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Abstract

The interaction of radiation with matter at the nanoscale has an inexhaustible range of appli-
cations in electronics, biotechnology and medicine. At the nanoscale, the length scale where
the classical and quantum worlds meet, quantum effects dominate the light–matter interaction
and unique phenomena arise. This work addresses fundamental questions on the overlap of
quantum theory, non-equilibrium thermodynamics and material science.

As the exact description of these quantum phenomena is not feasible, we discuss how the open
quantum system approach can be used to study thermal relaxation and thermo-electric transport
at the nanoscale. The basic concepts of thermal relaxation are studied from first principles. As
the conditions for relaxation are connected with the non-Markovian nature of the equation of
motion, we discuss a time-local stochastic Schrödinger equation. Remarkably, this equation
can describe thermal relaxation and transport dynamics correctly. Furthermore, this thesis in-
troduces a thermal transport theory where the temperature field is established by radiation of
classical blackbodies. The combination of this theory with the techniques of time-dependent
current density functional theory provides an ab initio tool to study thermal transport in many-
body systems. This approach is general and can be adapted to describe both electron and
phonon dynamics. In this way, combined with the time-dependent current DFT, it provides a
unified way to investigate ab initio electrical and thermal transport beyond linear response. The
observation of thermo-electric transport in macroscopic bodies does not disturb the system or
change the flow of energy. However, when moving towards the nanoscale, measurements may
influence the system and has to be considered. We demonstrate that the choice of location of
these local measurements provides control of the direction of the energy flow and of the parti-
cle currents separately. These results seem to violate the second law of thermodynamics. By
treating decoherence as a thermodynamic bath we resolve this contradiction. In order to further
advance the applications of light–matter interactions for realisable materials, the electronic and
optical properties of 2D layered semiconductors are studied. 2D materials have established
their place as candidates for the next generation of opto-electronic devices. Specifically, the
electronic and optical properties of TiS3 and In2Se3 are theoretically investigated within DFT
and many-body perturbation theory. This work constitutes a first step towards exploiting the
trichalcogenide family in 2D opto-electronical applications, such as chemical sensors, passive
optical polarisers, fast photodetectors, and battery technologies.
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Chapter 1

Introduction

Nanoscience is a relatively young field which covers the overlap between physics, chemistry,

biology and engineering at the nanoscale, the length scale where the classical and quantum

worlds meet. Within the last decades a significant effort of a growing community of engineers

and scientists has been devoted to nanotechnology. It has as well attracted the interest and imag-

ination of the general public. It is primarily defined by a length scale, the nanometer, which we

are now able to explore thanks to recent experimental developments. While lithographic tech-

niques have allowed the fabrication of increasingly smaller structures, advances on the char-

acterisation side by scanning tunnelling and atomic force microscopy provide the atomic scale

resolution. Recently developed experimental techniques have triggered the creation of entirely

new classes of materials such as quantum dots, fullerenes, nanotubes and nano-composites.

These materials may be used as building blocks for completely new structures and devices with

an almost unlimited range of applications.

This rapid progress in experimental physics has forced theorists to develop new approaches

and viewpoints as novel properties have emerged at the nanometer scale. While some physical

assumptions and approximations worked well for mesoscopic systems, they may fail when en-

tering this “nanoworld”. When moving from macroscopic systems towards the nanoscale, one

reaches the quantum coherence length of many materials, and quantum entanglement effects

become more important. For instance, while Kirchoff’s law applies at the macroscopic level,

it fails at the nanoscale, where phase coherence can provide interference effects on electrical

transport [1]. Also, nanoscale systems are much more sensitive to the interaction with other sys-

tems. For instance, a local measurement could suppress quantum coherence locally and might
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Chapter 1 Introduction

lead to a variety of novel effects, such as the enhancement of energy transport [2, 3] or the cre-

ation of electrical currents. In addition, when thinking of a system consisting of only a single

electron, thermodynamics may no longer apply. When entering this nanoscale world questions

arise, such as, how one should define statistical properties for instance the temperature or pres-

sure? Even worse, when dealing with thermal or energy transport, the system is shifted out

of its equilibrium state and the important concept of a local temperature appears difficult to

justify in this non-equilibrium problem. This shows that deep and fundamental questions in the

overlap between thermodynamics and quantum theory still exist [4, 5] and have to be carefully

addressed.

All these advances in the experimental and theoretical control of matter at the scale of small

molecules to single atoms have opened a wide range of applications in the field of molecular

electronics, photocatalysis, medicine, optoelectronics and biotechnologies, to just name a few.

The ultimate target of nanotechnology is to advance materials and devices that will outperform

current technologies, and even create new ones with completely new behaviours. As an exam-

ple, novel electronic transport properties show up in mechanically controllable break junctions

[6], a junction that is created by mechanically breaking a metal wire resulting in a single atomic

contact between two large chunks of the same material. There, a typical electrical current of

around 1µA across the whole system will create a current density of around 109 A/cm2 [7]

across the atomic junction. These current densities are orders of magnitude larger than those

found in macroscopic systems, and will amplify electron–electron and electron–ion interactions

locally in the nanostructure. This can result in a heating up of the junction and affect its struc-

tural stability under current flow. The understanding of how such heat is carried and distributed

in nano-structured system might answer questions such as whether Fourier’s law also applies at

the nanoscale and can have a practical impact on society. For instance, the flow of energy could

be harnessed via thermoelectric effects [8, 9] to generate an electrical current. Improving the

efficiency of such heat–voltage converters at the nanoscale might influence the global use of

alternative energy resources. Other important applications of thermal transport at the nanoscale

include thermal transistors [10, 11], thermal rectifiers [12, 13] and even thermal memory and

logic gates [14, 15].

This thesis deals with the fundamental interaction of radiation with matter and its applications

in nanotechnology. While the understanding of radiation has a long history, early speculations

on the nature of light date back to the first millennium B.C.. These yielded the idea that light

appeared very soon after the beginning as “God divided the light from the darkness” (Genesis
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1.4). The competing notions of wave and particle have dominated our thinking about light ever

since. Early in the fifth century B.C. Empedocles of Agrigentum was writing about a corpus-

cular theory of light which moves at a finite velocity. In 300 B.C. Euclid proposed the law

of reflection and Seneca produced colours with a prism [16]. In the early seventeenth century

Grimaldi discovered diffraction and Hooke suggested that light is a transverse wave [16]. At

the same time, Newton believed in a corpuscular theory of light, although he investigated inter-

ference effects, as he believed that strict rectilinear propagation is not compatible with the wave

theory [17]. Later, in the nineteenth century James Clerk Maxwell proposed his unified theory

connecting the electric and magnetic [18] field with the charge density and current density.

From his equations he deduced the electro–magnetic wave equation that predicted that light

propagates as an electro–magnetic disturbance in a medium called the aether with the finite

speed of light. While this classical theory of light has developed so rapidly and achieved such

success, some disagreement with experiments on the interaction of matter with radiation began

to appear. Experiments showed that electrons are able to escape from a metal surface when ex-

posed to radiation. The classical wave theory predicts that the kinetic energy of those electrons

should depend on the intensity of the incident radiation. However, it was found that the kinetic

energy of the emitted electrons only increases with increasing frequency of the incident light

[19]. This observation and the ultraviolet catastrophe for blackbody radiation presented signif-

icant difficulties for the classical theory. These led to the early quantum theory of matter and

light. Einstein’s paper in 1905 [20] not only contains his famous discussion on the photoelectric

effect but also a discussion of blackbody radiation. There he suggested that light behaves as a

gas of corpuscles with a discrete energy, that is, photons. However, in 1951 Einstein admitted

[21]: “All these fifty years of conscious brooding have brought me no nearer to the answer to

the question ‘What are light quanta?’ Nowadays every Tom, Dick and Harry thinks he knows

it, but he is mistaken.”

As this thesis deals with the coupling of quantum radiation to matter, I will address fundamen-

tal questions on the overlap of quantum theory, thermodynamics and electrodynamics here.

For instance, a system in radiative contact with the surrounding should relax towards a ther-

mal equilibrium state. This fundamental law of thermodynamics also holds true for nanoscale

systems. In order to describe such relaxation dynamics, one needs to allow the system to ex-

change energy with the radiation field via spontaneous and stimulated emission and absorption

of light. As the exact description of these quantum processes is not feasible, I will discuss in

chapter 2 the concept of Open Quantum Systems (OQS) which describes the coupling of the
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Chapter 1 Introduction

system to quantum radiation in a way that makes calculations feasible. In this thesis, we will

mainly focus on two approaches to OQS, namely master equation and stochastic wave-function

methods. A quantum master equation is a deterministic equation of motion for the density

operator, which can become numerically quite costly when the system under consideration be-

comes large. Within stochastic wave-function methods, we are confronted with an equation of

motion for the wave function, which incorporates any small fluctuation of the environment as a

random effect on the system. We will see that in both approaches the influence of the radiation

onto the system enters through additional terms into the equation of motion. One of these not

only depends on the current state of the system, but also depends on the entire history of the

state. This behaviour is called non-Markovian and makes OQS costly to apply. I also discuss

in detail conditions for thermal relaxation, which are connected to this non-Markovian term.

Hence, by performing approximations on this term, one might incorrectly describe thermal-

relaxation behaviour. Therefore, we study in chapter 3 whether with a time-local version of a

non-Markovian stochastic Schrödinger equation, thermal relaxation and thermal transport dy-

namics can be described correctly.

In chapter 4 we will address how to define a local temperature and incorporate thermal gradi-

ents into nanoscale systems by introducing a thermal transport theory where the temperature

field is established by two or more blackbodies of known thermal properties. Besides thermal

transport at the nanoscale, this theory can be used to understand energy transport in cold atoms,

biological, or optical systems. We will show that our approach recovers known physical results,

as the linear relation between the thermal current and the temperature difference between two

blackbodies. Furthermore, this theory is not limited to the linear regime and goes beyond it

by accounting for non-linear effects and transient phenomena. Since this approach is general

and can be adapted to describe both electron and phonon dynamics, it is a first step towards a

unified formalism for investigating thermal and electronic transport at the nanoscale.

As another application of the interaction of radiation with matter at the nanoscale, the influence

of a local measurement on thermo-electric transport, will be investigated in chapter 5. This local

measurement can be thought of as an observer breaking quantum coherence by a dynamical

process known as decoherence [22]. Decoherence has been shown to affect the efficiency of

transport in molecular devices and biological systems [23]. The observer is modelled by a

decoherence bath within OQS that can be treated as a new kind of quantum thermodynamic

bath. We study how this type of quantum measurement can change the direction and magnitude

of heat flow. Depending on where and how strong these observations are, we find that the heat
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flow can go against the heat gradient. We also show how, under these observations, particle

currents can be created and controlled. Furthermore, we study how the choice of location of

these quantum measurements can provide full control of the direction of the energy flow and of

the particle currents separately. Even though this seems baffling from a thermodynamic point

of view, by treating quantum measurements as a thermodynamic bath we resolve this paradox.

Not only has our understanding of what light is evolved, but concomitantly, our understanding

of what matter is. At increasingly smaller scales, particles no longer behave as predicted by

classical physics and the principles of quantum mechanics have to be applied. Nowadays, con-

densed matter research is not mainly aimed at finding new fundamental laws, it deals mostly

with solving the Schrödinger equation of a well-known Hamiltonian, and extracting useful in-

formation from this solution. However, for many-body problems in condensed matter physics

or chemistry solving the Schrödinger equation numerically becomes intractable. Moreover, the

exact solution contains information we are not interested in [24]. Density functional theory

(DFT) provides an alternative approach for the description of quantum many-body systems.

This is accomplished by circumventing the computationally costly task of finding the elec-

tronic many-body wave function via the solution of the Schrödinger equation. DFT provides,

in principle, an exact description only for the ground state energy and density of the many-body

system. However, by employing the Kohn-Sham wave functions obtained from DFT, one may

often obtain a reasonable description for all ground-state properties. Nowadays, DFT is the

most widely used method for electronic structure calculations in the condensed matter com-

munity. Section 6.1 gives a brief introduction to DFT. While DFT in its static formulation is

an effective one-particle scheme and in principle capable to predict ground-state energies cor-

rectly, it often has problems predicting the electronic structure of systems involving d-electrons,

excited systems, and the absorption of light. Therefore, section 6.1 additionally discusses how

to treat the interaction of a quantum system with classical light within many-body perturbation

theory by discussing the GW approximation and the Bethe–Salpeter equation. These tech-

niques will be applied in the rest of chapter 6 to 2D layered semiconductors to study their

electronic and optical properties. Atomically thin semiconductors are very attractive materials

for the design of novel optoelectronic nanoscale devices due to their large surface–to–volume

ratio, high transparency and flexibility. 2D materials have established their place as candidates

for the next generation of optoelectronic devices. They present outstanding mechanical and

electrical properties and can be easily integrated with conventional silicon technologies. Com-

paring them to their higher (3D) and lower (1D) dimensional counterparts, 2D materials offer
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Chapter 1 Introduction

higher electric field tunability. Additionally, layered materials often bring new functionalities

and applications beyond those of industry standard transistors and photodetectors. These im-

proved properties include stronger light–matter interaction [25, 26], and greater flexibility and

transparency [27, 28].

This thesis is devoted to the many different aspects of the interaction of radiation with matter.

Therefore, chapter 2 discusses the theory of OQS that describes the coupling of a quantum

system to photons, while section 6.1 introduces briefly DFT and how to describe the coupling

of quantum systems to classical light. The concepts introduced in chapter 2 are necessary for

the study of chapters 3 to 5, thus the reader only interested in chapter 6 can skip the introduction

on OQS. Equations throughout this thesis are written in atomic units (~ = me = 1/(4πε0) =

e = 1). Although in the applied chapter 6 we use in the text units like Kelvin or nanometer

to compare with realistic quantities. I hope the reader will enjoy this journey of the many

fascinating aspects of the interaction of radiation and matter. Hopefully Einstein would not

have included our names amongst his Toms, Dicks, and Harrys.

6



Chapter 2

Open Quantum Systems

In this chapter I will describe the basic theoretical concepts underlying chapters 3 to 5. As

mentioned in the introduction, the focus of this work is on the very fundamental interaction

of matter with radiation. The first step towards modelling matter is usually to consider it as

isolated. However, for any size of system, there is always some leakage or coupling, which

does not allow for a complete decoupling of the dynamics of the system from the external

environment. Although this coupling may be weak, it might influence the system in a non-

trivial way as it acts over long times. This radiative interaction can lead to the dissipation of

energy, the loss of coherence and thermalisation of the quantum system. A full description of

phenomena arising from the interaction between matter and photons is provided by quantum

electrodynamics. However, for most of the systems of relevance in physics, chemistry, biology

and nanoscience, such a description cannot be obtained and approximations must be made.

Therefore, we will concentrate in this chapter on how the influence of quantum-radiation fields

on matter can be incorporated into a dynamical description via OQS.

The accurate description for the time-evolution of the system in contact with the environ-

ment would be the Schrödinger equation for the total system. This combined system consists

of the quantum system under consideration, the macroscopic environment and its coupling to

the quantum system. As the total system is a macroscopic object itself, its exact dynamical de-

scription via Schrödinger’s equation is not feasible. Furthermore, as one is only interested in the

small system, solving the Schrödinger equation for the total system would give us information

that is not necessary. Therefore, the demand for a simpler description of the system under the

influence of its surrounding emerges. This has been accomplished in a very elegant and natural
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Chapter 2 Open Quantum Systems

manner by the theory of OQS. This theory plays an important role in many branches of physics,

ranging from quantum information over quantum optics to condensed matter physics and quan-

tum computing. It has been an active research topic since the middle of the last century. During

this period many distinct approaches to the description of OQS have been developed.

In OQS the dynamics of the total system is expressed in the Hilbert space of the small sys-

tem. This immense reduction in dimensionality makes the quantum mechanical investigation

of a system coupled to the surrounding possible. In this work we will focus mainly on two

approaches to OQS, namely the master equation and stochastic wave-function methods. These

approaches are in principle equivalent, although both have their advantages and disadvantages.

While quantum master equations are deterministic equations of motion for the density opera-

tor, they can get numerically quite costly when the system under consideration becomes big-

ger. Within stochastic wave-function methods, on the other hand, we are confronted with an

equation of motion for the wave function, which incorporates any small fluctuation of the en-

vironment as a random effect on the system. Here, we will focus on the so-called stochastic

Schrödinger equation (SSE) for the time evolution of the ‘state’ of the system. It simulates

the average behaviour of a variety of condensed matter systems interacting with their environ-

ments. In doing so, we will build an ensemble of states and to obtain any physical quantity we

will average over this ensemble. This SSE will serve us in this work as a starting point to inves-

tigate the dynamics of open quantum systems capable of exchanging energy and momentum

with an external environment.

In the following, we will bother the reader neither with historical details of those techniques

nor with too many technicalities of the derivation of master equations or SSEs. The interested

reader can find those in a series of brilliantly written textbooks and reviews on the wide topic

of OQS [29–32]. What we will do instead, is to introduce both concepts on equal footing by

pointing out the important approximations. In order to assimilate the following chapters, it is

not needed to understand every technical detail of the derivation of such equations. This will

give the reader a feeling for the situations to which those equations can be successfully applied.

In addition, the detailed derivation of the SSE can be found in appendix A.

While in this chapter, matter is described by model Hamiltonians and the focus is more on the

interaction of matter with photons. In chapter 6 the full quantum-mechanical description of

many-body electronic systems interacting with classical light will be discussed.

8



2.1 Master Equations and Stochastic Schrödinger Equations

environment

S : ĤS

B : ĤB

S + B : HT = ĤS + ĤB + �Ŵ

quantum system

�Ŵ

FIGURE 2.1: Typical situation when a description in terms of OQS is needed: We are
interested in the dynamics of the small quantum system S which is interacting via λŴ with
a macroscopic environment, B. The solution of the whole problem is not feasible.

2.1 Master Equations and Stochastic Schrödinger Equations

A dynamical description of OQS is usually required when one faces the situation described in

Fig. 2.1. We are interested in the dynamics of the system S (described by the Hamiltonian ĤS),

which is embedded or in contact with one or more macroscopic systems, the environment (also

called bath) B. Solving the Schrödinger equation for the combined system, S+B, is far beyond

feasible. A very elegant and natural way to describe the effects of the environments in the

Hilbert space of the system S is given by OQS.

The common starting point for the derivation of master equations or stochastic Schrödinger

equations is the equation of motion for the system and its surrounding, described by the total

Hamiltonian

ĤT = ĤS + ĤB + λŴ , (2.1)

where ĤB represents the environment which couples weakly via λŴ to the system S. Here,

the parameter λ is introduced to allow a perturbative expansion afterwards. The interaction

potential Ŵ is assumed to be linear,

Ŵ =
∑
a

Ŝa ⊗ B̂a, (2.2)

where Ŝa and B̂a are hermitian coupling operators of the system and the environment, respec-

tively. In general the interaction can be written in such a linear form. If not, the separability of

the system and the environment is questionable.

9



Chapter 2 Open Quantum Systems

While for the derivation of a master equation one starts from the von Neumann equation of

motion for the density matrix, here our starting point will be the Schrödinger equation for the

system and the environment:∗

i∂t|ΨT (t)〉 = (ĤS + ĤB + λŴ )|ΨT (t)〉. (2.3)

From this we derive in Appendix A the non-Markovian SSE based on a perturbative expansion

up to second order in the coupling parameter λ. Therefore, after changing to the interaction

picture we integrate out the irrelevant degrees of freedom of the environment and furthermore,

we neglect initial correlation of the system with its surrounding,

ρ̂T (0) = |φ(0)〉〈φ(0)| ⊗ ρ̂eqB = |φ(0)〉〈φ(0)| ⊗ e−βĤB

ZB
, (2.4)

where β is the inverse of the temperature and ZB = TrB e
−βĤB . Here, we have defined that the

system S is initially in a pure state while the bath is in thermal equilibrium. As we are interested

in the corresponding initial wave function to the total density operator of Eq. (2.4), one needs

to introduce

|ΨT (0)〉 = |φ(0)〉 ⊗
∑
n

√
e−βεn

ZB
eiθn|n〉, (2.5)

where |n〉 are eigenfunctions of the environment with eigenenergies εn, and θn are indepen-

dent random phases uniformly distributed over the interval [0, 2π]. Exactly here is where the

stochasticity enters the equation of motion and what makes the difference to deterministic mas-

ter equations. While in a density operator formalism the phases are naturally washed out, in a

wave-function approach those unknown phases are kept via stochastic noises. After performing

a thermal average and rearranging the terms we arrive at a SSE for the state of the system |φ〉
[30, 33, 34],

i∂t|φ(t)〉 =
[
ĤS + λ

∑
a

γa(t)Ŝa

]
|φ(t)〉

−iλ2
∑
a,b

Ŝa

∫ t

0

dτe−iĤSτ ŜbCab(τ)|φ(t− τ)〉. (2.6)

Here, many details have been left out while we have focused on the main assumptions, however,

the full derivation with all technicalities can be found in Appendix A. The stochastic term enters

∗Here, I would like to remind the reader of the usage of atomic units.
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2.1 Master Equations and Stochastic Schrödinger Equations

via the coloured noise γ(t) characterised by its variance and mean value,

γa(t) = 0, γa(t)γb(t′) = 0, γ∗a(t)γb(t
′) = Cab(t− t′). (2.7)

I would like to emphasise that in Eq. (2.6) the change of the system at time t depends not only

on the state |φ(t)〉 but also on the whole history in the interval from the initial time to time

t. This behaviour is called non-Markovian and thus Eq. (2.6) is a non-Markovian stochastic

Schrödinger equation (NMSSE). In this equation the integrant over the whole history of the

wave function is also called memory kernel.

In the NMSSE the coupling of the bath to the subsystem is described in an approximate manner

and enters the dynamics through the bath-correlation function Cab(t),

Cab(t− t′) = TrB

[
ρ̂eqB B̂a(t)B̂b(t

′)
]
. (2.8)

This implies that all the information about the time evolution of the bath and its coupling to

the system is contained in the bath-correlation function. In comparison to the original closed

Schrödinger equation for the combined system, an enormous reduction of dimensionality has

been achieved, at the cost of now having to solve a stochastic equation of motion which is in

addition non-Markovian.

In most quantum optical cases, the dependence on the past of the wave function can be approx-

imately neglected, due to the fact that the bath-correlation function decays rapidly to zero on a

time-scale on which the system’s wave-function does not vary significantly. For convenience,

one neglects the non-Markovian behaviour by approximating the time dependence of the bath-

correlation function by a δ-function, Cab(t − t′) ≈ 1
2
Dabδ(t − t′). As a result, the NMSSE

simplifies to the Markovian stochastic Schrödinger equation,

i∂t|φ(t)〉 =

[
ĤS + λ

∑
a

γa(t)Ŝa −
iλ2

2

∑
a,b

ŜaŜbDab

]
|φ(t)〉. (2.9)

where γa(t) are white-noise processes with γa(t) = 0 and γ∗a(t)γb(t′) = Dabδ(t − t′). With the

help of a unitary transformation Uγδ that diagonalises Dab with eigenvalues da, Eq. (2.9) can be

written in an Itô differential form

d|φ(t)〉 =

[(
− iĤS −

1

2

∑
a

V̂ †a V̂a
)

dt+
∑
a

V̂a dWa

]
|φ(t)〉, (2.10)
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initial pure 
state

|�(0)�
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... } �Ô⇥(t) =
��(t)|Ô |�(t)⇥

��|�⇥
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��(t)|�(t)⇥⇢̂(t) = | (t)ih (t)|

hÔ(t)i = h (t)|Ô| (t)i

FIGURE 2.2: Schematic representation of how to calculate physical quantities with the
SSE.

where the new set of bath operators is given by V̂a = λ
√
da
∑

b UabŜb. It should be emphasised

that the stochastic processes are included in dWa = (−i/
√
da)
∑

j U
†
jaγjdt and one can show

that those satisfy

dWa = 0, dWadW ∗
b = δabdt. (2.11)

Equation (2.10) does not follow standard rules of calculus. The state |φ(t)〉 is a stochastic func-

tion and its time derivative is not defined at any instant of time. Additionally, the differential

noise dW scales on average as dt1/2 and thus can be interpreted as the differential increment of

an underlying Wiener process. As a result, this differential equation is not tractable with stan-

dard calculus and the rules have to be modified according to the Itô calculus. Since an in-depth

introduction to this calculus will bring us too far; here we will only state the important results

of the Itô calculus needed in the following chapters. For a more complete treatment of the Itô

formalism one can consult the vast literature on the subject, here we just list some few standard

references [30, 35–39]. An important result from this calculus is the Itô chain rule,

d
(
|φ〉〈ψ|

)
=
(
d|φ〉

)
〈ψ|+ |φ〉

(
d〈ψ|

)
+
(
d|φ〉

)(
d〈ψ|

)
, (2.12)

where φ and ψ are two states evolving according to the Markovian SSE (2.10).

