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Transport electrification is currently a priority for authorities, manufacturers, and research centers around the world. The
development of electric vehicles and the improvement of their functionalities are key elements in this strategy. As a result, there is
a need for further research in emission reduction, efficiency improvement, or dynamic handling approaches. In order to achieve
these objectives, the development of suitable AdvancedDriver-Assistance Systems (ADAS) is required. Although traditional control
techniques have been widely used for ADAS implementation, the complexity of electric multimotor powertrains makes intelligent
control approaches appropriate for these cases. In this work, a novel intelligent Torque Vectoring (TV) system, composed of a
neuro-fuzzy vertical tire forces estimator and a fuzzy yaw moment controller, is proposed, which allows enhancing the dynamic
behaviour of electric multimotor vehicles. The proposed approach is compared with traditional strategies using the high fidelity
vehicle dynamics simulator Dynacar. Results show that the proposed intelligent Torque Vectoring system is able to increase the
efficiency of the vehicle by 10%, thanks to the optimal torque distribution and the use of a neuro-fuzzy vertical tire forces estimator
which provides 3 times more accurate estimations than analytical approaches.

1. Introduction

The need for reducing global warming, air pollution, and
oil dependency has motivated not only the use of renewable
energies, but also some paradigm changes in other areas, such
as transportation systems, where the development of electric
vehicles (EV) has become a key strategy [1]. The interest in
vehicles with electrified powertrains (fully electric as well as
hybrid) has increased in the last years, becoming one of the
main research areas in the automotive industry [2].

The integration of electric motors in propulsion systems
provides not only better energy efficiency and lower pol-
lution, but also increased controllability, as electric motors
offer better response time [3]. These features are fueling a
notable interest in the development of Advanced Driver-
Assistance Systems (ADAS) that enhance not only the
dynamic behaviour of the vehicle, but also its efficiency and
energy consumption [4].

Traditional control approaches have been widely used
to implement ADAS during the last decades. However,
electrified propulsion systems offer wider complexity (and
multiple topologies) than internal combustion propulsion
systems. Due to this, intelligent control approaches have
become one of the main research interests lately, as they
can manage complex systems more easily than traditional
approaches.

One of the most complete ADAS for enhancing the
dynamic behaviour and stability of an electric vehicle with
per-wheel motors is Torque Vectoring (TV) [5], which
focuses on the optimal driving torque distribution. Several
strategies can be used to control the torque distribution in a
TV approach, with most of them being based on controlling
the moment along the vertical axis of the vehicle (yaw
moment) [6]. For this purpose, three main strategies are used
[7]: the first one is based on the distribution of the torque
among the driving wheels [6, 8–12]; the second one is based
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on using active vehicle roll control systems to vary the lateral
load distribution [13, 14]; finally, the third strategy consists
in implementing a steering system in both axles [15, 16]. This
work focuses on torque distribution strategies, as an all-wheel
drive vehicle has been selected as case study.

Torque distribution approaches have been implemented
conventionally using a wide variety of control algorithms.
Among the traditional approaches, simpler ones, such as
proportional-integral-derivative control (PID) based ones
[6], or more advanced algorithms, such as Model Predictive
Control (MPC) [17] or Sliding Mode Control (SMC) [9],
have been proposed. The latter provide enhanced results,
although their computational cost is higher than PID based
approaches. On the other hand, intelligent approaches, such
as neural networks [10] or fuzzy logic systems [11], have been
demonstrated to be able to provide good results with lower
computational cost, making them a good alternative to the
implementation of torque distribution approaches.

In order to achieve an effective driving torque distribu-
tion, the knowledge of the tire forces is crucial [18]. Direct
measurement of these forces, however, is a complex and
difficult task, and, therefore, the design of proper estimators
is required. Nevertheless, this issue is not always considered
in the works proposed in the literature, which are based on
perfect estimations of these forces, which is not a real-case
scenario.

