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LABURPENA 

Doktoretza-tesi honen helburu nagusia da Ahulken (AHK) deituriko konposatu-

familia berri baten efektua ikertzea Duchenne distrofia muskularraren (DMD) 

tratamendurako. DMD gaixotasun genetiko bat da, eta X kromosomari lotutako 

herentzia errezesiboa du. Distrofina kodetzen duen genean gertatzen diren mutazioek 

sortzen dute gaixotasuna. Mutazio horiek muskuluetan distrofina proteinaren gabezia 

eragiten dute; gabezia horrek muskulu zuntzen degenerazio progresibo larria eragiten 

du, eta, ondorioz, pazienteen mugikortasuna mugatzen du. Gaixotasuna aurrera doan 

heinean, degenerazioa arnasketa-muskuluetara eta bihotzera hedatzen da, eta horrek 

pazienteen heriotza goiztiarra eragiten du. Gaixotasun honek 3500-4000 haurretatik bati 

eragiten dio, mutikoei nagusiki. Tamalez, gaur egun ez dago gaixotasun honen aurkako 

tratamendu eraginkorrik, eta pazienteen bizi-itxaropena 20-30 urte ingurukoa da. 

AHK konposatuak Euskal Herriko Unibertsitateko Jesús María Aizpurua 

doktorearen taldearekin kolaborazioan diseinatu dira, rianodina-hartzaileen (RyR) eta 

kalstabina (Calst) proteinaren arteko elkarrekintza indartzea helburu. RyR muskulu-

zuntzetan kaltzioaren (Ca2+) askapenaz arduratzen den kanal nagusia da. Haren 

aktibitatea molekula zein proteina ugarik erregulatzen dute. Horien artean, ikusi da Calst 

proteina txikiak RyR kanala egonkortzen duela. Zehazki, Calst proteinak RyR-en 

konformazio itxia egonkortzen du. Zenbait egoera patologikotan, aldiz, DMD kasu, 

RyR-ak hainbat eraldaketa post-tanskripzional jasaten ditu; fosforilazioa eta 

nitrosilazioa, besteak beste. Ikusi da aldaketa horiek RyR eta Calst arteko elkarrekintza 

murrizten dutela. Ondorioz, RyR ez da behar bezala ixten, eta erretikulu 

sarkoplasmatikotik (ES) Ca2+ galtzen da zitoplasmarantz. Kaltzio-irteera horrek, zelula 

barneko Ca2+-mailak handitzen ditu, eta, hala, muskulu-zuntzaren heriotza eragiten 

duten prozesu zelularrak aktibatzen ditu. Mekanismo hori DMD gaixotasunean 

gertatzen den muskulu-endekapenaren oinarrietako bat dela proposatu da. 
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Aurrekoan oinarrituta, lehen kapituluan, AHK konposatuen toxikotasuna eta 

ekintza mekanismoa aztertzen dira. Atal honetan, S107 (Armgo Pharma) 

erreferentziazko konposatu gisa erabili zen, RyR-Calst interakzioa handitzeko eta mdx 

saguetan (DMDren eredua) fenotipo distrofikoa hobetzeko erakutsitako 

eraginkortasunagatik. Konposatuen toxikotasuna sagu eta giza zeluletan ikertu zen. 

Horretarako, muskulu-zelula diferentziatuak konposatuen kontzentrazio ezberdinekin 

inkubatu ziren gau batez. Ondoren, laktato deshidrogenasaren mailak neurtu ziren 

zelulen medioan, toxikotasun-markatzaile gisa. Oro har, ikusi zen AHK konposatuek 

toxikotasun-maila oso txikiak eragin zituztela, baita kontzentrazio altuetan ere. Zehazki, 

A6 eta A7 konposatuek ez zuten toxikotasunik eragin, ez saguen zeluletan, ez giza 

zeluletan. Aitzitik, S107 konposatua ez zen toxikoa izan aurretik saguetan ikertu zen 

kontzentrazioetan, baina kultiboko zelula guztien heriotza eragin zuen 1-2 mM-eko 

kontzentrazioetan.  

Jarraian, konposatuen ekintza-mekanismoa ikertzeko, giza zelula osasuntsu 

batzuetan RyR1 hartzailearen fosforilazioa eta nitrosilazioa eragin zen, SIN-1 

peroxinitrito emailea erabiliz. In situ gertutasun bidezko ligazio (PLA) teknika erabili 

zen RyR1-en aldaketa post-transkripzionalak eta RyR1-Calst1 elkarrekintza 

kuantifikatzeko. Egiaztatu zen zelula osasuntsuak SIN-1-en eraginpean jartzeak RyR1-

ren fosforilazioa eta nitrosilazioa handitzen zituela. Era berean, ikusi zen aldaketa post-

transkripzional horien ondorioz RyR1 eta Calst1-en arteko interakzioa modu 

esanguratsuan gutxitzen zela. Hala, eredu zelular hori erabili zen AHK konposatuen 

ekintza-mekanismoa egiaztatzeko. Era horretan, ikusi zen A6 eta A7 konposatuek, eta 

baita S107-ek ere, RyR1 eta Calst1 arteko interakzioa handitzeko gaitasuna dutela. 

Bigarren kapituluan konposatuek DMD gaixotasunean duten eragina mdx 

saguetan in vivo ikertu zen. Mdx sagua DMD animalia eredu nagusia da. Nahiz eta 

saguek duten fenotipo distrofikoa pazienteena baino askoz arinagoa izan, mdx saguek, 

pazienteek bezala, indar muskularra gutxitua dute, serumean kreatina kinasa (CK) maila 

altuak dituzte, eta euren muskuluetan degenerazio eta birsortze zikloak antzeman 

daitezke. Atal honetan, konposatuak aho-bidez eman ziren, edateko uretan disolbatuta. 
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Saguak 5 astez tratatu ziren, hilabete bateko adina zutenean hasita. Tratamenduak iraun 

zuen bitartean, korrika egiteko zinta batean trebatu ziren saguak, fenotipo distrofikoa 

larriagotzeko asmoz. Horrez gain, astero saguen indarra neurtu zen, grip strength 

neurgailua erabiliz. Tratamenduaren amaieran, aurreko tibia-muskulua isolatu, eta haren 

indar muskularra neurtu zen. Aldi berean, muskulu- eta odol-laginak jaso ziren, 

gaixotasunaren eboluzioa aztertzeko. Bestetik, behatzetako muskulu flexoreetatik 

(FDB) muskulu-zuntzak isolatu ziren, haien barneko Ca2+-mailak neurtzeko. 

Esperimentu horren emaitzek frogatu zuten sagu distrofikoen muskulu-zuntzetan Ca2+-

mailak altuagoak zirela kontrol-saguetan baino. Horrez gain, A6 eta A7 konposatuek 

modu eraginkorrean jatsi zituzten mdx saguen muskulu-zuntzen Ca2+-mailak, eta baita 

S107-k ere. 

Jarraian, Ca2+-mailen normalizazio horrek muskuluen funtzioan eragiten ote zuen 

ikertu zen. Kasu horretan ere, konposatuek sagu distrofikoen indarra handitzen zutela 

frogatu zen. Esan bezala, indarra bi modu ezberdinetara neurtu zen: batetik, in vivo, 

saguen aurreko hanketako indarra neurtu zen, grip strength neurgailua erabiliz, eta, 

bestetik, ex vivo, aurreko tibia-muskuluaren indarra. Bi teknika horien bitartez frogatu 

zen A6 tratamendua eraginkorra dela mdx saguen indarra handitzeko. Hala ere, bi 

teknikekin antzeman ziren efektuak desberdinak izan ziren. Izan ere, in vivo egindako 

saioetan A6 konposatuak % 30 handitu zuen sagu distrofikoen indarra; eta ex vivo 

saioetan % 16 besterik ez. Era berean, bi teknika horien bidez lorturiko emaitzen arteko 

korrelazioa sendoa izan zen tratatu gabeko animaliak aztertzean, baina ahuldu egiten 

zen tratatutako saguak gehitzean. Efektu horren zergatia ulertzeko ikerketa sakonagoak 

behar diren arren, emaitza hauek iradokitzen dute A6 konposatuak muskuluan duen 

eraginaz gain, beste efekturen bat izan dezakeela. 

Tratamenduek degenerazio muskularrean duten efektua ikertzeko asmoz saguen 

serumean CK-mailak neurtu ziren. Espero bezala, agerian gelditu zen mdx saguek sagu 

osasuntsuek baino CK-maila altuagoak zituztela. Aldi berean, A6-rekin tratatuko saguek 

CK-maila baxuagoak zituztela frogatu zen. Ondoren, diafragma eta aurreko tibia-

muskuluen azterketa histologikoa egin zen. Azterketa horietan nukleo zentrala zuten 
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muskulu-zuntzen kopurua kuantifikatu zen. Modu horretan min muskular baten 

eraginez birsortzen ari diren zuntzak identifikatzen dira, eta parametro hori degenerazio 

muskularraren kuantifikazio gisa erabil daiteke. Nukleo zentrala zuten zuntzen 

ehunekoa oso baxua izan zen sagu osasuntsuen muskuluetan. Mdx saguetan, aldiz, ikusi 

zen diafragman zuntzen % 43-ak eta aurreko tibia-muskuluan zuntzen % 57-ak nukleo 

zentrala zutela. AHK zein S107-rekin trataturiko saguen muskuluetan, aldiz, portzentaje 

hau % 25 txikiagoa izan zen. Ondorioz, atal honetan frogatu zen AHK konposatuak 

eraginkorrak direla mdx saguetan Ca2+-kontzentrazioak jaisteko, funtzio muskularra 

hobetzeko eta degenerazio muskularra arintzeko. 

DMD gaixotasuna ikertzeko eta terapia berrien garapenerako animalia ereduen 

erabilera oso hedatua dagoen arren, emaitzak pazienteetara estrapolatzea erronka handia 

da. Horrexegatik, giza ereduen garapena ezinbestekoa da terapia berriek pazienteetan 

izan dezaketen efektua iragartzeko. Azken atal honetan (hirugarren kapiluan), 

hilezkortutako giza mioblastoetan oinarritutako bi eredu aztertu ziren, AHK 

konposatuen efektua aztertzeko eredu zelular egokiena aukeratzeko asmoz.  

Miotuboen diferentziazioak aurrera egin ahala Ca2+-aren homeostasiarekin 

erlazionaturiko proteinen espresioa handitu egiten da, eta horrek aldaketak eragiten ditu 

zelula-barneko Ca2+ kontzentrazioetan. Hori dela eta, zelula osasuntsu eta distrofikoekin 

lan egitean ezinbestekoa da diferentziazio-maila berean dauden zelulak konparatzea. 

Horretarako, atal honetan, zelulak in vitro diferentziatu ostean, miotuboen morfologia 

eta diferentziazio-maila aztertu ziren. Morfologia miotuboen zabalera neurtuz aztertu 

zen. Diferentziazio maila neurtzeko, aldiz, miotuboak homogeneizatu ondoren, batetik, 

CK-ren aktibitatea neurtu zen, eta, bestetik, RNA mezulari (RNAm) eta proteina-mailan 

hainbat diferentziazio-markatzaileren espresioak konparatu ziren.  

Lehenik, bi paziente osasuntsutatik eta DMD paziente batetik isolatutako zelula 

hilezkortuak konparatu ziren. Zortzi egunez diferentziatu ostean, miotuboen zabalera 

aztertu zen. Bi kontrol osasuntsuen artean desberdintasun esanguratsuak aurkitu ziren, 

bai eta bigarren kontrol osasuntsuaren eta DMD pazientearen zelulen artean ere. 
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Bestetik, diferentziazio-mailan ere hiru pazienteen zelulen artean desberdintasun 

nabarmenak hauteman ziren. RNAm-mailan bigarren kontrola izan zen DMD 

zelulekiko antzekoena. Proteina-mailan, aldiz, lehen kontrola izan zen antzekoagoa. 

Emaitza guzti horiek kontuan hartuta, aztertutako bi kontrol-zelulek eta DMD 

pazientetik eratorritakoek diferentziazio-maila ezberdinak zituztela ondorioztatu zen, 

eta, beraz, aztertutako bi kontrolak ez zirela DMD zelulekin konparagarriak. 

Pazientetatik isolatutako zeluletan ikusitako aldakortasuna gutxitzeko asmoz, 

zelula osasuntsuetan distrofinaren genea isildu zen shRNA plasmidodun birusen 

bitartez. Eredu horrekin, zelula-lerro berean distrofinaren gabeziak eragiten dituen 

aldaketa patologikoak ikertu ziren. Lehenik eta behin, plasmido kontrol batez 

infektaturiko zelulak (NS-shRNA) eta distrofina isiltzeko plasmidoaz infektatutako 

zelulak (DYST-shRNA) diferentziatu, eta paziente zelulekin egin zen bezala, 

morfologia eta diferentziazio maila aztertu ziren. Kasu honetan ez zen desberdintasun 

adierazgarririk aurkitu zelula kontrol eta distrofikoen artean, CK aktibitate zein RNAm 

eta proteina mailako diferentziazio-markatzaileei dagokienez. Horregatik, zelula hauek 

aukeratu ziren distrofina-gabeziak RyR eta Calst interakzioan, zein zelula barneko 

Ca2+kontzentrazioetan, eragiten dituen aldaketa patologikoak ikertzeko. 

Mdx saguetan egindako beste ikerketa batzuek erakutsi dutenez, sagu 

distrofikoen muskuluetan RyR1 kanalak gehiegizko fosforilazio eta nitrosilazioa jasaten 

ditu; eta, gainera, aldaketa horiek Calst1-ekiko interakzioa jaisten dute. Lan honetan, 

antzeko emaitzak lortu ziren distrofina gabeko giza zeluletan ere. Distrofina gabeko 

zelulak zelula kontrolekin alderatzean, ikusi zen RyR1-en fosforilazioa % 62 handiagoa 

zela distrofikoetan. Aldi berean, antzeman zen RyR1-en nitrosilazioa ere ia bikoiztua 

zegoela. Espero bezala, RyR1-en aldaketa horiek RyR1-Calst1 interakzioan eragiten 

zuten. Hala, zelula distrofikoetan RyR1-Calst1 interakzioa ia % 50 jaitsi zen. 

Bestalde, Calst1-ek RyR1-en konformazio itxia egonkortzen duenez, 

interakzioaren jatsiera horrek RyR1-en ixteko gaitasuna eragiten duela ikusi zuten mdx 

saguetan. Ondorioz, RyR1-ek ES-tik Ca2+ irteten uzten du, eta zelularen Ca2+ 
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kontzentrazioa handitzen du. Distrofina gabeko giza zeluletan egindako Ca2+ neurketak 

emaitza horiekin bat etorri ziren. Zelula kontrolekin konparatuz, distrofina gabeko 

zeluletan Ca2+-maila modu esanguratsuan handitu zen. Emaitza guztiak kontuan hartuz, 

frogatu zen distrofina isilduz sortutako bigarren eredu honek DMD gaixotasunaren 

zenbait ezaugarri adierazten dituela. Beraz, AHK konposatuen efektua ikertzeko erabili 

zen eredu hori. 

Hala, DMD giza eredu horretan aztertu zen A6 eta A7 konposatuek zer gaitasun 

duten RyR1-Calst1 interakzioa indartzeko eta zelula barneko Ca2+ mailak 

normalizatzeko. Frogatu zen bi konposatuak eraginkorrak zirela RyR1-Calst1 mailak 

handitzeko. Halaber, zelulak 50 nM A6 edo A7 konposaturekin tratatzean, antzeman 

zen Ca2+-mailak balio kontroletara jaisten zirela. Konposatuen kontzentrazioa 150 nM-

era handitu zenean, aldiz, A6-k Ca2+-aren erregulazioan zuen efektua txikitu egin zen, 

eta A7-rena galdu. Halaber, zelula kontroletan 150 nM-eko tratamenduak Ca2+ mailak 

handitzen zituela ikusi zen. Emaitza hauen arabera, AHK konposatuek RyR1-Calst1 

interakzioan efektu alosteriko bat izan lezaketela ondoriozta genezake. Hau da, baliteke 

AHK konposatuek kontzentrazioaren arabera aldaketa konformazional ezberdin bat 

eragitea RyR1-Calst1 interakzioan, eta, ondorioz, kanala konformazio itxi edo irekian 

egonkortzea. Ezinbestean, sakonago ikertu beharko litzateke efektu bifasiko hori 

ziurrago azaldu ahal izateko. 

Laburbilduz, tesi honetan ondorioztatu da AHK konposatuak eraginkorrak izan 

daitezkeela DMD gaitzaren tratamendurako. Batetik, erakutsi da AHK konposatuek 

toxikotasun baxua dutela. Bestetik, mdx saguetan egindako esperimentuetan ikusi da 

konposatuek saguen indar muskularra hobetu eta degenerazio muskularra arintzen 

dutela. Eta, azkenik, in vitro sorturiko giza eredu batean erakutsi da AHK konposatuek 

gaitasuna dutela RyR1-Calst1 interakzioa berreskuratzeko, eta horrek zelula 

muskularren Ca2+-mailak jaisten dituela. Bestalde, ikusi da muskulu-zuntzen Ca2+-maila 

altuek DMD patologiaren garapenean eragin zuzena dutela; beraz, Ca2+-maila horiek 

jaisteko gaitasuna duten AHK konposatuak erabilgarriak izan daitezke gaixoen bizi-

kalitatea hobetzeko. 



Summary 

 

 7 

SUMMARY 

The main objective of this thesis is to evaluate the effect of a novel family of 

compounds, named Ahulken (AHK), as a therapy for Duchenne muscular dystrophy 

(DMD). DMD is an inherited X-linked disorder caused by mutations in the DMD gene 

which lead to absence of dystrophin (DYST) protein. As a consequence of DYST 

deficiency, muscles show membrane fragility and increased intracellular calcium levels 

that cause muscle degeneration, weakness and premature death. In this context, AHK 

compounds have been designed to enhance ryanodine (RyR) and calstabin (Calst) 

binding in pathological conditions, such as DMD, where due to nitro-oxidative stress, 

RyR1 is found to suffer abnormal post-translational modifications that result in calcium 

leakage from the sarcoplasmic reticulum. This mechanism has been proposed to 

contribute to the abnormal calcium homeostasis observed in dystrophic patients. 

In a first study, the toxicity of AHK compounds and their ability to enhance 

RyR1-Calst1 binding was evaluated (Chapter 1). The RyR stabiliser S107 (Armgo 

Pharma) was used as a reference compound due to its ability to enhance RyR1-Calst1 

binding and to improve dystrophic phenotype in vivo in mdx mice. The toxicity of the 

compounds was determined in mouse and human myotube cultures after 24 hours of 

treatment. Overall, AHK compounds showed very low or undetectable toxicity up to 1-

2 mM concentration. In contrast, the reference compound S107 displayed high toxicity 

at 1-2mM concentrations, resulting in 100% death of mouse and human cells in culture. 

