
DESIGN AND CHARACTERIZATION OF 

HYBRID POLYMERIC MATERIALS BASED ON 

PE-b-PEO BLOCK COPOLYMER

Sheyla Carrasco Hernández

DESIGN AND CHARACTERIZATION 

OF HYBRID POLYMERIC MATERIALS BASED 

ON PE-b-PEO BLOCK COPOLYMER

Donostia-San Sebastián, 2017 

Sheyla Carrasco Hernández



UNIVERSITY OF THE BASQUE COUNTRY (UPV/EHU) 

FACULTY OF EGINEERING, GIPUZKOA 

DONOSTIA-SAN SEBASTIÁN 

Department of Chemical and Environmental Engineering 

Group `Materials + Technologies´ (GMT) 

DESIGN AND CHARACTERIZATION 

OF HYBRID POLYMERIC MATERIALS BASED 

ON PE-b-PEO BLOCK COPOLYMER 

Sheyla Carrasco Hernández 

PhD Program Renewable Materials Engineering 

Thesis Supervisor: Dr. Agnieszka Tercjak 

Donostia-San Sebastián, 2017 

(cc)2017 SHEYLA CARRASCO DOMINGUEZ (cc by 4.0)



 

 



Agradecimientos/Acknowledgments/Eskerrak 

En primer lugar, quisiera agradecer al Ministerio de Economía y Competitividad 

por la financiación para llevar a cabo esta Tesis Doctoral y al Departamento de 

Ingeniería Química y del Medio Ambiente de la Escuela de Ingeniería de Gipuzkoa, 

Universidad del País Vasco (UPV/EHU) donde he realizado la misma. 

Agradecer especialmente a mi directora Agnieszka Tercjak, por darme la 

oportunidad de crecer profesionalmente. Gracias por tu apoyo y paciencia durante el 

desarrollo de esta tesis, no sólo en lo profesional sino también en lo personal. 

Gracias a todo el grupo de “Materiales + Tecnologías” y a todos los compañeros 

que habéis compartido parte de vuestro tiempo conmigo. A Gurutz, con el que siempre 

tendré pendiente una escapada al monte, a Irati con sus achaques de juventud, a Laida 

por tantas conversaciones y bueno ya sabes, la vida, a Clara por su mirada de Garfield y 

especialmente a Junkal, gracias por ser mi mentora de tesis y por hacer siempre lo que 

ha estado en tu mano para ayudarme, mila esker. 

Gracias a Laura Peponi por supervisar mi estancia en el ICTP y a las 

compañeras que allí me ayudaron. Estuve muy a gusto con vosotras. 

Thanks to Michael Morris for giving me the chance to stay at UCC and thanks 

also to all my colleagues in Cork, Cian, Parvaneh, Elsa and Sibu. Thanks for your help. 

Gracias a mis compañeros de piso, a Guiomar por acogerme en mi llegada, a 

Lucía por ser mi apoyo femenino y a Daniel por las tertulias sobre la vida, la cuántica y 

los elementos finitos. Y a ti Álex, gracias por mantenerme a flote en tantas situaciones 

difíciles, por tantas risas y por ser mi familia en Donostia. 

Gracias a mi gente de siempre que me ha apoyado desde lejos, en especial a 

Marta y a Carmen, gracias por estar ahí, en las duras y en las maduras. Gracias a Lucía 

por escucharme siempre y a Elisa por esas visitas a Donostia tan divertidas. Gracias a 

tantos amigos que no se han olvidado de mí a pesar de estar lejos. 



Gracias a los que desde el principio me habéis hecho un hueco en Donostia, por 

esas tardes de ensayo y esas reuniones de Chopper. Gracias por contestar a ese email 

Juancar y por portarte siempre tan bien conmigo. Gracias Julen por esas charlas y por 

implicarte como un amigo. Gracias Kako por tantas risas y tantos buenos ratos contigo, 

que sí y por esas plaquitas tan bien hechas, sin ellas el Chapter 4 no hubiera sido 

posible.  

Gracias a ti Jairo, por permanecer a pesar de todo. Espero poder compensarte de 

ahora en adelante. “Vivir la vida y aceptar el reto, recuperar la risa, ensayar el canto, 

bajar la guardia y extender las manos, desplegar las alas e intentar de nuevo, celebrar la 

vida y retomar los cielos”. 

Mi agradecimiento más profundo a mi familia, a mi madre y a mi padre por 

demostrarme que de la tierra, además de hortalizas, también salen licenciados y 

doctores. Gracias por darnos la oportunidad de estudiar aunque eso supusiera tanto 

trabajo para vosotros. Gracias mama por enseñarme a resistir aunque las piernas fallen y 

a ti papa por enseñarme a ponerle cara de perro a la vida. Sois un ejemplo para nosotros. 

Gracias a mis hermanos, César y Jandro, siempre dispuestos a echar una mano. Gracias 

también a mi madrina y familia, por apoyarme siempre en la distancia. Sin vosotros esto 

no hubiera sido posible. Gracias. 

Donostia, bat bakarra munduan, nire zati bat uzten dut zugan, zure jendean. 

Hurrengo bat arte!! 



Summary 

The main objective of this investigation work was the design and 

characterization of novel hybrid polymeric materials based on PE-b-PEO block 

copolymer. On the one hand, polymer dispersed liquid crystal materials based on PE-b-

PEO block copolymer and nematic liquid crystals were developed as well as hybrid 

electrospun fibers fabricated by co-electrospinning. On the other hand, PE-b-PEO block 

copolymer nanostructured thermosetting systems were used as template for dispersion 

and localization of TiO2 nanoparticles.  

This dissertation consists of 7 Chapters. The Chapter 1 is a general introduction 

about liquid crystals, polymer blends with the especial emphasis on polymer dispersed 

liquid crystal blends and thermosetting systems modified with block copolymers and 

inorganic nanoparticles. 

In the Chapter 2, a brief description of all materials and the experimental 

techniques employed for the design of the investigated PE-b-PEO block copolymer 

based polymeric blends and their characterization is exposed.  

In the Chapter 3, PDLC blends based on poly(ethylene-b-ethylene oxide) (PE-b-

PEO) and modified with 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC) or N-(4-

ethoxybenzylidene)-4-butylaniline (EBBA) nematic liquid crystals were prepared and 

characterized proving strong influence of used nematic liquid crystals on the miscibility 

and morphology of the investigated PDLC blends.  

The Chapter 4 deals with thermo-optical reversible properties of the PDLC 

blends studied in the Chapter 3 with high content of HOBC and EBBA nematic liquid 

crystals. Especial emphasis was placed on the reversible switching process of the PDLC 

blends studied by spectroscopies techniques.  

The Chapter 5 discussed the electrospinning processing-window to fabricate 

nanostructured PE-b-PEO and hybrid PE-b-PEO/EBBA electrospun fibers. Moreover, 

hybrid PLA/EBBA and PLA/PE-b-PEO/EBBA electrospun fibers were also fabricated 

and characterized from the point of view of the compact mat formation.  

In the Chapter 6, PE-b-PEO block copolymer nanostructured thermosetting 

systems was fabricated and used as template for successful dispersion of TiO2 

nanoparticles. The influence of the molecular weight and molar ratio between the blocks 

of the PE-b-PEO block copolymer on the dispersion and localization of TiO2 

nanoparticles was also addressed. 



Finally, the general conclusions of this investigation work are summarized in 

Chapter 7 as well as future work and scientific contributions related with the results 

obtained along this dissertation. 

 



Motivation and objectives 

Hybrid polymeric materials show outstanding properties if compare to neat 

components. The synergistic properties of hybrid polymeric materials extend their 

potential applications as optical devices, sensors, ion-exchanges, solar cells, and others.  

Taken into account the applications, polymer dispersed liquid crystals (PDLC) 

are hybrid polymeric material with interesting thermo-optical properties. Moreover, 

PDLC materials modified with nematic liquid crystal can switch from opaque to 

transparent state applying external stimuli such as temperature gradient, electric or 

magnetic field.  

Block copolymers are highly explored polymeric materials able to self-assemble 

at the nanometric scale. From this point they are excellent components to create novel 

hybrid polymeric materials. 

On the other hand, block copolymer nanostructured thermosetting systems based 

on epoxy resins can lead to enhancement of the properties if compare with 

thermosetting systems and broader their applications. These block copolymer 

nanostructured thermosetting systems can act as template for dispersion and localization 

of inorganic nanoparticles. 

Taking the above into account, the main objective of this work consists of the 

design and characterization of hybrid polymeric materials based on block copolymers. 

In particular, the following objectives are proposed: 

 Fabrication of PDLC blends based on PE-b-PEO block copolymer and 

two different nematic liquid crystals with the aim to design materials 

which maintain the character of the nematic liquid crystals  

 Verification of the thermo-optical reversible behavior of the fabricated 

PDLC blends with nematic liquid crystal matrix as a function of the 

temperature 

 Optimization of the electrospinning processing-window for preparation 

of hybrid PE-b-PEO/EBBA and PLA/PE-b-PEO/EBBA electrospun 

fibers with liquid crystal character 

 Employment of PE-b-PEO nanostructured thermosetting systems as 

template for dispersion and localization of TiO2 nanoparticles 
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1. Introduction 

1.1. Liquid crystals (LCs) 

Materials in nature can be presented as solid, liquid or gaseous state. The 

mobility of the individual atoms or molecules marks the difference between each state. 

The solid materials are directly turned on isotropic liquids during the melting transition. 

However, exist materials with an intermediate state, named mesophase. This mesophase 

is the phase transition between solid and liquid state called the liquid crystal state [1-6]. 

In the case of liquid crystal state, the intermolecular forces, based on dipole-

dipole interactions or dispersion forces, are weaker in some directions and maintain the 

associations between molecules in a preferred orientation. Generally, molecules in 

liquid crystal state are large and elongated, which allows them to be placed parallel and 

simultaneously move freely ones with respect to others along their axes. The increase of 

the temperature (heating process) leads to a molecular movement of the liquid crystals 

(LCs) able to overcomes the intermolecular weaker forces while stronger ones maintain 

molecules bound. Consequently, the increase of the temperature provokes a molecular 

random placement in some directions and a regular one in others (see Figure 1.1). 

 

Figure 1.1. Arrangement of the molecules in a a) solid state, b) liquid state and c) liquid crystal state. 

LCs are organic mesophases, which exhibits features from both the solid and the 

liquid state with long-range orientational order [1-6]. They are anisotropic materials due 

their arrangement [1-9], since display different properties depending on the direction in 

which they are oriented. By contrast, in an isotropic material, properties are maintained 

in all directions. 

1.1.1. Classification of the LCs 

LCs can be broadly divided into two classes, thermotropic and lyotropic LCs. In 

the case of thermotropic LCs the molecular orientation depends only on temperature, 

while in the case of lyotropic LCs, formed by aqueous solution of amphiphilic 

molecules such as surfactants, the molecular orientation is related to the surfactant 
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concentration [1-15]. 

In solid state, thermotropic LC molecules present a regular arrangement, with 

the same pattern in all directions. Intermolecular forces maintain molecules in fixed 

positions. The increase of the temperature results in energetically vibrated molecules. 

This movement overcomes the forces responsible for maintain the order of the 

molecules in the solid state and their start to move into random positions and results in 

an isotropic phase or liquid state [1-15].  

The considered phase transitions in thermotropic LCs are the solid-liquid and 

crystal-isotropic liquid transitions. The decrease of the temperature (cooling process) 

from the isotropic liquid provokes reversible phase transitions, which can be repeated 

during heating/cooling cycles [1-5]. On the one hand, the solid-liquid crystal transition, 

is associated with the melting temperature, Tm, and on the other hand, the transition 

liquid crystal-isotropic liquid is associated with the elucidation temperature [5,6].  

The orientation of the molecules in a thermotropic LC is characterized by the 

director axis pointing in the direction of the average molecular alignment. The director 

axis describes the long-range order of molecules and depends only on the temperature. 

Generally, liquid crystal can pass through isotropic, nematic, cholesteric, smectic 

and crystalline phase transitions as a function of temperature.  

At high temperatures, in the isotropic phase, the axes of the liquid crystal 

molecules are randomly oriented. During the cooling process the nematic phase appears 

first. The main characteristic of this mesophase is an orientational order without a 

positional one [1-15].  

Taking into account the molecular order, the nematic liquid crystalline phase, 

can forms calamitic or discotic structures. The molecules of calamitic nematic material 

present rod-like structure, while the molecules of discotic nematic material present the 

disc-shaped structure [1-6,8,10,11,13,14]. 

A nematic phase can be transformed into a cholesteric phase (chiral nematic 

phase), in which the director axes changes its direction in a helical mode, by means 

doping the nematic mesophase with a chiral molecule [1-5]. 

A smectic phase can be also achieved during cooling process. Smectic phase 

displays a positional ordering, which leads to an additional order into planes.  

The classification of the thermotropic LCs as function of the LC molecules 

arrangement is exposed bellow. 
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1.1.1.1. Smectic LCs  

The smectic liquid crystals (SLCs) form well-defined layers which can slide 

freely over one another and are positionally ordered along an unique direction. 

The elongated rod molecules oriented along the normal layer are denominated 

smectic A phase. By contrast, in smectic B phase, there is a hexagonal crystalline order 

within the layers. The molecules inclined out of the normal layer, in which the axis is 

not perpendicular to the layers form a smectic C phase. They are liquid phases within 

each layer of different smectic phase [1-10, 16-18].  

Different types and degrees of positional and orientational order provide many 

different smectic phases, which are responsible for different final properties of these 

materials [19-25]. Figure 1.2 shows different smetic phases which are commonly 

studied. 

 

Figure 1.2. Arrangement of the molecules in a a) smectic A, b) smectic B and c) smectic C phase. 

1.1.1.2. Cholesteric LCs 

Cholesteric liquid crystals (CLCs) present a helical structure due to the chirality 

of molecules, which impart unique optical properties. CLCs possess a long-range 

orientational order and not a long-range order in positions of elongated rod molecules 

and its director axis varies in a regular way. The axis of the molecules is aligned along a 

single direction in a plane, however in a series of equidistant parallel planes the 

direction rotates through a fixed angle [1-10,16-18]. A typical structure of a CLC is 

shown in Figure 1.3. 

 

Figure 1.3. Arrangement of the molecules in a cholesteric liquid crystal in the different planes. 

The helical pitch of CLCs can be in the same order of magnitude as the 



Chapter 1 

6 
 

wavelength of visible light and consequently a Bragg reflection takes place. The helical 

arrangement is responsible for the characteristic colors of CLCs in reflection.  

On the other hand, the helix pitch is very sensitive to the influence of external 

conditions such as temperature, chemical composition, external fields such as magnetic 

or electric [26-30]. 

1.1.1.3. Nematic LCs  

The molecules of a nematic liquid crystal (NLC), majority elongated rods, have 

not positional order, however they reveal a long-range orientational order. Thus, the 

molecules are located in the same direction however some of them are not completely 

parallel showing a certain deviation.  

This property is governed by the director axis pointing in the direction of the 

average molecular alignment, being long axes approximately parallel [1-

10,16,18,31,32]. 

The fluidity of NLCs is similar to that of ordinary isotropic liquids however, 

they can be easily aligned by an external field such as magnetic, electric, temperature 

gradient and others. Aligned NLCs molecules display optical properties of uniaxial 

crystals. Thus, NLCs possess the ability to switch the director axis and as consequence, 

the alignment of their rod-like molecules takes place as a response to external stimuli. 

The NLCs switch from the state of high light dispersion, ON-state, when the director 

axes are aligned to a transparent state, to OFF-state, when they are not aligned [33,34].  

From the point of view of the thermodynamic, the transition between nematic 

phase and isotropic liquid is a relatively weak first order transition in comparison with 

the solid crystalline-nematic transition.  

Figure 1.4 shows the solid crystalline-nematic and nematic-liquid isotropic 

transitions of a NLC when a gradient of temperature is applied. 

 

Figure 1.4. Solid crystalline-nematic and nematic-liquid isotropic transitions. 

The most common approach to describe the nematic phase and nematic-isotropic 
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(N-I) phase transition, is based on the continuous decreasing of the order parameter with 

the increase of the temperature, dropping drastically to zero at the N-I transition 

temperature (TN-I). This transition can be described theoretically by using Landau 

equation [1-7,10,11,13,15,16,35]. 

Several theories have been developed to describe the nematic phase and N-I 

phase transition. The most widely used approach is the model proposed by de Gennes 

based on the Laudau’s general description of the phase transition. The Laudau-de-

Gennes (LDG) theory describes the state of a nematic liquid crystal by macroscopic 

order parameter defined in terms of macroscopic quantities [1-7]. 

The reversible switching process makes NLCs interesting to be combined with 

others materials in order to reach innovative applications. 

1.1.2. Applications 

Numerous applications of the LC materials have been achieved in many research 

areas and in technological devices as schematically showed in Figure 1.5. An extensive 

list of applications such as general digital thermometers, battery testers and other 

voltage measuring devices, temperature indicators for medical applications, medical 

thermography, radiation detection, esthetic, ingredients for cosmetic formulations, non-

destructive testing/thermal mapping, aerospace, engineering research, gas/liquid level 

indicators, biomedical, among others provides effective solutions to many different 

problems [7,16,18,41-50]. 

Liquid crystal thermometers are one of the most common application of LCs. 

The color changes are associated directly to the temperature and allow to measure it. 

The chiral nematic or cholesteric liquid crystals reflect light with a wavelength equal to 

the pitch as was explained above, the pitch depends on the temperature and hence the 

reflected color indicates determined temperature values. 

Regarding the optical imaging, LCs are also employed. A liquid crystal cell is 

placed between two layers of photoconductor then light is applied increasing the 

conductivity of the material and generating an electric field to develop in the liquid 

crystal corresponding to the intensity of the light. 

Liquid crystal displays (LCDs) are another common application of liquid crystal 

technology. LCD screens use liquid crystals to switch pixels ON and OFF to visualize a 

determined color by applying an electric current. In LCD displays liquid crystals turn on 

or turn off a filter responsible for visualize a determinate color or maintain black.  
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The light emitting diode (LED) screens, are based on LCD displays, the 

difference lies on the employed lamp. Moreover, in the case of LED displays the 

contrast is deeper [45-49]. 

 

Figure 1.5. Several applications of liquid crystals. 

The alignment capacity of the NLCs rod-like molecules under an external 

stimulus combined with the processability of the polymers is an interesting pathway to 

develop PDLC blends which are used in a wide range of applications in the field of 

thermal and electro-optical devices [36-40].  

1.2. Polymer dispersed liquid crystal blends (PDLC) 

Nowadays, Polymer Blend Technology is one of the main areas of research and 

development in Polymer and Material Science. Due to the increased interest in the 

application of Polymer Blends Technology to commercial usefulness, the academic and 

industrial research has taken an active role. This technology leads to combine 

synergistically different polymeric materials [51-55]. 

A polymer blend is a physical mixture in which at least two polymers are 

combined together to create a new material with different physical properties.  

The main goal of the polymer blending is, on the one hand, the achievement of 

novel materials with improved properties for commercial applications, and on the other 

hand, the preservation of these improved properties reducing material cost and 

enhancing the processability of these materials. All these advantages can be reached 

through the proper selection of the polymer components and overcoming limitations 

such as the difficulty of the dispersion of one polymer in another due to the high 

interfacial tension, the weak interfacial adhesion and the instability of the polymer 

blends [51-55]. 

Depending on both the Gibbs free energy (∆Gm) of mixing value and the second 
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derivative of the Gibbs free energy with respect to the volume fraction value of major 

component, polymer blends can be classified as miscible, immiscible and partially 

miscible [55-62].  

For a miscible polymer blend, ∆Gm < 0 and the second derivative positive, a 

homogeneous blend is obtained and an unique phase is observed. The miscibility 

between components depends strongly on the preparation conditions (temperature and 

pressure, among others) and formulation of the polymer blends. The preparation of 

miscible polymer blends guarantees the synergistic properties.  

For an immiscible or heterogeneous blend, ∆Gm > 0 and the second derivative of 

free energy function negative, several phases corresponding to each component of the 

polymer blend are detected as consequence of macrophase separation. 

When ∆Gm˂ 0 and the second derivative of free energy function is negative, the 

polymer blends are partially miscible. In this case, some part of one component of the 

polymer blend is miscible with the other component forming an interface, which is 

responsible for a good interfacial adhesion [55-62].  

The miscibility of the polymer blends can be verified by Fox equation [62-65]. 

This equation employs the glass transition temperature (Tg) of the polymer blend 

components to find theoretical Tg of polymer blend. This equation is an easy way to 

discuss the miscibility of polymer blends. Miscible polymer blend shows only one Tg 

and if different Tgs are found this means that the polymer blends are immiscible [62-

65]. 

Generally, partially miscible polymer blends offer higher possibility to achieve 

synergistic properties while an incompatible polymer blends are completely immiscible 

and as a consequence of macrophase separation, possess poor mechanical properties 

[52,58,66-70]. 

The versatility of polymer blends makes them useful in numerous fields of 

applications such as medical, optical engineering for electronic devices, 

nanotechnology, cosmetic industry, as well as coatings and adhesives, among others. 

The advantages obtained from the mixture of polymeric materials lead to 

development of new classes of polymer blends, combining polymers with other 

components. 

One of these polymer blends with outstanding synergistic properties, are 

polymer dispersed liquid crystal (PDLC) blends. PDLC blends combine properties of 

thermoplastic polymers and properties of liquid crystals to create novel materials with 
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tailored properties [36-40,48-50]. 

As was described above, the reversible switching process of the nematic liquid 

crystal rod-like molecules is able to change orientation by applying an external 

stimulus. This property jointly with the processability of thermoplastic polymers, make 

these PDLC blends innovative materials, which can be used in different field of 

applications such as optical switches (light shutters), smart windows and reflective 

displays, among others [36-40].  

The enhancement of the PDLC blend properties in comparison to the properties 

of the polymer blends is related to the fact that PDLC blends present, on the one hand, 

some degree of long-range order and, on the other hand, some degree of the mobility. 

Consequently, the properties such as chemical stability, lower flammability and better 

processability can be achieved [71-73]. These properties are closely related to the 

molecular structure of the polymeric chain, which contains rigid liquid crystal phases or 

mesogens that can be placed in the main chain, in the side chains or in both allowing to 

the polymer to be oriented in a similar way to neat liquid crystals [60,74,75]. 

The key point to achieve PDLC blends with tailored properties is the control of 

the miscibility as a function of the temperature between selected thermoplastic polymers 

and nematic liquid crystals. The fast cooling rate led to PDLC blends with smaller 

nematic domains with a narrow size distribution. On the contrary, the slow cooling rate 

led to the coexistence of very large and small nematic domains [76-80]. 

PDLC blends are based on NLC droplets with different configurations and 

orientations homogeneously dispersed in a solid thermoplastic polymer matrix. These 

small, a few microns in size, droplets are responsible of the respond of the PDLC blends 

to the external stimulus [48-50]. The NLC molecules are able to change their orientation 

by applying an external electric field or a gradient of temperature as shown in Figure 

1.6. 

 

Figure 1.6. Arrangement of the nematic liquid crystal molecules in a PDLC material, a) light scattered 

OFF state and b) light transmitted ON state.  
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The arrangement of the NLC molecules as a function of external stimulus 

provokes a variation on the intensity of transmitted light. When an external stimulus is 

applied, the NLC droplets are oriented and the PDLC blend switches from opaque to 

transparent state. Consequently, the optical properties of the PDLC blends are governed 

by nematic liquid crystal phase, able to maintain its properties in design materials 

[10,16-18].  

The optical anisotropy of the PDLC blends is closely related to the different 

values of the NLC and polymer matrix refractive indices along the optical director axis. 

That means that they can be optically switched from opaque state or highly scattering 

state (OFF-state), if the director axis is nonaligned to transparent state (ON-state), if the 

director axis is aligned due to mismatching and matching of the NLC and polymer 

refractive index [8,11,16,31,33,34,81-85].  

1.2.1. PDLCs based on block copolymers  

The influence of temperature on the properties of both, NLCs and thermoplastic 

polymers, makes PDLC blends excellent materials for potential LC applications. The 

main drawback is the weldline strength between different phases [53,54,58,59]. As 

explained above, the employment of different methods for predicting the miscibility in 

blends, is an important area in Polymer Blend Technology [72,86-88]. One of the 

possible ways to control and improve the miscibility of the polymer blend components 

is the addition of the block copolymers. 

Block copolymers are able to reduce the interfacial tension between components 

and allow controlling the phase separation and consequently, promote higher miscibility 

between components [89-92]. 

The ability of the block copolymers to self-assembly and as consequence to 

control their morphologies at nanoscale, offers new possibilities of application, 

especially in the field of the miniaturization of opto-eletronic and magnetic devices. 

Block copolymers are macromolecules integrated by two or more groups of 

monomers covalently linked in the same polymer chain. The different ways to connect 

these blocks led to diverse structures such as diblock AB, triblock ABC or star 

copolymers.  

The most interesting property of the block copolymers is their ability to self-

assembly leading to different structures organized at the nanoscale [93,94].  

The different chemical composition of the blocks and its covalent union, led to 
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well-defined structures which morphology is governed by the Flory-Huggins phase 

diagram. As can be seen in Figure 1.7, block copolymers can form different 

morphologies at nanoscale such as body centered cubic (BCC), hexagonal (HEX), 

gyroid (GYD) and lamellar (LAM) and disordered structure (DIS) [95-98].  

 

Figure 1.7. Theoretical phase diagram of an AB diblock copolymer.  

The microphase separation in block copolymers can be controlled by the Flory-

Huggins interaction parameter (χ) between monomers, which form different blocks and 

the number of polymer repeating units or degree of polymerization (N). This χ is related 

to the chemical composition of the blocks and the length of the polymer.  

Block copolymers integrated by two monomers display different miscibility with 

respect to the NLC. Generally, one of the blocks is miscible or partially miscible with 

the NLC, consequently, NLC can be positioned in one block of the block copolymer. 

Moreover, block copolymers can self-assemble offering nanostructured templates for 

dispersion of NLC droplets, leading to PDLC materials with electro-optic properties 

[81-83,99,100].  

At the present time, only a few works have reported about PDLC blends based 

on block copolymers and NLC. Kato et al. [71] have employed block copolymers to 

self-assembly phase segregated liquid crystal structures.  

On the other hand, Tercjak et al. [81-85,99] studied the thermodynamic phase 

behavior of PDLC blends based on poly(styrene-b-ethylene oxide) PS-b-PEO block 

copolymer and low-molecular weight 4´-(hexyloxy)-4-biphenyl-carbonitrile (HOBC) 

nematic liquid crystals.  

Additionally, Valenti et al. [100] fabricated PDLC films based on styrene-diene 

block copolymers and the nematic mixture E7 in order to study the miscibility between 

components and the influence of several parameters on the morphology of the PDLC 

blends. 
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1.3. Thermosetting systems 

Thermosetting materials are constituted by polymers linked by chemical bonds 

which are responsible to generate a highly crosslinked polymer structure (Figure 1.8).  

 

Figure 1.8. Structure of a thermosetting systems. 

This structure of crosslinked polymers is responsible for good mechanical 

properties, an excellent chemical resistance and a high thermal stability among others. 

However, their main disadvantage is their brittleness and their poor elasticity [101-104]. 

Epoxy resins are widely employed and investigated thermosetting systems 

[105,106] and they present an epoxide functional groups in the polymer chain, which 

are highly reactive due to its structural stress (Figure 1.9). 

 

Figure 1.9. Epoxide reactive functional group. 

This epoxide group reacts with the functional groups of the same epoxy resin or 

with the functional groups of a curing agent, generally amine groups, generating the 

crosslinking of the epoxy resins via bridging reactions [105-109]. In this reaction the 

network is integrated by epoxy monomers and a curing agent obtaining a material 

whose properties are function of the thermosetting system formulations [110-112]. 

