: 152-154ºC. 

 (R)-Ethyl 8-bromo-4-formyl-1,2,3,3a-tetrahydro-1-

oxopyrrolo[1,2-a]quinoline-2-carboxylate (20f). 

Following the general procedure 20f (31 mg, 0.09 mmol) 

was isolated by FC (hexanes/EtOAc gradient from 8:2 to 

1:1) after 8 h  in 86% yield as a yellow solid starting from 

aldehyde 14a (23 mg, 0.10 mmol) and aminobenzaldehyde 15d (16 mg, 0.10 mmol) 

in the presence of 17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), 

using CHCl3 (1 mL) as solvent, and HOAc (3.3 mL, 57.80 mmol). 1H NMR (300 MHz, 

CDCl3) (* denotes minor diastereoisomer signals) δ 9.57 (s, 1H, CHO), 9.55* (s, 1H, 

CHO), 8.49-8.46 (m, 1H, CH9), 7.33-7.29 (m, 1H, CH6), 7.20–7.15 (m, 2H, CH5 + CH7), 

5.15* (ddd, J = 10.1, 6.2, 1.8 Hz, 1H, CH3a), 4.86 (ddd, J = 10.6, 5.9, 1.8 Hz, 1H, CH3a), 

4.34–4.14 (m, 2H, OCH2), 3.63 (dd, J = 12.2, 8.0 Hz, 1H, CH2), 3.52* (d, J = 9.4 Hz, 1H, 

CH2), 3.27–3.16 (m, 1H, CH3), 2.60–2.45 (m, 1H, CH3´), 2.36* (dt, J = 13.6, 9.8 Hz, 1H, 

CH3´), 1.37–1.27 (m, 3H, CH3). 13C NMR (75 MHz, CDCl3) (* denotes minor 

diastereoisomer signals) δ 189.9 (CHO), 170.2, 169.8* (C1=O), 169.3*, 168.7 (CO2Et), 

142.3*, 142.2 (C5H), 137.6*, 137.2 (C4), 136.9*, 136.8 (C9a), 130.6, 130.6* (C6H), 

128.7*, 128.6 (C7H), 127.0 (C5a),  124.1*, 123.7 (C9H), 122.9*, 122.7 (C8Br), 62.2*, 

62.1 (OCH2), 55.9*, 54.7 (C3aH), 49.2*, 49.0 (C2H), 30.9*, 30.8 (C3H2), 14.3 (CH3). IR 

(ATR): 2977, 1735, 1706, 1674, 1631, 1587, 1558, 1364, 1164, 1038 cm-1. MS (70 eV) 

m/z (%): 290 (M+-C3H5O2, 32), 262 (60), 236 (100), 207 (18), 154 (21), 127 (34), 101 

(19), 77 (20), 56 (16). HRMS: Calculated for [C16H15NO4Br]+: 364.0184 [(M+H)+]; 

found: 364.0201 The ee was determined by HPLC using a Chiralcel OJH column [n-

hexane/i-PrOH (30:70)]; flow rate 0.8 mL/min; τmajor,7  = 17.85 min, τminor,7 = 11.53 min 

(96% ee), τmajor,7* = 9.58 min, τminor,7* = 20.45 min (96% ee). M.p.: 167-169ºC.  
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 (R)-ethyl 8-(trifluoromethyl)-4-formyl-1,2,3,3a-tetrahydro-1-oxopyrrolo[1,2-

a]quinoline-2-carboxylate (20g). Following the general 

procedure 20g (26 mg, 0.07 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 1:1) after 10 h in 

74% yield as a yellow solid starting from aldehyde 14a 

(23 mg, 0.10 mmol) and aminobenzaldehyde 15e (16 

mg, 0.10 mmol) in the presence of 17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 

mg, 0.02 mmol), using CHCl3 (1 mL) as solvent, and HOAc (3.3 mL, 57.80 mmol). 1H 

NMR (300 MHz, CDCl3) (* denotes minor diastereoisomer signals) δ 9.61 (s, 1H, 

CHO), 9.59* (s, 1H, CHO), 8.58* (s, 1H, CH9), 8.54 (s, 1H, CH9), 7.47–7.35 (m, 2H, 

CH6CH7), 7.30-7.20 (m, 1H, CH5), 5.19* (ddd, J = 10.2, 6.3, 2.0 Hz, 1H, CH3a), 4.90 

(ddd, J = 10.6, 6.0, 2.0 Hz, 1H, CH3a), 4.36–4.17 (m, 2H, OCH2), 3.66 (dd, J = 12.2, 7.9 

Hz, 1H, CH2), 3.53* (dd, J = 9.4, 1.0 Hz, 1H, CH2), 3.31-3.16 (m, 1H, CH3), 2.64-2.45 (m, 

1H, CH3´), 2.37* (dt, J = 13.5, 9.8 Hz, 1H, CH3), 1.42-1.24 (m, 3H, CH3). 13C NMR (75 

MHz, CDCl3) (* denotes minor diastereoisomer signals) δ 189.8 (CHO), 170.2, 169.8* 

(C1=O), 169.1*, 168.5 (CO2Et), 141.3*, 141.2 (C5H), 139.2*, 138.8 (C4), 136.3*, 136.2 

(C9a), 133.7 (q, J = 32.9 Hz, C8CF3), 129.8, 129.8* (C6H), 126.8* (q, J = 0.9 Hz, C5a), 

126.5 (q, J = 0.8 Hz, C9a), 123.3 (q, J = 272.9, CF3), 121.8 (q, J = 4.1 Hz, C7H), 117.8* (q, 

J = 3.9 Hz, C9H), 117.8 (q, J = 4.2 Hz, C9H), 62.2*, 62.0 (OCH2), 55.7*, 54.5 (C3aH), 

49.0*, 48.8 (C2H), 30.8*, 30.7 (C3H2), 14.1 (CH3). 19F NMR (283, CDCl3) (* denotes 

minor diastereoisomer signals) δ -63.1, -63.27 (C8F3). IR (ATR): 2984, 1724, 1670, 

1641, 1343, 1243, 1149, 1120 cm-1. MS (70 eV) m/z (%): 353 (M+, 54), 306 (34), 280 

(65), 252 (63), 226 (100), 210 (18), 196 (67), 169 (28), 55 (70). HRMS: Calculated for 

[C17H17NO3F3]+: 354.0953 [(M+H)+]; found: 354.0948. The ee was determined by 

HPLC using a Chiralcel OZ-3 column [n-hexane/i-PrOH (70:30)]; flow rate 1.0 mL/min; 

τmajor,7 = 19.80 min, τminor,7 = 17.17 min (91% ee); τmajor,7* = 25.04 min, τminor,7*  = 66.12 

min (96% ee). M.p.: 148-150ºC.  
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 (R)-Ethyl 8-methyl-4-formyl-1,2,3,3a-tetrahydro-1-oxopyrrolo[1,2-a]quinoline-2-

carboxylateDiethyl (20h). Following the general procedure 

20h (21 mg, 0.07 mmol) was isolated by FC (hexanes/EtOAc 

gradient from 8:2 to 1:1) after 3 h in 69% yield as a yellow 

solid starting from aldehyde 14a (23 mg, 0.10 mmol) and 

aminobenzaldehyde 15f (14 mg, 0.10 mmol) in the 

presence of 17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), using 

CHCl3 (1 mL) as solvent, and HOAc (3.3 mL, 57.80 mmol). 1H NMR (300 MHz, CDCl3) 

(* denotes minor diastereoisomer signals) (+ denotes partially solaped signals) δ 9.55 

(s, 1H, CHO), 9.53* (s, 1H, CHO), 8.12-8.08 (m, 1H, CH9), 7.21 (dd, J = 7.3, 1.7 Hz, 2H, 

CH5CH6), 6.99 (d, J = 7.4 Hz, 1H, CH7), 5.15* (ddd, J = 10.0, 6.4, 1.7 Hz, 1H, CH3a), 4.86 

(ddd, J = 10.4, 6.0, 1.6 Hz, 1H, CH3a), 4.35–4.13 (m, 2H, OCH2), 3.63 (dd, J = 12.2, 8.0 

Hz, 1H, CH2), 3.54–3.49* (m, 1H CH2), 3.28-3.13 (m, 1H, CH3), 2.62-2.43 (m, 1H, CH3´), 

2.44–2.32*+ (m, 1H, CH3´) 2.40*+ (s, 3H, C8CH3), 2.38+ (s, 3H, C8CH3), 1.37–1.27 (m, 

3H, CH3). 13C NMR (75 MHz, CDCl3) (* denotes minor diastereoisomer signals) δ 

190.3 (CHO), 170.2*, 169.8 (C1=O), 169.6*, 169.0 (CO2Et), 144.0 (C8CH3), 143.6*, 

143.5 (C5H), 136.7*, 136.3 (C4), 136.1*, 136.1 (C9a), 129.7, 129.6* (C6H), 126.3*, 

126.2 (C7H), 121.7*, 121.6 (C5a), 121.4*, 121.2 (C9H), 62.0*, 61.9 (OCH2), 56.0*, 54.7 

(C3aH), 49.3*, 49.2 (C2H), 30.8*, 30.7 (C3H2), 22.3 (C8CH3), 14.3 (CH3). IR (ATR): 2977, 

1731, 1695, 1666, 1602, 1566, 1372, 1168 cm-1. MS (70 eV) m/z (%): 299 (M+, 81), 

252 (35), 226 (100), 198 (23), 170 (68), 142 (46), 115 (38), 55 (54). HRMS: Calculated 

for [C17H18NO4]+: 300.1236 [(M+H)+]; found: 300.1247. The ee of both 

diastereoisomers were determined by HPLC using a Chiralcel OZ-3 column [n-

hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor,7 = 89.23 min, τminor,7 = 63.68 min 

(85% ee); τmajor,7* = 104.86 min, τminor,7*  = 156.54 min (87% ee). M.p.: 154-156ºC. 
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 (R)-Ethyl 8-methoxy-4-formyl-1,2,3,3a-tetrahydro-1-

oxopyrrolo[1,2-a]quinoline-2-carboxylateDiethyl (20i). 

Following the general procedure 20i (15 mg, 0.05 mmol) 

was isolated by FC (hexanes/EtOAc gradient from 8:2 to 

1:1) after 5 h  in 48% yield as a yellow solid starting from 

aldehyde 14a (23 mg, 0.10 mmol) and aminobenzaldehyde 15g (15 mg, 0.10 mmol) 

in the presence of 17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), 

using CHCl3 (1 mL) as solvent, and HOAc (3.3 mL, 57.80 mmol). 1H NMR (300 MHz, 

CDCl3) (* denotes minor diastereoisomer signals) (+ denotes partially overlapped 

signals) δ 9.51 (s, 1H, CHO), 9.49* (s, 1H, CHO), 7.93 (d, J = 2.4 Hz, 1H, CH9), 7.91* (d, 

J = 2.4 Hz, 1H, CH9), 7.23+ (d, J = 8.5 Hz, 1H, CH6), 7.23+* (d, J = 8.5 Hz, 1H, CH6), 7.19 

(d, J = 1.8 Hz, 1H, CH5), 7.17* (d, J = 1.9 Hz, 1H, CH5), 6.71 (dd, J = 8.5, 2.4 Hz, 1H, 

CH7), 6.71* (dd, J = 8.5, 2.4 Hz, 1H, CH9), 5.16* (ddd, J = 10.0, 6.3, 1.7 Hz, 1H, CH3a), 

4.86 (ddd, J = 10.6, 5.9, 1.5 Hz, 1H, CH3a), 4.35–4.16 (m, 2H, OCH2), 3.86* (s, 3H, 

OCH3), 3.84 (s, 3H, OCH3), 3.63 (dd, J = 12.3, 7.9 Hz, 1H, CH2), 3.54-3.50* (m, 1H, 

CH2), 3.29–3.17 (m, 1H, CH3), 2.59-2.47 (m, 1H, CH3´), 2.37* (dt, J = 13.6, 9.9 Hz, 1H, 

CH3´), 1.32 (t, J = 7.1 Hz, 3H, CH3). 13C NMR (75 MHz, CDCl3) (* denotes minor 

diastereoisomer signals) δ 189.8 (CHO), 170.3*, 170.0 (C1=O), 169.6*, 168.9 (CO2Et), 

163.4 (C8OCH3), 143.6*, 143.5 (C5H), 137.9*, 137.8 (C4), 134.5*, 134.1 (C9a), 131.2*, 

131.1 (C6H), 117.1*, 116.9 (C5a),112.1, 112.1* (C7H), 106.2*, 105.6 (C9H), 62.0*, 62.0 

(OCH2), 56.0*, 55.8 (C3aH), 55.8, 54.8* (OCH3), 49.3*, 49.2 (C2H), 30.7 (C3H2), 14.3 

(CH3). IR (ATR): 2988, 1735, 1701, 1666, 1598, 1562, 1368, 1214, 1160, 1031 cm-1. 