On the other hand, in order to study the mechanism of action of AHK compounds, a 

human cellular model where RyR1 nitrosylation, phosphorylation and Calst1 depletion 

were achieved with the peroxinitrite donor SIN-1 was used. Using this model and in situ 

proximity ligation assay (PLA) technique, A6 and A7 AHK compounds, as well as the 

reference compound S107, proved to efficiently increase RyR1-Calst1 binding in SIN-

1 stressed human myotubes. 
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In the second section (Chapter 2), AHK compounds were tested in mdx mouse 

model of DMD. A6, A7 AHK compounds and S107 reference compound were 

administered to 1-month-old male mice for 5 weeks in drinking water. During this 

period, mice were exercised weekly in a treadmill in order to aggravate dystrophic 

phenotype and forelimb strength was assessed using a grip strength meter. At the end of 

the experiment, tibialis anterior muscle strength was evaluated ex vivo in isolated 

muscle, creatine kinase was measured in serum and muscles were dissected for 

histological analysis. In addition, resting intracellular calcium levels were measured in 

isolated fibres from flexor digitorum brevis muscles. The results obtained in this section 

indicate that in mdx mice A6, A7 and S107 efficiently reduce resting intracellular 

calcium levels in dystrophic muscles, ameliorating the biochemical and 

histopathological features of muscular dystrophy and improving overall muscle 

function. 

In a final work (Chapter 3), a human in vitro model based on immortalised 

myoblasts was validated as a model of DMD. Although animal models have been widely 

used to study DMD pathophysiology as well as for in vivo preclinical testing of potential 

therapies, there are many examples in the literature illustrating that effective therapies 

in DMD animal models may not necessarily yield the same outcomes in humans. 

Therefore, a relevant and reproducible human in vitro DMD model for drug screening 

is needed in order to advance in the generation of specific therapies for DMD as well as 

to predict patients’ response to experimental therapies. Hence, shRNA mediated 

dystrophin (DYST) knocking down was used to generate a DYST-deficient human 

myoblast line. After differentiation, silenced myotubes showed several DMD features 

such as reduced a-sarcoglycan expression, Calst1 depletion from RyR1 macromolecular 

complex and elevated resting intracellular calcium levels. In contrast, myotubes from 

different donors displayed high variability with regard to features such as morphology, 

differentiation and maturation, making comparison between healthy and dystrophic 

myotubes very challenging. For these reasons, DYST-shRNA infected human 

myoblasts model was used to evaluate the effect of AHK compounds on RyR1-Calst1 
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binding and calcium homeostasis. After overnight treatment, A6 and A7 compounds 

were able to efficiently restore RyR1-Calst1 binding and normalise resting intracellular 

calcium levels in dystrophic myotubes. Since increased intracellular calcium levels have 

been proposed as a pathological mechanism that triggers dystrophic phenotype in DMD 

patients, compounds as AHK that are able to regulate intracellular calcium levels could 

constitute an effective therapeutic alternative for these patients. 
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GENERAL INTRODUCTION 

The muscular system is one of the largest organ in the body. Muscles are attached 

to the bones by tendons and they are responsible for body movement, help to maintain 

the posture and allow blood circulation all over the body. Three different muscle types 

are described: smooth, cardiac and skeletal muscle. Within them, skeletal muscle 

represents the majority of the system and is responsible for all our voluntary movements. 

In the body, muscles are protected by different layers of connective tissue (Figure 

1). The fascia is located beneath the skin and separates muscles and other organs. Each 

individual muscle is surrounded by a layer, called epimysium. Inside, the muscle is 

divided in several portions that are called fascicles and are surrounded by the 

perimysium. Each fasciculus is composed by a bundle of myofibres. The muscle fibre 

or myofibre is the functional unit of the muscle and it is surrounded by a layer called 

endomysium1.  

 

Figure 1. Structure of skeletal muscle. From whole muscle with bone insertion to single muscle fibre. 

From SEER Training Modules, Muscular System. U. S. National Institutes of Health, National Cancer 

Institute. 10 February 2017 <https://training.seer.cancer.gov/>. 



General Introduction 

 

 
14 

Satellite cells are the stem cell population of the muscle. They are located 

between the basal lamina and the sarcolemma (plasma membrane) of the muscle fibre 

in a quiescent state and they are activated when muscle regeneration is needed providing 

myoblasts that fuse with each other to form new myofibres2. 

 

 

Figure 2. Structure of the skeletal muscle fibre and sarcomere organisation. From top to bottom: a single 

muscle fibre, a myofibril and the sarcomere. Copyright ã 2013 Pearson Education, Inc. 

Myofibres are long, cylindrical and multinucleated cells. Their nuclei are 

localised in the periphery of the fibre underneath the sarcolemma. The cytoplasm of the 

fibre (sarcoplasm) is filled by myofibrils, which constitute the contractile apparatus of 

the cell. Myofibrils are mainly composed by actin and myosin filaments arranged in a 

repeating unit called sarcomere3 (Figure 2). Myosin, which is the molecular motor of 

the cell, produces movement via ATP-dependent cross-bridge formation with actin4. 
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This interaction is regulated by two proteins, troponin and tropomyosin, that directly 

interact with actin, controlling its myosin binding site5. In the presence of calcium 

(Ca2+), troponin changes its conformation, producing tropomyosin movement and the 

liberation of the myosin binding site of actin. Then, cross-bridge is formed between actin 

and myosin, leading to muscle contraction6,7. 

Filaments confer a characteristic striated pattern to the skeletal muscle. Thin 

filaments of actin, troponin and tropomyosin are alternated with thick myosin filaments8. 

The sarcomere is delimited by Z disks. Around Z disks, several proteins, such as vinculin 

and the dystrophin-glycoprotein complex (DCG), constitute the costamere, which links 

the sarcomere with the sarcolemma and has an important role in force transduction9. 

Other cellular elements present in the muscle sarcoplasm are the sarcoplasmic 

reticulum (SR), T-tubules and mitochondria. Mitochondria are located between the 

myofibrils and their amount is dependent on the fibre type (slow, fast, …)10,11. On the 

other hand, T-tubules are invaginations of the sarcolemma that enter into the cell and 

form a structure called triad together with the terminal cisterns of the SR (Figure 3). 

Triads are highly specialised structures where excitation-contraction coupling process 

occur12. 

 

Figure 3. Sarcolemma forming T-tubules that dip into the cell and form a structure called triad in contact 

with terminal cisterns of SR. Copyright ã 2013 Pearson Education, Inc. 
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Different muscle fibre types are defined based on their contraction velocity and 

fatigue resistance13. Slow-twitch or oxidative fibres (type I, IIA), present slow 

contraction and high resistance to fatigue. They contain high number of mitochondria 

and generate ATP through aerobic metabolism. In contrast, fast-twitch or glycolytic 

fibres (Type IIX, IIB) show rapid contraction but lower resistance to fatigue. In addition, 

they have low mitochondrial content and ATP production occur through anaerobic 

metabolism8,10. Differences in Ca2+ handling have also been described between fast and 

slow fibres. Hence, fast fibres release larger amounts of Ca2+ and present faster decline 

and relaxation8,14. 

Fibre type composition of a muscle can change in response to different 

physiological needs owing to the high plasticity that muscles present15. In fact, 

affectation of specific fibre types or fibre type transition has also been described in 

several muscular dystrophies, such as Duchenne muscular dystrophy, where fast to slow 

muscle transition occur16,17 or Limb-girdle muscular dystrophy type 2A (LGMD2A), in 

which slow fibres are preferentially affected18. 

CALCIUM HOMEOSTASIS IN SKELETAL MUSCLE 

Skeletal muscle is under the voluntary control of the somatic nervous system. 

Motor neurons connect to the muscle at the neuromuscular junctions, where 

acetylcholine release produces depolarisation of the sarcolemma starting excitation-

contraction coupling (EC-coupling)14,19. This process translates the electric action 

potential of the neuron into mechanical muscle contraction (Figure 4). 

Sarcolemma depolarisation is propagated down the T-tubular system activating 

dihydropyridine receptors (DHPR or Cav1.1). Activation of DHPRs produces a change 

in their conformation that activates ryanodine receptors (RyR)20. RyR are the main Ca2+ 

release channel of the SR. They are located into the SR membrane in close proximity to 

DHPRs and their activation lead to SR Ca2+ release to the cytosol21. Ca2+ diffuses 

through the sarcomere and binds troponins initiating contraction process through actin 
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and myosin interaction. After contraction, relaxation is initiated with the action of the 

sarco/endoplasmic reticulum Ca2+ pump SERCA, which transfers Ca2+ back to the 

SR22,23. Alternatively, other mechanisms have also been involved in relaxation process 

by removing Ca2+ to the extracellular space, such as the sarcolemmal Na+/Ca2+ 

exchanger (NCX) and the plasmalemmal Ca2+-ATPase (PMCA) (Figure 5)24. 

 

 

Figure 4. Representation of excitation contraction coupling process in skeletal muscle fibre. Adapted 

from Bellinger et al (2008)25. 

In the sarcoplasm, Ca2+ homeostasis is precisely regulated by cytosolic Ca2+ 

buffers. These Ca2+ binding proteins modulate Ca2+ diffusion through the cytoplasm 

much faster than Ca2+ sequestration into intracellular stores occur8. Some of those 

buffers are troponin C, ATP, parvalbumin, calmodulin or SERCA pumps (Figure 5). 
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Specifically, troponin C binds Ca2+ initiating contraction process5, ATP acts as a mobile 

buffer for Ca2+ and Mg2+ and parvalbumin regulates relaxation speed in mouse muscle 

but it is expressed only at very low concentration in human muscles26,27. Finally, 

calmodulin regulates contractile function and activates signalling pathways involved in 

gene regulation28,29. 

 

 

Figure 5. Representation of calcium signalling within the skeletal muscle. Calcium concentration is 

represented by red colour, being higher in more intense zones. From Vallejo-Illarramendi et al. (2014)30. 

The SR is a highly-specialised form of endoplasmic reticulum present in muscle. 

It is responsible for Ca2+ storage, release and uptake. In SR lumen, Ca2+-binding proteins 

are distributed into the junctional SR, located in the triad proximal to the T-tubules, and 

the longitudinal SR, located surrounding myofibrils31,32. The longitudinal SR represent 

the Ca2+ storage area. It is localised around myofibrils in order to facilitate SERCA 

mediated Ca2+ reuptake and muscle relaxation23. The proteins that are present in this 
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area are mainly responsible for Ca2+ storage and the regulation of Ca2+ fluxes33. 

Intraluminal Ca2+-binding proteins reduce free Ca2+ facilitating its reuptake to the 

SR34,35. The most significant proteins are calsequestrin (CSQ), histidine-rich Ca2+-

binding protein (HRC), sarcalumenin and calreticulin (Figure 5). 

Ryanodine receptors 

In the junctional SR Ca2+ release occur through two main channels, RyR and 

inositol 1,4,5-triphosphate receptors (IP3Rs)36–38. RyRs are the main calcium release 

channels of the SR in muscle and the endoplasmic reticulum (ER) in other cell types. In 

muscle, RyR is located in the triad in close proximity to DHPR. In mammals three RyR 

isoforms are defined (RyR 1-3) which share a 65 % of their sequence39. RyR1 and RyR2 

are the predominant isoforms in skeletal muscle and heart, respectively, whereas RyR3 

has been described to be present in immature skeletal muscle. Additionally, these three 

isoforms are present in neurons36,40,41.  

Several human diseases are associated with mutation in genes encoding for RyRs. 

Mutations affecting RyR2 lead to cardiac diseases36,39, whereas mutations in the gene 

encoding RyR1 produce malignant hyperthermia (MH) and central core disease (CCD). 

MH is an autosomal dominant disorder. It is characterised by an excess Ca2+ release 

from the SR in response to volatile anaesthetics or stress, which produces muscle 

contraction and an uncontrollable increase in body temperature that is fatal unless 

treated42. Dantrolene is used to effectively treat MH and it acts blocking RyR1 activity 

in skeletal muscle41,43. CCD is a congenital myopathy that exhibits both autosomal 

dominant and recessive modes of inheritance. In CCD, mutations in RyR1 cause SR 

Ca2+ leak, defective EC coupling and increased mitochondrial oxidative stress leading 

to hypotonia and muscle weakness21,44. 

RyRs are the largest ion channels identified with a molecular mass of >2 MDa. 

Although the full structure of the channel has not been yet determined, cryo-electron 

microscopy (Cryo-EM) studies showed that RyRs are composed by four identical 
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subunits forming a “mushroom”-like structure. Three main domains are distinguished: 

a luminal, a transmembrane and a large cytoplasmic domain (Figure 6). Additionally, 

these studies found that each tetramer is in contact with its neighbouring RyRs through 

clamp region interactions forming RyR arrays36,45. 

 

Figure 6. Cryo-EM structure of RyR. (a) top and (B) side view of RyR. Numbers indicate subregions. 

From Van Petegem (2015)36. 

In the triads, RyR and DHPR are located in close proximity both in skeletal and 

cardiac muscles, however the molecular mechanisms of E-C coupling considerably 

differ between these two muscle types36,46. In skeletal muscle, RyR1 activity is defined 

as voltage-induced Ca2+ release, where a direct physical interaction of the two channels 

is needed. Specifically, DHPR acts as a voltage sensor for RyR1 which is activated and 

changes it conformation opening the pore and releasing Ca2+ to the cytoplasm. It is being 

proposed that DHPR channels are grouped into tetrads and that each tetrad can interact 

with a RyR1. However, only every other RyR1 is associated with a DHPR tetrad39,42. 

On the other hand, in cardiac muscle RyR2 activity corresponds to a Ca2+-induced Ca2+ 

release39,46. The influx of external Ca2+ through DHPR activates RyR2 producing SR 

Ca2+ release. Since direct physical interaction is not needed, the organisation of those 

channels is less regular in cardiac muscle and it is being proposed that four to six RyR2 

can be activated for every DHPR47. 
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RyR activity is regulated by several ligands including ions, small molecules and 

proteins. These ligands bind RyR near the cytosolic region, suggesting that channel 

gating is regulated by a long-range allosteric signalling36,39,46. RyR activity is regulated 

by cytosolic and luminal Ca2+. Low cytosolic Ca2+ concentrations (~ 1 µM) activate RyR 

by binding high-affinity Ca2+ sites, while high cytosolic Ca2+ concentrations (~ 1 mM) 

inhibit channel activity by binding low-affinity Ca2+ sites. In addition, increased luminal 

Ca2+ is known to activate RyR in a process known as store-overload induced Ca2+ 

release36. Cytoplasmic Mg2+ and ATP have also been proposed to regulate RyR activity. 

Mg2+ inhibits RyR activity by binding low-affinity Ca2+ sites or by competing with Ca2+ 

to bind high affinity Ca2+ activation sites. On the other hand, ATP is a RyR activator.21,39. 

 

Figure 7. Illustration of RyR macromolecular complex containing several RyR activity modulators. 

Adapted from O´Brien et al. (2015)48. 

RyR macromolecular complex is constituted by several proteins that modulate 

channel activity (Figure 7). In SR lumen, RyR activity is regulated by CSQ alone or 
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through interaction with triadin and/or junctin. On the other hand, in the cytoplasmic 

domain several proteins contribute to regulate RyR activity. Calmodulin (CaM) is a 17 

kDa Ca2+ binding protein that regulates RyR (1-3) by direct binding in a 4:1 

stoichiometry (1 CaM per RyR subunit). At low cytosolic Ca2+ concentrations, Ca2+ free 

CaM (apoCaM) act like a partial agonist activating RyR. On the contrary, at high Ca2+ 

concentrations Ca2+ bound CaM (CaCaM) inhibits RyR activity. Phosphorylation of 

RyRs have shown to be important for channels physiological regulation but also to 

contribute to some pathogenic mechanisms. Several kinases (PKA, CaMKII) and 

phosphatases (PP1, PP2A and PDE3D) have been found to target RyRs. Some of them 

bind RyR via scaffolding proteins such as spinophilins or muscle A-kinase anchoring 

protein (mAKAP). RyR phosphorylation increases channel open probability facilitating 

SR Ca2+ release48. Similarly to phosphorylation, RyR activity can be regulated by other 

post-translational modifications such as S-nitrosylation, S-glutathionylation, S-

oxidation or S-palmitoylation. Unless S-palmitoylation49, these modifications increase 

RyR open probability facilitating Ca2+ release to the cytoplasm21. 

FKBP12 (Calstabin1 or Calst1) and FKBP12.6 (Calstabin 2 or Calst2) are small 

proteins member of the FK506 binding proteins family. These two isoforms share 85 % 

sequence homology and they are structurally very similar. Indeed, both isoforms bind 

and are inactivated by the immunosuppressant drug rapamycin36,50. Calst1 is highly 

expressed in all muscle types while Calst2 is expressed in many organs including brain, 

liver, thymus and heart51. Originally, Calst1 and Calst2 were thought to stabilise RyR1 

and RyR2, respectively. However, recent studies suggest that dual modulation of RyRs 

by both Calst isoforms may occur52. Calst binds RyR in a 4:1 stoichiometry (one Calst 

per RyR subunit). Calst binding region in RyR1 has been localised within the N-terminal 

and the central domain of the channel, specifically at amino acids 619, 2157, 2341 and 

250253. Through this interaction, Calst1 regulates not only RyR1 channel activity but 

also its interactions with other channels. Furthermore, mutation in this region that 

disrupt Calst binding have been found in MH and CCD patients, where increased RyR 

activity induce increased Ca2+ concentration that contribute to disease phenotype21. 
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Calst1 regulates RyR1 activity by stabilising the close state of the channel. 

Furthermore, it has been shown that disruption of RyR1 Calst1 binding increases 

channel open probability leading to leaky channels50,54. Calst depletion-induced RyR 

leakage has been proposed to be implicated in several pathologies such as muscular 

dystrophies55,56, arrhythmias57, myocardial infarcts58 and stress-induced cognitive 

dysfunction40. RyR1 post-translational modifications can also regulate channel activity 

by affecting Calst binding to the channel. RyR phosphorylation by CaMKII or PKA 

reduce Calst binding and activate the channel whereas PP1 dephosphorylate and 

inactivate RyR by facilitating Calst binding48. Similarly, S-nitrosylation of cysteine 

residues reduce Calst binding affinity activating SR Ca2+ release59,60. Furthermore, 

abnormal RyR1 hyperphosphorylation at Ser2843 and hypernitrosylation at Cys3635 

and 2327 dissociate Calst1 from RyR1 increasing channel open probability and leading 

to leaky channels, mechanism that has been involved in several pathologies40,55,56,61. On 

the contrary, S-palmitoylation eliminates palmitoyl residues from Calst binding site 

increasing Calst binding and closing RyR channel49.  

Calst1 coordinates RyR1 multi-protein group formation synchronising channel 

gating between adjacent RyR1 receptors21. This process in which more than one channel 

is opened and closed simultaneously, explains how RyR1s that do not bind DHPPR are 

regulated. In the same way, Calst modulates the interactions between RyR1 and DHPR. 

In one hand, Calst function as a gradient reader for RyR preventing subconductance 

state gating and reducing the channel open probability which reduces SR Ca2+ leak and 

aberrant Ca2+ release62. On the other hand, when RyR1 binds DHPR via its II-III loop 

during EC coupling, Calst1 potentiates RyR1 open state facilitating SR Ca2+ release. 

Furthermore, it has been shown that in absence of Calst1 RyR1 opening after DHPR 

activation is obliterated63. 