The epoxy curing reaction can be divided in two steps. Firstly, a polymerization 

reaction takes place. This polymerization reaction is based on the reaction of the epoxy 

group with the functional groups of curing agent leading to fast increase of the 

molecular weight until all monomers are connected by at least one bond results in the 

polymer network and reaches the gel point. After the first reaction step, the amount of 

free monomers significantly decreases and as a consequence, the movement of the 

polymer chains is reduced. If the molecular weight of the network overcomes the 

thermodynamically stable molecular weight, the system vitrificates generating a brittle 
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material. 

In order to decrease the brittleness and increase the toughness of this kind of 

materials, epoxy based thermosetting systems are usually modified with organic 

components such as thermoplastic homopolymers or block copolymers [104,113-122], 

or with inorganic nanoparticles [103,123-127]. 

1.3.1. Thermosetting systems modified with block copolymers 

The interest in the use of block copolymers lies in its self-assembly capability 

which allows obtaining different nanostructures as a function of the composition and the 

molecular weight as was mentioned before. Moreover, the addition of the block 

copolymers improves the toughness of the thermosetting systems leading to higher 

range of their applications [101,122,126].  

With the aim of fabricating nanostructured epoxy based thermosetting materials, 

two different methods are employed. One of the methods is based on the use of 

amphiphilic block copolymers, which consist of one miscible block and another 

immiscible block with the epoxy resin [104,113,117-122,128-135]. The second way 

proposes a chemical functionalization of one immiscible block of the block copolymer 

to become this block miscible with the epoxy resin and to be able to nanostructured the 

epoxy resin [114,115,116,124]. 

The most widely employed amphiphilic block copolymers contain PEO, PCL 

and PMMA blocks as miscible blocks with epoxy resin [119,131,136-140].  

The self-assembly of the block copolymer can take place before or during the 

curing reaction. On the one hand, when the self-assembly occurs before curing, the 

epoxy resin acts as solvent only for one of the block and a microphase separation occurs 

in block copolymer/epoxy resin mixture priori to polymerization reaction. Thus, block 

copolymer self-assembled before curing reaction [113]. On the other hand, when the 

self-assembly takes place during network formation, by a reaction induced phase 

separation (RIPS) [140], the immiscible block is separated from the thermosetting 

matrix during curing reaction. 

As mentioned above, the toughness can be improved modifying the epoxy based 

thermosetting systems with block copolymers. The one of the block of block 

copolymers is miscible with the epoxy resin and acts as plasticizer, provoking a 

considerable reduction in the glass transition temperature (Tg) of the system and 

improving the toughness [141,142]. The drawback of this modification is related to the 
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simultaneous decrease of the Young´s modulus due to plasticization effect. This 

disadvantage can be governed controlling both the formulation of block copolymer 

modified thermosetting systems and the final morphology of modified thermosetting 

systems. 

On the other hand, the addition of the inorganic nanoparticles to the block 

copolymer modified thermosetting systems is also an alternative method to increase the 

toughness without lose the Young´s modulus. 

1.3.2. Thermosetting systems modified with inorganic nanoparticles 

The modification of epoxy based thermosetting systems with inorganic 

nanoparticles can increase the toughness without affecting the high glass transition 

temperature of the epoxy based thermosetting matrix. This is a desirable property for 

many applications of these kind of materials [128-131]. 

Moreover, playing with the concentration, size or type of nanoparticles, 

thermosetting systems with combined optical, mechanical, magnetic and opto-electronic 

properties of incorporated inorganic nanoparticles can be achieved 

[102,103,123,125,126].  

Inorganic nanoparticles can be synthesized by different methods. The sol-gel 

technique is an useful method for the synthesis and incorporation of inorganic 

nanoparticles into epoxy resin. This wet-chemical synthesis involves hydrolysis and 

condensation reactions of metal precursors leading to the formation of an oxide network 

[143].  

Different inorganic nanoparticles such as Al2O3, SiO2 and TiO2 nanoparticles, 

among others were used to modify epoxy based thermosetting systems [144-148]. 

The main drawback of the use of inorganic nanoparticles is related to the 

difficulty to reach a good dispersion. A poor dispersion produces aggregates, which are 

responsible for the heterogeneous properties of the thermosetting systems. The 

achievement of a homogeneous dispersion of inorganic nanoparticles in thermosetting 

matrix is a crucial point to control the final properties of designed thermosetting 

systems [102,123,125-127,130]. 

In many occasions, the modification of the thermosetting systems with inorganic 

nanoparticles does not result in an enhancement of the final properties. Thus, in order to 

overcome this disadvantage, block copolymers are employed to improve the dispersion 

of the inorganic nanoparticles and consequently the final properties.  
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1.3.3. Nanostructured thermosetting systems modified with block copolymers and 

inorganic nanoparticles 

The use of both the block copolymers and the inorganic nanoparticles is an 

effective pathway to achieve epoxy based thermosetting systems with synergistic and 

desired properties [102,125,130,144-147]. 

On the one hand, block copolymers offer the opportunity to create 

nanostructured epoxy based thermosetting systems and, on the other hand, inorganic 

nanoparticles provide the unique properties related to their own properties such as 

optical, electrical and magnetic one [149,150]. 

In this kind of epoxy based thermosetting systems, block copolymers act as 

nanostructuration agent and as surfactant for the dispersion of inorganic nanoparticles. 

Nowadays, in this research field only a few works have been reported. Tercjak 

and co-workers [125,130,144] have investigated epoxy based thermosetting systems 

modified with block copolymers as well as with TiO2 inorganic nanoparticles and liquid 

crystals. Moreover, they investigated the transparency in the long scale microphase 

separation threshold. Ocando et al. [145] analyzed the effect of the addition of SBS and 

Al2O3 nanoparticles on the dispersion and final mechanical properties of thermosetting 

systems. Gutierrez et al. [102,146,147] studied the morphological and optical properties 

of PS-b-PEO block copolymer nanostructured thermosetting systems modified with sol-

gel synthesized TiO2 nanoparticles.  

Taking all the above into account, epoxy based thermosetting systems modified 

with both, amphiphilic block copolymers and inorganic nanoparticles are interesting to 

develop advanced materials with unique tunable properties, which can find applications 

in many fields of Polymer and Material Science. 
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2. Materials and characterization techniques 

The materials and the characterization techniques employed along this 

investigation work will be described in this Chapter. The experimental procedures as 

well as characterization techniques conditions will be detailed in each Chapter. 

2.1. Materials 

2.1.1. Liquid crystals 

Two different nematic liquid crystals 4'-(hexyloxy)-4-biphenylcarbonitrile 

(HOBC) with 96 % purity and N-(4-ethoxybenzylidene)-4-butylaniline (EBBA) with 98 

% purity were purchased from Sigma-Aldrich and were used as received.  

2.1.2. Block copolymers 

Two different poly(ethylene-b-ethylene oxide) diblock copolymers (PE-b-PEO) 

one with an average molecular weight (Mn) of 920 g mol
-1

 and 50 wt % of PEO block 

content and the other one with an average molecular weight of 2250 g mol
-1

 and 80 wt 

% of PEO block content, were provided by Sigma-Aldrich. These block copolymers 

were used without purification. 

2.1.3. Homopolymers 

Polyethylene oxide homopolymer (PEO) with an average molecular weight 

equal to 950-1050 g mol
-1

, similar to this block in the PE-b-PEO block copolymer, was 

supplied by Sigma-Aldrich.  

Polylactic acid homopolymer (PLA) 3051D with a molecular weight of 93500 g 

mol
-1

 was purchased from Natureworks and was used as received. 

2.1.4. Epoxy resin 

Diglycidyl ether of bisphenol A (DGEBA) epoxy resin monomer was provided 

by Dow Chemical Company with an epoxy equivalent weight between 176 and 185 

g/eq (trade name DER 330).  

This epoxy resin was cured with a stoichiometric amount of the aromatic amine 

curing agent 4,4’-methylene bis(3-chloro-2,6-diethylaniline) (MCDEA) kindly supplied 

by Lonza.  
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The chemical structures of all materials used in this investigation work are presented in 

Table 2.1. 

Table 2.1. Chemical structure of the PE-b-PEO block copolymer, HOBC and EBBA nematic liquid 

crystals, PEO and PLA homopolymers, DGEBA epoxy resin monomer and MCDEA curing agent.  

Materials Chemical structure 

Poly(ethylene-b-ethylene oxide) 

block copolymer 

(PE-b-PEO) 
 

4'-(hexyloxy)-4-biphenylcarbonitrile 

(HOBC)  

N-(4-ethoxybenzylidene)-4-butylaniline 

(EBBA)  

Polyethylene oxide 

(PEO)  

Polylactic acid 

(PLA) 
 

Diglycidyl ether of bisphenol A  

(DGEBA) 

 

4,4'-methylene- 

bis(3-chloro-2,6-diethylaniline) 

(MCDEA) 
 

 

2.2. Electrospinning technique 

Electrospinning is the preparation technique that allows, through axial stretching 

of the viscoelastic solutions, the fabrication of micro and nanofibers from polymeric 

materials. These fiber sizes permit the discovery of unique features, such as high surface 
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area to volume and large length to diameter ratios [1]. 

Firstly, in the electrospinning process, a polymer solution is pushed by a pump 

through a capillary up to a needle. Then, a strong electric field is applied between the 

needle and the collector, which provokes the stretching of this solution and the solvent 

evaporation allowing the fabrication of polymeric fibers [1-4]. 

The most recent research development in the relation to this technique is focused 

on the fabrication of hybrid electrospun nanofibers, for example, by means of a coaxial 

electrospinning technique. Co-electrospinning is a modification of the conventional 

electrospinning technique, based on two concentric needles. This technique is able to 

simultaneously electrospin different polymeric materials with the aim of the fabrication 

of core-shell structure nanofibers [2,5-7]. 

In our case, during the electrospinning process, the block copolymer solution 

was pushed using a pump through a capillary up to the inner needle of the concentric 

needle, while solvent flowed through the outer one. For the preparation of hybrid 

electrospun fibers, the EBBA liquid crystal solution was used instead of the solvent. 

Figure 2.1 shows co-electrospinning employed in this research work. 

 

Figure 2.1. Co-electrospinning system. 

The main difficulty of this technique lies in the number of parameters that are 

required to control the final properties of the fabricated fibers. The parameters involved 

in the generation of these fibers are the concentration of the polymer solution, surface 

tension, solution conductivity, voltage, outflow, distance needle-collector and relative 

humidity, among others [3,5]. 

The low production rate and the solvents used are the most important problems 

in the electrospinning process since their can limited the possible application leading to 
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significant safety problem during fabrication due to their flammability, toxicity or 

carcinogenic character. Moreover, another handicaps related to the solvents used can be 

also cost and recovery [6-8]. 

Table 2.2 summarizes the most important parameters that take part in the 

electrospinning process and their influence on the final properties of the designed fibers. 

This technique allows to collect continuous single fibers with regular and controllable 

diameters and defect free surface by playing with the electrospinning parameters. 

Table 2.2. The effect of the electrospinning parameters on the fibers formation. 

Parameter High values Low values 

Concentration of the 

polymer solution 

Hinders the passage of the 

solution through the capillary 

Fibers breakage, 

droplet formation 

Surface tension Defects (beads) in fibers Smooth fibers 

Solution conductivity Thin fibers Thick fibers 

Voltage Thick fibers, the appearance of beads 
The solution does not 

reach the collector 

Outflow Thick fibers, beads with larger sizes Fibers without defects 

Distance 

needle-collector 

Thin fibers and appearance of beads 

(the fibers may break due to its own weight) 
Appearance of beads 

Relative humidity Appearance of pores No effect 

 

2.3. Characterization techniques 

2.3.1. Physico-chemical characterization 

2.3.1.1. Fourier transform infrared spectroscopy (FTIR) 

FTIR is an analytical technique employed to identify organic and in some cases 

inorganic materials through the infrared absorption as a function of the wavelength [9]. 

The irradiated materials excite its molecules into a higher vibrational state. The 

absorbed radiation is related to the chemical bonds and functional groups present in 

investigated materials. The wavelength, between 4000 and 600 cm
-1

, absorbed by 

materials is characteristic and unique for their molecular structure and is a function of 

the energy difference between the excited and rested vibrational states. Consequently, 
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this technique is employed for the recognition of organic molecular groups, side chains 

and network formations such as curing reaction studied in this research work [10].The 

FTIR spectrometer modulates the wavelength employing an interferometer in a 

broadband infrared source and the intensity of transmitted or reflected light as a 

function of its wavelength is measured by a detector. The signal obtained is analyzed 

with a computer using Fourier transforms to obtain the absorption spectrum.  

Attenuated total reflectance (ATR) is a complementary accessory of the FTIR 

spectrometer. ATR measure the changes in the internally reflected infrared beam in 

contact with investigated material. The infrared beam is conducted to an optically dense 

crystal with a high refractive index in a defined angle. This internal reflectance 

generates an evanescent wave that extends to investigated material. The wave is 

attenuated in the regions of the infrared spectrum in which investigated material absorbs 

energy. The attenuated beam returns and passes through the ATR crystal leading to the 

infrared spectrometer. Then, the detector records the attenuated infrared beam as a 

signal, which can be used to generate an infrared spectrum [10]. 

2.3.1.2. Photoluminescence spectroscopy (PL) 

PL is a non-destructive method based on the detection of absorption of light of 

different investigated materials, which provoke an excess energy which is dissipated by 

photoexcitation process [11]. After excitation, electrons within the material move into 

permissible excited states, generating several relaxation processes due to return to their 

equilibrium states. The excess of energy is released and may include the emission of 

light due to a radiative process, however non-radiative process can be also take place. 

The photoluminescence process at a certain energy can be viewed as indication 

that excitation populated an excited state associated with this transition energy as shown 

in Figure 2.2. 

 

Figure 2.2. Photoluminescence process initiated by an excited electron when an excitation photon is applied.  

https://en.wikipedia.org/wiki/Photoluminescence#cite_note-1
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The difference in energy levels between the two electron states involved in the 

transition between the excited state and the equilibrium state is related to the energy of 

the emitted light. 

2.3.1.3. Ultraviolet-visible spectroscopy (UV-vis) 

Absorbance spectroscopy measure the amount of light absorbed or transmitted 

by an investigated material as a function of the wavelength. In the region of the 

electromagnetic spectrum, atoms and molecules undergo electronic transitions. 

In conventional spectrometers a visible-UV monochromatic light beam passes 

through a investigated material which is held in a small section cell.  

Ultraviolet-visible radiation with a determinate frequency and intensity passed 

through the investigated material and a reference cell, which contains only the solvent. 

The intensity of this light beam is measured by electronic detectors and compared to the 

intensity of the light, which passed through the reference cell. 

An absorption spectrum shows a number of absorption bands corresponding to 

structural groups within the molecule, since different molecules absorb radiation of 

different wavelengths.  

When an atom or molecule absorbs energy, electrons are promoted from their 

ground state to an excited state hence, the absorption of UV or visible radiation 

corresponds to the excitation of outer electrons.  

The spectrometer usually displays absorbance on the vertical axis versus 

wavelength or transmittance versus wavelength, being the transmittance related with the 

light that passes through the investigated material in comparison to the light that has 

not. The most investigated materials have characteristic absorbance spectra and can be 

identified [12]. 

2.3.2. Thermal characterization 

2.3.2.1. Differential scanning calorimetry (DSC) 

DSC is a thermo-analytical technique based on the compensation of differences 

in heat required to increase the temperature of both an investigated material and the 

reference as a function of temperature or time with control heating or cooling rate [13].  

Both the investigated material and reference are maintained at the same 

temperature throughout the experiment. In general, in a DSC analysis, the temperature 

https://en.wikipedia.org/wiki/Electromagnetic_spectrum
https://en.wikipedia.org/wiki/Atoms
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Molecular_electronic_transition


Chapter 2 

37 

 

program is designed such that the investigated material holder temperature increases 

linearly as a function of temperature or time. The reference sample has a well-defined 

heat capacity over the temperatures range. 

While the investigated material suffers a physical transformation such as first 

and second-order phase transitions or chemical reaction (reaction kinetics, curing 

reactions and other) the difference in heat flow between the investigated material and 

reference sample are compensated by DSC. Thus, during endothermic process DSC 

equipment provide heat to allow the fusion of the investigated material, and during an 

exothermic process, the investigated material releases heat which is absorbed by DSC 

equipment. 

The difference in heat flow between the investigated material and reference 

sample is compensated by DSC equipment which absorbs or release heat during phase 

transitions, which take place in the investigated material. The main application of DSC 

is in studying phase transitions, such as melting, glass transitions, or ever in studying 

polymer curing. 

2.3.2.2. Thermal gravimetric analysis (TGA) 

TGA is a method of thermal analysis in which physical and chemical changes in 

the investigated materials are detected by means of the weight loss as a function of 

temperature, with determined heating rate or as a function of time with constant 

temperature [14].  

This technique can provide information about physical phenomena, such as 

phase transitions, including vaporization, sublimation, absorption, adsorption and 

desorption as well as information about chemical phenomena including chemisorptions, 

desolvation, especially dehydration, decomposition, and solid-gas reactions. 

TGA is generally used to analyze materials that exhibit either mass loss or gain 

due to decomposition, oxidation, or loss of volatiles, such as moisture or CO2 by 

combustion. The characterization of materials through analysis of defined 

decomposition patterns, degradation mechanisms and reaction kinetics, is necessary to 

determine the organic and inorganic content in the investigated material, which may be 

useful for corroborating the predicted structures or simply used as a chemical analysis.  

It is an especially useful technique for the study of polymeric materials, 

including thermoplastics, thermosets, elastomers, composites, plastic films, fibers, 

coatings and paints.  

https://en.wikipedia.org/wiki/Heat_capacity
https://en.wikipedia.org/wiki/Thermal_analysis
https://en.wikipedia.org/wiki/Second-order_phase_transition
https://en.wikipedia.org/wiki/Vaporization
https://en.wikipedia.org/wiki/Sublimation_%28phase_transition%29
https://en.wikipedia.org/wiki/Absorption_%28chemistry%29
https://en.wikipedia.org/wiki/Adsorption
https://en.wikipedia.org/wiki/Desorption
https://en.wikipedia.org/wiki/Chemisorption
https://en.wikipedia.org/w/index.php?title=Desolvation&action=edit&redlink=1
https://en.wikipedia.org/wiki/Dehydration
https://en.wikipedia.org/wiki/Decomposition
https://en.wikipedia.org/wiki/Volatiles
https://en.wikipedia.org/wiki/Polymer
https://en.wikipedia.org/wiki/Thermoplastics
https://en.wikipedia.org/wiki/Thermosets
https://en.wikipedia.org/wiki/Elastomers
https://en.wikipedia.org/wiki/Composite_material
https://en.wikipedia.org/wiki/Plastic_film
https://en.wikipedia.org/wiki/Fibers
https://en.wikipedia.org/wiki/Coatings
https://en.wikipedia.org/wiki/Paints
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2.3.3. Morphological characterization 

2.3.3.1. Atomic force microscopy (AFM) 

AFM technique measures the local properties of the investigated material with 

high resolution providing material surface information at the nanometric scale. This 

technique employs a very sharp tip (generally 4-6 µm tall with 15-40 nm end radius) to 

scan the investigated material surface. The force along the investigated material surface 

is carefully maintained at a set level [15,16]. AFMs can generally measure the vertical 

and lateral deflections of the cantilever employing the optical lever to acquire the high 

image resolution. The optical lever operates by reflecting a laser beam off the cantilever 

and the reflected laser beam strikes a position-sensitive photo-detector, as shown in 

Figure 2.3.  

 

Figure 2.3. Schematic illustration of the AFM tapping mode operation. 

A piezoelectric material, which can move the probe very precisely in the x, y, 

and z, position the tip with high resolution. In the presence of a voltage gradient, 

piezoelectric materials expand or contract. During the scanning, the z-piezo moves up 

and down to maintain constant the set point deflection signal. The distance between the 

tip and investigated material surface, provides the topography information. The height 

provides the topography of the investigated material and phase image the material 

properties like elasticity and adhesion. Both images are collected simultaneously [17]. 

The AFM measures and regulates the force on the investigated material allowing 

acquisition of images at very low forces.  

2.3.3.2. Optical microscopy (OM) 

The OM employs a microscope which uses visible light as light source and a 

system of lenses for magnification the image of the investigated materials.  

Basic optical microscopes can be very simple using only a lens although there 
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are many complex designs which aim to improve resolution and the investigated 

material contrast. Optical microscope generates micrographs which can be captured by 

normal light sensitive cameras.  

Currently digital microscopes are available which show the resulting image 

directly on a computer screen without the need for eyepieces. When a material is 

analyzed by optical microscopy, it uses a close lens (the objective lens) which generates 

a real image inside the microscope. A second lens or group of lenses (the eyepiece) 

magnifies the image obtaining an enlarged inverted virtual image of the object. 

Common compound microscopes often feature exchangeable objective lenses, allowing 

the user to quickly adjust the magnification [18]. Moreover, a compound microscope 

also enables more advanced illumination setups, such as phase contrast. 

2.3.3.3. Scanning electron microscopy (SEM) 

SEM is a technique employed to obtain high-resolution images of the 

investigated materials. A focused beam of electrons scans an investigated material to 

produce images of its surface.  

The surface topography of the investigated materials and their composition are 

obtained due to the interaction between the beam of electron and the atoms of the 

investigated materials. 

The electrons of the beam, created by a thermal emission source (a heated 

tungsten filament or a field emission cathode) generate energy between from 100 eV to 

30 keV depending on the evaluation objectives. A series of electromagnetic lenses focus 

the electrons into a small beam onto the investigated material surface. This causes the 

release of secondary emitted electrons and other types of radiations such as 

backscattered electrons, diffracted backscattered electrons, photons, visible light and 

heat from the investigate material.  

The shape and the chemical composition of the investigated material is related to 

the intensity of the secondary electrons, which are collected by a detector, generating 

electronic signals. These signals are displayed as brightness on a display monitor and/or 

in a digital image file, which is recorded by capturing it from the cathode ray tube [19]. 

The external morphology, chemical composition and crystalline structure and 

orientation of the investigated material are achieved through the signals that derive from 

electron- investigated material interactions. 
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2.3.4. Surface characterization 

2.3.4.1. Water contact angle 

The contact angle is the angle generated between a liquid, water in this case, and 

a solid surface. It is related to the solid surface and water properties, to the interaction 

and repulsion forces between water and solid surface and to the three phase interface 

properties, gas, liquid and solid. Those interactions are described by intermolecular 

forces such as cohesion and adhesion forces [20]. This contact angle can be measured 

directly from the angle formed at the contact between the water drop and the flat surface 

as shown in Figure 2.4. 

 

Figure 2.4. Water contact angle formed at the contact between the water drop and the solid surface.  

The contact angle quantifies the wettability of a solid surface. If the liquid 

molecules are strongly attracted to the solid molecules, cohesive forces are weaker than 

adhesive forces then the liquid drop will completely spread out on the solid surface. In 

this case the contact angle is equal to 0°. 

Generally, when the water contact angle is smaller than 90°, the solid surface is 

considered hydrophilic and when is larger than 90°, the solid surface is considered 

hydrophobic [21]. 

In order to control the wetting contact angle, different procedures, such as 

deposition or incorporation of various organic and inorganic molecules onto the surface 

of the investigated material, are carry out. The contact angle of the surface can be tuned 

with the proper selection of the organic molecules with varying molecular structures and 

amounts of hydrocarbon terminations. 

  

https://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Physical_Properties_of_Matter/States_of_Matter/Properties_of_Liquids/Cohesive_and_Adhesive_Forces
https://en.wikipedia.org/wiki/Hydrophile
https://en.wikipedia.org/wiki/Hydrophobe
https://en.wikipedia.org/wiki/Contact_angle#cite_note-7
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3. PE-b-PEO block copolymer dispersed liquid crystal blends  

In this Chapter, different block copolymer dispersed liquid crystal (PDLC) 

blends based on PE-b-PEO block copolymer and modified with two different low 

molecular weight nematic liquid crystals, HOBC and EBBA, will be fabricated and 

characterized. The miscibility between each block of the PE-b-PEO block copolymer 

and each nematic liquid crystal and the thermal stability of the PE-b-PEO/HOBC and 

PE-b-PEO/EBBA blends will be addressed. The morphology of the fabricated PE-b-

PEO/HOBC and PE-b-PEO/EBBA blends will be visualized using OM. 

3.1. Introduction 

As was explained in the Chapter 1, Polymer Blend Technology is one of the 

main areas of research and development in Polymer and Material Science since offers 

opportunities to create novel materials with tailored properties [1-8]. In order to control 

and improve the miscibility in polymer blends, the addition of block copolymers, which 

are able to reduce the interfacial tension between components and allows controlling the 

phase separation and consequently promoting higher miscibility between components, 

are employed [1,9-23]. 

In the last decade, PDLC blends were investigated due to their wide range of 

applications in the field of thermal and electro-optical devices such as optical switches 

(light shutters), smart windows, reflective displays and others [24-32].  

Nematic liquid crystals (NLC) with their optical anisotropy and dielectric 

properties allow to design PDLC materials, which can switch from a state of high 

dispersion of light (OFF state) to a transparent state (ON state) by applying an external 

field such as thermal gradient, electrical voltage or magnetic field [20,24-35].  

As it is well known, block copolymers consist of two or more covalently linked 

polymers, which can self-assemble offering nanostructured templates for dispersion of 

NLCs. Consequently, NLCs can be positioned in one block of the block copolymer 

leading to PDLC materials with tunable properties. 

The main objective of this Chapter was the fabrication and characterization of 

PDLC blends based on PE-b-PEO block copolymer and two different low molecular 

weight nematic liquid crystals, HOBC and EBBA, in order to check the nematic 

character of the investigated PDLC blends. 



Chapter 3 

46 
 

3.2. Materials and characterization techniques 

3.2.1. Materials 

In this Chapter the HOBC and EBBA nematic liquid crystals and the PE-b-PEO 

diblock copolymer with an average molecular weight of 920 g mol
-1

 and 50 wt % of 

PEO block content, were employed in order to fabricate PDLC blends (for more details 

see the Chapter 2).  

Additionally, the PEO homopolymer with a molecular weight similar to this 

block in the PE-b-PEO block copolymer, as was specified in the Chapter 2, was also 

used with the aim to better understand the miscibility of each block of the PE-b-PEO 

block copolymer with each NLC.  

3.2.2. Sample preparation 

The PE-b-PEO block copolymer dispersed liquid crystal blends were prepared 

by melting different weight percentages of the PE-b-PEO block copolymer (25, 50 and 

75 wt %) with the HOBC and EBBA nematic liquid crystals. These PDLC blends were 

denominated 25PE-b-PEO/LC, 50PE-b-PEO/LC and 75PE-b-PEO/LC, being LC equal 

to HOBC or EBBA nematic liquid crystal. 

For comparison, the PEO homopolymer was used to prepare PDLC blends with 

the same weight percentages as in blends based on PE-b-PEO block copolymer (25, 50 

and 75 wt %) denominated as 25PEO/LC, 50PEO/LC and 75PEO/LC being LC equal to 

HOBC or EBBA nematic liquid crystal. 

All mixtures of the PDLC blends were melted keeping them in an oven at 100 ºC 

during 1 h and stirred manually to promote their mixing. 

3.2.3. Characterization techniques  

3.2.3.1. Fourier transform infrared spectroscopy 

FTIR was performed using a Nicolet Nexus 670 spectrometer equipped with a 

single horizontal Golden Gate cell (ATR). Spectra were recorded in the range from 600 

to 4000 cm
-1

, with 2 cm
-1

 resolution and an accumulation of 20 scans.  

3.2.3.2. Thermogravimetric analysis 

TGA was performed with a TGA/SDTA-851
e
 equipment under nitrogen 
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atmosphere in the temperature range from 25 to 700 ºC at a heating rate of 10 ºC min
-1

.  

3.2.3.3. Differential scanning calorimetry 

DSC measurements of the investigated PE-b-PEO block copolymers or PEO 

homopolymer dispersed liquid crystal blends were performed using a Mettler Toledo 

DSC 822
e
 differential scanning calorimeter. Indium (Tm = 157 ºC, ΔHm = 29 J g

-1
) and 

zinc (Tm = 420 ºC, ΔHm = 108 J g
-1

) were used for DSC calibration. The PE-b-PEO 

block copolymer, PEO homopolymer, HOBC and EBBA nematic liquid crystals as well 

as the investigated PDLC blends were encapsulated in aluminium pans weight. All 

investigated materials were around 6 mg and measured under nitrogen atmosphere at a 

flow of 25 mL min
-1

. 