MS (70 eV) m/z (%): 315 (M+, 73), 268 (22), 242 (100), 214 (30), 186 (57), 158 (22), 

116 (18), 55 (42). HRMS: Calculated for [C17H18NO5]+: 316.1185 [(M+H)+]; found: 

316.1196. The ee of both diastereoisomers were determined by HPLC using a 

Chiralcel OD column [n-hexane/i-PrOH (85:15)]; flow rate 0.8 mL/min; τmajor,7 = 58.05 

min, τminor,7 = 45.40 min (72% ee); τmajor,7* = 31.42 min, τminor,7*  = 52.74 min (78% ee). 

M.p.: 145-146ºC.  
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 (R)-Ethyl 7-chloro-4-formyl-1,2,3,3a-tetrahydro-1-oxopyrrolo[1,2-a]quinoline-2-

carboxylate (20j). Following the general procedure 20j 

(24 mg, 0.08 mmol) was isolated by FC (hexanes/EtOAc 

gradient from 9:1 to 1:1) after 5 h in 75% yield as a yellow 

solid starting from aldehyde 14a (23 mg, 0.10 mmol) and 

aminobenzaldehyde 15h (16 mg, 0.10 mmol) in the 

presence of 17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), using 

CHCl3 (1 mL) as solvent, and HOAc (3.3 mL, 57.80 mmol). 1H NMR (300 MHz, CDCl3) 

(* denotes minor diastereoisomer signals) δ 9.59 (s, 1H, CHO), 9.57* (s, 1H, CHO), 

8.21 (d, J = 8.8 Hz, 1H, CH9), 7.42-7.25 (m, 1H, CH8), 7.30 (d, J = 2.0 Hz, 1H, CH6), 7.17 

(d, J = 1.9 Hz, 1H, CH5), 7.15* (d, J = 2.0 Hz, 1H, CH5), 5.17* (ddd, J = 9.9, 6.4, 1.9 Hz, 

1H, CH3a), 4.87 (ddd, J = 10.5, 6.0, 1.8 Hz, 1H, CH3a), 4.34–4.14 (m, 2H, OCH2), 3.63 

(dd, J = 12.1, 8.0 Hz, 1H, CH2), 3.51* (d, J = 9.3 Hz, 1H, CH2), 3.27–3.15 (m, 1H, CH3), 

2.60–2.46 (m, 1H, CH3´), 2.36* (dt, J = 13.6, 9.8 Hz, 1H, CH3´), 1.38–1.26 (m, 3H, CH3). 
13C NMR (75 MHz, CDCl3) (* denotes minor diastereoisomer signals) δ 189.5 (CHO), 

170.1, 169.8* (C1=O), 169.4*, 168.8 (CO2Et), 141.8*, 141.7 (C5H), 138.6*, 138.3 (C4), 

134.5*, 134.5 (C9a), 132.2 (C8H), 130.6*, 130.5 (C7Cl), 129.1, 129.1* (C6H), 125.6*, 

125.4 (C5a), 122.3*, 121.9 (C9H), 62.2*, 62.0 (OCH2), 55.9*, 54.6 (C3aH), 49.1*, 48.9 

(C2H), 30.9*, 30.7 (C3H2), 14.3 (CH3). IR (ATR): 2984, 1734, 1670, 1634, 1558, 1480, 

1364, 1167, 1084 cm-1. MS (70 eV) m/z (%): 321 (M+, 18), 319 (M+, 61), 290 (15), 272 

(33), 246 (85), 218 (60), 192 (100), 176 (21), 162 (60), 127 (34), 99 (22), 83 (20), 55 

(75). HRMS: Calculated for [C16H15NO4Cl]+: 320.0690 [(M+H)+]; found: 320.695. The 

ee of both diastereoisomers were determined by HPLC using a Chiralcel OD-3 

column [n-hexane/i-PrOH (85:15)]; flow rate 0.8 mL/min; τmajor,7 = 56.56 min, τminor,7 = 

80.75 min (94% ee); τmajor,7* = 40.77 min, τminor,7*  = 107.34 min (91% ee). M.p.: 135-

138ºC.  
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 (R)-Ethyl 7-bromo-4-formyl-1,2,3,3a-tetrahydro-1-oxopyrrolo[1,2-a]quinoline-2-

carboxylate (20k). Following the general procedure 20k 

(29 mg, 0.08 mmol) was isolated by FC (hexanes/EtOAc 

gradient from 8:2 to 1:1) after 2 h in 79% yield as a yellow 

oil starting from aldehyde 14a (23 mg, 0.10 mmol) and 

aminobenzaldehyde 15i (20 mg, 0.10 mmol) in the 

presence of 17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), using 

CHCl3 (1 mL) as solvent, and HOAc (3.3 mL, 57.80 mmol). 1H NMR (300 MHz, CDCl3) 

(* denotes minor diastereoisomer signals) δ 9.58 (s, 1H, CHO), 9.56* (s, 1H, CHO), 

8.14 (d, J = 8.7 Hz, 1H, CH9), 7.50-7.54 (m, 1H, CH8), 7.44 (d, J = 1.9 Hz, 1H, C6H), 7.15-

7.13 (m, 1H, CH9), 5.17* (ddd, J = 10.0, 6.3, 1.9 Hz, 1H, CH3a), 4.87* (ddd, J = 10.5, 

6.0, 1.8 Hz, 1H, CH3a), 4.34–4.13 (m, 2H, OCH2), 3.62 (dd, J = 12.2, 8.0 Hz, 1H, CH2), 

3.51* (d, J = 8.6 Hz, 1H, CH2), 3.29–3.13 (m, 1H, CH3), 2.59-2.47 (m, 1H CH3´), 2.35* 

(dt, J = 13.5, 9.8 Hz, 1H, CH3´), 1.35–1.26 (m, 3H, CH3). 13C NMR (75 MHz, CDCl3) (* 

denotes minor diastereoisomer signals) δ 189.8*, 189.9 (CHO), 170.1, 169.8* (C1=O), 

169.3*, 168.8 (CO2Et), 141.7*, 141.6 (C5H), 138.6*, 138.2 (C4), 135.1, 135.1* (C8H), 

135.0*, 135.0 (C9a), 132.1, 132.0* (C6H), 126.0*, 125.7 (C5a), 122.6*, 122.1 (C9H), 

118.1*, 118.0 (C7Br), 62.2*, 62.1 (OCH2), 55.9*, 54.6 (C3aH), 49.1*, 49.0 (C2H), 30.9*, 

30.8 (C3H2), 14.3 (CH3). IR (ATR): 2984, 1735, 1706, 1674, 1631, 1558, 1364, 1171, 

1020 cm-1. MS (70 eV) m/z (%): 363 (M+, 1), 293 (55), 291 (69), 264 (47), 262 (61), 

238 (54), 236 (100), 209 (16), 207 (67), 154 (28), 127 (41), 83 (47). HRMS: Calculated 

for [C16H15NO4Br]+: 364.0184 [(M+H)+]; found: 364.0196. The ee was determined by 

HPLC using a Chiralpak AZ-3 column [n-hexane/i-PrOH (90:10)]; flow rate 0.8 

mL/min; τmajor,7  = 226.34 min, τminor,7 = 248.18 min (96% ee), τmajor,7* = 119.15 min, 

τminor,7* = 167.90 min (94% ee). 
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 (R)-Ethyl 7-methyl-4-formyl-1,2,3,3a-tetrahydro-1-oxopyrrolo[1,2-a]quinoline-2-

carboxylateDiethyl (20l). Following the general procedure 

20l (24 mg, 0.08 mmol) was isolated by FC (hexanes/EtOAc 

gradient from 8:2 to 1:1) after 3 h in 81% yield as a yellow 

solid starting from aldehyde 14a (23 mg, 0.10 mmol) and 

aminobenzaldehyde 15j (14 mg, 0.10 mmol) in the 

presence of 17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), using 

CHCl3 (1 mL) as solvent, and HOAc (3.3 mL, 57.80 mmol). 1H NMR (300 MHz, CDCl3) 

(* denotes minor diastereoisomer signals) (+ denotes partially solaped signals) δ 

9.56* (s, 1H, CHO), 9.54 (s, 1H, CHO), 8.13 (d, J = 8.3 Hz, 1H, CH9), 7.24 (dd, J = 8.3, 

2.6 Hz, 1H, CH8), 7.20 (d, J = 1.9 Hz, 1H, CH6) 7.18* (d, J = 1.9 Hz, 1H, CH6), 7.12 (d, J = 

2.0 Hz, 1H, CH5), 5.15* (ddd, J = 9.9, 6.4, 1.8 Hz, 1H, CH3a), 4.85 (ddd, J = 10.4, 6.0, 1.6 

Hz, 1H, CH3a), 4.36–4.14 (m, 2H, OCH2), 3.62 (dd, J = 12.1, 8.0 Hz, 1H, CH2), 3.51-

3.48* (m, 1H, CH2), 3.25–3.13 (m, 1H, CH3), 2.61-2.45 (m, 1H, CH3´), 2.41-2.30*+ (m, 

1H, CH3´), 2.33+ (s, 3H, C7CH3), 1.36–1.26 (m, 3H, CH3). 13C NMR (75 MHz, CDCl3) (* 

denotes minor diastereoisomer signals) δ 190.1 (CHO), 169.9, 169.7* (C1=O), 169.6*, 

168.2 (CO2Et), 143.6*, 143.5 (C5H), 137.7*, 137.3 (C4), 135.2*, 135.1 (C9a), 133.7 

(C7CH3), 133.3 (C8H), 130.2, 130.1* (C6H), 124.1*, 123.9 (C5a), 120.9*, 120.4 (C9H), 

62.0*, 61.9 (OCH2), 55.9*, 54.7 (C3aH), 49.3*, 49.1 (C2H), 30.8*, 30.7 (C3H2), 20.9 

(C7CH3), 14.3 (CH3). IR (ATR): 2970, 1739, 1699, 1670, 1570, 1494, 1368, 1171 cm-1. 

