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Abstract 

In today’s world bilingualism is increasingly common. However, it is still unclear how left-

lateralized dorsal and ventral reading networks are tuned to reading in proficient second 

language learners. Here, we investigated differences in functional regional activation and 

connectivity as a function of L1 and L2 reading, L2 orthographic depth and task demands. 

Thirty-seven late bilinguals with the same L1 and either an opaque or transparent L2 performed 

perceptual and semantic reading tasks in L1 and L2 during fMRI scanning. Results revealed 

stronger regional recruitment for L2 versus L1 reading and stronger connectivity within the 

dorsal stream during L1 versus L2 reading. Differences in orthographic depth were associated 

with a segregated profile of left ventral occipitotemporal (vOT) coactivation with dorsal regions 

for the transparent L2 group and with ventral regions for the opaque L2 group. Finally, semantic 

versus perceptual demands modulated left vOT engagement, supporting the interactive account 

of the contribution of vOT to reading, and were associated with stronger coactivation within the 

ventral network. Our findings support a division of labor between ventral and dorsal reading 

networks, elucidating the critical role of the language used to read, L2 orthographic depth and 

task demands on the functional dynamics of bilingual reading.  
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Over half of the world’s population is already bilingual (Grosjean, 2010) and substantial efforts 

have been made to implement bilingual educational programs in predominantly monolingual 

societies. Bilingualism is, thus, both a reality and a desired goal in today’s world. Although we 

know that learning to read entails a substantial reorganization of the brain (Carreiras et al. 2009), 

there are still many unanswered questions concerning bilingual reading: What regional and 

connectivity patterns among left perisylvian regions support reading in the first (L1) and in the 

second language (L2)? To what extent does reading rely on different neural dynamics as a 

function of the orthographic depth of a language? Do orthographic depth and reading demands 

modulate the recruitment of ventral and dorsal reading networks in bilinguals?  

Neuroimaging research has shown a differential involvement of dorsal and ventral routes 

in reading processes in studies with monolingual samples (Pugh et al. 2001; Schlaggar and 

McCandliss 2007). Whereas the dorsal pathway, encompassing parietal lobe, superior temporal 

gyrus (STG) and inferior frontal gyrus (IFG) pars opercularis, is thought to subserve 

phonological processing, the ventral pathway, including vOT and anterior IFG regions (i.e., pars 

triangularis and pars obitalis), supports mapping of orthographic-lexical stimuli onto semantic 

representations (Sandak et al. 2004). These findings have also been bolstered by studies looking 

at white-matter pathways (Saur et al. 2008; Rolheiser et al. 2011; Friederici, 2012). Although 

results in studies with monolingual samples show a differential engagement of dorsal versus 

ventral reading regions, there is limited evidence as to what extent similar functional 

involvement of these networks is present in bilingual reading, and which aspects of reading (e.g., 

direct phonology versus assembled phonology) modulate their recruitment.  

Evidence from the few available neuroimaging studies investigating bilingual reading has 

shown differences in regional activation profiles based on the L2 age-of-acquisition (AoA; 
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Perani et al. 2003; Wartenburger et al. 2003), language proficiency (Meschyan and Hernández, 

2006), and language orthography (Meschyan and Hernández, 2006; Das et al. 2011; Jamal et al. 

2012). Overall, results from these studies revealed an extensive overlap in the language regions 

engaged for L1 and L2 reading in early, but not in late bilinguals (Wartenburger et al. 2003). In 

late bilinguals, differences for L2 reading have been attributed largely to reduced reading 

proficiency in the L2 (Meschyan and Hernandez, 2006), with higher proficiency levels 

associated with higher overlap in L1 and L2 reading (Perani and Abutalebi, 2005). Nevertheless, 

there is also evidence for differences in the neural correlates associated with L2 reading in high-

proficient late bilinguals, which have been attributed to the greater effort required when reading 

in the L2 (Wartenburger et al. 2003). Regarding language orthography, several studies have 

suggested that orthographic depth may modulate the engagement of regions along the dorsal and 

ventral networks. Reading in transparent orthographies with a strong letter-to-sound 

correspondence (e.g., Spanish or Italian) may rely more on phonological processes supported by 

dorsal regions, while reading in opaque orthographies (e.g., English) may rely more on lexico-

semantic processes supported by the ventral pathway (Paulesu et al. 2000; Meschyan and 

Hernández, 2006; Das et al. 2011; Rueckl et al. 2015).  

Here, we sought to investigate the involvement of regions along the dorsal and ventral 

networks in bilingual reading as a function of the native versus non-native language used to read 

(i.e., L1, L2) and L2 orthographic depth (i.e., opaque, transparent). To this end, we controlled for 

AoA and language proficiency, selecting two groups of late sequential reading bilinguals 

composed of native Spanish-speakers who have an L2 with a orthography that is either opaque 

(English; Spanish-English group) or transparent (Basque; Spanish-Basque group). Both groups 

acquired L1 reading first and then L2 reading after 6 years of age and have similar high 
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proficiency levels in their L1 and L2. An additional main motivation of the present study was to 

examine to what extent the involvement of the dorsal and ventral networks in bilingual reading 

and the recruitment of the left vOT depends on the demands posed by the reading task. Most 

reading studies conducted with monolingual and bilingual populations have used either low-level 

(i.e., passive reading) or high-level (i.e., reading for meaning) reading tasks and, to date, no 

studies have examined within the same bilingual sample the influence of reading demands. 

Placing perceptual or semantic task demands on reading processes can modulate the neural 

computations carried out by dorsal and ventral reading networks, and especially by the left vOT 

within the ventral stream.  

The left vOT plays a crucial role in reading and has been proposed as a critical site for 

orthographic processing during visual word recognition. However, its functional role is still the 

subject of important debate. Some theoretical accounts highlight its involvement in bottom-up 

prelexical computation processes of visual word forms (Dehaene and Cohen 2011), while others 

emphasize its implication in integrating visuospatial features abstracted from sensory inputs with 

higher-level associations, via bottom-up and top-down connections (Price and Devlin 2011). 

Interestingly, studies supporting a prelexical computational role of the vOT have mainly used 

low-level reading tasks (e.g., passive silent reading; Cohen et al. 2002; Dehaene et al. 2010; 

Pegado et al. 2011) whereas most of the studies favoring an interactive account of the vOT have 

used high-level reading tasks (e.g., lexical decision; Twomey et al. 2011; Woollams et al. 2011; 

Seghier and Price 2013).  

Thus, the present fMRI study is aimed at investigating the involvement of the main 

regions along dorsal and ventral reading networks and the functional dynamics among these 

regions in late bilinguals as a function of the native versus non-native language (L1, L2), L2 
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orthographic depth (transparent, opaque), and the demands of the reading task (perceptual, 

semantic). To do so, in line with previous neuroimaging studies, the reading tasks included 

words (orthographically legal pronounceable letter strings that have both semantic and 

phonological representations), pseudowords (orthographically legal pronounceable letter strings 

that have corresponding word-like phonological, but not semantic representations) and consonant 

strings (illegal non-pronounceable letter strings, lacking both semantic and phonological word-

like associations; e.g., Petersen et al. 1990; Price et al. 1996). This stimuli manipulation allows 

examination of reading processes that typically rely on phonological computations carried out by 

regions along the dorsal stream, and on mapping orthographic-lexical stimuli onto semantic 

representations supported by regions along the ventral stream (Mechelli et al. 2003; Sandak et al. 