To avoid the thermal history, all investigated materials were first heated from 25 

to 150 ºC at 5 ºC min
-1

, then the samples were cooled to -25 ºC at 5 ºC min
-1

 and after 

the crystallization process, the melting was performed heating the investigated materials 

up to 150 ºC at a heating rate of 5 ºC min
-1

. The melting temperature, Tm, was regarded 

as corresponding to the maximum of the endothermic peak detected during the heating 

scan. The crystallization temperature, Tc, corresponded to the minimum of the 

exothermic peak obtained during the cooling process. 

In order to estimate the miscibility between the components of the investigated 

PDLC blends the changes of the crystallization degree (Xc) were calculated using the 

following equation [1-3]: 

                  Xc =   
∆𝐻𝑒𝑥

𝜔∆𝐻100%
 x 100 

where ω was the weight fraction of the component of the PDLC blends for which the 

degree of crystallization was calculated and ∆H100% was the theoretical melting enthalpy 

of investigated material in 100 % crystalline state.  

The experimental enthalpy of the melting transition, ΔHex, was calculated from the area 

of the endotherm peak during heating. 

The enthalpies of the NLCs in 100 % crystalline state were calculated 

considering the purity of nematic liquid crystals given by Sigma Aldrich and the 

melting enthalpy of each nematic liquid crystal obtained experimentally by DSC 

measurement, being ∆H100% equal to 115.9 J g
-1

 and 47.5 J g
-1

 for the HOBC and EBBA 

nematic liquid crystals, respectively.  
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3.2.3.4. Optical microscopy 

OM measurements were carried out using a Nikon Eclipse E600W microscope 

equipped with a hot stage Mettler FP 82 HT. Micrographs were captured with a Color 

View 12 camera with Analysis Auto 3.2 software (Soft Imaging System GmbH) the 

nematic liquid crystal droplets size was analyzed using the same software.  

In order to visualized the nematic liquid crystal character of the PDLC blends, 

the same quantity of each investigated blend was placed between two microscopy 

glasses and kept 10 min at 120 ºC to avoid thermal history and then quenched with the 

highest controlled speed of hot stage Mettler FP 82 HT (40 ºC min
-1

) to room 

temperature.  

The morphology generated after this treatment was observed using OM with 

crossed polarizers at room temperature before any crystallization took place (5 min for 

every investigated samples). This procedure allowed to visualize the presence of the 

mesostable nematic morphology of the HOBC and EBBA liquid crystal phases in 

investigated PDLC blends.  

3.3. Results and discussion 

3.3.1. FTIR of the PDLCs  

ATR-FTIR spectra of the PDLC blends based on PE-b-PEO block copolymer 

and HOBC or EBBA nematic liquid crystals are shown in Figures 3.1a and 3.1b. For 

comparison, the ATR-FTIR spectra of neat PE-b-PEO block copolymer, HOBC and 

EBBA nematic liquid crystals were also plotted.  

The main groups detected in ATR-FTIR spectrum for the HOBC nematic liquid 

crystal are vibrations at 2800-3000 cm
-1

 attributed to the CH2 and CH3 groups and at 

2210-2260 cm
-1

 related to the CN group. Additionally, strong vibration at 1625 cm
-1 

and 

800-860 cm
-1

 corresponding to the C6H4 group are also visible. Similar to the HOBC 

nematic liquid crystal, ATR-FTIR spectrum of the EBBA nematic liquid crystal showed 

characteristic vibrations at 2800-3000 cm
-1

 and 1615-1700 cm
-1

 related to the CH2 and 

CH3 groups and C=N group, respectively. The C6H4 group was also detected as 

vibration at 1625 and 800-860 cm
-1

. Simultaneously, ATR-FTIR spectrum of the PE-b-

PEO block copolymer exhibits vibrations at 2800-3000 and 1120 cm
-1

 attributed to the 

CH2CH3 and -O- ether groups, respectively. 
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Figure 3.1. ATR-FTIR spectra of the a) PE-b-PEO/HOBC and b) PE-b-PEO/EBBA blends with different 

PE-b-PEO block copolymer content. For comparison, the ATR-FTIR spectra of neat components were 

also plotted. 

As can be clearly identified from the comparison between ATR-FTIR spectra of 

the PE-b-PEO/HOBC blends and ATR-FTIR spectrum of the HOBC nematic liquid 

crystal, the intensity of the vibrations at 2210-2260 cm
-1 

related to the CN group 

characteristic for the HOBC nematic liquid crystal decreased with the increase of the 

PE-b-PEO block copolymer content in the PDLC blends. This fact is related to the 

decrease of the HOBC nematic liquid crystal content in the PE-b-PEO/HOBC blends. 

Simultaneously, the increase of the intensity of vibration of the CH2 and CH3 

groups at 2800-3000 cm
-1

 is related to the fact that these groups are present in both, the 

PE-b-PEO block copolymer and the HOBC nematic liquid crystal. The intensity of the 

signals corresponds to each groups changed, the vibrations signal appeared at the same 

wavelength, indicating lack of chemical interaction between components of the PDLC 

blends. 

Similar to the PE-b-PEO/HOBC blends in the case of the PE-b-PEO/EBBA 

blends, the intensity of the C=N group at 1615-1700 cm
-1 

characteristic for the EBBA 

nematic liquid crystal decreased with the increase of the PE-b-PEO block copolymer.  

The same tendency is also shown for the C6H4 group at 1625 cm
-1 

and 800-860 

cm
-1

. Additionally, the intensity of vibration at 2800-3000 cm
-1

 corresponding to the 

CH2 and CH3 groups increased with the increase of the PE-b-PEO block copolymer 

content. Similar phenomenon is shown for the signal related to the -O- group. 

Neither the PE-b-PEO/HOBC nor PE-b-PEO/EBBA blends showed shifts in the 

signals related to both, the PE-b-PEO block copolymer and the HOBC or EBBA 

nematic liquid crystals. This indicated the lack of chemical interactions between 

components of the PDLC blends. 
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3.3.2. Thermal stability of the PDLC blends by TGA 

The thermal stability of the PE-b-PEO/HOBC and PE-b-PEO/EBBA blends was 

studied by TGA. Obtained thermogravimetric and differential thermogravimetric curves 

are shown in Figure 3.2. Thermogravimetric and differential thermogravimetric curves 

of neat components were also plotted for a better understanding thermal stability of 

investigated PDLC blends. 

 

Figure 3.2. a) Thermogravimetric and b) differential thermogravimetric curves of the PE-b-PEO/HOBC 

blends, and c) thermogravimetric and d) differential thermogravimetric curves of the PE-b-PEO/EBBA 

blends. For comparison the thermogravimetric and differential thermogravimetric curves of neat 

components were also plotted. 

As shown in Figure 3.2, the stabilization temperature of the PE-b-PEO block 

copolymer is higher than the stabilization temperature of both, the HOBC and EBBA 

nematic liquid crystals being the stabilization temperature of the HOBC nematic liquid 

crystal slightly higher than the stabilization temperature of the EBBA nematic liquid 

crystal.  

In more details, the degradation process of the PE-b-PEO block copolymer 

followed one step degradation and started at around 412 °C. Similarly, the degradation 

process of both, the HOBC and EBBA nematic liquid crystals consisted of one step with 
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the stabilization temperature at around 325 and 310 ºC for the HOBC and EBBA 

nematic liquid crystals, respectively.  

As expected, the PE-b-PEO/HOBC blends followed two steps degradation 

process. The first step was related to the degradation of the HOBC nematic liquid 

crystal and the second step can be ascribed to the degradation process of the PE-b-PEO 

block copolymer. The stabilization temperatures for both steps merged between the 

stabilization temperatures of the PE-b-PEO block copolymer and the HOBC nematic 

liquid crystal.  

Moreover, the stabilization temperatures increased with the increase of the PE-b-

PEO block copolymer content. This fact can be related to the interaction between the 

components, which is in good agreement with the DSC results described below in this 

Chapter. Thus, the increase of the PE-b-PEO block copolymer content had strong effect 

on the degradation of the HOBC nematic liquid crystals and vice versa confirming 

interaction between components [34]. 

As can be easily deduced from the comparison of the thermogravimetric curves 

of the PDLC blends based on the HOBC and EBBA nematic liquid crystals, the 

degradation process of the PE-b-PEO/EBBA blends is similar to the degradation 

process of the PE-b-PEO/HOBC blends. Thus, the degradation process of these PDLC 

blends followed two steps, the first step being related to the degradation process of the 

EBBA nematic liquid crystal and the second one related to the PE-b-PEO block 

copolymer. The stabilization temperatures of the PE-b-PEO/EBBA blends depend 

strongly on the PE-b-PEO block copolymer content suggesting the possible interaction 

between the PE block of the PE-b-PEO block copolymer and the EBBA nematic liquid 

crystal.  

3.3.3. Thermal behavior of the PDLC blends by DSC 

DSC thermograms of the heating and cooling processes of the PE-b-PEO block 

copolymer and the HOBC and EBBA nematic liquid crystals and their PDLC blends are 

shown in Figure 3.3. 

As expected, the Tm of the PE block of the PE-b-PEO block copolymer was 88 

ºC and the Tc was 85 ºC. Under the same DSC measurement conditions, the Tm of the 

PEO block of the block copolymer was detected at 37 ºC and the Tc at -4 °C. These 

results confirmed the semicrystalline character of both blocks of the PE-b-PEO block 

copolymer. The Tm of the HOBC nematic liquid crystal appeared at 58 ºC and its Tc at 
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22 ºC whereas the Tm of the EBBA nematic liquid crystal was 36 ºC and its Tc 5 ºC. 

Additionally, the nematic character of employed liquid crystals was also 

analyzed using DSC measurement. The nematic-isotropic transition was detected at 77 

ºC for the HOBC nematic liquid crystal and at 76 ºC for the EBBA nematic liquid 

crystal. As it is well known, the nematic-isotropic transition of liquid crystals is a 

reversible process and can be easily distinguished also during cooling process at around 

76 ºC for both liquid crystals.  

 

Figure 3.3. DSC thermograms of the PDLC blends based on the PE-b-PEO block copolymer and the 

HOBC (a, b) and EBBA (c, d) nematic liquid crystals during heating and cooling processes. For 

comparison the DSC thermograms of neat components were also plotted. 

As clearly observed in Figure 3.3a, the addition of the PE-b-PEO block 

copolymer led to notable decrease of the Tm of the HOBC nematic liquid crystal in the 

PE-b-PEO/HOBC blends. The Tm of the HOBC liquid crystal phase decreased 1 ºC with 

the addition of 25 wt % of PE-b-PEO block copolymer and 9 ºC when 75 wt % of PE-b-

PEO block copolymer was added to the PE-b-PEO/HOBC blend if compare to the Tm of 

neat HOBC nematic liquid crystal. This phenomenon can be related with the partial 

miscibility between the HOBC liquid crystal rich phase and one of the blocks of the PE-

b-PEO block copolymer rich phase. Especially, taken into account that Xc decreased 
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with the increase of the PE-b-PEO block copolymer, being 94 % for the 25PE-b-

PEO/HOBC blend, 84 % for the 50PE-b-PEO/HOBC blend and 52 % for the 75PE-b-

PEO/HOBC blend as shown in Table 3.1.  

Table 3.1. Degree of crystallization of the HOBC liquid crystal phase in the PE-b-PEO/HOBC blends. 

% PE-b-PEO 0 25 50 75 100 

% Xc HOBC 100 94 84 52 - 

Both, the crystallization degree tendency to decrease and the diminution of the 

Tm of the HOBC liquid crystal phase with the increase of the PE-b-PEO block 

copolymer content indicated that the HOBC liquid crystal phase can crystalize within 

the PE-b-PEO block copolymer. 

The Tm of the PEO block of the PE-b-PEO block copolymer in the PE-b-

PEO/HOBC blends increased slightly with the increase of the HOBC nematic liquid 

crystal content, being 3 ºC higher for the 25PE-b-PEO/HOBC blend if compared with 

the Tm of the PE-b-PEO block copolymer.  

The Tm of the PE block phase in the PE-b-PEO/HOBC blends was not clearly 

detected. However, the general tendency indicates that the onset corresponding to the 

PE block melting transition in the PE-b-PEO/HOBC blends remained in the same 

position as in the PE block phase in the PE-b-PEO block copolymer indicating lack of 

miscibility between the PE block and the HOBC liquid crystal phase in these polymer 

blends.  

Similar tendencies were observed for the PE-b-PEO/EBBA blends (Figure 3.3c). 

The increase of the PE-b-PEO block copolymer content led to a decrease of the Tm of 

the EBBA liquid crystal phase in the PE-b-PEO/EBBA blends. Similar to the Tm 

corresponding to the HOBC liquid crystal phase in the PE-b-PEO/HOBC blends, the Tm 

of the EBBA liquid crystal phase decreased 1 and 6 ºC if compared to the Tm of neat 

EBBA liquid crystal when 25 and 75 wt % of PE-b-PEO block copolymer were added 

to the PE-b-PEO/EBBA blends.  

The Tm of the PEO block of the PE-b-PEO block copolymer in the PE-b-

PEO/EBBA blends, decreased slightly with the increase of the EBBA liquid crystal 

content, being 2 ºC lower for the 75PE-b-PEO/EBBA blend if compared with the Tm of 

the PEO block of the PE-b-PEO block copolymer, in contrast with the PE-b-

PEO/HOBC blends.  
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Under the same DSC measurement conditions, the Tm of the PE block phase of 

the PE-b-PEO/EBBA blends was not clearly detected similar to the Tm of the PE block 

phase in the PE-b-PEO/HOBC blends. The onset of the melting transition of the PE 

block phase in the PE-b-PEO/EBBA blends decreased slightly with the increase of the 

PE-b-PEO block copolymer in these PDLC blends. 

The thermal behavior of the PE-b-PEO/HOBC and PE-b-PEO/EBBA blends is 

in good agreement with the miscibility prediction between the PE-b-PEO block 

copolymer and the HOBC and EBBA nematic liquid crystals calculated using solubility 

parameters of each component of the investigated PDLC blends. According to the 

Hoftyzer, Van Krevelen and Jones methods [36,37], the miscibility between the 

components of the polymeric blends can be predicted by estimation of the solubility 

parameters. From these calculations, the values of the solubility parameters of each 

block of the PE-b-PEO block copolymer were 16.41 (J cm
-3

)
1/2 

and 21.28 (J cm
-3

)
1/2

 for 

the PE and PEO blocks, respectively. In the case of the HOBC nematic liquid crystal, 

the solubility parameter was 19.44 (J cm
-3

)
1/2

 and for the EBBA nematic liquid crystal 

was 16.89 (J cm
-3

)
1/2

. Based on this prediction and as also confirmed by the DSC 

results, the PE block of the PE-b-PEO block copolymer showed higher miscibility with 

the EBBA nematic liquid crystal and the PEO block of the PE-b-PEO block copolymer 

presented higher miscibility with the HOBC nematic liquid crystal as schematically 

represented in Scheme 3.1. 

 

Scheme 3.1. Miscibility between the PE-b-PEO block copolymer and the HOBC and EBBA nematic 

liquid crystals. 

Moreover, the miscibility predicted employing the solubility parameters was 

also supported by the DSC results obtained for the PDLC blends of the PEO 

homopolymer and the HOBC or EBBA nematic liquid crystals.  

Figure 3.4 shows the DSC thermograms of the PDLC blends of the PEO 

homopolymer and the HOBC or EBBA nematic liquid crystals. As shown in Figure 

3.4a, the addition of the PEO homopolymer to the PEO/HOBC blends led to an 

insignificant decrease of the Tm of the HOBC liquid crystal rich phase in the 

PEO/HOBC blends. The Tm of the HOBC liquid crystal rich phase decreased only 1 ºC 

for the 75PEO/HOBC blend if compared to the Tm of the HOBC nematic liquid crystal. 

Simultaneously, under the same measurement conditions, the Tm of the PEO 
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homopolymer rich phase in the PEO/HOBC blends was not detected, neither for the 

25PEO/HOBC nor for 75PEO/HOBC blends, indicating high miscibility between the 

PEO homopolymer and the HOBC liquid crystal. Thus, the addition of the PEO 

homopolymer into the HOBC liquid crystal hindered the crystallization process of the 

HOBC liquid crystal phase in the investigated PDLC blends. This fact is in good 

agreement with the miscibility prediction based on the solubility parameters of polymer 

blend components. 

 

Figure 3.4. DSC thermograms of the a) PEO/HOBC and b) PEO/EBBA blends with different PE-b-PEO 

block copolymer content during heating process. For comparison, the DSC thermogram of neat PEO 

homopolymer was also plotted. 

On the contrary, as can be observed in Figure 3.4b, the Tm of the PEO 

homopolymer rich phase in the PEO/EBBA blends was maintained almost in the same 

temperature with the increase of the EBBA liquid crystal content up to 75 wt % of 

EBBA liquid crystal suggesting low miscibility between the PEO homopolymer and the 

EBBA nematic liquid crystal. 

However, the crystallization degree of the PEO homopolymer rich phases in the 

PEO/EBBA blends decreased from 51 % for the PEO homopolymer to 31 % for the 

25PEO/EBBA blend (Table 3.2), which indicates some miscibility between 

components. 

Table 3.2. Degree of crystallization of the PEO homopolymer phase in the PEO/EBBA blends. 

% PEO 0 25 50 75 100 

% Xc PEO - 31 45 49 51 

As it is shown in Figure 3.3b for the PDLC blends based on the HOBC nematic 

liquid crystal and in Figure 3.3d for the PDLC blends based on the EBBA nematic 
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liquid crystal, the addition of 25, 50 and 75 wt % of PE-b-PEO block copolymer to the 

PE-b-PEO/HOBC or PE-b-PEO/EBBA blends had a strong effect on the crystallization 

process of the HOBC or EBBA liquid crystal phases.  

In the case of the PE-b-PEO/HOBC blends, increasing of the PE-b-PEO block 

copolymer content provoked the decrease of the Tc of the HOBC liquid crystal phase 

from 22 ºC for neat HOBC nematic liquid crystal to -3 and -17 ºC for the 25PE-b-

PEO/HOBC and 75PE-b-PEO/HOBC blends, respectively. Simultaneously, the Tc of 

the PEO block phase in the PE-b-PEO/HOBC blends decreased with the increase of the 

HOBC liquid crystal content. Thus, the Tc of the PEO block of the PE-b-PEO block 

copolymer decreased from -4 ºC for the PE-b-PEO block copolymer to -16 ºC for the 

25PE-b-PEO/HOBC blend. Neither for the PEO block phase in the PE-b-PEO/HOBC 

blends with the PE-b-PEO block copolymer content higher that 25 wt % nor for the PE 

block in all investigated PE-b-PEO/HOBC blends the Tc were detected.  

The strong effect of the addition of the PE-b-PEO block copolymer on the 

crystallization of the HOBC liquid crystal phase in the PE-b-PEO/HOBC blends once 

more proved the high miscibility between the PEO block and the HOBC liquid crystal 

phase.  

In the case of the PE-b-PEO/EBBA blends (Figure 3.3d), the addition of 25, 50 

and 75 wt % of PE-b-PEO block copolymer had also a strong effect on the 

crystallization process of the EBBA liquid crystal phase. The increase of the PE-b-PEO 

block copolymer content provoked a decrease of the Tc related to the EBBA liquid 

crystal phase, from 5 ºC for neat EBBA nematic liquid crystal to 1 and -4 ºC for the 

25PE-b-PEO/EBBA and 50PE-b-PEO/EBBA blends, respectively. 

The shift of the Tc of the EBBA liquid crystal phase toward lower temperatures 

is smaller than for the Tc of the HOBC liquid crystal phase for the same polymer blends 

compositions. Thus, the addition of the PE-b-PEO block copolymer had stronger effect 

on crystallization process of the HOBC liquid crystal phase than on the EBBA liquid 

crystal phase, which once more confirmed that the HOBC liquid crystal phase exhibited 

higher miscibility with the PE-b-PEO block copolymer than the EBBA liquid crystal 

phase in the investigated PDLC blends. 

Under the same measurement conditions, the Tc of the PEO block phase in the 

PE-b-PEO/EBBA blends decreased with the increasing of the EBBA liquid crystal 

content, being -4 ºC for the PE-b-PEO block copolymer and -7 ºC for the 75PE-b-

PEO/EBBA blend. Similar to the tendency of the crystallization process of the HOBC 
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liquid crystals phase, the effect of the addition of the EBBA nematic liquid crystal on 

the crystallization process of the PEO block of the PE-b-PEO block copolymer proved 

higher miscibility with the HOBC nematic liquid crystal than with the EBBA nematic 

liquid crystal (Figure 3.3b and 3.3d).  

3.3.4. Droplet-like morphology of the PDLC blends by OM 

The morphology of the PE-b-PEO/HOBC and PE-b-PEO/EBBA blends with 

different PE-b-PEO block copolymer content is shown in Figure 3.5.  

In order to avoid the thermal history effect and visualize the liquid crystal 

character of the investigated PDLC blends, all investigated materials were analyzed 

after quenching from 120 ºC to the room temperature. OM micrographs were taken 

before crystallization, which allowed to confirm the presence of the mesostable nematic 

state of the HOBC and EBBA nematic liquid crystals in the designed PDLC blends 

[20,28].  

As clearly showed in Figure 3.5a, the HOBC nematic liquid crystal possessed 

typical Schlieren texture characteristic for the nematic liquid crystals.  

The addition of 25 wt % of PE-b-PEO block copolymer into the PE-b-

PEO/HOBC blends led to coalesced droplets of the HOBC liquid crystal phase clearly 

observed in Figure 3.5b, while the addition of 50 wt % of PE-b-PEO block copolymer 

resulted in droplet-like morphology with an average size of the nematic HOBC domains 

of around 2.5 ± 0.5 µm (Figure 3.5 c).  

The incorporation of 75 wt % of PE-b-PEO block copolymer (Figure 3.5d) 

changed the morphological character of the fabricated blends. Consequently, no 

coalescence droplets of the HOBC liquid crystal phase were detected for this PDLC 

blend. In this case, only some small bright spherical crystals of the PE-b-PEO block 

copolymer appeared on the black amorphous phase similar to the morphology exhibited 

by neat PE-b-PEO block copolymer (compare Figure 3.5d and 3.5i).  

The morphology of neat EBBA nematic liquid crystal was similar to the 

morphology of neat HOBC nematic liquid crystal (compare Figure 3.5a and 3.5e). The 

25PE-b-PEO/EBBA and 50PE-b-PEO/EBBA blends showed droplet-like morphology 

with the uniform size of the nematic EBBA domains. The average size of these 

mesostable nematic EBBA liquid crystal phase increase with the increase of the PE-b-

PEO block copolymer content being 1.5 ± 0.5 µm (Figure 3.5f) and 3 ± 0.5 µm (Figure 

3.5g) for the PE-b-PEO/EBBA blends modified with 25 and 50 wt % of PE-b-PEO 
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block copolymer content, respectively. The addition of 75 wt % of PE-b-PEO block 

copolymer into the PE-b-PEO/EBBA blends allowed envisaging that and for this ratio 

between components designed materials did not show any liquid crystals droplets 

(Figure 3.5h). 

 

Figure 3.5. OM micrographs of the a) HOBC nematic liquid crystal and its PDLC blends containing b) 

25 wt %, c) 50 wt %, d) 75 wt % of PE-b-PEO block copolymer, and e) EBBA nematic liquid crystal and 

its PDLC blends containing f) 25 wt %, g) 50 wt %, h) 75 wt % of PE-b-PEO block copolymer. For 

comparison optical micrograph of the i) PE-b-PEO block copolymer was also presented. All OM 

micrographs were taken between crossed polarizers. 

Thus, under thermal treatment conditions, the addition of more than 50 wt % of 

PE-b-PEO block copolymer prevents the formation of the mesostable nematic state of 

the EBBA phase domains. On the contrary, small spherical crystals of the PE-b-PEO 

block copolymer were easily detected confirming that the 75PE-b-PEO/EBBA blends 
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had the morphology similar to the morphology of neat PE-b-PEO block copolymer 

(compare Figure 3.5h and 3.5i). 

Well-dispersed, uniform in size nematic droplets of the HOBC or EBBA liquid 

crystal phase in PDLC blends containing up to 50 wt % of PE-b-PEO block copolymer 

made these PDLC blends potential candidate to be used in electro-optical devices. 

3.4. Conclusions 

In the investigation work related to this Chapter, PE-b-PEO block copolymer 

dispersed liquid crystals were fabricated using two different low molecular weight 

nematic liquid crystals. 

The miscibility between the PE-b-PEO block copolymer and the HOBC and 

EBBA nematic liquid crystals was confirmed by decrease of the Tm of the HOBC and 

EBBA liquid crystals phases with the increase of the PE-b-PEO block copolymer 

content as well as the decrease of the crystallization degree of liquid crystal phase in the 

PDLC blends.  

These results are in good agreement with the theoretical prediction based on the 

solubility parameters calculated for each block of the PE-b-PEO block copolymer and 

the HOBC and EBBA nematic liquid crystals. 

DSC results confirmed that the PEO block of the PE-b-PEO block copolymer 

showed higher miscibility with the HOBC nematic liquid crystal than with the EBBA 

nematic liquid crystal as also confirmed by miscibility studied of the PEO/HOBC and 

PEO/EBBA blends. 

As expected, the addition of the PE-b-PEO block copolymer resulted in increase 

of the thermal stability of the PE-b-PEO/HOBC and PE-b-PEO/HOBC blends 

corroborated with the partial miscibility between the PDLC blends components. 

Thermal treatment performed to visualize liquid crystal character of the PE-b-

PEO/HOBC and PE-b-PEO/EBBA blends indicated that the PDLC blends containing 

25 and 50 wt % of PE-b-PEO block copolymer exhibited droplets-like morphology with 

uniform and narrow size distribution of the nematic HOBC or EBBA domains. 
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4. Thermo-optical responsive PE-b-PEO block copolymer 

dispersed liquid crystal blends 

The Chapter 4 will deal with thermo-optical responsive behavior of the PDLC 

blends based on the PE-b-PEO block copolymer and the HOBC and EBBA nematic 

liquid crystals investigated before in the Chapter 3 however with higher NLCs content.  

The nematic-isotropic transition will be discussed based on DSC results. The reversible 

switching process of the prepared PDLC blends will be study by PL and UV-vis 

spectroscopies. Moreover, the influence of the addition of the PE-b-PEO block 

copolymer on the thermo-optical responsive of the PDLC blends will be also discussed.  

4.1. Introduction 

The capability of the NLCs to switch from a highly scattering state (OFF-state) 

to a transparent state (ON-state) is an attractive property from the point of view of their 

potential application in electronic devices and sensors [1-20]. The possibility of 

controlling this reversible optical property in materials based on NLCs make them a 

fascinating research field and this enables to combine their properties to broaden their 

potential range of applications [6,21,22]. 

As it is well known, one of the drawbacks of the low molecular weight NLCs is 

their temperature dependent crystallization process. In order to overcome this handicap, 

block copolymers can be used to hinder the crystallization process of liquid crystal 

phase in the PDLC blends and consequently achieved good dispersion of the nematic 

liquid crystals, which have strong influence on their optical properties [21-28]. 

The main objective of this Chapter was the study of thermo-optical reversible 

behavior of the PDLC blends based on the PE-b-PEO block copolymer and the HOBC 

and EBBA nematic liquid crystals as a function of temperature.  