MS (70 eV) m/z (%): 299 (M+, 81), 252 (31), 226 (100), 198 (22), 170 (65), 142 (47), 

115 (38), 83 (22), 55 (51). HRMS: Calculated for [C17H18NO4]+: 300.1236 [(M+H)+]; 

found: 300.1252. The ee was determined by HPLC using a Chiralcel OZ-3 column [n-

hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor,7 = 79.44 min, τminor,7 = 65.60 min 

(84% ee); τmajor,7* = 72.12 min, τminor,7*  = 168.28 min (87% ee). M.p.: 162-164ºC.  
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 (R)-Ethyl 6-chloro-4-formyl-1,2,3,3a-tetrahydro-1-oxopyrrolo[1,2-a]quinoline-2-

carboxylate (20m). Following the general procedure 20m (17 

mg, 0.05 mmol) was isolated by FC (hexanes/EtOAc gradient 

from 8:2 to 1:1) after 10 h in 53% yield as a yellow solid 

starting from aldehyde 14a (23 mg, 0.10 mmol) and 

aminobenzaldehyde 15m (16 mg, 0.10 mmol) in the presence 

of 17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 mmol), using CHCl3 (1 

mL) as solvent, and HOAc (3.3 mL, 57.80 mmol). 1H NMR (300 MHz, CDCl3) (* 

denotes minor diastereoisomer signals) δ 9.65 (s, 1H, CHO), 9.63* (s, 1H, CHO), 8.22-

8.14 (m, 1H, CH6), 7.71 (d, J = 2.0 Hz, 1H, CH5), 7.68* (d, J = 2.1 Hz, 1H, CH5), 7.41–

7.32 (m, 1H, CH8), 7.22 (d, J = 8.1 Hz, 1H, CH7), 5.15* (ddd, J = 9.8, 6.4, 1.9 Hz, 1H, 

CH3a), 4.86 (ddd, J = 10.3, 6.1, 1.8 Hz, 1H, CH3a), 4.35–4.13 (m, 2H, OCH2), 3.65 (dd, J 

= 12.1, 8.1 Hz, 1H, CH2), 3.53* (d, J = 9.4 Hz, 1H, CH2), 3.28–3.16 (m, 1H, CH3), 2.64–

2.48 (m, 1H, CH3´), 2.39* (dt, J = 13.7, 9.8 Hz, 1H, CH3´), 1.37–1.27 (m, 3H, CH3). 13C 

NMR (75 MHz, CDCl3) (* denotes minor diastereoisomer signals) δ 190.2*, 190.1 

(CHO), 170.2, 169.9* (C1=O), 169.4*, 168.7 (CO2Et), 139.1*, 138.9 (C5H), 138.5*, 

138.2 (C4), 137.4*, 137.4 (C9a), 134.2, 134.1* (C6Cl), 132.9 (C8H), 126.2*, 126.1 (C7H), 

122.4*, 122.2 (C5a), 119.7*, 119.2 (C9H), 62.2*, 62.1 (OCH2), 55.6*, 54.3 (C3aH), 49.3*, 

49.1 (C2H), 30.7*, 30.5 (C3H2), 14.3 (CH3). IR (ATR): 2923, 1735, 1706, 1674, 1450, 

1358, 1167, 1057 cm-1. MS (70 eV) m/z (%): 319 (M+, 6), 290 (11), 281 (37), 246 (24), 

209 (13), 207 (100), 164 (23), 133 (14), 83 (71), 50 (16). HRMS: Calculated for 

[C16H15NO4Cl]+: 320.0690 [(M+H)+]; found: 320.0699. The ee was determined by 

HPLC using a Chiralpak AZ-3 column [n-hexane/i-PrOH (90:10)]; flow rate 0.8 

mL/min; τmajor,7  = 88.46 min, τminor,7 = 103.02 min (69% ee), τmajor,7* = 56.25 min, 

τminor,7* = 61.64 min (70% ee). M.p.: 118-120ºC. 
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 (R)-ethyl 4-formyl-1,2,3,3a-tetrahydro-7,8-dimethoxy-1-oxopyrrolo[1,2-

a]quinoline-2-carboxylate (20n). Following the general 

procedure 20n (13 mg, 0.04 mmol) was isolated by FC 

(hexanes/EtOAc gradient from 8:2 to 1:1) after 140 min 

in 38% yield as a yellow solid starting from aldehyde 14a 

(23 mg, 0.10 mmol) and aminobenzaldehyde 15n (18 mg, 

0.10 mmol) in the presence of 17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 

0.02 mmol), using CHCl3 (1 mL) as solvent, and HOAc (3.3 mL, 57.80 mmol). 1H NMR 

(300 MHz, CDCl3) δ 9.51 (s, 1H, CHO), 9.50* (s, 1H, CHO), 7.98 (s, 1H, CH9), 7.96* (s, 

1H, CH9), 7.17 (d, J = 1.9 Hz, 1H, CH5), 7.14* (d, J = 1.9 Hz, 1H, CH5), 6.81-6.75 (s, 1H, 

CH6), 5.15* (ddd, J = 9.5, 6.4, 1.6 Hz, 1H, CH3a), 4.85 (ddd, J = 9.5, 6.4, 1.6 Hz, 1H, 

CH3a), 4.32–4.21 (m, 2H, OCH2), 3.95* (s, 3H, OCH3), 3.93 (s, 3H, OCH3), 3.89 (s, 3H, 

OCH3), 3.62 (dd, J = 12.3, 8.1 Hz, 1H, CH2), 3.51* (d, J = 9.4 Hz, 1H, CH2), 3.28–3.14 

(m, 1H, CH3), 2.61-2.49 (m, 1H, CH3´), 2.39* (dt, J = 13.5, 9.8 Hz, 1H, CH3´), 1.32 (t, J = 

7.1 Hz, 3H, CH3). 13C NMR (75 MHz, CDCl3) (* denotes minor diastereoisomer signals) 

δ 189.7 (CHO), 170.2, 169.8* (C1=O), 169.0 (CO2Et), 152.5 (C8OCH3), 146.4 (C7OCH3), 

143.6*, 143.5 (C5H), 135.1*, 134.7 (C4), 131.4*, 131.3 (C9a), 116.7*, 116.5 (C5a), 111.5 

(C6H), 104.7*, 104.3 (C9H), 62.1*, 62.0 (OCH2), 56.5* (OCH3), 56.4 (OCH3), 56.3 

(OCH3), 56.1* (OCH3), 54.9 (C3aH), 49.3*, 49.2 (C2H), 30.6 (C3H2), 14.3 (CH3). IR (ATR): 

2923, 1734, 1695, 1666, 1565, 1508, 1466, 1339, 1257,1214, 1160 cm-1. MS (70 eV) 

m/z (%): 345 (M+, 1), 342 (100), 299 (49), 270 (61), 254 (65), 226 (49), 207 (58), 183 

(22), 91 (28), 60 (34). HRMS: Calculated for [C18H20NO66]+: 346.1291 [(M+H)+]; found: 

346.1296. The ee of both diastereoisomers were determined by HPLC using a 

Chiralpak ADH column [n-hexane/i-PrOH (60:40)]; flow rate 1.0 mL/min; τmajor,7 = 

7.41 min, τminor,7 = 11.73 min (63% ee); τmajor,7* = 9.96 min, τminor,7*  = 12.85 min (63% 

ee). M.p.: 126-128ºC. 
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 (R)-Ethyl 8-methoxy-4-formyl-1,2,3,3a-tetrahydro-1-

oxopyrrolo[1,2-a]quinoline-2-carboxylateDiethyl (20o). 

Following the general procedure 20o (23 mg, 0.07 mmol) 

was isolated by FC (hexanes/EtOAc gradient from 8:2 to 

1:1) after 5 h min in 69% yield as a yellow solid starting 

from aldehyde 14a (23 mg, 0.10 mmol) and aminobenzaldehyde 15o (17 mg, 0.10 

mmol) in the presence of 17a (7 mg, 0.02 mmol) and p-NO2-C6H4-CO2H (3 mg, 0.02 

mmol), using CHCl3 (1 mL) as solvent, and HOAc (3.3 mL, 57.80 mmol). 1H NMR (300 

MHz, CDCl3) (* denotes minor diastereoisomer signals) δ 9.61 (s, 1H, CHO), 9.61* (s, 

1H, CHO), 8.65 (s, 1H, CH11), 7.85-7-75 (m, 3H, CH6CH7, CH10), 7.56-7.36 (m, 3H, CH5, 

CH8CH9), 5.22* (ddd, J = 10.3, 6.3, 2.0 Hz, 1H, CH3a), 4.91 (ddd, J = 10.6, 6.0, 1.9 Hz, 

1H, CH3a), 4.39–4.17 (m, 2H, OCH2), 3.70 (dd, J = 12.2, 8.0 Hz, 1H, CH2), 3.57* (dd, J = 

9.5, 1.0 Hz, 1H, CH2), 3.24 (dd, J = 13.9, 8.1, 6.1 Hz, 1H, CH3), 2.61-2.44 (m, 1H, CH3´), 

2.33* (dt, J = 13.5, 9.8 Hz, 1H, CH3), 1.41-1.27 (m, 3H, CH3). 13C NMR (75 MHz, CDCl3) 

(* denotes minor diastereoisomer signals) δ 190.1 (CHO), 169.8, 169.5* (C1=O), 

169.5*, 168.9 (CO2Et), 143.3*, 143.2 (C5H), 138.6*, 138.1 (C4),  135.3 (C11a), 131.8 

(C10a), 130.6*, 130.6 (C6a) 130.5*, 130.5 (C7H), 128.5, 128.5* (C9H) 128.4 (C6H), 

128.3*, 128.2 (C8H), 126.4 (C10H), 123.7*, 123.5 (C5a), 62.0*, 61.9 (OCH2), 55.9*, 54.6 

(C3aH), 49.2*, 49.1 (C2H), 30.5*, 30.4 (C3H2), 14.2 (CH3). IR (ATR): 2818, 1734, 1685, 

1662, 1469, 1368, 1168 cm-1. MS (70 eV) m/z (%): 263 (M+-CO2Et, 89), 234 (100), 208 

(82), 178 (43), 151 (38), 103 (12), 83 (10), 77 (8), 55 (6). HRMS: Calculated for 

[C20H18NO4]+: 336.1236 [(M+H)+]; found: 336.1245. The ee of both diastereoisomers 

were determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (85:15)]; 

flow rate 1.0 mL/min; τmajor,7 = 42.26 min, τminor,7 = 51.95 min (84% ee); τmajor,7* = 74.05 

min, τminor,7*  = 32.04 min (85% ee). M.p.: 182-184ºC. 
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3.2.9. Synthesis of decarboxylated products (21a-m) 

General procedure: To a solution of lactam 20 (0.1 mmol) in THF:H2O (1:0.8, 0.9 mL) 

at room temperature, a solution of KOH (1M, 1 eq, 0.1 mL) was added. The reaction 

mixture was stirred for 8 h. Then the solution was acidified to pH 1 by adding HCl 

(1M) and extracted with EtOAc (3x3 mL). The organics were collected and dried over 

Na2SO4, the drying agent was filtered and the solvent removed in vacuo. The crude 

was dissolved in toluene (1 mL) and heated at reflux temperature for 14 h. Solvent 

was removed and the crude was directly subjected to FC.  

N

O

1. KOH (1M), THF:H2O

2. Toluene, reflux

O
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 (R)-1-oxo-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-4-

carbaldehyde (21a). Following the general procedure 21a (19 mg, 

0.09 mmol) was isolated by FC (hexanes/EtOAc 7:3) in 87% yield as 

a yellow solid starting from lactam 20a (29 mg, 0.10 mmol) in the 

presence of KOH (1M, 100 µL) using THF:H2O (0.9 mL) as solvent. 1H NMR (300 MHz, 

CDCl3) δ 9.51 (s, 1H, CHO), 8.26 (d,  J  = 8.2 Hz, 1H, CH6), 7.39 (td,  J = 7.8, 1.6 Hz, 1H, 

CH7), 7.27 (dd,  J = 7.6, 1.6 Hz, 1H, CH9), 7.17 (d,  J = 1.9 Hz, 1H, CH5), 7.11 (td,  J =7.5, 

1.1 Hz, 1H, CH8), 4.88 (ddd, J = 10.6, 6.2, 1.9 Hz, 1H, CH3a), 3.11-2.93 (m, 1H, CH2’). 

2.66-2.37 (m, 2H, CH2’’CH3’), 2.12-1.94 (m, 1H, CH3’’) 13C NMR (75 MHz, CDCl3) δ 190.1 

(CHO), 174.8 (C1=O), 143.3 (C5H), 137.9 (C4), 136.5 (C9a), 132.5 (C8H), 129.6 (C6H), 

124.7 (C7H), 123.7 (C5a), 120.4 (C9H), 56.5 (C3aH), 31.8 (C2H), 26.9 (C3H2). IR (ATR): 
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1695, 1670, 1634, 1487, 1362, 1171, 1156 cm-1. MS (70 eV) m/z (%): 213 (M+, 100), 

184 (82), 158 (86), 128 (55), 101 (20), 77 (13), 63 (6), 51 (7). HRMS: Calculated for 

[C13H12NO2]+: 214.0868 [(M+H)+]; found: 214.0883. The ee was determined by HPLC 

using a Chiralpak ASH column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor 

= 52.66 min, τminor = 46.16 min (89% ee). [α]D
20: +227.3 (c = 1.0, CH2Cl2). M.p.: 122-

124ºC.  

