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1.1. Sarrera 

XX. mende hasierarekin batera baliabide fosilen erabilera neurrigabea hasi zen elektrizitatea, 

beroa eta garraiorako erregaiak ekoizteko eta baita produktu kimikoak sintetizatzeko ere. 

Tamalez, ustiapen horrek gogor eragin du baliabide fosilen agortzean eta ingurumenean 

arazo larriak sortu ditu, mundu mailako berotze orokorra kasu. Ondorioz, petrolioa bezalako 

karbono zaharrean oinarritzen diren hornidurak biomasako iturri berriztagarriez ordezkatzea 

XXI. mendeko gizartearen jasangarritasuna bermatzeko gakoa bihurtu da. Produktu 

kimikoak ekoizteko gaur egungo prozesaketa sistemak oso eraginkorrak bihurtu dira 

hamarkada ugaritan burututako inbertsioen ondorioz. Beraz, arrakastatsu izateko, 

prozesaketa biologiko berriek epe laburrean berdindu beharko lituzkete pareko 

eraginkortasun eta produktibitate mailak. Ingurumena zaintzeko politika berriek eta 

teknologiaren garapenek biomasaren erabilpena eta metodo biologikoen aplikazioa 

bideragarri ezezik oso erakargarri bihurtu dituzte [1]. 
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Polimero termoplastikoak erabilera anitzekoak dira, mundu osora hedatuta daude eta 

inguratzen gaituen alor ia guztietan aurkitzen dituzte erabilpenak. Honen arrazoiak, batik 

bat, ondorengoak dira: prezio baxua, dentsitate baxua izatea (energia aurreztea), tenperatura 

baxuetan prozesagarriak izatea eta berez dituzten propietateak kasuko aplikazioei egokitzeko 

bideragarritasuna. Egungo gizartea eta bizi kalitatea ezinezkoak lirateke kontsumo altuko 

produktuak plastikoz eginak ez baleude. 1950etik 2010era urtean 1.65 milioi tona 

erabiltzetik 255.5 milioi tona kontsumitzera pasatu gara, eta are gehiago, plastikoen 

erabilpenak urtero % 3-4ko igoera jasango duela espero da ondorengo urteotan [2]. Honekin 

lotuta, India eta Txina bezalako lurralde biztanletsuek jasandako industrializazio azkarrak 

ekoiztutako material plastikoen bolumenaren haztea bizkortzea eragin du. Dena den, 

petroliotik eratorritako plastikoen karbono oinatz maila altuak eragin zuzena du mundu 

mailan gertatzen ari den berotze orokorrean. Plastikoen erabilerak dakarren arazo hau  

aurrez ezagunak ziren zabortegi eta itsasoko kutsadurari gehitu zaie. 

Testuinguru honetan, egungo plastikoek baino karbono oinatz maila baxuagoa duten 

plastikoen ekoizpenak interesa sortu izan du 80. hamarkadaz geroztik. Beraz, iturri 

berriztagarrietatik ekoitzi daitezkeen edo/eta izaera biodegradagarria duten plastikoak 

sakonki ikertuak izan dira berauen propietateak hobetzeko asmoz, egungo plastiko 

petrokimikoen alternatiba bideragarri bezala aurkezteko helburuarekin. Honela polilaktida 

(PLA edota poli(azido laktikoa)) etorkizun oparoko biopolimero bezala identifikatu da. 

Dena den, 1932an Carothers-ek lehenengoz ekoiztu eta bigarren mundu gudaren ostean 

DuPont enpresak garatu zuen arren, plastiko honen erabilpenak medikuntzarako sutura-hari 

bioabsorbagarrietara murriztu ziren 80. hamarkada arte. 1989an Cargill familiak PLA-ren 

potentzialean sinetsi eta beronen ekoizpen industriala eta komertzializazioaren alde apustu 

egin zuen. PLA iturri berriztagarrietatik ekoiztu ahal izateak eta izaera konpostagarria 

izateak bizi-zikloa ixtea ahalbidetu zuen. 

Hala ere,PLA-k aurkezten duen hauskortasunak eta erresistentzia termomekaniko baxuak 

bizi iraupen ertain eta luzeko aplikazioetan PLA erabili ahal izatea sakon mugatu du.  

1.2. Tesiaren helburua 

Tesi honen helburua PLA-ren propietate mugatzaileak gainditu ditzaketen formulazio 

berriak garatu eta aztertzea izan da. Lortutako formulazioen  bizi-iraupena aurreikusi da, 
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iraupen ertain eta luzeko aplikazioetan formulazio berriak erabili ahal daitezkeen 

estimatzeko.  

1.3. Tesiaren estruktura  

Tesi hau idazteko orduan ondorengo estruktura jarraitu da. Tesiaren aurreneko atalean 

motibazio eta helburuak definitu dira eta 2. atalean berrikuspen bibliografiko zabala burutu 

da. 

3. Atalean PLA eta  PMMA-z burututako nahasketa fisiko eta erreaktiboak aztertu dira. 

Polimetil metakrilatoa (PMMA) propietate fisiko eta kimiko onak dituen polimero sintetikoa 

da.  Literatura zientifiko gutxi dago PLA/PMMA nahasketei buruz eta gehiengoa disoluzio 

bidez prestatutako nahasketetan oinarritzen da [3–7]. Dena den, egoera urtuan prestatutako 

PLA/PMMA nahasketei buruz bi lan ere aurki daitezke, baina bietan adierazten diren 

emaitzak kontrajarriak dirudite. Samuel-ek extrusio bidez prestatutako PLA/PMMA 

nahasketak nahaskorrak zirela ikusi zuen [8]. Aldiz, prozesaketa era berdina erabiliz Le et al. 

ikertzaileek sistema ez-nahaskorra eta ko-jarraiak diren faseak identifikatu zituzten SEM 

bidez. [9] 3. atalean bi torlojuko extrusorea erabiliz prestatutako PLA/PMMA nahasketa 

ezberdinen prestaketa eta karakterizazioa azaltzen da, literaturan ageri diren beste 

ikerketekin alderatzeaz gain. PLA eta PMMA proportzio ezberdinetan nahastu ostean, 

sistema hauen  fase estruktura, morfologia, propietate termikoak eta propietate mekanikoak 

aztertu ziren. Talde kontribuzio metodoa Small eta Van Krevelen-ek proposatutako bi 

metodoen arabera aplikatuz, prestatutako nahasketen solubilitate parametroak kalkulatu 

ziren. Datu hauekin, Flory-Huggins interakzio parametroaren estimazioa burutu zen 

ondoren. Informazio teoriko eta esperimentala bateratuz, nahaskortasuna, fase estruktura eta 

propietateen arteko erlazioa bilatzeko azterketa egin zen. 

PLA/PMMA sistemen nahaskortasuna prozesaketa metodo eta parametroen (tenperatura eta 

torlojuen bira abiadura) menpekoa eta polimeroen pisu molekularraren araberakoa dela 

ondorioztatu zen. DSC eta DMA emaitzetan lortutako beira trantsizio tenperatura sistemaren 

konposizioarekiko aldatzen dela  ikusi zen, bi polimeroen molekulen arteko elkarreragina 

iradokiz eta nahasgarritasun partziala adieraziz. SEM bidezko mikrografiek bi fase 

bananduren existentzia erakutsi zuten, kasu guztietan 400 nm baino txikiagoak ziren 

dispertsaturiko fasea  fase jarraian homogeneoki banatuak agertzen zirelarik. Beraz, gure 

lanean erabilitako PLA eta PMMA graduak ez dira guztiz nahasgarriak guk erabilitako 
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nahaste baldintzetan behinik behin. Nahasketa ezberdinen beira trantsizio tenperaturaren 

eboluzioa Gordon-Taylor ekuazioarekin zuzen doitu zen k=0.24 balioa aplikatuz, honek 

PLA eta PMMA-ren arteko interakzioa ahula dela iradoki zuelarik. FTIR bidez lortutako 

emaitzekin bat zetorren ondorio hau. Flory-Huggins interakzio parametroari dagokionez, 

estimatutako baloreek PLA/PMMA sistemek nahasgarriak izan behar luketela adierazi 

zuten, ikuspuntu termodinamikotik behinik behin. Dena den, PLA/PMMA sistemen 

nahasketa difusio mailaren araberako prozesua zela zirudien. Hots, nahasketa baldintzen 

arabera eta aukeratutako polimero graduen pisu molekularraren arabera guztiz edo partzialki 

nahaskorrak diren nahasketak lor daitezkeela. Propietate makromekanikoei dagokienez, 

nahasketa bakoitzean gehiengoa suposatzen zuen materialaren antzeko talka erresistentzia 

erakutsi zuten. PMMA-ren presentzia %50etik gorako zuten nahasketek beste nahasketek 

baino talka erresistentzi hobea erakutsi zuten, fase inbertsioaren ondorioz, ziurrenik.  

Aztertutako nahasketen artean, PLA/PMMA 80/20 (%et) nahasketak egonkortasun termiko, 

trakzio erresistentzi eta modulu elastikorik altuena erakutsi zuen. Dena den, talka 

erresistentzia baxua eta interfase atxikidura urria ikusi ziren sisteman ageri ziren fase bien 

artean. Horregatik, poli(estireno-co-glizidil metakrilatoa) (P(S-co-GMA)) kopolimero 

erreaktiboak nahasketa honen erreologia, fase morfologia, egonkortasun termikoa, propietate 

mekanikoak eta talka erresistentzian duen eragina aztertu zen. Izan ere, epoxi taldedun 

sustantziekin prozesaketa erreaktiboa burutzeak PLA-n oinarritutako sistema batzuen 

bateragarritasuna hobetzen duela aurrez argitaratua izan da [10,11]. PLAren kate-bukaerako 

karboxilo eta hidroxilo taldeek epoxiarekin erreakzionatzeak polimero kateen adarkatzea eta 

ondorioz propietate mekaniko batzuen hobetzea eragin dezake [12,13]. Gainera, glizidil 

metakrilatoan oinarritutako kopolimeroak sistema ez-nahaskorren interfase atxikidura 

hobetzeko bateratzaile erreaktibo bezala erabiliak izan dira aurrez, esaterako PLA/PCL [14], 

PLA/ABS [15], PLA/SEBS [16], PLA/PBSA [17] sistemetan. Poli(estireno-co-glizidil 

metakrilatoa)ren erabilera aztertutako sistemaren hauskortasuna hobetzeko bide aparta zela 

ikusi zen, trakzio erresistentzia eta moduluan galerarik pairatu gabe. Nahasketa fisikoen 

antzera, bi fase ageri ziren SEM-eko emaitzetan. Baina kopolimero erreaktiboaren gehitzeak 

interfase atxikimendua hobetzen zuela agerikoa zen, sistemaren elongazio gaitasuna eta 

talka erresistentzia izugarri hobetuz. PLA/PMMA sistemari 3pph kopolimero gehitu ostean 

hauste deformazioa %1300 eta talka erresistentzia %60 altuagoak ziren, PLA hutsarekin 

alderatuz, beti ere trakzio erresistentzia eta moduluan galerarik gabe. Maila honetako 
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propietate hobetze orokorrik ez da lortu izan plastifikatzaile edota talka modifikatzaileak 

PLA-ri gehituz. 

4. atalean PLAren kristalizazio zinetika eraldatu da plastifikatzaile eta nukleatzaileak 

bateraturik erabiliz. Injekzio bidezko moldeaketa polimeroen prozesaketa bide 

ezagunenetako bat da, batez ere plastikozko produktu iraunkor eta erdi-iraunkorrak 

ekoizteko. Prozesaketa bide honek injekzio ziklo denbora laburrak behar ditu ekonomikoki 

bideragarri izateko. Suberaketa edo “annealing” prozesua aurrez egoera amorfoan 

ekoitzitako produktuak bigarren pausu horretan kristaltzeko aukera bat den arren, prozesu 

horretan produktuak uzkurtu eta desitxuratu egin daitezke, fase kristalduaren bilakaera 

medio. Horregatik, tesiaren atal honetan azkar kristaltzen duen PLA oinarridun nahasketen 

ikerketa deskribatzen da, produktu kristalduak suberaketa ekidinez lortzeko bide bat aztertze 

asmoz. Beste lan batzuek aztertu zuten aurretiaz plastifikatzaile eta nukleatzaileen erabilpen 

bateratua PLA-n, eta aukera honek kristaltze zinetikan duen eraginaren baliagarritasuna 

frogatu zuten [18–25]. Dena den, literaturan aurki daitezkeen emaitzak ez dira erraz 

konparagarriak, pisu molekular eta D-azido laktiko eduki ezberdineko PLA-k ageri baitira 

ikerketa lan bakoitzean.  Lan honetan plastifikatutako %0,5 eta %4 D-azido laktikodun bi 

PLA ezberdinen kristalizazio isotermoa aztertu da, urtze tenperaturatik kristaltze tenperatura 

ezberdinetara hoztu ostean eta nukleatzaile ezberdinak erabiliz. Plastifikatzaile modura 

dioctil adipatoa erabili da (DOA), PLA-rentzat plastifikatzaile eraginkorra dela frogatu dena 

[26]. Plastifikatutako PLA matrizeak talkoa, etilen bis(estearamida) EBS eta PDLA-rekin 

nukleatu dira. Emaitzen arabera, plastifikatzaile eta nukleatzaileen erabilera bateratua 

PLAren kristaltze zinetika azkartzeko oso bide eraginkorra dela frogatu da. L-azido laktiko 

kontzentrazio altuena zuen PLA-k kristaltze zinetika azkarrenak erakutsi zituen. Beraz, 

korrelazio handiagoa frogatu zen kristaltze zinetika eta L-azido laktiko kontzentrazioaren 

artean nukleatzaile edo tenperaturarekiko baino. Nukleatzaileen artean eraginkorrena talkoa 

izan zen. Talkoz nukleatutako L-azido laktiko eduki altuena zuen PLA plastifikatuak minutu 

bat baino gutxiagoko erdi-kristaltze denborak aurkeztu zituen, konposatu hauek PLA 

kristalduzko produktuak prozesatzeko oso interesgarri direla frogatuz. Halaber, presioa 

igotzeak kristaltze abiadura nabarmen igotzen duela ikusi zen PVT saiakeretan. Ondorioz,  

injekzio bidezko moldeaketa kasuetan, DSC bidez lortutako denborak baino are 

laburragoetan kristalduko lukete nahasketek. Kristaltze abiadura azkarrenak 90 eta 100 ºC 

bitartean ikusi ziren, edozein nukleatzaile erabilita ere. Avrami berretzailea n≈2.7-3.0 

ingurukoa zen nahasketa guztietan, nukleatzailea eta kristaltze tenperatura edozein izanda 
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ere, esferuliten hazkuntza tridimentsionala iradokiz. WAXS difraktogramek  eta ’ kristal 

formen koexistentzia agerian jarri zuten. Aztertutako parametro ezberdinen artean fusio 

tenperatura altuenarengan  L-azido laktikoaren purutasunak bakarrik eragiten duela ikusi 

zen. Aldiz, lortutako kristaltze mailan eta batez ere fusio tenperatura baxuenarengan  

aukeratutako kristaltze tenperatura eta nukleatzaile motak nabarmenki  eragiten du. 

5. atalean PLA-n oinarritutako nahasketen bizi-iraupenaren estimazioa burutu da. PLA-n 

oinarritutako nahasketen erabilpena zehazteko beharrezkoa da material hauen zahartzea 

aztertzea beronen propietateetan eragin zuzena duelako. Iraunkortasunari dagokionez, 

PLAren portaera zahartze mekanismo  ugariren menpe dago [27–31]. Gainera, orokorrean 

mekanismo ezberdinak aldi berean pairatzen ditu materialak, degradazio mekanismo 

konplexuak eraginez [32]. Bizi-iraupen aurreikuspenek zahartze bizkortuak burutzea 

eskatzen dute. Zahartze tenperatura ezberdinetara lortutako emaitzekin denbora-tenperatura 

gainjartzeak burutu daitezke, eta horretarako ISO 2578 [33] jarraibidea errespetatu da tesi 

lan honetan. Arau honen helburua plastikoen erresistentzia termikoaren mugak zehaztea da 

eta metodoa trakzio erresistentzia edo hauste deformazio baloreak zuzenean Arrhenius erako 

ekuazioetara zuzenean doitzean oinarritzen da. Lehenengo, zahartze tenperatura bakoitzeko, 

hautatutako propietatearen balioa denboraren logaritmoaren aurka grafikatzen behar da. 

Arauan azaltzen diren gomendapenei jarraiki, gure kasuan propietate bakoitzean hasierako 

balioaren %50era erortzea hautatu genuen bukaera irizpide legez. Puntu hauek zahartze 

tenperatura bakoitzean hauste denborak zehazten dituzte. 

Atal honetan aurreko ataletan garatutako bi nahasketaren bizi-iraupena aurreikusi nahi izan 

da. Bi materialen laginei, aurrez tenperatura ezberdinetan zahartutakoak, trakzio saiakerak 

burutu zitzaizkien giro tenperaturan. Honela, zahartzearen eragina neurtu ahal izan zen 

propietate mekanikoetan.  

Lortutako emaitzen arabera ondoriozta daiteke formulazio hauek ez direla aproposak 

aplikazio iraunkor estrukturaletarako, esaterako automozio edota etxetresna 

elektrikoetarako, 8-12 urteko bizi-iraupena bermatu beharra dagoelako. Ostera, erabilgarriak 

dirudite mugikorren karkasa, ordenagailuen teklatua eta era honetako aplikazio erdi-

iraunkorretarako, 3-4 urteko bizi-iraupena duten produktuak ekoizteko alegia. Kasu hauetan 

PLA/PMMA nahasketak zahartze egonkortasun hobea izango luke PLA kristalduak baino 

60 ºC-tik beherako aplikazioei dagokienez. Aplikazioaren arabera produktuak epe laburrean 

60 ºC-tik gorako egoerak pairatu beharko lituzkeen kasuan, bestalde, PLA kristaldua aukera 

hobea litzake, beira trantsiziotik gora portaera hobea daukalako.  
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1.1.  Motivation 

Since the early 20
th

 century fossil resources have been widely used to produce electricity, 

heat, and transportation fuels, as well as the vast majority of chemicals. Unfortunately, such 

uses have contributed to the exhaustion of fossil resources and serious environmental 

problems, as represented by global warming. From this standpoint, the replacement of old-

carbon feedstocks like petroleum by renewable sources like biomass to obtain fuels and 

chemicals has become a key factor to enable the sustainability of the 21
st
 century’s society. 

However, current processes for production of commodity chemicals have evolved through 

considerable investment during decades to become highly efficient. Thus, in order to be 

successful, new biological processes must quickly reach similar levels of efficiency and 

productivity. Supporting policies, evolving technologies and environmental imperatives 

make the use of biomass and biological methods for industrial chemical production not only 

feasible but highly attractive from multiple perspectives [1]. 

Plastic materials are versatile, used worldwide and find applications in all parts of our lives, 

from agriculture to electronics, medical devices or packaging. From 1.65 million tons in 

1950 to 255.5 million tons in 2010 worldwide, plastics usage is still expanding and expected 

to grow at a steady rate of 3–4% per year [2]. In particular, rapid industrialization in 

populous countries such as India and China has led to an accelerated rate of plastic materials 

production. This is because plastics are lightweight (energy saving), low-cost, processable at 

low temperatures and present unique and versatile properties that can be tailored for specific 

applications. The current society and the average quality of life would be inconceivable 
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without the use of plastics for commodity products. However, the elevated carbon footprint 

levels of the petroleum based plastics has been a matter of debate, specially boosted when 

the society has become sensitive to their effect on the global warming, besides landfilling 

and marine contamination problems. 

In this context, plastics with lower carbon footprint than the conventional ones have gained a 

lot of interest from the industry since 1980’s decade. The focus has been put on two 

characteristics: the source and the end of life management of plastics. Thus, plastics that can 

be obtained from renewable feedstocks and/or with intrinsic biodegradable nature have been 

extensively studied in order to upgrade them into feasible alternatives to the current 

petrochemical plastics. Among others, Polylactide (PLA, a.k.a. polylactic acid) was one of 

the most promising ones from the very beginning. However, even though it was first 

produced by Carothers in 1932 and further developed by DuPont in after the Second World 

War, applications for this polymer were limited to resorbable sutures until 1980’s. In 1989, 

the Cargill family believed in the potentiality of PLA and bet for its mass production and 

commercialization. Its biosourced and compostable nature enabled to close the life cycle 

loop, thus making PLA a great candidate for short life applications like packaging. 

However, two limiting properties have closed the way for semi-durable and durable 

applications to PLA: its brittleness and low thermal resistance (Fig. 1-1). The improvement 

of those two properties by different approaches and the lifespan prediction of the resulting 

compounds have been studied in this PhD thesis. 

 

Fig. 1-1. Heat resistance (HDT, ISO 75) and impact strength of amorphous PLA and performance 

requirements for potential applications [3].  
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1.2.  Aim of the thesis 

This thesis aims to expand the current scientific knowledge concerning polylactide and the 

different approaches which could lead to get over its limiting properties, i.e.: brittleness and 

thermal resistance; and the measurement of their lifespan in order to evaluate their use in 

semidurable or durable applications. 

1.3.  The structure of the thesis 

The manuscript of this thesis has been divided into 6 chapters, as follows: 

In the first chapter the motivation and the aim of the thesis are defined. On the other hand, 

the structure of the thesis, the human group behind the work and the entities that have given 

financial support have been described within this chapter, too. 

The second chapter summarizes the state of the art concerning bioplastics, emphasizing on 

polylactide, its properties, current market, and the different approaches to obtain PLA based 

compounds with enhanced properties. 

The next two chapters focus on the different ways that have been experimentally researched 

to get over the limiting properties of neat PLA. In the third chapter, blends of PLA with 

PMMA have been studied at different ratios by twin screw extrusion. Moreover, the 

properties of the most interesting blend have been subsequently studied by Reactive 

Extrusion in the presence of a styrenic-glycidyl acrylate copolymer. The fourth chapter 

encloses a deep study concerning the combinational effect of plasticizer and nucleating 

agents on the crystallization kinetics of PLAs with different L-lactic acid contents. 

The fifth chapter focuses on the lifespan predictions of two of the most interesting 

compounds developed at the previous chapters. It has been experimentally measured the 

effect of ageing on the mechanical properties of the compounds, carried out by accelerated 

ageing at high temperatures. 

The sixth chapter contains the general conclusions of the thesis, prospects for future research 

work and the list of scientific publications and communications arisen from this thesis work. 
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This thesis work has been carried out in close cooperation of the Materials and Technologies 

Group of the Basque University (EHU-UPV) and Leartiker S. Coop, both of them entities 

that are enclosed in the Basque Net of Science, Technology and Innovation (RVCTI). It was 

first co-conducted by Proff. Iñaki Mondragon and PhD Ane Miren Zaldua. However, after 

the unexpected and shattering passing of Proff. Mondragon in February 2012, his co-

conducting position was assumed by PhD. Aitor Arbelaiz. Besides, a 4 months long stage in 

the Bioteam group (ICPEES) led by Proff. Luc Avérous of the University of Strasbourg was 

especially helpful to achieve the goals reported in 0. The Basque Country Government (EJ-

GV) in the frame of Consolidated Groups (IT-776-13), SAIOTEK SA-2010/00135, Elkartek 

2015 FORPLA3D and Elkartek 2016 PLAPU3D; along with the Regional Government of 

Bizkaia (BFA-DFB) EXP: 6-13-LA-2013-004 have provided financial support to this PhD 

thesis.  
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2.1.  Biopolymers 

Although the use of fossil fuels such as naphtha and natural gas for producing plastic resins 

only accounts for about 4 to 5% of the world’s oil consumption, there is a growing demand 

from society to preserve the environment from the effects of excessive use of fossil based 

fuels and indiscriminate waste disposal, which includes plastics, in order to prevent the 

devastating predictions of global warming [4]. This concern is in part translated in the form 

of market demand for eco-friendly products made of renewable raw materials. In this 

context, considerable efforts have been devoted to develop bio-based substitutes to fossil-

based polymers. These bio-based materials have the great advantage of using renewable raw 

materials and some of them enable composting or anaerobic digestion, hence allowing an 

end-of-life waste management which would reduce landfilling. Some of these bio-based 

polymers are already commercialized at large scale. 

On the other hand, the issue of the disposal of plastic wastes in the environment stimulated a 

demand for harmless biodegradable materials. This evolved to the adoption of the recycling 

concept through mechanical recovery and composting of wastes or energy production by 

plastic incineration, which directly contribute towards the reduction, in equivalent quantities, 

of the consumption of fossil raw materials in industry. The focus soon shifted to the 

production of plastics from renewable sources. However, more recently, proper importance 

was given to an approach that encompasses the carbon cycle and sustainability, integrating 

several of these aspects [4]. 
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Thermoplastics can be classified by their origin (raw materials) and end of life behaviour 

(biodegradability) in a four quadrant scheme (Fig. 2-1). The inferior left quadrant contains 

the conventional petrochemical plastics, while the superior right presents the bioplastics, 

those that are bio-based and biodegradable. The word bioplastic has been misleadingly used 

for marketing reasons during the last two decades, but it is being settled that this word 

should only be used for plastics which are both bio-based and biodegradable [5]. However, 

there are another two groups of plastics that, despite not being bioplastics, can fulfil the 

“green” or “eco-friendly” needs of different industries and market sectors. In the superior 

left quadrant we can find the bio-based counterparts of the conventional petrochemical 

plastics, which have identical molecular structure but are produced by renewable feedstocks 

instead of petrol. These bio-based plastics avoid the influence of petrol price fluctuations 

and can be interesting for semidurable or durable applications like automotive, household 

appliances, toys, etc. Finally, in the inferior right quadrant we have biodegradable 

petrochemical polymers, interesting for applications with short shelf-life like packaging. 

 

Fig. 2-1. Classification of plastics by raw materials and biodegradability. 
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Biodegradable polymers can be obtained from biomass products, extraction from living 

micro-organisms, synthesis of bio-derived monomers or petrochemical products. Fig. 2-2 

shows a wide classification of different biodegradable polymers. 

 

Fig. 2-2. Classification of biodegradable polymers (from Avérous [6]). 

 

2.1.1. Renewable feedstocks. Bio-based polymers 

From an environmental point of view bio-based polymers have great advantages over fossil-

based polymers. Among others, the possibility to avoid the unpredictable oil price 

fluctuations, which directly affect the price of conventional polymers. This fact has been a 

strong driving force in their fast evolution during the last two decades, especially to 

strengthen the interest and investment from industrial companies. Intense research effort has 

been focused to find technically feasible new routes to obtain bio-based polymers. Fig. 2-3 

shows a scheme of these routes, from renewable feedstocks like starch, lignocellulose, plant 

oils or saccharose to a wide spectrum of polymers, passing through versatile chemical 

platforms like glucose, adipic acid, glycerol or fatty acids. 
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Fig. 2-3. Pathways to bio-based polymers [7]. 

 

Among all these bio-based polymers, there are some that correspond to the bio-based 

analogues of conventional thermoplastics like PE, PP, PS, ABS, PA and PET. Companies 

like Braskem (Brasil) and Neste Oil (Finland) are able to provide commercial volumes of 

these plastics, which are produced (at least partly) from renewable feedstocks. The 

mechanical and physical properties of these so-called “drop-in” bio-based plastics are fully 

comparable with those of plastics produced from fossil feedstocks [8]. 

In 2015, the association “European Bioplastics” published a market study carried out by the 

nova-Institute [9]. The study indicated that bio-based polymers production capacities are 

projected to grow more than 400% by 2019. Table 2-1 gives an overview on the covered 

bio-based polymers and the producing companies with their locations and production 

capacities from 2012 to 2014. In 2013, the production capacities of most of the polymers 

increased and contributed to the observed 10% compound annual growth rate (CAGR) from 

2012 to 2013. Polyamides, polyethylene terephthalate and polytrimethylene terephthalate 

showed the highest CAGR (around 30%). In 2014, a few polymers contributed to the 11% 
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CAGR from 2013 to 2014. Only epoxies and poly(butylene adipate-co-terephthalate) 

showed a strong market growth. Epichlorhydrin, whose production capacity increased, is 

precursor of epoxies and is produced from bio-based glycerine, a by-product from the 

biodiesel production. 

