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Abstract

Driver fatigue is a significant factor in a large number of vehicle accidents. Thus, drowsy
driver alert systems are meant to reduce the main cause of traffic accidents. Different
approaches have been developed to tackle with the fatigue detection problem. Though
most reliable techniques to asses fatigue involve the use of physical sensors to monitor
drivers, they can be too intrusive and are less likely to be adopted by the car industry. A
relatively new and effective trend consists on facial image analysis from video cameras
that monitor drivers.

How to extract effective features of fatigue from images is important for many image
processing applications. This project proposes a face descriptor that can be used to detect
driver fatigue in static frames. This descriptor represents each frame of a sequence as
a pyramid of scaled images that are divided into non-overlapping blocks of equal size.
The pyramid of images is combined with three different image descriptors. The final
descriptors are filtered out using feature selection and a Support Vector Machine is used
to predict the drowsiness state. The proposed method is tested on the public NTHUDDD
dataset, which is the state-of-the-art dataset on driver drowsiness detection.
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1.

Introduction

Car accidents are one of the biggest concerns in society as they lead into thousands of
deaths all over the globe. Drowsiness and fatigue are one of the main causes of distraction
in drivers, a situation that dramatically increases the probability of suffering a car accident.

Fatigue can be detected if some of the following symptoms are observed: yawning, dif-
ficulty keeping eyes open, head or body nodding, feeling depressed and irritable, diffi-
culty maintaining concentration, slower reaction and responses, vehicle wandering from
the road or into another lane [5]. For each driver, different symptoms and with different
degrees may be detected. As an attempt to quantify those symptoms, the Karolinska Slee-
piness Scale (KSS) [6] is a method to score drivers’ drowsiness level. This scale is based
on subjective self perception of the alertness state and consists on nine levels that cover
from an Extremely alert state to a Very sleep or great effort to keep alert state.

Therefore, unlike infractions such as driving under the effects of alcohol, detecting drow-
siness in drivers is a harder problem that requires to develop complex solutions. Most
of them rely on hand-crafted features that can be extracted from the driver of from the
vehicle itself.

1.1. Objectives

The main objective of this project is the development of a facial image descriptor and
classification algorithm capable of detecting drowsiness of drivers in different ambient
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2 Introduction

conditions.

This objective is achieved by a feature extraction stage that comprises three different ima-
ge descriptors: Covariance descriptor, Histogram of Oriented Gradients and Local Binary
Pattern, in conjunction with a multilevel and multiblock image representation known as
Pyramid Multilevel descriptor. A second stage of classification includes a robust classifier
such as Support Vector Machines.

1.2. Related work

In order to detect drowsiness, most of the techniques can be grouped into three categories.
The first one focuses on monitoring the driver’s behavior, like grip force on the steering
wheel, speed of the vehicle, acceleration, braking or gear changing [7]. The second cate-
gory makes use of physiological information such as heart rate, electrocardiogram (ECG),
electroencephalogram (EEG) and electrooculogram (EOG) and blood pressure [8, 9]. The
third category is based on computer vision using cameras and optical sensors to extract
features and then analyze whether the driver is in the state of fatigue. Different approa-
ches have been developed on computer vision, covering mainly facial features such as
eye blinking [10, 11, 12], yawning [13] or head nodding [14]. These last approaches have
a great dependence on an accurate location of eyes and mouth, a requisite that can be
very challenging in a real-life situation. In [3], three existing neural networks are used to
extract facial features and combined with a Support Vector Machines classifier to predict
drowsiness. In [15] a Multi Granularity Convolutional Neural Network (MCNN) is used
to extract facial features and a Long Short Term Memory (LSTM) network is used to
classify the drowsiness level.

It is assumed that drowsiness will manifest as rapid and constant blinking, nodding or head
swinging, and frequent yawning. One of the simplest method to predict drowsiness level
is to set a threshold on extracted drowsiness-related symptoms. PERcent of Eye CLOSure
(PERCLOS) is a video-image-based method to track eye closure. It is calculated as the
total time that the driver’s eyelids are closed [16].

[17] showed that when the head inclination angle exceeds a certain value and duration, the
level of alertness of the driver is lowered. In [18], yawning is detected based on the rate of
change of the mouth contour and is determined as the only sign of drowsiness. This ap-
proach may encounter false-alarms when the required visual cues cannot be distinguished
from the similar motions, e.g. talking or laughing. In [19], the authors developed a gaze
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zone detection algorithm based on features learnt using a convolutional neural network.
Based on these features, support vector machine (SVM) is used to estimate driver gaze
zone. In addition to the mentioned works, some researchers consider the texture dynamics
[20, 8].





2.

Face Descriptors

In this chapter, a brief description of the used image descriptors are presented. Three
handcrafted descriptors —Covariance, Histogram of Oriented Gradients and Local Binary
Patterns— are combined with the Pyramid Multi-Level descriptor in order to produce
more performing descriptors.

2.1. Pyramid Multi-level Descriptor (PML)

The PML Descriptor (PMLD) representation introduced in [21] adopts an explicit pyra-
mid representation of the original image, representing the image at different scales. For
each scale, the image is divided into rectangular blocks. The descriptor of each block is
extracted at every level and the final descriptor of the image is the concatenation of the
descriptors from each block.