Calcium in mitochondria 

In skeletal muscle, mitochondria are located in close proximity to SR. They play 

central roles regarding muscle metabolism, energy supply, reactive oxygen species 
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(ROS) and reactive nitrogen species (RNS) production/detoxification and calcium 

homeostasis among others64. The number of mitochondria in a muscle fibre is dependent 

of the fibre type being higher in slow, oxidative fibres and lower in fast glycolytic 

fibres65. In all of them, mitochondria are essential for muscle bioenergetics. 

Communication between SR and mitochondria is crucial for most of its functions and it 

occurs through the mitochondria-associated SR membrane (MAM)66. In muscle, 

mitochondrial and SR functions are not independent. Mitochondria uptakes SR-released 

Ca2+, which regulates mitochondrial metabolism and ATP production. In addition, 

mitochondria produces and detoxifies ROS and RNS that regulate SR Ca2+ release and 

uptake67. In the same way, mitochondria are essential for muscle contraction. 

Specifically, they provide ATP for muscle physiological needs such as actin-myosin 

cross-bridge formation or SERCA mediated SR Ca2+ uptake68. Furthermore, 

mitochondria are important Ca2+ stores that have been implicated in the modulation of 

Ca2+ transients during EC coupling69. SR Ca2+ release for mitochondrial uptake occur in 

the MAM through IP3Rs, Ca2+ release channels that are highly expressed in these 

regions66. The outer membrane of the mitochondria is Ca2+ permeant. On the contrary, 

in the inner membrane negative potential mediated Ca2+ transport is needed. 

Specifically, Ca2+ uptake in the mitochondria is driven by the low-affinity mitochondria 

uniporter (MCU) or by the high affinity mitochondrial Ca2+ /H+ exchanger (LETM). At 

the same time, Ca2+ release from mitochondria can occur via the Na+/Ca2+ exchanger 

protein (NCLX) or via Ca2+ induced Ca2+ release70. Additionally, at high Ca2+ 

concentration, Ca2+ release occur through the permeability transition pore (PTP)71. 

Mitochondria are considered one of the main ROS production sources. Although ROS 

and RNS were considered detrimental for the muscle, in the last years it is being 

suggested that they can induce reversible post-translational modifications that are 

necessary for normal muscle performance72,73. Specifically, ROS has been proposed to 

regulate the redox state of triad-associated proteins (such as RyR1) and the consequent 

susceptibility to Ca2+ induced Ca2+ release or Ca2+ sparks73. 
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DUCHENNE MUSCULAR DYSTROPHY 

Duchenne muscular dystrophy (DMD) is a severe and progressive disease that 

affects 1 in 3500-5000 live male births74. It is characterised by severe and progressive 

skeletal muscle degeneration and weakness that lead to premature death due to 

respiratory failure or cardiac dysfunction. DMD is caused by mutations in the DMD 

gene, the largest human gene containing 79 exons and positioned on the short arm of 

the X chromosome (Xp21). Recessive mutations in this gene lead to a complete loss of 

the dystrophin (DYST) protein, a structural protein that links the contractile machinery 

to muscle membrane75. Two-thirds of DMD cases are inherited whereas the rest is 

caused by spontaneous mutations affecting DMD gene. Up to now, more than 7000 

mutation have been described in this gene76. The majority of them are large deletion 

(60-65 %) and large duplications (5-10 %) while the rest are due to small deletions or 

duplications, point mutations or splicing mutations77. Although out of frame mutations 

in DMD gene result in complete protein loss, in-frame mutations generate a truncated 

and partially functional protein resulting in a milder disease with later onset described 

as Becker muscular dystrophy (BMD)77,78. 

Clinical features and diagnosis 

Progressive muscle weakness is the main feature of DMD. Starting in the legs 

and gradually affecting upper limbs and trunk muscles, it compromises patients’ 

mobility and health. In DMD patients, muscle weakness is accompanied by motor 

development delay, calf hypertrophy, joint contractures and elevated serum creatine 

kinase (CK) levels75,79. In addition, some patients present a variable speech delay, 

learning disability and cognitive dysfunction80,81. 

As a consequence of proximal leg weakness, DMD patients present difficulties 

to arise from the floor to the standing position. Gowers´ sign describes this characteristic 

dystrophic sign in which patient push on the floor and climbing up his legs to complete 

this action (Figure 8)74,82. 
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Due to the progressive weakness, patients loss independent ambulation and need 

a wheelchair usually by the age of 7-1279. In the teenage, muscle atrophy and muscle 

contractures become more prominent. When weakness occurs in postural muscles, spine 

curvature or scoliosis appear, which is one of the most prevalent cause of surgical 

interventions in DMD patients83. As the disease proceeds, muscle weakness affects 

respiratory and cardiac muscles producing respiratory dysfunction and cardiomyopathy. 

These complications that usually appear at late-teenage are the main cause that produce 

premature death in DMD patients79,84. 

 

Figure 8. Illustration showing Gowers´ sign in a DMD patient. From Mah et al. (2016)74. 

DMD diagnosis is mainly based on patient physical examination and clinical 

history79,84. It is commonly diagnosed between the ages of two and six years as a 

consequence of the observation of motor development delay or abnormal gait and 

muscle hypertrophy. The determination of serum CK levels is used as a screening tool 

in suspicious patients. In addition, magnetic resonance imaging (MRI) can be used as a 

biomarker of muscle degeneration as well as to assess disease progression and fibrotic 

and fat replacement (Figure 9)85–88. 
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Figure 9. (Top) Three dimensional gradient eco images of the upper leg of an unaffected control (7.4-

years-old) and a DMD boy at baseline (6.9-years-old) and the same DMD boy 12-months later (7.9-

years-old) showing an increase of intramuscular fat infiltration. (Mid) 1H-MRS spectra showing 

quantitative increase of fat fraction in DMD at baseline and after 12-months follow-up. (Bottom) MRI-

T2 maps showing increased T2 fraction in DMD at baseline and after 12-months follow-up. 3D GRE = 

three-dimensional gradient refocused echo; 1H-MRS = proton magnetic resonance spectroscopy; MRI 

= magnetic resonance imaging; VL = vastus lateralis; BFLH = long head of the biceps femoris; Gra = 

gracilis. From Willcocks et al. (2016)87. 

After physical examination, DMD can be confirmed by molecular genetic testing 

or dystrophin expression analysis in muscle biopsies89. The identification of the 

mutation that causes the disease is important to obtain accurate diagnosis and prognosis, 

to individualise treatments and for genetic counselling for families90. Mutation 

identification is commonly done using multiplex PCR of the most commonly deleted 

regions, studying the 79 exons of the DMD gene by MLPA or CGH microarrays or with 
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whole gene sequencing91. Finally, muscle biopsy could be used to study dystrophin 

expression at protein or RNA level. At histological level, DMD muscles show absent or 

reduced DYST staining which is accompanied by muscle necrosis, fibrosis, fatty tissue 

replacement and fibre size variation (Figure 10)75. 

 

Figure 10. Muscle section from a healthy donor (Normal control) and a DMD patient (Patient) stained 

with an antibody against rod dystrophin. Adapted from Suriyonplengsaeng et al. (2017)92. 

 Dystrophin 

DMD gene is located in the X chromosome and contains 79 exons. It encodes for 

DYST, a 427 kDa rod-shaped protein which is part of the dystrophin glycoprotein 

complex (DGC) (Figure 11)75. 

 

Figure 11. Dystrophin protein alignment with DMD gene exons. Top: Dystrophin protein domains and 

its binding sites with other molecules. Numbers identify spectrin-like repeats; ABD: actin binding 

domain; DBD: b-dystroglycan binding domain; SBS: syntrophin binding domain; CG: coiled-coiled 

region (binds a-dystrobrevin). Bottom: DMD gene exons correspondents with protein structure. From 

Allen et al. (2015)75. 

DYST is a large structural protein that connects the sarcolemma of the muscle 

fibre and the basal lamina of the extracellular matrix to the actin cytoskeleton providing 
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structural stability. Its central domain consists in 24 spectrin-like repeats. Each domain 

is composed by a triple-helical coiled-coil structure which is being suggest to act as a 

shock absorber and a force transducer during muscle contraction74,75. DYST binds F-

actin via the N-terminal domain and other DGC components via the C-terminal domain 

(Figure 12). However, recent works demonstrated that not only DYST but also the 

whole DGC bind numerous signalling proteins that are essential for muscle function75. 

In this regard, DYST acts as a scaffold for several signalling proteins such as neuronal 

nitric oxide synthase (nNOS) or polarity regulating kinase partitioning-defective 1b 

(PAR-1b)93. 

 

Figure 12. Illustration of the dystrophin glycoprotein complex (DGC). Dystrophin protein structure and 

connections with other proteins are shown. In DYST structure, N: N-terminal domain; C: C-terminal 

domain; ABD: actin binding domain; DBD: b-dystroglycan binding domain; SBS: syntrophin binding 

domain; CG: coiled-coiled region. Other interacting proteins, nNOS: neuronal nitric oxide synthase; 

Syn: syntrophin; SSPN: sarcospan. From Allen et al. (2015).75 

In DMD, absence of DYST protein produces membrane fragility. As a 

consequence, Ca2+ influx into the sarcoplasm occur activating several proteases and 

proinflammatory cytokines that result in progressive muscle degeneration75,94. 

Furthermore, since nNOS requires intact DGC for sarcolemmal association, DYST 

deficiency produces nNOS displacement, which has been associated with increase of 

oxidative stress and ischemia93–95. Moreover, recent works suggest that nNOS 
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dysregulation increases NO production and enhances S-nitrosylation of proteins, 

leading to changes in protein activity and function96. Additionally, absence of the three 

DYST isoforms that are present in the brain, retina and Purkinje cerebellar neurons have 

been proposed to contribute to cognitive, behavioural and learning difficulties of DMD 

patients80,97. 

DYST is also expressed in satellite cells, where it has been proposed to regulate 

cell polarity and determine asymmetric division98. Asymmetric cell division is a process 

in which a satellite cell is divided generating both a stem cell and a progenitor cell. In 

DMD, absence of DYST has been proposed to impair cell polarity producing mitotic 

abnormalities that lead to a deficient generation of progenitor cells and a consequent 

reduction of muscle regenerative capacity98,99. 

Pathophysiology and calcium homeostasis 

Duchenne muscular dystrophy is characterised by progressive muscle 

degeneration and weakness. The disease is caused by mutation in DMD gene that lead 

to a complete absence of DYST protein. DYST is a structural protein that provides 

stability to muscle fibre membrane100. As a consequence of DYST deficiency, 

dystrophic muscles show membrane fragility, which have been postulated to provoke 

an increase of extracellular Ca2+ influx producing calpain activation, protein degradation 

and mitochondrial overload and leading to fibre necrosis75. However, this mechanism 

has been postulated not to be strong enough to explain the muscle degeneration that 

DMD patients present101,102. Furthermore, evidence of increased intracellular Ca2+ 

concentrations have been found in pre-necrotic muscles from DMD patients, suggesting 

that a dysregulation of intracellular Ca2+ levels is one of the initial mechanisms that 

trigger dystrophic phenotype101. 

In this aspect, several mechanisms have been proposed to contribute to increased 

intracellular calcium levels in DMD patients or mouse models (Figure 5)30,75. Transient 

receptor potential canonical (TRPC) channels are mechanosensitive, voltage 
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independent Ca2+ channels that are located in the sarcolemma and show increased 

expression in mdx mouse model of DMD24,103. TRPC channels have been associated 

with store operated calcium entrance (SOCE), a mechanism that consists in an 

extracellular Ca2+ influx triggered by SR Ca2+ depletion, a mechanism that is also 

increased in dystrophic muscles24,104. Alteration of TRPC channels have been associated 

with several pathological mechanism and diseases such as respiratory and cardiac 

disorders, diabetes or central nervous system disorders. Interestingly, TRPC channels 

have also been proposed as promising therapeutic targets against most of those 

diaseases105. Additionally, other calcium handling proteins that present increased 

expression in DMD muscles, such as Orai1 and STIM1, have been associated with 

increased SOCE in dystrophic muscle101,104. Orai1 is a Ca2+ release-activated Ca2+ 

channel that is present in muscle sarcolemma. It interacts with the stromal interaction 

molecule1 (STIM1), a SR Ca2+ sensor that activates SOCE through interaction with 

Orai1 or TRPC channels. 

The main SR Ca2+ release channel, RyR1, has also been involved in the increase 

of intracellular Ca2+ levels. Specifically, in mouse models of DMD, RyR1 receptor 

presents abnormal post-translational modifications that affect its binding to Calst and 

consequently its activity25,55. As a consequence of an increase of the inducible nitric 

oxide synthase (iNOS) and the increased of ROS, RyR1 undergoes 

hyperphosphorylation and hypernitrosylation, which reduce its binding affinity to the 

stabilising protein Calst1. Hence, leaky RyR1 channels are generated, which contributes 

to the increase of intracellular Ca2+ levels55. 

Similarly to what happens with RyR receptors, IP3R also present Ca2+ leak in 

DMD muscles. It has been shown that IP3R expression is increased in dystrophic muscle 

as well as increased IP3 levels and IP3 mediated Ca2+ transients were found in myotubes 

from both DMD patients and mouse model muscles37. Moreover, dysregulation of IP3R 

have been linked to mitochondrial dysfunction. IP3Rs are expressed in MAM, where 

Ca2+ uptake by the mitochondria occur66. Mitochondrial Ca2+ overload is present in 

dystrophic muscles leading to the activation of PTP and the induction of apoptosis. 
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Interestingly, inhibition of IP3R has demonstrated to prevent mitochondrial 

overload68,106. 

Defects in Ca2+ uptake have also been proposed to occur in DMD. Although 

controversial results can be found in literature, some works proposed that SERCA 

activity could be reduced in DMD107–109. In relation to that, a reduced Ca2+ buffering 

capacity that could negatively impact in SERCA activity has been found in mdx mice16. 

Furthermore, recent works demonstrated that the overexpression of SERCA in 

dystrophic muscle improves disease phenotype108–110. 

Animal models 

Several animal models of DMD are available including naturally or laboratory 

generated models. Up to now, more than 60 models have been described including non-

mammalian111,112 and mammalian species94,113. Among them, canine DMD (cDMD) 

model is considered the best model owing to their similarity to DMD patients (Table 1). 

DMD dogs present elevated serum CK levels and a histological pattern of degeneration 

and regeneration that is similar to the one found in humans94,114. For these reasons, 

cDMD model constitutes the ideal model to test treatments response against DMD. 

However, cDMD pups present high mortality and the cost of colony maintenance is very 

high. Hence, the use of this model in research is very limited. 

The mdx mouse is the most widely used model of DMD115,116. It presents a 

spontaneous stop codon mutation in exon 23 that produces complete absence of DYST 

protein. It has similar genotype to DMD patients and some characteristic dystrophic 

features, such as elevated CK or histological evidence of muscle damage, and compared 

to dogs, it has lower costs and easier maintenance. However, mdx mice present a much 

milder dystrophic phenotype than human patients (Table 1)94,117,118. Mdx mice present 

slightly reduced life spam compared to wild type animals. Muscle damage follows 

cycles of degeneration and regeneration starting at 4 weeks of age. Regeneration can be 

easily visualised as muscles showing central nucleation. In general, respiratory muscles 
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are most affected than limb muscles being diaphragm the muscle that is more similarly 

affected to humans119–121. Muscle performance is reduced in mdx mice. Furthermore, 

mdx mice show reduced specific force in vivo and in vitro in isolated muscle 

experiments122. In addition, intracellular calcium levels are elevated in muscle fibres 

from flexor digitorum brevis (FDB) muscles of dystrophic animals123–125. 

Table 1. Comparison of disease features in dystrophin deficient mice, dogs and humans. Adapted from 

McGreevy et al. (2015)94. 

 Mice Dogs Humans 

Clinical 
manifestations 

   

  Birth body weight = normal = normal = normal 

  Grown-up body 
weight 

³ normal < normal < normal 

  Clinical course Mild, non-progressive Severe, progressive Severe, 
progressive 

  Lifespan = 75% of normal = 25% of normal = 25% of normal 

  Neonatal death Rare ~ 25% of affected 
dogs 

Rare 

  Age at first symptom ³ 15 months Birth to 3 months 2 to 4 years 

  Loss of ambulation Rare Uncommon Common at early 
teenage 

  Muscle wasting Minimal until ³ 15 months Progressive Progressive 

  ECG abnormality Frequent Frequent Frequent 

  Cardiomyopathy ³ 20 months; dilated 
(female) and hypertrophic 
(male) 

Detectable at 6 
month by 
echocardiography 

Evident at 16 
years 

  Cognitive and CNS 
defects 

Mild No information 
available 

One-third of 
affected 
individuals 

Histopathology    

  At birth Minimal Minimal Minimal 

  Acute necrosis 2 to 6 weeks None None 

  Limb muscle fibrosis Minimum in adult Extensive and 
progressive 

Extensive and 
progressive 

  Muscle regeneration Robust Poor Poor 
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The milder dystrophic phenotype could be explained by several specie specific 

characteristics. In mdx mice, utrophin expression is increased in the sarcolemma. It has 

been shown that utrophin knocking down generates more severe phenotype, while 

utrophin overexpression is protective and ameliorates muscle disease in mdx mice126,127. 

Muscle regeneration is also more efficient in mice. It has been shown that satellite cells 

proliferation is increased in mice facilitating muscle repair, which could be associated 

with longer telomeres and shorter life spam128. The expression of cytidine 

monophosphate sialic acid hydroxylase gene (CMAH) is also specific of mice and is not 

present in humans. Moreover, the inhibition of this gene generates a more severe 

phenotype129. Finally, the small size of the mice could also be protective. Previous works 

suggested that small dog and humans are protected and show milder phenotype75. 

The dystrophic phenotype observed in mdx mice may be exacerbated using 

forced exercise protocols. Specifically, several works suggested that half an hour 

exercise in a treadmill twice a week is sufficient to generate progressive weakness in 

mdx mice130,131. Other alternative to obtain a more severe DMD phenotype in mice is to 

generate double knockout mice. Utrophin and dystrophin double knockout mice (dko) 

present a very severe phenotype, even more than the one present in humans132. As a 

consequence, this model is difficult to maintain, which limits its use for research. 

Another strategy that has been used is to generate more severe phenotype is to generate 

mdx mice with shorter telomeres. mTR mice lack the RNA component TERC of the 

telomerase and as a consequence present shorter telomeres. As a consequence, these 

mice present a severe phenotype, cardiomyopathy and reduced life spam128. Although 

these models present more severe phenotype, their physiological relevance is still on 

debate. 

Human DMD models 

In the last decades, mouse models of muscular dystrophies have been used to 

study the specific pathophysiological mechanism associated with disease progression 

and treatment response. However, these models do not often reproduce the severity of 
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human disorders, suggesting that pathogenic mechanisms could vary between 

species133. Hence, extrapolation of treatment response from mouse to humans is always 

challenging. Consequently, well-characterised and reproducible human in vitro models 

that recapitulate disease phenotype would be very useful in order to advance in the 

generation of specific therapies134. 