 (R)-1-oxo-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-4-

carbaldehyde (21a). Following the general procedure 21a (13 mg, 

0.06 mmol) was isolated by FC (hexanes/EtOAc 7:3) in 63% yield as 

a yellow solid starting from lactam 20b (27 mg, 0.10 mmol) in the 

presence of KOH (1M, 100 µL) using THF:H2O (0.9 mL) as solvent. 1H NMR (300 MHz, 

CDCl3) δ 9.51 (s, 1H, CHO), 8.26 (d,  J  = 8.2 Hz, 1H, CH6), 7.39 (td,  J = 7.8, 1.6 Hz, 1H, 

CH7), 7.27 (dd,  J = 7.6, 1.6 Hz, 1H, CH9), 7.17 (d,  J = 1.9 Hz, 1H, CH5), 7.11 (td,  J =7.5, 

1.1 Hz, 1H, CH8), 4.88 (ddd, J = 10.6, 6.2, 1.9 Hz, 1H, CH3a), 3.11-2.93 (m, 1H, CH2’). 

2.66-2.37 (m, 2H, CH2’’CH3’) 2.12-1.94 (m, 1H, CH3’’) 13C NMR (75 MHz, CDCl3) δ 190.1 

(CHO), 174.8 (C1=O), 143.3 (C5H), 137.9 (C4), 136.5 (C9a), 132.5 (C8H), 129.6 (C6H), 

124.7 (C7H), 123.7 (C5a), 120.4 (C9H), 56.5 (C3aH), 31.8 (C2H), 26.9 (C3H2). IR (ATR): 

1695, 1670, 1634, 1487, 1362, 1171, 1156 cm-1. MS (70 eV) m/z (%): 213 (M+, 100), 

184 (82), 158 (86), 128 (55), 101 (20), 77 (13), 63 (6), 51 (7). HRMS: Calculated for 

[C13H12NO2]+: 214.0868 [(M+H)+]; found: 214.0883. The ee was determined by HPLC 

using a Chiralpak ASH column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor 

= 52.66 min, τminor = 46.16 min (87% ee). [α]D
20: +335.3 (c = 1.0, CH2Cl2). M.p.: 122-

124ºC. 
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 (R)-1-oxo-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-4-carbaldehyde (21a). 

Following the general procedure 21a (10 mg, 0.04 mmol) was 

isolated by FC (hexanes/EtOAc 7:3) in 45% yield as a yellow solid 

starting from lactam 20c (35 mg, 0.10 mmol) in the presence of 

KOH (1M, 100 µL) using THF:H2O (0.9 mL) as solvent. 1H NMR (300 

MHz, CDCl3) δ 9.51 (s, 1H, CHO), 8.26 (d,  J  = 8.2 Hz, 1H, CH6), 7.39 

(td,  J = 7.8, 1.6 Hz, 1H, CH7), 7.27 (dd,  J = 7.6, 1.6 Hz, 1H, CH9), 7.17 (d,  J = 1.9 Hz, 

1H, CH5), 7.11 (td,  J =7.5, 1.1 Hz, 1H, CH8), 4.88 (ddd, J = 10.6, 6.2, 1.9 Hz, 1H, CH3a), 

3.11-2.93 (m, 1H, CH2’). 2.66-2.37 (m, 2H, CH2’’CH3’), 2.12-1.94 (m, 1H, CH3’’) 13C NMR 

(75 MHz, CDCl3) δ 190.1 (CHO), 174.8 (C1=O), 143.3 (C5H), 137.9 (C4), 136.5 (C9a), 

132.5 (C8H), 129.6 (C6H), 124.7 (C7H), 123.7 (C5a), 120.4 (C9H), 56.5 (C3aH), 31.8 (C2H), 

26.9 (C3H2). IR (ATR): 1695, 1670, 1634, 1487, 1362, 1171, 1156 cm-1. MS (70 eV) m/z 

(%): 213 (M+, 100), 184 (82), 158 (86), 128 (55), 101 (20), 77 (13), 63 (6), 51 (7). 

HRMS: Calculated for [C13H12NO2]+: 214.0868 [(M+H)+]; found: 214.0883. The ee was 

determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (90:10)]; flow 

rate 1.0 mL/min; τmajor = 52.66 min, τminor = 46.16 min (90% ee). [α]D
20: +154.0 (c = 

0.8, CH2Cl2). M.p.: 122-124ºC. 

 8-fluoro-1-oxo-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-4-

carbaldehyde (21b). Following the general procedure 21b (12 

mg, 0.05 mmol) was isolated by FC (hexanes/EtOAc 7:3) in 53% 

yield as a yellow solid starting from lactam 20d (30 mg, 0.10 

mmol) in the presence of KOH (1M, 100 µL) using THF:H2O (0.9 mL) as solvent. 1H 

NMR (300 MHz, CDCl3) δ 9.55 (s, 1H, CHO), 8.12 (dd, J = 10.9, 2.6 Hz, 1H, CH9), 7.28 

(dd, J = 8.5, 6.1Hz, 1H, CH6), 7.18 (d, J = 2.0 Hz, 1H, CH5), 6.84 (td,  J = 8.2, 2.6 Hz, 1H, 

CH7), 4.91 (ddd, J = 10.7, 6.1, 2.0 Hz, 1H, CH3a), 3.10-2.88 (m, 1H, CH2’), 2.73-2.41 (m, 

2H, CH2’’CH3’), 2.27-1.89 (m, 1H, CH3’’). 13C NMR (75 MHz, CDCl3) δ 189.9 (CHO), 175.0 

(C1=O), 165.0 (d, J = 252.6 Hz, C8), 142.4 (C5H), 138.2 (d, J = 12.4 Hz, C9a), 136.5 (d, J = 
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2.7 Hz, C4), 131.1 (d, J = 10.4 Hz, C6H), 119.9 (d, J = 2.9 Hz, C5a) 111.9 (d, J = 22.9 Hz, 

C7), 108.3 (d, J = 28.0 Hz, C9), 56.4 (C3aH), 31.8 (C2H), 26.9 (C3H2). 19F NMR (283, 

CDCl3) δ -103.5. I R (ATR): 1702, 1670, 1627, 1605, 1577, 1357, 1181, 1168 cm-1. MS 

(70 eV) m/z (%): 231 (M+, 88), 202 (71), 176 (100), 146 (59), 119 (15), 99 (13), 75 (8), 

56 (14). HRMS: Calculated for [C13H11NO2F]+: 232.0774 [(M+H)+]; found: 232.0791. 

The ee was determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH 

(90:10)]; flow rate 1.0 mL/min; τmajor = 48.77 min, τminor = 44.65 min (93% ee). [α]D
20: 

+335.8 (c = 0.5, CH2Cl2). M.p.: 141-143ºC.  

 (R)-8-chloro-1-oxo-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-4-carbaldehyde 

(21c). Following the general procedure 21c (18 mg, 0.07 mmol) 

was isolated by FC (hexanes/EtOAc 7:3) in 72% yield as a 

yellow solid starting from lactam 20e (32 mg, 0.10 mmol) in 

the presence of KOH (1M, 100 µL) using THF:H2O (0.9 mL) as 

solvent. 1H NMR (300 MHz, CDCl3) δ 9.55 (s, 1H, CHO), 8.36 (d, 

J = 2.0 Hz, 1H, CH9), 7.22 (d, J = 8.2 Hz, 1H, CH6), 7.16 (d, J = 1.9 Hz, 1H, CH5), 7.11 

(dd, J = 8.2, 2.0 Hz, 1H, CH7), 4.90 (ddd, J = 10.6, 6.1, 1.9 Hz, CH3a), 3.15-2.88 (m, 1H, 

CH2’), 2.80-2.36 (m, 2H, CH2’’CH3’), 2.22-1.93 (m, 1H, CH3’’). 13C NMR (75 MHz, CDCl3) δ 

189.9 (CHO), 174.8 (C1=O), 142.1 (C5H), 138.4 (C8Br), 137.6 (C4), 137.3 (C9a), 130.2 

(C6H), 124.9 (C7H), 122.0 (C5a), 120.6 (C9H), 56.5 (C3aH), 31.7 (C2H), 27.0 (C3H2). IR 

(ATR): 2826, 1691, 1674, 1630, 1595, 1358, 1168 cm-1. MS (70 eV) m/z (%): 249 (M+, 

32), 247 (94), 220 (26), 218 (78), 192 (100), 162 (30), 128 (13), 99 (8), 75 (6), 56 (5). 

HRMS: Calculated for [C13H11NO2Cl]+: 248.0478 [(M+H)+]; found: 248.0482. The ee of 

both diastereoisomers were determined by HPLC using a Chiralcel OZ-3 column [n-

hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 51.40 min, τminor = 84.59 min 

(94% ee). [α]D
20: +331.6 (c = 1.0, CH2Cl2). M.p.: 168-170ºC.  
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 (R)-8-bromo-1-oxo-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-4-carbaldehyde 

(21d). Following the general procedure 21d (20 mg, 0.07 

mmol) was isolated by FC (hexanes/EtOAc 7:3) in 69% yield as 

a yellow solid starting from lactam 20f (36 mg, 0.10 mmol) in 

the presence of KOH (1M, 100 µL) using THF:H2O (0.9 mL) as 

solvent. 1H NMR (300 MHz, CDCl3) δ 9.54 (s, 1H, CHO), 8.50 (d, 

J = 1.6 Hz, CH9), 7.26 (dd, J = 8.1, 1.9 Hz, 1H, CH6), 7.15 (s, 1H, CH5), 7.16-7.11 (m, 1H, 

CH7), 4.88 (ddd, J = 10.6, 6.1, 1.9 Hz, 1H, CH3a), 3.11-2.80 (m, 1H, CH2’), 2.77-2.34 (m, 

2H, CH2’’CH3’), 2.06 (m 1H, CH3’’). 13C NMR (75 MHz, CDCl3) δ 189.9 (CHO), 174.8 

(C1=O), 142.2 (C5H), 137.7 (C4H), 137.2 (C9a), 130.4 (C6H), 127.9 (C7H), 126.8 (C5a), 

123.4 (C9H), 122.4 (C8Br), 56.5 (C3aH), 31.7 (C2H), 26.9 (C3H2). IR (ATR): 1699, 1674, 

1627, 1476, 1358, 1318, 1168 cm-1. MS (70 eV) m/z (%):293 (M+, 64), 291 (M+, 63), 

264 (58), 262 (57), 236 (100), 234 (40), 208 (19), 206 (17), 154 (15), 127 (25), 75 (10). 

HRMS: Calculated for [C13H11NO2Br]+: 291.9973 [(M+H)+]; found: 291.9976. The ee 

was determined by HPLC using a Chiralcel OZ-3 column [n-hexane/i-PrOH (70:30)]; 

flow rate 1.0 mL/min; τmajor = 28.17 min, τminor = 47.20 min (95% ee). [α]D
20: +243.4 (c 

= 1.0, CH2Cl2). M.p.: 165-167ºC. 

