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Abstract

We give a characterization theorem for umbilical spacelike submanifolds of arbitrary di-
mension and co-dimension immersed in a semi-Riemannian manifold. Letting the co-
dimension arbitrary implies that the submanifold may be umbilical with respect to some
subset of normal directions. This leads to the definition of umbilical space and to the
study of its dimension. The trace-free part of the second fundamental form, called toral
shear tensor in this thesis, plays a central role in the characterization theorems. It allows
us to define shear objects (shear operators, shear tensors and shear scalars) that deter-
mine the umbilical properties of the spacelike submanifold with respect to a given normal
vector field.

Given a group of conformal motions GG acting on a semi-Riemannian manifold and
an orbit S, we apply the characterization results in order to find necessary and sufficient
conditions for S to have a non-empty umbilical space. We prove that if the isotropy
subgroup of G is trivial, then the umbilical condition depends on the scalar products
of a set of generating conformal Killing vector fields. If the isotropy subgroup of G
is non-trivial, we argue that, under specific assumptions, it is possible to prove that the
umbilical condition is automatically satisfied so that the umbilical space is non-trivial.
The assumptions would depend on the co-dimension of S, the dimension of the isotropy
subgroup and the ranks of specific matrices defined in terms of the structure constants of
G.

In the last part of the thesis we consider Lorentzian warped products M = M xf Y
and we analyse a particular class of spacelike submanifolds S. We find a sufficient con-
dition that allows us to prove, on one hand, the existence of focal points along timelike or
null geodesics normal to S and, on the other hand, the null geodesic incompleteness of M
under additional reasonable conditions. By assuming that we can split the immersion as
S = ¥ — M, where ¥ is either M x {q} or {g} x ), we find that the Galloway-Senovilla
condition [29] can be written in terms of the warping function f and the Riemann ten-
sor of either only M or ). This means that, for instance, in order to prove singularity
theorems one can restrict the study to just one of the two manifolds defining the warped
product rather than considering the warped product manifold itself. We translate the con-
dition found to some specific situations, such as positive and constant sectional curvature,
Einstein and Ricci-flat spaces and to a few subcases in terms of the co-dimension of S.
The same has been done in direct products (f = 1).
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Beknopte samenvatting

We geven een karakterisatiestelling voor ombilicale ruimtelijke deelvariéteiten met wil-
lekeurige dimensie en codimensie van een semi-Riemannse variéteit. Omdat de codi-
mensie willekeurig is, kan de deelvariéteit ombilicaal zijn ten opzichte van een deel van
de normale richtingen. Dit leidt tot de definitie van ombilicale ruimte en tot de studie
van de dimensie ervan. Het spoorvrije deel van het tweede fundamentaalvorm, dat we
in dit proefschrift de tofale sheartensor noemen, speelt een centrale rol in de karakter-
isatiestellingen. Het stelt ons in staat om objecten te defini€ren die gerelateerd zijn aan
de totale sheartensor (shearoperatoren, sheartensoren en sheargetallen) en die de ombili-
cale eigenschappen van de ruimtelijke deelvariéteit bepalen ten opzichte van een normaal
vectorveld.

Gegeven een groep GG van conforme transformaties van een semi-Riemannse variéteit
en een orbiet S, passen we de karakterisatieresultaten toe om nodige en voldoende voor-
waarden te vinden opdat S een niet-triviale ombilicale ruimte zou hebben. We bewi-
jzen dat als de isotropiedeelgroep van G triviaal is, de voorwaarde om ombilicaal te zijn
afhangt van de onderlinge scalaire producten van een verzameling van voortbrengende
conforme Killingvectorvelden. Als de isotropiedeelgroep van G niet triviaal is, dan dan
kunnen we, onder bepaalde aannames over de codimensie van S, de dimensie van de
isotropiedeelgroep en de rangen van bepaalde matrices gedefinieerd in termen van de
structuurconstanten van (G, bewijzen dat de voorwaarde om ombilicaal te zijn automa-
tisch voldaan is, i.e., dat de ombilicale ruimte niet triviaal is.

In het laatste deel van het proefschrift beschouwen we Lorentziaanse gekruiste pro-
ducten M = M Xy ) en bestuderen we een bepaalde klasse van ruimtelijke deel-
variéteiten S. We vinden een voldoende voorwaarde voor, enerzijds, het bestaan van
brandpunten langs tijd- of lichtgeodeten die loodrecht op S vertrekken en, anderzijds, de
lichtgeodetische onvolledigheid van M onder enkele bijkomende redelijke voorwaarden.
Door aan te nemen dat we de immersie kunnen opsplitsen in een samenstelling van im-
mersies S — ¥ — M, waarbij ¥ ofwel M x {q} ofwel {¢} x ) is, vinden we dat
de voorwaarde van Galloway en Senovilla [29] kan worden geschreven in termen van
de functie f en de krommingstensor van enkel M of ). Dit betekent bijvoorbeeld dat
we de studie kunnen beperken tot slechts één van de factoren van het gekruist product,
in plaats van het gekruist product als geheel te beschouwen. We vertalen de gevonden
voorwaarde naar enkele specifieke situaties, zoals ruimten met positieve en constante sec-
tionele kromming, Einsteinruimten en Ricci-platte ruimten en naar enkele deelgevallen
afhankelijk van de codimensie van S. De resultaten impliceren analoge resultaten voor
directe producten (f = 1).






Resumen

Hasta aproximadamente el siglo dieciocho los cientificos eran expertos tanto en los as-
pectos matemdticos como en los aspectos fisicos de su investigacion y de sus descubrim-
ientos. Cabe sostener que muy probablemente estos no distinguian mucho entre la fisica
tedrica y la fisica experimental, por ejemplo, puesto que a menudo eran al mismo tiempo
matematicos, astrénomos, gedmetras, ingenieros, fisicos e incluso, a veces, filésofos. A
partir del siglo diecinueve las fronteras que habrdn de delimitar estos campos comien-
zan a ser mds definidas y desde el siglo veinte matemaéticos y fisicos, por lo general, han
trabajado en dos areas de investigacion separadas en la ciencia.

Hoy en dia, debido a la rdpida especializacion de los campos cientificos y al nacimiento
de nuevas disciplinas, la distancia entre las matematicas y la fisica se ha hecho atin més
grande. En particular, el uso de diferentes lenguajes ha empezado a impedir que los cien-
tificos se comuniquen entre ellos y compartan sus resultados. Aun asi, la historia de la
ciencia nos ha mostrado cémo el intercambio de conocimiento entre estos dos campos, las
matematicas y la fisica, ha sido clave en el pasado para superar obstaculos, para producir
cambios de paradigma, para abrir nuevas perspectivas y para impulsar una revolucién
cientifica.

Dos ejemplos destacables de este proceso en estas dos ramas cientificas han sido los
desarrollos producidos por la teoria de la mecanica cudntica y por la teoria de la relativi-
dad general. Los avances requeridos por la mecédnica cudntica en el anélisis funcional y la
no conmutatividad de los operadores que representan los observables cudnticos, han con-
ducido a un campo completamente nuevo, y ahora independiente dentro de las mateméti-
cas llamado geometria no conmutativa. Por lo que concierne a la relatividad general, la
equivalencia de la curvatura con el campo gravitacional, que representa uno de los fun-
damentos de la teorfa, es una manifestacion evidente de la conexién profunda entre la
geometria diferencial y la fisica gravitacional. En ambos casos, las mateméticas proveen
a los fisicos de bases s6lidas y marcos para construir una nueva teoria fisica, mientras que
la fisica motiva e indica a los matematicos el camino hacia dreas inexploradas y problemas
irresolutos.

Geometria y fisica gravitacional

El marco matematico de la teoria de la relatividad general y de la mayoria de las teorias
gravitacionales estd dado por la geometria Lorentziana. Un espacio-tiempo estd modelado
por una variedad Lorentziana M y las leyes fisicas que describen el Universo a grandes
escalas son expresiones tensoriales que dependen del tensor de Riemann de M. Todos
los objetos y los conceptos relevantes en gravitacion poseen un equivalente geométrico.
Por ejemplo, las geodésicas temporales y luminosas representan las trayectorias de las
particulas materiales y de los fotones, respectivamente; y la incompletitud geodésica tem-
poral o luminosa de M implica bajo ciertas condiciones la presencia de singularidades
en el espacio-tiempo. En una singularidad del espacio-tiempo las cantidades de curvatura

vii



viii

pueden divergir y los agujeros negros, predichos por la teoria, esconden estas singulari-
dades clésicas dentro de sus horizontes.

Las matemadticas que se necesitan en fisica gravitacional incluyen, por ejemplo, ecua-
ciones en derivadas parciales para analizar las ecuaciones de campo de Einstein, el andlisis
geométrico para estudiar las ecuaciones de ligadura y para resolver problemas de estabil-
idad y el andlisis numérico para aproximar aquellas soluciones que no se pueden obtener
analiticamente. Dentro de la geometria diferencial, la teorfa de subvariedades provee las
herramientas adecuadas para abordar algunos problemas importantes que involucran tanto
las singularidades del espacio-tiempo como el colapso gravitacional.

Teoremas de singularidades Los teoremas de singularidades demostrados en los afios
sesenta por Roger Penrose y Stephen Hawking [66, 34, 85] afirman que la formacién
de singularidades es inevitable, si se asumen condiciones razonables sobre la curvatura
del espacio-tiempo, sobre la geometria extrinseca de ciertas subvariedades y sobre la es-
tructura causal de la variedad Lorentziana. En particular, la existencia de subvariedades
atrapadas en el espacio-tiempo es un requisito clave en la formulacién original de los teo-
remas de singularidades, asi como en sus mds recientes generalizaciones [29]. Matemati-
camente, una subvariedad atrapada es una subvariedad espacial cuyo campo de curvatura
media es temporal en todas partes.

Colapso gravitacional El andlisis del colapso gravitacional estd basado, desde un punto
de vista geométrico, en el estudio de los horizontes de los agujeros negros [2]. El hori-
zonte de un agujero negro estd modelado por una subvariedad de dimension tres cuyas sec-
ciones son superficies de dimension dos cerradas y marginalmente atrapadas. Matemati-
camente, una superficie marginalmente atrapada es una superficie espacial cuyo campo de
curvatura media es luminoso y futuro en todas partes (hay también una versién dual para
el pasado). Cada una de estas superficies marginalmente atrapadas representa el “borde”
de la regidn que contiene el agujero negro en un instante de tiempo dado. Su evolucién
a lo largo del tiempo determina el cardcter causal del horizonte y, por consiguiente, la
dindmica del agujero negro correspondiente.

Como ha sido implicitamente mencionado, la formulacién de los teoremas de singu-
laridades y la descripcion geométrica de un colapso gravitacional no serfa posible sin el
empleo de las subvariedades espaciales y del estudio de sus propiedades extrinsecas.

Subvariedades espaciales

Sean S una subvariedad espacial y £ un campo vectorial normal a S, entonces es posible
describir la evolucién inicial de S alo largo de la direccion extendida por £ por el medio de
dos cantidades llamadas expansion y cizaiia (“shear”) de S a lo largo de £. La expansion
da informacioén sobre el cambio de volumen de S (de drea si S es una superficie) mientras
que la cizafna da informacién sobre el cambio de “forma” de S manteniendo el volumen
fijado. Si la expansion se anula, entonces el volumen de S a lo largo de esa direccién
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particular no cambia inicialmente. En este caso se dice que S es expansion-free. Si
la cizafia se anula entonces la forma de S no cambia inicialmente y la subvariedad es
llamada shear-free.

El concepto de ser expansion-free a lo largo de una direccién normal estd estricta-
mente relacionado con la propiedad de una subvariedad de ser marginalmente atrapada.
De hecho, la primera definicion de superficie atrapada fue dada en términos de las ex-
pansiones luminosas. Encontrar subvariedades expansion-free en la literatura de fisica
es muy comun y, en particular, en relacién a los horizontes de agujeros negros. Por otra
parte, el concepto de ser shear-free es también comun en la literatura de fisica pero ha
tenido mucha més atencién entre los matematicos. Sin embargo, la terminologia usada es
diferente: en la literatura de matematicas las variedades shear-free son llamadas umbili-
cales.

Subvariedades umbilicales y horizontes de agujeros negros Las subvariedades umbil-
icales no son usadas explicitamente en el andlisis de las singularidades de espacio-tiempos
y del colapso gravitacional. Aun asi, aparecen a menudo cuando se considera el concepto
clasico de horizonte de sucesos [60, 99] y también cuando se consideran horizontes de
Killing y horizontes sin-expansion [2]. Los horizontes mas comunes y mds estudiados en
la literatura, que son los horizontes de sucesos en el espacio-tiempo de Schwarzschild y
en el espacio-tiempo de Kerr, tienen la siguiente propiedad: las superficies marginalmente
atrapadas que folian la hypersuperficie de dimension tres que representa el horizonte son
umbilicales. En particular, son umbilicales a lo largo de una direccién luminosa. La
pregunta natural de si este tipo de foliacién puede caracterizar horizontes mas generales
de agujeros negros no-estacionarios ha motivado la investigacion llevada a cabo en [85]
primero, y en esta tesis, luego.

En [85] el autor caracteriza superficies espaciales umbilicales en espacio-tiempos de
dimensién cuatro en términos de las propiedades de conmutacién de los operadores de
Weingarten. Los resultados que presenta son especificos para el caso de codimensién
dos. El trabajo de esta tesis empieza con buscar una version generalizada a la condicién
de umbilicidad presentada en [85]: se deja que la dimensién y la codimensién de la sub-
variedad y la dimensién y la signatura de la variedad ambiente sean arbitrarias. En una
segunda fase, la condicién de umbilicidad se aplica a espacio-tiempos que tienen interés
desde un punto de vista fisico. El objetivo es, primero, encontrar ejemplos explicitos de
familias de superficies espaciales umbilicales y, luego, probar la idea de foliar los hori-
zontes de agujeros negros por el medio de superficies espaciales que son al mismo tiempo
marginalmente atrapadas y umbilicales.

Resumen de los resultados

En esta tesis se han estudiado las propiedades umbilicales de las subvariedades espaciales.
Se han presentado algunas caracterizaciones que han sido aplicadas, en particular, a las
orbitas de grupos de movimientos conformes. Se ha dado una condicién suficiente para la
existencia de puntos focales a lo largo de geodésicas temporales y luminosas en espacios



Lorentzianos productos de tipo warped. Esta ha sido usada para derivar algunos teoremas
de singularidades. Los resultados han sido aplicados a varios espacio-tiempos que tienen
relevancia en la fisica gravitacional.

A continuacién un resumen de los resultados principales de la tesis, divididos por
capitulos.

Caracterizaciones de subvariedades espaciales umbilicales En el capitulo 3 se da un
teorema de caracterizacion para subvariedades espaciales umbilicales de dimensién ar-
bitraria n y codimensién k inmersas en una variedad semi-Riemanniana. Que la codi-
mensién sea arbitraria implica que la subvariedad puede ser umbilical con respecto a un
subconjunto de las direcciones normales. Esto lleva a la definicion de espacio umbilical
y al estudio de su dimension.

La parte sin traza de la segunda forma fundamental, llamada total shear tensor en
esta tesis, juega un papel central en los teoremas de caracterizacién. Nos permite definir
objetos “shear” (operadores shear, tensores shear 'y escalares shear) que determinan las
propiedades umbilicales de la subvariedad espacial con respecto a un campo vectorial nor-
mal dado. En caso de que haya k — 1 direcciones umbilicales linealmente independientes,
el total shear tensor determina un campo vectorial normal, llamado G, que es ortogonal al
espacio umbilical. Cuando la codimension es k = 2 es posible comparar G con el campo
de curvatura media y encontrar algunas analogfas.

El teorema de caracterizacion es un instrumento muy Util para determinar si una sub-
variedad espacial dada tiene un espacio umbilical no trivial. Sila dimensién y la codimen-
sio6n de la subvariedad son ambas dos, por ejemplo, es suficiente calcular el conmutador
de dos operadores cualesquiera de Weingarten: si se anula, entonces el espacio umbilical
tiene dimensién uno por lo menos.

Aplicacion del teorema de caracterizacion a las 6rbitas de un grupo de movimientos
conformes Dado un grupo de movimientos conformes G que actia sobre una variedad
semi-Riemanniana y dada una 6rbita S, es posible aplicar los resultados de caracterizacion
del capitulo 3 para encontrar condiciones necesarias y suficientes sobre S para que tenga
un espacio umbilical no trivial.

Si el subgrupo de isotropia de G es trivial, entonces la condicién umbilical depende
de los productos escalares f;; := g(V;, V;), donde {V1,...,V,} es un (sub)conjunto de
campos vectoriales de Killing conformes generadores de G. Si el subgrupo de isotropia
de G es no trivial, sostenemos que, bajo hipdtesis especificas, es posible demostrar que
la condicién umbilical se satisface automaticamente de manera que el espacio umbilical
es no trivial. Las hipdtesis dependerdn de la codimensién k de S, de la dimension D del
subgrupo de isotropia y de los rangos R(a) de las matrices A (a) que estdn definidas en
términos de las constantes de estructura de GG (expresion (4.22)).

Teoremas de singularidades en espacios Lorentzianos producto de tipo warped En
el capitulo 5 se considera un producto warped Lorentziano M = M x; )y se analiza
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una clase particular de subvariedades espaciales S. Se presenta una condicién suficiente
que permite demostrar, por un lado, la existencia de puntos focales a lo largo de geodési-
cas normales a S temporales o luminosas y, por otro lado, la incompletitud geodésica
luminosa de M bajo condiciones adicionales.

Asumiendo que se puede dividir la inmersién como § — ¥ — M, donde X es M x
{q} o {q} x Y, 1a condicién de Galloway-Senovilla [29] se puede expresar en términos
de la funcién warped f y del tensor de Riemann de M o ) solamente. Esto significa
que, por ejemplo, para demostrar los teoremas de singularidades es posible restringirse al
estudio unicamente de una de las dos variedades que definen el producto warped, en vez
de considerar el producto warped mismo.

La condicién encontrada se ha aplicado a situaciones especificas, como curvatura sec-
cional positiva y constante, espacios de Einstein o Ricci-flat y unos subcasos en términos
de la codimensién de S. Se ha hecho lo mismo en productos directos (f = 1).

Ejemplos explicitos de subvariedades umbilicales en la fisica gravitacional En la
primera parte del capitulo 6 los resultados de caracterizacion presentados en el capitulo 3
han sido aplicados al espacio-tiempo de Kerr, al de Robinson-Trautman y al de Szekeres.
Para cada una de estas variedades Lorentzianas de dimension cuatro, ha sido seleccionada
una familia de superficies espaciales y, usando la condicién de umbilicidad para el caso
n = 2y k = 2, han sido determinadas aquellas superficies de la familia que poseen un
espacio umbilical no trivial. Ademds, han sido determinadas las que son marginalmente
atrapadas. En la segunda parte del capitulo 6, los resultados del capitulo 4 han sido
aplicados a espacio-tiempos que admiten un grupo de movimientos de dimensién dos o
tres, y también a los que admiten un grupo de movimientos de dimensién cuatro que
actda sobre 6rbitas de dimensidn tres. En los primeros han sido determinados los tubos
marginalmente atrapados; en los segundos ha sido estudiada la presencia de un subgrupo
de isotropia no trivial, para mostrar la dependencia entre las funciones f;;.
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Introduction

Until around the 18th century scientists were experts of both the mathematical and phys-
ical aspects of their research and discoveries. One may argue that they would probably
not distinguish much between theoretical and observational physics, for example, as often
they were at the same time mathematicians, astronomers, geometers, engineers, physicists
and sometimes also philosophers. Starting from the 19th century clearer borders start sep-
arating each of these fields from the others and from the 20th century on, mathematicians
and physicists have generally worked on two separate areas of research in science.

Today, as the scientific fields specialize and novel disciplines arise very quickly, the
distance between mathematics and physics have become even bigger. In particular, the
use of different languages has started to prevent scientists from communicating with each
other and from sharing their achievements. Nevertheless, the history of science shows
how the interchange of knowledge between these two fields, mathematics and physics,
has been key in the past to overcome obstacles, to produce changes in a paradigm, to
open new perspectives or to drive a scientific revolution.

Two outstanding examples of this fruitful process have been the developments, in both
mathematics and physics, produced by the theory of quantum mechanics and the theory of
general relativity. The advancements required by quantum mechanics in functional analy-
sis, and the non-commutativity of operators representing quantum observables, have lead
to a completely new and now independent field in mathematics, called non-commutative
geometry. As for general relativity, the equivalence of curvature and gravitational field,
that represents one of the basic grounds of the theory, is a clear manifestation of the
deep connection between differential geometry and gravitational physics. In both cases,
mathematics provides physicists with solid bases and frameworks to build a new physical
theory, while physics provides mathematicians with motivations and indicates the path
towards unexplored areas and unsolved problems.

Geometry and gravitational physics The mathematical framework of general relativity
and of most gravitational theories is given by Lorentzian geometry. A spacetime is mod-
elled by a Lorentzian manifold M and the physical laws describing the Universe at large
scale are tensorial expressions that depend on the Riemann tensor of M. All objects and
concepts relevant in gravitation possess a geometrical counterpart. For example, timelike
and null geodesics represent the life-paths of material particles and photons, respectively,
and the timelike or null geodesic incompleteness of M implies the presence of singu-
larities in the spacetime under certain conditions. At a spacetime singularity curvature
quantities may diverge and black holes, that are predicted by the theory, are expected to
hide these classical singularities inside their horizons.

The mathematics required in gravitational physics includes, for instance, partial differ-
ential equations to analyse the Einstein field equations, geometrical analysis to study the
constraint equations and to solve stability problems, numerical analysis to approximate



solutions which cannot be obtained analytically. Within differential geometry, submani-
fold theory provides the adequate tools to approach some important problems involving
spacetime singularities and gravitational collapse.

The singularity theorems proved in the 1960s by Roger Penrose and Stephen Hawking
[66, 34, 85] state that the formation of singularities is unavoidable, if one assumes rea-
sonable conditions on the curvature of the spacetime, on the extrinsic geometry of certain
submanifolds and on the causal structure of the Lorentzian manifold. The existence of
trapped submanifolds in the spacetime, in particular, is a key requirement in the original
formulation of the singularity theorems as well as in their more recent generalizations
[29]. Mathematically, a trapped submanifold is defined as a spacelike submanifold whose
mean curvature vector field is timelike everywhere.

The analysis of gravitational collapse is based, from a geometrical point of view, on
the study of black hole horizons [2]. A black hole horizon is modelled by a 3-dimensional
submanifold whose 2-dimensional slices are closed marginally trapped surfaces. Mathe-
matically, a marginally trapped surface is a spacelike surface whose mean curvature vector
field is null and future-pointing everywhere (there is also a dual version to the past). Each
of these marginally trapped surfaces represents the “boundary” of the region containing
the black hole at a certain instant of time. Their evolution through time determines the
character of the horizon and, consequently, the dynamics of the corresponding black hole.

As implicitly mentioned, the formulation of the singularity theorems and the geomet-
rical description of gravitational collapse would not be possible without the employment
of spacelike submanifolds and the study of their extrinsic properties.

Let S be a spacelike submanifold and £ any vector field normal to it, then the evolu-
tion of S along the direction spanned by £ can be described, initially, by means of two
quantities called the expansion and the shear of S along £. The expansion gives informa-
tion on the change of volume of S (area if S is a surface) whereas the shear on the change
of “shape” of S keeping its volume fixed. If the expansion vanishes then the volume of
S, along that particular direction, does not change initially. In this case one says that S is
expansion-free. If the shear vanishes then the shape of S does not change initially and the
submanifold is called shear-free.

The concept of being expansion-free along a normal direction is closely related to the
property of a submanifold being marginally trapped. The very first definition of trapped
surfaces was in fact given in terms of null expansions. It is common to find expansion-free
submanifolds in the physics literature and particularly in relation to black hole horizons.
The concept of being shear-free, on the other hand, is also common in the physics litera-
ture but it has got much more attention among mathematicians. The terminology used is
different though: in the mathematics literature shear-free submanifolds are called umbili-
cal.

Umbilical submanifolds are not explicitly used in the analysis of spacetime singular-
ities and gravitational collapse. However, they appear often when considering the clas-
sical concept of event horizon [60, 99] as well as the more general ones of Killing and
non-expanding horizon [2]. The most common and studied black hole horizons in the
literature, the event horizon in the Schwarzschild and in the Kerr spacetimes, have the
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following property: the marginally trapped surfaces that foliate the 3-dimensional hyper-
surface representing the horizon are umbilical. In particular, they are umbilical along a
null normal direction. The natural question whether this kind of foliation would charac-
terize more general and non-stationary black hole horizons motivated the research carried
out in [85] first and in this thesis later.

In [85] the author characterizes umbilical spacelike surfaces in 4-dimensional space-
times in terms of commutativity properties of the Weingarten operators. The results pre-
sented were specific for the co-dimension two case. The work of this thesis starts by
looking for a generalized version of the umbilical condition presented in [85] by letting
the dimension and the co-dimension of the submanifold be arbitrary, and the dimension
and the signature of the ambient manifold free. In a second phase, the umbilical condition
has been applied to physically meaningful spacetimes. The aim was, firstly, to find ex-
plicit examples of families of umbilical spacelike surfaces and, secondly, to test the idea
of foliating black hole horizons by means of spacelike surfaces which are, at the same
time, marginally trapped and umbilical.

Umbilical submanifolds: a historical overview The purpose of this historical summary
is to show how the notions of umbilical point and umbilical submanifold have evolved
through time, in which contexts these concepts have been developed and for what appli-
cations they have been used.

The concept of umbilical point is classical in Riemannian and semi-Riemannian ge-
ometry. Umbilical submanifolds have been extensively studied in the mathematical liter-
ature, but often only in certain ambient spaces or under special circumstances. The most
studied concept is that of torally umbilical submanifold, especially when applied to hy-
persurfaces. Other related definitions that have been introduced in the literature are, for
example, C-umbilical [100], quasi-umbilical [15] and contact umbilical submanifolds [4],
but they will not be treated in this thesis. On the other hand, the property of a submanifold
with co-dimension higher than one being umbilical with respect to some (not all) direc-
tions, that will be treated in this thesis, has not been given much attention, apart from few
exceptions.

Most results about umbilical properties of submanifolds in the mathematical literature
are aimed at classifying, finding examples and giving conditions for the existence or non-
existence of umbilical points or submanifolds. In some works, conditions on the ambient
manifolds are found, for instance about their curvature; in some others, connections with
minimal surfaces and foliations are made.

The earliest results on umbilical properties can probably be found in the books [91]
by Struik and [80] by Schouten, firstly published in 1922 and 1924, respectively. In
the 1940s and 1950s, articles about umbilical points mainly concern hypersurfaces in
the Euclidean space or in spaces with constant curvature [53, 78, 38]. In the 1960s, a
series of works appeared on C-umbilical hypersurfaces in Kihler manifolds [100], and on
totally umbilical hypersurfaces in special spaces such as affinely connected spaces [28],
almost Einstein spaces [64] and locally product Riemannian manifolds [58]. In [77, 59]
totally umbilical submanifolds in a Kihler manifold are studied with the aim of proving



that, given a totally umbilical submanifold, under certain assumptions, the submanifold
is isometric to a sphere. Several other articles follow this line of research, and generally
the assumptions are conditions on the mean curvature vector field and its length. In [57]
the author studies hypersurfaces and their deviations from being umbilical by defining a
function that measures such deviation and giving some estimations.

The series of papers [16, 17, 18], from the 1970s, represents maybe one of the first
attempts to study submanifolds with co-dimension higher than one that are umbilical but
that are not totally umbilical. In those works the authors study, respectively: subman-
ifolds in the Euclidean space which are umbilical with respect to a parallel direction;
submanifolds of the Euclidean space with co-dimension two which are umbilical with
respect to a non-parallel direction; submanifolds of a space form which are umbilical
with respect to a non-parallel sub-bundle. Other works from the late 1960s and the 1970s
about submanifolds which are umbilical but not totally umbilical are those concerning the
pseudo-umbilical case [62, 102, 76]. The concept of quasi-umbilical submanifolds is also
defined, see for instance [15].

In the 1980s and 1990s the mathematical literature about umbilical submanifolds be-
gins to grow, even though it mainly concerns with totally umbilical and quasi-umbilical
submanifolds. In the following, only a small selection of articles will be mentioned.
In [56] the study of geometrical obstructions to the existence of two totally umbilical
complementary foliations in compact manifolds is carried out. In [54] proper 2-quasi-
umbilical immersions of a spatial submanifold with co-dimension two into Minkowski
space are considered, relating them with pseudo-minimal and minimal immersions. In [4]
the definition of contact umbilical submanifold is presented and some consequences re-
garding the curvature are derived for the case when the umbilical direction is given by the
mean curvature vector field (pseuso-umbilical case). Several works are about foliations by
means of totally umbilical submanifolds, and some of them study the existence of orthog-
onal families of totally umbilical submanifolds. In [72] the definition of product umbilical
submanifolds is given. Other articles deal with obstructions to the existence of umbili-
cal distribution on a compact manifold and about umbilical holomorphic submanifolds.
Classifications and examples are given in ambient manifolds such as: conformally flat
spaces, symmetric spaces, quasi-Kahler manifolds, weakly symmetric Riemannian man-
ifolds, complex projective spaces, quaternion space forms, Hopf manifolds. The results
presented in [39] are quite interesting: the author recalls a previous classification made by
other authors, according to which degenerate submanifolds in a semi-Riemannian mani-
fold can be divided into four classes, depending on the behaviour of the null distribution;
he thus defines totally umbilical null submanifolds and relates them with this classifica-
tion; he gives several results, among them some characterizations, and also provides ex-
plicit examples. The paper ends with a more detailed analysis of the case of 4-dimensional
Lorentzian ambient manifolds.

Since 2000, the mathematical literature devoted to the study of umbilical properties of
submanifolds is quite large. As in the previous decades, most articles are about totally um-
bilical and pseudo-umbilical submanifolds. They are studied in several different, new, am-
bient manifolds: conformally quasicurrent manifolds, quaternion Euclidean spaces, ho-
mogeneous spaces, indefinite Sasakian manifolds, cosymplectic manifolds, para-Kéhler
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manifolds, weakly projective symmetric spaces. Several characterizations are given, for
example of totally umbilical hypersurfaces in de Sitter space [44], totally umbilical sur-
faces in 3-dimensional warped product spaces [32], totally umbilical hypersurfaces in the
product M"™ x R of a Riemannian manifold and the real line [89] and compact totally
umbilical spacelike surfaces in 4-dimensional Minkowski space [63]. In [12] integral in-
equalities are given for compact pseudo-umbilical spacelike submanifolds of arbitrary co-
dimension in an indefinite space; in [49] umbilical hypersurfaces of Minkowski spaces are
studied; in [25] the authors study umbilical lightlike hypersurfaces in Robertson-Walker
spacetimes.

An interesting work with applications to physics is the one presented in [68]. The
paper deals with totally umbilical and totally geodesic, degenerate or non-degenerate,
submanifolds. The author gives some preliminary results in the semi-Riemannian set-
ting and then, in the Lorentzian setting, proves the following: a timelike submanifold is
totally umbilical if and only if every null geodesic initially tangent to the submanifold
remains tangent to it. In general relativity, null geodesics represent lightlike particles,
such as photons. Thus a timelike or null submanifold is said to be a photon sphere if each
null geodesic that starts tangent remains tangent to the submanifold. It follows from the
previous result that a timelike submanifold is totally umbilical if and only if it is a pho-
ton sphere. Among physically interesting Lorentzian manifolds, a remarkable example
of a photon sphere appears in the Schwarzchild spacetime: the hypersurface defined by
r = 3m (see Section 6.1). The paper ends showing how it is possible to construct totally
umbilical submanifolds as null evolutions of spacelike submanifolds.

Outline of the chapters In Chapter 1 some basics on semi-Riemannian manifolds and
spacelike submanifolds are recalled. Chapter 2 deals with the definition of shear and
the notion of umbilical submanifolds. Basics results concerning umbilical properties and
conformal transformations are presented. In Chapter 3 a characterization theorem for
spacelike submanifolds of arbitrary co-dimension that are umbilical along one or more
normal directions is proved. The specific case of co-dimension two in the Lorentzian set-
ting is considered and several consequences are derived. In Chapter 4 the characterization
theorem is applied to the orbits of groups of conformal motions. The umbilical condition
is expressed in terms of the scalar products of (some of) the generators of the group. In
Chapter 5 Lorentzian warped products are studied and a sufficient condition for the exis-
tence of focal points along timelike and null geodesics is found. This condition is used
to derive results concerning the geodesic incompleteness of Lorentzian warped products.
Chapter 6 exhibits examples and applications of the results presented earlier in the thesis.






Notation, conventions and terminology

Symbols

Ors (or 67)  Kronecker delta: §,; = 0ifr # sand 6, = 1ifr =s
[,] Lie bracket

® tensor product
A wedge product
1 identity operator
span{v} set generated by all vectors proportional to v
e Euler’s number
o~ pullback of a map ® between two manifolds
df differential of a function f
grad f gradient of a function f: g(grad f, V) = df (V) = V(f),VV € X(M)
Ly Lie derivative with respect to V' € X(M)
x proportionality between two vector fields or between two one-forms
A Laplacian operator
Conventions

All functions, vector fields and differential forms, and more in general all tensor fields,
are considered to be smooth. In this thesis smooth means being infinitely differentiable.

The sign convection adopted for the second fundamental form and for the Weingarten
operators (see Section 1.1) differ from the one adopted in most mathematical books. This
choice allows one to use the physical notation when dealing with the sign of the expan-
sions (see (1.1) and Proposition 1.7.3). Also the sign convention used for the Riemann
tensor (see (1.3)) differs from some mathematical books.

Sometimes the Einstein summation convention will be used: if an index variable appears
twice (up and down) in the term of a formula, then it means that that term has to be
summed over all values of the index.

Causal structure and time orientation on Lorentzian manifolds

A semi-Riemannian manifold with signature (—, +, - - - , +) is called a Lorentzian man-
ifold. In particular, R" endowed with the metric § = —dt? +dax? + ...+ dx2_ is called

Minkowski space and it is denoted by R7. Let (,) denote the scalar product of RY, then
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a vector v € RY is called

o timelike if (v,v) <0,
o null or lightlike if (v,v) =0andv # 0,
o spacelike if (v,v) >0o0rv=0.