Different techniques were used to study even HOBC and EBBA nematic liquid 

crystals maintain their optical properties in the PDLC blends. DSC technique was used 

to detect the presence of the nematic-isotropic transition in PDLC blends. Moreover, in 

this Chapter photoluminescence and UV-visible spectroscopies were employed to 

investigate the thermo-optical reversible behavior of the PDLC blends as a function of 

the temperature.  
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4.2. Materials and characterization techniques  

4.2.1. Materials 

The PE-b-PEO block copolymer and the HOBC and EBBA nematic liquid 

crystals employed in this Chapter were the same as in the Chapter 3. The only 

difference was the formulation of the PDLC blends since in this Chapter the high 

content HOBC and EBBA nematic liquid crystals PDLC blends were prepared and 

investigated.  

4.2.2. Sample preparation 

The PE-b-PEO block copolymer dispersed liquid crystal blends were prepared 

by melting different quantity of PE-b-PEO block copolymer (1, 5 and 10 wt %) with 

HOBC and EBBA nematic liquid crystals. These PDLC blends were denominated 1PE-

b-PEO/LC, 5PE-b-PEO/LC and 10PE-b-PEO/LC, respectively, being LC equal to 

HOBC or EBBA nematic liquid crystals. 

The PDLC blends were fabricated by heating in an oven at 100 °C during 1 h 

and stirred manually to encourage their mixing, as in the Chapter 3.  

The thermo-optical reversible behavior of neat NLCs and the investigated PDLC 

blends was studied in bulk conditions. The required quantity of the investigated 

materials was placed between two microscope glass slides and separate using an 

aluminum frame to control the thickness of the prepared samples (1 mm). 

4.2.3. Characterization techniques 

4.2.3.1. Differential scanning calorimetry 

DSC measurements were performed using a Mettler Toledo DSC 822e differential 

scanning calorimeter under a nitrogen flow of 25 mL min
-1

. The calibration was done as 

described in the Chapter 3. The investigated blends were encapsulated in aluminum pans 

with the weight around 6 mg. In order to avoid the thermal history, all investigated 

materials were first heated from -25 to 90 °C at 5 °C min
-1

, then were cooled from 90 to -

25 ºC at 5 °C min
-1

 and finally, the melting was performed heating the samples up to 90 

°C at 5 °C min
-1

. Only the last heating scan was taken into consideration. The melting 

temperature (Tm), the crystallization temperature (Tc) and the nematic-isotropic 

temperature (TN-I) were determined in the same way as in the Chapter 3.  
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4.2.3.2. Photoluminescence spectroscopy 

PL properties of neat HOBC and EBBA nematic liquid crystals and the 

investigated PDLC blends were determined using a Felix32 spectrofluorometer of 

Photon Technology International (PTI) equipped with a temperature controller. The 

excitation wavelengths at room temperature were 333 and 467 nm for the HOBC and 

EBBA nematic liquid crystals, respectively. Photoluminescence emissions spectra of 

neat HOBC and EBBA nematic liquid crystals and their PDLC blends were recorded 

during heating/cooling cycles from 10 to 80 °C at a rate of 5 °C min
-1

. Measurements 

were repeated four times to study of the photoluminescence switchable ability of the 

investigated PDLC blends. 

4.2.3.3. UV-visible spectroscopy 

The UV-vis transmission spectra of the investigated PDLC blends as a function 

of the temperature were performed using a UV-3600, Shimadzu UV-VIS-NIR 

spectrophotometer equipped with a thermoelectric single cell holder to control the 

temperature. Measurements were collected at 10 and 80 ºC in the wavelength range 

between 200 and 800 nm. 

4.2.3.4. Optical microscopy 

OM micrographs were taken using a Nikon Eclipse E600W microscope 

equipped with a hot stage (Mettler FP 82 HT) using crossed polarizers. Required 

quantity of neat HOBC and EBBA nematic liquid crystals and their PDLC blends 

placed between two clean microscope glass slides was heated/cooled from 30 to 90 ºC 

at a rate of 5 ºC min. OM micrographs were collected during heating and cooling 

processes using the software analySIS docu FIVE. 

4.3. Results and discussion 

4.3.1. Thermal behaviour of the PDLC blends by DSC 

DSC thermograms of the heating and cooling processes of the HOBC nematic 

liquid crystal and their PDLC blends with the PE-b-PEO block copolymer are shown in 

Figure 4.1. As can be seen in Figure 4.1a, the Tm of the HOBC nematic liquid crystal 

was at 58 °C and its Tc at 22 °C as reported in the Chapter 3. The TN-I of the HOBC 
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nematic liquid crystal was identified at 77 ºC during heating process and almost at the 

same temperature during cooling process confirming the reversible switching behavior 

of the HOBC liquid crystal.  

 

Figure 4.1. DSC thermograms of the a) HOBC nematic liquid crystal and b) 1PE-b-PEO/HOBC, c) 5PE-

b-PEO/HOBC and d) 10PE-b-PEO/HOBC blends during heating/cooling processes.  

The Tm of the HOBC liquid crystal phase in the PE-b-PEO/HOBC blends was 

maintained at 58 °C with the addition of 1 and 5 wt % of PE-b-PEO block copolymer. 

However, the addition of 10 wt % of PE-b-PEO block copolymer provoked a slight 

decreased of the Tm indicating a partial miscibility between the HOBC nematic liquid 

crystal and the PEO block of the PE-b-PEO block copolymer. The partial miscibility 

between components of the PDLC blends was proved for the higher PE-b-PEO block 

copolymer content in the Chapter 3. 

An increase of the PE-b-PEO block copolymer content provoked a decrease of 

the Tc of the HOBC liquid crystal phase, shifting the crystallization temperature 3, 8 and 

11 °C to lower values for 1, 5 and 10 wt % of PE-b-PEO block copolymer, respectively, 

if compare to the Tc of neat HOBC nematic liquid crystal as shown in Figure 4.1. Thus, 

the addition of the PE-b-PEO block copolymer hinders the crystallization process of the 

HOBC liquid crystal phase, once more confirming the partial miscibility between 
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components in the PE-b-PEO/HOBC blends. Concerning the PE-b-PEO block 

copolymer phase, neither their melting nor crystallization transitions were detected in 

the investigated PE-b-PEO/HOBC blends. This phenomenon is probably related to both 

the partial miscibility between the PE-b-PEO block copolymer and the HOBC nematic 

liquid crystal, and the low PE-b-PEO block copolymer content in the investigated 

PDLC blends. 

The TN-I of the HOBC liquid crystal phase in the PE-b-PEO/HOBC blends were 

decreased 2, 8 and 12 °C with the addition of 1, 5 and 10 wt % of PE-b-PEO block 

copolymer, respectively, if compare with the TN-I of the HOBC nematic liquid crystal 

(Figure 4.1a-d). Additionally, for all investigated PDLC blends, the nematic-isotropic 

transition of the HOBC liquid crystal phase occurred almost at the same temperature, 

regardless of the process, heating or cooling. This behavior indicates that the HOBC 

nematic liquid crystal maintain its ability to switch from opaque to transparent state in 

the PE-b-PEO/HOBC blends. Scheme 4.1 shows the orientation changes of the liquid 

crystal molecules as a function of the temperature. 

 

Scheme 4.1. Schematic illustration of the orientation changes of the nematic liquid crystal phase in the 

PDLC blends during switching from opaque to transparent state. 

Similar thermal behavior, as described above for the PE-b-PEO/HOBC blends, 

was also achieved for the EBBA nematic liquid crystal and their PDLC blends with PE-

b-PEO block copolymer as shown in Figure 4.2. As was reported in the Chapter 3, the 

Tm of the EBBA nematic liquid crystal was 36 °C and its Tc was 5 °C. As expected, the 

TN-I of the EBBA nematic liquid crystal was clearly detected during both the heating 

and cooling processes, at 76 ºC, indicating the reversible capability of this nematic 

liquid crystal. 

The addition of 1 wt % of PE-b-PEO block copolymer to the PDLC blend did 

not provoke changes in the Tm of the EBBA liquid crystal phase. Nevertheless, the 

addition of 5 and 10 wt % of PE-b-PEO block copolymer resulted in a slight decrease of 

the Tm of the EBBA liquid crystal phase. This thermal behavior of the PE-b-PEO/EBBA 

blends can be related to the partial miscibility between the PE block of the PE-b-PEO 
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block copolymer and the EBBA nematic liquid crystal as was mentioned also in the 

Chapter 3. The crystallization transition of the EBBA liquid crystal phase shifted to 

lower temperature with the increase of the PE-b-PEO block copolymer content as an 

effect of the partial miscibility between the PDLC components. Thus, as showed in 

Figure 4.2, the Tc of the EBBA liquid crystal phase decreased 1, 3 and 4 ºC with the 

addition of 1, 5 and 10 wt % of PE-b-PEO block copolymer, respectively, if compare to 

the Tc of the EBBA nematic liquid crystal. 

 

Figure 4.2. DSC thermograms of the a) EBBA nematic liquid crystal and b) 1PE-b-PEO/EBBA, c) 5PE-

b-PEO/EBBA and d) 10PE-b-PEO/EBBA blends during the heating/cooling processes.  

Moreover, it should be mentioned that due to the partial miscibility between the 

PDLC components or the low PE-b-PEO block copolymer content in the investigated 

PDLC blends, their melting and crystallization transition temperatures were not 

detected. 

The nematic-isotropic transition of the EBBA liquid crystal phase was 

maintained in the PE-b-PEO/EBBA blends. The TN-I of the EBBA liquid crystal phase 

moved to lower temperatures with the increase of the PE-b-PEO block copolymer 

content being 75, 68 and 57 ºC for the 1PE-b-PEO/EBBA, 5PE-b-PEO/EBBA and 

10PE-b-PEO/EBBA blends, respectively.  
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For each investigated PDLC blend, the TN-I of the EBBA liquid crystal phase 

appeared almost at the same temperature, regardless of the heating or cooling process, 

which affirmed that the EBBA nematic liquid crystal maintained their properties in 

these PDLC blends.  

4.3.2. Structure of the PDLC blends by OM 

OM images of the PE-b-PEO/HOBC blends at room temperature (30 ºC) and at 

the nematic-isotropic transition temperature are shown in Figure 4.3. As expected, in 

solid state (30 ºC) spherulites of neat HOBC nematic liquid crystal were observed. 

Moreover, a decrease of the size of the spherulites of the HOBC liquid crystal phase in 

the PE-b-PEO/HOBC blends with an increase of the PE-b-PEO block copolymer if 

compare to the size of the spherulites of neat HOBC liquid crystal were also visualized. 

This behavior was related to the partial miscibility between the HOBC liquid crystal 

phase and the PEO block of the PE-b-PEO block copolymer which can hinder the 

crystallization process in the PDLC blends with the increase of the PE-b-PEO block 

copolymer content. 

 

Figure 4.3. OM micrographs taken with crossed polarizers at solid, liquid crystal and liquid state of the a) 

HOBC nematic liquid crystal and b) 1PE-b-PEO/HOBC c) 5PE-b-PEO/HOBC and d) 10PE-b-

PEO/HOBC blends. 

As observed by OM, the nematic-isotropic transition took place almost at the 

same temperature as temperature measured by DSC. Previous to switch from opaque to 

transparent state (at liquid crystal state) all investigated PE-b-PEO/HOBC blends 

showed drop-like texture typical for the nematic liquid crystal phase in the PDLC 

blends [17, 28]. 

OM images of the PE-b-PEO/EBBA blends at room temperature and at the 

nematic-isotropic transition temperature are presented in Figure 4.4. 

Similarly, to neat HOBC nematic liquid crystal and their blends, at solid state, 
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the EBBA nematic liquid crystal formed spherulites, which became smaller in the PE-b-

PEO/EBBA blends with the addition of the PE-b-PEO block copolymer. Moreover, the 

addition of 10 wt % of PE-b-PEO led to drop-like texture characteristic for the PDLC 

blends. This behavior suggested stronger partial miscibility between the EBBA nematic 

liquid crystal and the PE block of the PE-b-PEO block copolymer than between the 

HOBC nematic liquid crystal and the PEO block of the PE-b-PEO block.  

 

Figure 4.4. OM micrographs taken with crossed polarizers at solid, liquid crystal and liquid state of the a) 

EBBA nematic liquid crystal and b) 1PE-b-PEO/EBBA c) 5PE-b-PEO/EBBA and d) 10PE-b-PEO/EBBA 

blends. 

As in the case of neat HOBC nematic liquid crystals and its PDLC blends, the 

changes in the texture as a function of the temperature indicated that the nematic-

isotropic transition took place almost at the same temperature as was reported also 

based on DSC measurement.  

The addition of 1 wt % of PE-b-PEO block copolymer did not change the 

nematic texture if compare with the texture of the EBBA nematic liquid crystal in liquid 

crystal state. On the contrary, the addition of 5 and 10 wt % of PE-b-PEO block 

copolymer led to drop-like texture characteristic for the nematic liquid crystals [17,28].  

4.3.3. Optical reversible behavior of the HOBC and EBBA liquid crystals 

Optical properties of the HOBC and EBBA nematic liquid crystals were studied 

using PL and UV-vis spectroscopy recording their photoluminescence emission spectra 

and transmittance spectra as a function of the temperature. The maximums of 

photoluminescence emission peaks of investigated liquid crystals at 10 and 80 ºC are 

summarized in Table 4.1 and the photoluminescence emission spectra of the HOBC and 

EBBA nematic liquid crystals taken at 10 and 80 ºC are shown in Figures 4.5aI and 4.5bI. 

The HOBC nematic liquid crystal possessed a well-defined, narrow emission peak 

352 nm and high PL intensity at 10 ºC. At 80 ºC, temperature higher than the TN-I of the 
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HOBC nematic liquid crystal (Figure 4.1), the emission peak of the HOBC nematic liquid 

crystal shifted slightly to higher wavelength, 358 nm, and simultaneously the PL intensity 

of this peak was half times lower if compare with the PL intensity at 10 ºC.  

Table 4.1. The maximums of photoluminescence emission peaks of the investigated materials at 10 and 

80 ºC. 

Sample Wavelength at 10 ºC (nm) Wavelength at 80 ºC (nm) 

HOBC 352 358 

1PE-b-PEO/HOBC 352 354 

5PE-b-PEO/HOBC 352 356 

10PE-b-PEO/HOBC 356 373 

EBBA 512 498 

1PE-b-PEO/EBBA 512 524 

5PE-b-PEO/ EBBA 510 510 

10PE-b-PEO/ EBBA 504 504 

The PL intensity of the HOBC nematic liquid crystal emission spectra reversibly 

changed when the temperature changed from 10 to 80 ºC. Figure 4.5aII clearly shows 

this reversible behavior during four consecutive heating/cooling cycles.  

This reversible switching of the HOBC nematic liquid crystal emission spectra 

could be strongly related to reversible capability of the HOBC nematic liquid crystal 

[17,21,24], which is able to switch from highly scattering state (opaque) at 10 ºC to 

transparent state at 80 ºC provoked by applied temperature gradient. This fact is due to 

the different internal scattering of the excitation light at different temperature when 

passing through the PE-b-PEO/EBBA blends. At 10 ºC (OFF-state), the excited photons 

are scattered from the surface of the opaque PE-b-PEO/EBBA blends (1 mm thick film) 

and the probability that some exited photons pass throughout the PDLC blends is very 

low. On the contrary, at 80 ºC (ON-state) most excited photons pass through the 

transparent 1 mm thick PE-b-PEO/EBBA blends [9, 13]. 

In the case of the EBBA nematic liquid crystal the emission peak at 10 ºC was at 

higher wavelength, 512 nm, if compare with the emission peak of the HOBC liquid 

crystal. Moreover, the PL intensity of neat EBBA nematic liquid crystal was more than 

thirty times lower if compare to the PL intensity of the HOBC nematic liquid crystal at 

the same temperature (10 ºC). This phenomenon could be linked to the chemical 

structure of the EBBA nematic liquid crystal, which has an aniline group as quencher. 

Quenchers are molecules that decrease the PL intensity without changing the emission 

spectrum. These molecules are able to capture the excessive energy of the excited state 

and dissipate it completely as heat, decreasing the emitted PL intensity [29,30].  
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The emission peak of neat EBBA nematic liquid crystal at 80 ºC moved slightly 

to lower wavelength (512 and 498 nm at 10 and 80 ºC, respectively) and the PL 

intensity dropped four times if compare to the PL intensity at 10 ºC. As showed in 

Figure 4.5bII, the PL intensity of the EBBA liquid crystal emission spectra at 10 and 80 

ºC reversibly changed from high to low intensity in several cycles switching from one 

temperature to other indicating that this process was reversible as well as in the case of 

HOBC nematic liquid crystal. 

 

Figure 4.5. Photoluminescence emission spectra at 10 and 80 ºC of the HOBC nematic liquid crystal of 

aI) heating/cooling cycle, and aII) four heating/cooling cycles. UV-visible transmission spectra at 10 and 

80 ºC of the HOBC nematic liquid crystal of aIII) heating/cooling cycle, and aIV) four heating/cooling 

cycles. Photoluminescence emission spectra at 10 and 80 ºC of the EBBA nematic liquid crystal of bI) 

heating/cooling cycle, and bII) four heating/cooling cycles. UV-visible transmission spectra at 10 and 80 

ºC of the EBBA nematic liquid crystal of bIII) heating/cooling cycle, and bIV) four heating/cooling 

cycles. 

Reversible changes in optical transparency of the HOBC and EBBA nematic 

liquid crystals as a function of temperature were also investigated by means of UV-vis 

transmission spectroscopy. As shown in Figures 4.5aIII and 4.5bIII, the UV-vis 

transmission spectra of the HOBC and EBBA nematic liquid crystals were taken at 

highly scattering state at 10 ºC (opaque state) and at transparent state at 80 ºC. 

Moreover, Figures 4.5aIV and 4.5bIV showed that the changes in transparency as a 

function of temperature were reversible after several heating/cooling cycles varying 

temperature from 10 to 80 ºC. 

The variation of transmittance of neat HOBC nematic liquid crystals, measured 

at 600 nm wavelength, changed from the very low value, 5 % at 10 ºC (HOBC liquid 
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crystal was in OFF-state) to the highest optical transparency, 25 % at 80 ºC (HOBC 

liquid crystal was in ON-state) as shown in Figure 4.5aIII. Under the same UV-vis 

measurement conditions, the transparency of neat EBBA nematic liquid crystal changed 

from 0 % at 10 ºC to 30 % at 80 ºC as shown in Figure 4.5bIII. If compare the reversible 

opaque/transparent switch during several repetitive cycles (see Figures 4.5aIV and 

4.5bIV), neat HOBC nematic liquid crystal was losing its reversibility during the 

repeated cycles while neat EBBA liquid crystal maintained its thermo-optical reversible 

behavior.  

The higher stability in reversible changes in optical transparency in the case of 

the EBBA liquid crystal can be once more related to presence of the aniline group in its 

chemical structure, which can make the reversible switching process of EBBA liquid 

crystal more stable [29,30]. 

Here, it should be mention that both neat HOBC and EBBA nematic liquid 

crystals showed UV-shielding properties regardless of temperature, the transmittance 

was equal 0 % up to 300 and 425 nm for neat HOBC and EBBA nematic liquid crystals, 

respectively. 

4.3.4. Photoluminescence properties of the PDLC blends  

The effect of the addition of PE-b-PEO block copolymer on photoluminescence 

properties of the HOBC and EBBA liquid crystal phases in the PDLC blends were also 

investigated.  

Figures 4.6aI to 4.6fI showed photoluminescence emission spectra of each 

investigated PDLC blend recorded at 10 and 80 ºC. Reversible photoluminescence 

change as a function of the temperature during four heating/cooling cycles, from 10 to 

80 °C, was shown in Figures 4.6aII to 4.6fII.  

The maximum emission intensity peaks at 10 and 80 °C during four consecutive 

heating/cooling cycles were plotted for each PDLC blend. 3D PL spectra of each 

investigated PLDC blend during heating/cooling cycles are also presented in Figures 4.7 

and 4.8 as additional information. 

Here it should be mentioned that the PE-b-PEO block copolymer did not show 

any emission peak in photoluminescence emission spectra taken for excitation 

wavelengths equal to 333 and 467 nm characteristic for the HOBC and EBBA nematic 

liquid crystals, respectively. 
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Figure 4.6. PL emission spectra at 10 and 80 °C during a heating/cooling cycle of the PE-b-PEO/HOBC 

blends with aI) 1, bI) 5 and cI) 10 wt % of PE-b-PEO block copolymer content and of the PE-b-

PEO/EBBA blends with dI) 1, eI) 5 and fI) 10 wt % of PE-b-PEO block copolymer content. Maximums 

emission peaks at 10 and 80 °C during four heating/cooling cycles of the PE-b-PEO/HOBC blends with 

aII) 1, bII) 5 and cII) 10 wt % of PE-b-PEO block copolymer content and of the PE-b-PEO/EBBA blends 

with dII) 1, eII) 5 and fII) 10 wt % of PE-b-PEO block copolymer content. 
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As shown in Figures 4.6aI to 4.6cI, the maximum emission peak of the PE-b-

PEO/HOBC blends shifted slightly to higher wavelength being 356 nm at 10 ºC and 373 

nm at 80 ºC for the 10PE-b-PEO/HOBC blend. The PL intensity of all investigated PE-

b-PEO/HOBC blends decreased almost two times in the case of the 10PE-b-

PEO/HOBC blend if compare to the emission spectrum taken at 10 ºC for each blend. 

Additionally, as shown in Figures 4.6aII to 4.6cII, HOBC liquid crystal phase 

maintained its reversible photoluminescence switch as a function of temperature in the 

PE-b-PEO/HOBC blends. 

The 3D PL spectra of the PE-b-PEO/HOBC blends showed in Figure 4.7 more 

deeply visualized the photoluminescence switching.  

 

Figure 4.7. 3D photoluminescence emission spectra at 10 and 80 ºC of the a) HOBC nematic liquid 

crystal and of the PE-b-PEO/HOBC blends with b) 1, c) 5 and d) 10 wt % of PE-b-PEO block copolymer 

content during four heating/cooling cycles. 

The addition of the PE-b-PEO block copolymer to the PE-b-PEO/EBBA blends 

caused a shift in the maximum emission peak to slightly lower wavelengths (Figure 

4.6dI to 4.6fI) at both temperatures, being almost the same for all investigated PDLC 

blend based on the EBBA nematic liquid crystal, as collected in Table 4.1. 

Moreover, PL intensity was also affected by the addition of the PE-b-PEO block 
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copolymer. The PL intensity at 10 ºC increased with the increase of the PE-b-PEO 

block copolymer content if compare to the PL intensity of the emission spectrum of 

EBBA nematic liquid crystal.  

Simultaneously, as well as for the PDLC blends based on the HOBC nematic 

liquid crystal, the PL intensity of the PE-b-PEO/EBBA blends recorded at 80 ºC 

decreased if compare to the PL intensity recorded at 10 ºC for the same PE-b-PEO 

block copolymer content, being four times lower for the 1PE-b-PEO/EBBA and 5PE-b-

PEO/EBBA blends and more than one time lower for the 10PE-b-PEO/EBBA blend. 

Nevertheless, as can be clearly visualized in Figures 4.6IId-4.6IIf, all PE-b-

PEO/EBBA blends maintained reversible switching process of the EBBA liquid crystal 

phase while the 5PE-b-PEO/EBBA blend showed the best photoluminescence switching 

properties. For better visualization of the photoluminescence switching, 3D PL spectra 

of the PE-b-PEO/EBBA blends are shown in Figure 4.8. 

 

Figure 4.8. 3D photoluminescence emission spectra at 10 and 80 ºC of the a) EBBA nematic liquid 

crystal and the PE-b-PEO/EBBA blends with b) 1, c) 5 and d) 10 wt % of PE-b-PEO block copolymer 

content during four heating/cooling cycles. 

Generally, taken into account the experimental values, it can be concluded that 

the addition of the PE-b-PEO block copolymer to the PE-b-PEO/HOBC blends shifted 
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the maximum emission peak to a higher wavelengths and lower photoluminescence 

intensities. By contrast, in the PE-b-PEO/EBBA blends, the addition of the PE-b-PEO 

block copolymer shifted the maximum emission peak to lower wavelengths and 

slightly higher photoluminescence intensities. This behavior is probably related to the 

fact that each liquid crystal is miscible with a different block of the PE-b-PEO block 

copolymer.  

As was reported in the Chapter 3, the PEO block is more miscible with the 

HOBC nematic liquid crystal while the PE block is more miscible with the EBBA 

nematic liquid crystal. Consequently, for the PE-b-PEO/HOBC blends a part of the 

PEO block domains microphase separated within the HOBC liquid crystal phase and 

in the case of the PE-b-PEO/EBBA blends a part of the PE block domains 

microphase separated within the EBBA liquid crystal phase. Accordingly, the 

orientation changes of the HOBC and EBBA nematic liquid crystal phases in the 

PDLC blends during switching from opaque to transparent state are strongly affected 

as shown in Scheme 4.2. 

 

Scheme 4.2. Schematic illustration of the orientation changes of the HOBC and EBBA liquid crystal 

phases in the PDLC blends during switching from opaque to transparent state. 

The miscibility of the liquid crystals with the different blocks of the PE-b-PEO 

block copolymer can be responsible for the different photoluminescence behavior of the 

PDLC blends based on the HOBC and EBBA nematic liquid crystals.  

4.3.5. Optical reversibility of the PDLC blends as a function of temperature 

The transparency and the reversible switching process from opaque to 

transparent of the PDLC blends based on the HOBC and EBBA nematic liquid crystals 

as a function of temperature was also studied using UV-vis spectroscopy. Figures 4.9aI 

to 4.9fI and 4.9aII to 4.9fII showed the UV-vis transmittance spectra of these PDLC 

blends at 10 ºC (highly scattering state-opaque) and at 80 ºC (transparent state). 

Moreover, the transmittance values were taken at 600 nm during four heating/cooling 

cycles to quantify the reversibility of this process. 
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Figure 4.9. UV-visible transmittance spectra at 10 and 80 °C during a heating/cooling cycle of PE-b-

PEO/HOBC blends with aI) 1, bI) 5 and cI) 10 wt % PE-b-PEO block copolymer content, and PE-b-

PEO/EBBA blends with dI) 1, eI) 5 and fI) 10 wt % PE-b-PEO block copolymer content. Transmittance 

values, measured at a wavelength of 600 nm, during four heating/cooling cycles at 10 and 80 °C of PE-b-

PEO/HOBC blends with aII) 1 , bII) 5 and cII) 10 wt % PE-b-PEO block copolymer content and PE-b-

PEO/EBBA blends with dII) 1, eII) 5 and fII) 10 wt % PE-b-PEO block copolymer content. 
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As shown in Figures 4.9aI to 4.9cI, the transparency of the PE-b-PEO/HOBC 

blends at 10 ºC increased slightly with the increasing of the PE-b-PEO block copolymer 

content. This can be related to presence of the PE-b-PEO block copolymer or to the 

miscibility of the HOBC liquid crystal phase with the PEO-block of the PE-b-PEO 

block copolymer. 

Simultaneously, the transparency of the PE-b-PEO/HOBC blends at 80 ºC 

decrease considerably with the addition of the PE-b-PEO block copolymer, being 35, 21 

and 28 % for the 1PE-b-PEO/HOBC, 5PE-b-PEO/HOBC and 10PE-b-PEO/HOBC 

blends, respectively. As can be seen in Figures 4.9aII-4.9cII, all investigated PDLC 

blends based on the HOBC nematic liquid crystal presented good optical reversibility 

switching from opaque to transparent state during several heating/cooling cycles. 

On the contrary to the PE-b-PEO/HOBC blends, at 10 ºC the transmittance of 

the PE-b-PEO/EBBA blends decreased with the increasing of the PE-b-PEO block 

copolymer content, being 0 % for 5 and 10 wt % of PE-b-PEO block copolymer as 

shown in Figures 4.9dI to 4.9fI.  

The difference between the transparence tendency of the PDLC blends based on 

the HOBC and EBBA nematic liquid crystals was probably related to the presence of 

the PE-b-PEO block copolymer and particularly with the fact that the HOBC nematic 

liquid crystal was more miscible with the PEO block while the EBBA nematic liquid 

crystal was more miscible with the PE block.  