 

Table 2-1. Bio-based polymers and the producing companies with  

their locations and production capacities [9]. 

 

The production capacity for bio-based polymers boasts very impressive development and 

annual growth rates, with a CAGR of about 10% whereas petrochemical polymers have a 

CAGR between 3-4%. The 5.7 million tonnes bio-based polymer production capacity 

represented approximately a 2% share of the overall polymer production of 256 million 

tonnes in 2013 and a bio-based polymer turnover of about €11 billion in 2014. With an 

expected total polymer production of about 400 million tonnes in 2020, the bio-based share 

should increase to more than 4% in 2020, meaning that bio-based production capacity will 

grow faster than overall production. 

Fig. 2-4 shows the evolution of worldwide production capacities of bio-based polymers. The 

fastest development is foreseen for drop-in bio-based polymers, but this is closely followed 

by new bio-based polymers. This group is led by partly bio-based polyethylene terephthalate 

(PET), largely due to the Plant PET Technology Collaborative initiative launched by The 
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Coca-Cola Company, which have recently led the company to unveil the first PET plastic 

bottle made entirely from renewable materials [10]. The second most dynamic development 

is foreseen for polyhydroxyalkanoates (PHA), which, contrary to bio-based PET, are new 

polymers, but still have similar growth rates to those of bio-based PET. Polybutylene 

succinate (PBS) and polylactic acid (PLA) are showing impressive growth as well: their 

production capacities are expected to almost quadruple between 2014 and 2020.  

 

Fig. 2-4. Evolution of worldwide production capacities of bio-based polymers [9]. 

 

Concerning geographic market share, most investment in new bio-based polymer capacities 

will take place in Asia because of better access to feedstocks and favourable political 

framework. Europe’s share is projected to decrease from 15.4% to 4.9%, and North 

America’s share is set to fall from 14% to 4.1%, whereas Asia’s is predicted to increase 

from 58.1% to 80.6%. South America is likely to remain constant with a share between 10% 

and 12%. In other words, world market shares are expected to shift dramatically. Asia is 

predicted to experience most of the developments in the field of bio-based building block 

and polymer production, while Europe and North America are slated to lose more than two 

thirds of their shares. 
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Regarding the demand of bio-based plastics in the short and medium term, it may be 

appreciably enhanced if a positive dialogue among industry and the social movements 

concerned with the sustainability concept is established, disclosing to the public at large the 

benefits involved in the adoption of bioplastic products. Governments at local and national 

levels can also promote the use of bio-based by passing legislation encompassing economic 

incentives to the adoption of bio-based in the industrial supply chain, and at the same time 

enforcing restrictions to the trade of environmental-unfriendly products [4]. In this sense, in 

December 2014, the Norwegian parliament decided to instruct the government to evaluate 

different options of tax incentives for bio-based polymers – or to introduce a new tax on 

fossil CO2 content in polymers, which is not taxed today. The aim is to create a market pull 

for the bio-based economy. If Norway really were to implement tax incentives for bio-based 

products, it could be a worldwide forerunner [11]. 

An important drawback to the future expansion of the bioplastic industry could be posed by 

the competition with the food industry for the same bio, renewable raw materials, as 

indicated by the recent price increase of US corn triggered by the unexpectedly strong bio-

fuel demand. This reality over the midterm probably will favour tropical countries to host 

the first large bioplastic plants due to their comparative advantages such as areas with high 

solar insolation levels, available farm land, and abundant water resources [4]. However, the 

results of European Bioplastics’ annual market data update, presented in November 2015 in 

the 10th European Bioplastics Conference in Berlin, the land used to grow the renewable 

feedstock for the production of bioplastics amounted to approximately 0.68 million hectares 

in 2014, which accounted for only 0.01 percent of the global agricultural area of 5 billion 

hectares, 97 percent of which were used for pasture, feed, food, other material uses, 

bioenergy, and biofuels (Fig. 2-5). This clearly shows that there is no competition between 

the renewable feedstock for food, feed, and the production of bioplastics [12]. Despite this 

fact, different biopolymer producers have successfully produced and marketed bioplastic 

resins from second generation feedstocks. These second generation feedstocks are those 

which are not suitable for human consumption, and include plant-based materials like 

bagasse, corn stover, wheat straw and wood chips. Among others, Corbion Purac announced 

the successful production of PLA from this kind of feedstocks in September 2015 [13]. 
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Fig. 2-5. Land use for bioplastics [14]. 

 

2.1.2. End-of-life management. Biodegradable plastics 

2.1.2.1. Plastic waste. A worldwide problem 

Waste plastics contribute to great environmental and social problems due to the 

environmental pollution and depletion of landfill space. Polymer recycling has received 

great attention, but only a small fraction of plastic waste is recycled due to contamination 

and technical limitations. Thus, huge volumes of wastes are still landfilled or incinerated 

[15]. Moreover, the plastic waste is bulkier than other organic residues and thus occupies 

massive space in landfills and the proper disposal and incineration have high costs. 

The world production and usage of plastics has increased sharply from 1.5 million tons in 

1950 to 299 million tons in 2013, and it has been estimated that global plastic production 

could triple by 2050 [16]. This indicates that the plastic waste issue is in its way to become 

even more dangerous for the environmental sustainability than it already is. Concerning 

landfill and oceanic litter, scientific studies have shown that the litter found in oceans and 

inland waters is dominated by plastics [17]. Enormous efforts are being carried out to try to 

diminish the plastic waste concentration in the sea, like the recently self-claimed world’s 

first feasible method to rid the oceans “Ocean Cleanup project” [18]. However, besides large 

items such as plastic bottles and bags, the occurrence of microplastics has also been verified 
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in water bodies, sediments, sea ice and on the beaches of the world's oceans. Plastic particles 

with a diameter smaller than 5 mm are referred to as microplastics [19]. These can be 

secondary fragments created by the breaking up of larger pieces of plastic such as packaging 

materials, or fibres that are washed out of textiles. They can also be primary plastic particles 

produced in microscopic sizes; including microplastics used in hand wash, toothpaste, 

detergents, and cleaners along with microplastics from secondary sources such as tyre 

abrasion, road paints or granulates on playgrounds. About 8 to 10 million tonnes of plastic 

waste (Fig. 2-6) are assumed to find their way into the sea worldwide every year [18,20,21]. 

 

Fig. 2-6. Plastic waste inputs from land into the ocean in 2010 (from Jambeck et al. [21]). 

 

The estimations of annual microplastic emissions to the marine environment in Europe range 

between 25000 and 60000 tonnes for tyre dust, 25000 and 50000 tonnes for pellet spills, 

8000 and 52000 tonnes for textiles, 12000 and 30000 tonnes for building paints, 8000 and 

18000 tonnes for road paints, 3 and 9 tonnes for cosmetics and less than 5 tonnes for marine 

paint according to a study of Eunomia for the European Commission [22]. Furthermore, 

without waste management infrastructure improvements, the cumulative quantity of plastic 

waste available to enter the ocean from land is predicted to increase by an order of 

magnitude by 2025 [21]. It was agreed during the “Microplastics in the Environment” 

conference (November 2015) [23] that all types of plastic waste should be collected, 
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materially recycled or used for energy recovery and that landfilling is not an option and 

neither is the disposal into the environment. Biodegradable plastics should also never be 

disposed into the sea; in particular because the conditions for degradation in marine 

environments are quite unfavourable and hard to predict. In this sense, American Society for 

testing and Materials (ASTM) has recently published an international standard to test and 

better understand biodegradability of plastics in marine environments [24]. 

2.1.2.2.  The correct management pathway 

An increasing concern in the continued use of plastics, especially plastics packaging, is its 

end-of-life (i.e. what happens to plastic after use when it enters the waste stream). The 

European Union relies on a five-level waste hierarchy which has been defined in the Waste 

Framework Directive 2008/98/EG from 19 November 2008. Above all, waste has to be 

avoided.  When this is not possible, it should be reused, and if needed materially recycled. 

Only at the forth step is waste to be used thermally and as a very last option to be deposited. 

Recycling is clearly an important end-of-life strategy for plastics which is in continuous 

growth. However, the use of recycled plastic depend on the quality and polymer 

homogeneity of the material. If the polymer is clean and contaminant-free, it can be used to 

substitute virgin plastic, but if the polymer is mixed with other polymers, the options for 

marketing materials often involve using the recycled plastics for less expensive and less 

demanding applications. 

On the other hand, biodegradability offers an environmentally responsible end-of-life 

strategy for plastic products, especially disposable and single use packaging. Fig. 2-7 shows 

some examples of real applications in which biodegradable plastics can be a suitable 

solution [23]. This allows closing the loop and ensuing that the compostable plastics are 

safely and efficaciously removed from the environment via microbial metabolism. The truly 

biodegradable/compostable plastics are an important sub-set of plastics for end-of-life 

options and complements (does not substitute) traditional plastics recycling. Conventional 

plastics are more suitable for long-life applications and for mechanical recycling, while 

biodegradable plastics make   more   sense   for   short-life applications associated with food 

waste, soil contact, moisture, etc. [25] 
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Fig. 2-7. Applications in which biodegradable plastics can be a suitable solution [23]. 

 

2.1.3. Carbon footprint of bioplastics 

Carbon is the major building block of plastics, fuels and even living organisms. Thus, 

carbon needs to be managed in a sustainable and environmentally responsible way in order 

to achieve feedstock sustainability by replacing old carbon (fossil resources) with new 

carbon (trees, plants, crops...). 

Bio-based plastics, in which the fossil carbon is replaced by bio-based/new carbon, offer the 

intrinsic value proposition of a reduced carbon footprint and are in complete harmony with 

the rates and time scale of the biological carbon cycle. Identification and quantification of 

bio-based content is based on the radioactive 
14

C signature associated with new carbon. 

Using experimentally determined bio-carbon content values, the achieved intrinsic CO2 

emissions reduction can be calculated by substituting petro-carbon with bio-carbon (this is 

the “material carbon footprint” value proposition). The “process carbon footprint” arising 

from the conversion of feedstock to final product is computed using life-cycle assessment 

methodology (LCA) [26]. 

Regarding the material carbon footprint, moving from fossil carbon to renewable carbon 

feedstock offers an intrinsic zero carbon footprint option. This can be seen in the biological 

carbon cycle scheme shown in Fig. 2-8. 
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Fig. 2-8. Biological carbon cycle. 

 

Carbon is present in the atmosphere as CO2. The current level of CO2 in the atmosphere is 

around 380 ppm (parts per million) and is increasing. CO2 and other greenhouse gases in the 

atmosphere trap the sun’s heat from radiating back to space, thereby providing a life-

sustaining average planet temperature of 7.2 ºC. Increasing levels of CO2 and other 

greenhouse gas emissions to the atmosphere would trap more of the sun’s heat, thereby 

raising the average temperature of the planet. Thus, an uncontrolled, continued increase in 

levels of CO2 in the atmosphere will result in a slow rise of the earth’s temperature, global 

warming, and with it an associated severity of effects that will affect life on this planet. It is 

therefore necessary to try and maintain current CO2 levels. This can best be done by using 

renewable biomass crops to manufacture carbon-based products so that the CO2 released at 

the end-of life of the product is captured by planting new crops in the next season. 

Specifically, the rate of CO2 release to the environment at end-of-life equals the rate of 

photosynthetic CO2 fixation by the next generation of crops planted (zero material carbon 

footprint). In the case of fossil feedstocks, the rate of carbon fixation is measured in millions 

of years, while the end-of-life release rate into the environment is in 1–10 years. Therefore, 

using fossil feedstocks is not sustainable. It causes more CO2 release than fixation, resulting 

in a high carbon footprint, and with it the global warming and climate change problems. 



PhD Thesis. Different approaches to obtain poly(lactic acid) based compounds for semidurable applications 

Chapter 2. p. 25 

 

Using basic stoichiometry, for every 100 kg of Polyolefin (PE, PP) manufactured, a net 314 

kg CO2 is released into the environment at its end-of-life (100 kg of PE contains 85.7% kg 

carbon and upon combustion will yield 314 kg of CO2 (44/12) × 85.7). Similarly, PET 

contains 62.5% carbon and would result in 229 kg of CO2 released into the environment at 

end-of life [2]. However, if the carbon in the polyester or polyolefin comes from a biological 

feedstock, the net release of CO2 into the environment is zero, because the CO2 released is 

fixed in a short time period by the next crop or biomass plantation. This is the intrinsic zero 

material carbon footprint value proposition for using a bio/renewable feedstocks. Thus, the 

fundamental driver or switch to bio-based products is the material carbon footprint reduction 

arising from the “short-term” biogenic carbon cycle (the rate and time scales of CO2 

sequestration is in balance with the use and release, resulting in a carbon neutral footprint). 

In 2015 NatureWorks LLC published some peer-reviewed Life cycle assessment data [27] 

regarding their Ingeo PLA , which indicated that greenhouse gas emissions and energy usage 

during PLA manufacture is lower than that of all commonly used plastics. The chart shown 

in Fig. 2-9 compares the greenhouse gas emissions (including bio-based carbon uptake in 

the case of PLA) for Ingeo manufacture with the emissions resulting from the manufacture 

of a number of different polymers produced in the US and Europe using the latest available 

industry assessments for each. The numbers represent the totals for the first part of the life 

cycle of the polymers, starting with fossil or renewable feedstock production up to and 

including the final polymerization step. 

 

Fig. 2-9. Global warming potential chart [28]. 
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As an example NatureWorks calculated that if 500.000 mobile phones were moulded from 

Ingeo PLA instead of from ABS the non-renewable energy saved would be equivalent to 

2893 litres of gasoline. The reduction in green house gas emissions would lead to savings 

equivalent to a car driven for 30.000 km with no emissions [29]. 

Despite its interesting potential as a bioplastic alternative for other conventional 

petrochemical plastics like PS, PBT, PET or even ABS, the intrinsic properties of this 

polymer show some drawbacks which complicate the direct replacement. However, PLA is 

one of the most interesting bioplastic to move on from packaging to semidurable 

applications due to its high mechanical properties and glass transition temperature. On the 

contrary, its brittleness and low thermal resistance (amorphous structure) are the main 

handicaps to get over. 

2.2.  Poly(lactic acid) 

Traditionally, lactic acid-based polymers have been named poly(lactic acid), whereas 

polylactide refers to the polymer derived from the lactide monomer. Both polymers have the 

same constitutional repeating unit H-[OCH(CH3)CO]n-OH, therefore a distinction between 

the two terms is not essential. However, most of the commercial PLA is produced by lactide 

ring opening polymerization nowadays, hence, from a technical point of view, the term 

polylactide should be preferred for commercial PLA. In order to better understand the nature 

of PLA, a review of its synthesis, properties and market situation are described in the next 

sections.   

 

2.2.1. Synthesis of PLA 

2.2.1.1. Production of lactic acid (LA) 

Lactic acid (2-hydroxypropanoic acid), CH3CHOHCOOH [CAS: 50-21-5], is the most 

abundant hydroxycarboxylic acid in nature. It was first discovered in 1780 by the Swedish 

chemist Scheele [30] and first commercially produced by Charles E. Avery at Littleton in 

1881 [31]. Lactic acid is a naturally occurring organic acid that can be produced by 

fermentation or chemical synthesis. It is present in many foods both naturally or as a product 
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of in situ microbial fermentation, as in sauerkraut, yogurt, buttermilk, sourdough breads and 

many other fermented foods. Lactic acid is also a principal metabolic intermediate in most 

living organisms, from anaerobic prokaryotes to humans [32]. 

The lactic acid molecule has one asymmetric carbon atom and is therefore optically active. 

Depending on the synthesis conditions and selected microorganisms, two optical isomers of 

lactic acid can be formed: L-lactic acid and D-lactic acid, as shown in Fig. 2-10. The L form 

differs from the D form in its effect on polarized light. For L-lactic acid, the plane is rotated 

in a clockwise (dextro) direction, whereas the D form rotates the plane in a counter-

clockwise (levo) direction [33]. 

 

Fig. 2-10. Molecular structure of L- (left) and D- (right) lactic acid. 

 

The interest in the fermentative production of lactic acid has increased due to the prospects 

of environmental friendliness and of using renewable resources instead of petrochemicals. 

Besides high product specificity, as it produces an optically pure L- or D-lactic acid, the 

biotechnological production of lactic acid offers several advantages compared to chemical 

synthesis like low cost of substrates, low production temperature, and low energy 

consumption [34]. Lactic acid bacteria (LAB) and some filamentous fungi are the chief 

microbial sources of lactic acid [35]. Okano et al. published a review regarding optimization 

of LA production using several kinds of genetically modified microorganisms such as LAB, 

Exchericcia coli, Corynebacterium glutamicum and yeast. Using gene manipulation and 

metabolic engineering, the yield and optical purity of LA produced from biomass were 

significantly improved [36]. 

The carbon source for microbial production of lactic acid can be either sugar in pure form 

such as glucose, sucrose, lactose etc. or sugar-containing materials such as molasses, whey, 

sugar cane bagasse and cassava bagasse, starchy materials from potato, tapioca, wheat, 

barley etc. Different food/agro industrial products or residues form are a cheaper alternative 

to refined sugars for lactic acid production [37]. Some agricultural byproducts, which are 
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potential substrates for lactic acid production, are corn starch, cassava, 

lignocellulose/hemicellulose hydrolyzates, corn stalks, beet molasses, wheat bran, rye flour, 

sugarcane press mud, barley starch, cellulose, etc. [35] Recently, Idler et al. published a 

review which summarizes the fermentation systems used for the biotechnological 

production, the various raw materials and applications of lactic acid [38]. 

By 2003, two manufacturers from the USA, Archer Daniels Midland (ADM) and Cargill 

Dow (a joint venture between Dow Chemical Company and Cargill Corporation), entered 

the lactic acid production business, both using carbohydrate fermentation technology. Fig. 

2-11 shows the scheme of this process. In 2005, Cargill bought out Dow’s participation in 

the joint venture and established Natureworks LLC as a wholly owned subsidiary. ADM’s 

focus has been on lactic acid and its derivatives for conventional and other uses whereas 

Natureworks LLC has been the primary leader in the lactic-based polymer business. In 

Europe, the major manufacturers of fermentative lactic acid include Purac in the Netherlands 

and Galactic in Belgium. In the Far East, Musashino has been reportedly manufacturing 

lactic acid by carbohydrate fermentation technology with Chinese partners [32]. 

 

Fig. 2-11 Lactic acid production scheme. 

 

2.2.1.2. Polymerization of PLA 

Lactic acid has attracted considerable attention for polymerization to poly(lactic acid). The 

dimerization of polycondensated lactic acid into lactide and the ring-opening polymerization 

thereof was first reported by Carothers et al. in 1932 [39]. The polymer was, however, found 

to be unstable at humid conditions and its use was not relevant until 1960s, when PLA was 

used for medical applications [40]. One of the main drivers for the expanded use of PLA 

during the last two decades is attributable to the economical production of high molecular 
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weight PLA polymers (>100000 g/mol). These polymers can be produced using several 

techniques, including azeotropic dehydrative condensation [41,42], direct condensation 

polymerization [43–45] and polymerization through lactide formation [6,45–54] (Fig. 2-12). 

However, commercially available high molecular weight PLA resins are mostly produced 

via the lactide ring-opening polymerization route [3,4,29]. Indeed, this was the route of the 

process first presented by Cargill (nowadays NatureWorks LLC) in the late nineties, which 

made this company to be the current leading producer of commercial PLA worldwide. The 

essential novelty of the process lied in the ability to go from lactic acid to a low molecular 

weight poly(lactic acid), followed by controlled depolymerisation to produce the cyclic 

dimer (lactide). This lactide was then maintained in the liquid form and purified by 

distillation. Catalytic ring opening of the lactide intermediate results in the production of 

PLAs with controlled molecular weights [33]. 

 

Fig. 2-12. Synthesis of PLA from L- and D- lactic acids [55]. 

 

Commercial PLA are copolymers of poly(L-lactic acid-co-D-lactic acid) (PDLLA), which 

are produced from L-lactides and D,L-lactides [3] (Fig. 2-13). The L-isomer constitutes the 
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main fraction of PLA derived from renewable sources since the majority of lactic acid from 

biological sources exists in this form. 

 

Fig. 2-13. Chemical structure of different lactides. 

 

2.2.2. Types and properties of PLA 

Poly(lactic acid) represents a family of copolymers with the same chemical structure but 

different stereochemistry (Fig. 2-14). PLAs with low L/D lactate ratio behave as an 

amorphous thermoplastic (A-PLA) while PLAs with high L/D lactate ratio can achieve high 

crystallinity degree. It is generally considered that for PLA mainly based on L-lactic acid, 

the incorporation of D-lactic acid in proportions above around 7% induces some 

imperfections, which prevent polymer crystallization [56]. Thus, different amorphous or 

semi-crystalline PLA materials can be elaborated according to the L/D ratio and, 

consequently, formulations with strong variations on thermal, mechanical and barrier 

properties can be obtained [57,58].  

 

Fig. 2-14. PLA with different L/D ratio and tacticity [59]. 
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Thus, careful selection of the appropriate PLA resin grade is important. Usually, PLA 

articles which require heat-resistant properties can be injection moulded using PLA resins 

with a D-isomer content below 1%. Additionally, nucleating agents may be added to 

promote the development of crystallinity under short moulding cycles. In contrast, PLA 

resins of higher D-isomer contents (4–8%) are more suitable for thermoformed, extruded, 

and blow moulded products, since they are more easily processed when the crystallinity is 

low [60,61]. In addition, stereocomplex PLA (scPLA), which is a blend of PLLA and PDLA 

macromolecules, is known to have high thermal stability. ScPLA have stereocomplex 

crystals, which show a high melting point (≈230 ºC). The melting temperature of these 

crystals is approximately 50 ºC higher than the respective homochiral PLA crystals. 

As mentioned previously, lactic acid has two optical isomers (D- and L-) and its optical 

purity is crucial to the physical properties of PLA (Fig. 2-15). Therefore, the production of 

enantiomeric pure D- or L-lactic acid is an important goal when some properties are desired.  

 

Fig. 2-15. A comparison of some generic properties of amorphous and crystalline PLA. 

 

In the next sections the thermophysical, solubility, rheological, mechanical and degradation 

properties of PLA are summarized. 

2.2.2.1. Thermophysical properties 

Like many thermoplastic polymers, semicrystalline PLA exhibits Tg and Tm. At 

temperatures above Tg (∼58 ºC) PLA is in the rubbery state, below Tg it becomes a glass 

which is still capable to creep until it is cooled to its  transition temperature at 

Amorphous 

Low thermal resistance (HDT-B ≈ 55ºC) 

Good  modulus and strength (3.5GP, 62MPa) .   
Bad impact resistance (3kJ/m2). 

Good clarity and  transparency 

Biodegradable (compostable) 

Medium barrier properties 

Crystalline 

Improved thermal resistance (HDT-B ≈ 105ºC) 

Similar modulus and strength (3.5GP, 62MPa) 
Slightly better impact resistance (5kJ/m2). 

Opaque 

Biodegradable, but the enzymatic degradation 
can be take far longer 

Oxygen and water vapour coefficients 3 and 4 
times lower, respectively 
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approximately −45 ºC, below which it behaves as a brittle polymer [62]. As shown in Fig. 

2-16, PLA has relatively high Tg and low Tm as compared to other thermoplastics. The Tg of 

PLA is dependent on both the molecular weight and the optical purity of the polymer. The 

Tg increases with molecular weight to maximum values at infinite molecular weight of 60.2, 

56.4 and 54.6 ºC for PLA consisting of 100, 80, and 50% L-lactide contents, respectively 

[63].  

 

Fig. 2-16. Comparison of Tgand Tm of PLA with other thermoplastics [61]. 

 

The glass transition behaviour of PLA is also dependent on the thermal history of the 

polymer. Quenching the polymer from the melt at a high cooling rate (such as during 

injection moulding) will result in an amorphous polymer. PLA polymers with low 

crystallinity have a tendency to undergo rapid aging in a matter of days under ambient 

conditions [64,65]. The Tm of PLA is also a function of its optical purity. The melt enthalpy 

estimated for an enantiomerically pure PLLA of 100% crystallinity (Hm
0
) by Fischer et al. 

[66], 93 J/g, is the value most often referred to in the literature. The maximum practical 

obtainable Tm for enantiomerically pure PLA (either L- or D-) is around 180 ºC with an 

enthalpy of 40–50 J/g. The presence of D-lactate in the PLLA structure can depress the Tm 

by as much as 50 ºC, depending on the amount of D-lactide incorporated to the polymer. 

Typical Tm values for PLA are in the range of 130–160 ºC. The Tm depression effect of D-

lactide has several important implications as it helps expand the process windows, reduce 

thermal and hydrolytic degradation, and decrease lactide formation [61]. Pyda et al. 
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determined the heat capacity of PLA in solid and liquid states ranging from 5 to 600K [67]. 

The heat capacity (Cp-liquid, J/(K mol) can be represented in a simple form: Cp-liquid = 120.17 

+ 0.076 T, where T is in Kelvin (K). 

2.2.2.2. Solubility 

The solubility of lactic acid based polymers is highly dependent on the molar mass, degree 

of crystallinity and L/D lactic acid ratio. Good solvents for PLLA (L/D ratio > 99%) are for 

example chlorinated or fluorinated organic solvents, dioxane, dioxolane and furane. PLA 

with lower L/D ratio are, in addition to the previously mentioned ones, also soluble in many 

other organic solvents like acetone, pyridine, ethyl lactate, tetrahydrofuran, xylene, ethyl 

acetate, dimethylsulfoxide, N,N-dimethylformamide and methylethyl ketone. On the 

contrary, typical non-solvents for lactic acid based polymers are water, alcohols (e.g. 

methanol, ethanol, propylene glycol) and unsubstituted hydrocarbons (e.g. hexane, heptane) 

[68]. Two of the most used solvents for PLA in the literature, especially for GPC technique, 

are tetrahydrofurane and chloroform. Table 2-2 shows the solubility of two specific PLA 

grades by NatureWorks in different solvents. Both are high molecular weight extrusion 

grades (Mn≈120000), but Ingeo 4060D has around 10% of D-lactic acid content 

(amorphous) whereas 4032D has around 1.6% of D-lactic acid content (semicrystalline). 

Solvent 
Amorphous PLA 

% Soluble 
Semicrystalline PLA 

% Soluble 

1,2 Dichloroethane 99.8 ±0 99.9 ±0 

DMF 99.8 ±0.1 67.5 ±5.2 

Heptane 8.6 ±3.9 27.5 ±12.3 

Isopropyl alcohol 0 ±0.2 0 ±1.8 

Methyl isobutyl ketone 20.6 ±1.7 0 ±0.4 

Octanol 1.3 ±3.8 5.2 ±0.5 

THF 99.8 ±0 99.9 ±0 

Toluene 99.8 ±0.1 0.4 ±1.6 

Table 2-2. Solubility of amorphous and semicrystalline PLA in different solvents [69] 



PhD Thesis. Different approaches to obtain poly(lactic acid) based compounds for semidurable applications 

Chapter 2. p. 34 

 

2.2.2.3. Rheological properties 

The rheological properties of PLA are highly dependent on temperature, molecular weight 

and shear rate, they must be taken into consideration during tooling design, process 

optimization, and process modelling/simulation. Melt viscosities of high-molecular-weight 

PLA are in the order of 500–1000 Pa s at shear rates of 10–50 s
−1

. 