More precisely, let I be a W ×H image and let P be its pyramid representation with `

levels, so P = {P1 . . . P̀ }. The level ` corresponds to the original image. The size of the
image at each level of the pyramid representation will be wi−1 = wi× i−1

i and hi−1 =

hi× i−1
i with i = 1 . . . `. At each level Pi, the image is divided into i2 blocks and the image

can be represented as Pi = {Bi,1, . . . ,Bi,ni}, with ni = i2. The size of each block is constant
along all pyramid representation, W×H

`2 .

The pyramid representation of image I by ` levels is the concatenation of ` sequences

5



6 Face Descriptors

Li (i = 1, . . . , `), representing each on of the blocks of every level.

Li = {Bi,1, . . . ,Bi,ni} (2.1)

Let φ(B) be a descriptor extracted from block B. Then, the descriptor of the image at level
i can be expressed as:

φ(Li) = φ(Bi,1)|| . . . ||φ(Bi,ni) (2.2)

where the || denotes the concatenation.

Therefore, the `-PML descriptor of an image I can be defined as

`−PMLD = φ(L1)|| . . . ||φ(L`) (2.3)

Figure 2.1: Example of PML for 5 levels. The image is scaled in 5 levels and divided in square
blocks for each level.
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2.2. Covariance descriptor

The covariance descriptor was proposed by [22] for generic object detection and texture
classification tasks. Opposed to histogram based descriptors, the covariance descriptor
computes covariance matrices of the color channels and the spatial derivatives, resulting
in a low-dimensional descriptor.

The algorithm can be easily extended with new features provided they can be presen-
ted spatially. In this case, the Local Binary Pattern (LBP) and Local Phase Quantization
(LPQ) images are also included in the covariance matrix as well as the aforementioned
color channels and spatial derivatives.

Let I be an image and let F be the W ×H×d dimensional feature extracted from I with
any mapping function, φ(·), like intensity image, RGB color image or LBP image.

F(x,y) = φ(I,x,y)

For a given rectangular region, R⊂ F , let {zk}k=1...n be the d -dimensional feature points
inside region R. It is possible to represent the region R by the d×d covariance matrix of
the feature points.

COVR =
1

n−1

n

∑
k=1

(zk−µµµ)(zk−µµµ)T (2.4)

where µ is the mean value of the points.

2.3. Histogram of Oriented Gradients descriptor

Histogram of Oriented Gradients (HOG) is an extension of SIFT (Scale Invariant Feature
Transform) presented in [23]. The main idea is that local object appearance and shape can
be characterized by the distribution of local intensity gradients or edge detections.

The image is divided into small overlapping spatial regions or cells. Then, for each cell
the 1-D histogram of gradient orientation is accumulated over all the pixels in the cell.
This creates the descriptor of the cell. The HOG descriptor of the image is formed by the
combination of the descriptors of the cells.

This method can be explained in five stages:
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The first stage applies an optional global image normalization equalization intended to
reduce the influence of illumination effects.

The second stage computes first order image gradients. These capture contour, silhouette
and some texture information, while providing further resistance to illumination variations

The third stage aims to produce an encoding that is sensitive to local image content while
remaining resistant to small changes in pose or appearance. Gradient orientation informa-
tion is pooled locally in the same way as the SIFT feature.

The fourth stage computes normalization, which takes local groups of cells and contrast
normalizes their overall responses before passing to next stage. Normalization introdu-
ces better invariance to illumination, shadowing, and edge contrast. It is performed by
accumulating a measure of local histogram “energy” over local groups of cells that also
called “blocks”. The normalized block descriptors are referred as Histogram of Oriented
Gradient (HOG) descriptors.

The final step collects the HOG descriptors from all blocks of a dense overlapping or
non-overlapping grid of blocks covering the detection window into a combined feature
vector.

Figure 2.2: Example of HOG descriptor
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2.4. Local Binary Pattern descriptor

Local Binary Pattern (LBP) is a texture descriptor presented in [24] that works on gray
scale images and allows a very simple and efficient way to encode and image. Due to its
reduced computational and its discriminative ability, LBP has been widely used in texture
processing and analysis.

LBP works encoding each pixel in an image analyzing its neighborhood.

LBPP,R(gc) =
P−1

∑
p=0

s(gp−gc)2p, s(x) =

{
1 if x≥ 0
0 if x < 0

(2.5)

where P is the number of neighbors, R is the size of the neighborhood and gc and gp are
the grey intensity of central pixel an the p pixels in the neighborhood.

For each neighborhood, the intensity of the central pixel is compared to its neighbors. The
final image descriptor is the histogram of LBP codes in the image.

2.4.1. Rotation invariance

An improvement of the classic LBP descriptor is the rotation invariant pattern. Local Bi-
nary Pattern as described in section 2.4 is not invariant to rotation. The same neighborhood
of a pixel yields a different LBP descriptor if the neighborhood is rotated. The rotation
invariant procedure was proposed to compensate the weakness of LBP against rotations
of the neighborhood of each pixel. The resulting descriptor is the smallest LBP value of a
pixel after applying all possible rotations to its neighborhood.