A vector which is either timelike or null is called causal. The two cones generated by all
null vectors in RT are called nullcones or lightcones. To choose one of the two lightcones
corresponds to assigning a time orientation on R}. Therefore, a causal vector v € RY is
either future-pointing or past-pointing, according to the time orientation chosen.

Given an n-dimensional Lorentzian manifold M, the tangent space at each point of
M is isomorphic to R7. It follows that there exist notions of timelike, null and spacelike
vector fields in the tangent bundle of M. Moreover, if it is possible to smoothly assign a
time orientation on each tangent space, then M is time orientable [46, 60]. In this thesis,
all Lorentzian manifolds will be assumed to be time orientable and that a time orientation
has been selected.



Chapter 1

Basics on semi-Riemannian geometry and spacelike
submanifolds

The theory of submanifolds in semi-Riemannian geometry covers a large number of dif-
ferent topics. In this thesis, on one hand, attention will be restricted to the particular
class of spacelike submanifolds. Basic consequences derived from this restriction will be
described, such as the particular structure of the normal bundle, paying special attention
to the case of co-dimension two and when the ambient manifold is Lorentzian. On the
other hand, the focus will be on properties of spacelike submanifolds that are relevant to
physically interesting problems. For example, the well-known concepts of trapped sub-
manifold and focal point along geodesics will be recalled. These are useful to describe
black holes and black hole horizons geometrically, as well as to prove causal incomplete-
ness of certain Lorentzian manifolds, thus the existence of singularities in the spacetime.

In this first chapter standard definitions and basic results will be collected in order to
fix notation and give the background material that will be used throughout the rest of the
thesis. The plan is as follows. The main intrinsic and extrinsic objects associated to a
given submanifold are recalled in Section 1.1; the Riemann tensor, the Ricci tensor and
the sectional curvatures are recalled in Section 1.2. In these two sections, no restrictions
on the submanifold are required. In Section 1.3 the concept of spacelike submanifold is
introduced and some motivations are given. Subsequently, the submanifold is assumed
to be spacelike. In Section 1.4, the structure of the normal bundle of a spacelike sub-
manifold is presented. The projections to the tangent and normal spaces are described,
and the study of the co-dimension two case and of the Lorentzian case are performed.
In particular, when the co-dimension is two, it is shown how to associate to any normal
vector field a characteristic vector field in the normal bundle, called its Hodge dual. Sec-
tion 1.5 is devoted to trapped and marginally trapped submanifolds: basic definitions and
some physical interpretations are given. Section 1.6 is a brief exposition concerning the
exterior algebra of the set of self-adjoint operators on S. In particular, by means of the
norm defined on this algebra, a criterion is deduced to determine whether or not a cer-
tain number of self-adjoint operators are linearly dependent. In Section 1.7, a very brief
and non-exhaustive overview of conjugate and focal points is given. In particular in the
last part of the section, the general idea of how to prove the existence of focal points is
presented.

1.1 Immersions: intrinsic and extrinsic geometry

Let M be an oriented (n + k)-dimensional semi-Riemannian manifold with metric tensor
g. Let S be an orientable n-dimensional manifold and ¢ : S — M an immersion into

9
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(M, g). The immersion ® is said to have co-dimension k. The sets of tangent vector
fields of M and S will be denoted by X (M) and X(S), respectively, and the set of vector
fields along ®(S) normal to S will be denoted by X(S)*+. Assume that the induced metric
g := ®*g is non-degenerate on S, i.e., if there exists X € X(S) such that g(X,Y) =0
forall Y € X(S) then X = 0. Then (S, g) is an oriented semi-Riemannian manifold.
(®(S), g) and (S, g) are isometric and will be locally identified.

The components in some basis of the matrices associated to the two metric tensors
g and g will be denoted by gz and g;;. The components of the corresponding inverse
matrices will be g®? and ¢*/. Similarly, the symbols V,V and fg)\, I‘fj will indicate
the Levi-Civita connections and the Christoffel symbols associated to (M, g) and (S, g),
respectively. Notice that Greek indices run from 1 to n + k and Latin indices from 1 to n.

Let X,Y € X(S) and ¢ € X(S)*, then the formulas of Gauss and Weingarten give
a decomposition of the vector fields VxY and V x¢ in their tangent and normal compo-
nents [43, 46, 60]:

VxY =VxY —h(X,Y),
Vxé=AcX + V%E.

Here, h acts linearly (as a 2-covariant tensor) on its arguments, is such that h(X,Y) =
h(Y,X) € X(S)* for all X,Y € X(S) and is called the second fundamental form
or shape tensor of the immersion; A is a self-adjoint operator for every £ € X(S)+,
namely, g(A:X,Y) = g(X, A;Y) for all X,Y € X(S), called Weingarten operator or
shape operator associated to ¢; and V= is a connection in the normal bundle. Notice the
choice of the minus sign in front of % in the first formula and the plus sign in front of A,
in the second formula: they differ from the sign convention adopted in most mathematical
texts. They also differ from the one adopted in [20, 21].

Given any £ € X(S)1, K¢(X,Y) = g(h(X,Y),€) forall X,Y € X(S) is called
second fundamental form along £. K is a symmetric (0,2)-tensor field on S that
possesses the same information as the Weingarten operator because

Ke(X,Y) = g(AeX,Y), VXY € X(S).

If tr, denotes the trace of a tensor with respect to the induced metric g and tr the trace of
a matrix, then one obviously has tr, K, = tr A¢.

The mean curvature vector field H € X(S)* is defined as the trace of the second
fundamental form [43, 46, 60]

1

H=—try,h.
n
Denote by {e1,...,e,} alocal orthonormal frame in X(S), i.e., g(e;, e;) = €;;; with
€2 = 1foralli,j € {1,...,n}. Such a frame will be called a tangent orthonormal

frame. With respect to this frame,

1 n
H = E ; €Z‘h(8i, €L)
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The component of H along a certain normal vector field ¢ € X(S)* up to a factor n or,
equivalently, the trace of the shape operator associated to &,

9§:ng(H7§):trA5, (1.1)

is called the expansion of S along £. The terminology “expansion” comes from the
physics literature, see for example [3, 46, 83, 86]. It should be noted that the factor 1/n
in the definition of the mean curvature is often omitted in this literature.

The Casorati operator is defined in a tangent orthonormal frame as [14, 86]

g(BX,Y) Zezg (X,e),h(Y,e;)), VXY € X(S). (1.2)

Notice that this definition does not depend on the chosen frame. The Casorati operator
is a self-adjoint operator and its trace tr 53 is called the Casorati curvature [14]. The
Casorati operator and the Casorati curvature have been mainly studied in the Riemannian
case, see for instance [23, 33] and references therein.

1.2 Curvature

The Riemann tensor of (S, g) is [46, 69]
R(X,Y)Z =VxVyZ -VyVxZ -VixviZ, VX,Y,Ze€X(S). (13)

Notice that the sign convention used here differs from the one used in [60]. The basic
properties of the Riemann tensor can be summarized as follows: let p € S, then for every
XY, Z,U €T,S

(@) R(X.Y)Z = —R(Y,X)Z:
(b) g(R(X,Y)Z,U) = —g(R(X,Y)U, Z);
(© R(X,Y)Z+R(Y,2)X + R(Z, X)Y = 0;
and consequently
) g(R(X,Y)Z,U) = g(R(Z,U)X,Y).
The Ricci tensor of (S, g) is [60]

n

Ric(Z,U) = tr (R => eg(R(ei, Z)U,e;),  VZ,U € T,S
i=1
where {e1, ..., e, } be the tangent orthonormal frame introduced in Section 1.1. Let X, Y’

be two vectors in T, spanning a non-degenerate plane II in 7},S. The number

g(R(X,Y)X,Y)
9(X,; X)g(YV,Y) —g(X,Y)?

K(X,Y)=— (1.4)
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defines the sectional curvature of S at p relative to the plane II [47]. The Ricci tensor
and the scalar curvature are such that

Ric(ej,e;) = Z €K(ej,e;). (1.5)

i=1,i#j

If the sectional curvature does not depend on X, Y, ie., K(X,Y) = C(p) forall X,Y €
T,S, then the Riemann tensor is just

R(X,Y)Z =C(g(Y,Z)X —g(X,2)Y), VYXY,Z€T,S

with C(p) = C being a constant by Schur’s lemma [69], and the Ricci tensor reads
Ric = (n — 1)Cyg.

In the present section all curvature quantities presented are associated to (S, g). To
denote the corresponding quantities associated to (M, g) it is enough to add a “bar” on
top of the symbols. So for instance, the components in some local coordinates of the
Riemann tensor of (M, g) will be denoted by R%, .

1.3 Spacelike submanifolds

From now on, the submanifold S is assumed to be spacelike:

Definition 1.3.1. Let ® : S — M be an immersion as described in Section 1.1. As-

sume that g := ®*g is positive definite everywhere on S, so that (S, g) is a Riemannian
manifold. Then, (S, g) is called a spacelike submanifold of (M, g).

The study of spacelike submanifolds in this thesis is strongly motivated by the importance
they have and the role they play in gravitational physics. In that context, in particular in
general relativity, the ambient manifold M is assumed to be Lorentzian, it usually has
dimension 4 and it is often called a spacetime.

A 3-dimensional spacelike submanifold (a hypersurface) in a spacetime can, for in-
stance, model our universe at large scale at a fixed instant of time. Or, a 2-dimensional
spacelike submanifold (a surface) that is closed, i.e., compact without boundary, can
model, by means of its evolution through time, the horizon of a black hole. From a
mathematical point of view, however, if one wants to study certain properties of space-
like submanifolds —the umbilical properties treated in this manuscript for instance— there
is no need to restrict to the 4-dimensional case, as well as no reason why to consider
only Lorentzian ambient manifolds. Moreover, many results that are interesting from a
physical point of view and that involve spacelike surfaces, such as those related to the
geometry of black holes and to the singularity theorems, can be generalized to subman-
ifolds of arbitrary co-dimension. This will be mentioned again at the end of Section 1.5
and also treated in Chapter 5. Therefore, unless explicitly stated otherwise, the immersion
®: S — (M,g) will be assumed to be general in the following sense:

e the spacelike submanifold S has arbitrary co-dimension;
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o the ambient manifold M has arbitrary dimension and arbitrary signature.

Throughout the thesis, the material will be presented under these assumptions. Then,
when needed, the specific cases of co-dimension two and Lorentzian signature will follow
and treated in greater detail. In order not to cause confusion, it will be always specified,
at the beginning of each section and subsection, which hypothesis on the co-dimension of
S and the signature of M will be considered.

1.4 The structure of the normal bundle

The spacelike submanifold S is assumed here to have co-dimension k. The normal space
T,S+ at each point p € S has signature (€7, - -+ ,€;), with €2 = 1 forall7 = 1,..., k.

A normal orthonormal frame is a local frame {&,...,&;} in X(S)* such that
§(&, &) = €0, forall r;s = 1,... k. With respect to this frame, the second fun-
damental form, the mean curvature vector field and the Casorati operator decompose as

M»

e g(Ae, X, Y)E, VXY € X(S), (1.6)
r=1
1 k
H=-=- B¢ Ers 1.7
- ;e 6. (17)
k
B=Y A (1.8)

Here, 0, is the expansion of S along &, introduced in (1.1).

1.4.1 Projectors Letp € S, the operator PP : T, M — T, S defined as

k
U) =U—= Z 67’§(€T'a U)g’!'a Vv € TpM
=1

is called the projector to the tangent space and it is independent of the basis {1, ..., &}
It is self-adjoint and its properties can be summarized as follows:

(@) P(¢) =0,VY€ € T,8*;
(b) P(z) ==z, Yz € T,,S;
(c) P2 =P;

d) tr P =n.
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Similarly, let {ey,...,e,} be a tangent orthonormal frame (because S is spacelike, it is
such that g(e;, e;) = &;;), the self-adjoint operator @ : T, M — T,S* defined as

Qv) =v - Zﬁ(ei,v)ei, Vv € T,M
i=1

is called the projector to the normal space and it is independent of the basis {e1, ..., e, }.
The properties satisfied by () are:

@) Q&) =¢&, VE e T,8;
by Q(z) =0,V € T,S;
© Q*=Q;

@ trQ =k

Notice that P(v) + Q(v) = v, for all v € T, M. Obviously, both P and @) can be
generalized and applied to vector fields, if these are defined along S.

1.4.2 Normal bundle with 2-dimensional fibers In the present subsection the immer-
sion ® : & — (M, g) has co-dimension k = 2, and the normal space T},S~ at each point
p € S has signature (€1, €2) that can be (+,+), (—, +) and (—, —).

With the canonical volume forms of the ambient manifold M and the submanifold
S, it is possible to define a volume form on the normal bundle. Let wL denote this
volume form on X(S)* and assume that the normal frame {&;, &>} is oriented such that

wh(&1,8) = 1.

Definition 1.4.1. For any normal vector field ¢ € X(S)*, its Hodge dual vector field is
denoted by x¢ and defined as

gxrEm) =wt(Em),  VneX(S)*.

The Hodge dual operator is a linear operator satisfying the following properties: for all
€n € X(S)*

(@) x €€ X(S)*h

(b) ¥+ (x1¢) = —e1e2&;

© gOxt&m) = —g(&*"n);
(d) g(x+¢.€) =0

(&) g(x&,x1€) = e1ea g (&, ).
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In particular, on the normal frame
*& = €26, *E = —a & (1.9)

It is clear that the direction spanned by the Hodge dual x¢ is the unique normal direction
orthogonal to ¢. The reader can consult [46] to have an overview of the Hodge dual (also
called star) isomorphism between differential forms in a more general setting. A brief and
clear exposition can also be found in [36]. See [10] for the Hodge dual operator on vector
fields in the particular Lorentzian case.

Combining some of the formulas listed above, the Hodge dual of the mean curvature
vector field is

€1€2

*J_H = T (05152 - 95251) .
The vector field - H defines a (generically unique) direction with vanishing expansion:
Oprpg =tr Aoy =ng(H,~ " H)=0. (1.10)

The use of x- H allows one to characterize a particular class of umbilical spacelike sub-
manifolds called ortho-umbilical, see Definition 2.4.3 and comments thereafter.

1.4.3 Normal bundle with 2-dimensional fibers and signature (—, +) In the present
subsection the immersion ® : S — (M, g) has co-dimension & = 2, and the normal
space 1,8+ at each point p € S has signature (€1, €2) = (—,+). Equivalently, 7,5+
is a 2-dimensional Minkowski space. In this setting one can choose a local frame {k, ¢}
consisting of future-pointing null vector fields in X(S)+, namely,

gk, k)=gt,£) =0 and g(k,0)=-1

the first two equalities defining null vector fields and the last one being a convenient
normalization condition. Notice that the normal frame {k, ¢} so normalized is not unique,
because it can be rescaled multiplying, for example, k by a factor ¢’ and ¢ by e~%.
However, the two null directions spanned by k and ¢ are indeed uniquely determined.
The set {k, £} will be called a null normal frame. The second fundamental form and the
mean curvature vector field decompose in this frame as

WX,Y) = —g(AX,Y) — g(AX,Y)k, VXY € X(S),
1
H=—(—00—-00k).
n
The operators Ay, Ay and the corresponding traces 6y, = tr Ay, 6y = tr Ay are called null
Weingarten operators and null expansions, respectively.
After changing the order if necessary, it may be assumed that the frame {k, ¢} is

positively oriented, i.e., that w(k,¢) = 1. Then, from the properties of the Hodge
operator presented in the previous subsection,

*k=—k and *xt{=2¢. (1.11)



16 Chapter 1

It follows that the Hodge dual of the mean curvature vector field is
N 1
*H=—(—00+0,k).
n
Moreover, g(x+&, x+¢) = —g(&, €) for every £ € X(S)*, and in particular
2
gH,»"H) = —g(H,H) = —0,6,. (1.12)
n

One can prove that in a null frame the Casorati operator is minus the anti-commutator of
the two null Weingarten operators:

B=—{Ap, A} = —ApA, — AgAp. (1.13)

1.5 Trapped and marginally trapped submanifolds

Let the ambient manifold be Lorentzian and let S be a spacelike submanifold of arbitrary
co-dimension. S is said to be [82]

> future trapped if the mean curvature vector field is future-pointing and timelike
everywhere on S;

> marginally future trapped if the mean curvature vector field is future-pointing
and null everywhere on S;

> untrapped if the mean curvature vector field is spacelike everywhere on S;
> minimal (or extremal) if H = 0.

Analogously, it is possible to define past trapped and marginally past trapped submani-
folds, requiring the mean curvature vector field to be past-pointing. An equivalent way
of defining future trapped submanifolds is by using the notion of expansion introduced
in (1.1). Indeed, a spacelike submanifold S is future trapped if and only if 6; < 0 for
all future-pointing causal vector fields ¢ € X(S)* (see Example 1.7.4). To see this, it
is enough to remember that two causal vectors belong to the same null cone if and only
if their scalar product is negative. When the ambient manifold has dimension 4 and &
has dimension 2, this characterization coincides with the very first definition of trapped
surface, given by Roger Penrose in 1965 [66]. For a more complete and detailed classi-
fication of spacelike surfaces (dim S = 2 and dim M = 4), the reader can consult [83].
Notice that the characterization given in terms of expansions (§¢ < 0) depends on the
sign convention adopted for the mean curvature vector field. Indeed, in most mathemati-
cal books the convention used is the opposite of the one adopted in this thesis, so that 0
would need be positive in order to have trapped submanifolds and negative for untrapped
ones.

A marginally trapped tube is defined as a hypersurface foliated by marginally trapped
submanifolds. Trapped and marginally trapped submanifolds together with marginally
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trapped tubes are key when studying gravitational collapse and black hole horizons. In
both stationary and dynamical situations, they help in characterizing those regions of a
spacetime that surround a black hole. Applications in this sense can be found, for instance,
in [6, 50, 81, 84]. Observe that in the context of black hole horizons, the trapped subman-
ifolds have co-dimension two. The way trapped and marginally trapped submanifolds
develop and evolve in a spacetime can, in particular, lead to the presence of a singularity.
More precisely, they can lead, under precise assumptions, to timelike or null incomplete-
ness of the ambient manifold. This is precisely the content of the so-called singularity
theorems. In their first version [34, 46, 60], the hypothesis of the theorems required the
existence of a trapped submanifold of co-dimension two. However, a generalized ver-
sion of the singularity theorems shows that the same conclusions on incompleteness can
be achieved by using trapped submanifolds of arbitrary co-dimension [29]. This will be
treated in more detail in Chapter 5.

1.6 Self-adjoint operators

The spacelike submanifold S has here arbitrary co-dimension and the signature of M is
not specified.

Let A and B be two self-adjoint operators defined on S. At each point p € S, one can
define a positive-definite scalar product as

(A,B), = tr(AB),.

Let 7(S) denote the set of all self-adjoint operators on S, then (A, B), defined as (4, B),,
at every p € S, is a scalar product on 7(S), for all A, B € T(S). Similarly, one can
define a norm on 7(S) by ||A|> = (A, A) for all A € T(S). The set 7(S) has the
structure of a vector space, therefore it is possible to construct its exterior algebra. It will
be denoted by A? 7(S).

Let A;,..., A, be g operators in 7 (S) and let S, be the set of all permutations of ¢
elements, then

q q
A A= nndy =2 37 (D) A
r=1 : r=1

oceG,

is an element of the exterior algebra. Here, |o| is the sign of the permutation o and
QI_, Ag(ry denotes the tensorial product A, (1)@ Ag(2) ®- - - ® Ay(4). The scalar product
defined on the exterior algebra, denoted by (, ), can be written in terms of the scalar
product on 7 (S) as follows. Given two elements A?_, A, and A?_, B, in A T(S),

(AaAB)= (1)2 > (=l ﬁ (Ao () Bor) -
r=1

|
r=1 s=1 4 o,p€EG,
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Similarly, the norm is

q

2
CE

r=1

(1> S (=D)IHATT (Aorys Apiry) - (1.14)

|
T 0,p€ES, r=1

Formula (1.14) gives a criterion to determine whether or not a certain number of self-
adjoint operators are linearly dependent. More specifically,

Lemma 1.6.1. A necessary and sufficient condition for q self-adjoint operators Ay, . .., A,
10 be linearly dependent is that || \?_, A,| = 0. Equivalently,

Z (—1)lel+lel H (Aot Ayry) = 0.

o,p€6, r=1

For example, two self-adjoint operators A; and A, are linearly independent if and only if
(A1, Ay) (Ag, Ag) — (Ay, A3)” # 0. This criterion will be applied in Section 3.1.

1.7 Focal points

The content of this section is mainly based on [46, 60], where a more appropriate and
complete treatment of the subject is presented. As already mentioned in Section 1.2, the
sign convention for the Riemann tensor is the one used in [46]. Moreover, it is worth
recalling that the sign convention used in this thesis for the second fundamental form is
the opposite of the one used in both [46, 60]. It follows that all inequalities involving
expansions are reversed with respect to those shown in the mentioned references.

1.7.1 Conjugate points Let « : [a,b] — M be a smooth curve in M. A variation of «
is a map

F:fa,b] x (=8,8) —s M

such that F'(u,0) = a(u) for all u € [a, b]. For every @ € [a, b] and for every © € (=4, )
the curves oz (v) = F(@,v) and a5 (u) = F(u, v) are called transverse and longitudinal,
respectively. If all longitudinal curves are geodesic then F' is called a geodesic variation
of «v. Given a variation F’ of «, the variation vector field associated to F' is defined as
oF
V(U) = %(qu), Yu S [CL, b]

The variation vector field V' is a vector field defined along the curve o. For every , it
corresponds to the initial velocity of the transverse curve «. Let o : [a,b] — M be a
geodesic in M and let J be a vector field along o. J is called a Jacobi vector field along
o if it satisfies the equation

VsVsd = —R(J,6)6.
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Here, & denotes the velocity vector field of o and R is the Riemann tensor of (M, g)
introduced in Section 1.2. Notice that the equation is defined along o, namely, it depends
on the parameter u € [a, b]. Given a geodesic ¢ and a geodesic variation F, it is possible
to prove that the variation vector field associated to F' is a Jacobi vector field.

Definition 1.7.1. Two points p, q in a geodesic o are said to be conjugate if there exists
a non-zero Jacobi field along o that vanishes both at p and q.

A geodesic variation of a timelike o can be seen as a one-parameter family of freely falling
particles. In this framework, the Jacobi vector field J represents the position vector,
relative to o, of the nearby curves. Thus V;.J represents the relative velocity and V5V s5.J
the relative acceleration. The Jacobi equation can then be interpreted in terms of Newton’s
second law, where R(J, ¢)¢ is playing the role of the force (the so-called tidal force).
The effects of the tidal force, or equivalently, the effects of the curvature of the am-
bient space, can be understood by considering a small sphere of particles falling towards
the earth. Each particle moves on a straight line in the direction of the earth. However,
particles that are nearer to the earth fall faster than those that are farther away. As a con-
sequence, the original sphere becomes an ellipsoid. (This example has been taken from
[34].) Moreover, the distance between particles tend to decrease as they fall, because they
are all directed towards the same point, the center of the earth. In other words, under the
influence of the gravitational field, the trajectories that initially were parallel will bend
towards each other, producing a relative acceleration between the particles. Thus the term
R(J,&)6 gives information about the tendency of the curves to “deviate”, due to curva-
ture. This is the reason why the Jacobi equation is also called the geodesic deviation
equation. The existence of conjugate points, in particular, is the result of attracting tidal
forces, which pull together geodesics that might have been initially diverging, for exam-
ple. It is worth noticing that in the context of general relativity, the geodesic deviation
equation basically shows the equivalence between curvature and the gravitational field.

1.7.2 Focal points Let ¢ € M and let « : [a,b] — M be a smooth curve in M
starting at S and ending at ¢, i.e., a(a) € S and a(b) = ¢. A variation of « such that
all longitudinal curves start at S and end at ¢ is called a (S, ¢)-variation of «. If F is
a (S, q)-variation of «, then the first transverse curve of F is in S and the last one is
constant in ¢. The variation vector field V' associated to F' is such that V'(a) € T((4)S
and it can be proven that V' vanishes in b. Let o : [a,b] — M be a geodesic in M which
is normal to S, i.e., 0(a) € S and 5(a) € Tyq)St. Let J be a vector field defined
along o, then J is called a S-Jacobi vector field along o if it is a Jacobi vector field and
satisfies the following properties [46]

(a) J(a)istangent to S;
(b) g(VsJ(a),z) —g(h(J(a),x),5(a)) =0, forall x € Ty(a)S.

If Fis a (S, g)-variation of o made of geodesics all normal to S, then it is possible to
prove that the variation vector field V associated to F' is a S-Jacobi vector field.
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Definition 1.7.2. Let o : [a,b] — M be a geodesic normal to S. The point o(c), with
¢ € (a,bl, is said to be a focal point of S along o if there exists a non-zero S-Jacobi
vector field along o that vanishes at o(c).

It is clear that focal points are the generalization of conjugate points. As such, the inter-
pretation in terms of tidal forces given for conjugate points still holds here.

1.7.3 Existence of focal points The ambient manifold in this subsection is assumed to
be Lorentzian. The existence of a focal point along a geodesic o depends on three factors:

o the curvature of the ambient manifold M near o (tidal forces and geodesic devia-
tion);

o the shape of the submanifold S (extrinsic geometry of S);
o the length of 0.
A basic result of this type is the following:

Proposition 1.7.3. Let S be a spacelike submanifold of co-dimension two of a Lorentzian
manifold. Let o : [a,b] — M be a null future-pointing geodesic normal to S. Assume
that

(i) Ric(d,6)(u) > 0forallu € [a,b];
(ii) 0[7((1,) < 0.

Then there exists a focal point o(r) along o, with r € (0, —9%)), provided o is defined
up tor.

Here, 0 (4) is the expansion of S along ¢ (a), introduced in (1.1). This quantity contains
information about the initial rate of convergence or divergence of the nearby geodesics.
Indeed, 05 () > 0 means that the curves of a geodesic variation of o are initially diverging,
while 05,y < 0 that they are initially converging; if 65,y = 0 they are initially parallel.

It is important to observe that in the statement o is future-pointing and point (ii) re-
quires 054 to be negative. If condition (i) is also satisfied, then this implies the existence
of a focal point to the future. If, on the other hand, o is future-pointing and 6, is re-
quired to be positive, then the focal point will be fo the past, as long as condition (i) holds
to the past.

In order to prove Proposition 1.7.3 and the others of this kind, one uses the so-called
index form (for timelike geodesics) and energy functional (for null geodesics), studying
the maxima and minima of their second order variations [34, 46, 60].

Example 1.7.4. Consider the 3-dimensional Minkowski space R. In polar coordinates
the metric tensor of R reads § = —dt? + dr? + r2dp?, where {r, p} are such that 7 > 0
and ¢ € [0,27). Let S be the circle

S={(trp) eR}[t=tr=7}.
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Figure 1.1:  The circle S = {¢t=0,r =7} in the 3-dimensional Minkowski space
endowed with the metric § = —dt? + dr? + r2dy? admits a focal point along all future-
pointing null geodesics with initial velocity k.

A tangent basis is given by the vector field d,,, the induced metric reads g = #?dy? and a
null normal frame is given by

1 1
b=—(0:+0,), k=—(0:—0,).
\/i( t ) \/i( t )
The mean curvature vector field is H = %EL and the null expansions are
2 2
9@ = 47 ek: = _4
T T

Leto : [a,b] — R3 be the geodesic normal to S with initial velocity ko (a)- Then, because
k is future-pointing and 6j, < 0, there exists a focal point to the future along o (see Figure
1.1). Moreover, all null geodesics with initial velocity given by k meet at that point.
Similarly, all null geodesics with initial velocity given by ¢ meet at the same point to the
past. &

Example 1.7.4 shows that the circle in R} possesses two families of future-pointing null
geodesics, generated by ¢ and k respectively, and that one of the two converges to a point
while the other one diverges. According to the definitions given in 1.5, this means that
the circle in R$ is untrapped. However, if the metric assigned to R®, rather than being
the standard one, had for instance its spacelike part depending on a function f(t), then,
according to f(t), the family of null geodesics associated to ¢ could also converge, as
shown in the next example.

Example 1.7.5. Consider the 3-dimensional Minkowski space endowed with metric
ds® = —dt* + dr? + f2(t)r?dp?

where f : R — R is a positive function depending only on the coordinate ¢. Let the
coordinates {r, ¢} and the curve S be as in Example 1.7.4. The induced metric is g =
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f2(t)r?dp? and the mean curvature vector field reads

= ﬁt)ﬂ grad(fQ(t)TQ) _ %(_f/(afat + f(ﬂ@r)

Its norm is given by

4 12 2 2
g(H7H): fg(afg(_f (E)T +f ({))

The null expansions are

f \f
3 FOF+ D), 0= 3 F@r — f(1)).

It is clear that, if ]f%‘(ﬂ > L then g(H,H) < 0 and S is trapped. In this case, both
families of null geodesics converge (either to the future or to the past, depending on the

sign of f' (). o

0y =



Chapter 2

Definitions: umbilical points and shear

The notions of umbilical point and umbilical submanifold are classical in differential ge-
ometry. They have mainly been studied in the Riemannian setting and, apart from few
exceptions, they have been applied to submanifolds of co-dimension one (hypersurfaces).
When the co-dimension is one, the normal bundle is 1-dimensional and thus the subman-
ifold can only be umbilical along the unique normal direction. On the other hand, when
the co-dimension is higher than one, there are several possibilities and the submanifold
can be umbilical with respect to some normal vectors but non-umbilical with respect to
others. A key object in order to study the umbilical properties of a spacelike submanifold
is the so-called rotal shear tensor. This is defined as the trace-free part of the second fun-
damental form and it often appears in the mathematical literature, especially in conformal
geometry. Nevertheless, it had never been given a name prior to [21] and its relationship
with the umbilical properties of submanifolds seems to have been mainly overlooked.

This second chapter focuses on the notions of umbilicity and shear: definitions related
to these two notions are given and some preliminary results are presented. The plan is as
follows. In Section 2.1 the total shear tensor is introduced and several shear quantities,
each of them associated to a given normal direction, are derived; the notion of shear spaces
and a discussion about their dimensions are presented. In Section 2.2 the basic notions of
umbilical point and umbilical direction, as well as of totally umbilical point, are presented;
a new notion, that of umbilical space, is introduced. A discussion about umbilicity at a
point, on closed sets and on the entire manifold is given. In Section 2.4 three sub-cases
are presented: pseudo-umbilical, ¢-subgeodesic and ortho-umbilical submanifolds. In
Section 2.5 the equivalence between &-subgeodesic and ortho-umbilical submanifolds is
shown. In Section 2.3 the shear space and the umbilical space are proved to be mutually
orthogonal; in particular, the sum of the corresponding dimensions is shown to equal
the co-dimension of the submanifold. In Section 2.6, after recalling the notion and some
basic properties of conformal transformations, the relations between the standard extrinsic
quantities and the corresponding conformally transformed quantities are listed. Then, the
conformal invariance of the total shear tensor is proved, and the conformal relations for the
shear quantities are derived. Finally, the umbilical directions are shown to be conformally
invariant.

Throughout the chapter, (M, g) is an oriented (n + k)-dimensional semi-Riemannian
manifold, S is an orientable n-dimensional manifold and ® : S — (M, g) is an im-
mersion such that (S, g) is a spacelike submanifold, with g = ®*g. The content of this
chapter is mainly based on [20, 21]; the results of Section 2.6 have not been presented
elsewhere.

23
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2.1 Definition of shear

The following definition introduces an object, the total shear tensor, that will be central in
this thesis.

Definition 2.1.1. The total shear tensor is the trace-free part of the second fundamental
form

WX,Y)=h(X,Y)—g(X,Y)H, VX,YeZX(S).

The total shear tensor acts linearly (as a 2-covariant tensor) on its arguments, it is sym-
metric and it is such that h(X,Y) € X(8)* forall X,V € X(S).

To the author’s knowledge, the trace-free part of the second fundamental form had
never been given a name prior to [21]. Nevertheless, it is easy to find in the literature, in
Riemannian settings, especially in connection with conformal properties of submanifolds.
A pioneer analysis appears in [27], where an extensive exposition concerning conformal
invariants is given. Among papers dealing with umbilical points, one of the oldest where
the trace-free part of the second fundamental form can be found is [53], but defined only
for a hypersurface and as a (0, 2)-tensor, thus as a shear tensor (see Definition 2.1.2).
The total shear tensor is also at the base of the definition of the so-called generalized
Willmore functional [65]. As for the physics literature, in [40] the author proves that
the only static vacuum spacetime with a smooth Killing horizon is the Schwarzschild
solution. In order to demonstrate this, he considers a spacelike hypersurface orthogonal
to the timelike Killing vector field and defines the trace-free part of its second fundamental
form (what in this thesis is called the shear tensor) and, in particular, he makes use of the
trace of its square, that is, the square of the shear scalar (see Definition 2.1.3).

2.1.1 Shear quantities By means of the total shear tensor it is possible to introduce
several quantities (operators, (0, 2)-tensors, functions) that describe the properties of S
encoded in h with respect to a chosen normal vector field.

Definition 2.1.2. Let & € X(S)*, the shear operator associated to ¢ is the trace-free part
of the corresponding Weingarten operator

Ae = A — %051

where 1 denotes the identity operator and 0¢ is the expansion along £ (see (1.1)); the
shear tensor associated to  is defined as the total shear tensor along &

K:(X,Y)=g(h(X,Y),9), VX,Y € X(S).

The shear operator is self-adjoint and the shear tensor is a symmetric (0, 2)-tensor, both
defined only on S. The total shear tensor and the shear operators are obviously related by

g(AcX,Y) = g(h(X,Y),8), VX,Y € X(S) V¢ex(S)™ . 2.1)
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It follows that the shear tensor is the trace-free part of the corresponding second funda-
mental form: K¢(X,Y) = K¢(X,Y) — £ try(K¢) g(X,Y), forall X, Y € X(S).