The melts of high molecular weight PLA (∼100000 g/mol for injection moulding to 

∼300000 g/mol for film cast extrusion applications) behave like a pseudoplastic, non-

Newtonian fluid. Moreover, as shear rates increase, the viscosities of the melt decrease 

considerably, i.e. the polymer melt exhibits shear-thinning behaviour [61,70]. In contrast, 

low molecular weight PLA (∼40000 g/mol) shows Newtonian-like behaviour at shear rates 

typical of film extrusion [45,71]. 

PLA produced either via the lactide process or by direct condensation is normally a linear 

polymer. In comparison with polyolefins, the polymer has poor melt elasticity as evidenced 

by low die swell. This poor elasticity results from the low degree of molecular chain 

entanglement. The most promising method of increasing the level of entanglement is to 

introduce branching into the polymer. Cargill utilises low levels of an epoxidised natural oil 

to introduce branching into the polymer chain during polymerisation [72]. For certain 

applications where higher melt elasticity is required beyond that presently achieved by the 

in-situ polymerisation approach, additional techniques can be utilised. Practical 

modifications involve the use of cross-linking agents such as peroxides, which, when used at 

very low levels, can lead to significant further increases in melt elasticity, but at the cost of a 

slight increase in melt viscosity. Essentially, as the polydispersity of the polymer increases, 

the melt elasticity increases [33]. 

 

2.2.2.4. Mechanical properties 

Semicrystalline PLA is preferred to the amorphous polymer when higher mechanical 

properties are desired. Semicrystalline PLA has an approximate tensile modulus of 3.5 GPa, 

tensile strength of 50-70 MPa, flexural modulus of 5 GPa, flexural strength of 100 MPa, and 

elongation at break of about 4% [73–76]. The molecular weight of the polymer [58,77–79], 

as well as the degree of crystallinity [80,81] have a significant influence on the mechanical 
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properties. It has been shown that the tensile strength and modulus of PLLA increases by a 

factor of 2 when the weight average molecular weight is raised from 50000 to 100000 g/mol 

[78]. A further increase in molecular weight to 300000 g/mol seemed not to influence the 

properties of the polymers in any significant way [68]. On the other hand, the mechanical 

properties of similar molecular weight PLA prepared by different polymerization processes 

have been shown not to differ. This has been noticed for polylactides prepared by 

polycondensation and ring-opening polymerization [82]. 

PLLA of high molecular weight has sufficient strength to be used as load bearing material in 

medical applications, but the material degrades slowly because of the reinforcing crystalline 

domains [83]. The crystallinity can be reduced by copolymerizing with D-lactide, leading to 

an amorphous PLA with a faster degradation profile [84]. However, this will also reduce the 

toughness of the polymer and the impact strength of PLA has been shown to decrease 

threefold when copolymerizing with 5% D-lactide [73].  

 

2.2.2.5. Degradation 

Polymer degradation occurs mainly through scission of the main chains or side chains of 

macromolecules. A variety of chemical, physical and biological processes and thus different 

degradation mechanisms can be involved in the degradation of a polymer. Regarding PLA, 

its degradation has been found to be dependent on different factors such as molecular 

weight, crystallinity, L/D ratio, temperature, pH, presence of terminal carboxyl or hydroxyl 

groups, water permeability, and additives acting catalytically that may include enzymes, 

bacteria or inorganic fillers [85]. In the next subsections the thermal, hydrolytic and 

biological degradation of PLA are summarised. 

2.2.2.5.1. Thermal degradation 

Polyesters in general present a limited thermal stability. In the case of PLA the degradation 

can start at temperatures as low as 215 ºC. The carbon to oxygen bond of the carbonyl group 

is the first to split during heating [68]. Thus, one of the drawbacks of processing PLA by 

melt blending is its tendency to undergo thermal degradation at the processing temperature 

range, which is related both to the melt temperature and the residence time in the extruder. 

Thermal degradation of PLA can be attributed to hydrolysis by trace amounts of water, 
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zipper-like depolymerisation, oxidative random main-chain scission, intermolecular 

transesterification to monomer and oligomeric esters, and intramolecular transesterification 

resulting in formation of monomer and oligomer lactide of low molecular weight [68]. 

Depending where in the backbone the reaction occurs, the product can be a lactide molecule, 

an oligomeric ring, or acetaldehyde plus carbon monoxide. Although acetaldehyde is 

considered to be non-toxic and it is naturally present in many foods, the acetaldehyde 

generated during melt processing of PLA must be minimized if the processed product is 

meant to be used in food packaging, because it can impact the organoleptic properties [61]. 

Moreover, the thermal degradation can be catalyzed by the reactive carboxyl and hydroxyl 

end groups and the presence of residual catalyser or monomers. 

2.2.2.5.2. Hydrolysis 

The hydrolytic degradation is the most common way of degradation of PLA. It is an 

undesired phenomenon during processing or material storage, but might be interesting in 

biomedical applications or compostable packages, among other applications. It starts with a 

water uptake phase followed by hydrolytic splitting of the ester bonds, which leads to 

molecular weight loss. Carboxylic end groups concentration is increased due to chain 

excision, which autocatalyses the degradation. When the resulting oligomers are short 

enough sample weight loss becomes noticeable [86]. 

The amorphous parts of polyesters have been noticed to undergo hydrolysis before the 

crystalline regions due to a higher rate of water uptake [68]. Thus, the initial degree of 

crystallinity affects the rate of hydrolytic degradation. The first stage is accordingly located 

to the amorphous regions. Subsequently, the remaining undegraded chain segments gain 

more space and mobility, which lead to reorganizations of the polymer chains, an increased 

crystallinity and a simultaneous loss in mechanical properties and molecular weight [66,87]. 

The temperature during the hydrolysis is of major importance for the degradation rate due to 

an increased degradation rate and mobility of macromolecules above the Tg, temperatures at 

which the activation energy suffers a drastic change [88].   

2.2.2.5.3. Biodegradation 

Dr. Ramani Narayan proposed the following definition for biodegradability in a plastic 

context: “biodegradability is an end-of-life option that allows one to use the power of 
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microorganisms present in the selected disposal environment to completely remove 

biodegradable plastic products from the environmental compartment in a timely, safe, and 

efficacious way” [2]. Concerning PLA, a two stage degradation mechanism has been 

determined as the main biodegradation process [33]. First, the cleavage of the ester linkages 

by absorbed water produces a successive reduction in molecular weight. As the average 

molecular weight reaches approximately 10000 g/mol (as determined by GPC in reference to 

polystyrene standards), micro-organisms present in the soil begin to digest the lower 

molecular weight lactic acid oligomers [35], producing carbon dioxide and water Fig. 2-17. 

 

Fig. 2-17. Biodegradation of PLA at 60 ºC compost [33]. 

 

This two-stage mechanism is different to many other biodegradable products presently on 

the market. Typically, biodegradable polymers degrade by a single step process, involving 

bacterial attack on the polymer itself. Thus, it has to be noted that PLA is biodegradable in 

compost at temperatures above its Tg. In this environment of high moisture and temperature 

(55-70 ºC), PLA polymers will degrade rapidly. However, at lower temperatures and/or 

lower moisture, the storage stability of PLA products is considered to be acceptable [33]. 

 

2.2.3. Production and market of PLA 

The predominant lactic acid/lactide and polylactide producers up to date (June 2016) have 

been summarized in Table 2-3. NatureWorks (USA) and Corbion (Europe) are the main 
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global producers of lactide worldwide. Contrary to NatureWorks, Corbion’s production is 

based on non-GMO crops. Concerning PLA, NatureWorks is the leading worldwide 

producer, subsequently offering the best price (around 1.80 €/kg) and a broad portfolio, 

which comprises high and low L-lactate purity grades and different molecular weights. On 

the other hand, Corbion (formerly PURAC) had first tried to limit their business model to 

the production and sale of lactide to anyone interested in its polymerization. However, after 

being formally informed of the strong interest to have access to a reliable major 2
nd

 source 

for PLA resins, Corbion informed in May 2015 that they decided to widen the business 

model by having access to a 75kt/year polymerization plant [89]. Currently, Corbion offers a 

narrower PLA grade portfolio, but includes PDLA grades of different molecular weights, 

which are in the core of their business model based on high heat resistant PLA, partly 

focused on stereocomplex PLLA/PDLA blends. A similar focus on high heat resistant PLA 

is also shared by other smaller Asian producers like Teijin. The current state of Futerro, 

which is one of the few companies producing PLA by reactive extrusion, is not clear. Even 

though the investment of Galactic and Total Petrochemical on the business seems to have 

been strongly attenuated in the last years, it has not been officially closed. Shenzen is one of 

the biggest PLA producers in China, but the seriousness of the company is uncertain because 

the offered PLA grades suggest they are trading with NatureWorks grades. Besides the 

companies shown in Table 2-3, huge companies like Toray, Samsung or Unitika, among 

others, produce PLA for internal consumption, but their business model does not include the 

commercialization of PLA. Finally, the harshness of the bioplastic market has given 

different indicators including big company fails, like Cereplast in 2014, which was bought 

by Trellis Earth when it was liquidated in bankruptcy court. In November 2016 Total and 

Corbion announced they were joining forces to develop bioplastics by creating a 50/50 joint 

venture to produce and market PLA. The two partners planned to build a PLA 

polymerization plant with a capacity of 75000 tons per year at Corbion's site in Thailand that 

already had a lactide production unit. Corbion would supply the lactic acid necessary for the 

production of the PLA and the lactide [90].  
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Lactic acid / lactide 
Producer Country Observations 

NatureWorks LLC USA 
Owned by Cargill. Formerly JV of Cargill/Dow (until 2005) and Cargill/Teijin (until 

2009). Lactide from GMO corn (USA) and sugarcane/cassava (Asia). 

Corbion Netherlands Owned by CSM. JV: Purac/Caravan Ingredients. Lactide from GMO-free sugarcane. 

Galactic Belgium  

Henan Jindan Lactic Acid tech.  China  

     

PLA 
Producer Country Grade Capacity (t/year) Observations 

NatureWorks USA Ingeo 150000 
Production in Nebraska and South-east Asia (2018).  

Price≈ 1.8 €/kg 

Corbion Netherlands - 75000 Production in Thailand. Price≈ 2-2.5 €/kg 

Shenzhen Bright China China - 10000  

Supla Taiwan Plantura 10000 Lactide from Corbion. 

Zhejiang Hisun China Revode 5000 Lactide from Corbion. leading PLA supplier in China 

Futerro Belgium - 1500 JV: Galactic/Total Petrochemical. Lactide from Galactic 

Teijin Japan  1200  

WinGram Industrial Hong Kong    

Biomer Germany    

Natureplast France    

Hycail Netherlands    

Synbra Netherlands Synterra  Lactide from Corbion. Producer of Expanded PLA 

Table 2-3. Lactide and polylactide producers by country and production capacity.  
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Because of the intrinsic degradation mechanism, PLA is ideally suited for many applications 

in the environment where recovery of the product is not practical, such as agricultural mulch 

films and bags. Composting of post consumer PLA items is also a viable solution for many 

PLA products. Recently, Expanded PLA (EPLA) has reached packaging market segments 

which were dominated by petrochemical foams as Expanded Polystyrene (EPS). Products 

like fish boxes, packaging for electrical components, protective packaging for white and 

brown goods, packaging for technical products, protective packaging for the pharmaceutical 

and medical industries and horticultural trays, among others, have now the potential to be 

applications for PLA foams. However, due to the low Tg of PLA, these products show poor 

dimensional stability (leading to squashing, deformation and collapse) when exposed to 

temperatures above 60 ºC. Since 2011, companies like Synbra Technology b.v. 

(Netherlands) and Biopolymer Network Ltd (New Zealand) have made big efforts to find a 

market place to PLA foams [91,92]. Besides, PLA is bioabsorbable in the body, and thus it 

has extensive applications in biomedical fields, including suture, bone fixation material, 

drug delivery microsphere, and tissue engineering [93,94]. Spun into fibres, PLA is silk-like 

and the fabrics produced are smooth, skin flattering and with a pleasing drape. Elongation at 

break can be adjusted between 20% and 200% depending on the degree of stretching. As a 

textile, PLA has many attractive properties, which are similar or even superior to PET. Such 

properties include higher tenacity than  natural fibres, excellent moisture transport away 

from the skin (wicking), natural UV resistance, low flammability and low smoke formation 

[95]. Up to now, PLA has played a limited role in the textile market due to relatively high 

prices and some processing handicaps of PLA in the textile production chain. However, 

solutions already exist to overcome these deficiencies and various efforts are ongoing to 

meet these challenges [96]. 

The use of modified PLA in the durables and semidurables market has attracted great 

interest during the last few years. Big efforts have been made in order to use PLA instead of 

ABS or HIPS in different products. For instance, Kuender & Co. (Taiwan) presented an all-

in-one Pc whose housings were made of SUPLA Material and Technology’s modified PLA 

in 2013. This was claimed to be the first time that PLA was used for mass production of 

consumer electronics in replacement of ABS [97]. NEC, Fujitsu, and Canon are using PLA 

blends (mostly with PC) in electronic consumer good housings.  NEC even has a proprietary 

branding for its PLA based application called NuCycle, a flame-resistant compound 



PhD Thesis. Different approaches to obtain poly(lactic acid) based compounds for semidurable applications 

Chapter 2. p. 41 

 

developed with Sumitomo Dow. Toyota has been an early adopter of PLA for car parts, 

including a floor mat for the third-generation Toyota Prius that uses PLA based fibre. On the 

other hand, Röchling Automotive (German-based Tier II) developed their own modified 

PLA compounds which are claimed to be capable of competing with most polyesters 

available on the market (PC, PET, PBT), styrenics (ABS), polyolefins (PP) and even 

polyamides (PA6). They have shown different automotive prototype parts produced in 

different grades, all based on PLA and having biobased carbon contents as high as 95%. One 

problem of automotive applications is humidity and thermal requirements in standard 

accelerated aging tests. These materials show improved hydrolysis and thermal resistance up 

to 140 °C with fibre reinforcement. Impressive results were also obtained for scratch and 

UV resistance, which is of key importance for vehicle interior applications. Air-filter 

housings, deflectors and interior trim parts are an example of what can be produced on PLA 

based compounds for the automotive industry [98].  

 

2.3.  Processing of PLA based formulations 

PLA is a highly versatile polymer which can be tailor-made into different resin grades for 

processing into a wide spectrum of products. The main conversion methods for PLA are 

based on melt processing. This approach involves heating the polymer above its melting 

point, shaping it to the desired forms, and cooling to stabilize its dimensions. Thus, 

understanding of thermal, crystallization, and melt rheological behaviours of the polymer is 

critical in order to optimize the process and part quality. Some of the examples of melt 

processed PLA are injection moulded disposable cutlery, thermoformed containers and cups, 

injection stretch blown bottles, extruded cast and oriented films, and melt spun fibres for 

nonwovens, textiles and carpets [99–101].  

PLA can be processed using conventional production equipment with minimal modification. 

However, its unique properties must be taken into consideration in order to optimize the 

conversion of PLA into processed parts, films, foams, and fibres. 
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2.3.1. Drying 

A major problem in the manufacturing of PLA based compounds is the limited thermal 

stability during melt processing. Polymers containing ester linkages tend to suffer chain 

scission when exposed to heat even for short times (thermal degradation of PLA is discussed 

more in detail in section 2.2.2.1. Thermophysical properties). Hence, before melt 

processing, PLA must be carefully dried in order to prevent excessive hydrolysis, which can 

compromise the physicomechanical properties of the polymer. Typically the polymer is 

dried to less than 100ppm moisture content (0.01%, w/w). Natureworks LLC, the main 

worldwide supplier for PLA, recommends that resins should be dried below 250 ppm 

moisture content before processing [102]. For processes that have long residence times or 

require temperatures close to 240 ºC the resin should be dried below 50 ppm to achieve 

maximum retention of molecular weight [103,104]. 

Drying of PLA takes place in the temperature range of 80–100 ºC. Commercial grade PLA 

pellets are usually crystallized, which permits drying at higher temperatures to reduce the 

required drying time. In contrast, amorphous pellets must be dried below the Tg (<60 ºC) to 

prevent the resin pellets from sticking together, which can bridge and block the drying 

hopper. PLA degrades at elevated temperatures and high relative humidity; hence it is 

noteworthy that the resins should be protected from hot and humid environments. Henton et 

al. reported that amorphous PLA can dramatically reduce its Mw in less than a month when 

exposed to 60 ºC and 80% RH [62]. Concerning the equipment, the dew point of the dryer 

should be −40 ºC or lower to achieve an effective drying [61]. 

2.3.2. Twin screw extrusion 

A twin screw extruder is a machine with two single screws. The most obvious classification 

in a twin screw machine is whether the two screws rotate in the same (co-rotating) or 

opposite (counter-rotating) directions. The basic principle of twin screw extruders was 

conceived in Italy in the late 1930s by Roberto Colombo of Lavorazione Materie Plastiche 

(LMP) to address the problem of mixing cellulose acetate without solvent. Colombo 

developed a system of intermeshing co-rotating screws, which proved effective to the 

purpose [105,106]. Since then, intermeshing co-rotating twin screw extruders have been 

used for mixing different ingredients into polymer matrices. This may involve particulates 

(compounding) and/or a second polymer (blending). The goal of mixing is to reduce the 
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non-uniformity of the mixture, and can be accomplished by inducing physical motion of the 

ingredients. The convective flow is the predominant mechanism of mixing in polymer melts, 

and the mixing action generally occurs by shear flow or elongational flow [107]. If the 

components to be mixed are fluids or cohesionless clusters which do not exhibit a yield 

point, then the mixing is distributive. On the contrary, if the mixture contains a component 

that exhibits a yield stress (i.e.: fluids or cohesive clusters), then the mixing is dispersive. In 

dispersive mixing a solid component needs to be broken down, but the breakdown occurs 

only after a certain minimum stress has been exceeded. Therefore, mixing mechanisms may 

be generally classified according to whether they are concerned with the dispersion of small 

particles in a polymer melt matrix or with the mixing of two viscous melts. They may be 

further classified into distributive mixing and or dispersive mixing (Fig. 2-18). Distributive 

mixing means the repeated arrangement of the two components to reduce non-uniformity. 

Permanent strain must be imposed on the system to achieve it. Dispersive mixing usually 

refers to the breakup of agglomerates of solid particles in a fluid matrix, though it has also 

been applied to homogenisation of liquid-liquid systems. The local strain rate and stress play 

important roles here. Note that distributive and dispersive mixing often come together. In 

dispersive mixing there is always distributive mixing. However, the reverse is not always 

true. In twin screw extrusion, the dispersive sections of the screw are usually followed by a 

distributive section. 

 

Fig. 2-18. Scheme of the effect of distributive and dispersive mixing. 
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Twin screw extrusion of PLA based compounds is in general linked to a subsequent 

processing step (e.g. injection moulding, thermoforming, fibre drawing...). Thus, the 

properties of the compound will depend on the specific conditions during the second 

processing step (e.g. shear rate, temperature...). However, the main parameters for 

compounding will potentially have a great influence on the properties, i.e. the processing 

temperature, residence time, moisture content of the polymer and shear rate (screw design 

and speed) [108]. 

 

2.3.3. Injection moulding 

Injection moulding is the most widely used converting process for thermoplastic articles, 

especially for those that are complex in shape and require high dimensional precision. All 

injection moulding machines have an extruder for plasticizing the polymer melt. Unlike a 

standard extruder, the extruder unit for injection moulding machine is designed such the 

screw can reciprocate within the barrel to provide enough injection pressure to deliver the 

polymer melt into the mould cavities. 

In general, injection moulded PLA articles are relatively brittle. The brittleness of PLA has 

been attributed to the rapid physical ageing of the polymer since room temperature is only 

about 25 ºC below the Tg [63,64]. Injection moulded articles tested immediately after 

quenching to very cold temperatures exhibited a much larger extension to break. However, 

when the moulded specimens were aged at room temperature for 3–8 h, they became very 

brittle [61]. This phenomenon was attributed to the reduction of free volume of the polymer 

due to rapid relaxation towards the equilibrium amorphous state. Ageing below Tg is 

exclusively related to the amorphous phase of the polymer; accordingly, increasing the 

crystallinity of the polymer (e.g. by adjusting D-isomer content or the use of nucleating 

agents) will reduce the ageing effect. Furthermore, the crystallites formed also act like 

physical crosslinks to retard the polymer chain mobility. On the other hand, the tendency of 

lactide to condensate on the cold tooling surfaces, which can affect the surface finish and 

weight of the moulded articles, limits the minimal mould temperature that can be used 

during injection moulding of PLA to 25–30 ºC. Moreover, process parameters such as 

packing pressure, cooling rate, and post-mould cooling treatment are expected to influence 

the PLA aging behaviour as well [109]. 
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The reason behind the limited available information regarding injection moulding of PLA is 

that the main application for this material has been packaging, sector in which other 

technologies like thermoforming or blow moulding are more interesting. Hence, there is a 

lack of knowledge concerning the behaviour of PLA injected at different mould 

temperatures and crystallinity levels that can be achieved in situ. This issue has been studied 

during this thesis. 

 

2.3.4. Other processing methods  

Due to the increasing environmental awareness of the consumers, there is a sustained 

interest from the food industry to replace the existing non-biodegradable thermoplastics with 

PLA for certain beverage products. The production of PLA bottles is based on injection 

stretch blow moulding (ISBM) technique. This process produces biaxial orientated PLA 

bottles with much improved physical and barrier properties compared to injection moulded 

amorphous PLA. In the blow moulding machine, the previously injected preform (also 

known as parison) is heated by IR to a suitable temperature (85–110 ºC) for blow moulding. 

PLA preforms have a tendency to shrink after reheating, especially the regions near the neck 

and the end cap where the residual injection moulding stresses are concentrated. This may 

be moderated through proper preform design with gradual transition regions. Similarly to 

PET, PLA exhibits strain-hardening when stretched to high strain. This phenomenon is 

desirable for blow moulding of preforms to achieve optimal bottle side wall orientation and 

minimize wall thickness variation. Since strain-hardening occurs only when the PLA is 

stretched beyond its natural stretch ratio, the preform must be designed to match the target 

bottle size and shape, such that optimal stretch ratios are achieved during blow moulding. 

Preforms that are under-stretched will result in bottles with excessive wall thickness 

variation, weak mechanical properties and poor aesthetic appeal. In contrast, overstretched 

bottles can also result in stress whitening due to the formation of micro-cracks on the bottle 

surfaces that diffract light. Typical commercial grade PLA resins for bottle applications 

require preform axial stretch ratios of 2.8–3.2 and hoop stretch ratios of 2–3, with the 

desirable planar stretch ratio of 8–11 [110,111]. 

Thermoforming is commonly used for forming packaging containers that do not have 

complicated features. PLA polymers have been successfully thermoformed into disposable 
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cups, single-use food trays, lids, and blister packaging. In this process, PLA sheet is heated 

to soften the polymer, forced either pneumatic and/or mechanically against the mould, 

allowed to cool, removed from the mould, and then trimmed. In general, the thermoforming 

temperatures for PLA are much lower than other conventional thermoformed plastics (e.g., 

PET, PS, and PP) in the range of 80–110 ºC when the sheet enters the mould [112,113]. 

Moulds, trim tools and ovens designed for thermoforming of PET, high impact polystyrene 

(HIPS) and PS can be used for forming PLA containers. However, moulds for 

thermoforming of PP may not be used interchangeably for PLA, since PP shrinks more 

considerably than PLA during cooling. For a given part thickness, cooling times required for 

PLA containers in the mould tend to be higher than PET and PS containers due to the lower 

thermal conductivity and Tg for PLA polymers [61]. 

Due to their biocompatibility and large surface area, PLA foams have a niche in tissue 

engineering and medical implant applications [114–116]. On the other hand, loose-fill 

packaging materials provide cushioning, protection, and stabilization of packaged goods 

during shipping. Over the past decade, the use of expanded PS foams for loose-fill 

packaging has declined due to the replacement with the more environmentally benign starch 

based expanded foams. To overcome the hydrophilic nature of starch, these biobased foams 

are often blended with PLA or petroleum polymers [117]. Neat foamed PLA is also being 

commercialized for these and other applications [118]. Foaming of PLA is generally carried 

out by dissolving a blowing agent in the PLA matrix. The solubility of the blowing agent is 

then reduced rapidly by producing thermodynamic instability in the structure (e.g., 

temperature increase or pressure decrease) to induce nucleation of the bubbles. To stabilize 

the bubbles, the foam cells are vitrified when the temperature is reduced below the Tg 

[119,120]. 

2.4.  Different approaches to modify the properties of PLA 

Some of the intrinsic properties of neat PLA need to be improved for applications where 

PLA is intended to be used as a substitute for other thermoplastics. For instance, the 

brittleness of PLA may prevent its use in applications where toughness and impact 

resistance are critical. The fact that PLA being biodegradable (compostable) may in some 

cases lead to unpredicted performance if the polymer is exposed to excessive temperature 
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and humidity conditions. Some of these challenges are expected to be achieved through 

blending PLA with other polymers, improving its crystallization capabilities, reinforcing it 

to obtain micro- or nanocomposites, or by the modification of the polymer itself. Research 

and development in these areas are opening new potential opportunities for PLA in order to 

be used as a high performance biodegradable polymer. Fig. 2-19 shows the evolution of 

different Ingeo PLA grades by NatureWorks LLC, which are expected to invade part of the 

PS or SAN based semidurable market first and the ABS or PC/ABS based durable market 

afterwards. These optimised PLA polymers are usually modified to enhance and adjust their 

properties to specific applications by compounders or other polymer processors in the value 

chain.   

 

 

Fig. 2-19. Evolution of PLA in terms of value and performance in comparison to other conventional 

thermoplastics (by NatureWorks LLC [121]). 

 

The next sections summarize the insights of some of the main approaches to modify PLA. 
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2.4.1. Melt blending of PLA with other thermoplastics 

Blending different polymers is as one of the most versatile and economical methods to 

produce new multiphase polymeric materials that are able to satisfy the market demands. 

Polymer blends with enhanced thermal, mechanical, physical, chemical, optical and other 

properties represent over 30% of the total consumption of polymers, and the world market 

for the blends is expected to increase at a rate of about 9% per year [122].  

In a perspective of production scale-up, melt blending of PLA with other polymers is a 

sustainable and effective approach to improve the thermo-mechanical behaviour of PLA 

based materials. Blends can exhibit advantageous physical and chemical properties that each 

individual polymer does not possess. However, the properties of the obtained blends depend 

on the chemical composition and the compatibility or miscibility of the components. Thus, 

many attempts have been made to modify poly(lactic acid) by blending with other polymers, 

including poly(acrylonitrile-butadiene-styrene) [123], poly(vinyl acetate) [124], poly(vinyl 

chloride) [125], polystyrene [126,127], polycarbonate [128,129], polyethylene [130–132], 

thermoplastic starch [133], poly(ethylene oxide) [134–136], poly(ethylene glycol) [137–

139], poly(ethylene-co-vinyl acetate) [140,141], poly(butylene succinate) [142], 

poly(butylenes-adipate-co-terephthalate) [143], polyhydroxyalkanoates [144,145] and 

polyacrylates [146,147]. However, the most reported studies on blends have been on PLA of 

different enantiomer concentrations [148]. Especially, the stereocomplexation of the 

enantiomerically pure PLLA and PDLA has been extensively studied because of the 

increased melting temperature and improved mechanical properties [77,149–152]. None of 

these attempts have led to the obtention of a big enough simultaneous thermal and impact 

resistance improvement. Therefore, the study of PLA based compounds with enhanced 

properties is still being studied.  