LBPri
P,R(gc) = min{ROR(LBPP,R, i) | i = 0, . . . ,P−1} (2.6)

where ROR(x, i) is a binary right shift of i pixels in the neighborhood.

2.4.2. Uniform pattern

The same authors of [24] noticed that most part of the relevant information of a texture
can be described by the so-called uniform patterns. An LBP code is called uniform if the
binary pattern contains at most two bitwise transitions from 0 to 1 or vice versa when the
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Figure 2.3: Example of LBP for a pixel: 1) example image and selected neighborhood, 2) values
of gc−gp, 3) function s(x) for each pixel in neighborhood, 4) LBP value for selected pixel.
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bit pattern is considered circular. In Figure 2.4 an example of uniform and non-uniform
patterns is presented along with the number of transitions in each pattern.

Considering only these patterns, any pixel in an image can be described with P(P−1)+2
different values.

LBPriu2
P,R (gc) =

{
∑

P−1
p=0 s(gp−gc) if U(LBPP,R)≤ 2

P+1 otherwise
(2.7)

Figure 2.4: Uniform and non-uniform patterns. a) Example uniform patterns with at least U = 2
bitwise transitions. b) Example of patterns with more than U = 2 bitwise transitions that are not
uniform. Source: [1].





3.

Feature Processing

3.1. Principal Component Analysis (PCA)

Principal Component Analysis is an unsupervised feature extraction statistical procedure
that searches for k n-dimensional orthogonal vectors that can be best used to represent
the original data, where k ≤ n. The original data are then projected onto a much smaller
space, resulting in a dimensionality reduction of data.

Let X = [x1, . . . ,xn]
T ∈ ℜn×m be a collected data matrix, where X is composed of m-

dimensional n data vectors xi ∈ℜm. After applying z-score standardization to each di-
mension, X can be decomposed using singular value decomposition as follows:

X = TPT (3.1)

where T = [t1, . . . , tm] ∈ ℜn×m and P = [p1, . . . ,pm] ∈ ℜm×m consist of score vectors
tj ∈ ℜn and orthogonal loading vectors pj, respectively. The z-score standardization is
intended to reduce the influence of different scales of the features, so each feature is trans-
formed to the same range using its mean and standard deviation: Z = X−µ

σ
. The vectors

pj are eigenvectors of covariance matrix Σ defined as

Σ =
1

n−1
XT X = PΛPT (3.2)

where PPT = PT P = Im and Λ = diag(λ1, . . . ,λm) is a diagonal matrix whose diagonal

13



14 Feature Processing

components sorted in descending order (i.e., λ1 > .. . > λm) are eigenvalues of Σ. The
matrix Λ and λi are defined as

Λ =
1

n−1
TT T = diag{λ1, . . . ,λm}

λ j =
1

n−1
tT

j t j ( j = 1, . . . ,m)

(3.3)

In other words, λ j is the variance of n projections of data vector xi, i = 1, . . . ,n onto
eigenvector p j. In PCA, dimensionality reduction is performed by selecting l eigenvectors
that correspond to the largest l eigenvalues among m eigenvalues sorted in decreasing
order.

3.2. Fisher Score

Fisher Score is a supervised feature selection method which uses classes to identify fea-
tures with best discriminant abilities. The key idea of Fisher Score [25] is to find a subset
of features, such that in the data space spanned by the selected features, the distances bet-
ween data points in different classes are as large as possible, while the distances between
data points in the same class are as small as possible.

Let X be a set of data and xj each feature, with j = 1 . . .m. The Fisher Score for each
feature can be computed as follows:

F(x j) =
∑

c
k=1 nk(µ

j
k −µµµ)2

(σ j)2 (3.4)

where c is the total number of classes, nk is the number of instances of class k, µ
j

k σ
j

k

are the mean of and standard deviation of k-th class for feature j, µµµ is the total mean of
the data and (σ j)2 = ∑

c
k=1 nk(σ

j
k )

2. Once the score is computed for each feature, they
can be rearranged accordingly in descending order and the top-m ranked features shall be
selected.



4.

Classification

A wide variety of classification algorithms has been used in the academic and industry
fields, like Convolutional Neural Networks or Support Vector Machines. In this project,
Support Vector Machines is selected among other algorithms due to its robustness and
to the realtively short time needed for training in compared to algorithms like neural
networks.

4.1. Support Vector Machines (SVM)

Support Vector Machines (SVM) [26] is an algorithm used for linear and non linear clas-
sification. The SVM algorithm searches boundaries with the maximum margin of sepa-
ration from the training data mapped into a space. Margin maximization usually reduces
the generalization error (i.e., the expected error on a test set independent from the dataset
used to build the classifier).

Let D be a set of linearly separable data {(xi,yi)}N
i=1 which contains d-dimensional input

vectors x ∈ℜd and their corresponding classes y ∈ {−1,+1}. The hyperplane that sepa-
rates with the maximum margin of separation can be expressed as g(x) = ωT x+b. This
is an optimization problem that can be written in terms of two hyperplanes (g(x) = 1 and
g(x) =−1).

g(x)≥ 1, if y =+1

g(x)≤ 1, if y =−1
(4.1)

15



16 Classification

The margin of separation between the parallel hyperplanes is 2
‖ω‖ .