After having introduced the NMSSE and the Markovian SSE, we will show how to use such

stochastic equations to calculate ordinary time evolution and physical quantities. Due to the

coupling to the bath, the system will be driven into a statistical mixture of states although

a pure initial state was assumed. From the derivation in Appendix A, one can see that the

SSE describes the time evolution of a typical member of this statistical ensemble. As a result,

a single evolution of the SSE will not contain information to reconstruct the physical state.
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2.1 Master Equations and Stochastic Schrödinger Equations

Starting from an initial state |Ψ(0)〉 of the system, the SSE will evolve the state in a non-

deterministic way due to the influence of dissimilar stochastic processes, leading to different

trajectories as shown in Fig. 2.2. Only on average, indicated by the over-line, one can gain

physical information from the stochastic time evolution. For example, from an average over

many realisations of the time evolution of an initial wave function we can calculate the state at

time t,

ρ̂S(t) = |Ψ(t)〉〈Ψ(t)| ≡ lim
N→∞

N∑
i=1

|Ψi(t)〉〈Ψi(t)|. (2.13)

In a similar way, expectation values of an operator Ô can be calculated via

〈Ô〉(t) ≡ 〈Ψ(t)| Ô |Ψ(t)〉, (2.14)

and it is worth mentioning that via the SSE approach it is also possible to describe non-pure

initial states, also called mixed states,

ρ̂S(0) =
∑
r

pr |Ψr(0)〉〈Ψr(0)|, (2.15)

where pr is the fraction of the ensemble in each pure state |Ψr(0)〉. The time evolution of the

mixed state can be calculated as

ρ̂S(t) =
∑
r

pr |Ψr(t)〉〈Ψr(t)|. (2.16)

After discussing how to calculate the state of the system, ρ̂S(t), we might ask what is the

related equation of motion for the density operator corresponding to the NMSSE or Markovian

SSE. Those master equations can be derived from first principles in a way similar to the SSEs

starting from the von Neumann equation for the density operator of the total system. Under the

assumptions of weak system–bath interaction, uncorrelated initial states at time t = 0 of the full

density operator, and vanishing averages of bath operators to first order, the equation of motion

for the reduced density operator ρ̂ of the system up to second order in the coupling parameter

λ is given by [30–32, 40]:

∂tρ̂S(t) = −i
[
ĤS, ρ̂S(t)

]
+ λ2

∑
a

[
Ŝa, M̂

†
a(t)− M̂a(t)

]
. (2.17)
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Here we have defined

M̂a(t) ≡
∑
b

∫ t

0

dτ Cab(τ) e−iĤSτ Ŝb ρ̂S(t− τ) eiĤSτ . (2.18)

As in Eq. (2.6) the change of the system at time t depends on the history of the state ρS(τ), and

so we will name Eq. (2.17) the non-Markovian master equation (NMME). Alternatively, one

can show the correspondence between the NMME and the NMSSE by performing a perturba-

tive expansion in λ [34] of the time evolution operator up to second order.

On the other hand, a Markovian master equation can be obtained by assuming that the bath-

correlation function is δ-correlated in the NMME leading to the so-called Lindblad master

equation [41]

∂tρ̂S = −i[ĤS, ρ̂S]− 1

2

∑
a,b

Dab

{
ŜbŜaρ̂S + ρ̂SŜbŜa − 2Ŝaρ̂SŜb

}
. (2.19)

This is the most general type of a Markovian master equation which is known to preserve not

only the norm but also positivity and hermiticity. Alternatively, the Lindblad master equation

can also be derived from the Markovian SSE using Itô’s calculus.

2.2 Thermal Relaxation Dynamics

From fundamental thermodynamic considerations [42, 43] we know that when bringing two

objects in contact with each other, they will both equilibrate at the same temperature. Hence,

we expect our open quantum system in contact with the equilibrated heat bath to evolve towards

some steady state that coincides with its thermal equilibrium at the same temperature T of the

heat bath,

lim
t→∞

ρ̂S(t) =
e−βĤ

′
S

TrSe−βĤ
′
S

= ρ̂eqS . (2.20)

This dynamic towards thermal equilibrium is a non-equilibrium process, called thermal relax-

ation or in short, thermalisation. The Hamiltonian Ĥ ′S entering the equilibrium state is not

exactly the system Hamiltonian, since the coupling slightly changes the energy spectrum of the

system. This energy shift is known as the Lamb shift and will be neglected in the following.

This and the following subsection are based on my master thesis
“Stochastic Approaches to Thermal Relaxation of Open Quantum Systems”.
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2.2 Thermal Relaxation Dynamics

In order to describe realistic open systems and accordingly introduce the temperature in the

description of the dynamics, the equation of motion should ensure thermalisation. Considering

the approximations applied in the derivation of the ‘open equations’ in section 2.1, the ques-

tion arises of whether those equations are still able to describe the thermal relaxation process

correctly.

In order to understand those processes, we are interested in the conditions for thermal relaxation

and how they enter the open equations of motion. The coupling of the system with the environ-

ment enters the equation of motion only through three quantities, namely the bath-correlation

function Cab(τ), the noise, and the system’s coupling operators Ŝa. However, the noise is on

average determined by the bath-correlation function and one naturally expects that the opera-

tors Ŝa from the Hilbert space of the system do not contain information about the environment,

like for example its temperature. Therefore, the bath-correlation function is the only quantity

that describes the coupling from the side of the environment and hence thermalisation has to

be highly dependent on its structure and how it enters the equation of motion. Of course, the

coupling operators Ŝa can hinder the establishment of thermal equilibrium when chosen in an

inaccurate way. However they should not contain environmental information like the tempera-

ture of the environment.

As we have seen before, the SSE describes an ensemble of wave functions evolving under the

influence of distinct stochastic processes. Consequently, only on average one will be able to

judge whether or not thermal equilibrium is reached and thus we will use the NMME for the

discussion of thermal relaxation processes, which is equivalent to the NMSSE on average. As

we are interested in the long-time dynamics, it is sufficient to investigate thermal relaxation in

the limit t→∞, where the condition

lim
t→∞

dρ̂eqS
dt

= 0 (2.21)

indicates that the thermal state is a steady state of the dynamics. However, this assumption

does not guarantee that the equation of motion thermalises all initial states. Condition (2.21)

and the fact that the equilibrium density operator commutes with the system Hamiltonian lead

to a necessary condition for the NMME (and also NMSSE) to ensure thermal relaxation,

0 = lim
t→∞

dρ̂eqS
dt

=
∑
α

(
K̂aρ̂

eq
S Ŝa + Ŝaρ̂

eq
S K̂

†
a − ŜaK̂aρ̂

eq
S − ρ̂eqS K̂†aŜa

)
+O(λ4), (2.22)
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Chapter 2 Open Quantum Systems

where

K̂a = λ2
∑
b

∫ ∞
0

dτ Cab(τ)e−iĤSτ Ŝbe
iĤSτ . (2.23)

The derivation of the conditions for thermalisation in OQSs and an extensive discussion of the

topic can be found in appendix B. Indeed, there we show that a necessary condition for the

system to relax towards thermal equilibrium is that Cab(t, τ) = Cab(t − τ) and that the power

spectrum

Ĉab(ω) ≡
∫ +∞

−∞
dt Cab(t) e

−iωt, (2.24)

essentially the Fourier transform of the bath-correlation function, satisfies the detailed-balance

condition [32, 44]

Ĉab(−ω) = eβω Ĉba(ω). (2.25)

This relation ensures that energy transitions in the system are balanced according to a Boltz-

mann factor.

In conclusion, in order to correctly describe thermalisation processes the bath-correlation func-

tion should satisfy the detailed-balance relation. By the Markovian approximation, Cab(τ) ≈
1
2
Dabδ(τ), one neglects this property of the bath-correlation function, and therefore, the descrip-

tion of thermal relaxation processes from first principles within Markovian dynamics seems to

be questionable, or at least should be done with special care keeping the previous considera-

tions in mind. Note that the detailed-balance relation only guarantees that the equilibrium state

is a steady state of the dynamics. However, this does not ensure that all initial states will be

driven towards this steady state.

2.3 Microscopic Model for the Coupling

When we want to investigate closed quantum systems we first need to determine the Hamil-

tonian of the system and then solve the equation of motion. However, for the dynamical in-

vestigation of OQS it is also needed to set up the environment and its coupling to the system.

Therefore, we will derive in this section the bath-correlation function and the operators B̂ (and

Ŝ) for the coupling of an electronic system to the electromagnetic field in a three-dimensional
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2.3 Microscopic Model for the Coupling

cavity of volume V. In the dipole approximation this interaction can be written as

Ŵ = −q
∑
i

r̂i ⊗ Ê(t), (2.26)

where q is the charge of an electron and Ê is the electric field inside the cavity. In the dipole

approximation the wavelength of the electromagnetic field is assumed to be large compared to

the system size, hence Ê is considered to be uniform in space. The electrical field in second-

quantised form is [45]

Ê(t) =
∑
k

ipk
(
b̂ke
−iωkt − b̂†keiωkt

)
u, (2.27)

where the k-th field mode inside the cavity with frequency ωk is created by b̂†k and we define

pk =
√
ωk/(2V ε0). For simplicity, we have assumed that the modes are polarised in the same

direction as u. By expanding the operator r̂ in a complete basis of the system, one can write

the interaction term Eq. (2.26) as

Ŵ = −q
∑
l,p

u · 〈ψl|r̂|ψp〉ε̂†l ε̂p ⊗
∑
k

ipk
(
b̂ke
−iωkt − b̂†keiωkt

)
= Ŝ ⊗ B̂, (2.28)

where ε†l creates an electron in the system in the state |ψl〉. These states form an orthonormal

basis of the system Hamiltonian. Here, it should be emphasised that Eq. (2.28) is already in

the required bilinear form for the coupling, as assumed in the derivation of the SSE. From

Eq. (2.28) we can immediately read off the form of the operators Ŝ and B̂.∗ In order to have

access to the bath-correlation function, we need to calculate

C(t, τ) = TrB[ρ̂eqB B̂(t) B̂(τ)]

= −TrB

[
ρ̂eqB
∑
k,j

pkpj
(
b̂ke
−iωkt − b̂†keiωkt

)(
b̂je
−iωjτ − b̂†jeiωjτ

)]
. (2.29)

Evaluating this in the bosonic many-particle basis of the bath and replacing the sum over the

bath modes ωk by an integral over frequency yields

C(t, τ) =
1

2ε0π2

∫ ωc

0

dω ω3

{[
nB(βω) + 1

]
e−iω(t−τ) + nB(βω) eiω(t−τ)

}
, (2.30)

where we have inserted the density of states in the cavity, ω2/π2 and nB(βω) ≡ 1/(eβω − 1)

is the Bose–Einstein distribution function. Furthermore, we have introduced a cutoff frequency

∗Here we have dropped the sum over many bath operators. A different choice could be made here.
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ωc to be consistent with the dipole approximation, restricting the wavelengths of the bath modes

to be larger than the system size. As the former integral cannot be evaluated analytically, we

will calculate the power spectrum of this bath-correlation function,

Ĉ(ω) =
|ω|3
πε0

[
nB(β|ω|) + Θ(−ω)

]
for |ω| < ωc, (2.31)

where Θ(ω) is the Heaviside step function. For |ω| > ωc, the power spectrum is set to vanish.

I would like to point out that increasing ωc does not change the relaxation dynamics as long as

ωc is larger than the energy differences in the system and hence does not exclude any energy

transitions. One can easily show that the detailed-balance relation (2.25) is satisfied by this

power spectrum and hence can be used to describe thermal relaxation processes.
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Chapter 3

Thermal Relaxation and Transport within

the Time-Convolutionless Stochastic

Schrödinger Equation†

In this chapter we study thermal relaxation and thermal transport dynamics with a known but

rarely used, time-local version of the NMSSE, called time-convolutionless SSE (TCLSSE).

In order to investigate non-Markovian stochastic dynamics it would be advantageous to have

a SSE that is local in time but is nevertheless able to reproduce the dynamics induced by a

non-Markovian equation. This would allow to study a non-Markovian equation at the cost

of a Markovian one. Such an equation has been proposed by Strunz and coworkers [46–48],

although it is rarely applied or tested.

A promising application of the TCLSSE is the investigation of the energy transport in nanosys-

tems. For this the system is coupled at its ends locally to two baths kept at different temper-

atures. The temperature gradient induces a thermal force letting the energy flow from the hot

bath to the cold bath. However, before investigating this non-equilibrium situation in section

3.3, we will first test whether the TCLSSE reproduces the relaxation dynamics correctly: In

contact with a single bath at a constant temperature, the system should relax to its equilibrium

state at the same temperature. We have seen in section 2.2 that there exists a condition which

†This chapter is based on the article
“Application of a time-convolutionless Schrödinger equation to energy transport and thermal relaxation”, Journal
of Physics Condensed Matter 26, 395303 (2014), by R. Biele, C. Timm, and R. D’Agosta.
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the memory kernel needs to satisfy for the system to reach thermal equilibrium, the detailed-

balance relation. This might no longer be fulfilled when approximations of the memory kernel

are made [32, 44], as the history dependence of the equation of motion is essential for thermal

relaxation. This raises the question of whether the TCLSSE is capable of correctly describing

thermal relaxation dynamics. For this, we study the relaxation behaviour of a simple three-level

system within the TCLSSE in section 3.2. This pedagogical work verifies the applicability of

the TCLSSE to thermal transport. To set up the theoretical foundation we will show how the

dynamics of the TCLSSE and the NMME coincide up to third order in the coupling parameter

between the system and the bath.

3.1 Time-Convolutionless Stochastic Schrödinger Equation

The dynamics introduced by the NMME can be obtained not only by a numerical integration

of the former but also by the solution of a NMSSE [34]. However, any attempt to solve those

two non-Markovian equations requires an enormous numerical effort due to the integral over

time, which needs to be evaluated at every time step and for every realisation during the time-

propagation. This raises the question of whether there exists a simpler SSE that on average

reproduces the dynamics induced by the NMME. Indeed this is the case, as the TCLSSE [46]

i∂t|Ψ(t)〉 =

(
Ĥ + λ

∑
a

γa(t) Ŝa − i λ2 T̂(t)

)
|Ψ(t)〉, (3.1)

with

T̂(t) ≡
∑
a,b

Ŝa

∫ t

0

dτ Cab(τ) e−iĤτ Ŝb e
iĤτ , (3.2)

reproduces the dynamics induced by the NMME up to third order in the coupling parameter λ.

In order to show this, we write the TCLSSE in the interaction picture, |ΨI(t)〉 = eiĤt |Ψ(t)〉
and Ŝa(t) = eiĤtŜa e

−iĤt and expand the time-evolution operator up to second order in λ,

|ΨI(t)〉 ∼=
[
1l− iλ

∑
a

∫ t

0

dt1 γa(t1) Ŝa(t1)

−λ2
∑
a,b

∫ t

0

dt1

∫ t1

0

dt2Cab(t2) Ŝa(t1) Ŝb(t1 − t2)

−λ2
∑
a,b

∫ t

0

dt1

∫ t1

0

dt2 γa(t1) Ŝa(t1) γb(t2) Ŝb(t2)

]
|ΨI(0)〉+O(λ3).
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In order to calculate the ME that corresponds to the TCLSSE, we will insert this expansion

into the expression for the density operator of the system, ρ̂I(t) = |ΨI(t)〉〈ΨI(t)|. By perform-

ing the average, using the properties of the noise and the identity Cab(τ, t) = C∗ba(t, τ), and

differentiating with respect to t, we arrive finally at

∂tρ̂I(t) = λ2
∑
a,b

∫ t

0

dτ

[
Cab(t, τ) Ŝb(τ) ρ̂I(0) Ŝa(t)− Cab(t, τ) Ŝa(t) Ŝb(τ) ρ̂I(0)

+ C∗ab(t, τ) Ŝa(t) ρ̂I(0) Ŝb(τ)− C∗ab(t, τ) ρ̂I(0) Ŝb(τ) Ŝa(t)

]
+O(λ4).

I would like to point out that the averages of the terms proportional to λ3 vanish. Furthermore,

replacing ρI(0) by ρI(τ) + O(λ2) does not change the equation up to order λ3. Finally, by

returning to the Schrödinger picture we arrive at the NMME up to order λ3, i.e., higher than the

order up to which these equations are valid anyway. Indeed, the NMME and the NMSSE are

usually derived as a second-order expansion in the coupling parameter λ. This is remarkable

since one might expect a more complex time-non-local SSE to be required for reproducing the

dynamics of the NMME. Still, the TCLSSE is local in time, i.e., the operator T̂(t) does not

depend on the state of the system at previous times and can thus be calculated once before the

numerical integration and be used for each realisation of the stochastic process. This reduces

the numerical cost of solving each realisation of the TCLSSE to that of a Markovian SSE

[34, 40].

We note that at the same level of approximation, λ3, we can derive a time-convolutionless

master equation instead of the non-local NMME. However, since in general the density matrix

and the operators Ŝa do not commute, the integral over time still contains the density matrix

in a complicated manner. From a numerical point of view, the solution of this equation is

therefore not simpler than that of a NMME. The equivalence of the NMME and the time-

convolutionless master equation is a generalisation of the result that a time-convolutionless

Pauli master equation, i.e., a master equation for the diagonal components of the density matrix

only, can be proven to be equivalent to a Nakajima–Zwanzig–Markov Pauli master equation to

second order in λ [49].
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3.2 Time-Convolutionless Description of Thermal Relaxation

As the condition of thermal relaxation in open quantum system is connected with the memory

kernel of the equation of motion, in this section, we will test whether the TCLSSE is capable

of correctly describing relaxation dynamics. This will then allow us to study thermal transport

within the TCLSSE approach in the next section.

In the following, we consider an electronic system coupled to the electromagnetic field in a

cavity. This three-dimensional cavity acts as the environment at a certain temperature, T. As

we have shown in subsection 2.3, the power spectrum for the cavity is given by

Ĉ(ω) =
|ω|3
πε0

[
nB(β|ω|) + θ(−ω)

]
for |ω| < ωc, (3.3)

where ωc is a cutoff frequency determined by the dimensions of the system. For this power

spectrum the detailed-balance condition (2.25) is satisfied. In order to solve the TCLSSE one

needs to generate the noise which is connected with the bath-correlation function as defined in

Eq. (2.7). One can easily prove that the noise γ(t) can be generated by

γ(t) =

∫ +∞

−∞

dω√
2π

√
Ĉ(ω) x(ω) eiωt, (3.4)

where x(ω) is a white-noise process in the frequency domain satisfying

x(ω) = 0, x(ω)x(ω′) = 0, x∗(ω)x(ω′) = δ(ω − ω′). (3.5)

From a numerical point of view, the generation of this coloured noise requires the calculation of

the Fourier transform in Eq. (3.4). In order to verify the agreement between the power spectrum

(3.3) and the power spectrum of the noise generated by (3.4), we perform a Fourier transform

of the time-domain signal and compared it to our target. Figure 3.1 shows that the agreement is

excellent.

For the electronic system we consider a three-site spinless tight-binding chain described by the

Hamiltonian

Ĥ = −T
(
ĉ†1ĉ2 + ĉ†2ĉ1 + ĉ†2ĉ3 + ĉ†3ĉ2

)
, (3.6)
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target Re(C(!))
target Im(C(!))
numerical Im(C(!))
numerical Re(C(!))

FIGURE 3.1: Comparison between the target, Eq. (3.3), (solid lines) and the Fourier trans-
form of the correlation function obtained from Eq. (3.4) by averaging over 90 000 realisa-
tions of the noise (dashed lines). (Plot reused from [50])

where the operator ĉ†i creates an electron at site i, and we assume a single electron to be present.

This system is coupled to the electromagnetic field of the cavity by

Ŝ = −q
∑
i,j

u · 〈Wi|r|Wj〉 ĉ†i ĉj, (3.7)

where |Wi〉 is single-particle state localised at site i. For simplicity, we assume that each rel-

evant mode of the cavity has the same polarisation direction u, parallel to the tight-binding

chain. Note that the form of this operator should be immaterial for the establishment of thermal

equilibrium, which is only determined by the power spectrum.

In Fig. 3.2, the occupation probabilities of the three eigenstates of the Hamiltonian are shown

in the one-electron sector as a function of time calculated using the TCLSSE (dashed lines)

and the NMME (solid lines), respectively. For the TCLSSE, the results have been obtained

by averaging over 90 000 independent realisations of the noise. We have used the parameters

β = 1, ωc = 1, T = 1, ε0 = 1 and λ = 0.1 and we have employed the Euler algorithm [51, 52]

with time step ∆t = 0.005 to numerically solve the equations. We have chosen an arbitrary

pure state as the initial state, |Ψ(0)〉 = 0.94 |1〉+ 0.2 |2〉+ 0.28 |3〉, where |i〉 represents the i-th

eigenstate of the Hamiltonian, where the eigenenergies satisfy ε1 ≤ ε2 ≤ ε3.

The dynamics induced by the NMME and the TCLSSE are in good agreement: The small

discrepancies in the numerical solutions are due to the finite number of realisations we have
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FIGURE 3.2: Dynamics of the occupation probabilities p1, p2, p3 of the eigenstates of the
Hamiltonian (3.6) in the one-electron sector calculated from the evolution of the TCLSSE
(dashed lines) and the NMME (solid lines) with the power spectrum given by Eq. (3.3).
The eigenstates are labeled such that the eigenenergies satisfy ε1 ≤ ε2 ≤ ε3. The red
dots represent the thermal-equilibrium probabilities calculated from Eq. (3.8). The time t
is measured in terms of the inverse of the energy constant T. (Figure from [50])

used; the solution of the TCLSSE still contains some noise, as expected. For long times, both

formalisms converge to the thermal-equilibrium probabilities

peqi =
e−βεi

e−βε1 + e−βε2 + e−βε3
, (3.8)

which are indicated by red dots in Fig. 3.2. If we were only interested in the long-time limit, we

could have averaged over all times after some equilibration time tmin to obtain better statistics,

using the ergodic theorem to replace the average over many realisations by an average over time

of a single realisation.

3.3 Thermal Transport in a Spin Chain

To show that the TCLSSE can be used to investigate energy transport in open quantum sys-

tems, we consider a spin chain in contact with two baths at different temperatures, as shown in

Fig. 3.3. The baths are locally connected to the terminal spins of the chain [53, 54]. Energy

is transferred between the high-temperature bath, via the spin chain, to the low-temperature

bath. Here we assume the baths to be represented by an ensemble of harmonic oscillators with
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3.3 Thermal Transport in a Spin Chain

a continuous spectrum. In the long-time regime, we expect the appearance of a steady state of

constant energy flow.

TL TR

FIGURE 3.3: Interacting spins are connected at the terminal spins to two baths kept at
different temperature. This temperature gradient will induce a thermal force in the system
which drives an energy current.