2004; Schlaggar and McCandliss 2007). 

Based on previous evidence, we expect that I) reading in L2, the later acquired language, 

will show stronger engagement of regions along the dorsal and ventral streams relative to reading 

in L1 (e.g., Wartenburger et al. 2003); II) regarding orthographic depth, whereas the group with a 

transparent L2 will exhibit greater reliance on regions along the dorsal (phonologically-tuned) 

pathway, the group with an opaque L2 will show stronger recruitment of ventral (lexico-

semantic-tuned) regions (e.g., Das et al., 2011); III) with respect to task demands, we will 

specifically test if the left vOT will be similarly recruited across the semantic and perceptual 

reading tasks, which would support the prelexical computational hypothesis (e.g., Dehaene and 

Cohen 2011), or if task demands will modulate the engagement of left vOT, which would 

support the interactive account hypothesis (e.g., Price and Devlin 2011); IV) stimuli will 

modulate the engagement of reading networks, with dorsal regions subserving phonological 

processing more strongly recruited for pseudowords (which are assumed to lack semantic 
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information and rely on phonological representations) relative to words (e.g., Mechelli et al., 

2003).  

Additionally, we also expect that V) functional connectivity analyses will reveal different 

dynamics among dorsal and ventral regions during word reading in the same direction as the 

hypotheses mentioned above, with the exception that we expect to observe stronger functional 

coupling among regions for reading in L1 relative to reading in L2 due to a longer prior history 

of coactivations for reading in L1 in late bilinguals (Hebb 1949).  

 

Methods 

Participants 

The final study sample consisted of 37 right-handed late bilinguals with Spanish as their L1 

(mean age 29.10 ± 6.54; 22 females). All participants had normal or corrected-to-normal vision 

and no history of neurological or psychiatric disorders. The sample was divided into two groups 

of participants who have an L2 with either an opaque orthography (English; n = 19) or a 

transparent orthography (Basque; n =18). All subjects acquired the L2 after age 6 and were 

highly proficient in their L1 and L2, with minimal exposure to other languages (see Table 1).  

Language proficiency was assessed using objective and subjective measures. An 

adaptation of the Boston Naming Test (Kaplan et al. 1983) in Basque, English and Spanish, 

controlling for cognates across these three languages, was used as an objective measure of 

vocabulary. Participants performed this picture-naming test, including 77 to-be-named drawings, 

in their respective two languages. They also filled in a language background questionnaire where 

they self-rated their proficiency levels in L1 and L2 and also rated the percentage of daily 

exposure to L1 and L2. Importantly, there were no differences between the groups in terms of 
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age, AoA of the L2, L1 and L2 proficiency measures, or in their overall daily exposure to L1 and 

L2 (all ps > .05). At the within-group level, while both objective and subjective measures 

indicated high proficiency in L1 and L2, proficiency and daily exposure were significantly 

higher in the L1 than in the L2 and age of acquisition was of course later in the L2 than in the L1 

(ps > .001).  

 

Table 1. Participants’ demographics and linguistic characteristics by group. Standard deviations 

in parentheses. 

 Spanish-Basque (n= 
18) 

Spanish-English (n = 
19) 

p values 

Age (years) 31.0(7.8) 27.3(4.5)  p =.10 
Gender (% female) 66.6 52.6 p =.38 
Age of acquisition (years)    
     L1 0 0  
     L2 11.2 (7.1) 8.0 (2.1) p =.09 
Proficiency (correctly-named pictures)*   
     L1 76.3 (1.3) 76.7 (0.7)  p =.41 
     L2 63.7 (10.0) 68.2 (7.6) p =.15 
Proficiency (self-rated)†    
     L1 9.5 (0.7) 9.6 (0.6) p =.80 
     L2 8.0 (0.9) 8.2 (0.8) p =.42 
Average daily exposure (%)§    
     L1 68.1 (14.2) 72.2 (11.8) p =.36 
     L2 22.5 (16.1) 26.6 (10.8) p =.38 
*Out of 77 pictures; § Average percentage across reading, writing, hearing, and speaking. 
 p values corresponds to the t-test between groups, except for gender where a non-parameter chi-
square test was used  

 

 Data from 1 additional participant were excluded from analysis due to excessive head 

motion during imaging (i.e., > 2 mm across the entire scan session). Prior to taking part in the 

experiment, all participants gave written informed consent in compliance with the ethical 

regulations established by the BCBL Ethics Committee and the guidelines of the Helsinki 

Declaration. Participants received monetary compensation for their participation. 
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Materials and Experimental Procedure 

Participants carried out perceptual (low level) and semantic (high level) Go/No-Go tasks. In both 

tasks, subjects were visually presented with different character strings: words (e.g., curtain), 

pseudowords (e.g., cinguda), and consonant strings (e.g., fstgklg). Stimuli were visually 

presented in the center of the screen. During the perceptual task, participants were asked to press 

a button any time they saw a colored letter within a string (e.g., brother). In the semantic task, 

they were required to press a button when the word was the name of an animal (e.g., turtle).  

The number of L1 (Spanish) stimuli presented within each task included 40 high-

frequency words, 40 low-frequency words, 40 pseudowords, 40 consonant strings and 13% go 

trials. In the L2 (English or Basque), participants were presented with a similar number of 

stimuli and go trials per task as in the L1. Cognate words across languages were excluded to 

eliminate ambiguity. All words, between and within languages, were matched on frequency, 

number of orthographic neighbors and length (i.e., 5-8 characters). All pseudowords were 

created as a function of the selected words using Wuggy (Keuleers and Brysbaert 2010). 

The study was administered in two separate sessions based on the language of the 

materials: L1 or L2. The order of these L1 or L2 sessions was counterbalanced across 

participants. However, to prevent participants generalizing the reading strategy used in the 

semantic task to the perceptual task within each of the language sessions, the perceptual task was 

always administered first, followed by the semantic task.  

 

fMRI Data Acquisition 
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Whole-brain fMRI data acquisition was conducted on a 3-T Siemens TRIO whole-body MRI 

scanner (Siemens Medical Solutions, Erlangen, Germany) at the Basque Center on Cognition, 

Brain and Language (BCBL), using a 32-channel whole-head coil. Snugly fitting headphones 

(MR Confon, Magdeburg, Germany) were used to dampen background scanner noise and to 

enable communication with experimenters while in the scanner. Participants viewed stimuli 

back-projected onto a screen with a mirror mounted on the head coil. To limit head movement, 

the area between participants’ heads and the coil was padded with foam and participants were 

asked to remain as still as possible.  

In each session, functional images were acquired in four separate runs using a gradient-

echo echo-planar pulse sequence with the following acquisition parameters: TR= 2000 ms, TE= 

25 ms, 35 contiguous 3-mm axial slices, 0-mm inter-slice gap, flip angle = 90º, Field of view = 

218 mm, 64 x 64 matrix Prior to each scan, four volumes were discarded to allow T1-

Equilibration effects. High-resolution T1-weighted anatomical images were also collected. 