Among the approaches proposed to estimate the vehicle
tire forces, the most common one is the use of estimators
based on tire models, such as the linear tire model [19],
Dugoff ’s model [20], or semiempirical models such as the
Pacejka’s tiremodel [18]. Other works do not consider the tire
model and estimate vertical tire forces based on longitudinal
and lateral load transfers as well as the static loads on
each wheel [21–25]. Intelligent modelling approaches have
also been used, which reduce the need for knowing the
complex tire dynamics and even allow model adaptation.
For instance, neural networks, extended Kalman filters, and
recursive least squares approaches are combined in [26] to
estimate tire lateral force and grip potential identification
even in aggressive manoeuvres. In [27] a longitudinal, lateral,
and vertical tire force estimator based on fuzzy logic is
used, which requires the slip angle estimation to operate
and provides high correlation. Both approaches providemore
accurate estimations compared with traditional approaches,
although their applicability presents some inconveniences, as
they require variables difficult to measure.

In summary, intelligent approaches have been demon-
strated to be a suitable alternative to ADAS development,
providing balanced performance versus computational cost.
However, proper tire force estimations are required to guar-
antee this theoretical performance in a real-case scenario. In
the literature, most works consider perfect estimations or use
estimators based on physical variables difficult to measure,
which require expensive sensors, or use complex models
whose parameters are difficult to identify. This issue reduces
the implementability and performance of the approaches
proposed in most works in real-case scenarios.

In order to solve these issues, this work presents a
novel intelligent Torque Vectoring approach, composed of

two intelligent algorithms: first, an adaptive neuro-fuzzy
inference system (ANFIS) estimator for the tire vertical forces
based on exclusively measurable variables; second, a fuzzy
yaw moment controller, which controls both vehicle yaw rate
and sideslip angle, as they are some of themost representative
vehicle dynamics variables. The proposed approach is able
to enhance electric vehicle dynamics and their efficiency.
To demonstrate its effectiveness, the ANFIS estimator and
the resulting intelligent TV system have been validated
considering several scenarios in the Dynacar high fidelity
dynamic simulator, using an E-Class vehicle and comparing
the obtained results with other previous works from the
literature.

The rest of the paper is divided as follows: In Section 2 the
proposed intelligent Torque Vectoring approach is detailed.
In Section 3, the simulation framework and experimental
setup are presented. In Section 4, the results of the validation
carried out are explained. Finally, in Section 5, the main
conclusions are presented.

2. Intelligent Torque Vectoring System

In this section the proposed intelligent Torque Vectoring
system is detailed. Itsmain purpose is to distribute the driving
torque among the different actuated wheels, so that vehicle
handling and stability is improved. It can be divided into
5 subsystems (Figure 1): the lateral torque distribution is
carried out using a fuzzy yaw moment controller, whose
reference is calculated using a yaw rate reference generator;
the longitudinal torque distribution is given by a self-defined
torque distribution algorithm, which uses an ANFIS vertical
tire forces estimator; the data provided by the longitudinal
and lateral distributions is used to calculate the final torque
distribution.

2.1. Yaw Rate Reference Generator. The developed intelligent
TV system approach is composed of a lateral torque distribu-
tion approach and a longitudinal one.The first is based on the
control of the yaw moment of the vehicle; this is, it requires
an appropriate yaw rate reference for its proper perform-
ance.

For the calculation of the desired yaw rate reference,
the well-known bicycle model is used, as it provides a good
balance between accuracy and computational cost [28]. In
order to further increase computational performance, the
following assumptions and simplifications are carried out: the
center of gravity is assumed to be at a height of zero; the
variation of the vertical force of each tire will not be taken
into account; small slip angles assumption will be considered,
so that sin(𝛽) = 𝛽 and cos(𝛽) = 1 (linear region); and
the coefficient of lateral stiffness of the tire will be constant,
defined by the ratio of the lateral force to the slip angle.