Maximizing the margin is equivalent to finding a solution to the following problem

minω,b
1
2

ω
T

ω

s.t. yi(ω
T xi +b)≥ 1 i = 1, . . . ,n

(4.2)

When data is not linearly separable, this problem can be generalized by means of a slack
variable ε and a regularization parameter C, resulting in the following formulation

minω,b
1
2

ω
T

ω +C
n

∑
i=1

εi

s.t. yi(ω
T xi +b)≥ 1− εi, εi > 0, i = 1, . . . ,n

(4.3)

where ε is related to the degree of error allowed and C controls the importance that is
attributed to the second term included in the minimization objective, to allow an error
margin.

This problem can be reformulated by the Lagrange formalism [27] to a corresponding
dual form as

Lp =
1
2

ω
T

ω +C
n

∑
i=1

εi−
n

∑
i=1

αi(yi(ω
T xi +b)−1+ εi)−

n

∑
i=1

riεi (4.4)

where αi ≥ 0 and ri ≥ 0 are Lagrange multipliers; ri are introduced to ensure positivity
of εi. Differentiating with respect to ω and b results in the dual form of the Lagrangian
problem

maxαi LD =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jxix j

s.t.
n

∑
i=1

αiyi = 0, 0≤ αi ≤ C
(4.5)

All the formulation has been presented with a linear kernel xix j, although it is possible
to introduce other functions instead of the linear kernel that expand the feature space and
make it possible a better separation of data. One of the most useful kernels is radial basis
kernel (RBF)

K(xi,x j) = e(−
‖xi−x j‖2

σ2 ) (4.6)

This kernel has one extra parameter that has to be optimized, apart from C, which is σ .



5.

Proposed approach

In this chapter, four different proposed approaches are presented, each of one trying to ob-
tain the best performance of the classification. Performance of each approach is computed
over the validation set.

The main structure of each approach is very similar and the main differences between
them lie on the type of descriptor used.

5.1. Single descriptor

In Figure 5.1, the pipeline for a single descriptor is shown. The descriptor is a PML
image representation in combination with one of the three descriptors described in the
Face Descriptors chapter.

The first step consists in the descriptor extraction for each frame in the videos, as a com-
bination of the aforementioned PML descriptor and COV, HOG or LBP descriptor.
The second step is a dimensionality reduction through Principal Component Analysis that
removes more than 95% of the features in the training set.
The third step is intended to reduce even more the input data and select the most relevant
features according to Fisher Score.
Finally, the last step trains a SVM classifier.

17
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Figure 5.1: Pipeline for a single descriptor.

5.2. SVM blending

Another approach that can benefit of the results obtained form each individual classifier
from Section 5.1 is shown in Figure 5.2. Three independent classifiers are built following
the procedure for a single descriptor are run in parallel, so each classifier outputs a pre-
dicted frame label using SVM. Finally, the predicted output is the average over the three
classifiers.

Figure 5.2: Pipeline for blending SVM.

5.3. Concatenation of descriptors

This approach applies the three hand-crafted descriptors for each video frame and builds
up a new descriptor as the concatenation of each individual descriptor.
A similar pipeline is applied as in the case of a single descriptor, which comprises PCA
dimensionality reduction, feature selection by Fisher Score and SVM classification. On
Figure 5.3, the scheme of this approach is shown.
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Figure 5.3: Pipeline for combination of descriptors

5.4. Concatenation of reduced descriptors

As a variant of the proposed approach in Section 5.3, this last proposal firstly reduces the
individual descriptors by PCA and then concatenates the resulting descriptors to form a
new descriptor.

Figure 5.4: Pipeline for combination of descriptors after individual reduction





6.

Experimental setup

In this chapter, the experimental setup is presented, including a detailed description of the
dataset, the way that it has been processed, how the dimensionality reduction has been
applied and the feature selection process. Also, an explanation of the optimization proce-
dure that has been followed to determine the best classification model and its parameters
is included.

6.1. Dataset description

Despite the importance of research in a practical drowsy driver detection system, most
research have used relatively limited datasets. The generalization of different approaches
to drowsy driver detection analysis remains unknown. In the absence of performance eva-
luation on a common public dataset, the comparative strength and weakness of different
approaches is difficult to determine. Furthermore, most of the proposed approaches ha-
ve drawbacks due to impractical reasons or do not provide sufficient discrimination to
capture the uncertainties. Moreover, most of the existing methods do not evaluate the ro-
bustness of their system against subjects from different ethnicities, races, genders, various
illumination conditions and partial occlusion (e.g. glasses, sun-glasses and facial hair).

For this thesis, the public dataset NTHU Drowsy Driver Detection (NTHUDDD) has been
used [3]. This dataset contains 36 subjects, including different gender and ethnicity, in
five different situations: bareface, wearing glasses, night bareface, wearing sunglasses
and night wearing glasses, as shown in Figure 6.1. The total dataset is divided into three

21
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Figure 6.1: Example frames of different situations (nightglasses, night bareface, glasses, sunglas-
ses and bareface).

subsets: training, validation and test. The test set is not yet publicly available, so all the
experimentation is done using the training and validation sets.