 

2.4.2. Reactive extrusion (REx) of PLA based blends 

Due to the inherent low entropy of polymers, the melt-mixing among them usually results in 

an immiscible blend system, characterized by a coarse and unstable phase morphology, and 

poor adhesion between the phases. To overcome these limitations, compatibilization is 

required, which should reduce the interfacial tension, stabilize the blend phase morphology 

against coalescence, and enhance the adhesion between the phases [153,154]. 
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When a chemical reaction is carried out during extrusion, the process is called reactive 

extrusion (REx). The reaction can be of varied nature, including polymerization, branching, 

chain extension or reactive compatibilization. For example, the technology used by Futerro 

to polymerize lactide to polylactide is based on REx, different reactive agents are commonly 

used to tune melt viscosity of thermoplastics inducing branching, recent efforts to increase 

the molecular weight of recycled PET by chain extension are based on REx, etc. Hence, REx 

is a very promising technique to obtain enhanced properties in blends, especially for the 

polymer couples that do not lead to interesting properties by simple physical blending due to 

immiscibility. For example, concerning PLA, REx has been shown to be an interesting 

technique to obtain improved properties on PLA/ABS blends using SAN-GMA as reactive 

agent [155], PLA/PCL by using coupling agents and catalysts [156–158], PLA/TPS by 

maleic anhydride or isocianates [159–165], or PLA/PBAT blends by inducing 

transesterification using Ti(OBu)4 as catalyst [166]. Besides, melt modification of PLA by 

peroxides has been found to cause drastic changes in its properties. Branching has been 

suggested to be the dominating structural change in PLLA at peroxide amounts in the range 

of 0.1-0.25 wt% and also crosslinking at peroxide additions above 0.25 wt% [68]. The 

peroxide reactions increased the melt strength. Morphological changes occurred in the 

peroxide modified PLLA as a result of a reduced crystallization rate, which resulted in a 

faster hydrolytic degradation. The tensile modulus was reduced and a more flexible material 

was obtained [167]. 

 

2.4.3. Crystalline PLA 

Owing to the chiral nature of lactic acid (L and D) and the corresponding lactides, different 

PLA architectures are obtained by ring opening polymerization. The crystallization rates, 

maximum degree of crystallization and melting temperature of PLA are strongly dependent 

on the L/D ratio [168–170]. It is generally considered that for PLA mainly based on L-lactic 

acid, the incorporation of D-lactic acid in proportions above around 7% prevents or strongly 

limits polymer crystallization [56]. According to the L/D ratio, amorphous or semi-

crystalline PLA can be synthesized and, consequently, strong variations on thermal, 

mechanical and barrier properties can be obtained [57,58]. Semicrystalline PLA shows some 

improved properties when compared to amorphous PLA, especially regarding thermal 
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resistance, which is one of the limiting properties of PLA to enter the semidurable 

applications segment. However, to achieve high crystallization rates, it is necessary to 

improve both nucleation and growth steps. The nucleation density could be increased by the 

addition of nucleation agents, and the growth step could be accelerated by adding 

plasticizers that could improve polymer chain mobility [171,172]. In the literature different 

types of nucleating agents such as talc, clay, calcium carbonate, nanotubes, fullerenes, 

polymers like PDLA and low molar mass organic compounds like ethylene bis(stearamide) 

(EBS) have been reported to be very effective for seeding the crystallization of PLLA 

[57,168,173–180]. The main interest of PDLA as nucleating agent for PLLA is linked to the 

creation of stereocomplex crystals during cooling, which would act as nucleating sites for 

the subsequent homochiral crystallization [77,181–184]. The construction of stereocomplex 

crystals require long enough L-lactic acid segments to meet D-lactic acid segments of PDLA 

polymer chains [77]. The effect of the molecular weight and fraction of PDLA on the 

nucleation and homo-crystallization rate of PLLA has also been reported in the literature 

[183,184]. EBS is an organic compound with a low molar mass and a melting temperature at 

around 140 ºC, which crystallizes very quickly while cooling from the melt. These EBS 

crystals act as nucleating agents during the subsequent crystallization of PLA [180]. 

Besides, plenty of other nucleating agents have been studied for PLA, as summarized by 

Zhao et al. [185]. 

 

2.4.4. Fibre reinforced PLA 

Different type of fibres can be used as reinforcement of PLA in order to overcome its low 

thermal resistance besides increasing stiffness. Even though synthetic fibres have been 

studied with PLA [186,187], natural fibres such as the lignocellulosic ones have attracted a 

lot of interest during the last decade because they are a more environmentally conscious 

alternative [188–191]. Natural fibres are abundant around the word and they exhibit many 

advantages as the biodegradability, fair specific mechanical properties due to their low 

density and its ease for processing [188–190]. In this context, PLA has been extensively 

used for preparing fully biobased and biodegradable composites based on natural fibres 

[188,192]. The performance of fibre reinforced polymeric composites depends not only on 

the strength of the fibre and the polymeric matrix, but also on the fibre/matrix interface 
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adhesion because interfacial debonding  is one of the most usual failure modes [193–195]. 

This type of failure is due to a poor interface adhesion between the fibre and the matrix, 

which leads to an inefficient stress transfer under load, hence resulting in low mechanical 

strength. Indeed, the main disadvantage of lignocellulosic fibres is the poor interfacial 

adhesion with PLA [188,192]. Therefore, there is a need to modify the surface of the fibre 

before mixing them with PLA and several methods to do so can be found in the literature 

[188,192]. 

On the other hand, the addition of nanofillers represents another interesting way to extend 

and improve the properties of PLA in order to prepare high-performance polymer 

nanocomposites. Due to the nanometric size of nanofillers, nanocomposites could present 

unique outstanding properties when compared to their microcomposite counterparts [196]. A 

fine dispersion and uniform distribution of nanoparticles within the PLA matrix is essential 

in order to maximize the matrix-reinforcement interfacial area and thus improve the 

properties of PLA. The most investigated nanofillers have been carbon nanotubes (CNTs), 

montmorillonite (MMT) and cellulose nanocrystals (CNC). Concerning PLA-based 

nanocomposites, Raquez et al. published a comprehensive review which highlights the main 

researches and developments [197]. 
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3.1.  Introduction 

Poly(methyl methacrylate) (PMMA) is a synthetic polymer with good chemical and physical 

properties. There is little scientific literature regarding PLA/PMMA blends and most of 

papers are for blends prepared by solution methods [147,198–201]. However, two studies of 

PLA/PMMA blends prepared by melt processing can be found in the literature [202,203]
 
but 

reported results seemed to be contradictory. Samuel et al. [202] observed that all 

PLA/PMMA blends prepared by melt compounding were miscible. PLA/PMMA blends 

prepared via melt processing were also studied by Le et al. [203]. They concluded that the 

obtained blends were immiscible and regions of co-continuous structures were identified 

using SEM images.  

In this chapter, melt blending of PLA with PMMA was carried out using a semi-industrial 

twin screw extruder and the characterization of different blends is presented and compared 

with the scarce results reported in the literature.  Phase structure, morphology, thermal 

properties and mechanical properties of obtained blends were studied. Flory–Huggins 

interaction parameter of PLA/PMMA blends was estimated using the solubility parameters 

calculated by group contribution method according to Small and Van Krevelen. An attempt 

was made to relate miscibility, morphology and properties in the studied blends. 

On the other hand, the effect of the addition of poly(styrene-co-glycidyl methacrylate) (P(S-

co-GMA)) copolymer on the rheology, phase morphology, thermal stability, mechanical 

properties and impact resistance of melt compounded PLA/PMMA 80/20 (%wt) blend was 

studied, too. 
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3.2.  Experimental 

3.2.1. Materials 

PLA was purchased from NatureWorks LLC (Ingeo™ 3051D, Mn= 106.000 g/mol; PDI: 

1.7; ≈4.6% D-lactate) and PMMA was purchased from Evonic ROM GmbH 

(PLEXIGLAS® zk5BR, Mn= 70000 g/mol; PDI: 2.3). Molecular weights and molecular 

weight distribution were determined by GPC. Poly(styrene-co-glycidyl methacrylate) 

copolymer (CAS: 25167-42-4; Mn= 29.000 g/mol; Đ: 1.9) was kindly supplied by Macro-M 

(Kuo Group). NMR 
13

C analysis indicated that copolymer composition consisted of 80% 

styrene and 20% methacrylate, and glycidyl substitution was present at 50% of the 

methacrylate groups. Fig. 3-1 shows the molecular structure of the copolymer. 

 

Fig. 3-1. The chemical structure of poly(styrene-co-glycidyl methacrylate). 

 

3.2.2. Sample preparation 

PLA/PMMA blends with weight ratio of: 100/0, 80/20, 60/40, 50/50, 40/60, 20/80 and 0/100 

were prepared by means of a Brabender DSE 20/40 corrotating twin screw extruder 

(Ø=20mm, L/D=40). Manually premixed pellets were fed to the extruder using a gravimetric 

feeder at a constant 2 kg/h rate. Screws were configured with three separated high shear 

mixing stages based on kneading blocks, a vacuum aided venting zone after the third mixing 

stage and distributive mixing screw elements at the final stage (Fig. 3-2). 
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Fig. 3-2. Screw configuration used for melt compounding. 

 

Prior to extrusion, all systems were dried for 4h at 80 ºC by a dehumidifying dryer. Neat 

PLA was extruded at 200 ºC and neat PMMA at 240 ºC, the lowest recommended 

processing temperature for this grade. Due to the difference on the recommended processing 

temperatures of both polymers, all blends were extruded at 215 ºC and 180 rpm. Obtained 

blends were dried for 12h at 50 ºC and moulded in a full electric DEMAG IntElect injection 

machine at 60 mm/s injection rate (600-700 bar injection pressure) to obtain 90x90x2 mm
3
 

platelets. Samples for FTIR, DSC, DMA and impact tests were cut from the platelets. On the 

other hand, V type specimens (ASTM D638) for tensile tests were injected at 300 bar 

injection pressure by means of a Haake MiniJet II injection machine. Neat PLA, all blends 

and neat PMMA were injection moulded at 200 ºC, 215 ºC and 240 ºC, respectively. 

In addition, PLA/PMMA 80/20 (%wt) based systems containing 1, 2, 3 and 5 grams of P(S-

co-GMA) copolymer per hundred grams of PLA/PMMA blend were prepared by reactive 

extrusion (REx); subsequently designated as 1, 2, 3 and 5 pph. Produced pellets were dried 

for 12h at 50 ºC and then injection moulded in a Haake MiniJet II (8s of injection plus 25s 

holding time at 300 bar) to obtain V type specimens (ASTM D638) for tensile and impact 

tests. Mould temperature was set at 25-30 ºC. 

 

3.2.3. Characterization techniques 

The molecular weight and molecular weight distribution were determined by Gel 

Permeation Cromatography (GPC) with a PerkinElmer chromatograph equipped with a 

binary pump and a refractive-index detector. The mobile phase was THF and elution rate of 

1 mL/min at 30 °C was used. The separation was carried out with four Phenomenex 

columns, 10
5
 Å, 10

3
 Å, 100 Å and 50 Å, with 5 m particle size. The columns were 

calibrated with polystyrene standards before the measurements according to standard 
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procedures, Mark-Houwink constants taken from literature were used, KPLA=0.0153 mL/g, 

PLA=0.759 and KPMMA=0.00944 mL/g, PMMA=0.719 [204,205]. Fourier Transform Infrared 

transmission (FTIR) measurements were performed by a Nicolet Protégé 460 spectrometer 

from 400 to 4000 cm
-1

. FTIR spectra were collected by performing 32 scans with a 

resolution of 4 cm
-1

 on hot pressed films. Differential Scanning Calorimeter (DSC) was used 

to determine thermal properties of all systems. Samples of 6 to 8 mg were analysed. Two 

heating scans were performed from -10 to 250 ºC at a heating rate of 10 ºC/min using a TA 

Instruments Q100 model, previously calibrated by indium and sapphire standards following 

the indications of the supplier [206]. Dynamic Mechanical Analysis (DMA) was carried out 

in a Rheometrics Solid Analyzer RSA II applying a 2% deformation at a 1Hz frequency by 

dual cantilever bending method. Specimens with 50x5x2 mm
3
 dimensions cut from injection 

moulded platelets were heated from 35 to 140 ºC at a rate of 2 ºC/min. Tensile tests were 

carried out according to ASTM D638 standard (1 mm/min) by means of a MTS Insight 

electromechanical tensile test machine equipped with a 2.5 kN load cell and a contact 

mechanical extensometer. Unnotched Charpy impact tests were carried out by means of an 

ATS faar IMPats-15 impact pendulum with a 2J hammer using a support span of 40 mm. 

Impact fractured surfaces coated with Au were analyzed by a Hitachi S-4800 Field Emission 

Scanning Electron Microscope (FE-SEM). Even though sample geometry used for impact 

test did not follow any standards, for comparison purposes injection moulded V type 

specimens were cut to have the length of 63.5 mm and the constant section of 3.18 x 3.29 

mm
2
. Thermogravimetric measurements were carried out using samples of about 10 mg on a 

TA Q50 thermobalance. Mass loss was recorded at 10 ºC/min during a heating scan from 30 

ºC to 600 ºC in N2 atmosphere. 

Regarding the systems prepared by REx, rotational rheometry analysis was carried out using 

a HAAKE MARS III device, equipped by parallel plates. Hot pressed samples of 

PLA/PMMA 80/20 wt% were die-cut to obtain specimens (Ø=20 mm, 400-500 mg) and 1, 

2, 3 and 5 pph of P(S-co-GMA) copolymer was added to monitor the reaction. The 

temperature of 215 ºC was set, the same as for extrusion process. The radius of the plates (r) 

and the gap between the plates (h) were 10 mm and 0.5 mm, respectively.  

The apparent viscosity was calculated from the shear stress and shear strain values by Eq. 

3-1, Eq. 3-2 and Eq. 3-3. 
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Eq. 3-3 

 

 

Where r and h are the radius of the plates and the gap between the plates, respectively; Md is 

the torque (Nm); and n is the rotating speed (min
-1

).  

 

3.3.  Results and discussion 

3.3.1. PLA/PMMA blends. 

3.3.1.1. FT-IR Analysis 

FTIR spectroscopy is a powerful tool for investigating polymer blends. Differences in band 

positions and shapes in the spectra suggest interactions between two polymer components. 

Fig. 3-3 shows FTIR spectra of neat polymers and PLA/PMMA blends.  

The differences between PLA and PMMA spectra were in the ranges 2000-1500 and 1050-

750 cm
-1

. The stretching mode of the carbonyl groups showed an absorption band at 1749 

cm
-1

 and 1724 cm
-1

 for PLA and PMMA, respectively. A clear evolution of this band was 

noticeable in the spectra of the blends, increasing PMMA content in the blend the intensity 

of the band at 1724 cm
-1

 was higher. PMMA showed a band at 987 cm
-1

 due to C-C 

stretching influenced by CH2 bending and a band at 841 cm
-1

 related to CH2 rocking band 

[207,208] which were not present in PLA spectra. The band at 866 cm
-1

 was related to 

skeletal stretching and CH3 rocking of amorphous PLA [209] and it was not present in 

PMMA spectra. There were no obvious changes in PLA and PMMA band positions in 
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blends, which suggested that interactions between the two components are weak or 

negligible [210].  

 

 

Fig. 3-3. FTIR spectra of all systems. 

 

3.3.1.2. Miscibility of PLA/PMMA blends 

Injection moulded platelets are shown in Fig. 3-4. Neat PMMA platelet was transparent due 

to the unique amorphous phase. Neat PLA platelet was almost transparent which indicated a 

very low crystallization degree. All blends were translucent suggesting the coexistence of 

more than one phase in all PLA/PMMA blends.  

 

 

Fig. 3-4. Injection moulded platelets for all systems. 
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The miscibility of PMMA and PLA was studied by Differential Scanning Calorimeter and 

Dynamic Mechanical Analysis. Glass transition temperature (Tg) of a polymer blend is one 

of the most important criteria to study the miscibility of its components. Miscibility between 

two polymers in the amorphous state is characterized by the presence of a single Tg 

intermediate between those of the two components. On the contrary, immiscibility of two 

polymers is demonstrated by retention of the Tg values of both individual components 

[198,211]. Fig. 3-5 and Fig. 3-6 show the first and second DSC heating scan thermograms 

for all systems, respectively. 

 

 

 

Fig. 3-5. DSC first heating scan thermograms: a) 100/0 (neat PLA), b) 80/20, c) 60/40, 

 d) 50/50, e) 40/60, f) 20/80 and g) 0/100 (neat PMMA). 
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Fig. 3-6. DSC second heating scan thermograms: a) 100/0 (neat PLA), b) 80/20, c) 60/40,  

d) 50/50, e) 40/60, f) 20/80 and g) 0/100 (neat PMMA). 

 

First and second scan thermograms were completely different. In Fig. 3-5 two Tg were 

observed whereas in Fig. 3-6 only one Tg was observed. In the first scans, the Tg of PLA 

remained almost constant at around 58-65 ºC until weight ratio reached 50/50, while the Tg 

of PMMA decreased from 107 to 65 ºC more rapidly. Hence, Tg variations of PMMA-rich 

and PLA-rich phases were very different. This peculiar behaviour seemed to indicate that 

interactions and the miscibility in PLA rich phases and PMMA rich phases were different 

and depend on blend composition. Tg variations observed in the first scans could indicate 

that PMMA-rich phases showed better miscibility than PLA-rich phases ones. 

Fig. 3-7 shows the evolution of tan as a function of blend composition. A clear peak related 

to the blend major component Tg was observed and in some compositions a shoulder was 

noticed related to the blend minor component Tg. 

 



PhD Thesis. Different approaches to obtain poly(lactic acid) based compounds for semidurable applications 

Chapter 3. p. 63 

 

 

Fig. 3-7. The influence of PMMA content in the evolution of blends tan: ▲100/0(neat PLA), 

□80/20, ◊60/40, ×50/50, +40/60, ○20/80 and ▼0/100 (neat PMMA) 

 

Partial miscibility of PLA and PMMA was demonstrated by a clear displacement of the 

glass transition temperatures of components in the blends. The peak and shoulder locations 

varied with the blend composition and the glass transition temperature of PLA increased as 

the proportion of PMMA in the blend was increased, indicating that after melt blending PLA 

and PMMA certain miscibility was achieved. From the analysis of the tanδ peaks it was 

observed that neat PLA and 80/20 blend had relatively similar full widths at half maximum 

(FWHM) (Table 3-1), which has been related to the temperature range which is needed to 

gain mobility during glass transition [147]. The FWHM of 50/50, 40/60 and 20/80 blends 

resembled to that of neat PMMA. 

PLA/PMMA FWHM 

 (ºC) 

100/0 9 

80/20 10 

60/40 20 

50/50 18 

40/60 19 

20/80 19 

0/100 16 

Table 3-1. Full widths at half maximum of tanδ peaks. 
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In the first DSC scan thermograms, neat PLA and some blends showed some degree of 

crystallinity (Xc) which was calculated by Eq 3-4: 

 

   
       
     

 
Eq. 3-4 

 

Where ΔHm, ΔHc and f are the melting enthalpy, crystallization enthalpy, and weight 

fraction of PLA in the blend, respectively. Theoretical melting enthalpy value for a 100% 

crystalline PLA (ΔHo) was estimated to be 93 J/g [66]. Thermal transition temperatures, 

crystallization enthalpies, melting enthalpies and the degree of crystallinity of different 

samples are reported in Table 3-2. 

Neat PLA was almost amorphous and the addition of PMMA prevented the crystallization of 

PLA. Only when the content of PLA in blends was higher than 50% some crystallization 

took place during the heating scan (due to the low enthalpy, the melting peak of the 60/40 

blend is hardly noticeable in Fig. 3-5). Zhang et al. mentioned that crystallization kinetics of 

PLA was highly restricted by amorphous PMMA [198]. The DSC thermograms of the 

second heating scans were completely different. In the blends PLA was amorphous and only 

one Tg was observed, located between the Tg of individual components. The Tg position 

changed with the composition of the blend indicating the miscibility between PLA and 

PMMA. The fact that no crystallization process was observed in the second DSC scan could 

be due to a better degree of miscibility between the components of the blend [198]. Besides, 

PLA grade used in this work has low optical purity (≈4.6% D- enantiomer in L-) resulting in 

a low rate of crystallization kinetics of PLA. Nam et al observed that crystallization rate of a 

PLA with D content of 0.8% was very slow [180]. 

Eguiburu et al. obtained similar results for PLLA/PMMA blends prepared by 

solution/precipitation method. They reported a clear difference on the miscibility degree of 

polymers from the first to second DSC heating scans. In the first scan two Tg were 

noticeable slightly different from the Tg of the homopolymers in the pure state. Only one Tg 

was observed during the second heating scan and Tg value increased as the PMMA content 

increased in the blend [147].  
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PLA/PMMA Scan 
Tg 

(ºC) 

Tcc 

(ºC) 

Tm 

(ºC) 

ΔHcc 

(J/g) 

ΔHm 

(J/g) 

Xc 

(%) 

100/0 
1

st
   58 (65) 124 151 14.4 17.5 3.3 

2
nd

   58 - 146 - 1.0 1.1 

80/20 
1

st
   58 (68) 116 149 18.7 20.6 2.5 

2
nd

   62 - - - - 0 

60/40 
1

st
   61-69 (77-80) - 150 - 0.8 1.5 

2
nd

   63 - - - - 0 

50/50 
1

st
   65 (81) - - - - 0 

2
nd

   65 - - - - 0 

40/60 
1

st
   64-86 (82-85) - - - - 0 

2
nd

   71 - - - - 0 

20/80 
1

st
   76-97 (103) - - - - 0 

2
nd

   87 - - - - 0 

0/100 
1

st
   107 (121) - - - - 0 

2
nd

   110 - - - - 0 

Table 3-2. Thermal transition temperatures, crystallization and melting enthalpies and the degree of 

crystallinity of different samples. Values in brackets correspond to DMA data. 

 

Only two works were found in the literature where PLA/PMMA blends were obtained by 

melt compounding. In contrast to the results reported in this work, Samuel et al. observed 

that all PLA/PMMA blends processed at 210 ºC were miscible since they observed a unique 

-relaxation transition and a unique glass transition at intermediate temperature between 

pure PLA and pure PMMA. They blended PLA (Mw=218.000 g/mol) with two different 

PMMA grades with different average molecular weights Mn=52000 and Mn=37000, 

respectively. The molecular weight of PMMA used in our work was higher and even though 

the processing temperature was slightly higher (215 ºC) immiscible blends were obtained. 

DSC results confirmed that after heating the blends until the temperature of 250 ºC, miscible 

samples were obtained. The obtained results suggested that PLA/PMMA blends were 

miscible but the mixing process seemed to be controlled by the diffusion of PMMA chains. 

Increasing the temperature the diffusion of PMMA in the blends could be accelerated and 

this could be the reason for the miscibility after the first DSC scan. Le et al. [203] prepared 

PLA/PMMA blends using a single screw extruder at 200 ºC and 100 rpm. In agreement with 

the results reported in this work, they observed by SEM that the obtained blends were 

immiscible. Unfortunately Le et al did not report the molecular weight of PMMA.  
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For ideal systems that are miscible and amorphous over the whole composition range, the 

relationship between the Tg and the composition of the blend can be predicted by the 

Gordon–Taylor equation (Eq. 3-5) [198].  
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Eq. 3-5 

 

Where 1 and 2 are the weight fractions, Tg1 and Tg2 are the glass transition temperatures of 

pure components and k is the adjustment parameter. In this work PLA and PMMA were 

components 1 and 2, respectively. k is an adjustable parameter which was related to the 

interaction strength between the components in the blend. The theoretical curve and 

experimental data obtained from the second heating of DSC best fitted when k was 0.24. 

Experimental Tg values obtained were below weight average (Fig. 3-8). 

 

 

Fig. 3-8. Glass transition temperature vs. weight fraction of PLA: experimental DSC Tg values 

(▲);Gordon-Taylor adjustment curve for k=0.24 (line) and weight average Tg values (dots). 

 

Although both polymers were miscible, this low value suggested that there was no strong 

interaction between PLA and PMMA macromolecules which agreed with FTIR results 
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obtained. Similar results were found in the literature for the same blend system prepared by 

solution method [198,199].  

In polymer-polymer mixtures, the entropy of mixing is very small, regarding the enthalpy of 

mixing, miscibility generally requires some favourable interactions such as hydrogen 

bonding, donor-acceptor interaction, charge transfer, and so forth, resulting in a negative 

exchange interaction contribution to the free energy of mixing. However, for the 

PLA/PMMA blends, no such strong specific interaction existed and only some kind of weak 

dipolar interaction could take place owing to the chemical structure of two polymers [198]. 

Miscibility can also be studied by the differential solubility parameter () of blend 

components. The solubility parameter of a given material can be calculated either from the 

cohesive energy (Eq. 3-6) or from the molar attraction constant (Eq. 3-7). 

 

V

Ecoh  

Eq. 3-6 

 

 

V

F
  

Eq. 3-7 

 

Where  is the solubility parameter, Ecoh the cohesive energy, F is the molar attraction 

constant and V is the molar volume of the repeating unit. The solubility parameters of PLA 

and PMMA were estimated (Table 3-3) according to the group contribution approaches 

described by Small and Van Krevelen [212]. 

Component 
Mo 

(g/mol) 

Density Small VKrev 

(g/cm
3
) (J/cm

3
)
1/2

 (J/cm
3
)
1/2

 

PLA 72 1.25 19.6 18.61 

PMMA 100.1 1.17 18.61 19.08 

Table 3-3. Estimation of the solubility parameters of PLA and PMMA according to the group 

contribution approaches described by Small and Van Krevelen. 

 

The differential solubility parameter values calculated for PLA/PMMA were Δ=0.99 

(J/cm
3
)
1/2

 and Δ=0.46 (J/cm
3
)
1/2

 for Small and Van Krevelen, respectively. Two polymers 

are thermodynamically miscible when the difference is <5. As  values obtained are 
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below, PLA and PMMA are thermodynamically miscible. However, taking into account  

values obtained it could not explain why partially miscible PLA/PMMA blends were 

observed during the DSC first heating scan, while miscible blends were observed at the 

second heating scan. Even though the approach has several limitations, the Flory-Huggins 

interaction parameter (12) can be derived from the solubility parameter of the components 

using Eq. 3-8: 

 

  34.0
2

2112  
RT

Vr  Eq. 3-8 

Where the  and are the solubility parameters of the components, Vr is a reference 

volume, which corresponds to the molar volume of PLA repeating unit, R is the universal 

gas constant and T is the absolute temperature during blending process (473K). Using the 

solubility parameters estimated according to Small and Van Krevelen, Flory-Huggins 

interaction parameters calculated were 0.35 and 0.34, respectively. These similar values 

were below the critical value for miscible polymer blends, established at crit=0.5 [212] 

suggesting that from a thermodynamically point of view PLA/PMMA blends should be 

miscible. However, the used grades of PLA and PMMA have high molecular weights and 

PMMA has very high viscosity [213] at the applied processing temperatures, which slows 

down the kinetics of mixing. Therefore, depending on the processing conditions, partially or 

completely miscible PLA/PMMA blends might be obtained, which is in agreement with 

previously reported results [202]. Hence, the obtained experimental results suggested that 

the mixing process of PLA/PMMA blends seems to be diffusion controlled.  

3.3.1.3. Mechanical properties of PLA/PMMA blends 

Fig. 3-9 and Fig. 3-10 show the influence of PMMA content in the tensile and impact 

properties of blends. Increasing the PMMA content in the blend resulted in a lower strength 

and modulus values. Regarding impact resistance, the blends with high PLA presence 

(80/20, 60/40) behaved like neat PLA, whereas the blends with high PMMA presence 

(40/60, 20/80) behaved like neat PMMA (Fig. 3-10). 

Thus, the blends exhibited similar impact resistance to the neat polymers. Impact 

performance is mainly influenced by the phase structure of the blends. Therefore, these 

results suggested a phase inversion at 50/50 composition.  
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Fig. 3-9. The influence of PMMA content in the tensile properties:  

tensile strength (white columns) and modulus (black columns). 