Within each functional run, the order of the study conditions (i.e., words, pseudowords, 

consonant strings, go trials) and the inter-trial intervals of variable duration corresponding to the 

MR frames that served as baseline or null events (i.e., fixation cross presented in the center of the 

screen, 30% of the total collected functional volumes) were determined with an algorithm 

designed to maximize the efficiency of the recovery of the blood oxygen level-dependent 

(BOLD) response (Optseq II; Dale 1999). 

 

fMRI Data Analysis 
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Standard SPM8 (Wellcome Department of Cognitive Neurology, London) preprocessing routines 

and analysis methods were employed. Images were corrected for differences in timing of slice 

acquisition and were realigned to the first volume by means of rigid-body motion transformation. 

High-resolution anatomical T1 images and functional volumes were then co-registered and 

spatially normalized to T1 and echo-planar imaging templates, respectively, to enable anatomical 

localization of the activations. Templates were based on the MNI305 stereotaxic space (Cocosco 

et al., 1997), an approximation of Talairach space (Talairach and Tourneaux, 1988). The 

normalization algorithm used a 12-parameter affine transformation together with a nonlinear 

transformation involving cosine basis functions. During normalization, the volumes were 

sampled to 3-mm cubic voxels. Functional volumes were spatially smoothed with an 8-mm full 

width at half-maximum isotropic Gaussian kernel.  

Statistical analyses were performed on individual participant data using the general linear 

model (GLM). fMRI time series data were modeled by a series of impulses convolved with a 

canonical hemodynamic response function (HRF). The motion parameters for translation (i.e., x, 

y, z) and rotation (i.e., yaw, pitch, roll) were included as covariates of noninterest in the GLM. 

Each trial was modeled as an event, time-locked to the onset of the presentation of each character 

string. The resulting functions were used as covariates in a GLM, along with a basic set of cosine 

functions that high-pass filtered the data, and a covariate for session effects. The least-squares 

parameter estimates of the height of the best-fitting canonical HRF for each study condition were 

used in pairwise contrasts. Contrast images from each subject were submitted to group analyses. 

At the group level, whole-brain contrasts between conditions were computed by performing one-

sample t tests on these images, treating participants as a random effect. Brain coordinates 
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throughout the text, as well as in tables and figures, are reported in MNI atlas space (Cocosco et 

al. 1997).  

Region-of-interest (ROI) analyses were performed with the MARSBAR toolbox for use 

with SPM8 (Brett et al., 2002). Based on previous neuroimaging evidence, we functionally 

selected five left-lateralized regions, including pars triangularis (BA 45; center of mass = -48 27 

14; volume = 9776), pars orbitalis (BA 47; center of mass = -40 30 -7; volume = 2160 mm3), 

pars opercularis (BA 44; center of mass = -49 11 18; volume = 6184 mm3), STG (BA 22; center 

of mass = -51 -44 7; volume = 783 mm3) and inferior parietal cortex (IPC) (BA 40; center of 

mass = -30 -54 46; volume = 1984 mm3). All these regions consisted of active voxels identified 

from the whole-brain contrast All > Null across all participants, q < .001 false discovery rate 

(FDR) corrected.  

Given recent evidence emphasizing the strong inter-subject variability in the location of 

the left vOT region involved in reading (Glezer et al. 2009, 2013; Vogel et al. 2012), in the 

present study we identified the left vOT following three different criteria: 1) literature ROI 

(litROI) or ROI identified based on a prior meta-analysis of reading studies (Jobard et al. 2003), 

building a 5-mm radius ROI sphere centered at -44 -58 -15 MNI coordinates; 2) based on the 

group activation (gROIs), performing a whole-brain analysis across all participants for the 

contrast Words > Null (q < .01 FDR; masked with Words > Consonant Strings, p < .05 

uncorrected) and identifying a) the highest T value within the fusiform gyrus (FG) and b) the 

highest T value within the FG closest to Cohen’s VWFA definition (x = -43, y = -54, z = -12; 

Cohen et al. 2002) to build 5-mm radius sphere ROIs centered at those values; and 3) based on 

individual ROIs (iROIs), following the same approach described for the gROIs but identifying 

each of the local maximas to build the 5-mm radius sphere ROIs for each criteria at the 
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individual level and extracting the parameter estimates for each region at the single-subject level. 

The thresholding for these ROIs were Words > Null (q < .05 FDR; masked with Words > 

Consonant Strings, p < .01 uncorrected). 

Thus, for the gROI and iROI approaches, masking the Word > Null contrast with Words 

> Consonant Strings allowed us to seek for activations in the left vOT that were related to 

identifying series of familiar strings. Moreover, for the gROI and iROI approaches, we also 

sought to examine whether the manner in which the local maxima within the left vOT is selected 

can determine the pattern of observed results: a) highest T value within the FG; and, b) highest T 

value within the FG closest to Cohen’s VWFA definition. 

We assessed functional connectivity via the beta correlation method (Rissman et al., 

2004), implemented in SPM8 with custom Matlab scripts. The canonical HRF in SPM was fit to 

each occurrence of each condition and the resulting parameter estimates (i.e., beta values) were 

sorted according to the study conditions to produce a condition-specific beta series for each 

voxel. Two different functional connectivity analyses were performed: 1) pairwise connectivity 

between regions of interest within the ventral and dorsal reading networks; and 2) whole-brain 

functional connectivity with a left vOT seed region.  

First, for the pairwise analysis we calculated beta-series correlation values for each pair 

of ROIs, participant and condition. Since the correlation coefficient is inherently restricted to 

range from -1 to +1, an arc-hyperbolic tangent transform (Fisher 1921) was applied to these beta-

series correlation values to make its null hypothesis sampling distribution approach that of the 

normal distribution. Then, with the aim of testing for dorsal versus ventral differences in 

functional connectivity strength as a function of our experimental design, these Fisher’s Z 

normally distributed values were submitted to a mixed-model analysis of variance (ANOVA) 
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including Group (Spanish-English vs. Spanish-Basque) as a between-subjects factor and 

Network (ventral vs. dorsal), Language (L1 vs. L2), Task (perceptual vs. semantic) and Stimuli 

(words, pseudowords and consonant strings) as within-subject factors. The selected ROIs for 

these functional connectivity analyses included the previously-described left-lateralized regions 

identified at the group level (i.e., pars orbitalis, triangularis, opercularis, STG, IPC) and the 

individually identified left vOT iROIs based on the highest T value within the FG. To ensure that 

differences between dorsal and ventral networks dynamics were not determined by differences in 

the cluster size of the functionally defined ROIs, we used 5-mm radius spheres centered at the 

highest local maxima for all the ROIs. 

Second, for the whole-brain functional connectivity analysis, the beta series associated 

with the left vOT litROI seed were correlated with voxels across the brain to produce beta 

correlation images. Contrasts between beta correlation images were also subjected to an arc-

hyperbolic tangent transform to allow for statistical inference based on the correlation 

magnitudes. Group-level and two-sample t-tests were performed on the resulting subject contrast 

images to produce group correlation contrast maps. 

