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TRIGLYCERIDE	METABOLISM	

Triglycerides	consist	of	a	molecule	composed	of	three	fatty	acids,	each	in	

ester	 linkage	 with	 a	 single	 glycerol.	 Because	 of	 their	 water	 insolubility,	

triglycerides	 are	 transported	 in	 the	 plasma	 in	 combination	 with	 phospholipids	

and	 proteins,	 as	 well	 as	 with	 cholesterol	 and	 cholesterol	 esters,	 in	 complex	

macromolecules	known	as	lipoproteins	(1).	In	mammals,	excess	energy	is	stored	

primarily	as	triglycerides,	which	are	mobilized	when	energy	demands	appear.	In	

other	 words,	 the	 triglyceride	 store	 reflects	 the	 net	 balance	 between	 fat	

deposition	 and	 fat	 mobilisation.	 Triglyceride	 metabolism	 involves	 several	

pathways	 of	 fat	 storage	 and	 mobilization	 that	 are,	 at	 least	 in	 part,	 inter-

dependent	 and	 cross-regulated	 (2,	 3).	 Blood	 plays	 an	 important	 role	 in	 the	

triglyceride	 metabolism	 as	 well	 as	 other	 organs	 and	 tissues	 such	 as	 adipose	

tissue,	liver	and	muscle.	

Adipose	 tissue	 is	defined	as	a	connective	 tissue	consisting	 in	part	of	 fat	

cells	 (adipocytes),	 specialized	 in	 the	 synthesis	 and	 storage	 of	 fat,	 within	 a	

structural	 network	 of	 fibres.	 Only	 one	 third	 of	 the	 tissue	 is	 constituted	 by	

adipocytes,	the	rest	 is	represented	by	fibroblasts,	preadipocytes,	macrophages,	

monocytes	 and	 stromal	 cells	 (4).	 This	 tissue	 is	 classified	 in	 two	 types,	 white	

adipose	tissue	(WAT)	and	brown	adipose	tissue	(BAT).	While	the	function	of	WAT	

is	 to	 serve	 as	 an	 energy	 store,	 BAT	 function	 is	 to	 generate	 heat	 within	 the	

thermogenic	process	(5).	Adipocytes	play	a	critical	role	in	energy	homeostasis	by	

hydrolysis	 of	 their	 triglyceride	 reserves	 to	 provide	 fatty	 acids,	 which	 are	

important	oxidative	fuels	for	other	tissues	during	periods	of	energy	deprivation		

(6).	Lipolysis	is	the	biochemical	pathway	responsible	for	this	catabolism.	Due	to	

the	importance	of	this	pathway,	lipolysis	occurs	in	essentially	all	tissues	and	cell	

types,	however	 it	 is	most	 abundant	 in	white	and	brown	adipose	 tissues	 (7).	 In	

addition,	adipose	tissue	is	one	of	the	main	sites	of	de	novo	lipogenesis.	Although	

the	key	enzymes	 involved	 in	 fatty	acid	synthesis	are	present	 in	human	adipose	

tissue,	its	contribution	to	whole-body	lipogenesis	is	considered	very	low	and	less	
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than	 in	 liver.	 However,	 in	 rats,	de	 novo	 lipogenesis	 occurs	 in	 similar	 extent	 in	

adipose	tissue	and	liver	(8).	

Liver	 is	 an	 organ	 that	 performs	 numerous	 biochemical	 functions	

necessary	 for	metabolic	 homeostasis.	 In	 addition	 to	de	 novo	 lipogenesis,	 fatty	

acid	 β-oxidation	 is	 a	 process	 that	 also	 takes	 place	 in	 liver.	 This	 metabolic	

pathway	 degrades	 fatty	 acids	 derived	 from	 adipose	 tissue	 triglycerides	 or	 an	

excessive	accumulation	of	intrahepatic	triglycerides	in	the	mitochondria	(9).	

Skeletal	 muscle	 is	 also	 involved	 in	 triglyceride	 metabolism.	 In	 lipid	

overload	situation,	both	this	tissue	as	well	as	liver	could	store	fat	(10).	Moreover,	

in	 fasted	 state,	 fatty	acid	oxidation	 is	 the	main	metabolic	activity	of	 this	 tissue	

(11).	

In	 this	 Introduction,	 only	 those	 aspects	 of	 the	 triglyceride	 metabolism	

addressed	in	this	thesis,	are	included.	

De	novo	LIPOGENESIS	

De	 novo	 lipogenesis	 is	 the	 process	 that	 allows	 tissues	 the	 synthesis	 of	

fatty	acids	from	acetyl-CoA,	a	precursor	coming	from	glucose	metabolism,	amino	

acid	degradation	or	even	 fatty	acids.	Besides	acetyl-CoA,	nicotinamide	adenine	

dinucleotide	 phosphate	 (NADPH),	 a	 substrate	 with	 reducing	 power,	 is	 also	

necessary	 for	 fatty	 acid	 synthesis.	 NADPH	 comes	 from	 biochemical	 reactions	

catalysed	by	the	enzymes	glucose-6-phosphate	dehydregenase	(G6PDH),	malate	

dehydrogenase,	malic	enzyme	(ME)	and	NADP	isocitrate	dehydrogenase.	

The	process	starts	with	the	transformation	of	acetyl-CoA	to	malonyl-CoA	

by	 the	 action	 of	 acetyl-CoA	 carboxylase	 (ACC)	 in	 the	 presence	 of	 adenosine	

triphosphate	 (ATP).	 Malonyl-CoA	 is	 the	 substrate	 used	 by	 a	 multi-enzyme	

complex	called	fatty	acid	synthase	(FAS),	which	generates	long-chain	fatty	acids	

(palmitate),	 in	 a	 repetitive	 sequence	 reaction	 using	 the	 reducting	 power	

(NADPH).	The	activity	of	this	enzyme,	FAS,	together	with	the	activity	of	ACC,	limit	

fatty	acid	biosynthesis	(12).	
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	 Acetyl-CoA	 required	 for	 fatty	 acid	 synthesis	 is	 present	 in	 the	

mitochondria,	while	biosynthesis	 takes	place	 in	 the	 cytosol.	 The	 shuttle	 citrate	

system	 is	 an	 essential	 transport	 mechanism,	 which	 allows	 acetyl-CoA	

transportation	to	the	cytosol	(12)	(Figure	1).	

Figure	1.	De	novo	lipogenesis	pathway.	

	

ACC	 and	 FAS	 are	 mostly	 controlled	 by	 the	 modulation	 of	 their	

transcription,	 but	 they	 also	 can	 be	 regulated	 by	 post-transcriptional	

mechanisms.	There	are	two	principal	transcriptional	regulators,	both	present	in	

adipose	 tissue	 and	 liver,	which	 are	widely	 expressed:	 sterol	 response	 element	

binding	 protein	 1c	 (SREBP	 1c)	 and	 carbohydrate	 response	 element	 binding	

protein	 (ChREBP).	 ACC	 activity	 is	 also	 controlled	 by	

phosphorylation/dephosphorylation	 of	 serine,	 and	 the	 amount	 of	 enzyme	 is	

regulated	by	different	hormones	 such	as	 insulin	or	 growth	hormone.	 Similarly,	

hormones	 like	 insulin	 and	 glucagon	 can	 regulate	 FAS.	 Insulin	 and	 citrate	

availability	 activate	 the	 enzyme	 while	 glucagon	 and	 catecholamines	 inhibit	 its	

activity	via	cyclic	adenosine	monophosphate	dependent	phosphorylation	(3,	13-

15).	

SREBP	1c	is	an	isoform	of	the	SREBP	family	induced	in	response	to	insulin.	

The	 nutritional	 status	 is	 also	 a	 regulator	 of	 SREBP.	 The	 expression	 of	 this	

transcription	 factor	 decreases	 with	 fasting	 and	 increases	 after	 feeding	 high-
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carbohydrate	 diets,	 as	 a	 result	 of	 increased	 blood	 glucose	 and	 insulin.	 This	

transcription	 factor	 promotes	 the	 expression	 of	 genes	 encoding	 the	 lipogenic	

enzymes,	 due	 to	 the	 interacting	 with	 sterol	 response	 elements	 located	 in	 the	

gene	promoter	(8,	16).	It	is	known	that	SREBP	1c	is	negatively	regulated	by	AMP-

activated	protein	kinase	 (AMPK).	This	kinase	 is	an	energy	sensor	 that	 regulates	

cellular	 metabolism.	 Activated	 AMPK	 stimulates	 ATP-producing	 catabolic	

pathways,	 such	 as	 fatty	 acid	 oxidation,	 and	 inhibits	 ATP	 consuming	 processes,	

such	 as	 lipogenesis.	 Therefore,	 AMPK	 activation	 suppresses	 the	 expression	 of	

ACC	and	FAS	via	down-regulation	of	SREBP	1c	(17)	(Figures	2).	In	addition	to	this	

regulation,	the	activation	of	AMPK	also	inhibits	directly	the	expression	of	ACC	by	

the	phosphorylation	of	a	serine	residue	(mostly	SER79)	 in	the	N-terminal	region	

of	the	enzyme.	

Figure	2.	De	novo	synthesis	of	fatty	acids	and	regulation	of	lipogenic	genes	by	
ChREBP,	LXR,	SREBP	1c	and	AMPK.	

	

The	 transcriptional	 activity	 of	 SREBP	 1c	 can	 also	 be	 stimulated	 or	

inhibited	by	cofactors	such	as	Sp1	transcription	factor	(SP1)	(16,	18).	SP1	binds	in	

Guanine-Citosine-rich	elements,	which	are	common	regulatory	elements	 in	 the	

promoter	 region	 of	 numerous	 genes.	 Although	 its	 main	 activity	 has	 been	

described	as	activator,	 it	 can	also	act	as	a	 repressor.	 Its	behaviour	depends	on	

the	 promoter	 and	 the	 region	 of	 each	 promoter	 its	 binds	 to.	 In	 addition,	 the	

binding	to	different	co-regulators	also	has	an	influence	on	its	behaviour	(19).	
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ChREBP	 is	 another	 transcription	 factor,	 first	 identified	 as	 a	 glucose-

responsive	 element,	 which	 regulates	 glycolytic,	 gluconeogenic	 and	 lipogenic	

gene	expression.	Transcriptional	targets	of	ChREBP	encode	enzymes	in	lipogenic	

pathway	such	as	FAS	and	ACC	(20)	(Figure	2).	

Liver	X	receptor	(LXR)	is	also	a	key	regulator	of	the	lipogenic	pathway.	In	

rodents,	 there	 are	 two	 isoforms,	which	 form	heterodimers	with	 the	 retinoid	 X	

receptor	(RXR)	to	activate	their	target	genes.	The	effect	of	this	nuclear	factor	on	

liver	 lipogenesis	 involves	 direct	 and	 indirect	 mechanisms.	 LXR	 can	 bind	 gene	

promoter	of	FAS,	or	regulate	gene	expression	via	the	insulin	mediated	activation	

of	SREBP	1c	(21-23)	(Figure	2).	

LIPOLYSIS	

The	major	 physiological	 role	 of	WAT	 is	 to	 supply	 fatty	 acids	 as	 energy	

substrates	 to	 other	 tissues.	 This	 process	 is	 known	 as	 lipolysis.	 Triglycerides	

stored	 in	the	adipocyte	are	hydrolysed	 into	one	molecule	of	glycerol	and	three	

fatty	 acids,	 which	 are	 delivered	 to	 the	 plasma.	 However,	 the	 release	 of	 fatty	

acids	and	glycerol	from	fat	cells	does	not	occur	in	the	ratio	of	3:1	because	some	

fatty	acids	are	re-utilized,	mostly	in	re-esterification	of	new	triglycerides	(24,	25).	

This	 lipolytic	 process	 is	 catalysed	 by	 at	 least	 three	 adipocyte-specific	

enzymes.	 The	 adipocyte	 triglyceride	 lipase	 (ATGL)	 catalyses	 the	 first	 and	 rate-

limiting	 step	 of	 triglyceride	 to	 diglyceride.	 Hormone	 sensitive	 lipase	 (HSL)	 is	 a	

multifunctional	enzyme	which	catalyses	diglycerides	to	monoglycerides.	Finally,	

monoglyceride	 lipase	 (MGL)	 efficiently	 catalyses	 the	 break-down	 of	

monoglycerides	to	glycerol	and	fatty	acids	(7,	25).	

Caloric	deprivation,	as	occurs	in	fasting	or	starvation,	is	accompanied	by	

increased	mobilization	of	fatty	acids	from	fat	cells.	There	is	an	increase	in	basal	

lipolysis	 and	 enhanced	 lipolytic	 sensitivity	 to	 catecholamine	 behind	 the	

increment	 of	 the	 lipolysis	 during	 this	 caloric	 deficit.	 Catecholamines,	

noradenaline	 and	 adrenaline,	 regulate	 lipolysis	 via	 lipolytic	 beta-adrenoceptors	

and	antilipolytic	alpha2-adrenoceptors,	and	they	are	the	main	regulators	of	this	

process	(24,	25).	
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ATGL	 expression	 and	 activity	 could	 be	 transcriptionally	 regulated	 by	

numerous	 effectors	 or	 conditions.	 Peroxisome	 proliferator-activated	 receptor	

gamma	 (PPARγ)	 and	 the	 insulin	 responsive	 transcription	 factor	 forkhead	 O1	

(FOXO1)	up-regulate	ATGL	during	adipocyte	differentiation.	Moreover,	there	are	

some	 factors	 which	 induce	 its	 mRNA	 expression,	 such	 as	 glucocorticoids,	

thiazolidinediones	 and	 fasting.	 By	 contrast,	 insulin,	 TNFalpha,	mTor	 complex	 1	

and	feeding	repress	ATGL	mRNA	expression.	Insulin	resistance	and	obesity	have	

also	been	correlated	with	changes	in	ATGL	mRNA	or	protein	levels.	ATGL	activity	

is	 regulated	by	 the	ATGL	 co-activator	 comparative	 gene	 identification	 58	 (CGI-

58).	 The	 up-regulation	 of	 CGI-58	 expression	 accelerates	 triglyceride	 depletion	

and	increases	lipolysis	and	fatty	acid	oxidation.	AMPK	is	other	regulatory	factor	

which	induces	ATGL	phosphorylation	(Ser406)	increasing	the	hydrolyse	activity	in	

adipocytes	(7,	26).	

HSL	adipose	activity	is	controlled	by	two	distinct	mechanisms	in	response	

to	beta-adrenergic	stimulation.	First,	HSL	have	at	least	5	distinct	serine	residues	

that	can	be	phosphorylated	 (Ser660	 important	 in	HSL	 rat)	by	cAMP	dependent	

protein	kinase	A	(PKA).	This	leads	to	an	increase	of	the	intrinsic	enzyme	activity.	

Second,	phosphorylated	HSL	interacts	with	perilipin	1,	which	itself	is	a	target	of	

PKA	 phosphorylation.	 In	 this	 context,	 perilipin	 1	 can	 regulate	 lipolysis	 by	

phosphorylation/dephosphorylation	 events.	 The	 phosphorylation	 of	 this	

molecule	simultaneously	triggers	release	of	CGI-58,	binding	to	HSL	and	activating	

the	 hydrolytic	 process,	 and	 ATGL	 activation.	 In	 addition,	 perilipin	 1	

phosphorylation	 is	 responsible	 for	 structural	modifications	 at	 the	 lipid	 droplet	

surface,	which	promote	the	increase	of	the	lipolytic	rate	(27).	

The	third	enzyme	involved	in	this	lipolytic	pathway,	MGL,	is	not	subjected	

to	extensive	regulation.	A	high	MGL	hydrolase	activity	is	constitutively	present	in	

adipocytes	and	other	types	of	cells	(7)	(Figure	3).	
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Figure	3.	Lipolysis	pathway	and	its	regulation	(28).	

	

FATTY	ACID	β-OXIDATION	

The	 main	 pathway	 for	 the	 degradation	 of	 plasma	 free	 fatty	 acids	 is	

mitochondrial	 fatty	 acid	 β-oxidation.	 This	 pathway,	 coupled	 to	 oxidative	

phosphorylation	 is	 the	 most	 important	 route	 for	 the	 production	 of	 metabolic	

energy	during	 fasting.	 	 This	 process	 implies	 several	 steps,	which	 are	necessary	

before	fatty	acids	are	oxidised.	Triglycerides	are	first	hydrolysed	by	the	action	of	

endothelium-bound	lipoprotein	lipase	(LPL)	in	skeletal	muscle	and	the	uptake	of	

fatty	acids	 is	mediated	by	membrane	proteins	or	passive	uptake	(3,	9,	29).	The	

liver	takes	up	free	fatty	acids	from	blood	via	transporters	(FATP,	FAT	and	CD36)	

or	 by	 diffusion.	 These	 free	 fatty	 acids	 and	 acyl-CoA	 bound	 to	 the	 fatty	 acid	

binding	 protein	 (FABP)	 and	 acyl-CoA	 binding	 protein,	which	 transport	 them	 to	

intracellular	 compartments	 for	 metabolism,	 or	 to	 nucleus	 to	 interact	 with	

transcription	 factors.	 Non-esterified	 acyl-CoA	 maybe	 oxidised	 in	 the	

mitochondria	 or	 in	 peroxisomes.	 Once	 fatty	 acids	 are	 taken	 up	 in	 the	 tissue,	

where	they	are	activated	to	their	CoA	esters	and	the	complexes	are	transported	

into	 the	 mitochondria	 for	 subsequent	 β-oxidation.	 Mitochondrial	 membrane	

requires	a	membrane	transporter	that	uses	acylcarnitine	instead	acyl-CoAs.	The	

initial	conversion	of	acyl-CoA	to	an	acylcarnitine	ester,	followed	by	the	transport	

of	 the	 acylcarnitine	 across	 the	 inner	 mitochondrial	 membrane	 into	 the	
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mitochondrial	 matrix,	 and	 the	 reformation	 of	 acyl-CoA	 constitutes	 a	 carnitine	

shuttle	 that	 requires	 the	 concerted	 action	 of	 three	 proteins:	 carnitine	

pamitoyltransferase	 I	 (CPT	 I),	 carnitine/acylcarnitine	 translocase	 (CACT)	 and	

carnitine	pamitoyltransferase	 II	 (CPT	 II)	 (Figure	4).	Mitochondrial	oxidation	may	

be	 either	 complete,	 generating	 acetyl-CoA	 that	 supports	 gluconeogenesis,	 or	

incomplete	with	the	final	formation	of	ketone	bodies	(3,	30).	

	

Figure	4.	Mitochondrial	carnitine	shuttle	(29).	

	

As	 mentioned	 above,	 although	 the	 central	 site	 of	 β-oxidation	 is	 the	

mitochondria,	other	organelles,	 such	as	peroxisomes,	contain	enzymes	capable	

of	 oxidizing	 fatty	 acids	 by	 a	 similar	 pathway.	 The	 peroxisomal	 system	 is	much	

more	active	on	the	oxidation	of	very-long	chain	fatty	acids.	Furthermore,	other	

difference	between	β-oxidation	in	mitochondria	and	peroxisomes	lies	in	the	first	

reaction	of	this	process.	While	acyl-CoA	dehydrogenase	acts	in	the	mitochondria,	

acyl-CoA	 oxidase	 is	 involved	 in	 the	 peroxisome,	 producing	 hydrogen	 peroxide	

(H2O2).	The	energy	released	in	this	first	oxidation	reaction	dissipates	as	heat	(31).	

In	 addition,	 the	 oxidation	 carried	 out	 in	 these	 organelles,	 cannot	 completely	

degrade	 the	 fatty	 acids	 in	 acetyl-CoA	 units,	 so	 they	 will	 be	 redirected	 to	 the	

mitochondria	where	they	finish	their	oxidation	(32).	

Fatty	acid	metabolism	 in	 liver	 is	 transcriptionally	 regulated	by	two	main	

systems	 under	 the	 control	 of	 either	 liver	 X	 receptors	 (LXRs)	 or	 PPARs.	 PPARα,	

highly	 expressed	 in	 the	 liver,	 regulates	 the	 expression	 of	 genes	 involved	 in	
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mitochondrial	 and	 peroxisomal β-oxidation.	 PPARα increases	 transcription	 and	

expression	of	proteins	and	enzymes	necessary	 to	catabolise	 fatty	acids	 (3,	33).	

This	transcription	factor	 heterodimerises	with	another	nuclear	receptor,	RXR,	by	

interacting	 with	 a	 specific	 DNA	 sequence,	 peroxisome	 proliferator	 responsive	

element,	 in	 the	 promoter	 regions	 of	 target	 genes,	 such	 as	 CPT	 I.	 This	 binding	

induces	changes	resulting	in	the	enhanced	transcription	of	the	genes	(34).	

CPT	 I	 is	 one	 of	 the	 rate-limiting	 steps	 in	 fatty	 acid	 oxidation,	 and	 it	 is	

regulated	 by	 malonyl-CoA.	 Negative	 energy	 balance	 results	 in	 a	 decrease	 in	

malonyl-CoA	and	 in	an	 increase	 in	 fatty	acid	oxidation.	The	control	of	CPT	 I	by	

malonyl-CoA	 is	 a	way	 to	prevent	 simultaneous	oxidation	and	 synthesis	of	 fatty	

acids	within	the	hepatocytes	(3,	9).	
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EPIGENETIC	AND	POST-TRANSCRIPTIONAL	REGULATION	

The	 central	 dogma	 of	 molecular	 biology	 describes	 that	 genetic	

information	 is	 from	 DNA	 via	mRNA	 to	 proteins.	 Is	 well	 known	 how	 genes	 are	

transcribed	and	that	mRNAs	are	translated	into	amino	acid	chains.	However,	this	

pathway	 is	 much	 more	 complex	 and	 can	 be	 controlled	 at	 different	 levels	

involving	 numerous	 factors,	 epigenetic	 mechanisms	 and	 post-transcriptional	

events	 such	 as	 phosphorylation,	 methylation,	 acetylation,	 non-coding	 RNAs,	

attachment	of	peptides,	etc.	

EPIGENETIC		

Epigenetic	is	a	term	that	was	first	introduced	by	Conrad	H.	Waddington	in	

1942	 and	 usually	 refers	 to	 inheritable	 changes	 in	 genetic	 expression	 without	

changing	 the	 DNA	 sequence	 itself	 (35).	 The	majority	 of	 our	 cells	 contains	 the	

same	genome	but	there	are	differences	in	gene	expression	which	characterizes	

different	tissue.	Epigenetic	changes	are	typically	reversible	and	refer	to	chemical	

modifications	in	DNA	or	chromosomal	proteins	(histones).		

Epigenetic	 mechanisms	 establish	 and	 maintain	 tissue	 and	 cell	 type	

specific	gene	expression	(36).	Epigenetic	modifications	can	be	passed	from	one	

cell	 generation	 to	 the	 next	 (mitotic	 inheritance)	 and	may	 be	 passed	 between	

generations	 (meiotic	 inheritance)	 (37).	 The	epigenetic	machinery	 is	particularly	

important	in	organism	development	where	stable	and	distinct	cellular	functions	

must	be	established	from	an	identical	genotype	(38).	

The	major	epigenetic	mechanisms	described	are	 the	addition	of	methyl	

groups	to	DNA,	called	DNA	methylation,	and	post-translational	modifications	 in	

histone	 proteins,	 such	 as	 acetylation	 and	 methylation	 (39).	 Commonly,	 these	

epigenetic	processes	alter	the	accessibility	of	the	transcriptional	machinery	to	a	

particular	gene.	

There	 is	 a	 high	 degree	 of	 complexity	 in	 epigenetic	 processes	 during	

prenatal	and	early-postnatal	development.	There	is	evidence	that	environmental	

exposures	 during	 early	 life	 can	 induce	 persistent	 alterations	 in	 the	 offspring	



INTRODUCTION	
GENE	EXPRESSION	REGULATION	

2	

	

19	
	

epigenome,	 which	 may	 lead	 to	 an	 increased	 risk	 of	 obesity	 and	 metabolic	

syndrome	 later	 in	 life	 (40).	 The	 epigenetic	 profiles	 are	 also	 sensitive	 to	 the	

environment	in	childhood	and	adult	life	(37).	These	epigenetic	alterations	can	be	

influenced	 by	 lifestyle	 and	 environmental	 factors	 resulting	 in	 phenotypic	

changes,	which	play	a	vital	role	in	development	and	human	diseases.	Ageing	has	

also	 been	 reported	 to	 have	 an	 epigenetic	 influence.	 This	 theory	 is	 a	 rapidly	

developing	 modern	 concept	 postulating	 that	 non-adaptative	 epigenetic	

alterations	are	fundamental	to	ageing.	

Nutrition	 is	 thought	 to	 be	 the	 most	 influential	 of	 all	 the	 external	

environmental	 factors	 (35).	 Quality	 of	 diet	 can	 also	 be	 crucial	 for	 triggering	

epigenetic	 changes.	 Utilizing	 dietary	 compounds	 to	 target,	 prevent	 and	 even	

treat	 certain	 diseases	 has	 become	 an	 area	 of	 interest.	 The	 consumption	 of	

certain	foods,	grapes,	soy,	cruciferous	vegetables	or	green	tea,	have	been	shown	

to	 induce	 epigenetic	 mechanisms	 that	 protect	 against	 some	 diseases.	

Introduction	of	 these	 food	groups	 into	a	normal	diet	 regime	could	 serve	as	an	

effective	 therapeutic	 strategy	 for	 medicinal	 proposes	 (Michael	 Daniel,	 2015).	

Moreover,	 polyphenols	 from	 several	 sources,	 such	 as	 resveratrol,	 quercetin	 or	

curcumin,	have	shown	a	modulator	effect	on	epigenetic	mechanisms	such	DNA	

methylation,	 post-transcriptional	 regulation	 by	 miRNAs	 and	 histone	

modifications	(41).	

This	thesis	focuses	DNA	methylation	as	an	epigenetic	mechanism	and	to	

microRNAs	as	post-transcriptional	 regulation.	These	two	mechanisms	are	going	

to	be	described	in	more	depth	in	the	following	sections.	

	

DNA	methylation	

DNA	 methylation	 is	 the	 major	 epigenetic	 mechanism	 involving	 direct	

chemical	modifications	(42).	It	refers	to	the	addition	of	a	methyl	group	to	the	5-

position	 of	 cytosine	 (Figure	 5).	 The	 majority	 of	 DNA	 methylation	 occurs	 on	

cytosines	 that	precede	a	guanine	nucleotide,	 commonly	named	CpG	sites	 (42).	

Clusters	of	CpGs	are	called	CpG	islands.	Gardiner-Garden	and	Frommer	defined	a	



INTRODUCTION	
	

20	
	

CpG	island	as	being	a	200	base	pair	(bp)	region	of	DNA	with	a	high	G+C	content,	

greater	than	50%,	and	observed	CpC	/	expected	CpG	ratio	of	greater	or	equal	to	

0.6.	 (43-46).	 The	methylation	 of	 nucleotides	 (nt)	 provides	 a	molecular	 path	 to	

reversibly	mark	 genomic	DNA	 (47).	 Approximately	 70%	of	 the	 CpG	 residues	 in	

mammalian	genome	are	methylated,	but	the	distribution	of	CpG	is	non-random.	

Certain	 regions	 of	 the	 genome,	 which	 are	 often	 clustered	 at	 the	 5´-	 ends	 of	

genes	(promoter	region)	and	in	first	exons,	possess	the	expected	CpG	frequency.	

Curiously	 CpGs	 at	 CpG	 islands	 are	 non-methylated	 despite	 their	 abundance,	

while	 the	 majority	 of	 the	 remaining	 CpGs	 across	 the	 genome	 are	 mostly	

methylated	(48).	

DNA	 methylation	 is	 a	 potent	 suppressor	 of	 gene	 activity	 when	 the	

methylation	process	takes	place	in	the	promoter	region.	There	are	two	possible	

mechanisms	 proposed	 for	 this	 repression.	 The	 first	 one	 involves	 the	 direct	

inhibition	 of	 binding	 of	 sequence	 specific	 transcription	 factors,	 whose	 binding	

sites	contain	CpG	sites,	and	the	second	one	is	mediated	by	methyl-CpG	binding	

proteins	which	are	specific	for	methylated	DNA	(44).	

Methylation	is	performed	in	three	steps	involving	enzymes	that	establish,	

recognize	 and	 remove	 DNA	methylation.	 These	 enzymes	 are	 a	 family	 of	 DNA	

methyltransferases	 (DNMTs),	DNMT	1,	DNMT	3a	and	DNMT	3b,	which	directly	

catalyse	 the	 addition	 of	 a	 methyl	 group	 from	 SAM	 to	 the	 fifth	 carbon	 of	 a	

cytosine	residue	to	form	5-methylcytosine	(Figure	5).	

Figure	5.	Addition	of	a	methyl	 group	 from	S-Adenosyl	Methionine	 (SAM)	 to	

the	fifth	carbon	of	a	cytosine	residue.	Adaptated	from(49).	
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These	 enzymes	 share	 a	 similar	 structure	 with	 a	 N-terminal	 regulatory	

domain	 and	 C-terminal	 catalytic	 domain	 and	 they	 have	 unique	 functions	 and	

expression	patterns	(42).	

DNMT	 1,	 the	 maintenance	 methyltransferase,	 binds	 to	 the	 newly	

synthesized	 DNA	 after	 replication	 and	 methylates	 it	 to	 precisely	 mimic	 the	

original	methylation	pattern	present	before	the	replication.	It	also	has	the	ability	

to	 repair	 DNA	 methylation.	 DNMT	 3a	 and	 DNMT	 3b	 are	 called	 de	 novo	 DNA	

methyltransferases	 because	 they	 establish	 a	 pattern	 of	 methylation	 that	 is	

faithfully	 maintained	 through	 cell	 division	 (47).	 The	 main	 difference	 between	

these	 two	 enzymes	 is	 the	 gene	 expression	 pattern.	 DNMT	 3a	 is	 expressed	

ubiquitously	while	DNMT	3b	is	poorly	expressed	by	the	majority	of	differentiated	

tissues	(Figure	6).	

Figure	6.	Classification	of	DNMTs.	

	

There	are	 two	more	DNA	methyltransferases,	DNMT2	and	DNMT3L,	with	

less	 relevant	 functions	 in	 DNA	 methylation.	 The	 first	 one	 is	 the	 smallest	

mammalian	DNMT	and	its	structure	suggest	that	this	enzyme	participates	in	the	

recognition	 of	 DNA	 damage,	 DNA	 recombination	 and	 mutation	 repair	 (50).	

DNMT3L	belongs	to	DNMT3	family,	and	is	commonly	non-functional,	but	in	some	

cases	 it	 has	 a	 functional	 catalytic	 site,	which	may	act	 in	 antagonizing	DNMT3A	

and	3B	activities	(44).	
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POST-TRANSCRIPTIONAL	REGULATION	

Other	 known	 regulator	 mechanisms	 are	 non-coding	 RNAs	 (ncRNAs).	 In	

general,	they	produce	transcripts	that	function	directly	as	structural,	catalytic	or	

regulatory	 RNAs,	 rather	 than	 expressing	 mRNAs	 that	 encode	 proteins	 (51).	

NcRNAs	are	historically	divided	into	two	groups,	small	non-coding	RNAs	(sRNAs)	

with	 length	 <200nucleotides	 and	 long	 non	 coding	 RNAs	 (lncRNAs)	 with	 length	

>200nt.	 Those	 ncRNAs	 that	 are	 involved	 in	 epigenetic	 regulation	 comprise	 the	

short	 ncRNAs	 (<30nt),	 such	 as	 microRNAs	 (miRNAs),	 short	 inhibitory	 RNAs	

(siRNAs),	 piwi-interacting	 RNAs	 (piRNAs)	 and	 the	 long	 ncRNAs	 (>200nt)	 (52).	

Long	 ncRNAs	 play	 a	 regulatory	 role	 during	 development	 and	 exhibit	 cell	 type-

specific	expression.	MiRNAs	are	the	best	explored	subclass	of	ncRNAs	which	play	

a	central	role	in	a	post-transcriptional	gene	silencing	mechanism	(53).		

MicroRNAs	

MiRNAs	were	discovered	 in	1993	by	Victor	Ambros,	Rosalind	C.	Lee	and	

Rhonda	 L.	 Feinbaum	 in	 an	experiment	 in	C.Elegans.	 They	 show	 that	 lin-4	 gene	

codifies	not	to	a	protein,	but	rather	as	two	small	transcripts	of	approximately	22	

and	61	nucleotides,	nowadays	known	as	the	mature	miRNA	and	double-stranded	

stem	 precursor	 respectively.	 They	 also	 observed	 that	 this	 transcript	 contained	

sequences	complementary	to	a	repeated	sequence	element	 in	the	three	prime	

untranslate	region	(3´UTR)	region	in	mRNA	(54).	

MiRNAs	are	defined	as	small	RNAs	of	around	23	nucleotides,	which	can	

play	 important	 regulatory	 roles	 in	 animals	 and	 plants,	 by	 targeting	mRNAs	 for	

cleavage	or	translational	repression.	These	non-coding	RNAs	comprise	one	of	the	

more	abundant	classes	of	gene	regulatory	molecules	 in	multicellular	organisms	

and	influence	the	output	of	many	protein-coding	genes	(55).	MiRNAs	modulate	a	

variety	of	 important	 functions	 including	proliferation,	differentiation,	 apoptosis	

and	senescence	in	animals	and	plants	(56).	

Since	miRNAs	 discovery	 there	 has	 been	 an	 exponential	 increase	 in	 the	

number	of	microRNAs.	MiRBase	 sequence	database	 (http://www.mirbase.org/)	
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in	 2016	 contains	 28645	 entries	 representing	 hairpin	 precursor	 miRNAs,	

expressing	35828	mature	miRNA	products,	in	223species.		

A	 few	hundred	of	miRNAs	have	been	confirmed	to	regulate	the	30-80%	

of	genes	encoded	in	the	human	genome,	with	each	miRNA	targeting	up	to	100	

genes,	 and	multiple	miRNAs	 having	 the	 potential	 to	 act	 on	 one	 gene.	 A	 single	

miRNA	 can	 have	 multiple	 target	 sites	 of	 a	 particular	 mRNA	 transcript,	 and	 a	

single	miRNA	family	can	regulate	up	to	400	targets	(57).	

The	generation	of	miRNAs	is	a	process	with	multiply	steps.	Some	miRNAs	

genes	 seem	 to	 be	 solitary	 and	 are	 expressed	 under	 the	 control	 of	 their	 own	

promoters.	Other	miRNAs	genes	are	arranged	in	clusters	(Figure	7),	and	may	be	

co-regulated	with	other	members	of	the	cluster	(58).	

Figure	7.	The	miRNA-35-miRNA-41	cluster	(59).	

	

Over	50%	of	mammalian	miRNAs	are	located	within	the	intronic	regions	

of	 annotated	 protein-coding	 or	 non	 protein-coding	 genes.	 These	 miRNAs	 use	

their	host	gene	transcripts	as	carriers,	although	some	of	them	actually	transcribe	

separately	 from	 internal	 promoters.	 Other	 miRNAs	 are	 located	 in	 intergenic	

regions	 and	 apparently	 have	 their	 own	 transcriptional	 regulatory	 elements,	

constituting	independent	transcription	units	(60).	
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In	a	first	step	of	the	biogenesis	process,	the	Polymerase	II	or	III	produce	

one	 strand	 of	 an	 approximately	 33nt	 double-stranded	 stem,	 called	 primary	

miRNA	 (pri-miRNA)	 with	 a	 hairpin	 structure.	 This	 pri-miRNA	 is	 cleaved	 in	 two	

steps	 by	 endoribonucleolytic	 enzymes.	 In	 the	 first	 step,	 the	 nuclear	

endoribonuclease	Drosha	in	a	complex	with	DGCR8	cuts	the	hairpin	stem	at	the	

11th	nt,	 thereby	 releasing	 an	 approximately	 70	nt	 stem-loop	precursor	miRNA	

(pre-miRNA)	 that	 possesses	 a	 3´	 overhang.	 Afterwards,	 the	 pre-miRNA	 is	

exported	 to	 the	 cytoplasm	 via	 Exportin-5.	 Once	 exported,	 the	 pre-miRNA	 is	

processed	by	a	second	endoribonucleolytic	reaction,	catalyzed	by	enzyme	Dicer,	

yielding	an	approximately	22	nt	RNA	duplex	(miRNA/miRNA*)	with	30	overhangs	

at	 both	 ends.	 Subsequently,	 one	 strand	 (miRNA)	 of	 the	 duplex	 is	 incorporated	

into	 a	 miRNA-induced	 silencing	 complex	 (miRISC),	 whereas	 the	 other	 strand	

(miRNA*)	 is	 released	 and	 degraded.	 Nevertheless,	 miRNA*	 strands	 are	 not	

always	by-products	of	miRNA	biogenesis	and	can	also	be	 loaded	into	miRISC	to	

function	as	miRNA	(Figure	8)	(61,	62).	

Figure	8.	MicroRNA	biogenesis	(61).	
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MiRNAs	 can	 direct	 the	 RISC	 complex	 to	 down-regulate	 protein	

expression.	To	do	 so,	RISC	complex	guides	 the	miRNA	 to	 the	 specific	 target	by	

complementary	binding	to	the	3´UTR	of	target	mRNAs	(55,	63).	

The	 interaction	 of	 base	 pairing	 of	 2-8	 nt	 needs	 to	 occur	 in	 the	miRNA-

mRNA	association,	also	called	seed	region.	RISC	complex	requires	with	mRNAs	a	

pairing	 to	 the	 seed	 region	 to	 down-regulate	 gene	 expression	 by	 of	 two	 post-

transcriptional	mechanisms:	either	mRNA	cleavage	or	transcriptional	repression	

(55).	 Perfect	 complementary	 interactions	 between	 miRNA	 and	 target	 mRNA	

result	 in	mRNA	degradation.	 In	contrast,	mismatched	 interactions	between	the	

short	RNA	and	the	mRNA	can	result	 in	translational	repression.	The	majority	of	

these	 interactions	 in	 animals	 are	 only	 partially	 complementary,	 therefore	

translational	inhibition	process	predominates	(64).	

The	regulatory	action	of	miRNAs	is	complex.	These	non-coding	RNAs	can	

act	directly	on	target	mRNA	transcripts	having	repressive	effect,	or	indirectly	by	

first	 regulating	 intermediate	 components	 such	 as	 transcription	 factors	 or	 co-

transcription	 factors	 which	 control	 the	 expression	 of	 downstream	 genes.	

Together,	 various	 signalling	 cascades	 create	 a	 network	 with	 a	 few	 or	 several	

nodes	(57).	

In	 order	 to	 understand	 the	 functions	 of	 miRNAs	 in	 complex	 biological	

processes,	 it	 is	 important	 to	 experimentally	 assess	 the	 functional	 relevance	 of	

the	predicted	targeting	site(s).	
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PHENOLIC	COMPOUNDS	

Phenolic	 compounds	 are	molecules	 showing	 at	 least	 one	 aromatic	 ring	

with	one	or	more	hydroxyl	groups	attached.	More	than	8000	phenolic	structures	

have	been	described	(65).	Phenolic	compounds	occur	naturally	 in	healthy	plant	

tissues	and	are	ubiquitous	in	all	plant	organs.	Studies	over	the	years	have	shown	

them	 to	 play	 a	 role	 in	 plant	 physiology,	 thus	 they	 are	 involved	 in	 growth,	

reproduction	 and	 resistance	 to	 pathogens	 and	 predators	 (66).	 The	 phenolic	

profile	of	vegetables	depends	on	the	type	of	plants,	the	conditions	under	which	

these	plants	are	grown,	and	the	harvest	and	storage	conditions	(67).	

In	 the	 diet,	 these	 molecules	 are	 present	 in	 plant	 foods	 such	 as	 cereal	

grains,	 vegetables,	 fruits,	 nuts	 and	 berries	 and	 their	 related	 processed	 foods	

(juices,	 teas	 and	 wines)	 (65).	 They	 can	 be	 classified	 into	 different	 groups	

according	 to	 the	 number	 of	 phenol	 rings	 that	 they	 contain	 and	 the	 structural	

elements	that	bind	these	rings	to	one	other.	Distinctions	are	thus	made	between	

phenolic	 acids,	 flavonoids,	 stilbenes	 and	 lignans	 (68).	 Flavonoids	 are	 the	most	

abundant	polyphenols	 in	 our	 diet.	 This	 class	 of	 phenolic	 compounds	 is	 divided	

into	 a	 variety	 of	 subclasses	 differing	 in	 the	 level	 of	 oxidation	 and	 pattern	 of	

substitution	of	the	C	ring	(69).		

CONSUMPTION	AND	BIOAVALABILITY	

The	 intake	 of	 polyphenols	 depends	 on	 dietary	 habits	 and	 preferences	

(70).	Their	consumption	has	been	related	to	a	reduction	 in	the	risk	of	different	

diseases,	 linked	 to	 their	 bioactions	 such	 as	 antioxidant,	 antinflammatory,	

antimicrobial	 and	 antiproliferative	 activities	 (71).	 However,	 most	 of	 the	

nutritional	interest	in	phenolic	compounds	relates	to	the	deleterious	effects	due	

to	their	adsorption	into	some	macromolecules	reducing	food	digestibility	(66).	

It	 is	 important	 to	 highlight	 that	 storage	 and	 culinary	 preparations	 can	

affect	 the	 content	 of	 polyphenols	 in	 foods.	 Oxidation	 reactions	 occur	 during	

storage	 periods	 and	 result	 in	 the	 formation	 of	 polymerized	 substances,	 which	

could	 be	 either	 beneficial	 (black	 tea),	 or	 harmful	 (browning	 of	 fruit).	
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Furthermore,	simple	peeling	of	fruits	and	vegetables	can	eliminate	a	significant	

portion	of	polyphenols,	as	these	compounds	are	commonly	present	in	the	peel.	

These	two	examples	are	enough	to	support	the	idea	that	a	considerable	number	

of	factors	can	modify	the	concentration	of	phenolic	compounds	in	foods	making	

the	elaboration	of	reference	food-composition	tables	difficult	(68).	

The	biological	properties	of	dietary	phenolic	compounds	may	depend	on	

their	absorption	in	the	gut	and	their	bioavailability.	The	percentage	of	absorption	

differs	 among	 phenolic	 compounds.	Only	 those	 compounds	 released	 from	 the	

food	matrix	by	the	action	of	the	digestive	enzymes	and	bacterial	microflora,	are	

suitable	for	absorption	in	the	gut	and	therefore	potentially	bioavailable	(68,	72).	

Aglycones,	 compounds	 remaining	 after	 the	 glycosyl	 group	 on	 a	 glycoside	 is	

released,	 can	 be	 absorbed	 in	 the	 small	 intestine.	 To	 do	 this,	 these	 substances	

must	 be	 previously	 hydrolysed	 by	 intestinal	 enzymes.	 However,	most	 of	 these	

compounds	are	present	in	food	in	the	form	of	esters,	glycosides	or	polymers	that	

cannot	be	absorbed	in	their	native	form.		

Phenolic	 compounds	 are	 highly	 metabolized	 via	 a	 common	 pathway.	

After	 absorption,	 phenolic	 compounds	 are	 conjugated	 in	 the	 phase	 II	

metabolism,	in	the	small	intestine	and	the	liver.	Those	phenolic	compounds	not	

absorbed	 in	 stomach	will	 reach	 the	colon.	Phenolic	 compound	metabolites	are	

more	 hydrophilic	 and	 subsequently	 they	 are	 excreted	 via	 feces	 and	 urine.	 In	

addition,	 phenolic	 compounds	 that	 are	 absorbed,	metabolized	 in	 the	 liver	 and	

excreted	 in	the	bile	or	directly	from	the	enterocyte	back	to	the	small	 intestine,	

will	also	reach	the	colon	in	a	glucuronide	form	(68,	71)	(Figure	9).	
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Figure	9.	Possible	routes	for	ingested	phenolic	compounds	in	humans	(70).	

	

RESVERATROL	

Resveratrol	 (3,5,4-trihydroxystilbene)	 is	 a	 natural	 polyphenol	 with	 a	

stilbene	 structure.	 Takaoka,	 who	 isolated	 it	 from	 the	 root	 of	 Veratrum	

grandiorum,	 characterized	 its	 chemical	 structure	 in	 1940	 consisting	 of	 two	

phenolic	rings	bonded	together	by	a	double	styrene	bond.	This	double	bound	is	

responsible	 for	 the	 isomeric	 cis-	 and	 trans-	 forms	 of	 resveratrol,	 the	 second	

being	the	most	stable	from	the	steric	point	of	view	(73)	(Figure	10).	The	property	

of	 this	 polyphenol	 to	 inhibit	 the	 progress	 of	 fungal	 infection	 has	 allowed	 its	

inclusion	in	the	class	of	plant	antibiotics	known	as	phytoalexin	(74).	

Figure	10.	Isomeric	cis-	and	trans-	forms	of	resveratrol.	

Resveratrol	 biosynthesis	 is	 restricted	 to	 only	 a	 few	 species	 commonly	

used	for	human	consumption,	such	as	peanuts,	grapes	and	berries.	However,	red	
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wine	 is	 the	main	source	of	 resveratrol	 in	 the	Mediterranean	diet	 (Table	1)	 (73,	

75).	

Table	1.	Resveratrol	content	in	different	foodstuffs.	

	*(Adapted	from	Saioa	Gómez-Zorita´s	thesis(76).	

Although	 resveratrol	 exists	 naturally	 in	 both	 cis-	 and	 trans-isomers	 this	

second	one	appears	 to	be	more	stable	and	predominant.	Trans-resveratrol	has	

often	been	reported	to	be	the	major	natural	form,	even	though	the	cis-isomer	is	

also	present	in	wine.	Cis-isomerization	occurs	when	the	trans-isoform	is	exposed	

to	artificial	ultraviolet	or	natural	daylight	(73,	77).	

Resveratrol	bioavailability	

After	ingestion,	resveratrol	is	absorbed	by	passive	diffusion	or	by	forming	

complexes	 with	 membrane	 transporters.	 This	 phenolic	 compound	 exhibits	

lipophilic	 characteristics,	 which	 allow	 high	 absorption.	 Thus	 in	 bloodstream,	

resveratrol	 can	 be	 found	 in	 three	 different	 forms:	 free	 and	 conjugated	 forms,	

glucuronide	 or	 sulphate.	 The	 free	 form	 can	 be	 bound	 to	 albumin	 and	

lipoproteins	such	as	low-density	lipoproteins	(LDL)	(73,	77).	Phase	II	metabolism	

Food	source	
Total	resveratrol	

amount	(µg/kg)	

Trans-resveratrol	

amount	(µg/kg)	
References	

Red	grape	 3100	 2500	 Zamora-Ros	et	al.	2008	

Red	wine	 8470	 1810	 Chiva-Blanch	et	al.	2011;	

Zamora-Ros	et	al.	2008	

Chocolate	 3325	 692	 Chiva-Blanch	et	al.	2011;	

Hurst	et	al.	2008	

Grape	juice	 890	 100	 Chiva-Blanch	et	al.	2011;	

Zamora-Ros	et	al.	2008	

Berries	 80	 80	 Chiva-Blanch	et	al.	2011;	

Zamora-Ros	et	al.	2008	

Toasted	

peanuts	

55	 55	 Baur	et	al.	2006	

Beer	 15	 9	 Burns	et	al.	2002	
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of	resveratrol	leads	to	the	production	of	conjugated	forms	in	the	small	intestine	

and	in	liver.	