 

 

Fig. 3-10. The influence of PMMA content in the impact resistance. 

 

  



PhD Thesis. Different approaches to obtain poly(lactic acid) based compounds for semidurable applications 

Chapter 3. p. 70 

 

3.3.1.4. Phase morphology of PLA/PMMA blends 

Fig. 3-11a-g show SEM micrographs of fractured surfaces. 

 

 

 

 

Fig. 3-11. SEM micrographs of fractured surfaces: a) 100/0 (neat PLA), b) 80/20, 

 c) 60/40, d) 50/50, e) 40/60, f) 20/80 and g) 0/100 (neat PMMA) 
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Neat PLA (Fig. 3-11a) showed smooth fracture surface indicating a brittle failure 

mechanism. On the contrary, neat PMMA (Fig. 3-11g) showed a rougher fracture surface, 

indicating a more ductile behaviour. All blends showed roughened fracture surfaces, due to 

the ductility gained by the addition of PMMA. In all blends a sphere shaped dispersed phase 

of around 200-350 nm in diameter was observed evenly distributed in the continuous phase. 

These dispersed spheres were supposed to be PMMA-rich phases in blends with high PLA 

contents and PLA-rich phases in blends based with high PMMA contents. In contrast to the 

morphology observed in this work, Li et al. observed a co-continuous morphology probably 

because processing conditions and polymers molecular weights were different. Besides, they 

reported an average phase size of 25 m while we obtained nanometre sized phase 

separation, which indicates more contact surface among the two phases and therefore higher 

compatibility. 

Voids due to the removal of the dispersed phase and spheres with limited surface contact 

with the matrix were seen in the micrographs, indicating a poor interphase between the 

matrix and the dispersed spheres. Hence, limited interfacial adhesion can be expected. This 

is in agreement with the impact resistance of the blends, which showed similar impact 

resistance to the neat polymers, indicating that the dispersed phase was not able to enhance 

the impact resistance of the matrix in the blends. On the other hand, needle-like and wave-

like were observed in high PLA content blend micrographs (Fig. 3-11a-c). These effects are 

very common in SEM micrograph of amorphous PLA [214–216], which can be easily 

overheated by the electron beam at high resolutions due to its low Tg. The two thermoplastic 

grades used in this work seem not to be completely miscible by melt blending at the mixing 

conditions used, which was in agreement with the results obtained by DSC (first heating 

scans) and DMA. 

3.3.1.5. Thermal stability 

TGA results (Fig. 3-12) show that degradation of neat PLA takes place in a temperature 

range from 310 ºC to 378 ºC giving a narrow peak of decomposition rate with its maximum 

at around 360 ºC. Similarly, thermal degradation of PMMA takes place between 310 ºC and 

418 ºC, showing a maximum decomposition rate at around 375 ºC. When PLA is blended 

with PMMA, as the proportion of PMMA increases, a shoulder owing to its decomposition 



PhD Thesis. Different approaches to obtain poly(lactic acid) based compounds for semidurable applications 

Chapter 3. p. 72 

 

becomes noticeable overlapped to the main PLA degradation peak. However, the maximum 

decomposition rate temperature remains unaltered at around 360 ºC. 

 

Fig. 3-12. Thermogravimetric analysis of blends. 

 

3.3.2. Modification of PLA/PMMA blends by Reactive extrusion (REx). 

Reactive processing with epoxy groups has been reported to improve the compatibility of 

PLA containing systems [217,218]. The reaction of the epoxy groups with PLA’s carboxyl 

and hydroxyl end-groups can lead to branching and consequently enhances melt strength and 

some mechanical properties [219,220]. On the other hand, styrenic-glycidyl acrylate 

copolymers has been previously studied to cause chain extension of PLA in order to melt 

strengthen the neat polymer with the objective to enlarge its processing window [221] or 

enhance the extrusion and injection foamability of PLA [219,222]. Besides, glycidyl 

methacrylate based copolymers have been studied as reactive compatibilizer to improve 

interfacial adhesion between immiscible blends like PLA/PCL [223], PLA/ABS [123], 

PLA/SEBS [129], PLA/PBSA [224] or to improve the dispersion of nanoclays in a PLA 

matrix [225]. Core-shell structured GMA functionalised MMA-BA or MB-g-GMA 

copolymers have also been used to toughen PLA [226,227]. 
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A clear displacement of Tg of the neat components in the PLA/PMMA blends was observed 

by DMA, indicating partial miscibility. The impact resistance exhibited by the blends was 

similar to that of the neat polymer they were rich in. SEM micrographs of PLA/PMMA 

blends showed a dispersed phase of around 200-350 nm in diameter evenly distributed in the 

continuous phase. However, the dispersed phase was not able to enhance the impact 

resistance of the matrix due to the observed limited interfacial adhesion. Therefore, to make 

PLA/PMMA blends suitable for engineering applications, toughness and impact resistance 

should be improved.
 

In this section, the effect of the addition of poly(styrene-co-glycidyl methacrylate) 

copolymer on the rheology, phase morphology, thermal stability, mechanical properties and 

impact resistance of melt compounded PLA/PMMA 80/20 (%wt) blend has been studied. As 

observed in the previous section of this chapter,  this blend composition showed the highest 

tensile strength and elastic modulus among all compositions studied. However, it also 

showed low impact resistance due to the poor interfacial adhesion between the PLA-rich 

matrix and the dispersed PMMA-rich phase. 

3.3.2.1. FT-IR Analysis 

Fig. 3-13 shows FTIR spectra of the P(S-co-GMA) copolymer and PLA/PMMA (80/20) 

blends with different copolymer content. 

     

Fig. 3-13. FTIR spectra of a) P(S-co-GMA) copolymer, and PLA/PMMA (80/20) blend with 

different copolymer contents: b) without copolymer, c) 1 pph, d) 2 pph and e) 3 pph. 
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Styrenic groups in the P(S-co-GMA) copolymer showed absorption bands of aromatic C-H 

stretches at 3059 and 3025 cm
-1

, aromatic ring breathing modes at 1600, 1493 and          

1452 cm
-1

, and out of plane C-H bending of monosubstituted aromatic ring at 757 and 698 

cm
-1

. On the other hand, the copolymer spectrum showed bands at 1728 and 1180-1113 cm
-1

 

corresponded to C=O and C-O stretching of the methacrylate groups, respectively. The 

bands at 908 cm
-1

, 1255 cm
-1

 and 849 cm
-1

 were related to glycidyl characteristic group 

[227–229]. The bands at 1083 and 1181 cm
-1

 were assigned to the C-O stretching of the  

-CH(CH3)-OH end group of PLA [227]. These bands showed slightly lower intensity when 

the copolymer was added to the blend, regardless the amount of copolymer (Fig. 3-13). This 

loss in intensity suggested that some of the end groups of PLA seemed to react, leading to 

ester and ether linkages together with another hydroxyl group (Fig. 3-14). In addition a 

slight sharpening of the band at 700 cm
-1

 due to the presence of styrenic groups of the 

copolymer, no other important changes were noticeable in the spectra of PLA/PMMA blend 

modified with copolymer. Epoxy groups of copolymer could react with carboxyl and 

hydroxyl end-groups of the PLA chains [217,219] creating new ester groups. However, as 

unmodified PLA/PMMA blend contained ester linkages of PLA and PMMA, the presence of 

those new ester groups was not easily detectable by FTIR. In the literature it was reported 

that the reactivity of the epoxy ring was greater with carboxyl groups (Fig. 3-14a) than with 

hydroxyl groups (Fig. 3-14b) of polyesters [230–234].  

 

 

Fig. 3-14. Possible primary reactions between PLA and the P(S-co-GMA) copolymer. 
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These possible primary reactions would lead to chain extension, but grafting/crosslinking 

could happen by subsequent secondary reactions between the epoxy rings and the new side 

hydroxyl groups, inducing a branched or even crosslinked architecture, especially at high 

copolymer concentrations. Similar reaction mechanism was recently proposed by Ojijo et al. 

for PLA/PBSA blends in presence of styrene-acrylic oligomer with epoxy functionalities 

[224].
 

 

3.3.2.2. The effect of the addition of P(S-co-GMA) on the melt rheology 

During the extrusion process of PLA/PMMA blends with copolymer a rise in melt viscosity 

was noticed indicating reactive extrusion. The higher was the amount of added copolymer, 

the higher was the torque needed to process the blend by the twin screw extruder. When 

processing PLA/PMMA blend with 3 pph of copolymer the needed torque was at the limit of 

the extrusion machine capacity. Hence, blends containing more than 3 pph of copolymer 

cannot be processed by extrusion. 

The effect of the addition of copolymer on the melt viscosity of PLA/PMMA blend was 

analyzed by rotational rheometry. Although it was not possible to process by extrusion, a 

blend containing 5pph of copolymer was also studied by rotational rheometry. 

The blend without copolymer showed a decrease in viscosity during the test, suggesting 

thermo-oxidative degradation. On the contrary, as the presence of the P(S-co-GMA) 

copolymer was increased, the viscosity of the blend showed an exponential rise. The 

reaction times observed by rotational rheometry were not equivalent of those needed when 

processing by twin screw extrusion, however, rheometric characterization evidenced that the 

viscosity of PLA/PMMA blends increased in presence of the copolymer (Fig. 3-15). Such 

increase in viscosity during reactive processing of polyesters have been attributed to chain 

extension/branching [235].
 
The blend containing 5 pph of copolymer showed a huge 

increase in viscosity, beyond the double of that showed by the compound containing 3 pph, 

being this viscosity value excessive for extrusion process.  

Rheological results suggested that the molecular architecture of the blends was changed 

when the P(S-co-GMA) copolymer was added, leading to a more viscous melt probably due 

to chain extension and a partially branched architecture which restricted the polymer flow. 
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Fig. 3-15. Viscosity vs reaction time of PLA/PMMA blends with different copolymer content: 

a) without copolymer, b) 1 pph, c) 2 pph, d) 3 pph and e) 5 pph. 

 

3.3.2.3. The effect of the addition of P(S-co-GMA) on the molecular weight 

distribution 

The effect of the addition of P(S-co-GMA) copolymer on the molecular weight distribution 

of the blends is shown in Fig. 3-16.  

The PLA/PMMA blend without copolymer showed a monomodal distribution. On the 

contrary, after the addition of the copolymer a bimodal distribution was detected, where the 

second peak corresponded to an important group of molecules with higher hydrodynamic 

volume. The evolution of the peaks indicated that the greater was the amount of copolymer 

added, the bigger was the population corresponding to higher molecular weights and smaller 

the population corresponding to lower molecular weights. The main peak, which 

corresponded to lower molecular weights, was attributed to the initial unreacted molecules 

and the second peak to the extended/branched population of polymers [236]. The weight 

average molecular weight and the polydispersity index increased as the presence of the 

reactive copolymer in the blend was increased (Table 3-4), which was in agreement with the 

results obtained by rheometry.  
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Fig. 3-16. Molecular weight distribution of PLA/PMMA (80/20) blend with different copolymer 

content: ▲without copolymer, □ 1 pph, ◊ 2 pph and × 3 pph. 

 

 

Table 3-4. Number average molecular weight (Mn), weight average molecular weight (Mw) and 

polydispersity index (PDI) for PLA/PMMA blends with different P(S-co-GMA) copolymer contents. 

 

3.3.2.4. The effect of the addition of P(S-co-GMA) on thermal properties 

Fig. 3-17 shows the first and second heating DSC scans for the P(S-co-GMA) copolymer. 

Two overlapped glass transitions were detected during the first heating scan. The first, 

related to the methacrylate segments, at 63 ºC and the second, related to the styrene 

segments, at 89 ºC. Besides, some reaction enthalpy was detected above 150 ºC, probably 

due to the reaction of the epoxy rings. On the other hand, only one Tg was detected at 81 ºC 

during the second heating scan. The reaction which took place during first heating scan 

seemed to create a different macromolecular structure. Results suggested that the miscibility 

Blend Mn (g/mol) Mw (g/mol) PDI 

without copolymer 51100 109500 2.1 

1 pph 51000 113500 2.2 

2 pph 49150 123700 2.5 

3 pph 47600 137200 2.9 
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between methacrylate and styrene segments was improved because only one Tg was detected 

during the second heating scan.  

  

(a) (b) 

Fig. 3-17. DSC. First (a) and second (b) heating scans of P(S-co-GMA) copolymer. 

 

Unmodified PLA/PMMA blend showed one Tg at 58 ºC in the first heating run (Fig. 3-18). 

After the addition of the copolymer the glass transition temperatures of the blends raised to 

63 ºC, regardless the amount of added copolymer. The glass transition temperature of a 

particular polymer increases together with the molecular weight until a maximum value. The 

higher molecular weight of the reacted blends, as observed by GPC, caused a reduction of 

chain-end concentration and therefore decreased the free volume. Bouzouita et al. studied 

different rubber-toughened PLA/PMMA formulations for injection-moulding processes 

upon the addition of a commercially available ethylene-acrylate impact modifier (BS) [237]. 

In all blends 17 wt% of ethylene-acrylate impact modifier was added and the ratio of 

PLA/PMMA was varied. By DSC technique they determined the glass transition 

temperatures of studied ternary blends (PLA/PMMA/BS) heating samples at 10 ºC/min. 

They obtained a Tg value similar or higher to 63 ºC only when the PLA content in the blend 

was 58 wt% or lower, which means that the PLA content of the studied blends was 

considerably lower than the PLA content in our work. On the other hand, all the blends 

showed very low crystallinity (3.5-7.3%), and the blends containing copolymer showed 

slower crystallization kinetics during cold crystallization than the blend without copolymer.  
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The slight decrease in the melting point of the PLA crystals shown by the blend with 3 pph 

copolymer compared with the unmodified PLA/PMMA blend could be a result of the 

imperfect crystal formation. The restricted chain mobility in the branched structure could 

lead to difficulties in the thickening of the lamella, hence, thinner and imperfect crystals 

with lower melting point could be formed [224]. The reaction happened due to the presence 

of copolymer seemed to reduce the chain mobility of PLA, leading to a higher glass 

transition and slower crystallization kinetics. 

   

Fig. 3-18. DSC first heating scans of PLA/PMMA blend with different copolymer content:  

a) without copolymer, b) 1 pph, c) 2 pph and d) 3 pph. 

 

3.3.2.5. The effect of the addition of P(S-co-GMA) on the phase morphology 

SEM micrographs of impact-fractured surfaces of the neat PLA and neat PMMA and the 

blends are shown in Fig. 3-19. Neat PLA (Fig. 3-19a) showed a smooth fracture surface 

indicating a brittle failure mechanism, while neat PMMA (Fig. 3-19b) showed a rougher 

fracture surface, indicating a more ductile behaviour. The SEM micrograph of the 

unmodified PLA/PMMA blend showed the coexistence of two separated phases (Fig. 

3-19c). The dispersed phase, which was supposed to be a PMMA-rich phase, was evenly 

distributed in the continuous phase, which was supposed to be a PLA-rich phase. The 

dispersed phase showed a limited surface contact with the continuous phase in the SEM 

micrographs, suggesting a poor interfacial adhesion between them [238]. Blends with P(S-
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co-GMA) copolymer (Fig. 3-19d-f) also showed a dispersed PMMA rich phase of around 

300-350 nm in diameter in the continuous matrix, confirming that phase separation was also 

observed after the addition of the copolymer. However, micrograph of PLA/PMMA with 3 

pph copolymer (Fig. 3-19f) showed a more strained morphology, which indicated a better 

interfacial adhesion between both phases. Besides, a lower volume fraction of the dispersed 

PMMA-rich phase could be observed in this blend indicating that the addition of 3 pph of 

the copolymer improved the miscibility between both phases. 

 

 

 

Fig. 3-19. SEM micrographs of: a) neat PLA, b) neat PMMA, c) PLA/PMMA (80/20) blend,  

d) blend + 1 pph copolymer, e) blend + 2 pph copolymer and f) blend + 3 pph copolymer. 
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3.3.2.6. The effect of the addition of P(S-co-GMA) on mechanical properties 

Fig. 3-20 shows tensile stress vs. strain curves of neat PLA and PLA/PMMA blends with 

different copolymer content. PLA showed a brittle behaviour since samples broke before 

yield. Unmodified PLA/PMMA blend showed a slightly higher deformation at break than 

neat PLA and the failure happened after yield point. After the addition of P(S-co-GMA) 

copolymer the strain at break of this blend was hugely improved. Very low quantities, even 

1 pph, were enough to improve the strain at break above >44%, which corresponded to the 

maximum measurable elongation of the mechanical extensometer that was used. All blends 

modified with copolymer showed a more ductile breakage, with a significant necking effect. 

After the addition of 3 pph of copolymer the modulus decreased 6.5%, while tensile strength 

remained constant and deformation at break increased more than 1300% with respect to neat 

PLA. The achieved values, 62 MPa and 3.4 GPa for tensile strength and modulus (Fig. 

3-21), respectively, were higher than the values reported in the literature for PLA based 

blends [237,239]. 

 

 

Fig. 3-20. Tensile properties of PLA/PMMA blend: ○ neat PLA, ▲80/20, 

 □80/20+1pph, ◊80/20+2pph, ×80/20+3pph. 

 

Notta-Cuvier et al. [239] studied different PLA based formulations with the aim of their 

potential use in automotive applications. They observed an increment of ductility of PLA 
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after the addition of tributyl citrate plasticizer when samples were tested at low testing rates 

of 1 and 2 mm/min. However, the material remained brittle when 5 and 10 mm/min testing 

rates were used. The high levels of ductility obtained were counterbalanced by drastic drops 

in apparent rigidity and the maximum nominal axial stress values with respect to neat PLA, 

42% and 46% respectively. The obtained tensile strength and modulus values were around 

31 MPa and 1.7 GPa, respectively. They also studied mechanical properties of ternary 

blends based on PLA, tributyl citrate plasticizer and a commercial impact modifier but the 

obtained results were not satisfactory. Finally they studied quaternary blends based on PLA, 

tributyl citrate, impact modifier and organomodified layered silicate. They obtained 

interesting levels of ductility but the apparent rigidity and the maximum nominal axial stress 

values decreased about 41% and 60%, respectively, with respect to neat PLA. The tensile 

strength and modulus values obtained were around 23 MPa and 1.7 GPa, respectively. 

Bouzouita et al. [237] studied ternary blends based on PLA, PMMA and a commercial 

ethylene-acrylate impact modifier bearing epoxy moieties specifically designed for PLA. 

After the addition of 17 wt% of impact modifier to PLA/PMMA blends, a brittle to ductile 

transition was highlighted. However, the apparent rigidity and yield stress decreased about 

30% and 35%, respectively, with respect to neat PLA. The tensile strength and modulus 

values obtained for 58 wt% PLA, 25 wt% PMMA and 17 wt% of impact modifier were 49 

MPa and 2.5 GPa, respectively. Thus, the compound prepared in our work, which contained 

more than 75 wt% of polylactide, showed considerably higher tensile and modulus values 

than those reported in the literature for similar PLA based systems.  

On the other hand, the addition of the copolymer improved the behaviour of the blends 

above yield point. The stress drop at yield point was decreased as the amount of copolymer 

in the system was increased. The blend with 3 pph of copolymer maintained 69% of its 

tensile strength above yield point (dropped from 62 to 43 MPa), while pure 80/20 blend 

failed at 50% after yield point (dropped from 64 to 32 MPa). This was important as the 

strain at yield remained constant around 2.7% when copolymer was added. Addition of 

copolymer slightly decreased tensile strength and modulus, even though the loss was not 

significant as the values were still similar to neat PLA. 
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Fig. 3-21. Tensile strength (white columns) and moduli (black columns) (left) of neat PLA and 

PLA/PMMA (80/20) blend with different P(S-co-GMA) copolymer contents. 

Although unmodified PLA/PMMA blend showed a rougher breakage surface than neat PLA 

ones, it showed slightly lower impact resistance (Fig. 3-22) due to the poor interfacial 

adhesion between the matrix and the dispersed phase [240]. After adding the P(S-co-GMA) 

copolymer to the blends, the impact resistance was improved. The blend modified with 1 

pph copolymer showed a slightly higher impact resistance than unmodified PLA/PMMA 

blend, and the impact strength increased together with the copolymer content in the blend. 

The addition of 3 pph copolymer increased the impact resistance of PLA/PMMA blend from 

12.7 to 24.5 kJ/m
2
, which was an improvement of 93%. This improvement seemed to be 

related with the improved interfacial adhesion between PLA-rich and PMMA-rich phases 

achieved when 3 pph of copolymer was added, as observed in the SEM micrograph (Fig. 

3-19f). Jaszkiewicz et al. [220] studied the effect of similar epoxidized styrene-acrylic 

copolymers (i.e.: CESA and Joncryl) on the impact resistance of PLA 3051D from 

NatureWorks LLC. They concluded that the addition of Joncryl led to no detectable 

improvement and more than 5% of CESA was needed to achieve detectable results. These 

results suggest that the addition of P(S-co-GMA) copolymer, although led to 

branching/chain extension of PLA, the obtained branching/chain extension was not enough 

to improve considerably the impact resistance. Therefore, the main reason for impact 

resistance improvement in PLA/PMMA blends modified with poly(styrene-co-glycidyl 
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methacrylate) copolymer seemed to be due to the interfacial adhesion improvement between 

the two phases present in blends, as observed in SEM micrographs. 

 

Fig. 3-22. Impact resistance (right) of neat PLA and PLA/PMMA (80/20) blend 

 with different P(S-co-GMA) copolymer contents. 

 

On the other hand, Notta-Cuvier et al. [239] increased the impact strength from 2.7 kJ/m
2
 for 

unfilled PLA to 42.8 kJ/m
2
 for a quaternary blend based on PLA, an impact modifier, 

tributyl citrate plasticizer and organomodified clay. However, for long term applications 

such as automotive parts, low molecular weight plasticizers have the undesirable tendency to 

migrate, thus material properties could change. 

Bouzouita et al. [237] increased the impact strength of neat PLA from 3.4 kJ/m
2
 to 24 kJ/m

2
 

after adding 17 wt% of impact modifier. Furthermore, they observed an optimum impact 

resistance of 44 kJ/m
2
 when PLA was modified with PMMA and impact modifier for the 

composition of 58 wt% PLA, 25 wt% and 17 wt%. However, as mentioned previously, the 

impact strength improvement was linked to a significant drop in tensile strength and 

modulus values. 

3.3.2.7. The effect of the addition of P(S-co-GMA) on thermal stability 

TGA results showed that thermal stability of the PLA/PMMA blends was improved when 

copolymer was added (Fig. 3-23). Thermal degradation onset and offset temperatures were 

shifted to higher temperatures as the amount of added copolymer was increased (Table 3-5). 
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Compared with neat PLA, unmodified PLA/PMMA blend showed lower Tonset but higher 

Toffset, due to the higher thermal stability of PMMA. With the addition of P(S-co-GMA) 

copolymer the PLA/PMMA blend showed similar Tonset to PLA along with improved Toffset 

and temperature at maximum degradation rate (Tp). This enhancement might be related to 

the fact that PLA degraded and lost molecular weight during melt processing at 215 ºC, but 

the loss in molecular weight was counterbalanced by chain extension reactions when the 

blend was in presence of the copolymer. This is in agreement with what proposed by Ojijo et 

al. [224] who studied PLA/PBSA blends modified by a similar reactive styrene-acrylic 

oligomer (Joncryl® ADR 4368 CS) [123]  However, they observed that Tonset values did not 

vary within the range of the tested oligomer concentrations, i.e. 0.3-1wt%. On the contrary, 

as it can be observed in Fig. 3-23, the concentration of P(S-co-GMA) had a clear influence 

on the thermal stability of the obtained blends, obtaining higher stability at higher 

copolymer concentrations. A possible explanation of the different performance of analyzed 

systems can be the different reactive group concentration in those systems.  

 

Fig. 3-23. Weight loss and derivative weight loss of PLA/PMMA (80/20) with different copolymer 

content: a) without copolymer, b) 1 pph copolymer, c) 2 pph copolymer and d) 3 pph copolymer. 

 

 

Table 3-5. Thermal degradation of PLA/PMMA (80/20) blend  

with different P(S-co-GMA) copolymer contents. 

Blend Tonset (ºC) Toffset (ºC) Tp (ºC) 

without copolymer 314 387 359 

1 pph 314 391 359 

2 pph 319 398 360 

3 pph 321 403 367 
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3.4.  Conclusions 

The miscibility of PLA/PMMA blends prepared via melt processing seemed to be dependent 

to the mixing processing conditions (temperature and rpm) and polymers molecular weights.  

Injection moulded platelets showed that PLA/PMMA blends were translucent suggesting the 

coexistence of more than one phase. In the first DSC run and DMA results, even though two 

Tg were noticed, a clear displacement of Tg of neat components in the blends was observed, 

Tg increasing together with the presence of PMMA in the blend. This mutual influence on 

the mobility of molecules of each component indicated partial miscibility. SEM images 

showed the coexistence of two separated phases in all blends, spheres below 400 nm in 

diameter were evenly dispersed in a continuous phase. Thus, both thermoplastic grades used 

were not completely miscible at the mixing conditions used. Finally, the blends exhibited 

similar impact resistance to that of the neat polymer they were rich in. The impact resistance 

increased at least 78 % when the presence of PMMA in the blend was 50 wt% or higher, 

probably due to a phase inversion in the blend.  

However, in the second DSC run blends showed only one glass transition temperature, 

located between the Tg of individual components, indicating miscibility of the same 

PLA/PMMA systems. Besides, no crystallization of PLA was detected in the second heating 

scan of the blends, probably due to a better blending degree of the components. Gordon-

Taylor equation fitted well with the evolution of the Tg values of the blends when k was 

0.24, suggesting that there was no strong interaction between PLA and PMMA, which is in 

agreement with the FTIR spectra. Flory-Huggins interaction parameters for PLA/PMMA 

were estimated using the solubility parameters. Interaction parameter values estimated were 

below the critical value for miscible polymer blends, which meant that from a 

thermodynamically point of view PLA/PMMA blends were miscible. However, the mixing 

process of PLA/PMMA blends seemed to be diffusion controlled process. Therefore, 

depending on the mixing conditions as well as polymers molecular weights used, partially or 

completely miscible PLA/PMMA blends can be obtained. 

On the other hand, reactive extrusion of PLA/PMMA blends with poly(styrene-co-glycidyl 

methacrylate) was shown to be a good approach to overcome the intrinsic brittleness of PLA 

maintaining tensile strength and modulus values similar to neat PLA. PLA/PMMA blend, 

with polylactide content higher than 75 wt%, with improved mechanical and thermal 
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properties were obtained by this approach. All blends showed a dispersed PMMA-rich phase 

in a continuous PLA-rich phase. The addition of poly(styrene-co-glycidyl methacrylate) 

copolymer improved the interfacial adhesion between both phases improving the elongation 

capability and impact resistance of blends. After the addition of 3 pph of copolymer to the 

blend the deformation at break increased more than 1300% and the impact resistance 

increased around 60 % compared with neat PLA, and keeping the modulus and tensile 

strength values almost constant. This overall improvement of PLA’s mechanical properties 

has not been achieved by other reported approaches like plasticization or addition of impact 

modifiers. Besides, the thermal stability of the blend was also improved since the onset 

temperature increased from 314 ºC for neat PLA to 321 ºC for the PLA/PMMA blend with 3 

pph of copolymer. Regarding processability, viscosity was considerably increased by the 

addition of the copolymer; therefore, the amount of added reactive copolymer is a key factor 

in order to achieve melt-processable modified PLA/PMMA blends. 
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4.1.  Introduction 

Injection moulding is one of the most common polymer processing methods for durable and 

semidurable plastic products, which requires low cycle times in order to be economically 

feasible. Even though annealing of previously injected amorphous PLA can lead to 

crystallized products, the part can freely shrink and warp due to the evolution of the 

crystallized phase content. Thus, the formulation of fast crystallizing PLA compounds is still 

being intensely studied, supported by the aim of obtaining a dimensionally-controlled 

crystalline PLA product in one step. 