Human satellite cells and myotubes have been efficiently isolated from muscle 

biopsies of healthy or disease-affected donors135,136. After in vitro differentiation, human 

myotubes display high inter-individual heterogeneity regarding differentiation, 

morphology and survival137,138. As a consequence, when comparing healthy and 

dystrophic myotubes, it is usually difficult to discriminate between dystrophic features 

or differentiation stage-induced differences. Trying to solve this problem, several 

groups have worked in improving the potential and reproducibility of myotube 

differentiation. Different strategies include application of exogenous electrical pulse 

stimulation to cultures139,140, co-culturing myotubes with embryonic rat spinal cord 

explants141–143 or using different scaffolds to develop muscle-like functional 

structures144,145. However, primary human cultures present other important drawbacks 

that limit their use in research. In one hand, sample availability is limited, especially in 

dystrophic patients, due to scarcity of human biopsies. On the other hand, primary 

myoblasts present limited proliferation potential in culture and suffer senescent-induced 

changes which make impractical their use for high throughput screening, where high 

number of cells are needed37,138,145,146. In order to solve this problem, different strategies 

have been focused on increasing satellite cells proliferation potential such as 

pharmacological inhibition of p38 mitogen-activated protein kinase (MAPK)147 or 

transient expression of Pax3148. In addition, dystrophic cell lines could be generated 

knocking-down disease causing genes in healthy myotubes using RNAi149 or 

CRISPR/Cas9150. 

Immortalisation of primary myoblasts has also been use to overcome myoblast 

proliferation limitation151. The simultaneous expression of the human telomerase 

reverse transcriptase (hTERT) and cyclin-dependent kinase4 (CDK4) produce telomere 
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elongation and the inhibition of p16INK4a-dependent stress pathway, respectively. As a 

consequence, myoblast proliferation is extended and differentiation potential is 

maintained over time151,152. Immortalised myoblasts maintain the main characteristics 

of their parental population153, suggesting that their physiological relevance is not 

altered by the immortalisation process. Hence, immortalisation of myoblasts obtained 

from healthy or dystrophic donors could be a viable source of stable myoblast lines for 

high throughput drug screening151. 

Alternatively, several studies on neuromuscular disorders are based on myotubes 

obtained from sources different from muscle biopsies such as MyoD-converted 

fibroblasts or human inducible stem cells (iPSC) derived myoblasts. MyoD-converted 

fibroblast model has been used to generate myoblasts from skin biopsies of patients with 

neuromuscular disorders154,155. This transduction method is a simple and easy method 

to obtain functional myotubes that could be used for therapy testing. On the other hand, 

myoblasts can be differentiated from human iPSCs. They are generated over-expressing 

in somatic cells from healthy donors or patients a combination of pluripotency regulators 

(OCT4, SOX2, KLF4, NANOG, …)156. iPSC derived myogenic cells, have been 

proposed to be useful for studying disease phenotype or treatment efficacy as well as in 

cell transplantation therapy157,158. Furthermore, iPSC derived DMD myotubes showed 

impaired Ca2+ homeostasis159. However, the physiological relevance of these models is 

still under debate. 

Current and experimental treatments for DMD 

Currently there is not specific treatment for DMD. However, in clinical practice 

many forms of therapy are used to treat patients´ symptomatology and prolong survival. 

In this aspect, the involvement of a multidisciplinary team is essential to support patients 

and their families (Figure 13)79,84. 

Corticosteroids treatment is the most widely used pharmacologic intervention. 

They stabilise muscle function and prolong patients´ survival. Additionally, treated 
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patients show prolonged independent ambulation and delayed development of scoliosis 

and cardiomyopathy. However, they also present important side effects as short stature, 

obesity, cataracts and bone fractures160–162. 

 

Figure 13. Interdisciplinary management of DMD patients. ABG: arterial blood gas. ACE: angiotensin 

converting enzyme. Echo: echocardiogram. ECG: electrocardiogram. GC: glucocorticoids. GI: 

gastrointestinal. MEP: maximum expiratory pressure. MIP: maximum inspiratory pressure. PCF: peak 

cough flow. ROM: range of motion. From Bushby et al. 201079. 

As muscle weakness progress, cardiac and respiratory complications appear. 

Early detection of these pathologies is crucial to prolong patients´ survival. Cardiac 

pathologies are often asymptomatic due to patients’ low physical capability. Conduction 

defects, arrhythmias and cardiac necrosis are usually present in DMD patients163,164. 

Early cardioprotective treatments (IACE, b-blockers, phosphodiesterase-5 inhibitors, 

…) can delay cardiac failure and prolong survival. Respiratory deficiency is another 
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feature of DMD. Prevention of respiratory complications consists of non-invasive 

positive pressure ventilation and chest physiotherapy79,84. 

Recent scientific advances have led to the development of new therapeutic 

strategies for DMD and other neuromuscular disorders165–169. Nowadays, the main 

strategies are focused on restoring dystrophin expression, increasing membrane stability 

by upregulating compensatory proteins, enhancing muscle regeneration, regulating 

intracellular calcium homeostasis or modulating the inflammatory cascade and fibrotic 

and ischemic responses (Table 2). 

The ideal treatment for DMD patients would result in expression of fully 

functional dystrophin in muscle fibres. To achieve this, several approaches have been 

designed. Stop codon read-through agents are useful in patients with nonsense mutations 

(~ 10% of total DMD) in which a stop codon prevents DMD gene translation to protein. 

Aminoglycosides and Ataluren bind ribosomes allowing them to read through 

premature stop codons and leading to translation of a functional dystrophin protein170,171. 

The efficacy of Ataluren to induce full-length DYST production has been widely 

demonstrated in several in vitro and in vivo experimental DMD models such as mdx 

mice, sapje zebrafish or human myotube cultures172–174. Furthermore, in clinical trials 

with DMD patients, Ataluren treatment has demonstrated to delay the decline of walking 

ability in the six minutes walking test (6MWT). However, differences were not 

significant compared to placebo175. Based on these results, the U.S. Food and Drug 

Administration (FDA) decided not to authorised Ataluren commercialisation. 

Nonetheless, Ataluren obtained conditional commercialisation approval in the European 

Union (EU) in 2014, which was recently renewed in 2016 with an obligation to conduct 

a new long-term clinical trial. 

Exon skipping technology is another strategy to restore dystrophin expression in 

DMD patients. It uses synthetic antisense oligonucleotides to skip over mutated exons 

in pre-mRNA and restore the reading frame, producing a truncated and partially 

functional dystrophin protein. As a result, the protein obtained would be similar to the 
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one found in Becker muscular dystrophy, in which patients presents milder phenotype 

than Duchenne patients169. Nowadays, several exon skipping therapies are under 

development but the ones targeting exon 51 are in the most advanced stage (14 % of 

patients could benefit from exon 51 therapy). Between them, eteplirsen (Sarepta 

Therapeutics) obtained FDA approval in 2016 becoming the first drug approved by the 

FDA for DMD176,177. It demonstrated to slow disease progression and significantly 

improve the 6MWT. However, drisapersen (Exon 51, BioMarin Pharmaceutical Inc) 

was recently rejected by the FDA due to lack of evidence that demonstrate drug´s 

effectiveness. Additionally, several clinical trials are ongoing with other exon skipping 

agents for exon 45 and 53178,179. 

Gene replacement therapy consists in introducing a functional dystrophin protein 

using adeno-associated viruses94,180,181. Owing to the enormous size of dystrophin gene, 

strategies have been focused in the generation of functional mini or micro-

dystrophins182,183. Although microdystrophin gene injection was found to improve 

histopathology in canine DMD models, the therapy failed in DMD patients due to T-

cell mediated immune response184. In any case, clinical trials using recombinant viruses 

and more efficient delivery systems are ongoing in DMD patients74. 

Compensatory proteins overexpression has been proposed to contribute to milder 

phenotype in mouse models of DMD. Similarly, in muscle biopsies from DMD and 

BMD patients, utrophin levels correlate with disease severity and muscle 

regeneration185. Furthermore, it has been shown that increasing utrophin or other 

cytoskeleton proteins such as alpha-7-beta-1 integrin, stabilise the sarcolemma 

ameliorating dystrophic symptoms127,186. Ezutromid is a utrophin modulator that is in 

phase II clinical trial and has shown to increase utrophin expression in skeletal and 

cardiac muscles of paediatric patients187. 

In order to accelerate muscle regeneration pharmacologic as well as cell 

transplantation therapies have been tested. Drugs targeting the inhibition of myostatin, 

a negative regulator of muscle mass, are being evaluated in several clinical trials188,189. 
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On the other hand, cell transfer therapy is a promising therapy focused on increasing 

muscle regeneration using dystrophin expressing cells168,190. These cells could be 

obtained from the patient and re-implanted after ex vivo correction, or could be obtained 

from an unaffected donor191–193. Although promising, the efficiency of this therapy is 

still low and further optimisation is needed. 

Dysregulation of calcium homeostasis has been proposed to trigger dystrophic 

pathogenesis in DMD75,194. Hence, drugs targeting Ca2+ handling proteins or processes 

would be potential treatments for dystrophic patients. Several strategies have been tested 

in mdx mice. Among them, RyR stabilisers and SERCA modulators are the most 

common strategies. RyR stabilisers, also named rycals, are small molecules designed to 

increase Calst binding affinity to hypernitrosylated RyR channels55,56. In vivo treatment 

with the rycal S107 stabilises the close conformation of the channel reducing RyR 

calcium leak. As a consequence, intracellular calcium levels are restored and muscle 

function is improved. S107 has shown to improve skeletal muscle defects in mdx and 

sarcoglycan deficient mice55,56. In addition, it has demonstrated to be useful for the 

treatment of cardiac arrhythmias195,196, stress-induced cognitive dysfunction40 and 

aging197. 

In humans, rycals (Armgo Pharma) are currently in pre-clinical development and 

clinical trials with the compound ARM210 are expected to start soon with the initial 

indication of DMD. Similarly, drugs targeting SERCA have demonstrated to improve 

muscle function in mdx mice. Alterations in SERCA expression and/or function have 

also been reported in other dystrophies198, suggesting that it could constitute a novel 

therapeutic target. In addition, increasing SERCA expression and/or function lead to a 

reduction of intracellular Ca2+ levels, protecting muscle fibres and improving muscle 

performance107,108,199. Some of them such as enalapril or carvedilol have been tested in 

clinical trials and were found to delay cardiomyopathy in DMD patients200. 
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Table 2. Emerging therapies for DMD. 

 

Dystrophin restoring therapies 
Stop codon read-through agents 

Gentamicin 
Arbekacin * 
Ataluren (Translarna) * 

Exon skipping 
Exon 51 

AVI-4658 (Eteplirsen) * 
GSK2402968 (Drisapersen) 

Exon 53 
SRP-4053 (Serapta) * 
SRP-4045 (Prosensa) * 
NS-065/NCNP-01 * 

Exon 45 
SRP-4045 * 

Exon 44 
PRO044 

Gene replacement therapy 
rAAV2.5-CMV-minidystrophin 
rAAVrh74.MCK.micro-Dystrophin * 
rAAV1.CMV.huFollistating344 * 

Membrane stabilization 
Utrophin overexpression: SMT C1100 (Ezutromid) * 

Muscle regeneration 
Myostatin inhibitors 

BMS-986089 * 
PF-06252616 * 

GCSF analogues 
Filgastrim * 

Cell therapy 
Myoblasts * 
Bone marrow derived mono nuclear stem cells 
Umbilical cord mesenchymal stem cells * 
Human induced pluripotent stem (iPS) cells * 

Calcium homeostasis: ARM210/S48168 
Anti-inflammatory 

Idebenone * 
Vamorolone * 
Coenzime Q10 * 

Antifibrotic 
FG-3019 * 
Lisinopril * 
Tamoxifen * 

Muscle ischemia: PDE-5 inhibitors 
Tadalafil 
Sildenafil 

_______________________________________ 
* Active or recruiting clinical trials, accessed on February 27, 
2017 from www.clinicaltrials.gov 
GCSF: granulocyte colony stimulating factor; PDE-5: 
phosphodiesterase type 5 
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Finally, other pharmacologic strategies have targeted inflammatory cascades or 

fibrotic and ischemic processes. Several of these drugs have been or are currently being 

tested in clinical trials with DMD patients74. Among them, tadalafil is a selective and 

reversible inhibitor of the PDE5. It is able to restore NO-mediated cGMP signalling, 

which is impaired due to the nNOS mislocalisation that occur as a consequence of DYST 

deficiency. Hence, tadalafil restores muscle hemodynamic response to exercise, 

reducing muscle ischemia and damage in mouse models of DMD133,201,202. Additionally, 

it delays the onset of dystrophic cardiomyopathy in mouse and canine DMD models203. 

In patients, tadalafil effects on muscle ischemia has been evaluated. In both DMD and 

BMD patients, it demonstrated to significantly alleviate muscle ischemia restoring 

normal blood flow204,205. 
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OBJECTIVES 

The main objective of this thesis is to advance in the development of 

pharmacological therapies against Duchenne muscular dystrophy (DMD). This study 

arises from the hypothesis that drugs targeting ryanodine receptor 1 (RyR1) and 

calstabin 1 (Calst1) interaction could consolidate a therapeutic alternative for DMD 

patients. Specifically, this thesis studies the effect of novel ryanodine stabilisers, named 

as Ahulken (AHK) compounds, in mouse and human DMD models. The current lack of 

efficient therapies to treat dystrophic patients make this study particularly necessary. 

The specific objectives can be summarised as follows:  

1. To select two hit AHK compounds for in vivo studies. 

a. To determine the in vitro cytotoxicity of AHK compounds in mouse and human 

myotube cultures. 

b. To assess the effect of AHK compounds on RyR1-Calst1 interaction in 

myotubes under SIN-1-induced stress. 

2. To test the effect of AHK compounds in mdx mouse model of DMD. 

a. AHK effect on calcium homeostasis in isolated fibres from mdx mice. 

b. AHK effect on muscle function. 

c. AHK effect on muscle degeneration. 

3. To evaluate the effect of AHK compounds in a human cellular DMD model. 

a. To validate a human in vitro DMD model for therapy testing. 

b. To study the effect of AHK compounds on RyR1-Calst1 binding and calcium 

homeostasis in a human DMD model. 
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STRUCTURE OF THE THESIS 

The structure of thesis follows the order of the previously described objectives. 

As such, the text has been arranged in three main sections: 

The first study (Chapter 1) aims to select two hit candidates from a family of 

novel compounds designed to increase RyR1-Calst1 binding affinity as a treatment 

against Duchenne muscular dystrophy. For this purpose, compounds cytotoxicity and 

action mechanism is evaluated in mouse and human myotube cultures. 

In a further study (Chapter 2), the effect of the selected compounds and a 

reference compound (S107) are tested in mdx mouse model of Duchenne muscular 

dystrophy. The compounds effect is based on their ability to enhance RyR1-Calst1 

binding in disease conditions where RyR1 suffers hypernitrosylation and 

hyperphosphorylation leading to Calst1 depletion and calcium leaky channels. This 

calcium leak has been proposed to contribute to the increased intracellular calcium 

levels that trigger dystrophic pathogenesis in DMD patients. The effect of these novel 

compounds on calcium homeostasis, muscle function and muscle degeneration is 

studied. 

In a final work (Chapter 3), compounds efficacy is studied in a human DMD 

model. The effects on RyR1-Calst1 binding and calcium homeostasis are analysed as 

indicators of the potential utility of the compounds in DMD patients. In order to select 

the optimum human model to test the compounds, two different approaches are 

evaluated, both of them based on immortalised human myoblasts. Within them, the 

model generated using DYST-shRNA mediated dystrophin knocking down is fully 

characterised to evaluate it accuracy to recapitulate dystrophic features of DMD. 
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INTRODUCTION 

Ahulken (AHK) is a novel family of small molecules (triazoles) specifically 

designed to stabilise the interaction between ryanodine receptor 1 (RyR1) and calstabin 

1 (Calst1) in order to regulate intracellular calcium levels in the muscle fibre. These 

molecules have a low molecular weight, they follow Lipinski’s rule of five for 

druglikeness and they are very stable and water soluble. They have been designed in 

collaboration with Dr. Jesús María Aizpurua (Faculty of Chemistry, University of the 

Basque Country, Spain) by in silico molecular docking and they have been synthesised 

using a “click” synthesis approach. Up to now, more than 15 AHK compounds with 

large structural variability have been synthesised (named as A5, A6, A7, etc.) (Figure 

1). AHK compounds have been recently protected by a patent application (P201630670, 

24/05/16). 

 

 

Figure 1. General structure of AHK compounds. R1, R2, R3, X and Y have been substituted to generate 

the different AHK compounds. 

Ryanodine receptors are the main calcium release channels in skeletal muscle 

and heart36,41. RyR activity can be regulated in vivo by post-translational modifications 

(PTM), such as phosphorylation, S-nitrosylation, S-glutathionylation and S-

palmitoylation25,48,49,206. In particular, RyR phosphorylation and S-nitrosylation have 

been associated with changes in channel activity through reduction of its binding affinity 

to calstabin55,207. Calst is a small protein that binds RyR in a 4:1 stoichiometry (one Calst 

per RyR subunit) and stabilises the close state of channel36. Therefore, a reduction of 

Calst binding leads to leaky RyR channels and increased intracellular calcium 
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concentrations25,41. 

Calst depletion-induced RyR leakage has been observed in several physio-

pathological conditions, such as chronic exercise, aging, muscular dystrophies, heart 

failure or cognitive dysfunction40,55,56,58,197,207. Accordingly, in those conditions, RyR 

phosphorylation and S-nitrosylation have been found to be increased, leading to a 

reduction of Calst binding affinity. Overall, this mechanism has been proposed to 

contribute to disease phenotype by affecting intracellular calcium homeostasis and 

activating several cell damage and death pathways25. Interestingly, recent studies have 

reported that pharmacologic modulation of RyR-Calst binding with RyR stabilisers, 

such as S107 (Armgo Pharma), reduce pathological calcium leakage, preventing muscle 

degeneration and improving muscle function40,55,56,58,197,207. These works constituted the 

first evidence of RyR-Calst as a useful therapeutic target for drug development against 

muscle disorders and the rational for the recent development of AHK compounds. 

During initial stages of drug development process, it is essential to determine the 

safety profiles of novel molecules in order to identify potential hazardous compounds 

and select safe candidates for in vivo studies. In this context, in vitro cytotoxicity studies 

constitute a cost-effective alternative that allow the screening of high number of 

candidates and a consequent selection of the safest molecules208. In general, a compound 

is considered cytotoxic when it interferes with cellular attachment or proliferation, 

provokes dramatic changes in cell morphology or reduces cell viability. Among the 

techniques described to assess cytotoxicity in vitro, the most extended cytotoxicity 

biomarkers are constitutive enzymes that are released into the cell culture medium as a 

consequence of membrane integrity loss. In particular, lactate dehydrogenase (LDH) 

measurement in culture media is a robust and cost-effective technique that is commonly 

used to easily determine in vitro cytotoxicity of novel drug candidates208. 

Specific in vitro models that recapitulate disease phenotype are also needed in 

order to prove the action mechanism of novel RyR stabilisers. In this aspect, the 

peroxynitrite donor SIN-1, could be potentially used to induce post-translational 
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modifications of RyR1 in vitro and generate cellular models of calstabin1 depletion that 

would be useful to test treatments targeting these processes. 