The total Hamiltonian of a spin-1/2 chain coupled to two baths L and R reads

ĤT = ĤS +
∑
i=L,R

(
Ĥ

(i)
B + Ŵ (i)

)
, (3.9)

where the system Hamiltonian is given by

ĤS =
Ω

2

n∑
µ=1

σ(µ)
z + Γ

n−1∑
µ=1

~σ(µ) · ~σ(µ+1), (3.10)

with ~σ = (σx, σy, σz) and the index µ indicating the spin site. The Pauli matrices are given by

σx =

0 1

1 0

 , σy =

0 −i
i 0

 , σz =

1 0

0 −1

 , (3.11)

and the spin operators for the n-site chain are

1 2 µ n

σ
(µ)
j = 1l ⊗ 1l ⊗ · · ·⊗ σj ⊗ · · ·⊗ 1l.

(3.12)

In Eq. (3.10), Ω is the energy associated with a uniform magnetic field aligned along the z

direction and Γ is the spin–spin Heisenberg interaction.

The baths are coupled to the spins at the ends of the chain,

Ŵ (i) = λ Ŝ(i) ⊗ B̂(i) = λσ(i)
x ⊗ B̂(i), (3.13)
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where σ(i=L)
x = σ

(1)
x , σ(i=R)

x = σ
(n)
x , λ is the coupling strength and B̂ is the coupling operator

from the bath. Here, we consider a bath-correlation function which describes the electromag-

netic field of a one-dimensional cavity [32],

C(i)(τ) =
π

2ε0

∫ ωc

0

dω ω

[
cos(ωτ) coth

(β(i)ω

2

)
− i sin(ωτ)

]
, (3.14)

where β(i) is the inverse temperature of bath i = L, R. Accordingly, one can calculate the power

spectrum of this bath correlation function as

Ĉ(i)(ω) =
π2|ω|
ε0

[
nB(β(i)|ω|) + θ(−ω)

]
for |ω| < ωc, (3.15)

which is the one-dimensional analogue of Eq. (3.3). One can immediately prove that this cor-

relation function does fulfil the detailed-balance relation and therefore we expect the system to

be driven towards thermal equilibrium if the temperatures of the two baths are the same.

To investigate the energy transport, we identify the energy current through a continuity equation

for the local energy. Therefore, we define a local Hamiltonian by

ĥ(µ) =
Ω

2
σ(µ)
z +

Γ

2

(
~σ(µ) · ~σ(µ+1) + ~σ(µ−1) · ~σ(µ)

)
(3.16)

if µ is different from n or 1. We also define

ĥ(1) =
Ω

2
σ(1)
z +

Γ

2
~σ(1) · ~σ(2) (3.17)

and

ĥ(n) =
Ω

2
σ(n)
z +

Γ

2
~σ(n−1) · ~σ(n) (3.18)

so that ĤS =
∑

µ ĥ
(µ). The time evolution of each local Hamiltonian is given by

− dĥ(µ)

dt
= −i [ĤS, ĥ

(µ)] = ĵ(µ),(µ+1) − ĵ(µ−1),(µ), (3.19)

where energy-current operators have been defined as

ĵ(µ),(µ+1) =
i

4

[
Ω (σ(µ)

z − σ(µ+1)
z ), Γ~σ(µ) · ~σ(µ+1)

]
. (3.20)

26



3.3 Thermal Transport in a Spin Chain

Equation (3.19) has the form of a continuity equation for the energy at site µ and is valid for

sites inside the spin chains that are not coupled to a bath.
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�L = �R = 5 TCLSSE
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FIGURE 3.4: Dynamics of the energy current of a three-site spin chain coupled locally
to two baths for the cases of equal and unequal temperatures, calculated with the NMME
(solid lines) and the TCLSSE (dashed and dot–dashed lines). The agreement between the
two sets of lines is excellent, in particular at short times. The time t is measured in terms of
the inverse of the energy constant Ω. (Figure from [50])

In Fig. 3.4 we report the energy current flowing from the second to the third spin of a three-site

spin chain. In the equal-temperature case (βL = βR = 5, green solid and black dotted lines), a

steady state is reached for long times that cooresponds to the thermal equilibrium, and hence no

current is flowing through the system. On the other hand, for the case of unequal temperatures

(βL = 2 and βR = 5), the steady state shows a non-zero energy current from the warmer to the

colder bath, as expected (black solid and red dashed lines). For the TCLSSE we have averaged

over 100 000 independent realisations of the noise and for both calculations we have used the

parameter values Ω = 1, Γ = 0.01, λ = 0.1, ε0 = 1 and ωc = 6. Both for the equal-temperature

case and for the case with a thermal gradient, we have chosen an initial state populated with the

probabilities determined by the equilibrium distribution at the lower temperature. It can been

seen that the TCLSSE produces the same dynamics of the energy current as obtained from the

NMME in the equilibrium and non-equilibrium regime and hence can be seen as a reliable tool

to simulate energy transport with moderate numerical cost.

In conclusion, we have numerically investigated a time-local (time-convolutionless) version of a

non-Markovian SSE, which correctly describes the approach to thermal equilibrium and energy

transport as obtained from the general NMME (2.17). We report two case studies which show
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Chapter 3 Thermal Relaxation and Transport within the TCLSSE

that the TCLSSE is a viable alternative for obtaining the exact dynamics of a non-Markovian

open quantum system.
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Chapter 4

Time-Dependent Thermal Transport

Theory†

Understanding thermal transport in nanoscale systems presents important challenges to both

theory and experiment. As we are increasingly able to probe and manipulate nanoscale sys-

tems, an explosion of novel work in the field of nanotechnology has taken place. From macro-

scopic systems towards the nanoscale, quantum effects such as entanglement and quantum

coherence become more important. While at the macroscopic level Kirchhoff’s law applies,

in the nanoscale world the electrical conductance no longer obeys it, and phase coherence can

cause interference effects on electrical transport [1]. The same holds true for thermal transport:

While Fourier’s law has been empirically postulated in 1822 for bulk materials and derived

phenomenologically more than 80 years ago by Peierls, no simple proof of its validity has ever

been derived from first principles for the nanoscale [55]. Experimentally and theoretically one

has found simple nanoscale systems where Fourier’s law has been violated [56–58]. This shows

that the theory and simulation of nanoscale thermal transport is at an immature stage and poses

deep questions in the overlap between thermodynamics and quantum theory [4, 5]. In particu-

lar, the concept of local temperature at the nanoscale appears difficult to justify: Temperature is

defined for equilibrated systems. When a thermal gradient is present, this does clearly not ap-

ply. Even worse, when dealing with microscopic quantum systems the concept of temperature,

†This chapter is based on the article
“Time-Dependent Thermal Transport Theory”, Physical Review Letters 115, 056801 (2015), by R. Biele, R.
D’Agosta, and A. Rubio.
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defined for macroscopic objects, is hard to apply or justify. Therefore, we propose in this chap-

ter a theoretical approach where we replace the temperature gradient with controllable external

blackbody radiations. In constructing the formalism we desire certain physical behaviour to be

fulfilled by the theory, for example the thermalisation of the system when no temperature gra-

dient is applied. We will show that our approach recovers known physical results, such as the

linear relation between the thermal current and the temperature difference of two blackbodies.

Furthermore, this theory is not limited to the linear regime and goes beyond it by accounting

for non-linear effects and transient phenomena. Since the present approach is general and can

be adapted to describe both electron and phonon dynamics, it is a first step towards a unified

formalism for investigating thermal and electronic transport at the nanoscale.

It is a common everyday experience that two macroscopic bodies in contact with each other

equilibrate in the long-time limit to the same temperature. Microscopically, equilibration means

that there is no net energy-flow between the two bodies. But the exchange of energy, in form of

small fluctuations, is still present. Since the direction of the energy flow is solely determined

by the sign of the difference between the temperatures of the bodies, one can conclude that the

absence of an energy flow implies that the two bodies have the same temperature. This law of

thermodynamics provides an operative definition of the temperature difference. What makes

thermal transport at the nanoscale a difficult theoretical problem is that the very basic funda-

mentals of standard thermodynamics cannot be applied, and the idea of thermalisation needs

to be reconsidered. Attempts have been made to introduce a position dependent temperature,

but they do not provide a satisfactory definition of local temperature. Indeed, the concepts of

local Hamiltonian, useful to define a local energy density, local thermal current, and local nano-

scale thermal gradient are not uniquely or hardly defined as we will see later. Recently, a way

out, restricted to small thermal gradients, has been put forward using an effective gravitational

field, as originally proposed by Luttinger [59], that mimics the effect of a temperature gradient

[60, 61]. Here, we propose an alternative approach where the temperature field is established

by two or more blackbodies of known thermal properties. Besides thermal transport at the

nanoscale, this theory can be used to understand energy transport in cold atoms, biological,

or optical systems. We first consider the equation of motion for an electronic system coupled

to classical and quantum fields and see what is the simplest model that allows to introduce a

temperature in the system and leads to thermal relaxation. After clarifying this, we lay down

the basic formalism for our thermal transport theory and then consider a simple one-electron
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4.1 Formalism

model system. However, our theory is not limited to this, it can be directly extended to the gen-

eral framework of time-dependent current-density functional theory [62–64] to consider also

many-body systems. More important, our approach is not restricted to linear response or weak

coupling regimes, and we can easily investigate the interesting cases of both strong coupling —

recovering the Kramers’ turnover [65] — and large temperature gradients. Finally, we have ac-

cess to the full dynamics of the system. Therefore we can investigate transient regimes, usually

unaccessible to other formalisms. Last but not least, our theory can be applied to investigating

the phonon thermal transport. In this respect, it could be seen as a first step towards a unified

ab initio formalism for thermal and electric transport.

4.1 Formalism

A blackbody, according to its original definition by Kirchhoff in 1860 [66], is a macroscopic

object that absorbs all the radiation impinging on it. In thermal equilibrium the blackbody

emits electromagnetic radiation according to Plank’s law, whose spectrum is determined solely

by the temperature of the blackbody and not by its shape or composition [67, 68]. If we en-

close the blackbody by an optical cavity made of reflecting walls, the radiation inside the cavity

thermally equilibrates with the blackbody radiation, and any object in this cavity will also ther-

malise. Hence, by changing the temperature of the blackbody we control both the temperature

inside the cavity and that of the object. When thermal equilibrium is reached, at any point in

the cavity the electromagnetic radiation follows Planck’s law with the temperature of the black-

body. Finally, we can extract or estimate a local temperature from the observation of the energy

radiation and this serves us in the following to construct a formalism for thermal transport. Our

thermometer, or thermal source, is indeed described as a blackbody which radiates according

to its temperature.

A possible thermal-transport configuration can be seen in Fig. 4.1. Two blackbodies radiate

according to their temperature onto an electronic system from the left and right side. This will

drive the system out of equilibrium and energy will begin to flow in the system. In order to allow

for spontaneous and stimulated emission and absorption of energy, the system is interacting

with the surroundings.

To begin with, we consider an electronic system, S, coupled to any strength to the blackbody

radiation, labeled by BB, and weakly to the free field of the environment, labeled by E. The
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electronic system

environment at TE

spontaneous and stimulated 
emission or absorption

blackbody

at TRat TL

blackbody

FIGURE 4.1: Two blackbodies, radiating according to their temperature, will introduce a
thermal force in the electronic system and heat will flow from the hot to cold regions. At
the same time the system is connected with the surrounding to allow for spontaneous and
stimulated emission and absorption.

dynamics of the blackbody radiation is determined solely by the blackbody itself. Here, we

assume the macroscopic parameters of the blackbody to be constant in time and treated clas-

sically. The blackbodies are far away from the system and there is no back-coupling from the

system to the blackbodies. At the same time, the system is embedded in a bosonic environment,

kept at constant temperature TE , with which the system can exchange energy via spontaneous

and stimulated emission or absorption. The total Hamiltonian where we treat the environment

quantum-mechanically, is

ĤT =
N∑
i=1

[
1

2

(
p̂i − ÂE(ri)−ABB(ri, t)

)2
+ U(ri, t)

]
+ ĤE, (4.1)

where ĤE =
∑

k,s ωkb̂
†
k,sb̂k,s is the Hamiltonian of the free field of the environment and ÂE its

corresponding vector potential. In addition, we include in the model an external potential U

and ABB describes the electromagnetic radiation (treated classically) emitted by the blackbody

sources. In the Coulomb gauge, ∇ ·A = 0, one can separate the total Hamiltonian,

ĤT = ĤS + ĤE + ÎSE, (4.2)
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where we have included the system–blackbody interaction in the system Hamiltonian,

ĤS =
N∑
i=1

(
p̂2
i /2 + U(ri, t)−ABB(ri, t) · p̂i

)
, (4.3)

and the quadratic term A2
BB in the external potential U. The interaction between the system and

environment consists of two terms

ÎSE =
N∑
i=1

(
− p̂i · ÂE(r̂i) +

1

2
Â2
E(r̂i)

)
, (4.4)

where we have neglected the direct interaction of the environmental field with the blackbody

radiation. This can be justified by observing that the photon–photon interaction is small. Con-

sequently the contributions of the terms where, e.g., a photon from the blackbody scatters with

the free field and then is absorbed by the system, are negligible. In second-quantised form the

vector-field of the environment can be written as

ÂE(r) =
∑
k,s

pk,s

(
b̂k,s exp(ik · r) + b̂†k,s exp(−ik · r)

)
εk,s, (4.5)

where pk =
√

2π/(ωkV ) and b̂†k is the creation operator for a free-field mode with polarisa-

tion direction εk,s. Finally, by exploiting the field expansion Ψ̂ =
∑

α ĉα(t)φα(r), the system–

environment interaction can be written, in the Coulomb gauge as

ÎSE =

∫
dV Ψ̂†(r, t)

[
− p̂ · ÂE(r) + Â2

E(r)

]
Ψ̂(r, t)

=
(
ISE
)
a

+
(
ISE
)
b
, (4.6)

where

(
ÎSE
)
a

=
∑
α,β,k,s

ĉ†α(t)ĉβ(t)

{
b̂k,s g̃αβ,k,s + b̂†k,s g̃αβ,−k,s

}
, (4.7)

g̃αβ,k,s = ipk

∫
dV φ∗α(r)eik·rεk,s ·∇φβ(r), (4.8)
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and

(
ÎSE
)
b

=
∑
α,β,k1
k2,s1,s2

c†α(t)ĉβ(t)

{
b̂k1,s1 b̂k2,s2 hα,β,k1,k2,s + b̂k1,s1 b̂

†
k2,s2

hα,β,k1,−k2,s

+b̂†k1,s1
b̂k2,s2 hα,β,−k1,k2,s + b̂†k1,s1

b̂†k2,s2
hα,β,−k1,−k2,s

}
, (4.9)

hα,β,k1,k2,s = pk1pk2

∫
dV φ∗α(r)φβ(r)ei(k1+k2)·rεk1,s1 · εk2,s2 . (4.10)

Here, the operators ĉ†α create the α-th energy eigenstate of the initial Hamiltonian ĤS(0). The

energy eigenstates will serve as a natural basis set for our following considerations. These

former equations describe the interaction of a bosonic environment with the electronic system

under the influence of the time-dependent classical blackbody field. One has to realise that

those cannot be solved exactly and approximations are needed. However, as we are interested

in thermal transport, we need to ensure thermalisation and therefore we will investigate in the

following whether those equations are capable of describing thermalisation correctly.

First of all, we will assume that the system size is small in comparison to the wavelengths of

the electromagnetic field (dipole approximation). Going beyond this dipole approximation is

straightforward, but for the sake of simplicity we will use it in the following. Furthermore, we

will neglect the quadratic terms in the free-field, ÂE , as we assume that the coupling to the

environment is small. This leads to

ÎSE =
∑
α,β,k,s

gαβ,k,s ĉ
†
αĉβ

(
b̂k,s + b̂†k,s

)
, (4.11)

where we have defined a new coupling constant, gαβ,k,s = ipk
∫

dV φ∗α(r)εk,s ·∇φβ(r).

As we are interested only in the system dynamics, we will examine the dynamics of the expec-

tation value of the operator ĉ†αĉβ ,

fαβ = 〈ĉ†αĉβ〉. (4.12)

This can be derived from the equation of motion for ĉ†αĉβ ,

i∂tfαβ = 〈[ĉ†αĉβ, ĤS]〉+
∑
γ,k

{
gβγ,k

(
〈b̂kĉ†αĉγ〉+ 〈b̂†kĉ†αĉγ〉

)
− gγα,k

(
〈b̂kĉ†γ ĉβ〉+ 〈b̂†kĉ†γ ĉβ〉

)}
,

(4.13)
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where we included the spin index s in the components of k. The solution of the former equation

requires the knowledge of the dynamics of b̂kĉ†αĉβ , which is readily obtained from Heisenberg’s

equation of motion,

i∂tb̂kĉ
†
αĉβ = [b̂kĉ

†
αĉβ, ĤS] + ωkb̂kĉ

†
αĉβ

+
∑
γ,δ,l

gγδ,l

{
ĉ†αĉβ ĉ

†
γ ĉδδk,l +

(
b̂k(b̂l + b̂†l )− δk,l

)(
ĉ†αĉδδγβ − ĉ†γ ĉβδδα

)}
.

(4.14)

A similar equation holds for b̂†kĉ
†
αĉβ . These equations of motion are not in a closed form, and

any attempt to solve them by investigating the dynamics of the operators appearing on the right

hand side leads to an infinite hierarchy of equations. For this reason, we decouple the dynamics

of the system and the field, i.e., we assume that ∗

〈b̂kb̂†l ĉ†αĉβ〉 ≈ 〈b̂kb̂†l 〉〈ĉ†αĉβ〉. (4.15)

With this approximation, Eq. (4.14) is solved with a standard integration technique. Further-

more, by using that the initial-state correlation vanishes,

〈b̂†kĉ†αĉβ〉(0) = 〈b̂kĉ†αĉβ〉(0) = 0, (4.16)

and that the environment is in thermal equilibrium,

nB(ωk, TE) =
∑
l

〈b̂k(b̂l + b̂†l )− δk,l〉, (4.17)

we arrive at
∗Here, we want to note that this is equivalent to a perturbative expansion up to second order in the coupling

parameter g for the equation of motion (4.13).
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i∂tfαβ =
〈[
f̂ , ĤS

]〉
αβ

+ i
∑
k,l

∫ t

0

dτ Ck,l(τ, t)
〈[
Û(τ, t)V̂lf̂(τ)Û †(τ, t)V̂k

−Û(τ, t)f̂(τ)V̂lÛ
†(τ, t)V̂k − V̂kÛ(τ, t)V̂lf̂(τ)Û †(τ, t)

+V̂kÛ(τ, t)f̂(τ)V̂lÛ
†(τ, t)

]〉
αβ

−2

∫ t

0

dτ
∑

γ,δ,σ,ζ,k,l

V ∗δγ,kV
∗
σζ,l sin(ωk(t− τ))

{
δβγUδα(τ, t)〈ĉ†αĉδ ĉ†σ ĉζ〉(τ)U∗δα(τ, t)

−δδαUβγ(τ, t)〈ĉ†γ ĉβ ĉ†σ ĉζ〉(τ)U∗βγ(τ, t)

}
. (4.18)

Here, we have introduced the bath-correlation function

Ck,l(τ, t) =
〈{
b̂k(τ) + b̂†k(τ)

}{
b̂l(t) + b̂†l (t)

}〉
=

(
n(ωk, T ) + 1

)
e−iωk(τ−t) + n(ωk, T )eiωk(τ−t), (4.19)

and defined Û(τ, t) = T̂+e
−i

∫ t
τ dt′ĤS(t

′), where T̂+ is the time-ordering operator, and we have

introduced the hermitian operator V ∗βα,k = gαβ,k. Equation (4.18) describes a fermionic system

under the influence of a classical blackbody radiation, where the system can dissipate to or gain

energy from the environment. This Heisenberg equation of motion for the expectation value

of the operator f̂ is quite similar to our NMME for the state of the system. While the terms

important for thermalisation describing the spontaneous emission and absorption of a photon

from the surrounding proportional to n(ωk, T ) and n(ωk, T ) + 1 appear in both equations,

additional terms are present in Eq. (4.18) and the time-ordering operator acts in the memory

integral. Like we have done in Appendix B, one can show that the thermal equilibrium state is

a steady state of this equation of motion when the bath-correlation function fulfils the detailed-

balance relation and no temperature gradient is applied by the blackbodies. One can easily

prove that the detailed-balance condition is satisfied by our correlation function, Eq. (4.19).

Then, without any thermal gradient, the system evolving according to Eq. (4.18) should reach

thermal equilibrium with the free field radiation. On the other hand, when external sources

introduce a thermal force, the system does not to reach equilibrium in general. However, we

expect the system to reach a steady-state regime in the long-time limit. This expectation is

rooted in the observation that stimulated and spontaneous emissions grow when the system is

strongly driven until a balance is reached between the energy absorbed from the external fields

and that emitted.
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4.2 Results

In the following we will demonstrate and test the theory on a model system of fundamental

importance. We will study heat transport induced by the blackbody fields in a small two di-

mensional spin-less tight-binding system sketched in Fig. 4.2. First of all, we check whether

known results are reproduced. For this, we prove that the system relaxes or not in the long-time

limit to its thermal equilibrium, and find that our system also shows a ‘Kramers turnover’-like

behaviour [65, 69]. as expected. The tight-binding sites are labeled by the numbers one to six,

and they are connected via nearest-neighbour hopping. Here, the vector potentials AL and AR

represent the electromagnetic field from two blackbodies at positions x = -∞ and x = +∞ with

temperatures TL and TR, respectively. In addition, the system is embedded in an environment

at temperature TE .

environment at TE

blackbody

at TRat TL

blackbody

x

y 1 2 3

4 5 6

FIGURE 4.2: Sketch of the set-up under consideration. The tight-binding sites are labeled
by 1 to 6 and are connected on the left and right side to two blackbody radiations at different
temperature, TL and TR. At the same time, the system is embedded in an environment at
temperature TE .

As these blackbodies are far away from the system, their fields can be approximated as a su-

perposition of plane waves traveling in positive (or negative) x-direction, weighted according

to their temperature,

AL,R(r, t) = E0

∫
dΩ
√

ΩnB(Ω, TL,R) sin (Ωt± kx+ φ(Ω)) , (4.20)

where E0 = E0ey, and E0 is the strength of the corresponding electric field, ey is the unit vector

in the y-direction, and φ(Ω) ∈ [0, 2π] are uncorrelated random phase factors. As before, nB

is the Bose–Einstein distribution. Here, one might use more realistic, and also complicated,
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models for the correlation of thermal radiation [70, 71]. However as a first test we will work

with this simple model. The vector potentials AL and AR couple to the leftmost and rightmost

sites, respectively, and will introduce a local temperature gradient in the system. Note that

in general the potentials penetrate into the system, but for this small model, we assume that

the system rapidly screens the external radiation. This blackbody radiation enters through the

Peierls transformation of the hopping parameter

T Aij = Tij exp

(
−i
∫ Rj

Ri

dr · (AL(r, t) + AR(r, t))

)
, (4.21)

into the tight-binding Hamiltonian

ĤS =
∑
〈i,j〉

T Aij ĉ†i ĉj. (4.22)

Here, the operator ĉ†i creates an electron at site i with position Ri, and we assume a single

electron to be present in the whole system. The sum 〈i,j〉 denotes summation over nearest

neighbours only.