Some works analyzed the combined effect of nucleating agents and plasticizers and proved 

that the crystallization process of PLA was accelerated by this approach [241–248]. 

However, the reported results are difficult to compare because PLA with different L/D ratio 

and/or molecular weight were used in each study. PLA grades with D-lactic acid content 

below 1% are commercially available nowadays, which have not been studied on plasticized 

and nucleated PLA polymer systems yet. 

In this work, the isothermal crystallization behaviour at different temperatures after cooling 

from the melt of two plasticized PLA with different D-lactic acid content (i.e.: 0.5 and 4%) 

was studied in presence of different nucleating agents. PLA matrices were plasticized with 

dioctyl adipate (DOA), which had been previously identified as an efficient plasticizer for 

PLA at low loading ratios [249]. Plasticized PLA matrices were nucleated by talc, ethylene 

bis(stearamide) (EBS), or PDLA and studied by differential scanning calorimetry (DSC), 

wide-angle X-ray diffraction (WAXD) and polarized optical microscopy (POM). The 
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obtained results were compared with data in the literature. On the other hand, the effect of 

pressure on the crystallization rate of each PLA was studied by pressure volume temperature 

(PVT) measurements. The systems that showed the fastest crystallization process by DSC 

were selected for these measurements. Finally, the processing parameters for in situ 

crystallization during injection moulding were determined. 

4.2.  Experimental 

4.2.1. Materials 

Two PLA have been used as matrices, Ingeo 3052D by Natureworks LLC and a non-

commercial low D-lactic acid content PLA by Futerro kindly provided by Total Research 

and Technology Feluy, Belgium. Table 4-1 shows the designation, commercial brand name, 

number average molar mass, dispersity and L-lactic acid content of the PLA matrices. 

Designation Brand name 
Mn  

(g/mol) 
Ɖ % L- 

PLA96 Ingeo 3052 103000 1.7 ≈ 96 

PLA99.5 Futerro 87000 1.9 > 99.5 

Table 4-1. PLA matrices: designation, commercial brand name, number average molar mass, 

dispersity and L-lactic acid content. 

 

Dioctyl adipate (DOA) (ester content > 99.5%) was obtained from Vinkaplast (Brazil). 

Luzenac HAR T84 high aspect ratio talc (B.E.T.=19.5m
2
/g (ISO9277) with particle size 

distribution D50=2.0 m and D95=11.3m (ISO13317-3)) was kindly provided by Imerys 

Talc. Ethylene bis(stearamide) (EBS) (593.02 g/mol) was purchased from Sigma-Aldrich. 

The molecular structure of EBS was confirmed by 
1
H-NMR. PDLA with high D-lactic acid 

content (≈ 98.5%) and Mn=70000 g/mol was obtained from Corbion Purac. All chemicals 

were used as received without any purification. 

 

4.2.2. Sample preparation 

All compounds were prepared in a Brabender DSE 20/40 co-rotating twin screw extruder 

(Ø=20mm, L/D ratio=28). A progressively increasing temperature ramp from 175 ºC 
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(hopper) to 195 ºC (die) was set for extrusion using a screw rotation speed of 300 rpm. Prior 

to compounding PLA pellets were dried for 4h at 80 ºC whereas EBS and talc were dried in 

an oven at 100 ºC overnight. The compositions of the PLA96 and PLA99.5 based systems are 

summarized in Table 4-2. 

PLA matrix  

(wt%) 

DOA Plasticizer                                              

(wt%) 

Nucleating Agent  

(wt%) 

              94.7             5.3                 0.0 

              90.0             5.0                 5.0 (Talc) 

              90.0             5.0                 5.0 (EBS) 

              90.0             5.0                 5.0 (PDLA) 

Table 4-2. Composition of the different systems. 

4.2.3. Characterization methods 

The average molar masses and the dispersity were measured by SEC using a Waters Gel 

Permeation Chromatography apparatus equipped with a Waters 410 differential refractive 

index detector. The analyses were carried out at 30 ºC and 1 mL/min in THF on two PLgel 

columns (Polymer Laboratories Ltd, 10 m particle size, 10
5
 Å and 10

3
 Å). The calibration 

was performed with PS standards from 2500 to 1.8x10
6
 g/mol. 

1
H NMR and 

13
C NMR 

spectra were recorded at 100ºC by a Bruker 400 MHz. Deuterated tetrachloroethane 

(CDCl2)2 was used as solvent. The following solvent based calibrations were used: =6.0 

ppm and =73.78 ppm for 
1
H NMR and 

13
C NMR, respectively. 

DSC analyses were performed with TA Instruments Q100 model. Samples of approximately 

7 mg were encapsulated in aluminium pans, heated up to 200 ºC and maintained at this 

temperature for one minute to erase thermal history. Then they were cooled at the rate of 50 

ºC/min to the selected crystallization temperature followed by an isothermal period of 20 

minutes. Four different crystallization temperatures (Tc) were applied: 90, 100, 110 and 

120ºC. These temperatures were chosen on the basis of indications reported in the literature 

[62,249]. After the isothermal period, samples were cooled down to 0 ºC at 30 ºC/min and 

then a heating scan from 0 to 200 ºC at 10 ºC/min was carried out. Concerning the samples 

containing PDLA, samples were heated up to 250 ºC to melt down stereocomplex crystals in 

order to erase the previous thermal history of all systems and ensure that variables linked to 

previous material processing had no effect on this study. Yamane et al. [250] observed that 

the nucleation efficiency of PLA improved when the stereocomplex crystals were not melted 



PhD Thesis. Different approaches to obtain poly(lactic acid) based compounds for semidurable applications 

Chapter 4. p. 94 

 

before cooling. In this regard, Narita et al. [183] observed that stereocomplex crystallites 

that melted and re-crystallized at processing temperatures just above stereocomplex 

crystallites end-set melting temperature, have a high nucleating effect during cooling 

process, similar to that of non-melted stereocomplex crystallites. 

Crystallinity degree was calculated by Eq. 4-1. 
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Eq. 4-1 

 

Where ΔHm is the melting enthalpy of homocrystals (J/g); ΔHcc is the cold crystallization 

enthalpy (J/g); PLA is the weight fraction of PLA in the compound; ΔHo the theoretical 

melting enthalpy value for a 100% crystalline PLA, estimated in 93 J/g [251]. 

Due to the interactions between PLLA and PDLA, the crystallinity degree of the systems 

nucleated by PDLA must be calculated by modified equations. Homochiral crystals are 

composed by either PLLA or PDLA chains, while in stereocomplex crystals an equimolar 

ratio of PLLA and PDLA chains are packed side by side [252]. Hence, weight fraction of 

potentially stereocomplexable PLA (’sc) was used for the calculations of stereocomplex 

crystallinity degree, calculated as the summation of the weight fraction of PDLA and the 

equivalent amount of PLLA (Eq. 4-2). Then, the weight fraction of both PLLA and PDLA 

that did not crystallize in the stereocomplex form continued in the amorphous state and 

therefore had the potential to crystallize homochiraly. Thus, homochiral crystallinity degree 

was calculated from the weight fraction which did not crystallize as stereocomplex crystal 

(Eq. 4-3). The amount of PLLA that had crystallized in the stereocomplex form must be 

subtracted to the initial PLLA weight fraction in the system and the amount of PDLA that 

remained amorphous must be added. Finally, Xc-sc and Xc were calculated by Eq. 4-4 and 

Eq. 4-5, respectively. 

 

PDLAsc x 2'   Eq. 4-2 

 

PDLAsccPDLAsccPDLAsccPLLA     21)1('  Eq. 4-3 
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Where ΔHm-sc is the melting enthalpy of stereocomplex crystals (J/g); ’sc is the weight 

fraction with the potential to crystallize in the stereocomplex form; ΔH0-sc is the theoretical 

melting enthalpy value for a 100% stereocomplex crystalline PLA, estimated in 142 J/g 

[252]; and ’ is the weight fraction with the potential to crystallize in the homochiral 

forms. 

Wide-angle X-ray scattering (WAXS) spectra were recorded on a Bruker AXS D8 Advance 

system with Cu K radiation of wavelength =1.5406Å. A range of 2from 10º to 24º was 

recorded, by a step size of 0.01º per 0.2s. A temperature controlled sample holder was used 

to replicate the same thermal program as for DSC at crystallization temperatures of 90 and 

120 ºC. Due to technical limitations of the temperature controller the cooling rate used was 

around 15 ºC/min.  

The evolution of the crystalline structure of the samples was analyzed by a Nikon eclipse 80i 

optical microscope. Thin films were prepared by melting samples between cover slips in a 

Linkam hot-stage. Samples were placed between crossed polarisers and the same thermal 

program as for DSC was applied. Time-lapses were carried out at 1/20s frame capturing rate. 

In order to study the effect of pressure on the crystallization rate, a pressure-volume-

temperature analyzer was used to measure the volumetric shrinkage during an isothermal 

crystallization process after cooling from the melt. The systems that showed the fastest 

crystallization process, previously determined by DSC technique, were selected for this 

purpose. Isotherms at 120 ºC and 200 bar pressure were carried out to measure specific 

volume variations along the time. Around 1g of dried pellets were heated to 200 ºC to erase 

the thermal history of the polymer. Then, 400 bar pressure was applied to release bubbles 

and samples were cooled at 30 ºC/min cooling rate under 200 bar pressure to 120 ºC and the 

crystallization process was studied at these conditions during 20 minutes. 
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4.3.  Results and discussion 

4.3.1. Crystallization behaviour 

DSC thermograms of neat PLA96 and PLA99.5 (Fig. 4-1) showed that the former could hardly 

crystallize whereas the latter partially crystallized during the isothermal step at the selected 

temperatures (Table 4-3 and Table 4-4). During the subsequent heating scan, both PLA 

showed the glass transition temperature at around 62ºC and only PLA99.5 showed cold 

crystallization. The melting temperature of PLA is strongly dependent on the L/D ratio 

[168–170], hence PLA99.5  showed considerably higher melting temperature than PLA96,  

174 ºC and 154 ºC, respectively. 

  

(a) (b) 

Fig. 4-1. DSC thermograms of the isothermal crystallization step (a) and the subsequent heating 

thermograms (b) of neat polymers crystallized at 90 (solid line) and 120 ºC (dash). 

 

Fig. 4-2a and Fig. 4-3a show the isothermal step of the crystallization after the cooling step 

of plasticized PLA96 and PLA99.5 based systems, respectively. The time in the abscissa 

indicates the total time elapsed from the melt. Concerning plasticized PLA without 

nucleating agent, only PLA99.5 was able to crystallize completely during the isothermal 

period at the selected conditions. 



PhD Thesis. Different approaches to obtain poly(lactic acid) based compounds for semidurable applications 

Chapter 4. p. 97 

 

 
 

(a)   (b) 

Fig. 4-2. DSC thermograms of the isothermal crystallization step (a) and the subsequent heating 

thermograms (b) for plasticized and nucleated PLA96 crystallized at different temperatures. 
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(a)    (b) 

Fig. 4-3. DSC thermograms of the isothermal crystallization step (a) and the subsequent heating 

thermograms (b) for plasticized and nucleated PLA99.5 crystallized at different temperatures. 
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Fig. 4-2b and Fig. 4-3b show the subsequent heating scans. Some systems showed high 

crystallinity degrees, which led to very weak heat flow signal changes at Tg due to the 

limited presence of amorphous phase (insert in Fig. 4-3b resulting no possible the 

determination of reliable Tg values in some systems. For the cases that Tg can be determined, 

all systems showed the Tg at around 40-45ºC due to the plasticizing effect of DOA. In the 

systems based on plasticized PLA96 without nucleating agent, even though the chain 

mobility was increased, samples did not crystallize completely during the isothermal period. 

A double peak thermal transition was detected, defined by a low (Tm2) and a high (Tm1) 

temperature endotherms which have been attributed to the melting of original crystals and to 

the melting of the crystals formed through the melt-recrystallization process during the 

heating scan, respectively [253]. The peak height of Tm2 increased relative to the height of 

Tm1 by increasing the crystallization temperature selected, which is in agreement with the 

results reported by other authors [254]. The melt-recrystallization from ’ to  involves a 

slight rearrangement of the macromolecular packing within the unit cell to a more energy-

favourable state, corresponding to a reduction of lattice dimensions. This process has also 

been reported as a solid state crystal modification rather than a melting/recrystallization 

process in the literature [182]. This crystalline phase rearrangement can sometimes be 

detected as an exothermic peak instead of an endothermic one [255], as observed for 

example in PLA99.5 crystallized at Tc=90ºC. The effect of the stereochemistry of PLA on the 

crystallization process was evident; at higher the L-lactic acid contents the ability to 

crystallize was higher and the crystallization rate increased, regardless the nucleating agent 

and crystallization temperature. 

As shown in Fig. 4-2a and Fig. 4-3a, all systems showed the fastest crystallization in the 

temperature range of 90-100 ºC regardless the nucleating agent. Higher crystallization 

temperatures could have increased chain mobility, but at the same time diminished the 

supercooling degree determined by ∆T=Tm
0
-Tc. At temperatures above Tc=100 ºC, even 

though the mobility of PLA chains might be increased with temperature, the formation of 

crystal nuclei was slowed down. Hence, the overall crystallization process rate decreased. 

This optimum crystallization temperature range is lower than the temperature range reported 

for neat or nucleated PLA systems without plasticizer, i.e. Tc=105-115 ºC [169,256,257]. 

Thus, this decrease on the optimum crystallization temperature range could be attributed to 
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the presence of the plasticizer in the systems because the plasticizer improved the chain 

mobility of the polymer, as shown by the Tg value decrease. 

Among the studied nucleating agents, talc showed to be the most efficient except at 120 ºC, 

at this temperature EBS induced a faster crystallization process than talc. The nucleation 

density of PLA obtained by EBS has been reported to be higher at higher crystallization 

temperatures [180]. Hence, even though the crystallization efficiency of inorganic nucleating 

agents like talc decreases considerably together with the supercooling degree, this is not the 

case of organic EBS. It was observed in the literature that some organic nucleating agents 

can lead to chemical nucleation. For example, organic sulfonic acid salts (e.g.: Lak 301 by 

Takemoto Oil) caused chain scission in polyesters and thus form ionic chain ends. These 

chain ends become ionic clusters that act as true nuclei [258,259]. Even though this effect 

has not been proved for EBS in the literature, might have an effect on its nucleating 

efficiency. In the systems nucleated by EBS, the small endothermic peak observed around 

65 ºC was related to the polymorphic transition of the crystalline EBS [260]. The melting 

enthalpy of some samples was not easy to measure due to the overlapping of the melting 

peaks of the EBS crystals (≈138 ºC) and crystals of PLA96 (≈140-150 ºC). As the melting of 

EBS crystals did not overlap with Tm2 in PLA99.5 based systems, the melting enthalpy of 

EBS measured from these heating scans was used to estimate the melting enthalpy of PLA96 

based systems when overlapped melting peaks were detected. 

All PDLA nucleated systems showed melting peaks of the stereocomplex crystals around 

206 and 222 ºC for PLA96 and PLA99.5, respectively. The melting temperature and the 

enthalpy of the stereocomplex crystallites obtained from the DSC heating process could 

serve as indicators of the crystallite size and the amount of stereocomplex crystallites 

formed during the previous step [183]. Hence, a higher amount and bigger stereocomplex 

crystallites seemed to be created in PLA99.5 based system than in PLA96 based ones as the 

melting enthalpy and temperature of stereocomplex crystallites was considerably higher in 

PLA99.5 based systems. The cold crystallization peaks observed for PLA96 systems in the 

heating scans indicated that PLA96 nucleated with PDLA hardly crystallized during the 

isothermal period, especially at high crystallization temperatures. On the contrary, PLA99.5 

nucleated with PDLA crystallized completely at the selected conditions regardless the 

crystallization temperature. 
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Thermal transition temperatures, crystallization and melting enthalpies and the degree of 

crystallinity of different samples are reported in Table 4-3 and Table 4-4 for PLA96 and 

PLA99.5 based systems, respectively. Standard deviations of measured transition enthalpies 

and temperatures were below 2.48 J/g and 0.73 ºC, respectively. The melting temperature 

Tm2 increased with the applied isothermal crystallization temperature. However, the melting 

temperature Tm1 remained roughly constant, which is in agreement with the results reported 

by Di Lorenzo for unplasticized PLA [254]. A possible explanation could be that the 

original  crystals created at higher crystallization temperatures are more perfect crystals, so 

increasing crystallization temperature resulted in higher Tm2 value. 

On the other hand, Tm1 remained almost unaltered because the  crystals formed through the 

melt-recrystallization process during the heating scan happened at similar temperatures 

regardless the applied isothermal crystallization temperature.  

Except for PLA96 systems crystallized at 120 ºC, talc nucleated and EBS nucleated systems 

showed similar melting temperature as well as crystallinity degree values. At this 

temperature the PLA96 based system crystallized completely when was nucleated with EBS 

due to the high nucleation efficiency of EBS at high crystallization temperatures, and 

consequently the crystallinity degree at 120 ºC was higher than that obtained by talc 

nucleated PLA96. In all systems that were able to completely crystallize during the 

isothermal period, higher crystallization temperatures led to higher crystallinity degrees, 

which is in agreement with what Di Lorenzo reported for unplasticized PLA [254]. All 

nucleated systems that completely crystallized showed slightly higher crystallinity degrees 

than their non-nucleated counterparts. 
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  neat plasticized DOA+talc DOA+EBS DOA+PDLA 

Tc (ºC) 90 120 90 100 110 120 90 100 110 120 90 100 110 120 90 100 110 120 

Tcc (ºC) - - 92 97 92 94 - - - 83 - - - - 91 91 84 85 

Tm1 (ºC) 153 152 153 154 153 153 152 152 153 152 152 152 153 150 150 151 150 150 

Tm2 (ºC) 142 - 141 144 141/146 141 140 142 145 139/149 141 144 147 - 140 142 140 140 

Hcc (J/g) - - 11.2 4.3 23.7 29.8 - - - 13.4 - - - - 3.1 17.8 24.2 25.0 

Hm (J/g) 5 1.6 28.8 29.5 29.9 29.8 31.9 32.7 32.8 31.9 32.0 34.1 35.4 35.7 30.1 29.4 27.9 28.0 

Xc- (%) 5.5 1.7 18.9 27.0 6.6 0.0 36.0 36.9 37.0 20.9 36.1 38.5 39.9 40.3 30.0 12.9 4.1 3.3 

Tm-sc (ºC)                           206 206 206 206 

Hm-sc (J/g)                           5.2 5.3 5.5 5.2 

Xc-sc (%)                           36.6 37.3 38.7 36.6 

Table 4-3. Summary of crystallization/melting temperatures and enthalpies of PLA96: neat, plasticized with DOA, DOA+talc, DOA+EBS, and DOA+PDLA. 

 

  neat plasticized DOA+talc DOA+EBS DOA+PDLA 

Tc (ºC) 90 120 90 100 110 120 90 100 110 120 90 100 110 120 90 100 110 120 

Tcc (ºC) 109 110 - - - - - - - - - - - - - - - - 

Tm1 (ºC) 175 176 172 173 173 174 172 173 173 173 171 172 172 174 169 169 172 171 

Tm2 (ºC) 156 169 153 162 163 166 160 161 163 167 155 161 163 167 151 157 161 162 

Hcc (J/g) 29 8 - - - - - - - - - - - - - - - - 

Hm (J/g) 48 49 47.3 48.8 53.5 55.0 47.8 49.7 54.0 54.3 46.8 49.4 53.0 54.1 43.3 45.5 49.9 53.0 

Xc- (%) 20 44 50.7 52.3 57.3 58.9 53.9 56.1 60.9 61.3 52.8 55.7 59.8 61.0 48.6 51.2 56.1 59.2 

Tm-sc (ºC)                           220 220 222 221 

Hm-sc (J/g)                           6.5 6.8 6.6 5.8 

Xc-sc (%)                           45.8 47.9 46.5 40.8 

Table 4-4. Summary of crystallization/melting temperatures and enthalpies of PLA99.5: neat, plasticized with DOA, DOA+talc, DOA+EBS,  and DOA+PDLA. 
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Systems nucleated by PDLA showed slightly lower melting temperatures values than their 

counterpart systems nucleated by talc, EBS or without nucleating agent. Regarding the 

stereocomplex crystals, PLA99.5 based systems showed higher stereocomplex crystallinity 

degree (Xc-sc) than PLA96 based ones. Moreover, the melting temperature of stereocomplex 

crystals was 14 ºC higher for PLA99.5 based systems than for PLA96 based ones. This 

difference in melting temperature of the stereocomplex crystals suggested that the crystal 

perfection and/or size were not similar in PLA96 and PLA99.5 based systems. Probably the 

lower L/D lactic acid ratio of PLA96 may hinder the formation of stereocomplex crystals 

with the capability to nucleate homochiral crystals. DSC results indicated that PLA96 

nucleated with PDLA showed similar or even slower crystallization rates than the systems 

without nucleating agent. This behaviour suggested that stereocomplex crystals could 

constrain the homochiral crystallization of PLA rather than accelerate it, which is an effect 

that Xiong et al. recently detected and suggested to be dependent on the content of 

stereocomplex crystals [182]. 

The effect of pressure on the crystallization rate was studied by PVT measurements in talc 

nucleated systems because they showed the fastest crystallizing process in the DSC 

thermograms. Tc=120ºC was selected because the crystallization rate was the slowest at this 

temperature and so it enabled to better analize the effect of the pressure.  Hence, Fig. 4-4 

shows the variation of the specific volume of both systems during an isothermal process at 

120 ºC and 200 bar pressure and the subsequent DSC heating scans. The specific volume 

decreases during crystallization due to the lower specific volume of the crystalline regions. 

PLA99.5 nucleated with talc seemed to crystallize almost completely during the cooling 

process because the observed volume variation during the isothermal process was 

insignificant. On the other hand, the volume of PLA96 nucleated by talc seemed to stabilize 

after 20 minutes. The DSC heating scans performed after the PVT measurements (Fig. 4-4b) 

showed that both systems had crystallized completely. The crystallization behaviour 

monitored by PVT and DSC were in agreement in the case of talc nucleated PLA99.5. 

However, PLA96 nucleated with talc crystallized completely under 200 bar pressure (PVT) 

in contrast to what seen by DSC at atmospheric pressure. Therefore, the increase of pressure 

considerably accelerated the crystallization process of this system. Yu et al. studied the 

isothermal crystallization of neat PLA and talc nucleated PLA under pressurization (5 bar) 

by compressed CO2 [261]. In contrast to our results, in samples crystallized isothermally at 
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120 ºC after cooling from the melt, they observed that the crystallization time increased with 

pressure for both neat PLA and talc nucleated PLA. As the compressed CO2 acts as a 

plasticizer and enhances polymer chain movement [262,263], Yu et al. suggested that the 

highly mobilized chains may have dissolved nuclei and hindered the formation of new 

nucleation sites, which decreased the overall crystallization rate [261]. In our work PLA was 

plasticized with dioctyl adipate and a higher pressure was applied during the PVT study 

(200 bar), which led to a higher crystallization rate. Hence, our results suggested that PLA 

systems plasticized by dioctyl adipate might show a higher crystallization rate when 

processed by processing techniques such as injection moulding than what measured in the 

DSC study.    

  

      (a)                         (b) 

Fig. 4-4. PVT (a) and subsequent heating DSC (b) diagrams for systems crystallized 

 at Tc=120ºC and P=200 bar after cooling from the melt. 

 

4.3.2. Crystalline structure 

WAXS spectra of isothermally crystallized systems at 90 and 120 ºC are shown in Fig. 4-5 

and Fig. 4-6, respectively. Spectra of neat polymers showed an amorphous structure in both 

cases. Even though in DSC the thermogram some degree of crystallinity was observed in 

neat PLA99.5, no crystal structure was detected by WAXS. After the addition of plasticizer 
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non-nucleated systems crystallized and showed two peaks at 2≈16.3º and 18.6º related to 

diffractions of (110/200) and (203) planes of ’ or  forms of PLLA homo-crystallites 

[184]. Besides, two tiny peaks at around 214.5º and 22º were also detected, related to 

diffractions of (010) and (015) planes, respectively [264,265]. The latter has been reported to 

be characteristic of  crystals [253], hence suggesting the coexistence of  and ’ crystal 

forms. The peaks were more intense for higher L-lactic acid content polymer than low L-

lactic acid content polymer, regardless the added nucleating agent. In general, after the 

addition of nucleating agents the WAXS diffractogram peaks were more intense than in 

systems without nucleating agents being the intensity increment more considerable in PLA96 

based systems than for PLA99.5. Regarding PLA96 based systems, talc seemed to be the most 

efficient among all the nucleating agents because talc nucleated system showed the peaks 

with highest intensity, which is in agreement with the DSC results. It should be mentioned 

that the diffraction spectra of talc nucleated systems showed three peaks related to the 

crystalline structure of talc, i.e. one peak at 2=12.2º and two overlapped peaks at around 

18.3º and 18.6º [266]. Therefore, in talc nucleated PLA systems the peak at 18.6º is related 

to both talc crystals and ’ PLLA homo-crystals. The other main peaks of PLA at 16.3º, 

14.5º and 22º were detected in all talc nucleated PLA systems suggesting the coexistence of 

 and ’ crystal forms. Regarding systems nucleated with EBS, no diffraction peak related 

to EBS crystals was detected in the analyzed 2 range. Similar to systems nucleated with 

talc,  and ’ crystal forms were observed, which was evidenced by the presence of the 

main peak at 16.3º and the tiny peak at 22º. Even though only 5 wt% of PDLA was present 

in the compounds, WAXS results of PLA nucleated with PDLA showed small diffraction 

peaks at 211.5, 20.2 and 23.5º, which are characteristic of stereocomplex PLA crystals 

[264]. These peaks were less intense for the samples crystallized at 120 ºC being hardly 

detectable for PLA96, indicating that the system was almost amorphous, which is in 

agreement with the DSC data reported. 

On the other hand, in PLA99.5 based nucleated systems, the diffractogram differences 

between different systems were not so evident. WAXS results suggested that, within the 

selected crystallization temperature range, the crystalline phase of all samples was 

constituted by a mixture of ’ and  crystals. Previous works suggested that crystallization 

temperatures above 110 ºC were needed to create  crystals in neat PLA samples [253,264]. 
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In this work the existence of  crystals was observed in samples crystallized below 110ºC, 

which could be attributed to the presence of the plasticizer in the systems. In the samples 

crystallized at 90 ºC the intensity of the peak at 22º seemed to be lower than in the samples 

crystallized at 120 ºC. This fact suggested that at higher crystallization temperatures the 

presence of  crystals in the mixture seemed to increase. The coexistence of  and ’ 

crystals is very common in semicrystalline PLA for a wide crystallization temperature range, 

being the /’ ratio increased at higher crystallization temperatures [267].  
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Fig. 4-5. X-ray scattering patterns for plasticized and nucleated PLA99.5 (above) 

and PLA96 (below) crystallized at 90ºC. 
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Fig. 4-6. X-ray scattering patterns for plasticized and nucleated PLA99.5 (above)  

and PLA96 (below) crystallized at 120ºC. 

 

4.3.3. Crystallization kinetics 

As a representative example, the effect of nucleating agents on the isothermal induction time 

of PLA96 based systems is plotted in Fig. 4-7. PLA nucleated with talc showed the shortest 

induction times among the four studied systems. At low crystallization temperatures, 90 and 

100 ºC, the isothermal induction time of both PLA based systems nucleated by talc remained 

below one minute. Systems nucleated by EBS showed higher induction times than talc 
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nucleated ones, especially at low crystallization temperatures. Regarding L-lactic acid 

content, PLA99.5 based systems showed shorter induction times than PLA96 based ones 

regardless the used nucleating agent. After the addition of PDLA, even though the presence 

of stereocomplex crystals during the homo-crystallization was confirmed by DSC technique, 

no significant differences in the crystallization process were observed respect to systems 

without PDLA. 