SIN-1 is a biochemical tool that has been used to study the effects of NO in 

physiological and pathological conditions. Aerobic decomposition of SIN-1 produces 

O2
•- and NO•, which react forming peroxynitrites (Figure 2)209.It has also been shown 

that SIN-1 derived peroxynitrites have a direct effect in protein phosphorylation through 

PKA activation in a cAMP-independent manner210. Furthermore, NO and peroxynitrites 

directly induce protein nitrosylation, leading to alterations in intracellular calcium 

homeostasis206,211. All together, these works suggest that SIN-1 could be used to study 

peroxynitrite-induced protein post-translational modifications in vitro. 

 

Figure 2. SIN-1 oxidation to NO• and SIN-1C. The broken line represents the reaction that would 

happened in the presence of oxidising agents, others than molecular oxygen, where intermediate product 

would be formed without releasing superoxide. 

The main goal of the present study was to select the most appropriate AHK 

compounds for the in vivo studies based on their toxicity and mechanism. To this end, 

1) the toxicity profiles of AHK compounds and S107 reference compound were 

analysed in mouse and human myotube cultures; 2) an in vitro model was generated 

using SIN-1 and human myotubes in order to study RyR1 post-translational 

modifications and Calst1 binding and 3) the effect of AHK compounds on RyR1-Calst1 

interaction was tested. 



Toxicity and mechanism of AHK compounds 

 

 54 

METHODS 

Cell cultures 

C2C12 myoblasts were obtained from the American Type Culture Collection 

(ATCC). Myoblasts were grown in DMEM supplemented with 10% FBS and 1% 

penicillin/streptomycin (P/S). Cells were seeded onto 0.5% gelatin coated dishes, and, 

after reaching confluence, medium was replaced with differentiation medium (DMEM 

2% horse serum (HS) and P/S). Cells were differentiated for 6-7 days until contractile 

myotubes were obtained. 

On the other hand, LHCN-M2 immortalised human myoblasts were kindly 

provided by Dr. Vincent Mouly (Myology Institute, Paris). These cells were generated 

by the Platform for Immortalisation of Human Cells (Myology Institute, Paris). Human 

myoblasts were grown in Skeletal Growth Medium (SGM, PromoCell) supplemented 

with 10% fetal bovine serum (FBS), 1X Glutamax and 50 µg/mL gentamicin in 0.5% 

gelatin coated dishes. At confluence, cells were washed with DPBS and the appropriate 

volume of 2.6 mg/mL extracellular matrix (ECM, Sigma), diluted in DMEM, was 

added. Cultures were incubated at 37 ºC for 30 min to allow ECM polymerisation, 

forming thin overlays of approximately 1 mm, and then, basic differentiation medium 

(dMD: DMEM 10 µg/mL insulin, 100 µg/mL aprotransferrin and 50 µg/mL gentamicin) 

was added. Once fusion started, medium was replaced by complete differentiation 

medium (cDM: Neurobasal A medium supplemented with 1X B27, 1X Glutamax, 20 

ng/mL BDNF, 50 ng/mL IGF-1, 5 ng/mL CNTF, 20 ng/mL NT-3, 4 µg/mL laminin, 

100 ng/mL agrin and 50 µg/mL gentamicin.) and half volume of the medium was 

changed every 3 days. After 8 days of differentiation, highly mature myotubes were 

obtained. 
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Cytotoxicity assay 

In vitro cytotoxicity of AHK compounds was assessed in mouse and human 

myotube cultures. For this purpose, C2C12 and LHCN-M2 myoblasts were seed in 96-

well plates and were cultured as previously described. After 6-7 days of differentiation, 

cultures were exposed to seven different concentrations of AHK compounds for 24 

hours. The toxicity of S107 reference compound and the following AHK compounds 

(A5, A6, A7, A8, A9R, A9S, A10R, A10S, A11R, A11S, A12 and A13) was analysed 

at different concentrations (10 nM, 150 nM, 1 µM, 10 µM, 100 µM, 1 mM and 2 mM), 

using quadruplicates for each condition. After 24 hours, supernatants were collected and 

the amount of lactate dehydrogenase (LDH) was measured using Cytotox 96Ò kit. 

Briefly, 50 µl of cell supernatants were incubated with reaction solution for 30 min at 

room temperature in the dark. Then, the reaction was stopped and absorbance was 

measured at 492 nm. The absorbance was normalised to the total LDH content in the 

remaining cells, which was obtained by incubating cells with 1X lysis solution for 30 

min. 

RyR1-Calst1 complex dissociation by SIN-1 

LHCN-M2 human myotube cultures were used in order to study the action 

mechanism of Ahulken compounds. In LHCN-M2 myotubes, the dissociation of the 

RyR1-Calst1 complex was induced using the peroxynitrite donor SIN-1. For that 

LHCN-M2 myotubes were seeded onto 12 mm coverslips, and at 7 days of 

differentiation, myotubes were treated overnight with 150 nM of A6, A7 or S107 

compounds. Next day, myotubes were exposed to 5 mM SIN-1 for 30 min at 37 ºC, and 

afterwards, they were fixed with 4% paraformaldehyde. Some myotubes were treated 

with 15 µM rapamycin for 30 min at 37ºC. This condition was considered a positive 

control for RyR1-Calst1 dissociation control, since rapamycin is a well-characterised 

agent that binds Calst1 and dissociates it from RyR1. 
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In situ Proximity Ligation Assay (PLA) 

In situ PLA is a novel technique that allows direct detection of protein 

interactions and modifications with high specificity and sensitivity. Two interacting 

proteins located in close proximity (30-40-nm) can be readily detected, localised and 

quantified in unmodified cells and tissues212,213. This is achieved by using species-

specific secondary antibodies linked to complementary oligonucleotides that, in close 

proximity, hybridise. Upon subsequent addition of a ligase, a polymerase and a labelled 

complementary oligonucleotide, distinct bright spots are obtained, and can be imaged 

and quantified by fluorescence microscopy. 

Paraformaldehyde fixed myotubes were incubated with blocking solution (2% 

BSA, 1% GS, 0.5% triton X-100 and 0.02 NaN3 in PBS) for 1 hour at room temperature. 

Afterwards, coverslips were transfer into a humidity chamber and they were incubated 

overnight with the following primary antibodies: anti-RyR1 mouse mAb (1:200, 

Thermo Scientific), anti-Calst1 rabbit pAb (1:100, Novus Biologicals), anti-PKA rabbit 

pAb (1:100, Cell Signalling) and anti-CysNO rabbit pAb (1:500, Sigma-Aldrich). PLA 

assay was performed using the DuolinkÒ In situ Orange kit (Sigma). For 

counterstaining, cells were incubated with FITC-conjugated Myosin Heavy Chain-CFS 

mAb (1:50, R&D) for 30 min and they were mounted with ProLongÒ Gold antifade 

reagent with DAPI (Life Technologies). High resolution images were acquired using an 

ECLIPSE Ti-S/L100 microscope (Nikon) equipped with a 20X S-Fluor objective and 

attached to a lambda-DG4 illumination system and an Orca-Flash2.8 camera 

(Hammamatsu) with NisElements software. 

Image quantification was made using ImageJ (NIH) and the “Batch spot analysis 

macro” from Dr. Henry Wellcome lab (https://www.uea.ac.uk/biological-

sciences/research/facilities/henry-wellcome-lab/macros). This macro allows the 

analysis of several images at the same time, applying the same parameters in all of them. 

After setting several parameters to discriminate the specific PLA signal, the macro 

generates a file with the areas of the detected spots. The spot areas were then divided 
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into the smallest detected area (2.43 µm), which corresponds to the individual spot size. 

Finally, the total number of spots per image was normalised to the MyHC area, which 

corresponds to the total myotube area. At least 4 images per condition were analysed 

with an average of 8-9 myotubes per image. 

Statistical analysis 

Data are presented as mean ± SEM. Normal distribution of samples was ensured 

by Kolmogorov-Smirnov and Shapiro-Wilk tests. Student’s t- test was performed for 

paired comparisons and P < 0.05 was considered statistically significant. 

RESULTS 

In vitro cytotoxicity of AHK compounds 

In vitro cytotoxicity of S107 and AHK compounds in C2C12 mouse myotube 

cultures is shown in Figure 3. S107 was found to be extremely toxic at 1-2 mM 

concentrations, resulting in 100% cell death after 24 hours in culture (Figure 3A). In 

contrast, most AHK compounds did not shown toxicity, even at higher concentrations 

(Figure 3B). However, A8, A12 and A13 compounds showed some toxicity (around 10-

20%) at 2 mM concentration and A5 displayed toxicity of around 10-20%, starting at 10 

µM concentration (Figure 3C). 

LHCN-M2 myotube were used to assess the in vitro cytotoxicity of S107 and 

some AHK compounds in human cultures. Similarly to that observed in C2C12 

myotubes, S107 resulted in a 100% cell death at 1-2 mM concentrations after 24 hours 

treatment in human cultures (Figure 4A). Likewise, A6 and A7 were non-toxic, even at 

higher concentrations. However, two compounds (A9S and A11R) showed mild toxicity 

(< 30%) at 2 mM concentration (Figure 4B). 
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Figure 3. Concentration dependent 24 hours in vitro cytotoxicity of (A) S107, A6 and A7, (B) A9R, 

A9S, A10R, A10S, A11R and A11S and (C) A5, A8, A12 and A13 AHK compounds in 7-days-old 

C2C12 myotubes. Data are represented as average of the percentage of cell death ± SEM, n = 

quadruplicates per condition in 3 independent cultures. 
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Figure 4. Concentration dependent 24 hours in vitro cytotoxicity of (A) S107, A6 and A7 and (B) A9S, 

A10S, A11R and A11S AHK compounds in 7-days-old myotubes. Data are represented as average of 

the percentage of cell death ± SEM, n = quadruplicates per condition in 3 independent cultures. 
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RyR1-Calst1 binding and AHK compounds 

In situ proximity ligation assay (PLA) was used to assess RyR1 PKA-

phosphorylation and CysNO-nitrosylation in LCHN-M2 myotubes. Using this 

technique, SIN-1 was found to induce RyR1 phosphorylation and nitrosylation in vitro 

in LHCN-M2 myotubes (Figure 5). In the presence of the peroxynitrite donor, RyR1 

phosphorylation was significantly increased 2-folds compared to the non-treated 

myotubes (100 ± 19.89% in non-treated vs 200.35 ± 22.19% in SIN-1 treated myotubes; 

paired t-test, P < 0.05). Likewise, SIN-1 treated myotubes showed a significant increase 

(17%) of RyR1 nitrosylation (117.49 ± 2.22%) compared to non-treated myotubes (100 

± 3.94%; paired t-test, P < 0.05). 

RyR1-Calst1 interaction was specifically quantified by in situ PLA (Figure 6A). 

In LHCN-M2 myotubes, SIN-1 treatment induced a 60% reduction of RyR1-Calst1 

binding (39.87 ± 8.46%) compared to non-treated myotubes (100 ± 9.80%) (paired t-

test, P < 0.01). This reduction was similar to that observed in rapamycin treated 

myotubes (46.63 ± 2.96%) (Figure 6B). 

In relation to pre-treatment of LHCN-M2 myotubes with 150 nM S107, a partial 

prevention of calstabin1 depletion was observed (Figure 7A). in the presence of S107 

Calst1 binding to RyR1 increased in a 33% (39.87 ± 8.46 to 73.29 ± 7.48) (paired t-test, 

P < 0.05). Similarly, 150 nM A6 and A7 pre-treatments significantly enhance RyR1-

Calst1 binding to 67.45 ± 2.97% and 75.17 ± 10.64% respectively compared to non-

treated SIN-1 stressed myotubes (39.87 ± 8.46%) (paired t-test, P < 0.05) (Figure 7B). 

However, in absence of SIN-1, the compounds did not change RyR1-Calst1 binding 

(paired t-test, P > 0.05) (Figure 8). 
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Figure 5. In situ proximity ligation assay (PLA) analysis of (A) RyR1 phosphorylation and (B) RyR1 

nitrosylation in non-treated (ND) and SIN-1 stressed (SIN-1) LHCN-M2 myotubes. Data are 

represented as percentage of colocalisation. The unstressed (ND) control was taken as 100%. All data 

are mean ± SEM, n = 4, * P <0.05 (paired t-test). 
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Figure 6. (A) Representative in situ proximity ligation assay (PLA) images showing RyR1-Calst1 PLA 

assay (red) and MyHC (green) in non-stressed (ND) and SIN-1 stressed (SIN-1) LHCN-M2 myotubes. 

Neg Ctrl corresponds to negative control made with just one primary antibody. Scale bar 25 µm. (B) In 

situ proximity ligation assay (PLA) quantification of RyR1-Calst1 in non-treated (ND), SIN-1 treated 

(SIN-1) and Rapamycin treated (RAPA) LHCN-M2 myotubes. Data are represented as percentage of 

colocalisation. The unstressed (ND) control was taken as 100%. All data are mean ± SEM, n = 11-15 

from 4 independent cultures, * P <0.05 (paired t-test). 
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Figure 7. In situ proximity ligation assay (PLA) analysis of RyR1-Calst1 in (A) non-treated (ND) and 

S107 treated (S107) and in (B) non-treated (ND), A6 treated (A6) and A7 treated (A7), SIN-1 stressed 

LHCN-M2 myotubes. Data are represented as percentage of colocalisation. The unstressed and non-

treated control was taken as 100%. All data are mean ± SEM, n = 11-15 from 4 independent cultures, 

*P <0.05 (paired t-test). 
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Figure 8. In situ proximity ligation assay (PLA) analysis of RyR1-Calst1 in non-treated (ND), A6 

treated (A6), A7 treated (A7) and S107 treated (S107) LHCN-M2 myotubes. Data are represented as 

percentage of colocalisation. The unstressed and non-treated (ND) control was taken as 100%. All data 

are mean ± SEM, n = 11-15 from 4 independent cultures. 

DISCUSSION  

In skeletal muscle, RyR1 undergoes post-translational modifications that regulate 

its physiological function. However, these mechanisms also contribute to the pathogenic 

mechanism of some diseases via Calst1 depletion and calcium leakage55,56. In the present 

work, a family of novel compounds (AHK compounds) has been presented. These 

compounds have been designed to specifically interact with this promising target, 

preventing Calst1 depletion from RyR channel. 

In order to elucidate the toxicity profile of AHK compounds, mouse and human 

myotube cultures were used and LDH release was measured as a cytotoxicity indicator. 

It should be noted that, LDH measurement in cell culture media is a very extended, cost-

effective technique that is used to study the in vitro cytotoxicity of a compound during 

initial drug development stages208. This technique allows the simultaneous testing of 
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high number of compounds easily and in a timely manner, providing a prediction of 

human toxicity. 

The rycal S107 was non-toxic in vitro at 150 nM, which was the concentration 

that was found by previous studies in the plasma of several mouse models after in vivo 

treatment, without any obvious toxicity55,56. Remarkably, the results of the present study 

showed that at higher concentrations (1-2 mM), S107 was extremely toxic inducing the 

death of all the cells in both mouse and human myotube cultures. Interestingly, AHK 

compounds (and especially A6 and A7 compounds) presented very low cytotoxicity 

levels in mouse and human myotubes, even at the higher concentrations (Figures 3 and 

4). This finding suggests that these compounds could constitute a safer alternative to the 

S107 compound. 

Up to now, RyR immunoprecipitation from muscle homogenates and the 

consequent immunoblot study of its binding partners has been the most extended 

technique to study RyR-Calst interaction and the effect of RyR stabilisers on it214. Since, 

RyR1 immunoprecipitation is a tricky technique, this study proposes that the proximity 

ligation assay (PLA) could be used as a quantitative and easy technique212 to study 

RyR1-Calst1 interaction in heathy human myotubes. 

Previous works proposed that SIN-1 treatment could induce RyR1 

phosphorylation and S-nitrosylation206,210. Accordingly, in the present study, treating 

healthy human myotubes with SIN-1 significantly increased RyR1 phosphorylation and 

S-nitrosylation in vitro. Several works have found a correlation between these RyR1 

post-translational modifications and Calst1 dissociation from the channel21,48. Using 

SIN-1 treated human myotubes model, we confirmed that RyR1 phosphorylation and S-

nitrosylation led to a subsequent Calst1 depletion from the channel similar to that 

produced by rapamycin, a well-known pharmacological Calst1 inhibitor36. Additionally, 

this effect was partially recovered with S107 treatment, as previously reported in mouse 

models of several muscular diseases and some physiological conditions such as chronic 

exercise and aging55,56,197,207. 
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AHK compounds are small molecules that have been designed in silico using 

molecular docking to interact with RyR1-Calst1 complex and enhance its binding 

affinity (unpublished data). In this work, we have demonstrated that A6 and A7 

compounds partially recover RyR1-Calst1 binding, similarly to that observed with S107 

treatment (Figure 7). In contrast, in the absence of SIN-1, none of the compounds 

changed the amount of RyR1-Calst1 interaction, suggesting that the compounds act 

specifically by preventing calstabin depletion from abnormally modified ryanodine 

channels. 

In summary, these results indicate that proximity ligation assay (PLA) technique 

in combination with SIN-1 treated healthy human myotubes model could be used to 

easily study RyR1 post-translational modifications and Calst1 binding. Hence, this 

technique could be used to test the effect of novel RyR stabilisers on this interaction. 

Additionally, it has been demonstrated that AHK compounds efficiently enhance RyR1-

Calst1 binding in vitro in human myotube cultures without showing any toxicity, 

suggesting that they could constitute a safer alternative to the previously reported S107 

(Armgo Pharma). 

In conclusion. based on the results obtained in this work, A6 and A7 AHK 

compounds were selected for the in vivo experiments owing to their low toxicity profiles 

in mouse and human cellular models and their ability to enhance RyR1-Cals1 binding. 
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INTRODUCTION 

Duchenne muscular dystrophy (DMD) is an inherited X-linked genetic disorder 

caused by mutations in DMD gene. This gene encodes for dystrophin, an intracellular 

protein that forms part of the dystrophin glycoprotein complex (DGC). This complex 

connects the extracellular matrix to the actin cytoskeleton, stabilising the myofibre 

membrane during repeated muscle contractions. In addition, the DGC serves as a 

scaffold for several signalling proteins that are essential for muscle function75. Thus, 

absence of dystrophin leads to membrane damage and a consequent uncontrolled 

calcium influx, which activates several pathological pathways and produces muscle 

wasting and premature death. Unfortunately, no efficient therapies are available to treat 

these patients. 

Up to now, more than 60 animal models of DMD have been described94. The 

mdx mouse (C57BL/10ScSn-Dmdmdx/J) is the most widely used model. This mouse 

line presents a spontaneous nonsense point mutation in exon 23, which results in absence 

of dystrophin (DYST) protein. Although mild, mdx mice recapitulate several dystrophic 

features present in Duchenne patients, such as elevated serum CK levels, muscle 

degeneration, cardiac damage and cognitive dysfunction94,115,215. For these reasons, mdx 

mice represent an essential model to further investigate molecular mechanisms 

underlying DMD and test novel therapeutic agents against this disease. 

It is also known that, defects in calcium homeostasis are implicated in DMD 

pathophysiology30. Biopsies from DMD patients showed calcium accumulation 

evidences and hypercontracted fibres102,216. In addition, pre-necrotic DMD fibres from 

foetuses and premature infants showed calcium accumulation217, suggesting that the 

dysregulation of calcium homeostasis is an early event that triggers muscle degeneration 

in DMD. Accordingly, increased intracellular calcium levels have also been observed 

in mouse models of DMD (mdx mice) 30,104. In this context, several mechanisms have 

been proposed to explain the increased calcium levels in dystrophin deficient muscles, 
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including increased calcium influx through the myofibre membrane, abnormal SR 

calcium levels or leaky calcium channels30. 