It must be noted that this model of reduced complexity
is exclusively used for real-time execution in the controller.
In addition, some of these simplifications are reasonable for
passenger cars, as they are not driven until the limits of the
tires.
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This way, the yaw rate reference equation is [28]

𝜓̇ref = 𝑉
𝐿 + (𝑚/𝐿) (𝑏/𝐶𝛼𝐹 − 𝑎/𝐶𝛼𝑅) 𝑉2 𝛿, (1)

where 𝑚 is the total mass of the vehicle located in the center
of gravity, 𝑎 and 𝑏 are the distance to the center of gravity of
the front and rear axle, respectively, 𝐿 is the distance between
axles, 𝛿 is the angle of rotation of the front wheels, 𝐶𝛼𝐹 and𝐶𝛼𝑅 are the lateral stiffness coefficients of the front and rear
wheels, respectively, and 𝑉 is the vehicle speed.

However, for safety reasons it is necessary to limit the
value of the yaw rate reference generated. In this case, the
limit has been set as follows [6]:

󵄨󵄨󵄨󵄨𝜓̇ref ,max
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑎𝑦
𝑉
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , (2)

where 𝑎𝑦 is the vehicle lateral acceleration.
2.2. Fuzzy Yaw Moment Controller. The fuzzy yaw moment
controller handles the lateral torque distribution (𝜏lat) for the
vehicle. Hence, considering both the yaw rate and slip angle
of the vehicle, this system calculates the torque percentage to
be applied to each side of the vehicle. This way, if 𝜏lat = 0, all
the torque will be applied to the wheels of the right side; and

if 𝜏lat = 1, all the torque is applied to the wheels of the left
side.

This subsystem is based on fuzzy logic, which is an
extension of Boolean logic by Zadeh in 1965 [29] based on the
mathematical theory of fuzzy sets. It enables an abstraction
from the model and mathematical formulations by translat-
ing expert knowledge into rules without renouncing a notable
level of fine-tuning capabilities.

The most common fuzzy logic system structure is shown
in Figure 2. First a fuzzification process must be carried out
to transform the input data into fuzzy sets to continue with
an inference system, based on the developed rules. Finally, a
defuzzification method is necessary in order to convert the
result given by the inference system into the exact value to, in
this particular case, ensure appropriated control.

The proposed fuzzy logic controller is based on the
Mamdani fuzzy model, as it provides a more intuitive tuning
[30]. In order to calculate the torque percentage to be
applied to each side of the vehicle, 𝜏lat, the controller requires
three inputs: the yaw rate error, its derivative, and the side
slip angle error. The yaw rate error and its derivative are
calculated considering the reference detailed in the previous
subsection.The slip angle error is calculated considering that
the reference sideslip angle of the vehicle will be zero, in
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Figure 3: Fuzzy logic controller proposed.

order to reduce the real value of the slip and achieve a neutral
handling.

The actual vehicle sideslip angle value is calculated using
the following equation [31]:

𝛽 = arctan(𝑉𝑦𝑉𝑥) , (3)

where𝑉𝑦 and𝑉𝑥 are the vehicle speed in longitudinal (𝑥) and
lateral (𝑦) local axes.

For the design of the fuzzy system the following structure
has been implemented. First, a distribution of 5 membership
functions has been chosen for the yaw rate error 𝑒(𝜓) and
for its derivative ̇𝑒(𝜓), and three membership functions for
the input of lateral slip angle, 𝑒(𝛽). Considering the typical
sideslip angle and yaw rate values achieved by a passenger car,
it has been considered that five membership functions cover
the whole range for the first two variables with a good level
of accuracy. Moreover, the sign of sideslip angle determines
if the vehicle has a neutral, understeering or oversteering
behaviour. Therefore, it has been considered that only 3
membership functions are needed for this last variable. All
of them have been selected as trapezoidal and triangular.The
trapezoidal ones have been selected for the boundaries of
each variable and for the membership functions of sideslip
angle, since the proposed controller tries to minimize this
variable and, therefore, accuracy is not the highest priority.

The triangular ones have been used for the rest of variables,
as they provide computationally efficient calculations [32]
maintaining acceptable smoothness on the response, suitable
to be implemented in conventional automotive Electronic
Control Units (ECUs).

And finally, for the output, the torque percentage to be
applied to each side of the vehicle, 𝜏lat, a more complex
distribution of membership functions has been chosen, nine
in this case, aiming to achieve a response as accurate and
smooth as possible.