The training set consists on 18 subjects with a total of 360 video clips (722,223 frames)
and the validation set consists on 4 subjects with a total of 20 video clips (173,259 fra-
mes). All videos are labelled in two classes, drowsy and non drowsy driver state. The
dataset has been previously processed so a in-face cropped video is generated for each
original video, resulting in a dataset of 250× 250 video pixels. Also, for each frame, a
label is provided reporting whether face detection and cropping has been accomplished
or not.

The videos in each situation of the training set are divided into 4 categories according to
the subject’s behavior: non drowsy state, drowsy state, yawning and head nodding. In this
work, the last three states are considered the drowsy class. In Table 6.1 an example of how
the videos are distributed per subject can be seen.

subject bareface glasses sunglasses night bareface nightglasses Total

Training subject 4 4 4 4 4 20

Table 6.1: Example of the distribution of videos per subject in the training set.

A summary of the training set is shown in Figure 6.2. The set is divided in 5 subsets,
one for each situation resulting in 5 independent problems. The training set has been sub-
sampled at a 1/10th rate to reduce the training data size. After the subsampling process,
all frames that do not have a matching positive label in the face detected list have been
removed. The resulting dataset samples are shown in Table 6.2.

The videos in the validation set are only grouped by subject and situation, so there is no
distinction in subject’s behavior. Subsampling has not been applied to these videos, but
every frame that do not have a matching positive label in the face detected list has been
removed. A summary of the number of samples is shown in Table 6.3 and in Figure 6.3.
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(a) Distribution of the training samples by subject.

(b) Distribution of the training samples by situation.

Figure 6.2: Summary of training sample distribution.
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subject bareface glasses sunglasses night bareface nightglasses Total

1 903 960 902 507 498 3770
2 794 955 757 420 466 3392
5 1128 1040 1021 436 0 3625
6 897 931 868 433 433 3562
8 981 923 940 479 458 3781
9 960 996 931 466 464 3817
12 907 892 798 467 375 3439
13 999 996 856 499 481 3831
15 931 986 902 427 434 3680
20 846 798 603 397 390 3034
23 932 882 784 345 477 3420
24 998 1056 874 411 419 3758
31 975 958 904 473 464 3774
32 799 775 754 391 341 3060
33 683 646 651 286 266 2532
34 994 963 861 465 422 3705
35 907 853 818 441 388 3407
36 966 977 1013 451 497 3904

Total 16600 16587 15237 7794 7273 63491

Table 6.2: Training samples per situation.

6.2. Face Alignment

The videos in the NTHUDDD dataset have not been taken from a front perspective and
the image in the scene contains more information than the strictly needed like different
backgrounds or the steering wheel. Since only the facial image and subject behavior are
needed to detect a drowsy state, a preprocessing stage is required on each video so the
faces can be aligned and scaled to a fixed size. The dataset used in this work has been
provided already face aligned.

The face alignment is done locating the 2D position of the eyes using the Ensemble Re-
gression Tree (ERT) [28]. The coordinates of the eyes are used to compensate the in-plane
rotation of the face. Finally, the image is scaled such that the inter-ocular distance is nor-
malized to a fixed value l and the face aligned image is of size 250×250 pixels.
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(a) Validation samples by subject. (b) Validation samples by situation.

Figure 6.3: Distribution of validation samples.

Subject

Situation 004 022 026 030 Total

bareface 10202 15632 10799 4222 40855
glasses 3043 2519 15518 13819 34899
sunglasses 3504 2399 11661 7940 25504
night bareface 11633 7603 5564 2431 27231
nightglasses 5324 7899 2448 15844 31515

Total 33706 36052 45990 44256 160004

Table 6.3: Validation set samples per subject and situation

6.3. Image descriptors

Each of the image descriptors introduced in Chapter 2 has been applied in combination
with the PML descriptor. Selection of the image descriptors parameters has been done
based on best experimental results. The number of pyramid levels selected is 5, according
to previous work on groups of scaled images for the SIFT descriptor [29].

Figure 6.4 illustrates the procedure that leads to a processed video database for each image
descriptor.

6.3.1. COV descriptor

As described in Section 2.2, the covariance descriptor can be extended with new features.
In this thesis, the covariance descriptor includes not only color channel and position featu-



26 Experimental setup

Figure 6.4: Workflow of video database computing. The pipeline operations comprise (i) reading
each video file, (ii) converting the video into frames, (iii) processing each frame with every image
descriptor and (iv) saving all processed videos in a database.

res, but also local binary pattern descriptors. The list of features included in the covariance
descriptor comprises:

(x,y) coordinates

Spatial first and second order gradients

RGB color channels

HSV color channels

LBP uniform

LBP rotation invariant

LBP uniform rotation invariant

Each image size is 250×250 and the block size is 50×50, resulting in a pyramid structure
as shown in Table 6.4.
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Pyramid level Image Size Descriptor Length

5 250×250 5250
4 200×200 3360
3 150×150 1890
2 100×100 840
1 50×50 210

Total 11550

Table 6.4: Pyramid structure of COV descriptor.

6.3.2. HOG descriptor

In this case, a fixed block size of 32×32 is selected, so the original frames are scaled to
160×160 pixels to fit the 5-level pyramid and the block number in each level. The size of
each image in the pyramid structure and the number of features is summarized in Table
6.5.