Resveratrol	is	subjected	to	a	metabolism	carried	out	by	UDP-glucuronosyl	

transferase	 enzymes	 synthesising	 resveratrol	 glucuronides	 and	 resveratrol	

sulphates.	The	preference	sites	of	glucuronidation	in	resveratrol	molecule,	3´and	

4´positions,	 have	 been	 well	 established	 after	 synthesis	 of	 the	 metabolites.	

Similarly,	 the	 major	 site	 of	 sulphate	 conjugation	 is	 4´position	 and	 was	 also	

established	 by	 synthesis	 (78).	 Differences	 in	 metabolites	 plasma	 levels	 were	

found	between	species.	Sulphate	metabolites	following	glucuronide	are	the	main	

forms	 in	 rats,	 while	 glucuronide	metabolites	 are	 predominant	 in	 humans	 (79,	

80).	 The	 prolonged	 detection	 of	 low	 plasma	 levels	 of	 these	 resveratrol	

metabolites	suggests	that	resveratrol,	partly	metabolized	 in	the	small	 intestine,	

is	 distributed	 to	 various	 tissues	 mainly	 in	 its	 conjugated	 forms	 restricting	 the	

bioavailability	and	 reducing	 the	efficacy	of	 this	phenolic	 compound	 in	 vivo	 (79,	

81).	Despite	of	that,	resveratrol	shows	efficacy	in	vivo.	This	may	be	explained	by	

the	 the	 entero-hepatic	 recirculation,	when	 some	of	 the	metabolites	 formed	 in	

the	liver	will	again	be	secreted	into	the	intestine	via	the	bile,	where	they	will	be	

removed	to	be	reabsorbed,	or	continue	to	the	colon.	The	gut	microbiota	forms	

dihydroresveratrol,	which	 could	be	 reabsorbed	 and	metabolized	 again	 (73,	 74,	

82,	83).	

The	elimination	of	resveratrol,	as	well	as	that	of	its	metabolites,	is	mainly	

produced	by	urinary	route	(53-85%).	Several	molecular	forms	of	resveratrol	and	

its	 metabolites	 have	 been	 detected	 in	 urine.	 Further,	 part	 of	 resveratrol	 not	

metabolized	by	colon	bacteria	appears	also	in	feces,	ranging	from	0.3%	to	38%	of	

human	dietary	intake	(78,	84).	

Different	 approaches	 to	 enhance	 resveratrol	 bioavailability	 are	 being	

carried	out.	 Research	programs	are	 currently	 exploring	other	methods	 such	as	

co-administration	with	metabolism	 inhibitors,	 the	 use	 of	 resveratrol	 analogous	

or	a	drug	delivery	system	using	nanotechnology	(75,	79).	
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Biological	effects	of	resveratrol	

Antioxidant	 and	 antinflammatory	 properties	 have	 been	 attributed	 to	

resveratrol.	 It	 is	 also	 effective	 in	 the	 prevention	 of	 several	 diseases	 including	

cardiovascular	diseases,	diabetes,	cancer	and	recently,	obesity	(85).	

With	regard	to	obesity,	this	polyphenol	reduces	 lipid	accumulation,	as	 it	

has	been	reported	in	different	in	vitro	and	in	vivo	studies.	Differentiation	of	3T3-

L1	murine	preadipocytes	in	in	vitro	studies	induce	metabolic	pathways	including	

the	 expression	 of	 different	 specific	 genes	 related	 to	 lipid	metabolism,	 such	 as	

PPARγ,	 CCAAT/enhancer	 binding	 protein	 (C/EBP),	 SREBP	 1,	 FAS,	 LPL	 and	 HSL.	

Resveratrol	down-regulates	the	expression	of	all	these	genes,	indicating	that	this	

polyphenol	 may	 alter	 fat	 mass	 by	 directly	 affecting	 biochemical	 pathways	

involved	 in	 adipogenesis	 (86).	 Furthermore,	 resveratrol	 treatments	 in	 mature	

adipocytes	 reduce	 triglyceride	 content	 and	 lipogenesis	 and	 increase	 fat	

mobilization,	thus	reducing	fat	accumulation	(87,	88).	As	far	as	in	vivo	studies	are	

concerned,	most	of	them,	performed	in	rats	and	mice,	show	a	reduction	in	body	

weight	 and/or	 adipose	 tissue	 weight.	 Different	 mechanisms	 have	 been	

proposed,	such	as	increased	lipid	oxidation	or	lipolysis,	or	decreased	lipogenesis	

(89-94).	

In	 vivo	 studies	 in	 rodents	 show	 a	 reduction	 in	 liver	weight	 and/or	 lipid	

content	 (89,	 92-97).	 The	 proposed	mechanisms	 for	 this	 delipidating	 effect	 are	

decreased	 lipogenesis	 and	 increased	 lipid	 oxidation	 associated	 to	

mitochondriogenesis	(89,	90,	92,	95,	97).	

PTEROSTILBENE	

Pterostilbene	 (3,5-	dimethoxy-4´-hydroxystilbene)	 is	a	phytoalexin	and	a	

natural	dimethylated	analogue	of	resveratrol	(98).	The	difference	between	these	

two	 phenolic	 compounds	 is	 that	 pterostilbene	 has	 two	 hydroxy	 groups	

substituted	by	two	methoxy	groups	(Figure	11).		
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Figure	11.	Chemical	structure	of	pterostilbene	(a)	and	resveratrol	(b)	(99).	

This	 secondary	 metabolite	 of	 plants	 was	 originally	 isolated	 from	

heartwood	of	red	sandalwood	(98)	and	 is	present	 in	different	 foods	and	drinks	

such	as	grapes,	blueberries,	nuts	and	red	wine.	Nevertheless,	in	these	sources,	it	

is	 generally	 found	 in	 very	 low	quantities	 (100).	 It	 has	 been	 estimated	 that	 the	

content	per	blueberries	varies	from	99	ng	to	520ng/gram	depending	on	the	type	

of	 berry	 ingested	 (99).	 Therefore,	 the	 amount	 of	 daily	 pterostilbene	

consumption	varies	according	to	dietary	intake.		

Pterostilbene	bioavailability	

After	oral	 administration,	pterostilbene	undergoes	a	 similar	metabolism	

process	 to	 resveratrol.	However,	 due	 to	 the	presence	of	 two	methoxy	 groups,	

pterostilbene	has	better	lipophylicity,	absorption	and	higher	potential	for	cellular	

uptake.	 In	 animal	 studies,	 pterostilbene	 has	 been	 shown	 to	 have	 80%	

bioavailability	 compared	 to	 20%	 for	 resveratrol.	 This	 fact	 gives	 pterostilbene	

potential	advantages	as	a	therapeutic	agent	(98,	99,	101).	

Furthermore,	 pterostilbene	 in	 rats	 could	 saturate	 phase	 II	 metabolism	

reactions.	 Consequently,	 plasma	 levels	 of	 these	 phenolic	 compound	might	 be	

higher	 than	 expected	 (102).	 Equimolar	 dose	 of	 resveratrol	 and	 pterostilbene	

have	different	profiles	in	their	glucuronide	and	sulphate	conjugates	(101).	

Biological	effects	of	pterostilbene	

As	in	the	case	of	resveratrol,	the	multiple	benefits	of	pterostilbene	have	

been	 attributed	 to	 its	 antioxidant,	 antiinflammatory	 and	 anticarcinogenic	

properties,	 leading	 to	 improved	 function	 of	 normal	 cells	 and	 inhibition	 of	

malignant	 cells	 (99).	 In	mouse,	 pterostilbene	 has	 been	 demonstrated	 to	 show	

a	 b	
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chemopreventive	activity.	 This	phenolic	 compound	 is	 cytotoxic	 to	 a	number	of	

cancer	 cell	 lines	 in	 vitro	 and	 it	 also	 was	 shown	 to	 have	 antioxidant	 and	 DNA	

synthesis	 inhibition	 activities.	 Additionally,	 pterostilbene	 has	 shown	 to	

significantly	decrease	plasma	glucose	levels	(100).	

Studies	showing	the	delipidating	effect	of	pterostilbene	on	adipocytes	are	

scarce	so	far.	An	in	vitro	study	in	3T3-L1	showed	that	pterostilbene	could	inhibit	

cell	proliferation	and	adipogenesis	 in	preadipocytes.	These	 results	 suggest	 that	

pterostilbene	 has	 antiadipogenic	 effect	 on	 preadipocytes,	 differentiating	

adipocytes	 and	 mature	 adipocytes	 (103,	 104).	 Moreover,	 an	 in	 vivo	 study	

performed	 in	our	 laboratory	showed	a	 reduction	 in	body	 fat	accumulation	and	

lipogenesis	 in	 adipose	 tissue	 and	 increased	 fatty	 acid	 oxidation	 in	 liver,	 thus	

demonstrating	its	antiobesity	properties	(105).	
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AIM	

The	aim	of	the	present	Doctoral	Thesis	was	to	assess	changes	induced	by	

stilbenes	to	DNA	methylation	profile	and	microRNA	expression	in	white	adipose	

tissue	and	liver	from	rats	fed	an	obesogenic	diet.	

SPECIFIC	OBJECTIVES	

The	specific	objectives	of	this	experimental	work	were:	

1. To	study	the	effects	of	resveratrol	and	pterostilbene	on	the	DNA	

methylation	pattern	of	genes	 involved	 in	triglyceride	metabolism	

in	 white	 adipose	 tissue,	 and	 their	 relationship	 with	 obesity	

(Manuscript	1).	

	

2. To	analyse	 the	effects	of	 resveratrol	on	microRNAs	regulation	of	

genes	involved	in	adipose	tissue	triglyceride	metabolism	and	their	

relationship	with	obesity	(Manuscript	2).	

	

3. To	assess	the	effect	of	resveratrol	on	the	expression	of	the	three	

major	 hepatic	 microRNAs	 (miRNA-103-3p,	 miRNA-107-3p	 and	

miRNA-122-5p),	and	their	relationship	with	steatosis	(Manuscript	

3).	
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MATERIAL	AND	METHODS	

EXPERIMENT	1	

Effects	 of	 stilbenes	 on	 DNA	 methylation	 levels	 in	 fasn,	 pnpla2	 and	

pparγ  genes	in	white	adipose	tissue.	

After	a	6-day	adaptation	period,	32	male	Wistar	rats	(6	week-old),	were	

individually	 housed	 in	 polycarbonate	 metabolic	 cages	 (Techniplast	 Gazzada,	

Buguggiate,	Italy)	in	a	temperature	controlled	room	(22±2°C)	with	12-12	h	light-

dark	cycles.	The	experiment	was	carried	out	according	to	the	protocol	accepted	

by	 the	Ethics	Committee	 for	Animal	Experimentation	 (CEBA	CUIED/30/2010)	of	

the	University	of	the	Basque	Country.	

The	animals	were	randomly	divided	into	four	experimental	groups	(Figure	12):	

• Control	group	(Control;	n=8)	

• High-fat	high-sucrose	group	(HFS;	n=8)	

• Resveratrol	group	 (RSV;	n=8):	 fed	a	high-fat	high-sucrose	diet	and	

treated	with	30	mg/kg	body	weight/d	of	trans-resveratrol	

• Pterostilbene	group	(PT;	n=8):	fed	a	high-fat	high-sucrose	diet	and	

treated	with	30	mg/kg	body	weight/d	of	pterostilbene	

Figure	12.	Experimental	design	of	experiment	1.	

	

The	 control	 group	was	 fed	 a	 commercial	 standard	 diet	 (Harlan	 Iberica,	

Barcelona,	Spain,	TD.06416)	which	provided	3.7	kcal/g	and	10%	of	calories	as	fat.	
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The	other	 three	groups,	HFS,	RSV	and	PT,	were	 fed	an	obesogenic	commercial	

diet	 (high-fat	 high-sucrose)	 (Harlan	 Iberica,	 Barcelona,	 Spain,	 TD.06415),	

consisting	of	245	g/kg	casein,	3.5	g/kg	L-cysteine,	85g/kg	corn	starch,	115	g/kg	

maltodextrin,	 200	 g/kg	 sucrose,	 195	 g/kg	 lard,	 30	 g/kg	 soybean	 oil,	 58	 g/kg	

cellulose,	 43	 g/kg	 mineral	 mix,	 3.4	 g/kg	 biphasic	 calcium	 phosphate,	 19	 g/kg	

vitamin	mix	and	3g/kg	choline	bitartrate.	The	experiment	was	carried	out	during	

6	weeks	and	the	animals	were	given	free	access	to	food	and	water.	Body	weight	

and	food	intake	were	measured	daily.	

Trans-resveratrol	 (96.6%	 purity)	 (Monteloeder,	 Elche,	 Spain)	 and	

pterostilbene	 (>98%	 purity)	 (Bertin	 Pharma,	 Montigny	 le	 Bretonneux,	 France)	

were	incorporated	onto	the	diet	surface	daily,	dissolved	in	absolute	ethanol	and	

at	the	beginning	of	the	dark	period.	The	time	of	the	administration	was	chosen	

in	 order	 to	 match	 with	 the	 beginning	 of	 the	 rodent	 activity	 phase,	 thus,	 to	

ensure	an	immediate	intake.	

After	 6	 weeks	 of	 treatment,	 and	 after	 12-hour-fasting	 period,	 animals	

were	sacrificed	under	anesthesia	with	chloral	hydrate.	Sacrifice	was	performed	

by	 cardiac	 exsanguination.	 Fat	 depots	 from	 different	 anatomical	 locations	

[subcutaneous	 (SC),	 perirenal	 (PR),	 epididymal	 (EPI)	 and	 mesenteric	 (MS)],	 as	

well	as	liver	were	dissected,	weighed	and	immediately	frozen	in	liquid	nitrogen.	

The	samples	were	stored	at	-80°C	until	analysis.	

In	this	experiment	the	following	analyse	were	carried	out:		

• Pyrosequencing:	 fasn,	pnpla2	and	pparγ  enzymes	were	analysed	

by	PyroMark	MD	pyrosequencer	in	perirenal	adipose	tissue.	

• Gene	 expression:	 fasn	 was	 measured	 by	 RT-PCR	 (Real	 time-	

polymerase	chain	reaction)	in	perirenal	adipose	tissue.	

• Nuclear	DNMT	(DNA	methyltransferase)	activity	assay:	EpiSeeker	

DNMT	 Activity	 Quantification	 Kit	 was	 used	 to	 measure	 DNMTs	

activity	 involved	 in	 the	 DNA	 methylation	 process	 in	 perirenal	

adipose	tissue.	

The	detailed	protocols	are	included	in	manuscript	1.	



MATERIAL	AND	METHODS		
EXPERIMENT	2	

4	

	

43	
	

EXPERIMENT	2	

	 Changes	 in	 microRNA	 profile	 induced	 by	 resveratrol	 in	 white	 adipose	

tissue.	

After	 an	 adaptation	 period	 of	 6	 days,	 16	 male	Wistar	 rats	 (6	 week-old)	

were	individually	housed	and	treated	following	the	same	experimental	design	as	

described	in	the	previous	study.		

The	animals	were	randomly	divided	into	two	experimental	groups	(Figure	13):	

• High-fat	high-sucrose	group	(HFS;	n=8)	

• Resveratrol	 group	 (RSV;	 n=8):	 fed	 a	 high-fat	 high-sucrose	 diet	

treated	with	30	mg/kg	body	weight/d	of	trans-resveratrol.	

Figure13.	Experimental	design	of	experiment	2.	

	

All	 animals	 were	 fed	 the	 same	 obesogenic	 diet	 (high	 fat-high	 sucrose)	

mentioned	 in	 experiment	 1	 (Harlan	 Iberica,	 Elche,	 Spain,	 TD.	 06415)	 and	 also	

given	 free	 access	 to	 food	 and	 water.	 Body	 weight	 and	 food	 intake	 were	

measured	 daily.	 Resveratrol	 administration	was	 performed	 as	 explained	 in	 the	

first	experiment.	

In	 addition,	 an	 in	 vitro	 study	 in3T3-L1	 cells	 (American	 Type	 Culture	

Collection)	 was	 performed.	 Cells	 were	 cultured	 in	 Dulbecco´s	 Modified	 Eagle	
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Medium	(DMEM)	containing	10%	fetal	bovine	serum	(FBS)at	37°C	in	a	humidified	

5%	CO2	atmosphere.	

In	this	experiment,	the	following	analyses	were	carried	out:		

• MicroRNA	 array:	 719	 rat	 miRNA	 probes	 were	 performed	 in	

adipose	 tissue	 (ID	 046	 066	 Agilent	 Technologies,	 Palo	 Alto,	 CA,	

USA).	

• MicroRNA	transfection:		transfection	of	mimics	mmu-miRNA-539-

5p	 and	mmu-miRNA-1224-5p	 was	 performed	 using	 a	 DeliverX™	

Plus	siRNA	Transfection	Kit	in	3T3-L1	adipocytes.	

• Protein	expression:	SP1,	HSL,	PPARγ and	SREBP1	were	measured	

by	 Western	 Blotting	 in	 perirenal	 adipose	 tissue	 and	 3T3-L1	

adipocytes.	

• Gene	expression:	fasn,	hsl	and	ppar	were	measured	by	RT-PCR	in	

perirenal	adipose	tissue.	

The	detailed	protocols	are	included	in	manuscript	2.	
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EXPERIMENT	3	

Changes	in	microRNAs	highly	expressed	in	liver	induced	by	resveratrol.		

After	 the	 adaptation	 period,	 16	 male	 Sprague-Dawley	 rats	 (6	 week-old)	

were	individually	housed	and	treated	following	the	same	experimental	design	as	

described	in	the	previous	study.		

The	animals	were	randomly	divided	into	two	experimental	groups	(Figure	14):	

• High-fat	high-sucrose	group	(HFS;	n=8)	

• Resveratrol	 group	 (RSV;	 n=8):	 fed	 a	 high-fat	 high-sucrose	 diet	

treated	with	30	mg/kg	body	weight/d	of	trans-resveratrol.	

Figure	14.	Experimental	design	of	experiment	3.	

	

All	 animals	 were	 fed	 the	 same	 obesogenic	 diet	 (high	 fat-high	 sucrose)	

mentioned	in	the	previous	experiments	(Harlan	Iberica,	Elche,	Spain,	TD.	06415)	

and	also	given	free	access	to	food	and	water.	Body	weight	and	food	intake	were	

measured	 daily.	 Resveratrol	 administration	was	 performed	 as	 explained	 in	 the	

first	experiment.	

In	 addition,	 an	 in	 vitro	 study	with	AML12	hepatocytes	 (ATCC	CRL-2254)	

was	 performed.	 Cells	 were	 cultured	 1:1	 DMEM/HAM´S	 F12	 glutamax	medium	

containing	 10%	 fetal	 bovine	 serum	 (FBS),	 0.005	 mg/mL	 insulin,	 0.005	 mg/mL	

transferrin,	 5	 ng/mL	 selenium,	 40	 ng/mL	 dexamethasone	 and	 1%	
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Penicillin/Streptomycin	 (10,000	 U/mL)	 at	 37°C	 in	 a	 humidified	 5%	

CO2	atmosphere.	

In	this	experiment	the	following	analyses	were	carried	out:		

• MicroRNA	 analysis:	 rno-miRNA-103-3p,	 rno-miRNA-107-3p	 and	

rno-miRNA-122-5p	expression	was	measured	for	qRT-PCR	in	liver.	

• MicroRNA	transfection:	 transfection	of	mimics	mmu-miRNA-103-

3p,	mmu-miRNA-107-3p	and	mmu-miRNA-122-5p	separately	was	

performed	using	Lipofectamine	RNAiMAX	in	AML12	hepatocytes.	

• Protein	 expression:	 FAS,	 CPT	 1aand	 SREBP1	 were	 measured	 by	

Western	Blotting	in	AML12	hepatocytes.	

The	detailed	protocols	are	included	in	manuscript	3.	
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Abstract		

DNA	 methylation	 is	 an	 epigenetic	 mechanism	 that	 can	 inhibit	 gene	

transcription.	 The	 aim	 of	 this	 study	 was	 to	 assess	 changes	 induced	 by	 an	

obesogenic	 diet	 in	 the	methylation	 profile	 of	 genes	 involved	 in	 adipose	 tissue	

triacylglycerol	metabolism,	and	 to	determine	whether	 this	methylation	pattern	

can	 be	 altered	 by	 resveratrol	 and	 pterostilbene.	 Rats	 were	 divided	 into	 four	

groups.	 The	 control	 group	was	 fed	 a	 commercial	 standard	 diet,	 and	 the	 other	

three	 groups	were	 fed	 a	 commercial	 high-fat	 high-sucrose	 diet	 (6	weeks):	 the	

high-fat	 high-sucrose	 group	 (HFS),	 the	 resveratrol-treated	 group	 (RSV;	 30	

mg/kg/d)	 and	 the	 pterostilbene-treated	 group	 (PT;	 30	 mg/kg/d).	 Gene	

expression	was	measured	by	RT-PCR	and	gene	methylation	by	pyrosequencing.	

The	 obesogenic	 diet	 induced	 a	 significant	 increase	 in	 adipose	 tissue	 weight.	

Resveratrol	 and	 pterostilbene	 partially	 prevented	 this	 effect.	 Methylation	

pattern	of	ppnla2	and	pparγ	genes	was	similar	among	the	experimental	groups.	

In	 fasn,	 significant	 hypomethylation	 in	 -90bp	 position	 and	 significant	

hypermethylation	 in	 -62bp	position	were	 induced	by	obesogenic	 feeding.	Only	

pterostilbene	 reversed	 the	 changes	 induced	 by	 the	 obesogenic	 diet	 in	 fasn	

methylation	pattern.	By	contrast,	the	addition	of	resveratrol	to	the	diet	did	not	

induce	 changes.	 Both	 phenolic	 compounds	 averted	 fasn	 up-regulation.	 These	

results	 demonstrate	 that	 the	 up-regulation	 of	 fasn	 gene	 induced	 by	 an	

obesogenic	 feeding,	 based	 in	 a	 high-fat	 high-sucrose	 diet,	 is	 related	 to	

hypomethylation	 of	 this	 gene	 in	 position	 -90bp.	 Under	 our	 experimental	

conditions,	both	molecules	prevent	 fasn	up-regulation,	but	this	change	 in	gene	

expression	seems	 to	be	mediated	by	changes	 in	methylation	status	only	 in	 the	

case	of	pterostilbene.		

Key	 words:	 obesogenic	 diet,	 resveratrol,	 pterostilbene,	 methylation,	 fatty	 acid	

synthase		

Running	title:	Obesogenic	diet,	phenols	and	fatty	acid	synthase	methylation		
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Introduction		

Epigenetic	 processes	 are	 those	 that	 act	 to	 regulate	 heritable	 changes	 in	

gene	 activity	 through	 remodelling	 of	 chromatin,	 but	 are	 not	 accompanied	 by	

changes	in	the	DNA	coding	sequence.	Major	epigenetic	mechanisms	include	DNA	

methylation,	 nucleosome	 remodelling	 and	 histone	 modifications.	 DNA	

methylation	involves	the	addition	of	a	methyl	group	to	the	5-position	of	cytosine	

in	 the	 context	 of	 CpG	 dinucleotides,	 which	 are	 underrepresented	 in	 DNA.	

Clusters	of	CpGs,	called	CpG	islands,	are	often	found	 in	association	with	genes,	

most	often	in	the	promoters	and	first	exons	(Jones	and	Takai	2001;	Takai	et	al.	

2001).	Methylation	 of	 these	 CpG	 islands	 prevents	 gene	 transcription	 through	

different	 mechanisms	 in	 mammals.	 It	 can	 directly	 repress	 transcription	 by	

blocking	 the	 binding	 of	 transcriptional	 activators	 to	 cognate	 DNA	 sequences.	

Moreover,	 Methyl-CpG-binding	 proteins	 (MBPs)	 directly	 recognize	 methylated	

DNA	and	recruit	co-repressors	to	silence	transcription	and	to	modify	surrounding	

chromatin	 (Klose	 and	 Bird	 2006).	 Epigenetic	 mechanisms	 such	 as	 DNA	

methylation	 have	 an	 implication	 in	 gene	 expression	 regulation,	 and	 they	 have	

become	an	 interesting	 topic	 in	 the	onset,	development	and	 therapy	of	 several	

diseases.	Although	epigenetic	changes	 take	place	mainly	during	embryogenesis	

(Morgan	et	al.	2005),	gestation	and	lactation	(Martínez	et	al.	2012),	it	has	been	

demonstrated	that	some	environmental	changes	could	also	induce	variations	in	

DNA	methylation	profile	during	adult	life	(Paternain	et	al.	2012).	

Diet	is	one	of	the	most	determining	modifiable	environmental	factors	which	

affect	epigenome	(Park	and	Lee	2013).	It	has	been	reported	that	a	wide	range	of	

dietary	 factors,	 which	 includes	 nutrients	 (folic	 acid,	 vitamin	 B12,	 choline,	

methionine,	 fatty	 acids)	 and	 some	 bioactive	 food	 components	 (polyphenols)	

(Campión	 et	 al.	 2010;	 Supic	 et	 al.	 2013)	 can	 modify	 gene	 methylation.	 This	

methylation	pattern	can	also	be	modified	by	the	percentage	of	macro-nutrients	

in	the	diet	(cafeteria	diets	rich	in	fat,	diets	rich	in	sucrose)	(Milagro	et	al.	2009;	

Lomba	 et	 al.	 2010b;	 Lomba	 et	 al.	 2010a).	With	 regard	 to	 polyphenols,	 several	

studies	have	shown	that	these	molecules	can	modify	gene	methylation	patterns,	

mainly	 in	 cancer	 prevention(Link	 et	 al.	 2010;	 Henning	 et	 al.	 2013;	 Saha	 et	 al.	
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2013),	but	very	scarce	data	concerning	adipocyte	and	adipose	tissue	genes	have	

been	reported	(Boqué	et	al.	2013;	Alberdi	et	al.	2013).		

In	previous	studies	 from	our	 laboratory	we	observed	significant	 reductions	

in	body	fat	in	rats	fed	an	obesogenic	diet	and	treated	with	resveratrol	(Macarulla	

et	al.	2009;	Arias	et	al.	2011;	Miranda	et	al.	2013;	Gómez-Zorita	et	al.	2013)	or	

pterostilbene,	a	di-methylether	derivative	of	resveratrol	(manuscript	submitted).	

Interest	 in	pterostilbene	 is	based	on	the	fact	that	the	substitution	of	a	hydroxy	

with	 a	 methoxy	 group	 in	 polyphenols	 increases	 the	 transport	 into	 cells	 and	

increases	 the	metabolic	 stability	of	 the	molecule	 (Wen	and	Walle	2006).	 Thus,	

the	 low	 bioavailability	 showed	 by	 resveratrol	 is	 increased	 in	 the	 case	 of	

pterostilbene	(Kapetanovic	et	al.	2011).	

In	this	context,	the	aim	of	the	present	work	was	to	assess	changes	induced	

by	 an	 obesogenic	 diet	 in	 the	 methylation	 of	 genes	 involved	 in	 white	 adipose	

tissue	 triacylglycerol	 metabolism,	 and	 to	 determine	 whether	 this	 methylation	

pattern	can	be	altered	by	resveratrol	and	pterostilbene.		

Material	and	Methods		

Animals,	diets,	and	experimental	design	

The	 experimental	 procedure	 used	 in	 the	 present	 study	 followed	 the	

guidelines	 of	 the	 Animal	 Usage	 of	 the	 University	 of	 Basque	 Country	 (CUEID	

CEBA/30/2010).	Six-week-old	male	Wistar	rats	(Harlan	Ibérica,	Barcelona,	Spain)	

were	 individually	 housed	 in	 polycarbonate	 metabolic	 cages	 (Techniplast	

Gazzada,	 Guguggiate,	 Italy).	 Animals	were	 housed	 in	 a	 temperature	 controlled	

facility	(22±2	ºC)	and	maintained	under	a	light-dark	cycle	with	12	h	of	light	and	

12	 h	 of	 darkness	 per	 day.	 After	 a	 6-day	 adaptation	 period,	 the	 animals	 were	

randomly	 divided	 into	 four	 groups	 (n=8	 per	 group)	 and	 fed	 the	 experimental	

diets	for	6	weeks.	Experimental	diets	were	supplied	by	Harlan	Ibérica	(Barcelona,	

Spain).	 One	 group	 (control	 group)	 was	 fed	 a	 commercial	 standard	 diet	

(TD.06416)	which	provided	3.7	kcal/g	and	10%	of	calories	as	fat.	The	other	three	

groups,	 high-fat	 high-sucrose	 group	 (HFS),	 resveratrol-treated	 group	 (RSV)	 and	

pterostilbene-treated	 group	 (PT)	 were	 fed	 a	 commercial	 high-fat	 high-sucrose	
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diet	(obesogenic	diet)	(TD.06415)	which	provided	4.6	kcal/g	and	45%	of	kcal	as	

fat.	 In	RSV	and	PT	groups,	resveratrol	or	pterostilbene	were	added	to	the	fresh	

diet	daily,	as	previously	described	by	Macarulla	et	al.	 (Macarulla	et	al.	2009)	 in	

amounts	that	ensured	a	dose	of	30	mg/kg	body	weight/d.		

Body	 weight	 and	 food	 intake	 were	 measured	 daily.	 At	 the	 end	 of	 the	

experimental	 period	 rats	 were	 sacrificed	 after	 an	 overnight	 fast	 under	

anaesthesia	 (chloral	 hydrate)	 by	 cardiac	 exsanguination.	 Adipose	 tissues	 from	

epididymal,	perirenal,	mesenteric	and	subcutaneous	regions	were	dissected	and	

weighed	and	 then	 immediately	 frozen.	All	 samples	were	 stored	 at	 -80	 ºC	until	

analysis.	

Epigenetic	Study	

Selection	 of	 relevant	 genes.	 For	 the	 epigenetic	 study,	 it	 was	 decided	 to	

include	 genes	 that	 satisfied	 the	 following	 two	 criteria;	 (a)	 genes	 involved	 in	

triacylglycerol	 metabolism,	 such	 as	 	 the	 	 lipoprotein-lipase	 (lpl),	 fatty	 acid	

synthase	(fasn),	acetyl-CoA-carboxylase	(acaca),	hormone-sensitive-lipase	(lipe),	

adipose	 tissue	 triglyceride	 lipase	 (pnpla2),	 sterol	 regulatory-element	 binding	

transcription	 factor	 1	 (srebf1)	 or	 peroxisome	 proliferator-activated	 receptor	 γ	

(pparγ),	and	(b)	genes	with	at	least	one	CpG	island	in	the	gene	promoter	or	first	

exon.	The	CpG	Island	Searcher	Program	(http://cpgislands.usc.edu)	was	used	to	

identify	 which	 genes	 had	 CpG	 islands.	 Based	 on	 the	 fulfillment	 of	 these	 two	

criteria,	 only	 fasn,	 pnpla2	 and	 pparγgenes	 were	 selected	 for	 methylation	

analysis.	

DNA	 samples.	 150	 mg	 of	 perirenal	 adipose	 tissue	 samples	 were	 used	 for	

DNA	extraction.	Isolation	of	DNA	was	performed	using	QIAamp	DNA	Investigator	

Kit	 (QIAGEN,	 Valencia,	 USA;	 Cat.	 No.	 56504)	 following	 the	 manufacturer's	

instructions.	

Pyrosequencing.	For	the	pyrosequencing	analysis,	1	µg	of	genomic	DNA	was	

bisulphyte	 converted	 using	 the	 Ez	 DNA	Methylation	 Gold-Kit	 (Zymo	 Research;	

D5005;	 Irvine,	 CA,	 USA)	 according	 to	 the	manufacturer’s	 protocol.	 Primers	 for	
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fasn,	pnpla2	and	pparγ were	designed	using	the	Assay	Design	Software	(Qiagen,	

Valencia,	 USA)	 and	 synthesized	 by	 Fisher	 Scientific	 (Pittsburgh,	 PA).	 For	 each	

gene,	 four,	 three	 and	 two	 fragments	 were	 analysed	 respectively.	 PCR	

amplifications	were	performed	using	Qiagen	HotStar	Taq	Plus	DNA	polymerase	

kit	 reagents	 (Qiagen,	 Valencia,	 USA),	 7.5	 μMbiotinylated	 primer,	 15	 μM	 non-

biotinylated	 primer	 and	 2	 μl	 of	 bisulphyte-treated	DNA	 (60ng).	 PCR	 conditions	

were	 as	 follows:	 5	min	 at	 95°C	 for	 enzyme	activation	 followed	by	40	 cycles	of	

denaturation	for	30	s	at	95°C,	annealing	for	30	sec	at	58°C	and	extension	for	30	s	

at	 72°C,	 with	 a	 final	 extension	 of	 2	 min	 at	 72°C.	 PCR	 primer	 sequences	 and	

sequencing	primer	 sequences	are	given	 in	Table	1.	The	quality	and	quantity	of	

the	PCR	product	was	confirmed	by	agarose	gel	(1%)	electrophoresis	before	the	

cleanup	and	pyrosequencing	analysis.	Pyrosequencing	was	carried	out	using	the	

PyroMark	 Gold	 Q96	 Reagents	 (Qiagen,	 Valencia,	 USA)	 on	 a	 PyroMark	 MD	

pyrosequencer	(Qiagen,	Valencia,	USA)	and	the	methylation	level	was	calculated	

using	the	Pyro	Q	CpG	software	(Qiagen,	Valencia,	USA).	

Functional	analysis.	ALGGEN-PROMO	(http://alggen.lsi.upc.es)	bioinformatic	

program	was	used	 to	 identify	potential	 transcription	 factors	at	 those	CpG	sites	

that	showed	significant	differences	in	the	methylation	level	among	groups.	

Table	1.	PCR	and	pyrosequencing	primer	sequences	

	
Fwd:	Forward;	Rev:	Reverse;	Seq:	Sequence;	BIO:	Biotinylated;	fasn:	fatty	acid	synthase;	pnpla2:	adipose	
tissue	triglyceride	lipase;	pparg:	peroxisome	proliferator-activated	receptor	γ	
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RNA	extraction	for	expression	analysis	

Total	 RNA	 was	 isolated	 from	 the	 perirenal	 adipose	 tissue	 (100	 mg)	 using	

Trizol	 (Invitrogen,	 Carlsbad,	 CA,	 USA)	 according	 to	 the	 manufacturer’s	

instructions.	 In	 a	 following	 step	 DNase	 treatment	 (Applied	 Biosystems,	 Foster	

City,	CA,	USA)	was	carried	out.	The	quantity	of	the	purified	RNA	was	determined	

using	a	NanoDrop	Spectrophotometer	(Thermo	Scientific,	Wilmington,	DE,	USA).	

After	checking	the	suitable	 integrity	 (RIN>	7)	of	RNA	(2100	Bioanalyzer,	Agilent	

Technologies,	Palo	Alto,	CA,	USA),	1.5μg	of	 total	RNA	were	reverse	 transcribed	

into	 complementary	 DNA	 (Applied	 Biosystems	 Inc.,	 Foster	 City,	 CA,	 USA)	

according	to	the	manufacturer’s	instructions.		

Quantitative	PCR	

A	4.75	μL	aliquot	of	each	diluted	complementary	DNA	sample	was	used	for	

PCR	 amplification	 in	 a	 12.5	 μL	 reaction	 volume.	 The	 complementary	 DNA	

samples	 were	 amplified	 on	 an	 iCycler-MyiQ	 real-time	 PCR	 detection	 system	

(BioRad,	Hercules,	CA,	USA)	in	the	presence	of	SYBR®	Green	master	mix	(Applied	

Biosystems,	 Foster	 City,	 CA,	 USA)	 and	 a	 300	 nM	 concentration	 of	 each	 of	 the	

sense	and	antisense	primers.	Real-time	PCR	condition	as	well	as	fasn	and	β-actin	

primers	were	previously	reported	(Alberdi	et	al.	2011).	PCR	Specific	primers	were	

synthesized	 commercially	 (Integrated	 DNA	 Technologies,	 Leuven,	 Belgium):	

mRNA	 levels	 in	 all	 samples	 were	 normalized	 to	 the	 values	 of	 β-actin	 and	 the	

results	expressed	as	fold	changes	of	the	threshold	cycle	(Ct)	value	relative	to	the	

controls	using	 the	2-ΔΔCt	method	 (Livak	 and	 Schmittgen	2001).	 Three	 technical	

replicates	of	each	PCR	reaction	were	done	for	each	sample	and	the	specificity	of	

a	quantitative	PCR	assay	was	confirmed	by	dissociation	curve.	

Nuclear	DNA	methyltransferase	(DNMT)	activity	assay	

Nuclear	protein	was	extracted	from	perirenal	adipose	tissue	(300	mg)	using	

RIPA	 buffer	 (100	 µL).15	 µg	 nuclear	 proteins	 of	 each	 sample	 were	 used	 to	

measure	 DNMT	 activity	 by	 the	 EpiSeeker	 DNMT	 Activity	 Quantification	 Kit	

(ABCAM,	Cambridge,	UK;	Cat.	ab113467)	following	the	manufacturer’s	protocol	

with	minor	modifications.	Briefly,	first	incubation	time	was	increased	to	3	hours.	
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Incubation	conditions	were	37ºC	with	constant	orbital	shaking.	The	results	were	

calculated	as	optical	density/h/mg	according	to	the	manifacturer’s	instructions.	

Statistical	analysis	

Results	 are	 presented	 as	means	 +	 standard	 error	 of	 the	means.	 Statistical	

analysis	was	performed	using	SPSS	19.0	(SPSS	Inc.	Chicago,	Illinois,	USA).Analysis	

of	 variance	 (ANOVA)	 was	 used	 to	 determine	 the	 presence	 or	 absence	 of	

significant	differences	(P<0.05)	in	the	analytical	variables	among	the	four	groups	

of	animals	with	different	diets.	Mixed	linear	model	was	used	including	“diet”	as	

fixed	effect	and	“animal”	as	random	effect.	The	Tukey	test	was	used	as	a	post-

hoc	 test	 for	 multiple	 comparison	 analyses	 among	 the	 four	 groups	 of	 animals.	

Correlation	 analysis	 was	 performed	 using	 Pearson´s	 correlation	 coefficient	 to	

determine	 relationships	 between	 fasn	 methylation	 in	 different	 positions	 and	

fasn	 expression	 (expressed	 as2-ΔΔCt).	 Statistical	 significance	 was	 set-up	 at	 P<	

0.05.		

Results	

Body	weight	and	adipose	tissue	weights		

High-fat	 high-sucrose	 feeding	 resulted	 in	 increased	 body	 weights	 as	

compared	to	control	diet	fed	animals.	When	obesogenic	diet	supplemented	with	

resveratrol	or	pterostilbene	were	 fed	to	the	rats,	significantly	 lower	body	mass	

was	observed	 in	 the	resveratrol	and	pterostilbene	offered	groups	compared	to	

the	HFS	group.	No	differences	in	energy	intake	among	the	three	HFS	fed	animals	

were	 found,	 and	 all	 these	 groups	 showed	 higher	 caloric	 intakes	 than	 their	

standard	diet	fed	counterparts	(Table	2).	
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Table	 2.	 Body	 weight,	 energy	 intake	 and	 adipose	 tissue	 weights	 of	 rats	 fed	

control	diet	or	high-fat,	high-sucrose	diets	supplemented	or	not	with	resveratrol	

or	pterostilbene	for	6	weeks	

	

Values	 are	means	 ±	 SEM	 (n	 =	 8).	Differences	 among	 groups	have	been	determined	by	ANOVA,	 post-hoc	

analysis	Tukey.	E:	epididymal;	PR:	perirenal;	M:	mesenteric.	HFS:	High-fat	high-sucrose;	RSV:	resveratrol;	PT:	

pterostilbene	

The	obesogenic	diet	 induced	a	significant	 increase	 in	adipose	tissue	weight	

in	all	the	anatomical	locations	analyzed.	When	resveratrol	or	pterostilbene	were	

included	in	the	diet	an	important	reduction	in	all	the	adipose	depots,	except	for	

epididymal	adipose	tissue	in	animals	fed	RSV-supplemented	diet,	was	observed.	

These	 molecules	 prevented	 the	 increase	 in	 fat	 accumulation	 induced	 by	 the	

obesogenic	diet	but	only	partially	because	adipose	tissue	weights	in	RSV	and	PT	

groups	were	higher	than	those	in	control	rats.	When	comparing	resveratrol-	and	

pterostilbene-treated	rats,	statistical	differences	were	only	detected	in	the	sum	

of	 epididymal+	 perirenal+	 mesenteric	 adipose	 depots.	 PT	 group	 presented	 an	

additional	16%	reduction	in	the	visceral	fat	(Table	2).		

DNA	methylation	

Taken	as	a	whole,	 the	methylation	pattern	of	ppnla2	and	pparγ	genes	was	

not	significantly	different	among	the	four	experimental	groups	(data	not	shown).	

With	 regard	 to	 fasn,	 no	 relevant	 differences	 in	 total	 methylation	 status	 were	

found	 among	 the	 groups	 (79-80	 %	 methylation	 for	 all	 the	 groups)	 in	 the	

perirenal	 adipose	 tissue.	 However,	 some	 variations	 were	 observed	 in	 specific	

DNA	 positions.	 All	 the	 changes	 observed	 in	 HFS,	 RSV	 and	 PT	 groups	 when	
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compared	with	the	control	group,	expressed	as	percentage,	are	summarized	 in	

Table	3.	Only	those	higher	than	5%	were	considered	since	this	 is	the	sensitivity	

threshold	of	the	pyrosequencing	assay.	

Table	3.	Changes	in	the	methylation	status	of	the	measured	positions	in	fasn	
gene,	expressed	as	percentage	

	
Data	for	each	CpG	site	represent	the	mean	percentage	of	methylation	change	compared	to	the	Control	
group.	HFS:	high	fat-	high	sucrose;	RSV:	resveratrol;	PT:	pterostilbene	

	

As	far	as	obesogenic	feeding	is	concerned,	when	rats	from	HFS	group	were	

compared	 to	 the	 control	 group,	 significant	 hypomethylation	 in	 -90bp	 position	

(P<0.001)	 and	 significant	 hypermethylation	 in	 -62bp	 position	 (P<0.01)	 were	

observed	(Figure	1;	Table	3).	The	addition	of	resveratrol	and	pterostilbene	to	the	

obesogenic	 diet	 led	 to	 different	 methylation	 patterns	 of	 fasn.	 In	 the	 case	 of	

pterostilbene,	 according	 to	 changes	 in	 positions	 -90bp	 and	 -62bp,	 it	 can	 be	

stated	that	this	molecule	reversed	the	changes	 induced	by	the	obesogenic	diet	

(Figure	1;	Table	3).	By	contrast,	when	HFS	group	was	compared	to	the	RSV	group	

no	significant	changes	in	methylation	status	were	observed	(Figure	1;	Table	3).	

In	 the	 four	experimental	 groups	methylation	 status	was	 lower	 in	positions	

after	the	TSS	(+754bp	to	+956bp)	(average	methylation	66%)	than	in	the	rest	of	

the	 promoter	 region	 (average	 percentage	 90.5%)	 (Figure	 1).	 This	 fits	 with	 a	

canonical	pattern	of	methylation	(Davies	et	al.	2012).	
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Figure	 1.	 Fasn	methylation	 pattern	 in	 selected	 CpG	 sites	 in	 perirenal	 adipose	

tissue	of	rats	fed	a	control	diet	or	high-fat,	high-sucrose	diets	supplemented	or	

not	 (HFS)	 with	 resveratrol	 (RSV)	 or	 pterostilbene	 (PT)	 for	 6	weeks.	 Values	 are	

presented	 as	 means	 +	 standard	 error	 of	 the	 means.	 Symbols	 in	 bars	 show	

statistical	 differences	 between	 groups	 as	 follows:	 Control	 vs	 HFS:	 ***P<0.001;	

Control	 vs	 RSV:	 ϒP<0.05;	 ϒϒϒP<0.001;	 HFS	 vs	 RSV:	 ##	 P<0.01;	 HFS	 vs	 PT;	

ΔΔ P<0.01;	 ΔΔΔ P<0.001;	 PT	 vs	 RSV;	 +	 P<0.05;	 ++	 P<0.01;	 +++	 P<0.001.	 TSS:	

transcriptional	start	site.	

Gene	expression	of	fatty	acid	synthase	

Fasn	 expression	 was	 significantly	 increased	 (five-fold)	 in	 rats	 fed	 the	

obesogenic	 diet	 (HFS	 group)	 as	 compared	 to	 the	 control	 rats.	 Resveratrol	 and	

pterostilbene	prevented	this	effect.	Thus,	expression	values	in	these	two	groups	

were	significantly	lower	than	that	of	the	HFS	group,	but	similar	to	that	of	control	

rats	(Figure	2).		
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Figure	 2.	 Gene	 expression	 of	 fatty	 acid	 synthase	 in	 perirenal	 adipose	 tissue	 of	

rats	fed	a	control	diet	or	high-fat,	high-sucrose	diets	supplemented	or	not	(HFS)	

with	resveratrol	(RSV)	or	pterostilbene	(PT)	for	6	weeks.	Values	are	presented	as	

means	 +	 standard	 error	 of	 the	means.	 a,b	Bars	 not	 sharing	 common	 letter	 are	

significantly	 different	 (P<0.05).	 Fasn:	 fatty	 acid	 synthase,	 HFS:	 high-fat	 high-

sucrose.	

Correlation	analysis	between	methylation	and	expression	in	fasn	gene	

Pearson´s	 correlation	 coefficients	 were	 calculated	 when	 significant	

differences	 in	 fasn	methylation	 status	were	 found	 between	 groups	 (Figure	 1).	

Significant	correlations	were	only	found	in	-90bp	position	when	control	and	HFS	

groups(P=0.01;	 Pearson-coefficient:	 0.708),	 as	 well	 as	 HFS	 and	 PT	 groups	

(P=0.05;	Pearson-coefficient:	0.648)were	considered(Figure	3).	
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Figure	 3.	 Pearson’s	 correlations	 between	 percentage	 of	 DNA	methylation	 and	

gene	expression	for	fasn	in	rats	from	Control	and	HFS	groups	(A)	and	in	rats	from	

HFS	 and	 PT	 groups	 (B)	 were	 compared.	 Statistical	 significance	 was	 set-up	 at	

P<0.05.	HFS:	high-fat	high-sucrose;	PT:	pterostilbene.	