Definition 2.1.3. Let & € X(S)*, the shear scalar o¢ associated to £ is defined up to sign
by

The shear scalar was introduced in [86], yet in another way adapted to the case n = 2.
The alternative definition above, introduced in~[21], is better suited for general dimegsion
n and is well posed since S is spacelike and A is self-adjoint, hence the trace of Ag is
non-negative. A discussion concerning the ambiguity of the sign can be found later in
Section 3.1.1 (see formula (3.2)). For now, notice that

= (A¢, A¢) = || A¢|?

and that o¢ = 0 if and only if gg = (. Another object that one can construct starting from
the total shear tensor is the following:

Definition 2.1.4. Given a tangent orthonormal frame, the operator [J is defined as
g(TX,Y) = Z X, e), h(Y,e;)), VX,V € X(S).

The operator 7 is self-adjoint and independent of the chosen frame (see formula (2.4) for
J in terms of a normal frame). Notice the analogy of this definition with the one given in
(1.2) for the Casorati operator.

The names total shear tensor, shear operators, etc., arise from its relationship with the
concept of “shear” in the physics literature. In general relativity, shear refers to one of
the three kinematic quantities characterizing the flow of (usually timelike or null) vector
fields, also called congruences, of a given Lorentzian manifold. The kinematic quantities
are often also called optical scalars, see for example [61]. The link arises because, if one
such vector field is orthogonal to S, then its shear on S would be given by |o¢|. Notice
that another of these quantities is the expansion, introduced in Section (1.1). More about
congruences and kinematic quantities can be found in [3, 34, 99].

2.1.2 Decompositions Denote by {&;,...,&;} a local frame in X(S)+. With respect

to this frame, there exist k shear operators Ay, ..., Zk such that the total shear tensor
decomposes as

k
MXY) =) g(AX,Y)e, VXY €X(S). 2.2)
r=1

If the local frame is orthonormal, then A, = erAg for all r. However, in general A, does

not need to be proportional to AgT, rather being a linear combination of A&a . Agk
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Given any normal vector field n € X(S)* , by the decomposition formula for hina gen-

eral frame, its corresponding shear operator A can be expressed in terms of Al, N Ak.
Indeed, formulas (2.1) and (2.2) imply

k
Z (&) A, 2.3)

Moreover, the operator 7 reads

k
= Z 67’7 9 A A 2.4

If the normal frame is orthonormal then
k ~
T =Y eAl. 2.5)
r=1
If (M, g) is Lorentzian and S has co-dimension k£ = 2, then one can show that J is
minus the anti-commutator of the two null shear operators
J = —{Ay, Ay = — Ay Ay — AAy. (2.6)
Notice the analogy of these decomposition formulas with those given for the Casorati
operator in (1.8) and (1.13).
2.1.3 Shear spaces At each point p of S, the total shear tensor can be seen as a map
T,S x T,S — T,S*. This way it spans a subspace in 7},S=:
Definition 2.1.5. At any point p € S, the set
ImiNLp = span { h(z,y) | z,y € 17,8} C T,S8*+
is called the shear space of S at p.
If A = span{h(z,y) | z,y € T,8} C T,8*+ den~otes the first normal space [9] of S
at the point p € S, then for every p in S we have Im h;, C %l, hence
dim Im hy, < dim 4! < k. (2.7)

Furthermore, given any orthonormal basis {eq, ..., e,} in T,,S, the shear space of Satp
is spanned by the n(n + 1)/2 vectors h(e;, e;), for i < j. Given that > , (e“ e;) =0,

these vectors are not linearly independent. In particular, the dimension of Im h can be at
most n(n + 1)/2 — 1. Therefore

dim Im h,, < min {k w _ 1}. (2.8)



Definitions: umbilical points and shear 27

Formula (2.3) for the decomposition of any shear operator implies that if dim Im }~zp =d
then any d + 1 shear operators must be linearly dependent at p. The converse of this is
also true, so that

dim[mﬁp =max{d|In,...,nqs € T,5": A

sy Ay, areliniind.atp} . (2.9)

Notice that formulas similar to (2.8) and (2.9) also hold for the dimension of the first nor-
mal space: dim 4! < min { k,n(n + 1)/2}, and as for (2.9), the Weingarten operators
will just take the place of the shear operators. These two formulas for .4, L imply that if
k — n(n + 1)/2 is positive, then there exist & — n(n + 1)/2 Wemgarten operators that
vanish at p.

One can consider the union of all Im ﬁp as a subbundle of the normal space. If, in

addition, all Im Ep have the same dimension one can consider the set of sections of this
subbundle.

Definition 2.1.6. Assume that the dimension of the shear spaces Im 7Lp is constant on S,
i.e., there exists d € Nwith 0 < d < k such that dim Im h,, = d for all p € S. The set

Imh =span{ h(X,Y) | X,Y € X(S)} C X(8)*
is called the shear space of S.

The shear space is a module over the ring of functions defined on S of dimension d.
Notice that the properties already presented relating dim I'm h to the shear operators
can be extended to dim Im h accordingly. The dimension of the shear spaces Im h (or,

equivalently, of Im I if the former have constant dimension) will play a role in Section
2.3, where the relationship of these with the umbilical properties of the submanifold will
be made explicit.

2.2 Umbilical points and umbilical directions

2.2.1 Umbilicity at a point For hypersurfaces a point can only be umbilical along the
unique normal direction. This situation changes for higher co-dimensions, where there
are multiple directions along which a point can be umbilical.

Definition 2.2.1. A point p € S is said to be
> umbilical with respect to &, € T,S Lif Ag,, is proportional to the identity;
> totally umbilical if it is umbilical with respect to all §, € T,S -

The definition of umbilical point can be re-written in terms of shear quantities: a point p
is umbilical with respect to &, € T,S* if and only if A¢, = (tr A¢, /n)1 or, equivalently,
gagp = 0 for a € R\{0} (and thus for all a € R\{0}). Similarly, p is totally umbilical if
and only if h(z,y) = g(x,y)H, for all z,y € T,S or, equivalently, if and only ith=0
at p. Thus
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Definition 2.2.2. A point p € S is said to be
> umbilical with respect to ¢, € T,S* if A¢, = 0;
> totally umbilical if h(z,y) = 0 for all z,y € T,S.

It is clear that £,-umbilicity is a property that gives information about span{¢, } regardless
of the length and the orientation of &,. Hence, one will usually state that p is umbilical
with respect to the normal direction spanned by &,.

The fact that total umbilicity is equivalent to the vanishing of the total shear tensor was
already known for hypersurfaces in Riemannian settings and can be found, for instance,
in [27].

A useful concept is that of umbilical space. It gives information on the number of
directions along which the submanifold is umbilical. A precise definition is the following:

Definition 2.2.3. Given any point p € S, the set
Uy, = { &y € TS | p is umbilical with respect to €, } € T,S*
is called the umbilical space of S at p.

Lemma 2.2.4. The umbilical space %, is a vector space for every p € S.

Proof. Let &,,n, € %, so that by definition Ag = A,, = 0. Let a, b € R and consider
the normal vector a&, + bn,. By linearity we have Aa5p+b% = aAgp + bAn =0. It
follows that p is umbilical with respect to a&, + bnj,, hence af, + bn, belongs to %,. O
It follows from the lemma that dim %, is well defined. Notice that dim %}, = m if and
only if p is umbilical with respect to exactly m linearly independent normal directions.

2.2.2 Umbilicity on sets

Definition 2.2.5. LetV C S be a connected set and let ¢ € X(S)*. Then S is said to be
> umbilical on V with respect to £ if A¢ is proportional to the identity on V;
> totally umbilical on V if it is umbilical on V with respect to all £ € X(S)*.

Notice that the set of all umbilical points with respect to & must be closed.

The properties presented in Section 2.2.1 for umbilical points can be extended here
accordingly. In particular, the definitions can be re-written in terms of shear quantities as
done in Definition 2.2.2.

Let £ € X(S)*, then the submanifold S is umbilical on V with respect to ¢ if and only
if &, € %, for all p in V. More in general, S is umbilical on V with respect to exactly
m linearly independent non-zero normal vector fields &1, . .., &, € X(S)* if and only if
(&1)ps- -y (&m)p € %, for all p € V. Equivalently, if and only if dim %, = m for all p
in V. This leads to the following definition.
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Definition 2.2.6. Let V C S be a connected set. Assume that the dimension of the
umbilical spaces U, is constant on'V, i.e., there exists m € N with 0 < m < k such that
dim %, = m for all p € V. Then the set

U = {¢€X(S)" | S is umbilical on V with respect to £ } C X(S)*
is called the umbilical space of S relative to ).

Previously it has been proved that %, is a vector space for every p. Similarly we can
prove that 7/ is a finitely generated module over the ring of functions defined on V), with
dim % = m.

Call W the set of all umbilical points in S, then W is in general the union of closed
sets. Let V1 and V, be two connected closed sets belonging to W and let &1, &, € X(S)*.
Then, it can happen that S is umbilical on V; with respect to £; and on Vs with respect to
&,. This elementary example shows that it is possible, in general, to define the umbilical
space of S relative to the whole WV but that such space will not be a module, or space, etc,
as the dimension can change from point to point.

2.2.3 Umbilicity on the entire submanifold A special situation is given by V = S.
Definition 2.2.7. The submanifold S is said to be

> umbilical with respect to £ € X(S)* if A¢ is proportional to the identity;

> totally umbilical if it is umbilical with respect to all £ € X(S)*.

All properties presented for umbilical points in Section 2.2.1 and for umbilicity on sets in
Section 2.2.2 can be extended here accordingly. The umbilical space can now be defined
relative to the whole submanifold:

Definition 2.2.8. Assume that the dimension of the umbilical spaces %, is constant on
the whole S, i.e., there exists m € N with 0 < m < k such that dim %, = m for all p in
S. Then the set

U = {€¢eX(S)t | S is umbilical with respect to € } C X(S)*
is called the umbilical space of S.

The set  C X(S)* is a finitely generated module over the ring of functions defined
on S. Thus dim % = m if and only if S is umbilical with respect to &1, . .., &,,, where
&1, .., &m € X(S)* are m linearly independent non-zero normal vector fields such that
(&r)p € Uy forallpin Sand forall r = 1,...,m.

Remark 2.2.9. The notion of umbilicity has been given firstly at a point, then on con-
nected sets and then generalized to the entire submanifold. It is worth noticing that the
case when S is entirely umbilical represents a special, restricted, situation. Nevertheless,
for the sake of simplicity, the definitions and the results concerning umbilicity that are
presented in the next sections and chapters will be mainly stated in terms of the whole
submanifold. The reader, however, has to keep in mind that, in general, these definitions
and results may be valid only at some points or on some connected set of S. &
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2.3 Properties of the umbilical space

The next result shows that the umbilical space and the shear space are mutually orthogo-
nal. A direct consequence is that the sum of the corresponding dimensions must equal the
co-dimension of the submanifold.

Proposition 2.3.1. Let %, and Im Ep be the umbilical space and the shear space, respec-
tively, of S at any point p € S. Then

U, = (Im h,)*.
Moreover,
k — dim %, = dim Im h,,.
Here (Im l~1p)L is defined as the subspace of T,,S L orthogonal to Im Ep, namely

(Imﬁp)L ={np € TPSL | §(np, &) =0 V& € Imﬁp e

Proof. By definition, a normal vector &, belongs to %, if /TEP = 0. Equivalently,
if g(ggp(x)y) = 0, for all z,y € T,S. By formula (2.1), this holds if and only if
& € (Imﬁp)J-. Hence %, = (ImiNLp)J-.
Suppose Im ﬁp = {0}, then it is clear that %, = (Im ﬁp)J- = T,S* and the rela-
tion between the dimensions holds. Now assume Im Ep # {0}. We can choose a basis
{(&1)ps - -+, (€k)p} of T, St such that {(£1)p, ..., (€a)p} is a basis of Im ﬁp. A normal
vector 1}, belongs to %, = (Imﬁp)l if and only if g(np, (§;)p) = 0forj =1,...,d.
Since (£1)p, - - - , (§a)p are linearly independent and § is non-degenerate, these are d lin-
early independent conditions on the components of 7, and hence dim %, =k —d. O

By formulas (2.8) and (2.9), it follows that if &k — n(n + 1)/2 + 1 is positive then
dim%, > k—n(n+1)/2+ 1.

The intersection %, N Im Ep might be non-empty, and consequently the direct sum of
the two spaces does not generate, in general, the whole normal space. For example, if p
is umbilical with respect to some vector &, with the property §(&p, &,) = 0, then £, might
belong to Im Ep. However, in case M is a Riemannian manifold, one easily checks that
Im hy, N %, = () and one has

T,S* = Imh, & %, (M Riemannian).

Notice that Proposition 2.3.1 implicitly shows that if the dimension of the shear spaces
Im hy, is constant on S then the dimension of the umbilical spaces %, also is, and vice
versa.

Corollary 2.3.2. Assume that the dimension of the shear spaces Im TLP is constant on S
(equivalently, that the dimension of the umbilical spaces %, is constant on S). Then Im h
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and U are well defined and
U = (Imh)™.
Moreover,

k — dim % = dim Im h.

The case dim Im h = 0, that is equivalent to dim % = k, obviously corresponds to S
being totally umbilical. In this situation, %7 = X(S)*. Suppose instead dim % = k — 1.
Then by Corollary 2.3.2, dim Im h = 1. It follows that there exist a normal vector field
G € x(S8)* and a properly normalized self-adjoint operator A such that TL(X YY) =
g(AX,Y)G forall X,Y € X(S). The reader will find more about this case in Chapter
3, see for instance Theorem 3.1.3 and its consequences. If dim % = 0 then there are no
umbilical directions and Im h = X(S)~.

From now on, and for the sake of conciseness, it will be assumed that the dimen-
sion of the shear spaces Im ?Lp is constant on S. Thus, as already mentioned in Remark
2.2.9, S will be considered to be umbilical with respect to exactly m linearly independent
umbilical directions, that is to say, dim % = m.

2.4 More umbilical-type submanifolds

Interesting properties arise when a spacelike submanifold is umbilical with respect to
geometrically preferred directions.

Definition 2.4.1. S is said to be pseudo-umbilical if it is umbilical with respect to the
mean curvature vector field H.

The notion of pseudo-umbilical submanifold is classical in the mathematical literature. In
the Euclidean setting, it can already be found in [62]; for the co-dimension two case in
the Riemannian setting, in [102]. As for semi-Riemannian geometry, a first work is [76]
and later results are, for instance, in [1, 5, 12, 37, 42, 88, 92].

Definition 2.4.2. S is said to be ¢-subgeodesic if there exists ¢ € X(S)* such that
hMX,Y) = L(X,Y) forall X, Y € X(S), where L is a non-zero symmetric (0,2)-
tensor field on S.

The notion of {-subgeodesic submanifold was first introduced in [83]. Assume that S is
&-subgeodesic for some ¢ € X(S)*, the first normal space is at most 1-dimensional at
every point. It follows that all Weingarten operators are proportional at points where &
does not vanish. Indeed, at such points one has

g(ﬁv”Q)A’fh = 5_7(57771)14772 (210)

for any 7y,72 € X(S)*. Furthermore, at points where H # 0, £-subgeodesic sub-
manifolds have ¢ proportional to H, as can be seen by taking the trace of the equa-
tion h(X,Y) = L(X,Y){. Therefore if S is -subgeodesic and H # 0, then it is
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automatically H-subgeodesic. Notice that, if S is £-subgeodesic, then any geodesic
v: 1 CR — 8of (S,9) satisfies V,y/ = —h(v,7) = —L(y/,7')é. Hence v
is a subgeodesic with respect to £ in (M, g) (see [80]). This explains the terminology
&-subgeodesic.

Let

H* ={neX(S)" |g(Hn) =0} CX(S)" (2.11)

be the space in X(S)* orthogonal to H. If the mean curvature vector field is such that
g(H,H) # 0, then X(S)* decomposes as span{H} & H- = X(S)-. On the other
hand, if H has vanishing norm, then there will be no direct decomposition. However,
the following relation between the dimensions of the two spaces hold: dim span{H} +
dim H* = k.

Definition 2.4.3. S is said to be ortho-umbilical if A, = 0 foralln € H L

When the co-dimension of the submanifold is two, the space H 1 has dimension either one
or two. If, in addition, H # 0, then H is 1-dimensional: H+ = span{x*H}. Under
this hypothesis on the co-dimension, the notion of ortho-umbilicity can be rewritten as
follows: suppose that the spacelike submanifold S has co-dimension two, then S is said
to be ortho-umbilical if A, 5 = 0.

The notion of ortho-umbilical submanifold was firstly introduced in [86]. More pre-
cisely, the definition given in [86] applied to surfaces (n = 2 and k = 2). Later in [21],
it has been studied for submanifolds of arbitrary dimension n and fixed co-dimension
k = 2. Here, Definition 2.4.3 properly generalizes to arbitrary dimensions the one given
for co-dimension two submanifolds. The terminology “ortho-umbilical” is explained by
the fact that, when k& = 2, the condition A, . ;; = 0 is actually equivalent to A,z = 0,
that is, to requiring that the submanifold is umbilical with respect to the vector field x~ H
orthogonal to H, since we know that 6,1 ;7 = 0 (see (1.10)). Similarly, when £ is arbi-
trary, the condition A, = O foralln € H L is equivalent to A, =0foralln e H L, that
is, to requiring that the submanifold is umbilical with respect to every vector field which
is orthogonal to H, in other words, if and only if % = H*.

2.5 Equivalence between ¢-subgeodesic and ortho-umbilical subman-
ifolds (H # 0)

It can be proved that £-subgeodesic submanifolds and ortho-umbilical submanifolds are
equivalent as long as H # 0. This is the content of the next result.

Proposition 2.5.1. The following two conditions are equivalent on any open set where
H #0:

(i) S is ortho-umbilical;

(ii) S is &-subgeodesic for some non-zero & € X(S)™* (ergo, S is H-subgeodesic).
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Proof. Suppose S is ortho-umbilical. By definition, A, = 0 for all n € H+. Conse-
quently,

0=g(A,(X),Y) =g(h(X,Y),n), VX,Y € X(S),Vn e H .

It follows that h(X,Y') is orthogonal to 7 for all € H+ and forall X, Y € X(S). Hence
the first normal space belongs to span{H } and S is H-subgeodesic.

Suppose now that S is ¢-subgeodesic for some non-zero ¢ € X(S)*. This implies
that S is also H-subgeodesic (see comments after (2.10)), namely h(X,Y) = L(X,Y)H
for some symmetric (0, 2)-tensor field L on S. Let € H, then

g(ATI(X)7Y) = g(h(X7Y)777) = L(X7Y)g(Ha 77) = 0.

Hence A,, = 0 for all y € X(S)* and S is ortho-umbilical. O

Notice that in the proposition the vector field £ is required to be non-zero. This means
that the case dim %1 = 0 for all p € S, that is, the case S totally geodesic, is not
included.

The equivalence between £-subgeodesic and ortho-umbilical submanifolds was firstly
proven in [86] for the case n = 2 and k = 2. Then it was generalized in [21] for arbitrary
n. The proof given here is the same as the one given in [21]: even though it was not
specified, it actually holds for arbitrary £ too.

Remark 2.5.2. If H vanishes, at most, on a subset with empty interior, then the propo-
sition is true globally on S. Indeed, the proposition proves the equivalence on any subset
on which H vanishes nowhere. Since the union of all such subsets is dense in S, the result
follows by a continuity argument. &

By Proposition 2.5.1 and formula (2.10) it follows that the submanifold S is ortho-umbilical
if and only if all Weingarten operators are proportional to each other.

The following is a direct consequence of Proposition 2.5.1 and its proof, when assum-
ing k = 2.

Corollary 2.5.3. Let S have co-dimension two. On any open set where H # 0 there
exists a non-zero normal vector field ¢ € X(S)* such that A,re = 0ifand only if S is
ortho-umbilical.

2.6 Invariance under conformal transformations

According to the definition given in [99], (M, g) undergoes a conformal transformation
if the metric tensor changes as

¢ = ey (2.12)

where v : M — R is a smooth function. Then, the very same immersion ® : § — M
provides a new inherited metric on S

g = e2®ug. (2.13)
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One important thing that has to be emphasized is that, according to the definition given,
a conformal transformation is not associated to any diffeomorphism of the manifold M.
As a consequence, no transformations of the tangent and normal vector fields of S need
be considered. Indeed, the tangent and normal spaces X(S) and X(S)* are exactly the
same in both (S, g) and (S, g©). Notice that given V, W € X(M), then g(V, W) = 0 if
and only if g¢(V, W) = 0. So for instance, g(X,¢) = g°(X,€) = 0 forall X € X(S)
and for all £ € X(S)*.

Let T/, ; and (I‘C)” be the Christoffel symbols associated to (M, g) and (M, g¢) in
alocal chart, respectlvely Then the relationship between the two is given by the following
formula:

ou ou _\_ Ou

7y _ TP pi,
(T )a =T 5+5ﬂ8 a+6a e g ga,ga 5 (2.14)

Here, the Einstein summation convention has been used. Using (2.14) one can find the re-
lations between the standard extrinsic quantities and the corresponding conformally trans-
formed ones. This is what will be done in the next subsection. Notice that all conformally
transformed quantities will be denoted by using the symbol €.

2.6.1 Transformation of extrinsic quantities under (2.12) Let grad v be the gradi-
ent of u and let () be the projector to the normal space defined in Section 1.4.1. Then
(grad u)| is a vector field on S and Q((grad u)|) € X(S)* is its normal component; it
will be denoted by grad u™. The second fundamental form and the mean curvature vector
field transform as:

(@) h°(X,Y)=h(X,Y) - (X,Y)graduL, VXY € X(S);
(b) 2PugC = g — gradu

Formula (b) shows that H¢ and H span the same normal direction if and only if grad ut
is proportional to H. Let ¢ € X(S)*, the Weingarten operator associated to ¢ and the
second fundamental form along ¢ after a conformal transformation are:

() Af = A¢ — {(u)1;

(d) KE(X,Y) =™ (Ke(X,Y) = €(w)g(X,Y)), VXY € X(S).
Notice that £(u) = g(&, grad u) = g(¢, grad u™). Taking the trace of (c) one finds

(e) g = 0 — n&(u)

where Qg and 0¢ are the expansions respectively after and before the conformal transfor-
mation. Using formulas (b) and (e) it is possible to compute the transformed expansion
associated to the mean curvature vector field:

(f) 22705 = 0y — 2 Ogradwt + 1 g(grad u®, grad uh).

Finally, the Casorati operator and the Casorati curvature transform as
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(g) 2B =B - 2 Agraqut + g(grad ut, gradub)1;
(h) 2 tr B¢ =trB—2 Ograd - + 1 g(grad ut, grad ut).

Formula (h) simply follows from (g), whereas formula (g) can be proved using the defi-
nition of the Casorati operator together with (a).

2.6.2 Conformal invariance By using the above relations it is possible to compute the
conformally transformed shear quantities and show that some of them do not change
under the transformation.

Proposition 2.6.1. The total shear tensor of (S, g) is invariant under any conformal
transformation, namely

(X, Y)=h(X,Y), VX,Y e€X(S).
Consequently, the shear space is also invariant
Imh© = Im h.
Proof. By definition, h°(X,Y) = h°(X,Y) —¢%(X,Y)HC  forall X, Y € X(S). Using
formulas (a), (b) and (2.13),
RE(X,Y) = h(X,Y) — g(X,Y) gradu® — g(X,Y)(H — gradu™) = h(X,Y)

forall X,Y € X(S). O
Direct consequence of Proposition 2.6.1 is the following corollary, which summarizes
the relations between the shear quantities and the corresponding conformally transformed.

Corollary 2.6.2. The shear quantities transform under the conformal transformation
(2.12) as

(i) Af = Ae, VE€ X(S)*:
(i) KE(X,Y) =P "Ke(X,Y), VX,Y € X(S);
(iii) (0¢)? =0F, VEEX(S)":

(iv) 62@“/1%[ = /~1H - Agrad uls
(V) jC _ €2¢*UJ’_
i) tr J¢ = 2 Uty 7,

To prove the corollary it is enough to use the formula for he presented in Proposition
2.6.1 together with the definitions of the shear quantities given in Section 2.1.1.
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The content of Proposition 2.6.1 was already present in [27]. In particular, the author
in [27] says that I is a conformal tensor and that the contravariant vector space that spans
remains unchanged by conformal transformations. This is equivalent to saying that the
total shear tensor and the shear space are invariant under conformal transformations. It is
worth noticing that even though the conformal invariance of the shear space was already
present in [27], the relationship with the umbilical properties of the submanifold, showed
in the next proposition, was not made explicit.

Proposition 2.6.3. The umbilical space of (S, g) is invariant under conformal transfor-
mations, namely

U =U.
The proof of Proposition 2.6.3 easily follows from Proposition 2.6.1 and Corollary 2.3.2.

Proposition 2.6.4. S is pseudo-umbilical after a conformal transformation (2.12) if and
only if H — gradu® € %.

Proof. Formula (iv) of Corollary 2.6.2 states
2 uAC = AH_gmduL

from which one deduces H¢ € %€ if and only H — grad u™ € % . O
From this Proposition it is immediate to deduce when a pseudo-umbilical submanifold
remains umbilical after a conformal transformation:

Corollary 2.6.5. Let S be pseudo-umbilical. Then S is pseudo-umbilical after a confor-
mal transformation (2.12) if and only if grad ur is an umbilical direction (grad utew).
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Umbilical spacelike submanifolds: characterizations

The main purpose of this chapter is to characterize spacelike submanifolds that are um-
bilical by making use of the shear quantities introduced in Chapter 2. Several charac-
terization results will be presented: they will provide necessary and sufficient conditions
for a spacelike submanifold to be umbilical, totally umbilical, pseudo-umbilical, ortho-
umbilical and pseudo- and ortho-umbilical at the same time. The conditions will depend
on the dimension of the spacelike submanifold, on its co-dimension, on the number of
linearly independent umbilical directions and on the signature of the ambient manifold.
As already done in the previous chapters, one starts by studying the most general case,
that is, letting the spacelike submanifold to have arbitrary dimension n and co-dimension
k and the ambient manifold to be semi-Riemannian with no specified signature. Then,
one particularizes by fixing the co-dimension to be two and, finally, by assuming the am-
bient manifold to be Lorentzian. The special case of spacelike surfaces in 4-dimensional
Lorentzian manifolds, that has obvious applications in gravitational physics, is also con-
sidered.

In Section 3.1 the main results are stated and proved for spacelike submanifolds with
arbitrary co-dimension. Two theorems are presented: the first theorem characterizes
spacelike submanifolds umbilical with respect to, say, m linearly independent normal
directions; the second theorem describes the specific case of m = k — 1. Some conse-
quences are derived for the latter, such as the existence of a preferred normal vector field,
denoted by GG, and commutativity properties for the Weingarten operators. In Section 3.2,
the characterization is given for the case k = 2 and m = 1. An explicit formula for the
umbilical direction in terms of G is found and the special case of surfaces (n = 2) is
considered. Section 3.3 deals with submanifolds of co-dimension two when the ambient
manifold is assumed to be Lorentzian. The causal character of the umbilical direction
is computed and a brief comparison is made between G and the mean curvature vec-
tor field. In Sections 3.4 and 3.5 characterizations are given for pseudo-umbilical and
ortho-umbilical submanifolds, respectively. In Section 3.6, submanifolds which are both
pseudo- and ortho-umbilical are studied. A first result is given for spacelike submani-
folds with arbitrary co-dimension and then the specific case of co-dimension two in the
Lorentzian setting is presented.

This chapter is mainly based on [20, 21].

3.1 Arbitrary co-dimension
Theorem 3.1.1 below gives necessary and sufficient conditions for a spacelike submani-

fold with arbitrary co-dimension to be umbilical with respect to a given number of linearly
independent normal vector fields. In particular, it does not require any restriction on the

37
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signature of the ambient manifold. The conditions listed in the theorem, that will be
shown to be all equivalent, involve the shear quantities introduced in Chapter 2, such as
the total shear tensor and the shear operators. The proof of the theorem is mainly based on
elementary algebraic computations, and it makes use of some of the results presented in
the previous chapters, namely: Lemma 1.6.1, that gives a criterion for self-adjoint opera-
tors to be linearly dependent, and Corollary 2.3.2, that describes the relationship between

the dimensions of the shear space Imh (Definition 2.1.6) and the umbilical space %
(Definition 2.2.8).

Theorem 3.1.1. Let ® : S — (M, g) be an immersion such that (S,g), with g =
®*g, is a spacelike submanifold of dimension n and co-dimension k. Then the following
conditions are all equivalent:

(i) The umbilical space % of S has dimension m;
(ii) the shear space Im h has dimension k — m;

(iii) the total shear tensor satisfies

kE—m+1 ~ k—m ~
/\ R’ =0, and /\ % #0;
(iv) any k—m+-1 shear operators A}l ey ﬁgkfmﬂ are linearly dependent (and there
exist precisely k — m shear operators that are linearly independent);
(v) any k — m + 1 shear operators g& e A/Ek—nzﬁ-l are such that
k—m-+1 _ _
> Rl T (Ae,, Ag,) =0
o,p€ES, r=1
and there exist precisely k — m shear operators Zlmv . ,Zm_im such that

k—m
> (=) (A, A #0.
r=1

o,peES,

Notation 3.1.2. The symbol b denote the musical isomorphism: if V' € X(M) then
V(W) = g(V,W) for all W € ¥(M). The notation used in point (v) can be found in
Section 1.6. The symbol A’w, denotes the wedge product wy A - - - A wy of g one-forms
{we}?_,, and h* A b’ means h(X1,Y1)" A h(Xs, Ya)® for all X1,Y7, Xo,Ys € X(S).
Hence point (iii) can be reformulated by saying that the condition

K
N (X, Y. =0,  ¥X.,Y,..., Xk Yk €X(S)

r=1

must be satisfied for X' = &k — m + 1 and not satisfied for K = &k — m.
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Proof. The equivalence between point (i) and point (ii) is a consequence of the properties
of the umbilical space and has been explicitly proved in Corollary 2.3.2. The equivalence
between point (iv) and point (v) follows by applying Lemma 1.6.1 to any k — m + 1 shear
operators. That point (iv) is equivalent to point (ii) follows by Definition 2.1.6 of the shear
space. In order to conclude the proof it will be shown that point (ii) and point (iii) are
equivalent.

(il) = (iii) Assume that the dimension of the shear space is k — m, then it is pos-
sible to decompose the total shear tensor by means of exactly k¥ — m normal vector
fields. Explicitly, there exist & — m shear operators {Al}f;{” and k£ — m vector fields
Clyovny Chom € X(S)* such that

3

k—m
MX,Y) =Y g(AX.Y)G VXY € X(S).

i=1

Because these vector fields are linearly independent, their corresponding one-forms ¢?
also are. From this fact it easily follows that, on one hand, the wedge product k —m times
of i is (iifferent from zero and, on the other hand, that the wedge product £ — m + 1
times of 2° must be zero.

(iii)) = (ii) Suppose that the total shear tensor satisfies the condition stated in point
(iii). By algebra’s basic results, one knows that [ one-forms wy, . . . ,w; are linearly inde-
pendent if and only if their wedge product w; A -+ A w; is not zero. Equivalently, they
are linearly dependent if and only if their wedge product is zero. Hence, for any choice
of 2k tangent vector fields X1,Y7,..., Xy, Yy € X(S), consider the set of one-forms
{%(Xl, Y1)°,... ,E(Xk, Y:)? }. This set has k elements and, by hypothesis, among them
there exist at most k& — m that are linearly independent. The same argument can be ap-
plied to the set of the corresponding normal vector fields: there exist at most k —m among
{h(X1,Y1),...,h(X),Y;) } that are linearly independent. By definition of shear space,
this implies dim Imh <k-—m.

On the other hand, by hypothesis one knows that there exist 2k — 2m vector fields
X1, Y1, ..., Xk—m, Yieem € X(S) such that

k—m

N (X, Y,) 0.

r=1

This means that the k — m one-forms { h(X1,Y1)", ..., h(Xg—m, Ye—m)® } are linearly
independent or, equivalently, that the corresponding k—m normal vector fields are linearly
independent. Again by definition of shear space, this implies dim Imh > k—m. It
follows that the dimension of Im h is exactly k — m. O

Theorem 3.1.1, taken from [20], represents the most general result of the thesis about
characterizations of spacelike umbilical submanifolds. Most of the other results presented
in this chapter are derived from it as special cases. The relevance of Theorem 3.1.1 re-
sides, on one hand, on the fact that it is stated in a general framework. On the other
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hand, it provides an efficient tool —especially when considering the case k = 2— to deter-
mine whether or not a given spacelike submanifold is umbilical. This second aspect, even
though it does not seem important from a strictly mathematical point of view, turns out to
be of great utility when one comes to apply the results in physically interesting contexts.
Chapter 6 will be entirely devoted to examples coming from gravitational physics, so the
reader will find a discussion there.

3.1.1 The case of k¥ — 1 umbilical directions The next result describes the specific case
of dim% = k — 1; as in Theorem 3.1.1, no restrictions on the signature of the ambient
manifold are made.

Theorem 3.1.3. Let @ : S — (M, g) be an immersion as in Theorem 3.1.1. Then the
following conditions are all equivalent:

(i)’ The umbilical space % of S has dimension k — 1;
(i)’ there exist A € T(S) and G € X(S)* such that (A, A) = n? and
RMX,Y)=g(AX,Y)G, VXY € X(S);
(iii)’ any two shear operators are proportional to each other;

~ ~ o~ 2
(iv)’ any two shear operators A¢, , A¢, are such that (Ag, , A¢,) = 0‘?1 0'?2.

Theorem 3.1.3 represents a sub-case of Theorem 3.1.1, thus its proof mainly follows from
the previous one. Observe that, under the assumption dim % = k — 1, the shear space
is 1-dimensional and the total shear tensor can be expressed in terms of a specific normal
vector field G (point (ii)’); the features arising from the existence of G will be made more
explicit in Sections 3.2 and 3.3. Furthermore, the hypothesis dim % = k — 1 implies
commutativity of the shear operators (point (iii)’) and, as a consequence, commutativity
among the Weingarten operators; this will be shown in Corollary 3.1.4.