The structure of the developed fuzzy controller is shown
in Figure 3 including the membership functions.

Subsequently the corresponding rules have been imple-
mented based on the knowledge about the system and human
driving datasets. Table 1 shows the names and description
of the membership functions, while Tables 2–4 show the
implemented rules.

2.3. ANFIS Vertical Tire Forces Estimator. The dynamic
behaviour of the vehicle depends heavily on the tire forces,
as these model the contact force between the wheels and
the road. However, their estimation is one of the most
complex issues in vehicle dynamics, as the tire/road contact
dynamics depends on a number of different variables. Direct
measurement of these forces is not always a solution either, as
these forces are very difficult to measure.
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Table 1: Membership functions names.

Names Description
NVL Negative very large
NL Negative large
NM Negative medium
NS Negative small
ZE Zero
PS Positive small
PM Positive medium
PL Positive large
PVL Positive very large

Table 2: Rules for negative yaw rate error derivative.

̇𝑒(𝜓̇) < 0 𝑒(𝜓̇)

𝑒(𝛽)

NL NS ZE PS PL
NL ZE NS NM NL NVL
NS ZE ZE NS NM NL
ZE ZE ZE ZE NS NL
PS PM PS ZE ZE NS
PL PL PM PS ZE ZE

Table 3: Rules for zero yaw rate error derivative.

̇𝑒(𝜓̇) = 0 𝑒(𝜓̇)

𝑒(𝛽)

NL NS ZE PS PL
NL ZE NS NM NL NVL
NS PS ZE NS NM NL
ZE PM PS ZE NS NM
PS PL PM PS ZE NS
PL PVL PL PM ZE ZE

Table 4: Rules for positive yaw rate error derivative.

̇𝑒(𝜓̇) > 0 𝑒(𝜓̇)

𝑒(𝛽)

NL NS ZE PS PL
NL ZE ZE NS NS NM
NS PS ZE ZE NS NS
ZE PM PS ZE ZE ZE
PS PL PM PS ZE ZE
PL PVL PL PM PS ZE

In this section, a novel ANFIS vertical tire forces esti-
mator is proposed. The proposed estimator provides real-
time and accurate estimations of the tire forces, which can
be exploited by ADAS to increase the safety, stability, and
efficiency of vehicles. Hence, this estimator will be used to
perform the longitudinal dynamics torque distribution.

The proposed estimator is based on an ANFIS that is
based on a fuzzy system that uses a learning algorithm
derived from neural network theory to determine its param-
eters (fuzzy sets and fuzzy rules) by processing data samples
[33]. For that purpose, the Takagi-Sugeno model is used, as it
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is computationally efficient [34] and has been demonstrated
to be appropriate for modelling applications. This approach
maintains the fuzzy logic capability of converting human
knowledge into a quantitative process and rules while it solves
the membership functions iterative tuning process problem
thanks to the neural networks learning ability. A simplified
diagram of an ANFIS structure is shown in Figure 4.

The proposed estimator uses measurable variables to
operate, which is one of the main contributions of this work
compared with those analyzed in the bibliography. The input
data is composed of 10 variables: the steering angle; the 𝑥,
𝑦, and 𝑧 linear acceleration and speed components of the
center of gravity (CoG) of the vehicle; and the 3 angular
speeds associated with the local axes. All of them can be
easily measured using commercially available sensors such
as Inertial Measurement Units (IMU), Global Positioning
Systems (GPS), and steering angle sensors. The output data
is composed of the vertical force of the selected tire. The
structure of the ANFIS designed for each wheel is detailed
in Figure 5.

TheproposedANFIS estimator is composed of 4 layers. In
the first of them 7 membership functions for each input have
been developed.Thesemembership functions are ofGaussian
type, as they provide better precision than triangular ones [32,
35]. In the second one, the rules established by the learning
process appear. In the third layer the ratio calculation and
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Table 5: Parameters of the hybrid method training.