 

Fig. 4-7. Effect of different nucleating agents on the isothermal induction time of PLA96 plotted 

against crystallization temperature. Symbols: ◊ non-nucleated, □ talc, Δ EBS, ○ PDLA. 

 

Half-crystallization times (t1/2) were calculated from the experimental DSC data. For the 

systems which started the crystallization process during the cooling step, the time to achieve 

half of the melting enthalpy (measured during the heating step) was estimated as t1/2. Fig. 

4-8 shows the inverse of half-crystallization time of the different systems as a function of the 

crystallization temperature. The effect of the D-lactic acid content is obvious, but talc is able 

to considerably increase the crystallization rate of PLA96, leading to faster crystallization 

rates than non-nucleated or PDLA nucleated PLA99.5. 

Concerning PLA99.5, the effect of PDLA in the overall crystallization time is almost 

negligible, while EBS and talc showed a huge effect. Due to the fast crystallization shown 

by talc nucleated systems, only the half-crystallization time at Tc=120 ºC could be estimated. 

DSC traces show that t1/2 of talc nucleated systems crystallized at lower temperatures (i.e. 

90-110 ºC) should be shorter than the value observed at Tc=120 ºC. Actually, t1/2 measured 
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for PLA99.5 crystallized at 120 ºC and nucleated with talc or EBS were 0.74 and 0.86 min, 

respectively. Therefore, values as low as or lower than those obtained by EBS (t1/2=0.34 min 

at Tc=90 ºC) are expected for talc nucleated systems.  Half crystallization times of PLA 

based systems have been extensively reported in the literature [268–272]. However, values 

below 1 minute have been reported recently, e.g. achieved by the addition of modified 

montmorillonite (t1/2=0.62 min) [185], layered zinc phenylphosphonates (t1/2=0.57 min) 

[273], polyethylene glycol and dibenzylidene sorbitol (t1/2=0.56 min) [247], polyethylene 

glycol and talc (t1/2<1 min) [241], high melting point PLLA crystallites (t1/2≈0.4 min) [274] 

and triphenyl phosphate and talc (t1/2=0.7 min) [242], all of them obtained at isothermal 

conditions at crystallization temperatures ranging from 113 ºC to 131 ºC. This indicates the 

interesting improvement on crystallization rate which can be obtained by the combination of 

high aspect ratio talc, an efficient plasticizer and high L-lactic acid content PLLA. 

 

Fig. 4-8. Inverse of half-crystallization time of PLA96 (dash) and PLA99.5 (solid line) plotted against 

crystallization temperature. Symbols: ◊ non-nucleated, □ talc, Δ EBS, ○ PDLA. 

 

The systems which showed pure isothermal crystallization were fitted to Avrami kinetic 

model to evaluate the effect of the L-lactic acid content, crystallization temperature and 

nucleating agents on the rate constant (k) and the type of geometrical growth mechanism (n). 

In its simplest form, Avrami equation can be expressed as [275]: 
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Where Vc is the relative volumetric crystallinity fraction, n is the Avrami exponent (related 

to the growth geometry of the crystals) and k is the overall crystallization rate constant 

(associated to both nucleation and growth contributions). Density values of crystalline and 

amorphous PLA were found in literature [45]. The linear form of this equation can be 

expressed as follows: 

 
   tnktVc loglog)(1lnlog   Eq. 4-7 

 

The Avrami parameters n and k can be obtained from the slopes and the intercepts of Eq. 4-

7, respectively. Following the recommendations stated by Lorenzo et al. [275], the systems 

which showed an incomplete isothermal crystallization curve could not be fitted to Avrami 

equation. A conversion range from 3-60% of relative volumetric crystalline fraction was 

applied for the Avrami fittings of all analyzed systems, which lead to excellent correlation 

coefficients (Table 4-5 and Table 4-6). The correlation coefficients of the fits of all studied 

systems are 0.9990 or larger, as recommended by Lorenzo et al. [275]. 

Fig. 4-9 shows the relative volumetric crystallinity as a function of crystallization time (Fig. 

4-9a) and the linear Avrami plots (Fig. 4-9b) for PLA99.5 crystallized at Tc=120 ºC with and 

without nucleating agents. Even though the crystallization curve corresponding to EBS 

could not be analyzed because it started during the cooling step, talc and EBS showed to be 

more efficient nucleating agents than PDLA. Avrami parameters (k and n) are summarized 

in Table 4-5 and Table 4-6. Regarding the Avrami rate constant (k), the highest values have 

been calculated for talc nucleated systems. Plasticized PLA99.5 nucleated by talc showed a 

k=1.23 min
-n

. In the literature, only Shusheng et al. [273] and Hongwei et al. [185] have 

reported k values higher than the values reported in Table 4-6 for PLA based systems. 

However, in both cases the crystallization temperature selected was 130ºC, higher than for 

our systems. 
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  No Nucleating Agent 5% talc 5% EBS 5% PDLA 

Tc (ºC) 90 100 110 120 90 100 110 120 90 100 110 120 90 100 110 120 

k  (min
-n

) ** ** ** ** * * 0.317 ** 0.084 0.227 0.186 0.076 ** ** ** ** 

n ** ** ** ** * * 2.71 ** 2.82 2.82 2.92 3.05 ** ** ** ** 

R
2 

** ** ** ** * * 0.9999 ** 0.9990 0.9999 0.9999 0.9998 ** ** ** ** 

Table 4-5. Avrami constants (k and n) and coefficient of determination of the fit for PLA96 without nucleating agent, nucleated 

with talc, EBS and PDLA. Only the compounds which showed a completely isothermal crystallization were measured: 

*crystallization started during the cooling step, **crystallization did not finish during the studied isothermal period. 

 

  No Nucleating Agent 5% talc 5% EBS 5% PDLA 

Tc (ºC) 90 100 110 120 90 100 110 120 90 100 110 120 90 100 110 120 

k  (min
-n

) * * 0.300 0.070 * * * 1.230 * * * * * * 0.270 0.063 

n * * 2.83 2.88 * * * 2.71 * * * * * * 2.75 2.91 

R
2 

* * 0.9994 0.9993 * * * 0.9994 * * * * * * 0.9996 0.9994 
Table 4-6. Avrami constants (k and n) and coefficient of determination of the fit for PLA99.5 without nucleating agent, nucleated 

with talc, EBS and PDLA. Only the compounds which showed a completely isothermal crystallization were measured: 

*crystallization started during the cooling step; **crystallization did not finish during the studied isothermal period. 
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Avrami exponent n ranged from 2.71 to 3.05 indicating that the crystallization mechanism 

may have not changed. The obtained n values were similar to those reported for 

unplasticized PLA systems and were related to a three-dimensional spherulitic growth of 

crystals [169,256,276]. Therefore, equivalent geometrical crystal growth behaviour is 

supposed for all compounds regardless Tc, nucleating agent and stereochemistry of the 

matrix. 

    

Fig. 4-9. (a) Volumetric crystalline fraction as a function of time during isothermal crystallization 

and (b) Avrami plots of PLA99.5 crystallized at Tc=120ºC and nucleated by different agents: 

 without nucleating agent (○), talc (□), and PDLA (Δ). 

 

4.3.4. Crystal morphology and spherulite radial growth rate 

The evolution of the crystal morphology was analyzed by POM. Fig. 4-10 shows images of 

plasticized PLA systems without nucleating agent after the isothermal crystallization period 

(20 minutes). POM images confirmed that nucleation density was higher at low 

crystallization temperatures, resulting in tiny spherulites as observed at samples crystallized 

at Tc=90-100 ºC. He et al. studied this type of small spherulites with irregularly arranged 

lamellae in neat PLLA, and concluded that when nucleation density was significantly high, a 

large number of nucleation sites could be formed in the same growth layer of a lamella, 

which contributed to the formation of defects in the crystal [277]. On the contrary, samples 

crystallized at higher temperatures (Tc=110-120 ºC) showed nice circular spherulites (until 

impingement). PLA99.5 based systems showed higher crystallinity degree at high 
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crystallization temperatures than PLA96 ones, which is in agreement with previous studies 

which concluded that the crystallization behaviour and morphology are function of the 

stereochemistry of the matrix [168]. 

 

 

90 ºC 

 

 

 

 

100 ºC 

 

 

 

 

 

 

110 ºC 

 

 

 

 

120 ºC 

 

 

                         (a)                                           (b) 

Fig. 4-10. POM images of different plasticized PLA crystallized at different temperatures: 

 a) PLA96 and b) PLA99.5 
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Fig. 4-11 shows POM images of neat PLA and plasticized PLA nucleated with different 

agents after 20 minutes at 120 ºC. Talc is a very efficient nucleating agent and 5wt% was 

enough to dramatically increase the nucleation density, hindering the growth of big 

spherulites even at 120 ºC. This is in agreement with the fast crystallization kinetics 

measured for the talc nucleated systems by DSC technique. One of the main reasons for the 

huge nucleation efficiency might be the high aspect ratio of the used laminar talc [278]. 

Similar results concerning the morphology and the crystal size were obtained when 

plasticized PLA was nucleated with EBS crystals. EBS crystals were quickly created at 

around 120-130 ºC during the cooling step and then acted as nucleating agents for the 

epitaxial growth of PLA crystals. 

Regarding PLA99.5 nucleated by PDLA, formation and melting of stereocomplex crystals 

was detected by POM as a change in light transmission at around 220 ºC (not shown in the 

figures). However, due to the low content of PDLA in these systems (i.e. 5% in weight), the 

size and morphology of stereocomplex crystals could not be analyzed. Concerning the 

formation of homochiral crystals, their size greatly depended on the crystallization 

temperature. Tiny crystals were formed at low temperatures whereas bigger spherulites were 

observed at high crystallization temperatures. Results indicated that the nucleation density 

obtained by the addition of PDLA at high crystallization temperatures was lower than that 

obtained by talc and EBS. Higher crystallization temperatures led to bigger spherulites 

because nucleation density was lower and, therefore, each nucleation site had more space to 

grow before spherulites impinge on each other. 

Radial growth rate of spherulites was measured from POM images at different 

crystallization times. It could not be measured in systems containing talc or EBS due to the 

high nucleation density and tiny size of the crystals. PLA99.5 based systems showed higher 

growth rates than PLA96 ones. Results of systems nucleated by PDLA showed that it does 

not only affect the nucleation step, but also the growing rate (Fig. 4-12). Both PLA matrices 

showed faster spherulitic growing rate in presence of PDLA. Similar results were reported 

by Yamane et al. [250], who observed that PDLA increased the radial growth rate of PLLA, 

even though this effect was hugely dependant on the temperature at which the blend had 

been previously heated up. 
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                        (a)                                            (b) 

Fig. 4-11. POM images of neat PLA and plasticized and nucleated PLA crystallized at Tc=120ºC:  

a) PLA96 and b) PLA99.5 
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Fig. 4-12. Radial growth rate vs. Tc (after cooling from the melt) of systems without nucleating agent 

(solid line)) and with PDLA (dash). Symbols: ◊ PLA96, Δ PLA99.5. 

  

Tsuji et al [175] studied the effects of the addition of different contents of PDLA on the 

crystallization behaviour of PLLA from the melt. They carried out the estimation of the 

radius growth rate of PLLA films having different contents of PDLA at crystallization 

temperatures above 125 ºC because at lower crystallization temperatures the high density of 

PLLA spherulites disturbed the estimation. They observed that the radius growth rate was 

approximately constant irrespective to PDLA content when compared at the same 

crystallization temperature. Moreover, they observed the maximum radius growth rate at 

125 ºC, and it decreased as the crystallization temperature increased. In our work, probably 

due to the effect of the plasticiser, the maximum radius growth rate was observed around 

110 ºC, and it decreased as the crystallization temperature increased. Tsuji et al. [175] 

suggested that the effect of PDLA on the spherulitic growing rate of PLA crystals might be 

dependent on the amount of stereocomplex crystals contained by the homochiral PLA 

crystals. If a significant amount of stereocomplex crystallites were contained in the 

homochiral spherulites other than their centres, the enormously high radial growth rates 

values observed for stereocomplex spherulites should increase the overall growing rate 

values.  
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Regarding crystallization temperature, the highest radial growth rate of spherulites was 

observed around 110-120 ºC. However, as the amount of nucleation sites was smaller, this 

temperature did not match with the crystallization temperature at which fastest overall 

crystallization was observed by DSC technique (i.e. Tc=90-100 ºC),  which is in agreement 

with the results reported by Miyata et al. for neat PLA [279]. Thus, a better balance between 

nucleation density and growth rate was obtained at lower temperatures than at those where 

fastest spherulite growth happened.  

 

4.3.5. Increase of the melting temperature due to the presence of stereocomplex crystals 

During the study, some particular tests were carried out using a PLA grade with a 1.5% D-

lactic acid content (PLA98.5), including DSC scans. This grade was Natureworks’ Ingeo 

6201 (Mn=97000, Ɖ=1.6). The general behaviour of the systems based on PLA98.5 was 

similar to that of those based on PLA96. However, unlike with the other nucleating agents, a 

singular behaviour was noticed on PLA98.5 systems nucleated with PDLA 

(PLA98.5/DOA/PDLA). This system showed higher crystallization rate than 

PLA96/DOA/PDLA. Furthermore, no cold crystallization was observed in the heating scans 

of PLA98.5 crystallized at 90, 100 and 110ºC, indicating that the samples crystallized 

completely at the selected conditions during the isothermal period (Fig. 4-13). 

Besides, when plasticized PLA98.5 was nucleated with PDLA, both Tm1 and Tm2 were 

detected at higher temperatures than with other nucleating agents or without any nucleating 

agent. Tm1 of PLA98.5 increased from 154 to 165ºC. This behaviour was not observed in 

systems based on PLA96 or PLA99.5 (Fig. 4-2 and Fig. 4-3). 
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Temperature (ºC) 

Fig. 4-13. DSC heating thermograms for plasticized PLA96 without nucleating agent 

 and with PDLA crystallized at different temperatures. 

 

For the best of the author’s knowledge, this increase of the melting temperature of 

homochiral crystals of PLA due to the presence of stereocomplex crystals has not been 

reported previously. Therefore, authors believe that this is an effect that deserves more 

experimental work and a deeper analysis, which has not been carried out during this thesis. 

 

4.3.6. Processing of semicrystalline PLA based compound into a heated mould 

In order to study the technical feasibility of in situ crystallized PLA based compounds 

during injection moulding, the compound which showed the fastest crystallization rate was 

injection moulded to obtain test specimens. Hence, PLA99.5/DOA/talc was injection moulded 

into a mould previously heated up to 95-100ºC, which was the temperature at which fastest 

crystallization rates were obtained by DSC. Hence, the applied injection moulding 
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conditions were not in accordance with those commonly recommended for amorphous PLA 

[104]. After several trials, the optimized injection moulding parameters for in situ complete 

crystallization of the compound were defined (Fig. 4-14). At these conditions, a full 

injection cycle took around 76 seconds. In order to ensure complete crystallization the 

cooling time was set for 50 seconds, but trials carried out later on showed that set cooling 

time could be shortened below 20 seconds, hence decreasing the full injection cycle of a 4 

mm thick part below 36 seconds. This value is in the range of cost effective injection 

moulding timings. 

 

 

Fig. 4-14. Optimized injection moulding parameters for in situ 

 complete crystallization of PLA99.5/DOA/talc. 

 

The complete crystallization was confirmed by DSC, where no cold crystallization was 

observed before the melting transition showing an enthalpy of 46.2 J/g (Xc=52%). 

 

 

Equipment

Mould

Material

nozzle barrel3 barrel2 barrel1

Barrel T (ºC) 210 200 190 175

Mould T (ºC) 95-100

Inj. speed (mm/s) 100

Measured P (esp. bar) 331

Holding t (s) 20

Holding P (esp. bar) 400

Cooling t (s) 50

 (rpm) 150

Suction (mm) 62

Backpressure (esp. bar) 50

PLLA99.5/DOA/talc

DEMAG IntElect 100

Tensile specimens (halterio)
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Fig. 4-15. DSC heating scan of injection moulded PLA99.5/DOA/talc. 

 

4.4.  Conclusions 

The combination of plasticizer and nucleating agents was proved to be a very effective 

approach to improve crystallization rates of PLA with different L-lactic acid content. 

Systems based on PLA99.5 showed the fastest kinetics regardless the used nucleating agent. 

Results showed a stronger correlation of the crystallization kinetics to the L-lactic acid 

content of polylactide than to the selected nucleating agent or crystallization temperature. 

Talc showed to be the most efficient among the different studied nucleating agents. 

Plasticized PLA99.5 nucleated with talc showed half-crystallization times below 1 minute, 

which make these compounds very interesting to achieve crystallized PLA products. It was 

concluded from PVT measurements that the increase of pressure considerably accelerated 

the crystallization process. Therefore, for polymer processing techniques where melted 

polymer crystallizes under high pressure (e.g.: injection moulding), the crystallization times 

obtained by DSC technique under atmospheric pressure should be taken only as illustrative 

values. The highest crystallization rate was observed between 90 and 100 ºC for all systems, 

regardless the presence or absence of nucleating agent. Avrami exponent remained constant 

around n≈2.7-3.0 for all compounds suggesting equivalent three-dimensional spherulitic 

growth regardless crystallization temperature, nucleating agent and polymer L-lactic acid 
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content. WAXS results of crystallized systems showed the coexistence of  and ’ crystals. 

Among the studied parameters, the melting temperature of  crystals depend on the L-lactic 

acid content, whereas the achieved crystallinity degree and melting temperature of ’ 

crystals were also influenced by the crystallization temperature and the nucleating agent. 

A staggering behaviour was detected when plasticized PLA with 98.5% L-lactic acid content 

was nucleated with PDLA. This system showed increased melting temperatures of the 

homochiral crystals, which was not detected for PLA96 or PLA99.5. However, this effect was 

not further studied within the frame of this thesis.  
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Chapter 5. Estimation of the useful lifespan of PLA based compounds 

 

 

 

 

 

 

 

 

 

 



PhD Thesis. Different approaches to obtain poly(lactic acid) based compounds for semidurable applications 

Chapter 5. p. 124 

 

  



PhD Thesis. Different approaches to obtain poly(lactic acid) based compounds for semidurable applications 

Chapter 5. p. 125 

 

 

 

 

 

 

 

 

5.1.  Introduction 

Measuring the ageing of PLA based compounds is of great interest because they directly 

affect the properties of the polymer. The  performance of PLA in  terms  of  durability  

depends on multiple ageing mechanisms such as physical ageing, thermal decomposition 

[280–282], hydrolysis [283–285],  oxidative degradation  without the presence of water and 

UV light [286], photooxidation  [287,288], natural weathering [289] and thermo-oxidation at 

high temperature [290,291]. Frequently several of these mechanisms take place concurrently 

and the resulting complex degradation mechanism becomes very hard to deconvolute [292].  

The useful lifespan of PLA based compounds is variable and its prediction needs to be 

studied independently in each case, as it depends on the formulation of the compound. One 

of the major objectives of the current study was to predict the lifespan of the PLA based 

compounds developed during this thesis work by measuring the loss of mechanical 

properties while accelerated ageing at temperatures below Tm. Hence, the ageing was 

extended over a longer time period to avoid the pitfalls associated with high temperature 

range Arrhenius extrapolations to room temperature. At high temperatures the degradation 

mechanism can be different of that occurring at lower temperatures. In such instances a 

simple Arrhenius extrapolation of the high temperature data could lead to incorrect predicted 

lifetimes at lower temperatures. Even though some chemical and physical complications 

underlying a typical Arrhenius analysis of accelerated aging data have been reported [293], 

it is still one of the most known and used approaches for ageing data analysis. The chosen 
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ageing temperatures were close to those asked for durable applications like, for example, the 

automotive sector. 

One of the most important ageing mechanisms of PLA is the degradation at thermo-

oxidative conditions. Concerning kinetics of this kind of degradation, different assessments 

of activation energy (Ea) can be found in the literature. However, it is noteworthy that these 

experimental data are based on thermogravimetric measurements, which might not fit with 

activation energies calculated from mechanical property loss curves. For example, Gupta 

and Deshmukh reported that the overall activation energy of degradation of PLA was 104–

125 kJ/mol from isothermal TGA measurements in air at different temperatures from 70 to 

105 ºC [294]. McNeill and Leiper investigated the degradation of PLLA under both 

controlled heating conditions and isothermal conditions in an inert atmosphere. A first-order 

kinetic model enabled them to obtain an apparent activation energy of 119 ± 4 kJ/mol in the 

temperature range of 240–270 ºC [295,296]. Babanalbandi et al. reported Ea values for 

PLLA using isothermal gravimetric analysis over the temperature range 180–280 ºC under 

nitrogen and air. Their results showed that Ea for isothermal weight loss rate was between 72 

and 103 kJ/mol depending on the weight loss fraction selected for the study [297]. Their 

hypothesis was that the degradation process of PLLA followed complex kinetics, even at 

low conversion. Liu et al. reported that the degradation of PLA at processing temperatures 

(i.e. 170–200 ºC under air or nitrogen) follows a random chain scission mechanism, with 

two to three degradation stages depending on atmosphere and exposure temperature. They 

identified that change of Ea from 137 kJ/mol to 142 kJ/mol can be associated with the 

various degradation stages [298]. Other studies have previously reported that the thermo-

oxidative degradation mechanism of PLA at low temperatures (T<150 ºC) leads to a random 

chain scission process [286]. 

Lifespan predictions involve performing accelerated aging studies. Time-temperature 

superposition can be carried out using the data obtained at different aging temperatures 

when each increase in temperature increases the overall degradation rate by a constant 

multiplicative factor, which is the assumed principle underlying accelerated aging. When the 

assumption is valid, the data from each elevated temperature can be superposed at a 

reference temperature by multiplying the aging time at an elevated temperature by a 

constant, referred to as the multiplicative shift factor aT. If the empirically derived shift 

factors lead to superposition of the data from all accelerated temperatures they can then be 
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plotted on an Arrhenius plot (log aT versus 1/T ) to see if a linear plot (Arrhenius behaviour) 

is obtained [293,299]. Despite Gillen et al. and Hoang et al. have published alternative 

models for the ageing analysis, these models have been mainly developed for polyolefins 

[293,300]. Therefore, the method applied within this study corresponds to that described in 

ISO 2578 [301]. This standard aims the determination of thermal endurance limits of 

plastics in general. This method is based on the direct application of the tensile strength or 

strain at break criteria to the Arrhenius relationship. First, for each ageing temperature, the 

value of the chosen property, tensile strength or strain at break, is plotted as a function of the 

logarithm of the time. Based on the recommendations indicated in the ISO 2578 Standard 

and other studies [299], the time to reach a 50% loss in tensile strength or strain at break was 

chosen as the end-point criteria. These points determined the times to failure at each ageing 

temperature. In this chapter we have focused our efforts on the prediction of the lifespan of 

two compounds developed during this thesis work under thermo-oxidative conditions. For 

this purpose, tensile tests were performed at room temperature on un-aged and aged samples 

using tensile strength and strain at break values as a performance indicator for the degree of 

ageing. 

5.2.  Experimental 

5.2.1. Materials 

The useful lifespan of two formulations obtained during this thesis and reported in 0 and 0 

was studied. The selected two formulations were 1) PLA/PMMA blend 80/20 %wt, which 

showed the highest tensile strength and elastic modulus among all physical blend 

compositions studied in 0 and 2) PLA99.5/DOA/talc, which showed the fastest crystallization 

kinetics in 0. Even though PLA/PMMA blend 80/20 %wt modified with 3pph of (P(S-co-

GMA)) copolymer showed very interesting properties, this blend was not selected for this 

study because its high viscosity during reactive extrusion hindered the production of high 

quantities using the same equipments as in Chapter 3. 

For ease of reading, the two systems,  PLA/PMMA blend 80/20 %wt  and PLA99.5/DOA/talc  

were renamed in the next sections as PLAblend and PLAcryst, respectively. 
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5.2.2. Characterization techniques 

Tensile tests were carried out following the specifications of ISO 527 standard, at 23ºC and 

1mm/min rate by means of a MTS Insight electromechanical tensile test machine equipped 

with a contact mechanical extensometer. Tensile strength, modulus and strain at break were 

registered for each sample.  

For the purpose of the lifespan estimation, tensile strength and strain at break values were of 

relevance. However, due to the critical importance of the impact resistance of PLA based 

compounds, notched Charpy tests were also carried out following the specifications of ISO 

179-1 using the same specimens as for tensile testing (80x10x4 mm
3
). Two heating DSC 

scans were performed from -10 to 250 ºC at a heating rate of 10 ºC/min using a TA 

Instruments Q100 model, previously calibrated by indium and sapphire standards. Finally, 

Dynamic Mechanical Analysis (DMA) was carried out in a Rheometrics Solid Analyzer 

RSA II applying a 2% deformation at a 1Hz frequency by dual cantilever bending method. 

Specimens with 50x4x3 mm
3
 dimensions cut from injection moulded platelets were heated 

from 35 to 140 ºC at a rate of 2 ºC/min.  

 

5.2.3. Sample preparation and ageing 

The extrusion processes described at 3.2.2 and 4.2.2 sections were replicated in order to 

obtain pellets of PLAblend and PLAcryst, respectively. Dumb-bell type specimens 

(according to ISO 527) were injection moulded for the subsequent characterization. 

PLAblend pellets were injection moulded at a mould temperature of 30 ºC. On the contrary, 

the mould temperature was set to 100 ºC before injecting PLAcryst in order to obtain the 

maximum crystallinity degree during the process. 

Test specimens were aged at different temperatures in air. Two ovens (Memmert UF-75 and 

Memmert UFE-400) set at different temperatures were used simultaneously. Five test 

specimens were removed from the oven at different ageing periods and conditioned to room 

temperature in a desiccant chamber for 24 hours before tensile testing at room temperature. 

The selected ageing temperatures were 23, 50, 70, 90 and 110 ºC; the former being a 

temperature below the Tg of the studied systems, 50 ºC was close to the Tg and the other 

ageing temperatures were above Tg, but in all cases below the melting temperature (Tm). 
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5.3.  Results and discussion 

Fig. 5-1 shows the first heating DSC traces of the selected materials after injection 

moulding. PLAblend showed the Tg at 60 ºC and very low crystallinity degree (< %3). 

PLAcryst showed a melting enthalpy of 46.2 J/g (Xc=52%) and no cold crystallization 

process, indicating that it had been completely crystallized during injection moulding. Two 

Tg are observed around 42 and 71 ºC which could correspond to the mobile amorphous 

fraction (MAF) and rigid amorphous fraction (RAF) of the semicrystalline PLA, 

respectively. In both cases, the DSC results were similar to those reported in the previous 

chapters of this thesis except for the cold crystallization shown by PLAblend in Fig. 3-5. 

This system showed the same low crystallinity degree in both cases (< %3). However, the 

cooling rate suffered by the 2 mm thick platelet injection moulded for the analysis in 

Chapter 3 might be higher than for the 4 mm thick Dumb-bell type specimen for this study. 

  

 

Fig. 5-1. First DSC heating scans of PLAblend (dash) and PLAcryst (solid) 

specimens after injection moulding. 