Proof. In order to prove the theorem, it is enough to rewrite the conditions listed in
Theorem 3.1.1 for the specific case m = k — 1. They are:

1) dm%Z =k —1;
(i) dim Imh = 1;
(iii) h(X1,Y1)" A h(Xs,Y2)" = 0 forall Xy, Y7, Xo,Ys € X(S), and h # 0;
(iv) any two shear operators are proportional to each other;
(v) any two shear operators g& , g&z are such that <g§1 , AVEQ >2 = (ﬁgl , ﬁ&) <g£2, X&).

Conditions (i)’, (iii)’ and (iv)’ directly follow from conditions (i), (iv) and (v), respec-
tively; conditions (ii) and (iii) are equivalent to condition (ii)’. O

Assume that S is umbilical with respect to & — 1 umbilical directions, then, by point
(ii)’ of Theorem 3.1.3 it follows that there exist
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e atrace-free self-adjoint operator A on S normalized as (ﬁ, Z> =n? and
e anormal vector field G € X(S)*

such that the total shear tensor decomposes as h(X,Y) = g(AX,Y)G for all X,Y €

X(S). Notice that the vector field G is only determined up to sign. But this is natu-

ral because being umbilical is a property related to a direction, not to a particular vector

field. Using the expression for h glven in point (ii)’, one deduces that every shear oper-

ator is proportional to the operator A. Indeed, one has g(AgX Y) = g(h(X Y),¢) =
g(AX,Y)g(G,¢) forall X,Y € X(S) and all ¢ € X(S)L. Hence

=3(G, &) A. 3.1)

The corresponding shear scalar is given by 07 = tr(ﬁg) = §(G,€)* tr(A?). Since A
is normalized as (A, A) = n?

defined up to sign, one can set

one obtains o7 = 1 g(G,£)?. Since both o¢ and G are

oe =ng(G,§),  VE€X(S). (3.2)
Combining (3.1) and (3.2) yields
Ae= =4, veEex(S)*
from which
<A771,A 2) = Ony Onys Vi, e € X(S)*
This last equation represents a refinement of condition (iv)’ of Theorem 3.1.3.

Corollary 3.1.4. Ifdim % = k — 1 then any two Weingarten operators commute.

Proof. By condition (iv) of Theorem 3.1.1 it follows that when m = k — 1 then any two
shear operators commute. It is easily seen that [A,71 , A,, ,] =0ifand only if [A,, , A,,] =
0 for any 71,72 € X(S)*. O
A consequence of Corollary 3.1.4 is that at any point of the submanifold there exists
a (generically unique) orthonormal basis of the tangent space for which all Weingarten
operators diagonalize simultaneously. Notice that this result was proven in [21] for the co-
dimension two case, but it actually holds for arbitrary co-dimension under the hypothesis
dim % = k — 1, as shown here.

3.2 Co-dimension two

In the present section the immersion ® : & — (M, g) has co-dimension k¥ = 2, and no
signature on (M, g) is specified. Under these assumptions, one has dim % € {0, 1, 2}.
It is clear that the characterization describing this case will be the one given in Theorem
3.1.3. In particular, the commutativity among Weingarten operators can be re-stated in
the present case:
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Corollary 3.2.1. Let S have co-dimension two. If S is umbilical with respect to a non-
zero normal vector field then any two Weingarten operators commute.

Theorem 3.1.3 for £ = 2 and Corollary 3.2.1 were already presented in [21]. The proofs
given in [21], however, differ from the proofs given here. In this thesis, they derive from
general results applying in arbitrary dimension, while in [21] they are specific for the
k = 2 case.

3.2.1 The vector field G and the umbilical direction If {£;,&>} is an orthonormal
frame in the normal bundle with g(;, ;) = €;6;; and €2 = 1, one can deduce from (3.2)
the following explicit expression for G'

1
G= o (€10¢,&1 + €20¢,&2) - (3.3)

Corollary 3.2.2. Let S have co-dimension two. If S is umbilical with respect to a normal
direction, then such a direction is unique and it is spanned by G (unless G = 0, in
which case S is totally umbilical).

Proof. Suppose that S is umbilical with respect to a non-zero vector field £ € X(S)*.
This means that its shear operator vanishes, AVE = 0, or, equivalently, Q(E(X ,Y),6) =0
for all X,Y € X(S). From point (i)’ of Theorem 3.1.3 for k = 2, it follows that G and
¢ are orthogonal and thus ¢ has to be proportional to xG. If G = 0, then h=0andSis
totally umbilical. O
From Corollary 3.2.2, formula (1.9) and formula (3.3), one obtains an explicit expres-
sion for the umbilical direction:
€1€2

KG = =06 &~ 06, &) G4
It is possible to find other expressions for the umbilical direction in terms of the eigen-
values of the Weingarten operators A¢, and Ag,. Indeed, if an umbilical direction exists,
by Corollary 3.2.1 these two operators can be diagonalized simultaneously. Let \; and p;
(i =1,...,n) denote the eigenvalues of A¢, and Ag,, respectively. Then \; — 051 /m and

— ¢, /n (i =1,...,n) are the eigenvalues of the shear operators Agl and Agz One
knows that there exist functions a; and as such that Aa1§1+a2§2 = alAgl + a2A§2 =0.
Obviously, (a1, a2) has to be proportional to (p; — 6¢, /n, —(A; — 0¢, /n)) for any i =

1,...,n. Hence
0 0
i = (/11_52>£1_< i_gl>§2 (3.5)
n n

is a normal vector field with respect to which S is umbilical, for any ¢ = 1,...,n. All
these vector fields are proportional to each other and to x-G. Moreover, using (3.4) and
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(3.5), one sees

n B n 92 2 n 91 2
;9(771‘7771‘)26112—;(%—;) +€2;< z—fL>

=€ tr(A?Z) + e tr(Azl)
— ot +ad

=n2g(xtG,+xt @)
from where the proportionality factor is known: 7; = +n x+ G.

3.2.2 The case of surfaces (¢ = 2 and n = 2) In Corollary 3.2.1 it has been shown
that, when the co-dimension is two and S is umbilical, then any two Weingarten operator
commute. The converse of this result is in general not true. However, it is true when the
dimension of the ambient manifold is four (n + & = 4) and S is a surface (n = 2), as
described in the next corollary.

Corollary 3.2.3. A necessary and sufficient condition for a spacelike surface in a 4-
dimensional semi-Riemannian manifold to be umbilical with respect to a non-zero normal
direction is that any two Weingarten operators commute.

Proof. The necessity of the condition follows from Corollary 3.2.1. To prove that the
condition is also sufficient, choose any two normal vector fields £ and . Then A¢ and
A,, commute, thus both operators can be diagonalized simultaneously by choosing a par-
ticular orthonormal frame. Denote by A1, A2 and pi1, pio the eigenvalues of A¢ and A,
respectively. In this frame the corresponding Weingarten operators are then given by

~ 1 )\1 - )\2 0 ~ 1 M1 — U2 0
A == A, =< .
¢ 2( 0 /\2—)\1>7 K 2( 0 H2 — H1
It is obvious that they are mutually proportional. Hence by Theorem 3.1.3, the surface is

umbilical with respect to some non-zero normal vector field. O
This result was proven in [86] in the case of a Lorentzian ambient space.

3.3 Co-dimension two in the Lorentzian setting

In the present section the immersion ® : & — (M, g) has co-dimension & = 2 and
(M, g) is Lorentzian.

3.3.1 The causal character of the umbilical direction The vector fields G and x~G
can both be expressed in terms of a null frame and its corresponding shear scalars

1 1
G= —;(O'gk + oil), *G = E(alk — o).
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Here, formula (1.11) has been used for computing -k and x-/. A way to determine
the sign of G(x~G, @) is by considering the operators 7 and B. The expresswn of

I in terms of G implies that the second fundamental form is h(X,Y) = g(AX,Y)G +
g(X,Y)H forall X, Y € X(S). By combining this with the definition of 7, one obtains

J =g(G,)A?2
Taking the trace gives tr 7 = n?g(G, G) and hence
1
GxtG,+tG) = —g(G,G) = ——tJ.
By formula (2.6) one has tr 7 = —2tr(A; A,) and thus
2 2
Ly L
JxG,xG) = ﬁtr(AkAg) = oz (Ag, Ag) .
Therefore,
(A, Ag) <0 = % G is timelike,
(A, Ag) >0 = %G is spacelike,
(A, Ag) =0 = x G isnull.

Using the formula of Lemma 3.4.1 one also gets tr B = n%g(G, G) + ng(H, H), so that
1
Jx"G +tG) = —— (tr B—ng(H, H)).
n
This formula reproves the same result found in [86]. All this implies the following criteria:

tr7 <0 = %G is spacelike, trB < ng(H,H) = G is spacelike,
trJ >0 = -G is timelike, trB>ng(H, H) = G is timelike,
trJ =0 = % Gisnull, trB=ng(H,H) = %G isnull

3.3.2 Comparing G and H When the co-dimension is two and dim % = 1, by Theo-

rem 3.1.3 one has Im h = span{G}. In this situation, it is possible to compare the role
played by the vector field G with the one played by the mean curvature vector field H.

1. Let ¢ € X(S)* be any normal vector field. By contracting G’ with £ one obtains
the shear scalar of S associated to £, namely o = n (G, §) (see Definition 2.1.3
and (3.2)). On the other hand, by contracting H with £ one obtains the expansion
of S associated to £, namely 0 = n g(H, &) (see (1.1)).

2. A submanifold S for which g(G, ) = 0 is a submanifold with no shear (it is shear-
free) along the direction spanned by &; equivalently, o = 0 and S is umbilical with
respect to £. Similarly, if S is such that g(H, &) = 0, then the submanifold is said
to have no expansion (it is expansion-free) along the direction spanned by &.
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H G

vE € X(S)* 0 = ng(H, &) is the expansion o¢ = ng(G,&) is the shear
along & along &

if=0 S is expansion-free along all S is shear-free along all normal
normal directions or, equiva- directions or, equivalently, it is
lently, it is minimal totally umbilical

if£0 *T H is the unique expansion- +*G is the unique shear-free di-

free direction (6,1 = 0)

rection (,1g = 0)

causal character determines trapped, marginally ?
trapped, untrapped submani-

folds

existence always exists requires a condition on A¢’s

Table 3.1: When the co-dimension of S is two and dim % = 1, it is possible to compare
the vector fields H and G.

3. If S is shear-free along all normal directions, equivalently G = 0, then the subman-
ifold is totally umbilical (see Definition 2.2.2, Theorem 3.1.3 (ii)’ and Corollary
3.2.2). On the other hand, if S is expansion-free along all normal directions, then
the submanifold is minimal.

4. Suppose G # 0, then the vector field x- G defines the unique shear-free direction
(equivalently, the only umbilical direction), see Corollary 3.2.2. Similarly, assume
that H # 0, then the vector field «-H defines the unique expansion-free direction,
see (1.10).

5. The causal character of the mean curvature vector field leads to the definition of
trapped, marginally trapped and untrapped submanifolds, as explained in Section
1.5. It is not clear, on the other hand, what the causal character of G can determine.

6. If G and H are such that G* A H” = 0, equivalently if span{G} = span{H}, then
the submanifold S is ortho-umbilical (see Definition 2.4.3, Proposition 3.5.1 and
also (3.7)).

It is well known that the mean curvature vector field is related to the first variation of
the volume functional of S. Thus it would be interesting to investigate whether also G
can solve the variational problem of a given functional. Despite the similarities emerging
between G and H, however, one has to keep in mind that, while H is always well-defined,
G exists only if S is umbilical.

Notice that all comments, apart from 5, can be given in the case of co-dimension
two, with no restriction on the signature of the ambient manifold M. Notice, also, that
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while all mathematicians use the term “umbilical”, in the physical literature umbilical
submanifolds are often called “shear-free”.

3.4 Pseudo-umbilical submanifolds

In this section the immersion ® : S — (M, g) has arbitrary co-dimension and no signa-
ture on (M, g) is specified.

The Casorati operator B, defined in Section 1.1, and the operator .7, defined in Section
2.1.1, are related via a formula involving the shear operator and the norm of the mean
curvature vector field, as described in the following lemma.

Lemma 3.4.1. The Casorati operator B and the operator J are such that
B—J=2Ay+g(H, H)1. (3.6)
In particular, tr (B — J) =ng(H, H).

Proof. The expression for the trace of B — J follows immediately from (3.6), since A H
is a trace-free operator. To prove (3.6), first observe that for any ¢ € X(S)*

1 2 9 1
2 12 2 . 2
AZ - A2 =A2 - <A§n951> = 0cAc — 071,

Moreover, from (1.7),

k
Ap = 7112; erle, A,
and
_ 1o~
9(H, H) = 3 ;eregr-
By using the decompositions (1.8) of 5 and (2.5) of 7, together with the above formulas,

r=1
k k
2 1
:f§ e A ,72 6% 1
nr—le e TL2 T:1€ &
=2Ay — g(H,H)1.

It now suffices to use the definition of the shear operator and the fact that 8y = n g(H, H)
to conclude the proof. O
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When n = 2 and k£ = 2 (that is when the ambient manifold M has dimension 4
and the submanifold S is a surface) the necessary and sufficient condition for S to be
pseudo-umbilical is the Casorati operator B being proportional to the identity. This was
proven in [86]. (More precisely, it was proven in the Lorentzian case, but as the author
explains in the final comments, the same proof holds in other signature settings too.)
In higher dimension, the situation is different: although the property of both B and J
being proportional to the identity is sufficient to prove that S is pseudo-umbilical (this
follows from Corollary 3.4.2), it is not necessary. Thus, for arbitrary n and k, one has the
following characterization.

Corollary 3.4.2. S is pseudo-umbilical if and only if
B—J =An(=g(H, H)1).
Or, equivalently, if and only if B — [J is proportional to the identity.

Proof. In the proof of Lemma 3.4.1, we obtained B — J = 24y — g(H, H)1. Hence
formula B— J = Ap is equivalent to Ay = g(H, H)1, which expresses exactly that the
submanifold is pseudo-umbilical. O

3.5 Ortho-umbilical submanifolds

In this section the immersion ¢ : S — (M, g) has arbitrary co-dimension and no signa-
ture on (M, g) is specified.

The concept of ortho-umbilical submanifolds has been introduced in Chapter 2, see
Definition 2.4.3. In Proposition 2.5.1 it has been proved that they are equivalent to &-
subgeodesic submanifolds (Definition 2.4.2). Here, a characterization is given in terms of
the second fundamental form.

Proposition 3.5.1. Ler ® : S — (M, §) be an immersion as in Theorem 3.1.1. On any
open set where H does not vanish, S is ortho-umbilical if and only if

X, Y ANH =0, VX,V € X(S).

Proof. Suppose that S is ortho-umbilical, i.e., that A, = 0 foralln € H 1. Here, H+
denotes the orthogonal of H in X(S )J- (see (2.11)). By Propostion 2.5.1, it follows that
S is ¢-subgeodesic for some ¢ € X(S)* and hence H-subgeodesic. So that h(X,Y) is
indeed proportional to the mean curvature vector field for all X, Y € X(S).

Conversely, suppose that h(X,Y)” A H> = 0 forall X,Y € ¥(S) and that H # 0 at
apoint pin S, then h(x,y) = L(x,y)H, forall 2,y € T},S, and this implies A, = 0 for
all n, € H;-. O

Notice that a comment similar to Remark 2.5.2 applies here too. Moreover, as-
sume that H never vanishes and that S is entirely ortho-umbilical, then some conse-
quences about the shear space of S can be derived. From Proposition 3.5.1 it follows that
h(X,Y) = L(X,Y)H for some symmetric (0,2)-tensor field L. This means that the
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first normal spaces are 1-dimensional, that is, dim %1 =1 for all p in S. Formula (2.7)
states that dim Im l~zp < dim %1. It follows that the dimension of the shear space of S

is either zero or one. If dim Im h = 0, then S is totally umbilical. On the other hand, if
dim Im h = 1 then (X, Y)? A H” = 0 or, equivalently, 2(X,Y) = L(X,Y)H for some
trace-free symmetric (0, 2)-tensor field L. Therefore both the second fundamental form
and the total shear tensor are proportional to H, namely

Mb =span{H,} = Imh,,  VYpeS. (3.7

3.6 Submanifolds which are both pseudo- and ortho-umbilical

In the next result the immersion ® : & — (M, g) has arbitrary co-dimension and no
signature on (M, g) is specified.

Proposition 3.6.1. Let ® : S — (M, ) be an immersion as in Theorem 3.1.1. If S is
both pseudo-umbilical and ortho-umbilical then at any point either

(i) (S, g) is totally umbilical, or
(ii) the mean curvature vector field satisfies g(H, H) = 0.

Proof. If S is totally umbilical the result is trivial. Similarly, if # = 0 at a point the
result is empty. Otherwise, consider H # 0 and h # 0. Because S is ortho-umbilical, by
definition A, = 0 forall n € H*. It follows that ~(X,Y"), and a fortiori h(X,Y"), points

along H for all X, Y € X(S). Since S is also pseudo-umbilical, one has Ay = 0 and
thus

0=g(AgX,Y)=g(h(X,Y),H) = L(X,Y)g(H, H)

with L(X,Y) # 0. Therefore g(H, H) = 0. O
This result was already presented in [21] for the co-dimension two case, but it actually
holds for arbitrary co-dimension, as stated here.

3.6.1 Co-dimension two in the Lorentzian setting By Proposition 3.6.1 it follows that
the interesting case arises in the Lorentzian signature. The following result analyses this
in a little more detail.

Proposition 3.6.2. Let & : S — (M, g) be an immersion as in Theorem 3.1.1, and
assume that (M, g) is Lorentzian and the co-dimension is two. Then, the following con-
ditions are equivalent at any point p € S where H # 0 and S is not totally umbilical:

(i) B—J =0;

(ii) S is both pseudo-umbilical and ortho-umbilical;
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(iii) B=0and J = 0.
Furtheremore, in all cases one has g(H, H) = 0 at p.

Proof. First of all, notice that the implication (iii) = (i) is trivial.

(i) = (ii) Assume B = J. Then, by Lemma 3.4.1, one obtains 245 + g(H,H)1 =
0. Taking the trace of this formula gives g(H, H) = 0 and hence also Apg = 0. There-
fore, S is pseudo-umbilical at p and H is a non-zero null vector there, so that from (1.12)
follows that x+H is also null and, being orthogonal to H, proportional to H. Thus
A, 1 g = 0too.

(ii) = (iii) Since S is ortho-umbilical at p and as H # 0 there, Proposition 3.5.1
implies the existence of a symmetric (0, 2)-tensor L such that

h(z,y) = L(z,y)Hp, Y,y € T,S. (3.8)

On the other hand, since S is pseudo-umbilical at p, one has g(h(z,y), Hy) = 0. Using
the definition of A and (3.8), this condition reduces to

(L(:Cay) - g(xay))g(Hvap) = Oa Vx,y € TI)S

If g(H,, H,) did not vanish, then one would have L = g at p and, by (3.8), S would be
totally umbilical there against hypothesis. Thus, one deduces g(H, H) = 0 at p. Using
this together with Ay = 0in Lemma 3.4.1 one derives B — J = 0 at p. Now, one can
compute the Casorati operator to check that it actually vanishes at p (and therefore so does
J). If {eq, ..., ey} is alocal orthonormal basis in 7,S, by (1.2) one has

n

9(B(@),y) = 3 g(Liw, i) Hy, L(y, i) Hy) = g(Hy, Hy) 3 L(w, e:) L(y, ei) = 0

i=1
for all z,y in T},S. O

Remark 3.6.3. From Proposition 3.6.2 follows that, in the Lorentzian setting, any space-
like submanifod with co-dimension two and non-vanishing H that is both pseudo- and
ortho-umbilical must be marginally trapped. &
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Umbilical spacelike transitivity submanifolds

A transitivity submanifold is, by definition, the orbit of a Lie group acting smoothly on a
given semi-Riemannian manifold. In the present chapter, spacelike transitivity submani-
folds generated by a group of conformal motions are considered and an analysis of their
umbilical properties is made. Specifically, one can apply the characterization theorems
presented in Chapter 3 and find necessary and sufficient conditions for a transitivity sub-
manifold to be umbilical. In order to do that, one considers the scalar products g(V,,, V)
of any two generators V/,, and V,, and proves that the umbilicity condition can be expressed
in terms of these products.

In Section 4.1, after some basics on group actions, the concepts of conformal map,
conformal Killing vector field and group of conformal motions are recalled, together with
those of isometry, Killing vector field and group of motions; the definition of transitivity
submanifold is presented. In Section 4.2, the main features regarding the isotropy sub-
group are presented; particular attention is given to the relationship between the vector
fields generating the isotropy subgroup of a transitivity submanifold and those that gener-
ate its tangent bundle. In Section 4.3, some quantities are introduced that are associated
to a given algebra of conformal Killing vector fields and that will be used to state and
prove the results presented later in the chapter. In Section 4.4, by using the quantities
introduced in Section 4.3, some preliminary results are derived: they are stated with re-
spect to the whole ambient manifold and then restricted to the transitivity submanifold.
In particular, it is shown how the group of conformal motions is related to the extrinsic
geometry of a transitivity submanifold. A characterization result is presented for those
transitivity submanifolds which are totally umbilical. The same results are derived for a
group of motions in the case when there exists an Abelian subgroup. In Section 4.5, the
main results of the chapter are presented and proved for the case when the group admits a
trivial isotropy subgroup. In Section 4.6 a study is performed for the case when the group
of conformal motions admits a non-trivial isotropy subgroup.

Throughout the chapter, (M, g) is an oriented (n + k)-dimensional semi-Riemannian
manifold and V denotes its Levi-Civita connection. Notice that Greek indices are used
here to denote the generators of a group of conformal motions; as for Latin indices, see
Notation 4.2.1. The results presented in this chapter are not based on any previous article.

4.1 Groups of motions and transitivity submanifolds

4.1.1 Group actions Let G be a Lie group, then an action of G on M is a map G x
M — M, with (g,p) — g - p, satisfying the following properties [48]

(i) g1-(92-p) = (9192) - p, forall g1, g0 € Gandp € M,

51
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(ii) e-p = p,forallp € M,

e being the identity element of the group. For any g € G define ¢, : M — M as
¢g(p) = g-pforallp € M. Then {¢,} are diffeomorphisms such that ¢g, © ¢g, = @, 4,
for all g1,g2 € G and ¢, = 1. Let p € M, the orbit of p under the action of G is
defined by

S, ={g9-plgeG} M.

In what follows, the sub-index , will be mainly omitted and the orbit will be simply
denoted by S. Notice that whenever a Lie group acts smoothly on a manifold, its orbits
are immersed manifolds [48].

The group is said to act transitively on M if for any two points p, g of M there exists
a group element g such that g - p = q; equivalently, if the orbit of any point is the whole
manifold M. The group is said to be simply-transitive on an orbitif g1 - p = g2 - p
implies g1 = go for all p € S; otherwise it is multiply-transitive. Equivalently, one says
that G acts simply or multiply transitively. This terminology has been taken from [90].

4.1.2 Groups of conformal motions A diffeomorphism ¢ : M — M is called a con-
formal map of M if ¢*g = ag for some smooth function o : M — R. The set of all
conformal maps of M is a group under composition of mappings. A conformal Killing
vector field V' € X (M) is defined by the condition Ly g = 2¢g for some smooth func-
tion 1) : M — R. Equivalently, V" is a conformal Killing vector field if its flow is a local
one-parameter family of conformal maps of M.

A conformal map for which a« = 1 is called an isometry of M and it is said to
preserve the metric; the set of all isometries of M is called the isometry group of M. A
conformal vector field for which 1) = 0 is called a Killing vector field; its flow is a local
one-parameter family of isometries of M.

The set of all conformal Killing vector fields is a Lie algebra with respect to R. This
implies that, choosing a basis {V7, ..., Vi }, there exist constants C’[jy € R, called struc-
ture constants, such that

M
ViVl =Y CoV,,  Vuv=1,.. M. “.1)
p=1

Lie’s second fundamental theorem asserts that a set of NV linearly independent (smooth)
vector fields on M satisfying (4.1), defines and is defined by a continuous Lie group of
transformations [90]. Therefore, let G be the group of conformal maps generated by the
set {V1, ..., Vn}, then G is a finite-dimensional Lie group acting smoothly on M. It has
dimension N, with [101]

(dim M + 1)(dim M + 2)
2

N < 4.2)
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and it is called a group of conformal motions of M or, equivalently, an /N-parameter
group of conformal motions. Obviously, it is a subgroup of the (global) group of confor-
mal motions of M. If the equality holds in (4.2), M is said to be maximally conformally
symmetric.

If {Vi,...,Vn} are Killing rather than conformal Killing vector fields, then G has
dimension [26]

dim M(dim M + 1)

N < :
= 2

4.3)

it is called a group of motions of M and it is a subgroup of the (global) group of motions
of M. If the equality holds in (4.3), M is said to be maximally symmetric.

Notice that if a group of (conformal) motions is Abelian, that is, if the vector fields
{V1, ..., Vn} all commute with each other, then all the structure constants C?,, vanish.

7%

Definition 4.1.1. Let G be a group of conformal motions, then each orbit S is called a
transitivity submanifold of G.

The name “transitivity submanifold” will also be used for the orbits of a group of motions.

Example 4.1.2. Let M = R3 be the 3-dimensional Euclidean space endowed with the
standard positive definite metric g = d2? + dy? + dz2. The global group of motions G of
M has maximal dimension, it acts transitively on M and it is generated by the following
six Killing vector fields:

V1281;7 ‘/228’!;7 ‘/32627
Vi =y0y — 20y, Vs =20,—y0,, Ve=20,—20,.

Let G’ be the group of transformations generated by the subset {V;, V2, V,}, then G’ is a
group of motions of M and it is a subgroup of GG. Notice that G’ does nor act transitively
on M its transitivity submanifolds are planes defined by constant values of the coordinate

z. ¢

4.2 Isotropy

Let G x M — M be the action of a Lie group G on M, then the isotropy group of any
point p of M is defined by

I,={geGlg-p=p} CG.

Let G be a group of conformal motions of M and {V4, ..., Vy} a set of generators. Let
S be a transitivity submanifold of G, then the isotropy groups I, and I, of any two points
p,q of S are conjugate subgroups and have the same dimension. Thus one can consider
the isotropy group Is of S. Assume that /s has dimension D, then [90]

N =dimS + D. 4.4)
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Notice that G acts simply transitively on S if and only if dimS = N or, equivalently, if
Is = {e} (in which case one says that the isotropy group is trivial).

Let n be the dimension of the transitivity submanifold S, and let S be endowed with
the metric ¢ induced by (M, g) as in Chapter 1. Then at every point p € S it is possible
to choose n conformal Killing vector fields among {V4, ..., Vy} in such a way that they
form, at p, a tangent basis for 7),S. (Obviously this choice is not unique.) Without loss
of generality one can assume that these are given by the first ones of the set, namely
{V)p,--.,(Va)p} is a basis of T,,S for all p € S. The remaining D, given at p by
{(Vat1)ps - - -, (VN)p}, are then associated to the isotropy group I, and can always be
chosen to vanish at p.

Notation 4.2.1. To distinguish between the two sets, a conformal Killing vector field will
be denoted by V; if, when restricted to S, it belongs to the tangent frame and by V, if it is
a generator of the isotropy. In general, indices {4, j, s, ¢} will run from 1 to n and {a, b, ¢}
fromn +1to N.

The number of Killing and conformal Killing vector fields admitted by a given manifold
is limited, by (4.2) and (4.3). It follows from (4.4) that also D is bounded from above: let
n = dim S, then one has

1 2 2 2
N < LZ(TH—) = D< H++’ if {V,} are conformal Killing,
1 -1
N < @ -~ D< "("T) if {V,} are Killing,

In Example 4.1.2, the isotropy group of G has dimension D = 3 and it is generated by the
vector fields {V4, Vs, Vs}. On the other hand, the isotropy group of G’ is 1-dimensional
and it is generated by V.

The set of conformal Killing vector fields generating the isotropy subgroup of S form
a Lie subalgebra, i.e., it is closed under the Lie bracket:

N
Va Vil = Y. C4Ve,  Vab=n+1,... N.
c=n+1

Equivalently, éb = O0forall a,b =n+1,...,Nandall+ = 1,...,n. Notice that
this does not hold in general for the set of conformal Killing vector fields generating the
tangent frame: they may, or may not, form a Lie algebra.

Remark 4.2.2. If {V3,...,V,,} generates an Abelian subgroup, then ij = 0 for all
i,7 =1,...,nand forall p = 1,..., N. See, for instance, the subgroup generated by
{V1, V2, V3} in Example 4.1.2. Moreover, if the entire group of (conformal) motions is
Abelian, then the isotropy subgroup is trivial. O

Foranya = n+1,..., N, one has (V,), € TS for all p € S. Thus it is possible to
express V, as a linear combination of V; and one can prove [26] that there exist functions
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h : S — R such that

vV, = Z hiVi  onS. (4.5)

The following result holds for general Lie groups.

Lemma 4.2.3. The functions h! satisfy the following equations

N
Coyt D Cohi— th( Z ijhi>+Vj(h§,):0

b=n-+1 b=n+1

foralls,j=1,...,nandforalla =n+1,...,N.

Notice that the structure constants C; ; are known if one knows the isotropy subgroup (see
Section 8.6.2 of [90]).

Proof. By formula (4.1) one has [V}, V;] = S p=1 C};V,. One can split and obtain

N
Vi, V] Z Vit Y CiVa. (4.6)

a=n-+1

By using the decomposition (4.5) the expression becomes

vl (cn+ S o B )Ve. (47

s=1 a=n-+1

Similarly, by formula (4.1) one has [V,, V] = 25:1 cr ;Vp. Again, one can split and use
the decomposition (4.5) on the right-hand side of the equation, obtaining

n N
[va,w]:2(05j+ 3 c};jhg)vs. (4.8)

s=1 b=n-+1

On the other hand, by using the decomposition (4.5) on the left-hand side, inside the Lie
bracket, one finds

n
Vo Vil = D (RalVa Vi) = V() V5.
s=1
Using now (4.7), the above expression becomes

Vi) =3 (1) (s © Y e o)

t=1 b=n+1

Xni n(c Z Cihh )V ri%(hi)v

s,t=1 b=n+1
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that is

n

Va, Vj] = Z[anht( Z Chihy) = Vi(h)|Va. 49)

s=1 t=1 b=n+1

By combining formulas (4.8) and (4.9), the following equation is obtained

Zn: [Cas + Z Cajhi = th( Z B ) + Vi) v = 0.

s=1 b=n+1 b=n+1
In order to conclude the proof it is enough to recall that the vector fields {V7,...,V,}
are linearly independent with respect to functions. Thus all coefficients of the above
combination must vanish. O

The equation for h; and its derivatives, described in Lemma 4.2.3, can be found in
[26], together with a detailed analysis of transitive and intransitive groups of transforma-
tions.

Given the isotropy group I,, one can choose a set of generators in such a way that all
the isotropy subalgebra vectors (V5,),, vanish at p. Equivalently, for every a the functions
hi, vanish at p: h(p) = 0 foralli = 1,...,n. By Lemma 4.2.3, at p the equations
satisfied by A}, reduce in this basis to

Ca; +Vi(he)(p) =0, Vs, j=1,...,n. (4.10)

Observe that this can be done for every p € S.

4.3 On the scalar products g(V;, V})

Let {V1,...,Vn} C X(M) be a set of spacelike conformal Killing vector fields generat-
ing a Lie algebra and let G denote its corresponding group of conformal motions. Assume
that the transitivity submanifolds have dimension n, with 2 < n < N. Then, by (4.4), the
isotropy group of every transitivity submanifold has dimension D = N — n.

In the next Definition 4.3.1 some quantities are introduced that depend on the scalar
products g(V;, V). They will be used to state and prove the results of this chapter.

Definition 4.3.1. Let {V1,...,V,,} C{V4,...,VN} be a set of conformal Killing vector
fields generating the tangent spaces at each transitivity submanifold S. Then one defines

o the functions fij : M — R by
fi=gViVi),  Vij=1...n
and denote by f = (f;;) the n x n matrix with components f;;;
e the function U : M — R by
eV = +\/M;
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o the functions Fy; : M — R by
fij:e%UFij, Vi,j:L...,TL
and denote by F = (F};) the n x n matrix with components F};.

Notice that det F = 1. For any pair of indices (4, j), let df;; and dF;; be the one-forms
obtained by differentiating the functions f;; and F;, respectively. Then df = (df;;) and
dF = (dFj;) will denote the n x n matrices of one-forms with components df;; and dF};,
respectively. Notice that df;; and dF;; are both defined on the entire ambient manifold
M. They are related via the following formula:

dF;; = e—%U(dfij - %fide). @.11)

Because the conformal Killing vector fields {V7, ..., V,,} are spacelike and linearly inde-
pendent, one has

det(fi;) = det(g(Vi, Vj)) # 0

at each point of M. It follows that there exist inverse matrices for f and F: they will be
called f~! and F~! and their components in the basis {V7,...,V,,} will be denoted by
(f~1)¥ and (F~1)%, respectively.

Lemma 4.3.2. The following formulas hold for df and dF:
tr(f~'df) = 24U, tr(F~'dF) = 0.
Here, tr(f~1df) = Y7 ._, (f~')¥df;; and similarly for F.

4,J=1
Proof. To prove the lemma it is enough to use Jacobi’s formula for f and F:

d(det f) = det f tr(f~'df),  d(detF) = detF tr(F 'dF).