The coupling to the environmental degrees of freedom will be described by a master equation,

where the power spectrum, essentially the Fourier transform of Eq. (4.19), is given by

Ĉ(ω) =
4|ω|3
c3

[
n(|ω|, TE) + Θ(−ω)

]
(4.23)

for |ω| < ωc, where Θ(ω) is the Heaviside step function and ωc is a cutoff frequency determined

by the dimensions of the system. For |ω| > ωc, the power spectrum is set to vanish. This cutoff

is necessitated by the assumption made in the dipole approximation that the electromagnetic

field is uniform in the region of space occupied by the system. According to Eq. (2.28), the

corresponding coupling operator, entering the master equation, is given by

V̂ = −
∑
i,j

u · 〈Wi|r|Wj〉 ĉ†i ĉj, (4.24)

where |Wi〉 is the single-particle state localised at site i. As we are only interested in the steady-

state energy current through this simple tight-binding system, we approximate the memory

kernel of the non-Markovian equation (4.18) by setting
∫ t
0

dτ f̂(τ)[...]→
∫∞
−∞ dτ f̂(t)[...]. This

approximation does not change the long-time limit of the equation of motion and hence is

suitable to study steady-state dynamics [72]. In order to calculate the energy transport one has
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4.2 Results

to define an energy current in the system via the continuity equation. With the local energy-

density operator,

ĥi =
1

2

∑
〈j〉

(
T Aij ĉ†i ĉj + h.c.

)
, (4.25)

one can define the total current in the x-direction via

ĵxT = − ˙̂
h1 − ˙̂

h4 +
˙̂
h3 +

˙̂
h6, (4.26)

where ˙̂
O = i[ĤS, Ô] + ∂tÔ and 〈j〉 indicates the sum over nearest neighbours. As a first test

of the novel thermal transport theory we examine the relaxation dynamics of the tight-binding

system driven by a left and right blackbody radiation kept at temperature kBT = 10 a.u., the same

temperature as the environment. We choose Tij = 0.5 a.u. as an energy-scale for the system,

and for the coupling to the environment we set γ =
√

2/(πc3) = 0.05. For the energy scale

of the blackbody radiations, we have normalised both left and right radiation with the time-

averaged Poynting vector, 〈S〉, set to 15/(µ0· c). In Fig. 4.3 the dynamics of the occupation

probabilities of the eigenstates of the Hamiltonian (4.22) in the one-electron sector is shown

for the system without thermal gradient. One can see that the system relaxes towards a steady

state, characterised by zero energy transport in the system, which can be seen in the inset of

Fig. 4.3. Here, N indicates the number of realisations of the stochastic noise we have averaged

over to mimic the blackbody radiation in Eq. (4.20).
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FIGURE 4.3: Relaxation dynamics of the occupation probabilities of the eigenstates of the
unperturbed Hamiltonian (4.22). This results have been obtained by averaging over 4 000
realisations of the stochastic noise. The inset shows the vanishing energy current through
the system when the number of runs of the stochastic process, N, increases. (Figure taken
from [73])
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FIGURE 4.4: Dependence of the steady-state energy current on the coupling strength 〈S〉
for kBTE = 10 a.u. and N = 4 000. A turnover in the energy current can be observed.
(Figure from [73])

To further verify the theory we find an expected turnover behaviour as seen in Fig. 4.4 [65, 69].

The turnover can be understood by considering that for small energy flux, when increasing

the flux, more states are excited and can contribute to transport. On the other hand, at large

fluxes, some of the states are fully occupied and are not able to contribute to transport anymore.

At intermediate energy fluxes, a peak of the energy current must be achieved. In general,

this behaviour cannot be described by perturbative theories for thermal transport such as the

Redfield theory [69]. We have set the temperature gradient to ∆T = (TL-TR)/2.

In Fig. 4.5 the energy current is plotted versus the introduced thermal gradient, ∆T , from

the blackbodies. A linear dependence on the thermal gradient can be found for ∆T � T

(see inset). At large ∆T , a maximum in the energy current is reached. This implies that

the system can sustain up to a maximum energy flow fixed the external conditions. Also, the

position of the maximum of the energy current shifts to the right with increasing temperature

of the environment. This might be relevant for technological applications since the maximum

efficiency can be tuned according to the working conditions.

In conclusion, we have presented a novel theoretical framework to investigate thermal and

energy transport, where the thermal imbalance in the system is introduced by the radiation from

two classical blackbodies. Our theory also includes an environment, with which the system can

exchange energy. Through the environment, the fundamental concept of thermal relaxation of

the system is included, which is not the case in other thermal transport theories. The theory can

also be used in different set-ups. For example, we can consider one blackbody only, to adapt to

different experiments. Further discussions and conclusions can be found in chapter 7.
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FIGURE 4.5: Energy current in the tight-binding system of Fig. 4.2 versus temperature
gradient introduced by the blackbody radiation around the environmental temperature TE .
For this plot, we have used 〈S〉 = 15/µ0c close to the maximum current of Fig. 4.4, and
N = 4 000. (Figure from [73])
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Chapter 5

Influence of Decoherence on

Thermo-Electric Transport

Non-equilibrium thermodynamics was developed to understand the flow of particles and energy

between two heat reservoirs. The best-known example of this is Clausius’ formulation of the

second law of thermodynamics stating that heat cannot flow from a cold bath to a hot one. This

is firmly based on the assumption that a macroscopic body in equilibrium is characterised by a

single parameter, called its temperature. When two objects with different temperatures are in

thermal contact, energy will flow from the hotter body to the body with lower temperature. For

macroscopic bodies, the measurement of this process does not influence the flow of energy and

particle between them. However, when moving from macroscopic systems down towards the

length scale where the classical and quantum worlds meet, quantum effects has to be taken into

account. In quantum physics, for instance an electron in an atom can be excited and not excited

at the same time — it can be at two positions at a time. But when one measures it, only one

of the two states is observed randomly and the coherent state is destroyed. This measurement

can be though of an interaction with a classical system that destroys all quantum coherence.

This raises the question of what might happen when the system interacts instead with a small

quantum system, called a quantum observer. This quantum observation might break only lo-

cally quantum coherence continuously by a dynamical process known as decoherence [22].

Depending on how strong and where these quantum measurements are performed, novel quan-

tum phenomena might arise. Decoherence has been shown to affect the efficiency of transport

in molecular devices and biological systems [23]. In order to include decoherence into a ther-

modynamic formalism, the observer is modelled by a quantum decoherence bath. In contrast
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FIGURE 5.1: The considered thermo-electric transport device, where the nine leftmost and
rightmost atoms are connected to thermal baths at temperature TH and TC , respectively.
Due to this temperature imbalance, energy will flow from the hot to the cold side through
the two branches. This device will be used to study interesting phenomena arising from a
local quantum observations on the atomic sites indicated by the blue numbers.

to reservoirs in classical thermodynamics, this quantum bath has no temperature connected to

it [74]. This observer acts as a new source of energy and entropy, which is not only able to

change the flux of energy but also to influence the flows of particle as we will see.

5.1 Formalism

In this section we focus on the influence of a quantum observer on thermo-electric transport in

two nano-scale transport devices and its thermodynamic implications. Unlike previous works

[3], we consider an observer that is interested in knowing if a particle is or is not localised

in only one specific region of a quantum transport device. This is inspired by the double-slit

thought experiment. Therefore, we will consider a quantum transport device with two parallel

branches for transport, as shown in Fig. 5.1. This device is coupled to two heat baths of different

temperatures, TH and TC . Additionally, the device contains one particle in it, and the particle

cannot escape via the baths. This mimics the situation where a device is heated and cooled by

lasers on each side and the particle current is corralled inside the device. The quantum observer

can look for the particle weakly at only one small segment of the devices, in this process,

localising the quantum wave function. With this setup, we study steady-state heat and particle

flow as a function of quantum decoherence on different parts of the device.

This device is modelled by the Hamiltonian

Ĥ =
∑
i

viĉ
†
i ĉi − T

∑
〈i,j〉

(
ĉ†i ĉj + ĉ†j ĉi

)
, (5.1)
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Chapter 5 Influence of Decoherence on Thermo-Electric Transport

where c†i creates an electron at the atomic site i. The hopping parameter T is uniform for the

whole system and vi is the on-site energy. To introduce a thermal imbalance ∆T in the transport

device, we connect the nine leftmost and rightmost atoms to thermal baths kept at temperature

TH and TC , respectively. These temperatures are chosen around an average temperature TE as

TH,C = TE±∆T/2. The applied temperature gradient will drive the system out of its equilibrium

and energy will flow from the hot to the cold reservoir. In order to study this flow, we define

the local energy-density operator

ĥi = −1

2
T
∑
〈j〉

(
ĉ†i ĉj + ĉ†j ĉi

)
+ viĉ

†
i ĉi. (5.2)

The continuity equation

− dĥi
dt

= −i[Ĥ, ĥi] = ĵi,i+1 − ĵi−1,i (5.3)

is used to define the energy-current operator that describes the heat flow from site 12 to 13 [75],

ĵEup =
i

2

[
viĉ
†
12ĉ12 − viĉ†13ĉ13,−T (ĉ†12ĉ13 + ĉ†13ĉ12)

]
(5.4)

+
iT 2

2

([
ĉ†12ĉ13 + ĉ†13ĉ12, ĉ

†
13ĉ14 + ĉ†14ĉ13

]
+
[
ĉ†11ĉ12 + ĉ†12ĉ11, ĉ

†
12ĉ13 + ĉ†13ĉ12

])
.

Analogously, the energy current of the lower branch, jEdown, can be defined. Moreover, by

considering the electronic density, the upper and lower particle current, jpup and jpdown, are given

in the standard way.

To model the coupling to the thermal baths (H and C) and to the quantum observer (D) we use

an equation of motion for the state of the system, ρ̂, similar to the NMME (2.17). As we are

only interested in the steady-state transport regime, we will use a Markovian version of (2.17),

∂tρ̂(t) = −i
[
Ĥ, ρ̂(t)

]
+

∑
a=H,C,D

(
K̂aρ̂(t)Ŝa + Ŝaρ̂(t)K̂†a − ŜaK̂aρ̂(t)− ρ̂(t)K̂†aŜa

)
= −i

[
Ĥ, ρ̂(t)

]
+

∑
a=H,C,D

L̂a[ρ̂(t)]. (5.5)

Here, K̂ is defined for the hot and cold baths by

K̂H,C = λ2
∫ ∞
−∞

dτ CH,C(τ)e−iĤτ ŜH,C e
iĤSτ . (5.6)

As before in this thesis, the thermal baths are modelled by assuming that the electronic system
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5.1 Formalism

is in contact with the radiation inside a cavity. The corresponding coupling operator and bath-

correlation function have been derived in section 2.3. In order to model the local coupling of

the thermal baths to a specific region, either to the left (H) or the right side (C) of the system,

we modify the coupling operator in Eq. (2.28) by

ŜH,C = −q u · r̂MH,C(r̂). (5.7)

Here, the introduced mask function MH,C(r̂) is either one, for r ∈ (H,C), or otherwise zero.

In addition, u is the polarisation direction of the modes in the cavity, which is parallel to the

branches. In order to model the local observation at site k within the same formalism, we

consider the quantum decoherence bath with∗

K̂D =
1

2
γ2D|k〉〈k|, (5.8)

where γD is the coupling strength and |k〉 is the wave function that describes a particle located

at site k. In this way the local observer breaks quantum coherence only locally at site k.

∗The coupling strength of the thermal bath, λ, and of the observer, γD, indicate how strong the thermal baths
acts in comparison to the local observer. As the master-equation approach is perturbative, both should be small.
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Chapter 5 Influence of Decoherence on Thermo-Electric Transport

5.2 Results

Figure 5.2 shows the dependence of the steady-state particle and energy current on the decoher-

ence strength γD and the applied temperature gradient ∆T. We have chosen vi = 1 eV = 0.037 a.u.,

T = 0.5 eV, kBTE = 0.008 a.u. and λ = 0.2. In plots (a) to (c) the local measurement is done at

site 10, indicated by the eye. In Fig. 5.2 (c) the particle current in the upper branch is plotted

versus the temperature gradient (x-axis) and the decoherence strength (y-axis). Without a local

observation, γD = 0, no steady-state particle current is flowing in the upper branch. When a

local observation is performed at site 10, a particle current starts to flow in the upper branch

from the left to right side, indicated by a positive current in red. As this is a steady-state current

and the particle is conserved inside the system, the corresponding current in the lower branch

must be exactly the opposite of it. This means a particle ring-current is created which is flowing

in clockwise direction as a result of the local measurement. This ring-current can be enlarged

by increasing the decoherence strength. In Fig. 5.2 (b) the energy current is shown versus γD

and the temperature gradient. While the curved upper surface corresponds to the energy current

in the upper branch of the device, jEup, the flat contour-plot below corresponds to the energy

current in the lower branch. Also here, a positive current (red) indicates a flow from left to

right, while a negative heat current (blue) indicates that energy is flowing from right to left.

Without observing the system, γD = 0, the energy currents in both branches are directed from

the left to the right reservoir. In accordance with the second law of thermodynamics, heat flows

from the hot to the cold region. By letting the quantum observer measure the system locally at

site 10, this energy flow is increased in its natural direction.

Surprisingly, this situation changes strongly when the observation is instead performed at site

14, as shown in Fig. 5.2 (d)–(f). Here, the local measurement creates an electrical ring-current in

counter-clockwise direction, as seen in Fig. 5.2 (f). That is, depending on where the observation

is done, the direction of the electrical current can be controlled. This effect is a consequence

of the localisation of the electronic wave function due to the quantum observation. Note that

the electron density is around four times higher at sites in the leads compared to the sites in the

branches. Therefore, when the quantum observer acts on site 14 as in Fig. 5.2 (d), the electron is

pulled out of the right lead and provided with kinetic energy. An electronic current start to flow

in the upper branch from the right lead to the left lead. However, when instead the measurement

is done at site 10, close to the left lead, the observer takes out the electron from the left lead

and the current flows in the opposite direction. An even more interesting effect happens if we
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FIGURE 5.2: Particle and energy steady-state currents. While in (a)–(c) the observation
is performed at site 10, in (d)–(f) the quantum observer acts on site 14. Plots (c) and (f)
show the particle current in the upper branch as a function of the thermal imbalance and
the decoherence strength. Plots (b) and (e) show the steady-state energy current in the
upper branch (curved surface) and lower branch (flat surface below). Depending on where
and how strong the measurement is done, the particle and energy currents can be modified
separately.

look at the heat flows in the upper and lower branches of the device in Fig. 5.2 (e). When

no observation is performed (triangle 1 in Fig. 5.2 (e)), heat flows from the hot to the cold

reservoirs in both branches. By increasing the strength of the local observation at site 14, we

are able to reverse both heat currents in the upper and lower branch (triangle 3). This leads to

a situation where the energy flows from cold to hot, against the thermal gradient. Additionally,

for intermediate γD (triangle 2) we are able to introduce also energy ring-currents in counter-

clockwise direction. These results indicate that particle eddies can be created and controlled by

the presence and location of the quantum decoherence. Note that a classical thermal bath is not

able to introduce this particle ring-current, while the quantum observer is capable to influence

not only the flows of energy but also the flow of particles.
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Chapter 5 Influence of Decoherence on Thermo-Electric Transport

Another promising applications of thermo-electric transport devices at the nanoscale are quan-

tum ratchets that have been studied to control the transport of particles and heat [76–78]. A

ratchet is a transport device that can produce directed flows induced by thermal or quantum

fluctuations [79]. In order to model such a ratchet we introduce a spatial asymmetry in our

transport device. Therefore, we change the on-site energy levels on the parallel tracks of the

device as can be seen in Fig. 5.3 (a). In the upper branch (sites 10–14), the on-site energy in-

creases per site per 10 % from the left to the right as can be seen on the diameter of the sites. In

the lower branch instead, the on-site energies increase from the right to the left. Therefore, we

create a quantum ratchet by adding two rectifiers on each branch facing in opposite direction.

This could be experimentally realisable with techniques developed for constructing quantum

ratchets in graphene [80], atom traps [81] or for molecular junctions [82]. We chose this type

of anti-parallel ratchets configuration to break the top-down symmetry and therefore illustrate

the differences of observing in the top or bottom branches. Figure 5.3 (c) shows that even

without a quantum observer, an electrical current flows in clockwise direction. This is because

the ratchet acts similar to the principle of a “salmon ladder”. For instance in the upper branch

there is a small probability of the particle to hop from the left side each step up the ladder due

to thermal fluctuations, but there is a very low probability for the particle on the right side to

climb up the big drop of the ladder to then go down the ladder. Most interestingly, by adding

quantum decoherence on site 14, at the top branch, the particle current changes direction, going

against the natural direction of the ratchet, as can be seen in Fig. 5.3 (c). The energy currents,

as illustrated in Fig. 5.3 (b), have similar regimes as before. As a function of decoherence, both

upper and lower energy current can go with and against the thermal gradient. In Fig. 5.3 (b)

also an intermediate regime can be seen, where the energy current flows as a ring current. As

before, the situations changes when the observation is instead performed at site 28, in the bot-

tom branch. The particle current in Fig. 5.3 (f) is always in the preferred direction of the ratchet,

but this current can be significantly increased with stronger observation strength. Comparing

the particle flow in (f) to that in (c) highlights how dramatic the flows can change depending

on where the observer is acting. Figure 5.3 (e) shows how the energy current has regimes both

with the thermal gradient and against, but also decoherence regimes where the energy flows in

opposite directions in the top and bottom branches.

We demonstrated the influence of a quantum observer on the flow of energy and particles in

two transport devices. Here, the position where the observer acts controls the flow of particles,

leading to clockwise or counter-clockwise electrical currents inside the device. In addition, by

48



5.2 Results

151

3 6

4

9

7

10 11 12 13 14

24 25 26 27 28 18

2 5 8 16 19 22

2017 23

21

TH TC

best, ratchet

151

3 6

4

9

7

10 11 12 13 14

24 25 26 27 28 18

2 5 8 16 19 22

2017 23

21

TH TC

best, ratchet

kB�T (10�4a.u.)

�D

jp u
p

(1
0�

9
a
.u

.)

+

jE
(1

0�
8

a
.u

.)

kB
�
T

(1
0
�4
a.
u.
)

�D

jE
(1

0�
8

a
.u

.)

kB
�
T

(1
0
�4 a.u

.)

�D

kB�T (10�4a.u.)

�D

jp u
p

(1
0
�

1
0

a
.u

.)

-

+

(a)

(b)

(c)

(d)

(e)

(f)

jE
up

jE
up

jE
down jE

down

FIGURE 5.3: Particle and energy steady-state currents. Influence of a quantum observation
on the thermo-electric flows in a quantum ratchet. In the subplots (a)–(c) the observation is
performed at site 14, while in (d)–(f) the observer acts on site 28.

controlling the strength of decoherence in some configurations, we can change the direction of

the energy flow even leading to a heat flowing from a cold reservoir to a hot one. It may appear

that some of the previous results violate Clausius’ formulation of the second law of thermo-

dynamics. Obviously, this is not the case, and to clarify this we will examine the behaviour

in terms of non-equilibrium thermodynamic concepts in the quantum regime. Therefore, we

review the entropy production rate equation [83] in its more general form,

Ṡ = Φ + P. (5.9)

Here, S is the total entropy of the system and Φ is the net entropy flow into the system. Further-

more, P is the entropy production rate due to irreversibility inside the system, and it is always

non-negative. For a system at steady state between two temperatures, TH and TC , Ṡ is equal to

zero and

Φ = ΦH + ΦC = −Q̇H

TH
− Q̇C

TC
. (5.10)
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Here, Q̇H and Q̇C are the heat flows to the hot and cold reservoirs, respectively. This leads to

Q̇H

TH
+
Q̇C

TC
= P ≥ 0. (5.11)

In the case that the only energy exchange happens via the two baths, the continuity equation,

Q̇H = −Q̇C , leads to the familiar relationship of the second law of thermodynamics: heat goes

from hot to cold bodies through the system. However, by adding quantum decoherence, it is

possible to have heat flowing in more complicated ways, even against the thermal gradient.

This is because decoherence can create a heat flow without a temperature associated with it.

This changes the continuity equation to Q̇H + Q̇C + Q̇D = 0. However, the addition of this bath

does not add a new entropy flow to Eq. (5.10). Instead, it does change the entropy production

P by adding irreversibility to the system. To show this, we examine the entropy flow of the

decoherence bath. For the coupling described by a master equation, the entropy flow into the

system due to the local observer can be written as [74]

ΦD = −Tr
[
L̂D[ρ̂]σ̂D

]
. (5.12)

Here, σ̂D is the stationary state of the decoherence bath that couples to site k, σ̂D = |k〉〈k|, and

L̂D is defined in Eq. (5.5) and given by

L̂D[ρ̂] = γ2D

(
〈k|ρ̂|k〉|k〉〈k| − 1

2
|k〉〈k|ρ̂− 1

2
ρ̂|k〉〈k|

)
. (5.13)

Inserting the former equation into Eq. (5.12) gives ΦD = 0. This means that a decoherence

bath changes the energy flow in the system, without having an entropy flow connected with it.

Thus, a local observation can directly change the entropy production inside the system, P. This

allow us to add disorder to the system by purpose and we have seen that this leads to new types

of dynamical states, such as particle ring-currents in our quantum device. This reminds on

the early works of Prigogine [83]: “Irreversible processes may lead to a new type of dynamic

states of matter called ‘dissipative structures’ ”. These dissipative structures have been used

to explain non-equilibrium systems such as living organisms or hurricanes [84]. The role of

having an observer looking can be used to change the thermodynamics of a system. However,

this can be exploited even further in the quantum regime by breaking coherence at only some

parts of the system: Irreversibility is added only to certain regions of the system. This changes

the dynamics of the system by modifying the flows of particle and energy such that it gives

rise to new regimes analogous to dissipative structures, except that here it comes from a purely
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quantum source. Our quantum-observer effect might be a good example of the fact that disorder

may be a source of order and the first occurrence of dissipative structures at the quantum level.

To summarise, we demonstrated how a quantum measurement can change the direction and

magnitude of heat flows, even having it going against the temperature gradient, depending on

where and how strong these observations are. We also show how, under these observations,

particle ring-currents can be created and controlled. Therefore, the choice of location of these

quantum measurements can provides full control of the direction of the energy flow and of the

particle currents separately. Even though this seems baffling from a thermodynamic point of

view, by treating quantum measurements as a thermodynamic bath we clarify this. Creating

and controlling particle ring-current could lead to novel ways to generate and control mag-

netic fields [85]. Additionally, studying the role of decoherence may lead to advances in novel

thermoelectric devices operating at the quantum scale. This study also highlights the role of ob-

servers in quantum systems. From a fundamental point of view, it illustrates how Schrödinger’s

cat paradox has important implications for thermodynamics as well as for transport at the nano-

scale.
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Chapter 6

Optical and Electronic Properties of

Layered 2D Materials

In the previous chapters, we have studied the interaction of model fermionic or bosonic sys-

tems with radiation, where the quantum nature of the latter has been important. There, we

have treated the radiation within different approaches, ranging from the classical treatment via

minimal coupling over deterministic quantum methods within master equations, to quantum

stochastic methods within the stochastic Schrödinger equation. In this last chapter of the thesis

we will consider instead the interaction of real materials with light. While we will treat the ra-

diation classically, which is a good approximation for the coupling of fields of high intensity to

macroscopic systems, we will improve on the description of the electronic system by modelling

it from first principles via DFT and the GW approximation. The theoretical investigation of the

interaction of real materials with light will give us insights into optical absorption behaviour,

electronic properties and excitonic effects and allow us to compare with modern experiments.

I will introduce in section 6.1 the full electronic many-body problem, for which a complete

description may be obtained by solving the Schrödinger equation directly. Due to the large

number of degrees of freedom, the N-particle wave function is much too large to be stored

numerically. Moreover, it contains much more information than necessary for calculating rel-

evant physical properties. DFT provides an alternative description of many-body systems in

terms of the electronic density, circumventing the computational costly task of finding the elec-

tronic many-body wave function via the solution of the Schrödinger equation. This theory is

in principle exact, yielding the same physical observables as the standard quantum-mechanical
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approach at the price of having to approximate an unknown but universal exchange–correlation

density-functional. As the thesis is not mainly about the fundamentals of DFT, but it is used in

this last chapter, I will explain only briefly the underlying concepts and refer to further literature

about the details of DFT and many-body perturbation theory.