Specifically, in mdx mouse model, ryanodine receptor type 1 (RyR1) has been 

found to be abnormally nitrosylated and phosphorylated. These post-translational 

modifications lead to a reduction of its binding, affinity to calstabin 1 (Calst1) and a 

subsequent calcium leak through the channel55. RyR stabilisers (rycals) have 

demonstrated to efficiently increase RyR1-Calst1 binding reducing calcium leak and 

improving dystrophic phenotype55,56. Based on this mechanism, a novel family of 

compounds, named as Ahulken (AHK), has been specifically designed as a safer 

alternative to the pre-existing rycals to treat Duchenne patients (unpublished data; 

Chapter 1). However, studies showing the in vivo effects of AHK compounds in 

dystrophic models are needed in order to validate their efficacy. 

Therefore, the aim of the current study was to test the effect of the AHK 

compounds A6 and A7, and the rycal S107 (Armgo Pharma) in mdx mice in vivo and 

ex vivo using isolated fibres from flexor digitorum brevis muscles. 

METHODS 

Mouse lines and treatment administration 

C57BL/10ScSn-Dmd/J mice (hereafter mdx) and C57BL/10ScSnJ mice 

(hereafter wild type), were obtained from The Jackson Laboratory (Bar Harbor, ME, 

USA). Aged-matched 1-moth-old male mice were randomly assigned to treatments with 

S107, A6, A7 or vehicle (H2O). Treatments were administered in drinking water for 5 

weeks at 0.25 mg/mL concentration and water consumption and mice weight were daily 

monitored. All experiments were conducted in accordance with protocols approved by 

the Institutional Animal Care Ethical Board Committee of the Donostia University 

Hospital. 
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Treadmill exercise 

In order to exacerbate dystrophic phenotype, mice were exercised in a treadmill 

once per week during the first two weeks of treatment and twice per week during the 

rest of the experiment. The exercise protocol consisted in acclimation with gentle 

walking for 2 min at 7 cm/s speed, followed by 8 min at 13 cm/s. The main exercise 

session involved 30 min running at 20 cm/s speed. Mice were forced to finish the 

exercise by application of low-intensity electric shock. 

Calcium imaging in FDB muscle fibres 

Calcium imaging experiments were performed ex vivo in isolated flexor 

digitorum brevis (FDB) muscle fibres from wild type (wt) and mdx mice. Briefly, FDB 

muscles were dissected and placed in Mammalian Ringer buffer (145 mM NaCl, 1 mM 

MgSO4, 2,5 mM KCl, 10 mM HEPES, 10 mM Glucose and 1 mM CaCl2) with 2 mg/mL 

collagenase 1A. After 2 hours in agitation at 37 ºC, collagenase was neutralised with 3 

volumes of FDB medium (DMEM, 2% FBS and 5 mg/mL Gentamicin). Thereafter, 

fibres were allowed to set and upper medium was discarded to remove debris. Finally, 

fibres were centrifuged at 1000 rpm for 1 min and they were seeded in ECM coated 12 

mm dishes in FDB medium. For in vitro studies, fibres were treated overnight with the 

RyR modulators (A6, A7 or S107) at 150 nM concentration.  

Ratiometric calcium dye Fura-2AM was used to measure resting intracellular 

calcium levels in isolated muscle fibres. First, fibres were loaded with 4 µM Fura-2AM 

and 0.02 % pluronic acid for 30 min at 37ºC in culture medium. After, fibres were placed 

in Ringer solution (125 mM NaCl, 5 mM KCl, 1.2 mM MgSO4, 6 mM glucose, 2 mM 

CaCl2 and 25 mM HEPES, pH 7.4) for other 30 min at 37 ºC to remove extracellular 

dye and allow to de-esterification. Experiments were performed under continuous 

perfusion (2 mL/min; 37 ºC) with Ringer buffer using an ECLIPSE Ti/L100 microscope 

(Nikon) equipped with a 20X S-Fluor objective and attached to a lambda-DG4 

illumination system. Image acquisition was performed using an Orca-Flash 2.8 camera 
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(Hamamatsu) and the NisElemments-Advanced Research software (Nikon). 

Intracellular calcium concentration was estimated by the ratio of Fura-2AM 

fluorescence intensities at 340 and 380 nm after background correction.  

Serum creatine kinase 

Blood was collected by intracardiac puncture in isoflurane anesthetised mice. 

Samples were centrifuged at 6000 g for 10 min at 4ºC and serum was kept at -80ºC until 

analysis. Creatine kinase determination was performed in Biochemistry Service of the 

Donostia University Hospital following a standardised photometric technique. 

Haemolysed samples were discarded. 

Grip Strength test 

Forelimb grip strength was weekly determined using a grip strength meter 

(Bioseb) in exercised mice following standard procedures (TREAT-NMD SOP ID: 

SMA_M.2.1.002). Mice were lifted by the tail and left to grasp the grid with the 

forelimbs. Five consecutive measurements were done leaving mice to rest 1 min 

between them and only the three highest measurements were considered. Data were 

normalised to the mice weight. 

Ex vivo force measurement in isolated muscle 

Ex vivo force measurement experiments were performed in collaboration with Dr 

Thomas Rando lab at Stanford University (USA). Specific force was measured in 

isolated tibialis anterior muscle (TA) from mdx mice treated for 6 weeks with A6. 

Force experiments were performed in an 800A in vivo apparatus attached to a 

701C stimulator (Aurora Scientific). The testing chamber was filled with Kreb solution 

(Sigma) and kept at 25 ºC using an external water heater. Additionally, chamber was 

oxygenated with a 95% O2, 5% CO2 mixture to ensure tissue viability. Calibrated 

Dynamic Muscle Control and Analysis Software (Aurora Scientific) was used to acquire 

muscle force measurements. 
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After sacrificing the mice, tibialis anterior (TA) muscle was excised and attached 

to the force transducer lever around the top of the patellar tendon and the TA tendon. 

First, supramaximal stimulation conditions were established to ensure the recruitment 

of all fibres from the muscle. After selecting the voltage that produced the most powerful 

twitches, the optimum muscle length was selected. For this purpose, twitch forces 

produced after 6 electrical pulses of 1 ms each at 1 Hz were measured at different TA 

lengths and the stretched length at which the highest force was obtained was selected. 

Muscles were allowed to rest one minute between each electric pulse. After determining 

the optimal voltage and length, a 500 ms tetanic stimulation was performed at 100 Hz 

and muscle maximum tetanic force was measured. Finally, muscle was weighted and 

specific force was calculated. 

Histology 

Mice were sacrificed by cervical dislocation at the end of the treatment and 

diaphragm and tibialis anterior muscles were dissected for histological studies. 

Diaphragms were first placed in a relaxing solution (100 mM KCl, 2 mM EGTA, 4 mM 

ATP and 7 mM MgCl2, pH 7). Next, right hemi-diaphragms were embedded in OCT 

and snap-frozen in liquid nitrogen-cooled isopentane. On the other hand, tibialis 

anterior muscles were mounted onto a cork slice with OCT and they were snap frozen 

in liquid nitrogen-cooled isopentane. All muscles were stored at -80 ºC until sectioning. 

Cross-sections of 7 µm were performed in a Leica CM1950 cryostat. Sections 

were fixed with pre-cooled acetone and blocked (2% BSA, 1% GS, 0.5% Triton X100 

and 0.02% NaN3 in PBS) for 1 hour. Afterwards, sections were incubated with primary 

antibodies collagen IV (Sigma; 1:1000) and dystrophin (Mandra1, Sigma; 1:100) 

overnight at 4 ºC. After washing, samples were incubated with Alexa Fluor 488 or 555-

conjugated secondary antibodies for 1 hour at room temperature. Finally, slides were 

mounted with ProLongÒ Gold antifade reagent with DAPI (Life technologies) and 

images were acquired using an ECLIPSE 80i microscope (Nikon) equipped with a 10X 

objective and a DS-U2 camera (Nikon). 
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Collagen IV and DAPI stained sections were used for central nucleation 

quantification. Central nucleation was defined as the percentage of fibres presenting at 

least one central nucleus. At least four (10X) images per mice were analysed. 

RESULTS 

AHK consumption and tolerance 

AHK compound are well tolerated orally. Mice drank around 2.5-3 mL per day, 

which constitutes a dose of 31.5-37.5 mg kg-1day-1 (Figure 1). No significant differences 

were detected between the different groups of treatments during the 5 weeks of 

experiment (One-way ANOVA, Tukey´s Post hoc test, P > 0.05). Similarly, no 

significant differences in body weight were found between wild type, mdx and treatment 

groups (Figure 2). 

 

Figure 1. Water consumption per mice in vehicle treated (ND), A6 treated (A6), A7 treated (A7) and 

S107 treated (S107) mice. Data are represented as average ± SEM, n = 11 ND; n = 10 A6; n = 6 A7; n 

= 6 S107. 
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Figure 2. Body weight changes during treatment in vehicle treated wild type (WT ND), A6 treated wild 

type (WT A6), vehicle treated mdx (MDX ND), A6 treated mdx (MDX A6), A7 treated mdx (MDX 

A7) and S107 treated mdx (MDX S107) mice. Data are represented as average ± SEM, n = 10 WT ND; 

n = 6 WT A6; n = 11 MDX ND; n = 10 MDX A6; n = 6 MDX A7; n = 6 MDX S107. 

AHK and calcium homeostasis 

Single fibres from mdx mice showed significantly higher resting intracellular 

calcium levels compared to wild type fibres (0.60 ± 0.01 vs 0.54 ±0.07, P<0.001) 

(Figure 3A-C). In mdx fibres, overnight in vitro treatment with RyR modulators (AHK 

and S107) at 150 nM concentration significantly reduced resting intracellular calcium 

to wild type levels (Kruskal–Wallis, P < 0.05) (Figure 3C). In contrast, single fibres 

from in vivo treated mdx mice showed a significant reduction of calcium levels only 

with AHK treatment, but not with S107 (Kruskal–Wallis, P < 0.05) (Figure 3D). 
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Figure 3. (A) Single fibre isolated from FDB muscle showing characteristic striation pattern. (B) 

Representative pseudocolor images of Fura-2AM loaded fibres from wild type (WT), non-treated mdx 

(ND MDX), A6 treated mdx (MDX A6), A7 treated mdx (A7 MDX) and S107 treated mdx (MDX 

S107) mice. Scale bar 25µm. (C) Resting intracellular calcium levels of FDB-isolated fibres from wild 

type (WT), non-treated mdx (MDX ND) mice after overnight in vitro treatment with A6 (MDX A6), A7 

(MDX A7) and S107 (MDX S107). Data are represented as average ± SEM, n = 53 WT; n = 97 MDX 

ND; n = 78 MDX A6; n = 83 MDX A7; n = 78 MDX S107 fibres analysed. # vs WT and * vs non-

treated (ND) P <0.05 (Kruskal-Wallis). (D) Resting intracellular calcium levels of FDB-isolated fibres 

from in vivo treated vehicle treated mdx (MDX ND), A6 treated mdx (MDX A6), A7 treated mdx (MDX 

A7) and S107 treated mdx (MDX S107) mice after 5 weeks of treatment. Data are represented as average 

± SEM, n = 133 MDX ND; n = 135 MDX A6; n = 145 MDX A7; n = 78 MDX S107 fibres analysed 

from at least 3 mice per condition. * P <0.05 (Kruskal-Wallis). 

Serum CK levels 

Dystrophic mice (mdx) showed a significant increase in serum creatine kinase 

levels compared to wild type (wt) mice (16065.70 ± 2527.61 vs 3524.77 ± 709.05 U/L; 

One-way ANOVA Tukey´s Post hoc test, P < 0.05). After 5-weeks treatment, A6 

significantly reduced serum CK levels in mdx mice (8505.82 ± 1291.41 U/L; One-way 

ANOVA Tukey´s Post hoc test, P < 0.05). On the other hand, A7 and S107 showed a 
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tendency to reduce serum CK levels (10183 ± 716.94 U/L and 7914 ± 1514.89 U/L, 

respectively; One-way ANOVA Tukey´s Post hoc test, P > 0.05) (Figure 4). 

 

Figure 4. Serum creatine kinase (CK) levels of wild type (WT), non-treated mdx (MDX ND), A6 treated 

mdx (MDX A6), A7 treated mdx (MDX A7) and S107 treated mdx (MDX S107) mice after 5 weeks of 

treatment. Data are represented as average ± SEM, n = 4 WT; n = 3 MDX ND; n = 4 MDX A6; n = 3 

MDX A7; n = 4 MDX S107. # vs WT and * vs non-treated (ND) P <0.05 (One-way ANOVA Tukey´s 

Post hoc test). 

 

AHK effect in muscle strength  

Grip strength test results showed that mdx mice present a significant 35% 

reduction in forelimb strength compared to wt mice (4.66 ± 0.14 in wt vs 3.04 ± 0.11 in 

mdx) (Figure 5A). Treatment with AHK or S107, significantly increased grip strength 

of mdx mice in a 30-40% (One-way ANOVA Tukey´s Post hoc test; P < 0.05) without 

having any detectable effect in wild type mice (Figure 5B). 
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Figure 5. Forelimb grip strength of (A) wild type (WT), non-treated mdx (MDX ND), A6 treated mdx 

(MDX A6), A7 treated mdx (MDX A7) and S107 treated mdx (MDX S107) mice and (B) non-treated 

wild type (WT) and A6 treated wild type (WT A6) mice after 5-weeks of treatment. Data are represented 

as average ± SEM, n = 10 WT; n = 11 MDX ND; n = 10 MDX A6; n = 6 MDX A7; n = 6 MDX S107; 

n = 6 WT A6. # vs WT and * vs non-treated (ND) P <0.05 (One-way ANOVA Tukey´s Post hoc test). 
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In order to validate grip strength results, muscle specific force was measured ex 

vivo in tibialis anterior muscle of wt and mdx mice. Similarly to that observed using the 

grip test, dystrophic mice also showed a significant reduction in TA muscle specific 

force (18.79 ± 0.24 in wt vs 9.59 ± 0.18 in mdx; One-way ANOVA Tukey´s Post hoc 

test, P < 0.05), while A6 treatment resulted in a 16% increase of dystrophic TA specific 

force (One-way ANOVA Tukey´s Post hoc test, P <0.05) (Figure 6). 

 

Figure 6. Tibilis anterior force measurements in wild type (WT), non-treated mdx (MDX ND) and A6 

treated mdx (MDX A6) mice after 6-weeks of treatment. Data are represented as average ± SEM, n = 9 

WT; n = 9 MDX ND; n = 9MDX A6. # vs WT and * vs non-treated (ND) P <0.05 (One-way ANOVA 

Tukey´s Post hoc test). 

In non-treated mice, the results obtained with grip strength test strongly 

correlated with the ones from the ex vivo force measurement experiments (Rs = 0.901; 

p < 0.01) (Figure 7A). In contrast, the simultaneous analysis of the non-treated and the 

treated mice, showed a weaker correlation between both tests (Rs = 0.635; p < 0.01) 

(Figure 7B). 
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Figure 7. Relationship between grip strength and ex vivo force measurement data. (A) wild-type (WT) 

and non-treated mdx (MDX ND) mice. (B) wild-type (WT), non-treated mdx (MDX ND) and A6-treated 

mdx (MDX A6) mice. Rs = Spearman´s rank correlation coefficient. 

Histological evidence of muscle damage 

Diaphragm muscles from mdx mice showed a 45.09 ± 1.96% of centrally 

nucleated fibres which was significantly higher than the one found in wild type mice 

(5.05% ± 0.67) (One-way ANOVA Tukey´s Post hoc test, P < 0.05) (Figure 8). 5-weeks 

treatment with the compounds A6 and A7, as well as with S107, significantly reduced 
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the percentage of fibres with central nuclei in a 28%, 20% and 19% respectively (Figure 

8B). 

 

 

Figure 8. (A) Diaphragm cryostat sections from wild type (WT) and mdx (MDX) mice stained for 

collagen IV (green) and nuclei (blue) showing central nucleation in dystrophic muscle. Scale bar 100 

µm. (B) Quantification of myofibre central nucleation in diaphragm muscles from wild type (WT), non-

treated mdx (MDX ND), A6 treated mdx (MDX A6), A7 treated mdx (MDX A7) and S107 treated mdx 

(MDX S107) mice after 5-weeks of treatment. Data are represented as average ± SEM, n = 3 WT; n = 

9 MDX ND; n = 7 MDX A6; n = 6 MDX A7; n = 6 MDX S107. # vs WT and * vs non-treated (ND) P 

<0.05 (One-way ANOVA Tukey´s Post hoc test). 
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A similar effect was observed in TA muscle, were mdx mice showed a 57.66 ± 

1.89% of central nucleation. In TA muscle A6 and A7 significantly reduced central 

nucleation to 44.56 ± 1.21% and 45.25 ± 3.98% respectively. In addition, S107 

significantly reduced central nucleation to 46.12 ± 3.21% (Figure 9). 

 

Figure 9. Quantification of myofibre central nucleation in tibialis anterior muscles from wild type 

(WT), non-treated mdx (MDX ND), A6 treated mdx (MDX A6), A7 treated mdx (MDX A7) and S107 

treated mdx (MDX S107) mice after 5-weeks of treatment. Data are represented as average ± SEM, n = 

3 WT; n = 9 MDX ND; n = 7 MDX A6; n = 4 MDX A7; n = 4 MDX S107. # vs WT and * vs non-

treated (ND) P <0.05 (One-way ANOVA Tukey´s Post hoc test). 

DISCUSSION 

Duchenne muscular dystrophy is a devastating genetic disease characterised by 

progressive muscle degeneration and weakness that result in premature death. Currently, 

only palliative treatments are available to treat DMD patients, so the development of 

specific treatments is needed74. Although gene therapy seems to be a very promising 

approach 74,162, it presents several difficulties that would make the way long, so novel 

pharmacological tools that would allow a better management of symptoms and would 
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improve patient’s quality of life are needed. RyR stabilisers are one of those emerging 

therapeutic alternatives that have demonstrated efficacy in several mouse models of 

muscular dystrophy55,56. Here, the effect of two novel RyR stabilisers, A6 and A7, was 

tested in the mdx mouse model of Duchenne muscular dystrophy. In parallel, the rycal 

S107 (Armgo Pharma) was used as a reference treatment in these experiments, since it 

shares the same mechanism of action with AHK compounds. 

A6, A7 and S107 compounds were administered in drinking water in order to 

reduce administration-induced stress in the mdx mice116. Treatments were started at the 

age of 1-month, coinciding with the initial phase of degeneration-regeneration and 

necrosis215. After 5-weeks of treatment, no evident sign of toxicity was detected in any 

of the treatment groups. Likewise, water consumption was similar in all the conditions 

suggesting that the administered dose was equivalent within the different groups. 