 (R)-1-oxo-8-(trifluoromethyl)-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-4-

carbaldehyde (21e). Following the general procedure 21e (10 

mg, 0.04 mmol) was isolated by FC (hexanes/EtOAc 7:3) in 

35% yield as a yellow solid starting from lactam 20g (32 mg, 

0.10 mmol) in the presence of KOH (1M, 100 µL) using 

THF:H2O (0.9 mL) as solvent. 1H NMR (300 MHz, CDCl3) δ 9.61 

(s, 1H, CHO), 8.61 (s, 1H, CH9), 7.44-7.32 (m, 2H, CH6CH7), 7.23 (d, J = 2.1 Hz, 1H, 

CH5), 4.96 (ddd, 10.7, 6.0, 2.0 Hz, 1H, CH3a), 3.17-2.82 (m, 1H, CH2’), 2.77-2.39 (m, 2H, 

CH2’’CH3’), 2.24-1.89 (m 1H, CH3’’). 13C NMR (75 MHz, CDCl3) δ 189.8 (CHO), 175.0 

(C1=O), 141.4 (C5H), 139.5 (C4), 136.8 (C9a), 133.8 (q, J = 32.4 Hz, C8), 129.6 (C6H), 
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126.4 (C5a), 123.4 (q, J = 272.9, CF3), 121.3 (q, J = 3.9 Hz, C7H), 117.4 (q, J = 4.1 Hz, 

C9H), 56.5 (C3aH), 31.7 (C2H), 27.1 (C3H2). 19F NMR (283, CDCl3) δ -63.2. IR (ATR): 

2993, 1710, 1677, 1437, 1329, 1264, 1168, 1120 cm-1. MS (70 eV) m/z (%): 281 (M+, 

81), 252 (74), 226 (100), 196 (37), 169 (14), 154 (4), 75 (4). HRMS: Calculated for 

[C14H11NO2F3]+: 282.0742 [(M+H)+]; found: 282.0739. The ee was determined by 

HPLC using a Chiralcel OZ-3 column [n-hexane/i-PrOH (70:30)]; flow rate 1.0 mL/min; 

τmajor = 16.72 min, τminor = 33.88 min (97% ee). [α]D
20: -317.4 (c = 0.5, CH2Cl2).  

 (R)-8-methyl-1-oxo-1,2,3,3a-tetrahydropyrrolo[1,2-

a]quinoline-4-carbaldehyde (21f). Following the general 

procedure 21f (17 mg, 0.07 mmol) was isolated by FC 

(hexanes/EtOAc 7:3) in 74% yield as a yellow solid starting from 

lactam 20h (30 mg, 0.10 mmol) in the presence of KOH (1M, 100 µL) using THF:H2O 

(0.9 mL) as solvent. 1H NMR (300 MHz, CDCl3) δ 9.52 (s, 1H, CHO), 8.13 (d, J = 1.5 Hz, 

1H, CH9), 7.22-7.16 (m, 2H, CH6CH5), 6.95 (dd, J = 7.8, 0.8 Hz, 1H, CH7), 4.89 (ddd, J = 

10.5, 6.2, 1.9 Hz, 1H, CH3a), 3.10-2.84 (m, 1H, CH2’), 2.67-2.42 (m, 2H, CH2’’CH3’), 2.39 

(s, 3H, CH3), 2.18-1.99 (m, 1H, CH3’’). 13C NMR (75 MHz, CDCl3) δ 190.0 (CHO), 174.9 

(C1=O), 143.7 (C8Me), 143.6 (C5H), 136.9 (C4), 136.5 (C9a), 129.5 (C6H), 125.6 (C7H), 

121.2 (C5a), 121.0 (C9H), 56.7 (C3aH), 31.9 (C2H), 26.8 (C3H2), 22.2 (CH3). IR (ATR): 

1699, 1670, 1630, 1404, 1364 cm-1. MS (70 eV) m/z (%): 227 (M+, 100), 198 (87), 172 

(76), 142 (47), 115 (38), 89 (13), 63 (11). HRMS: Calculated for [C14H14NO2]+: 

228.1025 [(M+H)+]; found: 228.1021. The ee was determined by HPLC using a 

Chiralpak ASH column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 28.67 

min, τminor = 36.93 min (84% ee). [α]D
20: +286.6 (c = 1.0, CH2Cl2). M.p.: 145-147ºC. 
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 (R)-8-methoxy-1-oxo-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-4-carbaldehyde 

(21g). Following the general procedure 21g (18 mg, 0.08 

mmol) was isolated by FC (hexanes/EtOAc 7:3) in 75% yield as 

a yellow solid starting from lactam 20i (31 mg, 0.10 mmol) in 

the presence of KOH (1M, 100 µL) using THF:H2O (0.9 mL) as 

solvent. 1H NMR (300 MHz, CDCl3) δ 9.49 (s, 1H, CHO), 7.97 

(d, J = 2.6 Hz, 1H, CH9), 7.21 (d, J  = 8.5 Hz, 1H, CH6), 7.15 (d, J = 1.9 Hz, 1H, CH5), 6.67 

(dd, J = 8.5, 2.5 Hz, 1H, CH7), 4.89 (ddd, J = 10.6, 6.1, 1.9 Hz, 1H, CH3a), 3.86 (s, 3H, 

OCH3), 3.15-2.75 (m, 1H, CH2’), 2.72-2.36 (m, 2H, CH2’’CH3’), 2.22-1.83 (m, 1H, CH3’’). 
13C NMR (75 MHz, CDCl3) δ 189.9 (CHO), 175.1 (C1=O’), 163.3 (C8OMe), 143.6 (C5H), 

138.3 (C4), 134.8 (C9a), 131.0 (C8H), 116.8 (C5a), 111.2 (C7H), 105.6 (C9H), 56.7 (C3aH), 

55,7 (OCH3), 32.0 (C2H2), 26.8 (C3H2). IR (ATR): 2920, 1687, 1659, 1602, 1562, 14.08, 

1364, 1318, 1285, 1203, 1164 cm-1. MS (70 eV) m/z (%): 243 (M+, 100), 214 (72), 186 

(52), 158 (23), 143 (18), 116 (15), 89 (11), 63 (8). HRMS: Calculated for [C14H14NO3]+: 

244.0974 [(M+H)+]; found: 244.0975. The ee was determined by HPLC using a 

Chiralpak ASH column [n-hexane/i-PrOH (50:50)]; flow rate 1.0 mL/min; τmajor = 25.30 

min, τminor = 12.47 min (73% ee). [α]D
20: +154.1 (c = 1.0, CH2Cl2). M.p.: 143-145ºC.  

 (R)-7-chloro-1-oxo-1,2,3,3a-tetrahydropyrrolo[1,2-

a]quinoline-4-carbaldehyde (21h). Following the general 

procedure 21h (16 mg, 0.07 mmol) was isolated by FC 

(hexanes/EtOAc 7:3) in 66% yield as a yellow solid starting 

from lactam 20j (32 mg, 0.10 mmol) in the presence of KOH (1M, 100 µL) using 

THF:H2O (0.9 mL) as solvent. 1H NMR (300 MHz, CDCl3) δ 9.55 (s, 1H, CHO), 8.23 (d, J 

= 8.8 Hz, 1H, CH9), 7.34 (dd, 8.8, 2.4 Hz, 1H, CH8), 7.25 (d, 2.4 Hz, 1H, CH6), 7.11 (d, J = 

2.0 Hz, 1H, CH5), 4.89 (ddd, J = 10.6, 6.2, 1.9 Hz, 1H, CH3a), 3.06-2.83 (m, 1H, CH2’), 

2.75-2.33 (m, 2H, CH2’’CH3’), 2.20-1.89 (m, 1H, CH3’’). 13C NMR (75 MHz, CDCl3) δ 

189.9 (CHO), 174.8 (C1=O), 141.7 (C5H), 138.8 (C4), 134.9 (C9a), 131.9 (C8H), 129.7 
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(C7Cl), 128.8 (C6H), 125.1 (C5a), 121.7 (C9H), 56.5 (C3aH), 31.7 (C2H), 26.9 (C3H2). IR 

(ATR): 1677, 1472, 1362, 1164 cm-1. MS (70 eV) m/z (%): 249 (M+, 29), 247 (88), 220 

(25), 218 (73), 192 (100), 162 (31), 128 (14), 99 (11), 75 (9), 56 (9). HRMS: Calculated 

for [C13H11NO2Cl]+: 248.0478 [(M+H)+]; found: 248.0475. The ee of both 

diastereoisomers were determined by HPLC using a Chiralpak ASH column [n-

hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 42.70 min, τminor = 36.99 min 

(94% ee). [α]D
20: +307.4 (c = 1.0, CH2Cl2). M.p.: 194-196ºC.  

 (R)-7-bromo-1-oxo-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-4-carbaldehyde 

(21i). Following the general procedure 21i (16 mg, 0.06 

mmol) was isolated by FC (hexanes/EtOAc 7:3) in 56% yield as 

a yellow solid starting from lactam 20k (36 mg, 0.10 mmol) in 

the presence of KOH (1M, 100 µL) using THF:H2O (0.9 mL) as 

solvent. 1H NMR (300 MHz, CDCl3) δ 9.56 (s, 1H, CHO), 8.20 

(d, J = 8.8 Hz, 1H, CH9), 7.51 (dd, J = 8.8, 2.3 Hz, 1H, CH8), 7.42 (d, J = 2.3 Hz, 1H, CH6), 

7.12 (d, J = 2.0 Hz, 1H, CH5), 4.92 (ddd, J = 10.5, 6.2, 2.0 Hz, 1H, CH3a), 3.09-2-85 (m, 

1H, CH2’), 2.77-2.37 (m, 2H, CH2’’CH3’), 2.08 (m, 1H, CH3’’). 13C NMR (75 MHz, CDCl3) δ 

189.8 (CHO), 174.8 (C1=O), 141.6 (C5H), 138.8 (C4), 135.4 (C9a), 134.9 (C8H), 131.8 

(C6H), 125.5 (C5a), 122.0 (C9H), 117.3 (C7Br), 56.5 (C3aH), 31.7 (C2H), 27.0 (C3H2). IR 

(ATR): 1697, 1674, 1358, 1168 cm-1. MS (70 eV) m/z (%): 293 (M+, 73), 291 (M+, 73), 

264 (62), 262 (63), 236 (100), 234 (40), 208 (21), 206 (18), 154 (17), 127 (25), 75 (11). 

HRMS: Calculated for [C13H11NO2Br]+: 291.9973 [(M+H)+]; found: 291.9969. The ee 

was determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (95:05)]; 

flow rate 1.0 mL/min; τmajor = 73.79 min, τminor = 68.70 min (94% ee). [α]D
20: +307.8 (c 

= 0.5, CH2Cl2). M.p.: 183-185ºC. 
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 (R)-7-methyl-1-oxo-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-4-carbaldehyde 

(21j). Following the general procedure 21j (14 mg, 0.06 mmol) 

was isolated by FC (hexanes/EtOAc 7:3) in 64% yield as a yellow 

solid starting from lactam 20l (30 mg, 0.10 mmol) in the 

presence of KOH (1M, 100 µL) using THF:H2O (0.9 mL) as solvent. 
1H NMR (300 MHz, CDCl3) δ 9.55 (s, 1H, CHO), 8.17 (d, J = 8.3 Hz, 

1H, CH9), 7.26-7.20 (m, 1H, CH8), 7.16 (d, J = 1.9 Hz, 1H, CH6), 7.11 (d, J = 2.1 Hz, 1H, 

CH5), 4.90 (ddd, 10.4, 6.2, 1.9 Hz, 1H, CH3a), 3.13-2.82 (m, 1H, CH2’), 2.68-2.42 (m, 2H, 

CH2’’CH3’), 2.34 (s, 3H, CH3), 2.18-1.89 (m 1H, CH3’’). 13C NMR (75 MHz, CDCl3) δ 190.1 

(CHO), 174.7 (C1=O), 143.6 (C5H), 137.9 (C4), 134.4 (C7Me), 134.2 (C9a), 133.2 (C8H), 

129.9 (C6H), 123.6 (C5a), 120.3 (C9H), 56.6 (C3aH), 31.8 (C2H), 26.9 (C3H2), 20.7 (CH3). 

IR (ATR): 2920, 1738, 1695, 1668, 1573, 1487, 1364, 1322, 1279, 1171 cm-1. MS (70 

eV) m/z (%): 227 (M+, 100), 198 (83), 172 (85), 142 (43), 115 (34), 89 (11), 63 (9). 