Similar to the PE-b-PEO/HOBC blends, at 80 ºC the transparency of the PE-b-

PEO/EBBA blends decrease slightly with the increasing of the PE-b-PEO block 

copolymer content, being 30 % for the addition of 1 wt % of PE-b-PEO block 

copolymer (see Figure 4.9dI) and 25 % for the addition of 5 and 10 w t% of PE-b-PEO 

block copolymer (see Figures 4.9eI and 4.9fI). Moreover, all PE-b-PEO/EBBA blends 

kept up the reversible properties of the EBBA liquid crystal phase switching from 

opaque state at 10 ºC to transparent state at 80 ºC. As can be seen in Figures 4.9dII to 

4.9fII this process was reversible after four heating/cooling cycles.  

The addition of the PE-b-PEO block copolymer did not modify significantly the 

UV-shielding properties of the HOBC an EBBA liquid crystals phase in designed 

PDLC blends.  

The transmittance value was equal to 0 %, at both 10 and 80 ºC, up to ~300 and 

~425 nm for the PE-b-PEO/HOBC blends and PE-b-PEO/EBBA blends, respectively. 
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4.4. Conclusions 

Thermo-optical responsive behavior of the PDLC blends based on the high 

HOBC and EBBA nematic liquid crystals content was investigated.  

DSC thermograms showed that the increase of the PE-b-PEO block copolymer 

in the investigated PDLC blends, leads to decrease of nematic-isotropic temperature.  

The presence of the nematic-isotropic transition in all investigated PDLC blends, 

indicate their ability to reversible switching during temperature changes. Thus, liquid 

crystal phase maintained the nematic-isotropic transition of the HOBC or EBBA 

nematic liquid crystals in all investigated PDLC blends confirming their ability to 

switch from opaque to transparent state applying a temperature gradient.  

The texture changes as a function of temperature for the investigated HOBC and 

EBBA nematic liquid crystals and their blends during switching form opaque to 

transparent state were visualized using OM.  

PL intensity of the HOBC liquid crystal is much higher than the EBBA liquid 

crystal. This behavior can be related to the fact that the EBBA liquid crystal phase can 

act as quencher due to the aniline group in it chemical structure. Consequently, the 

EBBA liquid crystal maintained the thermo-optical reversibility during four 

heating/cooling cycles while the HOBC liquid crystal was losing its reversibility during 

the repeated heating/cooling cycles. The aniline group presents in the EBBA liquid 

crystal chemical structure acted as quencher and provoked a lower PL intensity than in 

the HOBC liquid crystal, however was also responsible of the durability of the thermo-

optical reversibility when repeated heating/cooling cycles were applied. 

The addition of the PE-b-PEO block copolymer shifted the maximum emission 

peak to higher wavelength and lower PL intensity for the PE-b-PEO/HOBC blends and 

shifted the maximum emission peak to lower wavelength and higher PL intensity for the 

PE-b-PEO/EBBA blends. This behavior was strongly related to the fact that the HOBC 

nematic liquid crystal is miscible with the PEO block while the EBBA nematic liquid 

crystal is miscible with the PE block of the PE-b-PEO block copolymer. 

Obtained results proved that all investigated PDLC blends maintain reversible 

switching from opaque to transparent state confirming that they can be employed as 

thermo-reversible recording materials, thermo-optical devices and temperature sensors.   
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5. Hybrid PE-b-PEO/EBBA fibers by electrospinning 

In the present Chapter, the PE-b-PEO block copolymer will be used as matrix 

for fabrication of the hybrid PE-b-PEO/EBBA and PLA/PE-b-PEO/EBBA electrospun 

fibers by co-electrospinning technique. Optimization of the electrospinning processing-

window will be carried out by varying the concentration of the PE-b-PEO block 

copolymer solution and playing with three different electrospinning parameters such as 

voltage, solvent and the PE-b-PEO block copolymer solution flow rate. The hybrid PE-

b-PEO/EBBA electrospun fibers will be also fabricated modifying the PE-b-PEO block 

copolymer fibers with the low molecular weight EBBA nematic liquid crystal using 

coaxial electrospinning technique. Moreover, the hybrid PLA/EBBA and PLA/PE-b-

PEO/EBBA electrospun fibers will be also fabricated by electrospinning technique. The 

morphology of the fabricated fibers will be investigated from micro to nanoscale using 

OM, SEM and AFM microscopies. 

5.1. Introduction 

Nowadays, the need to produce novel materials, for example for packaging, tiny 

electronic devices and biomedical applications, has helped to develop innovative 

techniques and improve others. 

As was explained in the Chapter 2, the electrospinning technique allows the 

obtaining of micro and nanofibers playing with different electrospinning parameters. 

This technique can be considered an easy and versatile technique since a wide range of 

polymers [1-7] and different block copolymers [8-14] can be used to fabricate 

electrospun fibers. These kinds of fibers can found applications in different fields such 

as medical prosthesis (grafts, vessels, and tissues), filtration systems, or electrical and 

optical devices [14-18]. 

Co-electrospinning technique is able to simultaneously electrospun different 

polymers obtaining core-shell structure nanofibers [19-34]. Additionally, liquid crystal 

molecules have also been used to design hybrid fibers with conductive properties, in 

order to fabricate electronic devices or sensors.  

Many research groups have studied different polymers to obtain electrospun fibers 

confirming that PLA homopolymer is a good candidate for achieved continuous single 

fibers with regular and controllable diameters and defect free surface [3,8,13,25-27]. 
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PLA is one of the most used commercial biodegradable polymer derived from 

renewable resources, the PLA electrospun fibers generated nonwoven mats has shown a 

great potential in various applications such as drug delivery, fibrous-sensor applications, 

tissue engineering scaffolds and in the packaging sector [2,3,13,24-26].  

One of the aims of this Chapter was the verification of the possibility of 

fabrication of the hybrid PE-b-PEO/EBBA electrospun fibers. The optimization of the 

processing-window for fabrication of the PE-b-PEO block copolymer and hybrid PE-b-

PEO/EBBA electrospun fibers by co-electrospinning technique was study at the macro 

and nanoscale by different microscopy techniques such as OM, SEM and AFM 

microscopies. Moreover, the PLA homopolymer was employed as matrix in order to 

check even the hybrid PLA/EBBA and PLA/PE-b-PEO/EBBA electrospun fibers are 

able to form fiber mats. One of the specific objectives of this investigation work was 

check the liquid crystal character of fabricated electrospun fibers.  

5.2. Materials and characterization techniques 

5.2.1. Materials 

The PE-b-PEO block copolymer with a molecular weight of 2250 g mol
-1

 and 80 

wt % of PEO block content, the PLA homopolymer 3051D with a molecular weight of 

93500 g mol
-1

 and the EBBA nematic liquid crystal, were employed in this Chapter.  

Moreover, chloroform and dimethylformamide (DMF) were used as solvents 

during the co-electrospinning process. 

5.2.2. Sample preparation 

The PE-b-PEO block copolymer electrospun fibers and the hybrid PE-b-

PEO/EBBA electrospun fibers were performed using an Electrospinner Yflow 2.2.D-

350 (Nanotechnology Solutions) with a coaxial vertical standard configuration and 

connected to a high voltage power. The polymer solution flowed through the inner 

needle and the same solvent solution used for the polymer solution flows through the 

outer one. In this case, the solvent solution was used in order to avoid the obstruction of 

the inner needle during the electrospun process. 

To fabricate PE-b-PEO block copolymer electrospun fibers by co-

electrospinning process, two groups of parameters were mainly considered, one related 

with the polymer solution and the other one with the processing conditions. 
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Regarding the polymer solution, several PE-b-PEO block copolymer 

concentrations (Cp (wt %)), between 20 and 50 wt %, were prepared in a mixture of 

chloroform/DMF solvents, with different ratios from 3:1 to 1:0. The polymeric solutions 

were stirred during 24 h at room temperature. 

During the electrospinning process, the block copolymer solution was pushed 

using a pump through a capillary up to the inner needle of the concentric needle, while 

solvents, flowed through the outer one.  

For comparison, both the PE-b-PEO and hybrid PE-b-PEO/EBBA electrospun 

fibers were obtained using a coaxial nozzle. 

Additionally, processing conditions were optimized, playing with solvent flow 

rate, Qs (mL h
-1

), block copolymer solution flow rate, Qp (mL h
-1

), and with the electric 

field applied between needle and the collector. The needle-collector distance was 

fixed to 18 cm. 

The solvent and block copolymer solution flow rates were varied from 0 to 0.5 

mL h
-1

 and from 0.1 to 5 mL h
-1

, respectively. In the case of the electric field, the 

positive voltage (V
+
) applied over the double needle was between 3 and 14 kV and the 

negative voltage (V
-
) applied over the collector ranged between 3 and 14 kV. 

Table 5.1 summarized the preparation conditions employed to fabricate the PE-

b-PEO block copolymer fibers. 

Table 5.1. Summary of the experimental conditions used during co-electrospinning process of the PE-b-

PEO block copolymer fibers. 

Number 

of 

samples 

PE-b-PEO 

concentration 

(wt %) 

Solvent           

ratio 

Chloroform:DMF 

PE-b-PEO 

flow rate 

Qp (mL h
-1

) 

Chloroform 

flow rate  

Qs (mL h
-1

) 

Positive 

voltage 

V
+
 (kV) 

Negative 

voltage 

V
–
 (kV) 

330 24 (10-50) 5 (3:1-1:0) 6 (0.1-5) 4 (0-0.5) 8 (3-14) 7 (3-14) 

On the other hand, for the development of the hybrid PE-b-PEO/EBBA 

electrospun fibers, block copolymer solution flowed through the inner needle of the 

equipment and a solution of 5 wt % of EBBA nematic liquid crystal in chloroform 

through the outer one.  

For this purpose, the best conditions for the fabrication of the block copolymer 

fibers have been chosen as starting point. Thus, as explained below in Results and 

Discussion section, the most suitable concentration for fibers fabrication was 46 wt % 

of PE-b-PEO block copolymer in a mixture of chloroform/DMF solvents. 
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Table 5.2 summarized the preparation conditions employed to fabricate the 

hybrid PE-b-PEO/EBBA electrospun fibers. 

Table 5.2. Summary of the experimental conditions used during co-electrospinning process of the hybrid 

PE-b-PEO/EBBA fibers. 

Number    

of    

samples 

Solvent            

ratio 

Chloroform/DMF 

EBBA            

flow rate                 

QLC (mL h
-1

) 

PE-b-PEO 

flow rate  

Qp (mL h
-1

) 

Positive 

voltage  

V
+
 (kV) 

Negative 

voltage  V
–
 

(kV) 

12 5:1 (0.1-0.5) (0.1-5) 11 11 

5 4:1 (0.1-0.5) (0.1-5) 11 11 

As well as in the case of the PE-b-PEO block copolymer electrospun fibers for 

the hybrid PE-b-PEO/EBBA electrospun fibers the solvent used for the PE-b-PEO block 

copolymer was a mixture of chloroform/DMF solvents with different solvents ratio.  

The experimental conditions to fabricate the hybrid PLA/EBBA and PLA/PE-b-

PEO/EBBA electrospun fibers were chosen taking into account previous studies related 

to the optimization of the PLA electrospun fibers [24-26] and consequently, the 

conditions of the preparation of the PE-b-PEO block copolymer and hybrid PE-b-

PEO/EBBA electrospun fibers were optimized. The materials were prepared in the same 

way as the PE-b-PEO block copolymer and hybrid PE-b-PEO/EBBA electrospun fibers. 

Regarding hybrid the PLA/EBBA, two solutions, one with a 10 wt % of PLA, 

and the other one, with a 10 wt % of EBBA nematic liquid crystal were prepared in a 

mixture of chloroform/DMF solvents with a ratio of 4:1. These solutions were stirred 

during 24 h at room temperature. During the electrospinning process, the PLA solution 

was pushed using a pump through a capillary up to the inner needle of the concentric 

needle, while the EBBA liquid crystal solution, flowed through the outer one. The PLA 

solution flow rate was fixed in 2 mL h
-1

 and the EBBA liquid crystal solution flow rate 

was varied from 0 to 5 mL h
-1

.  

In respect of the hybrid PLA/PE-b-PEO/EBBA electrospun fibers, two solutions, 

one with 10 wt % of PLA and 10 wt % of PE-b-PEO block copolymer with the molar 

ratio 50:50, and the other one, with 10 wt % of EBBA nematic liquid crystal, were 

prepared in a mixture of chloroform/DMF solvents with a ratio of 4:1. All prepared 

solutions were stirred during 24 h at room temperature. The PLA/PE-b-PEO solution 

was pushed using a pump through a capillary up to the inner needle of the concentric 

needle, while the EBBA liquid crystal solution, flowed through the outer one. The 

PLA/PE-b-PEO solution flow rate was fixed in 2 mL h
-1

 and the EBBA solution flow 
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rate was varied from 0 to 5 mL h
-1

. For the fabrication of the hybrid PLA/EBBA 

electrospun fibers, as well as for the fabrication of the hybrid PLA/PE-b-PEO/EBBA 

electrospun fibers, the electric field was 6 kV for the positive voltage (V
+
) applied over 

the double needle and 8 kV for the negative voltage (V
-
) applied over the collector. 

5.2.3. Characterization techniques 

5.2.3.1. Optical microscopy  

OM images were captured using a Nikon Eclipse E600W microscope at room 

temperature. In order to determine the average diameters and lengths of the fibers, 10 

independent fibers for each OM image were taken into account and the diameter and 

length of each fiber was determined using AnalySIS Auto 3.2 software (Soft Imaging 

System GmbH). 

5.2.3.2. Scanning electron microscopy  

Morphology and structure of designed electrospun fibers were observed using a 

PHILIPS XL30 scanning electron microscope. 

5.2.3.2. Atomic force microscopy 

Fibers surface morphology was investigated by AFM technique under ambient 

conditions. AFM images were obtained operating in tapping mode with a scanning 

probe microscope (Nanoscope IIIa, Multimode from Digital Instruments) equipped with 

an integrated silicon tip/cantilever having a resonance frequency of 300 kHz from the 

same manufacturer. 

5.3. Results and discussion 

5.3.1. OM of the PE-b-PEO and hybrid PE-b-PEO/EBBA electrospun fibers 

OM technique was used to study the appearance of the fabricated fibers. First of 

all, it should be mentioned that for PE-b-PEO block copolymer concentrations below 40 

wt % electrospray was not obtained since these concentrations were too low for the fiber 

fabrication. 

The electrospray drops were closer and became bigger with the increasing of the 

block copolymer concentrations, around 40 wt %, which led to the formation of the very 
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short electrospun fibers with beads. The formation of the fibers was easier employing 

the mixture of chloroform/DMF as solvent instead of chloroform. 

The optical microscopy technique illustrates that the best conditions to fabricate 

the PE-b-PEO block copolymer electrospun fibers were with concentrations between 45 

and 47 wt % of PE-b-PEO block copolymers and a mixture of chloroform/DMF 

solvents with the ratio of 4:1 and 5:1, as shown in Figures 5.1 to 5.4. 

For PE-b-PEO block copolymer concentrations higher than 47 wt % the needle 

was blocked hindering the flow of the block copolymer solution and therefore the 

formation of fibers. 

The PE-b-PEO block copolymer electrospun fibers obtained for 45 wt % of PE-

b-PEO block copolymers in a mixture of chloroform/DMF (4:1) solvents, applying a 

voltage difference of 22 kV, a chloroform flow rate of 0.1 mL h
-1

 and a block 

copolymer solution flow rate of 5 mL h
-1

 are shown in Figure 5.1.  

 

Figure 5.1. OM micrographs of the PE-b-PEO block copolymer electrospun fibers obtained for 45 wt % of 

PE-b-PEO block copolymer in a mixture of chloroform/DMF solvents (4:1), applying a voltage difference 

of 22 kV, chloroform flow rate of 0.1 mL h
-1

 and block copolymer solution flow rate of 5 mL h
-1

. 

These electrospinning conditions allowed the fabrication of the fibers with an 

average diameter of 5 ± 1 µm and the average length of 350 ± 40 µm. It should be noted 

that the fiber length was homogeneous; in contrast, the diameters were different along 

each fiber and between them. This heterogeneity was related to the beads that appeared 

under these processing conditions. 

In the case of the PE-b-PEO block copolymer electrospun fibers prepared using 

46 wt % of block copolymer in a mixture of chloroform/DMF (5:1) solvents, applying a 

voltage difference of 22 kV and a chloroform flow rate of 0.1 mL h
-1

, different sizes of 

the PE-b-PEO block copolymer fibers were obtained playing with the block copolymer 

flow rate. 

Figure 5.2a shows the PE-b-PEO block copolymer electrospun fibers fabricated 

with a block copolymer flow rate of 1 mL h
-1

. The average diameter was 5 ± 2 µm and 

the average length was 270 ± 90 µm. For the PE-b-PEO block copolymer electrospun 
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fibers generated with a block copolymer flow rate of 3 and 5 mL h
-1

, in Figures 5.2b and 

5.2c, respectively, similar sized fibers were produced with an average diameter of 4 ± 1 

µm and an average length of 200 ± 50 µm. Thus, the increase in the block copolymer 

flow rate led to a decrease in both the fiber diameter and the length.  

Moreover, as shown in Figure 5.2, for the block copolymer flow rate 1 mL h
-1

, 

the fibers were more abundant than in the case of the higher block copolymer flow rate. 

 

Figure 5.2. OM micrographs of the PE-b-PEO block copolymer electrospun fibers obtained for 46 wt % 

of PE-b-PEO block copolymer in a mixture of chloroform/DMF solvents (5:1), applying a voltage 

difference of 22 kV, chloroform flow rate of 0.1 mL h
-1 

and block copolymer solution flow rate of a) 1, b) 

3 and c) 5 mL h
-1

. 

Additionally, the PE-b-PEO block copolymer electrospun fibers were also 

prepared maintaining both, the same PE-b-PEO block copolymer concentration (46 wt 

%) and a chloroform flow rate of 0.1 mL h
-1

, and changing the chloroform/DMF ratio to 

4:1.  

To obtain the PE-b-PEO block copolymer electrospun fibers under these 

experimental conditions, both the block copolymer flow rate and the applied voltage 

difference were varied. 

Figure 5.3 shows the PE-b-PEO block copolymer electrospun fibers obtained 

from an applied voltage difference and a block copolymer flow rate of 22 kV and 0.1 

mL h
-1

, and 21 kV and 5 mL h
-1

, respectively.  

On the one hand, the PE-b-PEO block copolymer electrospun fibers prepared 
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with 22 kV and 0.1 mL h
-1

 (Figure 5.3a) resulted in an average diameter of 3 ± 2 µm 

and an average length of 320 ± 50 µm. Moreover, employing 21 kV and 5 mL h
-1

 

(Figure 5.3b), the size of the PE-b-PEO block copolymer fibers was ~5 ± 2 µm in 

diameter and ~290 ± 50 µm in length.  

Consequently, as show in Figure 5.3a, in the first preparation conditions, thinner 

and larger fibers were observed if compared with the second preparation conditions as 

visualized in Figure 5.3b.  

 

Figure 5.3. OM micrographs of the PE-b-PEO block copolymer electrospun fibers obtained for 46 wt % 

of PE-b-PEO block copolymer in a mixture of chloroform/DMF solvents (4:1), chloroform flow rate of 

0.1 mL h
-1 

applying a voltage difference and block copolymer solution flow rate of a) 22 kV and 0.1 mL 

h
-1 

and b) 21 kV and 5 mL h
-1

. 

The PE-b-PEO block copolymer electrospun fibers were also achieved by the 

increase of the block copolymer concentration up to 47 wt %, using solvents ratio of 5:1 

and a block copolymer flow rate of 0.5 mL h
-1 

and varying the rest of the 

electrospinning parameters.  

Figure 5.4a, shows the PE-b-PEO block copolymer fibers employing a 

chloroform flow rate of 0.1 mL h
-1

 and applying a voltage difference of 22 kV. The 

fabricated fibers possessed an average diameter of 5 ± 1 µm and an average length of 

410 ± 90 µm. 

In the case of Figure 5.4b, the chloroform flow rate was 0.5 mL h
-1

 and applying 

a voltage difference of 21 kV. These experimental conditions were responsible for a 

decrease in the average fiber diameter as well as in the corresponding length, being 4 ± 

1 µm and 270 ± 90 µm, respectively. 

Comparing the results achieved using different preparation conditions, it can be 

concluded that the longest and widest fibers were obtained for 47 wt % of PE-b-PEO 
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block copolymer concentration in a mixture of chloroform/DMF solvents, a block 

copolymer solution flow rate of 0.5 mL h
-1

, a chloroform flow rate of 0.1 mL h
-1

 and by 

applying a voltage difference of 22 kV. 

 

Figure 5.4. OM micrographs of the PE-b-PEO block copolymer electrospun fibers obtained for 47 wt % 

of PE-b-PEO block copolymer in a mixture of chloroform/DMF solvents (5:1), block copolymer solution 

flow rate of 0.5 mL h
-1

, applying a voltage difference and chloroform flow rate of a) 22 kV and 0.1 mL h
-1 

and b) 21 kV and 0.5 mL h
-1

. 

Taking into account the ideal target stabilized for the fibers designed by the 

electrospinning technique, the PE-b-PEO block copolymer concentration of 46 wt % in 

a mixture of chloroform/DMF solvents (5:1) solution showed the best results.  

These good results are related with, on the one hand, the diameter of fibers 

obtained under these conditions was consistent and controllable, and on the other 

hand, the variation of the other electrospinning parameters (block copolymer, 

solvent flow rates, and applied voltage differences) did not significantly affect the 

final fiber properties providing a permissible widespread electrospinning processing-

window. 

According to the promising results obtained for the PE-b-PEO block copolymer 

electrospun fibers, a 46 wt % of PE-b-PEO block copolymer concentration in a mixture 

of chloroform/DMF solvents (5:1) solution was used to design the hybrid PE-b-

PEO/EBBA electrospun fibers.  

In this regard, is interesting to mention the work developed by Rajgarhia et al. 

[37] in which the relationship between solvent evaporation rate and the morphology of 

the obtained hybrid fibers was studied. Authors find strong influence of the evaporation 

rate and the solubility parameter of the solvents on the morphology. 

Different hybrid PE-b-PEO electrospun fibers were developed by playing with 
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the block copolymer flow rate (1, 3 and 5 mL h
-1

). As well as in the case of the 46 wt % 

of PE-b-PEO block copolymer in a mixture of chloroform/DMF (5:1) solvents, applied 

voltage difference and chloroform flow rate remained constant at 22 kV and 0.1 mL h
-1

, 

respectively.  

Figure 5.5a shows the hybrid PE-b-PEO/EBBA electrospun fibers fabricated 

with a block copolymer flow rate of 1 mL h
-1

. The average diameter of the hybrid fibers 

was 4 ± 1 µm and the average length was 200 ± 30 µm.  

By increasing the block copolymer flow rate up to 3 mL h
-1

, Figure 5.5b, the 

average length of the hybrid fibers increased up to 230 ± 30 µm conversely, the average 

diameter remained the same, at 4 ± 1 µm. 

 

Figure 5.5. OM micrographs of the hybrid PE-b-PEO/EBBA electrospun fibers obtained for 46 wt % of 

PE-b-PEO block copolymer in a mixture of chloroform/DMF solvents (5:1), applying a voltage difference 

of 22 kV, EBBA liquid crystal solution flow rate of 0.1 mL h
-1 

and block copolymer solution flow rate of 

a) 1, b) 3 and c) 5 mL h
-1

.  

For the hybrid PE-b-PEO/EBBA fibers created with a block copolymer flow rate 

of 5 mL h
-1

, in Figure 5.5c, the average diameter was 4 ± 1 µm and the average length 

was 260 ± 80 µm. Therefore, this block copolymer flow rate resulted in an increase in 

both, the fiber diameter and the length.  

Moreover, as shown in Figure 5.5 for the block copolymer flow rate of 5 mL h
-1

, 

the hybrid PE-b-PEO/EBBA electrospun fibers were more abundant than in the case of 

a lower block copolymer flow rate. 
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A comparison between the PE-b-PEO block copolymer electrospun fibers and 

the hybrid PE-b-PEO/EBBA electrospun fibers obtained following the same 

electrospinning processing-window (Figures 5.2 and 5.5) showed a completely 

opposite behavior. In the case of the PE-b-PEO electrospun fibers without EBBA 

nematic liquid crystal, an increase in the block copolymer flow rate led to a decrease 

in fiber diameter and length.  

On the contrary, for hybrid PE-b-PEO/EBBA electrospun fibers, an increase in 

the block copolymer flow rate allowed obtaining longer and wider hybrid fibers. This 

phenomenon could be explained taken into account the EBBA nematic liquid crystal 

chemical structure (Chapter 2, Table 2.1).  

Its configuration is based on two aromatic rings and an imine group, both of 

them with delocalized electrons which facilitate electrical conduction. Thus, these 

electrons contributed to the applied voltage difference and resulted in an increase of 

fiber length.  

Consequently, the addition of the EBBA nematic liquid crystal could improve 

the electrospinning process. 

5.3.2. SEM of the PE-b-PEO block copolymer and hybrid PE-b-PEO/EBBA 

electrospun fibers  

SEM technique was employed to perform a deeper study of obtained fibers using 

the broader electrospinning processing-window, which corresponds to the 46 wt % of 

block copolymers in a mixture of chloroform/DMF (5:1) solvents.  

SEM images of the PE-b-PEO block copolymer and the hybrid PE-b-

PEO/EBBA electrospun fibers based on the 46 wt % of block copolymers in 

chloroform/DMF solvents (5:1) are shown in Figures 5.6 and 5.7, respectively.  

In the case of the PE-b-PEO block copolymer electrospun fibers, once again the 

fiber diameter was regular and controllable. Moreover, the decrease in the abundance of 

the fibers due to the increase of the block copolymer flow rate was also observed.  

Similarly as for OM results, the best conditions for fiber production were 

achieved with 46 wt % of PE-b-PEO block copolymers in chloroform/DMF (5:1) 

solvents therefore this fiber was employed to fabrication of the hybrid PE-b-PEO/EBBA 

electrospun fibers. 

Figure 5.7 shows the SEM images of the hybrid PE-b-PEO/EBBA electrospun 

fibers obtained for the 46 wt % of PE-b-PEO block copolymers in a mixture of 
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chloroform/DMF solvents (5:1), applying a voltage difference of 22 kV, an EBBA 

liquid crystal solution flow rate of 0.1 mL h
-1

 and a block copolymer solution flow rate 

of 1 mL h
-1

 (Figure 5.7a), 3 mL h
-1

 (Figure 5.7b) and 5 mL h
-1

 (Figure 5.7c). 

In agreement with the behavior observed using the OM technique, the SEM 

images confirmed that an increase in the block copolymer flow rate caused an increase 

in the fiber diameter and in the abundance of the fibers. 

 

Figure 5.6. SEM images of the PE-b-PEO block copolymer electrospun fibers obtained for 46 wt % of 

PE-b-PEO block copolymer in a mixture of chloroform/DMF solvents (5:1), applying a voltage 

difference of 22 kV, chloroform flow rate of 0.1 mL h
-1 

and block copolymer solution flow rate of a) 1, 

b) 3 and c) 5 mL h
-1

. 

Thus, the behavior is completely opposite if compared with the results obtained 

for the PE-b-PEO electrospun fibers without the EBBA nematic liquid crystal. 
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Figure 5.7. SEM images of the hybrid PE-b-PEO/EBBA electrospun fibers obtained for 46 wt % of PE-

b-PEO block copolymer in a mixture of chloroform/DMF solvents (5:1), applying a voltage difference of 

22 kV, EBBA liquid crystal solution flow rate of 0.1 mL h
-1 

and block copolymer solution flow rate of a) 

1, b) 3 and c) 5 mL h
-1

. 