As an extremely interesting system to study the interaction of real materials with light, layered

2D materials have been chosen. The reason for choosing those materials is twofold: One the

one hand, 2D materials have established their place as candidates for the next generation op-

toelectronic devices. They present outstanding mechanical and electrical properties and can be

easily integrated with conventional silicon technologies. Comparing them to the their higher

(3D) and lower (1D) dimensional counterparts, those materials offer high electric field tun-

ability. In addition, layered materials often bring new functionalities and applications beyond

those of industry standard transistors and photodetectors such as stronger light–matter inter-

action [25, 26], flexibility and transparency [27, 28], and the opportunity to combine layered

materials into van der Waals heterostructures [86, 87]. A family of these materials are the

transition metal dichalcogenides (TMDCs), as for instance, MoS2, MoSe2, WS2, and WSe2.

TMDCs have shown semiconducting properties, like a direct gap and tunability, superior to

certain extent to those of graphene and could form a basis for novel transistors and photode-

tectors. Ideally, these materials should have a gap comparable with that of Silicon to ease the

integration on the existing technology. However, TMDCs show a direct bandgap only when

reduced to the single layer form due to interlayer interaction, which might limit their system-

atic use. The broad family of layered materials is only so far barely explored and there still

exist many members that remain to be investigated [88]. The group IV trichalcogenides, for

instance, are interesting when compared with the well-studies TMDCs because in particular

titanium trisulphide, TiS3, present a direct gap of 1 eV in bulk and few layered samples [89].

Additionally, TiS3 shows an extremely fast optical response: an ideal property for the next gen-

eration of photodetectors [90–92]. Moreover, trichalcogenides have reduced in-plane bonding

symmetry which again differentiates them from the more well-known TMDCs and it has been

predicted that TiS3 could be a promising electrode material for Li and Na in batteries [93], as

photoelectrode for H2 photogeneration [94], and nano-electronics and optics [95], presenting

also strong anisotropic behaviour and non-linearity both in the electronic and optical properties

[91, 92, 96, 97].

Therefore, we will study the optical and electronic properties of TiS3 in section 6.2 to 6.5. In

section 6.2 we will demonstrate (experimentally) and investigate theoretically the control over
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Chapter 6 Optical and Electronic Properties of Layered 2D Materials

the morphology of TiS3 by changing the temperature during the growing process. At a growth

temperature of 400 ◦C the material displays a 2D morphology of flower-like nanosheets whereas

at higher growth temperature (500 ◦C) TiS3 shows belt-like nanoribbon structure. Most interest-

ingly, the nanoribbons and nanosheets also display different electronic and optical properties.

FIGURE 6.1: The three different atomic structures under investigation. Bulk TiS3 is a
layered material where the different layers are essentially weakly interacting. The unit-cell
vectors for the bulk are shown in the left figure. For monolayer and bilayer structures the a
and b vectors are essentially the same.

In addition, we will investigate in section 6.3 with a combination of ab initio and experimental

methods, the effect of compressive and tensile strain on few layered TiS3. We found that it is

extremely sensitive to external conditions and this can become of extreme interest for tailoring

both the electronic and optical properties of TiS3 based devices. Those results can be of highest

significance to the community of two-dimensional materials, fast photodetectors as well as

battery technology.

After the investigation of the electronic properties of TiS3, we will present in section 6.4 and

6.5 a combined study of the electronic and optical bandgap of layered TiS3. While in section

6.4 we study the in-plane anisotropy of the electrical and optical properties of few-layer TiS3

flakes, in section 6.5 we concentrate on the excitonic effects to determine its exciton binding

energy. Therefore, we combine scanning tunnelling spectroscopy and photo-electrochemical

measurements with GW and BSE calculations. We find in good agreement between theory

and experiment a binding energy of the order of 100 meV, which is orders of magnitude larger

than that of common semiconductors and comparable to bulk TMDCs, making TiS3 a highly
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6.1 Density Functional Theory and Beyond

interesting material for optoelectronic application and for studying excitonic phenomena even

at room temperature.

Last but not least, in section 6.6 we study another member of the 2D materials, namely, In2Se3.

This material is a very interesting direct gap semiconductor with promising application in ultra-

violet photodetection. We report an observed variation of the optical bandgap due to quantum

confinement, which is among the largest reported to date in 2D semiconductors materials, com-

parable to this of atomically thin black phosphorus.

While the experiments have been done by our collaborators, all calculations and theoretical

investigation have been performed by me under the supervision of Roberto D’Agosta. The

plane-wave code Yambo [98] is used to calculate quasiparticle corrections and optical prop-

erties, while the electronic structure calculations and structure optimisations have been per-

formed by the DFT pseudopotential plane-wave method as implemented in the PWSCF code

of the Quantum-Espresso package [99]. All the configurations are ionically relaxed using the

Broyden–Fletcher–Goldfarb–Shanno’s procedure available within the Quantum-Espresso pack-

age.

6.1 Density Functional Theory and Beyond

Let us consider a system of N electrons subjected to an external potential vext(r) described by

the Hamiltonian

Ĥ(r1, r2, ..., rN) =
N∑
j

(
− 1

2
∇̂

2

rj
+ vext(rj)

)
+

1

2

N∑
j 6=k

1

|rj − rk|
. (6.1)

Here, the external potential includes the attraction between electrons and the fixed nuclei and

any external electric fields. The last term of Eq. (6.1) describes the electron–electron interac-

tion, V. The solution of the time-independent Schrödinger equation gives the energy eigenvalues

Ei and the eigenstates of the system

Ĥ|Ψi〉 = Ei|Ψi〉, (6.2)

where the state corresponding to the lowest energy eigenvalue E0 is called the ground state.

Unfortunately, this many-body wave function depends on all 3N coordinates. The storage and
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Chapter 6 Optical and Electronic Properties of Layered 2D Materials

handling of such a function, even for relatively small systems, is intractable. As an example,

let us think of a system of seven electrons (a simple nitrogen atom) with its 21 coordinates. If

we discretise the space in ten entries per direction, its wave function has 1021 entries. If we

further assume that it takes one byte per entry, we would need around 2×1011 DVDs to store

the ground-state wave function. This imaginary collection of DVD’s would weight around a

million tons. Hence, to study successfully the properties of our electronic system one would like

to calculate the expectation values of the relevant operators indirectly, i.e., without calculating

the wave functions itself. The Hohenberg–Kohn theorem states that the ground-state electronic

density,

n0(r) =

∫
|Ψ0(r, r2, ..., rN)|2dr32...dr3N , (6.3)

alone already determines the external potential and hence the many-body Hamiltonian and all

ground-state properties uniquely [100]. In principle every observable can be calculated from

n0 of a system alone. DFT is based on the Hohenberg–Kohn theorem, and it is based on the

knowledge of the density n0(r) instead of the full many-body wave function of the N-particle

system. The Hohenberg–Kohn theorem is an existence and uniqueness theorem: it proves that

the ground state of the system can be obtained from its density alone, however, it does not

tell us how to do so in practice. To overcome this impasse, Kohn and Sham [101] proposed

the use of an auxiliary non-interacting system instead, the Kohn–Sham (KS) system, with the

same density as the interacting system. The essence of the KS scheme is that the ground-state

density of the interacting system of interest can be calculated as the ground-state density of the

auxiliary KS system of non-interacting particles which are moving in a local effective potential

by solving self-consistently the set of KS equations [101],

ĥKS|φi〉 = εi|φi〉, (6.4)

ĥKS = −1

2
∇̂

2
+ vext(r) +

1

2

∫
dr′3

n(r′)

|r− r′| + vxc[n](r), (6.5)

n(r) =
N∑
j=1

|φj(r)|2, (6.6)∫
dr3n(r) = N. (6.7)

Here, the KS wave functions φi and eigenvalues εi do not, in general, have a direct physical

meaning. However, these wave functions can be used to construct the true density of the inter-

acting system according to Eq. (6.6). The difficulty of the original problem is transferred into

the unknown exchange and correlation potential, vxc[n](r). In principle the solution of the KS
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6.1 Density Functional Theory and Beyond

equations with the exact exchange–correlation potential, would yield single-particle eigenstates

whose electronic density is the same as that of the interacting system. The exact xc-potential,

including all non-trivial many-body effects, is unknown and has to be approximated. The KS

scheme provides very good results for the ground-state energies and densities for a large variety

of systems. However, the eigenvalues obtained from the solution of the KS equations, except

for the highest occupied (which equals the negative of the vertical ionisation energy of the sys-

tem [102, 103]), do not have any physical meaning. When KS eigenvalues are used to calculate,

for example, the electronic bandgap of semiconductors the results may have significant errors.

Usually, bandgaps are underestimated by DFT and the quality of the band structure depends

strongly on the studied material. In order to obtain accurate bandgaps we have to go beyond the

KS scheme and employ a quasiparticle (QP) description. The QP energies are those needed to

add or remove an electron from the system. These energies are experimentally accessible via

direct and inverse photo-emission experiments.∗ We will briefly describe the QP concept within

Many-Body Perturbation Theory (MBPT) by discussing the Green’s-function formalism, the

self-energy concept and the GW approximation. We suggest to the reader Refs. [104] and [105]

for a deeper discussion on many-particle physics. Furthermore, we will consider briefly how to

include the electron–hole binding by going beyond the GW approximation.

While DFT is an effective one-particle scheme and in principle capable to predict ground-state

properties correctly, it often fails to accurately predict properties of the excited system or the

absorption of light. In order to go beyond DFT for the calculation of electronic excitations, the

GW approximation is nowadays widely used. In the GW method, the key ingredients are the

screened Coulomb interaction W and the one-particle Green’s functions G. The latter contains

more information than a simple density, but much less than the many-body wave function.

Besides the physical quantities already accessible through the density, one-particle Green’s

functions make accessible the single-particle excitation spectrum, that is, the band structure.

Moreover, in order to calculate optical absorption spectra of insulators and semiconductors,

one needs to include the binding between the excited electron (in the conduction band) and the

hole that it leaves behind in the valence band. The electron and the hole can interact so strongly

that they will form a bound state, called an exciton. To describe these excitonic effects, one

∗As an interesting side note that does not get mentioned often enough in this context: Bandgaps are not the
result of a single experiment but of two separate quite different measurements (direct and inverse photo-emission
spectroscopy). As such, one could argue that the bandgap is not even an observable, and the often proclaimed
“failure” of DFT is a moot point. DFT is not designed at all to give electronic bandgaps, not even bandstructures.
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Chapter 6 Optical and Electronic Properties of Layered 2D Materials

should resort to a two-particle formalism by solving the Bethe–Salpeter Equation (BSE) for

the two-particle correlation function.

In the following, we will describe the basic concepts of MBPT, by introducing the one-particle

Green’s function and the self-energy Σ, which is a non-hermitian operator containing all the

correlation and exchange effects of the many-body system. The Green’s function gives access

to the QP excitation energies and band structure. In order to calculate the Green’s function one

can solve for instance Hedin’s equations. A widely used approximation to solve these equations

is the GW approximation. In this thesis, I will not describe in detail the theory of two-particle

Green’s functions or the BSE, but I will state the fundamental assumptions in order that the

reader is able to follow its application later in this chapter. A more detailed discussion of the

basic physical ideas reviewed in this section can be found in MBPT textbooks [104, 106] and

the reviews of Strinati [107] or Onida [108].

In contrast to the non-interacting KS system of DFT, in MBPT a particle interacts with and

perturbs the particles in its surroundings. In the MBPT picture, the QP can be thought of as

a particle moving through the system, enclosed by a cloud of other particles that are being

pushed away or dragged along by its motion. This whole entity moves through the system

like a weakly interacting particle [109], called a QP. The interacting-particle problem can be

described via weakly interacting QPs, described by a screened potential W rather than by the

bare coulomb potential, V. This allows us to perform a perturbative expansion with respect to

the weak QP interaction. The one-particle Green’s function expresses the probability for the

propagation of a QP from position r2 at time t2 to r1 at time t1 (for t1 > t2) and is defined (at

zero temperature)

G(1, 2) = −i〈N |T̂ [ΨH(1)Ψ†H(2)]|N〉, (6.8)

where 1 = {r1, t1}. Here, |N〉 is the ground-state vector of the N-particle interacting system,

ΨH is the annihilation field operator in the Heisenberg picture,

ΨH(r, t) = eiĤtΨ(r)e−iĤt, (6.9)

and T̂ is the time-ordering operator. One can define an equation of motion for the one-particle

Green’s function by using the functional derivate technique [107, 110]. This equation of motion

depends on the two-particle Green’s function that describes the correlated propagation of two

QPs. Consequently, in order to solve the equation of motion one has to deal with a hierarchy

of equations for Green’s functions of all orders. However, it is possible to formally close this
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6.1 Density Functional Theory and Beyond

hierarchy by introducing the self-energy Σ through the Dyson equation,

G(1, 2) = G0(1, 2) +

∫
d(3, 4)G0(1, 3)Σ(3, 4)G(4, 2), (6.10)

where G0 is the Hartree Green’s function, solution of the Hartree system (defined by ĥ0 =

−1
2
∇̂

2

r + vext(r, t) + VH(r)),

[ω − ĥ0(r1)]G0(r1, r2, ω) = δ(r1 − r2), (6.11)

with VH as the Hartree potential. In the Dyson equation (6.10) the correlation and exchange

contributions are accounted for via an operator that is in principle unknown, the self-energy

Σ. The Green’s function can be expressed in the basis of energy-dependent wave functions,

φi(r, ω), which form an orthonormal and complete basis set for each ω

G(r1, r2, ω) =
∑
i

φi(r1, ω)φ∗i (r2, ω)

ω − Ei(ω)
, (6.12)

where the wave functions and the energies Ei are solutions of the equation

ĥ0(r)φi(r, ω) +

∫
dr′3Σ(r, r′, ω)φi(r

′, ω) = Ei(ω)φi(r, ω). (6.13)

As Σ is a non-hermitian operator the energies Ei are in general complex and the imaginary part

gives the lifetime of the excitation. If the energy spectrum presents sharp peaks, Ei(ω) ≈
EQP
i , we arrive at the QP equations

ĥ0(r)φ
QP
i (r) +

∫
dr′3Σ(r, r′, EQP

i )φQP
i (r′) = EQP

i φQP
i (r). (6.14)

Solving these equations provides the QP energies and band structure. However, the self-energy

is unknown and the MBPT gives us a practical scheme to solve such a task. This scheme, also

called Hedin’s equations, consists of five coupled integral equations for the self-energy Σ, the

screened interaction W, the polarisability P, the vertex function Γ, and the Green’s function
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[111],

Σ(1, 2) = i

∫
d(3, 4)G(1, 4)W (1, 3)Γ(4, 2, 3), (6.15)

G(1, 2) = G0(1, 2) +

∫
d(3, 4)G0(1, 3)Σ(3, 4)G(4, 2), (6.16)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d(4, 5, 6, 7)

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3), (6.17)

P (1, 2) = −i
∫

d(3, 4)G(1, 3)G(4, 1)Γ(3, 4, 2), (6.18)

W (1, 2) = V (1, 2) +

∫
d(3, 4)W (1, 3)P (3, 4)V (4, 2), (6.19)

which have to be solved self-consistently. Here, the polarisation P represents the variation of

the induced density with respect to a variation of the external plus Hartree potential,

P (1, 2) =
δn(1)

δ
(
vext(2) + VH(2)

) , (6.20)

and is related to the dielectric function by

ε(1, 2) = δ(1, 2)−
∫

d(3)V (1, 3)P (3, 2). (6.21)

Furthermore, the dielectric function is linked to the screened Coulomb potential via W = ε−1V.

One strategy to solve Eqs. (6.15)–(6.19) would be to start with Σ = 0 and calculate in the order,

first the Green’s function G (at this step G0), then the vertex function (only a δ-function), the

independent particle polarisability P0) (also called Random Phase Approximation polarisabil-

ity), the screening W0) and the self-energy Σ = iG0W0, which is now updated. This procedure

can be repeated and solved self-consistently, keeping the vertex function proportional to the

δ-function. However, in practice one typically stops after one iteration. This approximation

is called the non-self-consistent G0W0 approximation [112], or simply G0W0. In the GW ap-

proach the existence of polarisation effects that screen the propagation of an extra particle is

explicitly taken into account, so that GW is a dynamically screened approximation. Note, when

performing G0W0 calculations, also called single-shot GW, the resulting QP corrections to the

band structure are starting point dependent. For this reason, the choice of the mean-field results,

in general the KS eigenvalues and eigenfunctions employed to calculate G and W, is quite im-

portant. Clearly, this procedure is justified when the starting wave functions are already close to

the QP ones. This is indeed the case in many systems, and therefore G0W0 has been extremely
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6.2 TiS3 Transistors from Nanoribbons or Nanosheets

successful in describing electron addition and removal energies for metals, semiconductors and

insulators [113–115], and is one of the methods of choice for the description of direct and

inverse photoemission experiments [116–118].

The GW approximation has led to important improvements in the description of band-gap ener-

gies and single-particle excitations effects. However, GW may fail to describe neutral excitation

spectra, such as absorption spectra, for systems with significant electron–hole binding. This is

because the GW method, both single-shot and self-consistent, describes excitations that change

the number of particle of the system, by adding or removing an electron. However, reflectivity,

absorption and fluorescence spectroscopies involve neutral excitations, where the total number

of electrons in the system is constant. Such processes are two-particle excitations. For a proper

description of such excitations it is necessary to include the vertex function Γ in Eq. (6.18).

This inclusion via Hedin’s equation (6.17) is crucial for the accurate description of two-particle

excitations. This is the aim, and the success, of the BSE [119] by taking a second iteration in

Hedin’s equation. For a general review we refer to references [107] and [120]. The solution

of the BSE yields very accurate results in the calculation of optical properties of solids with

continuum and bound excitons, in bulk and nano-structured systems (see reference [120] and

references therein).

6.2 TiS3 Transistors from Nanoribbons or Nanosheets∗

In our article [91], we demonstrate the control over morphology of TiS3 to obtain nanosheets

with large surface area which facilitates the exfoliation of TiS3 down to a single layer. Films of

TiS3 can be obtained by the reaction of titanium with sulphur [121]. In the presence of sulphur

excess (more than 75 at% of sulphur) and at a temperature below 632 ◦C, TiS3 starts to grow

[122]. As seen in Fig. 6.2, the form of the obtained TiS3 depends strongly on the temperature

during the growing process. In this figure, scanning electron microscopy (SEM) images of

separate TiS3 samples grown at 400 ◦C (Fig. 6.2 (a)), 450 ◦C (Fig. 6.2 (b)) and 500 ◦C (Fig. 6.2

(c)) are shown.
∗This section is a part of the article

“TiS3 transistors with tailored morphology and electrical properties”, Advanced Materials 27, 2595–2601 (2015),
by J. O. Island, M. Barawi, R. Biele, A. Almazán , J. M. Clamagirand, J. R. Ares, C. Sánchez, G. A. Steele, H. S.
J. van der Zant, J.V. Alvarez, R. D’Agosta, I. J. Ferrer, and A. Castellanos-Gomez
Here, we discuss only part of the work relevant for the thesis. Further experimental details can be found in the
article and the supporting material.
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FIGURE 6.2: SEM images of the TiS3 film grown at (a) 400 ◦C (nanosheets), (b) 450 ◦C,
and (c) 500 ◦C (ribbons). (d) Mobility versus ON/OFF ratio for nanoribbons and sheets. (e)
Responsivity versus wavelength for two representative devices for both nanoribbons and
nanosheets using a 500µW laser excitation. (Figure reused from our article [91])

These plots indicate that at a growth temperature of 400 ◦C the material displays a 2D morphol-

ogy of flower-like nanosheets whereas at higher growth temperature (500 ◦C) TiS3 grows as

belt-like nanoribbons. The electronic properties of the two morphologies (1D nanoribbons and

2D sheets) are compared by fabricating field-effect transistors (FETs) of the same approxi-

mate thickness but different morphology. Measurements at room temperature are then made in

a vacuum probe station. In order to compare the electrical properties between the ribbons and

sheets, measurements are made along the same axis. The b-axis, which correspond to the high

mobility axis, has been determined in order to measure the transfer curves of the FET devices.

From this, the FET mobility has been extracted through,

µ =
L

WCiVb

∂I

∂Vg
, (6.22)

where L is the channel length, W the channel width, Ci is the capacitance to the gate electron,
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6.2 TiS3 Transistors from Nanoribbons or Nanosheets

and Vb is the voltage bias. On the one hand, for the nanosheet FET a resistivity at zero back-

gate voltage of 0.09 Ω, mobility of 73 cm2 V-1 s-1 and a ON/OFF current ratio of five has been

measured. While on the other hand, for the ribbon device a resistivity of 56 Ω, which is two

orders of magnitude larger than the sheet device and a mobility of 0.5 cm2 V−1 s−1, have been

found. Furthermore, the ON/OFF ratio for the nanoribbon FET is around 300 (at a bias voltage

of 1 V). Exploring further the difference in the electronic properties, we plot the mobility versus

the ON/OFF ratio in Fig. 6.2 (d) for all measured ribbon and sheet devices. This scatterplot

demonstrates a clear difference between the ribbons (grown at 500 ◦C) and the sheets (grown at

400 ◦C). While the sheets have a more doped semiconductor behaviour (high mobility and low

ON/OFF current ratio), the nanoribbons have a more semiconducting behaviour (low mobility

and a high ON/OFF ratio). Furthermore, the photoresponse is measured. In Fig. 6.2 (e), we

plot the responsivity versus the excitation wavelength for a representative ribbon and sheet FET

device. Here, the responsivity R = Iph/P is measured with the same biasing conditions for each

device (Vb = 100 mV, Vg = 40 V). Here, Iph is the photocurrent and P is the power of the laser.

The nanoribbon device has a responsivity which is two order of magnitude larger than the sheet

device. A plausible explanation of the low ON/OFF current ratio, high mobility and reduced

photoresponse of the nanosheet grown at 400 ◦C might be the presence of sulphur vacancies

which have been shown to induce a strong n-type doping in dichalcogenides [123–126].

In order to understand and clarify those findings, we performed first-principle investigations of

the electronic structure of TiS3. The electronic band structure for the clean TiS3 and the system

FIGURE 6.3: (a) Electronic band structure for the clean TiS3. (b) Electronic band structure
for the doped TiS3 with sulphur vacancies. It is seen that the presence of the vacancy creates
a localised electronic state below the Fermi energy (green), therefore the S vacancy acts as
n-dopant. (Figure reused from [91])
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with a fairly large density of S vacancies (2%) are reported in Fig. 6.3. Comparing Fig. 6.3

(a) and (b), it is seen that the presence of the vacancy creates a localised electronic state below

the Fermi energy, therefore the S vacancy acts as n-dopant. Indeed, this state in fully occupied,

and it increases the free carrier (electron) density. On the other hand, the vacancies do not

affect the direct gap at the Γ-point that remains about 0.8 eV, as the localised vacancy state

has a fairly small density of states. Therefore, it is unlikely detected during the measurement

of the optical gap. Indeed, the bandgap from UV-vis measurements is the same in the two

samples. In addition, the calculated energy difference between the ground state energy for the

clean and doped TiS3 is about 300 meV which indicates that the vacancy will most likely be

filled in a S rich atmosphere at large temperature. Indeed, in a S rich atmosphere, a vacancy

will reach the surface and rapidly recombine with a S atom from the atmosphere. This could

explain why the nanosheets grown at 400 ◦C are more rich in vacancies and therefore act as a

strongly doped semiconductor. Nonetheless, we can see in Fig. 6.3 (b) that the vacancy state

(green line) is not fully localised, although, the effective mass of the electrons in this state is

fairly large. This finite dispersion is probably an artefact of the large density of vacancies we

can investigate within our numerical approach. We have considered in our analysis all the three

possible configurations with a vacancy (due to symmetry the other three are equivalent to those).