By hypothesis, det f = €2V and det F = 1. Therefore one has 2¢2V dU = e2Y tr(f~1df),
which is equivalent to 2dU = tr(f~'df) from the first equation and 0 = tr(F ~!dF) from
the second equation. O

Definition 4.3.3. Let {df ij} be the one-forms defined by
Y 1
dfi; = dfij — Etr(ffldf)fij, Vi,j=1,...,n

and denote by df = (cﬂr ij) the n X n matrix of one-forms with components Jf i

By Lemma 4.3.2 one can write
~ 2
dfij = dfij - Efide-

Therefore, by using the above formula together with (4.11), one obtains dF;; = e~ 5 U&}” ij-
It follows that the matrices df and dF are such that

df = = UdF. 4.12)
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4.4 Extrinsic and umbilical properties of transitivity submanifolds

The one-forms df;;, dU and dFj; introduced in Definition 4.3.1 carry information on
the extrinsic geometry of the transitivity submanifold to which they are associated. In
particular, df is related to the second fundamental form, dU to the mean curvature vector
field and dF to the total shear tensor, as shown in Proposition 4.4.4 below. In order to
prove this relationship one needs to state some results that hold on the entire manifold and
then restrict them to the transitivity submanifold.

4.4.1 Results holding on the entire manifold

Lemma 4.4.1. Let G be a group of conformal motions of M and {Vy,...,Vy} C X(M)
a set of spacelike conformal Killing vector fields generating G, with Ly, g = 21,g. Let
the functions h’, be as in (4.5) and f;; as in Definition 4.3.1.

For every fixed pair of indices (ij), the one-form df;; is such that

dfig (Va) = 20 + Z (Clifis + Clyfin + 3 (Cantefis + Coynlfu) |

a=n-+1

forall s =1,...,n. Moreover, the covariant derivative vwvj satisfies

t=1 a=n—+1
Proof. By definition of f;;, the s- component with respect to the basis {V;,...,V,,} of
the one-form df;; must be df;;(Vs) = Vi(fi;) = Vsg(Vi, V;). Using this together with
formula (A.2) one finds

dfij(Vs) = (Lv.9)(Vi, V) + g([Vs, Vil Vi) + (Vi [V, V1)

By (4.6) one can split [V, V;] so that

dfig (Va) = (Lv.g)(Vi, V;) +Z( L9V Vi) + CLyg(Vi, Vi) )+
=1

+ i (€8 9V, Vi) + €2 (Vi Va)).
a=n+1

By definition, g(V;, V;) = fi;. Moreover, using (4.5), g(V,,V;) = Y"1, k% fi;. There-
fore

N

By (Vi) = (Dv,g) (Vi Vi) + 3 [Clifis + Clyf+ 0 (Clmbfis + Coptr)]

t=1 a=n-+1
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By hypothesis, V; is a conformal Killing vector field, hence Ly, g = 21),g for all s =
1,...,n and the first part of the lemma is proved.

In order to prove the second part of the lemma, let W € X(M). By formulas (A.3)
and (A.4),

9(Vv.Vi, W) = (Lv,9)(Vi, W) = g(Vi, Vw V;)
= (Lv,9)(Vi, W) = Wg(V;, Vi) + 5(Vw Vi, V;)
— Ly, @) (Vis W) = Wa(Vi, Vi) + (L, ) (W, V) — g(W, T, Vo).
It follows that
9(VviVs + Vv, Vi, W) = =Wg(Vi, Vi) + (Lv;9) (Vi W) + (Lv: ) (W, V).
Since Wg(V;, V;) = dfi;; (W), the above expression can be rewritten as
(Vv.Vi + Vv, Vi) = —dfij + (Lv,9) (Vi) + (Lv.g) (Vi )-

Using the structure constants one can write
N
Vi, Vi = Vi Vs = Vi, Vi = ViV = 3 GGV,

Hence
N
2AVvV;) =D CHV) — dfiy + (Lv,g) (Vi) + (Lv.g) (V. ).
p=1
One can split the sum in its “tangent basis” terms and its “isotropy” terms and then apply
(4.5). This leads to

n N
A9V =3 (Ch+ Y CHnL)VE = dfyy + (Lv, ) (Viy ) + (L) (V5. ).
t=1 a=n-+1
By hypothesis, V; and V; are conformal Killing vector fields, thus (Lv; g)(V;, -) = 21); 1%
and (Lv,9)(V},-) = Zinjb forallé,j =1,...,n and thus the second part of the lemma
is proved. O
If the group of conformal motions admits an Abelian subgroup generated by {V1,...,V,,}
(see Remark 4.2.2), then the formulas of Lemma 4.4.1 simplify to

dfij(Ve) = 2 fi5, 2V, V)" = —dfij + 2 V7 + V).

On the other hand, if the vector fields {V4,...,Vy} are Killing rather than conformal
Killing, then the formulas of Lemma 4.4.1 become

n N
Afii(Ve) = 3 [Clits + Clif+ > (Colofis + €t fi)],
t=1 a=n—+1

n

SURTIS A Rt e

t=1 a=n+1
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When these two assumptions are considered together, namely if {V7, ..., V,,} are Killing
and commute, one finds

dfij(Vs) =0,  2(Vy,V;)" = —dfi;. (4.13)

Corollary 4.4.2. Consider the hypotheses of Lemma 4.4.1 and assume that G is simply-
transitive on its orbits. Then for every fixed pair of indices (4, j), the one-form df;; is such
that

dfi;(Vs) = 2¢s fij + Z (Cﬁiftj + Cﬁjfit>7 Vs=1,...,n
t=1
and the covariant derivative Vv, V; satisfies
=Y Chvy —dfig + 26V + 0.
t=1

The proof of Corollary 4.4.2 simply follows from Lemma 4.4.1 for A = 0.
If the vector fields are Killing rather than conformal Killing, then the formulas of
Corollary 4.4.2 simplify to

n

dfi;(Vs) = Z (C;ftj + Cﬁjfit), 2(Vv,V;) Z CLVY — dfy;.
t=1

t=1

4.4.2 Consequences for the transitivity submanifold In the previous subsection re-
sults have been presented holding on the entire ambient manifold. Here, consequences
on the extrinsic geometry of S will be derived by considering the previous results on the
transitivity submanifold, namely restricting all quantities to S.

Notation 4.4.3. For every i,j = 1,...,n, the quantities ®* f;; and ®*F;; are the pull-
backs to S of the functions f;; and Fw’ respectively. Similarly, ®*U is the pullback to
S of the function U. These pullbacks coincide with the restrictions of the corresponding
functions to S. On the other hand, when one restricts a differential form to S then the
result is not the pullback of that form: one will simply compute its components on S. The
restriction of a differential form to S will be denoted by the symbol | ;. For instance, in the

next Proposition 4.4.4, the restricted one-forms df;; |, dU |, and dF;;|, are considered.

s> s

When restricted to S, the functions f;; give the components of the induced metric g of
S in the basis {V17 ..., Vp}, namely ®*f;; = g;; forall i,j = 1,...,n, and similarly
*(fHY =g¥.
Proposition 4.4.4. Let G be a group of conformal motions of M and {V1,...,Vy} C
X(M) a set of spacelike conformal Killing vector fields generating G. Let f;;,U and F;;
be as in Definition 4.3.1 and let S be a transitivity submanifold of G.

The second fundamental form and the mean curvature vector field of S are such that
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(i) dfijls (&) = 2g(A(Vi, V}),€), Vi, j=1,...,n, V€€ X(S)",
(ii) dU|s(§) = ng(H.£), V€ X(S)™
Moreover, the total shear tensor of S is such that
(iii) dFy;|5(€) =2 = Vg(h(V;,V;),6), Vi,j=1,...,n, V¢ € X(S)™.
Point (i) of Proposition 4.4.4 states that the normal part of the restricted one-form %dfi ils
coincides with the second fundamental form A(V;, V})b Similarly, points (ii) and (iii)
assert that the normal components of dU |, and Le®®'VdF;;|, coincide with the mean

curvature vector field H” and the total shear tensor ?L(Vi, Vj)b, respectively.
Proof. From Lemma 4.4.1, for any £ € .’{(8 )1 one has

25(Vv,V;,6) = Z( Z CEhL)3(Vis €) = dfigls (€)+

t=1 a=n+1
+2(59(Vi,€) + 6:9(15,6)).

Here, the quantities Vvi V; and V4, as well as df;;, are all considered to be restricted to S.

By definition, the second fundamental form is such that g(h(V;, Vi), €) = —g(Vv,V;, )

for all ¢ € X(S)*. Moreover, (V,), € T,S forall p = 1,..., N and for all p in S, thus
§(V, &) = 0 and one is left with

2g(h(Vi, V5),€) = dfisls(§), &€ X(S)
which proves point (i).
It follows from point (i) that one can explicitly decompose, for every fixed pair of
indices (i, j), the one-form df;;| in its tangential and normal components. Specifically,

let {w!,... ,w"} denote the dual basis associated to the conformal Killing vector fields
{V1,...,V,}. Then, point (i) implies

dfijls = dem Yw® + 2h(Vi, V).

Notice that an explicit expression for df;;|s (V) has been given in Lemma 4.4.1. Multi-
plying by (f~1)%, taking the trace and using Lemma 4.3.2,

2dU |, = Z O*(fHdfij| 5 (Va)w® + 2nH",

,J,5=1
which proves point (ii) once the expression is applied to any normal vector field.
By definition, df ;; = df;; — % tr(f71df) f;;. Thus, using points (i) and (ii), one finds

n

Cﬂl}-ij‘s = Z (dfijls Z (I) dfstlsq) fU)( )Wu+

u=1 st 1

+2(h<vi, Vi) - H'® fy ).
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It follows that the normal component of df | is such that

df;ls(6) =23(h(Vi, V;),8),  VE€X(S).
Point (iii) is now proved by using (4.12). O

Proposition 4.4.5. Let G be a group of motions and assume that {V1, ..., V,} generates
an Abelian subgroup. Then the second fundamental form and the mean curvature vector
field of S are given by

(i) dfijls = 2h(Vi,V;)’, Vi, j=1,...,n;
(ii) dU|s =n H’.
Moreover, the total shear tensor of S is given by

(iii) dFyj|s =2 = VR(V,, V)", Vi,j=1,...,n.
In order to prove Proposition 4.4.5 it is enough to apply formulas (4.13) and to repeat the

procedure followed in the proof of Proposition 4.4.4.

4.4.3 Totally umbilical transitivity submanifolds
Theorem 4.4.6. Let (M, g) be a (n + k)-dimensional semi-Riemannian manifold.

1. Let G be a group of conformal motions of M and {V1,...,Vn} C X(M) a set
of spacelike conformal Killing vector fields generating G. Let F;; be as in Defini-
tion 4.3.1 and let S be an n-dimensional transitivity submanifold of G. Then the
necessary and sufficient condition for S to be totally umbilical is

dF’LJ|S(£) = Oa VZ,] = 1; BRI N VE S %(8)L

2. Let G be a group of motions and {V1,...,Vn} C X(M) a set of spacelike Killing
vector fields generating G. Assume that {V1,...,V,} generates an Abelian sub-
group, then the condition becomes

dFij :0, Vl,jil,,n

ls

The condition given in point 1 of Theorem 4.4.6 says that the one-forms dF;; are tangent
to S or, equivalently, that F; are functions of S on S.

The first part of the theorem follows from Definition 2.2.2 and point (iii) of Propo-
sition 4.4.4. The second part follows from Definition 2.2.2 and point (iii) of Proposition
44.5.
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4.5 Characterization results when the isotropy group is trivial

Making use of the machinery introduced in the previous sections, it is possible to ap-
ply the characterization theorems of Chapter 3 to transitivity submanifolds of a group of
conformal motions. In particular, in Proposition 4.4.4 it has been shown how the total
shear tensor can be expressed in terms of the scalar products g(V;, V;), namely by using
the one-forms dFj; restricted to S. Thus, it is clear how to translate condition (iii) of
Theorem 3.1.1 in this context: it will be a condition on the one-forms dFj;.

Theorem 4.5.1. Let (M, g) be a (n + k)-dimensional semi-Riemannian manifold. Let
G be a group of conformal motions of M and {Vy,...,V,,} C X(M) a set of spacelike
conformal Killing vector fields generating G. Assume that G acts simply transitively on
its orbits.

Let f;;,U and F;; be as in Definition 4.3.1 and let S be a transitivity submanifold of
G. Then the umbilical space of S (Definition 2.2.8) has dimension m if and only if the
condition

K
N\ dFiils =0 on X(S)", Vipj.=1,...,n (4.14)

r=1
is satisfied for K = k — m + 1 and is not satisfied for K = k — m.

Because by hypothesis G is simply-transitive on its orbits, one knows that dim S = n.
See Remark 4.4.3 for comments concerning the notation |. The proof of Theorem 4.5.1
will be given after the next lemma.

Lemma 4.5.2. Condition (4.14) of Theorem 4.5.1 is invariant under changes of the con-
formal Killing basis.

Proof. As explained in Section 4.2, the set {V1,...,V,,}, when restricted to S, forms a
basis of T,,S for all pin S. Let {V/, ..., V,.} be another set of conformal Killing vector
fields, then it also forms a tangent frame when restricted to S. The relationship between
the two bases is described by

n
v/ = ZBfVS, Vi=1,...,n (4.15)
s=1

with B = (B7) a matrix of constant components B € R such that det B # 0. For
every pair of indices (ij) one can define the functions fi’j, Fl/7 and the matrices f', F’
analogously to f;;, F;; and f, F (see Definition 4.3.1). Moreover, it is possible to express
the primed objects in terms of the unprimed ones:

n

fi;=Y_ BiB!fa.

s,t=1



64 Chapter 4

It follows that f' = B2f and det ' = (det B)? det f. Let U’ be such that V" = v/det f’,
then the relation between U and U” is

eV =det BeV. (4.16)
By definition, Fi’j =e 2V ’ jand Fy; =e™n flj Thus
n
2
= (det BeY) Z BB fs = (det B)" = Z B} B} Fy
s,t=1 s,t=1

and one obtains F/ = (det B)*%BQF. Because the components of the matrix B are
costant, differentiating this last expression gives

dF’ = (det B)~ = B2dF.

Consequently, the two-form dF; . A dF! . reads

171 1272

n

_4 s s
dFlll]l A dFleh - (det B) " Z Bill BEBZZZB;; dFS1t1 A dFSQtz
81,t1,82,t2=1
for all 71, j1, 72,72 = 1,...,n. More in general,
K
77K Sy tr
/\ dF] ; = (det B) Z HB i N\ dFs.,
Spytr=1r=1 r=1
for all 7., 5 = 1,...,n. It follows that
/\ dF] ; |(€) =0, Vip,jr=1,...,n, V&€ X(S)*t

if and only if
K
N dFis (€ =0,  Virjr=1,..,n, VEeX(S)"

O

Notice that if Ly,g = 2¢;g then, by (4.15), one has Ly/g = 2B}1sg. Moreover,
formula (4.16) implies U’ = log(det B) + U and also dU’ = dU.

Proof. (of Theorem 4.5.1) Point (iii) of Proposition 4.4.4 shows that A dF;, ;. |s(§) =0

if and only A ﬁ(ViM V;.)?(€) = 0. Therefore the result is obtained by applying Theorem

3.1.1 (Chapter 3). O
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Theorem 4.5.3. Let G be an Abelian group of motions and {V1,...,V,} C X(M) a set
of spacelike Killing vector fields generating G. Then the umbilical space of a transitivity
submanifold S has dimension m if and only if the condition

K
N\ dFijls =0,  Vi,j.=1,...,n
r=1

is satisfied for K = k — m + 1 and is not satisfied for K = k — m.

Theorem 4.5.3 follows from Theorem 4.5.1 and point (iii) of Proposition 4.4.5.

4.6 Case when there is a non-trivial isotropy group

If the group of conformal motions G admits a non-trivial isotropy group it is possible
to show (Proposition 4.6.1) that there exist relations among the collection of functions
{fi;}- By using this, one could aim to prove that also the collection of one-forms {dF;;}
admits dependence relations and, therefore, that the umbilical condition (4.14) is satisfied
for some K.

Proposition 4.6.1. Let (M, g) be a (n + k)-dimensional semi-Riemannian manifold. Let
G be a group of conformal motions of M and {Vy,...,Vy} C X(M) a set of spacelike
conformal Killing vector fields generating G. Assume that G acts multiply transitively on
its orbits.

Let f;; be as in Definition 4.3.1 and let S be a transitivity submanifold of G. Then
there exists a point p € S such that

n

> (Ciifi(p) + Cly fis(p) =0 4.17)

s=1
foralli,j=1,...,nandforalla =n—+1,...,N.

Notice that by means of a change of basis on the isotropy subgroup (leaving the V; fixed)
this can be done for every p € S.

Proof. Let £ be any normal vector field such that g(&,£) # 0. By the decomposi-
tion formula (4.5) and using formula (A.5), one can explicitly compute the quantities

(Lv,9)(Vi, V;) and (Lv, 9)(&, €):

n

(Lv.9)(Vi, Vi) = > (he(Lv,9)(Vi, Vi) + Vi(h)g(Ve, Vy) + V3 (h)g(Vi, V),

(Lv,9)(&,€) = Y (ha(Lv,9)(&, €) + 26(h)a(Vs, €))

s=1

foralla = n+1,...,N and for all ¢,5 = 1,...,n. By hypothesis, V, and V; are
conformal Killing vector fields, so that Ly, g = 2¢,g and Ly, g = 21),g. Moreover, £ is
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orthogonal to V; for all s, so that g(Vs, &) vanishes, and by definition f,; = g(Vs,V;).
Therefore the two expressions become

n

2o fij =Y (2hithsfij + Vi(hi) faj + Vi(hi) fis),

s=1
20069(6,€) =2 hia(6,€)
s=1
which are equivalent to

n

20 — > _ b3 fis = Y _(Vilhi) foj + Vi(hi) fis),
s=1

s=1

2(va — Y his)g(§,€) = 0.
s=1

It follows that each function v, can be written in terms of the functions 15, namely

Yo=Y hits.
s=1

Combining the two formulas obtained leads to

n

S Vilhg) fo + Vi(h3) fis) = 0

s=1

foralli,j = 1,...,nand foralla = n+1,...,N. Let p be the point of S such that
(Va)p vanishes foralla = n + 1,..., N. By Lemma 4.2.3 and, in particular, by formula
(4.10), one knows that at the point p the functions V;(h{) are constant, V;(h3) = —C%,,
from which one deduces

n

S (G fus () + C3 s (9) = 0

s=1
forall+,7 =1,...,nandforalla =n+1,..., N. O
Notice that (4.17) can be equivalently rewritten in terms of the functions F;; by simply
multiplying by e~ 2U.
Y (CiFyj(p) + CiiFis(p)) = 0. (4.18)
s=1

Proposition 4.6.2. Let (M, g) be a (n + k)-dimensional semi-Riemannian manifold. Let
G be a group of conformal motions of M and {V1,...,Vn} C X(M) a set of spacelike
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conformal Killing vector fields generating G. Assume that G acts multiply transitively on
its orbits.
Let fi; be as in Definition 4.3.1 and let S be a transitivity submanifold of G. Then

i((csi_i:hchi)fsj+( Zh‘ )f%) -0
s=1 t=1
onSforalli,j=1,...,nandforalla=n+1,... N.

Proof. Given the basis of generating spacelike conformal Killing vector fields {Vy, ..., Vx},
by Proposition 4.6.1 there exists a point p € S such that

n

> (Ciifei(p) + C fis(p) = 0

s=1

foralli,j = 1,...,nand foralla = n + 1,..., N. Let g be another point of S and
consider

Vo=V, — Zhl Z —hi(q))Vi,  VYa=n-+1,...,N.

V,, are spacelike conformal Killing vector fields such that V,(q) = 0. By Proposition
4.6.1, one has

n

> (Ciifsia) + Ciifis(a) =0 (4.19)
s=1
foralli,j =1,...,nandforalla =n+1,..., N, where C’ji are the structure constants
associated to the new set of generating vector fields {V1,...,V,,V,41,..., VN }. The

relationship between C?, and C?, is easily given by
th )Cys Vi,s=1,....,n Ya=n+1,...,N.

Therefore (4.19) can be rewritten as

> (05~ M) 0+ (€5~ a1 ) =0

This can be done for any g € S, therefore the formula holds on the whole S. O

Corollary 4.6.3. Let (M, g) be a (n + k)-dimensional semi-Riemannian manifold. Let
G be a group of conformal motions of M and {Vy,...,Vy} C X(M) a set of spacelike
conformal Killing vector fields generating G. Assume that G acts multiply transitively on
its orbits.
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Let f;; be as in Definition 4.3.1 and let S be a transitivity submanifold of G. Assume
that {V1,...,V,} generates an Abelian subgroup, then

n

> (Ciifj+ Cisfis) =0 (4.20)

s=1
onSforalli,j=1,....nandforalla=n-+1,...,N.

Proof. By Proposition 4.6.2 one has

n n n
S ((Cm =2 ne) fu + (€3 = Yo HCH ) fis) = 0
s=1 t=1 t=1
onS foralli,j =1,...,nand foralla = n+1,..., N, where the structure constants
are those associated to the set of generating spacelike conformal Killing vector fields
{V1,...,Vn}. By assumption the subset {V1,...,V,,} generates an Abelian subgroup,
namely C}; = O forall s,¢,7 = 1,...,n. It follows that the expression reduces to

n

> (Ciifsi + Casfis) = 0.

s=1

O

Remarks on formula (4.20) For each fixed index a, one has a system of n(n + 1)/2
equations coming from (4.20) and depending on the indices ¢ and j. By means of this sys-
tem one would like to deduce the relationships among the collection of functions { f;;}.
However, one does not know, in general, how many equations of the system are indepen-
dent: it will depend on the structure constants of G.

The index a takes values between n 4+ 1 and N. Because there is a system (4.20) for
each a, one has, in total, D = N — n systems of n(n + 1) /2 equations. It is reasonable to
believe that, comparing the equations of a system with the equations of another system,
repetitions occur and thus the total number of independent equations will be less than
D xn(n+1)/2

The matrix A(a) It is possible to rewrite equation (4.20) by introducing a new index
and the Kronecker delta as follows:

> (€56t + Cay6l) far =0 421
s,t=1
foralli,j=1,...,nandforalla =n+1,..., N. Since fs; is symmetric in the indices

(st), expression (4.21) is equivalent to

Z (C2;0L + C5,61 + CL65 + CLo8) for = 0

s,t=1
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foralli,j7 =1,...,nandforalla =n+1,..., N. Here, the term inside the parenthesis
is, up to a factor 1/2, the symmetrization with respect to (st) of C3;6% 4 C5 ;. Defining
5t __ (s st s gt t gs t gs
Ali(a) = CF;6; + CF,0; + Cg07 + C6; (4.22)
one obtains
S Aa)fa=0, Vij=1,...,n (4.23)
s,t=1

The pairs (ij) and (st) can be seen as two double-indices, so that A(a) = (A$f(a))
represents a n(n + 1)/2 x n(n + 1)/2 matrix. Thus (4.23) represents a homogeneous
system of n(n + 1)/2 equations for the n(n + 1)/2 functions f;;. Because these cannot
be vanishing for all pairs of indices (ij), from linear algebra basic results one knows that
the determinant of the matrix A (a) must be zero. Let R(a) = rank A(a) be the rank of
A (a), then condition det A (a) = 0 implies

n(n+1)

—

Example 4.6.4. Let G be a 3-parameter group of motions acting on 2-dimensional orbits
and admitting an Abelian subgroup. Under these hypothesis, there exist local coordinates
{0, 6} on each transitivity surface S such that the two commuting Killing vector fields
are V1 = 0, and V5 = 0s. Moreover, the only non-vanishing structure constants are 0123
and C3. The Killing vector field generating the 1-dimensional isotropy group is such that
V3 = hiVi + h3 Vs, for some functions h} and h3. By using Lemma 4.2.3 one finds

Cs; — h3Cs; — h3Cs; + Vi(h3) = 0

R(a) <

from which one deduces
Vi(hy) =0, Va(h3) =0, Vi(hi) =CTy, Va(hy) = Css.
It follows that
hj = C330 + constant, h3 = Ci;0 + constant.

One can compute the matrix A (3):

Al ALl AR 0 Cf 0
A@B)=|( A A3 AR | =2{ Cy 0 Cf
Ay A AR 0 Cyp 0

The determinant of A (3) is zero and, because there exist 2 X 2 non-vanishing minors, one
can conclude that the rank of A(3) is R(3) = 2. The system (4.23) reads in this case:

0123f12 =0
Cisfi1 +C3fa2 =0
Ci3f12=0

from which one deduces fio2 = 0 and foo = _%f;ifﬂ' &
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See Section 6.6 for another example.

Conclusion The information encoded in equation (4.20) should be enough to prove that
the umbilical space of S is non-empty. Indeed, (4.20) asserts, in general, that the functions
fij are not all independent. This implies that also the functions Fj; are not all independent
and thus the umbilical condition /\5:1 dF;, ;. |s = 0 might be satisfied for some K.

One can conclude that the existence of umbilical directions, under the hypothesis of a
non-trivial isotropy group, depends on:

e the co-dimension & of S;
e the dimension D of the isotropy group;
o the ranks R(a) for each a.

The statement that one could aim to prove is

Let G be a group of conformal motions that admits a non-trivial isotropy group. Let S
be a transitivity submanifold of G, then the umbilical space of S is non-empty provided a
certain equality (or inequality) holds for k, D and R(a).

Consider, for example, the case when the set {Vi,...,V,} generates an Abelian sub-
group. Under this assumption, one can deduce two main facts: firstly, it is possible to
prove that equations (4.17) and (4.18) hold at any p € S, as proved in Corollary 4.6.3,
therefore one can try and differentiate both equations. (Here it might be useful to apply
Lemma 4.3.2.) The second fact that one can deduce is that the matrix A(a) has rank
R(a) > 0. Indeed, if R(a) was zero then the group G would be Abelian and thus the
isotropy subgroup would be trivial, against hypothesis. By taking into account these two
facts and by assuming k& > 1 one should finally be able to prove that there exists, at least,
one umbilical direction.
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Focal points and incompleteness results in Lorentzian
warped products

The existence of focal points along timelike or null geodesics normal to a given space-
like submanifold is a key ingredient in the proof of the singularity theorems in general
relativity [34, 60, 85, 87]. These theorems prove timelike or null geodesic incomplete-
ness of the Lorentzian manifold. The presence of focal points along the normals of a
given spacelike submanifold can be ensured sometimes by assuming that the submanifold
is trapped. Most singularity/incompleteness theorems are indeed based on the existence
of trapped submanifolds. In particular, they are based on trapped submanifolds with co-
dimension either one, or two or with dimension zero (points). In [29] the authors show
that this procedure can be generalized: they prove singularity theorems by using trapped
submanifolds of arbitrary co-dimension. In order to do that, they provide a key suffi-
cient condition for the existence of focal points. This condition, that will be called in this
chapter the “Galloway-Senovilla condition”, concerns, as one would expect, the curva-
ture properties of the Lorentzian manifold: it is an inequality that must be satisfied by
the Riemann tensor of the ambient manifold, along the geodesic that will admit the focal
point.

The main goal of this chapter is to use the sufficient condition presented in [29] in
order to prove existence results for focal points of spacelike submanifolds with arbitrary
co-dimension in Lorentzian warped products spaces. Then, a discussion will follow on
how these results can be applied to obtain incompleteness theorems.

The choice of studying warped product spaces is motivated by physical reasons. In
[67], Penrose argued about the classical instability of extra spatial dimensions in string
theory. He claimed that the spacetime considered in the theory, that is, the direct prod-
uct of a 4-dimensional Lorentzian manifold (the usual spacetime) with a compact 6-
dimensional Calabi-Yau manifold (i.e., Kédhler and Ricci flat), is physically unstable under
small perturbations. By instability was meant, see [67], the generation of singularities (in
the classical sense) in finite time. As for perturbations, from a mathematical point of view,
one way to make a perturbation in this context is to consider a warped rather than a direct
product. Among other works, [11] deals with inhomogeneous extra spatial dimensions
and [13] with the instability.

The case under study in this chapter can be summarized as follows. A warped product
manifold M x; ) is considered, being M and ) two semi-Riemannian manifolds in the
first part of the chapter. In the second part of the chapter (starting from Section 5.5) two
specific signatures for M and ) are chosen. In case A, M is assumed to be Lorentzian
and Y to be Riemannian; then, a submanifold S belonging to the “leaf” ¥ = {q} x ),
for any ¢ € M, is studied as a spacelike submanifold of M x; ). In case B, M is

71
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assumed to be Riemannian and ) to be Lorentzian, and the subamnifold studied belongs
toX =M x {q}, forany ¢ € ).

This setting leads to a formulation of the Galloway-Senovilla condition for S in terms,
on one hand, of the Riemann tensor of Y (case A) or of M (case B) and, on the other hand,
of the warping function f. Therefore by making assumptions on the geometry of either Y
or M and on the function f, and by combining these two with hypotheses on the extrinsic
geometry of S, one can find cases where the Galloway-Senovilla condition is satisfied.
This leads to the existence of focal points in many cases, and sometimes to the causal
incompleteness of M x ¢ V.

The plan of the chapter is as follows. In Section 5.1 the concept of a geodesically
incomplete manifold is recalled and the basic objects that allow the formulation of the
Galloway-Senovilla condition as presented in [29] are introduced. In particular, a tensor
denoted by P* is defined, that can be seen as the parallel propagation of the projector
operator. The two main results of [29] are stated, the first concerning the existence of focal
points and the second one concerning geodesic incompleteness. In Section 5.2, the main
features of the warped product spaces are recalled. In Section 5.3, the geodesic equation
in warped products is considered and studied under specific assumptions on the initial
velocity of the curve. In Section 5.4, the parallel transport in warped products is examined
and several cases are listed, depending on the initial velocity and the causal character of
the geodesic, as well as on the M- and )-components of the parallel transported vector.
Section 5.5 focuses on the extrinsic geometrical properties of the immersion S — ¥ —
M x Y, in both case A and case B. In Section 5.6, the components of the tensor P#" are
computed; in Section 5.7 the quantity R, ,, V#V?P"?, key in the Galloway-Senovilla
condition, is explicitly determined. In Section 5.8, the main results of the chapter are
derived: a proposition on the existence of focal points and an incompleteness theorem. In
Section 5.9, the Galloway-Senovilla condition is applied in order to prove the existence of
focal points or the incompleteness of the ambient manifold in specific cases: positive and
constant sectional curvature, Einstein and Ricci-flat spaces and a few subcases in terms of
the co-dimension. Section 5.10 particularizes all previous relevant results to the distinct
case when the product is direct rather than warped.

In this chapter, most computations will be carried out using the abstract index notation.
The main reason for this is to follow the formalism used in [29]. A clear treatment of how
to use this formalism can be found in [99]. One can also refer to Appendix A.l, where
a list of the main objects is provided in both languages: the usual mathematical notation
and the index one.

The results presented in this chapter are new and not based on previous articles.

5.1 Galloway-Senovilla condition

The present section is a brief summary of the results presented in [29]. Let (M, g) be a
Lorentzian manifold and let S be an n-dimensional spacelike submanifold. Denote by -y
its induced metric and by +;; the components of «y in a certain basis.

Given a vector v € T, M, there exists a unique geodesic o : I — M with 0 € [
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and initial velocity v = &(0) and the largest possible domain, i.e.,if 5 : J — M isa
geodesic with 0 € J and initial velocity v = i (0) at p then J C I. A geodesic with this
property is called geodesically inextendible. A geodesic that is inextendible and defined
on the entire real line is called complete. If there exists an inextendible geodesic that is
not complete then M is said to be geodesically incomplete [60]. Notice that throughout
this chapter one will deal with inextendible geodesics that are normal to S. In this case,
the term complete refers to geodesics defined on [0, +00) rather than on the entire real
line.

Definition 5.1.1. Let S be a submanifold of M, p € S and {ey,...,e,} any basis of
T,S8. Letv € TPSL, that is, v is a vector normal to S at p, then one defines

e the curve o : [0,4) — M as the unique inextendible geodesic with initial velocity
&(0) = v (the parameter u represents the affine parameter of the curve, i.e., the
parameter such that VvV = 0);

o the vector field V along o as V (u) = &(u) for all u € [0,a);

e the vector fields E; as the parallel transports along o of the vectors e;, i.e., Vy E;(u) =
0forallu € [0,u) and E;(0) = e;, foralli=1,...,n.

By construction,
g(v, El)(u) =0,
9(Ei, Ej)(u) = g(ei, €5) = i
Sforallu € [0,4) and for all i,j = 1,...,n. Finally, one defines
e the tensor P*” along o as

PH = U EFEY.

The tensor P** is such that P*” = P and P¥, = n. Atu = 0 it represents the
projector to S as defined in Section 1.4.1 (this will be made more explicit in Section 5.6)
and if {e1,...,e,} is an orthonormal basis then it reads P** = §% E! EY. Notice that
the quantities V, Ey, . .., F, and P*" are defined along « only, thus they all depend on .

Notation 5.1.2. Key in this chapter is the quantity R, ,- V*V?P"?, with R, ,- being
the Riemann tensor of M. In mathematical notation, this would correspond to

n

Y 9(R(V,E)E;, V)(u)

i=1
for an orthonormal basis {eq, ..., e, }. See Appendix A.1.2 for more details.

Let 6, € R be the expansion of S with respect to the vector v. The two following results,
taken from [29], give sufficient conditions, in terms of the Riemann tensor of (M, g), that
ensure the existence of points focal to S along « (see Definition 1.7.2).
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Figure 5.1: The vector fields V, Fy, ..., E,, defined as the parallel transports of the
vectors v, €1, €s, . . . , €, along a.

Proposition 5.1.3. Let v be a future-pointing vector normal to S and let « be as in
Definition 5.1.1. If 0,, = —nc < 0, and the Riemann tensor satisfies

R,uupcrvuvppyg(u) > 0, Yu € [0,’[1)

then there exists a point focal to S along « at or before a(1/c) provided « is defined up
to that point.

If 6, > 0 then the focal point arises to the past at or later than —n/6,,. In general, all the
results stated in this chapter have a past counterpart, even if not explicitly mentioned.

As explained in [29], condition R, V#*V?P"? > 0 reduces to the timelike con-
vergence condition of general relativity if the co-dimension of S is one and to the null
convergence condition if the co-dimension is two. For higher co-dimension its interpreta-
tion can be given in terms of tidal forces. (For the convergence/energy conditions see for
example [3, 34, 60].)

Proposition 5.1.4. Let v be a future-pointing vector normal to S and let o be as in
Definition 5.1.1 and complete. If the Riemann tensor satisfies

“+oo
/ Ry ps VEVP PV (u)du > 6, (5.1)
0

then there exists a point focal to S along a.