5.3.3. AFM of the PE-b-PEO block copolymer and hybrid PE-b-PEO/EBBA 

electrospun fibers  

With the aim of analyzing the surface morphology of the fabricated PE-b-PEO 

block copolymer and hybrid PE-b-PEO/EBBA electrospun fibers, AFM measurements 

were also carried out. Figure 5.8a shows an AFM phase image of the PE-b-PEO 

electrospun fibers based on the 46 wt % of PE-b-PEO block copolymers in a mixture of 

chloroform/DMF solvents (5:1), applying a voltage difference of 22 kV, a chloroform 

flow rate of 0.1 mL h
-1

 and a block copolymer solution flow rate of 1 mL h
-1

.  
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Under these electrospinning conditions, the PE-b-PEO block copolymer 

electrospun fibers showed a microphase separation. Taking into account that the 

Young´s modulus of the PE is higher than that for the PEO at room temperature [35,36], 

the darker areas correspond to the PEO block domains and the brightest areas 

correspond to the PE block domains. As can be observed in Figure 5.8a, the electrospun 

PE-b-PEO fibers exhibit a cylindrical structure with parallel and perpendicularly 

oriented cylinders. Moreover, the PEO block nanocrystals (~ 15 nm in size) within the 

cylindrical PEO domains can be also detected. 

 

Figure 5.8. AFM phase images of the a) PE-b-PEO electrospun fiber and b) hybrid PE-b-PEO/EBBA 

electrospun fiber. 

In the case of the hybrid PE-b-PEO/EBBA electrospun fibers fabricated under 

the same processing conditions, the addition of the EBBA nematic liquid crystal led to a 

significant change in the morphology; from a cylindrical structure to a lamellar one 

(Figure 5.8b). 

This fact can be explained taken into account that, on the one hand, the EBBA 

nematic liquid crystal is more miscible with the PE blocks than with the PEO blocks, 

consequently the EBBA nematic liquid crystal was positioned in the PE block domains, 

as deeply studied in the Chapters 1 and 2. On the other hand, the EBBA nematic liquid 

crystal chemical structure could also have an influence on the self-assembly process, 

since, as pointed out before, it affects the electrospinning processing conditions. 

5.3.4. OM of the hybrid PLA/EBBA and PLA/PE-b-PEO/EBBA electrospun fibers 

The appearance of the fabricated hybrid PLA/EBBA and PLA/PE-b-PEO/EBBA 

electrospun fibers was studied by OM. Moreover, in order to check the presence of the 

EBBA nematic liquid crystal in the fabricated fibers, OM with crossed polarizers was 

employed. The OM micrographs of the all mats were taken at room temperature. 

For the hybrid PLA/EBBA electrospun fibers, the EBBA liquid crystal solution 

flow rate was varied from 0 to 5 mL h
-1

 while the rest of parameters were fixed as 
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explained above. In the preparation conditions, when the EBBA liquid crystal solution 

flow rate was equal to 0, the PLA electrospun fibers possessed numerous beads. The 

increase of the flow rate of the EBBA solution to 0.1 mL h
-1

 led to the decrease of the 

size and the amount of beads. Moreover, some parts of these PLA/EBBA electrospun 

fibers was covered by the EBBA nematic liquid crystal as visualized in the cross-

polarized OM micrograph. The increase of the EBBA nematic liquid crystal solution 

flow rate to 0.5 mL h
-1

 allow to reach the fibers without bead, however the fiber length 

and diameter were not homogeneous. Additionally, the most part of the PLA 

electrospun fibers were covered by the EBBA nematic liquid crystal as visualize by OM 

micrographs taken with cross polarized. The increase of the EBBA nematic liquid 

crystal solution flow rate from 1 to 3 mL h
-1

 resulted in more homogeneous and longer 

hybrid PLA/EBBA electrospun fibers. The best results were obtained for a flow rate 

equal to 5 mL h
-1

 as shown in Figure 5.9. 

The fibers length and diameter achieved with an EBBA nematic liquid crystal 

solution flow rate of 5 mL h
-1

 were more homogeneous than in the case of lower EBBA 

nematic liquid crystal solution flow rates. Moreover, in this case the great part of the 

fibers was covered by the EBBA nematic liquid crystal. 

 

Figure 5.9. OM micrographs a) without crossed polarized and b) with crossed polarizers of the hybrid 

PLA/EBBA electrospun fibers obtained for 10 wt % of PLA and EBBA nematic liquid crystal with the 

molar ratio 50:50 in a mixture of chloroform/DMF solvents (4:1) applying a voltage difference of 14 kV, 

PLA solution flow rate of 2 mL h
-1

 and EBBA solution flow rate of 5 mL h
-1

.  
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For the fabrication of the hybrid PLA/PE-b-PEO/EBBA electrospun fibers, the 

PLA/PE-b-PEO solution flow rate and the rest of electrospinning conditions were 

maintained and the only EBBA liquid crystal solution flow rate was varied.  

For an EBBA liquid crystal solution flow rate equal to 0 mL h
-1

, the obtained 

hybrid PLA/PE-b-PEO fibers showed a homogeneous fiber in both length and diameter 

along the fiber. It seems to be that the addition of the PE-b-PEO block copolymer 

improved the fibers formation if compare with the PLA fibers. 

The increase of the EBBA liquid crystal flow rate to 0.1 mL h
-1

 decreased the 

fibers diameter and some parts of the hybrid PLA/PE-b-PEO electrospun fibers was 

covered by the EBBA nematic liquid crystal. For the flow rate of 0.5 mL h
-1

, the fiber 

length and the diameter was maintained and the fibers were covered by the EBBA 

nematic liquid crystal. With the increase of the EBBA liquid crystal solution flow rate 

(1,2 and 3 mL h
-1

), the hybrid PLA/PE-b-PEO/EBBA electrospun fibers became more 

numerous, obtaining thicker mats. The best results were obtained for an EBBA liquid 

crystal solution flow rate of 5 mL h
-1

 as in the case of the hybrid PLA/EBBA 

electrospun fibers (Figure 5.10). 

 

Figure 5.10. OM micrographs a) without crossed polarized and b) with crossed polarizers of the hybrid 

PLA/PE-b-PEO/EBBA electrospun fibers obtained for 10 wt % of PLA and 10 wt % of PE-b-PEO 

block copolymer with the molar ratio 50:50 in a mixture of chloroform/DMF solvents (4:1) and 10 wt 

% of EBBA nematic liquid crystal in a mixture of chloroform/DMF solvents (4:1), applying a voltage 

difference of 14 kV, PLA solution flow rate of 2 mL h
-1

 and EBBA liquid crystal solution flow rate of 

5 mL h
-1

. 
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5.4. Conclusions 

Nanostructured PE-b-PEO block copolymer electrospun fibers were fabricated 

using electrospinning technique. Block copolymer solution concentration and in 

consequence their viscosity, have strong influence on the characteristics of obtained 

fibers.  

Concentrations of around 40 wt % of block copolymer in chloroform or the 

mixture of chloroform/DMF solvents led to electrospun fibers. According to the OM 

images, these fibers were better formed in a mixture of chloroform/DMF solvents than 

using chloroform as solvent. Consequently, DMF improved the electrospun fibers 

formation.  

According to obtained results the best PE-b-PEO block copolymer fibers were 

fabricated using the 46 wt % of PE-b-PEO block copolymer in a mixture of 

chloroform/DMF solvents (5:1), applying a voltage difference of 22 kV, solvent flow 

rate of 0.1 mL h
-1

 and block copolymer solution flow rate of 1 mL h
-1

. 

Moreover, the hybrid PE-b-PEO/EBBA electrospun fibers were also developed 

following the same electrospinning processing window. The EBBA nematic liquid 

crystal improved the hybrid PE-b-PEO/EBBA electrospun fibers formation in width and 

length for the higher block copolymer flow rate (5 mL h
-1

).  

The addition of the EBBA nematic liquid crystal provokes changes in the fiber 

morphology resulted in well-ordered lamellar structure. Regarding the hybrid PE-b-

PEO/EBBA electrospun fibers developed following the same electrospinning 

processing window, was observed that the EBBA nematic liquid crystal improved the 

hybrid PE-b-PEO/EBBA electrospun fibers formation in width and length for the higher 

block copolymer flow rate (5 mL h
-1

), provoking changes on fiber morphology resulting 

in well-ordered lamellar structure. 

The addition of the PE-b-PEO block copolymer to the PLA solution improved 

the PLA/PE-b-PEO/EBBA electrospun fibers formation if compare to the PLA/EBBA 

electrospun fibers. The beads which appeared in the hybrid PLA/EBBA electrospun 

fibers disappeared with the addition of the PE-b-PEO block copolymer.  

EBBA nematic liquid crystal covered the surface of the PLA/EBBA and 
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PLA/PE-b-PEO/EBBA electrospun fibers as confirmed by OM. 

This investigation work proved that co-electrospinning technique can be 

successfully employed for fabrication of the hybrid materials based on the PE-b-PEO 

block copolymer and the EBBA nematic liquid crystal, maintaining the nematic liquid 

crystal character in the obtained hybrid electrospun fibers. 
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6. PE-b-PEO block copolymer nanostructured thermosetting 

system as template for TiO2 nanoparticles 

In this Chapter, two different molecular weight and blocks molar ratio PE-b-

PEO block copolymers will be used as nanostructuration agent for the epoxy based 

thermosetting system and as surfactant for the sol-gel synthesized titanium dioxide 

(TiO2) nanoparticles. The miscibility between the DGEBA epoxy resin and the PE-b-

PEO block copolymers and the influence of the addition of the PE-b-PEO block 

copolymers on the curing reaction time of the epoxy based thermosetting systems will 

be studied by DSC technique. The morphology of the epoxy based thermosetting 

systems and the dispersion of the TiO2 nanoparticles in these systems will be 

investigated by the AFM phase images. UV-vis spectroscopy will be employed to 

analyze the transparency of these thermosetting systems, and the surface properties of 

these epoxy based thermosetting systems will be characterized by the water contact 

angle. 

6.1. Introduction 

Epoxy based thermosetting systems used as matrix display an excellent chemical 

resistance, good mechanical properties and thermal stability. However, their main 

drawback is the brittleness [1-4]. In order to decrease the brittleness and increase the 

toughness, these thermosetting systems are modified with block copolymers [4,5-14] or 

with inorganic nanoparticles [3,15-19].  

As it is well known, the addition of block copolymer reduced the modulus of the 

epoxy based thermosetting systems and the use of the rigid inorganic particles can 

increased the toughness without affecting the high glass transition temperature of the 

epoxy based thermosetting matrix. This is a desirable property of many applications of 

these materials [1,14,18,20-28].  

On the one hand, the use of amphiphilic block copolymers resulted in its self-

assembly during polymerization reaction and in the partial miscibility of one of blocks 

of block copolymer with the epoxy resin. In this work, the amphiphilic PE-b-PEO block 

copolymer was used as both nanostructuration agent and as template for TiO2 

nanoparticles. Moreover, the PEO block of the PE-b-PEO block copolymer was 
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miscible with both, the DGEBA epoxy resin [4,33,34] and the sol-gel synthesized 

inorganic nanoparticles [2,23,28].  

The use of the block copolymers allows to obtain different nanostructures as a 

function of the composition and the molecular weight [4,5,8-10,12,13,21-24,29-32].  

On the other hand, the addition of inorganic nanoparticles permits to obtain 

epoxy based thermosetting systems with combined optical, mechanical, magnetic and 

optoelectronic properties [2,3,15,17,18]. It is crucial to achieve a homogeneous 

dispersion of the inorganic nanoparticles since the final properties are closely related to 

this point [2,15,17-19,23,26]. 

The use of the block copolymers and the inorganic nanoparticles jointly is an 

effective pathway to achieve epoxy based thermosetting systems with synergistic and 

tunable properties [2,15,17,18,23,26-28]. In this kind of thermoset materials the block 

copolymer acted as nanostructuration agent and as surfactant for the dispersion of 

inorganic nanoparticles, leading to well-dispersed inorganic nanoparticles in the 

nanostructured thermosetting systems. 

The purpose of this Chapter was the use of the PE-b-PEO nanostructured 

thermosetting systems as template for dispersion and localization of the TiO2 

nanoparticles. The effect of the molecular weight and molar ratio between the blocks of 

the PE-b-PEO block copolymer on the dispersion of the TiO2 nanoparticles was also 

investigated. The miscibility between the DGEBA epoxy resin as well as the 

DGEBA/MCDEA matrix and the PE-b-PEO block copolymers was study as key 

parameter responsible for the dispersion of the TiO2 nanoparticles. 

6.2. Materials and characterization techniques 

6.2.1. Materials 

Two different PE-b-PEO diblock copolymers, one with an average molecular 

weight of 920 g mol
-1

 and 50 wt % of PEO block content and the other one with an 

average molecular weight of 2250 g mol
-1

 and 80 wt % of PEO block content, were 

employed in this Chapter as modifiers. The PE-b-PEO block copolymer with lower 

molecular weight was denominated LPE-b-PEO while higher molecular weight block 

copolymer was named HPE-b-PEO. 

Additionally, the DGEBA epoxy resin was cured with a stoichiometric amount 

of the aromatic amine curing agent MCDEA.  
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For the fabrication of the TiO2 nanoparticles via sol-gel synthesis, titanium 

isopropoxide (Ti(OCH(CH3)2)4) was used as precursor and was provided by Sigma-

Aldrich. In addition, isopropanol, hydrochloric acid (HCl, 37 %) and toluene were 

analytical grade. All these materials were used as received, without further purification. 

6.2.2. Sample preparation 

6.2.2.1. Sol-gel synthesis 

The titanium sol-gel solution was obtained according to the procedure published 

by Gutierrez et al. [2,35]. The sol-gel solution was prepared mixing 0.125 mmol of 

titanium isopropoxide, 5 mL of isopropanol, 0.125 mmol of an aqueous HCl and 5 mL 

of toluene under vigorous stirring for 1 h. 

6.2.2.2. Blending protocol 

The thermosetting systems modified with the PE-b-PEO block copolymers were 

prepared as follows. First, adequate amount of the PE-b-PEO block copolymer and the 

DGEBA epoxy resin were mixed and manually stirred at 80 °C in an oil bath until a 

homogenous mixture was achieved. Then, the curing agent, MCDEA, was added and 

stirred 30 s before curing reaction. 

On the other hand, thermosetting systems modified with both PE-b-PEO block 

copolymers and the sol-gel synthesized TiO2 nanoparticles were also prepared. First, the 

desired amount of the sol-gel solution was added to the DGEBA epoxy resin and mixed 

at 80 °C for 10 min. Then, an adequate amount of the PE-b-PEO block copolymer was 

added to the mixture and after mixing with manual stirring, MCDEA was added and 

stirred 30 s before curing reaction. Finally, all investigated thermosetting systems were 

degassed in vacuum and cured at 190 °C for 4 h.  

Apart from neat DGEBA/MCDEA system, the thermosetting systems modified 

with the PE-b-PEO block copolymers (5, 10, 20 and 40 wt % of LPE-b-PEO or HPE-b-

PEO block copolymers) and the same PE-b-PEO block copolymers and the sol-gel 

synthesized TiO2 nanoparticles were prepared. The thermosetting systems modified 

with both the PE-b-PEO block copolymers and synthesized TiO2 nanoparticles were 

prepared with a molar ratio 50:50.  

All investigated thermosetting systems were carried out in 1 mm thick mold, 

consequently obtained results are referred to the bulk conditions. 
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6.2.3. Characterization techniques 

6.2.3.1. Differential scanning calorimetry  

DSC measurements were performed using a Mettler Toledo DSC 822e 

differential scanning calorimeter under a nitrogen flow of 25 mL min
-1

. All investigated 

epoxy based thermosetting systems were encapsulated in aluminum pans using a weight 

of all samples around 10 mg.  

The curing reaction of neat DGEBA/MCDEA system and the PE-b-PEO block 

copolymer modified thermosetting systems was analyzed by means of an isothermal 

scan at 190 ºC during 2 h.  

In order to study the miscibility of two different PE-b-PEO block copolymers with 

the DGEBA epoxy resin, a dynamic scan was performed from -25 to 150 °C at 5 °C min
-1

.  

Thermal transition temperatures of all investigated thermosetting systems were 

determined using dynamic scans performed from -50 to 220 ºC with a heating rate of 5 

ºC min
-1

. Prior to this scan, a heating from -50 to 220 ºC followed by a cooling from 

220 to -25 ºC at 5 ºC min
-1

 were carried out in order to remove the thermal history of the 

investigated material.  

The crystallization degree (Xc) was calculated using the following equation [36,37]: 

                    Xc =   
∆𝐻𝑒𝑥

𝜔∆𝐻100%
 x 100 

where ω was the weight fraction of the component of mixture for which the degree of 

crystallization was calculated and ∆H100% was the theoretical melting enthalpy of 

investigated material in the 100 % crystalline state. The experimental enthalpy of the 

melting transition, ΔHex, was calculated from the area of the endothermic peak during 

heating. 

Moreover, the Fox equation was applied with the aim of confirming the partial 

miscibility between the PE-b-PEO block copolymer and the DGEBA epoxy resin [38]. 

The Tg of the PEO block and the PE block of the PE-b-PEO block copolymer were -65 

and -33 ºC, respectively [39,40]. 

6.2.3.2. Fourier transform infrared spectroscopy 

FTIR was performed using a Nicolet Nexus 670 spectrometer equipped with a 

single horizontal Golden Gate cell (ATR). Spectra were recorded in the range from 600 

to 4000 cm
-1

, with 2 cm
-1

 resolution and an accumulation of 20 scans.  
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6.2.3.3. UV-visible spectroscopy  

The optical transparency of all investigated thermosetting systems was studied 

using a UV-3600, Shimadzu UV-VIS-NIR spectrophotometer in the range from 200 to 

800 nm. 

6.2.3.4. Atomic force microscopy  

The morphology of all investigated thermosetting systems was studied by AFM. 

For AFM measurements, the investigated thermosetting systems were cut using an 

ultramicrotome Leica Ultracut R with a diamond blade. Transversal cross-section 

surface of all investigated thermosetting systems was analyzed. AFM images were 

obtained using a scanning probe microscope (Nanoscope IIIa Multimode
TM

, Digital 

Instruments). Tapping mode (TM) was employed in air using an integrated tip/ 

cantilever (125 mm in length with ca. 300 kHz resonant frequency).  

6.2.3.5. Water contact angle 

Water contact angle measurements of the DGEBA/MCDEA cured system and 

the DGEBA/MCDEA based thermosetting systems were carried out using Data Physics 

OCA 20 contact angle system at ambient temperature. 3 mL distilled water drop was 

used for each measurement. At least five measurements were made for each 

investigated thermosetting system. 

6.3. Results and discussion 

6.3.1. Miscibility of the PE-b-PEO/ DGEBA uncured mixtures by DSC 

The miscibility of the DGEBA epoxy resin with the PE-b-PEO block 

copolymers was studied by DSC technique. DSC thermograms of the PE-b-

PEO/DGEBA uncured mixtures are shown in Figure 6.1. 

All investigated PE-b-PEO/DGEBA uncured mixtures possessed a unique Tg 

indicating a partial miscibility between the components. The Tg of the DGEBA epoxy 

resin, at -18 ºC, shifted to lower temperatures with the increase of the PE-b-PEO block 

copolymer content independent on the use of the LPE-b-PEO or HPE-b-PEO block 

copolymers. In both cases, the Tm of the PEO block of the PE-b-PEO block copolymers 

rich phase was detected only for the 40PE-b-PEO/DGEBA uncured mixtures. 
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Moreover, in both cases, the Tm of the PEO block of the PE-b-PEO block copolymer 

rich phase shifted to lower temperature if compare to the Tm of the PEO block of the 

PE-b-PEO block copolymer. The Tm of the PEO block in the 40LPE-b-PEO/DGEBA 

uncured mixture moved from 35 ºC for neat LPE-b-PEO block copolymer to 28 ºC. 

Similar behavior was observed for the 40HPE-b-PEO/DGEBA uncured mixture, where 

the Tm shifted 7 ºC, being 57 ºC for neat HPE-b-PEO block copolymer and 50 ºC for the 

40HPE-b-PEO/DGEBA uncured mixture.  

These results confirm the partial miscibility between the PEO block of the PE-b-

PEO block copolymer and the DGEBA epoxy resin in the investigated uncured 

mixtures [4,33,34]. 

 

Figure 6.1. DSC thermograms of the DGEBA epoxy resin and the PE-b-PEO/DGEBA uncured mixtures 

with 5, 10, 20 and 40 wt % of a) LPE-b-PEO and b) HPE-b-PEO block copolymers. 

Additionally, the crystallization degree of the PEO block rich phases in the PE-

b-PEO/DGEBA uncured mixtures was calculated. Crystallization degree of the PEO 

block was maintained in the case of the 40LPE-b-PEO/DGEBA blend with respect to 

the LPE-b-PEO block copolymer, 14 %, and decreased from 68 % to 54 % in the case 

of the 40HPE-b-PEO/DGEBA blend in comparison with the crystallization degree of 

the HPE-b-PEO block copolymer, which corroborated the partial miscibility between 

components.  

6.3.2. Effect of the addition of the PE-b-PEO block copolymers on the curing 

reaction by DSC  

In order to study the effect of the addition of the PE-b-PEO block copolymer on 

the curing reaction, the DGEBA/MCDEA based thermosetting systems modified with 5, 

10, 20 and 40 wt % of PE-b-PEO block copolymer were studied as shown in Figure 6.2. 
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For comparison, isothermal DSC thermograms of neat DGEBA/MCDEA system were 

also shown. 

 

Figure 6.2. Isothermal DSC thermograms at 190 ºC of neat DGEBA/MCDEA system and the PE-b-

PEO(DGEBA/MCDEA) systems fabricated using a) LPE-b-PEO and b) HPE-b-PEO block copolymer. 

All investigated thermosetting systems modified with the LPE-b-PEO block 

copolymer (Figure 6.2a) and with the HPE-b-PEO block copolymer (Figure 6.2b) 

showed a delay of the curing reaction with the increase of the PE-b-PEO block 

copolymer content if compared to neat DGEBA/MCDEA system, being slightly more 

pronounced in the case of the HPE-b-PEO(DGEBA/MCDEA) systems. 

In the case of neat DGEBA/MCDEA system, the maximum curing reaction time 

was achieved at 23 min while the highest delay was detected for 40 wt % of LPE-b-

PEO block copolymer being the maximum cure reaction time equal to 39 min.  

Similar behavior was observed in the thermosetting systems modified with HPE-

b-PEO block copolymer, the curing reaction time delayed from 25 to 40 min with the 

addition of 5 and 40 wt % of PE-b-PEO block copolymer, respectively.  

As it is well known, this behavior is related to the dilution effect of the PEO 

block of the PE-b-PEO block copolymer on the curing reaction of the DGEBA/MCDEA 

system [4, 33, 34]. Thus, the ether groups of the PEO block of the PE-b-PEO block 

copolymer can form hydrogen bonds with the OH groups of the DGEBA epoxy resin 

and, consequently, delayed curing reaction [4,28,35-38].  

FTIR spectra of the thermosetting systems modified with both the PE-b-PEO 

block copolymers and the same block copolymers and TiO2 nanoparticles, confirmed 

the formation of these hydrogen bonds.  

As can be clearly observed, the OH groups at 3300-3400 cm
-1

 shifted to lower 

wavelengths as can be visualized in Figure 6.3.  
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Figure 6.3. FTIR spectra of the a) LPE-b-PEO(DGEBA/MCDEA) b) TiO2LPE-b-

PEO(DGEBA/MCDEA) e) HPE-b-PEO(DGEBA/MCDEA) and f) TiO2HPE-b-PEO(DGEBA/MCDEA) 

cured systems and FTIR spectra from 2700 cm
-1

 to 3700 cm
-1 

of the c) LPE-b-PEO(DGEBA/MCDEA) d) 

TiO2LPE-b-PEO(DGEBA/MCDEA) g) HPE-b-PEO(DGEBA/MCDEA) h) TiO2HPE-b-

PEO(DGEBA/MCDEA) cured systems. For comparison FTIR spectra of neat LPE-b-PEO and HPE-b-

PEO block copolymers and neat DGEBA/MCDEA cured system were added. 
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6.3.3. Thermal behavior of the DGEBA/MCDEA based thermosetting systems by 

DSC 

DSC thermograms of neat DGEBA/MCDEA cured system and the thermosetting 

systems modified with the LPE-b-PEO block copolymer and the same block copolymer 

and TiO2 nanoparticles are shown in Figure 6.4.  

 

Figure 6.4. DSC thermograms of the a) LPE-b-PEO(DGEBA/MCDEA) cured systems with different 

LPE-b-PEO content and b) TiO2LPE-b-PEO(DGEBA/MCDEA) cured systems with different TiO2LPE-

b-PEO content. For comparison DSC thermograms of neat DGEBA/MCDEA cured system was also 

added. Marked temperatures correspond to the theoretical Tgs calculated by Fox equation.  

As can be observed, the Tg of neat DGEBA/MCDEA cured system, at 154 ºC, 

shifted to lower temperatures in the epoxy modified thermosetting systems. Taken into 

account the experimental results, showed in Table 6.1, the Tg of the DGEBA/MCDEA 

matrix decreased with the increasing of both the LPE-b-PEO and TiO2LPE-b-PEO 

contents being a higher decreased in the case of neat DGEBA/MCDEA cured system 

modified only with the LPE-b-PEO block copolymer.  

Thus, in the case of neat DGEBA/MCDEA cured systems modified with the 

LPE-b-PEO block copolymer, the PEO block is the partially miscible with the 

DGEBA/MCDEA matrix and in the case of the DGEBA/MCDEA cured systems 

modified with both the LPE-b-PEO block copolymer and TiO2 nanoparticles, the PEO 

block is the partially miscible with the DGEBA/MCDEA matrix and acted as surfactant 

for synthesized nanoparticles. 

The theoretical Tgs calculated using Fox equation [38] were highlighted in 

Figure 6.4a and collected in Table 6.1. The experimental Tgs were approximated to 

theoretical ones confirming the miscibility between the PEO block and the 

DGEBA/MCDEA matrix. 
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Table 6.1. The Tgs of neat DGEBA/MCDEA cured system and of the LPE-b-PEO(DGEBA/MCDEA) 

and TiO2LPE-b-PEO(DGEBA/MCDEA) cured systems calculated from DSC thermograms and the 

theoretical Tg values calculated using the Fox equation. 

Sample  Experimental Tg (ºC) Theoretical Tg (ºC) 

DGEBA/MCDEA 154  

5LPE-b-PEO(DGEBA/MCDEA) 

10LPE-b-PEO(DGEBA/MCDEA) 

20LPE-b-PEO(DGEBA/MCDEA) 

40LPE-b-PEO(DGEBA/MCDEA) 

145 

122 

111 

30 

135* 

118* 

88* 

39* 

5TiO2LPE-b-PEO(DGEBA/MCDEA) 

10TiO2LPE-b-PEO(DGEBA/MCDEA) 

20TiO2LPE-b-PEO(DGEBA/MCDEA) 

40TiO2LPE-b-PEO(DGEBA/MCDEA) 

151 

148 

125 

102 

- 

- 

- 

- 

LPE-b-PEO -65  

*The theoretical Tgs was calculated only for thermosetting systems modified with the LPE-b-PEO block copolymer. 

As expected, the Tm of the PE block rich phase of the LPE-b-

PEO(DGEBA/MCDEA) and TiO2LPE-b-PEO(DGEBA/MCDEA) cured systems was 

detected only for more than 10 wt % of LPE-b-PEO block copolymer or 10 wt % of 

TiO2LPE-b-PEO modifier content being the same for all systems confirming the 

immiscibility of the PE block of the LPE-b-PEO block copolymer with the 

DGEBA/MCDEA matrix.  

On the contrary, the Tm of the PEO block of the LPE-b-PEO block copolymer 

was not detected in any investigated thermosetting system. This phenomenon can be 

related to the partial miscibility between the PEO block of the PE-b-PEO block 

copolymer and the DGEBA/MCDEA matrix and the low content of PEO block with 

respect to the whole thermosetting system (2,5 wt % of PEO block for 5 wt % and 20 wt 

% of PEO block for 40 wt %). 

Figure 6.5 shown the DSC thermograms of the HPE-b-PEO(DGEBA/MCDEA) 

and TiO2HPE-b-PEO(DGEBA/MCDEA) cured systems with different modifier content. 