 

Results 

Behavioral and fMRI results 

Participants responded to the go trials during the fMRI task with an overall percentage of 

90.18%, indicating that they paid attention to the task. Both groups responded to the same go 

trials across conditions. We performed two separate one-way ANOVAs with Group (Spanish-

Basque bilinguals, Spanish-English bilinguals) as the between-subjects factor, with accuracy and 

the average RTs on the in-scanner go trials as the dependent measures. These analyses did not 
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reveal any effect of the factor Group either for accuracy, (F(1, 34) =.74, p = .40, ηp
2 = .03), or 

for the reaction time (F(1, 34) = 1.13, p = .30, ηp
2 = .04) measures.  

To identify brain regions associated with reading processes across all participants and 

factors in the experimental fMRI design, we computed a whole-brain contrast for All trials > 

Null (see Figure 1A). Consistent with prior neuroimaging evidence (e.g., Lau et al. 2008), this 

contrast revealed the involvement of a predominantly left-lateralized set of regions including 

pars triangularis (BA 45), pars orbitalis (BA 47), pars opercularis (BA 44), STG (BA 22), IPC 

(BA 40), and vOT (BA 37).  

                                      

Figure 1. Brain renderings showing (A) activations for the All > Null whole-brain contrast 
across all subjects at a statistical threshold of q < .001 FDR-corrected and z-axis slice section for 
vOT cortex, and (B) location of the selected left-hemisphere ROIs within the ventral reading 
network (yellow shades), including pars triangularis, pars orbitalis and vOT, and within the 
dorsal reading network (green shades), including pars opercularis, STG y IPC for the dorsal 
reading network. Tri. = pars triangularis; Orb. = pars orbitalis; vOT = ventral occipitotemporal 
cortex; Oper. = pars opercularis; STG = superior temporal gyrus; IPC = inferior parietal cortex. 
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ROI analyses 

We conducted ROI analyses to characterize the activation profile of regions of a priori interest 

for the main experimental conditions: Group (Spanish-English vs. Spanish-Basque), Language 

(L1 vs. L2), Task (perceptual vs. semantic), and Stimuli, (words, pseudowords and consonant 

strings). To avoid potential biases in the patterns of activation observed in these ROI analyses, 

these regions were selected from the general whole-brain All > Null contrast across all subjects, 

q < .001 FDR corrected, which yielded activations in most of the left-lateralized key regions 

involved in reading processes: IFG, posterior STG, inferior parietal cortex and vOT (see Figure 

1B). Also, given the importance for the present study of the differential involvement of left IFG 

subregions in reading processes and evidence indicating that pars opercularis is part of the 

dorsal reading network and that pars orbitalis and triangularis are part of the ventral reading 

network, we sought to separately examine the pattern of activation within these IFG regions. 

Thus, we extracted fMRI parameter estimates from these ROIs and conducted hypothesis-driven 

analyses based on 2 (Group: Spanish-Basque, Spanish-English) X 2 (Language: L1, L2) X 2 

(Task: perceptual, semantic) x 3 (Stimuli: words, pseudowords, consonant strings) mixed-model 

ANOVAs, with the last three factors varied within-subjects. Here, we just describe the ROI 

results for the higher order interactions specifically related to the main study hypotheses. Table 2 

summarizes all the significant main and interactive effects that emerged in these analyses.  
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Table 2. Summary of the statistically significant effects observed in the ROI analyses of regions 

along the dorsal and ventral reading streams. 

* Left vOT was localized using different approaches (i.e., litROI / groupROI/ iROI). Here the 
reported coordinates correspond to the litROI. Results were similar across the approaches used to 
define this region.  
 

 

                 Region-of-interest (ROIs) 
Coordinates  

(center of mass) 
Main effects and 

interactions p values 
  x y z        
Dorsal-stream regions         
    Left pars opercularis (BA 44) -49  11 18 Group   p < .05 

 Language   p < .05 
    Stimuli   p < .001 

 Group X Stimuli   p < .01 

      
Language X 

Stimuli   p < .001 
      Task X Stimuli   p < .01 
    Left superior temporal gyrus (STG; BA 22) -51 -44 7 Group   p < .01 

 Language   p < .05 
    Stimuli   p < .001 

 Group X Stimuli    p < .01 

    
Language X 

Stimuli   p < .01 
    Left inferior parietal cortex (IPC; BA 40) -30 -54 46 Language   p < .001 
    Group X Stimuli   p < .05 
Ventral-stream regions        
    Left pars triangularis (BA 45) -48  27 14 Stimuli   p < .001 

    
Language X 

Stimuli   p < .05 
       Task X Stimuli   p < .05 
    Left pars orbitalis (BA 47) -40  30 -7 Language   p < .05 

 Stimuli   p < .001 

    
Language X 

Stimuli   p < .01 
    Left vOT (BA 37)* -44 -58 -15 Language   p < .01 
    Stimuli   p < .001 

    
Language X 

Stimuli   p < .01 
        Task X Stimuli   p < .01 
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Dorsal regions  

Left pars opercularis. The ANOVA for this region revealed Group X Stimuli, (F(2, 66) = 

5.25, p < .01, ηp
2 = .14) and Language X Stimuli (F(2, 66) = 11.30, p < .001, ηp

2 = .25) 

statistically significant interactions (see Figure 2). Post-hoc analyses showed that the Group X 

Stimuli interaction was due to a stronger engagement of this region for pseudowords by the 

group with transparent L1 and L2 (i.e., Spanish-Basque) relative to the group with transparent L1 

and opaque L2 (i.e., Spanish-English) (p < .05), in line with hypothesis II. With respect to the 

Language X Stimuli interaction, simple-effect analyses also revealed greater activation for L2 

words than L1 words (p < .001), confirming hypothesis I. Also, consistent with our prediction 

(hypothesis IV), this region was more strongly engaged for pseudowords than words in L1 

reading (p < .001).  

 

Figure 2. ROI analyses for left-lateralized regions within the dorsal and ventral reading network. 
A) Dorsal regions showed Group X Stimuli and Language X Stimuli interactions in pars 
opercularis (-49 11 18; BA 44) and STG (-51 -44 7; BA 22), and Group X Stimuli interaction in 
IPC (-30 -54 46; BA 40). B) Ventral regions within the left IFG, including pars triangularis (-48 
27 14; BA 45) pars orbitalis (-40 30 -7; BA 47), showed Language X Stimuli interactions. Bar 
graphs show averaged parameter estimates (% signal change) for these interactions as a function 
of Group/Language and Stimuli. Asterisks within bar graphs indicate comparisons that showed 
statistically significant differences in % signal change (ps < .05). Consts. = consonant strings; 
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Oper. = pars opercularis; STG = superior temporal gyrus; IPC = inferior parietal cortex; Tri. = 
pars triangularis; Orb. = pars orbitalis. 
 