Nuclear	DNA	methyltransferase	activity	

Nuclear	DNA	methyltransferase	 (DNMT)	activity	 showed	a	decrease	 in	HFS	

group	 when	 compared	 with	 the	 control	 group,	 which	 showed	 a	 P=0.061.	 No	

differences	were	found	among	the	other	three	experimental	groups	(Figure	4).	

	

Figure	4.	Nuclear	DNA	methyltransferase	activity	in	perirenal	adipose	tissue	of	

rats	fed	a	control	diet	or	high-fat	high-sucrose	diets	supplemented	or	not	(HFS)	

with	resveratrol	(RSV)	or	pterostilbene	(PT)	for	6	weeks.	Values	are	presented	as	

means	+	standard	error	of	the	means.	

Discussion	

As	 expected,	 feeding	 a	 diet	 rich	 in	 fat	 and	 sucrose	 led	 to	 increased	 energy	

intake,	and	consequently	to	 increased	fat	accumulation,	as	observed	when	rats	

from	HFS	group	were	compared	with	 rats	 fed	 the	control	diet.	The	addition	of	

resveratrol	or	pterostilbene	 in	the	HSF	diet	at	a	dose	of	30	mg/kg/d	prevented	

this	effect,	but	only	partially	because	rats	in	groups	RSV	and	PT	did	not	reach	the	

values	showed	by	control	animals	in	body	weight	and	adipose	tissue	weights.	In	

general	terms,	no	important	differences	were	observed	between	both	phenolic	

compounds.		
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As	explained	 in	 the	Material	 and	Method	section,	 in	 the	present	 study	we	

were	 interested	 in	 the	methylation	of	 lpl,	 fasn,	acaca,	 lipe,	 pnpla2,	 srebf1	 and	

pparγ	 because	 these	 are	 genes	 play	 important	 roles	 in	 the	 control	 of	

triacylglycerol	metabolism	 in	adipose	 tissue.	Moreover,	 these	genes	have	been	

shown	to	be	targets	for	resveratrol	(Rivera	et	al.	2009;	Szkudelska	and	Szkudelski	

2010;	Baile	et	al.	2011;	Kim	et	al.	2011;	Alberdi	et	al.	2011;	Gómez-Zorita	et	al.	

2012;	Lasa	et	al.	2012).	Nevertheless,	when	CpG-rich	areas	were	investigated	we	

observed	that	only	fasn,	pnpla2	and	pparγ	genes	showed	these	areas	near	to	the	

gene	promoter.	Consequently,	only	these	three	genes	were	studied.		

The	pattern	of	methylation	showed	by	pnpla2	and	pparγ in	control	rats	was	

not	 altered	 in	 rats	 from	 HFS,	 RSV	 and	 PT	 groups,	 suggesting	 that	 under	 the	

present	dietary	conditions	this	epigenetic	mechanism	was	not	 important	 in	the	

regulation	of	 these	genes.	By	contrast,	 several	 changes	were	observed	 in	 fasn.	

Thus,	the	following	discussions	will	focus	on	this	gene.		

Feeding	 a	 high-fat	 high-sucrose	 diet	 led	 to	 a	 significant	 increase	 in	 fasn	

expression.	 It	 is	 well	 documented	 that	 while	 high-fat	 diets	 decrease	 the	

expression	of	this	gene	(Duran-Montgé	et	al.	2009;	Jiang	et	al.	2009),	diets	rich	

either	 in	 simple	 carbohydrates	 (sucrose)	 or	 carbohydrates	 with	 high	 glycemic	

index,	 induce	an	increase	(Kim	and	Freake	1996;	Kabir	et	al.	1998;	Morris	et	al.	

2003).	It	seems	that	in	the	present	study,	the	effect	of	high	sucrose	content	was	

greater	than	that	of	high	fat	content	and	the	final	effect	was	an	up-regulation	of	

fasn.	 These	 results	agree	with	 those	 reported	by	Yang	et	al.	 (Yang	et	al.	2012)	

when	using	this	type	of	diet.	Taking	into	account	that	this	enzyme	catalyzes	the	

synthesis	of	long-chain	fatty	acids	from	acetyl-CoA	and	malonyl-CoA,	and	thus	it	

is	one	of	the	rate-limiting	enzyme	in	de	novo	lipogenesis,	it	can	be	proposed	that	

the	 increase	 in	body	 fat	 induced	by	 the	high-fat,	high-sucrose	diet	was	due,	at	

least	in	part,	to	increase	in	fatty	acid	synthesis.		

Obesogenic	 diet	 induced	 significant	 DNA	methylation	 changes	 with	 respect	 to	

the	controls.	We	observed	a	mild	but	 significant	methylation	 increase	 in	 -62bp	

position,	while	a	decrease	 in	 -90bp,	being	only	 this	one	significantly	correlated	

with	 the	 overexpression	 of	 fasn.	 It	 has	 been	 previously	 reported	 that	 small	
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methylation	 changes	 can	 be	 associated	 with	 gene	 expression	 variability	 that	

exert	significant	effects	on	phenotype	(Irizarry	et	al.	2009),	and	even	if	we	think	

that	not	all	the	expression	change	observed	for	fasn	should	be	attributed	to	this	

methylation	change	at	position	-90bp,	we	believe	that	it	truly	contributed	to	the	

down-regulation	of	 fasn.	 Interestingly,	 nuclear	DNMT	activity	 showed	a	 similar	

pattern	of	response	to	DNA	methylation	level	at	-90bp,	this	meaning	that	it	could	

be	a	mechanism,	among	others,	which	justifies	the	observed	effects	of	high-fat	

high-sucrose	feeding	and	pterostilbene	on	fasn	methylation.	

To	better	understand	the	mechanism	by	which	DNA	methylation	level	in	the	-

90bp	position	of	 fasn	 could	be	 related	 to	 the	decrease	 in	gene	expression,	we	

searched	 for	consensus	 response	elements	around	 this	position	 -90bp	position	

of	 fasn	 promoter	 is	 a	 binding	 site	 for	 Sp1,	 an	 ubiquitous	 transcription	 factor	

which	acts	as	a	glucose	sensor	(Vaulont	et	al.	2000).	 It	has	been	demonstrated	

that	Sp1	 is	crucial	 for	 fasn	gene	promoter	activity	 in	adipocytes	 (Rolland	et	al.,	

1996).	Consequently,	the	influence	of	the	observed	methylation	status	changes	

on	the	regulation	of	fasn	transcription	mediated	by	Sp1	cannot	be	discarded.	

Hypomethylation	 of	 fasn	 induced	 by	 a	 high-fat,	 high-sucrose	 feeding	 was	

previously	reported	by	Uriarte	et	al.	 (Uriarte	et	al.	2013).	When	comparing	this	

study	with	the	present	one,	two	important	issues	should	be	underlined.	On	the	

one	 hand,	 Uriarte	 et	 al.	 observed	 hypomethylation	 in	 fasn	 after	 20	 weeks	 of	

feeding	 a	 high-fat	 high-sucrose	 diet.	 In	 the	 present	 study,	 this	 effect	 was	

observed	 after	 6	 weeks	 of	 the	 same	 dietary	 treatment,	 meaning	 that	 this	

epigenetic	mechanism	 does	 not	 need	 very	 long	 periods	 to	 take	 place.	 On	 the	

other	 hand,	 the	 method	 used	 by	 Uriarte	 et	 al.	 to	 measure	 DNA	 methylation	

(MALDI-TOF	 mass	 spectrophotometry)	 was	 different	 from	 that	 used	 in	 the	

present	 study.	 The	 fact	 of	 finding	 similar	 results	 by	 using	 two	 methods	 with	

differences	in	specificity,	sensibility	and	accuracy	reinforces	the	hypomethylating	

action	of	this	dietary	pattern	on	fasn.	

Resveratrol	and	pterostilbene	treatments	 led	to	significant	decreases	 in	fasn	

expression.	mRNA	 levels	 found	 in	 RSV	 and	 PT	 groups	were	 not	 different	 from	

those	 found	 in	 the	 control	 group,	 meaning	 that	 these	 molecules	 totally	
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prevented	 the	 alteration	 induced	 by	 the	 obesogenic	 diet.	 This	 effect	 was	

involved,	 at	 least	 in	 part,	 in	 the	 obesity	 prevention	 action	 showed	 by	 these	

phenolic	 compounds.	 As	 far	 as	 resveratrol	 effects	 are	 concerned,	 the	

methylation	 pattern	 in	 the	 investigated	 regions	 of	 fasn	 gene	 remained	

unchanged	 in	 RSV	 group	when	 compared	with	 the	HSF	 group,	 suggesting	 that	

gene	expression	changes	were	not	 likely	to	be	associated	with	modifications	 in	

DNA	methylation.	 By	 contrast,	 pterostilbene	 reversed	 the	 changes	 induced	 by	

the	 obesogenic	 diet	 in	 positions	 -90bp	 and	 -62bp,	 and	 the	 percentage	 of	

methylation	 in	 these	 regions	 was	 similar	 in	 PT	 and	 control	 groups.	 Pearson’s	

correlations	 revealed	 that	 only	 hypermethylation	 in	 -90bp	 position	 showed	

significant	 correlation	with	 fasn	expression.	 These	 results,	 together	with	 those	

obtained	 when	 the	 effects	 of	 obesogenic	 diet	 were	 analysed,	 reinforce	 the	

relevance	of	methylation	 in	 -90bp	position	 in	 the	control	of	 fasn	expression	by	

the	diet.	

Taken	as	a	whole,	the	results	obtained	in	the	present	study	demonstrate	that	

the	 up-regulation	 of	 fasn	 gene	 induced	 by	 an	 obesogenic	 feeding	 based	 in	 a	

high-fat	high-sucrose	diet	is	related	to	hypomethylation	of	this	gene	in	position	-

90bp.	 Under	 our	 experimental	 conditions,	 both	 resveratrol	 and	 pterostilbene	

prevent	 fasn	 up-regulation,	 but	 this	 change	 in	 gene	 expression	 seems	 to	 be	

mediated	by	changes	in	methylation	status	only	in	the	case	of	pterostilbene.		
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Abstract		

The	epigenetic	mechanisms	of	action	of	resveratrol	as	an	anti-obesity	molecule	

have	not	been	fully	addressed	so	far.	The	aim	of	the	present	study	was	to	assess	

changes	produced	by	resveratrol	 in	microRNA	(miRNA)	profile	 in	white	adipose	

tissue	(WAT)	and	to	relate	these	changes	to	those	induced	in	the	expression	of	

genes	 involved	 in	 triacylglycerol	 metabolism.	 Male	 Wistar	 rats	 were	 fed	 (6	

weeks)	an	obesogenic	diet:	a	control	group	and	a	group	treated	with	resveratrol	

(30	mg/kg/d).	A	miRNA	microarray	was	 carried	out	 in	perirenal	 adipose	 tissue.	

Overexpression	of	miR-539-5p	and	miR-1224-5p	was	performed	in	3T3-L1	cells.	

Protein	 expression	was	 analysed	by	western-blot	 and	 gene	expression	by	qRT-

PCR.	 Associations	 between	 variables	 were	 assessed	 by	 Pearson´s	 correlations.	

The	microarray	showed	 that	3	miRNAs	were	decreased	and	13	were	 increased	

after	resveratrol	treatment.	Among	those	miRNAs	increased,	miR-129,	miR-328-

5p	 and	miR-539-5p	 showed	 predicted	 target	 genes	 relevant	 for	 triacylglycerol	

metabolism	in	WAT	(pparγ: peroxisome	proliferator-activated	receptor	gamma,	

hsl:	 hormone	 sensitive	 lipase	 and	 sp:	 SP1	 transcription	 factor)	 in	 miRWalk	

Database.	 Moreover,	 the	 literature	 shows	 that	 miR-1224,	 another	 miRNA	 up-

regulated	 by	 resveratrol,	 can	 also	 regulate	 sp1.	 Among	 the	 three	 targets,	 only	

SP1	 showed	 a	 reduction	 in	 protein	 expression.	 Correlation	 and	 overexpression	

studies	revealed	that	the	decrease	in	SP1	protein	expression	was	only	associated	

with	 the	 increase	 of	miR-539-5p.	 In	 addition,	 significant	 reductions	 in	 SREBP1	

protein	expression	and	 fasn	gene	expression	were	 found	 in	 resveratrol-treated	

rats.	In	conclusion,	the	up-regulation	of	miR-539-5p	is	 involved	in	the	inhibition	

of	de	novo	lipogenesis	induced	by	resveratrol	in	WAT.	 	

Key	words:	adipose	tissue,	de	novo	lipogenesis,	microRNAs,	resveratrol,	SP1.	
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1	 INTRODUCTION		

Resveratrol	 has	 been	 shown	 to	 elicit	 anti-obesity	 properties	 in	 animal	

models	 such	 as	 mice	 (91,	 94,	 108),	 rats	 (109-111)	 and	 primates	 (112).	 This	

polyphenol	 is	 a	 trans-3,5,4’-trihydroxystilbene	 occurring	 naturally	 in	 various	

plants,	including	grapes,	berries	and	peanuts,	in	response	to	stress	as	a	defense	

mechanism	 against	 fungal,	 viral	 and	 bacterial	 infections,	 and	 damage	 from	

exposure	to	ultraviolet	radiation	(113,	114).		

The	mechanisms	 of	 action	 of	 resveratrol	 as	 an	 anti-obesity	molecule	 have	

been	 studied	 and	 reported	 in	 the	 literature:	 reduction	 in	 proliferation	 and	

differentiation	 of	 pre-adipocytes,	 increase	 in	 apoptosis,	 increase	 in	 lipid	

mobilization	and	 fatty	acid	oxidation,	and	decrease	 in	de	novo	 lipogenesis	 (88,	

115).	However,	the	vast	majority	of	these	studies	have	not	addressed	this	issue	

at	an	epigenetic	level.	

Epigenetics	 involves	 the	 control	 mechanisms	 of	 gene-activity-describing-

pathways	 which	 are	 different	 from	 those	 directly	 attributable	 to	 the	 DNA	

sequence,	and	which	have	an	influence	on	the	adaptive	response	of	an	organism	

(116).	 Epigenetic	 mechanisms	 include	 non-coding	 RNAs,	 such	 as	 microRNAs	

(miRNAs)	(117).	

MiRNAs	 are	 small,	 non-coding	 RNAs	 which	 regulate	 the	 expression	 of	

specific	 target	 gene	 post-transcriptionally,	 mainly	 by	 suppressing	 translation	

and/or	 reducing	 the	 stability	 of	 their	 target	 mRNAs	 (55,	 118).	 MiRNAs	 are	

essential	regulators	of	diverse	biological	processes,	comprising	lipid	metabolism	

and	pre-adipocyte	differentiation	(119-121).		

It	has	been	reported	that	miRNAs	can	mediate	 the	effects	of	nutrition.	A	

wide	 range	of	dietary	 factors,	which	 includes	micronutrients	and	non-nutrients	

such	as	polyphenols,	can	modify	the	expression	of	miRNAs	(122).	The	effects	of	

several	 polyphenols	 on	miRNAs	 involved	 in	 cancer	 have	 been	widely	 reported	

(52,	123-132).	By	contrast,	results	concerning	their	effects	on	miRNAs	involved	in	

triacylglycerol	 metabolism	 are	 scarcer,	 and	 they	 have	 mainly	 addressed	 in	

hepatocytes	and	liver.	Moreover,	these	studies	have	not	focussed	on	resveratrol,	

but	 on	 other	 individual	 polyphenols	 such	 as	 proanthocyanidins(133,	 134),	
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quercetin,	heperidin,	naringenin,	anthocyanin,	catechin,	proanthocyanin,	caffeic	

acid,	 ferulic	 acid	 and	 curcumin	 in	 liver	 (135),	 or	 on	 plant	 extracts,	 such	 as	

Hibiscus	 sabdariffa(136).	 As	 far	 as	 we	 know,	 there	 are	 no	 reported	 studies	

devoted	 to	 assessing	 the	 effects	 of	 resveratrol	 on	 miRNAs	 involved	 in	

triacylglycerol	metabolism,	and	more	specifically	in	adipose	tissue.	

In	 this	 context,	 the	 aim	 of	 the	 present	 study	 was	 to	 assess	 the	 changes	

produced	by	resveratrol	 in	miRNA	profile	 in	white	adipose	tissue	from	rats	and	

to	 explore	whether	 these	modifications	 can	 be	 related	 to	 changes	 induced	 by	

this	polyphenol	in	triacylglycerol	metabolism	in	this	tissue.		

2	 EXPERIMENTAL		

2.1	 Animals,	diets	and	experimental	design	

The	experiment	was	conducted	using	sixteen	six-week-old	male	Wistar	rats	

purchased	from	Harlan	 Ibérica	 (Barcelona,	Spain)	and	took	place	 in	accordance	

with	 the	 institution’s	 guide	 for	 the	 care	 and	 use	 of	 laboratory	 animals	 (CUEID	

CEBA/30/2010).	 The	 rats	 were	 individually	 housed	 in	 polycarbonate	metabolic	

cages	 (TechniplastGazzada,	 Guguggiate,	 Italy)	 and	 placed	 in	 an	 air-conditioned	

room	(22	+	2ºC)	with	a	12	h	light-dark	cycle.	After	a	6-day	adaptation	period,	rats	

were	randomly	divided	into	two	dietary	groups	of	eight	animals	each,	namely	a	

control	 group	 and	 a	 group	 treated	 with	 resveratrol	 (30	 mg/kg/d)	 fed	 a	

commercial	 obesogenic	 diet,	 high	 in	 sucrose	 (20.0%)	 and	 fat	 (22.5%)	 (Harlan	

Iberica,	 TD.06415)	 for	 6	 weeks.	 Resveratrol,	 supplied	 by	 Monteloeder	 (Elche,	

Spain),	was	added	to	the	diet	as	previously	reported	(137)	 in	order	to	ensure	a	

dose	of	30	mg	resveratrol/kg	body	weight/d.	All	animals	had	free	access	to	food	

and	water.	 Food	 intake	 and	 body	weight	were	measured	 daily.	 This	 cohort	 of	

animals	had	been	previously	used	in	another	study	reported	by	our	group	(138).	

The	parameter	food	efficiency	was	calculated	as	Δbody	weight/100	kcal.	

At	 the	 end	 of	 the	 experimental	 period,	 animals	 were	 sacrificed	 under	

anaesthesia	 (chloral	 hydrate)	 by	 cardiac	 exsanguination	 after	 a	 12-hour	 fasting	

period.	 Adipose	 tissue	 from	 different	 anatomical	 locations	 (perirenal,	
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epididymal,	 mesenteric	 and	 subcutaneous)	 was	 dissected,	 weighed	 and	

immediately	frozen.	

2.2	 MicroRNA	microarray	

Total	 RNA	 containing	 small	 RNA	 species	 was	 extracted	 from	 perirenal	

adipose	tissue	with	a	microRNA	extraction	kit	(mirVana,	Ambion,	Austin,	TX,	USA)	

according	 to	 the	manufacturer's	 protocol.	 RNA	quality	was	 assessed	 in	 a	 2100	

Bioanalyzer	(Agilent	Technologies,	Palo	Alto,	CA,	USA)	by	using	a	Eukaryote	Total	

RNA	Nano	and	Small	RNA	assays	(Agilent	Technologies,	Palo	Alto,	CA,	USA).	The	

quantity	 of	 the	 purified	 RNA	 was	 determined	 using	 a	 NanoDrop	

Spectrophotometer	(Thermo	Scientific,	Wilmington,	DE,	USA).	

After	 checking	 whether	 the	 concentration	 and	 purity	 were	 sufficient	 for	

hybridization,	four	samples	from	each	group	were	used	for	microarray	analysis.	

The	microarray	was	performed	using	a	rat	miRNA	microarray	(ID	046	066	Agilent	

Technologies,	 Palo	 Alto,	 CA,	 USA)	 where	 719	 rat	 miRNA	 probes	 were	

represented	 (content	 sourced	 from	 the	 miRBase	 database	 Release	 19.0).	 For	

labeling,	hybridization,	washing	and	scanning	the	miRNA	Microarray	System	with	

miRNA	 Complete	 Labeling	 and	 Hyb	 KITG	 v.	 2.2	 protocols	 were	 followed	

according	 to	 manufacture	 recommendations	 (Agilent	 Technologies,	 Palo	 Alto,	

CA,	USA).		

2.2.1	Validation	of	miRNAs	

The	validation	process	was	performed	in	two	steps.	The	first	one,	previous	

to	any	further	analysis,	consisted	in	the	random	selection	of	two	miRNA	among	

those	with	 low	 fold	 change	 values,	miR-211-5p	 (up-regulated)	 and	miR-511-5p	

(down-regulated).	In	a	second	step,	after	analyzing	changes	in	gene	and	protein	

expression	of	target	genes	for	the	miRNAs	significantly	modified	by	resveratrol,	

miR-539-5p	 and	 miR-1224	 were	 also	 chosen	 (Figure1).	 This	 second	 step	

reinforced	 the	 validation	 process.	 In	 both	 steps	 the	 validation	was	 carried	 out	

with	qRT-PCR	in	all	experimental	samples	(n=8/group).		
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Figure	 1.	 A.	 Alignment	 of	 rno-miR-539-5p/mmu-miR-539-5p	 and	 rno-miR-

1224/mmu-miR-1224-5p	 binding	 sites	 in	 3´	 untranslated	 region	 (3´UTR)	 of	 sp1	

transcription	factor	mRNA.	B.	MicroRNA-gene	and	gene-gene	regulatory	network	

involved	 in	 fatty	 acid	 synthase	 pathway.	 rno:	 rattusnorvergicus.	 mmu:	

musmusculus.	SP1:	Sp1	transcription	factor,	SREBP1:	sterol	regulatory	element-

binding	protein	1,	fasn:	fatty	acid	synthase.	

Total	 RNA	 (5	 ng)	 was	 reverse-transcribed	 using	 the	 TaqMan®	MicroRNA	

Reverse	 Transcription	 kit	 (Applied	 Biosystems,	 Foster	 City,	 CA,	 USA)	 and	 the	

miRNA-specific	 reverse-transcription	 primers	 provided	 with	 the	 TaqMan®	

MicroRNA	 Assay	 (Applied	 Biosystems,	 Foster	 City,	 CA,	 USA).	 For	 the	 reverse	

transcription,	iCycler™	Thermal	cycler	(Applied	Biosystems,	Foster	City,	CA,	USA)	

was	used	with	 the	 following	 conditions:	 16°C	 for	 30	min;	 42°C	 for	 30	min	 and	

85°C	for	5	min.	1.33	µL	of	miRNA-specific	cDNA	from	this	reaction	was	amplified	

with	 the	TaqMan®	Universal	PCR	master	mix	and	 the	 respective	 specific	probe	

provided	in	the	TaqMan®	MicroRNA	Assay	(Applied	Biosystems,	Foster	City,	CA,	

USA).	The	targeted	miRNA	assay	sequences	were	as	follows:		

rno-miR-211-3p		 5’-GGCAAGGACAGCAAAGGGGG-3’	

rno-miR-1224	 	 5’-	GUGAGGACUGGGGAGGUGGAG	-3’	

rno-miR-511-3p		 5’-AAUGUGUAGCAAAAGACAGGA-3’		



MANUSCRIPTS	
	

78	
	

rno-miR-539-5p		 5´-GGAGAAAUUAUCCUUGGUGUGU-3´	

PCR	 was	 performed	 in	 an	 iCycler™–MyiQ™	 Real-time	 PCR	 Detection	

System	(Applied	Biosystems,	Foster	City,	CA,	USA).	Amplification	was	performed	

at	95°C	for	10	min,	followed	by	40	cycles	of	95°C	for	15	s	and	60°C	for	1	min.	U6	

small	 nuclear	 RNA	was	 used	 as	 an	 endogenous	 control.	 All	mRNA	 levels	 were	

normalized	 to	 the	 values	 of	 U6	 snRNA.	 The	 results	 were	 expressed	 as	 fold	

changes	of	threshold	cycle	(Ct)	value	relative	to	controls	using	the	2-ΔΔCt	method	

(139).		

2.2.2	 Predicted	target	genes	for	miRNAs	modified	by	resveratrol		

Sequences	 of	 miRNAs	 up-	 and	 down-regulated	 by	 resveratrol	 were	

obtained	in	MIRBASE	(mirbase.org).	In	order	to	obtain	the	predicted	target	genes	

for	 these	miRNAs,	 a	 comparative	 analysis	 by	 five	 algorithms	 (miRanda,	miRDB,	

miRWalk	1.0,	RNA22	and	Target	Scan)	was	performed	according	to	the	miRWalk	

Database	(140).	After	checking	the	function	of	all	these	predicted	genes	in	Gene	

Cards	 (http://www.genecards.org),	 only	 those	 with	 a	 well-documented	

involvement	in	the	anti-obesity	effect	of	resveratrol	were	selected.	

2.3	 Cell	culture	

	 3T3-L1	 preadipocytes,	 supplied	 by	 American	 Type	 Culture	 Collection	

(Manassas,	VA,	USA),	were	cultured	in	DMEM	containing	10%	fetal	bovine	serum	

(FBS).	 One	 day	 after,	 the	 cells	 were	 stimulated	 to	 differentiate	 with	 DMEM	

containing	 10%	 FBS,	 10	 μg/mL	 insulin,	 0.5	 mMisobutylmethylxanthine	 (IBMX)	

and	1	μM	dexamethasone	for	2	days.On	day	2,	the	differentiation	medium	was	

replaced	 by	 10%	 fetal	 bovine	 serum/DMEM	 medium	 containing	 0.2	 μg/mL	

insulin	and	incubated	for	2	days.	This	medium	was	changed	every	two	days	until	

the	 5	 day,	 when	 the	 cells	 were	 harvested.	 All	 media	 contained	 1%	

Penicillin/Streptomycin	 (10,000	 U/mL),	 and	 the	 media	 for	 differentiation	 and	

maturation	 contained	 1%	 (v/v)	 of	 Biotin	 and	 Panthothenic	 Acid.	 Cells	 were	

maintained	at	37°C	in	a	humidified	5%	CO2	atmosphere.	
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2.4	 miRNA	transfection	

	 Adipocytes	 in	 day	 five	 of	 differentiation,	 and	 at	 a	 confluence	 status	 of	

approximately	90%,	were	transfected	with	DeliverX™	Plus	siRNA	Transfection	Kit	

(Affimetrix,	 Santa	 Clara,	 CA)	 prepared	 following	 manufacturer´s	 protocol	 with	

mirVana	 miRNA	 mimics	 of	 mmu-miR-539-5p	 and	 mmu-miR-1224-5p	

(homologous	 to	 rno-miR-539-5p	 and	 rno-miR-1224	 respectively)	 (Figure	 1A)	

(Applied	 Biosystems,	 Foster	 City,	 CA,	 USA)	 at	 a	 final	 concentration	 of	 30	mM.	

Optimal	 transfection	conditions	were	determined	 in	previous	experiments,	and	

transfection	 efficiency	 was	 assessed	 using	 miRNA	 probes	 and	 fluorescent	

transfection	controls.	Cell	transfection	period	was	established	48	hours.	To	rule	

out	unspecific	effects,	control	cells	were	transfected	with	negative	controls.		

2.5	 Protein	expression	analysis	

2.5.1	 Hormone	 sensitive	 lipase,	 peroxisome	 proliferator-activated	 receptor	

gamma	and	sterol	regulatory	element-binding	protein	1			

For	hormone	sensitive	lipase	(HSL)	protein	extraction,	100	mg	of	perirenal	

adipose	 tissue	were	homogenized	 in	 a	 PBS	buffer	with	protease	 inhibitors	 (pH	

7.4)	 and	 centrifuged	 (800	 g,	 5	 minutes,	 4ºC).	 In	 the	 case	 of	 peroxisome	

proliferator-activated	 receptor	 gamma	 (PPARγ and	 sterol	 regulatory	 element-

binding	protein	1	(SREBP1),	a	nuclear	protein	extraction	was	carried	out	with	100	

mg	of	perirenal	tissue,	as	previously	described	(141).	

Immunoblot	analyses	were	performed	in	all	samples	(n=8/group)	using	40	

µg	 of	 protein	 for	 HSL	 and	 10	 µg	 and	 30	 µg	 of	 protein	 for	 PPARγ and	 SREBP1	

respectively,	separated	by	electrophoresis	in	a	7.5%	SDS-polyacrylamide	gel	and	

transferred	 to	 PVDF	 membranes.	 Subsequently,	 the	 membranes	 of	 the	 two	

assays	 were	 blocked	 with	 casein	 PBS-Tween	 buffer	 for	 2	 hours.	 These	

membranes	 were	 incubated	 overnight	 at	 4ºC	 with	 HSL	 antibody	 (1:1000),	

PPARγ antibody	 (1:1000)	 or	 SREBP1	 antibody	 (1:1000)	 (Santa	 Cruz	

Biotechnology,	Santa	Cruz,	CA,	USA)	respectively.	Afterwards,	polyclonal	mouse	

anti-β-actin	 (1:5000)	 (Sigma,	 St.	 Louis,	MO,	USA),	 and	 rabbit	 anti-HSL	 antibody	

(1:5000)	 (Sigma,	 St.	 Louis,	 MO,	 USA)	 were	 incubated	 for	 2	 hours	 at	 room	
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temperature.	Antibodies	were	visualized	by	using	a	chemiluminescent	substrate	

(Thermo	 Scientific,	 Wilmington,	 DE,	 USA)	 and	 quantified	 by	 a	 ChemiDoc	 MP	

imaging	system	(BioRad,	USA).	After	antibody	stripping	of	PPARγandSREBP1,	the	

membranes	 were	 blocked	 and	 then	 incubated	 with	 a	 mouse	 anti-PPARγand	

mouse	 anti-SREBP1	 (Sigma,	 St.	 Louis,	 MO,	 USA),	 and	 measured	 again.	 The	

measurements	were	normalized	by	b-actin.	

2.5.2	 SP1	transcription	factor	

300	mg	of	perirenal	adipose	tissue	were	homogenized	in	a	PBS	buffer	with	

protease	inhibitors	(pH	7.4)	and	centrifuged	(14,000	g,	1	minute,	4ºC).	The	pellet	

was	 resuspended	 in	 100	µL	 of	 radioimmunoprecipitation	 assay	 buffer	 (RIPA	

buffer).	The	homogenates	were	centrifuged	at	36,000	g	for	10	min	at	4°C.	In	the	

case	 of	 3T3-L1	 cells,	 total	 protein	 was	 extracted	 with	 200	 mL	 of	 lysis	 buffer	

(trisHCl	 2mM,	 sodium	 chloride	 (NaCl)	 0.1M,	 Triton	 1%,	 glycerol	 10%,	 sodium	

orthovanadate	 (OvNa)	1mM,	EDTA	2mM,	phenylmethylsulfonyl	 fluoride	 (PMSF)	

1mM,	 sodium	 fluoride	 (FNa)	 2mM	and	 protease	 inhibitor	 1%)	 and	 centrifuged	

(12,000	 g,	 15	 minute,	 4ºC).	 The	 protein	 concentration	 was	 measured	 by	

bicinchoninic	 acid	 (BCA)	 protein	 assay	 kit	 (Thermo	 Scientific,	 Wilmington,	 DE,	

USA).	

For	 the	 SP1,	 inmunobloting	 after	 immunoprecipitation	was	performed.	A	

total	of	100μg	of	adipose	tissue	extracts	or	20μg	of	3T3-L1	protein	extract,	were	

diluted	 with	 three	 volumes	 of	 PBS	 (with	 added	 protease	 inhibitors).	 SP1	 was	

immunoprecipitated	with	1:20	of	SP1	antibody	(Santa	Cruz	Biotech,	CA,	USA)	in	

constant	rotation,	at	4°C,	overnight.	Afterwards,	20	μL	Protein	G	Agarose	(Santa	

Cruz	Biotech,	CA,	USA)	was	added	to	each	sample,	and	these	were	rotated	for	3	

h	at	4ºC.	The	immunoprecipitated	samples	(n=8/group)	were	then	washed	three	

times	with	500	μL	PBS	buffer.	A	total	of	40	μg	of	tissue	extracts	or	20	μg	of	cell	

extracts	 were	 separated	 by	 electrophoresis	 in	 a	 7.5%	 SDS–polyacrylamide	 gel	

and	 then	 transferred	 to	 a	 PVDF	 membrane.	 The	 membranes	 were	 incubated	

overnight	at	 room	temperature	with	SP1	antibody	 (1:200)	 (Santa	Cruz	Biotech,	

CA,	 USA).	 Afterwards,	 polyclonal	 rabbit	 anti-SP1	 antibody	 (1:1000)	 (Sigma,	 St.	

Louis,	MO,	USA)	was	 incubated	for	2	hours	at	room	temperature.Antibody	was	
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visualized	 by	 using	 a	 chemiluminescent	 substrate	 (Thermo	 Scientific,	

Wilmington,	DE,	USA)	and	quantified	by	a	ChemiDoc	MP	imaging	system	(BioRad,	

USA).	

2.6	 Gene	expression	analysis	

Total	 RNA	 was	 isolated	 from	 the	 perirenal	 adipose	 tissue	 (100	 mg)	 in	 all	

samples	(n=8/group)	using	Trizol	(Invitrogen,	Carlsbad,	CA,	USA)	according	to	the	

manufacturer’s	 instructions.	 In	 a	 following	 step	 DNAse	 treatment	 (Applied	

Biosystems,	 Foster	City,	CA,	USA)	was	 carried	out.	 The	quantity	of	 the	purified	

RNA	was	determined	using	a	NanoDrop	Spectrophotometer	 (Thermo	Scientific,	

Wilmington,	 DE,	 USA).	 A	 total	 of	 1.5	 μg	 of	 RNA	were	 reverse	 transcribed	 into	

complementary	DNA	(Applied	Biosystems	Inc.,	Foster	City,	CA,	USA)	according	to	

the	manufacturer’s	instructions.		

2.6.1	 Quantitative	PCR	(qRT-PCR)	

A	4.75	μL	aliquot	of	each	diluted	complementary	DNA	sample	was	used	for	

PCR	 amplification	 in	 a	 12.5	 μL	 reaction	 volume.	 The	 complementary	 DNA	

samples	 were	 amplified	 on	 an	 iCycler-MyiQ	 real-time	 PCR	 detection	 system	

(BioRad,	Hercules,	CA,	USA)	in	the	presence	of	SYBR®	Green	master	mix	(Applied	

Biosystems,	Foster	City,	CA,	USA)	and	a	300	nM	concentration	of	the	sense	and	

antisense	 primers.	 Specific	 primers	were	 synthesized	 commercially	 (Integrated	

DNA	Technologies,	Leuven,	Belgium).	The	primer	sequences	were:	hsl;	forward:	

5´-CCATAAGACCCCATTGCCTG-3´,	 reverse:	 5´-CTGCCTCAGACACACTCCTG-3´,	

pparγforward:	 5'-ATTCTGGCCCACCAACTTCGG-3',	 reverse:	 5'-

TGGAAGCCTGATGCTTTATCCCCA-3',	 fatty	 acid	 synthase	 (fasn);	 forward:	 5'-

AGCCCCTCAAGTGCACAGTG-3',	 reverse:	 5'-TGCCAATGTGTTTTCCCTGA-3'	 and	

βactin;	 forward:	 5'-ACGAGGCCCAGAGCAAGAG-3',	 reverse:	 5'-

GGTGTGGTGCCAGATCTTCTC-3'.	

PCR	parameters	were	as	follows:	initial	2	min	at	50°C,	denaturation	at	95°C	

for	10	min	followed	by	40	cycles	of	denaturation	at	95°C	for	30	s,	annealing	at	

60°C	 for	30	 s	 and	extension	at	60°C	 for	30	 s.	mRNA	 levels	 in	all	 samples	were	
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normalized	to	the	values	of	β-actin	and	the	results	expressed	as	fold	changes	of	

the	 threshold	 cycle	 (Ct)	 value	 relative	 to	 the	 controls	 using	 the	 2-ΔΔCtmethod	

(139).	

2.7	 Statistical	analysis	

Results	 are	presented	 as	mean	±	 S.E.M.	 Statistical	 analysis	was	performed	

using	 IBM	 SPSS	 Statistics	 19.0.	 Student’s	 t	 test	 was	 used	 for	 comparisons	

between	 both	 experimental	 groups.	 Significance	 was	 assessed	 at	 the	 P	 value	

<0.05	level.	

Statistical	analyses	of	miRNA	microarray	results	were	carried	out	using	the	

software	 "R"	 with	 the	 Limma,	 Marray,	 AgiMicroRna,	 GOstats	 y	 GSEABase	

package.	An	adjusted	value	of	probability	was	achieved	by	using	the	Benjamini-

Hochberg	method	for	False	Discovery	Rate	(FDR)	correction.		

Correlation	analysis	was	performed	using	Pearson´s	correlation	coefficient.	

Statistical	significance	was	set-up	at	P	<	0.05.		

3	 RESULTS	AND	DISCUSSION	

Resveratrol	 has	 been	 reported	 to	 show	 anti-obesity	 properties	 in	 animal	

models	such	as	mice	(91,	94,	108),	rats	(109-111)	and	primates	(112)	by	acting	

on	several	processes,	such	as	adipogenesis,	lipogenesis	and	lipolysis,	which	take	

place	 in	white	 adipose	 tissue	 (108,	 142-150).	 In	 fact,	 in	 the	 present	 cohort	 of	

animals,	 resveratrol	 reduced	 body	 weight	 and	 the	 size	 of	 epididymal	 and	

perirenal	 adipose	 tissues,	 as	 well	 as	 the	 sum	 of	 the	 four	 depots	 dissected	

(perirenal	 +epididymal+mesenteric+subcutaneous).	 These	 data	 are	 not	

presented	 in	 the	 present	 report	 as,	 since	 we	 previously	 used	 this	 cohort	 of	

animals	 for	 other	 study,	 they	 have	 been	 already	 published	 (138).	 Accordingly,	

food	 efficiency	 was	 calculated	 for	 control	 and	 resveratrol-treated	 groups	

(1.5±0.1g/kcal	and	1.3±0.1g/kcal,	respectively;	P<0.05).		

The	 aim	 of	 the	 present	 study	 was	 to	 assess	 the	 changes	 produced	 by	

resveratrol	on	miRNA	profile	in	white	adipose	tissue	from	rats	fed	an	obesogenic	

diet,	 and	 to	 explore	 whether	 these	 modifications	 may	 be	 related	 to	 changes	
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induced	by	 this	polyphenol	 in	 triacylglycerol	metabolism	 in	 this	 tissue.	 For	 this	

purpose	 a	 miRNA	microarray	 was	 carried	 out	 in	 perirenal	 adipose	 tissue.	 The	

results	 showed	 that,	 of	 a	 total	 of	 719	 analysed	 miRNAs,	 273	 were	 detected	

(Table	S1)	and	16	were	significantly	modified	by	resveratrol	treatment	(P<0.05).	

Among	them,	13	were	significantly	increased	and	3	were	significantly	decreased	

(Table	 1).	 Four	 of	 these	miRNAs	 (miR-211-3p,	miR-1224,	miR-511-3p	 and	miR-

539-5p)	were	selected	for	qRT-PCR	validation	(n=8/group).	As	shown	in	Figure	2,	

this	validation	confirmed	significant	changes	found	in	microarray	analysis.		

Table	 1.	 MicroRNAs	 differentially	 expressed	 between	 control	 and	 resveratrol	
treated	animals	(expressed	as	fold	change),	categorized	by	P-value	adjusted	for	
multiple	 comparisons.	 An	 adjusted	 value	 of	 probability	 was	 achieved	 by	 using	
Benjamini-Hochberg	FDR	correction	for	multiple	testing.	

	
a	Values	represent	mean	±	S.E.M	(n=8/group).	Significance	was	assessed	as	the	P-	adjusted	value	<	0.05.	
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Figure	 2.	 Comparison	 between	 the	 two	 methods	 applied	 to	 assessing	 miRNA	

expression:	miRNA	microarray	(dark	columns;	n=4)	and	qRT-PCR	(light	columns;	

n=8).	The	expression	of	miR-211-3p,	miR-1224,	miR-511-3p	and	miR-539-5p,	 is	

represented	as	fold	change	of	resveratrol	group	with	respect	to	control	group	at	

baseline.	Data	show	mean	values.	Comparisons	between	groups	were	made	by	

using	 the	 Benjamini-Hochberg	 method	 for	 False	 Discovery	 Rate	 correction	

(miRNA	 microarray)	 and	 student’s	 t	 test	 (qRT-PCR).	 *,	 P<0.05;	 **,	 P<0.01;	 t,	

P<0.1.	

Several	miRNAs	have	been	reported	to	be	involved	in	the	control	of	genes	

related	 to	 adipose	 tissue	 metabolic	 pathways	 responsible	 for	 the	 anti-obesity	

effect	of	resveratrol	(88,	115):	CCAAT/enhancer	binding	protein	alpha	(C/EBPα)	

(miR-27a,	 miR-31),	 fasn	 (miR-378/378),	 acetyl-CoA	 carboxylase	 (acaca)	 (miR-

378/378),	pparγ (miR-27a,	and	miR-130,	stearoyl	Coenzyme	A	desaturase	(scd1)	

(miR-378/378)	 and	 fatty	 acid	 bindig	 protein4	 (fabp4)	 (miR-143)(151-154).	

However,	 in	 the	 present	 study	 these	 miRNAs	 were	 not	 modified	 by	 this	

polyphenol.	

In	view	of	the	miRNAs	that	were	in	fact	modified	by	resveratrol	(Table	1),	

we	 used	 miRWalk	 Database	 to	 find	 validated	 and	 predicted	 target	 genes	 for	

these	 miRNAs	 (Table	 2).	 There	 were	 no	 validated	 target	 genes	 related	 to	

triacylglycerol	metabolism	in	adipose	tissue.	Among	the	predicted	target	genes,	

fatty	 acid	 binding	 protein	 3	 (fabp3),	 sp1,	 carnitine	 palmitoyltransferase	 1A	

(cpt1a),	 lipase	hormone	sensitive	(hsl),	uncoupling	protein	1	(ucp1),	uncoupling	

protein	 3	 (ucp3),	 carnitine	 palmitoyltransferase1b	 (cpt1b)	 and	 pparγ were	



MANUSCRIPTS	
MANUSCRIPT	2	

5	

	

85	
	

found.	 For	 a	more	 detailed	 study,	 only	 those	 genes	 relevant	 to	white	 adipose	

tissue	were	 selected	 in	 the	present	work:	hsl,	 pparγ	 and	 sp1.	As	mentioned	 in	

the	 Introduction,	miRNAs	regulate	the	expression	of	specific	target	genes	post-

transcriptionally	by	suppressing	translation.	Consequently,	protein	expression	of	

the	predicted	target	genes	selected	was	measured.			

Table	 2.	 Predicted	 target	 genes	 for	 the	 miRNAs	 significantly	 modified	 by	
resveratrol	and	related	to	the	triacylglycerol	metabolism	in	white	adipose	tissue.	

	
a	Fabp3:	Fatty	acid	binding	protein	3,	sp1:	Sp1	transcription	factor,	cpt	1a:	Carnitine	palmitoyl	transferase	
1A,	 lipe:	 lipase,	 hormone	 sensitive,	 ucp1:	 Uncoupling	 protein	 1,	 ucp3:	 Uncoupling	 protein	 3,	 cpt	 1b:	
Carnitine	palmitoyl	transferase	1B,	pparg:	peroxisome	proliferator-activated	receptor	gamma.	
b	Sequences	were	obtained	from	miRBase.		
c	Data	base	 for	predicted	 targets	were	miRWalk	 (differences	between	3p	and	5p	were	not	applied	 in	 the	
predicted	target	searched).		
d	Algorithms	used:	miRanda,	miRDB,	miRWalk,	RNA22	and	Target	Scan.		
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As	far	as	PPARγ	and	HSL	are	concerned,	no	changes	were	observed	in	their	

protein	expression	(Figure	S1).	In	view	of	this	result,	and	taking	into	account	that	

another	mechanism	of	miRNA	regulation	 is	 the	reduction	 in	the	mRNA	stability	

of	their	targets,	gene	expression	of	pparγ	and	hsl	was	also	measured	and,	once	

again,	 no	 differences	were	 observed	 between	 both	 experimental	 groups	 (data	

not	shown).	These	results	show	that,	although	pparγ	 is	a	predicted	target	gene	

for	miR-129-1-3p,	miR-129-2-3p	and	hsl	for	328a-5p	(Table	2),	are	not	 involved	

in	the	body	fat-lowering	effect	of	this	polyphenol.	

Sp1	 is	 an	 important	 member	 of	 the	 ubiquitously	 expressed	 Sp/KLF	

transcription	factor	family	(155).	In	miRWalk	Database	sp1gene	is	considered	as	

a	 predicted	 target	 gene	 for	 miR-539-5p.	 In	 the	 present	 study,	 the	 significant	

increase	observed	in	gene	expression	of	this	miRNA	(Table	2)	matches	well	with	

the	 significant	 reduction	 found	 in	 SP1	 protein	 expression	 (Figure	 3C)	 in	

resveratrol-treated	 rats.	 Although	 sp1	 has	 not	 been	 recorded	 in	 miRWalk	

Database	as	a	predicted	or	validated	target	gene	for	miR-1224,	a	miRNA	which	

was	 increased	 by	 resveratrol	 in	 the	 present	 study,	 several	 studies	 in	 the	

literature	have	demonstrated	the	involvement	of	this	miRNA	in	the	regulation	of	

sp1.	 Thus,	 Niu	 et	 al.	 (156)	 confirmed	 the	 decrease	 in	 gene	 and	 protein	

expression	 of	 sp1	 transcription	 factor	 after	 miR-1224	 transfection	 in	 HEK-293	

(Human	 Embryonic	 Kidney)	 and	 RAW264.7	 (Mouse	 leukaemic	 monocyte	

macrophage	cell	 line)	cells.	Although	 it	 is	 important	to	highlight	that	these	two	

cell	lines	do	not	have	a	rat	origin,	as	was	the	case	in	our	experiment,	according	

to	 the	 alignment	 of	 potential	 miR-1224	 binding	 site	 in	 3´	 untranslated	 region	

(3´UTR)	of	sp1,	this	miRNA	theoretically	could	also	be	able	to	bind	to	the	rat	sp1	

mRNA	(Figure	1A).	 In	 fact,	 in	 the	present	study	the	significant	 increase	 in	gene	

expression	of	miR-1224	observed	 in	 rats	 treated	with	resveratrol	matched	well	

with	the	reduction	in	SP1	protein	expression.	
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Figure	3.	Protein	expression	of	SP1	(A)	and	SREBP1	(B),	and	gene	expression	of	

fasn	 (C)	 in	 adipose	 tissue	 from	 rats	 fed	 a	 high-fat,	 high-sucrose	 diet	

supplemented	 with	 resveratrol	 (Resveratrol	 group)	 or	 not	 (Control	 group)	 for	

6	weeks	 (n=8).	 For	 the	 SP1,	 immunobloting	 after	 immunoprecipitation	 was	

performed.	 For	 the	 SREBP1,	 immunoblot	 using	 β-actin	 as	 housekeeping	 was	

performed.	 For	 fasn	gene	expression	qRT-PCR	using	a	β-actin	 as	housekeeping	

was	performed.	Values	are	presented	as	means	+	standard	error	of	the	means.	*,	

P<0.05.	SP1:	SP1	transcription	factor	protein,	SREBP1:	sterol	regulatory	element-

binding	protein	1,	fasn:	fatty	acid	synthase	gene.	