Several studies have already reported that resting intracellular calcium levels are 

significantly higher in mdx muscle fibres123–125. Hence, in the present work resting 

intracellular calcium levels were measured in isolated FDB muscle fibres, in order to 

assess whether RyR modulators are able to rescue alterations in calcium homeostasis 

that occur in dystrophic skeletal muscles. Indeed, overnight in vitro treatment with A6, 

A7 or S107 reduced intracellular calcium to wild type levels, suggesting a reduction of 

SR calcium leak (Figure 3). Interestingly, a similar effect was observed when analysing 

fibres obtained from mdx mice treated with AHK compounds during 5 weeks. In 

addition, although no significant S107 treated mdx mice also showed a reduction of 

intracellular calcium levels. The difference observed between in vitro and in vivo treated 

fibres and S107 treatment could reflect that AHK compounds have better in vivo 

bioavailability than S107 after oral administration. 

Dysregulation of calcium homeostasis has been involved in the pathophysiology 

of muscular dystrophies30. Furthermore, treatments targeting calcium related processes 

have demonstrated efficacy in improving dystrophic features in mouse models of 

DMD55,107. In order to prove whether RyR modulation with AHK compounds improved 
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muscle performance and reduced muscle degeneration, mice were analysed after 5-

weeks of treatment. Mdx mice shows a mild phenotype, so forced exercise in a treadmill 

was used in order to exacerbate muscle pathology and evaluate treatment 

efficacy130,215,218. 

Measurement of serum creatine kinase levels is a validated method to detect 

muscle damage and screen dystrophic patients219. Furthermore, several studies reported 

increased CK levels also in mdx mice107,116,218. A previous study reported that treatment 

with the RyR stabiliser S107, reduced serum CK levels in mdx mice55. Although in the 

present work serum CK levels were reduced with all the tested treatments, only the 

reduction observed with the novel compound A6 was significant in mdx mice (Figure 

4). Interestingly, treatment with the new rycal lead candidate from Armgo Pharma, 

Arm210, has not shown any effect on serum CK levels in mdx mice220. 

Another reliable outcome that is commonly used to assess the efficacy of novel 

treatments against DMD is the forelimb grip strength116. Several works have reported 

force deficits in mdx mice130,215,221,222. Furthermore, a variety of experimental 

therapeutic strategies have shown a positive effect in increasing force production in 

several mouse models of DMD112,115,223–227. In the present work, AHK treated mice 

presented a significant increase in forelimb grip strength after 5-weeks of treatment, 

demonstrating that AHK compounds could be beneficial for DMD patients (Figure 5). 

As expected55, S107 treatment also improved force deficit in mdx mice. On the contrary, 

A6 treatment did not alter force production in wild-type mice, which supports that AHK 

compounds specifically act through abnormally modified RyR receptors. 

Next, in order to validate grip strength results, ex vivo force measurement 

experiments in TA muscle were performed in collaboration with Rando lab at Stanford 

University. In these studies, TA muscles from mdx mice showed a significant reduction 

of specific force, which was significantly increased with A6 treatment. However, the 

magnitude of the effect showed using these two different approaches was slightly 

different. Using grip strength technique A6 treatment increased mdx force in a 30%, 
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whereas in isolated TA experiments the increase was around 16%. Accordingly, ex vivo 

force measurement and in vivo forelimb grip strength data presented a strong correlation 

when analysing wild type and non-treated mdx mice. Interestingly, when adding A6 

treated mice to the analysis the correlation between both techniques was weaker, 

although it remained significant (Figure 7). The observed differences between both tests 

could be indicating muscle independent effects of the drug, such as effects on mice 

motivation or learning ability, effect on other non-muscle tissue or changes in 

metabolism228. Undoubtedly, further experiment would be needed in order to elucidate 

other possible effects of A6. 

Next, muscle damage was quantified in order to determine whether the 

improvement detected in functional assays correlated with a reduction in muscle 

damage. For this purpose, central nucleation was quantified in diaphragm and tibialis 

anterior muscles of mdx mice as an indicator of degeneration-induced muscle 

regeneration117. Limb muscles of mdx mice, such as tibialis anterior muscle (TA), 

display similar disease progression than DMD patients, showing cycles of degeneration 

and regeneration; however, severity of damage in these muscles is much lower than in 

dystrophic patients. Diaphragms from mdx mice recapitulate more closely human 

disease progression, and thus it has become a fundamental muscle in the evaluation of 

therapeutic interventions in mdx mice115,215,228. As previously described in several 

works115–117,215, in the present study dystrophic mice showed centrally nucleated fibres 

of around 45.09% in diaphragm and 57.66% in TA muscles. Furthermore, AHK 

compounds significantly reduced central nucleation in mdx muscles in a 24-20% (Figure 

8 and 9) similarly to what was previously reported in S107 treated mice55, displaying 

their efficiency in preventing muscle degeneration. All together, these results show that 

AHK compounds normalise resting intracellular calcium levels in mdx mice, 

ameliorating muscle damage and improving muscle function. Thus, we conclude that 

AHK compound could be considered a novel therapeutic alternative to treat muscular 

dystrophies. 
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The principal limitation of this study is that mice were treated with the 

compounds in drinking water ad libitum, so the exact amount of compound consumed 

per mouse is unknown. Serum determination of the compounds could help to clarify the 

results and diminish the high variability found in several tests. For future experiments, 

a controlled administration per mice that would allow dose-effect assessment will help 

to elucidate the benefits of these compounds for the treatment of DMD patients.
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INTRODUCTION 

Muscular dystrophies are a heterogeneous group of genetic disorders 

characterised by skeletal muscle degeneration and weakness. Duchenne muscular 

dystrophy (DMD) is the most common childhood form of muscular dystrophy affecting 

1 in 3500-5000 boys79,229. This disease is caused by mutations in the DMD gene that 

lead to absence of dystrophin (DYST) protein102 and provokes muscle degeneration and 

premature death. Unfortunately, no specific therapies are available to treat these 

patients74. 

In the last decades, animal models of DMD have been used to better understand 

DMD pathophysiology and develop novel therapeutic strategies94.In mdx mouse model, 

dystrophin deficiency is accompanied by an increased phosphorylation and nitrosylation 

of the ryanodine receptor 1 (RyR1) which is the main calcium release channel of the 

muscle. These post-translational modifications reduce RyR1 binding affinity to 

calstabin 1 (Calst1), a small protein that stabilises the close state of the channel. As a 

consequence, RyR1 leak calcium to the cytoplasm, contributing to the increased 

intracellular calcium levels that are a hallmark of dystrophic muscles25,55. Interestingly, 

Ahulken compounds (AHK), which are RyR1 stabilisers that have been designed to act 

through this novel molecular target, increase RyR1-Calst1 binding improving 

dystrophic phenotype and reducing intracellular calcium leak in mdx mouse 

(unpublished data; Chapter 2). However, little is known about RyR1 post-translational 

modifications and the effect of AHK compounds in DMD patients or human models of 

the disease. 

Although animal models have been essential to study muscle physiology and 

pathology in vivo and in vitro144,230, they usually present a mild dystrophic phenotype 

that makes results extrapolation to patients challenging115,133,222. Additionally, disease 

mechanisms as well as treatment responses can vary between species, thus the 

development of human models would be of great interest to predict patients’ response 

to experimental treatments. 
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Within the human in vitro systems, patient-derived primary myoblast cultures are 

the preferred model due to their high physiological relevance. However, this model 

presents some important drawbacks that make difficult to use it as a screening tool. 

Specifically, primary myotubes present limited proliferation potential, suffer 

senescence-induced changes and display high inter-individual heterogeneity137,138,231,232. 

In addition, it has been reported that dystrophic myoblasts show alterations in 

proliferation and differentiation, compared to healthy myoblasts37,145,146. For these 

reasons, comparison of cells from different donors and/or pathologies could be 

challenging. 

Alternatively, several work have been focused on generating myotubes from non-

muscular sources, such as fibroblasts (MyoD-converted)154,155,233 or inducible 

pluripotent stem cells (hiPSCs)156,159,234. Although these models overcome sample 

availability limitations, their physiological relevance is still on debate. On the other 

hand, immortalisation of patient-derived primary myoblasts has become a very 

interesting strategy. Since immortalisation of myoblasts solves sample availability and 

limited proliferation troubles without compromising the physiological relevance of the 

model151–153, they constitute a reproducible model that could be used for drug testing. 

The main objectives of this work were to 1) develop a reliable and reproducible 

human in vitro model of DMD based on immortalised myoblasts, 2) study RyR1-Calst1 

binding and calcium homeostasis in a human model of DMD and 3) test the effect of 

AHK compounds in a human model of DMD. 

METHODS 

Cell cultures 

LHCN-M2152 and KM155C25 (healthy control) and NH10-637A (DMD patient, 

deletion 44-50) human immortalised myoblasts were generated by the Platform for 

Immortalisation of Human Cells (Myology Institute, Paris) and they were kindly 
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provided by Dr Vincent Mouly. LHCN-M2, KM155C25 and NH10-637A cells were 

referred to as CTRL1, CTRL2 and DMD, respectively. Human myoblasts were cultured 

as previously described in Chapter 1. Briefly, myoblasts were grown in SGM medium 

on 0.5% gelatin coated dishes. At confluence, ECM was added to generate a thin overlay 

and cells were incubated with basic differentiation medium (bDM) until they started to 

fuse. Then, medium was replaced by complete differentiation medium (cDM) and half 

volume was changed every three days. Highly mature myotubes were obtained after 

eight days of differentiation and they were used in the rest of experiments. 

Silencing of dystrophin with shRNA 

Lentiviral particles containing short hairpin RNA (shRNA) were used to knock 

down dystrophin in LHCN-M2 myotubes. Lentiviral particles were produced by the 

Viral Vectors Platform at Inbiomed (Spain) from the following plasmid DNAs: 

TRCN0000053243 (DYST-shRNA) and SHC002 (NS-shRNA) (Sigma-Aldrich). 

Human myoblasts were infected with DYST-shRNA or NS-shRNA containing 

lentivirus at a multiplicity of infection (MOI) of 5 in proliferation medium supplemented 

with 4 µg/mL polybrene for 24 hours. Finally, infected myoblasts were selected during 

seven days with puromycin containing proliferation medium. 

Morphologic characterisation 

To characterise myotube morphology, the width of fully mature myotubes was 

measured at 10X magnification. A minimum of four images and 20 myotubes from three 

independent cultures were analysed per condition. Image quantification was performed 

using ImageJ software (NIH). 

Creatine kinase assay 

Creatine kinase activity was measured in cell culture homogenates from CTRL1, 

CTRL2, DMD and shRNA infected LHCN-M2 myotubes as a maturity marker235,236. 

Myotubes were lysed with a 0.1% Triton X-100 in 2M Tris solution and CK activity 
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was determine using CK-NAC colorimetric kit (Thermo Fisher). Measurements were 

made in a NanoDropÒ ND-1000 apparatus. Homogenates from at least 3 independent 

cultures were analysed. 

Quantitative real-time PCR 

Total RNA was extracted from cell culture homogenates using the MiniRNeasy 

kit and RNase-Free DNase Set (Qiagen). After quantification, cDNA was obtained from 

1 µg RNA using SuperScriptâ Vilo cDNA Synthesis kit (Thermo Fisher). Finally, qPCR 

reaction was carried out in a 7900HT Real-Time PCR System apparatus (Applied 

Biosystems). 

cDNAs from CTRL1, CTRL2, DMD and DYST-shRNA and NS-shRNA 

myotubes were used to study the mRNA expression of the following genes: ACTN1, 

CAPN3, CK, DHPRa1, HPRT1 and DYST. qPCRs were carried out with 10 ng of cDNA 

and 300 nM of forward and reverse primers diluted in Power SYBRâ Green PCR master 

mix (Thermo Fisher). The amount of cDNA was calculated from the appropriate 

standard curve. The following forward and reverse primer sequences were used: 

ACTN1, 5´-TTCAACGTGCCTGCCATGT -3´ and 5´-CAACACGATGCCGGTGG 

TA-3´; CAPN3, 5´-GAAAAGAGGAACCTCTCTGAGGAA-3´ and 5´-CGAAGAT 

GATGGGCTTG GTT-3´; CK, 5´-GAAGCTCTCTGTGGAAGCTCTCA-3´ and 5´-

CCTTCTCCGTCATGCTCTTCA-3´; DHPRa1, 5´-GCCATCTCCGTGGTGAAGAT-

3´ and 5´-CACTGC ACCACGTGCTTCA-3´; HPRT1 5´-CATGGACTAATTATG 

GACAGGACTGA-3´ and 5´-TGAGCACACAGAGGGCTACAA-3´; and DYST 5´-

ACAGGGCAAAAACT GCCAAA-3´ and 5´-CGCAGTGCCTTGTTGACATT -3´. 

Primers were designed using Primer ExpressÒ software (Thermo Fisher) and specificity 

was ensured with Reverse e-PCR online software 

(http://www.ncbi.nlm.nih.gov/projects/e-pcr/reverse.cgi). 
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Western blotting 

CTRL1, CTRL2, DMD and DYST-shRNA and NS-shRNA myotubes were 

homogenised in modified RIPA assay buffer (10 nM Tris, 100 mM NaCl, 1 mM EDTA, 

1 mM EGTA, 20 mM Na4P2O7, 1% Triton X-100, 0.5% sodium deoxycolate, 0.1% SDS, 

10% glycerol, 1X Halt Protease & Phosphatase Inhibitor Cocktail EDTA-Free, pH 7.5) 

for total protein extraction. Then, total protein amounts were quantified using the Bio-

Rad Protein Assay dye reagent and 4X Sample Buffer was added to the samples (250 

mM Tris pH 7.5, 20% glycerol, 8% SDS, 20% b-mercaptoethanol and 5 mg/mL 

bromophenol blue). Finally, samples were boiled for five minutes and stored at -20 ºC 

until analysis. 

Protein extracts were solved in Min-PROTEANÒ TGXTM 4-20% gradient SDS-

PAGE precast gels (Bio-Rad). Next, proteins were transferred onto low fluorescence 

PVDF membranes and blocked with TBS-tween and 5% skim milk powder. After that, 

membranes were incubated with primary antibodies overnight at 4 ºC. The following 

antibodies were used: anti-DHPRa2 mouse mAb (1:1000, Abcam), anti-ACTN rabbit 

pAb (1:1000, Sigma), anti-CK rabbit (1:1000, Sigma), FITC-conjugated Myosin Heavy 

Chain-CFS mAb (1:50, R&D), anti-DYST mouse mAb (1:500, DSHB) and anti-a-

sarcoglycan mouse mAb (1:500, Santa Cruz). After washing, membranes were 

incubated with Alexa Fluor 647 or 488-conjugated secondary antibodies and 

fluorescence images were acquired with a Typhoon Trio Imager (GE Healthcare). For 

image quantification Image Studio Lite 4.0 software was used. 

Proximity ligation assay 

DYST-shRNA and NS-shRNA myotubes were treated overnight with 150 nM 

A6 or A7 and in situ proximity ligation assay (PLA) was performed as previously 

described in Chapter 1. Briefly, myotubes were fixed with paraformaldehyde and 

incubated with blocking solution for 1 hour at room temperature. Next, coverslips were 

incubated with anti-RyR1 mouse mAb (1:200, Thermo Scientific), anti-Calst1 rabbit 
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pAb (1:100, Novus Biologicals), anti-PKA rabbit pAb (1:100, Cell Signalling) and anti-

CysNO rabbit pAb (1:500, Sigma-Aldrich) primary antibodies and PLA assay was made 

using Duolink In situ Orange kit. After that myotubes were stained with FITC-

conjugated Myosin Heavy Chain-CFS mAb (1:50, R&D) and they were mounted with 

ProLongÒ Gold antifade reagent with DAPI (Life technologies). High resolution images 

were quantified using ImageJ software (NIH) and the “Batch spot analysis macro” from 

Dr. Henry Wellcome lab. PLA signal was normalised by total myotube area, obtained 

by quantification of MyHC stained area. 

Calcium imaging 

For intracellular calcium imaging studies DYST-shRNA and NS-shRNA 

myotubes were treated overnight with A6 and A7 at 50 nM and 150 nM concentrations. 

Then, experiments were performed as previously described in Chapter 2. In short, 

myotubes were incubated with 4 µM Fura-2AM and 0,02% pluronic acid in culture 

medium for 30 min at 37ºC. Then, they were placed in Ringer solution for 30 min at 

37ºC and image acquisition was done under continuous perfusion. Intracellular calcium 

concentration was estimated by the ratio of Fura-2AM fluorescence intensities at 340 

nm and 380 nm after applying background correction. 

RESULTS 

Characterisation of CTRL1, CTRL2 and DMD myoblasts 

After eight days in differentiation medium, highly mature myotubes were 

obtained from immortalised patient-derived primary myotubes (Figure 1A). Myotube 

width analysis revealed significant differences between CTRL2 and DMD myotubes 

(paired t-test, P < 0.05). CTRL2 myotubes showed an average width of 21.17 ± 2.31 

µm, whereas DMD myotubes width was 27.75 ± 2.93 µm. 
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Figure 14. (A) Representative bright field images of CTRL1, CTRL2 and DMD myotubes after 8 days 

of differentiation. Scale bar 50 µm (B) Quantification of myotube width in CTRL1, CTRL2 and DMD 

myotubes after 8 days of differentiation. Data are represented as average ± SEM, n = 20-40 myotubes 

per 3-5 independent cultures. # compared to CTRL1 and * compared to CTRL2 P <0.05 (non-paired t-

test). 

In contrast, no significant differences were found between DMD and CTRL1 

myotubes (Figure 1B). In relation to culture maturity, no significant differences were 

found in CK activity in culture homogenates from any of the three cell lines (Figure 2). 
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Figure 15. Creatine kinase (CK) activity in CTRL1, CTRL2 and DMD myotubes after 8 days of 

differentiation. Data are represented as average ± SEM, n =3-5 independent cultures. 

When analysing mRNA expression of maturity related genes, significant 

differences in ACTN 1, CAPN3, CK and DHPRa1 expression were found between 

CTRL1 and DMD myotubes (Figure 3). DMD myotubes showed 2.42-fold increase in 

ACTN1 expression, 0.62-fold reduction of CAPN3 expression, 0.35-fold reduction in 

CK expression and a 1.34-fold increase in DHPRa1 expression compared to CTRL1 

myotubes (paired t-test, P < 0.05). In contrast, only significant differences in CAPN3 

expression were found between CTRL2 and DMD, where CAPN3 expression was 2-

folds higher in dystrophic myotubes (paired t-test, P < 0.05). 

Finally, western blot analysis revealed that the expression of DHPR, ACTN1, 

CK and MyHC was similar between CTRL1 and DMD myotubes (Figure 4). In the same 

way, no significant differences were found among CTRL2 and DMD myotubes (paired 

t-test, P > 0.05). 
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Figure 3. mRNA expression of ACTN1, CAPN3, CK, DHPRa1 and HPRT1 in CTRL1, CTRL2 and 

DMD myotubes after 8 days of differentiation. CTRL1 myotube value was taken as 1. Data are 

represented as average ± SEM, n =3-5 independent cultures. # compared to CTRL1 and * compared to 

CTRL2, P <0.05 (paired t-test). 