The next result, taken from [29] and based on Proposition 5.1.4, proves the existence of
singularities in the ambient manifold M.



Focal points and incompleteness results in Lorentzian warped products 75

Theorem 5.1.5. Assume that (M, g) contains a non-compact Cauchy hypersurface and
a closed spacelike submanifold S. If the Riemann tensor satisfies

/ Riyupo VIVP PP (u)du > 0, (5.2)
0

along each future inextendible null geodesic « : [0,4) — M normal to S with initial
velocity v, then (M, g) is future null geodesically incomplete.

For the definition of a Cauchy hypersurface see [60, 34]; by closed submanifold one
means a compact submanifold without boundary.

Inequality (5.1) or, equivalently, inequality (5.2), is invariant under affine reparame-
trizations of «. From now on this inequality will be called the Galloway-Senovilla con-
dition. Notice that when proving the existence of focal points (Proposition 5.1.4) one
can consider both timelike and null future-pointing geodesics normal to S. On the other
hand, in order to prove the existence of singularities (Theorem 5.1.5) one assumes that
the Galloway-Senovilla condition holds along each null future-pointing geodesic.

5.2 Basics on warped products

Let (M, §) and (), ) be two semi-Riemannian manifolds and consider the product man-
ifold M = M x Y. Local coordinates on M and ) will be denoted by {2} and {24},
respectively, and local coordinates on M will be denoted by {z#} = {z? 24}. Here
and throughout the chapter, indices {a, b, ¢} will be associated to M, indices {A, B,C}
will be associated to ), and Greek indices {u, v, p,o} will be associated to M. Let
f : M — R be a non-vanishing function defined on M and consider the warped product
M = M x; Y. Inlocal coordinates, the metric g on M will be given by

g = gudrtde” = gadr®de® + f*(z*)gapde?dz®. (5.3)

The function f is called the warping function. Notice that the functions g,; do not depend
on the coordinates of ) and the functions g4 p do not depend on the coordinates of M. Let
V denote the Levi-Civita connection of (M, g) and let I'f,, be its associated Christoffel

symbols. The Levi-Civita connections and the Christoffel symbols of (1, §) and (Y, g)
will be denoted by V,I'¢, and V, T4, respectively. One has

Io, =T}, =0, (5.4)
T2, = 0ya(log f)65, (5.5)
T4p = —f§"0(f)gas = —§* 0 (log f)gap. (5.6

The symbols F’éc and I'j, do not depend on the warping function f and, in addition,
they only depend on the coordinates z** and 2%, respectively. It follows 4, = T'4 - and
The = T
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Any vector field X € X(M) can be decomposed in local coordinates as
X = XH0pu = Xpa + X204 (5.7)

where the components X® and X are such that X* = X“(z#) and X* = X4 (z#),
that is, they depend on all the coordinates. Define X and X as

X = X%, X =X40,4.

The vector fields X and X represent the M -component and )-component of X in M,
respectively. For any two vector fields X, Y € X(M) one has

VxY =V Y + VYV + VgV + ViV (5.8)

where each term is given by

ViV =X (050 Y+ Y'TE,) Oy,

ViV = X%0,aY 20,5 + X(log f)Y,

ViV = X4 (0,4aYY +YPT9y) 0,0 — g(X,Y) f grad f,
ViV = X40,4Y%0, + YV (log f)X.

5.3 Geodesics in warped products

Letmas : M — M and my : M — ) be the projections of M to M and ), respectively.
Then, given a curve « : [0,7) — M, the projection apy = mpy o v : [0,4) — M isa
curve in M and the projection ay = 7y o v : [0, @) — Y is acurve in ).

Notation 5.3.1. Given a vector field X along a curve «, there exists a bijective correspon-
dence, at every point a(u), between its M- and )-components in M, namely X and X,
and the corresponding “projections” living in M and ). The first ones belong to 15 (,,) M
while the second ones belong to Ty, ()M and Ty, ,,,,)Y, respectively. Throughout the
chapter, no distinction will be made between the two and they will be denoted by X and
X in both cases.

According to Notation 5.3.1, if V is the velocity vector of « then one identifies: &y =V
and iy = V.

Let X, Y be two vector fields parallel propagated along «, i.e., Vi X (u) = 0 and
VyY(u) =0forall w € [0,4). Then one has that the product g(X,Y") is constant along
o

90X, ¥) ) = (Vv X, Y)(w) + 9(X, Vi ¥ ) = 0. 59)

Proposition 5.3.2. Let o : [0,u) — M be a curve in M with tangent vector V, then o
is a geodesic in M if and only if the following two conditions are satisfied:



Focal points and incompleteness results in Lorentzian warped products 77

M -component Y-component

?Vf/ =g(V,V)fgrad f ViV = —2V(log f)V
ifo =0 VeV=0 V=0
if o is null VoV =—4(V,V)grad(log f) V'V = —2V(log f)V
ifaisnulland o =0 V =0 ViV =0

Table 5.1: Let a be a geodesic in M with initial velocity v and tangent vector V. The table
shows how the geodesic equation V V' = 0 in M splits into its M- and Y-components.

(i) ViV =g(V,V)ferad f;
(i) ViV =—2V(log f)V.

A proof of Proposition 5.3.2 can be found in [60] (Chapter 7, Proposition 38). Alterna-
tively, it can be deduced by using next Proposition 5.4.1. If «v is a geodesic in M, then, by
point (i) of Proposition 5.3.2, it follows that the curve «;; is a subgeodesic with respect
to grad f in (M, g) [80]. And by point (ii) of Proposition 5.3.2 it follows that the curve
oy is a pregeodesic in Y, i.e., it has a reparametrization as a geodesic in ).

Corollary 5.3.3. Let o : [0,u) — M be a geodesic in M with initial velocity V (0) =
v € TooyM. If v = 0, then V(u) = 0 for all uw € [0,4%). In particular; the projected
curve oy is a geodesic in M.

Proof. By Proposition 5.3.2, the system V& = 0, with &(0) = v, can be rewritten as

{%V =g(V.,V)f grad f {vvv — _2T(log /)V
/(0) = ’ ‘

<

By hypothesis, v = 0. Moreover, ay is a pregeodesic in V. It follows that the unique
solution of the second system is V' = 0. Thus the first system reduces to

VeV =0
V(0) =10
that is, the curve aj is a geodesic in M. O

Corollary 5.34. Let o : [0,a) — M be a null curve in M with tangent vector V, then
a is a geodesic in M if and only if the following two conditions are satisfied:
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(i) ViV =—g(V,V)grad(log f):
(i)’ ViV =—2V(log f)V.

Moreover, let a have initial velocity V (0) = v € Ty)M. If 0 = 0, then V(u) = 0 for
all w € [0, @) and the projected curve ay is a null geodesic in Y.

Notice that the equation given in point (i)’ of Corollary 5.3.4 only depends on quantities
defined on M.

Proof. Because by hypothesis « is null, one has g(V, V') = 0, that in terms of the M- and
Y-components become

P 1, - =
Thus point (i)’ and (ii)’ simply follow from this and from Proposition 5.3.2.
Assume that the initial velocity is such that ¥ = 0. Then the two systems read

{w:—w, ) erad(log f) {

+V = =2V (log f)V
0) =7 '

<

The first system has unique solution V' (u) = 0 for all u € [0,@). It follows that the
second system reduces to

from which one can conclude that oy is a geodesic in Y and that V(u) = 0, for all
u € [0,a). O
The results of this section are summarized in Table 5.1.

V=0
0) =73

< <

5.4 Parallel transport in warped products

The parallel transport equation is here examined and split into its M - and ))-components.
Several cases are listed, depending on the initial velocity and the causal character of the
geodesic along which the transport is made, as well as on the M- and Y-components of
the parallel transported vector.

Proposition 5.4.1. Let o : [0,a) — M be a curve in M with tangent vector V and let
e € Ty 0)M. Then a vector field E(u) is the parallel transport of e along v if and only if
the following two conditions are satisfied along o

(i) Vi B = g(E,V)fgrad f;

(i) Vg E = —V(log f)E — E(log f)V.
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Proof. The vector field E has to solve the following system:
VyvE =0
E(0) =e.
Locally one has o(u) = (2#(u)) and, explicitly, the equation of the system reads
dE* dz
—+ I EY— | Opula =0,
(G + T E ) o

which is equivalent to

dE® dz°
a pi a
(G + e ) o,

dEA dz°
= pZZ -
ot ( o Do (a(u) BO ) Bpala = 0.

Using formulas (5.4)-(5.5)-(5.6) one finds

dE® pdz?

dzB
_ a |l A
du TEale(w)) du

— [0, fganE —- =0, Va

for the M -component and

dEA

—— + T3 (afu ))EBdZ + O, (log f)EA d—bﬂ‘) (lo f)EbE—o VA
du BD d b g dU b g du - 9

for the )-component. From these two equations points (i) and (ii) of the statement follow.
O

Remark 5.4.2. Let W be any tensor field on ) and consider the transport law
VoW = NV (log f)W

with initial condition W (0) = w, for some N € Z different from zero. This transport law
does not define the parallel transport of w along cy in ) in the usual sense. Indeed, W
is parallel but its length changes along the curve according to a function I (u) that will
now be determined.

Define W” as the parallel transport of w along oy, in ). Then WH must be proportional
to W, namely

W) = InW
for some function Iy : [0, %) — R. In particular, it must solve the system

{vvw| =0
W (0) = .
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The equation ?(/WH = 0 is satisfied if and only if
Vi (InW) = (V(In) + NinV(log f))W

where V(Iy) = dé—g, from which one deduces that [y must satisfy the following ODE
with initial condition:

dln

T~ Nwvies ) (5.10)
In(0)=1
Observe that V(f) = V(f) = W. The solution of the system is therefore
f(a(0) > "
l = 5.11
v = (e 1D
as it can be checked explicitly. &

Proposition 5.4.3. Let o : [0,4) — M be a curve in M with tangent vector V and let
e € Ty)M. If the initial velocity v of o and the vector e satisfy g(v,e) = 0, then the
parallel transport E(u) of e along « satisfies the following properties.

1. The M-component E(u) is uniquely determined by @VE = —§(V, E) grad(log f).
2. If ais a geodesic then the Y-component E(u) is explicitly given by
E= h(U)V + q(u)EH

where E || is the parallel transport of € along avy in Y, q is the solution of the system
(5.10) for N = 1and h : [0,1) — R is a function defined univocally as the solution

of the following ODE:
o V(o5 f) = ~B(loa )
h(0) =0

Notice that the equation that determines E’(u) given in point 1 of Proposition 5.4.3 only

depends on quantities defined on M. Moreover, by Remark 5.4.2, g(u) = }c ((38%% .

Proof. The scalar product of two vectors parallel transported along a curve is constant, so
that g(v, e) = 0 implies g(V, E) = 0, from which

S E 1, =
From Proposition 5.4.1 follows that E is the solution of @VE = —§(V, E) grad(log f)
and the first part of the statement is proved.
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In order to prove the second part of the statement, one needs to check that the vector
field hV +qE) solves the equation given in point (ii) of Proposition 5.4.1, thatis: Vi £/ =
—V(log f)E — E(log f)V. Thus one computes

Vf/(hv-l-qEH) ( )V+hV ( )E” +qVVEH

The last term vanishes because EH is, by definition, the parallel transport of € along
ay. Because «a is a geodesic, by point (ii) of Proposition 5.3. 2 one can rewrite Vy V'

—2V (log f)V. The quantities V(%) and V (¢) correspond to and 1 respectively,
so that one can replace them with the appropriate expressions glven by hypothesis. Hence
one finds

Vi (hV + qEH) —E’(log fV — hV(log HV — qV(log f)E_’H

—E(log NV — V(log AV + qEH).

This proves thatﬁhf/ —|—7qEH is a solution of the equation. As for the initial condition, it is
obvious that (hV + q£)(0) = e. O

Corollary 5.4.4. Let « : [0,u) — M be a geodesic in M with initial velocity v and
tangent vector V, and let e € Ty, oy M be such that g(v,e) = 0.

1. Assume é = 0, then the parallel transport E(u) of e along o is such that

(i) E=
(ii) Vo E = =V (log f)E, whose solution is E = aE)

where ¢ = f(«(0))/ f was defined in point 2 of Proposition 5.4.3.
2. Assume € = 0, then the parallel transport E(u) of e along « is such that
(i) Vg E = —4(V, E) grad(log f);
(ii) E=hV.
Here, h is as defined in point (2) of Proposition 5.4.3.

Proof. Assume ¢ = 0. By point 1 of Proposition 5.4.3 one knows that E(u) must satisfy
the transport equation on M, V E = —§(V, E) grad(log f), whose unique solution is
E(u) = 0forallu € [0, a). From point (ii) of Proposition 5.4.1 one knows that F must
be the solution of VVE = fV(log f)E, and from point 2 of Proposition 5.4.3 one has the
explicit solution £ = hV + qEH The function A solves the equation gﬁ + hV(log fi=0
with initial condition £(0) = 0 whose unique solution must vanish for all u € [0, @).
Assume e = 0, then statement 2 follows from Proposition 5.4.3 and by observing that
the parallel transport of € along vy in ) is EH =0. U
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M -component Y-component
Qv any curve:

VoE =g(E,V)fgrad f ViE = —V(log f)E — E(log f)V
ifv Le ?VEA = —§(V,E)grad(log f) VyE=—V(log f)E — E(log f)V
« geodesic:
ifv Le @VE = —g(f/, A)grad(log f) E=hV+ qEH
ifv Le,e=0 E=0 E = qE|

ifv Le,e=0 VyE=—§(V,E)grad(logf) E=hV

Table 5.2: Let a be a curve in M with initial velocity v and tangent vector V. The table
shows how the parallel transport equation Vy, E = 0 of a vector e along « in M splits
into its M- and Y-components. In some cases, an explicit solution of the equations is
given. Notice that ¢ = f(a(0))/f.

5.5 Extrinsic geometry of S — X — M x; )

In the previous sections the signatures of the semi-Riemannian manifolds (M, §) and
(), g) have not been specified. Here, as well as in the rest of the chapter, two specific
cases will be considered, namely:

e Case A: (M, g) is assumed to be Lorentzian and (), g) to be Riemannian;
e Case B: (M, §) is assumed to be Riemannian and (), g) to be Lorentzian.

The study of such warped products is motivated by the interest in perturbing string-theory
inspired spacetimes, whose basic structure is that of a direct product of a 4-dimensional
Lorentzian manifold with a compact 6-dimensional Ricci-flat Riemannian manifold (Ca-
labi-Yau like). The dimensions associated to the compact Riemannian manifold are com-
monly called “extra dimensions” and, in general, one wants to analyse their stability.
A way to do this is by studying the appearance of incomplete geodesics (singularities)
and, in order to do that, one can concentrate on submanifolds S entirely contained in the
compact “extra dimensions” part. (Other cases with S partly on both parts can also be
considered, and it might be the subject of future research.) Thus, there arise two different
possibilities: S is a submanifold of ) in case A; S is a submanifold of M, in case B. In
the following, the main extrinsic properties of S as a submanifold of the whole manifold
M are studied in both cases.



Focal points and incompleteness results in Lorentzian warped products 83

Notice that no assumptions on the compactness or Ricci-flatness of the Riemannian
part will be required, so that the considerations that follow and the results presented do
not depend, in general, on these properties.

5.5.1 Case A Let X denote a submanifold of M defined by constant values of the coor-
dinates %, namely
Yi{a*=X*|X"eR}.

Let ¢ = (X*) be the point in M with coordinates X¢, then, topologically, one has ¥ =
{q} x Y. The metric induced on X by (M, g) is f2(q)gap- By using the formulas given
in Section 5.2 for the covariant derivative, one can easily compute

(VxY)" = —f*()g(X,Y)grad(log f)g, VX,V € X(%).

Here, grad(log f), is the gradient of the function log f, restricted to X. It follows that the
second fundamental form and the mean curvature vector of X are

h*(X,Y) = f2(9)g(X,Y) grad(log f)g, VX,Y € X(%)
H* = grad(log fq-
Notice that ¥ is totally umbilical.
Let S be an orientable n-dimensional submanifold of ) and set
k=dim)Y —n

its co-dimension with respect to ). Let {z*} = {2% 4} be local coordinates in M,
then, by construction, the one-forms {dx®} are all orthogonal to S, i.e., dx*(X) = 0 for
all X € X(8S) and for all a. It follows that it is possible to consider S as immersed in
3} and, consequently, as immersed in M. Let & : § — M be the immersion of S into
(M, g) and denote by 7 the metric induced on S, v = ®*¢g. Obviously S is a spacelike
submanifold of M.

One can consider
S—=YX—=>MxyY

and deduce the extrinsic properties of S — M from those of S — ¥ and ¥ — M.
Specifically, denote by h® 7 and h° > the second fundamental forms of S with respect
to the immersions S — M and § — %, respectively. Then
R7MX,Y) = RS (X,Y) + f2(9)g(X, Y) grad(log f)g, VX, Y € X(S)
HS7M = HS7% 4 grad(log f),.
Notice that if S is minimal in ¥ and grad(log f) is future- or past- pointing on S, then
S is future or past trapped Given any normal vector field ¢ € X(S)*, consider the

decomposition £ = § + £. The expansion of S, as a submanifold of M, with respect to &
is given by

65 M = 087 + n g(grad(log f), ). (5.12)
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Case A Case B
(M, g) Lorentzian Riemannian
), 9) Riemannian Lorentzian
% {g} <Y M x{q}
dim ¥ dim )y dim M
induced metric  f2(q)gan Gab
h f*(q) grad(log f),g 0
H* grad(log f), 0
S S—=Y S—M
k dim)Y —n dimM —n
h hS7% + f2(q) grad(log f)eg  hS7>
H HS7E + grad(log f), HS—®
g(H, H) no restrictions >0
O 9‘5—9_’2 + ngrad(log f), 9‘5"2

Table 5.3: Case A and case B are summarized in the table. In particular, the main extrinsic
quantities associated to the submanifold S are described in both cases. Notice that h, H
and 6¢ denote HS~M, HS=M and GfﬁM, respectively.
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5.5.2 Case B Let X denote a submanifold of M defined by constant values of the coor-
dinates 2, namely

S:{zA =Y | YA eR}.

Let ¢ = (Y#) be the point in ) with coordinates Y, then, topologically, one has ¥ =
M x {q}. The metric induced on ¥ by (M, g) i8 §ap. By using the formulas given in
Section 5.2 for the covariant derivative, one can easily compute

(VxY)t =0, VXY €Xx(%).

It follows that the second fundamental form of ¥ is ¥ (X,Y) = 0 for all X,Y € X(%),
that is, 3 is totally geodesic. Obviously H> = 0.
Let S be an orientable n-dimensional submanifold of M and set

k=dimM —n

its co-dimension with respect to M. As before, by construction the one-forms {dz*} are
all orthogonal to S, one can consider S as immersed in X and, consequently, as immersed
in M. Let ® : S — M be the natural immersion of S into (M, ¢g) and denote by ~ the
metric induced on S. S is a spacelike submanifold of M whose extrinsic properties are
given by

RSTM(XY) = hS7E(X,Y), VXY € X(S)
HS%M — HS%E'

Notice that H5~M must be spacelike, so that S is always untrapped (or minimal). Given
any normal vector field { € X(S )J-, the expansion of S, as a submanifold of M, with
respect to £ is given by

07 M =037, (5.13)

5.6 Computing the tensor P*”

Let o : [0,%) — M be a future-pointing geodesic normal to S at p with initial velocity v.
Let V be its tangent vector, then one has the decomposition V' = V + V. Because V is
either timelike or null, the component corresponding to the Lorentzian manifold cannot
vanish. Thus

e in case A, the tangent vector V' is such that 14 # 0;
e in case B, the tangent vector V is such that V' # 0.

Let {e1,...,e,} be an orthonormal basis of T},S, then {E1, ..., E, } will be the set of
the corresponding parallel transports along . The tensor P*¥, introduced in Definition
5.1.1, represents at u = 0 the projector in M to the tangent space of S:

P (0) = 6Yel'el.
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In case A one has é; = 0 because S is a submanifold of ); on the other hand, in case B
one has €; = 0 because S is a submanifold of M. The properties of the vectors e; and of
the corresponding parallel transports E; will determine the tensor P** at any u € [0, @).
It follows that the properties of P#¥ differ in the two cases.

Notice that in [29], as well as in Section 5.1, no specific properties are required for
the basis of 7},S. Here and throughout the rest of the chapter, for convenience, it will be
rather assumed to be orthonormal.

5.6.1 Case A

Proposition 5.6.1. Let S be as in Section 5.5.1 and v, o and P*¥ as in Definition 5.1.1.
The components of P*" along o are

Pab =0, PAa =0, PAB Z EAEB
Proof. In case A, S is a submanifold of ). Therefore the tangent basis {e1,..., e}
belong to T, Y, so that é; = O forall ¢ = 1,...,n. Because « is a geodesic normal to S
at p, one has g(v,e;) = 0 forall¢ = 1,...,n. It follows by point 1 of Corollary 5.4.4
that the parallel transports E; of e; along « are such that E; = QO forall: = 1,...,n
Equivalently, E¢ = 0, from which P = P% = 0 and thus P** reduces to its -
component PBD O
Notice that the tensor P45 atu = 0
n
PAB0) =) eftef (5.14)

is the projector to S within X.
An explicit expression for E{* was given in point 1 of Corollary 5.4.4. From this one
deduces that the component P45 can also be written as

pAZ < ) Ezﬂuuw

Here, EiH is the parallel transport of €; along oy in ).
Corollary 5.6.2. The tensor PAP is such that PABVy = 0.

Proof. By definition of P*” one has P**'V,, = 0. Indeed, P*'V,, = 6" E/'E¥V,, = 0.
On the other hand, from Proposition 5.6.1, one knows P*V), = PAYV 4. Tt follows that
PA*V,4 = 0 and, in particular, PABY = 0. O

Ifo#£0

Assume that the initial velocity of the geodesic « is such that ¥ # 0. One can choose,
without loss of generality, that g(v,7) = 1. Indeed, let g(v,v) = —c with ¢ > 0. The
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assumption (v, v) = 1 implies §(9,9) + f2(q) = —c. If a is null then ¢ = 0 and one
can require §(9,9) = —f2(q); if o is timelike then ¢ > 0 and §(%,9) = — f?(q) —

Notation 5.6.3. From now on, when different from zero, v will be assumed to be unit
with respect to the metric g.

Let 2z1,...,2,-1 and wy, ..., Wqim m—1 be vectors in T, M such that 2, = 0 for all
s=1,....k—1,wy=0forallt =1,...,dim M — 1 and the set

v v
{61,...,€n, (1)97 )1/27 1 sy Zk— 17(Ap{) )1/27w17~--7wdimM71}CTpM

forms an orthonormal basis of T, M. Here, 277, = f?(¢) and 979, = v®v,.
The tensor P*¥ can be written at u = 0 as

dim M —1

Z whw? . (5.15)

i

P/w(o) — v Zzu v

/U/LAl/

Let Z; be the parallel transports of the vectors z; along the geodesic « for all s =
1,...,k—1.

Proposition 5.6.4. Let S be as in Section 5.5.1 and v, o and P as in Definition 5.1.1,

with © # 0. The components PP can be expressed along o as
1 2 k-1
R ORI

In particular,

_ (g _

gacVAVe = f(4 )> GacZi 7z = 7
Notation 5.6.5. The symbol V4V, denotes the product with respect to the metric §
rather than f2g. However, when possible, the longer notation g4 3V 4V P will be adopted
in order not to cause confusion.

Proof. Formula (5.15) implies

PAB() = —1_gAB _ ol k_lezB (5.16)
P! T PO e '

s=1

Here v, = f?(g) has been used. From Proposition 5.6.1 one knows that the parallel
transport of P42 (0) along « is such that P*4(u) = P®(u) = 0. A reasoning analogous
to that leading to the result 1(ii) in Corollary 5.4.4 shows that P45 () coincides with the
transport of P45 (0) along oy according to the transport law

Vi PAP(u) = =2V (log f) PP (u)
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with initial condition given by (5.16). Using Remark 5.4.2 for PAZ and the parallel
transport PHAB of PAB(0) along avy, that is, VVPAB = 0, one finds the following

relation:

PAB( ) l - H

so that

2
PAB:ff(Q)Pl

Let VH and ZS“ be the parallel transports, along oy, of ¥ and z, respectively. Then the
parallel transport of P42 (0) along ) is given by

1 VAVB k—1
PAB _ _AB _ LI 7428
M= m T LA

Here, the fact that g2 does not change when it is parallel transported along ay has been
used. Therefore P47 is given by multiplying the above expression by (f(q)/f)?:

e (40 ()5 () ()

By point (ii) of Proposition 5.3.2, the velocity vector V satisfies the equation Vy,V =
—2V (log f)V, with initial condition V(0) = © and, by Remark 5.4.2, Vi =(f/f(@)*V
On the other hand, point 1 of Corollary 5.4.4, gives explicit solutions for the vector field
Zy: Zy = 0and Z, = (f(q)/f)Zs|. Therefore one finds

k—1
2 4 s Ts
f f4(q) =

By hypothesis the vector v has unit norm in (y g) it follows that its parallel transport V||
has also unit norm in (), §), namely g4 BV” VH = 1. Again by hypothesis the vectors

25 have unit norm in (M, g), equivalently they have norm equal to (1/f(q))? in (), g);

it follows that their parallel transports Z | have also norm equal to (1/f(q )) in (Y, g)

namely gapZ{'Z{? = (1/f(q))*. Therefore, by using V' = (f(q)/f)*V} and Z;

(f(q)/f)Z”, one can conclude g VAVE = (f(q)/f)* and gABZ;“ZSB =(1/f)2 O
Notice that, like (5.14), also (5.16) represents the projector to S within 3.

5.6.2 Case B
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Proposition 5.6.6. Let S be as in Section 5.5.2 and v, o and P* as in Definition 5.1.1.
The components of the tensor P*" along o are

Pt =N"E!E), PA*=VAY mE!, PAP=VAVEY h?
i=1 i=1 i=1
where h; : Y — R are defined by

dh; N .
— —h; V(1 = —FE;(1
T (log f) (log f)
h;(0) =0
Proof. In case B, S is a submanifold of M. Therefore the tangent basis {e1,..., e, }

belong to T, M, from which &; = 0 for all i = 1,...,n. Then from point 2 of Corollary
5.4.4 follows that the M- and )-components of F; are such that

@VEAi = —§(V, E;) grad(log f), E; =hV.

If 0 = 0 then_ EZ- = ¢, is constant and E; = h;V. In both cases, one can consider
FE; = E; + h;V and compute
PH = §9EIEY

= §UEIEY + §VELh VY + 8T VEEY + 6V hih VIV,

O

Notice that, as done in Proposition 5.6.4, one can compute the parallel transport of

v along ay: it is given by (%)4\/. It follows, as proven in the proposition, that

gapVAV B can be written as (f(q)/f)*.

5.7 Computing the quantity R, ,,V*V*P"’

Formula (A.1) gives an explicit expression for the components of the Riemann tensor in
terms of the Christoffel symbols. By using this formula together with (5.4)-(5.5)-(5.6),
one finds:

(i) Rgyp = —fVeV®finD,
(i) R%¢cp =0,
(i) RYcp = R%op — 0°f0af (64980 — 0pdBC)s
(iv) R4, =0,
v) R4, =0.

Here, RABC p denotes the Riemann tensor of (Y, §) and the quantity V;V,, f represents
the Hessian of the function f. Notice that V, = V, and R, _, = R% _, with V and
R%,., being the Levi-Civita connection and the Riemann tensor of (M, §), respectively.
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5.7.1 Case A By Proposition 5.6.1, one deduces
Ruvpo V*VP P = R, 5,pV'V* PBL. (5.17)

Because R%;p = 0 and go4 = 0, one has R,pcp = 0. It follows, using basic
properties of the Riemann tensor, that also Rop,p = 0. Therefore, there are only two
non-vanishing terms in the summation in (5.17), that leads to

Ruvpo VIVP P = RupypVVPPEP 4+ RupopVAVE PEP. (5.18)
e First term. By using (i) one finds
RapopV VP PPP = — fV V'YV, fgap PP,

On one hand, f 2 JB pPBD = g P*" gives the dimension of S; on the other hand,

the quantity VV°®V,V, f can be rewritten as
VaVOV Vo f = VOV, (VOVLf) — Vo fVOV, V.

By definition, V is the tangent vector of the geodesic « and, by point (i) of Propo-
sition 5.3.2, it is such that V*V,V® = gacVAVC f9° f. It follows that the first
term gives

RapypVeVPPED — —;vab(vaaa £) +ngacVAVCaf0°f  (5.19)

e Second term. By (iii),

Rapcep = fPRapep — f20° f0.f(§acisp — GapdBC)-

One has
n
gac gpVAVEPBP = F@ACVAVC,
1
Gap gpcVAVOPBP = g, p VA PRVE = 0.

72
Here, the properties f2gpp PPP = n has been used together with the fact that

GpcPPPVC = 0 (see Corollary 5.6.2). It follows that
R vAYCpED —

O n  ayepeD a0 (520)

= f"RapcpV V" P77 —ngacV-V~0"fO.f.

It is possible now to rewrite the quantity R, . V*V?P"? by using (5.18) and the more
explicit expressions (5.19) and (5.20):
Ryupo VIVPPY = f2RapcpVAVEPED — ?V”vb(vaaaf). (5.21)

Notation 5.7.1. Notice that V*V,(V%9, f) or, equivalently, V°V,(V 2V, f), corresponds
to the second derivative with respect to the parameter  of the function f, namely %22 fla(u)).
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5.7.2 Case B The quantity R, V*V?P"? can be split according to the components
of P in the following way:

RyuvpoVIVPP" = RuuppVF*VPP™ 4+ 2R,10,AV*VP P + Ry 4,5 VHVP PAB.
Because R, 4p and R 44, Vanish, the first term reads
RuappV* VPP = (ReaarVV® + RaapVAVE) P,
Because Rpgea, RBaca and Ry, pa vanish, the second term reads
2R,uapaVIVP P = 2Rp A VEVO P4,
Because R a.p and R, 4cp vanish, the third term reads
RyuapsV'VPPAE = (RoappVEVY + RoappVeV?h)PAB.

By applying Proposition 5.6.6 and the explicit expressions for the components of the
Riemann tensor, one finds that there are four non-vanishing terms in the summation. They
are:

First term: RapeqV e VEPY = R peqV VP,

Second term:

RAaBbVAVBPab = RaAbBVAVBPab
= —fViVafgapVAVE PP

==Y fE!E!NWNafgapVVE.
i=1

Third term:

2RBabAVBVbP(LA = —QRaBbAVBVbP"’A
= 2fVyVafgapVEVl P4

=2fVOVyVafgasV VP> hiEf.

=1

Fourth term:

RoapsVeVPPAR = — V1,V fgap VeV PAB

— VOV Vo fgapVAVE Y T h3.

i=1
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Therefore

Ryupo VFVPPY” = RapeaVeVEP " 4

9) N~ e . .
f(3 ) N (~BYED + 2BV — BVOVY)VV, .
=1

+

Here, gAapVAV®E = (f(q)/f)* has been used. One can rewrite this as

RyupoV'VPP" = RapeaV*V P+

g < 522
- ff(f) > (B = hiV*) (B} — hV")VyVaf ©:22)

i=1

because (E¢V° + VAEY)V,V, . f = 2E¢VV, V.. f.

5.8 Galloway-Senovilla condition in warped products

In the previous sections of the present chapter expressions have been found for the quan-
tity R, 50 V#V P P¥? and for the expansion 6,,: formulas (5.21) and (5.12) for case A and
formulas (5.22) and (5.13) for case B. Therefore, by using these expressions, it is now
possible to restate Proposition 5.1.4 for the existence of focal points and Theorem 5.1.5
about geodesic incompleteness for the specific case of a Lorentzian warped product.

5.8.1 Case A

Proposition 5.8.1. Let M = M x; Y be a Lorentzian warped product with metric as in
(5.3). Let S be a spacelike submanifold of M that lives in {q} x Y for some q € M, as
in Section 5.5.1, and let o : [0,00) — R be a complete future-pointing normal geodesic
with initial velocity v. If the Riemann tensor of (Y, g) and the warping function f satisfy

1 [t _
- / { fPRapcpVAVEPBED — ?vab(vava f)}du >
0
> gapH*" + 8,(log f)v"
then there exists a point focal to S along .

Proof. An explicit expression for the quantity R, , V#*V? P"? has been found in (5.21).
The expansion 0, = ng(Hp, v) of S — M can be computed by means of formula (5.12):

0, = ngABHAvB + nd, (log f)v°.

In order to prove the proposition it is now enough to apply Proposition 5.1.4. U
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Notice that another way of writing the Galloway-Senovilla condition is by integrating
by parts the second term on the left hand side of the inequality:

“+o0
/ ;vbwvaaaf)du — V(log f)(+00) — v(log f)+
0 (5.23)

+o0 1
+/ S(VOVof) du
o [
By using this the condition becomes

+oo
1 / { fPRapcpVAVEPBD _ n%(V“VG f)z}du — V(log f)(400)+
nJo f

+o(log f) > gapH"*v® + 9, (log f)v°.

Notice that ¢(log f) = 9,(log f)v®, hence the condition in Proposition 5.8.1 can also be
expressed as

R 1
= fPRapcpVAVEPPP —n—(VOV, f)? tdu+
nJo f?

—V(log f)(+o0) > QABHAvB.

Theorem 5.8.2. Let M = M x¢ Y be a Lorentzian warped product with metric as in
(5.3). Let S be a spacelike submanifold of M that lives in {q} x Y for some ¢ € M, as
in Section 5.5.1. Assume that M contains a non-compact Cauchy hypersurface and that
S is closed.

If the Riemann tensor of (Y, §) and the warping function f satisfy

1 [ _
ﬁ/ {szABCDVAVCPBD - ?vab(V“Vaf)}du >
0

> gapHM? + 04 (log f)v®

along each future inextendible null geodesic « : [0,4) — M normal to S, then (M, g) is
future null geodesically incomplete.