Range of influence 0.5
Squash factor 1.25
Accept ratio 0.5
Reject ratio 0.15

normalisation are carried out to finally, in the fourth layer,
add all the signals.

The method selected for the generation of the fuzzy
inference system is Subclustering, due to the high number
of inputs. The training method chosen is the hybrid method,
which is a combination of least squares and backpropagation
gradient descent method. The parameters of this process are
detailed in Table 5.

The data used for the training and testing of the proposed
ANFIS structure have been obtained from a simulation of a
vehicle running on the Nurburgring circuit during one lap
(simulation time of 800 s and sample time of 50ms). The
simulation has been obtained from the high fidelity vehicle
dynamics simulator Dynacar [36], where, for each vertical
tire force estimation, the aforementioned 10 variables have
been captured.

2.4. Longitudinal Torque Distribution Algorithm. The pro-
posed longitudinal torque distribution approach calculates
the longitudinal torque distribution percentage 𝜏long to be
applied to the wheels of each axle (front and rear) considering
the vertical normal forces generated by thewheels at each axle
𝑓wheels. This way, if 𝜏long = 0, all the torque will be provided
by the wheels of the rear axle, and if 𝜏long = 1, all the torque
will be provided by the wheels of the front axle.

This way, this subsystem allows sending greater torque
commands to the motors whose wheels have more grip.
For that purpose, a simple but effective torque distribution
algorithm is proposed, based on the maximum normal force
that can be applied in an axle (the front one has been taken as
reference). This way,

𝜏long = 𝑓wheels𝑓max
, (4)

where 𝑓wheels is the combination of the vertical forces of each
wheel of an axle (left and right), given by the vertical tire
forces estimator, and 𝑓max is the maximum normal force that
can be applied in the front axle (this is, considering that the

whole mass is actuating only in one axle). For the study case
selected, this final value is 20208N.

2.5. Motor Torque Calculation. This subsystem calculates the
exact motor torque command to be applied to each wheel 𝜏𝑖𝑗,
based on the torque requested by the driver using the throttle
𝜏, and the longitudinal 𝜏long and lateral 𝜏lat torque distribution
percentages:

𝜏fl = 𝜏𝜏long𝜏lat
𝜏fr = 𝜏𝜏long (1 − 𝜏lat)
𝜏rl = 𝜏 (1 − 𝜏long) 𝜏lat
𝜏rr = 𝜏 (1 − 𝜏long) (1 − 𝜏lat) .

(5)

3. Validation Framework

In this section the validation methodology used is explained,
including the selected vehicle, the simulation environment,
and the proposed manoeuvres and testing scenarios.

Figure 6 shows a general overview of the implemented
control concept. Three main blocks can be considered: first,
the driver command, which is generated by an automated
driving algorithm that simulates the behaviour of a standard
driver, guaranteeing that the performance of each test is not
dependent on the driver; second, the control block, which
includes the intelligent Torque Vectoring approach detailed
in the previous section,with all subsystems; finally, the vehicle
model, which simulates the highly nonlinear dynamics of the
vehicle using Dynacar software [36] and provides the time
evolution of the measurable variables.

3.1. Dynacar High Fidelity Dynamics Simulator. The vehicle
model is implemented in Dynacar, which is a high fidelity
vehicle dynamics simulation platform developed by Tecnalia
Research & Innovation [36].This vehicle simulation software
has been validated through several racetrack tests [37, 38] and
it can be used in a model-in-the-loop framework to test the
performance of different automotive aimed control systems.

One of the features of Dynacar is the possibility of
activating an automated driver mode, which simulates a
standard driver. This allows reducing the effect of the driver
ability when analyzing the results of the developed ADAS
and, hence, allowing better comparison.

Dynacar’s vehicle physical model simulation engine is
based on a multibody model and integrated in C code [39].
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Table 6: Vehicle principal characteristics.

Mass [kg] 1830
𝐼𝑥 [kgm2] 928.1
𝐼𝑦 [kgm2] 2788.5
𝐼𝑧 [kgm2] 3234.0
Wheelbase [m] 3.05
Front axis track [m] 1.6
Rear axis track [m] 1.6

This C code has also been implemented in Simulink. The
solver is run with a sample time of 1ms. Tires are modelled
using implementation of the Pacejka “Magic Formula”model,
extensively used by most car manufacturers as an industry
standard for vehicle model simulations [18].