Left STG. Results for this region revealed statistically significant Group X Stimuli (F(2, 64) = 

6.72 p < .01, ηp
2 = .17) and Language X Stimuli (F(2, 64) = 4.87 p < .01, ηp

2 = .13) interactions 

(see Figure 2). Post-hoc comparisons for the Group X Stimuli interaction revealed that the group 

with transparent L1 and L2 (i.e., Spanish-Basque) showed a stronger activation for words and 

pseudowords than the Spanish-English group, where L1 is transparent and L2 is opaque (p < 

.05). Simple-effect analyses for the Language X Stimuli interaction showed greater activation for 

L2 words than L1 words, and no other significant difference between L1 and L2 for the other 

Stimuli conditions (ps > .05). Additionally, within the L1, pseudowords elicited higher activation 

than words (p < .001). These results are consistent with hypotheses I and II, and qualified our 

prediction of stronger engagement of this region for pesudowords relative to words, which was 

observed only for L1 reading (hypothesis IV). 

Left IPC. The ANOVA for this region revealed a statistically significant Group X Stimuli 

interaction (F(2, 58) = 3.60, p < .05, ηp
2 = .11; Figure 2). Simple-effects analyses showed that, 

consistent with hypothesis II, this interaction was due to a stronger recruitment of this region for 

words and pseudowords than for consonant strings only in the group of Spanish-Basque 

bilinguals (p < .05). 

  

Ventral regions 

Left pars triangularis. ROI results for this region revealed a statistically significant 

Language X Stimuli (F(2, 56) = 6.26; p < .05, ηp
2 = .18) interaction. Simple-effect analyses 

revealed that this interaction was due to stronger activation for L2 words than L1 words (p < 



 

20 

.001; Figure 2), in line with hypothesis I. In contrast, no differences between L1 and L2 were 

found for the other Stimuli conditions (ps ≥ .05). Moreover, left pars triangularis was more 

strongly engaged for words than pseudowords in the L2 (p < .01). These differences were not 

observed in the L1 (p = .20). 

Left pars orbitalis. The ANOVA for left pars orbitalis also showed a Language X Stimuli 

statistically significant interaction (F(2, 46) = 5.76; p < .01, ηp
2 = .20; see Figure 2). Simple-

effect analyses revealed that this interaction was due to a stronger recruitment of this region for 

words in the L2 relative to words in the L1 (p < .001), confirming hypothesis I. No other stimuli 

conditions showed differential engagement for L2 vs. L1. Also, L2 words showed greater 

activation than L2 pseudowords (p < .01). In contrast, the L1 pseudowords elicited greater 

activation than L1 words (p < .01). 

 Left vOT. Due to recent evidence emphasizing the strong inter-subject variability in the 

location of the left vOT (Glezer et al. 2009, 2013), here we used three different criteria to 

identify this region: 1) litROI; 2) gROIs, identifying the a) highest T value within the FG and the 

b) highest T value within the FG closest to Cohen’s VWFA definition (Cohen et al. 2002); and, 

3) iROIs, following the same approach described for the gROIs but identifying each of the local 

maxima to build the ROIs at the individual level and extracting the parameter estimates for each 

region at the single subject level (see Methods section for further details).  

The ANOVA carried out for the litROI revealed statistically significant Language X 

Stimuli (F(2, 62) = 6.29, p < .01, ηp
2 = .17) and Task X Stimuli (F(2, 62) = 5.50, p < .01, ηp

2 = 

.15) interactions (Figure 3). Post-hoc analyses for the Language X Stimuli interaction revealed 

that this region was more strongly engaged for words and consonant strings in L2 than in L1 (ps 

< .05), in line with hypothesis I. This Language effect was not observed for pseudowords. 
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Additionally, L1 pseudowords recruited this region more strongly than L1 words (p < .01); an 

effect that was not present in L2 (p = .30).  

Regarding the Task X Stimuli interaction, this left vOT litROI showed the Task effect1, or 

stronger activation for words in the semantic-task than in the perceptual-task (p < .001), in line 

with hypothesis III. This effect was not observed for pseudowords and consonant strings (p = 

.20). Moreover, words also showed higher activation than consonant strings only in the semantic-

task (p < .001), an effect that was not observed in the perceptual task (p = .60).  

Four separate ANOVAs for the gROIs and iROIs identified based on the highest T value 

within the FG and on the highest T value within the FG closest to Cohen’s VWFA definition 

were also conducted. In line with what we observed in the litROI analysis, in all these ANOVAs 

interactions involving Language X Stimuli (F(2, 60) ≥ 4.10, ps < .05, ηp
2 ≥ .10) and Task X 

Stimuli (F(2,60) ≥ 6.50, ps < .05, ηp
2 ≥ .17) emerged.  

To test for potential differences between these two ROI definitions and the selection of 

their local maxima, we carried out two separate 2 (ROI approach: gROIs vs. iROIs) X 2 (Local 

maxima selection: highest T value vs. highest T value closest to Cohen’s VWFA) repeated 

measures ANOVAs, one for the language effect (i.e., activation for L2 words minus activation 

for L1 words) and one for the task effect (i.e., activation for words in the semantic task minus 

activation for words in the perceptual task). These analyses revealed no statistically significant 

main effects or interactions for the ROI approach and Local maxima selection factors for the 

language effect (F (1, 28) ≤ 4.22, ps ≥ .05, ηp
2 ≤ .13), or for the task effect analyses (F(1, 28) ≤ 

1.35, ps ≥ .26, ηp
2 ≤ .05). Figure 3 shows ROI activations for gROIs and iROIs where local 

                                                 
1 This Task effect for word reading also emerged in left pars opercularis and triangularis ROIs (see Table 2). As 
indicated at the beginning of the ROI Analyses section, here we just describe the higher order interactions related to 
our main hypotheses and, therefore, results related to task demands are restricted to analysis involving the left vOT.  
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maxima were selected based on the highest T value within the FG, at the group or at the 

individual level, respectively. Thus, regional activation of the left vOT was modulated by 

language and task effects. These results were consistently confirmed across the different criteria 

used to identify this region, in line with hypotheses I and III. 

                               

Figure 3. Left vOT ROI analyses based on three different approaches: Literature-based ROI 
(litROI), group-based ROIs (gROIs), and individually defined ROIs (iROIs). Bar graphs show 
averaged parameter estimates (% signal change) for these three left vOT ROI definitions as a 
function of Language/Task and Stimuli. For gROIs and iROIs the bar graphs show results for 
ROIs where local maximas were selected based on the highest T value within the FG, at the 
group or at the individual level, respectively. Pseudow. = pseudowords; Consts. = consonant 
strings. 
 

Functional connectivity within dorsal and ventral reading networks 
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Here, we sought to investigate differences in temporal coupling between nodes within the main 

dorsal and ventral reading networks as a function of Group (Spanish-English vs. Spanish-

Basque), Language (L1 vs. L2), Task (perceptual vs. semantic), and Stimuli (words, 

pseudowords and consonant strings). To do so, we used the beta-series correlation method 

(Rissman et al., 2004), building 5-mm-radius spheres centered at the highest local maxima within 

the previously-described left-lateralized ROIs (see Methods section for further details).  