 

In order to compare the dynamic mechanical behaviour of PLAblend and PLAcryst, Fig. 5-2 

shows the evolution of the storage modulus of both compounds during a heating scan. Both 

compounds showed similar modulus at room temperature (≈2x10
9
 Pa). Due to its amorphous 

microstructure, PLAblend showed a pronounced loss of stiffness, of around two orders of 
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magnitude, during Tg (≈68ºC). Hence, the maximum useful temperature of PLAblend is 

determined by the Tg. The slight increase of the modulus value above 100ºC is due to the 

cold crystallization process. However, the increase in stiffness due to the cold crystallization 

was not enough to withstand the dynamic bending so the test had to be stopped around 

120ºC.PLAcryst showed two Tg transitions but the loss of stiffness was much smaller than 

for PLAblend, due to its semicrystalline structure. This compound retained the storage 

modulus above 2x10
8
 Pa until around 135ºC, which is a value that has been correlated to the 

HDT-B value (ISO 75) of PLA based compounds and therefore indicative of the maximum 

useful temperature.  

 

Fig. 5-2. Dynamo-mechanical behaviour of PLAblend (red line) and PLAcryst (blue line). 

 

This indicates that PLAcryst, due to its high crystalline degree (Xc=52%), is a compound 

which can be used at temperatures above Tg, range at which it starts to become rubbery but 

still keeping a high enough stiffness. 

 

5.3.1. Lifespan estimation of PLAblend. Tensile strength and strain at break. 

The useful lifespan of PLAblend and PLAcryst has been estimated by two criteria: the loss 

of tensile strength and strain at break. Fig. 5-3 and Fig. 5-4 show the evolution of the tensile 

strength and strain at break of PLAblend while ageing at different temperatures. The 

remaining tensile strength and strain at break have been plotted as a function of the 
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logarithm of the time. The time to failure is defined as the time at which the curve intersects 

the horizontal line, which represents the end-point criterion. The time to failure has been 

reached faster for the strain at break than for the tensile strength. Hence, the loss in strain at 

break will lead to shorter lifespan predictions than tensile strength. For tensile strength the 

drop is very slow at 23 and 50 ºC, which are temperatures below the glass transition 

temperature. Above this temperature the effect of the ageing on the tensile strength is 

accelerated. On the contrary, in the case of strain at break the ageing at 23 and 50 ºC is more 

pronounced than for tensile strength. 

A reasonable time-temperature superposition was obtained when the curves were shifted 

(Tageing=90 ºC was selected as reference), which indicated an Arrhenius behaviour of 

PLAblend. It should be noted that data obtained at 23 ºC was not included in the time-

temperature superposition analysis of both tensile strength and strain at break due to the lack 

of a sufficient amount of loss to generate a plausible shift factor. 

  

(a) (b) 

Fig. 5-3. Tensile strength loss of PLAblend (a) at different ageing temperatures and 

(b) time-shifted curves (reference temperature: 90 ºC). 
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(a) (b) 

Fig. 5-4. Strain at break loss of PLAblend (a) at different ageing temperatures and 

(b) time-shifted curves (reference temperature: 90 ºC). 

. 

 

The calculation of the thermal endurance plot is based on these times to achieve the end 

point criterion and the respective exposure temperatures. The times to achieve the end point 

criterion at each temperature are plotted in a logarithmic time scale as the ordinate and an 

abscissa based on the reciprocal of the absolute temperature showing the correlated values in 

degrees Celsius. A first-order regression line is then drawn through the points plotted on the 

graph, which thus represents the thermal endurance of the studied material [301]. The 

reliability of the extrapolation of the graph depends on obtaining an acceptable Arrhenius 

plot. This is defined in ISO 2578 as the value of the correlation coefficient R
2
 to be higher 

than 0.95. Fig. 5-5 shows the endurance plots obtained for PLAblend. The correlation 

coefficient correspondent to the two linear regressions were R
2
=0.988 and 0.967 for tensile 

strength and strain at break, respectively. This confirmed that the ageing behaviour of 

PLAblend obeys an Arrhenius law.  
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Fig. 5-5. Thermal endurance plot of PLAblend calculated for 50% loss of  

a) tensile strength and b) strain at break. 

 

The lifespan varies significantly depending on the selected criterion. The strain at break has 

shown to be more sensitive to ageing than the tensile strength due to the inherent brittleness 

of this PLA based compound (Table 5-1). The blend has been predicted to be able to stand 

from 1 to 4 months at 70 ºC, but the lifespan is reduced to a few hours from 90 ºC on. At 

temperatures below Tg, i.e. 23 and 50 ºC, the lifespan estimation gives interesting values. 

PLAblend seems to be very stable at 23 ºC concerning the tensile strength, but the strain at 

break reaches a 50% loss in two years and a half, so the stability of the compound might 

have its limitations even at 23 ºC. Even though at 50 ºC the compound is below the Tg, the 

lifespan is limited to 3 months in terms of strain at break loss. It has to be noted that, 

although the regression line obtained from the endurance plots is within the range required 

by the ISO 2578, the Tg is a second order transition which might disrupt the proper 

extrapolation of the estimated lifespan below Tg. Therefore, probably the values estimated 

for temperatures below Tg are lower than the real ones, as they have been estimated by a 

regression line which includes three data obtained above Tg. 
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 Table 5-1. Lifespan of PLAblend estimated for a 50% loss of tensile strength or strain at break. 

 

Finally, the activation energy (Ea) of PLAblend was calculated by the equation of the 

endurance plot Eq. 5-1 [302]: 

 
  aendurance E

T
At

1
lnln   

Eq. 5-1 

 

Where tendurance represents the endurance time, A is a material constant, T is the absolute 

temperature in K, and Ea is the activation energy in J/mol. 

Ea of PLAblend is 13 kJ/mol and 8.4 kJ/mol for tensile strength and strain at break, 

respectively. This indicates that the stability of the mechanical properties of these PLA 

based compounds is far lower than other conventional engineering thermoplastics like 

polycarbonate (PC) (229-272 kJ/mol) [302] or polyamide (PA) (77 kJ/mol) [299]. Rasselet 

et al. reported that PLA can suffer chain scission under thermo-oxidative conditions at 

temperatures from 70 ºC to the melting temperature and that the effect of hydrolysis can be 

neglected at those conditions [286]. They detected a decrease of Tg value which was 

attributed to the chain scission and molecular weight loss of PLA due to oxidation. They 

also reported a linear relationship between 1/Mn and the Tg for samples aged at 110-150ºC. 

Concerning PLAblend, Fig. 5-6 shows the second heating DSC scans of PLAblend before 

and after ageing at 50 and 110 ºC for the maximum tested time period, where no decrease of 

Tg value is noticed. On the contrary, Tg is increased around 4 ºC regardless the ageing 

temperature. These results suggested that the ageing mechanism is similar at both 

temperatures and that there is no important molecular weight loss due to oxidation, which 

would have induced a reduction of the glass transition temperature. The ageing periods 

applied in our study did not exceed 72 hours at 110 ºC because it was enough to reach the 

h months h months

23 1435653 1994 21474 30

50 33298 46 2000 3

70 3003 4 439 0.6

90 353 0.5 114 0

110 52 0 34 0

Tensile strength Strain at break                 Time

T(ºC)
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selected end-point criteria (50% loss of the mechanical property) whereas Rasselet et al. 

extended their research for 500 hours, until they reached 1% strain at break. It is noteworthy 

that they did not detect any significant Tg decrease in the temperature and time range that we 

used in our study, which is in agreement with the results reported in this work. Hence, 

probably the same degradation mechanisms might have led the degradation in our study, the 

difference being that we stopped the ageing tests before reaching a molecular weight loss 

that would have led to a Tg value decrease. 

 

Fig. 5-6. Second DSC heating scans of PLAblend aged at different temperatures. 

Un-aged (solid line),  50 ºC (dash), 110 ºC (dash-dot).  

 

Regarding the tensile modulus of PLAblend, it remained constant at around 3.5 GPa after 

ageing at different temperatures. This indicates that despite ageing decreases the ability of 

the material to elongate increasing brittleness, the elastic range, where the modulus is 

measured, remains unaltered. Regarding the impact properties, PLAblend showed an impact 

resistance of 1.7 kJ/m
2
 for notched specimens before ageing. After 3 months of ageing at 

different temperatures the impact resistance value was still the same. 

 

5.3.2. Lifespan estimation of PLAcryst. Tensile strength and strain at break. 

Again, a 50% loss in the selected property has been defined as the end-point criterion. Fig. 

5-7 shows the evolution of the strain at break of PLAcryst while ageing at different 
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temperatures. Due to the fast loss of strain at break, which we realized after obtaining the 

results, the amount of data points above 50% of loss was not enough to obtain a reliable fit. 

Therefore, in the case of PLAcryst, the lifespan estimation study has only been carried out 

using tensile strength data. 

 

Fig. 5-7. Strain at break loss of PLAcryst at different ageing temperatures. 

 

Fig. 5-8 shows the evolution of the tensile strength of PLAcryst while ageing at different 

temperatures. The drop is slow at 23 ºC, which is below the glass transition temperature of 

this compound (≈45 ºC). Above this temperature the effect of the ageing is quickly 

accelerated. It should be mentioned that it was observed an increase of tensile strength above 

100% for the system aged at 50 and 70 ºC. Similar to PLAblend, a reasonable time-

temperature superposition was obtained for PLAcryst when the curves were shifted 

(Tageing=90 ºC was selected as reference), which indicated the Arrhenius behaviour (Fig. 

5-8). It should be noted that data obtained at 23 ºC was not included in the time-temperature 

superposition analysis due to the lack of a sufficient amount of tensile strength loss to 

generate a plausible shift factor. Fig. 5-9 shows the endurance plot obtained for PLAcryst. 

The correlation coefficient correspondent to the linear regression was R
2
=0.953, which 

confirmed that the ageing behaviour of PLAcryst obeys an Arrhenius law. 



PhD Thesis. Different approaches to obtain poly(lactic acid) based compounds for semidurable applications 

Chapter 5. p. 137 

 

  

(a) (b) 

Fig. 5-8. Tensile strength loss of PLAcryst at different ageing temperatures (left)  

and time-shifted curves (reference temperature: 90 ºC). 

 

  

Fig. 5-9. Thermal endurance plot of PLAcryst calculated for 50% loss of tensile strength. 

 

PLAcryst has been predicted to be able to stand around 1 month and a half at 70 ºC (Table 

5-2), but the lifespan is reduced to a few hours form 90 ºC on. Compared to PLAblend, 

using the tensile strength loss criteria for both compounds, PLAcryst shows a shorter usage 
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lifespan, probably due to the lower Tg, which accelerates ageing. At 23 ºC, which is below 

the Tg of the compound, PLAcryst is supposed to withstand almost 3 years before it loses 

half of its tensile strength. At 50 ºC the lifespan is reduced to 7 months. Probably, the values 

estimated for temperatures below Tg (i.e. 23 ºC) are lower than the real ones, as they have 

been estimated by a regression line carried out on data obtained above Tg. 

 

 

Table 5-2. Lifespan of PLAcryst estimated for a 50% loss of tensile strength. 

  

On the other hand, the activation energy (Ea) of PLAcryst was calculated by the equation of 

the endurance plot Eq. 5-1 [302]. Ea calculated by loss in tensile strength of PLAcryst is 8.3 

kJ/mol, a value which is very close to those obtained for PLAblend, suggesting that the 

stability of the mechanical properties of these PLA based compounds is far lower than other 

conventional engineering thermoplastics [299,302]. Fig. 5-10 shows the second heating DSC 

scans of PLAcryst before and after ageing at 50 and 110 ºC for the maximum tested time 

period. Due to the high crystallinity, the Tg of PLAcryst was not easy to measure by DSC. 

However, it was estimated that it increased around 6-7 ºC regardless the ageing temperature, 

a bit more than the Tg increase of PLAblend at the same conditions, probably due to the loss 

of DOA plasticiser during ageing. Like for PLAblend, this increase suggested that the 

ageing mechanism is similar at both temperatures and there is no important molecular 

weight loss due to oxidation, which would have induced a reduction of the glass transition 

temperature. Hence, the same degradation mechanisms as PLAblend might have been 

suffered by PLAcryst. 

23 50512 70

50 4802 7

70 1067 1

90 280 0

110 84 0

                 Time

T(ºC)
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Fig. 5-10. Second DSC heating scans of PLAcryst aged at different temperatures: 

Un-aged (solid line),  50 ºC (dash), 110 ºC (dash-dot). 

 

Similar to what was seen for PLAblend, the tensile modulus of PLAcryst remained constant 

at around 3.5 GPa after ageing at different temperatures. This indicates that despite ageing 

increases brittleness, the elastic range, where the modulus is measured, remains unaltered for 

amorphous and semicrystalline PLA compounds. 

Impact resistance measurements showed a fast embrittlement of PLAcryst (Fig. 5-11), 

coming down from 6 to 3 kJ/m
2
 after two months ageing at 50 ºC, less than one at 70 ºC and 

just a few days at 90-110 ºC. 

 

Fig. 5-11. Evolution of impact resistance of PLAcryst while ageing at different temperatures: 

□ 50 ºC, ∆ 70 ºC, × 90 ºC and ○ 110 ºC. 
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These results fit with the fast ageing detected for strain at break. Even though the tensile 

modulus is stable and tensile strength is kept over 50% for some months at 23 and 50 ºC, the 

embrittlement of this compound is very fast above its Tg, which is around 45 ºC. 

 

5.3.2.1. Increase in tensile strength: stability of DOA in the compound. 

Results showed an increase in tensile strength after a certain ageing time for systems aged at 

50 and 70 ºC. This effect was not noticed at 23 ºC and above 70 ºC. Thus, DSC analysis was 

carried out to a sample aged at 50 ºC during 42 days, which was one of the tests that showed 

the highest tensile strength. Fig. 5-12 shows the DSC thermograms of this sample and an un-

aged PLAcryst sample. The melting enthalpy is around 46 J/g in both curves, and the peaks 

show no important variations except a little displacement of the melting peak at Tm2. 

However, there is a clear variation at the glass transition temperature. Before ageing, two Tg 

are observed at 42 and 71 ºC which could correspond to the mobile amorphous fraction 

(MAF) and rigid amorphous fraction (RAF) of the semicrystalline PLA, respectively. The 

low value of the Tg of the MAF suggests that DOA plasticizer is mainly concentrated in this 

fraction. However, after an ageing of 42 days at 50 ºC a single Tg is detected at 55 ºC, which 

is close to the Tg of the unplasticized PLA. Therefore, the ageing seems to lead to a 

reorganization of the amorphous phase and a partial/complete migration of the plasticizer, 

which could increase the tensile strength. 

  

    (a)         (b) 

Fig. 5-12. a) DSC first heating scans of PLAcryst before (solid line) and after ageing for 42 days at 

50 ºC (dash) and b) magnification of the region of the glass transition. 
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The increase of the tensile strength above 100% was not detected at 90 and 110 ºC probably 

because the migration process was faster at temperatures above 70 ºC, same as the loss in 

tensile strength or strain at break due to ageing. Hence, at those temperatures the increase in 

strength due to the migration of plasticizer could be compensated by the loss due to ageing, 

or perhaps the frequency of testing was not enough to detect the effect of the plasticizer loss 

on the tensile strength values. On the other hand, concerning ageing at 23 ºC, the plasticizer 

might be more stable in the compound, so it might not migrate or do it at a very slow rate. 

 

5.4.  Conclusions 

The useful lifespans of PLA/PMMA 80/20 (%wt) and PLA/DOA/talc have been estimated 

based on the stability of mechanical properties while ageing. The studied PLA based 

systems showed low activation energies, around 8-20 kJ/mol, far lower than the mechanical 

test based activation energies reported for other thermoplastics. This indicates that the 

stability of the mechanical properties of these compounds is lower than other conventional 

engineering thermoplastics. 

Estimations predicted longer lifespans for PLA/PMMA than for PLA/DOA/talc. However, 

both compounds showed short lifespans when aged at temperatures above their 

corresponding glass transition. 

On the other hand, PLA/PMMA showed a drastic loss in stiffness at Tg due to its almost 

amorphous structure. Hence, it should be used below its glass transition temperature. On the 

contrary, due to its semicrystalline structure, PLA/DOA/talc showed acceptable mechanical 

properties above its glass transition temperature, in the range of 50 to 90 ºC. Therefore, this 

compound would also be an interesting option for applications which require being 

occasionally heated up to 90 ºC for short periods.  

On the other hand, the low stability of DOA plasticiser in PLAcryst has been reported. It 

should be noted that the plasticizer has been added to these compounds with the aim of 

accelerating the crystallization process. However, its presence in the compound is not that 

interesting in terms of thermal properties, as it decreases the glass transition temperature. 
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Therefore, after accelerating the crystallization process, once a semicrystalline PLA based 

compound is produced, the migration of the plasticizer can be, if controlled, a positive point 

for this kind of compounds. 

 



PhD Thesis. Different approaches to obtain poly(lactic acid) based compounds for semidurable applications 

Chapter 6. p. 143 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6. Conclusions 

 

 

 

 

 

 

 

 

 

 



PhD Thesis. Different approaches to obtain poly(lactic acid) based compounds for semidurable applications 

Chapter 6. p. 144 

 

  



PhD Thesis. Different approaches to obtain poly(lactic acid) based compounds for semidurable applications 

Chapter 6. p. 145 

 

 

 

 

 

 

 

 

6.1.  General conclusions 

PLA is a biobased and biodegradable polymer with interesting mechanical properties. 

However, in its amorphous state, the brittleness and the moderate thermal resistance have 

been the limiting factors to use this polymer in semidurable and durable applications. In this 

PhD thesis new PLA-based formulations with enhanced properties were developed and 

comprehensively studied. Physical blending, reactive blending and accelerated 

crystallization approaches were proved to be interesting ways to achieve this aim. The 

mechanical and thermal properties together with the estimated lifespan of the developed 

compounds suggested that each of them could be useful for a different durable/semidurable 

application. 

 

The blending approach. 

A clear displacement to higher values of the Tg of PLA was noticed when it was blended 

with high molecular weight PMMA, hence slightly increasing the thermal resistance. The 

miscibility of PLA/PMMA blends prepared via melt processing seemed to be dependent on 

the mixing processing conditions (temperature and screw rotation speed) and the molecular 

weights of the polymers. The impact resistance increased at least 78 % when the presence of 

PMMA in the blend was 50 wt% or higher, probably due to a phase inversion in the blend. 

These blends are easy to produce by extrusion and also to be injection moulded.  
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However, the impact resistance exhibited by these blends was similar to that of the neat 

polymer they were rich in. Thus, those with a high presence of PLA showed a low impact 

resistance. This limited level of impact resistance of neat PLA was overcome by reactive 

blending PLA with PMMA at 80/20 wt% modified by 3pph of the reactive poly(styrene-co-

glycidyl methacrylate) copolymer. This way a ductile compound with a high PLA content 

was developed by reactive extrusion due to the improved interfacial adhesion. The overall 

properties of this blend are unique: toughness combined with high tensile stiffness and 

strength, all together in a high PLA containing blend (>75%). However, the reactive 

extrusion leads to an important increase of viscosity; therefore, the amount of added reactive 

copolymer to the blend is a key factor in order to achieve melt-processable modified 

PLA/PMMA blends.  

 

The accelerated crystallization approach. 

PLA with different L-lactic acid content were studied in combination of a plasticizer (DOA) 

and different nucleating agents in order to accelerate the crystallization rate to injection 

moulding timings. The results showed a stronger correlation of the crystallization kinetics to 

the L-lactic acid content of polylactide than to the selected nucleating agent or 

crystallization temperature. Among talc, EBS and PDLA, talc showed to be the most 

efficient nucleating agent in the studied crystallization temperature range. Therefore, PLA 

with ≈99.5 L-lactic acid content plasticized with 5% of DOA and nucleated with another 5% 

of a specific laminar talc (B.E.T.=19.5m
2
/g) showed the fastest crystallization rates, 

crystallizing at half-crystallization times below 1 minute. Besides, it was shown that the 

increase of pressure considerably accelerated the crystallization process, which indicates that 

this compound is very interesting to achieve crystallized PLA products by injection 

moulding. The highest crystallization rates were observed between 90 and 100 ºC by DSC, 

which is an interesting guideline to define the best mould temperature to shorten the 

injection cycle.  

After compounding by extrusion, the only handicap to properly process this compound by 

injection moulding is that the mould should be heated up to 95-100 ºC, which is not a big 

technical deal for any engineering plastic processor. At these conditions, plastic parts can be 
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moulded at cycle times below 40 seconds for a 4 mm thick part, which is within the 

economically feasible range for injection moulding. 

 

Lifespan estimation of the studied PLA based compounds 

The lifespan estimation of PLA/PMMA 80/20 (%wt) when aged below Tg, temperature 

range at which amorphous thermoplastics are supposed to be used, indicates that this 

compound would retain its properties for more than two years and a half in terms of strain at 

break, and a great amount of years concerning tensile strength. Hence, this material could be 

potentially used in applications where high stiffness and impact resistance are asked at a 

limited working temperature (<60ºC). 

On the contrary, the PLA/DOA/talc becomes brittle much faster than PLA/PMMA 80/20 

(%wt) when aged. However, this system shows better mechanical properties than 

PLA/PMMA 80/20 (%wt) in the range of 50 to 90 ºC due to its high crystallinity, which 

allows this compound to be used above its Tg. Therefore, PLA/DOA/talc would be an 

interesting option for applications which require for slight mechanical resistance around 50-

90 ºC, the limiting factor being that spending long periods (weeks) at these temperatures will 

accelerate the ageing and so the embrittlement of the compound. 

As a general conclusion, these compounds are not suitable for demanding durable 

applications like automotive, household appliances etc. were 8-12 years long lifespans are 

required. However, they can be suitable for semi-durable consumer goods like mobile-

covers, keyboards... which demand for shorter, 2-3 years long, lifespans. In those cases, 

PLA/PMMA 80/20 (%wt) will be a better choice than PLAcryst due to its better ageing 

stability for products which require application temperatures below 60 ºC. If, on the 

contrary, the plastic part might suffer for some brief hot situations (60-80 ºC), 

PLA/DOA/talc will be a better option, due to its better properties above Tg.  
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6.2.  Prospects for future research 

Some interesting topics were put aside while the researching period of this thesis. Besides, 

some others have arisen from the obatined results. A summary of the most interesting ones 

is briefly considered in this section. 

 

The study of the increase of the melting temperature of PDLA nucleated PLA systems. 

During the experimental work reported in Chapter 4, some particular tests were carried out 

using a PLA grade with a 1.5% D-lactic acid content. The general behaviour of the systems 

based on this PLA was similar to that of those based on PLA96. However, unlike with the 

other nucleating agents, a singular behaviour was noticed on PLA98.5 systems nucleated with 

PDLA (PLA98.5/DOA/PDLA). Both Tm1 and Tm2  were detected at higher temperatures than 

with other nucleating agents or without any nucleating agent. Tm1 of PLA98.5 increased from 

154 to 165ºC. 

As mentioned before, for the best of the author’s knowledge, this increase of the melting 

temperature of homochiral crystals of PLA due to the presence of stereocomplex crystals has 

not been reported previously. Therefore, authors believe that this is an effect that deserves 

more experimental work and a deeper analysis, which is planned to be studied in the near 

future. 

 

Estimation of the useful lifespan of PLA/PMMA 80/20 (%wt) blend modified with 3pph of 

(P(S-co-GMA)) copolymer, together with neat PLA and ABS as intercomparative 

references. 

Chapter 5 reports the study concerning the useful lifespan estimation of PLA/PMMA 80/20 

(%wt) and PLA/DOA/talc compounds. However, the properties of the mentioned 

PLA/PMMA blend were considerably improved when it was modified with the reactive 

(P(S-co-GMA)) copolymer. The study of this blend was discarded from the planned 

experimental work because its high viscosity during reactive extrusion hindered the 

production of the high quantities of compound needed for the ageing tests. The interesting 

properties of this compound compared to the non-reactive one makes interesting to estimate 



PhD Thesis. Different approaches to obtain poly(lactic acid) based compounds for semidurable applications 

Chapter 6. p. 149 

 

its useful lifespan. Indeed, its modified molecular arquitecture (branched) might improve its 

stability. 

Besides, the estimation of the lifespan of neat PLA will enable to analize whether the 

developed compounds have a shorter or larger lifespan than the neat polymer. Moreover, the 

same information regarding a petrochemical thermoplastic (i.e.: ABS) will add context to 

evaluate the lifespans of these PLA based compounds against conventional plastics. 

 

Identification of the main mechanisms behind the ageing of PLA based compounds.   

The lifespans of two PLA based systems have been estimated and reported in Chapter 5 of 

this thesis. But the mechanisms behind the the ageing had not been studied. This is a very 

interesting but complicated issue to be solved, especially because various mechanisms might 

take place concurretly, leading to a very complex solution. However, the monitoring of the 

molecular weight loss during ageing by GPC is method that has given interesting results for 

other systems found in literature, so we believe there is plenty of interesting research which 

could be carried out in this sense. 
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Materials 

A-PLA  Amorphous Polylactide 

ABS  Acrylonitrile-Butadiene-Styrene polymer 

CNC  Cellulose Nanocrystals 

DMF  Dimethylformamide 

EBS  Ethylene bis-stearamide 

EPDM  Ethylene Propylene Diene Monomer rubber 

E-PLA  Expanded Polylactide 

EPS  Expanded polystyrene 

MMT  Montmorillonite clay 

PA  Polyamide 

PBAT  Poly(butylene-adipate-terephthalate) 

PBS  Poly(butylene succionate) 

PBT  Poly(butylene terephthalate) 

PC  Polycarbonate 

PCL  Polycaprolactone 

PDLA  Poly D-lactide 

PE  Polyethylene 
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PEF  Poly(ethylene furanoate) 

PET  Poly(ethylene terephthalate) 

PHA  Poly(hydroxyalkanoate) 

PHB  Poly(hydroxybutyrate) 

PHBV  Poly(hydroxybutyrate-valerate) 

PMMA Poly(methyl methacrylate) 

PLA  Polylactide, Poly(lactic acid) 

PLLA  Poly L-lactide 

PP  Polypropylene 

PS  Polystyrene 

P(S-co-GMA) Poly(styrene-co-glycidyl methacrylate)  

PTT  Poly(trimethylene terephthalate) 

PU  Polyurethane 

PVC  Poly(vinyl chloride) 

sc-PLA Stereocomplex polylactide 

THF  Tetrahydrofurane 

 

 

Techniques 

DMA  Dynamic Mechanical Analysis 

DSC  Differential Scanning calorimetry 

FTIR  Fourier Transform Infrared 

GPC  Gas Permeation Chromatography 

NMR  Nuclear Magnetic Resonance 

SEM  Scanning Electron Microscopy 
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REx  Reactive Extrusion 

WAXS  Wide Angle X-ray Scattering 

 

Others 

ASTM  American Society for Testing and Materials 

CAGR  Compound Annual Growth Rate 

CAS  Chemical Abstract Service 

FWHM Full Width at Half Maximum 

GMO  Genetically Modified Organisms 

LAB  Lactic Acid Bacteria 

LCA  Life-Cycle Assessment 

PDI  Polydispersity Index 

pph  parts per hundred 

ppm  parts per million 

RH  Relative Humidity 
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Annex IV: Symbols 

 

Cp  Heat capacity 

E  Elastic Modulus (Young’s) 

Ecoh   Cohesive energy 

F   Molar attraction constant 

k  Avrami rate constant 

Mn  Number average molecular weight 

Mw  Weight average molecular weight 

n  Avrami type geometrical growth mechanism 

Đ  Polydispersity index 

R  Univesal gas constant 

Tc  Crystallization temperature 

Tg  Glass transition temperature 

Tm  Melting temperature 

Xc  Degree of crystallinity 

V   Molar volume of the repeating unit 

Vc  Volumetric crystallinity fraction 

Hc  Cold crystallization enthlapy 

Hm  Melting enthalpy  
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H0  Theoretical melting enthalpy of a 100% crystalline polymer 

   Viscosity 

    Shear rate 

Ø  Diameter 

  Tensile strength 

  Weight fraction  

  Solubility parameter 

12  Flory-Huggins interaction parameter 

2  Angle in X-ray diffraction 
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