Table 6 shows the main characteristics of the vehicle,
which is an E-Class vehicle.

3.2. Controller Implementation. The control block is imple-
mented in a Xilinx Zynq XC7Z020 SoC, whose inputs and
outputs are connected to Dynacar. This allows testing the
real-time performance of the proposed intelligent TV control
approach and does not require the use of a whole vehicle
thanks to the Dynacar’s model-in-the-loop approach.

The selected hardware is composed of two parts. The first
is the programmable logic part, which is a full FPGA. And the
other part is the processing system, which is composed of an
ARMCPU of two cores and 800MHz clock rate. In addition,
this board has several I/O peripherals, such as digital and
analog inputs/outputs ports and communication buses.

The ARM core has been used to implement the different
subsystems of the proposed intelligent TV approach (Fig-
ure 2) proposed in the previous section. For that purpose,
the developed approach has been implemented first inMatlab
Simulink and then compiled to C code that runs in the ARM
processor.

3.3. Manoeuvres and Scenarios. Dynacar’s framework allows
simulating and testing the developed intelligent TVcontroller
in different scenarios and with a set of different standardized
manoeuvres: a skid-pad [40] (Figure 7) and a double lane
change manoeuvre [41] (Figure 8).

On the one hand, the objective of the skid-pad test is
to measure the car’s cornering ability on a flat surface while
making a constant-radius turn. This test is one of the FSAE
Dynamics Events [40], but, as it is designed for formula type
vehicles, it is necessary to adapt it to a passenger vehicle. In
that sense, the diameters of the circles have been modified
considering the rules for road designs [42]. These rules state
that for a speed limit of 40 km/h the minimum radius of
a curve has to be 60 meters. However, as this radius is
defined to ensure the stability of the car at that speed, in
this work the radius has been reduced in order to take the
vehicle to its limits and then be able to evaluate the correct
performance of the developed controller. Therefore, it has
been decreased until 20 meters, converting the test into a
challenging scenario for an E-Class vehicle.

On the other hand, the double lane change manoeuvre
is detailed in the ISO 3888 specification [41] (Figure 8). In
this test, the vehicle enters the course at a particular speed
and the throttle is released. The driver then attempts to
negotiate the coursewithout striking the cones.The test speed
is progressively increased until either instability occurs or
the course can no longer be negotiated successfully. Such
a severe manoeuvre effectively demonstrates the cornering
capability of a vehicle when driving at the friction limit
in both directions and, therefore, many car manufacturers
and research institutions consider this test to be a suitable
manoeuvre for assessing advanced vehicle dynamics control
systems. This manoeuvre is typically performed as a closed-
loop driving test and is used to adjust the dynamics of a
vehicle based on the subjective evaluations of professional
drivers.

4. Results

In this section the results obtained during the validation of
the developed intelligent TV control approach are analyzed.
For that purpose, first the proposed ANFIS vertical force
estimator is validated with the results obtained with Dynacar
and the analytical estimator proposed in [43], in order to
demonstrate its accuracy. Then, the overall intelligent TV
approach including all subsystems (Figure 2) is validated,
comparing its results with a more traditional solutions. In
the case of the intelligent TV algorithm its performance is
compared with a PID TV controller based on [6] with a
constant longitudinal torque distribution, while the ANFIS
estimator’s performance is compared with the analytical
estimator proposed in [43].

4.1. ANFIS-Based Vertical Tire Force Estimation. In order to
test the effectiveness of the approach, the data obtained from
the proposed estimator is compared with (a) Dynacar’s inter-
nal high fidelity tiremodel and (b) themodel-based analytical
estimator proposed in [43], whose results have been validated
in the cited work, but it requires data from variables that
are difficult tomeasure.The aforementioned twomanoeuvres
have been used to validate the force estimator.