The addition of the HPE-b-PEO block copolymer or the same block copolymer and 

TiO2 nanoparticles to the DGEBA/MCDEA matrix, led to shift the Tg of the PEO 

block/(DGEBA/MCDEA) rich phase to lower temperature as shown Table 6.2.  

Taking into account that the molar ratio between the HPE-b-PEO block 

copolymer and the TiO2 nanoparticles was fixed to 50:50, for the same modifier amount 

the PEO block content in the TiO2HPE-b-PEO(DGEBA/MCDEA) cured systems is two 

times lower than in the HPE-b-PEO(DGEBA/MCDEA) cured systems.  
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Consequently, the decrease of the Tg was less pronounced since there is low 

PEO block content which can interact with the DGEBA/MCDEA matrix.  

 

Figure 6.5. DSC thermograms of the a) HPE-b-PEO(DGEBA/MCDEA) cured systems with different 

HPE-b-PEO content and b) TiO2HPE-b-PEO(DGEBA/MCDEA) cured systems with different TiO2HPE-

b-PEO content. For comparison DSC thermograms of neat DGEBA/MCDEA cured system was also 

added. Marked temperatures correspond to the theoretical Tgs calculated by the Fox equation.  

Similar to the LPE-b-PEO(DGEBA/MCDEA) cured systems, the experimental 

Tgs of the HPE-b-PEO(DGEBA/MCDEA) cured systems approximated to the 

theoretical Tgs confirming the miscibility between the PEO block of the HPE-b-PEO 

block copolymer and the DGEBA/MCDEA matrix. 

Table 6.2. The Tgs of neat DGEBA/MCDEA cured system and of the HPE-b-PEO/(DGEBA/MCDEA) 

and TiO2HPE-b-PEO/(DGEBA/MCDEA) cured systems calculated from DSC thermograms and the 

theoretical Tg values calculated using the Fox equation.  

Sample  Experimental Tg (ºC) Theoretical Tg (ºC) 

DGEBA/MCDEA 154  

5HPE-b-PEO(DGEBA/MCDEA) 

10HPE-b-PEO(DGEBA/MCDEA) 

20HPE-b-PEO(DGEBA/MCDEA) 

40HPE-b-PEO(DGEBA/MCDEA) 

136 

128 

85 

26 

134* 

115* 

83* 

32* 

5TiO2HPE-b-PEO(DGEBA/MCDEA) 

10TiO2HPE-b-PEO(DGEBA/MCDEA) 

20TiO2HPE-b-PEO(DGEBA/MCDEA) 

40TiO2HPE-b-PEO(DGEBA/MCDEA) 

151 

139 

122 

108 

- 

- 

- 

- 

HPE-b-PEO -65  

*The theoretical Tgs was calculated only for thermosetting systems modified with the HPE-b-PEO block copolymer. 

Moreover, the Tm of the PE block rich phase in both the HPE-b-

PEO(DGEBA/MCDEA) and TiO2HPE-b-PEO(DGEBA/MCDEA) cured systems was 

detected only for 40 wt % of modifier. This fact can be related to the low PE block 
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content in the HPE-b-PEO block copolymer (20 wt %) or the immiscibility of the PE 

block and the DGEBA/MCDEA matrix. 

6.3.4. Transparency of the thermosetting systems by UV-vis 

The optical transparency of the investigated thermosetting systems was studied 

using UV-vis spectroscopy. UV-vis transmittance spectra of the DGEBA/MCDEA 

cured system and all the thermosetting systems modified with the LPE-b-PEO block 

copolymer and the same block copolymer and TiO2 nanoparticles are shown in Figure 

6.6. Moreover, visual appearance of these systems, are displayed on the top of each 

figure. 

 

Figure. 6.6. UV-vis transmittance spectra of the different a) LPE-b-PEO(DGEBA/MCDEA) cured 

systems and b) TiO2LPE-b-PEO(DGEBA/MCDEA) cured systems. For comparison UV-vis transmittance 

spectra of neat DGEBA/MCDEA cured system was also added. The inset on the top of each figure 

corresponds to the visual appearance of the investigated thermosetting systems. 

As expected, neat DGEBA/MCDEA cured system was transparent at ambient 

temperature and possessed a good visible light transmittance, 86 % at 600 nm. The 

addition of the LPE-b-PEO block copolymer led to a significant decreasing in the 

transmittance suggesting the presence of heterogeneities or/and refractive index 

fluctuations in the epoxy based thermosetting systems modified with more than 10 wt % 

of modifier (Figure 6.6a and 6.6b) [41,42]. 

The visual appearance of the LPE-b-PEO(DGEBA/MCDEA) and TiO2LPE-b-

PEO(DGEBA/MCDEA) cured systems was showed on the top of Figures 6.6a and 6.6b, 

respectively. For both investigated thermosetting systems, transparent materials were 

obtained up to 10 wt % of modifier that is in a good agreement with the UV-vis results. 

UV-vis transmittance spectra of the DGEBA/MCDEA cured system and all the 

thermosetting systems modified with the HPE-b-PEO block copolymer and the same 
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block copolymer and TiO2 nanoparticles were shown in Figure 6.7. 

Thermosetting systems modified with the HPE-b-PEO block copolymer (Figure 

6.7a) showed higher visible light transmittance if compare with the thermosetting 

systems modified with the LPE-b-PEO block copolymer (Figure 6.6a). This could be 

due to the higher miscibility between the PEO block and the DGEBA/MCDEA matrix 

in the case of the HPE-b-PEO block copolymer (80 wt % of PEO block) than in the 

LPE-b-PEO block copolymer (50 wt % of PEO block).  

 

Figure. 6.7. UV-vis transmittance spectra of the different a) HPE-b-PEO(DGEBA/MCDEA) cured 

systems and b) TiO2HPE-b-PEO(DGEBA/MCDEA) cured systems. For comparison UV-vis 

transmittance spectra of neat DGEBA/MCDEA cured system was also added. The inset on the top of each 

figure corresponds to the visual appearance of the investigated thermosetting systems. 

The addition of more than 20 wt % of HPE-b-PEO block copolymer or TiO2HPE-

b-PEO modifier, led to decrease in the visible light transmittance suggesting 

heterogeneities or/and refractive index fluctuations in these systems, as explained above. 

The visual appearance showed that the investigated thermosetting systems were 

transparent up to 20 wt % modifier, that is in a good agreement with the UV-vis results. 

6.3.5. The morphology of the epoxy based thermosetting systems by AFM 

The morphology of neat DGEBA/MCDEA cured system as well as all 

investigated thermosetting systems was analyzed by AFM.  

As was expected, the AFM phase image of neat DGEBA/MCDEA cured system 

showed a regular and uniform morphology, without both micro- and macrophase 

separation as can be visualized in Figure 6.8.  

AFM phase images of the thermosetting systems modified with the LPE-b-PEO 

block copolymer and the same block copolymer and TiO2 nanoparticles are presented in 

Figure 6.9.  
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Figure 6.8. AFM phase images (750 nm x 750 nm) of neat DGEBA/MCDEA cured system. The insets at 

the bottom correspond to 3 μm x 3 μm AFM phase images. 

Taken into account that only the PEO block of the PE-b-PEO block copolymer 

was miscible with the DGEBA/MCDEA matrix, in AFM phase images the PEO block 

(DGEBA/MCDEA) rich phase appeared as brightest areas while the PE block rich 

phase correspond to dark areas.  

The addition of 5 wt % of LPE-b-PEO block copolymer led to the sphere-like 

morphology of microseparated PE block with phase domains with the average size of 8 

± 2 nm in diameter. The size of these domains increases with the addition of 10 wt % of 

LPE-b-PEO block copolymer forming in some case worm-like structure (Figure 6.9b). 

Similar morphology was observed for the 20LPE-b-PEO(DGEBA/MCDEA) cured 

system. 

The addition of 40 wt % of LPE-b-PEO block copolymer led to a macrophase 

separated thermosetting system (Figure 6.9d). In this case, some part of the PEO block 

microseparate within the PE block phase. These results are in a good agreement with the 

UV-vis results. 

AFM phase images of the TiO2LPE-b-PEO(DGEBA/MCDEA) cured systems 

with different TiO2LPE-b-PEO content are shown in Figures 6.9e-h. The molar ratio 

between the synthesized TiO2 nanoparticles and the LPE-b-PEO block copolymer was 

fixed to be 50:50. 

For the 5TiO2LPE-b-PEO(DGEBA/MCDEA) cured system, sphere-like 

morphology was detected where darker areas correspond to the PE block rich phase 

domains (Figure 6.9e). The average size of the microseparated PE block rich phase 

domains was smaller than for the 5LPE-b-PEO(DGEBA/MCDEA) cured system (6 ± 2 

nm).  

Moreover, small brighter spots observed in AFM phase image correspond to the 

TiO2 nanoparticles [2]. Inset of Figure 6.9e confirms the presence of TiO2 nanoparticle 

aggregates.  
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Figure 6.9. AFM phase images (750 nm x 750 nm) of the DGEBA/MCDEA thermosetting systems modified 

with a) 5, b) 10, c) 20 and d) 40 wt % of LPE-b-PEO block copolymer and e) 5, f) 10, g) 20 and h) 40 wt % of 

TiO2LPE-b-PEO modifier. The insets at the bottom correspond to 3 μm x 3 μm AFM phase images.  

This behavior can be related to the low PEO block content in the 5TiO2LPE-b-

PEO(DGEBA/MCDEA) cured system, only 1.25 wt %. Consequently, the amount of 

the PEO block is mostly miscible with the DGEBA/MCDEA matrix is not enough to act 

as surfactant for TiO2 nanoparticles. Thus, the aggregation of the TiO2 nanoparticles can 

be clearly distinguished, as shown in Figure 6.9e. This behavior was represented in 

Scheme 6.1. 
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Scheme 6.1. TiO2 nanoparticles aggregates in the 5TiO2LPE-b-PEO(DGEBA/MCDEA) cured system. 

The addition of 10 wt % of TiO2LPE-b-PEO provoked an increase of the sphere-

like PE block rich phase domains, and simultaneously an improvement of dispersion of 

the TiO2 nanoparticles can be also detected (see inset of Figure 6.9f). The modification 

of the DGEBA/MCDEA cured system with 20 wt % of TiO2LPE-b-PEO changed the 

morphology from sphere-like to worm-like one. Small bright spots correspond to the 

TiO2 nanoparticles, which are also visible in AFM phase image of this thermosetting 

system. These TiO2 nanoparticles were well dispersed in the PEO block 

(DGEBA/MCDEA) matrix and located preferably in the interface with the 

microseparated PE block domains (Figure 6.9g). The size of the TiO2 nanoparticles was 

smaller in the case of the 20TiO2LPE-b-PEO(DGEBA/MCDEA) cured system if 

compare with thermosetting systems modified with less TiO2LPE-b-PEO modifier 

content. This can be related to the fact, that in this thermosetting system, one part of the 

PEO block is miscible with the DGEBA/MCDEA matrix and the other one partially 

covered the TiO2 nanoparticles [2]. The thermosetting systems modified with 40 wt % 

of TiO2LPE-b-PEO showed not only worm-like structure of the PE block rich phase but 

also a macroseparation of this phase, see inset of Figure 6.9h. 

The difference in the morphology between the LPE-b-PEO(DGEBA/MCDEA) 

and TiO2LPE-b-PEO(DGEBA/MCDEA) cured systems with the same LPE-b-PEO 

block copolymer was also analyzed.  

As can be seen, Figures 6.9a and 6.9f, the 5LPE-b-PEO(DGEBA/MCDEA) and 

10TiO2LPE-b-PEO(DGEBA/MCDEA) cured systems, possessed sphere-like 

morphology with the very similar size. The only difference is in a bright TiO2 

nanoparticles clearly visualized in the 10TiO2LPE-b-PEO(DGEBA/MCDEA) cured 

system. Similar tendency was also observed for the morphology of the 10LPE-b-

PEO(DGEBA/MCDEA) and 20TiO2LPE-b-PEO(DGEBA/MCDEA) cured systems. 
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Thus, the addition of TiO2 nanoparticles did not affect the nanostructuration of the LPE-

b-PEO block copolymer nanostructured thermosetting system.  

Moreover, the root mean square roughness, Rq, and the average roughness, Ra, of 

the LPE-b-PEO block copolymer thermosetting systems were studied and date were 

collected in the Table 6.3. 

Table 6.3. The Rq and Ra parameters corresponding to the LPE-b-PEO(DGEBA/MCDEA) and TiO2LPE-

b-PEO(DGEBA/MCDEA) cured systems. 

Sample  Rq (nm) Ra (nm) 

5LPE-b-PEO(DGEBA/MCDEA) 

10LPE-b-PEO(DGEBA/MCDEA) 

20LPE-b-PEO(DGEBA/MCDEA) 

40LPE-b-PEO(DGEBA/MCDEA) 

0.9 

1.9 

1.5 

4.5 

0.7 

1.6 

1.2 

3.3 

5TiO2LPE-b-PEO(DGEBA/MCDEA) 

10TiO2LPE-b-PEO(DGEBA/MCDEA) 

20TiO2LPE-b-PEO(DGEBA/MCDEA) 

40TiO2LPE-b-PEO(DGEBA/MCDEA) 

2.0 

0.9 

3.4 

0.8 

1.4 

0.7 

2.0 

0.6 

The Rq and Ra of the thermosetting systems modified only with the LPE-b-PEO 

block copolymer increased with the addition of the LPE-b-PEO block copolymer.  

As expected, the highest roughness values, Rq 4.5 and Ra 3.3 nm were found for 

the 40LPE-b-PEO(DGEBA/MCDEA) cured system. Thus, the macrophase separation 

of the PE block rich phase provoked an increase of the roughness surface.  

The Rq and Ra of the TiO2LPE-b-PEO(DGEBA/MCDEA) cured systems 

increased with the addition of 5 and 20 wt % of TiO2LPE-b-PEO in comparison with 

the thermosetting systems modified with 10 and 40 wt % of TiO2LPE-b-PEO.  

In the case of the 5TiO2LPE-b-PEO(DGEBA/MCDEA) cured system, the 

aggregation of the TiO2 nanoparticles can be responsible for the increase of the 

roughness. In the case of the 20TiO2LPE-b-PEO(DGEBA/MCDEA) cured system, the 

changes in the morphology from sphere-like to worm-like can increase the roughness of 

this system. 

AFM phase images of the thermosetting systems modified with the HPE-b-PEO 

block copolymer are shown in Figure 6.10.  

As well as for the thermosetting systems modified with the LPE-b-PEO block 

copolymer, the addition of 5 wt % of HPE-b-PEO block copolymer led to the sphere-like 

morphology. The size of these domains was smaller than in the thermosetting systems 

modified with the LPE-b-PEO block copolymer, probably due to the lower PE block 
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content in the HPE-b-PEO block copolymer (20 wt %). For the 10HPE-b-

PEO(DGEBA/MCDEA) cured system the size of the sphere-like PE block rich phase 

domains increased, which resulted in some worm-like structures as shown in Figure 6.10b. 

 

Figure 6.10. AFM phase images (750 nm x 750 nm) of the DGEBA/MCDEA thermosetting systems modified 

with a) 5, b) 10, c) 20 and d) 40 wt % of HPE-b-PEO block copolymer and e) 5, f) 10, g) 20 and h) 40 wt % of 

TiO2HPE-b-PEO content. The insets at the bottom correspond to 3 μm x 3 μm AFM phase images.  

The same worm-like morphology was observed for the 20HPE-b-

PEO(DGEBA/MCDEA) cured system. Moreover, this thermosetting system showed 



Chapter 6 

133 
 

also a homogeneously distributed regular in size (50 ± 5 nm) brighter microseparated 

domains. This morphology is different if compare with the macrophase separated 

morphology of the 40HPE-b-PEO(DGEBA/MCDEA) cured system. Taken into account 

higher content of the PEO block in the HPE-b-PEO block copolymer and its higher 

molecular weight, these regular bright domains can be attributed to the separated PEO 

block rich phase surrounded by the PE block (inset of Figure 6.10c).  

These results are in good agreement with UV-vis since the size of the separated 

domains is lower than 100 nm and do not altered transparency of the thermosetting 

systems (compare the UV-vis results of the 20HPE-b-PEO(DGEBA/MCDEA with the 

40HPE-b-PEO(DGEBA/MCDEA) cured systems). The addition of 40 wt % of HPE-b-

PEO block copolymer led to the sphere-like morphology with regular size 13 ± 2 nm in 

diameter (Figure 6.10d).  

AFM phase images of the TiO2HPE-b-PEO(DGEBA/MCDEA) cured systems 

modified with different HPE-b-PEO block copolymer and TiO2 nanoparticles content 

are shown in Figures 6.10e-h.  

The worm-like darker areas of the separated PE block rich phase domains can be 

easily distinguished when a 5 wt % of TiO2HPE-b-PEO modifier was added to the 

DGEBA/MCDEA matrix (Figure 6.10e). Moreover, bright spots preferably located in 

the interface between the microphase separated of the PE block rich phase domains and 

the DGEBA/MCDEA matrix, were distinguished [26]. These bright spots correspond to 

the TiO2 nanoparticles, as schematically illustrated in Scheme 6.2.  

 

Scheme 6.2. TiO2 nanoparticles preferably located in the interface between microphase separated PE 

block rich phase and DGEBA/MCDEA matrix. 

The addition of the 10TiO2HPE-b-PEO and 20TiO2HPE-b-PEO modifier led to 

slight increase of the microphase separated PE block rich phase domains and increase of 

quantity of bright spots corresponding to the TiO2 nanoparticles (Figures 6.10f and 



Chapter 6 

134 
 

6.10g). The 40TiO2HPE-b-PEO(DGEBA/MCDEA) cured system maintained both 

worm-like morphology of the microphase separated PE block rich phase and good 

distribution of the TiO2 nanoparticles (Figure 6.10h). Moreover, as for the 20HPE-b-

PEO(DGEBA/MCDEA) cured system (with the same HPE-b-PEO content) smaller in 

size (35 ± 5 nm) the homogeneously distributed PEO block microphase separated 

domains was also detected (compare Figure 6.10c and 6.10h).  

As for the thermosetting systems modified with the LPE-b-PEO block 

copolymer also in the case of the thermosetting systems modified with the HPE-b-PEO 

block copolymer, the Rq and Ra parameters were analyzed and represented in Table 6.4.  

Table 6.4. The Rq and Ra parameters corresponding to the HPE-b-PEO(DGEBA/MCDEA) and 

TiO2HPE-b-PEO(DGEBA/MCDEA) cured systems. 

Sample   Rq (nm) Ra (nm) 

5HPE-b-PEO(DGEBA/MCDEA) 

10HPE-b-PEO(DGEBA/MCDEA) 

20HPE-b-PEO(DGEBA/MCDEA) 

40HPE-b-PEO(DGEBA/MCDEA) 

1.0 

1.1 

1.0 

2.9 

0.8 

0.9 

0.8 

2.3 

5TiO2HPE-b-PEO(DGEBA/MCDEA) 

10TiO2HPE-b-PEO(DGEBA/MCDEA) 

20TiO2HPE-b-PEO(DGEBA/MCDEA) 

40TiO2HPE-b-PEO(DGEBA/MCDEA) 

1.4 

1.0 

0.5 

1.5 

1.1 

0.8 

0.4 

1.1 

Similar tendency was observed when thermosetting systems were modified with 

the HPE-b-PEO block copolymer. The Rq and Ra values increased with the addition of 

the HPE-b-PEO block copolymer content, while 40 wt % of HPE-b-PEO block 

copolymer was added to the DGEBA/MCDEA matrix the highest roughness values, Rq 

2.9 and Ra 2.3 nm, were obtained. This can be related to the macrophase separation.  

A different behavior was observed in the case of the epoxy systems modified 

with the HPE-b-PEO block copolymer and TiO2 nanoparticles. In the 5TiO2LPE-b-

PEO(DGEBA/MCDEA) and 40TiO2LPE-b-PEO(DGEBA/MCDEA) cured systems a 

higher roughness was observed than in the 10TiO2LPE-b-PEO(DGEBA/MCDEA) and 

20TiO2LPE-b-PEO(DGEBA/MCDEA) cured systems, which showed a lower 

roughness. 

Generally, the roughness values were higher for the thermosetting systems 

fabricated with the LPE-b-PEO block copolymer if compare to the thermosetting 

systems fabricated with the HPE-b-PEO block copolymer. This fact can be related to 

the higher partial miscibility between the PEO block and the DGEBA/MCDEA matrix 
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in the case of the thermosetting systems modified with the HPE-b-PEO block 

copolymer, where the higher PEO block content led to more regular morphology and 

good dispersion of the TiO2 nanoparticles.  

6.3.6. Contact angle of the epoxy based thermosetting systems 

The surface properties of the PE-b-PEO(DGEBA/MCDEA) and TiO2PE-b-

PEO(DGEBA/MCDEA) cured systems were investigated by the water contact angle.  

The changes in the hydrophilic nature of the thermosetting systems modified 

with different content of LPE-b-PEO block copolymer or with the same block 

copolymer and TiO2 nanoparticles are shown in Figure 6.11. 

 

Figure 6.11. Images of a water droplet in contact with the DGEBA/MCDEA thermosetting systems 

modified with a) 5, b) 10, c) 20 and d) 40 wt % of LPE-b-PEO and e) 5, f) 10, g) 20 and h) 40 wt % of 

TiO2LPE-b-PEO.  

In the case of the LPE-b-PEO(DGEBA/MCDEA) cured systems, a slightly 

decreasing in the water contact angle, from 94 º to 91 º, was observed with the increase 

of 5 to 20 wt % of LPE-b-PEO block copolymer content. In contrast the addition of 40 

wt % of LPE-b-PEO block copolymer resulted in an increase of contact angle up to 93 º 

(Table 6.5).  

This behavior can be related to the macrophase separation of the PE block of the 

PE-b-PEO block copolymer. Thus, the hydrophobic character of the PE block [45] led 

to slight increase in the water contact angle of the 40LPE-b-PEO(DGEBA/MCDEA) 

cured system. This is related to fact that, as mentioned in the Chapter 2, the water 

contact angle higher than 90º indicated hydrophobic character of investigated material.  

Similar behavior was also detected for the TiO2LPE-b-PEO(DGEBA/MCDEA) 
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cured systems. The water contact angle decreased slightly from 88 to 85 º with the 

addition of 5 to 20 wt % of TiO2LPE-b-PEO and increased to 90 º with the addition of 

40 wt % of TiO2LPE-b-PEO (Table 6.5). These phenomena can be related to the 

macrophase separation of the PE block rich phase from the DGBA/MCDEA matrix.  

Table 6.5. The water contact angle of the thermosetting systems modified with the LPE-b-PEO block 

copolymer and the same block copolymer and the synthetized TiO2 nanoparticles. 

Sample Contact angle (º) 

DGEBA/MCDEA 100 ± 2 

5LPE-b-PEO(DGEBA/MCDEA) 

10LPE-b-PEO(DGEBA/MCDEA) 

20LPE-b-PEO(DGEBA/MCDEA) 

40LPE-b-PEO(DGEBA/MCDEA) 

95 ± 1 

94 ± 2 

91 ± 3 

93 ± 4 

5TiO2LPE-b-PEO(DGEBA/MCDEA) 

10TiO2LPE-b-PEO(DGEBA/MCDEA) 

20TiO2LPE-b-PEO(DGEBA/MCDEA) 

40TiO2LPE-b-PEO(DGEBA/MCDEA) 

88 ± 2 

86 ± 2 

85 ± 1 

90 ± 3 

The decrease of the water contact angle in the case of both, the LPE-b-

PEO(DGEBA/MCDEA) and TiO2LPE-b-PEO(DGEBA/MCDEA) cured systems, is 

directly related with the hydrophilic character of the PEO block rich phase partially 

miscible with the DGEBA/MCDEA matrix. 

Consequently, the addition less than 40 wt % of LPE-b-PEO block copolymer, 

improved the hydrophilic character of these systems. By contrast, the addition of 40 wt 

% of LPE-b-PEO block copolymer provoked an increase of the water contact angle due 

to the hydrophobic character of the macrophase separated PE block rich phase.  

Water contact angle of the DGEBA/MCDEA cured systems modified with the 

HPE-b-PEO block copolymer and with the same block copolymer and the synthesized 

TiO2 nanoparticles was also analyzed.  

As can be observed in Figure 6.12, in the case of the HPE-b-

PEO/(DGEBA/MCDEA) systems, the water contact angle decreased drastically with 

the increasing of the HPE-b-PEO block copolymer content being 100, 96, 79 and 74 º 

with the addition of 5, 10, 20 and 40 wt % of HPE-b-PEO block copolymer content, 

respectively, as collected in Table 6.6. This could be attributed, as mentioned above, to 

the hydrophilic character of the PEO block of the HPE-b-PEO block copolymer.  

In the case of the thermosetting systems modified with both, the HPE-b-PEO 

block copolymer and TiO2 nanoparticles, the significant decreasing of the water contact 
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angle was observed only with the addition of 40 wt % of TiO2HPE-b-PEO being 95 º 

for the 5TiO2HPE-b-PEO(DGEBA/MCDEA) cured system and 75 º for the 

40TiO2HPE-b-PEO(DGEBA/MCDEA) cured system (Table 6.6). 

 

Figure 6.12. Images of a water droplet in contact with the DGEBA/MCDEA thermosetting systems 

modified with a) 5, b) 10, c) 20 and d) 40 wt % of HPE-b-PEO and e) 5, f) 10, g) 20 and h) 40 wt % of 

TiO2HPE-b-PEO.  

This behavior can be related with the high PEO block content in the HPE-b-PEO 

block copolymer, 80 wt %, if comparted to the LPE-b-PEO block copolymer, 50 wt %. 

Consequently, the PEO block is partially miscible with the DGEBA/MCDEA matrix 

and act as dispersion agent for the TiO2 nanoparticles affected hydrophilic character of 

analyzed surface.  

Table 6.6. The water contact angle of the thermosetting systems modified with the HPE-b-PEO block 

copolymer and the same block copolymer and the synthetized TiO2 nanoparticles. 

Sample  Contact angle (º) 

DGEBA/MCDEA 100 ± 2 

5HPE-b-PEO(DGEBA/MCDEA) 

10HPE-b-PEO(DGEBA/MCDEA) 

20HPE-b-PEO(DGEBA/MCDEA) 

40HPE-b-PEO(DGEBA/MCDEA) 

100 ± 3 

96 ± 1 

79 ± 3 

74 ± 4 

5TiO2HPE-b-PEO(DGEBA/MCDEA) 

10TiO2HPE-b-PEO(DGEBA/MCDEA) 

20TiO2HPE-b-PEO(DGEBA/MCDEA) 

40TiO2HPE-b-PEO(DGEBA/MCDEA) 

95 ± 2 

97 ± 4 

93 ± 1 

75 ± 2 

Based on the obtained results, it can be summarized that the epoxy based 

thermosetting systems modified with the HPE-b-PEO block copolymer showed higher 

hydrophilic character than epoxy based thermosetting systems modified with the LPE-
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b-PEO block copolymer due to both the higher PEO block content (80 wt %) and the 

higher molecular weight of the HPE-b-PEO block copolymer. 

6.4. Conclusions  

Epoxy based thermosetting systems modified with two different PE-b-PEO 

block copolymers (different molecular weight and molar ratio between blocks) and the 

same block copolymers and sol-gel synthetized TiO2 nanoparticles were prepared and 

characterized. 

DSC results for the PE-b-PEO/DGEBA unreactive mixtures confirmed the 

partial miscibility between the PEO block and the DGEBA epoxy resin. The addition of 

the PE-b-PEO block copolymers resulted in a delay of the curing reaction time as a 

consequence of the dilution effect.  

Thermal behavior of the investigated thermosetting systems after curing reaction 

indicated the partial miscibility between the PEO block of the PE-b-PEO block 

copolymers and the DGEBA/MCDEA matrix resulted in shift of the Tg of the 

DGEBA/MCDEA matrix to lower temperatures with increase of the PE-b-PEO block 

copolymers content.  