In	order	to	obtain	further	information	concerning	the	regulatory	role	of	miR-

539-5p	 and	 miR-1224	 on	 SP1	 protein	 Pearson´s	 correlations	 between	 the	

expression	 of	 each	 miRNA	 and	 SP1	 protein	 expression	 were	 carried	 out.	 This	

analysis	 showed	 that	miR-539-5p	 expression	 and	 SP1	 protein	 expression	were	

negatively	correlated	(R2=	0.663;	P=0.001).	By	contrast,	no	significant	correlation	

was	 found	 between	 miR-1224	 expression	 and	 SP1	 protein	 expression.	

Additionally,	 miR-539-5p	 expression	 was	 negatively	 correlated	 with	 “food	

efficiency”	(R2=	0.514;	P=0.002).		

In	 a	 further	 step,	 an	 in	 vitro	 miRNA	 overexpression	 experiment	 was	

conducted	 in	3T3-L1	cells.	When	SP1	protein	expression	was	evaluated	 in	cells	

transfected	 with	 miR-539-5p	 mimics	 the	 target	 protein	 was	 not	 detectable,	

compared	 with	 the	 control	 group	 (Figure	 4).	 By	 contrast,	 no	 significant	
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differences	were	detected	between	control	cells	and	those	transfected	with	miR-

1224	mimics.	 Taken	 together,	 these	 results	 suggest	 that	 the	 reduction	 in	 SP1	

protein	expression	induced	by	resveratrol	can	be	modulated	only	by	miR-539-5p,	

and	 gives	 experimental	 support	 to	 the	 prediction	 provided	 by	 miRWalk	

Database.		

	

Figure	4.	Protein	expression	of	SP1	in	3T3-L1	control	cells	(n=8)	and	3T3-L1	cells	

overexpressing	 miR-539-5p	 and	 miR-1224-5p	 (n=8).	 539	 -:	 mmu-miR-539-5p	

control	 cells,	 539	 +:	 cells	 overexpressing	mmu-miR-539-5p,	 1224	 -:	mmu-miR-

1224-5p	control	 cells,	1224	+:	 cells	overexpressing	mmu-miR-1224-5p.	ND:	not	

detectable.	SP1:	SP1	transcription	factor	protein.	

SP1	 acts	 together	with	 SREBP1	 to	 synergistically	 activate	 the	 promoter	 of	

fasn,	gene,	which	codifies	 for	 fatty	acid	 synthase,	a	 key	enzyme	 involved	 in	de	

novo	lipogenesis	(157)	(Figure	1B).	In	view	of	these	facts,	we	decided	to	analyze	

protein	expression	of	 the	 transcriptional	 factor	SREBP1	and	gene	expression	of	

fasn.	 A	 significant	 reduction	 was	 observed	 in	 SREBP1	 protein	 expression	 in	

resveratrol-treated	 rats	 (Figure	 3B).	 In	 good	 accordance	with	 this	 result,	 gene	

expression	of	 fasn	was	also	reduced	(Figure	3C).	 In	our	previous	paper,	carried	

out	in	this	precise	cohort	of	rats,	we	showed	that	fatty	acid	synthase	activity	was	

significantly	reduced	in	resveratrol-treated	rats	(138).		
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4	 CONCLUDING	REMARKS	

The	present	results	demonstrate	for	the	first	time	that	resveratrol	modifies	

miRNA	 profile	 in	 white	 adipose	 tissue.	 As	 far	 as	 triacylglycerol	 metabolism	 is	

concerned	 in	 this	 tissue,	 this	 study	 shows	 that	 miR-539-5p	 is	 involved	 in	 the	

inhibition	of	de	novo	lipogenesis	induced	by	resveratrol.	
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Figure	S1.	Protein	expression	of	PPARg	(A)	and	HSL	(B)	in	adipose	tissue	from	rats	

fed	 a	 high-fat,	 high-sucrose	 diet	 supplemented	 with	 resveratrol	 (Resveratrol	

group)	or	not	(Control	group)	for	6	weeks	(n=8).	Values	are	presented	as	means	

+	standard	error	of	the	means.		
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Abstract	

The	aim	of	the	present	study	was	to	determine	whether	the	reduction	in	

liver	fat	previously	observed	in	our	laboratory	in	a	cohort	of	rats	which	had	been	

fed	an	obesogenic	diet	was	mediated	by	changes	in	the	expression	of	microRNA	

(miRNA)-103-3p,	 miRNA-107-3p	 and	 miRNA-122-5p,	 which	 represent	 70%	 of	

total	miRNAs	 in	the	 liver,	as	well	as	 in	their	target	genes.	The	expression	of	the	

three	analysed	miRNAs	was	reduced	in	rats	treated	with	resveratrol.	A	reduction	

in	 sterol-regulatory	 element	 binding	 protein	 1	 (SREBP1)	 and	 an	 increase	 in	

carnitine	 palmitoyltransferase	 1a	 (CPT1a)	 were	 observed	 in	 resveratrol-treated	

rats.	No	changes	were	found	in	fatty	acid	synthase	(FAS).	In	cultured	hepatocytes,	

SREBP1	protein	was	increased	after	the	transfection	of	each	miRNA.	FAS	protein	

expression	 was	 decreased	 after	 the	 transfection	 of	 miRNA-122-5p,	 and	 CPT1a	

protein	was	down-regulated	by	the	over-expression	of	miRNA-107-3p.	This	study	

provides	new	evidences	which	show	that	srebf1	is	a	target	gene	for	miRNA-103-

3p	and	miRNA-107-3p,	fasn	a	target	gene	for	miRNA-122-5p	and	cpt1a	a	target	

gene	 for	miRNA-107-3p.	Moreover,	 the	 reduction	 in	 liver	 steatosis	 induced	 by	

resveratrol	 in	 rats	 fed	 an	 obesegenic	 diet	 is	mediated,	 at	 least	 in	 part,	 by	 the	

increase	in	CPT1a	protein	expression	and	activity,	via	a	decrease	in	miRNA-107-

3p	expression.	

	

Key	words:	miRNA-103,	miRNA-107,	miRNA-122,	steatosis,	liver,	resveratrol,	rat	
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1.	Introduction	

Excessive	 fat	 accumulation	 in	 liver	 is	 known	 as	 hepatic	 steatosis,	 which	 is	 the	

most	benign	form	of	non-alcoholic	fatty	liver	disease	(NAFLD).	It	is	a	major	cause	

of	chronic	liver	disease	in	Western	societies.	It	encompasses	a	disease	spectrum	

ranging	from	simple	triglyceride	accumulation	in	hepatocytes	(hepatic	steatosis;	

NAFL)	 to	 hepatic	 steatosis	 with	 inflammation	 (non-alcoholic	 steatohepatitis,	

NASH)	[1].	This	disorder	is	closely	associated	with	obesity	and	insulin	resistance	

[2].	Although	the	current	treatment	of	liver	steatosis	is	based	on	dietary	energy	

restriction	and	physical	activity	[3,4],	a	great	deal	of	attention	has	been	paid	 in	

recent	 years	 to	 bioactive	 molecules,	 such	 as	 phenolic	 compounds	 present	 in	

foods	and	plants,	which	can	represent	complementary	tools.	

One	 of	 the	 most	 widely	 studied	 molecules	 is	 resveratrol	 (trans-3,5,4ʹ-

trihydroxystilbene),	 a	 phytoalexin	 occurring	 naturally	 in	 grapes,	 berries	 and	

peanuts	 [5,6].	 Several	 studies	 on	 rats	 and	mice	have	 shown	 that	 resveratrol	 is	

able	 to	 reduce	 liver	 fat	 accumulation	 [7,8].	 Some	authors	have	also	 found	 this	

effect	in	human	beings	[9,10].	

The	mechanisms	of	action	of	 resveratrol	underlying	 its	effect	on	 liver	 steatosis	

are	mainly	a	reduction	in	 lipogenesis	and/or	an	 increase	 in	fatty	acid	oxidation,	

very	 commonly	 associated	with	 enhanced	mitochondriogenesis	 [11].	 However,	

little	is	known	concerning	the	potential	 involvement	of	microRNAs	(miRNAs)	on	

changes	induced	by	resveratrol	in	these	metabolic	pathways.		

MiRNAs	 are	 short	 double	 stranded	 RNAs	 (approximately	 22	 nucleotides)	

encoded	 in	 the	 genome	 that	 act	 post-transcriptionally	 to	 regulate	 protein	

expression.	These	non-coding	RNAs	can	act	directly	on	target	mRNA	transcripts	

binding	 to	 complementary	 target	 sites	 in	 3ʹ	 untranslated	 regions	 (3ʹ	 UTR)	 of	

messenger	 RNAs	 (mRNAs),	 causing	 translational	 repression	 and/or	 mRNA	

destabilization.	 They	 can	 also	 act	 indirectly	 by	 regulating	 intermediate	

components,	such	as	transcripts	that	encode	transcription	factors	which,	in	turn,	

control	the	expression	of	downstream	genes.	A	single	miRNA	can	have	multiple	

targets,	acting	simultaneously	to	regulate	the	post-transcriptional	expression	of	

various	 genes	 and	 physiological	 processes.	 Furthermore,	 each	 gene	 can	 be	
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regulated	 by	 several	 miRNAs	 [12,13].	 What	 is	 more,	 the	 expression	 of	 these	

miRNAs	 can	 be	 modified	 by	 changes	 induced	 either	 directly	 in	 the	 enzymes	

involved	 in	 their	 biogenesis	 process	 or	 in	 miRNA	 epigenetic	 modifications,	 or	

indirectly	 via	 lipoprotein-mediated	 miRNA	 delivery	 to	 cells,	 among	 others	

[14,15].	

It	has	been	reported	in	the	literature	that	different	types	of	polyphenols,	such	as	

proanthocyanidins	or	a	mixture	extracted	 from	Hibiscus	 sabdariffa,	 are	able	 to	

modify	 the	 expression	 of	 miRNA-122-5p	 (a	 liver	 specific	 miRNA	 and	 the	most	

abundant	one)	and	the	paralogs	miRNA-103-3p	and	miRNA-107-3p	in	liver	[16–

19].		

In	a	previous	study	carried	out	by	our	group	using	this	precise	cohort	of	animals,	

resveratrol	 treatment	 did	 not	 reduce	 final	 body	 weight	 or	 liver	 weight.	 No	

changes	 were	 observed	 in	 food	 intake.	 By	 contrast,	 resveratrol	 treatment	

induced	 a	 significant	 decrease	 in	 hepatic	 triacylglycerol	 content.	 Moreover,	

when	 the	 activity	of	 several	 enzymes	 involved	 in	hepatic	 lipid	metabolism	was	

measured,	 no	 changes	 in	 fatty	 acid	 synthase	 (FAS)	 activity	 and	 an	 increase	 in	

carnitine	palmitoyltransferase	1	(CPT1)	activity	were	found,	suggesting	that	the	

delipidating	effect	was	due,	at	 least	 in	part,	 to	 increased	fatty	acid	β-oxidation,	

which	reduces	the	availability	of	fatty	acids	for	triacylglycerol	synthesis	[20].	

In	this	context,	the	aim	of	the	present	study	was	to	determine	whether,	as	in	the	

case	of	other	polyphenols,	this	reduction	in	liver	fat	was	mediated	by	changes	in	

the	 expression	 of	 miRNA-122-5p,	 miRNA-103-3p	 and	 miRNA-107-3p,	 which	

represent	more	 than	75%	of	 total	miRNAs	 in	 the	 liver	 [19,21–25],	as	well	as	 in	

their	target	genes.	

2.	Material	and	Methods		

2.1.	Animals	and	Experimental	Design	

The	 experiment	 was	 conducted	 with	 16	 male	 Sprague-Dawley	 rats	 purchased	

from	 Harlan	 Ibérica	 (Barcelona,	 Spain)	 and	 took	 place	 in	 accordance	 with	 the	

institution’s	 guide	 for	 the	 care	 and	 use	 of	 laboratory	 animals	 (CUEID	

CEBA/30/2010).	 The	 rats	 were	 individually	 housed	 in	 polycarbonate	metabolic	
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cages	 (Techniplast	Gazzada,	Guguggiate,	 Italy)	and	placed	 in	an	air-conditioned	

room	 (22	±	2	 °C)	with	a	12	h	 light-dark	cycle.	After	a	6-day	adaptation	period,	

rats	 were	 randomly	 divided	 into	 two	 dietary	 groups	 of	 eight	 animals	 each,	

namely	 a	 control	 group	 (Control)	 and	 a	 group	 treated	 with	 resveratrol	

(Resveratrol),	both	fed	a	commercial	obesogenic	diet	 (4.6	kcal/g;	44.8%	energy	

from	 fat,	 36.2%	 from	 carbohydrates	 and	 19.0%	 from	 proteins)	 supplied	 by	

Harlan	 Ibérica	 (TD.	 06415)	 for	 6	 weeks	 (Figure	 S1).	 Resveratrol,	 supplied	 by	

Monteloeder	 (Elche,	 Spain),	 was	 added	 to	 the	 diet	 as	 previously	 reported	 [6].	

Briefly,	the	phenolic	compound	was	dissolved	in	an	ethanolic	solution	(5	mg/mL)	

and	poured	on	the	surface	of	the	diet.	Rats	started	eating	immediately	once	the	

diet	 was	 daily	 replaced,	 and	 thus	 they	 ate	 all	 the	 resveratrol	 added	 before	 it	

started	to	degrade	(3	h).	In	order	to	ensure	a	dose	of	30	mg	resveratrol/kg	body	

weight/day,	the	amounts	of	resveratrol	to	be	included	in	the	diet	for	each	animal	

were	 calculated	 daily	 based	 on	 their	 individual	 body	 weight.	 This	 dose	 was	

selected	 for	 this	 experiment	 because	 in	 a	 previous	 study	 we	 observed	 that,	

under	 our	 experimental	 conditions,	 30	 mg/kg	 body	 weight/day	 was	 the	 most	

effective	 of	 the	 following:	 6,	 15,	 30	 and	 60	 mg/kg	 body	 weight/day.	 Diet	 for	

control	animals	was	added	with	the	same	amount	of	ethanolic	solution	without	

resveratrol.	All	animals	had	free	access	to	food	and	water.	Food	intake	and	body	

weight	were	measured	daily.	This	cohort	of	animals	had	been	previously	used	in	

another	study	reported	by	our	group	[20,26].	

At	 the	 end	 of	 the	 experimental	 period,	 animals	 were	 sacrificed	 under	

anaesthesia	by	 intraperitoneally	 administering	400	mg	 chloral	 hydrate/kg	body	

weight,	 by	 cardiac	 exsanguination,	 after	 a	 12-h	 fasting	 period.	 The	 liver	 was	

dissected,	weighed	and	immediately	frozen	at	−80	°C.								

2.2.	Cell	Culture		

AML12	(Alpha	Mouse	Liver	12)	hepatocytes,	supplied	by	ATCC	(ATCC	CRL-2254),	

were	cultured	in	1:1	DMEM/HAM’S	F12	glutamax	medium	containing	10%	fetal	

bovine	 serum	 (FBS),	 0.005	 mg/mL	 insulin,	 0.005	 mg/mL	 transferrin,	 5	 ng/mL	

selenium,	 40	 ng/mL	 dexamethasone	 and	 1%	 Penicillin/Streptomycin	 (10,000	
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U/mL).	This	medium	was	changed	every	two	days.	Cells	were	maintained	at	37	°C	

in	a	humidified	5%	CO2	atmosphere.	

2.3.	MicroRNA	expression	analysis	

Total	miRNAs	were	 extracted	 using	 E.Z.N.A.	miRNA	 kit	 (R7034-02;	Omega	 Bio-

Tek,	Norcross,	GA,	USA)	according	to	the	manufacturer’s	instructions.	Total	RNA	

(9	 ng)	 was	 reverse-transcribed	 using	 the	 TaqMan	 MicroRNA	 Reverse	

Transcription	 kit	 (Applied	 Biosystems,	 Foster	 City,	 CA,	 USA),	 as	 previously	

reported	 in	 Gracia	 et	 al.	 [27].	 The	 targeted	 miRNA	 assay	 sequences	 were	 as	

follows	(source	miRBase):		

rno-miRNA-103-3p:	5ʹ-AGCAGCAUUGUACAGGGCUAUGA-3ʹ	

rno-miRNA-107-3p:	5ʹ-AGCAGCAUUGUACAGGGCUAUCA-3ʹ	

rno-miRNA-122-5p:	5ʹ-UGGAGUGUGACAAUGGUGUUUG-3ʹ	

PCR	 was	 performed	 in	 an	 iCycler™–MyiQ™	 Real-time	 PCR	 Detection	 System	

(Applied	Biosystems,	Foster	City,	CA,	USA).	Amplification	was	performed	at	95	°C	

for	10	min,	followed	by	40	cycles	of	95	°C	for	15	s	and	60	°C	for	1	min.	U6	small	

nuclear	 RNA	 was	 used	 as	 an	 endogenous	 control.	 All	 mRNA	 levels	 were	

normalized	 to	 the	 values	 of	 U6	 snRNA.	 The	 results	 were	 expressed	 as	 fold	

changes	of	threshold	cycle	(Ct)	value	relative	to	controls	using	the	2−ΔΔCt	method	

[28].	

2.4.	Target	Genes	for	miRNAs	

In	order	to	obtain	the	predicted	and	validated	target	genes	for	these	miRNAs,	a	

comparative	 analysis	 was	 carried	 out	 in	 miRecords.	 This	 database	 is	 an	

integrated	 resource	 for	 animal	 miRNA-target	 interactions,	 which	 stores	

predicted	 miRNA	 targets	 produced	 by	 11	 established	 miRNA	 target	 predicted	

programs	 [29].	 No	 validated	 target	 genes	 were	 found.	 Among	 the	 predicted	

target	 genes,	 only	 those	 involved	 in	 hepatic	 lipid	 metabolism	 (srebf1,	 fasn,	

cpt1a)	 were	 selected	 (Table	 1).	 Fasn	 codifies	 for	 fatty	 acid	 synthase,	 a	 key	

enzyme	 involved	 in	 de	 novo	 lipogenesis,	 srebf1	 is	 the	 transcription	 factor	 that	

regulates	 this	 enzyme,	 and	 cpt1a	 codifies	 for	 carnitine	 palmitoyltransferase,	 a	
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key	 enzyme	 involved	 in	 the	 fatty	 acid	 oxidation.	 In	 addition,	 we	 reviewed	 the	

literature	and	found	that	several	authors	had	proposed	srebf1	and	fasn	as	target	

genes	for	miR-122-5p	and	miR-107-3p,	respectively	(Table	1).		

Table	 1.	 Predicted	 target	 genes	 and	 validated	 genes	 reported	 in	 the	 literature	

related	to	triacylglycerol	metabolism	of	the	miRNAs	studied.	

miRNA	 Predicted	Target	Genes	

(miRecords)	

Data	from	the	Literature	

rno-miR-103-3p	 Srebf1	

Cpt1a	

	

rno-miR-107-3p	 Srebf1	

Cpt1a	

Fasn:	Bhatia	et	al.	[35]	

rno-miR-122-5p	 Fasn	 Srebf1:	Shibata	et	al.	[33]	

Srebf1:	 Iliopoulos	 et	 al.	

[32]	

Srebf1:	 sterol	 regulatory	 element	 binding	 factor	 1;	 Cpt1a:	 carnitine	

palmitoyltransferase	1a;	Fasn:	fatty	acid	synthase.	

	

2.5.	miRNA	Transfection	

Hepatocytes	in	a	confluence	status	of	approximately	90%,	were	transfected	with	

Lipofectamine	 RNAiMAX	 (Applied	 Biosystems,	 Foster	 City,	 CA,	 USA)	 prepared	

following	 the	 manufacturer’s	 protocol,	 with	 mirVana	 miRNA	 mimics	 of	 mmu-

miRNA-103-3p,	 mmu-miRNA-107-3p	 and	 mmu-miRNA-122-5p	 (homologous	 to	

rno-miRNA-103-3p,	 rno-miRNA-107-3p	 and	 rno-miRNA-122-5p	 respectively)	

(Applied	Biosystems,	Foster	City,	CA,	USA).	Each	mimic	was	transfected	for	48	h	

in	a	final	concentration	of	25	nM	per	well.	Optimal	transfection	conditions	were	

determined	 in	 previous	 experiments,	 and	 transfection	 efficiency	 was	 assessed	

using	miRNA	probes	and	fluorescent	transfection	controls.	To	rule	out	unspecific	

effects,	control	cells	were	transfected	with	negative	controls.		
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2.6.	Western	Blot	Analysis		

2.6.1.	Liver	Protein	Expression	of	Fatty	Acid	Synthase,	Sterol	Regulatory	Element-

Binding	Protein	1	and	Carnitine	Palmitoyltransferase	1a		

Fatty	 acid	 synthase	 (fas)	 and	 sterol	 regulatory	 element-binding	 protein	 1	

(srebp1)	 protein	 extraction	was	 carried	 out	with	 100	mg	 of	 liver	 as	 previously	

described	 [30].	 The	 protein	 concentration	was	measured	 by	 bicinchoninic	 acid	

(BCA)	protein	assay	kit	(Thermo	Scientific,	Wilmington,	DE,	USA).	

Immunoblot	 analyses	 were	 performed	 in	 all	 tissue	 samples	 using	 80	 µg	 of	

protein	 for	 FAS	 and	 40	 µg	 of	 protein	 for	 srebp1.	 Protein	 were	 separated	 by	

electrophoresis	 in	 a	 7.5%	 sodium	dodecyl	 sulfate	 (SDS)-polyacrylamide	 gel	 and	

transferred	 to	 polyvinylidene	 difluoride	 (PVDF)	 membranes.	 Equal	 loading	 of	

proteins	 was	 confirmed	 by	 staining	 the	 membranes	 with	 Coomassie	 Blue	 or	

incubating	 these	 membranes	 with	 polyclonal	 mouse	 β-actin	 antibody.	 The	

membranes	 of	 the	 two	 assays	 were	 blocked	 with	 casein	 phosphate	 buffered	

saline	(PBS)-Tween	buffer	 for	2	h.	These	membranes	were	 incubated	overnight	

at	4	°C	with	mouse	origin	FAS	immunoglobulin	G	(IgG)	(1:1000)	and	srebp1	IgG	

monoclonal	antibodies	(1:1000)	(Santa	Cruz	Biotechnology,	Santa	Cruz,	CA,	USA).	

Afterwards,	 in	 both	 cases,	 new	 incubation	 with	 goat-	 anti-mouse	 IgG-

Horseradish	Peroxidase	(HRP)	antibody	(1:5000)	(Sigma,	St.	Louis,	MO,	USA)	was	

carried	out	for	2	h	at	room	temperature.	Antibodies	were	visualized	by	using	a	

chemiluminescent	 substrate	 (Thermo	 Scientific,	 Wilmington,	 DE,	 USA)	 and	

quantified	by	a	ChemiDoc	MP	imaging	system	(BioRad,	Hercules,	CA,	USA).	After	

stripping,	 FAS	protein-containing	membranes	were	 incubated	with	a	polyclonal	

mouse	β-actin	antibody	(1:5000)	followed	by	goat-	anti-mouse	IgG-HRP	antibody	

(1:5000)	 (Sigma,	 St.	 Louis,	 MO,	 USA),	 and	 measured	 again.	 The	 FAS	 protein	

measurements	were	normalized	by	β-actin.	

For	carnitine	palmitoyltransferase	1a	(CPT1a),	100	mg	of	liver	were	homogenized	

in	 a	 PBS	 buffer	with	 protease	 inhibitors	 (pH	 7.4)	 and	 centrifuged	 (14,000	g,	 1	

minute,	 4	 °C).	 The	 pellet	 was	 resuspended	 in	 100	 µL	 of	

radioimmunoprecipitation	 assay	 buffer	 (RIPA	 buffer).	 The	 homogenates	 were	
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centrifuged	 at	 36,000	 g	 for	 10	 min	 at	 4	 °C.	 The	 protein	 concentration	 was	

measured	by	BCA	protein	assay	kit	(Thermo	Scientific,	Wilmington,	DE,	USA).	

Immunoblotting	was	performed	after	immunoprecipitation.	A	total	of	250	μg	of	

liver	 extracts	 were	 diluted	 with	 three	 volumes	 of	 PBS	 (with	 added	 protease	

inhibitors).	CPT1a	was	immunoprecipitated	with	1	μL	of	monoclonal	mouse	anti-

CPT1a	 antibody	 (ABCAM,	 Cambridge,	 MS,	 USA)	 in	 constant	 rotation,	 at	 4	 °C,	

overnight.	Afterwards,	20	μL	Protein	G	Agarose	(Santa	Cruz	Biotech,	Santa	Cruz,	

CA,	USA)	was	added	to	each	sample,	and	these	were	rotated	for	3	h	at	4	°C.	The	

immunoprecipitated	tissue	samples	were	then	washed	three	times	with	500	μL	

PBS	buffer.	A	 total	of	30	μg	of	extracts	were	separated	by	electrophoresis	 in	a	

7.5%	 SDS–polyacrylamide	 gel	 and	 then	 transferred	 to	 a	 PVDF	membrane.	 The	

membranes	were	 incubated	 overnight	 at	 room	 temperature	with	mouse	 anti-

CPT1a	antibody	(1:1000)	(ABCAM,	Cambridge,	MS,	USA).	Afterwards,	polyclonal	

goat-	 anti-mouse	 IgG-HRP	 antibody	 (1:2500)	 (Sigma,	 St.	 Louis,	 MO,	 USA)	 was	

incubated	 for	 2	 h	 at	 room	 temperature.	 Antibody	 was	 visualized	 by	 using	 a	

chemiluminescent	 substrate	 (Thermo	 Scientific,	 Wilmington,	 DE,	 USA)	 and	

quantified	by	a	ChemiDoc	MP	imaging	system	(BioRad,	Hercules,	CA,	USA).	

2.6.2.	SREBP1,	FAS	and	CPT1a	Protein	Expression	after	Over-Expression	in	AML12	

In	the	case	of	AML12	cells,	total	protein	was	extracted	with	200	µL	of	lysis	buffer	

as	previously	reported	[27].	Protein	concentration	was	measured	by	BCA	protein	

assay	kit	(Thermo	Scientific,	Wilmington,	DE,	USA).	

For	 FAS	 protein,	 65	 µg	 of	 cell	 protein	 extract	 were	 used	 to	 perform	 the	

immunoblotting.	 Protein	 were	 separated	 by	 electrophoresis	 in	 a	 7.5%	 SDS-

polyacrylamide	gel	and	transferred	to	PVDF	membranes.	The	membranes	were	

blocked	with	casein	PBS-Tween	buffer	for	2	h.	These	membranes	were	incubated	

overnight	at	4	°C	with	mouse	origin	FAS	IgG	(1:1000)	(Santa	Cruz	Biotechnology,	

Santa	Cruz,	CA,	USA).	Afterwards,	new	incubation	with	goat-	anti-mouse	IgG-HRP	

antibody	 (1:5000)	 (Sigma,	St.	 Louis,	MO,	USA)	was	carried	out	 for	2	h	at	 room	

temperature.	Antibodies	were	visualized	by	using	a	chemiluminescent	substrate	

(Thermo	 Scientific,	 Wilmington,	 DE,	 USA)	 and	 quantified	 by	 a	 ChemiDoc	 MP	

imaging	 system	 (BioRad,	 Hercules,	 CA,	 USA).	 Coomassie	 Blue	 staining	 of	
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membranes	was	used	as	protein	 loading	control.	 In	case	of	CPT1a	and	SREBP1,	

immunoblotting	after	 immunoprecipitation	was	performed.	A	total	of	40	μg	for	

CPT1a	and	70	μg	for	SREBP1	of	cell	extracts	were	immunoprecipitated.	The	total	

amount	of	protein	was	used	for	immunoblotting	in	both	cases	and	following	the	

same	conditions	as	described	above.	

2.7.	Statistical	Analysis	

Results	 are	 presented	 as	median	 ±	 standard	 deviation.	 Statistical	 analysis	 was	

performed	using	IBM	SPSS	Statistics	24.0	(SPSS	Inc.,	Chicago,	IL,	USA).	All	of	the	

parameters	 are	 normally	 distributed	 according	 to	 the	 Shapiro-Wilk’s	 test.	

Student’s	 t-test	was	used	 for	 comparisons	between	both	experimental	 groups.	

Significance	was	assessed	at	the	p	<	0.05	value.	

3.	Results	

3.1.	Cell	Culture	Studies		

MiRNA-103-3p,	 miRNA-107-3p	 and	 miRNA-122-5p	 were	 individually	 over-

expressed	 in	 AML12	 hepatocytes.	 Over-expressions	 were	 confirmed	 by	

measuring	 each	 miRNA	 expression.	 Protein	 expression	 of	 SREBP1	 was	

significantly	increased	after	transfection	of	each	miRNA	(p	<	0.05)	(Figure	1A).	In	

the	case	of	FAS,	protein	expression	was	significantly	decreased	after	transfection	

of	miRNA-122-5p	(p	<	0.001)	(Figure	1B).	Finally,	CPT1a	protein	expression	was	

down-regulated	by	the	over-expression	of	miRNA-107-3p	(p	<	0.001)	(Figure	2).		

3.2.	In	Vivo	Study	

Body	weight	gain	in	rats	treated	with	resveratrol	was	similar	to	that	observed	in	

control	animals	 (data	previously	 reported	 in	Alberdi	et	al.	2011	 [31]).	 Similarly,	

no	 significant	 differences	 were	 observed	 in	 liver	 weight,	 expressed	 as	 a	

percentage	 of	 final	 body	 weight	 (3.4	 ±	 0.1	 in	 Control	 group	 and	 3.5	 ±	 0.2	 in	

Resveratrol	group).	

In	 the	 present	 study,	 we	 observed	 that	 the	 expression	 of	 the	 three	 miRNA	

analysed	 (miRNA-103-3p,	 miRNA-107-3p	 and	 miRNA-122-5p)	 was	 significantly	

reduced	 in	 the	 liver	 of	 rats	 treated	 with	 resveratrol	 (Table	 2).	 When	 protein	
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expression	of	the	target	genes	for	these	miRNAs	was	measured,	we	observed	a	

significant	reduction	in	SREBP1	(p	<	0.05)	and	a	significant	increase	in	CPT1a	(p	<	

0.05)	 in	 resveratrol-treated	 rats	 (Figures	3A	and	4).	No	 changes	were	 found	 in	

FAS	protein	levels	(Figure	3B).		

	

Figure	1.	Protein	expression	of	SREBP1	(A)	and	FAS	(B)	in	AML12	control	cells	(n	=	

6)	 and	 AML12	 cells	 over-expressing	 mmu-miRNA-103-3p,	 mmu-miRNA-107-3p	

and	mmu-miR-122-5p	 (n	 =	6).	 Scatter	dot	plots	 including	median	and	standard	

deviation	 were	 expressed	 as	 optical	 density.	 Comparisons	 between	 each	

treatment	and	the	controls	were	analysed	by	Student’s	t-test	*	p	<	0.05,	**	p	<	

0.01,	***	p	 <	0.001.	 SREBP1:	 sterol	 regulatory	element-binding	protein	1,	 FAS:	

fatty	acid	synthase;	AML12:	alpha	mouse	liver	12.	
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Figure	2.	Protein	expression	of	CPT1a	in	AML12	control	cells	(n	=	6)	and	AML12	

cells	 over-expressing	 mmu-miRNA-103-3p	 and	 mmu-miRNA-107-3p	 (n	 =	 6).	

Scatter	 dot	 plots	 including	 median	 and	 standard	 deviation	 were	 expressed	 as	

optical	 density.	 Comparisons	 between	 each	 treatment	 and	 the	 controls	 were	

analysed	 by	 Student’s	 t-test.	 Coomassie	 Blue	 staining	 was	 used	 as	 protein	

loading	 control.	 ND:	 not	 detectable.	 CPT1a:	 carnitine	 palmitoyltransferase	 1a;	

AML12:	alpha	mouse	liver	12.	

Table	2.	The	gene	expression	fold	change	of	miRNA-103,	miRNA-107	and	miRNA-

122	 in	 the	 liver	 of	 rats	 fed	 an	 obesogenic	 diet	 supplemented	with	 resveratrol	

(Resveratrol	group)	or	not	(Control	group)	for	6	weeks	(n	=	8).	

	

miRNA 
Fold Change (Resveratrol vs. 

Control) 
p 

miR-103 −2.49 <0.01 
miR-107 −2.08 <0.05 

miR-122 −2.59 <0.01 
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Figure	3.	Protein	expression	of	SREBP1	(A)	and	FAS	(B)	in	the	liver	of	rats	fed	an	

obesogenic	 diet	 supplemented	 with	 resveratrol	 (Resveratrol	 group)	 or	 not	

(Control	 group)	 for	 6	 weeks	 (n	 =	 8).	 Scatter	 dot	 plots	 including	 median	 and	

standard	deviation	were	expressed	as	optical	density.	*	p	<	0.05.	Coomassie	Blue	

staining	 was	 used	 as	 protein	 loading	 control	 for	 SREBP1	 and	 β-actin	 for	 FAS.	

SREBP1:	sterol	regulatory	element-binding	protein	1,	FAS:	fatty	acid	synthase.	

	

Figure	4.	Protein	expression	of	CPT1a	in	the	liver	of	rats	fed	an	obesogenic	diet	

supplemented	with	resveratrol	 (Resveratrol	group)	or	not	 (Control	group)	 for	6	

weeks	 (n	 =	8).	 Scatter	dot	plots	 including	median	and	standard	deviation	were	

expressed	 as	 optical	 density.	 *	p	 <	 0.05.	 Coomassie	 Blue	 staining	was	 used	 as	

protein	loading	control.	CPT1a:	carnitine	palmitoyltransferase	1a	
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4.	Discussion	

As	 indicated	 in	 the	 Introduction,	 in	 a	 previous	 study	 we	 had	 observed	 that	

resveratrol	was	able	to	partially	prevent	liver	steatosis	induced	by	an	obesogenic	

diet.	 We	 found	 a	 significant	 increase	 in	 the	 activity	 of	 CPT1a,	 a	 rate-limiting	

enzyme	 in	 fatty	 acid	 oxidation,	 in	 the	 liver	 of	 rats	 treated	 with	 resveratrol,	

without	 changes	 in	 FAS	 activity	 [20].	 The	 present	 study	 helps	 us	 to	 gain	more	

insight	into	the	effect	of	resveratrol	on	the	regulation	of	these	two	enzymes.	

As	far	as	the	lipogenic	pathway	is	concerned,	miRecords	data	base	showed	that	

srebf1	was	 a	 predicted	 target	 gene	 for	miRNA-103-3p	 and	miRNA-107-3p	 and	

fasn	 for	miRNA-122-5p.	 In	 addition,	 Iliopoulos	 et	 al.	 [32]	 showed	 that	 the	 up-

regulation	 of	miRNA-122	 induced	 the	 increased	 protein	 expression	 of	 SREBP1.	

Taking	 into	 account	 that	miRNA	 are	 negative	 regulators	 of	 protein	 translation	

and	 that	 no	miRNA-122-5p	binding	 sites	 are	 found	 in	 the	 3ʹUTR	or	 the	 coding	

region	of	this	gene,	the	authors	suggested	that	miRNA-122	could	regulate	other	

genes	that,	in	turn,	could	affect	the	transcription	of	srebf1.	They	concluded	that	

srebf1	was	an	indirect	target	gene	for	miRNA-122,	but	they	did	not	describe	the	

intermediate	 steps	 in	 the	 signaling	 cascade	 that	 led	 to	 the	 up-regulation	 of	

SREBP1.	 Later	 on,	 Shibata	 et	 al.	 [33]	 reported	 that	 silencing	miRNA-122	 led	 to	

decreased	 SOCS3	 expression,	 which	 in	 turn	 increased	 STAT3	 expression.	

Therefore,	 SREBP1	 was	 negatively	 regulated	 by	 STAT3	 and,	 consequently,	 a	

decrease	 in	miRNA-122	 induced	 a	 reduction	 in	 SREBP1	expression.	 In	 order	 to	

obtain	 more	 scientific	 support	 concerning	 the	 involvement	 of	 these	 three	

miRNAs	 in	 SREBP1	 regulation,	 in	 the	 present	 study	 we	 over-expressed	 these	

miRNAs	 in	AML12	hepatocytes.	 In	all	 the	three	cases	we	observed	a	significant	

increase	in	SREBP1	protein	expression.		

In	rats	treated	with	resveratrol,	we	found	a	significantly	decreased	expression	of	

miRNA-103-3p,	 miRNA-107-3p	 and	 miRNA-122-5p,	 which	 was	 paralleled	 by	 a	

significant	 decrease	 in	 SREBP1	 protein	 expression.	 As	 far	 as	 miRNA-122-5p	 is	

concerned,	taking	into	account	the	results	of	our	transfection	study,	and	bearing	

in	mind	the	results	reported	by	Iliopoulos	et	al.	and	Shibata	et	al.	[32,33],	it	can	
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be	 proposed	 that	 resveratrol	 decreases	 the	 protein	 expression	 of	 the	

transcription	factor	SREBP1	indirectly	via	miRNA-122-5p.	

With	 regard	 to	 miRNA-103-3p	 and	 miRNA-107-3p,	 as	 indicated	 before	 in	 the	

Discussion	 section,	 computational	 analysis	 (miRecords)	 revealed	

complementarity	 between	 these	 miRNAs	 and	 the	 3'UTR	 region	 of	 srebf1,	

suggesting	 that	 it	 can	 be	 a	 direct	 target	 gene.	 Usually,	 miRNAs	 regulate	 gene	

transcription	 in	 a	 negative	 way,	 which	 is	 to	 say	 that	 they	 inhibit	 this	 process.	

However,	in	some	cases,	the	transcription	of	the	RNAs	is	positively	regulated	and	

thus,	 the	up-regulation	of	some	miRNAs	 increases	mRNA	 levels	of	 their	 targets	

[34].	In	our	in	vitro	study,	the	over-expression	of	miRNA-103-3p	and	miRNA-107-

3p	 in	hepatocytes	 led	to	an	 increased	expression	of	SREBP1,	suggesting	that	 in	

fact	 they	were	positive	regulators.	 In	 the	 in	vivo	study,	 resveratrol	 induced	the	

down-regulation	 of	 miRNA-103-3p	 and	 miRNA-107-3p	 in	 the	 liver,	 which	 was	

accompanied	by	a	reduced	expression	of	SREBP1.	Taking	all	that	into	account,	it	

may	 be	 said	 that	 miRNA-103-3p	 and	 miRNA-107-3p	 are	 involved	 as	 positive	

regulators	in	the	effects	of	this	polyphenol	on	SREBP	protein	expression	[34].	

As	shown	 in	Table	1,	 fasn	was	a	predicted	 target	gene	only	 for	miRNA-122-5p.	

Bhatia	 et	 al.	 [35]	 transfected	 HepG2	 hepatocytes	 with	 miRNA-107	 at	 various	

doses	 and	 they	 observed	 that,	 using	 the	 most	 common	 dose	 in	 transfection	

studies	(25	nM),	no	changes	in	FAS	protein	expression	were	observed.	When	we	

measured	 FAS	 protein	 expression,	 we	 found	 no	 change	 in	 resveratrol-treated	

rats.	 This	 result	 is	 in	 good	 accordance	 with	 the	 lack	 of	 change	 in	 FAS	 activity	

observed	in	our	previous	study	addressed	to	this	cohort	of	rats.	However,	it	was	

somewhat	 surprising	because	 fasn	 is,	 according	 to	 the	miRecords	data	base,	 a	

predicted	target	gene	for	miRNA-122-5p,	which	was	reduced	by	resveratrol,	and	

in	fact	our	transfection	experiment	showed	that	the	over-expression	of	miRNA-

122-5p	induced	a	significant	reduction	in	FAS	protein	expression.	Consequently,	

increased	FAS	expression	should	be	expected.	On	the	other	hand,	SREBP1,	which	

is	 a	 transcription	 factor	 that	 regulates	 FAS,	was	 reduced	 in	 resveratrol-treated	

rats.	Thus,	 it	could	be	hypothesized	that	the	increase	in	FAS	protein	expression	
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expected	 as	 a	 consequence	 of	 miRNA-122-5p	 down-regulation	 could	 be	

compensated	by	the	decrease	expected	due	to	the	reduction	in	SREBP1.	

According	 to	 the	 miRecords	 data	 base,	 cpt1a	 is	 a	 predicted	 target	 gene	 for	

miRNA-103-3p	 and	miRNA-107-3p.	 In	 cultured	 hepatocytes,	 we	 observed	 that	

only	those	over-expressing	miRNA-107-3p	showed	the	down-regulation	of	CPT1a	

protein	expression,	suggesting	that	in	fact	cpt1a	is	a	real	target	gene	for	miRNA-

107-3p,	but	not	for	miRNA-103-3p.	 In	our	 in	vivo	experiment,	rats	treated	with	

resveratrol	 showed	 decreased	 miRNA-107-3p	 expression	 and	 increased	 CPT1a	

protein	expression.	All	 in	all,	these	results	suggest	that	the	increase	induced	by	

resveratrol	in	CPT1a	protein	expression,	which	is	involved	in	the	liver	delipidating	

effects	 of	 this	 polyphenol,	 was	 mediated	 by	 a	 reduction	 in	 miRNA-107-3p	

expression.	

5.	Conclusions	

The	present	 study	provides	new	evidence	 showing	 that	 srebf1	 is	 a	 target	gene	

for	miRNA-103-3p	and	miRNA-107-3p	and	cpt1a	 a	 target	gene	 for	miRNA-107-

3p.	 Furthermore,	 the	 reduction	 in	 liver	 steatosis	 induced	 by	 resveratrol	 under	

our	 experimental	 conditions	 is	 mediated,	 at	 least	 in	 part,	 by	 increased	 CPT1a	

protein	expression	and	activity,	via	a	decrease	in	miRNA-107-3p	expression.	

	

Supplementary	 Materials:	 The	 following	 are	 available	 online	 at	

www.mdpi.com/link,	Figure	S1:	Diagram	of	the	work-plan	for	the	in	vivo	study.	
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3ʹUTR	 3ʹ	untraslated	regions	

BCA	 bicinchoninic	acid	

CPT1a	 carnitine	palmitoyltransferase	1a	

FAS	 fatty	acid	synthase	

FBS	 fetal	bovine	serum	

miRNA	 microRNA	

mRNA	 messenger	RNA	

SREBF1	 sterol	regulatory	element	binding	factor	1	

SREBP1	 sterol	regulatory	element	binding	protein	1	
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This	 Doctorial	 Thesis	 has	 been	 carried	 out	 within	 the	 research	 group	

“Nutrition	 and	Obesity”	 leaded	 by	 Prof.	María	 del	 Puy	 Portillo.	 This	 group	 has	

extensive	experience	in	the	study	of	the	effects	of	functional	ingredients	on	lipid	

metabolism	 in	 the	 fields	 of	 obesity	 and	 liver	 steatosis.	 Conjugated	 fatty	 acids,	

such	as	linoleic	and	linolenic	acids,	and	phenolic	compounds,	such	as,	quercetin,	

resveratrol	and	pterostilbene	have	been	studied	in	recent	years.	Resveratrol	and	

pterostilbene	have	been	chosen	for	this	Doctoral	Thesis.	

Due	 to	 the	 fact	 that	 little	 is	 known	 concerning	 the	 effects	 of	 phenolic	

compounds	on	triglyceride	regulation	by	epigenetic	mechanisms	and	microRNAs,	

this	Doctoral	Thesis	focuses	on	these	molecular	aspects.	

Two	 different	 approaches	 were	 carried	 out.	 The	 first	 was	 designed	 to	

analyse	the	possible	 influence	of	DNA	methylation	on	triglyceride	accumulation	

in	 adipose	 tissue,	 and	 the	 second	 to	 establish	 the	 involvement	 of	 post-

transcriptional	 regulation	 by	 microRNAs	 in	 adipose	 tissue	 and	 liver	 fat	

accumulation.	
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1. EFFECTS	 OF	 RESVERATROL	 AND	 PTEROSTILBENE	 ON	 DNA	

METHYLATION	PATTERN	OF	GENES	 INVOLVED	 IN	TRIGLYCERIDE	METABOLISM	

AND	THEIR	RELATIONSHIP	WITH	OBESITY.	

	

Methylation	 of	 nucleotides,	 as	 an	 epigenetic	 mechanism,	 provides	 a	

molecular	means	 to	 reversibly	mark	genomic	DNA.	This	epigenetic	process	can	

change	the	functional	state	of	regulatory	regions,	and	is	functionally	involved	in	

many	forms	of	stable	epigenetic	repression	(47).	

In	 this	 experiment,	 we	 determined	 the	 effect	 of	 resveratrol	 and	 its	

methoxy	derivate,	pterostilbene,	on	methylation	of	genes	involved	in	triglyceride	

metabolism.	 To	 this	 end	 we	 used	 Wistar	 rats	 divided	 into	 four	 experimental	

groups:	a	control	group	fed	a	standard	diet	(control	group),	a	group	fed	a	high-

fat	high-sucrose	diet	(high-fat	high-sucrose	group),	and	two	groups	also	fed	also	

a	high-fat	high-sucrose	diet	but	treated	with	either	resveratrol	or	pterostilbene	

at	 a	 dose	 of	 30	mg/kg/day	 (resveratrol	 and	 pterostilbene	 group	 respectively).	

This	dose	was	used	because	in	previous	studies	from	our	laboratory	we	observed	

that	it	was	effective	in	reducing	body	fat	mass	(105,	137).	As	expected,	feeding	a	

diet	rich	 in	fat	and	sucrose	 led	to	 increased	energy	 intake	and	consequently	to	

increased	fat	accumulation,	when	compared	with	the	standard	diet.	The	addition	

of	 these	 two	 phenolic	 compounds	 to	 the	 high-fat	 high-sucrose	 diet	 prevented	

this	fattening	effect,	but	only	partially,	because	body	weight	and	adipose	tissue	

weights	in	these	rats	did	not	reach	control	values.	