Pyramid level Image Size Descriptor Length

5 160×160 5200
4 128×128 3328
3 96×96 1972
2 64×64 832
1 32×32 108

Total 11440

Table 6.5: Pyramid structure of HOG descriptor.

6.3.3. LBP

As in the previous descriptor, a fixed block size of 32× 32 is selected, so the original
frames are scaled to 160× 160 pixels. The size of each image in the pyramid structure
and the number of features is summarized in Table 6.6.
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Pyramid level Image Size Descriptor Length

5 160×160 1475
4 128×128 944
3 96×96 531
2 64×64 236
1 32×32 59

Total 3245

Table 6.6: Pyramid structure of LBP descriptor.

6.4. Feature Processing

6.4.1. PCA

The first stage of feature processing is the reduction of the number of features using
Principal Component Analysis. The initial number of features are shown in Tables 6.4,
6.5 and 6.6.

Initial study on principal components suggested that around a 60% of variance can be
explained with less than 10 features for the COV descriptor, less than 100 features for the
HOG descriptor and less than 50 features for the LBP descriptor. However, preliminary
tests reducing the dataset by the features that explain 60% of the variance yielded results
between 40% and 60% of accuracy, a result that is considered unacceptable.

Considering the trade off between variance explained and the number of retained featu-
res, a value of 95% of variance is set for COV and LBP descriptors and 85% for HOG
descriptor. In Figures 6.5, 6.6, and 6.7, the scree graph for the three descriptors has been
plotted. The resulting number of features per descriptor and situation is shown in Table
6.7. It is noteworthy that for the PML-HOG descriptor reduced dataset, the number of
features is significantly greater than for the other two descriptors, although the explained
variance is 85% vs 95%.



6.4 Feature Processing 29

Situation PML-COV PML-HOG PML-LBP

bareface 69 487 123
glasses 115 643 171

sunglasses 139 670 184
night bareface 67 584 161
nightglasses 85 612 203

Table 6.7: Number of features after PCA for each descriptor and situation.

(a) bareface (b) glasses

(c) sunglasses (d) night bareface

(e) nightglasses

Figure 6.5: Scree graph of variance for COV descriptor by situation. Variance explained: 95%.
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(a) bareface (b) glasses

(c) sunglasses (d) night bareface

(e) nightglasses

Figure 6.6: Scree graph of variance for HOG descriptor by situation. Variance explained: 85%.
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(a) bareface (b) glasses

(c) sunglasses (d) night bareface

(e) nightglasses

Figure 6.7: Scree graph of variance for LBP descriptor by situation. Variance explained: 95%.
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6.4.2. Feature Selection

Feature selection has been performed according to Fisher’s Score. The score allows to
order a set of labeled features, from most important to less important, as explained in
Section 3.2.

In order to extract the best set of features from a PCA-reduced dataset, the same pipeline
has been applied selecting an increasing number of features each time and evaluating
the pipeline accuracy for each round. Each round, the percentage of selected features is
incremented and the final number of selected features is determined by the best accuracy
obtained from the classifier.

As shown in Figures 6.8, 6.9 and 6.10 most situations with no glasses involved (bareface

and night bareface) require less number of features, while night glasses and glasses need
mid-level number of features to yield the best results. On the other hand, the sunglas-

ses situation hardly benefits from feature selection as in most cases it requires nearly all
available features to obtain the best results. This result may be produced by the difficulty
to find out whether eyes are opened whenever the person is wearing sunglasses, which
seems a crucial circumstance in the performance of the classifier.

Figure 6.8: Classification results by selected number of features for COV descriptor.
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Figure 6.9: Classification results by selected number of features for HOG descriptor.

6.5. SVM parameters selection

Support Vector Machines require a few parameters to be adjusted. The first one is the
regularization parameter, C, which allows a certain amount of misclassification of non-
linearly separable data. This parameter introduces a soft-margin, so the lower value of C,
the smaller penalty for ’outliers’. In this case, a RBF kernel has been used, so the other
parameter to be optimized is the kernel σ .

The procedure followed to optimize both parameters consisted in a grid search. This
search explores a discrete range of values of the aforementioned parameters. The ac-
curacy of each trained classifier over the validation set is compared and the best accuracy
value determines the parameters.

A first round is computed with bigger steps in the range of the possible values of para-
meters, and then a second round is computed with a more detailed value range. A repre-
sentation of the first round is shown in Algorithm 6.1, where the same round is used to
select the best set of features and the initial value of the σ value that will be fine-tuned
in the second round along with the best value of C. In this first round, the value of the C
parameter is set to 1.