Fisher z-score transformed beta-series correlation values between all nodes within the 

ventral (pars triangularis, pars orbitalis, vOT) and dorsal (pars opercularis, STG, IPC) reading 

networks (Figure 4A) for each condition in our experimental design were averaged and submitted 

to mixed-model ANOVAs including Group (Spanish-English vs. Spanish-Basque) as a between-

subjects factor and Network (ventral vs. dorsal), Language (L1 vs. L2), and Task (perceptual vs. 

semantic) as within-subject factors. Based on prior evidence supporting differential involvement 

of these reading networks as a function of stimuli type, we carried out three separate ANOVAs 

for words, pseudowords and consonant strings2. The ANOVA for word stimuli revealed 

statistically significant Network X Language (F(1, 35) = 4.19, p < .05, ηp
2 = .11), and Network 

X Task (F(1, 35) = 8.88, p < .01, ηp
2 = .20) interactions. In contrast, these interactions did not 

emerge for the pseudowords (F(1, 35) ≤ 1.01, ps ≥ .30, ηp
2 ≤ .03) or the consonant strings (F(1, 

34) ≤ 1.30, ps ≥ .26, ηp
2 ≤ .04).  

Post-hoc analyses for the Network X Language interaction for word stimuli revealed a 

statistically significant decrease in the strength of functional coupling in the dorsal network for 

                                                 
2 We also conducted the full ANOVA including Stimuli as a within-subject factor. This analysis revealed Network 
X Language X Stimuli (F(2, 68) = 4.42, p < .05, ηp

2 = .12), and Network X Task X Stimuli (F(2, 68) = 7.07, p < .01, 
ηp

2 = .17) as the highest order interactions. These results also support carrying out separate ANOVAs for each 
stimuli type.  



 

24 

reading words in L2 relative to L1 (p < .001; see Figure 4A.1). This effect was not observed in 

the ventral network, which showed similar connectivity strength for word reading in the L1 and 

L2 (p = .10). The Network X Task interaction for word stimuli was due to a statistically 

significant increase in the coupling strength between nodes within the ventral network for the 

semantic task relative to the perceptual task (p < .01; Figure 4A.2). This Task effect was not 

observed in the dorsal network (p = .75). Thus, whereas functional connectivity between regions 

within the dorsal network was modulated by Language, showing stronger coupling for reading 

words in L1 than in L2, functional connectivity between regions within the ventral network was 

modulated by Task demands, with stronger coupling observed for the semantic than for the 

perceptual task.  

These results confirmed and qualified our prediction (hypothesis V), showing a stronger 

functional coupling for L1 relative to L2 only in the dorsal network and stronger connectivity 

among regions along the ventral network for semantic versus perceptual word reading. 
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Figure 4. Functional connectivity analyses for ventral and dorsal reading networks. (A) A 
schematic sagittal view of the regions within dorsal (green) and ventral (yellow) reading 
networks and the pairwise connections among them that were submitted to functional 
connectivity analyses. All nodes correspond to 5-mm radius spheres centered at the highest local 
maxima for left-lateralized regions identified at the group level (i.e., pars orbitalis, triangularis, 
opercularis, STG, IPC) and at the individual level (iROIs) for the left vOT, based on the highest 
T value within the FG. Line graphs show average coupling strength (i.e., mean z-transformed 
values of the beta-series correlation) for processing word stimuli for the (A.1) Network X 
Language and (A.2) Network X Task interactions. Asterisks indicate comparisons that showed 
statistically significant differences in average strength of functional connectivity (ps < .05). (B) 
Left-hemisphere brain renderings showing whole-brain functional connectivity maps with left 
vOT for the contrast Words > Null (B.1) separately for the Spanish-Basque (in green) and 
Spanish-English (in yellow) groups at a FDR-corrected statistical threshold of q < .0001 (top 
panel) and (B.2) between-group Spanish-Basque > Spanish-English (in green) and Spanish-
English > Spanish-Basque (in yellow) comparisons at a FDR-corrected statistical threshold of q 
< .05 (bottom panel). Tri. = pars triangularis; Orb. = pars orbitalis; vOT = ventral 
occipitotemporal cortex; Oper. = pars opercularis; STG = superior temporal gyrus; IPC = 
inferior parietal cortex. 
 

Whole-brain functional connectivity with left vOT 

The implementation of additional phonological and semantic processes supporting reading in 

transparent and opaque orthographies (e.g., Paulesu et al. 2000) depends upon initial stages of 

visual word recognition thought to be carried out by left vOT (Twomey et al. 2011). Therefore, 

we sought to use whole-brain functional connectivity methods to identify brain regions that were 

recruited in concert with left vOT during word reading as a function of L2 orthographic depth. 

To do so, the beta series associated with the left vOT litROI were correlated with voxels across 

the brain to produce beta correlation images. Group-level t-tests were performed on the resulting 

subject contrast images to produce group correlation contrast maps for reading words relative to 

baseline, separately for the group of bilinguals with a transparent L2 (i.e., Spanish-Basque) and 

for the group with an opaque L2 (i.e., Spanish-English) at a statistical threshold of q < .0001 

FDR-corrected.  
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The analysis for the group with a transparent L2 revealed coactivations extending 

anteriorly from left vOT to lateral temporal cortex (57 voxels in superior temporal gyrus, BA 22; 

26 voxels in middle temporal gyrus, BA 21), as well as coactivated clusters in left parietal cortex 

(76 voxels in IPC, BA 40; 30 voxels in supramarginal gyrus, BA 40), IFG (37 voxels in pars 

opercularis, BA 44) and middle frontal gyrus (10 voxels, BA 9/46; see Figure 4B.1). In contrast, 

the analysis for the group with an opaque L2 revealed extended coactivations anteriorly from the 

left vOT to posterior lateral temporal cortex (37 voxels in middle temporal gyrus, BA 21; 35 

voxels in inferior temporal gyrus, BA 22), as well as coactivated clusters in left IFG (81 voxels 

in pars triangularis, BA 45) and middle frontal gyrus (23 voxels, BA 9/46). Thus, as expected, 

whereas regions along the dorsal reading network showed tight coupling with left vOT for the 

group with a transparent L2, regions along the ventral reading network were strongly coactivated 

with left vOT for the group with an opaque L2. Importantly, this pattern of coupling dynamics 

with left vOT as a function of L2 orthographic depth also holds for the contrast involving reading 

L2 words versus resting baseline (at a slightly lower statistical threshold of q < .005 FDR-

corrected due to the lower number of observations in this analysis) but this was not the case for 

the contrast involving reading L1 words versus baseline. These results strongly support our 

predictions (hypothesis V, in line with hypothesis II), showing a clearly segregated profile of 

coactivations during L2 word reading along the dorsal pathway for the group with a transparent 

L2 and along the ventral pathway for the group with an opaque L2.  

Finally, we conducted a two-sample t-test comparison for the whole-brain functional 

connectivity with left vOT for reading words relative to baseline, which confirmed significant 

between-group differences (q < .05 FDR-corrected) in the coupling strength of the left vOT with 

regions along the dorsal stream for the comparison Spanish-Basque > Spanish-English and along 
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the ventral reading pathway for the comparison Spanish-English > Spanish-Basque (Figure 

4B.2).   