For	 the	 DNA	methylation	 study,	 we	 established	 the	 following	 inclusion	

criteria:	a)	genes	 involved	 in	triglyceride	metabolism	and	b)	genes	with	at	 least	

one	 CpG	 island	 in	 the	 gene	 promoter	 or	 first	 exon.	 First,	 lpl,	 fasn,	 acaca,	 lipe,	

pnpla2,	srebf1	and	pparγ genes,	were	selected	due	to	their	role	in	white	adipose	

tissue	 triglyceride	metabolism.	Moreover,	 these	genes	have	been	 shown	 to	be	

altered	by	resveratrol	(86,	92,	110,	111,	115,	146,	182).	After	the	analysis	of	CpG	

positions,	 only	 fasn,	 pnpla2	 and	 pparγ	 had	 CpG-rich	 areas	 near	 the	 promoter	

region.	

DNA	 methylation	 analysis,	 performed	 by	 pyrosequencing,	 showed	 that	

high-fat	high-sucrose	feeding	or	phenolic	compounds	did	not	modify	pnpla2	and	
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pparγ	gene	methylation	patterns.	By	contrast,	several	changes	were	observed	in	

fasn	gene.	

DNA	methylation	on	the	promoter	regions	is	a	potent	suppressor	of	gene	

expression.	Although	changes	produced	by	this	process	could	be	small,	they	may	

be	associated	with	gene	expression	modifications	that	exert	significant	effects	in	

phenotype	 (44,	 183).	 As	 previously	 mentioned,	 the	 high-fat	 high-sucrose	 diet	

induced	significant	changes	in	the	methylation	pattern	of	fasn	gene	with	regard	

to	 the	 controls,	 a	 hypermethylation	 in	 -62	 bp	 position	 (6%)	 and	 a	

hypomethylation	 in	 -90	 bp	 position	 (-11%).	 The	 addition	 of	 the	 two	 phenolic	

compounds	 led	 to	 different	 methylation	 patterns.	 In	 case	 of	 pterostilbene,	 it	

reversed	 the	 changes	 induced	 by	 the	 obesogenic	 diet	 in	 -90	 bp	 and	 -62	 bp	

positions.	By	contrast,	no	changes	in	the	methylation	status	were	observed	when	

resveratrol	and	high-fat	high-sucrose	groups	were	compared.	

In	 order	 to	 analyse	 the	 effect	 of	 the	 obesogenic	 diet	 on	 fasn,	 we	

measured	 the	gene	expression	of	 this	enzyme,	 showing	an	 increase	 in	high-fat	

high-sucrose	 diet	 group.	 Additionally,	 no	 differences	 in	 gene	 expression	 levels	

were	 observed	 in	 resveratrol	 and	 pterostilbene	 groups	 compared	with	 control	

group,	 thus	 these	molecules	 totally	 prevented	 the	 alteration	 produced	 by	 the	

obesogenic	 diet.	 However,	 regarding	 the	 methylation	 pattern	 of	 fasn	 in	

resveratrol	and	pterostilbene	groups,	resveratrol	had	not	effects	in	any	analysed	

region	 of	 the	 gene	 when	 compared	 with	 high-fat	 high-sucrose	 group.	 By	

contrast,	pterostilbene	reversed	the	changes	induced	by	the	obesogenic	diet	 in			

-62	 bp	 and	 -90	 bp	 positions.	 In	 addition,	 methylation	 percentages	 of	

pterostilbene	and	control	groups	were	similar.	

Uriarte	et	al.	 (184)	previously	 reported	a	hypomethylation	of	 fasn	gene	

induced	 by	 a	 high-fat	 high-sucrose	 diet.	 This	 reinforces	 our	 hypothesis	 of	 the	

hypomethylating	action	of	an	antiobesogenic	dietary	pattern	on	 fasn,	although	

two	main	differences	 appear	when	 comparing	both	 studies.	On	 the	one	hand,	

Uriarte	el	al.	observed	hypomethylation	in	fasn	gene	after	20	weeks	of	high-fat	

high-sucrose	 diet	while,	 in	 the	 present	 study,	 this	 effect	was	 observed	 after	 6	

weeks.	 This	 means	 that	 DNA	 methylation	 process	 does	 not	 need	 long	 time-
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periods	 to	 take	 place.	 Furthermore,	 similar	 results	 were	 found	 using	 different	

DNA	 methylation	 analysis	 methods	 (mass	 spectrophotometry	 and	

pyrosequencing).	

Concerning	fasn	gene,	several	authors	reported	that	while	a	high-fat	diet	

decreases	 the	 expression	 of	 this	 gene,	 diets	 rich	 in	 simple	 or	 complex	

carbohydrates	increase	fasn	expression	(185-189).	In	the	present	study,	it	seems	

that	the	effect	of	high-sucrose	content	was	greater	than	that	of	high-fat	content.	

This	result	is	in	good	accordance	with	those	reported	by	Yang;	2012	when	using	

this	type	of	diet.		

In	order	to	explore	the	possibility	that	changes	in	-90	bp	position	could	be	

related	 to	decreased	gene	expression,	a	bioinformatic	program	was	performed	

to	 identify	 potential	 transcription	 factors	 binding	 around	 this	 altered	 -90	 bp	

position.	We	found	that	Sp1	transcription	factor,	which	acts	as	a	glucose	sensor	

(190),	could	bind	in	this	position.	It	has	been	demonstrated	that	Sp1	is	crucial	for	

fasn	 gene	 promoter	 activity	 in	 adipocytes	 (191),	 being	 able	 to	 influence	 the	

regulation	of	the	gene.	

In	 order	 to	 analyse	 the	 possible	 relationship	 between	 the	 methylation	

status	 and	 fasn	 gene	 expression,	 Pearson´s	 correlation	 coefficients	 were	

calculated.	The	results	showed	that	only	the	hypomethylation	of	-90	bp	position	

had	 a	 significant	 correlation	 with	 the	 fasn	 gene	 expression,	 which	 suggests	 a	

contribution	by	this	position	to	the	down-regulation	of	fasn	gene.	

Finally,	nuclear	DNMT	(DNA	methyltransferases)	activity	was	measured	in	

order	 to	 analyse	 the	 behaviour	 of	 these	 enzymes,	 which	 directly	 catalyse	 the	

addition	 of	 a	 methyl	 group	 cytosine	 residue.	 The	 activity	 of	 these	 enzymes	

showed	a	similar	pattern	of	 response	to	DNA	methylation	 level	at	 -90	bp.	That	

means	that	it	could	be	a	mechanism	in	the	modulation	activity	of	these	enzymes,	

which	 justifies	 the	 observed	 effects	 of	 high-fat	 high-sucrose	 diet	 and	

pterostilbene	on	fasn	methylation.	 	
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2. INVOLVEMENT	 OF	 MIR-539-5p	 IN	 THE	 INHIBITION	 OF	 de	 novo	

LIPOGENESIS	INDUCED	BY	RESVERATROL	IN	WHITE	ADIPOSE	TISSUE	

	

Resveratrol	 is	 a	 well-studied	 phenolic	 compound,	 which	 has	 been	

suggested	 to	 be	 effective	 in	 preventing	 the	 development	 of	 several	 diseases,	

such	 as	 obesity.	 The	 mechanisms	 of	 action	 of	 resveratrol	 as	 anti-obesity	

molecule	 have	 been	 reported	 in	 our	 previous	 studies	 and	 in	 the	 literature:	

reduction	 in	 proliferation	 and	 differentiation	 of	 pre-adipocytes,	 increase	 in	

apoptosis,	increase	in	lipid	mobilization	and	fatty	acid	oxidation,	and	decrease	in	

de	novo	lipogenesis	(88,	110,	111,	115,	182).	However,	we	want	to	get	in	deep	in	

molecular	mechanisms	of	these	effects,	such	as	miRNAs,	as	the	vast	majority	of	

these	studies	have	not	addressed	this	issue.	MiRNAs	are	small	non-coding	RNAs	

which	 regulate	 the	 expression	 of	 specific	 target	 genes	 post-transcriptionally,	

mainly	 by	 suppressing	 translation	 and/or	 reducing	 the	 stability	 of	 their	 targets	

mRNAs.	It	has	been	reported	that	several	polyphenols,	included	resveratrol,	can	

modify	the	expression	of	miRNAs	(122).	

This	 experiment,	 we	 determined	 resveratrol	 modifications	 on	 miRNA	

profile	 in	adipose	tissue	and	their	 implications	 in	the	modulation	of	triglyceride	

metabolism.	Rats	were	divided	into	two	experimental	groups:	Control	group	fed	

a	 high-fat	 high-sucrose	 diet	 (obesogenic	 diet)	 and	 the	 other	 a	 treated	 fed	 the	

same	obesogenic	diet	supplemented	with	resveratrol	in	the	amounts	needed	to	

reach	a	dose	of	30	mg/kg/day	(Resveratrol	group).		This	dose	was	selected	based	

on	the	DNA	methylation	experiment	and	on	previous	reported	studies	from	our	

laboratory	which	showed	that	 it	was	effective	 in	reducing	body	fat	mass	 (137).	

As	expected,	 resveratrol	supplementation	reduced	body	weight	and	the	size	of	

epididymal	and	perirenal	adipose	tissues,	as	well	as	the	sum	of	the	four	depots	

dissected	(perirenal	+	epididymal	+	mesenteric	+	subcutaneous).		

In	 order	 to	 explore	 the	 possible	 implication	 of	 resveratrol	 in	 the	

modification	of	miRNA	profile,	a	miRNA	microarray	was	carried	out	 in	perirenal	

adipose	tissue.	Of	719	microRNAs	analysed,	only	273	were	detected	and	16	were	

significantly	modified	by	resveratrol	supplementation,	with	13	up-regulated	and	
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3	down-regulated.	The	validation	of	four	of	these	modified	microRNAs	by	RT-PCR	

confirmed	the	significant	changes	found	in	the	microarray	analysis.		

According	 to	 the	 literature,	 some	miRNAs	are	 involved	 in	 the	control	of	

genes	 related	 to	metabolic	 pathways	 responsible	 for	 the	 anti-obesity	 effect	 of	

resveratrol	 in	 adipose	 tissue.	 Surprisingly,	 in	 the	 present	 study	 these	 miRNAs	

were	 not	 modified	 by	 this	 polyphenol.	 In	 view	 of	 this	 fact	 an	 analysis	 was	

performed	 according	 to	 the	 miRWalk	 Database,	 based	 on	 five	 algorithms,	 in	

order	 to	 find	 validated	 or	 predicted	 target	 genes	 of	 the	 16	 changed	miRNAs.	

While	no	validated	target	genes	were	found	after	the	analysis,	fabp3,	sp1,	cpt1a,	

hsl,	ucp1,	ucp3,	cpt1b	and	pparγ	were	found	as	predicted	target	genes.	For	this	

study,	among	these	predicted	target	genes,	only	 those	relevant	 for	 triglyceride	

metabolism	in	white	adipose	tissue	were	selected:	hsl,	predicted	target	gene	of	

miRNA-328a-5p,	 pparγ, predicted	 target	 gene	 of	 miRNA-129-1-3p	 and	 miRNA-

129-2-3p,	 and	 sp1,	 target	 gene	 of	 miRNA-539-5p.	 These	 three	 miRNAs	 were	

significantly	increased	by	resveratrol	treatment.		

As	 indicated	 before,	 usually	 miRNAs	 act	 as	 repressors	 of	 protein	

translation,	directly	by	linking	the	3´UTR	of	the	target	gene	or	indirectly	targeting	

a	 transcription	 factor	 or	 other	 intermediates	 which	 alter	 the	 expression	 of	

proteins	 (106).	Consequently,	protein	expression	of	 these	three	selected	genes	

was	 measured.	 As	 far	 as	 HSL,	 enzyme	 involved	 in	 lipolysis,	 and	 PPARγ, a	

transcription	factor	which	regulates	HSL	and	LPL,	are	concerned,	no	changes	 in	

protein	 expression	 were	 observed	 between	 Control	 and	 Resveratrol	 groups.	

Taking	 into	 account	 that	 another	 mechanism	 of	 miRNA	 regulation	 is	 the	

reduction	in	the	mRNA	stability	of	their	target	genes,	gene	expression	analysis	of	

these	two	genes	was	performed.	In	the	same	way,	no	differences	were	observed	

between	 both	 experimental	 groups.	 Consequently,	 the	 results	 of	 our	 study	

showed	 that	 although	 miRWalk	 database	 indicates	 that	 pparγ	 is	 a	 predicted	

target	 gene	 of	 miRNA-129-1-3p	 and	 miRNA-129-2-3p,	 and	 hsl	 is	 a	 predicted	

target	 gene	 of	 miRNA-328-5p,	 the	 lack	 of	 changes	 in	 their	 gene	 and	 protein	

expressions	suggests	that	in	fact	they	cannot	be	considered	real	target	genes.	
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As	previously	mentioned	 in	Manuscript	1,	 Sp1	 transcription	 factor	 is	 an	

important	member	of	the	ubiquitously	expressed	family	SP/KLF,	involved	among	

others,	in	fasn	gene	regulation.	In	contrast	to	HSL	and	PPARγ results,	SP1	protein	

expression	was	significantly	 reduced	 in	 resveratrol-treated	rats.	This	effect	was	

in	 good	 accordance	 with	 the	 significant	 increase	 in	 miRNA-539-5p	 expression	

thus	showing	a	negative	way	of	regulation	of	this	miRNA.		

Several	 studies	 have	 reported	 that	 miRNA-1224,	 up-regulated	 by	

resveratrol	supplementation	in	the	present	study,	is	involved	in	the	regulation	of	

sp1.	Niu	et	al.	 (156)	 showed	a	decrease	 in	gene	and	protein	expression	of	sp1	

after	 miRNA-1224	 transfection	 in	 human	 embryonic	 kidney	 cells	 and	 mouse	

monocytes	macrophage	cells.		As	these	cell	lines	do	not	have	a	rodent	origin,	we	

performed	 an	 alignment	 of	 the	 potential	 rno-miRNA-1224	 binding	 site	 in	 the	

3´UTR	 sequence	 of	 sp1	 in	 rat.	 	 This	 analysis	 consists	 in	 finding	 possible	

interaction	of	base	pairing	of	2-8	nt	in	the	in	the	5´extreme	of	the	microRNA	and	

the	 3´UTR	 region	 of	 the	 mRNA	 (55).	 The	 analysis	 revealed	 that	 miRNA-1224	

theoretically	 can	 be	 able	 to	 bind	 rat	 sp1	 mRNA.	 Taking	 these	 results	 in	mind,	

although	 this	 relationship	 has	 not	 been	 detected	 by	 miRWalk	 database	 as	

predicted	 or	 validated	 target	 gene,	 we	 decided	 to	 analyse	 the	 possible	

implication	on	the	regulation	of	SP1.		

Accumulating	evidence	shows	that,	 in	order	to	 identify	potential	miRNA	

targets,	over-expression	or	inhibition	of	microRNAs	is	a	good	approach	to	obtain	

robust	 scientific	 evidence.	 According	 with	 this	 fact,	 3T3-L1	 adipocytes	 were	

transfected	 with	 mmu-miRNA-539-5p	 and	 mmu-miRNA-1224.	 Cells	 over-

expressing	 miRNA-1224	 showed	 that	 SP1	 protein	 expression	 was	 not	 altered	

compared	 with	 control	 group.	 By	 contrast,	 SP1	 protein	 expression	 was	 not	

detectable	in	cells	over-expressing	miRNA-539-5p.	These	results	suggest	that	the	

reduction	 of	 SP1	 protein	 expression	 induced	 by	 resveratrol	 is	 modulated	 by	

miRNA-539-5p.	

In	order	to	obtain	further	information	concerning	both	analysed	miRNAs,	

Pearson´s	 correlations	 between	 each	 microRNA	 expression	 and	 SP1	 protein	
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expression	 were	 calculated.	 Results	 showed	 that	 only	 miRNA-539-5p	 was	

negatively	correlated	with	SP1	protein	modification.	

Magaña	 et	 al.(18)	 reported	 that	 sp1	 acts	 together	 with	 srebp1	 to	

synergistically	activate	the	promoter	of	fasn	gene,	regulating	de	novo	lipogenesis	

pathway.	 Accordingly,	 we	 analysed	 protein	 expression	 of	 SREBP1	 transcription	

factor	 and	 fasn	 gene	 expression.	 A	 significant	 reduction	 in	 SREBP1	 protein	

expression	was	observed	in	resveratrol-treated	group	compared	with	the	control	

group.	In	good	accordance	with	these	results,	gene	expression	of	fasn	was	also	

reduced.	 These	 results	 show	 that	 the	body	 fat-lowering	effect	of	 resveratrol	 is	

mediated,	at	least	in	part,	by	a	reduction	in	de	novo	lipogenesis.	

This	 study	demonstrates	 for	 the	 first	 time	 that	 resveratrol	modifies	 the	

miRNA	 profile	 in	 white	 adipose	 tissue.	 As	 far	 as	 triglyceride	 metabolism	 is	

concerned	in	this	tissue,	this	study	shows	that	miRNA-539-5p	 is	 involved	 in	the	

inhibition	of	de	novo	lipogenesis	induced	by	resveratrol.	 	
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3. INVOLVEMENT	 OF	 MIRNA-103,	 MIRNA-107	 AND	 MIRNA-122	 IN	

THE	PREVENTION	OF	LIVER	STEATOSIS	INDUCED	BY	RESVERATROL	

	

Previous	studies	performed	in	our	laboratory,	as	well	as	studies	reported	

by	 other	 authors,	 have	 demonstrated	 that	 resveratrol	 is	 able	 to	 reduce	 liver	

steatosis.	With	regard	to	the	mechanisms,	it	has	been	observed	in	our	group	that	

resveratrol	 treatment	 could	 induce	 increased	 fatty	 acid	 oxidation	 because	 the	

activity	 of	 CPT1a,	 key	 enzyme	 in	 the	 carnitine-dependent	 transport	 across	 the	

mitochondrial	inner	membrane, was	enhanced.	By	contrast,	de	novo	lipogenesis	

was	 not	 involved	 in	 the	 effect	 of	 resveratrol	 because	 FAS	 activity	 remained	

unchanged.	 As	 previously	 mentioned	 in	 Summary	 2,	 molecular	 regulatory	

pathways	 of	 lipid	 metabolism	 include	 miRNAs.	 It	 has	 been	 reported	 in	 the	

literature	 that	 different	 polyphenols,	 such	 as	 proanthocyanidins	 or	 a	 mixture	

extracted	from	Hibiscus	sabdariffa,	are	able	to	modify	the	expression	of	miRNA-

122-5p	 (a	 liver	 specific	 miRNA	 and	 the	most	 abundant	 one)	 and	 the	 paralogs	

miRNA-103-3p	 and	miRNA-107-3p	 in	 liver	 (136,	 167-169,	 192).	 In	 this	 context,	

we	 wanted	 to	 determine	 whether	 the	 reduction	 in	 liver	 steatosis	 induced	 by	

resveratrol	 in	 rats	 fed	 an	 obesogenic	 diet	 was	 mediated	 by	 miRNAs.	 For	 this	

purpose,	we	analysed	miRNA-103,	miRNA-107	and	miRNA-122,	which	represent	

70%	of	all	miRNAs	in	liver	(136).	

The	 experiment	 was	 conducted	 with	 Sprague-Dawley	 rats	 which	 were	

divided	in	two	experimental	groups:	a	control	group	fed	a	high-fat	high-sucrose	

diet	 (obesogenic	diet)	and	 the	other	a	 treated	group	 fed	 the	same	obesogenic	

diet	supplemented	with	resveratrol	in	the	amounts	needed	to	reach	a	dose	of	30	

mg/kg/day	(Resveratrol	group).	This	study	showed	that	resveratrol	treatment	did	

not	reduce	final	body	weight	or	liver	weight.	By	contrast,	resveratrol	treatment	

induced	a	significant	decrease	in	hepatic	triglyceride	content	(170).	

First,	we	searched	possible	predicted	and	validated	target	genes	of	these	

three	miRNAs	 related	 to	 triglyceride	metabolism	 in	miRecords	database	and	 in	

the	literature.	As	far	as	lipogenic	pathway	is	concerned,	according	to	miRecords,	

srebf1	is	a	predicted	target	gene	for	paralogs	miRNA-103-3p	and	miRNA-107-3p	
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and	fasn	is	a	predicted	target	gene	of	miRNA-122-5p.	Moreover,	Iliopoulos	el	al.	

(178)	 reported	 the	 indirect	 regulation	of	 srebf1	 by	 that	miRNA.	They	observed	

that	up-regulation	of	this	miRNA	induced	 increased	SREBP1	protein	expression.	

Taking	 into	account	that	miRNAs	are	negative	regulators	of	protein	translation,	

and	that	no	miRNA-122-5p	binding	sites	are	found	in	the	3´UTR	or	in	the	coding	

regions	of	this	gene,	they	concluded	that	srebf1	was	an	indirect	target	gene	for	

miRNA-122.	 Unfortunately,	 they	 did	 not	 know	 the	 intermediate	 steps	 in	 the	

signalling	cascade	that	 led	to	the	up-regulation	of	SREBP1.	 In	good	accordance,	

Shibata	el	al.(179)	reported	that	silencing	miRNA-122-5p	led	to	decreased	SOCS3	

expression,	 which	 in	 turn	 increased	 STAT3	 expression.	 Thus,	 SREBP1	 was	

negatively	 regulated	 by	 STAT3.	 Similarly,	 a	 decrease	 in	 miRNA-122	 expression	

induced	 a	 decrease	 in	 SREBP1	 expression.	 In	 addition,	 Bhatia	 et	 al.	 (181)	

reported	 that	 miRNA-107	 targeted	 fasn	 and	 decreased	 its	 protein	 levels	 by	

complementary	binding	to	the	3´UTR	of	target	mRNAs.	

In	order	to	obtain	more	scientific	support	concerning	the	involvement	of	

these	miRNAs	in	SREBP1	regulation,	an	over-expression	study	was	performed	in	

AML	12	 hepatocytes.	 In	 the	 three	 cases,	we	 observed	 a	 significant	 increase	 in	

SREBP1	protein	expression.	

	In	addition,	we	measured	the	expression	of	the	three	selected	miRNAs	in	

liver	of	 rats	 treated	with	 resveratrol	and	we	observed	a	 significant	decrease	 in	

resveratrol-treated	 rats	 in	 all	 cases.	 Then,	 we	 analysed	 protein	 expression	 of	

SREBP1	 and	 FAS.	 While	 SREBP1	 was	 significantly	 decreased	 in	 resveratrol	

treated-group,	no	changes	were	observed	in	FAS.		

With	regard	to	miRNA-122-5p	bearing	 in	mind	that	the	results	of	our	 in	

vitro	study	and	considering	the	results	reported	by	Iliopoulus	et	al.	and	Shibata	

et	 al.	 it	 may	 be	 suggested	 that	 resveratrol	 decreases	 protein	 expression	 of	

SREBP1	indirectly	via	miRNA-122-5p.	In	addition,	the	over-expression	of	miRNA-

103-3p	and	miRNA-107-3p	in	AML	12	hepatocytes	resulted	in	increased	SREBP1	

protein	expression.	Moreover,	in	the	in	vivo	study,	liver	from	resveratrol-treated	

rats	 showed	 down-regulation	 of	 these	 miRNAs,	 which	 was	 accompanied	 by	 a	

reduced	expression	of	SREBP1.	Taking	together,	these	results	suggest	that	these	

miRNAs	are	positive	regulators	of	SREBP1.	
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According	 to	miRecords,	 fasn	 is	 a	 predicted	 target	 gene	of	miRNA-122-

5p.	Over-expression	 in	AML12	hepatocytes	of	 this	miRNA	 induced	a	 significant	

reduction	 of	 in	 FAS	 protein	 expression.	 Therefore,	 increased	 gene	 expression	

should	 be	 expected.	 When	 we	 measured	 FAS	 protein	 expression	 in	 liver,	 we	

found	 no	 change	 in	 resveratrol-treated	 rats.	 This	 result	 is	 in	 good	 accordance	

with	the	lack	of	change	in	FAS	activity	observed	in	our	previous	study	addressed	

in	 this	 cohort	of	 animals.	 This	 result	 is	 surprising	because	 fasn	 is,	 according	 to	

miRecords,	 a	 predicted	 target	 gene	 for	miRNA-122-5p,	 which	was	 reduced	 by	

resveratrol.	 In	 fact,	 our	 transfection	experiment	 shows	 that	over-expression	of	

miRNA-122-5p	induced	a	significant	reduction	in	FAS	protein	expression.	On	the	

other	 hand,	 SREBP1,	 a	 transcription	 factor	 that	 regulates	 FAS,	was	 reduced	 in	

resveratrol-treated	rats.	Thus,	it	could	be	hypothesized	that	the	increase	in	FAS	

protein	 expression	 expected	 as	 a	 consequence	 of	 miRNA-122-5p	 down-

regulation	could	be	compensated	by	the	decrease	expected	due	to	the	reduction	

in	 SREBP1.	 Moreover,	 Bathia	 et	 al.	 (181)	 reported	 transfected	 HepG2	

hepatocytes	with	miRNA-107	at	 various	doses.	They	observed	 that	when	using	

the	 most	 common	 dose	 in	 transfection	 studies	 (25	 nM)	 no	 changes	 in	 FAS	

protein	expression	were	observed	

As	 far	 as	 CPT	 1a	 is	 concerned,	 according	 to	 miRecords,	 cpt	 1a	 is	 a	

predicted	target	gene	for	miRNA-103-3p	and	miRNA-107-3p.		Over-expression	of	

miRNA-107-3p	 in	 AML12	 hepatocytes	 reduced	 CPT	 1a	 protein	 expression.	 By	

contrast,	miRNA-103-3p	did	not	produce	any	effect.	Furthermore,	in	the	 in	vivo	

study,	 liver	 from	 resveratrol-treated	 rats	 showed	 down-regulation	 of	 these	

miRNAs.	 These	 results	 are	 in	 good	 accordance	 with	 the	 increase	 in	 CPT	 1a	

activity	previously	 reported	 in	 this	 cohort	of	 animals.	Accordingly,	 the	 increase	

induced	by	resveratrol	in	CPT	1a	protein	expression,	involved	in	the	delipidating	

effect	of	this	polyphenol,	seems	to	be	mediated	by	the	reduction	on	miRNA-107-

3p	expression.	
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CONCLUSIONS	
	

1. Under	our	experimental	conditions,	high-fat	high-sucrose	feeding	induces	

over-expression	of	 fasn	 due	 to	hypomethylation	of	 -90bp	position,	whereas	 it	

does	not	modify	methylation	status	of	pnpla2	and	pparγ		genes.		

	

2. Pterostilbene	prevents	fasn	gene	up-regulation	induced	by	an	obesogenic	

diet,	due	to	the	hypomethylation	in	-90	bp	position	of	this	gene.	

	
3. Resveratrol	 also	 prevents	 fasn	 gene	 up-regulation	 induced	 by	 an	

obesogenic	 diet,	 but	 this	 effect	 is	 not	 mediated	 by	 modifications	 in	 DNA	

methylation	pattern.	

	
4. Resveratrol	supplementation	modifies	microRNA	profile	in	white	adipose	

tissue	of	rats	fed	an	obesogenic	diet,	but	only	miRNA-328a-5p,	miRNA-129-1-3p,	

miRNA-129-2-5p	 and	 miRNA-539-5p	 have	 predicted	 target	 genes	 related	 to	

triglyceride	 metabolism,	 and	 thus	 could	 be	 involved	 in	 the	 body-fat	 lowering	

effect	of	this	phenolic	compound.	

	
5. MiRNA-539-5p,	up	 regulated	by	 resveratrol	 in	white	adipose	 tissue,	 is	a	

direct	regulator	of	SP1	protein	expression.	

	
6. The	 reduction	 in	 protein	 expression	 of	 SP1	 and	 SREBP1	 transcription	

factors	 induced	by	resveratrol	 in	white	adipose	tissue	 leads	to	the	 inhibition	of	

fasn	gene	expression,	which	 in	turn	 is	 involved	 in	the	anti-obesity	effect	of	this	

phenolic	compound.		

	
7. The	 reduction	 in	 SREBP1c	 protein	 expression	 induced	 by	 resveratrol	 in	

liver	is	positively	mediated	by	miRNA-103-3p	and	miRNA-107-3p.		

	
8. Despite	 the	 reduction	 in	 SREBP1c,	 FAS	 protein	 expression	 remained	

unchanged,	 probably	 because	 the	 effect	 of	 this	 transcription	 factor	 is	
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compensated	 by	 the	 increase	 expected	 as	 a	 consequence	 of	 miRNA-122-5p	

down-regulation.	

	
9. The	increase	in	CPT1a	protein	expression	induced	by	resveratrol	in	liver	is	

negatively	mediated	by	miRNA-107-3p.	Consequently,	 it	 can	be	 suggested	 that	

the	prevention	of	liver	steatosis	induced	by	resveratrol	is	due,	at	least	in	part,	to	

increased	fatty	acid	oxidation.	

	

	

	

	

	

	

	

	

	

	



BIBLIOGRAPHY	
	
8	

	

135	
	

REFERENCES	

1.	 Robinson	 DS.	 Plasma	 triglyceride	metabolism.	 J	 Clin	 Pathol	 Suppl	 (Assoc	 Clin	
Pathol).	1973;5:5-10.	

2.	 Frayn	 KN,	 Karpe	 F,	 Fielding	 BA,	 Macdonald	 IA,	 Coppack	 SW.	 Integrative	
physiology	of	human	adipose	tissue.	Int	J	Obes	Relat	Metab	Disord.	2003;27(8):875-88.	

3.	 Nguyen	 P,	 Leray	 V,	 Diez	 M,	 Serisier	 S,	 Le	 Bloc'h	 J,	 Siliart	 B,	 et	 al.	 Liver	 lipid	
metabolism.	J	Anim	Physiol	Anim	Nutr	(Berl).	2008;92(3):272-83.	

4.	 Vázquez-Vela	ME,	Torres	N,	Tovar	AR.	White	adipose	tissue	as	endocrine	organ	
and	its	role	in	obesity.	Arch	Med	Res.	2008;39(8):715-28.	

5.	 Sethi	 JK,	 Vidal-Puig	 AJ.	 Thematic	 review	 series:	 adipocyte	 biology.	 Adipose	
tissue	 function	 and	 plasticity	 orchestrate	 nutritional	 adaptation.	 J	 Lipid	 Res.	
2007;48(6):1253-62.	

6.	 Jaworski	 K,	 Sarkadi-Nagy	 E,	 Duncan	 RE,	 Ahmadian	 M,	 Sul	 HS.	 Regulation	 of	
triglyceride	 metabolism.	 IV.	 Hormonal	 regulation	 of	 lipolysis	 in	 adipose	 tissue.	 Am	 J	
Physiol	Gastrointest	Liver	Physiol.	2007;293(1):G1-4.	

7.	 Lass	 A,	 Zimmermann	 R,	 Oberer	 M,	 Zechner	 R.	 Lipolysis	 -	 a	 highly	 regulated	
multi-enzyme	 complex	mediates	 the	 catabolism	 of	 cellular	 fat	 stores.	 Prog	 Lipid	 Res.	
2011;50(1):14-27.	

8.	 Letexier	 D,	 Pinteur	 C,	 Large	 V,	 Fréring	 V,	 Beylot	 M.	 Comparison	 of	 the	
expression	 and	 activity	 of	 the	 lipogenic	 pathway	 in	 human	 and	 rat	 adipose	 tissue.	 J	
Lipid	Res.	2003;44(11):2127-34.	

9.	 Houten	 SM,	 Wanders	 RJ.	 A	 general	 introduction	 to	 the	 biochemistry	 of	
mitochondrial	fatty	acid	β-oxidation.	J	Inherit	Metab	Dis.	2010;33(5):469-77.	

10.	 Watt	MJ,	Hoy	AJ.	 Lipid	metabolism	 in	 skeletal	muscle:	 generation	of	 adaptive	
and	 maladaptive	 intracellular	 signals	 for	 cellular	 function.	 Am	 J	 Physiol	 Endocrinol	
Metab.	2012;302(11):E1315-28.	

11.	 Ehrenborg	E,	Krook	A.	Regulation	of	skeletal	muscle	physiology	and	metabolism	
by	peroxisome	proliferator-activated	receptor	delta.	Pharmacol	Rev.	2009;61(3):373-93.	

12.	 Lehninger	AL,	Nelson	DL,	Cox	MM.	Lehninger	Principles	of	Biochemistry.	2011.	
Four	edition.	

13.	 Barber	MC,	Clegg	RA,	Travers	MT,	Vernon	RG.	Lipid	metabolism	in	the	lactating	
mammary	gland.	Biochim	Biophys	Acta.	1997;1347(2-3):101-26.	

14.	 Hardie	DG.	Regulation	of	fatty	acid	synthesis	via	phosphorylation	of	acetyl-CoA	
carboxylase.	Prog	Lipid	Res.	1989;28(2):117-46.	

15.	 A.	 HM,	 B.	 KB.	 Adipose	 tissue	 de	 novo	 lipogenesis.		 Unanticipated	 benefits	 in	
health	and	disease.	American	Society	 for	Biochemistry	and	Molecular	Biology.	Annual	
meeting	ASBMB;	February	2012.	

16.	 Elvira	L-O,	Emilia	M.	SREBP-1C,	ChREBP	y	LXR:	Su	influencia	en	el	desarrollo	del	
hígado	graso	no	alcohólico.	Anales	Real	Academia	Farmacia;	Vol	80,	Nº1,	2014.Pag	14-
48.	

17.	 Kohjima	M,	Higuchi	N,	Kato	M,	Kotoh	K,	Yoshimoto	T,	Fujino	T,	et	al.	SREBP-1c,	
regulated	by	the	insulin	and	AMPK	signaling	pathways,	plays	a	role	in	nonalcoholic	fatty	
liver	disease.	Int	J	Mol	Med.	2008;21(4):507-11.	



BIBLIOGRAPHY	
	

136	
	

18.	 Magaña	 MM,	 Lin	 SS,	 Dooley	 KA,	 Osborne	 TF.	 Sterol	 regulation	 of	 acetyl	
coenzyme	A	carboxylase	promoter	requires	two	interdependent	binding	sites	for	sterol	
regulatory	element	binding	proteins.	J	Lipid	Res.	1997;38(8):1630-8.	

19.	 Deniaud	 E,	 Baguet	 J,	 Chalard	 R,	 Blanquier	 B,	 Brinza	 L,	 Meunier	 J,	 et	 al.	
Overexpression	of	transcription	factor	Sp1	leads	to	gene	expression	perturbations	and	
cell	cycle	inhibition.	PLoS	One.	2009;4(9):e7035.	

20.	 Xu	X,	So	JS,	Park	JG,	Lee	AH.	Transcriptional	control	of	hepatic	lipid	metabolism	
by	SREBP	and	ChREBP.	Semin	Liver	Dis.	2013;33(4):301-11.	

21.	 Pawar	A,	Botolin	D,	Mangelsdorf	DJ,	Jump	DB.	The	role	of	liver	X	receptor-alpha	
in	 the	 fatty	 acid	 regulation	 of	 hepatic	 gene	 expression.	 J	 Biol	 Chem.	
2003;278(42):40736-43.	

22.	 Rui	L.	Energy	metabolism	in	the	liver.	Compr	Physiol.	2014;4(1):177-97.	

23.	 Denechaud	 PD,	 Bossard	 P,	 Lobaccaro	 JM,	 Millatt	 L,	 Staels	 B,	 Girard	 J,	 et	 al.	
ChREBP,	but	not	LXRs,	is	required	for	the	induction	of	glucose-regulated	genes	in	mouse	
liver.	J	Clin	Invest.	2008;118(3):956-64.	

24.	 Langin	 D.	 Adipose	 tissue	 lipolysis	 as	 a	 metabolic	 pathway	 to	 define	
pharmacological	 strategies	 against	 obesity	 and	 the	 metabolic	 syndrome.	 Pharmacol	
Res.	2006;53(6):482-91.	

25.	 Arner	P.	Human	fat	cell	lipolysis:	biochemistry,	regulation	and	clinical	role.	Best	
Pract	Res	Clin	Endocrinol	Metab.	2005;19(4):471-82.	

26.	 Badin	 PM,	 Langin	D,	Moro	 C.	 Dynamics	 of	 skeletal	muscle	 lipid	 pools.	 Trends	
Endocrinol	Metab.	2013;24(12):607-15.	

27.	 Wang	 H,	 Bell	 M,	 Sreenivasan	 U,	 Sreenevasan	 U,	 Hu	 H,	 Liu	 J,	 et	 al.	 Unique	
regulation	of	adipose	triglyceride	lipase	(ATGL)	by	perilipin	5,	a	lipid	droplet-associated	
protein.	J	Biol	Chem.	2011;286(18):15707-15.	

28.	 Altarejos	 JY,	 Montminy	 M.	 CREB	 and	 the	 CRTC	 co-activators:	 sensors	 for	
hormonal	and	metabolic	signals.	Nat	Rev	Mol	Cell	Biol.	2011;12(3):141-51.	

29.	 Indiveri	C,	Iacobazzi	V,	Tonazzi	A,	Giangregorio	N,	Infantino	V,	Convertini	P,	et	al.	
The	 mitochondrial	 carnitine/acylcarnitine	 carrier:	 function,	 structure	 and	
physiopathology.	Mol	Aspects	Med.	2011;32(4-6):223-33.	

30.	 Kompare	 M,	 Rizzo	 WB.	 Mitochondrial	 fatty-acid	 oxidation	 disorders.	 Semin	
Pediatr	Neurol.	2008;15(3):140-9.	

31.	 Stryer,	Lubert,	M	BJ,	L	TJ.	Bioquímica.	1995.Sexta	edición.	

32.	 Wanders	 RJ,	 Vreken	 P,	 Ferdinandusse	 S,	 Jansen	 GA,	 Waterham	 HR,	 van	
Roermund	 CW,	 et	 al.	 Peroxisomal	 fatty	 acid	 alpha-	 and	 beta-oxidation	 in	 humans:	
enzymology,	 peroxisomal	metabolite	 transporters	 and	peroxisomal	 diseases.	 Biochem	
Soc	Trans.	2001;29(Pt	2):250-67.	

33.	 Giby	 VG,	 Ajith	 TA.	 Role	 of	 adipokines	 and	 peroxisome	 proliferator-activated	
receptors	in	nonalcoholic	fatty	liver	disease.	World	J	Hepatol.	2014;6(8):570-9.	

34.	 Parimal	 M,	 Navin	 V,	 K	 RJ.	 Chapter	 5:	 Peroxisome	 proliferator-activated	
receptor		a			signaling	in	hepatocarcinogenesis. Subcell	Biochem.	2013;69:77-99	

35.	 Daniel	M,	Tollefsbol	TO.	Epigenetic	linkage	of	aging,	cancer	and	nutrition.	J	Exp	
Biol.	2015;218(Pt	1):59-70.	



BIBLIOGRAPHY	
	
8	

	

137	
	

36.	 Waterland	 RA,	 Michels	 KB.	 Epigenetic	 epidemiology	 of	 the	 developmental	
origins	hypothesis.	Annu	Rev	Nutr.	2007;27:363-88.	

37.	 Lavebratt	C,	Almgren	M,	Ekström	TJ.	Epigenetic	regulation	in	obesity.	Int	J	Obes	
(Lond).	2012;36(6):757-65.	

38.	 Mau	T,	Yung	R.	Potential	of	epigenetic	 therapies	 in	non-cancerous	conditions.	
Front	Genet.	2014;5:438.	

39.	 van	Dijk	 SJ,	Molloy	 PL,	 Varinli	 H,	Morrison	 JL,	Muhlhausler	 BS,	 EpiSCOPE	Mo.	
Epigenetics	and	human	obesity.	Int	J	Obes	(Lond).	2015;39(1):85-97.	

40.	 Desai	M,	Jellyman	JK,	Ross	MG.	Epigenomics,	gestational	programming	and	risk	
of	metabolic	syndrome.	Int	J	Obes	(Lond).	2015;39(4):633-41.	

41.	 Cuevas	A,	Saavedra	N,	Salazar	LA,	Abdalla	DS.	Modulation	of	immune	function	
by	polyphenols:	possible	contribution	of	epigenetic	factors.	Nutrients.	2013;5(7):2314-
32.	

42.	 Moore	 LD,	 Le	 T,	 Fan	 G.	 DNA	 methylation	 and	 its	 basic	 function.	
Neuropsychopharmacology.	2013;38(1):23-38.	

43.	 Takai	 D,	 Jones	 PA.	 Comprehensive	 analysis	 of	 CpG	 islands	 in	 human	
chromosomes	21	and	22.	Proc	Natl	Acad	Sci	U	S	A.	2002;99(6):3740-5.	

44.	 Robertson	 KD,	 Wolffe	 AP.	 DNA	 methylation	 in	 health	 and	 disease.	 Nat	 Rev	
Genet.	2000;1(1):11-9.	

45.	 Jones	 PA,	 Takai	 D.	 The	 role	 of	 DNA	 methylation	 in	 mammalian	 epigenetics.	
Science.	2001;293(5532):1068-70.	

46.	 Takai	 D,	 Gonzales	 FA,	 Tsai	 YC,	 Thayer	 MJ,	 Jones	 PA.	 Large	 scale	 mapping	 of	
methylcytosines	 in	 CTCF-binding	 sites	 in	 the	 human	 H19	 promoter	 and	 aberrant	
hypomethylation	in	human	bladder	cancer.	Hum	Mol	Genet.	2001;10(23):2619-26.	

47.	 Schübeler	 D.	 Function	 and	 information	 content	 of	 DNA	methylation.	 Nature.	
2015;517(7534):321-6.	

48.	 Antequera	 F.	 Structure,	 function	 and	 evolution	 of	 CpG	 island	 promoters.	 Cell	
Mol	Life	Sci.	2003;60(8):1647-58.	

49.	 Zakhari	 S.	 Alcohol	 metabolism	 and	 epigenetics	 changes.	 Alcohol	 Res.	
2013;35(1):6-16.	

50.	 Subramaniam	D,	Thombre	R,	Dhar	A,	Anant	S.	DNA	methyltransferases:	a	novel	
target	for	prevention	and	therapy.	Front	Oncol.	2014;4:80.	

51.	 Eddy	 SR.	Non-coding	RNA	genes	 and	 the	modern	RNA	world.	Nat	Rev	Genet.	
2001;2(12):919-29.	

52.	 Ross	SA,	Davis	CD.	The	emerging	role	of	microRNAs	and	nutrition	in	modulating	
health	and	disease.	Annu	Rev	Nutr.	2014;34:305-36.	

53.	 Karbiener	 M,	 Scheideler	 M.	 MicroRNA	 Functions	 in	 Brite/Brown	 Fat	 -	 Novel	
Perspectives	 towards	 Anti-Obesity	 Strategies.	 Comput	 Struct	 Biotechnol	 J.	
2014;11(19):101-5.	

54.	 Lee	 RC,	 Feinbaum	 RL,	 Ambros	 V.	 The	 C.	 elegans	 heterochronic	 gene	 lin-4	
encodes	small	RNAs	with	antisense	complementarity	to	lin-14.	Cell.	1993;75(5):843-54.	

55.	 Bartel	 DP.	 MicroRNAs:	 genomics,	 biogenesis,	 mechanism,	 and	 function.	 Cell.	
2004;116(2):281-97.	



BIBLIOGRAPHY	
	

138	
	

56.	 Yamakuchi	M.	MicroRNA	Regulation	of	SIRT1.	Front	Physiol.	2012;3:68.	

57.	 Arner	P,	Kulyté	A.	MicroRNA	regulatory	networks	in	human	adipose	tissue	and	
obesity.	Nat	Rev	Endocrinol.	2015;11(5):276-88.	

58.	 Ambros	V.	The	functions	of	animal	microRNAs.	Nature.	2004;431(7006):350-5.	

59.	 Lau	NC,	 Lim	LP,	Weinstein	EG,	Bartel	DP.	An	abundant	class	of	 tiny	RNAs	with	
probable	regulatory	roles	in	Caenorhabditis	elegans.	Science.	2001;294(5543):858-62.	

60.	 Zeng	 Y.	 Principles	 of	 micro-RNA	 production	 and	 maturation.	 Oncogene.	
2006;25(46):6156-62.	

61.	 Krol	 J,	 Loedige	 I,	 Filipowicz	 W.	 The	 widespread	 regulation	 of	 microRNA	
biogenesis,	function	and	decay.	Nat	Rev	Genet.	2010;11(9):597-610.	

62.	 Yates	 LA,	 Norbury	 CJ,	 Gilbert	 RJ.	 The	 long	 and	 short	 of	 microRNA.	 Cell.	
2013;153(3):516-9.	

63.	 Fernández-Hernando	 C,	 Suárez	 Y,	 Rayner	 KJ,	 Moore	 KJ.	 MicroRNAs	 in	 lipid	
metabolism.	Curr	Opin	Lipidol.	2011;22(2):86-92.	

64.	 Petersen	CP,	Bordeleau	ME,	Pelletier	J,	Sharp	PA.	Short	RNAs	repress	translation	
after	initiation	in	mammalian	cells.	Mol	Cell.	2006;21(4):533-42.	

65.	 Crozier	A,	Jaganath	IB,	Clifford	MN.	Dietary	phenolics:	chemistry,	bioavailability	
and	effects	on	health.	Nat	Prod	Rep.	2009;26(8):1001-43.	

66.	 Bravo	 L.	 Polyphenols:	 chemistry,	 dietary	 sources,	metabolism,	 and	 nutritional	
significance.	Nutr	Rev.	1998;56(11):317-33.	

67.	 Miranda	 J,	 Lasa	 A,	 Aguirre	 L,	 Fernandez-Quintela	 A,	 Milton	 I,	 Portillo	 MP.	
Potential	application	of	non-flavonoid	phenolics	 in	diabetes:	antiinflammatory	effects.	
Curr	Med	Chem.	2015;22(1):112-31.	

68.	 Manach	 C,	 Scalbert	 A,	 Morand	 C,	 Rémésy	 C,	 Jiménez	 L.	 Polyphenols:	 food	
sources	and	bioavailability.	Am	J	Clin	Nutr.	2004;79(5):727-47.	

69.	 Kumar	 S,	 Pandey	 AK.	 Chemistry	 and	 biological	 activities	 of	 flavonoids:	 an	
overview.	ScientificWorldJournal.	2013;2013:162750.	

70.	 Scalbert	 A,	Williamson	 G.	 Dietary	 intake	 and	 bioavailability	 of	 polyphenols.	 J	
Nutr.	2000;130(8S	Suppl):2073S-85S.	

71.	 Velderrain-Rodríguez	 GR,	 Palafox-Carlos	 H,	 Wall-Medrano	 A,	 Ayala-Zavala	 JF,	
Chen	CY,	Robles-Sánchez	M,	et	al.	Phenolic	compounds:	their	journey	after	intake.	Food	
Funct.	2014;5(2):189-97.	

72.	 Fulgencio	S-C,	José	S,	 Isabel	G.	 Intake	and	bioaccessibility	of	total	polyphenols	
in	a	whole	diet.	Food	Chemistry.	2007(101):492-501.	