Figures 9 and 10 and Tables 7 and 8 show the results
obtained for eachmanoeuvre and each wheel.They show that
the ANFIS estimator is able to reduce the error between 38%
and 79% compared with the analytical approach (depending
on the wheel and the manoeuvre), being able to eliminate the
peaks obtained by the analytical estimator due to transient
conditions. It has to be noted that the errors obtained for the
analytical model correspond to the errors obtained in [43].

In addition, the real-time performance of the proposed
estimator has been analyzed, requiring 0.9ms to run, which
is appropriate for automotive applications.

4.2. Intelligent Torque Vectoring System. In order to validate
the ability of the proposed intelligent TV approach to
enhance the dynamic handling, first, the results associated
with the skid-pad test will be analyzed.

In order to determine the effectiveness of the approach,
the critical speed of the vehicle has to be defined first. This
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Figure 7: Skid-pad test [40].
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Figure 8: Double lane change test [41].

Table 7: Skid-pad results.

ANFIS Model

FL RMSE 250.192 702.36
NRMSE 2.37 6.656

FR RMSE 211.58 698.56
NRMSE 2.015 6.635

RL RMSE 143.544 412.77
NRMSE 2.0474 5.8874

RR RMSE 245.871 434.997
NRMSE 3.4764 5.5628

Table 8: Double lane change results.

ANFIS Model

FL RMSE 114.23 787.905
NRMSE 1.3491 5.944

FR RMSE 151.0323 775.32
NRMSE 1.607 5.185

RL RMSE 107.986 412.77
NRMSE 1.4629 6.782

RR RMSE 164.2598 434.997
NRMSE 2.0457 5.982
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Figure 9: 𝐹𝑧 estimation, skid-pad.

ANFIS (FL)
Dynacar (FL)
Analytical model (FL)

ANFIS (FR)
Dynacar (FR)
Analytical model (FR)

ANFIS (RL)
Dynacar (RL)
Analytical model (RL)

ANFIS (RR)
Dynacar (RR)
Analytical model (RR)

1 2 3 40
0

5000

10000

1 2 3 40
Time (s)

0

5000

10000

Fo
rc

e (
N

)

Time (s)

Fo
rc

e (
N

)

Fo
rc

e (
N

)

0

5000

10000

1 2 3 40
Time (s)

Fo
rc

e (
N

)

0

5000

10000

1 2 3 40
Time (s)

Figure 10: 𝐹𝑧 estimation, double lane change.
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Figure 12: Wheels slip ratio.
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Figure 13: Wheels slip angles.

critical speed is themaximum speed that allows the vehicle to
perform the skid-pad test correctly with no TV control. For
that purpose, no TV system has been activated, and the skid-
pad test has been carried out increasing the speed in each
test until the vehicle has not been able to follow the reference
trajectory.This critical speed has been experimentally defined
as 47 km/h, providing a theoretical lateral acceleration of
0.86 g.

Once this critical speed limit is detected, the skid-pad
test has been executed activating the proposed intelligent TV
approach and a PID based TV approach. Results are shown
in Figure 11. It can be appreciated that when no TV controller
is active, the vehicle is not able to track the desired trajectory,
due to understeering, but that TV approaches allow executing
this test even at the critical speed.

The undesirable behaviour at the critical speed when no
TV is activated can be further appreciated in Figures 12 and

13, which show the slip ratio and slip angle of the front wheels.
As it can be seen, these wheels cannot transmit the requested
force to the road and they slip, which can be detected by
high values of the slip ratio and angles in the TV off case.
Furthermore, when either TV control is active (fuzzy TV and
PID TV), slip ratio and slip angle are reduced to 19% and 23∘,
respectively, which implies higher traction forces on the tires.
This implies higher speeds in the skid-pad tests, as shown in
Figure 14. Moreover, higher lateral acceleration and yaw rate
values are achieved without losing stability as illustrated in
Figures 15 and 16.