We have found that only one configuration is electronically active, the other two are higher in

energy with respect both to the clean system which provides the ground state configuration and

to the vacancy that is electronically more active, and do not significantly affect the electronic

properties of TiS3.

As the experiments have been performed by the Mire group in Madrid, experimental details can

be found in the corresponding article and its supporting information. However, we have cal-

culated the electronic properties of bulk TiS3. By starting from the lattice parameters provided

experimentally [91], we have built a 2×2×2 supercell to reduce the vacancy density as much as

possible. We have therefore optimised the atomic positions with a residual force after relaxation

of 0.001 a.u., for both the pristine system and with a vacancy. The exchange–correlation poten-

tial is described self-consistently within the generalised gradient approximation throughout the

Perdew–Burke–Ernzerhof’s functional, and the Trouiller–Martins’ norm-conserving pseudo-

potential both for Ti and S is used to model valence electron–nuclei interactions. The energy

cut-off for the plane wave basis set is put at 30 Ry with a charge density cut-off of 240 Ry. The

path for the calculations of the k-points in the band structure follows the nomenclature for the

monoclinic structure reported in reference [127].
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In conclusion, we find that apart from the morphological difference, the exfoliated nanoribbons

and nanosheets also display different electronic and optical properties. The FETs fabricated

using nanosheets have high mobilities up to 73 m2 V−1 s−1 while those fabricated using indi-

vidual nanoribbons present lower mobilities but higher gate tunability and optical response.

As argued before within DFT calculations, these differences can be attributed to an increased

concentration of sulphur vacancies in the nanosheets compared with the nanoribbons (n-type

doping). This demonstrated control over the morphology and electrical properties of TiS3 opens

the door to other members of the trichalcogenides family, broadening the collection of materials

which can be exfoliated down to a single layer and incorporated in next generation electron-

ics. This work constitutes a first step towards exploiting the almost unexplored trichalcogenide

family in 2D electronics application such as chemical sensors or van der Waals heterostructures

where a large surface area is highly beneficial.

6.3 Strain-induced Band-Gap Engineering in Layered TiS3
∗

The exfoliation of a few layer TiS3 is a relatively recent achievement [90]. As we have seen in

the previous section, it is possible to obtain different morphologies as well as control several

distinct electrical properties of TiS3. In particular, the presence of S vacancies has an important

effect on the electronic transport properties of few-layer nanoribbons [91, 128]. In this section,

we show that one can additionally control the bandgap by inducing compressive and expansive

uniaxial strain. By DFT calculation we find that the monolayer and bilayer exhibit a transition

from a direct to an indirect gap when the strain is increased in the direction of easy transport.

The ability to control the bandgap and its nature can have wide impact in the use of TiS3 for

optical and electrical applications. Additionally, we verify our prediction by stretching a thin

TiS3 sample and by measuring the bandgap via optical absorption spectroscopy. We experimen-

tally find a bandgap increase of up to 10% upon tensile stress applied along the easy-transport

direction.

We have calculated the electronic band structure of mono- and bilayer TiS3 within DFT and

we found that they are direct gap semiconductors with a DFT gap of 0.31 eV and 0.27 eV,

∗This section is based on the article
“Strain-induced bang-gap engineering in layered TiS3”, submitted (2016), by R. Biele, E. Flores, J. R. Ares, C.
Sanchez, I. J. Ferrer, G. Rubio-Bollinger, A. Castellanos-Gomez, and R. D’Agosta.
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respectively.∗ For these two materials considered here, a more refined calculation based on non-

self-consistent GW method (or hybrid functionals) opens up the gap to the experimental levels

(about 1 eV) [92]. In order to study the strain-induced bandgap modulation, we applied a stress

by deforming the length of the unit-cell vector in either the a or the b direction and relaxed the

atomic positions.† Figure 6.4 shows the bandgap change ∆EG for mono- and bilayer TiS3. EG

refers to the bandgap of the material when strain is not applied. Interestingly, a compression

in b direction leads to a reduction of the direct gap up to -3%, applying -4% or more strain

transforms the gap into an indirect one by keeping the gap constant at around one third of its

original value. A positive strain in the b direction leads to a monotonic increase of the gap,

by keeping it nature (direct) unchanged. Moreover, while a compression in the a direction

increases the direct gap up to a strain of around -3%, increasing the strain further leads to a

reduction of the gap. When the unit cell is expanded in the a direction the gap first decreases

until a strain of around 5% and by stretching the material further the bandgap increases. That

the monolayer and bilayer TiS3 shows a direct–indirect transition for a compression in the b-

direction, might have important consequences to tailor the optical and electronic response of

possible TiS3 based phototransistor.

To better understand this transition, the band structure for the unstrained and 5%-strained mono-

layer in the b direction is shown in Fig. 6.5. We clearly see that the conduction bands are almost

untouched by the compression, while the valence bands develop a local maximum between Γ

and H, reducing the gap and changing its nature. Interestingly, the reduction of the bandgap in

the transition from direct to indirect is here more marked than what has been reported in TiS3

nano-ribbons, where the reported bandgap modification is of only a few meV [129], in certain

cases below the accuracy of the pseudo-potentials used in DFT.

In order to experimentally verify the predicted effect of strain on the electronic band struc-

ture of TiS3 we study the optical absorption spectra of a thin TiS3 ribbon subjected to uniaxial

strain. The strain is applied by exploiting the buckling-induced de-lamination process that takes

place when a thin elastic film, deposited onto an elastomeric substrate, is subjected to an uni-

axial compressive strain [130, 131]. The trade-off between the bending rigidity of the thin-film

∗Note that those values are different than the ones from section 6.2, as here we are using for Ti a pseudopotential
that includes semi-core states for the valence electrons. This is needed to perform on top of the DFT results the
GW approximation.
†We here neglect the effect of the Poisson’s deformation induced in the other two axes of the unit cell. Prelim-

inary results have shown this effect to be negligible with Poisson’s ratios of the order of 0.04–0.08.
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and the thin-film/elastomeric substrate adhesion forms wrinkles that delaminate from the elas-

tomeric substrate where the thin-film is uni-axially stretched. We address the reader to reference

[132] for more details on the buckling-induced de-lamination process. Figure 6.6 (a) shows a

sketch of the process followed to fabricate the uni-axially strained TiS3 sample. A gelfilm sub-

strate (a commercially available elastomeric substrate) is uni-axially stretched by 30%, then

TiS3 is deposited onto the stretched surface and the strain is suddenly released yielding to the

buckling-induced de-lamination to the TiS3 (see Fig. 6.6 (b)) with flat regions (released stress)

and delaminated wrinkles (accumulated tensile stress). For thin TiS3 ribbons (10 nm to 30 nm

thick, like the one studied here) the wrinkles are 100 nm–300 nm in height, the estimated max-

imum tensile strain on the topmost part is in the order of 0.3–0.7% [130, 133]. The change

in the band structure induced by the applied uniaxial strain along b is probed by a recently

developed hyper-spectral imaging based absorption spectroscopy technique. We address the

reader to Ref. [134] for details on this technique. Figure 6.6 (c) shows the absorption spectra

α2 acquired on nine flat regions and on top of four wrinkles. The intercept with the horizontal

axis of the relationship α2 vs. energy gives an estimate of the bandgap (valid for direct gap

semiconductors, for indirect ones it should be α1/2 vs. energy). The obtained bandgap value

in the flat region, 0.99 eV, is in good agreement with the value determined by conventional ab-

sorption spectroscopy and by photocatalysis measurements on bulk material [92, 135]. On the
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FIGURE 6.4: Modulation of the direct bandgap of mono- (black) and bilayer (red) TiS3 by
applying tensile or compressive strain, along the unit-cell vector a or b. All gaps are direct
except the green shaded area: A direct to indirect gap transition is predicted when negative
strain is applied to the b direction at around -4%.
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FIGURE 6.5: Electronic bands for the monolayer TiS3 for the relaxed cell structure (top)
and the one where we compressed 5% the unit cell in the b direction (bottom). In blue and
red we represent the conduction and valence band, respectively. a) The upper plot, corre-
sponding to the relaxed unit cell, shows an direct gap at the Γ-point. b) The compressed
structure shows a decreased indirect gap between Γ and H. The compression strongly mod-
ifies the valence band between these two points. All the energies have been rescaled to the
Fermi energy EF .

topmost part of the wrinkles the slope of the absorption band edge increases considerably yield-

ing an estimated bandgap value of 1.08 eV, 90 meV higher than on the unstrained TiS3. This

experimental observation proves that 0.3–0.7% uniaxial tensile strain along b locally changes

the band structure opening the bandgap, without changing the nature of the bandgap which

remains direct (as evidenced by the marked linear behaviour of the absorption band edge in the

representation α2 vs. energy). The experimental value also confirms the quite high sensitivity of

these samples as predicted by our calculations. From Fig. 6.4 one can infer for small amplitude

strains the linear relation ∆EG/EG ' 20 |∆u|/|u| for strains in the b direction in relatively

good agreement with the experimental value of 13–30. Note that the large uncertainty of the

experimentally determined strain tunability stems from the difficulty in estimating the actual

strain applied to the sample.

To calculate the electronic band structure, we have performed DFT calculations. For both Ti
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FIGURE 6.6: (a) Schematic diagram of the steps employed to fabricate uni-axially strained
TiS3 exploiting the buckling-induced de-lamination process. (b) High-angle optical mi-
croscopy image of a delaminated wrinkle occurring on a thin TiS3 ribbon. (c) Optical
absorption spectra acquired on nine different flat regions (left) and on the topmost part of
four wrinkles on a thin TiS3 ribbon (shown in the inset). The intercept with the horizontal
axis indicates the estimated bandgap value in the different regions.

and S, the electron exchange–correlation potential is evaluated within the generalised gradi-

ent approximation throughout the Perdew–Burke–Ernzerhof’s functional. For S the Martins–

Troulliers’ pseudopotential is used, while for Ti the Goedecker–Hartwigsen–Hutter–Teter’s

pseudopotential, including semi-core states for the valence electrons, is used [136, 137]. These

pseudopotentials are norm-conserving and scalar relativistic. By starting from the experimental

parameters for the unit cell [91] and the spectroscopical atomic configuration [138], we have

optimised the atomic positions with a residual force after relaxation of 0.001 a.u.. The kinetic

energy cutoff for the basis set is put at 220 Ry, while the cutoff for the charge density is 880 Ry.

The sampling of the Brillouin zone for the mono- and bilayer material we used a k-point mesh

of 14×14×4. The parameters chosen ensure a convergence of the DFT bandgap within an

accuracy of around 0.01 eV. We have not included van der Waals corrections in these calcula-

tions since from our previous experience we have seen they have essentially no effect on the

electronic bands.
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In conclusion, we have done a systematic investigation of the bandgap modifications of mono-

layer and bilayer TiS3 material when the system is subject to compressive and tensile strain. We

found at zero applied strain for the mono- and bilayer material a direct bandgap of 0.31 eV and

0.27 eV, respectively. These values, although in good agreement with other theoretical calcula-

tions, are about 1/3 of the experimental bandgap value, a not surprising result considered that

DFT usually underestimate the electronic bandgap. We found that the gap can be controlled by

inducing strain in certain directions along the primitive axes of the unit cell. Most interestingly,

we found that the gap of the monolayer and bilayer material changes from direct to indirect

when compressive strain is induced along the preferred transport axis (b in Fig. 6.1). We tested

our predictions by inducing strain in a TiS3 sample: the gap increases when the system is un-

der tensile strain, in agreement with the theoretical predictions of Fig. 6.4. This behaviour is

mostly noticeable, since for other two dimensional di-calchogenides materials the gap always

closes for tensile strain, and can open a set of potential application for TiS3.∗ At the moment

we are reaffirming our results by calculating the GW corrections to the strain-induced bandgap

modification. First results indicate that the GW approximation opens the gap for the unstrained

and strain materials and that the nature of the gap coincides with the DFT ones. In addition,

to better compare with the experiment we are planning to solve the BSE for the strained cases.

This will give us access to the optical gap, however, we do not expect a crucial difference be-

tween the optical and electrical gap. In our experience the exciton binding energy is relatively

small in comparison to the bandgap for this material.

6.4 Electrical and Optical Anisotropy of TiS3
†

The isolation of atomically-thin van der Waals materials has triggered a strong research focus

on this broad family which can be exfoliated from bulk layered crystals [26, 141, 142]. How-

ever, research has been mainly focused to boron nitride, graphene, and the Mo– and W– based

∗During the elaboration of this work we became aware of two theoretical works where, the general properties
of the MX3 materials (where M = Ti, Zr and Hf; while X = S, Se, Te) [139], the effects of tensile a strain on the
bandgap of single layer [140] and nano-ribbons [131] of TiS3 are studied. However, those works just include tensile
strain and hence do not report the strong direct–to–indirect gap transition found here. They report a insignificant
transition of a few meV for tensile strain. This value is close to the accuracy of the DFT numerics and a negligible
effect.
†This section is based on the article

“Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties”, Scientific Re-
ports 6, 22214 (2016), by J. O. Island, R. Biele, M. Barawi, J. M. Clamagirand, J. R. Ares, C. Sánchez, H. S.J. van
der Zant, I. J. Ferrer, R. D’Agosta, A. Castellanos-Gomez.
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TMDCs [143, 144]. These materials have largely isotropic in-plane optical and electrical prop-

erties. Breaking this in-plane symmetry could lead to interesting anisotropic effects advancing

the functionalities of 2D materials. For instance, anisotropic 2D materials could be used to

fabricate passive optical polarisers. TiS3 is a promising material due to its bonding asymmetry

[145]. Differences in the Ti–S bond length along the a (2.65 Å) and b (2.45 Å) axes can be

found. These differences lead to highly conducting 1D chains along the b-axis and result in

strong anisotropic properties [97]. Ab initio calculations have reported electron mobility for the

b-axis of more than 10 000 cm2 V−1 s−1 (higher than MoS2) and a-axis mobilities of more than

an order of magnitude less [97]. Up to date, an experimental investigation of the anisotropic

properties of TiS3 is still missing.

Therefore in our article [146], we investigate the electrical and optical properties of few-layer

TiS3, considering especially in-plane anisotropic effects. We use a combination of angle re-

solved polarisation Raman spectroscopy, optical transmission and electrical transport measure-

ments to study the anisotropic behaviour of thin TiS3. At room temperature the electrical

conductivity shows an anisotropy of Gmax/Gmin = 2.1 and can even reach Gmax/Gmin = 4.4 at

low temperatures. Additionally, we report that the Raman spectra of thin flakes show strong

in-plane anisotropy. This could be useful to align few-layer TiS3. Interestingly, the optical ab-

sorption of TiS3 depends on the relative orientation between the incident polarised light and the

lattice of the material. This strong linear dichroism is a magnitude greater than that observed

for other anisotropic 2D materials. In order to better understand and confirm these results we

have investigated theoretically the absorption and transmittance spectra in the random phase

approximation (RPA) [147, 148].

Here in this thesis, we will concentrate on the anisotropic optical properties of TiS3 by dis-

cussing the optical transmission measurements, the calculated absorption and transmittance

spectra. Details on the study of anisotropic effects in the electrical transport properties, as well

as the angle resolved polarisation Raman spectroscopy, can be found in [146]. Essentially,

the Raman spectroscopy has been used to determine the crystalline orientation of exfoliated

TiS3 nanosheets whose b-axis direction cannot be distinguished at a glance from the material

morphology like in the case of nanoribbons. The aligned TiS3 nanosheets, grown at 400 ◦C

as reported in section 6.2, have been used to study the optical anisotropy using transmission

mode optical microscopy. In order to study the optical properties with a transmission micro-

scope, a linear polariser is located between the condenser lens and the microscope light source.
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FIGURE 6.7: (a) Transmittance of the red, green, and blue channels as a function of the ex-
citation polarisation angle. (b) Calculated RPA absorption spectra when the field is aligned
parallel to the b-axis (black dashed line) and a-axis (black solid line). The inset shows the
transmittance in the a–b-plane for energies red (1.9 eV), green (2.3 eV), and blue (2.72 eV)
excitations. (Plots reused from our article [146])

While the polariser is rotated in steps of around three degrees, transmission images are ob-

tained. Through normalising of the intensity measured on the TiS3 by the intensity measured

on the nearby bare substrate, the transmission is calculated.

Figure 6.7 (a) shows the dependence of the transmission on the angle between the polarised

light and the b-axis of the TiS3 sheet. One can see a strong variation in the optical absorption

when changing the polarisation angle of the incident light in respect to the crystal structure.

The transmission reaches a minimum value when the incident light is polarised parallel to the

b-axis. The high conducting 1D chains, parallel to the b-axis, absorb the light with a polari-

sation that is parallel to it. This behaviour is very similar to that of a wire grid polariser. The

reader can find similar measurements made on a nanoribbon, where the b-axis can be easily

determined in the appendix C. The ratio between the b-axis and the a-axis transmission can

reach values as high as 30 and decreases for thinner flakes (see appendix C Fig. C.2). For

a direct comparison, we measure the transmission of multilayer black phosphorus and MoS2

flakes of similar absolute transmission which present transmission ratios of approximately 1.4

and approximately 1, respectively (see Fig. C.3 in appendix C).

To better understand and confirm this linear dichroic behaviour, we perform DFT calculations
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in combination with many-body techniques to calculate the absorption spectrum for bulk TiS3.

Figure 6.7 (b) shows the calculated absorption spectra for bulk TiS3 when the electric field is

aligned parallel to the a-axis (black solid line) and b-axis (black dashed line). Across the visi-

ble wavelengths, the absorption is much larger when the excitation field is parallel to the b-axis

than when it is parallel to the a-axis. The inset in Fig. 6.7 (b) shows the calculated transmit-

tance in the a–b-plane for red (1.9 eV), green (2.3 eV), and blue (2.72 eV) excitations. We find

qualitative agreement with our experimental findings. The transmittance is maximum (lowest

absorption) for light polarised perpendicular to the b-axis and minimum (highest absorption)

for light polarised along the b-axis. Additionally, for polarisations perpendicular to the b-axis,

the maximum transmittance decreases with increasing excitation energy (red to blue, 1.9 eV to

2.72 eV).

Both for Ti and S, the exchange–correlation potential is described self-consistently within the

generalised gradient approximation throughout the PBE functional. For S a norm-conserving

Martins–Troulliers’ pseudopotential is used, while for Ti a norm-conserving Goedecker–Hartwigsen–

Hutter–Teter’s pseudopotential, including semi-core states for the valence electrons, is used

[136, 137]. We have relaxed the atomic positions and the unit cell vectors with a residual force

after relaxation of 0.001 a.u. by starting from the atomic positions provided in [91]. The ki-

netic energy cutoff for the plane wave basis set is 180 Ry. The sampling of the Brillouin zone

is 10×10×10 according to the Monkhorst–Pack scheme. As DFT tends to underestimate the

electronic bandgap, we performed non-self-consistent G0W0 [149, 150] calculations in order to

get accurate values for the electronic band structure. The local field effects in the screening cal-

culations have been taken into account and we carefully converged the electronic quasi-particle

gap. The G0W0 corrected DFT bands have been used to calculate the absorption spectra in the

RPA. To construct the kernel in the RPA we have considered 30 valence and 120 conduction

bands. The size of the response function has been carefully converged, hence local field effects

corresponding to charge oscillations are accurately included.

In summary, we present optical measurements of the in-plane anisotropy of TiS3. From elec-

trical measurements we calculate an anisotropy in the in-plane conductivity of 2.1 at room

temperature and 4.4 at a temperature of 25 K [146]. Furthermore, through optical transmission

measurements and DFT calculations we show that TiS3 exhibits strong linear dichroism where

the ratio in the transmission between the b-axis and a-axis reaches values as high as 30. The

strong anisotropic properties of TiS3 set it apart from the commonly studied 2D materials which

have largely isotropic properties and makes it an interesting material for future applications.
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6.5 Electronic Bandgap and Exciton Binding Energy of TiS3
∗

The discovery of single-layer TMDCs has boosted the interest on layered semiconducting ma-

terials. Layered Mo– and W– based dichalcogenides present very exotic optical properties like

an unusual large exciton binding energy, 100–1 000 times larger than that of conventional 3D

semiconductors. This makes it possible to observe a plethora of excitonic effects even at room

temperature. The bandgap of Mo– and W– dichalcogenides, however, limits their application to

only part of the visible spectrum. Therefore, a narrower direct bandgap semiconductor, which

also presents a large exciton binding energy, would be highly desirable for applications aim-

ing to exploit excitonic physics in the near-infrared part of the spectrum (such as night-vision

imaging or fiber-optic-communication). TiS3 has triggered a lot of recent interest because of its

direct bandgap of around 1.0 eV that bridges the gap between graphene (zero gap) and single-

layer MoS2 and WS2 (1.8–1.9 eV). In our article [92] we present scanning tunnelling micro-

scope (STM) and scanning tunnelling spectroscopy (STS) characterisation of this material.

This allows us to determine the exciton binding energy and, as far as we know, we report the

first ab initio calculations of the optical absorption of TiS3. Therefore, our results open the door

for future works on the barely studied trichalcogenides family.

As we have seen in section 6.2 that TiS3 grows on layered ribbon-like shape showing n-type

conduction behaviour with mobilities up to 73 cm2 V-1 s-1 and ultrahigh photoresponse up to

2 910 A W-1. Here, we investigate the electronic and optical bandgap in TiS3 ribbons, which

are 30 to 130 layers thick. The electronic bandgap is measured within STS while the optical

gap is determined by photo-electrochemical measurements, obtaining experimentally 1.2 eV

and 1.07 eV, respectively. In order to confirm those values, we have calculated the electronic

bandgap within the G0W0 approximation and the optical gap by solving the BSE. For the elec-

tronic bandgap we find a value of 1.15 eV and for the optical gap we find 1.05 eV, which are

both in good agreement with the experimental data. From these two values we are able to

estimate the exciton binding energy of TiS3 ribbons as the difference between the electronic

bandgap and the optical one. The theoretical binding energy of bulk of 100 meV coincide well

with the experimental binding energy of 130 meV. This exciton binding is around two orders

∗This section is a part of the article
“Electronic bandgap and exciton binding energy of layered semiconductor TiS3”, Advanced Electronic Materials
1, 9 (2015), by A. J. Molina-Mendoza, M. Barawi, R. Biele, E. Flores, J.R. Ares, C. Sánchez, G. Rubio-Bollinger,
N. Agraı̈t, R. D’Agosta, I. J. Ferrer, and A. Castellanos-Gomez.

74



6.5 Electronic Bandgap and Exciton Binding Energy of TiS3

of magnitude larger compared to common semiconductors and thus making TiS3 a extremely

promising nano-material for the investigation of exitonic effects.

TiS3 ribbons are transfered onto a gold substrate in order to prepare the STS and photo-

electrochemical measurements. For this, a viscoelastic stamp is brought into contact with the

TiS3 ribbons grown at 500 ◦C. By peeling off the stamp, several ribbons were transferred to

the stamp and placed onto the gold surface. Further details about this process can be found in

the Supporting Information of [92]. Optical microscopy images and atomic force microscopy

(AFM) images can be seen in Fig. 6.8 (a). This sample is studied with a STM at ambient con-

ditions [151]. Regions of the sample uncovered with TiS3 can be easily distinguished by their

high conductance at zero bias in the current–versus–voltage curves (called IVs hereafter). Fig-

ure 6.8 (b) compares STS IVs acquired on TiS3 ribbons and on gold. While for gold the curve

profile is that expected for a metal–vacuum–metal junction, for TiS3 it shows a clear drop of

the current down to zero when the bias voltage shifts the Fermi level within the TiS3 bandgap.

The STM tip is then placed onto a TiS3 ribbon and 205 IVs have been measured on different

samples. By averaging over those 205 IVs the measured value for the valence band is EVB = (-

0.64±0.06) eV, while for the conduction band the measured values is ECB = (0.47±0.06) eV.