HRMS: Calculated for [C14H14NO2]+: 228.1025 [(M+H)+]; found: 228.1021. The ee was 

determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (90:10)]; flow 

rate 1.0 mL/min; τmajor = 45.33 min, τminor = 35.48 min (83% ee). [α]D
20: +307.3 (c = 

0.5, CH2Cl2). M.p.: 157-159ºC.  

 (R)-6-chloro-1-oxo-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-4-

carbaldehyde (21k). Following the general procedure 21k (11 mg, 

0.04 mmol) was isolated by FC (hexanes/EtOAc 7:3) in 44% yield as 

a yellow solid starting from lactam 20m (32 mg, 0.10 mmol) in the 

presence of KOH (1M, 100 µL) using THF:H2O (0.9 mL) as solvent. 1H NMR (300 MHz, 

CDCl3) δ 9.63 (s, 1H, CHO), 8.41-8.02 (m, 1H, CH9), 7.67 (d, J = 1.7 Hz, 1H, CH5), 7.35 

(t, J = 8.2 Hz, 1H, CH8), 7.18 (dd, 8.1, 1.1 Hz, 1H, CH7), 4.90 (ddd, J  = 10.4, 6.3, 2.0 Hz, 

1H, CH3a), 3.09-2.89 (m, 1H, CH2’), 2.72-2.44 (m, 2H, CH2’’CH3’), 2.21-2.01 (m, 1H, 

CH3’’). 13C NMR (75 MHz, CDCl3) δ 190.1 (CHO), 174.9 (C1=O), 138.9 (C5H), 138.7 (C4), 

137.8 (C9a), 133.8 (C6Cl), 132.7 (C8H), 125.4 (C7H), 121.9 (C5a), 119.1 (C9H), 56.2 
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(C3aH), 31.8 (C2H), 26.7 (C3H2). IR (ATR): 2923, 1701, 1670, 1623, 1583, 1555, 1451, 

1350, 1196, 1170, 1145 cm-1. MS (70 eV) m/z (%): 249 (M+, 25), 247 (72), 220 (24), 

218 (74), 192 (100), 162 (36), 128 (19), 99 (15), 75 (15), 56 (15). HRMS: Calculated for 

[C13H11NO2Cl]+: 248.0478 [(M+H)+]; found: 248.0475. The ee was determined by 

HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; 

τmajor = 35.70 min, τminor = 26.29 min (68% ee). [α]D
20: +242.7 (c = 0.5, CH2Cl2). M.p.: 

149-151ºC. 

 (R)-7,8-dimethoxy-1-oxo-1,2,3,3a-tetrahydropyrrolo[1,2-

a]quinoline-4-carbaldehyde (21l). Following the general 

procedure 21l (17 mg, 0.05 mmol) was isolated by FC 

(hexanes/EtOAc 7:3) in 53% yield as a yellow solid starting 

from lactam 20n (34 mg, 0.10 mmol) in the presence of KOH (1M, 100 µL) using 

THF:H2O (0.9 mL) as solvent. 1H NMR (300 MHz, CDCl3) δ 9.50 (s, 1H, CHO), 8.04 (s, 

1H, CH9), 7.13 (d, J = 1.8 Hz, 1H, CH5), 6.77 (s, 1H, CH6), 4.90 (ddd, J = 10.5, 6.1, 1.8 

Hz, 1H, CH3a), 3.96 (s, 3H, OCH3), 3.89 (s, 3H, OCH3), 2.98 (dt, J = 12.9, 7.0, 1H, CH2’), 

2.69-2.41 (m, 2H, CH2’’CH3’), 2.23-1.99 (m, 1H, CH3’’). 13C NMR (75 MHz, CDCl3) δ 

189.7 (CHO), 174.8 (C1=O), 152.4 (C8OMe), 145.9 (C7OMe), 143.6 (C5H), 135.3 (C4), 

131.9 (C9a), 116.2 (C5a), 111.4 (C6H), 104.2 (C9H), 56.8 (C3aH), 56.3 (OCH3), 56.2 

(OCH3), 31.9 (C2H2), 26.6 (C3H2). IR (ATR): 2923, 1666, 1566, 1516, 1454, 1383, 1164 

cm-1. MS (70 eV) m/z (%): 273 (M+, 100), 244 (53), 228 (10), 218 (32), 207 (66), 174 

(14), 117 (10), 103 (10), 89 (9), 77 (9). HRMS: Calculated for [C15H16NO4]+: 274.1079 

[(M+H)+]; found: 274.1078. The ee was determined by HPLC using a Chiralcel OZ-3 

column [n-hexane/i-PrOH (70:30)]; flow rate 1.0 mL/min; τmajor = 52.43 min, τminor = 

76.65 min (65% ee). [α]D
20: +180.6 (c = 0.5, CH2Cl2). M.p.: 200-202ºC 
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 (R)-1-oxo-1,2,3,3a-tetrahydrobenzo[g]pyrrolo[1,2-a]quinoline-4-carbaldehyde 

(21m). Following the general procedure 21m (17 mg, 0.06 

mmol) was isolated by FC (hexanes/EtOAc 7:3) in 63% yield as 

a yellow solid starting from lactam 20o (34 mg, 0.10 mmol) in 

the presence of KOH (1M, 100 µL) using THF:H2O (0.9 mL) as 

solvent. 1H NMR (300 MHz, CDCl3) δ 9.63 (s, 1H, CHO), 8.70 (s, 

1H, CH11), 7.87-7.75 (m, 3H, CH6, CH7, CH10), 7.52 (ddd, J = 8.2, 6.9, 1.4 Hz, 1H, CH9), 

7.44 (ddd, J = 8.1, 6.9, 1.3 Hz, 1H, CH8), 7.39 (d, J = 1.9 Hz, 1H, CH5), 4.98 (ddd, J = 

10.8, 6.1, 2.0 Hz, 1H, CH3a), 3.11-2.94 (m, 1H, CH2’), 2.76-2.48 (m, 2H, CH2’’CH3’), 2.22-

1.89 (m, 1H, CH3’’). 13C NMR (75 MHz, CDCl3) δ 190.2 (CHO), 174.6 (C1=O), 143.3 

(C5H), 139.0 (C4), 135.5 (C11a), 132.4 (C10a), 130.4 (C6a), 130.4 (C7H), 128.3 (C9H), 128.3 

(C6H), 128.2 (C8H), 126.1 (C10H), 123.7 (C5a), 118.2 (C11H), 56.7 (C3aH), 32.0 (C2H2), 

26.7 (C3H2) IR (ATR): 2923, 1708, 1670, 1627, 1468, 1372, 1228 cm-1. MS (70 eV) m/z 

(%): 263 (M+, 87), 234 (100), 208 (75), 178 (34), 151 (35), 103 (9), 75 (6). HRMS: 

Calculated for [C17H14NO2]+: 264.1025 [(M+H)+]; found: 264.1025. The ee was 

determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (90:10)]; flow 

rate 1.0 mL/min; τmajor = 55.93 min, τminor = 45.32 min (87% ee). [α]D
20: +25.0 (c = 0.5, 

CH2Cl2). M.p.: 185-187ºC 
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4.- ENANTIOSELECTIVE AMINOFLUORINATION OF β-FLUOROSTYRENES 

 

2.1. Aminofluorination of fluoroalkenes (24a-g) 

General procedure: An ordinary vial was charged with pre-catalyst Pd(OAc)2 (0.02 

mmol, 10 mol%), the corresponding ligand (23) (0.02 mmol, 11 mol%), alkene 22 (0.2 

mmol) and N-fluorobenzenesulfonimide (0.3 mmol) and equipped with a magnetic 

stirring bar. A mixture of 1,4-dioxane:MeCN 1:0.1 (1.1 mL) was added and the 

mixture was stirred at 40ºC for 12h. Then water was added and the mixture was 

extracted with CH2Cl2 (3 x 5 mL) and the collected organic fractions were dried over 

Na2SO4, filtered and the solvents were removed under reduced pressure. The crude 

was charged onto silica gel and subjected to FC 

 

N-(2,2-difluoro-1-(2-methoxyphenyl)ethyl)-N-

(phenylsulfonyl)benzenesulfonamide (24a). Following the 

general procedure 24a (40 mg, 0.09 mmol) was isolated by FC 

(n-hexane/EtOAc gradient from 8:2 to 7:3) in 43% yield starting from styrene 22a (30 

mg, 0.20 mmol) and N-fluorobenzenesulfonimide (95 mg, 0.30 mmol) in the 

presence of 23a (7 mg, 0.02 mmol) and Pd(OAc)2 (4 mg, 0.02 mmol) and using 1,4-

dioxane:MeCN mixture (10:1, 1.1 mL) as solvent. 1H NMR (400 MHz, CD2Cl2) (δ, ppm) 

(* denotes partially solaped signals) 8.08–7.18 (m, 11H, N(SO2Ph)2 + Carom.-H), 7.11 

(dd, J = 7.9, 1.5 Hz, 1H, Carom.-H), 6.90* (d, J = 7.7 Hz, 1H, Carom.-H), 6.76* (td, J = 57.2, 

7.8 Hz, 1H, F2CH), 6.22 (d, J = 8.1 Hz, 1H, Carom.-H), 6.14 (appdt, J = 10.5, 7.7 Hz, 1H, 

HC-N(SO2Ph)2), 3.37 (s, 3H, OCH3). 13C NMR (150 MHz, CD2Cl2) (δ, ppm) 158.1 (MeO-

Carom.), 140.2 (Carom.-SO2), 133.2 (Carom.-H-Carom.-H-Carom.-H-Carom.-SO2), 130.9 (MeO-

Carom.-Carom.-H-Carom.-H), 129.5 (d, J = 2.4 Hz, MeO-Carom.-Carom.-Carom.-H), 128.7 (Carom.-H-

Carom.-H-Carom.-H-Carom.-H-Carom.-SO2), 128.1 (Carom.-H-Carom.-H-Carom.-H-Carom.-H-Carom.-H-

Carom.-SO2), 119.9 (MeO-Carom.-Carom.-Carom.-H-Carom.-H), 117.6 (d, J = 8.1 Hz, MeO-Carom.-

Carom.), 114.9 (appt, J = 242.9 Hz, F2CH), 110.1 (MeO-Carom.-Carom.-H), 58.2 (dd, J = 34.2, 
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24.3 Hz, HC-N(SO2Ph)2), 54.4 (MeO). 19F NMR (376.5 MHz, CD2Cl2) (δ, ppm) -118.3 

(dddd, J = 289.6, 55.9, 7.6, 3.3 Hz, HCFaFb), -125.8 (ddd, J = 289.8, 57.4, 10.6 Hz, 

HCFaFb).  

 

N-(2,2-difluoro-1-(2-methoxyphenyl)ethyl)-N-

(phenylsulfonyl)benzenesulfonamide (24b). Following 

the general procedure 24b (74 mg, 0.15 mmol) was 

isolated by FC (n-hexane/EtOAc gradient from 8:2 to 7:3) 

in 75% yield starting from styrene 22b (36 mg, 0.20 mmol) and N-

fluorobenzenesulfonimide (95 mg, 0.30 mmol) in the presence of 23a (7 mg, 0.02 

mmol) and Pd(OAc)2 (4 mg, 0.02 mmol) and using 1,4-dioxane:MeCN mixture (10:1, 

1.1 mL) as solvent. 1H NMR (400 MHz, CDCl3) (δ, ppm) (* denotes partially solaped 

signals) 8.36–7.17 (m, 14H, N(SO2Ph)2 + Carom.-H), 6.78 (td, J = 57.0, 7.4 Hz, 1H, F2CH), 

5.82-5.60 (m, 1H, HC-N(SO2Ph)2), 1.35 (s, 9H, t-Bu). 13C NMR (150 MHz, CDCl3) (δ, 

ppm) 152.2 (t-Bu-Carom.), 139.6 (Carom.-SO2), 133.6 (Carom.-H-Carom.-H-Carom.-H-Carom.-SO2), 

130.9 (MeO-Carom.-Carom.-H-Carom.-H), 129.0 (Carom.-H), 128.7 (SO2Ph), 128.6 (Carom.-HC-

N(SO2Ph)2), 128.4 (SO2Ph), 125.5 (Carom.-H), 114.0 (appt, J = 241.9 Hz, F2CH), 63.6 (dd, 

J = 35.4, 23.9 Hz, HC-N(SO2Ph)2), 36.4 (C(CH3)3), 31.3 (CH3). 19F NMR (376.5 MHz, 

CDCl3) (δ, ppm) -118.3 (dddd, J = 289.6, 55.9, 7.6, 3.3 Hz, HCFaFb), -125.8 (ddd, J = 

289.8, 57.4, 10.6 Hz, HCFaFb).  