The Tg of the DGEBA/MCDEA matrix in the case of the TiO2PE-b-

PEO(DGEBA/MCDEA) cured systems were lower if compare to the corresponding 

cured systems without TiO2 nanoparticles since in these systems the PEO block not only 

acted as nanostructuration agent, but also as surfactant for the sol-gel synthesized TiO2 

nanoparticles.  

Higher optical transparency was reached for the cured systems modified with the 

HPE-b-PEO block copolymer and the same block copolymer and TiO2 nanoparticles as 

consequence of the higher PEO block copolymer content (50 wt % in the LPE-b-PEO 

block copolymer and 80 wt % in the HPE-b-PEO block copolymer). 

The morphology of the cured systems depends strongly on the PE-b-PEO block 

copolymer used for fabrication of both the PE-b-PEO(DGEBA/MCDEA) and TiO2PE-

b-PEO(DGEBA/MCDEA) cured systems being the PEO bock content the key 

parameter for the nanostructuration and for the dispersion of the synthesized TiO2 

nanoparticles. The PEO block content in the PE-b-PEO block copolymers and 
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consequently in all the investigated thermosetting systems governed not only 

morphology but also surface properties since the hydrophilic character of the 

thermosetting systems was strongly affected. 

The PE-b-PEO block copolymer nanostructured thermosetting systems, depends 

on formulation, can acted as template for the TiO2 nanoparticles resulting in materials 

with high transparency and hydrophilic surface character. 
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7. General conclusions, future work and scientific 

contributions 

7.1. General conclusions 

The most relevant conclusions of the investigation work related to this thesis are 

summarized below: 

The PE-b-PEO block copolymer dispersed liquid crystal blends were 

fabricated using two low molecular weight HOBC and EBBA nematic liquid crystals. 

Obtained results showed that the PEO block of the PE-b-PEO block copolymer is 

partially miscible with the HOBC nematic liquid crystal while the PE block of the PE-

b-PEO block copolymer resulted in stronger miscibility with the EBBA nematic liquid 

crystal. The miscibility of each nematic liquid crystal with each block of the PE-b-

PEO block copolymer had strong influence on the final properties of investigated 

PDLC blends. Moreover, the investigated PDLC blends maintain the nematic 

character of the liquid crystal, switching from opaque to transparent state as a function 

of temperature. 

Hybrid PE-b-PEO/EBBA as well as PLA/PE-b-PEO/EBBA electrospun fibers 

were successfully fabricated optimizing the co-electrospinning processing-window. The 

combined use of the PLA polymer and PE-b-PEO block copolymer improved the 

electrospun fibers formation. Moreover, the nematic character of the EBBA liquid 

crystal was also maintained in the investigated hybrid electrospun fibers based on both, 

PE-b-PEO block copolymer and PLA homopolymer. 

Nanostructured epoxy based thermosetting systems were effectively fabricated 

using amphiphilic PE-b-PEO block copolymer. The PEO block of the PE-b-PEO block 

copolymer is miscible with the DGEBA/MCDEA matrix whereas the immiscible PE 

block, lead to a microphase separation. These PE-b-PEO block copolymer 

nanostructured thermosetting systems were used as surfactant for the dispersion and 

localization of the TiO2 nanoparticles.  

The PEO block of the PE-b-PEO block copolymer had strong influence on the 

morphology and the final properties of the nanostructured thermosetting systems. 
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Moreover, the molecular weight of the PE-b-PEO block copolymer and molar ratio 

between blocks, affect to the dispersion and localization of the sol-gel synthesized TiO2 

nanoparticles.  

7.2. Future work 

In order to continue this investigation work, the following research lines are 

proposed: 

The study of the influence of the self-assembly of the PE-b-PEO block 

copolymer on the thermo-optical reversible properties of the PE-b-PEO/HOBC and PE-

b-PEO/EBBA blends.  

The addition of the inorganic nanoparticles into PE-b-PEO/HOBC and PE-b-

PEO/EBBA blends in order to enhance thermo-optical reversible behavior of the PE-b-

PEO block copolymer dispersed liquid crystal blends. 

The use of the PLA or PEO homopolymer as matrix to design hybrid fiber mats 

modified with both PE-b-PEO block copolymers and nematic liquid crystals. The 

employment of the PLA or PEO homopolymer as matrix can allow to fabricate compact 

integrated multifunctional materials with interesting thermo-optical reversible properties 

of nematic liquid crystal phase.  

The study of the mechanical and conductive properties of the PE-b-PEO block 

copolymer nanostructured thermosetting systems modified with sol-gel synthesized 

TiO2 nanoparticles. 

The incorporation of nematic liquid crystals into PE-b-PEO block copolymer 

nanostructured thermosetting systems in order to design materials with thermo-optical 

respond. The incorporation of both nematic liquid crystals and inorganic nanoparticles 

into PE-b-PEO block copolymer nanostructured thermosetting systems to design 

multifunctional materials.  

The used of acquired knowledge during the preparation of bulk hybrid polymeric 

materials based on PE-b-PEO block copolymer for preparation coatings from the point 

of view of potential applications. 
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Tercjak A, Cano L, Carrasco-Hernandez S, Gutierrez J. Multifunctional hybrid 

inorganic/organic materials. MoDeSt 2016. The 9
th

 International Conference on 

Modification, Degradation and Stabilization of Polymers. Krakov (Poland), 2016, 

contribution: poster. 

Cano L, Gutierrez J, Carrasco-Hernandez S, Builies DH, Tercjak A. Epoxi 

erretxin motako polimero termoegonkorren zailtasunaren hobekuntza blokezko 

kopolimeroen bidez. Materialen Zientzia eta Teknologia III. Kongresua. Bizkaia 

(Spain), 2016, contribution: oral communication. 

Gutierrez J, Cano L, Carrasco-Hernandez S, Tercjak A. Multifunctional 

nanostructured materials based on block copolymer templated sol-gel process. ICM-

2016. International Conference on Macromolecules: Synthesis, Morphology, 

Processing, Structure, Properties and Applications. Kerala (India), 2016, contribution: 

invited oral communication. 

Tercjak A, Cano L, Carrasco-Hernandez S, Fernandez R, Gutierrez J. 

Mechanical properties of composite materials by peakforce quantitative nanomechanical 

mapping technique. ECM4 4
th

 International Symposium on Energy Challenges and 

Mechanics (ECM4) - working on small scales. Aberdeen (United Kingdom), 2015, 

contribution: invited oral communication. 

Tercjak A, Cano L, Builes DH, Carrasco-Hernandez S, Gutierrez J. 

Multiphasic materials based on block copolymers and nanostructured thermosets. 

Energy Materials Nanotechnology Meeting on Polymers. Orlando (United States), 

2015, contribution: invited oral communication. 

Gutierrez J, Cano L, Carrasco-Hernandez S, Tercjak A. Blokezko 

kopolimeroetan oinarritutako funtzio anitzeko material nanoegituratu berriak. Materialen 

Zientzia eta Teknologia II. Donostia-San Sebastian (Spain), 2014, contribution: poster. 

7.3.3. Research stays 

Research stay at the Institute of Polymer Science and Technology (ICTP) of the 

Spanish National Research Council (CSIC) in Madrid (Spain) from April 2015 to June 

2015, supervised by Dr. Laura Peponi and funded by the Ministry of Economy and 
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Competitiveness (MINECO). 

Research stay at the Chemistry Department of the University College Cork 

(UCC) in Cork (Ireland) from March 2016 to May 2016, supervised by Dr. Michael 

Morris and funded by the Ministry of Economy and Competitiveness (MINECO). 



Appendix 

153 
 

Appendix 

1. List of symbols 

Cp    block copolymer concentration 

f    volume fraction of one block of block copolymer 

Mn    number average molecular weight 

N    degree of polymerization 

N-I    nematic-isotropic 

Tc    crystallization temperature 

Tg    glass transition temperature 

Tm    melting temperature 

TNI    nematic-isotropic temperature 

Qp    block copolymer solution flow rate 

Qs    solvent flow rate 

Ra    average roughness 

Rq    square roughness 

V
+    

positive voltage 

V
-    

negative voltage 

w    weight fraction 

ΔH    enthalpy 

ϴ    water contact angle 

χ    Flory-Huggins interaction parameter 

Xc    crystallization degree 
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2. List of abbreviations 

AFM    atomic force microscopy 

ATR    attenuated total reflection 

BCC    body centered cubic 

CLC    cholesteric liquid crystal 

DGEBA   diglycidyl ether of bisphenol A 

DIS    disordered 

DMF    dimethylformamide 

DSC    differential scanning calorimetry 

EBBA    N-(4-ethoxybenzylidene)-4-butylaniline 

FTIR    Fourier transform infrared spectroscopy 

GYD    gyroid 

HCl    hydrochloric acid 

HEX    hexagonal 

HOBC    4'-(hexyloxy)-4-biphenylcarbonitrile 

LAM    lamellar 

LC    liquid crystal 

LCD    liquid crystal display 

LDG    Laudau-de-Gennes 

LED    light emitting diode 

MCDEA   4,4’-methylene bis(3-chloro-2,6-diethylaniline) 

NLC    nematic liquid crystal 

OM    optical microscopy 
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PCL    polycaprolactone 

PDLC     polymer dispersed liquid crystal 

PE    polyethylene 

PE-b-PEO   poly(ethylene-b-ethylene oxide) diblock copolymer 

PEO    polyethylene oxide 

PL    Photoluminiscence spectroscopy 

PLA    polylactic acid 

PMMA   poly(methyl methacrylate) 

RIPS    reaction induced phase separation 

SEM    scanning electron microscopy 

SLC    smectic liquid crystal 

TGA    thermal gravimetric analysis 

UV-vis    ultraviolet-visible  

Wt    weight  
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3. List of schemes 

Chapter 3 

Scheme 3.1. Miscibility between the PE-b-PEO block copolymer and the HOBC and 

EBBA nematic liquid crystals. 

Chapter 4 

Scheme 4.1. Schematic illustration of the orientation changes of the nematic liquid 

crystal phase in the PDLC blends during switching from opaque to transparent state. 

Scheme 4.2. Schematic illustration of the orientation changes of the HOBC and EBBA 

liquid crystal phases in the PDLC blends during switching from opaque to transparent 

state. 

Chapter 6 

Scheme 6.1. TiO2 nanoparticles aggregates in the 5TiO2LPE-b-PEO(DGEBA/MCDEA) 

cured system. 

Scheme 6.2. TiO2 nanoparticles preferably located in the interface between microphase 

separated PE block rich phase and DGEBA/MCDEA matrix. 
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4. List of tables 

Chapter 2 

Table 2.1. Chemical structure of the PE-b-PEO block copolymer, HOBC and EBBA 

nematic liquid crystals, PEO and PLA homopolymers, DGEBA epoxy resin monomer 

and MCDEA curing agent.  

Table 2.2. The effect of the electospinning parameters on the fibers formation. 

Chapter 3 

Table 3.1. Degree of crystallization of the HOBC liquid crystal phase in the PE-b-

PEO/HOBC blends. 

Table 3.2. Degree of crystallization of the PEO homopolymer phase in the PEO/EBBA 

blends. 

Chapter 4 

Table 4.1. The maximums of photoluminescence emission peaks of the investigated 

materials at 10 and 80 ºC. 

Chapter 5 

Table 5.1. Summary of the experimental conditions used during co-electrospinning 

process of the PE-b-PEO block copolymer fibers. 

Table 5.2. Summary of the experimental conditions used during co-electrospinning 

process of the hybrid PE-b-PEO/EBBA fibers. 

Chapter 6 

Table 6.1. The Tgs of neat DGEBA/MCDEA cured system and of the LPE-b-

PEO(DGEBA/MCDEA) and TiO2LPE-b-PEO(DGEBA/MCDEA) cured systems 

calculated from DSC thermograms and the theoretical Tg values calculated using the 

Fox equation. 

Table 6.2. The Tgs of neat DGEBA/MCDEA cured system and of the HPE-b-

PEO/(DGEBA/MCDEA) and TiO2HPE-b-PEO/(DGEBA/MCDEA) cured systems 

calculated from DSC thermograms and the theoretical Tg values calculated using the 

Fox equation.  

Table 6.3. The Rq and Ra parameters corresponding to the LPE-b-

PEO(DGEBA/MCDEA) and TiO2LPE-b-PEO(DGEBA/MCDEA) cured systems. 

Table 6.4. The Rq and Ra parameters corresponding to the HPE-b-
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PEO(DGEBA/MCDEA) and TiO2HPE-b-PEO(DGEBA/MCDEA) cured systems. 

Table 6.5. The water contact angle of the thermosetting systems modified with the 

LPE-b-PEO block copolymer and the same block copolymer and the synthetized TiO2 

nanoparticles. 

Table 6.6. The water contact angle of the thermosetting systems modified with the 

HPE-b-PEO block copolymer and the same block copolymer and the synthetized TiO2 

nanoparticles. 
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5. List of figures 

Chapter 1 

Figure 1.1. Arrangement of molecules in a a) solid state, b) liquid state and c) liquid 

crystal state. 

Figure 1.2. Arrangement of the molecules in a a) smectic A, b) smectic B and c) 

smectic C phase. 

Figure 1.3. Arrangement of the molecules in a cholesteric liquid crystal in the different 

planes. 

Figure 1.4. Solid crystalline-nematic and nematic-liquid isotropic transitions. 

Figure 1.5. Several applications of liquid crystals. 

Figure 1.6. Arrangement of the nematic liquid crystal molecules in a PDLC material, a) 

light scattered OFF state and b) light transmitted ON state. 

Figure 1.7. Theoretical phase diagram of an AB diblock copolymer.  

Figure 1.8. Structure of a thermosetting system. 

Figure 1.9. Epoxide reactive functional group. 

Chapter 2 

Figure 2.1. Co-electrospinning system. 

Figure 2.2. Photoluminescence process initiated by an excited electron when an 

excitation photon is applied.  

Figure 2.3. Schematic illustration of the AFM tapping mode operation. 

Figure 2.4. Water contact angle formed at the contact between the water drop and the 

solid surface.  

Chapter 3 

Figure 3.1. ATR-FTIR spectra of the a) PE-b-PEO/HOBC and b) PE-b-PEO/EBBA 

blends with different PE-b-PEO block copolymer content. For comparison, the ATR-

FTIR spectra of neat components were also plotted. 

Figure 3.2. a) Thermogravimetric and b) differential thermogravimetric curves of the 

PE-b-PEO/HOBC blends, and c) thermogravimetric and d) differential 

thermogravimetric curves of the PE-b-PEO/EBBA blends. For comparison the 

thermogravimetric and differential thermogravimetric curves of neat components were 

also plotted. 

Figure 3.3. DSC thermograms of the PDLC blends based on the PE-b-PEO block 
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copolymer and the HOBC (a, b) and EBBA (c, d) nematic liquid crystals during heating 

and cooling processes. For comparison the DSC thermograms of neat components were 

also plotted. 

Figure 3.4. DSC thermograms of the a) PEO/HOBC and b) PEO/EBBA blends with 

different PE-b-PEO block copolymer content during heating process. For comparison 

the DSC thermograms of neat PEO homopolymer was also plotted. 

Figure 3.5. OM micrographs of the a) HOBC nematic liquid crystal and its PDLC 

blends containing b) 25 wt %, c) 50 wt %, d) 75 wt % of PE-b-PEO block copolymer, 

and e) EBBA nematic liquid crystal and its PDLC blends containing f) 25 wt %, g) 50 

wt %, h) 75 wt % of PE-b-PEO block copolymer. For comparison optical micrograph of 

the i) PE-b-PEO block copolymer was also presented. All OM micrographs were taken 

between crossed polarizers. 

Chapter 4 

Figure 4.1. DSC thermograms of the a) HOBC nematic liquid crystal and b) 1PE-b-

PEO/HOBC, c) 5PE-b-PEO/HOBC and d) 10PE-b-PEO/HOBC blends during 

heating/cooling processes.  

Figure 4.2. DSC thermograms of the a) EBBA nematic liquid crystal and b) 1PE-b-

PEO/EBBA, c) 5PE-b-PEO/EBBA and d) 10PE-b-PEO/EBBA blends during the 

heating/cooling processes.  

Figure 4.3. OM micrographs taken with crossed polarizers at solid, liquid solid and 

liquid state of the a) HOBC nematic liquid crystal and b) 1PE-b-PEO/HOBC c) 5PE-b-

PEO/HOBC and d) 10PE-b-PEO/HOBC blends. 

Figure 4.4. OM micrographs taken with crossed polarizers at solid, liquid solid and 

liquid state of the a) EBBA nematic liquid crystal and b) 1PE-b-PEO/EBBA c) 5PE-b-

PEO/EBBA and d) 10PE-b-PEO/EBBA blends. 

Figure 4.5. Photoluminescence emission spectra at 10 and 80 ºC of the HOBC nematic 

liquid crystal of aI) heating/cooling cycle, and aII) four heating/cooling cycles. UV-

visible transmission spectra at 10 and 80 ºC of the HOBC nematic liquid crystal of aIII) 

heating/cooling cycle, and aIV) four heating/cooling cycles. Photoluminescence 

emission spectra at 10 and 80 ºC of the EBBA nematic liquid crystal of bI) 

heating/cooling cycle, and bII) four heating/cooling cycles. UV-visible transmission 

spectra at 10 and 80 ºC of the EBBA nematic liquid crystal of bIII) heating/cooling 

cycle, and bIV) four heating/cooling cycles. 
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Figure 4.6. PL emission spectra at 10 and 80 °C during a heating/cooling cycle of the 

PE-b-PEO/HOBC blends with aI) 1, bI) 5 and cI) 10 wt % of PE-b-PEO block 

copolymer content and of the PE-b-PEO/EBBA blends with dI) 1, eI) 5 and fI) 10 wt % 

of PE-b-PEO block copolymer content. Maximums emission peaks at 10 and 80 °C 

during four heating/cooling cycles of the PE-b-PEO/HOBC blends with aII) 1, bII) 5 

and cII) 10 wt % of PE-b-PEO block copolymer content and of the PE-b-PEO/EBBA 

blends with dII) 1, eII) 5 and fII) 10 wt % of PE-b-PEO block copolymer content. 

Figure 4.7. 3D photoluminescence emission spectra at 10 and 80 ºC of the a) HOBC 

nematic liquid crystal and of the PE-b-PEO/HOBC blends with b) 1, c) 5 and d) 10 wt 

% of PE-b-PEO block copolymer content during four heating/cooling cycles. 

Figure 4.8. 3D photoluminescence emission spectra at 10 and 80 ºC of the a) EBBA 

nematic liquid crystal and the PE-b-PEO/EBBA blends with b) 1, c) 5 and d) 10 wt % 

of PE-b-PEO block copolymer content during four heating/cooling cycles. 

Figure 4.9. UV-visible transmittance spectra at 10 and 80 °C during a heating/cooling 

cycle of PE-b-PEO/HOBC blends with aI) 1, bI) 5 and cI) 10 wt % PE-b-PEO block 

copolymer content, and PE-b-PEO/EBBA blends with dI) 1, eI) 5 and fI) 10 wt % PE-b-

PEO block copolymer content. Transmittance values, measured at a wavelength of 600 

nm, during four heating/cooling cycles at 10 and 80 °C of PE-b-PEO/HOBC blends 

with aII) 1 , bII) 5 and cII) 10 wt % PE-b-PEO block copolymer content and PE-b-

PEO/EBBA blends with dII) 1, eII) 5 and fII) 10 wt % PE-b-PEO block copolymer 

content. 

Chapter 5 

Figure 5.1. OM micrographs of the PE-b-PEO block copolymer electrospun fibers 

obtained for 45 wt % of PE-b-PEO block copolymer in a mixture of chloroform/DMF 

solvents (4:1), applying a voltage difference of 22 kV, chloroform flow rate of 0.1 mL 

h
-1

 and block copolymer solution flow rate of 5 mL h
-1

. 

Figure 5.2. OM micrographs of the PE-b-PEO block copolymer electrospun fibers 

obtained for 46 wt % of PE-b-PEO block copolymer in a mixture of chloroform/DMF 

solvents (5:1), applying a voltage difference of 22 kV, chloroform flow rate of 0.1 mL 

h
-1 

and block copolymer solution flow rate of a) 1, b) 3 and c) 5 mL h
-1

. 

Figure 5.3. OM micrographs of the PE-b-PEO block copolymer electrospun fibers 

obtained for 46 wt % of PE-b-PEO block copolymer in a mixture of chloroform/DMF 

solvents (4:1), chloroform flow rate of 0.1 mL h
-1

applying a voltage difference and block 
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copolymer solution flow rate of a) 22 kV and 0.1 mL h
-1 

and b) 21 kV and 5 mL h
-1

. 

Figure 5.4. OM micrographs of the PE-b-PEO block copolymer electrospun fibers obtained 

for 47 wt % of PE-b-PEO block copolymer in a mixture of chloroform/DMF solvents (5:1), 

block copolymer solution flow rate of 0.5 mL h
-1

, applying a voltage difference and 

chloroform flow rate of a) 22 kV and 0.1 mL h
-1 

and b) 21 kV and 0.5 mL h
-1

. 

Figure 5.5. OM micrographs of the hybrid PE-b-PEO/EBBA electrospun fibers obtained 

for 46 wt % of PE-b-PEO block copolymer in a mixture of chloroform/DMF solvents 

(5:1), applying a voltage difference of 22 kV, EBBA liquid crystal solution flow rate of 

0.1 mL h
-1 

and block copolymer solution flow rate of a) 1, b) 3 and c) 5 mL h
-1

.  

Figure 5.6. SEM images of the PE-b-PEO block copolymer electrospun fibers obtained 

for 46 wt % of PE-b-PEO block copolymer in a mixture of chloroform/DMF solvents 

(5:1), applying a voltage difference of 22 kV, chloroform flow rate of 0.1 mL h
-1 

and 

block copolymer solution flow rate of a) 1, b) 3 and c) 5 mL h
-1

. 

Figure 5.7. SEM images of the hybrid PE-b-PEO/EBBA electrospun fibers obtained for 

46 wt % of PE-b-PEO block copolymer in a mixture of chloroform/DMF solvents (5:1), 

applying a voltage difference of 22 kV, EBBA liquid crystal solution flow rate of 0.1 

mL h
-1 

and block copolymer solution flow rate of a) 1, b) 3 and c) 5 mL h
-1

. 

Figure 5.8. AFM phase images of the a) PE-b-PEO electrospun fiber and b) hybrid PE-

b-PEO/EBBA electrospun fiber. 

Figure 5.9. OM micrographs a) without crossed polarized and b) with crossed 

polarizers of the hybrid PLA/EBBA electrospun fibers obtained for 10 wt % of PLA 

and EBBA nematic liquid crystal with the molar ratio 50:50 in a mixture of 

chloroform/DMF solvents (4:1) applying a voltage difference of 14 kV, PLA solution 

flow rate of 2 mL h
-1

 and EBBA solution flow rate of 5 mL h
-1

.  

Figure 5.10. OM micrographs a) without crossed polarized and b) with crossed polarizers 

of the hybrid PLA/PE-b-PEO/EBBA electrospun fibers obtained for 10 wt % of PLA and 

10 wt % of PE-b-PEO block copolymer with the molar ratio 50:50 in a mixture of 

chloroform/DMF solvents (4:1) and 10 wt % of EBBA nematic liquid crystal in a mixture 

of chloroform/DMF solvents (4:1), applying a voltage difference of 14 kV, PLA solution 

flow rate of 2 mL h
-1

 and EBBA liquid crystal solution flow rate of 5 mL h
-1

. 

Chapter 6 

Figure 6.1. DSC thermograms of the DGEBA epoxy resin and the PE-b-PEO/DGEBA 

uncured mixtures with 5, 10, 20 and 40 wt % of a) LPE-b-PEO and b) HPE-b-PEO 
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block copolymers. 

Figure 6.2. Isothermal DSC thermograms at 190 ºC of neat DGEBA/MCDEA system 

and the PE-b-PEO(DGEBA/MCDEA) systems fabricated using a) LPE-b-PEO and b) 

HPE-b-PEO block copolymer. 

Figure 6.3. FTIR spectra of the a) LPE-b-PEO(DGEBA/MCDEA) b) TiO2LPE-b-

PEO(DGEBA/MCDEA) e) HPE-b-PEO(DGEBA/MCDEA) and f) TiO2HPE-b-

PEO(DGEBA/MCDEA) cured systems and FTIR spectra from 2700 cm
-1

 to 3700 cm
-1 

of the c) LPE-b-PEO(DGEBA/MCDEA) d) TiO2LPE-b-PEO(DGEBA/MCDEA) g) 

HPE-b-PEO(DGEBA/MCDEA) h) TiO2HPE-b-PEO(DGEBA/MCDEA) cured systems. 

For comparison FTIR spectra of neat LPE-b-PEO and HPE-b-PEO block copolymers 

and neat DGEBA/MCDEA cured system were added. 

Figure 6.4. DSC thermograms of the a) LPE-b-PEO(DGEBA/MCDEA) cured systems 

with different LPE-b-PEO content and b) TiO2LPE-b-PEO(DGEBA/MCDEA) cured 

systems with different TiO2LPE-b-PEO content. For comparison DSC thermograms of 

neat DGEBA/MCDEA cured system was also added. Marked temperatures correspond 

to the theoretical Tgs calculated by Fox equation.  

Figure 6.5. DSC thermograms of the a) HPE-b-PEO(DGEBA/MCDEA) cured systems 

with different HPE-b-PEO content and b) TiO2HPE-b-PEO(DGEBA/MCDEA) cured 

systems with different TiO2HPE-b-PEO content. For comparison DSC thermograms of 

neat DGEBA/MCDEA cured system was also added. Marked temperatures correspond 

to the theoretical Tgs calculated by the Fox equation.  

Figure. 6.6. UV-vis transmittance spectra of the different a) LPE-b-

PEO(DGEBA/MCDEA) cured systems and b) TiO2LPE-b-PEO(DGEBA/MCDEA) 

cured systems. For comparison UV-vis transmittance spectra of neat DGEBA/MCDEA 

cured system was also added. The inset on the top of each figure corresponds to the 

visual appearance of the investigated thermosetting systems. 

Figure. 6.7. UV-vis transmittance spectra of the different a) HPE-b-

PEO(DGEBA/MCDEA) cured systems and b) TiO2HPE-b-PEO(DGEBA/MCDEA) 

cured systems. For comparison UV-vis transmittance spectra of neat DGEBA/MCDEA 

cured system was also added. The inset on the top of each figure corresponds to the 

visual appearance of the investigated thermosetting systems. 

Figure 6.8. AFM phase images (750 nm x 750 nm) of neat DGEBA/MCDEA cured 

system. The insets at the bottom correspond to 3 μm x 3 μm AFM phase images. 

Figure 6.9. AFM phase images (750 nm x 750 nm) of the DGEBA/MCDEA 
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thermosetting systems modified with a) 5, b) 10, c) 20 and d) 40 wt % of LPE-b-PEO 

block copolymer and e) 5, f) 10, g) 20 and h) 40 wt % of TiO2LPE-b-PEO modifier. 

The insets at the bottom correspond to 3 μm x 3 μm AFM phase images.  

Figure 6.10. AFM phase images (750 nm x 750 nm) of the DGEBA/MCDEA 

thermosetting systems modified with a) 5, b) 10, c) 20 and d) 40 wt % of HPE-b-PEO 

block copolymer and e) 5, f) 10, g) 20 and h) 40 wt % of TiO2HPE-b-PEO content. The 

insets at the bottom correspond to 3 μm x 3 μm AFM phase images.  

Figure 6.11. Images of a water droplet in contact with the DGEBA/MCDEA 

thermosetting systems modified with a) 5, b) 10, c) 20 and d) 40 wt % of LPE-b-PEO 

and e) 5, f) 10, g) 20 and h) 40 wt % of TiO2LPE-b-PEO.  

Figure 6.12. Images of a water droplet in contact with the DGEBA/MCDEA 

thermosetting systems modified with a) 5, b) 10, c) 20 and d) 40 wt % of HPE-b-PEO 

and e) 5, f) 10, g) 20 and h) 40 wt % of TiO2HPE-b-PEO.  
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