Discussion 

The present study aimed to investigate bilingual reading and the contributions of the native 

versus non-native language (L1, L2), L2 orthographic depth (transparent, opaque), task demands 

(perceptual, semantic) and stimuli type (words, pseudowords, consonant strings) to the regional 

activation and functional connectivity of areas within dorsal and ventral reading networks. To 

this end, we tested two groups of late bilinguals matched in terms of their L1 and L2 proficiency 

levels, daily exposure to their L1 and L2, age of acquisition of their L2 and minimal exposure to 

other languages, and differentiated in terms of the orthographic depth of their L2 (transparent vs 

opaque). 

 Our findings support a division of labor between ventral and dorsal reading networks in 

bilingual reading. In line with our main hypotheses, we found evidence from both regional and 

functional connectivity analyses indicating 1) effects of the native versus non-native language 

(i.e., factor Language: L1 vs. L2) with stronger recruitment of regions for word reading in L2 

relative to L1, as well as stronger pairwise functional coactivation among regions within the 

dorsal reading network for word reading in L1 versus L2; 2) L2 orthographic depth (i.e., factor 

Group: Spanish-Basque vs. Spanish-English) was associated with differential engagement of 

areas along the dorsal pathway across languages and task demands, being more strongly engaged 

for participants in the Spanish-Basque group than for participants in the Spanish-English group, 

as well as stronger whole-brain functional connectivity during L2 word reading between the left 

vOT and the dorsal regions for the group with a transparent L2 and between the left vOT and 

ventral regions for the group with an opaque L2; 3) semantic reading demands relative to 



 

28 

perceptual reading demands (i.e., factor Task: semantic vs. perceptual) elicited stronger 

recruitment of the left vOT across the several methodological approaches used to identify this 

region, as well as stronger pairwise functional connectivity between regions within the ventral 

reading network; and, 4) stronger activation for pseudowords relative to words (i.e., factor 

Stimuli: words, pseudowords, consonant strings) in left pars opercularis and left STG dorsal 

regions during L1 reading, in line with evidence showing the involvement of dorsal stream 

regions on reading processes that rely on phonological computations. These main findings are 

discussed below in four sections related to the main hypotheses and factors manipulated in the 

study: Language being read (i.e., Language), L2 orthographic depth (i.e., Group), task demands 

(i.e., Task), and stimuli type (i.e., Stimuli). Hypothesis V (relating to functional connectivity) is 

discussed throughout the four sections whenever the findings from the functional connectivity 

analysis are relevant to the factor in question. 

 

Language effects (L2 > L1) across ventral and dorsal regions and strengthened coupling within 

the dorsal stream for L1 reading 

L1 and L2 word reading differentially activated regions across both ventral and dorsal 

streams. As predicted by hypothesis I, all IFG regions, STG, and vOT showed greater regional 

activation for reading words in L2 than in L1. This effect is thought to be determined by the 

increased effort required to read in L2 in late bilinguals (Yetkin et al. 1996; Wartenburger et al. 

2003) and is consistent with the linguistic profile of our participants, whose L2 proficiency level 

is high but still lower than their L1 proficiency. Regarding the effects on left vOT of the 

language used to read, previous reading studies with monolingual samples suggested that 

activation in this region can be tuned by language experience (Xue et al. 2006; Song et al. 2010; 
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Xue et al. 2010). Our results suggest that this also seems to be the case in late bilinguals who 

showed stronger left vOT engagement for reading words in the L2 relative to the L1 across all 

the ROI approaches used to identify this region.  

 Our functional connectivity results support and qualify inferences from the regional 

activation data regarding language effects, in line with hypothesis V. Functional co-activation 

between regions within dorsal and ventral networks was similar for L1 word reading, but it 

decreased significantly for L2 relative to L1 in the dorsal stream. Stronger coactivation for L1 

relative to L2 reading can be explained based on the prior history of coactivation among these 

brain regions, in line with a Hebbian-like learning rule (Hebb 1949; Harmelech et al. 2013). This 

is especially plausible for a cognitive function such as reading that we train on a daily basis and 

for comparisons involving L1 versus L2 in late bilinguals. Nevertheless, our data showed that 

this difference in the coactivation among regions for reading words in L2 relative to L1 was only 

statistically significant in the dorsal stream.  

Prior research suggests that L2 is acquired through the same neural pathways responsible 

for L1 acquisition (Perani and Abutalebi 2005). According to Pugh et al.’s (2001) brain model of 

reading, when new words are read they are initially assigned to the dorsal pathway for the correct 

integration of semantic, orthographical, lexical and phonological processes. Then, once they are 

learnt, words are mainly read by means of the ventral pathway for rapid word identification, 

which is the main process involved in reading. Thus, the use of the available neural scaffolding 

from the L1 may contribute to making reading in L2 less dependent on the specific computations 

carried out between all the nodes within the dorsal network.  
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L2 Orthographic depth modulates regional activation and functional connectivity along the 

dorsal and ventral reading networks 

Consistent with hypothesis II, all regions along the dorsal pathway showed greater activation for 

the group with a transparent L2 relative to the group with an opaque L2. Neuroimaging studies 

on reading have previously suggested that the activation in the dorsal areas examined here is 

strongly related to phonological processing (Buchsbaum and D’Esposito 2008; Graves et al. 

2008). Specifically, the IPC has been previously linked to the phonological loop (Paulesu et al. 

1993). In fact, in prior studies using bilingual samples, second-language phonological contrast 

has also shown parietal cortex engagement (Callan et al. 2003; Das et al. 2011). With respect to 

the STG, Meschyan and Hernández (2006) found that this region was more strongly engaged for 

reading in a transparent (Spanish) than in an opaque orthography (English). However, this 

finding included both the effects of language transparency and native versus non-native 

language, since Meschyan and Hernández’s (2006) study included only one group of participants 

with a transparent L1 and an opaque L2. In the present study, we varied the orthographic depth 

of the L2 between groups, while controlling for proficiency and language (L1, L2) exposure. Our 

results of stronger engagement of dorsal regions for the group with both transparent languages 

(i.e., Spanish-Basque) reflect the sensitivity of regions within this network to sublexical 

orthography-to-phonology conversions, probably due to the more consistent grapheme-to-

phoneme mapping of orthographically transparent languages (Paulesu et al. 2000).  

Nevertheless, it is important to note that results of the present study did not fully support 

our hypothesis II in regard to stronger engagement of regions along the ventral network for the 

group with an opaque L2 compared to the group with a transparent L2. Having a group with 

mixed (transparent and opaque) orthographies might reduce the sensitivity of the design to 
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capture this regional modulation in the engagement of areas along the ventral network. Prior 

studies testing monolinguals with either an opaque or a transparent L1 suggest that this may 

indeed be the case (e.g., Paulesu et al., 2000). 

 Given previous evidence suggesting that orthographic depth has an impact on the 

semantic and phonological computations needed for successful reading (e.g., Das et al., 2011) 

and that the left vOT is a critical hub for visual word recognition (e.g., Twomey et al. 2011), we 

considered that the left vOT may be a critical region to observe differential functional dynamics 

with ventral and dorsal reading networks. Thus, in line with hypothesis V and in contrast to the 

connectivity analysis circumscribed to the functional coupling within each of the reading 

networks, we conducted whole-brain connectivity analysis using the left vOT as a seed to 

examine the profile of functional coactivation based on L2 orthographic depth. This analysis 

revealed strikingly distinct profiles in the coupling of left vOT with regions along the ventral 

network in the group with an opaque L2, on the one hand, and with regions along the dorsal 

network for the group with a transparent L2, on the other. Importantly, these results were 

observed during word reading, with further analysis indicating that this pattern of coactivation 

with left vOT holds for word reading in L2, but not for word reading in L1.  