 

Asymmetric syntheis of N-(2,2-difluoro-1-(2-methoxyphenyl)ethyl)-N-

(phenylsulfonyl)benzenesulfonamide (24b). Following a modified procedure 24b 

(59 mg, 0.12 mmol) was isolated by FC (n-hexane/EtOAc gradient from 8:2 to 7:3) in 

60% yield starting from styrene 22b (36 mg, 0.20 mmol) and N-

fluorobenzenesulfonimide (95 mg, 0.30 mmol) in the presence of 23i (8 mg, 0.04 

mmol, 20 mol%) and Pd(OAc)2 (4 mg, 0.02 mmol) and using 1,4-dioxane:MeCN 

mixture (10:1, 1.1 mL) as solvent and running the reaction at room temperature.. 
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N-(1-(2-bromophenyl)-2,2-difluoroethyl)-N-(phenylsulfonyl)benzenesulfonamide 

(24e). Following the general procedure 24e (22 mg, 0.04 

mmol) was isolated by FC (n-hexane/EtOAc gradient from 8:2 

to 7:3) in 21% yield starting from styrene 22e (40 mg, 0.20 

mmol) and N-fluorobenzenesulfonimide (95 mg, 0.30 mmol) in the presence of 23a 

(7 mg, 0.02 mmol) and Pd(OAc)2 (4 mg, 0.02 mmol) and using 1,4-dioxane:MeCN 

mixture (10:1, 1.1 mL) as solvent. 1H NMR (400 MHz, CD2Cl2) (δ, ppm) (* denotes 

partially solaped signals) 7.92–7.79 (m, 3H, N(SO2Ph)2), 7.64–7.52 (m, 3H, 

N(SO2Ph)2), 7.44-7.38* (m, 4H, N(SO2Ph)2 + Carom.-Cl-Carom.-H)  7.35* (td, J = 7.6, 1.6 

Hz, 1H, Carom.-Br- Carom.-H-Carom.-H-Carom.-H),  7.14 (dd, J = 8.1, 1.5 Hz, 1H, Carom.-Br-

Carom.-Carom.-H), 7.11-7.06 (m, 1H, Carom.-Br-Carom.-H-Carom.-H), 6.80 (td, J = 56.1, 7.4 Hz, 

1H, F2CH), 6.10 (appdt, J = 10.7, 7.3 Hz, 1H, HC-N(SO2Ph)2). 13C NMR (150 MHz, 

CD2Cl2) (δ, ppm) 139.6 (Carom.-SO2), 133.6 (Carom.-H-Carom.-H-Carom.-H-Carom.-SO2), 133.5 

(Br-Carom.-Carom.-H), 132.1 (Br-Carom.-Carom.), 130.9 (Br-Carom.-Carom.-Carom.-H), 128.7 (Carom.-

H-Carom.-H-Carom.-H-Carom.-H-Carom.-SO2), 128.3 (Carom.-H-Carom.-H-Carom.-H-Carom.-H-Carom.-

H-Carom.-SO2 + Br-Carom.-Carom.-H-Carom.-H), 127.2 (Br-Carom.-Carom.-Carom.-H-Carom.-H), 126.7 

(Br-Carom.), 114.6 (appt, J = 244.5 Hz, F2CH), 62.7 (dd, J = 33.5, 25.4 Hz, HC-N(SO2Ph)2). 
19F NMR (376.5 MHz, CD2Cl2) (δ, ppm) -118.8 (dd, J = 289.6, 55.5 Hz, HCFaFb), -124.0 

(dd, J = 290.2, 56.8 Hz, HCFaFb). 

 

N-(1-(4-bromophenyl)-2,2-difluoroethyl)-N-

(phenylsulfonyl)benzenesulfonamide (24f). Following the 

general procedure 24f (30 mg, 0.06 mmol) was isolated by 

FC (n-hexane/EtOAc gradient from 8:2 to 7:3) in 29% yield starting from styrene 22f 

(40 mg, 0.20 mmol) and N-fluorobenzenesulfonimide (95 mg, 0.30 mmol) in the 

presence of 23a (7 mg, 0.02 mmol) and Pd(OAc)2 (4 mg, 0.02 mmol) and using 1,4-

dioxane:MeCN mixture (10:1, 1.1 mL) as solvent. 1H NMR (400 MHz, CD2Cl2) (δ, ppm) 
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(* denotes partially solaped signals) 7.94–7.57 (m, 5H, SO2Ph), 7.53-7.42* (m, 5H, 

SO2Ph),  7.42* (d, J = 8.6 Hz, 2H, Carom.-H-Carom.-Br-Carom.-H), 7.30* (d, J = 8.7 Hz, 2H, 

Carom.-H-Carom.-Carom.-H), 6.84 (td, J = 56.8, 7.3 Hz, 1H, F2CH), 5.66 (appdt, J = 10.4, 7.8 

Hz, 1H, HC-N(SO2Ph)2). 13C NMR (150 MHz, CD2Cl2) (δ, ppm) 139.3 (Carom.-SO2), 134.0 

(Carom.-H-Carom.-H-Carom.-H-Carom.-SO2), 131.7 (Br-Carom.-Carom.-H-Carom.-H), 130.8 (Br-

Carom.-Carom.-H-Carom.-H), 130.5 (d, J = 7.8 Hz, Carom.-HC-N(SO2Ph)2), 128.6 (Carom.-H-

Carom.-H-Carom.-H-Carom.-H-Carom.-H-Carom.-SO2), 128.5 (Carom.-H-Carom.-H-Carom.-H-Carom.-H-

Carom.-SO2), 123.3 (Br-Carom.), 114.1 (dd, J = 246.9, 241.5 Hz, F2CH), 110.1 (MeO-Carom.-

Carom.-H), 63.1 (dd, J = 35.9, 23.8 Hz, HC-N(SO2Ph)2). 19F NMR (376.5 MHz, CD2Cl2) (δ, 

ppm) -116.4 (ddd, J = 293.6, 57.1, 10.4 Hz, HCFaFb), -124.6 (ddd, J = 293.5, 56.4, 8.2 

Hz, HCFaFb). 

 

N-(1-(3-chlorophenyl)-2,2-difluoroethyl)-N-

(phenylsulfonyl)benzenesulfonamide (24g). Following the 

general procedure 24g (19 mg, 0.04 mmol) was isolated by 

FC (n-hexane/EtOAc gradient from 8:2 to 7:3) in 20% yield starting from styrene 22g 

(31 mg, 0.20 mmol) and N-fluorobenzenesulfonimide (95 mg, 0.30 mmol) in the 

presence of 23a (7 mg, 0.02 mmol) and Pd(OAc)2 (4 mg, 0.02 mmol) and using 1,4-

dioxane:MeCN mixture (10:1, 1.1 mL) as solvent. 1H NMR (600 MHz, CD2Cl2) (δ, ppm) 

(* denotes partially solaped signals) 8.15–7.40 (m, 11H, N(SO2Ph)2 + Carom.-Carom.-H-

Carom.-Cl-Carom.-H), 7.38* (s, 1H, Carom.-Carom.-H-Carom.-Cl-Carom.-H)  7.35* (dd, J = 7.9, 2.0 

Hz, 1H, Carom.-Cl-Carom.-H-Carom.-H-Carom.-H),  6.85 (td, J = 56.8, 7.3 Hz, 1H, F2CH), 5.68 

(appdt, J = 10.9, 7.5 Hz, 1H, HC-N(SO2Ph)2). 13C NMR (150 MHz, CD2Cl2) (δ, ppm) 

139.2 (Carom.-SO2), 134.6 (Carom.-Cl), 134.1 (Carom.-H-Carom.-H-Carom.-H-Carom.-SO2), 133.2 

(d, J = 7.8 Hz, Cl-Carom.-Carom.-H-Carom.), 130.0 (Cl-Carom.-Carom.-H-Carom.-H), 129.3 (Cl-

Carom.-Carom.-H-Carom.-H), 129.2 (Cl-Carom.-Carom.-H-Carom.), 128.6 (Carom.-H-Carom.-H-Carom.-H-

Carom.-H-Carom.-H-Carom.-SO2), 128.5 (Carom.-H-Carom.-H-Carom.-H-Carom.-H-Carom.-SO2), 127.1 

(Cl-Carom.-Carom.-H-Carom.-H-Carom.-H), 114.1 (dd, J = 247.3, 241.6 Hz, F2CH), 63.1 (dd, J = 
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35.9, 23.6 Hz, HC-N(SO2Ph)2). 19F NMR (376.5 MHz, CD2Cl2) (δ, ppm) -116.0 (ddd, J = 

293.6, 57.1, 10.8 Hz, HCFaFb), -124.5 (ddd, J = 293.8, 56.3, 7.8 Hz, HCFaFb). 
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AAbbbbrreevviiaattiioonnss,,  aaccrroonnyymmss  aanndd  ssyymmbboollss    

 
Ac Acetyl 
acac Acetylacetonate  
Ac2O Acetic anhydride 
AcOH Acetic acid 
Aminocat* Chiral aminocatalyst 
aq. Aqueous 
Ar Aryl 
AU Absorbance units 
ATR Atenuated total reflectance 
B Base 
BINAP 2,2′-Bis(diphenylphosphino)-1,1′-binaphthalene 
Bn Benzyl 
Boc tert-Butoxycarbonyl 
bs Broad signal 
n-Bu n-Butyl 
t-Bu tert-Butyl 
Bz Benzoyl 
c Concentration (measured in g/100mL) 
ºC Degree Celsius 
Carom Aromatic carbon 
Cat. Catalyst 
Cbz Benzoxycarbonyl 
CI Chemical ionization 
COSY Correlation spectroscopy 
mCPBA meta-Chloroperbenzoic acid 
CPME Cyclopentyl methyl ether 
δ Chemical shift 
d Doublet 
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DABCO 1,4-diazabicyclo[2.2.2]octane 
DBU 1,5-diazabycyclo[5.4.0]undec-5-ene 
DCE 1,2-dichloroethane 
dd Double of doublets 
de Diastereomeric excess 
DEA Diethylamine 
DEAD Diethyl azodicarboxylate 
DEPT Distortionless Enhancement by Polarization Transfer 
DFT Density functional theory 
DIPEA N,N-Diisopropylethylamine 
DKR Dynamic kinetic resolution 
DMAP N,N-Dimethylaminopyridine 
DMF N,N-Dimethylformamide 
DMSO Dimethylsulfoxide 
dr Diastereomeric ratio 
E Electrophile or Energy 
e.g. Exempli gratia (for example) 
ee Enantiomeric excess 
EI Electron ionization 
eq. Equivalent 
Et Ethyl 
et al. Et alii (and others) 
EtCN Propionitrile  
EtOAc Ethyl acetate 
EtOH Ethanol 
EWG Electron-withdrawing group 
FC Flash column chromatography 
g Gram 
GC Gas chromatography 
h Hours 
HOMO Highest occupied molecular orbital 
HPLC High performance liquid chromatography 
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HRMS High resolution mass spectrometry 
HSQC Heteronuclear single-quantum correlation spectroscopy 
HTBU 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate 
Hz Hertz 
i.e. Id est (that is) 
IR Infrared 
J Coupling constant 
kcal kilocalorie 
LG Leaving group 
LUMO Lowest unoccupied molecular orbital 
m Multiplet or metres 
m meta 
M Molar concentration 
M.p. Melting point 
m/z Mass-to-charge ratio 
M+ Molecular ion 
Me Methyl 
MeCN Acetonitrile 
Mes Mesityl 
MeOH Methanol 
mg Milligrams 
min Minutes 
mL Millilitres 
µL Microlitres 
mm Millimetres 
mmol Millimole 
MS Mass spectrometry or Molecular sieves 
NCS N-chlrosuccinimide 
n.d. Not determined 
n.O.e. Nuclear Overhauser effect 
NHC N-Heterocyclic carbene 
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NMR Nuclear magnetic resonance  
NOESY Nuclear Overhauser effect correlation spectroscopy 
Nu Nucleophile 
o orto 
OAc Acetate 
p para 
PCC Pyridinium chlorochromate 
Ph Phenyl 
ppm Parts per million 
i-Pr iso-Propyl 
n-Pr n-Propyl 
i-PrOH iso-Propanol 
PTC Phase-Transfer Catalysis 
q Quartet 
R Alkyl group 
rt Room temperature  
rac Racemic 
s Singlet 
sat. Aqueous saturated solution 
SOMO Single Occupied Molecular Orbital 
t Triplet or time 
T Temperature 
TBAF Tetrabutylammoniun fluoride 
TBD 1,5,7-Triazabicyclo[4.4.0]dec-5-ene 
TBDPS tert-Butyldiphenylsilyl 
TBS tert-Butyldimethylsilyl 
TCA Trichloroacetic acid 
TES Triethylsilyl 
Tf Trifluoromethanesulfonyl 
TFA Trifluoroacetic acid 
THF Tetrahydrofuran 
TIPS Triisopropyl silyl 
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TLC Thin layer chromatography 
TMAF Tetramethylammonium fluoride 
τmajor Retention time of the major enantiomer 
τminor Retention time of the minor enantiomer 
TMS Trimethysilyl 
Ts Tosyl 
TS Transition state 
pTSA p-Toluenesulfonic acid 
vs. Versus 
X Halogen 
λ Wavelength 