Proof. The proof is the same as the one given for Proposition 5.8.1: one needs to use
formula (5.21) for the quantity R, ,c V#*V?P"? and formula (5.12) for the expansion of
S. Then, one applies Theorem 5.1.5. L

Notice that the condition of Theorem 5.8.2 involves only quantities associated to
(), g) and derivatives of the warping function f on M.

It is important to distinguish, when considering the future-pointing normal geodesic
«, if its initial velocity v has or does not have ))-component. Indeed, for those geodesics
such that o # 0 the Galloway-Senovilla condition is the one given in Proposition 5.8.1
or, equivalently, in Theorem 5.8.2. On the other hand, when the initial velocity of the
geodesic is such that ¥ = 0, one has by Corollary 5.3.3 that V' (u) € T(, ;) M for all u. In
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other terms, V4 = 0. It follows that R4pcp VAV Y PBP vanishes and consequently, by
(5.21),

Ry po VIVPPY? = —%vab(vaaa f).

Therefore the Galloway-Senovilla condition simplifies and reduces, since g4z Hv? is
Zero, to

[ %vbvb(vava f)du > 9, (log f)v®. (5.24)
0

Proposition 5.8.3. Let S be as in Section 5.5.1 and let o : [0, %) — M be an inextendible
future-pointing normal geodesic with initial velocity v such that v = 0. If the warping
function is such that (5.24) is satisfied, then there exists a point focal to S along o if it is
defined up to that point.

Notice that if 9,(log f)v® < 0 and f~1VPV,(VeV,f) < 0 then (5.24) is satisfied.
Notice, also, that another way of writing (5.24) is by using (5.23):

—V (log f)(+00) 7/0 %(V“Vaf)zdu > 0.

In terms of the Ricci tensor and the sectional curvatures of (), 7)
Let R4c and K denote the Ricci tensor and the sectional curvature, respectively, of (), g).

Lemma 5.8.4. The quantity RapcpVAVE PBP can be written in the following two
equivalent ways:

oD Ay,C pBD L[5 Ay,C f4(CI)k71*f
(i) RapopVAVEP :fQ{RACV Ve ZK(V,ZS)},
s=1
4 n
(ii) RapepV*VEPPP = ff(ﬁq) ZK(V,Ei).
=1

Proof. By using the decomposition of the tensor PP given in Proposition 5.6.4

_ 1 _
RapopVAVEPPY = 557 RapepV AVt
f2 k—1
— = —RapcpVAVOVEVP =N " RupcpVAVCezEzl.
f4(q) —
The first term of the summation gives the Ricci tensor applied to f/ and the second term
vanishes. As for the third term, consider the sectional curvatures K(V', Z) associated to
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(J),ig) and relative to the planes in T, (,)) spanned by V and Z,. By using the norms
of V and Z, in (), ) that have been given in Proposition 5.6.4, namely gacVAVY =
(f(q)/f)* and GacZAZE = 1/ f2, the sectional curvatures read

T 7 f6 D Ax,C B D
K(V, Zg) - fT@RABCDV V ZS ZS .
Therefore
- 1 FHO) = oo
RapcpVAVEPBED = PRACVAVC - > K(V, Zy)
s=1

from which follows point (i). In order to prove point (ii), it is enough to use the expression
for PBP given in Proposition 5.6.1:

RapcpVAVEPPP =3 " RapcpVAVOEPEP.
i=1
The terms in the summation correspond, up to a factor, to the seictional curvatures associ-
ated to (), g) and relative to the planes in Ta(u)y spanned by V" and E;. Indeed,

6
R(V,Ey) = f{ o

Here, the fact that the vector fields E; have unit norm in (M, g) has been used, namely
f2gapEAEP = 1, and also the expression for the norm of V. Thus point (ii) follows by
taking the sum of all K(V, E;). O

By using Lemma 5.8.4 one can rewrite the Galloway-Senovilla condition in terms of
the Ricci tensor and the sectional curvatures:

RapepVAVBEPED.

a k—1
1 /0 {RACVAVC ] jff) SRV, Z) - ”vbvbwavaf)}du >
s=1

n f (5.25)
> gapH* 0P + 9, (log f)v*
or, equivalently,
71/;{ 7i z:: (V,E;) — ?vab(v" af)}du > 5:26)
> gapH" 0" + 0,(log f)v*
By integrating by parts as in (5.23) the previous two formulas become
1 /u {RACVAVC _ '@ kil K(V, Zs) —nV (log f)Q}du—i—
n Jo = (5.27)

~V(log f)(a) > gapH*v"
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and

1T () o 2}
n/o { 7i ;K(V,El) nV (log f)? b du+ 528)

—V(log f)(@) > gapH*w".

5.8.2 Case B

Proposition 5.8.5. Let M = M X Y be a Lorentzian warped product with metric as in
(5.3). Let S be a spacelike submanifold of M that lives in M x {q} for some q € ), as
in Section 5.5.2, and let o : [0,00) — R be a complete future-pointing normal geodesic
with initial velocity v. If the Riemann tensor of (M, §) and the warping function f satisfy

+o0 4 n
_l/o {f (q) Z(Eza — hiVa)(Ef _ hiVb)VbVaf—l—

n f3 i=1
—Rabch“VCPbd}du > GapH 0"

then there exists a point focal to S along a.

Proof. An explicit expression for the quantity R, , V*V? P"? has been found in (5.22).
The expansion 0, = ng(Hp,v) of S — M can be computed by means of formula (5.13).
In order to prove the proposition it is now enough to apply Proposition 5.1.4. O

Theorem 5.8.6. Let M = M x ¢ Y be a Lorentzian warped product with metric as in
(5.3). Let S be a spacelike submanifold of M that lives in M x {q} for some q € ), as
in Section 5.5.2. Assume that M contains a non-compact Cauchy hypersurface and that
S is closed.

If the Riemann tensor of (M, §) and the warping function f satisfy

1 /u {f4(q) S E — BV ED - bVt
0

" F? i=1

—Rabch“Vchd}du > GapH®

along each future inextendible null geodesic « : [0,4) — M normal to S, then (M, g) is
future null geodesically incomplete.

Proof. The proof is the same as the one given for Proposition 5.8.5: one needs to use
formula (5.22) for the quantity R, ,c V#*V?P"? and formula (5.13) for the expansion of
S. Then, one applies Theorem 5.1.5. O

Notice that the condition of Theorem 5.8.6 involves only quantities associated to
(M, g) and the functions h; and f.
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5.9 Some relevant possibilities - case A

In this section the Galloway-Senovilla condition is applied in order to prove the existence
of focal points or the incompleteness of the ambient manifold in specific cases: positive
and constant sectional curvature, Einstein and Ricci-flat spaces and a few subcases in
terms of the co-dimension.

5.9.1 Positive sectional curvatures

Theorem 5.9.1. Assume that the sectional curvatures of (Y, g) are all positive or vanish-
ing and let S be as in Section 5.5.1.

1. Let a : [0,00) — M be a complete future-pointing normal geodesic with initial
velocity v. If the warping function is such that

(i) f7IVOV,(VeV,.f) < 0 along o, and
(ii) 0, <0

then there exists a point focal to S along .

2. Assume that M contains a non-compact Cauchy hypersurface and that S is closed.
If S is trapped and the condition for f holds along each future inextendible null
geodesic normal to S, then (M, g) is future null geodesically incomplete.

Proof. Assume first that « is such that v = 0. The hypothesis of Proposition 5.8.3 are
satisfied so that the Galloway-Senovilla condition holds and there exists a focal point
along all such geodesics. Suppose now that o # 0. One can use the Galloway-Senovilla
condition written in terms of the sectional curvatures, as done in (5.26). The condition
0, < 0 implies that the Galloway-Senovilla condition is satisfied if

/+OO {f;(f) zn:f{(f/, E;) — ;vab(vavaf)}du > 0.
0 i=1

By hypothesis the sectional curvatures are all positive or vanishing, therefore
> K(V,E;) > 0.
i=1

Given that the sectional curvatures are all non-negative, and because of (i), then the above
condition is satisfied. This argument proves both points in the statement. O
As an example, point 2 of Theorem 5.9.1 can be applied to the warped product pre-
sented in Example 1.7.5. Indeed, in this case there exist non-compact Cauchy hypersur-
faces, S is closed, it has positive sectional curvature and it is trapped if |pr’ ] (t) > %
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Assume that (), ) has constant sectional curvature C' > 0. Then expression (5.26)
simplifies to

/a f4(Q)O_lva (V0. f) vdu > § H%P + 9 (log f)v® (5.29)
0 14 f b o gapH™v {108 J )V :

or equivalently, by (5.28)

/ou { f;(f) C —V(log f)Q}d“ —~V(log /)(@) > gapH"v®.

If, for instance, C' = 0, the condition becomes
_ / V (log f)2du — V(log £)(@) > Gar HAVE.
0

5.9.2 Co-dimension zero
Theorem 5.9.2. Let X be as in Section 5.5.1.

1. Let o : [0,00) — M be a complete future-pointing geodesic normal to . with
initial velocity v. If the warping function satisfies

“+00
7/ %vab(V“Vaf)du > 9, (log f)v®
0

then there exists a point focal to S along .

2. Assume that M contains a non-compact Cauchy hypersurface and that Y. is closed.
If the condition of point 1 is satisfied along each future inextendible null geodesic
normal to ¥, then (M, g) is future null geodesically incomplete.

Proof. The initial velocity v of any normal geodesic « is such that ¥ = 0. Thus to
prove the theorem it is enough to apply Proposition 5.8.3, which proves both points of the
statement. O
5.9.3 Co-dimension one

Theorem 5.9.3. Let S be as in Section 5.5.1 and assume k = 1.

1. Let o : [0,00) — M be a complete future-pointing normal geodesic with initial
velocity v. If the Ricci tensor of (Y, g) and the warping function satisfy

(i) RapVAVE > nf~1VbV,(VeV, f) along o, and
(ii) 0, < 0

then there exists a point focal to S along a.
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2. Assume that M contains a non-compact Cauchy hypersurface and that S is closed.
If S is trapped and condition (i) is satisfied along each future inextendible null
geodesic normal to S, then (M, g) is future null geodesically incomplete.

Proof. Assume first that the geodesic « is such that ¥ = 0. Then the hypothesis (i) and (ii)
read nf~1VV,(VeV,f) < 0and 9, (log f)v® < 0. By Proposition 5.8.3 this is enough
to have the existence of a focal point along . Suppose now v # 0. Because k = 1, by
(5.25) one knows that the Galloway-Senovilla condition is in this case

1 [%(-
f/ {RACVAVC — anVb(V“Vaf)}du > gapH*? + 0, (log f)v.
0

n f
If hypothesis (i) and (ii) hold then it is clear that the condition is satisfied. These argu-
ments prove both the first and the second statement of the theorem. O

5.9.4 Dimension one Assume that the dimension of § is n = 1, then the tangent space
is 1-dimensional and a basis is given by the unit vector e. It follows that the tensor P#
is just P*¥ = E*EY, with E the parallel propagation of e along «, and consequently
PBP = EBED  Therefore by (5.21) the Galloway-Senovilla condition reads

/ﬁ @ g0, ) - 2v09,(vevaf) Vu > gapHAP + 0, (log e
0 14 ) f b a U > gAB v L (log flvu™.

Integrating by parts as in (5.23) one obtains

/u {f4(4q>K(V, E) — V(log f)Q}du — V(log f)(@) > gapH*v".
o U f

5.9.5 Einstein spaces Assume that (), ) is an Einstein manifold, i.e., Rap = Agap,
then by (5.25) the Galloway-Senovilla condition reads

FAC (S wIEDE

s=1

(5.30)

— ;vab(Vaﬁaf)}du > gABHAUB + Oa(log f)v".

Equivalently, integrating by parts as in (5.23) one obtains

(- ZKW 20) o 7 s

—V(log f) (i_L) > QABHAUB.

Notice that in this case one has

n k—1
A=) K(V,E)+ Y K(V,Z).
i=1

s=1
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Assume that (), g) is Ricci flat, i.e., Rup = 0, then putting A = 0 in the previous
formula the Galloway-Senovilla condition reads
1 a 4 k—1 o
_7/ {f (f) > K(V,Z)+ ”vab(vaaaf)}du >
nJo f p f
> gagH2? + 0q(log fv.

(5.31)

Theorem 5.9.4. Assume that (Y, g) is Ricci flat. Let S be as in Section 5.5.1 and assume
k=1

1. Let o : [0,00) — M be a complete future-pointing normal geodesic with initial
velocity v. If the warping function satisfies

+oo 1
- / FVIVUVO0, ) > ganHA0 + 0,10z f)o*
0

then there exists a focal point for S along a.

2. Assume that M contains a non-compact Cauchy hypersurface and that 3 is closed.
If the condition is satisfied along each future inextendible null geodesic normal to
S, then (M, g) is future null geodesically incomplete.

Proof. It is enough to notice that the hypothesis of the theorem is the Galloway-Senovilla
condition (5.31) for £ = 1. O

5.10 Direct products

Set f = 1in (5.3), then one obtains the differential manifold M = M x ) endowed with
the Lorentzian direct product metric g, given in local coordinates by

g = gudatds” = gabdx“dxb + gAdeAde. (5.32)

The Christoffel symbols are such that they vanish whenever indices A are crossed with
indices a, namely T, =T'4 = ' 4 = 0. For any two vector fields V, Z € X(M) one

ap
has a decomposition as in (5.8), where

Vo2 =V (052 + 2°T%,) Ore,
VoZ =V"9aZP0,5,
Vo Z=VA(0,42° + ZPTg) 0,0,
ViZ =VA0,42%,s.

The properties concerning geodesics and parallel transports in direct products relevant for
this section are summarized in the following propositions.
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Proposition 5.10.1. Let o : [0,4) — M be a curve in M with initial velocity ¢.(0) = v.
Then « is a geodesic in M if and only if Ty o «is a geodesic in M with initial velocity
0 and Ty o «v is a geodesic in Y with initial velocity .

Proposition 5.10.2. Let o : [0,u) — M be a curve in M and let e € Tgp) M. Assume
that ¢ = 0, then the parallel transport of e along « is a vector field E(u) such that
E(u) = 0 forall w € [0,a). Similarly, assume that € = 0, then the parallel transport
of e along o is a vector field E(u) such that E(u) = 0 for all u € [0, ). In particular,
VaFE = 0if and only if@o}ME =0and V4, E =0.

Proposition 5.10.1 and Proposition 5.10.2 derive from Proposition 5.3.2 and Proposition
5.4.1, respectively, once it is assumed f = 1. By Proposition 5.10.2, it follows that if
e € T,(0)M is a vector such that ¢ = 0 then the parallel transport E' of e along « is (the
lift of) the parallel transport of e along the projection curve 7y o o in Y. Similarly, if e
is such that e = 0 then the parallel transport E of e along « is (the lift of) the parallel
propagation of e along the projection curve my; o v in M.

Let S be defined as in Section 5.5.1, then its extrinsic geometry can be deduced by
using the relations and formulas given for the warped product case. Indeed, one has
(Vv Z)t = 0forall V,Z € X(X), from which follows that > = {q} x ), for any
q € M, is such that h* = 0 or, equivalently, that it is totally geodesic. Thus the mean
curvature of S is just HS7M = S~ and the expansion is given by

0F "M = 057", VEe X(S).

By Proposition 5.6.1, the components of P*¥ are PA% = 0, P* = 0 and PAP =
S EAEP. In particular, if o # 0, by Proposition 5.6.4 one has

k—1
PBP = ghb _yByb _N" 787D,

s=1

Here, it has been used the fact that f = 1 implies g =1 = 1.
The only components of the Riemann tensor of M x Y relevant for (5.17) that do not
vanish are R, = R4, . It follows that

Ruwpo VIVP P = RapcpVAVEPBD.

Proposition 5.10.3. Let M x Y be a Lorentzian direct product with metric as in (5.32).
Let S be a spacelike submanifold of M x Y that lives in {q} x Y for some ¢ € M, as
in Section 5.5.1, and let o : [0,00) — R be a complete future-pointing normal geodesic
with initial velocity v. If the Riemann tensor of (Y, g) satisfies

1ot

— RABCDVAVCPBDdu > QABHAUB
n Jo

then there exists a point focal to S along a.
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Unlike the warped product case, the direct product case does not allow for incompleteness
results. Indeed, for all those geodesics with initial velocity such that ¥ = 0, one has that
the quantities RapcpVAVEPBP and gapHAv? are both vanishing. Therefore the
Galloway-Senovilla condition cannot be satisfied. Actually, it just fails (it reads 0 > 0),
this is why the idea to consider perturbations with warped products.

By using (5.25) and (5.26), the condition in terms of the Ricci tensor and the sectional
curvatures is

1 400 ~ k—1 o
—/ {RACVAVC - ZK(V,ZS)}du > gapH? (5.33)
nJo s=1
or, equivalently,
+oo N
/ ZK (V,E))du > gapH*vP. (5.34)

5.10.1 Positive sectional curvatures

Proposition 5.10.4. Let M x Y be a Lorentzian direct product with metric as in (5.32).
Assume that the sectional curvatures of (Y, g) are all positive and let S be as in Section
5.5.1 (with f = 1). If § is minimal then there exists a point focal to S along any complete
future-pointing normal geodesic.

Proposition 5.10.5. Let M x Y be a Lorentzian direct product with metric as in (5.32).
Assume that the sectional curvatures of (Y, g) are all positive or vanishing. Let S be as
in Section 5.5.1 (with f = 1) and let o be a complete future-pointing normal geodesic
with initial velocity v. If gap H*v? < 0 then there exists a point focal to S along cv.

Both propositions easily follow from (5.34).

5.10.2 Constant sectional curvatures

Proposition 5.10.6. Let M x Y be a Lorentzian direct product with metric as in (5.32).
Assume that (), g) has constant sectional curvature C > 0 and let S be as in Section
5.5.1 (with f = 1). Then there exists a point focal to S along any complete future-pointing
normal geodesic.

Proof. If ()),g) has constant sectional curvature C, then, by (5.34), the Galloway-
Senovilla condition reads

—+00
C’/ du > GagH 0",
0

Because C' is positive, one has 400 > gapH AyB and the condition is satisfied. O
Notice that there are no requirements in the statement for the geometry of S.
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5.10.3 Co-dimension one

Proposition 5.10.7. Let M x Y be a Lorentzian direct product with metric as in (5.32).
Let S be as in Section 5.5.1 (with f = 1) and assume k = 1. Let o be a complete future-
pointing normal geodesic with initial velocity v. If the Ricci tensor of (Y, g) satisfies

L[t
- RacVAVCdu > gapHA WP
n Jo

then there exists a point focal to S along a.

The proof follows from (5.33) when choosing k = 1.

5.10.4 Dimension one By following what has been done in the warped product case,
the Galloway-Senovilla condition, assuming n = 1, reads

—+o0
/ RapcpVAVCEBEPdu > gapHAvP.
0

5.10.5 Einstein spaces From (5.33) follows that the Galloway-Senovilla condition is

1 400 k—1 o
f/ (A =Y K(V, Zs))du > gapH P, (5.35)
nJo s=1

Proposition 5.10.8. Let M x Y be a Lorentzian direct product with metric as in (5.32).
Assume that (Y, §) is an Einstein manifold, with Rap = Agap and A > 0. Let S be as in
Section 5.5.1 (with f = 1) and suppose k = 1. Then there exists a point focal to S along
any complete future-pointing normal geodesic with initial velocity v such that v # 0.

Proof. When k£ = 1, by (5.35) the Galloway-Senovilla condition is
O
*/ du>§ABHAUB.
nJo

Since by hypothesis A is positive, the condition is satisfied. U






Chapter 6

Applications and examples

In the present chapter a series of Lorentzian metrics will be considered in order to ap-
ply the results presented in the previous chapters and to provide examples of umbilical
spacelike submanifolds. The metrics have been chosen to represent well-known space-
times in the physics literature: some of them, like the Szekeres spacetime, can be con-
sidered cosmological models describing the evolution of the universe; some others may
describe stationary black holes, like the Kerr spacetime, or dynamical black holes, like
the Robinson-Trautman spacetime.

For the purposes of this chapter no physical interpretation of these spacetimes is
needed: the Lorentzian metrics are studied from a purely geometrical point of view. The
procedure is as follows. For each of the metrics considered, a family of spacelike sub-
manifolds is selected. Then, using the characterization results of Chapter 3 and Chapter
4, conditions are found for these submanifolds to be umbilical. When possible, further
conditions are found for determining which submanifolds, among those that are already
umbilical, are also marginally trapped. Some of the metrics presented provide examples
of groups of motions acting on a spacetime: transitivity submanifolds with trivial or non-
trivial isotropy subgroup are considered and the results of Chapter 4 are illustrated.

Each section of the chapter is devoted to a particular spacetime. Specifically: in
Section 6.1 the Kerr spacetime is considered; in Section 6.2, the Robinson-Trautman
spacetime; in Section 6.3, the Szekeres spacetime; in Section 6.4, G5 spacetimes; in
Section 6.5, i3 spacetimes; in Section 6.6, spacetimes admitting a 4-parameter group of
motions acting on 3-dimensional orbits.

6.1 Kerr spacetimes

The Kerr spacetime can be locally described as the manifold R? x S? endowed with the
Lorentzian metric [41]
4amr sin® 0

2
7= —(1 - W;T) dv? + 2 dvdr + p? d§? — ———— dpdv+
P P

6.1
(r? + a?)? — a®>Asin? 1)

2

—2asin? @ dodr + sin? 6 dy?

given in the so-called Kerr coordinates {v,r,0, ¢} (withv € R, r € R, € (0,7) and

¢ € (0,2m)), where m > 0 and a are two constants called mass and angular momentum
per unit mass. The quantities p and A are defined by

VT T o0, A1 2rmad (6.2)
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The variables {f, ¢} are spherical coordinates on S? so that there is a trivial coordinate
problem at the axis of symmetry § — 0. The spacetime has a more severe problem at
p = 0, there is a curvature singularity and thus this set must be cut out of the manifold.
For a complete exposition about the Kerr metric and its physical interpretation, one can
for example consult [24, 34, 61, 99]. It is worth mentioning here that Kerr’s metric is
of paramount importance in general relativity because it is the unique solution of the
vacuum field equations describing an isolated black hole. The case a = 0 leads to the
Schwarzschild spacetime, describing a non-rotating black hole.

Umbilical surfaces In the Kerr spacetime there is a family of preferred spacelike sur-
faces defined by constant values of v and r. Let S be one of these surfaces, then S is
compact and topologically S? —unless 7 = 0. The vector fields Jy and O are tangent to
S at every point of S and the induced metric reads (with constant r)

(r? + a?)? — a®>Asin? 6

g=p>de* + 5 sin? @ dip?. (6.3)
p
The following vector fields constitute a frame on X(S)*:
Lo, o
gzﬁ((r +a%) 8, + A0, +ad, ). (6.4)
_ 1o 2., 2
n=—(a”sin 00, + (r*+a*)0r+ad,). (6.5)
P

Notice that £ = dr and 7 = dv. In the basis {0y, 0,}, their corresponding Weingarten
operators are

A

A - *Mlv
3 p2
1 2 2 m 3.3
A, = ? (r* +a*) M —2?7"@ sin® 6 cos O Mo
where
r
? 0
M, = p2 (7“—1— %aQ(az cos? 6 —7’2>Sin2 9)
0
(r2 + a2)? — a2Asin® 0
and
0 1
My = 02
0

((r2 + a2)? — a2Asin® ) sin” 6
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By Corollary 3.2.3, S is umbilical with respect to a normal direction if and only if
[A¢, Ay] = 0. Explicitly:

fQA%TaS sin® 6 cos 0 [M, My) = 0. (6.6)
p

Equation (6.6) is satisfied if one of the following conditions holds: [M;, M3] = 0 (which
is equivalent to 4mr? + p?(r — m) = 0 and implies 7 < m), or § = % (recall that § €
(0,7)),orr =0,0ora = 0or A =0. In the case a = 0, that represents the Schwarzschild
spacetime, every such S is actually totally umbilical. This is to be expected, because in
this case the spacetime is spherically symmetric, and all round spheres are then totally
umbilical [83]. Letting this special case aside, among the previous conditions, 7 = 0 and
A = 0 are the only possibilities that lead to surfaces S entirely umbilical along a normal
direction. They are considered in turn:

Case r = 0 For the case » = 0 with any constant v, one has to keep in mind that the
equator in any of these surfaces lies on the spacetime curvature singularity (r = 0 and
0 = 7/2). It follows that these surfaces are defined by non-compact, hemi-spherical caps,
with either § € (0,7/2) or @ € (n/2, 7). In any of these options, it is easily seen from
the above that A¢ = A,, = M / cos? 6 with

0 0
My = 0 % tan?0 |-
a

Therefore one deduces that A¢_, = 0. This means that the second fundamental form of
these surfaces is such that g(h(X,Y"),{—n) = Oforall X, Y € X(S) or, equivalently, that
there exists a non-zero symmetric (0, 2)-tensor L such that h(X,Y) = L(X, Y )x*(£—n).
Hence, by Definition 2.4.2, they are « (& — 1)-subgeodesic, and from Proposition 2.5.1
follows that they are also ortho-umbilical. Notice that being subgeodesic with respect to
a normal vector field implies, in particular, being H-subgeodesic. Therefore x*(¢ — n)
and H must be proportional. On these surfaces one has £ — n = 0, from which one
deduces that H must be orthogonal to d,. One also knows that £ and J, are such that
g(&,0,) = 0, from which H € span{¢}. One can further check that these hemi-spherical
caps are locally flat.

Case A = 0 Suppose now that A = 0. This requires m? > a? and the hypersurface
A = 0 has two connected components given by r = r1 with

r4 i =mE\v/m? —a?

except in the case m = |a|, called the extreme case, where both of them coincide. It
follows from the formulas above that A = O at 7 = r or 7 = r_. Then /Tg = 0 and
0 = tr A = ng(&, H) = 0 too there, the former saying that any surface with constant v
in A = 0 is umbilical along the normal vector field £ and the second that £ is proportional
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to x H. Hence, every such surface is ortho-umbilical. The total shear tensor for any of
these surfaces is given by (with p2 = r% + a® cos? 0)

4 + 93 (rs — m)
2(r% +a?)?

2mriasin @ cos 6
pL(ri+a?)

~ sin 0 (4mr2 + p?(ry —
h(D4,04) = —a®sin® 0 sin” 6 ( mriz 4p (re = m))
P+

1(8y,89) = a®sin® 0 g,

(0, dy) = —a’sin® 0

)

¢.

Its image is spanned by ¢ and hence, by Theorem 3.1.3 point (ii)” and Corollary 3.2.2,
these surfaces are umbilical with respect to x~¢. But ¢ € span{H} so that all these
surfaces are also pseudo-umbilical. As they are not totally umbilical, & and x-¢ (equiv-
alently H and - H) must be proportional. This is indeed the case since ¢ (equivalently
H)isnullat A = 0.

Mean curvature vector field Let © be the function defined as

0= \/(r2 +a?)?2 —a?A sin? 0 6.7)
then the mean curvature vector field of S is

1
H= @(2/}27“ + a?sin? O(r + m))¢

and a future-pointing null vector field normal to S is given by
(= —An+ (r* +a*> + O)¢.

Assume A = 0, then © = 3 + a? and one has

1 2 2 .2
H= (W@p ry +a’sin“f(ry + m))>§,
0=2(r% +a?)¢.
Because 7. > 0, the factor 2p?r. +a? sin? 0(r.. +m) is positive. It follows that the mean
curvature vector field at A = 0 is null (as already proved before) and future-pointing.

Conclusion The following result has been proven:

Proposition 6.1.1. In the Kerr spacetime with a # 0 and m # 0, the only surfaces
defined by constant values of v and r which are umbilical along a normal direction are
those contained in either

(i) the (timelike) hypersurface r = 0 or
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(ii) the (null) hypersurface A = 0 —these exist only when m > |al.

In case (i) they are locally flat, non-compact topological disks, which are ortho-umbilical
and H-subgeodesic. In case (ii) the surfaces are compact topological spheres both pseudo-
and ortho-umbilical. They happen to have a non-vanishing null mean curvature vector
field H, and thus they are also marginally trapped.

The surfaces found in case (ii), those characterized by constant values of v and by » = r,
foliate the null hypersurface defined by A = 0. In gravitational physics the two connected
components of A = 0 are called the event horizon (r = r,) and the Cauchy horizon
(r = r_), and they enclose the black hole region (or white hole region, depending on the
choice of time orientation) of the Kerr spacetime [24, 34, 46, 99]: a region containing
closed trapped surfaces. In the present section it has thus been proven that the horizons
of the Kerr black hole are foliated by marginally trapped surfaces which are both pseudo-
and ortho-umbilical. This fact is already well known in gravitational physics: the null
hypersurface A = 0 is expansion- and shear-free along its null generator.

6.2 Robinson-Trautman spacetimes

Robinson-Trautman spacetimes [74, 75, 90] can describe generalized, dynamical black
holes. They can also model gravitational radiation. The horizons admitted by this family
have been extensively studied, see for example [19, 55, 71, 93, 94, 96]. A generalization
to higher dimensions of Robinson-Trautman spacetimes can be found in [70]. From a
geometrical point of view, a Robinson-Trautman spacetime is locally described as the
manifold R? x S, where S is a surface with no specified topology.

Let {u,r, p, ¢} be local coordinates where {p, ¢} are coordinates on .S. Let P(u, p, )
be a function depending on u, p and ¢, and denote by A the following operator:

N A
“ oo\ op T Pog2)

Define K (u, p, ) as

K = A(log P)
and U as
1 8P

where m is a constant. Notice that K does not depend on the coordinate r while U is
a function depending on all the coordinates. Moreover for each u, K coincides with the
Gaussian curvature of the submanifold given by constant v and » = 1. The Robinson-
Trautman metric is given by [96]

= —Udu® — 2dudr + —(dp + p?dp?).
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There is, in addition, an evolution equation for P, namely

1 0P
Pou’
Observe that the particular form of the function U and the above evolution equation come
from imposing the vacuum Einstein equations [96].
Consider the family of spacelike surfaces defined by

AK = —12m

u =1, r="V(p, ),

where V' is a function on S. Let S be a surface of this family, then, topologically, S = S.
The vector fields

ov

e = 76/) Oy + 6p
ov

€9 = %8’,~ + 8¢

are tangent to S at every point of S and the induced metric in this basis reads (with u = 4
and P = P(u, p,¢))
2

v
9= 53 (dp* + p*dp?) .

(0, = (]Z)de, (0,) = (V;j)Qd@.

Umbilical surfaces Two one-forms normal to S are

Notice that

ov ov
b b
§ u, n T g
Their corresponding vector fields, which form a frame on X(S )J-, are
5 = _87”7
P? /oV 10V
=-0,+U0U0, — — | —0 ——0, |-
! " V2<8p *t 2oy “;)

They are such that

: _ P2//oVN® 1 [(oV\?
3(6,€) = 0, g(n,n):U+V2<<ap> +p2<a¢)>

from which one checks that ¢ is null. The Weingarten operator associated to &, in the

basis {e1, es}, reads
1 1 0
e (1)

One has tr Ae = —2, thus A¢ = £ tr A¢1 and S is umbilical with respect to &.
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Marginally trapped surfaces The mean curvature vector field of S can be computed
and its norm is given by [96]

g(H,H) = % (A(log V)- K+ 2‘7/’1) .

It follows [96] that S is marginally trapped if the function V satisfies

2m
AllogV)=K — —.
(log V) v

Conclusion The following result has been proven:

Proposition 6.2.1. In the Robinson-Trautman spacetime, every surface defined by u =
and r = V(p, ) is umbilical with respect to 0,. Moreover, if V satisfies AlogV =
K- 27m then it is also marginally trapped.

The proposition can be reformulated as follows: in the Robinson-Trautman spacetime, for
a null hypersurface {u = @} any spacelike cut is umbilical with respect to 0,.. Thus all
those null hypersurfaces are foliated by spacelike surfaces {u = @, = V(p, ¢)} which
are umbilical along 0,.. The particular ones for which V satisfies AlogV = K — 277"
are marginally trapped tubes (see Section 1.5 for the definition of marginally trapped
tube). Notice that the fact that these hypersurfaces are null follows from g~ (du, du) =
g(0r,0,) = 0.

6.3 Szekeres spacetimes

Szekeres spacetimes usually represent a class of inhomogeneous cosmological models
with no symmetries [95, 45], but can also describe pressureless non-spherical gravitational
collapse [7]. From a geometrical point of view, a Szekeres spacetime is locally modelled
by R? x S with S one of the following surfaces: the unit sphere, the hyperbolic plane, or
the Euclidean plane. K will denote the Gaussian curvature of S, so that one has that K is
either 1, 0 or —1. Let {t, r, 0, ¢} be local coordinates, with {6, ¢} coordinates on S, and
F, G two functions depending on all the coordinates, then the Szekeres metric is given by

g = —dt* + F2dr* + G*(d6? + X%dy?)

were Y2 is
sin?6,6 € (0, ) K=1
2 =1<0%0 ¢ (0,+00) if K=0
sinh? 6, 0 € (0, +-00) K=-1

Observe that if K is 0 or —1 then 6 represents a radial coordinate rather than an angular
coordinate.
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There is a preferred family of spacelike surfaces defined by constant values of ¢ and
r. Let S be one of these surfaces, then {Jy, J,, } represents a tangent basis at each point
of S. In this basis, the induced metric reads (with constant ¢, 1)

g = G2(d6? + X2dp?).

Notice that the surfaces of this family are non-concentric: for any two adjacent constant
r surfaces that belong to the same slice {t = ¢}, there exists a “separation” between them
that depends on the remaining coordinates 6 and ¢ [35].

Umbilical surfaces A normal frame to S is given by

=0 0= (g)

This frame has the property that &> = —dt and 7)” = dr. In the tangent frame {0y, O0p}s
the Weingarten operators associated to £ and 7 are

190G 1 0G
1= (g7 )t A= ()

They are both proportional to the identity operator, which implies that both directions
spanned by &, 7 are umbilical directions for S. One knows (Theorem 3.1.3) that when the
co-dimension is two, as in this case, then either there exists one umbilical direction or all
directions are umbilical. Therefore S is totally umbilical.