Here, we can see a shift of the Fermi level towards the conduction band, indicating n-type semi-

conducting behaviour. Additionally, in STS measurements at ambient conditions one needs to

take into account that the current–voltage curves are thermally broadened, which leads to a

slightly underestimation of the bandgap value. The thermal broadening is induced by the tem-

perature dependence of the Fermi–Dirac distribution function, which enters via the requirement

that electrons tunnel in STS from occupied states in the tip to unoccupied states in the sample

[152]. Therefore, in our STS measurements at temperature T , the bandgap has been reduced

by Et ≈ 3.5kBT = 90 meV [152]. This leads to an electronic bandgap of around 1.20 eV. The

interested reader can found more details in our corresponding article [92].

On the other hand, with photo-electrochemical measurements the optical bandgap was deter-

mined. Details about this techniques can be found in [92] in the Experimental Sections. The

photocurrent response density as a function of the light wavelength for TiS3 is represented in a

so-called Tauc plot [153] in Fig. 6.9 (a). The optical gap (1.05 eV) can be found by the point

where the linear approximation of the data intersects the horizontal axis. Depending on the

shape of the spectra, this method gives also insights about the nature of the gap [153]. The

linear fit (Iphhν)n versus hν for n = 1/2 indicates an indirect transition while n = 2 demon-

strates a direct transition. We find two direct transitions at 1.05 eV and 1.29 eV. Here, the first
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FIGURE 6.8: (a) Optical microscopy image of TiS3 ribbons on a gold substrate. Inset:
AFM topographic image of two TiS3 ribbons. (b) STS current–voltage characteristics of
TiS3 (blue) and bare gold (red). Insets: STM topographic images of TiS3 (blue frame) and
bare gold (red frame). (Plots taken from [146])

transition corresponds to the formation of the first excitonic state. These values agree well with

previously reported ones obtained for TiS3 samples grown under different condition [135, 154].

To interpret our experimental results, we performed state-of-the-art DFT calculations in com-

bination with many-body techniques. We first investigated the electronic structure of bulk

TiS3 within DFT. As the experimentally studied TiS3 ribbons are relatively thick, this might

be well described with bulk TiS3. Additionally, we performed G0W0 calculations on top of the

DFT electronic bands in order to get an accurate value for the electronic bandgap. To access the

optical properties, like the optical gap, one has to include the interaction between the excited

electron in the conduction band with the hole created in the valence band. For this we solved

the BSE starting from the G0W0 corrected DFT results [149, 150]. In Fig. 6.9 (b) the absorption

spectra of bulk TiS3 are shown with (BSE) and without (RPA) electron–hole interaction. The

absorption peak in the RPA spectrum at Eel = 1.15 eV coincides with the electronic bandgap,

while the peak of the BSE spectrum at Eop = 1.05 eV gives the optical gap. The peaks at around

1.2 eV correspond to an optical transition to a higher energy level in the conduction band, as

mentioned in reference [91]. Hence, the exciton binding energy is 100 meV, in excellent agree-

ment with the experimental results.

Both for Ti and S, the exchange–correlation potential is described self-consistently within

the generalised gradient approximation throughout the PBE functionals. For S the Martins–

Troulliers’ pseudopotential is used, while for Ti the Goedecker–Hartwigsen–Hutter–Teter’s
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FIGURE 6.9: (a) Photocurrent density as a function of light wavelength. The optical
bandgap is determined by a linear interpolation as described in the text and shown in the
inset. (b) Calculated absorption spectra for TiS3 within RPA (red) and by solving the BSE
(blue). The first small peak of the BSE spectrum at 1.05 eV indicates the optical gap, while
the first peak of the RPA spectrum at 1.15 eV coincides with the electronic bandgap. (Plots
taken from [146])

pseudopotential, including semicore states for the valence electrons, is used [136, 137]. These

pseudopotentials are norm conserving and scalar relativistic. By starting from the lattice pa-

rameters provided in reference [91] we have optimised the atomic positions with a residual

force after relaxation of 0.001 a.u.. The kinetic energy cutoff for the plane wave basis set is

put at 180 Ry, while the cutoff for the charge density is 720 Ry. The sampling of the Brillouin

zone is 10×10×10 according to the Monkhorst–Pack scheme. To go beyond the DFT–PBE

level the electronic structure is further corrected by means of non-self-consistent G0W0 approx-

imation. The screening in the G0W0 calculation is treated within the so-called plasmon pole

approximation [149, 150]. The local field effects in the screening calculations have been taken

77



Chapter 6 Optical and Electronic Properties of Layered 2D Materials

into account and we carefully converged the electronic quasiparticle gap. When looking at two-

particle properties such as absorption of light, one has to include the interaction between the

excited electron in the conduction bands with the hole created in the valence band. For this we

solved the BSE using the recursive Haydock method to access the optical gap [155–157]. To

construct the BS kernel in the static approximation we considered 30 valence and 70 conduction

bands [158]. The position of the first peak in the optical spectrum, which corresponds to the

optical gap, has been carefully converged for example with respect to the k point sampling, the

components to be summed in the exchange part and those of the screened coulomb potential of

the BSE kernel. In order to make the first peak in the BSE spectrum better visible, in Fig. 6.9

we have plotted only the transitions between the highest occupied and the lowest unoccupied

electronic states. Increasing the number of considered bands in the BSE spectrum does not shift

the first peak position, however it becomes difficult to spot it as its amplitude is small.

To summarise, we have measured the electronic and optical bandgap of layered TiS3 ribbons.

Within STS and photo-electrochemical measurements we find 1.2 eV for the electronic and

1.07 eV for the optical bandgap. With this we are able to calculate the exciton binding energy

of TiS3 ribbons as 130 meV. Additionally, we have obtained by RPA and BSE calculations,

1.15 eV for the electronic bandgap and 1.05 eV for the optical bandgap. These theoretical

results are in good agreement with the experimental values. The binding energy of TiS3 is

around two orders of magnitude larger than that of typical semiconductors such as germanium,

silicon or gallium arsenide.

6.6 Quantum Confinement Effect in the Optical Properties

of Ultra-thin In2Se3
∗

In this last section of the chapter, we will study the effect of quantum confinement in the op-

tical and electronic bandgap of atomically thin α-In2Se3 crystals. In2Se3 is a very interesting

direct gap semiconductor, with promising application in ultraviolet photo-detection. We ob-

serve a marked thickness-dependent shift in the optical absorption spectra acquired on mechan-

ical exfoliated α-In2Se3 flakes. This observed variation of the optical bandgap due to quantum

∗This section is based on the submitted article
“Strong quantum confinement effect in the optical properties of ultrathin In2Se3”, submitted (2016), by J. Quereda,
R. Biele, G. Rubio-Bollinger, N. Agraı̈t, R. D’Agosta, and A. Castellanos-Gomez.
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confinement is among the largest reported to date in 2D semiconductors materials, comparable

to that of atomically thin black phosphorus. For instance, the bandgap in Mo– and W– based

TMDCs increases from a value of about 1.3 eV (indirect gap) for bulk to 1.9 eV (direct gap)

for a single layer [26, 159]. A stronger effect has been found more recently for black phospho-

rus ranging from around 0.3 eV (direct) for bulk up to 1.75 eV for a single layer [160]. Those

thickness-dependent bandgap variations can be very advantageous for applications as photode-

tectors as one can select the sensible photon energy windows by simple changing the material

thickness. However, up to now there is a broad spectral window from 2 to 3 eV uncovered by

2D materials that could be very relevant for applications requiring ‘solar blind’ semiconducting

materials (not absorbing within the visible spectrum) but responsive to near-UV light.

Here, we report a very strong quantum confinement effect in the optical properties of α-In2Se3

flakes. While for the thicker flakes (95 nm) we find experimentally an optical bandgap of around

1.45 eV, thin flakes shows a remarkable increase of their optical bandgap, reaching up to 2.8 eV

for the thinnest flake (3.1 nm) studied here. To better understand and support the experimental

findings, we have performed DFT calculations in combination with many-body techniques.

Our calculations serve to obtain the band structure for bulk α-In2Se3 from where we extract

the effective mass of the exciton and the electronic bandgap of 1.4 eV in good agreement with

the experiment. Furthermore, we have also calculated the optical gap by solving the BSE. Our

results indicate a relatively small binding energy of the exciton. Those results, we have used to

estimate theoretically the quantum confinement effect of the optical gap via a square quantum

well potential.

Atomically thin In2Se3 flakes are prepared by mechanical exfoliation of a bulk α-In2Se3 crystal

and transferred to a poly-dimethylsiloxane substrate. This substrate has been selected because

of its high transparency in the visible range and low interaction with thin flakes. Figure 6.10

(a) shows an optical image of the In2Se3 flake with regions of different thickness, as well as

an AFM scan along the dashed line. The optical absorption has been studied by using a home-

made hyper-spectral imaging setup described in details elsewhere [161]. This is carried out

by sweeping the excitation wavelength and acquiring transmission mode images of the In2Se3

crystal at each wavelength.

Figure 6.10 (b) shows five of those wavelength-dependent optical transmittances for different

thickness, ranging from 3.1 nm to 25 nm. Interestingly, we find that for any given illumina-

tion wavelength the optical transmittance decreases monotonically with the flake thickness, as
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FIGURES 

 
Figure 1 – (a) Transmission optical image of an In2Se3 flakes with regions of different 

thicknesses. Inset: AFM height profile along the black dashed line. (b) Wavelength-

dependent optical transmission measured in five regions of different thicknesses, from 

3.1 to 25.1 nm. Inset: Optical transmission at λ = 550 nm as a function of the flake 

thickness. The red curve shows the interpolation of the data to a smoothed spline function. 

(c) Thickness colormap obtained from the hyperspectral and AFM measurements. For 

different illumination wavelengths we compare the transmission obtained at each image 

cell with the corresponding Transmission-vs-thickness curve (see inset in panel b) to 

estimate the flake’s thickness with spatial resolution. Inset: Estimated height profile along 

the black dashed line, corresponding to the same region of the AFM profile shown in (a). 
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FIGURE 6.10: (a) Transmission optical image of a In2Se3 flake with regions of different
thickness. Inset: AFM height profile along the dashed black line. (b) Dependence on the
transmission versus wavelength curves on the thickness of the flake (3.1 nm to 25.1 nm).
Inset: Optical transmission at a wavelength of 550 nm as a function of the flake thickness,
where the red curve shows the interpolation of the measured data to a smoothed spline
function. (c) Thickness colormap obtained from the hyper-spectral and AFM measure-
ments. For different illumination wavelengths we compare the transmission obtained at
each image cell with the corresponding transmission–versus–thickness curve.

shown in the inset for λ = 550 nm. Consequently, this allows to estimate the flake thickness

of In2Se3 by measuring the transmittance at a fixed illumination wavelength. In addition, this

also enables us to generate a thickness map from the measured hyper-spectral images, as can be

seen in Fig. 6.10 (c). Here, the inset shows a line profile along the same path measured in the

AFM scan of Fig. 6.10 (a). There is a good agreement between the obtained thickness with that

measured by AFM. The reader can find more details about the analysis employed to generate

the 2D thickness maps from the hyper-spectral datasets in the supporting information of [162].

The absorption coefficient α can be calculated from its transmittance T and its thickness as

α(λ) = − log10(T (λ))

d
. (6.23)
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According to Tauc et al. [163], near the absorption edge α of a direct gap semiconductor

follows

(α~ω)2 = A2(~ω − Eopt
g ), (6.24)

where A is a material-dependent constant and Eopt
g is the optical energy gap. In order to de-

termine the optical bandgap, one represents (α~ω)2 versus the photon energy ~ω, and fits the

absorption band edge to a linear function. According to the previous equation, the intersection

of this linear fit with the horizontal axis yields the value of the optical bandgap. In Fig. 6.11

(a) Tauc plots for the seven In2Se3 flake regions with different thickness, as well as their linear

fit near the absorption edge can be seen. The optical bandgap strongly depends on the flake

thickness, ranging from around 1.45 eV for bulk material to a value of 2.8 eV for the thinnest

measured flake. The inset of Fig. 6.11 (b) shows a colormap representing the energy at which

the absorption reaches a limit of 105 cm-1 at each sample position, which is called isoabsorption

map. Note that when a small absorption limit is set, the isoabsorption energy approaches the

optical bandgap value and thus the isoabsorption map represents accurately the spatial variation

of the bandgap. Figure 6.11 (b) shows a comparison between the bandgap extracted from the

isoabsorption map and from the linear fit of the Tauc plots.

To gain a deeper understanding on the thickness-dependent bandgap of In2Se3, we performed

DFT calculations, in combination with many-body techniques. First of all, we investigate the

electronic structure of bulk In2Se3 within DFT. Furthermore, we have also performed G0W0

calculations in order to get an accurate bandgap value to compare with the experiment. Figure

6.12 shows a comparison between the DFT band structure and the G0W0 bands. While DFT

underestimates the bandgap, G0W0 corrects it to 1.40 eV, which is in excellent agreement with

the experiment. To access the binding energy and hence the optical gap, we included the inter-

action between the excited electron with the hole created in the valence band. For this we have

solved the BSE starting from the G0W0 corrected DFT results [155, 156], leading to a relatively

small binding energy of around 80 meV for bulk In2Se3.

The evolution of the optical bandgap with the flake thickness can be modelled using a square

quantum-well potential of infinite height [164, 165],

Eopt
2D (d) = Eel

bulk − Eb +
π2~2

2d2µc
, (6.25)

where Eel
bulk is the electronic bandgap for bulk In2Se3 (1.4 eV from the G0W0 calculations),

Eb is the exciton binding energy (Eb = 0.08 eV from the BSE calculation), d is the crystal
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Figure 2 – (a) Tauc plot of the optical absorption in In2Se3 flakes of 7 different 

thicknesses, ranging from 28.6 nm to 3.1 nm. The dotted lines show the Tauc 

extrapolation of the absorption edge. The energy at which the absorption coefficient takes 

a value of 105 cm-1 (isoabsorption energy) is shown by the black dashed curve. (b) 

Thickness-dependent energy of the absorption edge estimated by Tauc extrapolation (blue 

filled circles) and the isoabsorption at α = 105 cm-1 (red empty circles). The dashed line 

is a theoretical calculation of the optical gap energy using a 2-D quantum well model. 
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FIGURE 6.11: (a) Tauc plots of the optical absorption for the In2Se3 crystal for seven
regions with different thickness. The dotted lines show the Tauc extrapolation of the ab-
sorption edge in order to obtain the optical bandgap. Furthermore, we show by the black
dashed curve when the absorption coefficient takes a value of 105 cm-1 (isoabsorption en-
ergy). (b) Thickness dependence of the optical bandgap energy estimate from the Tauc
plots (blue dots) and the isoabsorption at α = 105 cm-1 (red empty circles). The dashed line
is a theoretical estimation of the optical bandgap using a 2D quantum well model.

thickness and µc is the exciton reduced mass along the c-axis (perpendicular to the layers).

This reduced mass has been obtained from the G0W0 calculated electron (mc
e = 0.13 me) and

hole (mc
h = 0.87 me) effective masses as µc = ( 1

mch
+ 1

mce
)−1. The estimated bandgap energy via

Eq. (6.25), as shown in Fig. 6.11, reproduces the dependence of the optical bandgap on the

flake thickness, increasing progressively as the thickness d of the flake decreases. However,

compared with the experimental data, the theoretical curve seems to be displaced horizontally

towards lower values of thickness. This effect could be attributed to the surface oxidation of the

In2Se3 crystals under ambient conditions [166], which effectively would reduce the thickness

of the In2Se3 layer, causing an increase of the measured optical bandgap. On the other hand, it
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6.6 Quantum confinement effect in optical properties of In2Se3

FIGURE 6.12: Band structure for bulk In2Se3 within DFT and G0W0. While DFT under-
estimates the bandgap, G0W0 corrects it to 1.40 eV, which is in good agreement with the
experiment. The effectives masses have been obtained by approximating the bands around
the Γ point in the c-direction by a quadratic function.

must be noted that the square quantum-well model used here is rather simple as it does not take

into account fine details of the thickness-dependent band structure of the crystal. Figure 6.13

shows a comparison of the bandgap shift observed in different atomically thin semiconductors

due to the effect of quantum confinement. We observe experimentally a bandgap shift of 1.4 eV,

ranging from 1.4 eV in bulk crystals to 2.8 eV in 3.1 nm thick flakes. This unusually high

bandgap change, induced by quantum confinement, is among the highest observed in two-

dimensional semiconductors [167, 168], comparable with the one observed in atomically thin

black phosphorus. Therefore, the bandgap of atomically thin In2Se3 crystals can be tuned to

cover a wide region of the near ultraviolet spectrum.

For the theoretical investigation, both for In and Se the exchange–correlation potential is de-

scribed self-consistently within the generalised gradient approximation throughout the PBE

functional. The norm-conserving Martins–Troulliers’ pseudopotentials are used for both ele-

ments, additionally for In semi-core states for the valence electrons have been considered. We

have relaxed the atomic positions with a residual force of 0.001 a.u.. The kinetic energy cutoff
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Figure 3 – Comparison of the band gap values for different van der Waals semiconductor 

crystals. The horizontal bars spanning a range of energies indicate that the band gap can 

be tuned over that range by changing the number of layers. 

  

optical bandage energy (eV)

FIGURE 6.13: Comparison of the bandgap values for different van der Waals semiconduc-
tor crystals. The horizontal bars spanning a range of energies indicate that the bandgap can
be tuned over that range by changing the number of layers.

for the plane-wave basis set is 180 Ry, while the cutoff for the charge density is 480 Ry. The

sampling of the Brillouin zone is 9×9×9 according to the Monkhorst–Pack scheme. Local

field effects in the screening calculations have been taken into account and we have converged

the electronic quasiparticle gap within 0.02 eV. To construct the Bethe–Salpeter kernel in the

static approximation we have considered 16 valence and 20 conduction bands. The position of

the first peak in the optical spectrum, which corresponds to the optical gap, has been carefully

converged for example with respect to the k point sampling, the components to be summed in

the exchange part and those of the screened coulomb potential of the Bethe–Salpeter kernel.

In summary, we studied the effect of quantum confinement in the optical properties of atomi-

cally thin α-In2Se3 crystals. We measured the optical absorption spectra of exfoliated In2Se3

crystals with thicknesses ranging from 3.1 nm to 25.1 nm, observing a strong thickness-dependent

shift of the optical bandgap, from 1.45 eV in the thicker flakes to 2.8 eV in the 3.1 nm thin

flakes. In fact, the bandgap variation observed in atomically thin In2Se3 due to the effect of

quantum confinement is among the largest reported to date in 2D semiconductor materials, and

is comparable to that of atomically thin black phosphorus. We performed density functional

theory calculations, in combination with many-body techniques, to estimate the bandgap of the

bulk In2Se3, as well as its exciton binding energy and exciton effective mass. A 2D square

quantum well model allowed to reproduce the observed strong thickness dependence of the op-

tical bandgap. In conclusion, this work shows that atomically thin α-In2Se3 is a very attractive

84



6.6 Quantum confinement effect in optical properties of In2Se3

and barely explored material, specially promising for applications involving tunable near-UV

photo-detection.
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Chapter 7

Conclusions

In this thesis, different aspects of the interaction of radiation with quantum systems have been

studied. This kind of interaction has a wide range of applications, especially nowadays at the

nanoscale. When moving from macroscopic systems towards the nanoscale, one reaches the

quantum coherence length of many materials, and quantum entanglement effects become more

important. Approximations that worked out for macroscopic systems may fail at the nanoscale.

Therefore, I have first of all investigated the conditions for thermal relaxation within open quan-

tum systems [72], and we have seen in section 2.2 that those are related to the non-Markovian

nature of the equations of motion. The bath-correlation function enters the memory term in the

equation of motion. We have seen that this bath-correlation function has to fulfil the detailed-

balance relation as a necessary condition for thermal relaxation. This memory term make the

equation of motion hard to solve, and by approximating the non-Markovian behaviour one

might lose thermalisation. As such, I have numerically investigated in chapter 3 a time-local

(time-convolutionless) version of a non-Markovian stochastic Schrödinger equation [169], and I

have shown that it describes correctly the approach to thermal equilibrium and energy transport

as obtained from a general non-Markovian master equation. This is remarkable, since one might

expect a more complex time-non-local stochastic Schrödinger equation to be required for repro-

ducing the dynamics of a non-Markovian master equation. This time-convolutionless stochastic

Schrödinger equation allows us to study relaxation dynamics and temperature in fermionic and

bosonic systems with a stochastic Schrödinger equation that contains non-Markovian effects,

at the numerical cost of a Markovian equation. Moreover, contrary to other approximations,

e.g., the Born–Markov approximation to the Redfield equation [32], this stochastic equation re-

produces the full dynamics of the non-Markovian master equation, and therefore could be used
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to investigate the transient dynamics and the approach to equilibrium. Additionally, compared

to master equations, the time-convolutionless stochastic Schrödinger equation also shows more

advantageous scaling with the number of states, which is particularly useful for large systems.

However, before such an equation can be applied by scientist not specialised in the numerics of

stochastic equations, further theoretical work on integration techniques of such stochastic equa-

tions [35] is required. While Itô’s calculus is designed for white-noise processes, a correspond-

ing calculus for coloured noise, needed for the time-propagation of the time-convolutionless

stochastic Schrödinger equation, is still missing.

After the foundations of thermal relaxation within open quantum systems have been studied,

I have addressed out-of-equilibrium quantum systems to study thermal transport. Therefore, I

have introduced a novel theoretical framework to investigate energy transport [73] in chapter

4, where the thermal imbalance in the system is introduced by radiation from two classical

blackbodies. This theory also takes into account an environment, with which the system can

exchange energy. Therefore, the formalism includes the fundamental concept of thermal relax-

ation of the system. The theory could also be used in different set-ups, e.g., we can consider one

blackbody only, to adapt to different experiments. As this formalism relies on the knowledge

of the external vector potential, we can foresee that its combination with the powerful tech-

niques of time-dependent current density functional theory will provide a novel ab initio tool

to study thermal transport in many-body systems. Moreover, within the same formalism we

can investigate phonon thermal transport. Thereby combined with the time-dependent current

DFT, the model provides a unified way to investigate ab initio electrical and thermal transport

beyond linear response. Non-linear regimes are important since in seeking for, e.g., the maxi-

mum efficiency of a thermoelectric energy converter, we might need to go beyond the standard

linear response [170]. Since the formalism is fully dynamic we have direct access to transient

regimes. This allows the investigation of how the steady-state is approached, and whether or not

this steady-state is unique or depends on the history of the system [171]. However, I would like

to emphasise that one needs to improve on how the black-body radiation is modelled. Here,

for our numerical investigation we have suggested classical stochastic fields without thermal

correlation [70, 71].

When moving from macroscopic systems towards the nanoscale, the measurement process

might influence a quantum system and hence has to be taken into account. Therefore, we

have studied in chapter 5, with the techniques provided in the previous chapters, the influ-

ence of a local measurement in a quantum transport device. Depending on where and how
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strong these observations are, the direction and magnitude of heat flows can be changed, even

having it going against the temperature gradient. Additionally, particle ring-currents can be

created and controlled by these observation. Therefore, the choice of location of these quantum

measurements can provides full control of the direction of the energy flow and of the particle

currents separately. It has appeared that some of these results violate Clausius’ formulation

of the second law of thermodynamics. To clarify this, we examined the behaviour in terms of

non-equilibrium thermodynamic concepts in the quantum regime.