 
 
 

 





 

 

 



 



RReessuummeenn  eexxtteennddiiddoo    

 

En el trabajo de investigación recogido en la presente memoria, se han 

desarrollado nuevas metodologías en el ámbito de la activación de compuestos 

versátiles mediante catálisis covalente. Para ello se ha empleado dos modos de 

activación pertenecientes al ámbito de la organocatálisis, como son las aminas 

secundarias y los carbenos N-heterocíclicos quirales, en la obtención de 

compuestos altamente enantioenriquecidos mediante procesos de síntesis 

asimétrica. Cabe decir que el campo de la organocatálisis ha cobrado una gran 

importancia significativa en los últimos quince años, convirtiéndose en una de las 

herramientas sintéticas más importantes de la química orgánica, junto a la 

catálisis metálica y enzimática.  

Dada la dilatada experiencia del grupo en el ámbito de la aminocatálisis, 

considerada una de las ramas más destacadas dentro de la organocatálisis, y a fin 

de abrir camino a nuevas líneas de investigación, se propuso el empleo de otros 

métodos de activación, como lo es el uso de carbenos N-heterocíclicos, así como 

la aplicación de este tipo de catálisis a sustratos aparentemente inertes, como lo 

son los ciclopropanos tensionados. 
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En este sentido, se demostró en primer lugar la capacidad de diferentes 

inonas α’- y β- sustituidas como electrófilos en el desarrollo de la reacción 

benzoínica cruzada enantioselectiva entre aldehídos y cetonas catalizada por 

sales de triazolio quirales. Estos compuestos presentan un grupo carbonilo 

accesible debido a la inherente planaridad de la molécula lo que les convierte en 

sustratos adecuados para esta transformación evitando reacciones de homo-

condensación no deseadas. Además, la alta funcionalización del sustrato lo hace 

particularmente interesante de cara a su aplicación como “building blocks” 

(Esquema 1).  

R3

O

H
X

Y
N

(NHC cat.)
X

Y

N

R

R
R3

HO
Intermedio

Breslow

R3CHO
R3

O
R3

OHO

R2

R1

O

R2R3

O

R1

HO R2

R3

OR1

homo-benzoinica

Stetter

cross-benzoinica

O

R2

R1

R1
R2

- Carbonilo acesible
- Electrofilia incrementada

Introducción de 
multiples funcionalidades

O

 

Esquema 1 

Una vez probada la viabilidad de la reacción y tras un extenso proceso de 

optimización para identificar las condiciones óptimas para la síntesis de alcoholes 

propargílicos enantioenriquecidos, se pudo extender la metodología al empleo de 

diferentes aldehídos y gran variedad de inonas tanto activadas como no 

activadas, siendo este el primer ejemplo en el que se emplean cetonas no 
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activadas como electrófilos en la reacción benzoínica cruzada intermolecular 

(Esquema 2). 

R1 H

O

K2CO3
 
(40 mol%)

Tolueno:Benceno (1:3)
-15ºC

R2
R3

O

R2

R3 OH
R1

O

(20 mol%)
3m

-
Cl

N
N N

O

R1: Arilo, Alquilo
R2: Arilo, Alquilo, TIPS
R3: Alquilo, CF3

25-99%
75->99% ee

 

Esquema 2 

Además, la utilidad sintética de los alcoholes propargílicos obtenidos fue 

demostrada a través de diversas transformaciones (Esquema 3). 

Ph

F3C OH

O

Ph

F3C OH

OHO
Ph

AgNO3
 

(12 mol%)

Red-Al
H2

 
(3.7 bar)

Lindlar cat.
F3C OH

OH

F3C OH

O

86%

73% 86%

89%

S

S

S S

S

NaBH4/CeCl3
EtOH, 0ºC 30min

Et2O
0ºC a t.a.

MeOH, t.a.

OHF3C

DMF, 70ºC

Ph Ph

 

Esquema 3 
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En segundo lugar, se ha estudiado el potencial sintético de los 

ciclopropanos dadores-aceptores, moléculas relativamente inertes que pueden 

ser activadas para promover la apertura de ciclo y su participación en reacciones 

complejas como las cicloadiciones. Por un lado y en base a la capacidad de los 

carbenos N-heterocíclicos para activar formilciclopropanos, se propuso el uso de 

los mismos para su reacción con oxadienos en cicloadiciones formales [4+2], a 

través de intermedios de tipo enolato de azolio. De este modo, se ha 

desarrollado una metodología organocatalítica empleando formilciclopropanos 

1,1-dicarboxilatos y α-cetoésteres β,γ-insaturados para la síntesis de piranonas 

quirales. Del mismo modo que en el ejemplo anterior un exhaustivo estudio de 

las variables experimentales nos sirvió para alcanzar las condiciones óptimas de 

reacción y extender la metodología al empleo de diferentes cetoésteres 

(Esquema 4). 

CO2Et

CO2Et

O O

N N

N
R

CO2Et

CO2Et

O

Azolium enolate

CO2R2R1 O

O
EtO2C

CO2Et

R1

CO2R2

DIPEA
 
(20 mol%)

DCM (0.1M), 4ºC

(10 mol%)

N N+

N-
BF4O

R R

R

46-85%
97->99% ee

Esquema 4 

Por otro lado, en vista de que un catalizador nucleófilo podía promover la 

apertura de ciclopropanos a través de la formación de intermedios enaminólicos, 

se propuso el empleo de aminocatalizadores para a través de la generación de 

intermedios tipo enamina análogos a los previamente citados promover la 

apertura del anillo y dar lugar a reacciones derivadas de la activación clásica con 

este tipo de catalizadores (Esquema 5).  
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N

CO2Et

CO2Et

N

CO2EtEtO2CCO2Et

CO2Et

O

 
Esquema 5 

Así, se demostró que los ciclopropanoacetaldehidos pueden dar aperturas 

de ciclo tras condensar con aminas secundarias quirales y posteriormente 

participar en reacciones en cascada de tipo aza-Michael/aldol cuando se hacen 

reaccionar con aminobenzaldehidos. Tras el correspondiente proceso de 

optimización, la metodología se extendió al uso de diferentes ciclopropanos y 

aminobenzaldehidos para la obtención de una amplia gama de quinolinas 

quirales (Esquema 6).  

NH2 N
H

R1O2C CO2R1

O

O
(20 mol%),

o-NO2.C6H4-CO2H
 
(20 mol%)

O

CO2R1

CO2R1

+
CHCl3,

 
t.a.

N
H

Ph

OTMS
Ph

R2 R2

53-99%
64-97% ee  

Esquema 6 

Sin embargo y a fin de explotar todas las funcionalidades presentes en la 

molécula al tiempo que poder incorporar por completo la estructura del 

ciclopropano en el nuevo compuesto formado, se realizaron nuevos estudios y se 

consiguió desarrollar un proceso one-pot para la obtención de una gran variedad 

de pirroloquinolinas tras una lactamización promovida por ácido (Esquema 7). 
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CO2R1

CO2R1

O

N
H

R

O

RO2C CO2R

Aldehido

Carboxilato

Carboxilato

Aldehido

20 mol%
CHCl3, p-NO2-C6H4CO2H, t.a.

O

NH2

N

O

O CO2R1

N
H

Ph

OTMS
Ph

1.

AcOH, reflujo2.

R2

R2

38-86%
63-96% ee  

Esquema 7 

Finalmente, se incluye el trabajo realizado durante una estancia de tres 

meses en el grupo del profesor F. D. Toste, en la Universidad de California, 

Berkeley. Se desarrolló un estudio sobre la aminofluorinación enantioselectiva de 

β-fluoroestirenos mediante el empleo de N-fluorobencenosulfonamida como 

agente oxidante y de fluoración en presencia de una fuente de paladio. Así, el 

agente oxidante es capaz de oxidar el paladio, para tras una etapa de 

fluoropaladación en la que se genera el enlace C-F, generar especies con estados 

de oxidación alto (Pd IV) que dan lugar a la formación de compuestos difluorados 

en posición geminal. Comprobada la viabilidad de la reacción la metodología se 

testó empleando varios estirenos (Esquema 8) y se comenzó la optimización de la 

versión enantioselectiva de la reacción (Esquema 9), punto en el cual se 

encuentra actualmente este proyecto. 

Pd(OAc)2
 
(10 mol%)

bathocuproine (11 mol%)

NFSI (1.5 equiv.)
1,4-dioxane/MeCN (10:1), T

F
R

F
R

N(SO2Ph)2

F

9-75%  
Esquema 8 
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(20 mol%)

(Pd(OAc)2
 
(20 mol%)

NFSI (1.5 equiv.)
1,4-dioxane, 50ºC

N(SO2Ph)2
FF

F

N
N

O

iPr

60%, 20% ee  
Esquema 9 
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Parte del trabajo recogido en la presente memoria ha dado lugar a las 

siguientes publicaciones: 

1.  “Enantioselective Synthesis of Tertiary Propargylic Alcohols under N-

Heterocyclic Carbene Catalysis” 

Eduardo Sánchez Díez, Maitane Férnandez, Uxue Uria, Efraím Reyes, Luisa 

Carrillo, Jose L. Vicario. 

Chem. Eur. J., 2015, 21, 8384. 

2. “Organocatalytically Generated Donor-Acceptor Cyclopropanes in Domino 

Reactions. One Step Synthesis of Pyrrolo[1,2-a]quinolines” 

Eduardo Sánchez Díez, Diana L. Vesga, Efraím Reyes, Uxue Uria, Luisa Carrillo, 

Jose L. Vicario. 

avier Izquierdo, Ane Orue, Karl A. Scheidt. 

Org. Lett, 2016, 18, 1270. 

3. “Catalytic Generation of Donor-Acceptor Cyclopropanes under N-

Heterocyclic Carbene Activation .and their Stereoselective Reaction with 

Alkylideneoxindoles” 

Liher Prieto, Eduardo Sánchez Díez, Uxue Uria, Efraím Reyes, Luisa Carrillo, Jose L. 

Vicario. 

Adv. Synth. Catal. 2017, in press. DOI: 10.1002/adsc.201700198. 
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