 

Figure 4. Protein levels of DHPRa2, ACTN, CK and MyHC in CTRL1, CTRL2 and DMD myotubes 

after 8 days of differentiation. CTRL1 myotube value was taken as 1. Data are represented as average ± 

SEM, n =3-5 independent cultures. 
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Characterisation of DYST-shRNA and NS-shRNA myoblasts 

 

 

Figure 5. (A) Representative bright field images of NS-shRNA and DYST-shRNA infected LHCN-M2 

myotubes after 8 days of differentiation. Scale bar 25 µm. (B) Quantification of myotube width in NS-

shRNA and DYST-shRNA myotubes after 8 days of differentiation. Data are represented as average ± 

SEM, n = 20-25 myotubes per 3 independent cultures. 

NS-shRNA and DYST-shRNA infected LHCN-M2 myotubes showed very 

similar morphology and maturation (Figure 5A). When analysing myotube width, no 

significant differences were observed between control and dystrophic myotubes, which 
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width was around 28.71 ± 3.62 µm (Figure 5B). In relation to maturity, NS-shRNA 

myotubes showed 132.67 ± 3.62 U/L CK activity which did not change after DYST 

knocking down (paired t-test, P > 0.05) (Figure 6). 

 

Figure 6. Creatine kinase (CK) activity in NS-shRNA and DYST-shRNA myotubes after 8 days of 

differentiation. Data are represented as average ± SEM, n =3 independent cultures. 

In the same way, mRNA expression of ACTN 1, CAPN3, CK and DHPRa1 did 

not change with dystrophin silencing (paired t-test, P > 0.05) (Figure 7). Consistently, 

no significant differences were found in protein levels of DHPR, ACTN1, CK and 

MyHC between NS-shRNA and DYST-shRNA myotubes (paired t-test, P > 0.05) 

(Figure 8). 

However, it was observed that the infection efficiently reduced DYST mRNA 

levels in a 38.24%, being protein levels undetectable in DYST-shRNA myotubes (paired 

t-test, P < 0.05) (Figure 9). Additionally, a-sarcoglycan expression was significantly 

reduced in DYST-shRNA myotubes (0.55 ± 0.11) when compared to NS-shRNA 

myotubes (1 ± 0.12) (paired t-test, P < 0.05) (Figure 10). 
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Figure 7. mRNA expression of ACTN1, CAPN3, CK, DHPRa1 and HPRT1 in NS-shRNA and DYST-

shRNA infected LHCN-M2 myotubes after 8 days of differentiation. NS-shRNA value was taken as 1. 

Data are represented as average ± SEM, n =3 independent cultures. 

 

Figure 8. Protein levels of DHPRa2, ACTN, CK and MyHC in NS-shRNA and DYST-shRNA 

myotubes after 8 days of differentiation. NS-shRNA value was taken as 1. Data are represented as 

average ± SEM, n =3 independent cultures. 
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Figure 9. (A) mRNA and (B) protein levels of DYST in NS-shRNA and DYST-shRNA myotubes after 

8 days of differentiation. NS-shRNA value was taken as 1. Data are represented as average ± SEM, n 

=3 independent cultures. * P <0.05 (paired t-test). 
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Figure 10. Protein levels of a-sarcoglycan in NS-shRNA and DYST-shRNA myotubes after 8 days of 

differentiation. NS-shRNA value was taken as 1. Data are represented as average ± SEM, n =3 

independent cultures. * P <0.05 (paired t-test). 

 

RyR1-Calst1 and calcium homeostasis in DYST-shRNA and NS-shRNA myotubes 

At 8 days of differentiation, dystrophin knock down myotubes (DYST-shRNA) 

showed significant changes in RyR1 post-translational modifications and Calst1 binding 

(paired t-test, P < 0.05). First, RyR1 was found to be hypernitrosylated and 

hyperphosphorylated in dystrophin deficient myotubes (Figure 11). RyR1 

phosphorylation was increased in a 62.20 ± 18.20% whereas nitrosylation was 97.90 ± 

19.50% higher. Consequently, DYST-shRNA infected myotubes showed a 48.24% 

reduction in RyR1-Calst1 interaction compared to the NS-shRNA infected myotubes 

(Figure 12A). 
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Figure 11. In situ proximity ligation assay (PLA) analysis of (A) RyR1 phosphorylation and (B) RyR1 

nitrosylation in NS-shRNA infected (NS-shRNA) and DYST-shRNA infected (DYST-shRNA) LHCN-

M2 myotubes. Data are represented as percentage of colocalisation. The NS-shRNA infected (NS-

shRNA) control was taken as 100%. All data are mean ± SEM, n = 4, * P <0.05 (t-test). 
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Figure 12. (A) In situ proximity ligation assay (PLA) analysis of RyR1-Calst1 in NS-shRNA and 

DYST-shRNA infected LHCN-M2 myotubes. Data are represented as percentage of colocalisation. The 

NS-shRNA was taken as 100%. All data are mean ± SEM, n = 11-15 from 3 independent cultures, * P 

<0.05 (t-test). (B) Resting intracellular calcium levels of NS-shRNA and DYST-shRNA myotubes. All 

data are mean ± SEM, n = 80-100 myotubes from 4 independent cultures, * P <0.05 (t-test). 
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Intracellular calcium levels increased as a consequence of dystrophin deficiency 

in LHCN-M2 myotubes (Figure 12B). NS-shRNA infected myotubes presented resting 

intracellular calcium levels of 0.58 ± 0.004, whereas in DYST-shRNA myotubes 

calcium levels significantly increased to 0.63 ± 0.01 (t-test, P < 0.05). 

Effect of AHK compounds in DYST-shRNA and NS-shRNA myotubes 

In vitro treatment of DYST-shRNA myotubes with AHK compounds 

significantly increased RyR1-Calst1 binding, leading to a reduction of resting 

intracellular calcium levels (t-test, P < 0.05). After overnight treatment with 150 nM 

A6 and A7, RyR1-Calst1 binding significantly increased in a 20 and 27%, respectively 

in DYST-shRNA myotubes compared to non-treated myotubes (Figure 13A). In 

contrast, treatments did not change RyR1-Calst1 interaction in NS-shRNA myotubes (t-

test, P > 0.05) (Figure 13B). 

The observed increase in RyR1-Calst1 binding drive the subsequent reduction of 

resting intracellular calcium levels in DYST-shRNA myotubes (Figure 14). Overnight 

treatment with 50 nM A6 and A7 significantly reduced intracellular calcium levels in 

DYST-shRNA myotubes to 0.58 ± 0.004 and 0.58 ± 0.003, respectively, compared to 

non-treated myotubes that showed 0.63 ± 0.01 levels (t-test, P < 0.05) (Figure 15A). 

However, these treatments did not change calcium levels in NS-shRNA myotubes (t-

test, P > 0.05) (Figure 15B). 
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Figure 13. In situ proximity ligation assay (PLA) analysis of RyR1-Calst1 in non-treated (ND), A6 

treated (A6) and A7 treated (A7) (A) DYST-shRNA infected (DYST-shRNA) and (B) NS-shRNA 

infected (NS-shRNA) LHCN-M2 myotubes. Data are represented as percentage of colocalisation. The 

non-treated NS-shRNA infected myotubes (NS-shRNA ND) value was taken as 100%. All data are 

mean ± SEM, n = 11-15 from 4 independent cultures, # vs NS-shRNA ND and * vs DYST-shRNA ND 

P <0.05 (t-test). 
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In contrast, treatment of DYST-shRNA myotubes with a higher dose of 150 nM 

A6 or A7 resulted in a significant reduction of calcium levels only with A6 treatment 

(0.60 ± 0.01) (Figure 16A). Conversely, both treatments provoked a significant increase 

of calcium levels in control myotubes to 0.65 ± 0.02 and 0.62 ± 0.01, respectively, 

compared to non-treated control myotubes that showed 0.58 ± 0.004 levels (t-test, P < 

0.05) (Figure 16B). 

 

 

Figure 14. Representative pseudocolor images of Fura-2AM loaded NS-shRNA infected control 

myotubes (NS-shRNA) and DYST-shRNA infected non-treated dystrophic myotubes (DYST-shRNA 

ND), A6 treated dystrophic myotubes (DYST-shRNA A6) and A7 treated dystrophic myotubes (DYST-

shRNA A7). Scale bar 25 µm. 
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Figure 15. Resting intracellular calcium levels of non-treated (ND), 50 nM A6 treated (A6) and 50 nM 

A7 treated (A7) (A) DYST-shRNA infected (DYST-shRNA) and (B) NS-shRNA infected (NS-

shrRNA) LHCN-M2 myotubes at 8 days in differentiation. All data are mean ± SEM, n = 80-100 

myotubes from 2-3 independent cultures, # vs NS-shRNA ND and * vs DYST-shRNA ND P <0.05 (t-

test). 
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Figure 16. Resting intracellular calcium levels of non-treated (ND), 150 nM A6 treated (A6) and 150 

nM A7 treated (A7) (A) DYST-shRNA infected (DYST-shRNA) and (B) NS-shRNA infected (NS-

shRNA) LHCN-M2 myotubes at 8 days in differentiation. All data are mean ± SEM, n = 80-100 

myotubes from 3 independent cultures, # vs NS-shRNA ND and * vs DYST-shRNA ND P <0.05 (t-

test). 
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DISCUSSION 

Experimental in vitro models of muscular dystrophies are essential tools to 

understand the mechanisms underlying disease progression and to develop and screen 

novel therapies. In the past, animal models of DMD were mainly used in these studies 

but since pathological mechanisms and treatment response could differ between species, 

special effort is being placed in the development of human models138. Within the 

existing models, patient-derived myoblasts present high physiological relevance but 

have limited proliferative potential and undergo senescence-induced phenotypic 

changes that hinder working with a homogeneous cell population over time137,231. 

Immortalisation of human myoblasts may solve this issue since it produces stable cell 

lines, while preserving the main characteristics of the parental population151–153. 

Additionally, it should be noted that the expression of calcium handling proteins and as 

a consequence intracellular calcium levels, change during myotube differentiation 

process237–239. Hence, when working with myotubes from healthy and dystrophic 

patients, it is essential to compare myotubes at same maturation stage, in order to 

discriminate dystrophic features from differentiation induced changes. For this reason, 

in this study morphology and differentiation of two different human models, based on 

immortalised human myoblasts, were evaluated in order to select the optimum model to 

test the effect of AHK compounds. 

First, patient-derived immortalised human myoblasts from two healthy donors 

and a DMD patient were analysed. In order to select the control that better matched 

DMD cells, all the lines were compared for morphology and maturation. Myotube width 

was used to assess morphology, whereas CK activity and the expression (at mRNA and 

protein level) of several maturation markers was used to analyse maturation. The results 

showed that differences in myotube width and CK activity were present not only 

between control and dystrophic myotubes but also between the two control cell lines, 

suggesting that myotubes did not reach the same maturation stage in culture. This 

observation was further confirmed by analysing the expression levels of several 

maturation-related genes and proteins. Thus, taking into account CK activity and 



Chapter 3 

 

 115 

CAPN3 and CK mRNA levels, we found that CTRL2 and DMD myotubes reached a 

similar maturation stage, while CTRL1 myotubes were more mature (Figure 2 and 3A). 

However, protein expression levels indicate the opposite result, where dystrophic 

myotubes maturation was more similar to CTRL1 myotubes than to CTRL2 (Figure 4). 

All together, these results indicate that none of the control myotubes studied in this work 

was appropriate for our dystrophic cell line due to differences in the differentiation 

stages of the myotubes from different donors. This fact makes comparison among 

different cell lines very challenging, since it is difficult to discriminate between 

dystrophic features and maturation-induced differences. Overall, the inter-individual 

variability found among the cell lines used in these experiments has been previously 

described by several authors as a characteristic of primary myotubes and it has been 

attributed to the combination of different factors, such as genetic background, 

physiologic conditions or medical history137,159. 

Next, in order to reduce the inter-individual variability found between cells from 

different donors, a new model was developed using long-term gene silencing of 

dystrophin in a healthy myoblast line. Thus, dystrophin was knocked down using 

lentiviral infections with shRNA specific for dystrophin in LHCN-M2 immortalised 

myoblasts. In contrast to the previous model, no differences were found in morphology 

or maturation between NS-shRNA and DYST-shRNA myotubes, indicating that this 

model resolves the inter-individual variability observed in the previous model, when 

using myotubes from different donors. After verifying that cells were at the same 

maturation stage, dystrophin knock-down was confirmed at mRNA and protein levels. 

Interestingly, in this model, dystrophin deficiency was accompanied by a reduction of 

a-sarcoglycan protein levels, which is a phenotypic feature of DMD100,115,120,240. 

Overall, these results show that silencing dystrophin in myoblasts enable the study of 

phenotypic variations that are induced by dystrophin deficiency using the same cell line 

as a control. For this reason, within the proposed models, DYST-shRNA silencing 

model was selected to study RyR1 macromolecular complex structure and calcium 

homeostasis in DMD and to test the effect of AHK compounds. 
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In the present study, RyR1 was found to be abnormally S-nitrosylated and PKA-

phosphorylated in DYST-deficient human myotubes leading to a reduction of Calst1 

binding (Figure 11 and 12). This mechanism has been previously found in animal 

models of DMD and other pathologies such as LGMD, chronic exercise, aging and heart 

failure56,58,197,207. In humans, evidences of RyR1-Calst1 complex disruption have been 

described after chronic exercise, heart failure and in patients under mechanic 

ventilation58,207,241. However, to our knowledge, this is the first evidence of RyR1-Calst1 

disruption in a human model of DMD. 

Interestingly, in DYST-deficient myotubes Calst1 depletion from RyR1 was 

accompanied by a significant increase in intracellular calcium levels. This result is in 

accordance with previous works were leaky RyR1 has been proposed to contribute to 

the dysregulation of intracellular calcium levels in dystrophic muscles56,75. In addition, 

several works have described elevated intracellular calcium levels in mouse models, 

patient-derived human DMD myotubes75,124,194,242 and biopsies from DMD 

patients30,37,243. However, it has been previously suggested that myotube contraction was 

essential to induce an increase of intracellular calcium levels in vitro in dystrophic 

myotubes141. Interestingly, the results obtained in this work suggest that obtaining 

highly mature myotubes could be enough to detect dysregulation of calcium 

homeostasis on human in vitro myotubes.  

AHK compounds are RyR1 stabilisers that have been designed to increase RyR1-

Calst1 binding and regulate intracellular calcium levels in the muscle. The results 

obtained in this study demonstrated that the AHK compounds A6 and A7 efficiently 

increased RyR1-Calst1 binding and reduced intracellular calcium levels in a human 

DMD model (Figure 13 and 15), suggesting that these compounds could also be used as 

a therapeutic alternative to treat DMD patients. These results are consistent with our 

previous studies showing that AHK compounds increase RyR1-Calst1 binding in human 

myotubes under peroxinitrite-induced stress, reduce intracellular calcium levels in mdx 

dystrophic fibres, and improve dystrophic phenotype of mdx mice (unpublished data; 

Chapters 1 and 2). Since calcium dysregulation is considered one of the initial triggers 
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of DMD pathogenesis30,75, compounds such as AHK molecules that target this early 

event may result in potential pharmacological treatments for dystrophic patients. 

Intriguingly, when analysing the concentration-effect relationship of AHK 

compounds, treating cells with higher concentration of AHK compounds did not 

produce more effect in terms of reduction of intracellular calcium levels (Figure 15 and 

16). In fact, in A7 treated DYST-shRNA myotubes no effect was shown with 150 nM 

treatment, whereas a significant reduction of calcium levels was observed after treating 

cells with a 50 nM concentration. Conversely, in control myotubes 150 nM AHK 

significantly increased intracellular calcium levels while no effect was observed with 50 

nM treatment (Figure 15B and 16B). Although further studies should be done to 

elucidate the exact mechanisms underlying this event, our results suggest that AHK 

compounds have a dose-effect that may be due to different conformational changes on 

RyR1-Calst1 interaction depending on their concentration or to unspecific activation of 

other calcium-handling proteins. This biphasic effect has been repeatedly related to 

drugs that produce allosteric modulation of their target proteins and it is especially 

prevalent in drugs targeting ion channels244,245. Furthermore, allosteric regulation of 

RyR by different regulatory proteins and ligands has been previously decribed36,62,246,247. 

Thus, in future studies, the exact mechanism of action of AHK compounds should be 

further characterised in order to determine compounds safety dosage and off targets. 

In summary, our results indicate that the human DMD model based on silencing 

dystrophin expression with shRNA in myotubes, recapitulates several features of DMD, 

validating its relevance for studying this disease. Accordingly, the model was 

successfully used to validate, for the first time, the RyR1-Calst1 target in a human DMD 

model and to test novel compounds that modulate this interaction. Furthermore, the 

AHK compounds A6 and A7 demonstrated their efficacy in human muscle cells, using 

RyR1-Calst1 binding and intracellular calcium levels as endpoints. Since dysregulation 

of calcium homeostasis is a mechanism proposed to trigger muscle degeneration in 

DMD patients, we expect that AHK compounds will constitute a promising therapeutic 

alternative for dystrophic patients. 
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CONCLUSIONS 

1. In mouse and human myotube cultures, AHK compounds show very low or 

undetectable in vitro toxicity, in contrast to another RyR modulator, rycal 

S107, which is cytotoxic at 1 mM concentration. 

 

2. In situ proximity ligation assay (PLA) technique has been used to effectively 

quantify RyR post-translational modifications and Calst1 binding in human 

myotube cultures. 

 

3. In human myotubes, the peroxynitrite donor SIN-1 induces RyR1 PKA-

phosphorylation, RyR1 S-nitrosylation, and Calst1 depletion from RyR1 

complexes. This model can be useful for screening drug candidates targeting 

these events. 

 

4. The AHK compounds A6 and A7, as well as S107 increase RyR1-Calst1 

interaction in human myotubes under peroxynitrite-induced stress, while they 

do not affect RyR1-Calst1 interaction in control myotubes. 

 

5. In vitro and in vivo treatments with AHK compounds and S107 normalise 

resting intracellular calcium levels of isolated muscle fibres from dystrophic 

mdx mice. 

 

6. In mdx mice, 5-week treatments with the AHK compounds A6 and A7, as well 

as S107, reduce histopathological and biochemical evidence of muscle damage 

and ameliorate overall muscle weakness. In contrast, these RyR modulators 

do not have any obvious effect in wild type mice.   



 

 

  



Conclusions 

 

 123 

7. The in vitro human model of DMD, generated by silencing dystrophin 

expression with shRNAs in the human immortalised LHCN-M2 myoblasts, 

recapitulates many features of DMD muscles, such as reduced a-sarcoglycan 

expression, increased RyR1 PKA-dependent phosphorylation and S-

nitrosylation, reduced RyR1-Calst1 interaction and increased intracellular 

calcium levels. 

 

8. In dystrophin-deficient human myotubes, AHK compounds significantly 

increase RyR1-Calst1 binding and they normalise intracellular calcium levels, 

which support their potential as alternative therapeutic drugs for DMD 

patients. 

 

 

 

 

THESIS 

The Ahulken compounds, targeting RyR1-Calst1 interaction, tested in this PhD 

thesis has proven to be useful as a treatment for Duchenne muscular dystrophy. 

Additionally, using mouse and human models of DMD this work supports the usefulness 

of RyR1-Calst1 as a therapeutic target for drug development against Duchenne and 

Becker muscular dystrophies.  
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