73.	 Gambini	J,	Inglés	M,	Olaso	G,	Lopez-Grueso	R,	Bonet-Costa	V,	Gimeno-Mallench	
L,	 et	 al.	 Properties	 of	 Resveratrol:	 In	 Vitro	 and	 In	 Vivo	 Studies	 about	 Metabolism,	
Bioavailability,	 and	 Biological	 Effects	 in	 Animal	 Models	 and	 Humans.	 Oxid	 Med	 Cell	
Longev.	2015;2015:837042.	

74.	 Soleas	GJ,	Diamandis	EP,	Goldberg	DM.	Resveratrol:	a	molecule	whose	time	has	
come?	And	gone?	Clin	Biochem.	1997;30(2):91-113.	

75.	 Giovinazzo	 G,	 Ingrosso	 I,	 Paradiso	 A,	 De	 Gara	 L,	 Santino	 A.	 Resveratrol	
biosynthesis:	 plant	metabolic	 engineering	 for	 nutritional	 improvement	 of	 food.	 Plant	
Foods	Hum	Nutr.	2012;67(3):191-9.	



BIBLIOGRAPHY	
	
8	

	

139	
	

76.	 Saioa	GZ.	Doctoral	 thesis.	Effects	of	 two	phenolic	compounds,	 resveratrol	and	
pterostilbene,	 on	 fat	 accumulation	 and	 related	 co-morbilities:	 University	 of	 Basque	
Country;	2014.	

77.	 Cottart	 CH,	 Nivet-Antoine	 V,	 Laguillier-Morizot	 C,	 Beaudeux	 JL.	 Resveratrol	
bioavailability	and	toxicity	in	humans.	Mol	Nutr	Food	Res.	2010;54(1):7-16.	

78.	 Walle	T.	Bioavailability	of	resveratrol.	Ann	N	Y	Acad	Sci.	2011;1215:9-15.	

79.	 Wenzel	 E,	 Somoza	 V.	Metabolism	 and	 bioavailability	 of	 trans-resveratrol.	Mol	
Nutr	Food	Res.	2005;49(5):472-81.	

80.	 Yu	C,	Shin	YG,	Chow	A,	Li	Y,	Kosmeder	JW,	Lee	YS,	et	al.	Human,	rat,	and	mouse	
metabolism	of	resveratrol.	Pharm	Res.	2002;19(12):1907-14.	

81.	 Jannin	 B,	Menzel	M,	 Berlot	 JP,	 Delmas	 D,	 Lançon	 A,	 Latruffe	 N.	 Transport	 of	
resveratrol,	 a	 cancer	 chemopreventive	 agent,	 to	 cellular	 targets:	 plasmatic	 protein	
binding	and	cell	uptake.	Biochem	Pharmacol.	2004;68(6):1113-8.	

82.	 Meng	 X,	 Maliakal	 P,	 Lu	 H,	 Lee	 MJ,	 Yang	 CS.	 Urinary	 and	 plasma	 levels	 of	
resveratrol	and	quercetin	in	humans,	mice,	and	rats	after	ingestion	of	pure	compounds	
and	grape	juice.	J	Agric	Food	Chem.	2004;52(4):935-42.	

83.	 Walle	T,	Hsieh	F,	DeLegge	MH,	Oatis	JE,	Walle	UK.	High	absorption	but	very	low	
bioavailability	of	oral	resveratrol	in	humans.	Drug	Metab	Dispos.	2004;32(12):1377-82.	

84.	 Marier	JF,	Vachon	P,	Gritsas	A,	Zhang	J,	Moreau	JP,	Ducharme	MP.	Metabolism	
and	 disposition	 of	 resveratrol	 in	 rats:	 extent	 of	 absorption,	 glucuronidation,	 and	
enterohepatic	 recirculation	 evidenced	 by	 a	 linked-rat	 model.	 J	 Pharmacol	 Exp	 Ther.	
2002;302(1):369-73.	

85.	 Meydani	 M,	 Hasan	 ST.	 Dietary	 polyphenols	 and	 obesity.	 Nutrients.	
2010;2(7):737-51.	

86.	 Baile	 CA,	 Yang	 JY,	 Rayalam	 S,	 Hartzell	 DL,	 Lai	 CY,	 Andersen	 C,	 et	 al.	 Effect	 of	
resveratrol	on	fat	mobilization.	Ann	N	Y	Acad	Sci.	2011;1215:40-7.	

87.	 Picard	 F,	 Kurtev	 M,	 Chung	 N,	 Topark-Ngarm	 A,	 Senawong	 T,	 Machado	 De	
Oliveira	R,	et	al.	Sirt1	promotes	fat	mobilization	in	white	adipocytes	by	repressing	PPAR-
gamma.	Nature.	2004;429(6993):771-6.	

88.	 Rayalam	 S,	 Yang	 JY,	 Ambati	 S,	 Della-Fera	 MA,	 Baile	 CA.	 Resveratrol	 induces	
apoptosis	 and	 inhibits	 adipogenesis	 in	 3T3-L1	 adipocytes.	 Phytother	 Res.	
2008;22(10):1367-71.	

89.	 Ahn	 J,	Cho	 I,	Kim	S,	Kwon	D,	Ha	T.	Dietary	 resveratrol	alters	 lipid	metabolism-
related	gene	expression	of	mice	on	an	atherogenic	diet.	J	Hepatol.	2008;49(6):1019-28.	

90.	 Baur	JA,	Sinclair	DA.	Therapeutic	potential	of	resveratrol:	the	in	vivo	evidence.	
Nat	Rev	Drug	Discov.	2006;5(6):493-506.	

91.	 Lagouge	M,	Argmann	C,	Gerhart-Hines	Z,	Meziane	H,	Lerin	C,	Daussin	F,	et	al.	
Resveratrol	improves	mitochondrial	function	and	protects	against	metabolic	disease	by	
activating	SIRT1	and	PGC-1alpha.	Cell.	2006;127(6):1109-22.	

92.	 Rivera	L,	Morón	R,	Zarzuelo	A,	Galisteo	M.	Long-term	resveratrol	administration	
reduces	 metabolic	 disturbances	 and	 lowers	 blood	 pressure	 in	 obese	 Zucker	 rats.	
Biochem	Pharmacol.	2009;77(6):1053-63.	



BIBLIOGRAPHY	
	

140	
	

93.	 Shang	 J,	Chen	LL,	Xiao	FX,	 Sun	H,	Ding	HC,	Xiao	H.	Resveratrol	 improves	non-
alcoholic	fatty	liver	disease	by	activating	AMP-activated	protein	kinase.	Acta	Pharmacol	
Sin.	2008;29(6):698-706.	

94.	 Wong	YT,	Gruber	 J,	 Jenner	AM,	Ng	MP,	Ruan	R,	Tay	FE.	Elevation	of	oxidative-
damage	biomarkers	during	aging	in	F2	hybrid	mice:	protection	by	chronic	oral	intake	of	
resveratrol.	Free	Radic	Biol	Med.	2009;46(6):799-809.	

95.	 Aoun	M,	Michel	 F,	 Fouret	 G,	 Casas	 F,	 Jullien	M,	Wrutniak-Cabello	 C,	 et	 al.	 A	
polyphenol	extract	modifies	quantity	but	not	quality	of	liver	fatty	acid	content	in	high-
fat-high-sucrose	 diet-fed	 rats:	 possible	 implication	 of	 the	 sirtuin	 pathway.	 Br	 J	 Nutr.	
2010;104(12):1760-70.	

96.	 Bujanda	 L,	Hijona	E,	 Larzabal	M,	Beraza	M,	Aldazabal	 P,	García-Urkia	N,	 et	 al.	
Resveratrol	 inhibits	 nonalcoholic	 fatty	 liver	 disease	 in	 rats.	 BMC	 Gastroenterol.	
2008;8:40.	

97.	 Poulsen	MM,	Larsen	J,	Hamilton-Dutoit	S,	Clasen	BF,	Jessen	N,	Paulsen	SK,	et	al.	
Resveratrol	 up-regulates	 hepatic	 uncoupling	 protein	 2	 and	 prevents	 development	 of	
nonalcoholic	fatty	liver	disease	in	rats	fed	a	high-fat	diet.	Nutr	Res.	2012;32(9):701-8.	

98.	 Estrela	 JM,	 Ortega	 A,	 Mena	 S,	 Rodriguez	 ML,	 Asensi	 M.	 Pterostilbene:	
Biomedical	applications.	Crit	Rev	Clin	Lab	Sci.	2013;50(3):65-78.	

99.	 McCormack	D,	McFadden	D.	A	review	of	pterostilbene	antioxidant	activity	and	
disease	modification.	Oxid	Med	Cell	Longev.	2013;2013:575482.	

100.	 Rimando	 AM,	 Kalt	 W,	 Magee	 JB,	 Dewey	 J,	 Ballington	 JR.	 Resveratrol,	
pterostilbene,	 and	 piceatannol	 in	 vaccinium	 berries.	 J	 Agric	 Food	 Chem.	
2004;52(15):4713-9.	

101.	 Kapetanovic	 IM,	 Muzzio	 M,	 Huang	 Z,	 Thompson	 TN,	 McCormick	 DL.	
Pharmacokinetics,	 oral	 bioavailability,	 and	 metabolic	 profile	 of	 resveratrol	 and	 its	
dimethylether	 analog,	 pterostilbene,	 in	 rats.	 Cancer	 Chemother	 Pharmacol.	
2011;68(3):593-601.	

102.	 Yeo	 SC,	 Ho	 PC,	 Lin	 HS.	 Pharmacokinetics	 of	 pterostilbene	 in	 Sprague-Dawley	
rats:	 the	 impacts	 of	 aqueous	 solubility,	 fasting,	 dose	 escalation,	 and	 dosing	 route	 on	
bioavailability.	Mol	Nutr	Food	Res.	2013;57(6):1015-25.	

103.	 Hsu	CL,	Lin	YJ,	Ho	CT,	Yen	GC.	Inhibitory	effects	of	garcinol	and	pterostilbene	on	
cell	proliferation	and	adipogenesis	in	3T3-L1	cells.	Food	Funct.	2012;3(1):49-57.	

104.	 Hsu	 CL,	 Lin	 YJ,	 Ho	 CT,	 Yen	 GC.	 The	 inhibitory	 effect	 of	 pterostilbene	 on	
inflammatory	 responses	 during	 the	 interaction	 of	 3T3-L1	 adipocytes	 and	 RAW	 264.7	
macrophages.	J	Agric	Food	Chem.	2013;61(3):602-10.	

105.	 Gómez-Zorita	S,	Fernández-Quintela	A,	Lasa	A,	Aguirre	L,	Rimando	AM,	Portillo	
MP.	Pterostilbene,	a	dimethyl	ether	derivative	of	resveratrol,	reduces	fat	accumulation	
in	rats	fed	an	obesogenic	diet.	J	Agric	Food	Chem.	2014;62(33):8371-8.	

106.	 Latruffe	N,	 Lançon	A,	 Frazzi	R,	Aires	V,	Delmas	D,	Michaille	 JJ,	 et	al.	 Exploring	
new	 ways	 of	 regulation	 by	 resveratrol	 involving	 miRNAs,	 with	 emphasis	 on	
inflammation.	Ann	N	Y	Acad	Sci.	2015;1348(1):97-106.	

107.	 Stefanska	 B,	 Karlic	 H,	 Varga	 F,	 Fabianowska-Majewska	 K,	 Haslberger	 A.	
Epigenetic	 mechanisms	 in	 anti-cancer	 actions	 of	 bioactive	 food	 components--the	
implications	in	cancer	prevention.	Br	J	Pharmacol.	2012;167(2):279-97.	



BIBLIOGRAPHY	
	
8	

	

141	
	

108.	 Kim	JY,	Kim	EH,	Park	SS,	Lim	JH,	Kwon	TK,	Choi	KS.	Quercetin	sensitizes	human	
hepatoma	 cells	 to	 TRAIL-induced	 apoptosis	 via	 Sp1-mediated	 DR5	 up-regulation	 and	
proteasome-mediated	c-FLIPS	down-regulation.	J	Cell	Biochem.	2008;105(6):1386-98.	

109.	 Rivera	L,	Morón	R,	Sánchez	M,	Zarzuelo	A,	Galisteo	M.	Quercetin	ameliorates	
metabolic	 syndrome	 and	 improves	 the	 inflammatory	 status	 in	 obese	 Zucker	 rats.	
Obesity	(Silver	Spring).	2008;16(9):2081-7.	

110.	 Alberdi	G,	Rodríguez	VM,	Miranda	J,	Macarulla	MT,	Arias	N,	Andrés-Lacueva	C,	
et	al.	Changes	 in	white	adipose	tissue	metabolism	induced	by	resveratrol	 in	rats.	Nutr	
Metab	(Lond).	2011;8(1):29.	

111.	 Gómez-Zorita	 S,	 Fernández-Quintela	 A,	 Macarulla	 MT,	 Aguirre	 L,	 Hijona	 E,	
Bujanda	 L,	 et	 al.	 Resveratrol	 attenuates	 steatosis	 in	 obese	 Zucker	 rats	 by	 decreasing	
fatty	acid	availability	and	reducing	oxidative	stress.	Br	J	Nutr.	2012;107(2):202-10.	

112.	 Dal-Pan	 A,	 Blanc	 S,	 Aujard	 F.	 Resveratrol	 suppresses	 body	 mass	 gain	 in	 a	
seasonal	non-human	primate	model	of	obesity.	BMC	Physiol.	2010;10:11.	

113.	 Bradamante	 S,	 Barenghi	 L,	 Villa	 A.	 Cardiovascular	 protective	 effects	 of	
resveratrol.	Cardiovasc	Drug	Rev.	2004;22(3):169-88.	

114.	 Cucciolla	V,	Borriello	A,	Oliva	A,	Galletti	P,	Zappia	V,	Della	Ragione	F.	Resveratrol:	
from	basic	science	to	the	clinic.	Cell	Cycle.	2007;6(20):2495-510.	

115.	 Szkudelska	K,	Szkudelski	T.	Resveratrol,	obesity	and	diabetes.	Eur	J	Pharmacol.	
2010;635(1-3):1-8.	

116.	 Christensen	BC,	Marsit	CJ.	Epigenomics	 in	environmental	health.	Front	Genet.	
2011;2:84.	

117.	 Milagro	FI,	Mansego	ML,	De	Miguel	C,	Martínez	JA.	Dietary	factors,	epigenetic	
modifications	 and	obesity	 outcomes:	 progresses	 and	perspectives.	Mol	Aspects	Med.	
2013;34(4):782-812.	

118.	 Lim	 LP,	 Lau	 NC,	 Garrett-Engele	 P,	 Grimson	 A,	 Schelter	 JM,	 Castle	 J,	 et	 al.	
Microarray	analysis	shows	that	some	microRNAs	downregulate	large	numbers	of	target	
mRNAs.	Nature.	2005;433(7027):769-73.	

119.	 Kalupahana	 NS,	 Moustaid-Moussa	 N,	 Claycombe	 KJ.	 Immunity	 as	 a	 link	
between	obesity	and	insulin	resistance.	Mol	Aspects	Med.	2012;33(1):26-34.	

120.	 Kaur	S,	Zilmer	K,	Kairane	C,	Kals	M,	Zilmer	M.	Clear	differences	 in	adiponectin	
level	and	glutathione	redox	status	revealed	 in	obese	and	normal-weight	patients	with	
psoriasis.	Br	J	Dermatol.	2008;159(6):1364-7.	

121.	 Hotamisligil	 GS,	 Shargill	 NS,	 Spiegelman	 BM.	 Adipose	 expression	 of	 tumor	
necrosis	 factor-alpha:	 direct	 role	 in	 obesity-linked	 insulin	 resistance.	 Science.	
1993;259(5091):87-91.	

122.	 Bladé	C,	Baselga-Escudero	L,	Salvadó	MJ,	Arola-Arnal	A.	miRNAs,	polyphenols,	
and	chronic	disease.	Mol	Nutr	Food	Res.	2013;57(1):58-70.	

123.	 Bae	S,	Lee	EM,	Cha	HJ,	Kim	K,	Yoon	Y,	Lee	H,	et	al.	Resveratrol	alters	microRNA	
expression	 profiles	 in	 A549	 human	 non-small	 cell	 lung	 cancer	 cells.	 Mol	 Cells.	
2011;32(3):243-9.	

124.	 Han	 Z,	 Yang	 Q,	 Liu	 B,	Wu	 J,	 Li	 Y,	 Yang	 C,	 et	 al.	MicroRNA-622	 functions	 as	 a	
tumor	 suppressor	 by	 targeting	 K-Ras	 and	 enhancing	 the	 anticarcinogenic	 effect	 of	
resveratrol.	Carcinogenesis.	2012;33(1):131-9.	



BIBLIOGRAPHY	
	

142	
	

125.	 Wen	XY,	Wu	SY,	Li	ZQ,	Liu	ZQ,	Zhang	JJ,	Wang	GF,	et	al.	Ellagitannin	(BJA3121),	
an	 anti-proliferative	 natural	 polyphenol	 compound,	 can	 regulate	 the	 expression	 of	
MiRNAs	in	HepG2	cancer	cells.	Phytother	Res.	2009;23(6):778-84.	

126.	 Link	 A,	 Balaguer	 F,	 Goel	 A.	 Cancer	 chemoprevention	 by	 dietary	 polyphenols:	
promising	role	for	epigenetics.	Biochem	Pharmacol.	2010;80(12):1771-92.	

127.	 Tsang	 WP,	 Kwok	 TT.	 Epigallocatechin	 gallate	 up-regulation	 of	 miR-16	 and	
induction	of	apoptosis	in	human	cancer	cells.	J	Nutr	Biochem.	2010;21(2):140-6.	

128.	 Noratto	 GD,	 Kim	 Y,	 Talcott	 ST,	 Mertens-Talcott	 SU.	 Flavonol-rich	 fractions	 of	
yaupon	 holly	 leaves	 (Ilex	 vomitoria,	 Aquifoliaceae)	 induce	 microRNA-146a	 and	 have	
anti-inflammatory	 and	 chemopreventive	 effects	 in	 intestinal	 myofibroblast	 CCD-18Co	
cells.	Fitoterapia.	2011;82(4):557-69.	

129.	 Siddiqui	IA,	Asim	M,	Hafeez	BB,	Adhami	VM,	Tarapore	RS,	Mukhtar	H.	Green	tea	
polyphenol	 EGCG	 blunts	 androgen	 receptor	 function	 in	 prostate	 cancer.	 FASEB	 J.	
2011;25(4):1198-207.	

130.	 Wang	H,	Bian	S,	Yang	CS.	Green	 tea	polyphenol	EGCG	suppresses	 lung	cancer	
cell	 growth	 through	 upregulating	 miR-210	 expression	 caused	 by	 stabilizing	 HIF-1α.	
Carcinogenesis.	2011;32(12):1881-9.	

131.	 Kronski	E,	Fiori	ME,	Barbieri	O,	Astigiano	S,	Mirisola	V,	Killian	PH,	et	al.	miR181b	
is	 induced	 by	 the	 chemopreventive	 polyphenol	 curcumin	 and	 inhibits	 breast	 cancer	
metastasis	via	down-regulation	of	the	inflammatory	cytokines	CXCL1	and	-2.	Mol	Oncol.	
2014;8(3):581-95.	

132.	 Milenkovic	 D,	 Jude	 B,	 Morand	 C.	 miRNA	 as	 molecular	 target	 of	 polyphenols	
underlying	their	biological	effects.	Free	Radic	Biol	Med.	2013;64:40-51.	

133.	 Arola-Arnal	 A,	 Bladé	 C.	 Proanthocyanidins	 modulate	 microRNA	 expression	 in	
human	HepG2	cells.	PLoS	One.	2011;6(10):e25982.	

134.	 Baselga-Escudero	L,	Bladé	C,	Ribas-Latre	A,	Casanova	E,	Salvadó	MJ,	Arola	L,	et	
al.	Grape	seed	proanthocyanidins	repress	the	hepatic	lipid	regulators	miR-33	and	miR-
122	in	rats.	Mol	Nutr	Food	Res.	2012;56(11):1636-46.	

135.	 Milenkovic	 D,	 Deval	 C,	 Gouranton	 E,	 Landrier	 JF,	 Scalbert	 A,	Morand	 C,	 et	 al.	
Modulation	of	miRNA	expression	by	dietary	polyphenols	in	apoE	deficient	mice:	a	new	
mechanism	of	the	action	of	polyphenols.	PLoS	One.	2012;7(1):e29837.	

136.	 Joven	J,	Espinel	E,	Rull	A,	Aragonès	G,	Rodríguez-Gallego	E,	Camps	J,	et	al.	Plant-
derived	polyphenols	regulate	expression	of	miRNA	paralogs	miR-103/107	and	miR-122	
and	 prevent	 diet-induced	 fatty	 liver	 disease	 in	 hyperlipidemic	mice.	 Biochim	 Biophys	
Acta.	2012;1820(7):894-9.	

137.	 Macarulla	MT,	Alberdi	G,	Gómez	S,	Tueros	I,	Bald	C,	Rodríguez	VM,	et	al.	Effects	
of	 different	 doses	 of	 resveratrol	 on	 body	 fat	 and	 serum	 parameters	 in	 rats	 fed	 a	
hypercaloric	diet.	J	Physiol	Biochem.	2009;65(4):369-76.	

138.	 Miranda	J,	Portillo	MP,	Madrid	JA,	Arias	N,	Macarulla	MT,	Garaulet	M.	Effects	of	
resveratrol	 on	 changes	 induced	 by	 high-fat	 feeding	 on	 clock	 genes	 in	 rats.	 Br	 J	 Nutr.	
2013;110(8):1421-8.	

139.	 Livak	 KJ,	 Schmittgen	 TD.	 Analysis	 of	 relative	 gene	 expression	 data	 using	 real-
time	quantitative	PCR	and	the	2(-Delta	Delta	C(T))	Method.	Methods.	2001;25(4):402-8.	



BIBLIOGRAPHY	
	
8	

	

143	
	

140.	 Dweep	 H,	 Sticht	 C,	 Pandey	 P,	 Gretz	 N.	 miRWalk--database:	 prediction	 of	
possible	 miRNA	 binding	 sites	 by	 "walking"	 the	 genes	 of	 three	 genomes.	 J	 Biomed	
Inform.	2011;44(5):839-47.	

141.	 Aguirre	L,	Hijona	E,	Macarulla	MT,	Gracia	A,	Larrechi	I,	Bujanda	L,	et	al.	Several	
statins	 increase	body	and	 liver	 fat	accumulation	 in	a	model	of	metabolic	 syndrome.	 J	
Physiol	Pharmacol.	2013;64(3):281-8.	

142.	 Takanabe	 R,	 Ono	 K,	 Abe	 Y,	 Takaya	 T,	 Horie	 T,	 Wada	 H,	 et	 al.	 Up-regulated	
expression	of	microRNA-143	 in	association	with	obesity	 in	adipose	 tissue	of	mice	 fed	
high-fat	diet.	Biochem	Biophys	Res	Commun.	2008;376(4):728-32.	

143.	 Xie	H,	Lim	B,	Lodish	HF.	MicroRNAs	induced	during	adipogenesis	that	accelerate	
fat	cell	development	are	downregulated	in	obesity.	Diabetes.	2009;58(5):1050-7.	

144.	 Xie	 H,	 Sun	 L,	 Lodish	 HF.	 Targeting	 microRNAs	 in	 obesity.	 Expert	 Opin	 Ther	
Targets.	2009;13(10):1227-38.	

145.	 Gerin	 I,	 Clerbaux	 LA,	 Haumont	 O,	 Lanthier	 N,	 Das	 AK,	 Burant	 CF,	 et	 al.	
Expression	of	miR-33	from	an	SREBP2	 intron	 inhibits	cholesterol	export	and	fatty	acid	
oxidation.	J	Biol	Chem.	2010;285(44):33652-61.	

146.	 Kim	 JH,	 Kang	MJ,	 Choi	 HN,	 Jeong	 SM,	 Lee	 YM,	 Kim	 JI.	 Quercetin	 attenuates	
fasting	and	postprandial	hyperglycemia	in	animal	models	of	diabetes	mellitus.	Nutr	Res	
Pract.	2011;5(2):107-11.	

147.	 Chen	S,	Li	Z,	Li	W,	Shan	Z,	Zhu	W.	Resveratrol	inhibits	cell	differentiation	in	3T3-
L1	adipocytes	via	activation	of	AMPK.	Can	J	Physiol	Pharmacol.	2011;89(11):793-9.	

148.	 Bengestrate	L,	Virtue	S,	Campbell	M,	Vidal-Puig	A,	Hadaschik	D,	Hahn	P,	et	al.	
Genome-wide	profiling	of	microRNAs	in	adipose	mesenchymal	stem	cell	differentiation	
and	mouse	models	of	obesity.	PLoS	One.	2011;6(6):e21305.	

149.	 Vickers	 KC,	 Remaley	 AT.	 Lipid-based	 carriers	 of	 microRNAs	 and	 intercellular	
communication.	Curr	Opin	Lipidol.	2012;23(2):91-7.	

150.	 Mori	M,	Nakagami	H,	Rodriguez-Araujo	G,	Nimura	K,	Kaneda	Y.	Essential	role	for	
miR-196a	 in	 brown	 adipogenesis	 of	 white	 fat	 progenitor	 cells.	 PLoS	 Biol.	
2012;10(4):e1001314.	

151.	 Kajimoto	 K,	 Naraba	 H,	 Iwai	 N.	 MicroRNA	 and	 3T3-L1	 pre-adipocyte	
differentiation.	RNA.	2006;12(9):1626-32.	

152.	 Alexander	 R,	 Lodish	 H,	 Sun	 L.	MicroRNAs	 in	 adipogenesis	 and	 as	 therapeutic	
targets	for	obesity.	Expert	Opin	Ther	Targets.	2011;15(5):623-36.	

153.	 McGregor	 RA,	 Choi	 MS.	 microRNAs	 in	 the	 regulation	 of	 adipogenesis	 and	
obesity.	Curr	Mol	Med.	2011;11(4):304-16.	

154.	 Williams	MD,	Mitchell	 GM.	MicroRNAs	 in	 insulin	 resistance	 and	 obesity.	 Exp	
Diabetes	Res.	2012;	2012:	484696.	

155.	 Lu	 S,	 Archer	 MC.	 Sp1	 coordinately	 regulates	 de	 novo	 lipogenesis	 and	
proliferation	in	cancer	cells.	Int	J	Cancer.	2010;126(2):416-25.	

156.	 Niu	Y,	Mo	D,	Qin	L,	Wang	C,	Li	A,	Zhao	X,	et	al.	Lipopolysaccharide-induced	miR-
1224	negatively	regulates	tumour	necrosis	factor-α	gene	expression	by	modulating	Sp1.	
Immunology.	2011;133(1):8-20.	



BIBLIOGRAPHY	
	

144	
	

157.	 Magaña	 MM,	 Koo	 SH,	 Towle	 HC,	 Osborne	 TF.	 Different	 sterol	 regulatory	
element-binding	protein-1	isoforms	utilize	distinct	co-regulatory	factors	to	activate	the	
promoter	for	fatty	acid	synthase.	J	Biol	Chem.	2000;275(7):4726-33.	

158.	 Browning	JD,	Szczepaniak	LS,	Dobbins	R,	Nuremberg	P,	Horton	JD,	Cohen	JC,	et	
al.	Prevalence	of	hepatic	steatosis	in	an	urban	population	in	the	United	States:	impact	
of	ethnicity.	Hepatology.	2004;40(6):1387-95.	

159.	 Bhatt	HB,	Smith	RJ.	Fatty	 liver	disease	 in	diabetes	mellitus.	Hepatobiliary	Surg	
Nutr.	2015;4(2):101-8.	

160.	 Zivkovic	 AM,	 German	 JB,	 Sanyal	 AJ.	 Comparative	 review	 of	 diets	 for	 the	
metabolic	 syndrome:	 implications	 for	 nonalcoholic	 fatty	 liver	 disease.	 Am	 J	 Clin	Nutr.	
2007;86(2):285-300.	

161.	 Papandreou	D,	Andreou	E.	Role	of	diet	on	non-alcoholic	fatty	liver	disease:	An	
updated	narrative	review.	World	J	Hepatol.	2015;7(3):575-82.	

162.	 Langcake	P,	Pryce	RJ.	The	production	of	 resveratrol	by	Vitis	vinifera	and	other	
members	 of	 the	 Vitaceae	 as	 a	 response	 to	 infection	 or	 injury.	 Physiological	 Plant	
Pathology.	1976;9(1):77-86.	

163.	 Aguirre	 L,	 Portillo	 MP,	 Hijona	 E,	 Bujanda	 L.	 Effects	 of	 resveratrol	 and	 other	
polyphenols	in	hepatic	steatosis.	World	J	Gastroenterol.	2014;20(23):7366-80.	

164.	 Arias	N,	Macarulla	MT,	Aguirre	L,	Miranda	J,	Portillo	MP.	Liver	delipidating	effect	
of	a	combination	of	resveratrol	and	quercetin	 in	rats	fed	an	obesogenic	diet.	J	Physiol	
Biochem.	2015;71(3):569-76.	

165.	 Timmers	S,	Konings	E,	Bilet	L,	Houtkooper	RH,	van	de	Weijer	T,	Goossens	GH,	et	
al.	Calorie	 restriction-like	effects	of	30	days	of	 resveratrol	 supplementation	on	energy	
metabolism	and	metabolic	profile	in	obese	humans.	Cell	Metab.	2011;14(5):612-22.	

166.	 Faghihzadeh	F,	Adibi	 P,	Rafiei	R,	Hekmatdoost	A.	Resveratrol	 supplementation	
improves	 inflammatory	 biomarkers	 in	 patients	 with	 nonalcoholic	 fatty	 liver	 disease.	
Nutr	Res.	2014;34(10):837-43.	

167.	 Baselga-Escudero	L,	Arola-Arnal	A,	Pascual-Serrano	A,	Ribas-Latre	A,	Casanova	
E,	Salvadó	MJ,	et	al.	Chronic	administration	of	proanthocyanidins	or	docosahexaenoic	
acid	 reverses	 the	 increase	 of	 miR-33a	 and	miR-122	 in	 dyslipidemic	 obese	 rats.	 PLoS	
One.	2013;8(7):e69817.	

168.	 Baselga-Escudero	L,	Blade	C,	Ribas-Latre	A,	Casanova	E,	Suárez	M,	Torres	JL,	et	
al.	 Resveratrol	 and	 EGCG	 bind	 directly	 and	 distinctively	 to	miR-33a	 and	miR-122	 and	
modulate	divergently	their	levels	in	hepatic	cells.	Nucleic	Acids	Res.	2014;42(2):882-92.	

169.	 Baselga-Escudero	L,	Pascual-Serrano	A,	Ribas-Latre	A,	Casanova	E,	Salvadó	MJ,	
Arola	 L,	 et	 al.	 Long-term	 supplementation	 with	 a	 low	 dose	 of	 proanthocyanidins	
normalized	 liver	miR-33a	and	miR-122	 levels	 in	high-fat	diet-induced	obese	 rats.	Nutr	
Res.	2015;35(4):337-45.	

170.	 Alberdi	 G,	 Rodríguez	 VM,	 Macarulla	 MT,	 Miranda	 J,	 Churruca	 I,	 Portillo	 MP.	
Hepatic	lipid	metabolic	pathways	modified	by	resveratrol	in	rats	fed	an	obesogenic	diet.	
Nutrition.	2013;29(3):562-7.	

171.	 Heneghan	 HM,	 Miller	 N,	 Kerin	 MJ.	 Role	 of	 microRNAs	 in	 obesity	 and	 the	
metabolic	syndrome.	Obes	Rev.	2010;11(5):354-61.	



BIBLIOGRAPHY	
	
8	

	

145	
	

172.	 Wilfred	BR,	Wang	WX,	Nelson	PT.	Energizing	miRNA	research:	a	 review	of	 the	
role	 of	 miRNAs	 in	 lipid	 metabolism,	 with	 a	 prediction	 that	 miR-103/107	 regulates	
human	metabolic	pathways.	Mol	Genet	Metab.	2007;91(3):209-17.	

173.	 Trajkovski	 M,	 Hausser	 J,	 Soutschek	 J,	 Bhat	 B,	 Akin	 A,	 Zavolan	 M,	 et	 al.	
MicroRNAs	103	and	107	regulate	insulin	sensitivity.	Nature.	2011;474(7353):649-53.	

174.	 Park	JH,	Ahn	J,	Kim	S,	Kwon	DY,	Ha	TY.	Murine	hepatic	miRNAs	expression	and	
regulation	of	gene	expression	in	diet-induced	obese	mice.	Mol	Cells.	2011;31(1):33-8.	

175.	 Esau	C,	Davis	S,	Murray	SF,	Yu	XX,	Pandey	SK,	Pear	M,	et	al.	miR-122	regulation	
of	 lipid	metabolism	revealed	by	 in	vivo	antisense	 targeting.	Cell	Metab.	2006;3(2):87-
98.	

176.	 Gracia	 A,	 Miranda	 J,	 Fernández-Quintela	 A,	 Eseberri	 I,	 Garcia-Lacarte	 M,	
Milagro	 FI,	 et	 al.	 Involvement	 of	miR-539-5p	 in	 the	 inhibition	 of	 de	 novo	 lipogenesis	
induced	by	resveratrol	in	white	adipose	tissue.	Food	Funct.	2016;7(3):1680-8.	

177.	 Xiao	F,	Zuo	Z,	Cai	G,	Kang	S,	Gao	X,	Li	T.	miRecords:	an	integrated	resource	for	
microRNA-target	interactions.	Nucleic	Acids	Res.	2009;37(Database	issue):D105-10.	

178.	 Iliopoulos	 D,	 Drosatos	 K,	 Hiyama	 Y,	 Goldberg	 IJ,	 Zannis	 VI.	 MicroRNA-370	
controls	the	expression	of	microRNA-122	and	Cpt1alpha	and	affects	lipid	metabolism.	J	
Lipid	Res.	2010;51(6):1513-23.	

179.	 Shibata	 C,	 Kishikawa	 T,	 Otsuka	 M,	 Ohno	 M,	 Yoshikawa	 T,	 Takata	 A,	 et	 al.	
Inhibition	of	microRNA122	decreases	SREBP1	expression	by	modulating	suppressor	of	
cytokine	signaling	3	expression.	Biochem	Biophys	Res	Commun.	2013;438(1):230-5.	

180.	 Lin	X,	Luo	J,	Zhang	L,	Zhu	J.	MicroRNAs	synergistically	regulate	milk	fat	synthesis	
in	mammary	gland	epithelial	cells	of	dairy	goats.	Gene	Expr.	2013;16(1):1-13.	

181.	 Bhatia	H,	Verma	G,	Datta	M.	miR-107	orchestrates	ER	stress	induction	and	lipid	
accumulation	by	post-transcriptional	 regulation	of	 fatty	 acid	 synthase	 in	hepatocytes.	
Biochim	Biophys	Acta.	2014;1839(4):334-43.	

182.	 Lasa	 A,	 Schweiger	 M,	 Kotzbeck	 P,	 Churruca	 I,	 Simón	 E,	 Zechner	 R,	 et	 al.	
Resveratrol	 regulates	 lipolysis	 via	 adipose	 triglyceride	 lipase.	 J	 Nutr	 Biochem.	
2012;23(4):379-84.	

183.	 Irizarry	RA,	Wu	H,	Feinberg	AP.	A	species-generalized	probabilistic	model-based	
definition	of	CpG	islands.	Mamm	Genome.	2009;20(9-10):674-80.	

184.	 Uriarte	G,	Paternain	L,	Milagro	FI,	Martínez	JA,	Campion	J.	Shifting	to	a	control	
diet	 after	 a	 high-fat,	 high-sucrose	 diet	 intake	 induces	 epigenetic	 changes	 in	
retroperitoneal	adipocytes	of	Wistar	rats.	J	Physiol	Biochem.	2013;69(3):601-11.	

185.	 Jiang	L,	Wang	Q,	Yu	Y,	Zhao	F,	Huang	P,	Zeng	R,	et	al.	Leptin	contributes	to	the	
adaptive	 responses	 of	mice	 to	 high-fat	 diet	 intake	 through	 suppressing	 the	 lipogenic	
pathway.	PLoS	One.	2009;4(9):e6884.	

186.	 Duran-Montgé	 P,	 Theil	 PK,	 Lauridsen	 C,	 Esteve-Garcia	 E.	 Dietary	 fat	 source	
affects	metabolism	of	fatty	acids	in	pigs	as	evaluated	by	altered	expression	of	lipogenic	
genes	in	liver	and	adipose	tissues.	Animal.	2009;3(4):535-42.	

187.	 Kim	 TS,	 Freake	 HC.	 High	 carbohydrate	 diet	 and	 starvation	 regulate	 lipogenic	
mRNA	in	rats	in	a	tissue-specific	manner.	J	Nutr.	1996;126(3):611-7.	



BIBLIOGRAPHY	
	

146	
	

188.	 Kabir	M,	Rizkalla	SW,	Quignard-Boulangé	A,	Guerre-Millo	M,	Boillot	 J,	Ardouin	
B,	 et	 al.	 A	 high	 glycemic	 index	 starch	 diet	 affects	 lipid	 storage-related	 enzymes	 in	
normal	and	to	a	lesser	extent	in	diabetic	rats.	J	Nutr.	1998;128(11):1878-83.	

189.	 Morris	 KL,	 Namey	 TC,	 Zemel	 MB.	 Effects	 of	 dietary	 carbohydrate	 on	 the	
development	of	obesity	in	heterozygous	Zucker	rats.	J	Nutr	Biochem.	2003;14(1):32-9.	

190.	 Vaulont	S,	Vasseur-Cognet	M,	Kahn	A.	Glucose	regulation	of	gene	transcription.	
J	Biol	Chem.	2000;275(41):31555-8.	

191.	 Rolland	V,	Liepvre	XL,	Jump	DB,	Lavau	M,	Dugail	 I.	A	GC-rich	region	containing	
Sp1	and	Sp1-like	binding	sites	is	a	crucial	regulatory	motif	for	fatty	acid	synthase	gene	
promoter	 activity	 in	 adipocytes.	 Implication	 In	 the	 overactivity	 of	 FAS	 promoter	 in	
obese	Zucker	rats.	J	Biol	Chem.	1996;271(35):21297-302.	

192.	 Yang	 Z,	 Cappello	 T,	Wang	 L.	 Emerging	 role	 of	microRNAs	 in	 lipid	metabolism.	
Acta	Pharm	Sin	B.	2015;5(2):145-50.	

	

	



	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

ANNEX	1	

	

	 	



ANNEX	1	

148	
	

	 	

	



ANNEX	1	
EXPERIMENTAL	WORK	

9	

	

149	
	

EXPERIMENTAL	 WORK	 IN	 THE	 INTERNATIONAL	 STAY.	

MANUSCRIPT	4.	

My	international	stay,	which	lasted	from	March	to	June	2016,	took	place	

in	the	Unit	of	Endocrinology	of	Karolinska	University	Hospital,	 led	by	Dr.	Mikael	

Rydén	and	in	the	Lipid	Laboratory	at	NOVUM	in	Huddinge,	led	by	Professor	Peter	

Arner,	 who	 has	 been	 studying	 the	 role	 of	 human	 adipose	 tissue	 in	 common	

metabolic	disorders	 for	more	 than	 four	decades.	 The	 studies	developed	 in	 the	

laboratory	 span	 from	 the	 study	 of	 genetics	 and	molecules	 in	 different	 in	 vitro	

systems	 to	 clinical	 assessments	 in	 human	 subjects.	 The	 aim	 is	 to	 better	

understand	the	mechanisms	that	link	changes	in	fat	mass	to	metabolic	disorders.		

Obesity	 is	characterized	by	a	chronic	 low	grade	inflammation	associated	

with	cardiometabolic	risk	 factors	such	as	 insulin	resistance	and	type	2	diabetes	

mellitus.	It	is	proposed	that	increased	release	of	chemoattractant	proteins	from	

white	 adipose	 tissue	 promotes	 macrophage	 infiltration,	 which	 attenuates	

adipocyte	insulin	sensitivity	by	means	of	their	pro-inflammatory	and	pro-fibrotic	

properties	 (Gökhan	S,	Hotamisligil	et	al.	 2006;	Weisberg	et	al.	 2003).	CC	Motif	

Chemokine	 ligand	 2	 (CCL2	 or	 MCP-1)	 appears	 to	 play	 the	 major	 role	 in	 this	

process	 (Deshmane	 et	 al.	 2009).	 Thus,	 increased	 CCL2	 expression	 in	 white	

adipose	tissue	has	been	directly	linked	to	the	development	of	insulin	resistance	

in	obesity	(Kanda	et	al.	2006;	Sartipy	and	Loskutoff	et	al.	2003).	

A	 central	 epigenetic	 process	 is	 DNA	methylation	 and	 recent	 studies	 in	

obese	and/or	 type	2	diabetes	 subjects	have	demonstrated	altered	methylation	

metabolically	 relevant	 genes	 in	 white	 adipose	 tissue	 and	 isolated	 adipocytes	

(Agha	et	al.	2015;	Dick	et	al.	2014;	Nilsson	et	al.	2014;	Arner	et	al.	2015).	DNA	

methylation	is	induced	by	DNMTs	that	transfer	methyl	moieties	from	the	methyl	

donor	SAM.	Dietary	methyl	moieties	fuel	plays	an	important	role	in	intracellular	

SAM	 levels,	 as	 does	 folate	 (vitamin	 B9).	 The	 folate	 and	 methionine	 cycle	 are	

together	 known	 as	 the	 one	 carbon	 cycle	 (Ducker	 and	 Rabinowitz	 et	 al.	 2016;	

Gueant	et	al.	2013).	
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Previous	 studies	 in	 this	 laboratory	 demonstrated	 that	 adipocyte	 DNA	

from	 obese	 compared	 with	 that	 from	 non-obese	 individuals	 is	 globally	

hypermethylated,	compared	with	that	from	non-obese	individuals.	Despite	this,	

obese	 individuals	 have	 lower	 serum	 folate	 levels	 than	 non-obese	 subjects.	

Moreover,	genetic	variations	in	the	one	carbon	cycle	gene	MTHFR	are	associated	

with	folate	deficiency	and	increased	circulating	levels	of	CCL2.	Conversely,	folate	

supplementation	 in	 humans	 reduces	 systemic	 inflammation	 as	 well	 as	 plasma	

CCL2	levels.	

The	 project	 in	 which	 I	 worked	 was	 devoted	 to	 analysing	 the	 possible	

implication	of	folate	transporter	SLC19A1	expression	in	the	promotion	of	white	

adipose	tissue	inflammation	through	DNA	methylation,	by	using	adipocytes	from	

obese	 subjects.	 During	 the	 four	 months	 I	 contributed	 to	 the	 development	 of	

some	 parts	 of	 the	 project.	 Primary	 cultures	 of	 human	 in	 vitro	 differentiated	

adipocytes	were	set	up.		

• SLC19A1	silencing	by	RNAi	transfections		

• SLC19A1,	 IL-6,	 TNFα, DNMT1,	 DNMT	 2A,	 DNMT	 3A,	 DNMT	 3B,	

HEXB,	FPGS,	MTHFD1,	DHFR	gene	expression	

• SLC19A1	protein	analysis		

• IL-6,	MCP-1	and	TNFα	quantification	

• Transcription	factor	binding	prediction	

• Pyrosequencing	and	methylation	status	assessment	of	CCL2	
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CONCLUSIONS	

The	results	obtained	with	the	present	analysis	suggest	that:	

1. Down-regulation	 of	 SLC19A1	 in	 obese	 adipocytes	 results	 in	 DNA	

hypermethylation	 of	 this	 gene	 and	 this	 increases	 the	 expression	 of	

different	inflammatory	genes,	highlighting	CCL2.	

	

2. The	 methylation	 status	 of	 CpG	 12698626,	 present	 in	 a	 predicted	

glucocorticoid	 receptor	 binding	 site,	 affect	 the	 response	 to	 cortisol	 of	

CCL2	gene	in	differentiated	adipocytes.		
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Summary	

Insulin	 resistance	 in	 obese	 white	 adipose	 tissue	 (WAT)	 is	 linked	 to	 local	

inflammation,	 an	 acquired	 phenotype	 which	 may	 depend	 on	 epigenetic	

mechanisms.	 Herein,	 analyses	 of	 human	 adipocytes	 revealed	 an	 obesity-linked	

global	 DNA	 hypermethylation	 associated	 with	 the	 expression	 of	 pro-

inflammatory	pathways.	DNA-methylation	 is	 regulated	 through	 the	one	carbon	

cycle	(1CC);	several	adipocyte-expressed	1CC-genes	were	altered	in	obese	WAT.	

The	 strongest	 association	 with	 insulin	 resistance	 and	 pro-inflammatory	 genes	

was	 observed	 for	 a	 reduction	 in	 SLC19A1,	 encoding	 a	 cell-membrane	 folate	

carrier.	 SLC19A1knockdown	 in	 human	 adipocytes	 perturbed	 intracellular	 1CC-

metabolite	 levels	 and	 induced	 DNA	 hypermethylation	 where	methylation	 of	 a	

CpG	site	(cg12698626)	 in	the	promoter	of	CCL2	associated	positively	with	CCL2	

expression/secretion.cg12698626is	situated	in	a	glucocorticoid	receptor	binding	

region	 and	 the	 repressive	 action	 of	 cortisol	 on	 CCL2	 promoter	 activity	 was	

abrogated	upon	cg12698626	methylation.	Thus,	reduced	SLC19A1	expression	in	

obese	 adipocytes	 may	 promote	 WAT	 inflammation	 through	 an	 epigenetic	

mechanism	involving	cortisol	resistance.	

Word	count	(150/150)	

Key	words	

One	 carbon	 metabolism,	 Glucocorticoid,	 Insulin	 resistance,	 Diabetes,	 Adipose	

tissue,	Adipocyte,	Inflammation,	CCL2	 	
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Introduction	

Obesity	 is	 characterized	 by	 a	 chronic	 low	 grade	 inflammation	 associated	 with	

cardiometabolic	 risk	 factors	 such	 as	 insulin	 resistance	 and	 type	 2	 diabetes	

mellitus	 (T2DM)	 (Gökhan	 S.	 Hotamisligil,	 2006;	 Ouchi	 et	 al.,	 2011;	 Xu	 et	 al.,	

2003).	 The	 current	 paradigm	 proposes	 that	 increased	 release	 of	

chemoattractant	 proteins	 from	 WAT	 promotes	 macrophage	 infiltration	 which	

attenuate	adipocyte	 insulin	sensitivity	 through	 their	pro-inflammatory	and	pro-

fibrotic	 properties	 (Gökhan	 S.	 Hotamisligil,	 2006;	 Weisberg	 et	 al.,	 2003).	