These findings are consistent with evidence suggesting that transparent orthographies 

with strong letter-to-sound mapping rely more on dorsal regions and that opaque orthographies 

rely more on lexico-semantic processes carried out by regions along the ventral pathway 

(Paulesu 2000; Das et al. 2011). Moreover, the present evidence highlights the importance of 

examining not only functional connectivity among the main nodes within the reading networks, 

but also with the left vOT.  
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Semantic reading demands elicit stronger left vOT engagement and functional connectivity 

among regions within the ventral stream. 

Within the ventral stream, special attention was paid in the present study to the left vOT. It has 

been suggested that this region is involved in processing prelexical representations of visual 

word forms (Dehaene et al. 2002). However, other views have challenged this interpretation, 

based on evidence indicating that left vOT also participates in top-down predictions mediated by 

feedback connections interacting with bottom-up sensory inputs (Price and Devlin, 2011; see 

also Carreiras et al. 2014). To further unravel to what extent this region is sensitive to task-

related modulations in bilinguals, in line with hypothesis III, we manipulated reading demands in 

our fMRI experimental design. To our knowledge, this is the first study to examine in bilinguals 

whether the activation profile of the vOT differs as a function of perceptual versus semantic 

reading tasks using a within-subject manipulation. Moreover, based on recent evidence (Glezer 

et al. 2009; 2013), here we sought to examine the regional activation of the vOT attending to 

different criteria to identify the area: coordinates from a prior meta-analysis and activation at the 

group and individual subject levels. It has been suggested that there is a strong inter-subject 

variability in the location of this region, probably due to its rapid re-adaptation to support a 

phylogenetically new skill (Dehaene and Cohen 2007; Bouhali et al. 2014). This variability may 

have given rise to the mixed results and interpretations put forward in previous studies in regard 

to the putative role of this region in reading (Glezer et al. 2013).  

Importantly, across the different approaches used in the present study to identify the left 

vOT (i.e., litROI, gROIs and iROIs), our results consistently revealed that task effects modulated 

its pattern of regional activation. Since experimental stimuli were carefully matched across both 

tasks, this effect cannot be due to purely prelexical computation processes. Modulation of vOT 
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activation by reading demands suggests that this region integrates bottom-up with higher order 

information in line with the interactive account (Devlin et al. 2006; Price and Devlin 2011). 

Moreover, the consistency of the effects observed in left vOT across the different localization 

strategies used here provide strong evidence that these findings are not a mere topographic 

artifact.  

Finally, in line with hypothesis V and previous evidence highlighting the role of the 

ventral reading stream in semantic processing, we observed stronger coupling among nodes 

within the ventral network for word reading under semantic versus perceptual demands. A 

remaining open question is to what extent using a reading task that further taxes phonological 

computations, such as a rhyming reading task (e.g., Booth et al., 2006; Cao et al., 2013), would 

yield stronger coupling among nodes within the dorsal network relative to a semantic reading 

task. Future neuroimaging research on bilingual reading should further characterize the impact of 

reading demands on the dynamics of ventral and dorsal reading pathways.  

 

Stronger engagement of pseudowords versus words in dorsal regions for L1 reading 

The language used to read (L1, L2) interacted with stimuli types, revealing relevant results for 

comparisons involving words and pseudowords in regions along the dorsal network. Pars 

opercularis and STG were more strongly recruited for pseudowords than words in L1 reading, 

while this effect was not present in L2 reading. The pars opercularis and STG are known for 

their involvement in phonological decoding (Zatorre et al. 1992; Simos et al. 2002). As 

pseudowords have no stored semantic representations, they may activate phonological processes 

more strongly because the phonological associations are less readily retrieved (Price et al. 1996). 

Thus, greater engagement of these regions for pseudowords likely reflects phonological decoding 
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or examining the correspondence between graphemes and phonemes to compute word and 

pseudoword pronunciation.  

Additionally, stronger engagement for pseudowords than words during L1 reading was 

observed in pars orbitalis. Extensive evidence has linked pars orbitalis with increasing demands 

on semantic retrieval in the context of conflict (e.g., Badre and Wagner 2007; Ye and Zhou 

2009; Nosarti et al. 2010). Pseudowords may also heavily recruit related semantic 

representations because of a more prolonged search for the missing meaning (Mechelli et al. 

2003). The fact that this effect in the pars opercularis, STG and pars orbitalis was only present 

in L1 reading may be due to further attempts to phonologically decode and retrieve 

representations in the native language. Although there is prior evidence showing higher 

activation for pseudowords than words in these regions (Hagoort et al. 1999; Burton et al. 2005), 

this is the first study showing that this effect is present in L1 but not in L2 reading. These results 

partially confirmed, and qualified, hypothesis IV. 

These findings have implications for the teaching of reading in a second language and for 

second language acquisition generally, in line with studies that have stressed the importance of 

taking into account languages’ specificities, such as orthographic depth (e.g., Ziegler et al., 

2010), in educational reading practices (e.g., Share, 2008). In transparent languages, most letters 

represent one sound and, therefore, it is easier to stress letter-sound conversion rules when 

teaching transparent L1 and L2 languages. Conversely, this strategy might not be the most 

optimal for learning to read in opaque languages, where the same letter can be associated with 

more than one sound, especially when individuals with a transparent L1 are taught to read in an 

opaque L2. Our findings also have implications for current theories and debates within the field 

of the neurobiology of language, paving the road for further examinations of functional 
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interactions among dorsal and ventral reading networks in samples with different language 

profiles. 

 
Conclusion 
 
Regional and functional connectivity data revealed a division of labor between dorsal and ventral 

reading networks in a sample of late Spanish-Basque and Spanish-English bilinguals, both 

groups matched in their proficiency and daily exposure to L1 and L2. Although reading in L1 

and L2 appears to rely on the same neural networks, we observed stronger overall regional 

activation for L2 versus L1 reading and stronger coupling among dorsal regions for L1 versus L2 

word reading, suggesting that L2 reading is supported by the preexisting L1 architecture but is 

more dependent on regional computations and less dependent on the processes carried out by the 

dorsal stream. L2 orthographic depth was associated with strikingly differentiated profiles of left 

vOT coactivation with dorsal regions for the group with a transparent L2 and with ventral 

regions for the group with an opaque L2. This indicates that the left vOT is critical to further 

evince differential functional coactivations involved in phonological and semantic computations 

required for successful L2 word reading as function of language orthography. Results from the 

task demand manipulation (semantic versus perceptual reading) supported the interactive account 

of left vOT and revealed that reading for meaning led to stronger coactivation between regions 

within the ventral network. The present study provides novel insights into how the bilingual 

brain reads, a matter of growing theoretical and applied interest, especially given that 

bilingualism is increasingly common in today’s world. 
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