The second round is used to fine-tune the value of σ and the value of C. In this case, a
log-scaled range is used for C ∈ {10−3,103}. The σ parameter is tuned by a grid search
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Figure 6.10: Classification results by selected number of features for LBP descriptor.

around the best valued of σ obtained in the first round with steps of 0.1. Algorithm 6.2
shows a illustrative diagram of the second round of the parameters estimation.
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Algorithm 6.1: SVM parameters optimization (1st round)
Result: SVM raw estimation of parameter σ and number of features
begin

bestAccuracy← 0
best_sigma← 0
bestFeaturesSelected← 0
for f eaturesSelected = 1% to 100% do

trainData← load(trainingSetPCAReduced)
trainData← featureSelection(trainData, f eaturesSelected)
validationData← load(validationSetPCAReduced)
validationData← featureSelection(validationData, f eaturesSelected)
for σ = 0.5 to 50 do

(σ ,accuracy)← FindBestClassifier(trainData,validationData,σ)

if accuracy≥ bestAccuracy then
best_sigma← σ

bestFeaturesSelected← f eaturesSelected

return (best_sigma,bestFeaturesSelected)

Algorithm 6.2: SVM parameters optimization (2nd round)
Result: SVM fine tuning of parameters σ and C
begin

bestAccuracy← 0
best_sigma← 0
bestFeaturesSelected← 0
( f eatureSet,sigma)← SVMParamsOptim1stRound
for C = 10−3 to 103 do

trainData← featureSelection(trainingSetPCAReduced, f eatureSet)
validationData← featureSelection(validationData, f eaturesSet)
for σ = (sigma−1) to (sigma+1) do

(σ ,C,accuracy)← FindBestClassifier(trainData,validationData,σ ,C)
if accuracy≥ bestAccuracy then

best_sigma← σ

bestC←C

return (best_sigma,bestC)





7.

Experimental results

This chapter shows the results obtained in the different experiments described in Chapter
5. Other important results are presented as the ability of generalization of different models,
that is computed through cross-validation of the best models and of the pipeline itself.

As a first stage, an exploratory experimentation on the training set is carried out. For each
subject, two groups of training sets can be used: the first group considers only two videos:
drowsy state and non drowsy state, while the second group considers all available videos:
drowsy state, non drowsy state, yawning and head nodding. At this stage, only the best
feature set and the best σ value of the RBF kernel of SVM is optimized because the
purpose of this analysis is to determine if there are differences in the results obtained with
both datasets. In Tables 7.1, 7.2 and 7.3, the results on each dataset are used to select the
best training set that will be used for further experiments.

Situation 2-videos dataset 4-videos dataset

bareface 75.93 81.00
glasses 65.82 73.81
sunglasses 64.24 56.90
night bareface 75,93 79.01
nightglasses 62.23 67.22

Table 7.1: Accuracy (%) by training set and situation for COV descriptor. Highlighted datasets
correspond to best accuracy result.
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Situation 2-videos dataset 4-videos dataset

bareface 75.79 86.20
glasses 77.81 79.07
sunglasses 73.68 72.62
night bareface 80.39 82.98
nightglasses 71.81 67.53

Table 7.2: Accuracy (%) by training set and situation for HOG descriptor. Highlighted datasets
correspond to best accuracy result.

Situation 2-videos dataset 4-videos dataset

bareface 67.20 70.76
glasses 71.94 67.28
sunglasses 74.81 72.97
night bareface 62.77 78.31
nightglasses 62.13 64.84

Table 7.3: Accuracy (%) by training set and situation for LBP descriptor. Highlighted datasets
correspond to best accuracy result.

7.1. Cross-validation

In Section 6.1 it is noted the lack of a true test set. The main purpose of this section is to
compute the generalization abilities of the proposed approaches from Chapter 5.

The first approach to be tested is the one presented in Figure 5.1. Algorithm 7.1 is used
to implement the cross-validation of the proposal, where the primary characteristic is that
folds are built up making groups of subjects instead of grouping by samples.

The algorithm cross-validates 9 folds of 16 training subjects. In each fold, two subjects
are extracted from the 18-subject training set and added to the 4-subject validation set,
so statistical differences between training and validation set can be averaged over the 9
folds. This is done because statistical differences between training and validation sets can
be influencing in the model performance. In each fold, the best classifier is built based on
the procedure described in Algorithms 6.1 and 6.2 from Section 6.5. The best classifier
for each fold is selected using the train and validation sets made for each fold.

Algorithm 7.1 is applied over each situation in the dataset and the results are displayed in
Table 7.4. From this table, it can be derived that the descriptor PML-HOG yields the best
generalization ability, although its value is close to the PML-LBP descriptor. The results



7.1 Cross-validation 39

Algorithm 7.1: Cross-validation of a single situation
Result: Cross-validation accuracy
begin

trainData← load(training_set)
validationData← load(validation_set)
sub jectList← list of training subjects
AccuracyList← emptyList
for f old = 1 to length(sub jectList)/2 do

sub jects← selectWithoutRepetition(sub jectList,2)
extractedData← extractSubject(trainData,sub jects)
f oldTrainData← removeData(trainData,extractedData)
f oldValidationData← joinData(validationData,extractedData)
Model← FindBestClassifier( f oldTrainData, f oldValidationData)
accuracy← Accuracy(Model, f oldValidationData, f oldValidationLabels)
Append(AccuracyList,accuracy)

return Average(AccuracyList)

for PML-COV are relatively lower compared to the other two descriptors.

Situation PML-COV PML-HOG PML-LBP

bareface 77.53 80.37 72.59
glasses 67.08 75.88 73.02
sunglasses 65.84 73.74 77.89
night bareface 77.53 80.37 76.68
nightglasses 66.12 67.55 67.13

Average 70.82 75.58 73.46

Table 7.4: Cross-validation detection accuracy results (%) applying Algorithm 7.1 to each situa-
tion in the dataset.