Macrophages	are	attracted	by	specific	cyto-	and	chemokines	secreted	from	both	

adipocytes	 and	 resident	 macrophages.	 Among	 these,	 C-C	 Motif	 Chemokine	

Ligand	2	(CCL2;	also	known	as	Monocyte	Chemoattractant	Protein-1)appears	to	

play	 a	major	 role	 (Deshmane	 et	 al.,	 2009).	 Thus,	 increased	CCL2	 expression	 in	

WAT	has	been	directly	linked	to	the	development	of	insulin	resistance	in	obesity	

(Kanda,	2006;	Sartipy	and	Loskutoff,	2003).	Although	WAT	macrophages	account	

for	most	of	the	CCL2	expression,	mature	adipocytes	express	substantial	levels	as	

well	(Dahlman	et	al.,	2005;	Meijer	et	al.,	2011).	This	suggests	that	the	adipocytes	

themselves	may	induce	inflammation	by	recruiting	macrophages	into	the	tissue.	

However,	despite	intense	research	in	animal	models,	surprisingly	little	is	known	

about	the	molecular	mechanisms	that	initiate	WAT	inflammation.	Unraveling	the	

regulation	 of	 CCL2	 in	 adipocytes	 could	 therefore	 provide	 insights	 into	 this	

process.	

Epigenetic	 regulation	 links	 environmental	 factors	 to	 altered	 gene	 expression	

(Vanhees	et	al.,	2014)	and	a	growing	body	of	evidence	suggests	that	epigenetic	

mechanisms	influence	the	risk	of	metabolic	complications	in	obesity	(Gluckman	

et	 al.,	 2009;	 Jirtle	 and	 Skinner,	 2007).	 A	 central	 epigenetic	 process	 is	 DNA	

methylation	 and	 recent	 studies	 in	 obese	 and/or	 T2DM	 subjects	 have	

demonstrated	 altered	 methylation	 near	 metabolically	 relevant	 genes	 in	 both	

WAT(Agha	 et	 al.,	 2015;	 Dick	 et	 al.,	 2014;	 Nilsson	 et	 al.,	 2014)	 and	 isolated	

adipocytes	 (Arner	 et	 al.,	 2015).	 DNA	 methylation	 is	 induced	 by	 DNA	 methyl	

transferases	 (DNMTs)	 that	 transfer	methyl	moieties	 from	 the	methyl	 donor	 S-

adenosyl	methionine	 (SAM).	SAM	 levels	are	 regulated	via	 the	methionine	cycle	
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wherein	 the	enzyme	methionine	adenosyltransferase	2	converts	methionine	 to	

SAM.	 Dietary	 methyl	 moieties	 fuel	 to	 the	 methionine	 cycle	 in	 order	 to	

regenerate	SAM.	Thus,	 folate	 (vitamin	B9,	an	 important	dietary	methyl	 source)	

plays	 an	 important	 role	 for	 intracellular	 SAM	 levels	 (Ducker	 and	 Rabinowitz,	

2016;	Guéant	et	al.,	2013;	Wolff	et	al.,	1998).	The	 folate	and	methionine	cycle	

are	 together	 known	 as	 the	 one	 carbon	 cycle	 (1CC,	 summarized	 in	 a	 simplified	

manner	in	Figure	1A).	

We	recently	demonstrated	that	adipocyte	DNA	from	obese	compared	with	non-

obese	 individuals	 is	 globally	hypermethylated	 (Arner	et	al.,	 2015).	Despite	 this,	

obese	 individuals	 have	 lower	 serum	 folate	 levels	 than	 non-obese	 subjects	

(Mojtabai,	 2004).	 Moreover,	 genetic	 variations	 in	 the	 1CC	 gene	 MTHFR	 are	

associated	 with	 folate	 deficiency	 and	 increased	 circulating	 levels	

ofCCL2(Hammons	 et	 al.,	 2009).	 Conversely,	 folate	 supplementation	 in	 humans	

reduces	systemic	inflammation	as	well	as	plasmaCCL2levels	(Solini	et	al.,	2006).	

Altogether,	 these	 observations	 suggest	 a	 link	 between	 the	 1CC	 and	

inflammation.	 Nevertheless,	 despite	 great	 progress	 in	 the	 field	 of	 WAT	

epigenetics	(Agha	et	al.,	2015;	Dick	et	al.,	2014;	Gehrke	et	al.,	2013;	Keller	et	al.,	

2014;	 Koza	 et	 al.,	 2006;	Nilsson	 et	 al.,	 2014)there	 is	 still	 a	 lack	 of	mechanistic	

insights	 into	 the	 link	 between	 DNA-methylation,	 gene	 expression	 and	 obesity-

induced	inflammation.		

We	 hypothesized	 that	 WAT	 inflammation	 could	 be	 influenced	 by	 epigenetic	

mechanisms	 resulting	 from	 perturbed	 1CC	 metabolism	 in	 obese	 adipocytes.	

WeidentifiedSLC19A1,	 a	 gene	 encoding	 a	 cell	 membrane	 expressed	 folate	

carrier,	 to	 be	 associated	with	 a	 pro-inflammatory	 phenotype	 in	WAT	 of	 obese	

individuals.	 Through	 a	 combination	 of	 different	 analyses	 and	 assays	 we	

demonstrate	 that	 reduced	 adipocyte	 SLC19A1	 expression	 results	 in	 increased	

global	DNA	methylation	including	a	specific	site	in	the	CCL2	promoter.	The	latter	

attenuates	 the	 repressive	 action	 of	 endogenous	 cortisol	 resulting	 in	 increased	

CCL2	secretion.	Our	data	therefore	establish	a	potential	epigenetic	link	between	

obese	adipocytes	and	the	regulation	of	WAT	inflammation.	
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Results	and	Discussion	

Adipocyte	 DNA-hypermethylation	 is	 associated	 with	 an	 inflammatory	

transcriptome		

In	 order	 to	 identify	 epigenetic	 factors	 regulating	 adipocyte	 inflammation	 we	

compared	 the	 global	 adipocyte	 DNA-methylome	with	WAT	 gene	 expression	 in	

obese(n=8)	 and	 non-obese(n=8)	 individuals	 (subgroup	 of	 cohort	 1,	 clinical	

characteristics	in	Table	S3).	In	line	with	previous	data	on	global	DNA	methylation	

(Arner	et	al.,	2015),	we	observed	a	higher	methylation	of	CpGs	proximal	(defined	

as	<1.5	kb	upstream	to	TSS,	in	gene	bodies,	in	5’-	or	3’-	UTR)	to	protein-encoding	

genes	in	adipocytes	from	obese	vs	non-obese	individuals	(Figure	1B).	The	genes	

whose	 expression	 correlated	 with	 hypermethylated	 CpGs	 in	 obesity	 were	

subdivided	based	on	the	direction	of	their	expression,	i.e.	increased	or	decreased	

upon	 DNA	 methylation.	 Agene	 ontology	 (GO)	 analysis	 revealed	 pronounced	

differences	in	the	cellular	processes	associated	with	the	two	groups	(Figure	1C,	

Supplementary	 table	 S1).	 CpG	 hypermethylation	 associated	 positively	with	 the	

expression	of	genes	in	pro-inflammatory	pathways	but	negatively	with	metabolic	

processes,	 in	 particular	 lipid	 metabolism.	 A	 correlation	 between	 DNA	

hypermethylation	and	increased	inflammation	has	previously	been	reported	also	

in	murine	3T3-L1	adipocytes	(Malodobra-Mazur	et	al.,	2014).	

DNA	 methylation	 has	 classically	 been	 considered	 to	 confer	 gene	 repression.	

However,	 results	 in	 recent	 years	 have	 also	 demonstrated	 increased	 gene	

activation(Suzuki	and	Bird,	2008).	The	direction	of	the	association	between	DNA	

methylation	and	gene	expression	have	been	proposed	to	depend	on	the	location	

of	the	CpG	in	relation	to	the	gene,	i.e.	repression	when	located	in	the	promoter	

and	activation	when	located	in	the	gene	body	(Jones,	2012).	We	found	that	the	

location	 of	 the	 CpGs	 in	 relation	 to	 a	 CpG	 island	 rather	 than	 to	 the	 gene	 was	

linked	to	the	direction	of	gene	expression	(Figure	S1).	Thus,	CpG	methylation	in	

genes	 associated	 with	 increased	 expression	 was	 overrepresented	 in	 open	 sea	

regions	 whereas	 CpGs	 in	 negatively	 associated	 genes	 were	 more	 common	 in	

shore	and	shelf	regions	(Figure	S1).	That	differentially	methylated	regions	(DMR)	
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in	 human	 adipocytes	 associated	 with	 gene	 expression	 were	 more	 common	

outside	 CpG	 islands	 is	 in	 line	 with	 previous	 reports	 on	 DMRs	 in	 non-adipose	

tissues	and	cancer	cells(Irizarry	et	al.,	2009).Altogether,	these	findings	indicate	a	

link	between	adipocyte	inflammation	and	DNA-hypermethylation,	particularly	in	

open	sea	chromatin.	

	

Expression	 of	 1CC	 genes	 in	 obese	 adipocytes	 identifies	 a	 strong	 association	

between	SLC19A1	and	insulin	resistance	

DNA	methylation	 is	a	dynamic	process	which	 is	 influenced	by	the	availability	of	

specific	 metabolites	 and	 their	 precursors	 (e.g.	 folates,	 vitamin	 B12,	 choline	

and/or	 methionine).Another	 level	 of	 regulation	 is	 the	 activity/expression	 of	

enzymes	and	transporters	 in	the	1CC	(Ducker	and	Rabinowitz,	2016;	Guéant	et	

al.,	2013;	Wolff	et	al.,	1998).	To	determine	whether	the	expression	of	1CC	genes	

(n=78)	 was	 altered	 in	 obese	 WAT,	 we	 probed	 previously	 generated	

transcriptomic	 data	 from	 obese	 (n=15)	 and	 non-obese	 (n=15)	 subcutaneous	

abdominal	WAT	 (cohort	 1,	 Table	 S3).Approximately	 half	 of	 the	 folate	 and	 one	

third	of	the	methionine	cycle	genes	were	altered	in	obesity	(Figure	1Dand	Table	

S2).	Among	the	genes	dysregulated	in	obesity,	those	involved	in	the	folate	cycle	

were	pronouncedly	induced	during	the	later	stages	of	adipogenesis	(Figure	1E),	

indicating	 that	 this	 gene	 set	 may	 be	 of	 relevance	 for	 adipocyte	 function	 in	

obesity.	 Seven	 folate	 cycle	 genes,	 altered	 in	 both	 obesity	 and	 induced	 during	

adipogenesis,	 were	 identified	 (Table	 1).	 Out	 of	 these,	 SLC19A1	 (Figure	 1A,	 in	

bold)	 displayed	 the	 strongest	 association	 with	 insulin	 sensitivity(measured	 by	

insulin	 tolerance	 test	 in	 vivo)	 and	expression	of	pro-inflammatory	genes	 (Table	

1,cohort	2,n=56,	characteristics	 in	Table	S3).	The	correlation	between	SLC19A1	

and	 genes	 in	 inflammation	 pathways	 stood	 out	 also	 in	 cohort	 1	 (p=0.004)	

however,	 insulin	 tolerance	 tests	 were	 not	 performed	 in	 these	 individuals.	

SLC19A1encodes	 a	 cell	 membrane-expressed	 folate	 transporter	 which	 is	

responsible	 for	 the	uptake	of	 the	most	abundant	circulating	 form	of	 folate,	 i.e.	

the	 reduced	 form	 termed	 5-methyltetrahydrofolate	 (5-CH3-THF).5-CH3-THF	
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constitutes	 a	 central	 substrate	 in	 the	 intersection	 between	 the	 folate	 and	

methionine	cycles	(Guéant	et	al.,	2013)(Figure	1A).	

	

SLC19A1	expression	in	WAT	is	enriched	in	adipocytes	and	reduced	in	obesity	

The	cell-specific	expression	of	SLC19A1	in	human	WAT	was	validated	by	qPCR	in	

paired	 samples	 from	11	 individuals	 of	 isolated	 adipocytes	 and	 stroma	 vascular	

fraction	 (SVF).	 In	 line	 with	 the	 expression	 during	 adipogenesis,	 SLC19A1	 was	

enriched	in	the	adipocyte	fraction	(Figure	2A).	Moreover,	SLC19A1	was	lower	in	

isolated	adipocytes	from	obese	(n=13)	compared	with	age-matched	lean	(n=19)	

subjects	(Figure	2B).These	results,	together	with	the	link	to	insulin	sensitivity	and	

inflammation	 described	 above,	 suggest	 that	 reduced	 SLC19A1expression	 in	

obese	 adipocytes	 may	 impact	 on	 adipocyte	 function,	 pro-inflammatory	

adipokine	secretion	and	possibly	cardiometabolic	health.	Admittedly,	the	factors	

regulating	 SLC19A1	 expression	 are	 not	 known.	 We	 observed	 no	 effects	 on	

SLC19A1	 mRNA	 levels	 in	 in	 vitro	 differentiated	 human	 adipocytes	 following	

incubation	with	TNFα	(50	ng/ml	up	to	24h)	or	after	exposure	to	hypoxia	(1	and	

5%	O2	up	to	48h)	(data	not	shown).	

	

Reduced	SLC19A1	expression	induces	global	DNA	hypermethylation	

The	 functional	 consequences	 of	 attenuated	 SLC19A1	 expression	 were	

determined	by	gene	knockdown	in	in	vitro	differentiated	human	adipocytes.	The	

expression	 of	 SLC19A1	 was	 significantly	 reduced	 using	 small	 interfering	 RNA	

(siRNA)	at	both	the	mRNA	(~75%,	Figure	3A)	and	protein	level	(~50%,	Figure	3B).	

Attenuated	SLC19A1	levels	resulted	in	a	lower	SAM/SAH	ratio	(Figure	3C)	and	a	

significant	 increase	 in	global	DNA	methylation	(Figure	3D),	establishing	a	causal	

link	between	reduced	adipocyte	SLC19A1expressionand	DNA	hypermethylation.	

It	may	 seem	counterintuitive	 that	 a	decrease	 in	 folate	metabolism	 leads	 to	 an	

increase	 in	 DNA	 methylation.	 However,	 it	 has	 been	 demonstrated	 in	 several	

different	 cell	 models	 that	 folate	 deprivation	 induces	 DNA-methylation	 both	

globally	(Farias	et	al.,	2015)as	well	as	in	site-specific	CpGs	(Jhaveri	et	al.,	2001).	
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Similar	 observations	 have	 been	 reported	 in	 rat	 colon	 cells	 in	 vivo	 (Sohn	 et	 al.,	

2003).	 Additionally,	 Ngo	 et.	 al.	 showed	 that	 SAH	 treatment	 alone	 in	 3T3-L1	

cells(resulting	 in	 a	 ~25%	 decrease	 of	 the	 SAM/SAH	 ratio,	 i.e.	 similar	 to	 that	

observed	 herein	 after	 siSLC19A1)	 induced	 site	 specific	 increases	 in	 DNA	

methylation(Ngo	et	al.,	2014).	The	mechanisms	responsible	for	these	effects	are	

either	an	increased	methylation	activity	or	an	attenuated	demethylation	activity.	

In	 SLC19A1	 RNAi-treated	 adipocytes	 there	 were	 no	 changes	 in	 the	 gene	

expression	of	methyltransferases	(DNMT1,	DNMT3A,	DNMT3B	and	DNMT3L)	or	

demethylation	 enzymes	 (TET1,	 TET2	 and	 TET3)	 compared	 with	 control	

cells(transfected	with	non-silencing	siRNA,	data	not	shown).	However,	as	DNMTs	

undergo	 several	 post-translational	 modifications	 (e.g.	 ubiquitination	 and	

sumoylation)	 which	 regulate	 their	 stability	 and	 activity	 (Kinney	 and	 Pradhan,	

2011),	it	is	interesting	to	note	that	several	genes	involved	in	ubiquitination	were	

selectively	altered	in	the	knockdown.	We	also	observed	an	almost	50	%	increase	

in	SUMO1	expression(data	not	shown)	which	has	been	shown	to	regulate	DNMT	

activity	via	sumoylational	modifications	(Lee	and	Muller,	2009;	Ling	et	al.,	2004).	

Taken	 together,	 these	 findings	 demonstrate	 that	 SLC19A1	 affects	 DNA	

methylation	through	mechanisms	that	remain	to	be	defined.	

	

Bioinformatic	 analyses	 identifies	 a	 link	 between	 SLC19A1	 expression	 and	 CpG	

methylation	in	the	CCL2	promoter	

The	 association	 between	 DNA	 hypermethylation,	 pro-inflammatory	 pathways	

and	 SLC19A1	 expression	 prompted	 us	 to	 search	 for	 specific	 CpG	 loci	 linking	

SLC19A1	to	inflammation.	To	this	end,	we	overlapped	three	global	-transcription	

and	 -methylation	 arrays	 (Figure	 3E).	 First,	 we	 performed	 transcriptome	 arrays	

comparing	 SLC19A1-silenced	 adipocytes	 with	 control-transfected	 cells.	 This	

identified	1400	significantly	regulated	transcripts	(FDR<25	%).	In	order	to	select	

regulated	 genes	 of	 possible	 pathophysiological	 relevance,	 this	 dataset	 was	

compared	with	the	expression	of	SLC19A1in	 the	previously	mentioned	subjects	

where	both	adipocyte	DNA-methylation	and	WAT	gene	expression	was	available	

(sub-cohort	1,	Table	S3).	Genes	were	filtered	by	Pearson’s	r	with	a	threshold	of	-
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0.6>r>0.6	and	a	direction	that	was	congruent	with	the	regulation	 in	vitro	(i.e.	a	

gene	 downregulated	 in	 SLC19A1	 silenced	 cells	 should	 correlate	 positively	with	

SLC19A1	 in	 vivo).279	 genes	 fulfilled	 these	 criteria.	 To	 assess	 whether	 the	

expression	 of	 these	 genes	 were	 linked	 to	 differences	 in	 DNA	methylation,	 we	

correlated	their	expression	with	the	degree	of	methylation	in	proximal	CpG	loci	

(defined	 as	 above).	 The	 criterion	 in	 this	 analysis	was	 that	 the	 direction	 of	 the	

correlation	 between	 methylation	 and	 gene	 expression	 should	 be	 concordant	

with	the	direction	of	the	gene	expression	in	SLC19A1	silenced	adipocytes	and	the	

observation	that	 low	SLC19A1	expression	 leads	to	a	hypermethylated	DNA.	We	

identified	 107	 CpG	 loci	 associated	with	 the	 expression	 of	 46	 genes	 (Table	 S4).	

The	 genes	 that	were	 annotated	 in	 at	 least	 one	 of	 the	 inflammatory	 biological	

processes	 (Figure	1B)	were	selected	and	are	summarized	 in	Table	2.	Using	 this	

bioinformatic	approach,	CCL2	was	identified	as	the	top	gene	that	fulfilled	all	four	

criteria,	 i.e.	 upregulated	 in	 SLC19A1	 silenced	 adipocytes,	 negative	 correlation	

with	 SLC19A1	 expression	 in	 WAT,	 at	 least	 one	 CpG	 (cg12698626)	 where	

methylation	correlated	positively	with	gene	expression	and	annotated	in	the	GO	

inflammatory	processes.		

	

Reduced	SLC19A1	expression	inducesCCL2	secretion	and	promoter	methylation	

A	causal	link	between	SLC19A1	and	CCL2	was	demonstrated	in	vitro	as	siSLC19A1	

treatment	resulted	in	increased	CCL2	expression	(by	qPCR,	graph	not	shown)	as	

well	 asCCL2	 secretion	 (Figure	 4A).	 This	 effect	 was	 specific	 for	 CCL2as	 neither	

TNFα	 nor	 adiponectin	 were	 affected	 (Figure	 4A).	 Furthermore,	 there	 was	 a	

significant	negative	association	between	adipose	SLC19A1	expression	and	ex	vivo	

CCL2(but	not	TNFα	or	adiponectin)	secretion	which	was	 independent	of	BMI	 in	

cohort	2(Figure	4B).	That	epigenetic	mechanisms	can	 regulate	CCL2	expression	

in	 WAT	 has	 previously	 been	 shown	 in	 a	 murine	 study	 where	 DNA	

hypermethylation	 induced	 by	 adipocyte-specific	 overexpression	 of	 the	 DNA	

methyl	 transferase	 Dnmt3a	 resulted	 in	 an	 enhanced,	 high	 fat	 diet-induced,	

expression	of	CCL2	and	overall	WAT	inflammation	(Kamei	et	al.,	2010).	In	murine	
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adipocytes,	 DNA	 hypermethylation	 may	 also	 inhibit	 the	 expression	 of	

adiponectin	(Kim	et	al.,	2015),	an	effect	which	we	did	not	observe	in	human	cells	

indicating	inter-species	differences	in	adipose	epigenetic	regulations.	Given	that	

SLC19A1	silencing	resulted	in	an	intracellular	state	that	mimics	folate-deficiency	

(Figure	3C),	it	is	interesting	to	note	that	a	12-week	long	folate	supplementation	

in	 overweight	 subjects	 reduced	 circulating	 CCL2levels	 and	 improved	 insulin	

sensitivity	(expressed	as	HOMA-index)	(Solini	et	al.,	2006).	Admittedly,	that	study	

did	 not	 determine	 the	 CCL2expression	 in	 WAT	 and	 it	 is	 possible	 that	 the	

observed	effects	reflected	actions	in	other	cell	types	including	leukocytes	and/or	

endothelial	cells	as	discussed	elsewhere(Brown	et	al.,	2006).	Furthermore,	 folic	

acid	supplementation	might	not	be	of	benefit	for	everyone	and	harmful	effects	

cannot	be	excluded	(Smith	et	al.,	2008).		

Our	 combined	 analysis	 of	 different	 data	 sets	 demonstrated	 an	 association	

between	 SLC19A1	 and	 cg12698626	 in	 theCCL2	 promoter.	 To	 establish	 a	 link	

between	 SLC19A1	 and	 CCL2	 expression	 through	 cg12698626	 methylation,	

pyrosequencing	 assays	 were	 performed	 in	 siSLC19A1	 treated	 adipocytes.	 This	

demonstrated	that	SLC19A1	silencing	increased	the	methylation	of	cg12698626	

(Figure	 4C).	 Furthermore,	 changes	 in	 cg12698626	 methylation	 correlated	

positively	 with	 the	 change	 in	 CCL2	 expression	 (Figure	 4D).	 In	 primary	 in	 vitro	

differentiated	 adipocytes	 from	 various	 donors	 there	 was	 a	 clear	 bimodal	

distribution	in	cg12698626	methylation	(Figure	4E).	Cells	with	highly	methylated	

cg12698626	displayed	a	 significantly	higher	 secretion	of	CCL2	 than	cells	with	a	

low	degree	of	methylation	(Figure	4F).	Although	several	CpG	loci	linked	to	gene	

expression	 are	 conserved	 between	mice	 and	 humans	 (Multhaup	 et	 al.,	 2015),	

cg12698626	 is	 not	 among	 these	 (data	 not	 shown).	 Moreover,	 in	 contrast	 to	

observations	 in	 humans,	 diet-induced	 obesity	 in	 mice	 has	 been	 reported	 to	

induce	 hypomethylation	 of	 CpGs	 near	 inflammatory	 genes	 (Multhaup	 et	 al.,	

2015).	 Taken	 together,	 this	 suggests	 that	 CCL2	 is	 regulated	 through	 specific	

epigenetic	 mechanism	 in	 humans	 which	 discouraged	 us	 from	 developing	 an	

adipocyte-specific	Slc19a1	knockout	mouse.	
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Methylation	of	cg12698626	inhibits	glucocorticoid	repression	of	CCL2	

To	 identify	 a	 molecular	 mechanism	 explaining	 why	 site-specific	 methylation	

increases	 CCL2	 expression	 we	 retrieved	 publically	 available	 ENCODE	 ChIP-

sequencing	 data	 to	 determine	 whether	 cg12698626	 was	 in	 the	 proximity	 of	

potential	transcription	factor	binding	sites.	The	promoter	region	of	CCL2	(defined	

as	 1.5	 kb	 upstream	 of	 the	 transcription	 start	 site)	 contained	 a	 total	 of	 seven	

CpGs	(CG1-7,	Figure	5A)	where	the	relative	importance	of	cg12698626	(CG4)	for	

WAT	 CCL2expression	 was	 demonstrated	 by	 correlation	 analyses	 between	 the	

methylation	 degree	 (β-value)	 of	 each	 CpG	 and	CCL2	expression	 (sub-cohort	 1,	

Figure	 5B).	 CG4is	 present	 in	 a	 predicted	 glucocorticoid	 receptor	 (GR)	 binding	

site,	which	was	confirmed	by	electromobility	shift	assay	(EMSA)using	a	purified	

GR	 DNA	 binding	 domain	 (GR-DBD)	 (Figure	 S2A).	 Glucocorticoids	 are	 anti-

inflammatory	 (Staab	 and	 Maser,	 2010)	 and	 as	 expected	 cortisol	 rapidly	

decreased	 CCL2	 expression	 in	 in	 vitro	 differentiated	 adipocytes	 (Figure	 5C).To	

determine	whether	CG4	methylation	could	impact	on	this	effect	we	developed	a	

luciferase	reporter	assay	where	different	plasmids	containing	the	CCL2	promoter	

(with	or	without	CG4)	were	electroporated	in	 in	vitro	differentiated	adipocytes.	

In	 agreement	 with	 the	 results	 in	 Figure	 5C,	 CCL2	 promoter	 activity	 was	

significantly	reduced	upon	treatment	with	cortisol,	are	pressive	effect	 that	was	

fully	 abrogated	 when	 the	 promoter	 was	 methylated	 (Figure	 5D).	 In	 similar	

experiments	 performed	 with	 constructs	 lacking	 CG4(Figure	 5E),the	 repressive	

effect	of	cortisol	was	abolished	and	was	independent	of	DNA	methylation	status.	

This	 suggests	 that	 cg12698626	 as	 well	 as	 its	 methylation	 status	 affect	 the	

response	 to	 cortisol.	 Despite	 this,	 EMSA	 demonstrated	 that	 the	 GR-DBD	

interacted	with	cg12698626-containing	oligonucleotides	irrespective	of	whether	

it	 was	 unmethylated	 (CG4/-CH3)	 or	 methylated	 (CG4/+CH3)	 (Figure	 S2B).	

However,	 further	 investigation	 using	 thermal	 shift	 assay	 showed	 that	 the	 GR-

DBD	 required	 a	 significantly	 higher	 dissociation	 temperature	 when	 bound	 to	

CG4/-CH3	than	to	CG4/+CH3	(Figure	5F),	supporting	the	notion	thatcg12698626	

methylation	 attenuates	 GR	 binding	 affinity.	 It	 must	 be	 stressed	 that	 the	

interactions	between	GR	and	the	CCL2	promoter	were	assessed	using	techniques	
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that	may	not	fully	reflect	the	complexity	in	epigenetic	modifications	of	chromatin	

DNA	 (Cedar	 and	 Bergman,	 2009).	 A	 direct	 evaluation	 of	 cg12698626would	

ideally	 require	 site-specific	 modifications	 using	 CRISPR/Cas9	 linked	 to	 a	 DNA	

methyltransferase	 (Vojta	 et	 al.,	 2016),techniques	 that	 are	 not	 yet	 well-

established	in	primary	human	fat	cells	as	they	require	the	establishment	of	cell	

clones	(Claussnitzer	et	al.,	2015).	

In	conclusion,	the	findings	of	the	present	study	suggest	that	downregulation	of	

SLC19A1	 in	 obese	 adipocytes	 results	 in	 DNA	 hypermethylation	 and	 altered	

expression	 of	 specific	 genes	 among	 which	 CCL2	 appears	 to	 be	 of	 particular	

importance.	 Although	 speculative,	 this	 may	 constitute	 a	 mechanism	 through	

which	enlarged	 fat	 cells	 in	expanding	WAT	 initiate	macrophage	 infiltration	and	

inflammation,	a	hypothesis	 that	needs	 to	be	 tested	 in	 future	 studies.	Also,	 the	

mechanisms	responsible	for	SLC19A1	downregulation	need	to	be	defined.	
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Methods	

Patient	cohorts	

Clinical	 characteristics	 of	 the	 cohorts	 are	 detailed	 in	 Table	 S3.	 Cohort	 1	

(n=30),including	 the	 subgroup	 (n=16)	 where	 adipocyte	 DNA	 methylation	 was	

available	has	been	described	elsewhere	(Arner	et	al.,	2015).	Cohort	2is	described	

in	more	detail	 in	 (Arner	 et	 al.,	 2012).	 The	 study	was	 approved	by	 the	 regional	

ethics	 board	 and	 performed	 according	 to	 the	 statutes	 in	 the	 Declaration	 of	

Helsinki.	Informed	written	consent	was	obtained	from	all	participants.	

	

Adipocyte	and	SVF	fractionation	

Mature	 adipocytes	 and	 SVF	 were	 isolated	 from	 adipose	 tissue	 as	 previously	

described	 (Curat	 et	 al.,	 2004).	 For	 isolation	 of	 RNA	 from	 mature	 adipocytes,	

samples	were	obtained	from	19	non-obese	(age	36	±	9	years,	BMI,	23	±	1	kg/m2)	

and	13	obese	(age	33	±	6	years,	BMI	37	±	4	kg/m2).	For	isolation	of	adipocyte	and	

SVFfrom	 adipose	 tissue,	 WAT	 was	 obtained	 from	 11	 individuals	 undergoing	

plastic	surgery	for	non-malignant	diseases.	

	

Cell	cultures	

Primary	 cultures	 of	 human	 in	 vitro	 differentiated	 adipocytes	 were	 set	 up	 as	

described	previously	(van	Harmelen	et	al.).These	cells	were	used	to	define	inter-

individual	 differences	 in	 the	 effects	 of	 SLC19A1	 knockdown.	 The	 reporter	

construct	 experiments	 were	 performed	 in	 in	 vitro	 differentiated	 adipocytes	

obtained	 from	adipose-derived	stem	cells	 (ASCs)	which	were	expanded	 in	 vitro	

and	 differentiated	 into	 adipocytes	 as	 reported	 (Pettersson	 et	 al.,	 2013).	 The	

cortisol	 time	 course	 were	 performed	 using	 differentiated	 ASC	 adipocytes	 and	

adding	cortisol	6,	4	and	2	h	prior	to	cell	lysis.	Cells	were	cultured	on	standard	96,	

48,	24	and	12	well	plates.	

	

SLC19A1	silencing	by	RNAi	
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SLC19A1	 silencing	was	 performed	 in	 primary	 adipocytes	 using	 the	ON-TARGET	

plus	Human	SLC19A1	 siRNA	SMART	pool	 (L-007422-01-0005)	and	compared	 to	

siGENOME	Non-Targeting	 siRNA	 (D-001206-13-05)	purchased	 from	Dharmacon	

(Little	Chalfont,	UK).	Transfections	were	performed	as	previously	described	(Gao	

et	al.,	2014).	

	

RNA	isolation,	cDNA	synthesis	and	RT-qPCR	

All	 steps	 were	 performed	 as	 in	 (Gao	 et	 al.,	 2014)	 except	 the	 cDNA	 synthesis	

which	was	 synthesized	 using	 the	 iScript	 cDNA	 synthesis	 kit	 (Bio-Rad,	 Hercules,	

Carlifornia,	USA).	 Furthermore	RNA	 from	 some	 samples	was	 isolated	using	 the	

AllPrep	 DNA/RNA/miRNA	 Universal	 Kit	 (Qiagen,	 Hilden,	 Germany).	 All	 TaqMan	

probes	 were	 purchased	 from	 Applied	 Biosystems	 (CA,	 USA)	 and	 targeted	

SLC19A1	 (Hs00953344_m1),	 CCL2	 (Hs00234140_m1)	 and	 the	 housekeeping	

gene	LRP10	(Hs00204094_m1)	

	

Protein	lysis	and	Western	Blot	

Protein	 lysis	 and	Western	 blotting	 was	 performed	 as	 described	 (Ryden	 et	 al.,	

2002).	 Briefly,	 an	 8%	 acrylamide	 gel	was	 cast	 and	 20	 µg	 of	 total	 protein	were	

loaded	 into	 each	 well.	 Anti-SLC19A1	 (Atlas	 antibodies,	 Stockholm,	 Sweden,	

product	number	HPA024802)	was	diluted	1:500	 ,	blots	were	 incubated	at	4	 °C	

overnight	 with	 gentle	 agitation.	 SLC19A1	 levels	 were	 normalized	 against	 actin	

(Sigma	Aldrich,	product	number	A2066).		

	

Metabolite	measurements	

Control-	orSLC19A1-silenced	cells		were	placed	on	dry	ice	directly	after	medium	

aspiration	and	incubated	with	80	%	pre-cooled	(-80°C)	methanol	for	20	minutes.	

Cells	were	harvested,	 transferred	to	tubes	and	centrifuged	at	4°C,	14000	gfor5	

minutes.	The	supernatants	were	transferred	to	new	tubes	and	the	pellets	were	
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washed	 with	 additional	 methanol	 followed	 by	 an	 additional	 round	 of	

centrifugation.	The	samples	were	stored	in	-80°C	until	analysis.	

	

Transcriptome	and	epigenome	arrays	

Primary	 in	 vitro	 differentiated	 adipocytes	 were	 transfected	 with	 non-targeting	

siRNA	or	siSLC19A1	and	gene	expression	was	assessed	using	GeneChip®	Human	

Transcriptome	 Array	 2.0	 (Affymetrix,	 Santa	 Clara,	 CA,	 USA)	 according	 to	 the	

manufacturer’s	 instructions.	Cells	 from	 three	 individual	donors	were	used.	The	

global	WAT	transcriptome	and	adipocyte	epigenome	of	the	two	clinical	cohorts	

has	previously	been	described	(Arner	et	al.,	2012;	Arner	et	al.,	2015).		

	

Enzyme-linked	immunosorbent	assay	(ELISA)	

Kits	from	R&D	Biosystems	(Minneapolis,	USA)	were	used	to	assess	the	secretion	

of	 CCL2	 (catalog	 number	 DCP00),	 TNFα	 (catalog	 number	 QTA00B)	 and	

Adiponectin	 (catalog	 number	 DY1065).	 An	 ELISA	 detecting	 5-methylcytosines	

(Sigma	 Aldrich,	 catalog	 number	 MDQ1)	 was	 used	 to	 determine	 global	 DNA	

methylation.			

	

DNA	isolation,	bisulfite	conversion	and	pyrosequencing	

DNA	 was	 isolated	 from	 in	 vitro	 cultured	 adipocytes	 with	 the	 AllPrep	

DNA/RNA/miRNA	 Universal	 Kit	 (Qiagen,	 Hilden,	 Germany).	 The	 bisulfite	

conversion	was	performed	using	EZ	DNA	Methylation-Gold™	Kit	(Zymo	Research,	

Irvine,	CA)	following	the	instructions	provided	by	the	company.	Two	hundredng	

of	 input	 DNA	 was	 used	 in	 20	 µl.	 The	 software	 PyroMark	 Assay	 Design	 2.0	

(Qiagen,	Hilden,	Germany)	was	used	for	primer	design	of	both	PCR	amplification	

primers	and	the	sequencing	primer.	The	following	primers	were	used;	forward-	

AGGTAATTAGTTGGAGGATTTGT;	 biotinylated	 reverse:	

CCAAACAACCCTATCCCCAATAAA	and	sequencing:	ATTAGTTGGAGGATTTGTA.	The	

dispensing	order	was:	TAYGTTTTTT	TTTAGTAGTA	TGTTAGAG,	the	Y	representing	



ANNEX	1	

168	
	

the	cg12698626	position.	One	microliter	bisulfite	converted	DNA	was	amplified	

using	 the	 PyroMark	 PCR	 kit	 (Qiagen,	 Hilden,	 Germany)	 according	 to	 the	

manufacturer’s	 instructions.	An	annealing	 temperature	of	58	 °C	was	used.	The	

size	of	the	PCR	product	was	controlled	by	gel	electrophoresis.	Thereafter,	4	µM	

sequencing	primer	and	sepharose	beads	(GE	Healthcare,	Little	Chalfont,	UK)	was	

mixed	 with	 the	 PCR	 product	 and	 pyrosequenced	 with	 the	 PSQ	 96	 ID	 system	

(Qiagen,	Hilden,	Germany)	using	PyroMark	Gold	Q96	 reagents	 (Qiagen,	Hilden,	

Germany).	

	

Gene	Ontology	(GO)	analysis	and	transcription	factor	binding	prediction		

GO-analyses	were	performed	on	gene	IDs	where	CpG	loci	(<1.5	kb	upstream	to	

TSS,	in	gene	bodies,	in	5’	UTR	or	in	3’	UTR)were	hypermethylated	in	obesity	and	

where	the	degree	of	methylation	correlated	with	the	expression.	The	genes	that	

correlated	 positively	 and	 negatively	 with	 associated	 CpG	 methylation	 were	

analyzed	 in	 the	 ToppGene	 database	 (https://toppgene.cchmc.org/)	 to	 define	

their	 role	 in	 different	 biological	 processes.	 The	 transcription	 factors	 binding	 to	

the	CCL2	promoter	were	identified	using	the	publicly	available	ENCODE	ChIP-seq	

data	 presented	 in	 the	 hg19	 UCSC	 genome	 browser	

(https://genome.ucsc.edu/index.html).	 Thereafter	 the	 ALGGEN-PROMO	

(http://alggen.lsi.upc.es)	 bioinformatic	 software	 was	 used	 to	 predict	

transcription	factor	binding	that	overlapped	with	cg12698626.		

	

CCL2	promoter	luciferase	reporter	assay	

Two	 constructs	 containing	 the	 upstream	 region	 of	 theCCL2promoter	 with	 and	

withoutcg12698626were	prepared	by	PCR	using	KAPA	HotStart	ReadyMix	(Kapa	

Biosystems,	Wilmington,	MA)	from	human	genomic	DNA	(patient	sample)	using	

primers,	 forward	 5´-GAAGATCTACAGAGAGAGGACCCAAGCA-3´(with	

cg12698626)	 or	 forward-766	 5´-GAAGATCTACCCTTCTGTGCCTCAGT-3´	 (without	

cg12698626)	 together	 with	 the	 reverse	 5´-
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CATGCCATGGTGCGAGCTTCAGTTTGAGAA-3´	 (Invitrogen,	 Carlsbad,	 CA).	 Each	

DNA	sequence	was	sub-cloned	into	pCpGL-basic	vector	(kindly	provided	by	prof.	

M.	 Rehli,	 Regensburg,	 Germany)	 via	 BglII	 and	 NcoI	 restriction	 sites,	 resulting	

inpCpGL-CCL2+cg12698626	 and	 pCpGL-CCL2-cg12698626	 vectors.	 For	 the	

transformation	 One	 Shot	 PIR1	 competent	 E.	 coli	 cells	 were	 used	 (Invitrogen,	

Carlsbad,	CA).	Both,	 LB	agar	plates	and	LB	growth	medium,	 for	 colony	 forming	

and	inoculum	preparation,	contained	Zeocin	as	a	selective	antibiotic	(Invitrogen,	

Carlsbad,	 CA).	 The	 correct	 insertion	 of	 each	 DNA	 fragment	 was	 controlled	 by	

sequencing.	 For	 transfection	 into	 cell	 cultures,	 plasmids	 were	 isolated	 and	

purified	 using	 EndoFree	 Plasmid	 Maxi	 Kit	 (Qiagen,	 Hilden,	 Germany).	 The	

methylation	was	performed	using	SssI	methyltransferase	(New	England	Biolabs,	

Hitchin,	United	Kingdom)	according	to	the	manufacturer’s	recommendation.	The	

CCL2	promoter	constructs	were	electroporated	in	ASC-derived	adipocytes	at	day	

8	 of	 differentiation	 using	 Neon	 electroporator	 (Invitrogen,	 Carlsbad,	 CA)	

according	 to	 the	 instructions	 provided	 by	 the	 manufacturer.	 Each	

electroporation	 was	 done	 with100,000	 cells	 in	 10	 µl	 together	 with	 500	 ng	 of	

plasmid.	Electroporation	conditions	were	1400	Volts,	20	ms	width,	and	2	pulses.	

Thereafter,	 the	 cells	 were	 cultured	 in	 48-well	 plates,	 with	 or	 without	 100	 µM	

cortisol,	for	24	h.	Luciferase	activities	were	measured	in	cell	 lysates	using	Dual-	

Luciferase	 Reporter	 Assay	 System	 (Promega,	 Madison,	 WI)	 according	 to	 the	

manufacturer’s	 instructions.	 Luciferase	 activity	 was	 normalized	 to	 the	 protein	

concentrations	 of	 each	 sample	 using	 the	 BCA	 protein	 assay	 (Thermo	 Fisher,	

Waltham,	Massachusetts,	USA).	

	

Thermal	shift	assay	and	EMSA	

The	 plasmid	 encoding	 the	 glucocorticoid	 DNA	 binding	 domain	 (GR-DBD)	 were	

kindly	 provided	 by	 Professor	 JussiTaipale	 (KarolinskaInstitutet,	 Sweden)	 and	

purified	 by	 the	 Protein	 Science	 Facility	 at	 Karolinska	 Institutet/SciLifeLab		

(http://psf.ki.se).	 The	 sequences	 representing	 the	 known	 GRE	 (Lundbäck	 and	

Härd,	 1996)	 (5´-GCGTCAGAACATGATGTTCTAGGCG-3´),	 random	 sequence	 (5´-
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CCCTTAACATATAAGATGTATTTTG-3´)	and	the	sequence	surrounding	cg12698626	

(5´-GACTTGTACA	 C(+/-CH3)GTTTCCTTCCA-3´)	 in	 both	 the	 methylated	 and	

unmethylated	 form	 were	 all	 ordered	 from	 Eurofins	 Genomics	 (Germany,	

Luxembourg).	 The	 sequences	 were	 diluted	 to	 500	 µM	 and	 annealed	 to	 the	

corresponding	 reverse	 sequence	 by	 a	 15	min	 incubation	 in	 95	 °C	 following	 an	

overnight	cooldown.	For	the	gel	shift	assay	10	µM	DNA	was	mixed	with	0,	5,	10	

µM	 (GR-DBD)	 in	 the	 same	 buffer	 the	 protein	 storage	 buffer	 (20mM	 HEPES,	

300mM	NaCl,	10%	glycerol,	2mM	TCEP,	pH	7.5).	E-Gel®	Agarose	Gels	with	SYBR®	

Safe	 DNA	Gel	 Stain,	 1.2%	 from	 Thermo	 Fischer	 Scientific	 (Waltham,	MA,	 USA)	

were	used	for	gel	shift	runs.	The	thermal	shift	assay	was	performed	by	mixing	10	

µg	GR-DBD	with	50	µM	DNA	and	SYPRO®	Orange	(Thermo	Fischer	Scientific)	 in	

protein	 storage	 buffer.	 The	 thermal	 shift	was	 analyzed	 in	 a	 CFX96™	Real-Time	

System	 C1000	 Touch	 Thermal	 Cycler	 (Bio	 Rad).	 Channel	 2	 (excitation	 515-535	

nm,	detection	560-580	nm)	was	used	 to	measure	 fluorescence	every	0.2	 °C	 in	

the	20-80	°C	range.	

	

Statistical	analysis	

Differences	 between	 treatments	 were	 assessed	 using	 paired	 or	 unpaired	

student’s	t-test	and	statistical	significances	are	annotated	as;	P-values<	0.05=*,	

0.01=**	and	0.001=***.	Comparison	between	more	than	two	treatments	were	

assessed	with	 a	 one-way	 ANOVA	 and	 Fisher’s	 least	 significant	 difference	 post-

hoc	 test.	 All	 correlations	 are	 presented	 with	 Pearson’s	 product-moment	

correlation	coefficient	and	a	P-value<0.05	was	considered	significant;	correction	

for	 multiple	 testing	 were	 performed	 when	 needed.	 Associations	 between	

SLC19A1	and	parameters	obtained	from	the	patient	cohorts	were	corrected	for	

BMI	in	multiple	regression	analyses.	The	Benjamini&	Hochberg	method	was	used	

to	detect	significantly	altered	genes	in	the	microarray	of	SLC19A1-silenced	cells.	

A	 false	discovery	 rate	of	<25%	was	considered	 significant.	Arbitrary	units	 (a.u.)	

were	used	to	normalize	for	inter-individual	variances	between	donors	and	were	

calculated	by	dividing	 the	 treated	 sample	with	 the	 control	 sample	within	 each	

donor.	 All	 charts	 except	 the	 box	 plots	 represent	 the	 mean	 with	 whiskers	
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representing	 the	 standard	 deviation.	 All	 statistical	 tests	were	 performed	 using	

the	software	IBM	SPSS	Statistics	version	22.0.	
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Figure	legends	

Figure	 1.DNA	 methylation	 and	 the	 one	 carbon	 cyclein	 obese	 adipocytesA.A	

simplified	 overview	 of	 the	 one	 carbon	 cycle	 (1CC)	 highlighting	 the	 folate	 and	

methionine	cycle,	respectively.	Protein	names	are	indicated	alongside	the	arrows	

and	 the	 metabolites	 are	 written	 in	 italics,	 SLC19A1	 is	 highlighted	 in	 bold.	