Or.
S

S

Marginally trapped surfaces The second fundamental form of S can be computed
m,

oG oG
(659 (€2

ot
oG
£+ <022>
s or
The mean curvature vector field is then

2 0G 2 0G
n=-(&% ). (&%)

which indeed implies h = % gH. A null normal frame normalized as g(k,¢) = —1 is
given by

h(0s,0,) =0,

h(0p,0,) = —(GZ28G>

ot -

S

)
S

1
= —dt+ F|.dr, Kk = 5 (—dt = Flgdr)



Applications and examples 113

and the null expansions are

2( oG 13G>
0y = — +

G\ ot For)y

1/ G 190G
== - =1 .

G ot For)|g

Assume %—f # 0, then it follows that S is marginally trapped if and only if

oG _ G

o tar oS

Conclusion The following result has been proved:

Proposition 6.3.1. In the Szekeres spacetime, every surface S defined by constant values
of t and r is totally umbilical. Moreover, if the functions F and G are such that F % =
:t%—f on S, with %—? =% 0, then they are also marginally trapped.

6.4 (G5 and Gowdy spacetimes

Spacetimes admitting a 2-parameter group of motions are called, in some physics litera-
ture, G spacetimes. In this section, G4 spacetimes which admit two further properties
will be studied: the group of motions is Abelian and its transitivity submanifolds are
2-dimensional and spacelike. Using the notation introduced in Chapter 4, here the hy-
potheses are: N = n = 2, namely there is no isotropy, and the two Killing vector fields
generating the Lie algebra associated to the group of motions commute.

Let 9, and 95 be two commuting Killing vector fields. They form a tangent frame for
each transitivity surface, labeled by a spacelike coordinate 6 and a timelike coordinate ¢.
The metric tensor of a G2 spacetime with the above properties, in a neighborhood of a
transitivity surface, can be brought into the following special form [31, 73, 98]

g = e2*(—dt* + db?) + R(e” (do 4 Qd6)? + e~ ds?) + 2(Nodo + N3dd)dt. (6.8)

Here, all functions a, R, P, @, N2, N3 only depend on the coordinates ¢, §. Moreover, R
is assumed to be positive. Given constant values £ and 0, a transitivity surface S is defined
as {t = £,0 = 0}. With respect to the frame {9,, s} the induced metric reads (with
t=1%tand 0 = 0)

g = R(e"(do + Qdd6)? + e Tds?). (6.9)

Observe that if the functions [Ny, N3 vanish, then there exists a family of surfaces orthog-
onal to the transitivity ones. (Equivalently, there exist two orthogonal distributions.) In
particular, the transitivity surfaces are all orthogonal to 0;. The condition No = N3 = 0
is called two-surface orthogonality. Spacetimes admitting a metric tensor (6.8) such that
the hypersurfaces {t = t} are closed are called Gowdy spacetimes [30].
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The determinant of the matrix associated to g will be useful in the next computations:
det g = —e?*R(e*R + ¢ P NZ + e (QN, — N3)?).

Notice that when Ny = N3 = 0, one has det g = —eteR2.

Umbilical surfaces 0, and 05 are Killing vector fields and commute; if () vanishes
then they are orthogonal to each other. Set V3 = 9, and V2 = 05, then the quantities
introduced in Definition 4.3.1 are

° fzePR<22 Q2+Q€_2P >,

o ¢V =R,
_p( 1 Q
° F =€ < Q Q2 + 6_2P .
Therefore

g — oF dP QdP + dQ
QdP +dQ (Q? — e~2P)dP +2QdQ

and one can compute the two-forms dF;, ;, A dF;,;, for all i1, 51,12, 52 = 1,2:

1J1
dFi, AdFy = e*PdP A dQ,

dFi1 A dFss = 227 QdP A dQ,
dF15 A dFy = 2P(Q? + e72P)dP A dQ.

Theorem 4.5.3 asserts, for the case n = 2, that S is umbilical with respect to one normal
direction if and only if

dFi1j1 /\dFin2|.S :0 Vil,jl,’ig,jQZLZ.
It follows that S is umbilical if and only if the functions P, () are such that
(dP A dQ)|¢ =0

or, equivalently,

OP9Q  0Q P

00~ ot 90 onS. (6.10)

Notice that this condition does not depend on the function R.
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The total shear tensor By point (iii) of Proposition 4.4.5, the total shear tensor of S is
such that

~ R
Vi, Vi) = 5 dFyls, Vi j=1,2.

Here, the fact that n = 2 and eV = R has been used. Explicitly:

hos.0,7 = “Rap,

. P

W05, 0, = S5 (dQ + Qap),

. P

W05,05) = 5 (dQ) + (@~ e*P)ap),

where all quantities are computed on S. Assume that the umbilical condition (6.10) is
satisfied. Then, with some abuse of notation, the total shear tensor can be written as
follows

Nb_ePR 1 l+Q .

=5 (Z+Q 2QZ+Q262P>dP’ itdP #0,
7b _ e’R 0 1 : _
B = &g <1 2Q>dQ, if dP = 0.

Here, [ is the function such that dQ = IdP, for dP # 0.

The vector field G A normal frame for S is given by the pair {£, 7}, where the one-
forms ¢” and 7 are defined as £ = dt and ,° = df. One can check that g*’ = 0, this
means that d¢ and d6 are orthogonal to each other. A null frame {k, ¢} normalized as
g(k,€) = —1isrelated to {£,n} via the following relations

he e (R
- (—detg)72 )|

S

/= det g - det g e2*R
-~ \2e20R? )| 2e2¢R? (—det g)'/2 877
and
2a P2
= i oLy
detg /|g 2
(6.11)

. (_ det §)1/2 e20 R2
= e R det g

0 ((—detg)”“)
s e2R  2)|g
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The vector field G, that gives the direction along which his pointing (see Section 3.2), is
such that G* oc dP| if dP # 0 and G o dQ)| if dP = 0. Equivalently,

oP oP
if dP
o |t ae | dpP # 0,
oQ . _
G x a5 20 877, if dP = 0.

In the null basis it reads

e R? (aP (—detg)1/28P> )1 <8P (— det g)'/? 8P)
S

*detg \ 0t %R 00 ot " R 00
if dP # 0 and
O<62“R2 (3Q (det§)1/28Q) 1<8Q+ (detg)l/QaQ)
detg \ Ot e22R 06 ot e2R 00
if dP = 0.
The umbilical direction By (6.11) and because xk = —k and ¢ = ¢ (see Section

1.4.3), one finds

w9 = (i),

It follows that the umbilical direction (see Corollary 3.2.2) is such that

oP oP
Lb 4a 12 _ A
(*G)" x < R 875) Sd@ (detg 80) .

(xTG)" x <e4aR2a£> Sdof <d et g ‘2?)

dt.
s

L \b (—det§)1/2
&, (i) = <e2aR

dt,  ifdP #0,

dt, if dP = 0.

In the null frame it reads

o e?*R? or (- det g)'/? opr ’ 1roP (- det g)/? opr
X ety \ ot 2R 00 2\ ot 2R 99

if dP # 0 and
L O<e2“R2 0Q  (—detg)'/?aQ Jr} @Jr(—detg)l/z@
detg \ Ot e22R 06 2\ Ot e22R 06

if dP = 0. If Ny = N3 = 0 one can show that (x~G)" is proportional to dP if dP # 0
and to dQ if dP = 0.
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Marginally trapped surfaces By point (ii) of Proposition 4.4.5, the mean curvature
vector field is such that nH®* = dU| s- By differentiating eV = R, one easily finds

H ﬁdR

The null expansions can be computed

0 = ! <2“R6R (—detg)1/2aR>

2¢e2a R2 ot a0

1 OR OR
0, — _ J2apYtt —det g 1/2Y°v )
k detg< Ry (= detg) ae)s

Assume 2 B R - (), then it follows that S is marginally trapped if and only if one of the two
following conditions for R is satisfied:

@) eQaR%—}f + (—det g)1/2%—’; =0onsS,
(i) e2*RIE — (—detg)'/228 =0 on S.
If Ny = N3 = 0 than these conditions become
() Z+% =00ns,
(i) 28— %% =0ons.

Notice that in this last case the expression does not depend on the functions P and Q).

Marginally trapped tube (when No = N3 = 0) Assume that aR and 28 Gg are non-
vanishing. Let uy (¢,0) = 28 + 2% and u_(t,0) = %—If —on then the hypersurfaces

{ux(t,0) = 0} define two marginally trapped tubes in the spacetime. The one-forms
duy can be computed

9°R  O°R O°R  O°R
duz = <at2 + 8t89)dt + <608t * aw)da

Their norms are

#2R | *R\’ 2R | 2R\’
-1 d d — _p2a " + —2a 4+ =
(dus, dus) = —e (8752 ame) te <898t 892)

Because by hypothesis u (t, 9) = 0, it must be 2 Bt = %g in the first case and %f‘ = %—g

in the second, from which g=!(du,du+) = 0. Therefore each of these marginally
trapped tubes is null everywhere.
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Conclusion The following result has been proved.

Proposition 6.4.1. Consider a spacetime admitting a 2-parameter Abelian group of mo-
tions acting on spacelike 2-dimensional orbits with metric tensor as in (6.8) and let S be
a surface defined by constant values of t and 0.

1. A necessary and sufficient condition for S to be umbilical with respect to a normal
direction is that P and Q satisfy dP AN dQ = 0 on S. If S is umbilical, then the
umbilical direction is given by x-G, G* being proportional to dP if dP # 0 and to
dQ ifdP = 0.

2. Assume that %—}f and %—? are non-vanishing. A necessary and sufficient condition
for S to be marginally trapped is that R satisfies eQaR%—If + (—det g)lﬂ%—? =0
on S. Moreover, if the two-surface orthogonality condition holds, then the hyper-
surfaces { % + %—g =0}and{ %—IE — %—g = 0} describe two marginally trapped
tubes which are null everywhere.

6.5 (3 spacetimes

A (3 spacetime is a Lorentzian manifold admitting a 3-parameter group of motions acting
on it [90]. In this section, GG3 spacetimes which admit the following further properties
will be studied: the transitivity submanifolds are spacelike and 2-dimensional and there
exist two Killing vector fields that commute. Because the transitivity submanifolds have
dimension two, there exists a 1-dimensional isotropy group associated to each of them.
Thus, using the notation introduced in Chapter 4, one has N =3, n =2 and d = 1.

Let V7 = 0, and Vo = 05 be the two commuting Killing vector fields and let V5 =
00, — 00s be the third Killing vector field generating the isotropy. Then the metric
tensor of a GG3 spacetime with Killing vector fields Vi, Va, V3 and with the properties
mentioned above can be derived from the one given in (6.8) for G2 spacetimes. Indeed,
each transitivity surface is defined by constant values of ¢ and 6 and the hypothesis of
existence of the third Killing vector field implies P = Q = 0. Moreover, a general result
states that if a group of motions has dimension N = n(n + 1)/2 then the orbits admit
orthogonal surfaces [79, 90], from which one deduces No = N3 = 0. It follows that the
metric tensor of the spacetime in a neighborhood of a transitivity surface reads

G = e**(—dt*> + db*) + R(do? + db?) (6.12)

with ¢ and R > 0 being functions only depending on the coordinates ¢, §.
Let S be a transitivity surface, then in the basis {9,, Js } its induced metric reads (with
constant ¢ and 6)

g = R(do? + d5?).

To study the umbilical properties of S, one can use the analysis done in Section 6.4:
because P = Q = 0 one has dF = 0 and by point (iii) of Proposition 4.4.5 one deduces
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that the total shear tensor vanishes, therefore S is totally umbilical. As for the marginally
trapped condition, one can apply point 2 of Proposition 6.4.1. The following result has
been proved.

Proposition 6.5.1. Consider a spacetime admitting a 3-parameter group of motions act-
ing on spacelike 2-dimensional orbits and such that two generating Killing vector fields
commute (with metric tensor as in (6.12)). Let S be a surface defined by constant values

of t and 6.
1. S is locally flat and totally umbilical.

2. Assume %—If =% 0, then a necessary and sufficient condition for S to be marginally
trapped is that R satisfies R + R’ = 0 on S. Moreover, the two hypersurfaces
{R? — R"? = 0} describe marginally trapped tubes which are null everywhere.

6.6 4-dimensional group of motions acting on 3-dimensional transi-
tivity submanifolds

Let M be a (k+3)-dimensional manifold, with local coordinates {t!,...,t* 2! 2% x3},
endowed with the Lorentzian metric

G = hap(th, ..., tF)dt dt® + 2hg; (th, .. tF)dtodat + fi;(th, ... t7)da'dxd

Here hgp, hq; and f;; are smooth functions only depending on the coordinates t* and such
that det(f;;) > 0. Let G be a 4-parameter group of motions acting on M and generated
by the following Killing vector fields:

Vi=0,, Vo=0,2, Vi=0,, Vi=x20, —x'd,e. (6.13)
Any transitivity submanifold S of the group G is 3-dimensional and defined by constant
values of the coordinates ¢, namely t* = t* € Rforalla = 1, ..., k. Its induced metric
reads

g=fi;(t,... ) datda .

By using the notation introduced in Section 4.2, one has N = 4, n = 3and D = 1. The
vector fields V3, V2 and V5 commute and form a tangent frame for S, while V; generates
its 1-dimensional isotropy group.

Formula (4.17), which in this case reads

Ciifsi +Ciifis =0, Vi, j=1,2,3,

allows one to find how many independent functions there are among the set { f;;}, under
the above hypotheses. Given that the only non-vanishing structure constants are

Cly = —1, C} =1
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the expression becomes
Ciif1j + Chifaj + Cijfir + C fir = 0.

Therefore, by choosing i = 1 and j = 1 one finds C%, fo;1 + C%, fi2 = 0 which implies
fi2 = 0; by choosing i = 1 and j = 2, one obtains C%, foo + Cl,f11 = 0 from which
Ji1 = fapsifi = 1and j = 3 then CF, fo3 = 0 so that fo3 = 0; finally, when i = 3
and j = 2 one has C},f3; = 0 and thus f13 = 0. It follows that there are only two
independent functions:

Ji1 = fa2, J12=0, J13=0, Jaz = 0.
Hence the induced metric on S is
9= fun [(de')? + (dz®)?] + faz(da®)?
and the Lorentzian ambient metric becomes

G = hap(th, ... t9)dtdt® + 2hg;(th, ... tF)dt*da’+

o [+ (da?)?] + fas(da®)2. ©19

Notice that a complete classification of spacetimes admitting a 4-dimensional group of
motions acting on 3-dimensional spheres is given in [90].

One can compute the quantities introduced in Definition 4.3.1 in order to study the
umbilical properties of S. They are

Ju 0 0
o f= 0 fuiu 0 |,
0 0 fs
o V= (fiifss)'",
(f11/ fa3)"/? 0 0
o F= 0 (fir/fs3)/? 0
0 0 (fir/fss)~?
Then the matrix of one-forms dFj; is given by
1 (fir/fas)~2/? 0 0 i
dF = 2 0 (fi1/ fa3) =23 0 d<f)
0 0 —2(f11/ fs3) 7?3 »

from which one easily deduces the following two consequences:

(1) the two-forms dF;; A dF; vanish forall 7, j = 1,2, 3;

(2) the one-forms dF;; vanish for all 7, j = 1,2, 3 if and only if d (%) vanishes.
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In terms of umbilical properties, this leads to the next proposition.

Proposition 6.6.1. Let G be a 4-parameter group of motions acting on a Lorentzian
manifold with metric (6.14) and generated by the vector fields given in (6.13). Let S be a
transitivity submanifold of G, then

1. S is umbilical with respect to k — 1 linearly independent non-zero normal vector
fields;

2. S is totally umbilical if and only if f11/ f53 is constant.

It is worth noticing that in case 2 there is a larger group of motions with dimension six.
Indeed, if f11/f33 is constant then the induced metric on S can be rewritten as g =
f11((dxh)? + (dz?)? + c(dz?)?), for some positive constant ¢, from which one deduces
that there are two extra isotropy Killing vector fields: Vs = cx39,1 — 210,s and V5 =
cx®0,2 — x20,3. Both statements in the proposition support the idea presented in Section
4.6 according to which the presence of a non-trivial isotropy group implies the existence
of umbilical directions. Moreover, if there are enough isotropy vector fields, then one can
prove that the transitivity submanifold is totally umbilical, as showed in point 2.






Conclusions and future work

In this thesis umbilical properties of spacelike submanifolds have been studied. Some
characterizations have been presented and they have been applied, in particular, to the
orbits of groups of conformal motions. A sufficient condition for the existence of focal
points along timelike and null geodesics in Lorentzian warped products has been provided
and used to derive some singularity theorems. The results have been tested in several
spacetimes relevant in gravitational physics.

In what follows, a summary of the main results of the thesis is provided, divided by
chapters. The possible future lines of research are listed using the symbol ©.

Characterization of umbilical spacelike submanifolds

In Chapter 3 a characterization theorem has been given for umbilical spacelike submani-
folds of arbitrary dimension n and co-dimension k£ immersed in a semi-Riemannian man-
ifold. Letting the co-dimension arbitrary implies that the submanifold may be umbilical
with respect to some subset of normal directions. This leads to the definition of umbilical
space and to the study of its dimension.

The trace-free part of the second fundamental form, called total shear tensor in this
thesis, plays a central role in the characterization theorems. It allows one to define shear
objects (shear operators, shear tensors and shear scalars) that determine the umbilical
properties of the spacelike submanifold with respect to a given normal vector field. In the
case when there are k£ — 1 linearly independent umbilical directions, the total shear tensor
singles out a normal vector field, denoted by G, that is orthogonal to the umbilical space.
When the co-dimension is & = 2 it is possible to compare G with the mean curvature
vector field and find some similarities.

The characterization theorem provides a useful tool in order to determine whether a
given spacelike submanifold has a non-trivial umbilical space. If the dimension and the
co-dimension of the submanifold are both two, for example, it suffices to compute the
commutator of any two Weingarten operators: if it vanishes, then the umbilical space has
dimension at least one.

¢ The vector field G has been compared with the mean curvature vector field and
the main similarities have been summarized in Table 3.1. It would be interesting
to investigate more in this direction. For example, as H = 0 gives the extremal
points of the volume functional, one might try to determine a functional that would
somehow describe the “shape” of the submanifold, and for which G = 0 would
characterize its extremal points.

¢ In this thesis all results apply to spacelike submanifolds. A natural question to ask
is whether similar ideas could be used to study umbilical timelike submanifolds
too.
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¢ In [85] the author shows that a necessary and sufficient condition for a spacelike
surface (n = 2 and k = 2) to be umbilical with respect to a normal direction is

RYHX,Y)E = (R(X,Y)E)E, VX, Y € X(S) VEex(S)*,

where R denotes the normal curvature tensor of S. For arbitrary n and &, one can
show that this condition becomes necessary. By combining the characterization
result for umbilical submanifolds with the Ricci, Gauss and Codazzi equations, one
might find further results of this kind.

Application of the characterization theorem to the orbits of a group of
conformal motions

Given a group of conformal motions GG acting on a semi-Riemannian manifold and a
spacelike transitivity submanifold S of G, one can apply the characterization results of
Chapter 3 in order to find necessary and sufficient conditions for S to have a non-trivial
umbilical space. For this purpose, two cases have been considered.

If the isotropy subgroup of G is trivial, it has been shown that the umbilical condition
depends on the scalar products f;; := g(V;,V;), where {V4,...,V,} is a (sub)set of
generating conformal Killing vector fields. If the isotropy subgroup of G is non-trivial,
one can argue that, under specific assumptions on the co-dimension k, the dimension
D of the isotropy subgroup and the ranks R(a) of the matrices A (a) defined in (4.22),
it is possible to prove that the umbilical condition is automatically satisfied so that the
umbilical space will be (under these assumptions) non-trivial.

When the isotropy subgroup is trivial

¢ A characterization for totally umbilical transitivity submanifolds has been given in
Theorem 4.4.6. The pseudo-umbilical, £-geodesic and ortho-umbilical cases have
not been treated explicitly. However, as done in the totally umbilical case, one
should easily be able to find conditions for these cases in terms of the one-forms
dfij and dFU

© One could try to generalize these results to other groups of transformations. For
example, by considering Kerr-Schild (or conformal Kerr-Schild) vector fields [22]
rather than conformal Killing vector fields. The first thing to do would be to find
expressions for the quantities df;;(V;) and Vv, V; as done in Lemma 4.4.1 and to
find the proper generalized relations between the second fundamental form and the
one-forms df;; (point (i) of Proposition 4.4.4).

When there is a non-trivial isotropy subgroup As explained in detail in Section 4.6,
there are a few questions that remain to be settled.

o Count how many independent equations there are in the system (4.17), as it is rea-
sonable to believe that the they will be less than D x n(n 4 1)/2.
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o If possible, one should provide formulas for the ranks R(a) of the matrices A(a),
and look for a precise relationship between k, D and R(a). By using this rela-
tionship one will be able, in principle, to determine the dimension of the umbilical
space.

Singularity theorems in Lorentzian warped product spaces

In Chapter 5 Lorentzian warped products M = M X ) have been considered and a
particular class of spacelike submanifolds has been analysed. A sufficient condition has
been found that allows one to prove, on one hand, the existence of focal points along
timelike or null geodesics and, on the other hand, the null geodesic incompleteness of M
under additional reasonable conditions.

By dividing the study according to the immersion S — ¥ — M, where X is either
M x {q} or {g} x Y, one finds that the Galloway-Senovilla condition [29] (see Section
5.1) can be written in terms of the warping function f and the Riemann tensor of either
only M or ). This means that, for instance, in order to prove singularity theorems one
can restrict the study to just one of the two manifolds defining the warped product rather
than considering the warped product manifold itself.

The condition found has been translated to some specific situations, such as positive
and constant sectional curvature, Einstein and Ricci-flat spaces and to a few subcases in
terms of the co-dimension of S. The same has been done in direct products (f = 1).

¢ In Section 5.5 the spacelike submanifolds considered have been those immersed in
either Y or M. An obvious generalization is to consider S partly belonging to both
parts.

o The singularity theorems that have been provided have a wide applicability in
Lorentzian warped products, and in particular in string-theory inspired spacetimes.
Now, an analysis of the particular circumstances when the assumptions of the the-
orems hold, and their relevance, should be done. In particular, a more detailed
study of the Galloway-Senovilla condition in the subcases presented in Section 5.9
is needed.

Explicit examples of umbilical submanifolds in gravitational physics

In the first part of Chapter 6 the characterization results found in Chapter 3 have been
applied to Kerr’s, Robinson-Trautman’s and Szekeres’ spacetimes. For each of these 4-
dimensional Lorentzian manifolds a family of spacelike surfaces has been selected and, by
using the umbilical condition for n = 2 and k£ = 2, the surfaces belonging to these fam-
ilies that possess a non-trivial umbilical space have been found. Moreover, those which
are also marginally trapped have been determined. In the second part of Chapter 6, the
results presented in Chapter 4 have been applied to spacetimes with a 2- or 3-dimensional
group of motions as well as to 4-dimensional groups of motions acting on 3-dimensional
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orbits. In the former spacetimes marginally trapped tubes have also been found; in the
last example the presence of a non-trivial isotropy subgroup has been exploited to show
the kind of dependence arising among the functions f;;.

¢ The interest in families of spacelike surfaces that are at the same time umbilical and
marginally trapped is motivated by the study of dynamical horizons in gravitational
physics. A non-expanding horizon [2] in a spacetime is a null marginally trapped
tube (see Section 1.5) whose spacelike marginally trapped surfaces are expansion-
free along the generator of the horizon. They represent the horizons of black holes
in stationary situations. On the other hand, when considering non-stationary black
holes, one needs to study dynamical horizons [2], defined as marginally trapped
tubes that are spacelike. Marginally trapped tubes are in general non-unique. Thus,
in order to locate a preferred marginally trapped tube, one would need to find a sen-
sible criterion. (For an attempt to find such a criterion see for example [6].) A way
to solve this problem might be choosing a foliation made of umbilical marginally
trapped spacelike surfaces. This proposal is supported by the examples examined
like Kerr’s, Robinson-Trautman’s, Szekeres’ and Gowdy’s spacetimes. Moreover,
any non-expanding horizon admits such a foliation.
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Abstract index notation and basic formulas

The abstract index notation is the language currently used by physicists working in gen-
eral relativity and in other gravitational theories. The many features the index notation
possesses make it a very useful tool from a computational point of view. Here, a brief
summary of the basic formulas and the main objects are presented. The reader who is
interested in a complete treatment of the subject can consult [99].

A.1 Abstract index notation

The symbols X and X, denote the vector field X and its corresponding one-form X,
respectively. The raising and lowering of indices with the metric g are given by

Xo = gapX”
X =g Xp.

Here the Einstein convention is used. In particular the metric g is such that
9° x5 = 0.

Similarly, the symbols 0 f and O, f denote the gradient of a function f, seen as a vector
field and as a one-form, respectively. Moreover, the quantity % fOn f = 9?00 fOs [ is
equivalent to g(grad f, grad f).

The covariant derivative with respect to a vector field X is denoted by X*V . For
any function f, V. f = 9, f and for vector fields one has in a coordinate basis

VoY? =3, + 15 v
The correspondence with the mathematical notation is given by
XV, YP +— VY
One should keep in mind that the presence of indices does not mean that one is necessarily

dealing with the components of a certain tensor in a given basis. The expressions are
intrinsic and can be brought into the usual mathematical formalism if needed.

A.1.1 Riemann tensor By definition,
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In a coordinate basis it can be explicitly written in terms of the Christoffel symbols:

o = 5T — g+ Tl — T (A1)
Properties:
(@) Rapau = —Rparus
(b) Raprp = —Rapur;
(©) Rapru + Raxps + Rapsr = 0;
(d) Rapau = Rapap-
Correspondence:
G ZPXYE — R(X\)Y)Z
Rapr U ZP X Y H — g(R(X,Y)Z,U)
Rp, Z°Y" = R%,,, Z°Y" — Ric(Y, Z)
R =¢""Rg, «— S
The sectional curvatures are given by
Ropr YO XPXAYH

K(X,Y)=— .
) ="50x,yv, — (X, 2

A.1.2 Projector Let ® : S — (M, g) be an immersion with co-dimension k and let
{&1,..., &} be an orthonormal frame in 7,8+, such that §(&,, &) = €,.6,5 forall r, s =
1,..., k. By definition, the projector to the tangent spaces of S is given by

k
Pt =460 — Z'Sr(gr)u(gr)w
r=1

Properties:
(@) PLe¢v =0forall € € T,St;
(b) Pt a¥ =zt forallz € T,S;
© P!, =n;
(d) PH,PF, = P

(e) PHV = Pl/;,v
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Correspondence:
Pt — P(v).

Using the notation introduced in Definition 5.1.1, one has

Ryupo X"'YPPY7 o > 9(R(Y,E)E;, X).

i,j=1
A.1.3 Extrinsic geometry Correspondence:
he XY — h(X,Y)

(Ag); <— Ag

(Ae)! = trA.

(Ke)ij = Ke

B =hifhy;  «— B

Notice that (K¢):; = gix (Ag)? corresponds to K¢(X,Y) = g(A:X,Y"). Similarly,

REXYT +—  R(X,Y)
(Ag)i — Ag
(Eg)ﬁ — tr ﬁg
(Ke)ij — «— K
T} = hiFhy; — J
and also
(AL(Ae)h A2
(Ke)9(Ke)iy  «—  of

A.2 Basic formulas with the Lie derivative

Let (M, g) be a semi-Riemannian manifold and denote by V and Ly the Levi-Civita
connection and the Lie derivative, respectively, of M. By definition of the Lie derivative

forall V, W, Z € X(M) or, equivalently,

(Lvg)(Z,W) = g(VzV, W)+ g(Z,VwV) (A3)
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for all V, W, Z € X(M). The fact that the connection preserves the metric, i.e., Vq =0,
can be written explicitly as

Vg(Z,W) =g(NvZ,W)+g(Z,VyW) (A4

forall VW, Z € X(M). Let h : M — R be any function defined on M, then from
(A.2) and from basic properties of the Lie braket, one has

(Lnvg)(Z, W) = W(Lvg)(Z, W) + Z(h)g(V, W) + W(h)g(Z,V) (A.5)

forall VW, Z € X(M).
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Mathematical definition of a black hole

In this appendix the Lorentzian manifolds considered will be 4-dimensional and they will
be called spacetimes.

Chronological and causal future Let (M, g) be a spacetime and let A be a subset of
M, then [60]

It(A)={q€ M : Ipc Aand a future-pointing timelike curve in M from p to ¢}
is called the chronological future of A and
JT(A) ={q € M : Ip € Aand a future-pointing causal curve in M from p to ¢}

is called the causal future of A. There exist past versions of I (A) and J*(A) and they
are denoted by I~ (A) and J~(A).

Causality conditions One says that the strong causality condition holds at p € M if
for any neighborhood U of p there is a neighborhood V' C U of p such that every causal
curve segment with endpoints in V' lies entirely in U. One says that the causality condition
holds on M if there exist no closed causal curves.

Weakly asymptotically simple spacetimes A spacetime (M, g) is said to be asymp-
totically simple [34] if there exists a spacetime (M, J) that satisfies the strong causality
condition and an embedding ¢ : M — M that embeds M as a manifold with smooth
boundary OM in M, such that

(i) there exists a smooth function f : M — R such that f > 0 on p(M) and p*g =
f2g on p(M);

(i) f =0anddf # 0on M,
(iii) each null geodesic of (M, ¢) acquires two distinct endpoints on IM.

Usually (M, g) is called the physical spacetime, (M., §) is called the unphysical space-
time and the boundary OM is called the the conformal infinity.

From now on it will be assumed that the spacetime is a solution of the vacuum Ein-
stein’s equations with cosmological constant A = 0. Under this hypothesis one can prove
that M is null and deduce some topological properties: the conformal infinity consists
of two disjoint components .# ~ and .# *, which both have topology R x 52, where S? is
the unit 2-sphere. Details on this can be found in [97, 99].
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A spacetime (M, g) is said to be weakly asymptotically simple [34] if there exists an
asymptotically simple spacetime (M’ ¢’) and a neighbourhood U’ of M’ in M’ that is
isometric to an open set U of M.

Strongly predictable spacetimes A spacetime (M, g) is said to be globally hyperbolic
provided [60, 8]

(i) the causality condition holds on M;
(ii) given p,q € M, then J(p,q) = J*(p) N JT(q) is compact.

Let (M, g) be a weakly asymptotically simple spacetime with null conformal infinity
composed by two disjoint components .# ~ and .# . Then (M, g) is called strongly
asymptotically predictable [99] if in the unphysical spacetime (M, g) there is an open
region V. .C M with M N J—(#+) C V such that (V, §) is globally hyperbolic.

Definition of black hole Assume that (M, g) is a weakly asymptotically simple space-
time with null conformal infinity composed by two disjoint components .# ~ and ¥,
and assume that it is strongly asymptotically predictable. Then (M, g) is said to contain
a black hole if M is not contained in J~ (.# ). In particular, the black hole region BH
of (M, g) is defined as [99]

BH =M\ J (#71)
and the boundary of BH in M given by
H=0J (#)nNM

is called the event horizon.

Alternative definition of black hole Let (M, g) be a globally hyperbolic spacetime. A
point p in (M, g) is called black if there is no future-pointing timelike curve of infinite
length starting at p. The black hole BH of (M, g) is defined as the subset of all black
points [51, 52]. Notice that this definition does not require M to be weakly asymptotically
simple and A to be vanishing.
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Gradient of a function, 7
Group, 51
of conformal motions, 53
of motions, 53

Hodge dual

141

operator, 14
vector field, 14

Incomplete manifold, 73
Inextendible geodesic, 73
Isometry, 52
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Self-adjoint operator, 10, 17
Shape operator, 10
Shape tensor, 10
Shear, 25
operator, 24
scalar, 25
space, 27
space at a point, 26
tensor, 24
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Transitive action of a group, 52
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space at a point, 28
submanifold, 28, 29
Untrapped submanifold, 16

Variation
of a curve, 18, 19
vector field, 18

Warping function, 75
Weingarten operator, 10



	Acknowledgments
	Abstract
	Beknopte samenvatting
	Resumen
	Publications
	Introduction
	Notation, conventions and terminology
	Basics on semi-Riemannian geometry and spacelike submanifolds
	Immersions: intrinsic and extrinsic geometry
	Curvature
	Spacelike submanifolds
	The structure of the normal bundle
	Trapped and marginally trapped submanifolds
	Self-adjoint operators
	Focal points

	Definitions: umbilical points and shear
	Definition of shear
	Umbilical points and umbilical directions
	Properties of the umbilical space
	More umbilical-type submanifolds
	Equivalence between -subgeodesic and ortho-umbilical submanifolds (H=0)
	Invariance under conformal transformations

	Umbilical spacelike submanifolds: characterizations
	Arbitrary co-dimension
	Co-dimension two
	Co-dimension two in the Lorentzian setting
	Pseudo-umbilical submanifolds
	Ortho-umbilical submanifolds
	Submanifolds which are both pseudo- and ortho-umbilical

	Umbilical spacelike transitivity submanifolds
	Groups of motions and transitivity submanifolds
	Isotropy
	On the scalar products (Vi,Vj)
	Extrinsic and umbilical properties of transitivity submanifolds
	Characterization results when the isotropy group is trivial
	Case when there is a non-trivial isotropy group

	Focal points and incompleteness results in Lorentzian warped products
	Galloway-Senovilla condition
	Basics on warped products
	Geodesics in warped products
	Parallel transport in warped products
	Extrinsic geometry of SM f Y
	Computing the tensor P
	Computing the quantity R VVP
	Galloway-Senovilla condition in warped products
	Some relevant possibilities - case A
	Direct products

	Applications and examples
	Kerr spacetimes
	Robinson-Trautman spacetimes
	Szekeres spacetimes
	G2 and Gowdy spacetimes
	G3 spacetimes
	4-dimensional group of motions acting on 3-dimensional transitivity submanifolds

	Conclusions and future work
	Abstract index notation and basic formulas
	Abstract index notation
	Basic formulas with the Lie derivative

	Mathematical definition of a black hole
	Bibliography
	Index