Algorithms 6.1 and 6.2 are used to optimize the SVM parameters and select the best fea-
ture set. Cross-validation for the optimized SVM parameters C and σ and for the best set
of selected features are also computed for every situation. The cross-validation is compu-
ted with a variation of Algorithm 7.1 where, instead of trying to find the best classifier, a
SVM model with optimized C and σ parameters is trained.
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7.2. Pipeline results

The parameters optimization for every proposed approach from Chapter 5 are summari-
zed in Table 7.5. As individual descriptors, PML-HOG performs best while PML-COV
and PML-LBP have similar results. The combination of pipelines for the three image des-
criptors, defined here as SVM blending, shows the best result with a 79.84% accuracy in
drowsiness detection. The results after concatenating the three descriptors are higher than
the average of the three descriptors, but it does not improve the best results on individual
descriptors nor SVM blending.

The difficulty to detect the eyes under the circumstances where any kind of glasses are
involved highly penalizes the results, specially when the subject is wearing sunglasses
because the light is reflected on the surface of the glasses.

Situation bareface glasses sunglasses night bareface night-glasses Average

PML-COV 82.34 74.19 67.19 79.76 68.90 74.48
PML-HOG 87.02 79.10 73.97 83.88 73.10 79.41
PML-LBP 73.58 74.04 77.27 78.38 71.00 74.85
Blending SVM 85.76 78.31 76.86 83.76 74.52 79.84
Concatenate
descriptors 80.28 76.59 70.76 82.30 73.94 76.77

Concatenate
reduced
descriptors

81.21 76.22 72.40 84.60 70.17 76.92

Table 7.5: Detection accuracy results (%) on validation set.

If one subject from the original validation set is excluded from the pipeline, then this data
can be used as a test set. Repeating this process for every subject in the original validation
set and averaging the accuracy results, allows to estimate the performance of the pipeline
on new data.

This concept is applied for each one of the three descriptors and the pipeline proposed
in Section 5.1 to simulate a pure process with training, validation and test sets. As there
are four available validation subjects, four classifiers are trained and optimized using only
training and validation data and they are tested on the extracted subject. Table 7.6 shows
the results for this experiment where it is clear that the performance of the models drop
drastically. However, PML-HOG still remains as the best image descriptor.
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Situation PML-COV PML-HOG PML-LBP

bareface 66.84 70.55 72.17
glasses 52.39 67.51 65.96
sunglasses 58.49 62.63 55.13
night bareface 70.95 76.52 70.84
nightglasses 45.69 72.64 66.35

Average 58.87 69.97 66.09

Table 7.6: Detection accuracy results (%) averaged for experiments on 4 different test sets using
one validation subject as test set on each experiment.

The results can be compared with other works from state-of-the-art papers on the same
data set. These results are summarized in Table 7.7. Results for models that are best fitted
for the validation set (Table 7.5) outperform previous works. Results for models evaluated
on a pure test set (Table 7.6) are comparable to other works in the best case (PML-HOG).

A more detailed analysis of the results prove that one particular subject from the validation
set offers much lower results than the other subjects and that issue may have influence on
the final results. In Figure 7.1 best results on the validation set for each image descriptor
(Table 7.5) are separated by validation subject. It can be seen that the average performance
of subject 004 is highly affected by the glasses situation.

In the case where a subject from the original validation set is extracted from the validation
set and used as a test set, the effect is similar for subject 004. In Figure 7.2, the results
when each subject is used as a test set are shown. Each column represents the test results
when the subject is used as a test set and the other three subjects as validation set.
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Figure 7.1: Accuracy (%) per validation subject when the 4 subjects are used as validation set
and SVM is trained with the training set and its parameters optimized with the validation set.
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Figure 7.2: Accuracy (%) when one subject is used as test set and the other three as validation
set. Results in each column correspond to the test set accuracy when that particular column is the
test set.



8.

Conclusions

This work proposes and compares 4 pipelines for detecting drowsiness and fatigue in
drivers. Three different image descriptors have been considered to extract image features
from subjects with different age, gender and ethnicity. Another fourth descriptor is built
as the concatenation of the three aforementioned image descriptors.

The analysis of the results shows that models trained using only one image descriptor
can yield very good results in the case of PML-HOG descriptor while PML-COV and
PML-LBP cannot be compared to the HOG descriptor results. The fact that drowsiness
is mainly expressed by the shape of facial attributes may suggest that PML-HOG yields
best performance since this descriptor is best suited to capture shapes, corners and edges.
The concatenation of descriptors to form a new high dimensional descriptor does not
improve the best result for and individual descriptor and besides the computational cost is
to high to consider this descriptor over the individual HOG descriptor. On the other hand,
a blending SVM model where three independent pipelines are executed in parallel and the
final classification is computed as the average of each individual pipeline yields the best
result.

Comparison against work of other authors on the same dataset reveals that an improve-
ment on performance of the proposed pipelines has been achieved.

Future work should include a different classification algorithm such as convolutional neu-
ral networks(CNN), although CNN could also be used as an image descriptor if the final
layer is used instead of the CNN classification result.

45





9.

Appendix

The code is available on GitHub in the following link so that anyone can replicate the re-
sults of this work: https://github.com/jretac/Driver-Drowsiness-Detection.
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