Abbreviations	 are	 in	 alphabetical	 order:	 ALDH1L1-Aldehyde	 Dehydrogenase	 1	

Family	 Member	 L1;	 AHCY-Adenosylhomocysteinase;	 DNMT-DNA	

Methyltransferase;	 MAT2-methionine	 adenosyltransferase	 2;	 MTHFD1-

Methylenetetrahydrofolate	 Dehydrogenase,	 Cyclohydrolase	 And	

FormyltetrahydrofolateSynthetase	 1;	 MTHFR-Methylenetetrahydrofolate	

Reductase;	 MTR-5-Methyltetrahydrofolate-Homocysteine	 Methyltransferase;	

MTRR-5-Methyltetrahydrofolate-Homocysteine	 Methyltransferase	 Reductase;	

SHMT1-Serine	Hydroxymethyltransferase	1.	B.Methylation	 in	CpG	 loci	 (β-value)	

neighboring	 protein-encoding	 genes	 were	 compared	 between	 non-obese	 and	

obese	 individuals	 in	 sub-cohort	 1.C.Based	 on	 data	 from	 sub-cohort	 1,	 gene	

ontology-analyses	 were	 performed	 for	 genes	 associated	 with	 attenuated	 (left	

panel)	 or	 induced	 (right	 panel)	 expression	 upon	 hypermethylation	 in	

neighbouring	 CpGs.D.	 Genes	 in	 the	 1CC	were	 extracted	 from	 gene	 expression	

arrays	 in	 cohort	 1	 comparing	 non-obese	 and	 obese	 individuals	 and	 subdivided	

according	to	their	 involvement	 in	the	folate	(n=25)	or	methionine	(n=53)	cycle,	

respectively.	The	number	of	genes	regulated	or	not	by	obesity	is	indicated	in	the	

pie	 charts.E.The	 mean	 gene	 expression	 of	 the	 obesity-regulated	 genes	 in	 the	

folate	 and	 methionine	 cycles	 was	 measured	 during	 in	 vitro	 differentiation	 of	

human	adipose	derived	stem	cells.	*P<0.05,	**P<0.01	and	***P<0.001	

Figure	 2.	 SLC19A1	 expression	 in	 human	 adipocytes.A.SLC19A1	 expression	 was	

measured	 by	 qPCR	 in	 the	 stroma-vascular	 fraction	 (SVF)	 and	 isolated	 mature	

adipocytes	 in	 paired	 samples	 from	 11	 individuals.	 B.The	 attenuated	 WAT	

expression	 of	 SLC19A1	 in	 obesity	was	 confirmed	 in	 isolated	 adipocytes.	mRNA	

levels	 are	 expressed	 in	 relative	 units	 to	 the	 reference	 gene	 LRP10.*P<0.05,	

**P<0.01	and	***P<0.001	
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Figure	 3.SLC19A1	 silencing	 in	 in	 vitro	 differentiated	 human	 adipocytes	 A-

B.SLC19A1	 gene	 (A)	 and	 protein	 (B)	 expression	were	 downregulated	 by	 siRNA	

treatment.	 C-D.SLC19A1	 silencing	 resulted	 in	 a	 reduced	 intracellular	 SAM/SAH	

ratio	(C)	and	an	increase	in	global	DNA	methylation	measured	using	an	antibody-

based	kit	(D).E.	A	flowchart	summarizing	the	bioinformatic	approach	to	identify	

SLC19A1-regulated	inflammation	genes	linked	to	altered	methylation	of	proximal	

CpG	loci.	*P<0.05,	**P<0.01	and	***P<0.001	

Figure	 4.	 SLC19A1	 knockdown	 inducescg12698626	 methylation	 and	

CCL2expression	 A.	 Analyses	 of	 protein	 secretion	 confirmed	 thatCCL2was	

selectively	 induced	 in	 vitroupon	 SLC19A1	 silencing.	 No	 effects	 on	 TNFα	 or	

adiponectin	 secretion	 were	 observed.B.In	 cohort	 2,SLC19A1	 expression	 in	

subcutaneous	 WAT	 associated	 significantlywithCCL2	 secretionex	 vivo.	

Standardized	 beta-coefficients	 and	 P-valuesare	 shown	 for	 multiple	 regression	

analyses	 correcting	 for	 BMI.C-D.	 The	 methylation	 of	 cg12698626	 increased	

significantly	upon	SLC19A1	silencing	in	human	adipocytes	(C)	andthe	fold-change	

in	methylation	 correlated	 significantly	with	 the	 fold-change	 in	CCL2	expression	

(D).	E.The	absolute	methylation	of	cg12698626in	primary	 in	vitro	differentiated	

adipocytes	 from	 five	 donors	 displayed	 a	 bimodal	 distribution	 and	 could	 be	

subdivided	 according	 to	 “low”	 or	 “high”	 methylation.	 F.CCL2	 secretion	 from	

adipocytes	in	E	was	compared	between	the	groupswith	high	or	low	cg12698626	

methylation.	*P<0.05,	**P<0.01	and	***P<0.001	

Figure	5.Functional	analysis	of	cg12698626	 in	regulating	CCL2	expression.A.The	

promoter	(defined	as	1.5	kb	upstream	to	the	transcription	start	site	(TSS))	region	

of	 human	 CCL2	 contained	 a	 total	 of	 seven	 CpGs	 (CG1-7),cg12698626	 (CG4)	 is	

located	 in	 the	 middle.	 Analyses	 of	 ENCODE	 ChIP-seq	 data	 predicted	 a	

glucocorticoid	 receptor	 (GR)	 binding	 site	 overlapping	 with	 CG4.	 B.The	 relative	

importance	 of	 CG4	 methylation	 was	 suggested	 by	 correlatingthe	 degree	 of	

methylation	(β-value)in	each	individual	CpG	with	CCL2	expression	in	sub-cohort	

1.Pearson’s	 correlation	 coefficient	 and	 P-values	 are	 shown.	 C.In	 vitro	

differentiated	 adipocytes	 were	 incubated	 with	 100	 nMcortisol	 and	 CCL2	

expression	 was	 measured	 after	 the	 indicated	 times.	 D.	 Cortisol-mediated	
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repression	of	 the	CCL2promoter	was	assessed	using	a	 luciferase	reporter	assay	

containing	 CG4-7	 in	 the	 unmethylated	 (left	 panel)	 or	methylated	 (right	 panel)	

state.E.Similar	experiments	as	 in	Dwere	performed	using	constructs	where	CG4	

was	 deleted.F.	 Binding	 affinity	 of	 the	 GR-DNA	 binding	 domain	 (GR-DBD)	 was	

determined	 by	 thermal	 shift	 assay.	 Binding	 to	 a	 positive	 control	 (GR-Element,	

GRE)	 shifted	 the	 dissociation	 temperature	 significantly	 while	 a	 random	

oligonucleotide	sequence	was	not	different	from	GR-DBD	alone.	Binding	of	GR-

DBD	 to	 an	 oligonucleotide	 containing	 CG4	 showed	 a	 significantly	 higher	

dissociation	 temperature	 in	 the	 unmethylated	 (CG4/-CH3)	 compared	 with	 the	

methylated	(CG4/+CH3)	state.	*P<0.05,	**P<0.01	and	***P<0.001	
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Table	legends	

Table	 1.	 Associations	 between	 folate	 cycle	 genes,	 insulin	 sensitivity	 and	 WAT	

inflammation.The	relationship	between	 insulin	sensitivity	 in	vivo(determined	by	

insulin	 tolerance	 test)	and	 the	WAT	mRNA	 levels	 (by	micro-array)	of	 the	seven	

folate	cycle	genes	altered	in	obesity	and	during	adipogenesis	was	determined	by	

multiple	 regression	 analysis	 setting	 the	 expression	 of	 each	 gene	 and	 BMI	 as	

independent	regressors.	Standardized	beta	coefficients	and	P-values	are	shown.	

The	 number	 of	 pro-inflammatory	 genes	 (among	 a	 total	 of	 238	 included	 in	 the	

GO-term)	associating	significantly	(P<0.01)	with	each	of	the	7	folate	cycle	genes	

are	shown.	

	

Table	 2.	 Inflammation-related	 genes	 predicted	 to	 be	 regulated	 by	

hypermethylation.	 An	 overlap	 of	 gene	 expression	 arrays	 in	 SLC19A1-silenced	

adipocytes	 and	 subcutaneous	WAT	 in	 cohort	 1	with	 an	 adipocyte	methylation	

array	 in	 cohort	 1	 identified	 genes	 that	 were	 predicted	 to	 be	 regulated	 by	

SLC19A1	 through	DNA-methylation.	 The	 genes	 that	were	 annotated	 in	 at	 least	

one	of	the	10	GO	inflammatory	biological	processes	in	Figure	1C	are	listed.		
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Supplementary	figure	legends	

Figure	 S1.	 Location	 of	 CpGs	 in	 relation	 to	 direction	 of	 gene	 expression	 The	

degree	of	methylation	in	relation	to	the	gene	expression	was	compared	between	

CpG	loci	according	to	their	 location	 in	relation	to	neighboring	protein-encoding	

genes	(upper	panel)	or	their	proximity	to	CpG	islands	(lower	panel).	

Figure	 S2.	 Interaction	 between	 GR-DBD	 and	 cg12698626	 containing	

oligonucleotides.	 Representative	 gel	 shift	 assays	 displaying	 the	 interaction	

between	 theGR-DBD	and	different	oligonucleotides.GRE	was	used	as	a	positive	

control.	The	GR-DBD	bound	to	an	oligonucleotide	representing	the	22	base	pairs	

surrounding	 cg12698626	 (CG4)	 which	 was	 in	 contrast	 tothe	 DBD	 of	 another	

unrelated	 transcription	 factor	 (EBF1)(left	 panel).	 GR-DBD	 interacted	 with	

oligonucleotides	 containing	 cg12698626	 in	 both	 the	 unmethylated	 (CG4/-CH3)	

and	methylated	(CG4/+CH3)	form	(right	panel).	

	

Supplementary	table	legends	

Table	S1	GO-analysis.Genes	displaying	a	positive	correlation	between	expression	

and	 methylation	 in	 proximal	 CpG	 loci	 subdivided	 according	 toGO-pathways	

detailed	in	figure	1C	(right	panel).	

Table	S2Regulation	of	1CC	genes	in	obesity.Genes	in	the	folate	and	methionine	

cycle	regulated	by	obesity.	

Table	S3Patient	cohorts.Short	description	of	the	cohorts	and	sub-cohort	included	

in	this	study.	

Table	 S4SLC19A1-regulated	 genes	 linked	 to	 altered	 methylation	 of	 proximal	

CpGs.	 A	 list	 of	 all	 CpGs	 and	 corresponding	proximal	 genes	 (defined	 as	 <1.5	 kb	

upstream	to	TSS,	 in	gene	bodies,	 in	5’	UTR	or	 in	3’	UTR)	 identified	 in	 the	array	

overlap	outlined	in	Figure	3E,	except	that	the	fourth	filtering	step	(genes	in	GO-

terms	of	 inflammation)	was	omitted	herein.	Thus	the	 list	 includes	all	candidate	

genes	that	may	be	epigenetically	regulated	by	SLC19A1.		
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RESUMEN	

	

Esta	Tesis	Doctoral	se	ha	llevado	a	cabo	dentro	del	grupo	de	investigación	

"Nutrición	 y	Obesidad"	 dirigido	 por	 la	 Catedrática.	María	 del	 Puy	 Portillo.	 Este	

grupo	 tiene	 una	 amplia	 experiencia	 en	 el	 estudio	 de	 los	 efectos	 de	 los	

ingredientes	funcionales	sobre	el	metabolismo	de	los	lípidos	en	los	campos	de	la	

obesidad	y	la	esteatosis	hepática.	En	los	últimos	años	se	han	estudiado	los	ácidos	

grasos	conjugados	y	los	diferentes	compuestos	fenólicos,	como	el	ácido	linoléico	

conjugado,	 la	 quercetina,	 el	 resveratrol	 y	 el	 pterostilbeno.	 De	 entre	 ellos,	 el	

resveratrol	y	el	pterostilbeno	han	sido	elegidos	para	el	desarrollo	de	esta	Tesis	

Doctoral.	

Debido	 al	 escaso	 conocimiento	 sobre	 los	 efectos	 de	 los	 compuestos	

fenólicos	sobre	la	regulación	de	los	triglicéridos	por	mecanismos	epigenéticos	y	

microRNAs,	 esta	 tesis	 doctoral	 se	 ha	 centrado	 en	 estos	 dos	 aspectos	

moleculares.	

Para	 ello,	 se	 llevaron	 a	 cabo	 dos	 enfoques	 diferentes.	 El	 primero	 fue	

analizar	 la	 posible	 influencia	 de	 la	 metilación	 del	 ADN	 en	 la	 acumulación	 de	

triglicéridos	en	el	 tejido	adiposo,	 y	el	 segundo	establecer	 la	participación	de	 la	

regulación	 postranscripcional	 por	 microRNAs	 en	 el	 tejido	 adiposo	 y	 la	

acumulación	de	grasa	hepática.	

Además,	dentro	del	marco	de	tesis	internacional,	se	realizó	una	estancia	

internacional	entre	los	meses	de	marzo	y	junio	de	2016.	Esta	estancia	tuvo	lugar	

en	la	Unidad	de	Endocrinología	del	Hospital	Universitario	Karolinska,	dirigida	por	

el	 Dr.	 Mikael	 Rydén	 y	 en	 el	 Laboratorio	 de	 Lípidos	 en	 NOVUM	 en	 Huddinge,	

dirigido	 por	 el	 profesor	 Peter	 Arner.	 Los	 estudios	 desarrollados	 en	 este	 el	

laboratorio	abarcan	desde	genética	y	análisis	molecular	en	diferentes	sistemas	in	

vitro	hasta	evaluaciones	clínicas	en	sujetos	humanos.	El	objetivo	fue	comprender	

mejor	los	mecanismos	que	vinculan	los	cambios	en	la	masa	grasa	a	los	trastornos	

metabólicos.	
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1. Efectos	 del	 resveratrol	 y	 el	 pterostilbeno	 en	 el	 patrón	 de	

metilación	 del	 ADN	 de	 genes	 involucrados	 en	 el	 metabolismo	 de	 los	

triglicéridos	y	su	relación	con	la	obesidad.	

	

La	metilación	de	los	nucleótidos	del	ADN,	como	mecanismo	epigenético,	

proporciona	 una	 explicación	 molecular	 para	 las	 marcas	 que	 se	 producen	 de	

manera	reversible	el	ADN	genómico.	Este	proceso	epigenético	puede	cambiar	el	

estado	 funcional	 de	 las	 regiones	 reguladoras,	 y	 está	 implicado	 de	 manera		

funcional	en	muchas	formas	de	represión	epigenética	estable	(47).	

En	este	experimento,	se	determinó	el	efecto	del	resveratrol	y	su	metoxi	

derivado,	 el	 pterostilbeno,	 sobre	 la	 metilación	 de	 los	 genes	 implicados	 en	 el	

metabolismo	de	los	triglicéridos.	Para	ello	se	utilizaron	ratas	Wistar	divididas	en	

cuatro	 grupos	 experimentales:	 un	 grupo	 control	 alimentado	 con	 una	 dieta	

estándar	(grupo	control),	un	grupo	alimentado	con	una	dieta	alta	en	grasa	y	alta	

en	sacarosa	(grupo	alto	en	grasa	con	alto	contenido	en	sacarosa),	y	dos	grupos	

también	alimentados	con	una	dieta	alta	en	grasa	y	alta	en	sacarosa,	pero	tratada	

con	 resveratrol	 o	 pterostilbeno	 a	 una	 dosis	 de	 30	mg	 /	 kg	 /	 día	 (resveratrol	 y	

pterostilbeno,	 respectivamente)	 (105,	 137).	 Como	 era	 de	 esperar,	 la	

alimentación	de	una	dieta	rica	en	grasa	y	sacarosa	condujo	a	un	aumento	de	la	

ingesta	de	energía	y,	en	consecuencia,	al	aumento	de	 la	acumulación	de	grasa,	

en	 comparación	 con	 la	 dieta	 estándar.	 La	 adición	 de	 estos	 dos	 compuestos	

fenólicos	a	la	dieta	alta	en	grasa	y	alta	en	sacarosa	evitó	este	efecto	de	engorde,	

pero	sólo	parcialmente,	porque	el	peso	corporal	y	el	peso	de	los	tejidos	adiposos	

en	estas	ratas	no	alcanzaron	los	valores	de	control.	

Para	 el	 estudio	 de	 metilación	 del	 ADN,	 se	 establecieron	 los	 siguientes	

criterios	de	inclusión:	a)	genes	implicados	en	el	metabolismo	de	los	triglicéridos	y	

b)	genes	con	al	menos	una	isla	CpG	en	el	promotor	del	gen	o	en	el	primer	exón.	

En	 primer	 lugar,	 debido	 a	 su	 papel	 en	 el	 metabolismo	 de	 los	 triglicéridos	 del	

tejido	 adiposo	blanco,	 se	 seleccionaron	 los	 genes	 lpl,	 fasn,	 acaca,	 lipe,	 pnpla2,	

srebf1	y	pparγ.	Además,	todos	estos	genes	han	demostrado	ser	alterados	por	el	

resveratrol	 (86,	 92,	 110,	 111,	 115,	 146,	 182).	 En	 segundo	 lugar	 y	 después	 del	
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análisis	 de	 las	 posiciones	 CpG,	 sólo	 fasn,	 pnpla2	 y	 pparγ	 tenían	 áreas	 ricas	 en	

CpG	cerca	de	la	región	promotora.	

El	 análisis	 de	 metilación	 del	 ADN,	 realizado	 por	 pyrosecuenciación,	

mostró	que	el	alto	contenido	de	grasa	y	de	sacarosa	de	de	la	alimentación	o	la	

adición	de	 los	compuestos	fenólicos	no	modificaron	el	patrón	de	metilación	de	

los	genes	pnpla2	 y	pparγ.	 Por	el	 contrario,	 si	 se	observaron	cambios	en	el	 gen	

fasn.	

El	proceso	de	metilación	del	ADN	en	regiones	promotoras,	es	un	potente	

supresor	 de	 la	 expresión	 génica.	 Aunque	 los	 cambios	 producidos	 por	 este	

proceso	podrían	ser	pequeños,	pueden	estar	asociados	con	modificaciones	de	la	

expresión	 génica	 que	 ejercen	 efectos	 significativos	 en	 el	 fenotipo	 (44,	 183).	

Como	 ya	 ha	 sido	 mencionado	 anteriormente,	 la	 dieta	 con	 alto	 contenido	 en	

grasa	y	sacarosa	indujo	cambios	significativos	en	el	patrón	de	metilación	del	gen	

fasn	con	respecto	a	los	controles,	una	hipermetilación	en	posición	-62	pb	(6%)	y	

una	 hipometilación	 en	 posición	 -90	 pb	 %).	 Además,	 la	 adición	 de	 los	 dos	

compuestos	fenólicos	en	la	dieta	produjo	diferentes	patrones	de	metilación.	En	

el	caso	del	pterostilbeno,	invirtió	los	cambios	inducidos	por	la	dieta	obesogénica	

en	posiciones	de	-90	pb	y	-62	pb.	Por	el	contrario,	no	se	observaron	cambios	en	

el	 estado	 de	 metilación	 cuando	 se	 compararon	 resveratrol	 y	 grupos	 con	 alto	

contenido	de	grasa	y	sacarosa.	

Con	el	fin	de	analizar	el	efecto	de	la	dieta	obesogénica	en	fasn,	se	midió	

la	 expresión	 génica	 de	 esta	 enzima,	 mostrando	 un	 aumento	 en	 el	 grupo	 que	

tomo	la	dieta	con	alto	contenido	en	grasa	y	sacarosa.	Además,	no	se	observaron	

diferencias	 en	 los	 niveles	 de	 expresión	 génica	 en	 los	 grupos	 resveratrol	 y	

pterostilbeno	en	comparación	con	el	grupo	control,	por	 lo	que	estas	moléculas	

impidieron	 totalmente	 la	 alteración	 producida	 por	 la	 dieta	 obesogénica.	 Sin	

embargo,	 con	 respecto	 al	 patrón	 de	 metilación	 del	 gen	 fasn	 en	 los	 grupos	

resveratrol	 y	 pterostilbeno,	 el	 resveratrol	 no	 tuvo	 efectos	 en	 ninguna	 región	

analizada	del	gen	cuando	se	comparó	con	el	grupo	de	alto	contenido	de	grasa	y	

sacarosa.	Por	el	contrario,	el	pterostilbeno	 invirtió	 los	cambios	 inducidos	por	 la	
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dieta	obesogénica	en	posiciones	de	-62	pb	y	 -90	pb.	De	hecho,	 los	porcentajes	

de	metilación	de	pterostilbeno	y	grupo	de	control	fueron	similares.	

Uriarte	et	 al.	 (184)	 previamente	 publicaron	 una	 hipometilación	 del	 gen	

del	fasn	inducida	por	una	dieta	con	alto	contenido	de	grasa	y	alto	contenido	en	

sacarosa.	 Esto	 refuerza	 nuestra	 hipótesis	 de	 la	 acción	 hipometilante	 de	 un	

patrón	 dietético	 antiobesogénico	 en	 el	 gen	 fasn,	 aunque	 aparezcan	 dos	

diferencias	 principales	 al	 comparar	 ambos	 estudios.	 Por	 un	 lado,	 Uriarte	 el	 al.	

observó	 la	 hipometilación	 en	 el	 gen	del	 fasn	 después	 de	 20	 semanas	de	dieta	

con	 alto	 contenido	 de	 grasa	 y	 alto	 contenido	 de	 sacarosa	mientras	 que,	 en	 el	

presente	estudio,	 este	efecto	 se	observó	después	de	6	 semanas.	 Esto	 significa	

que	 el	 proceso	 de	metilación	 del	 ADN	 no	 necesita	 largos	 períodos	 de	 tiempo	

para	tener	lugar.	Además,	se	encontraron	resultados	similares	usando	diferentes	

métodos	 de	 análisis	 de	 metilación	 del	 ADN	 (espectrofotometría	 de	 masas	 y	

pirosequenciación).	

En	 cuanto	 a	 la	 expresión	 del	 gen	 fasn,	 varios	 autores	 informaron	 que	

mientras	una	dieta	rica	en	grasas	disminuye	la	expresión	de	este	gen,	las	dietas	

ricas	en	carbohidratos	simples	o	complejos	aumentan	la	expresión	de	fasn	(185-

189).	En	el	presente	estudio,	parece	que	el	efecto	del	alto	contenido	de	sacarosa	

fue	mayor	que	el	de	alto	 contenido	de	grasa.	 Este	 resultado	coinciden	con	 los	

publicados	por	Yang	et	al;	2012	cuando	se	utiliza	este	tipo	de	dieta.	

Con	el	fin	de	explorar	la	posibilidad	de	que	los	cambios	en	la	posición	de	-

90	pb	podrían	estar	 relacionados	con	 la	disminución	de	 la	expresión	génica,	se	

realizó	 un	 análisis	 bioinformático	 para	 identificar	 los	 factores	 de	 transcripción	

vinculantes	 alrededor	 de	 esta	 posición	 -90	 pb	 que	 se	 ha	 visto	 alterada.	

Encontramos	que	el	 factor	de	 transcripción	Sp1,	que	actúa	como	un	sensor	de	

glucosa	 (190),	 podría	 unirse	 en	 esta	 posición.	 Se	 ha	 demostrado	 que	 Sp1	 es	

crucial	 para	 la	 actividad	 promotora	 del	 gen	 fasn	 en	 los	 adipocitos	 (191),	

pudiendo	influir	en	la	regulación	del	gen.	

Para	 analizar	 la	 posible	 relación	 entre	 el	 estado	 de	 metilación	 y	 la	

expresión	 génica	 del	 fasn,	 se	 calcularon	 los	 coeficientes	 de	 correlación	 de	

Pearson.	Los	resultados	mostraron	que	sólo	la	hipometilación	de	la	posición	-90	

pb	 tenía	 una	 correlación	 significativa	 con	 la	 expresión	 génica	 de	 fasn,	 lo	 que	
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sugiere	una	contribución	de	esta	posición	a	 la	disminución	de	 la	regulación	del	

gen	fasn.	

Finalmente,	 se	 midió	 la	 actividad	 nuclear	 de	 DNMT	 (ADN	

metiltransferasas)	 para	 analizar	 el	 comportamiento	 de	 estas	 enzimas	 que	

catalizan	 directamente	 la	 adición	 de	 un	 resto	 de	 citosina	 del	 grupo	metilo.	 La	

actividad	 de	 estas	 enzimas	 mostró	 un	 patrón	 similar	 de	 respuesta	 al	 nivel	 de	

metilación	del	ADN	a	 -90	pb.	 Esto	 sugiere	que	podría	 ser	un	mecanismo	en	 la	

actividad	de	modulación	de	estas	enzimas,	lo	que	justifica	los	efectos	observados	

de	 la	 dieta	 con	 alto	 contenido	 en	 grasa	 y	 sacarosa	 y	 pterostilbeno	 en	 la	

metilación	del	fasn.	

	

2. Implicación	 del	 miRNA-539-5p	 en	 la	 inhibición	 inducida	 por	 el	

resveratrol	de	la	lipogénesis	de	novo	en	el	tejido	adiposo	blanco	

	

El	resveratrol	es	un	compuesto	fenólico	ampliamente	estudiado,	sugerido	

como	 eficaz	 para	 prevenir	 el	 desarrollo	 de	 varias	 enfermedades,	 como	 la	

obesidad.	 Los	 mecanismos	 de	 acción	 del	 resveratrol	 como	 molécula	

antiobesidad	 han	 sido	 publicados	 en	 nuestros	 estudios	 anteriores	 y	 en	 la	

literatura	(88,	110,	111,	115,	182).	Sin	embargo,	hemos	querido	profundizar	en	

los	mecanismos	moleculares	de	estos	efectos,	como	son	 los	miRNAs,	ya	que	 la	

gran	mayoría	de	estos	estudios	no	han	abordado	esta	cuestión.	Los	MiRNAs	son	

pequeños	 ARN	 no	 codificantes	 que	 regulan	 la	 expresión	 de	 genes	 diana	

específicos	 postranscripcionalmente,	 principalmente	 suprimiendo	 la	 traducción	

y/o	 reduciendo	 la	 estabilidad	 de	 sus	 mRNAs	 dianas.	 Se	 ha	 visto	 que	 varios	

polifenoles,	incluido	resveratrol,	pueden	modificar	la	expresión	de	miRNAs	(122).	

En	este	experimento	hemos	determinado	 las	modificaciones	producidas	

por	el	resveratrol	en	el	perfil	de	miRNAS	en	el	tejido	adiposo,	y	sus	implicaciones	

en	la	modulación	del	metabolismo	de	los	triglicéridos.	En	el	diseño	experimental,	

las	ratas	se	dividieron	en	dos	grupos:	el	grupo	control	alimentado	con	una	dieta	

alta	 en	 grasa	 con	 alto	 contenido	 de	 sacarosa	 (dieta	 obesogénica)	 y	 el	 otro	

tratado	 con	 la	 misma	 dieta	 obesogénica	 suplementada	 con	 resveratrol	 en	 las	
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cantidades	 necesarias	 para	 alcanzar	 una	 dosis	 de	 30	 mg	 /	 kg	 /	 Día	 (grupo	

Resveratrol).	 Esta	 dosis	 se	 seleccionó	 basándose	 en	 el	 experimento	 de	

metilación	del	ADN	y	en	estudios	previos	reportados	por	nuestro	laboratorio	que	

demostraron	que	era	eficaz	para	reducir	la	masa	grasa	corporal	(137).	Como	era	

de	 esperar,	 la	 suplementación	 con	 resveratrol	 redujo	 el	 peso	 corporal	 y	 el	

tamaño	de	los	tejidos	adiposos	epididimal	y	perirrenal,	así	como	la	suma	de	los	

cuatro	depósitos	de	grasa	(perirrenal	+	epidídimo	+	mesentérico	+	subcutáneo).	

Con	 el	 fin	 de	 explorar	 la	 posible	 implicación	 de	 resveratrol	 en	 la	

modificación	del	 perfil	 de	miRNAs,	 se	 llevó	 a	 cabo	un	miRNA	microarray	 en	 el	

tejido	 adiposo	 perirrenal.	 De	 entre	 los	 719	 microRNAs	 analizados,	 sólo	 273	

fueron	 detectados	 y	 16	 fueron	 significativamente	 modificados	 por	 la	

suplementación	de	resveratrol.	13	aumentaron	su	expresión	y	3	la	disminuyeron.	

La	validación	de	cuatro	de	estos	microRNAs	que	se	vieron	modificados	por	RT-

PCR,	confirmó	los	cambios	encontrados	en	el	análisis	de	microarrays.	

Según	 la	 literatura,	algunos	miRNAs	están	 involucrados	en	el	 control	de	

genes	 relacionados	 con	 las	 vías	 metabólicas	 responsables	 del	 efecto	 anti-

obesidad	 del	 resveratrol	 en	 el	 tejido	 adiposo.	 Sorprendentemente,	 en	 el	

presente	estudio	estos	miRNAs	no	se	vieron	modificados	por	este	polifenol.	En	

vista	 de	 este	 hecho	 se	 realizó	 un	 análisis	 de	 acuerdo	 con	 la	 base	 de	 datos	

miRWalk,	con	el	fin	de	encontrar	genes	validados	o	predichos	de	los	16	miRNAs	

que	cambiaron.	Aunque	no	se	encontraron	genes	diana	validados	tras	el	análisis,	

se	encontraron	los	genes	fabp3,	sp1,	cpt1a,	hsl,	ucp1,	ucp3,	cpt1b	y	pparγ		como	

genes	diana	predichos.	Entre	estos,	para	este	estudio,	sólo	fueron	seleccionados	

los	 involucrados	en	el	metabolismo	de	triglicéridos	en	el	tejido	adiposo	blanco:	

hsl,	gen	diana	predicho	de	miARN-328a-5p,	pparγ gen	diana	predicho	de	miARN-

129-1-	3p	y	miARN-129-2-3p,	y	sp1,	gen	diana	predicho	de	miARN-539-5p.	Estos	

tres	miRNAs	 incrementaron	 significativamente	 su	expresión	 con	el	 tratamiento	

con	resveratrol.	

Como	 ya	 se	 ha	 indicado	 anteriormente,	 los	 miRNAs	 actúan	 como	

represores	de	 la	 traducción	de	proteínas,	directamente	uniéndose	en	 la	 región	

3'UTR	del	gen	diana	o	dirigiéndose	indirectamente	a	un	factor	de	transcripción	u	

otros	 intermedios	 que	 alteran	 la	 expresión	 de	 las	 proteínas	 (106).	 En	
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consecuencia,	 se	 midió	 la	 expresión	 de	 las	 proteínas	 de	 estos	 tres	 genes	

seleccionados.	En	cuanto	a	la	HSL,	enzima	implicada	en	la	lipólisis,	y	el	factor	de	

transcripción	 PPARγ,	 que	 regula	 HSL	 y	 LPL,	 no	 se	 observaron	 cambios	 en	 la	

expresión	proteica	entre	 los	 grupos	Control	 y	Resveratrol.	 Teniendo	en	 cuenta	

que	otro	mecanismo	de	la	regulación	miARN	es	la	reducción	de	la	estabilidad	del	

mRNA,	se	realizó	el	análisis	de	la	expresión	génica	de	estos	dos	genes.	Del	mismo	

modo,	 no	 se	 observaron	 diferencias	 entre	 ambos	 grupos	 experimentales.	 En	

consecuencia,	 los	 resultados	 de	 nuestro	 estudio	 mostraron	 que,	 aunque	

miRWalk	base	de	datos	 indica	que	pparγ	 es	un	gen	diana	predicho	de	miARN-

129-1-3p	y	miARN-129-2-3p,	y	hsl	es	un	gen	diana	predicho	de	miRNA-328-	5p,	

la	 falta	de	cambios	en	 las	expresiones	de	sus	genes	y	proteínas	sugiere	que	en	

realidad	no	pueden	ser	considerados	genes	diana	reales.	

Como	 se	 mencionó	 anteriormente	 en	 el	 Manuscrito	 1,	 el	 factor	 de	

transcripción	 Sp1	 es	 un	miembro	 importante	 de	 la	 familia	 SP/KLF,	 involucrado	

entre	otras,	en	la	regulación	del	gene	fasn.	A	diferencia	de	los	resultados	de	HSL	

y	PPARγ,	la	expresión	de	la	proteína	SP1	se	redujo	significativamente	en	las	ratas	

tratadas	con	resveratrol.	Este	efecto	en	relación	con	el	aumento	significativo	en	

la	 expresión	 de	miARN-539-5p,	muestra	 una	 forma	 negativa	 de	 regulación	 de	

este	miRNA.	

Varios	 estudios	 han	 informado	 de	 que	 el	miRNA-1224,	 regulado	 por	 la	

suplementación	 de	 resveratrol	 en	 el	 presente	 estudio,	 está	 involucrado	 en	 la	

regulación	de	sp1.	Niu	et	al.	(156)	mostró	una	disminución	en	la	expresión	génica	

y	 proteica	 de	 sp1	 tras	 la	 transfección	 de	 miRNA-1224	 en	 células	 de	 riñón	

embrionario	 humano	 y	 células	 de	 macrófagos	 de	 monocitos	 de	 ratón.	 Como	

estas	líneas	celulares	no	tienen	un	origen	roedor,	para	nuestro	estudio	se	realizó	

una	 alineación	 de	 rno-miRNA-1224	 y	 la	 secuencia	 3'UTR	 de	 sp1	 en	 rata.	 Este	

análisis	consiste	en	encontrar	la	posible	interacción	de	emparejamiento	de	bases	

de	 2-8	 nt	 en	 el	 5'extreme	 del	 microRNA	 y	 la	 región	 3'UTR	 del	 mRNA	 (55).	 El	

análisis	 reveló	 que	 el	miARN-1224	 teóricamente	 puede	 ser	 capaz	 de	 unirse	 al	

ARNm	de	 sp1	 de	 la	 rata.	 Teniendo	 en	 cuenta	 estos	 resultados,	 y	 aunque	 esta	

relación	 no	 ha	 sido	 detectada	 por	 la	 base	 de	 datos	miRWalk	 como	 gen	 diana	



RESUMEN	

196	
	

predicho	o	validado,	decidimos	analizar	la	posible	implicación	en	la	regulación	de	

SP1.	

Con	el	fin	de	identificar	potenciales	miRNA	diana,	la	sobreexpresión	o	la	

inhibición	 de	 microRNAs	 es	 un	 buen	 enfoque	 con	 el	 fin	 obtener	 pruebas	

científicas	sólidas.	De	este	modo,	se	transfectaron	adipocitos	3T3-L1	con	mmu-

miRNA-539-5p	 y	 mmu-miRNA-1224.	 Las	 células	 que	 sobreexpresaron	 miRNA-

1224	 no	 vieron	 alterada	 la	 expresión	 proteica	 de	 SP1	 en	 comparación	 con	 el	

grupo	de	control.	Por	el	contrario,	no	se	detectó	la	expresión	proteica	de	SP1	en	

las	células	que	sobreexpresaron	miRNA-539-5p.	Estos	resultados	sugieren	que	la	

reducción	 de	 la	 expresión	 de	 la	 proteína	 SP1	 inducida	 por	 resveratrol	 es	

modulada	por	el	miRNA-539-5p.	

Con	el	fin	de	obtener	más	información	sobre	ambos	miRNAs	analizados,	

se	calcularon	las	correlaciones	de	Pearson	entre	cada	expresión	de	microRNA	y	

la	 expresión	 de	 la	 proteína	 SP1.	 Los	 resultados	mostraron	 que	 sólo	 el	miRNA-

539-5p	se	correlacionó	negativamente	con	la	modificación	de	la	proteína	SP1.	

Magaña	et	al.	 (18)	observó	que	sp1	actúa	 junto	con	srebp1	para	activar	

sinérgicamente	 el	 promotor	 del	 gen	 fasn,	 regulando	 la	 vía	 de	 lipogénesis	 de	

novo.	En	consecuencia,	se	analizó	la	expresión	proteica	de	SREBP1	y	la	expresión	

génica	 de	 fasn.	 Se	 observó	 una	 reducción	 significativa	 en	 la	 expresión	 de	 la	

proteína	 SREBP1	 en	 el	 grupo	 tratado	 con	 resveratrol	 en	 comparación	 con	 el	

grupo	de	control.	De	acuerdo	con	estos	resultados,	 la	expresión	génica	de	 fasn	

también	se	vio	reducida.	Estos	resultados	muestran	que	el	efecto	reductor	de	la	

grasa	 corporal	 del	 resveratrol	 está	 mediado,	 al	 menos	 en	 parte,	 por	 una	

reducción	en	la	lipogénesis	de	novo.	

Este	 estudio	 demuestra	 por	 primera	 vez	 que	 el	 resveratrol	modifica	 el	

perfil	 de	 miRNAs	 en	 el	 tejido	 adiposo	 blanco.	 En	 cuanto	 al	 metabolismo	 de	

triglicéridos	 en	 este	 tejido,	 este	 estudio	 muestra	 que	 miRNA-539-5p	 está	

involucrado	en	la	inhibición	de	la	lipogénesis	de	novo	inducida	por	resveratrol.	 	
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3. Implicación	 del	 miRNA-103,	 miRNA-107	 y	 miRNA-122	 en	 la	

prevención	de	la	esteatosis	hepática	inducida	por	el	resveratrol	

	

Estudios	 realizados	 previamente	 en	 nuestro	 laboratorio,	 así	 como	

estudios	publicados	por	otros	autores,	observaron	que	el	resveratrol	es	capaz	de	

reducir	 la	 esteatosis	 hepática.	 Con	 respecto	 a	 los	mecanismos,	 se	 observó	 en	

nuestro	 grupo	 que	 el	 tratamiento	 con	 resveratrol	 podría	 inducir	 una	 mayor	

oxidación	de	 ácidos	 grasos	 debido	 a	 la	 actividad	de	CPT1a,	 enzima	 clave	 en	 el	

transporte	 dependiente	 de	 carnitina	 a	 través	 de	 la	 membrana	 interna	

mitocondrial.	 Por	el	 contrario,	 la	 lipogénesis	de	novo	 no	 se	vio	 implicada	en	el	

efecto	del	resveratrol	ya	que	la	actividad	de	FAS	permaneció	sin	cambios.	Como	

se	mencionó	en	el	Resumen	2,	las	vías	de	regulación	molecular	del	metabolismo	

de	 los	 lípidos	 incluyen	 los	miRNAs.	 Se	 ha	 visto	 en	 la	 literatura	 que	 diferentes	

polifenoles,	 tales	 como	 proantocianidinas	 o	 una	 mezcla	 extraída	 de	 Hibiscus	

sabdariffa,	 son	 capaces	 de	 modificar	 la	 expresión	 de	 miRNA-122-5p	 y	 los	

parálogos	miRNA-103-3p	y	miRNA-107-3p	en	el	hígado	(136,	167	-	169,	192).	En	

este	contexto,	el	objetivo	de	este	tercer	estudio	fue	determinar	si	 la	reducción	

de	la	esteatosis	hepática	inducida	por	resveratrol	en	ratas	alimentadas	con	una	

dieta	obesogénica	fue	mediada	por	miRNAs.	Para	este	propósito,	analizamos	los	

miRNA-103,	 miRNA-107	 y	 miRNA-122,	 que	 representan	 el	 70%	 de	 todos	 los	

miRNAs	en	el	hígado	(136).	

El	 experimento	 se	 realizó	 con	 ratas	 Sprague-Dawley	 divididas	 en	 dos	

grupos	experimentales:	un	grupo	control	alimentado	con	una	dieta	alta	en	grasa	

con	alto	contenido	de	 sacarosa	 (dieta	obesogénica)	 y	el	otro	un	grupo	 tratado	

alimentado	con	la	misma	dieta	obesogénica	suplementada	con	resveratrol	en	las	

cantidades	 necesarias	 para	 alcanzar	 una	 dosis	 de	 30	 mg	 /	 kg	 /	 día	 (grupo	

Resveratrol).	Este	estudio	mostró	que	el	tratamiento	con	resveratrol	no	redujo	el	

peso	 corporal	 final	 ni	 el	 peso	 del	 hígado.	 Por	 el	 contrario,	 el	 tratamiento	 con	

resveratrol	 indujo	una	disminución	 significativa	en	el	 contenido	de	 triglicéridos	

hepáticos	(170).	
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En	primer	lugar,	se	buscaron	posibles	genes	diana	predichos	y	validados	

de	estos	tres	miRNAs,	relacionados	con	el	metabolismo	de	los	triglicéridos	en	la	

base	de	datos	miRecords	y	en	la	literatura.	En	lo	que	respecta	a	la	vía	lipogénica,	

según	miRecords,	srebf1	es	un	gen	diana	predicho	para	miRNA-103-3p	y	miRNA-

107-3p	 y	 fasn	 es	 un	 gen	 diana	 predicho	 de	 miRNA-122-5p.	 Por	 otra	 parte,	

Iliopoulos	el	al.	(178)	observó	una	regulación	indirecta	de	srebf1	por	ese	miRNA.	

La	regulación	positiva	de	este	miRNA	indujo	una	mayor	expresión	de	la	proteína	

SREBP1.	 Tomando	 en	 cuenta	 que	 los	miRNAs	 son	 reguladores	 negativos	 de	 la	

traducción	de	proteínas,	 y	que	no	 se	encontraron	 sitios	de	unión	para	miRNA-

122-5p	en	la	región	3'UTR	de	este	gen,	llegaron	a	la	conclusión	de	que	srebf1	es	

un	gen	diana	 indirecto	para	miRNA-122.	Desafortunadamente,	no	conocían	 los	

pasos	 intermedios	en	 la	cascada	de	señalización	que	conducían	a	 la	 regulación	

positiva	 de	 SREBP1.	 Shibata	 et	 al.	 (179)	 observaron	 que	 el	 silenciamiento	 del	

miRNA-122-5p	conducía	a	una	disminución	de	 la	expresión	de	SOCS3,	que	a	su	

vez	aumentaba	la	expresión	de	STAT3.	Por	 lo	tanto,	SREBP1	era	negativamente	

regulado	 por	 STAT3.	 De	 manera	 similar,	 una	 disminución	 en	 la	 expresión	 del	

miRNA-122	 indujo	una	disminución	en	 la	expresión	de	SREBP1.	Además,	Bhatia	

et	al.	(181)	observó	que	el	miRNA-107	disminuyó	los	niveles	de	proteína	de	fasn	

por	la	unión	complementaria	a	la	región	3'UTR	de	su	mRNAs.		

Con	 el	 fin	 de	 obtener	 más	 apoyo	 científico	 en	 relación	 con	 la	

participación	 de	 estos	 miRNAs	 en	 la	 regulación	 SREBP1,	 se	 realizó	 una	

sobreexpresión	de	los	tres	miRNAs	en	hepatocitos	AML	12.	En	los	tres	casos,	se	

observó	un	aumento	significativo	en	la	expresión	de	la	proteína	SREBP1.	

	Además,	se	midió	la	expresión	de	los	tres	miRNAs	en	el	hígado	de	ratas	

tratadas	 con	 resveratrol	 y	 observándose	 una	 disminución	 significativa	 en	 el	

grupo	tratado	con	 	resveratrol	en	todos	 los	casos.	A	continuación,	se	analizó	 la	

expresión	 proteica	 de	 SREBP1	 y	 FAS.	 Mientras	 que	 el	 SREBP1	 disminuyó	

significativamente	 en	 el	 grupo	 tratado	 con	 resveratrol,	 no	 se	 observaron	

cambios	en	el	FAS.	

Con	respecto	al	miRNA-122-5p,	teniendo	en	cuenta	que	los	resultados	de	

nuestro	 estudio	 in	 vitro	 y	 teniendo	 en	 cuenta	 los	 resultados	 informados	 por	

Iliopoulos	 et	 al.	 y	 Shibata	 et	 al.	 se	 puede	 sugerir	 que	 resveratrol	 disminuye	 la	
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expresión	de	 la	proteína	de	SREBP1	 indirectamente	a	través	de	miRNA-122-5p.	

Además,	 la	 sobreexpresión	 de	 los	 miRNA-103-3p	 y	 miRNA-107-3p	 en	 los	

hepatocitos	 AML	 12	 resultó	 en	 un	 aumento	 de	 la	 expresión	 de	 la	 proteína	

SREBP1.	 Asimismo,	 en	 el	 estudio	 in	 vivo,	 el	 hígado	 de	 las	 ratas	 tratadas	 con	

resveratrol	 mostró	 una	 regulación	 negativa	 de	 estos	 miRNAs,	 que	 se	 vio	

acompañdo	de	una	expresión	reducida	de	SREBP1.	Estos	resultados	sugieren	que	

estos	miRNAs	son	reguladores	positivos	de	SREBP1.	

De	acuerdo	con	miRecords,	fasn	es	un	gen	diana	predicho	de	miRNA-122-

5p.	 La	 sobreexpresión	 en	 los	 hepatocitos	 AML12	 de	 este	 miRNA,	 indujo	 una	

reducción	 significativa	 de	 la	 expresión	 de	 la	 proteína	 FAS.	 Por	 lo	 tanto,	

podríamos	 esperar	 un	 aumento	 de	 la	 expresión	 génica.	 Cuando	 medimos	 la	

expresión	proteica	de	FAS	en	el	hígado,	no	se	encontraron	cambios	en	las	ratas	

tratadas	 con	 resveratrol.	 Este	 resultado	 coincide	 con	 la	 falta	 de	 cambios	 en	 la	

actividad	 de	 FAS	 que	 se	 observó	 en	 nuestro	 estudio	 anterior	 en	 esta	 mism	

cohorte	 de	 animales.	 Este	 resultado	 es	 sorprendente	 ya	 que	 fasn	 es,	 según	

miRecords,	 un	 gen	 diana	 predicho	 para	 miRNA-122-5p,	 que	 fue	 reducido	 por	

resveratrol.	 De	 hecho,	 nuestro	 experimento	 de	 transfección	 muestra	 que	 la	

sobreexpresión	 del	 miRNA-122-5p	 indujo	 una	 reducción	 significativa	 en	 la	

expresión	 proteica	 de	 FAS.	 Por	 otro	 lado,	 SREBP1,	 un	 factor	 de	 transcripción	

regulador	 de	 FAS,	 se	 vio	 reducida	 su	 expresión	 en	 el	 grupo	 tratado	 con	

resveratrol.	Por	lo	tanto,	la	hipótesis	de	que	un	aumento	de	la	expresión	proteica	

de	FAS	esperado	como	consecuencia	de	disminución	de	la	expresión	del	miRNA-

122-5p,	 podría	 ser	 compensado	 por	 la	 disminución	 esperada	 debido	 a	 la	

reducción	 de	 SREBP1.	 Además,	 Bathia	 et	 al.	 (181)	 transfectaron	 hepatocitos	

hepG2	con	miRNA-107	a	diversas	dosis.	Ellos	observaron	que	al	usar	la	dosis	más	

común	 en	 los	 estudios	 de	 transfección	 (25	 nM)	 no	 se	 veían	 cambios	 en	 la	

expresión	de	la	proteína	FAS.	

En	cuanto	a	CPT	1a,	según	miRecords,	gen	diana	predicho	de	miRNA-103-

3p	y	miRNA-107-3p	la	sobreexpresión	del	miRNA-107-3p	en	hepatocitos	AML12	

redujo	 la	 expresión	 proteica	 de	 CPT	 1a.	 Por	 el	 contrario,	 el	miRNA-103-3p	 no	

indujo	 ningún	 efecto.	 Además,	 en	 el	 estudio	 in	 vivo,	 en	 el	 hígado	 de	 las	 ratas	
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tratadas	 con	 resveratrol	 se	 observó	 una	 regulación	 de	 estos	 miRNAs.	 Estos	

resultados	 concuerdan	 con	el	 aumento	de	 la	 actividad	de	CPT	1a	previamente	

observada	en	esta	cohorte	de	animales.	Por	consiguiente,	el	aumento	 inducido	

por	 el	 resveratrol	 en	 la	 expresión	 proteica	 de	 CPT	 1a,	 implicado	 en	 el	 efecto	

deslipidante	 de	 este	 polifenol,	 parece	 estar	 mediado	 por	 la	 reducción	 en	 la	

expresión	del	miRNA-107-3p.	

i

i	Las	referencias	están	incluidas	en	el	apartado	REFERENCES.	