Figure 16 illustrates the yaw rate evolution of the vehicle.
As it can be seen, the proposed intelligent Torque Vector-
ing approach provides a correct tracking of the reference,
while reducing the overshoots. This allows increasing the
cornering ability of the vehicle, reducing the risk of under-
and oversteering. In fact, the difference between the yaw rate
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Table 9: Mechanical energy comparison.

Energy mech [kWh]
No TV 0.4219
PID TV 0.2091
Intelligent TV 0.1895

reference and the obtained values for the case where the TV
is deactivated shows understeering behaviour as has been
explained.

Moreover, if a mechanical energy consumption analysis
is carried out, the proposed intelligent Torque Vectoring
approach allows not only a correct yaw rate tracking,
increased cornering ability, and reduced slip ratio, but also an
increase in the efficiency of the vehicle. Efficiency results are
shown in Table 9, where the proposed approach is compared
with the PID based TV and no TV cases. As can be seen, an
increase of 10% can be achieved.

After analyzing the skid-pad performance, the double
lane change scenario will be studied. In order to perform
this test, an initial speed of 50 km/h has been selected,
and a constant torque reference has been applied to the
motors (2300Nm total torque). This provides a longitudinal
acceleration of 0.35 g approximately, allowing to obtain a final
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Figure 18: Steering angle.

speed of almost 90 km/h, covering the most common speed
range of passenger vehicles in medium speed roads.

Simulation results for this scenario are shown from
Figures 17–20. Figure 17 shows the trajectory followed by
the vehicle for each case. As can be seen in this figure, the
trajectory when the proposed TV approach is activated is
closer to the lateral double lane change manoeuvre reference,
demonstrating a vehicle handling improvement in such a
challengingmanoeuvre. In addition, Figure 18 shows that this
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better tracking is achievedwith lower values of steering angle,
which means a reduction of the slip angle of about 1.5∘ as can
be seen in Figure 19. The maximum reduction of this value
is achieved by the proposed intelligent TV controller, which
allowsmaximizing the forces transmitted to the road. Finally,
wheel torque is illustrated in Figure 20, showing the correct
torque distribution made by the controller designed.

5. Conclusions

The development of real-time capable, accurate, and efficient
ADAS is a key issue for the development of vehicles with
independent in-wheel motors. In this work a novel intelligent
Torque Vectoring (TV) system, composed of a neuro-fuzzy
vertical tire forces estimator and a fuzzy yaw moment
controller, has been proposed.

The proposed approach considers both lateral and lon-
gitudinal torque distributions. The longitudinal distribution
is based on a neuro-fuzzy vertical tire forces estimator
that is based exclusively on measurable variables, which
is an important contribution compared with the existing
estimators. The estimated forces are used to determine the
percentage of torque to be applied to the wheels of the rear
and front axles, so that the maximum grip can be achieved.

On the other hand, the lateral torque distribution is
achieved using a fuzzy yaw moment controller. This con-
troller allows distributing the torque laterally (right and
left wheels), to minimize wheel slip and enhance cornering
capabilities. The overall torque distribution is calculated by
taking into account both distributions.

Results demonstrate the ability to enhance vehicle
dynamics of the intelligent Torque Vectoring System in
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various scenarios. On the one hand, it was able to increase
the stability in an evasive manoeuvre, such as double lane
change, allowing the vehicle to follow better the desired
trajectory, which is a critical safety issue in such manoeuvre.
On the other hand, in the skid-pad test, a significant wheel
slip ratio and slip angle reduction (19% and 23∘, resp.)
have been shown, resulting in an understeering behaviour
reduction. This has allowed the vehicle to better match the
yaw rate reference (33% error reduction) and then be able
to follow the desired trajectory, demonstrating the cornering
improvement provided by the correct torque distribution.
Additionally, the proposed intelligent TV algorithm presents
an improvement regarding a more traditional approach of
the state of the art, providing more efficient driving (10%
mechanical energy consumption reduction).

Future work will include a more sophisticated design
for the use of the estimated tire vertical forces in the
intelligent Torque Vectoring controller, resulting in a more
elaborate controller, to improve its performance. Moreover,
the implementation of the TV System in the logical part of a
SoC will be considered in order to decrease its cycle time.
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