For the investigation of realistic applications of the radiation–matter interaction in nanotech-

nology, it is also important to have a tool that allows to predict accurately the important prop-

erties of real materials within moderate numerical cost. Therefore, I have performed first

principle studies within DFT and many-body perturbation theory for 2D layered materials

[91, 92, 146, 162, 172, 173]. These materials have established their place as candidates for the

next generation of opto-electronic devices, as they present outstanding mechanical and elec-

trical properties and can be easily integrated with conventional silicon technologies. In order

to avoid being repetitive, results obtained in the last chapter are not restated here, as they are

freshly in mind. The conclusions can be found at the end of each section of chapter 6. However,

I would like point out that it was fascinating to see how to model real materials numerically:

Starting with placing the atoms in their positions and relaxing their relative coordinates. This

allowed us to study their electronic and optical properties, and we could see that the results

agreed so well with the ‘real world’, by reproducing and even explaining or predicting exper-

iments. To summarise the last chapter, electronic and optical properties of TiS3 and In2Se3

have been theoretically and experimentally investigated. I hope that this constitutes as a first

step towards exploiting the trichalcogenide family in 2D opto-electronical applications. These

applications include chemical sensors, van der Waals heterostructure, FETs, passive optical

polarisers, fast photodetectors as well as battery technology.

Although the first principle studies of 2D layered materials and the work done in the thesis

on open quantum systems seem to be unconnected at first sight, they are not. Indeed both

deal with the interaction of radiation with matter. On the one hand, in the chapters about open

quantum systems, the quantum nature of the radiation has been emphasised and the electronic

system has been modelled without spending too much efforts. On the other hand, in chapter

6 many-body electronic systems have been described highly accurately within DFT and the

radiation has been considered classically. The synthesis of these two approaches, describing the

interaction of real materials with photons, is an promising field for future investigations. First
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work in this direction has been undertaken by generalising the theorem of time-dependent DFT

and time-dependent current DFT to the case of open quantum systems. This has been done for

both, the reduced density matrix and the stochastic Schrödinger equation formalism [174–177].

However, as in the case of any DFT theory, the form of the functional is unknown, therefore

the quality of the results obtained depends on the approximations we are able to make for this

functional. At the moment, this is an open area of research. The hope is obviously that standard

approximations that have been proven very useful in the past, will provide a solid foundation to

explore the reach of this approach. While those approaches solve the time-evolution of an open

quantum systems, where the system is described within DFT simultaneously, a first step in this

direction would be to investigate the system of interest within DFT or many-body perturbation

theory first. This would allow to gain access to its ground-state and excited-state properties

and can then be used as an input for the calculation of the dynamics of the open system. At

the moment we are working on this approach within photosynthetic systems. By studying

the coherent energy transport in these systems, we hope to understand the dynamics of light

harvesting in photosynthesis and to answer open questions [178–181].

I hope you, the reader, enjoyed this journey through the fascinating world of the interaction

of matter with light in nanoscale systems and also found inspiration and ideas for your own

research.
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Appendix A

Derivation of the stochastic Schrödinger
Equation†

We begin by considering a subsystem described by the Hamiltonian ĤS coupled to an external

environment, given by ĤB, through an interaction potential λŴ , the Schrödinger equation for

the closed system reads (~ = 1)

i∂t|Ψ(t)〉 = (ĤS + ĤB + λŴ )|Ψ(t)〉. (A.1)

This differential equation describes the exact dynamics of the closed system. However, the

exact microscopic description of the dynamics of the macroscopic environment and its influence

on the subsystem are in most cases neither feasible nor relevant. Consequently, this equation

will serve as a starting point for the derivation of an equation of motion for the reduced wave

function expressed in the Hilbert space of the subsystem. The following deduction is very much

in the spirit of Gaspard and Nagaoka [34], who used the so-called Feshbach projection-operator

method [182, 183] to derive a NMSSE.

Considering a complete and orthonormal basis for the environment,

1lB =
∑
n

|n〉〈n|, ĤB|n〉 = εn|n〉, 〈m|n〉 = δmn, (A.2)

†This appendix is part of the article
“A stochastic approach to open quantum systems”, Topical Review in Journal of Physics Condensed Matter 24,
273201 (2012), by R. Biele and R. D’Agosta.

91



Appendix A Derivation of the Stochastic Schrödinger Equation

the total wave function can be written as

|Ψ(t)〉 =
∑
n

|φn(t)〉 ⊗ |n〉. (A.3)

Due to the normalisation of the total wave function, 1 = 〈Ψ|Ψ〉 =
∑

n〈φn|φn〉, the coefficient

wave functions |φn〉 are not normalised and the square of their norm can be interpreted as the

probability that the environment is in the state |n〉. Consequently, the wave functions |φn〉 form

a statistical ensemble for the state of the total system. In order to extract a typical representative

of this ensemble, we define the projection operators

P̂ ≡ 1lS ⊗ |l〉〈l|, Q̂ ≡ 1lS ⊗
∑
n6=l

|n〉〈n| , P̂ + Q̂ = 1l. (A.4)

By applying the operator P̂ to the total wave function, we extract the l-th coefficient wave

function, P̂ |Ψ〉 = |φl〉 ⊗ |l〉. Correspondingly, Q̂|Ψ〉 contains the information of the remaining

wave functions of the ensemble. The Feshbach projection-operator method is conveniently

performed in the interaction picture

i∂t|ΨI(t)〉 = λŴ (t)|ΨI(t)〉. (A.5)

Here, the total wave function and the potential are given by

|ΨI(t)〉 = eiĤBteiĤSt|Ψ(t)〉, Ŵ (t) = eiĤBteiĤStŴe−iĤSte−iĤBt, (A.6)

where we have used [ĤS, ĤB] = 0. The idea behind the Feshbach projection method is to split

the Schrödinger equation (A.5) for the closed system into two. The first contains information

about the time evolution of a typical representative of the ensemble, P̂ |Ψ〉, while the other is

a differential equation for Q̂|Ψ〉, describing the time evolution of the remaining coefficients.

Thus, by solving the second equation and inserting its solution into the first, one obtains a

closed differential equation for P̂ |Ψ〉. To follow this plan, we apply the projection operators

(A.4) to the time-dependent Schrödinger equation (A.5),

i∂tP̂ |ΨI(t)〉 = λP̂ Ŵ (t)P̂ |ΨI(t)〉+ λP̂ Ŵ (t)Q̂|ΨI(t)〉, (A.7)

i∂tQ̂|ΨI(t)〉 = λQ̂Ŵ (t)Q̂|ΨI(t)〉+ λQ̂Ŵ (t)P̂ |ΨI(t)〉. (A.8)
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The second expression is an inhomogeneous linear differential equation for Q̂|ΨI(t)〉 and can

be solved by the method of variation of constants, to get

Q̂|ΨI(t)〉 = Û(t)Q̂|ΨI(0)〉 − iλ
∫ t

0

dt′Û(t− t′)Q̂Ŵ (t′)P̂ |ΨI(t
′)〉, (A.9)

where Û(t) is the time-evolution operator of the corresponding homogeneous differential equa-

tion and thus obeys i∂tÛ(t) = λQ̂Ŵ (t)Q̂Û(t). Inserting Eq. (A.9) into Eq. (A.7) leads to a

closed differential equation for P̂ |ΨI〉,

i∂tP̂ |ΨI(t)〉 = λP̂ Ŵ (t)P̂ |ΨI(t)〉+ λP̂ Ŵ (t)

(
Û(t)Q̂|ΨI(0)〉

−iλ
∫ t

0

dt′Û(t− t′)Q̂Ŵ (t′)P̂ |ΨI(t
′)〉
)
. (A.10)

It is worth mentioning that until now no approximations have been made; Eq. (A.10) describes

the exact time evolution of the l-th coefficient of the total wave function. Hence, this can be

considered as a suitable starting point for a derivation beyond the weak-coupling approxima-

tion. Unfortunately, Eq. (A.10) is as difficult to solve as the Schrödinger equation for the closed

system (A.1). To make further progress we assume that the subsystem is weakly coupled to the

environment and perform a perturbation expansion up to second order in the coupling parameter

λ,

i∂tP̂ |ΨI(t)〉 = λP̂ Ŵ (t)P̂ |ΨI(t)〉+ λP̂ Ŵ (t)Q̂|ΨI(0)〉 − iλ2P̂ Ŵ (t)

∫ t

0

dt′

×
(
Q̂Ŵ (t′)Q̂|ΨI(0)〉+ Q̂Ŵ (t′)P̂ |ΨI(t

′)〉
)

+O(λ3), (A.11)

where the time-evolution operator Û(t) has been expanded to second order in λ. Until now the

derivation has been quite generic, no restrictions on the interaction Ŵ or the Hamiltonians of

the subsystem or environment have been imposed. In the following, we assume the interaction

potential to be of linear form,

Ŵ =
∑
a

Ŝa ⊗ B̂a, (A.12)

in the operators Ŝa and B̂a of the subsystem and the environment, respectively. These operators

can always be redefined as hermitian operators [34], thus we assume them to be so. If needed,

this restriction can easily be lifted.
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Appendix A Derivation of the Stochastic Schrödinger Equation

By multiplying (A.11) from the left with 〈l| and assuming that 〈l|B̂a(t)|l〉 vanishes ∗, it simpli-

fies to

i∂t|φlI(t)〉 = |f(t)〉 − iλ2
∑
a,b

Ŝa(t)

∫ t

0

dt′Ŝβ(t′)〈l|B̂a(t)B̂b(t
′)|l〉|φlI(t′)〉, (A.13)

where the forcing term

|f(t)〉 = λ
∑
a,b,n6=l

Ŝa(t)

{
〈l|B̂a(t)|n〉 − iλ

∫ t

0

dt′Ŝb(t
′)〈l|B̂a(t)B̂b(t

′)|n〉
}
|φnI (0)〉 (A.14)

describes the influence of all the other bath modes on the l-th coefficient wave function and one

sees that the initial conditions |φn(0)〉 enter here as an essential ingredient. By assuming that

at t = 0 the subsystem is in a pure state and the bath is in thermal equilibrium, the total density

operator can be written as

ρ̂T (0) = |φ(0)〉〈φ(0)| ⊗ ρ̂eqB = |φ(0)〉〈φ(0)| ⊗ e−βĤB

ZB
, (A.15)

where β is the inverse of the temperature and ZB = TrB e
−βĤB . Nevertheless, as we interested

in the wave function corresponding to this density operator one assumes that the initial wave

function is given by

|Ψ(0)〉 = |φ(0)〉 ⊗
∑
n

√
e−βεn

ZB
eiθn|n〉, (A.16)

where {θn} are independent random phases uniformly distributed over the interval [0, 2π].

Therefore, the initial conditions can be written as

|φn(0)〉 = 〈n|Ψ(0)〉 = |φ(0)〉
√
e−βεn

ZB
eiθn = |φl(0)〉e−β2 (εn−εl)ei(θn−θl), (A.17)

where we have used the fact that all coefficient wave functions at t = 0 are proportional to the

same state |φ(0)〉 of the subsystem and thus they can be expressed in terms of the l-th. With the

∗This condition can be either fulfilled through a redefinition of the systems Hamiltonian ĤS or through the
choice of the operators B̂α.
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help of this, the forcing term (A.14) can be simplified further,

|f(t)〉 ≈ λ
∑
a,n(6=l)

Ŝa(t)
〈
l
∣∣∣B̂a(t)

[
|φl(0)〉

−iλ
∑
b

∫ t

0

dt′Ŝb(t
′)B̂b(t

′)|φl(0)〉
]∣∣∣n〉e−β2 (εn−εl)ei(θn−θl), (A.18)

≈ λ
∑
a,n(6=l)

Ŝa(t)〈l|B̂a(t)|n〉|φlI(t)e−
β
2
(εn−εl)ei(θn−θl) = λ

∑
a

γla(t)Ŝa(t)|φlI(t)〉.

(A.19)

Where we have assumed that the expression in the square brackets gives approximetely the time

evolution of the l-th coefficient wave function in the interaction picture up to second order in λ

for Eq. (A.13). Besides this the stochastic noise is incoorporated in

γla(t) =
∑
n(6=l)

〈l|B̂a(t)|n〉e−
β
2
(εn−εl)ei(θn−θl), (A.20)

which depends on a specific coefficient wave function. In order to eliminate this dependence, a

thermal average leads to

γa(t) =
∑
l

e−
β
2
εl

√
ZB

γla(t) =
1√
ZB

∑
l,n(6=l)

〈l|B̂a(t)|n〉e−
β
2
εnei(θn−θl). (A.21)

Additionally, one needs to assume the expectation value of an operator from the bath for a

typical eigenstate |l〉 is approximately equivalent to a thermal average of the temperature of the

bath,

〈l|B̂a(t)B̂b(t
′)|l〉 ≈ TrB

[
ρ̂eqB B̂a(t)B̂b(t

′)
]
≡ Cab(t− t′). (A.22)

For a more complete analysis on the validity of this assumption see [184–188].

If the bath is large enough, γa(t) consists of a sum of many complex oscillating terms which

leads to random Gaussian behaviour according to the central limit theorem. Hence, the noise is

characterised by its mean value and its variance,

γa(t) = 0, γa(t)γb(t′) = 0, γ∗a(t)γb(t
′) = Cab(t− t′), (A.23)

where the relations ei(θn+θm) = 0, ei(θn−θm) = δnm and 〈l|B̂a(t)|l〉 = 0 have been used. We want

to point out that the noise and the bath-correlation function are not independent, more precisely,

the covariance function of the noise is given by the bath-correlation function. Collecting all the

information, transforming back into the partial Schrödinger picture of the system and setting
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Appendix A Derivation of the Stochastic Schrödinger Equation

τ = t− t′, (A.13) can be written as

i∂t|φ(t)〉 = ĤS|φ(t)〉+ λ
∑
a

γa(t)Ŝa|φ(t)〉

−iλ2
∑
a,b

Ŝa

∫ t

0

dτe−iĤSτ ŜbCab(τ)|φ(t− τ)〉. (A.24)

Here, we have suppressed the index l, since we assume this wave function is a “typical rep-

resentative” of the dynamics of the system. This again corresponds to the Gibbs ensemble

theory: with probability close to 1, we are sure that picking at random one of the coefficient

wave function, it will evolve according to (A.24).
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Appendix B

Derivation of the Detailed-Balance
Relation

As the SSE describes an ensemble of wave functions evolving under the influence of distinct

stochastic processes, only on average one will be able to judge whether or not thermal equi-

librium is reached and thus we will use the NMME for the discussion of thermal relaxation

processes. As we are interested in the long-time dynamics it is sufficient to investigate thermal

relaxation in the limit t→∞, where the condition

lim
t→∞

dρ̂eqS (t)

dt
= 0 (B.1)

indicates that the thermal equilibrium state, is a steady state of the dynamics. This requirement

and the fact that the equilibrium density operator commutes with the system Hamiltonian leads

for the NMME to

0 = lim
t→∞

dρ̂eqS
dt

= K̂ρ̂eqS Ŝ + Ŝρ̂eqS K̂
† − ŜK̂ρ̂eqS − ρ̂eqS K̂†Ŝ +O(λ4), (B.2)

where

K̂ = λ2
∫ ∞
0

dτC(τ)e−iĤSτ ŜeiĤSτ . (B.3)

From this one can obtain the conditions for relaxation processes in OQSs. Changing to the

energy basis of the system,

ĤS|n〉 = εn|n〉, Ŝ =
∑
n,m

snm|n〉〈m|, (B.4)
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Appendix B Derivation of the Detailed-Balance Relation

Eq. (B.2) can be written as

lim
t→∞

dρ̂eqS
dt

= λ2
∑

n,m,l |n〉〈l|snmsml

×
∫∞
0
dτ

{
C(τ)e−i(εn−εm)τe−βεm + C∗(τ)e−i(εm−εl)τe−βεm

−C(τ)e−i(εm−εl)τe−βεl − C∗(τ)e−i(εn−εm)τe−βεn
}

+O(λ4). (B.5)

As we are interested in system independent conditions for thermal relaxation, this has to be

connected with the bath-correlation function

C(τ) = TrB
[
ρ̂eqB B̂(τ)B̂(0)

]
. (B.6)

By using the fact that B̂ is a hermitian operator, one can conclude that

C∗(τ) = C(−τ). (B.7)

As a result, the ‘half Fourier transform’ in Eq. (B.5) can be written as∫ ∞
0

dτC(τ)e−iωτ =
1

2

∫ ∞
−∞

dτC(τ)e−iωτ + i
1

2i

∫ ∞
0

dτ

{
C(τ)e−iωτ − C∗(τ)eiωτ

}
=

1

2
Ĉ(ω) + iD(ω), (B.8)

where D(ω) is the imaginary part of this half Fourier transform and as a consequence the

Fourier transform of the bath correlation function, Ĉ(ω), is a real-valued function. Furthermore,

if Eq. (B.8) is analytic in the upper complex half-plane of ω and vanishes faster than |ω|−1 as ω

goes to infinity, one can apply the Kramers–Kronig relation,

D(ω) =
1

2π
P

∫ ∞
−∞

da
Ĉ(a)

ω − a. (B.9)

Here, P
∫

denotes the Cauchy principal-value integral.

In the same spirit we can simplify

∫ ∞
0

dτC∗(τ)e−iωτ = Ĉ(−ω) + i
1

2π
P

∫ ∞
−∞

da
Ĉ(−a)

w − a

=
1

2
Ĉ(−ω) + iF (ω). (B.10)

98



Inserting Eqs. (B.10) and (B.8) into Eq. (B.5) we obtain

lim
t→∞

dρ̂eqS
dt

= λ2
∑
n,m,l

|n〉〈l|vnmvml
{(1

2
Ĉ(ωnm) + iD(ωnm)

)
e−βεm

+
(1

2
Ĉ(−ωml) + iF (ωml)

)
e−βεm −

(1

2
Ĉ(ωml) + iD(ωml)

)
e−βεl

−
(1

2
Ĉ(−ωnm) + iF (ωnm)

)
e−βεn

}
+O(λ4), (B.11)

where ωij = εi − εj . We want to point out that in order to satisfy the requirement of thermal

relaxation, the right-hand side of this equation has to vanish. In addition, the Fourier transform

of the bath-correlation function can be interpreted as the power spectrum of the noise and hence

describes the probabilities for energy transitions in the system. By assuming that this power

spectrum satisfies a so-called detailed-balance relation,

Ĉ(−ω) = eβωĈ(ω), (B.12)

(B.11) simplifies to

lim
t→∞

dρ̂eqS
dt

= iλ2
∑
n,m,l

|n〉〈l|snmsml
{
D(ωnm)e−βεm + F (ωml)e

−βεm

−D(ωml)e
−βεl − F (ωnm)e−βεn

}
+O(λ4). (B.13)

The detailed-balance relation (B.12) ensures that the energy transitions in the system are bal-

anced according sto Boltzmann factors. Furthermore, we want to point out that Eq. (B.13) has

only imaginary components and by inserting the explicit integrals into it we arrive at

lim
t→∞

dρ̂eqS
dt

=
iλ2

2π

∑
n,m,l

|n〉〈l|snmsml
∫ ∞
−∞

da

{
Ĉ(a)

(
1− e−β(εn−εm−a)

)
e−βεm

ωmn − a

− Ĉ(a)
(
1− e−β(εm−εl−a)

)
e−βεl

ωml − a

}
+O(λ4). (B.14)

In this expression there is no need to write the principal value anymore as the integral is no

longer singular. It can be shown that the diagonal components of the former equation cancel

each other, i.e.,

〈l|dρ̂
eq
S

dt
|l〉 = 0. (B.15)
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Appendix B Derivation of the Detailed-Balance Relation

This can be done by changing ωmn to −ωmn, changing the integration variable in the second

integral of (B.14) from a to −a, and applying the detailed-balance relation another time.

As a result, one can conclude that the NMSSE (2.6) has a stationary solution which coincides

with the thermal-equilibrium state up to first order in λ. Furthermore, if the detailed-balance

relation is satisfied, the corresponding master equation or SSE drives the system towards a

stationary state that coincides in the diagonal elements in the energy basis with the thermal-

equilibrium state up to fourth order. Additionally, when neglecting either the off-diagonal

components of the density matrix in the long-time behaviour or the imaginary contribution

of the half Fourier transform,

Im

[∫ ∞
0

dτC(τ)e−iωτ
]

= D(ω) ≈ 0, (B.16)

the thermal equilibrium states is a stationary solution of the equation of motion up to fourth

order. It can be argued that this imaginary part can be included in the system Hamiltonian [31],

the so-called Lamb shift. One the one hand, the equilibrium density operator will not commute

with this effective Hamiltonian, nevertheless, this energy shift will not introduce dissipative

dynamics in the system [32].
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Appendix C

Angular Dependent Transmittance of TiS3

Figure C.1 shows that the polar dependence of the transmittance (nanoribbons) follows subse-

quent rotations of the sample. The minimum of the transmittance is found to correspond with

the b-axis. As the sample is rotated, the corresponding polar dependences rotates as well.

Figure C.2 (a–d) shows the angular dependence of the transmittance for decreasing thicknesses

of nanosheet samples. The linear dichroism becomes weaker for thinner samples. This can

be directly appreciated in Fig. C.2 (e) where we plot the ratio of the maximum and minimum

transmittance as a function of the minimum transmittance (thickness). The ratio decreases for

thinner samples.

Figure C.3 shows polar plots of the transmittance as a function of excitation angle for sam-

ples of TiS3, BP, and MoS2 having comparable overall transmittance. It can be seen that the

TiS3 sample has the strongest modulation of the transmittance with a b-axis to a-axis ratio of

30 compared with a ratio of 1.4 for BP. MoS2 shows little modulation as expected.

  

3 
 

the same data set for an exfoliated nanosheet. The b-axis for this sample is found to be along 
the edge of the flake marked with a black line in the optical images.  

 
 
Figure S3: (a) Normalized intensity of the I3 Raman peak of a TiS3 ribbon as a function of the 
angle between the excitation and detection polarization. The ribbon has been rotated and the 
measurement has been repeated several times to illustrate that the minimum of the normalized 
I3 peak is reached when the excitation polarization is parallel to the TiS3 b-axis. (b) 
Normalized intensity of the I3 Raman peak of a TiS3 nanosheet as a function of the angle 
between the excitation and detection polarization. The nanosheet has been rotated and the 
measurement has been repeated several times to illustrate that minimum of the normalized I3 
peak is reached when the excitation polarization is parallel to the TiS3 b-axis. 
 
 
4. Polar plots of the transmittance with sample rotation 
 
 Figure S4 shows that the polar dependence of the transmittance follows subsequent 
rotations of the sample. The minimum of the transmittance is found to correspond with the b-
axis. As the sample is rotated, the corresponding polar dependences rotates as well.  
 

 
 
Figure S4. Transmittance as a function of the excitation polarization angle for a TiS3 wide 
ribbon, rotated at different angles. The angular dependence of the transmittance follows the 
rotation of the flake. 

FIGURE C.1: Transmittance as a function of the excitation polarization angle for a
TiS3 wide ribbon, rotated at different angles. The angular dependence of the transmittance
follows the rotation of the flake.
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5. Thickness dependence of the angular dependent transmittance  
 
 Figure S5(a-d) shows the angular dependence of the transmittance for decreasing 
thicknesses of nanosheet samples. The linear dichroism becomes weaker for thinner samples. 
This can be directly appreciated in Figure S4(e) where we plot the ratio of the maximum and 
minimum transmittance as a function of the minimum transmittance (thickness). The ratio 
decreases for thinner samples.  
 

 
 
Figure S5. Transmittance measured from the red, green and blue channel of the camera, 
measured for TiS3 samples with different thicknesses (from thicker to thinner). 
 
 
6. Comparison of the angular dependent transmittance for TiS3, BP, and MoS2  
 

Figure S6 shows polar plots of the transmittance as a function of excitation angle for 
samples of TiS3, BP, and MoS2 having comparable overall transmittance. It can be seen that 
the TiS3 sample has the strongest modulation of the transmittance with a b-axis to a-axis ratio 
of 30 compared with a ratio of 1.4 for BP. MoS2 shows little modulation as expected.  
 
 
 

 
Figure S6. Comparison between the angular dependent transmittance of TiS3 (left), BP 
(middle) and MoS2 (right). 

FIGURE C.2: Transmittance measured from the red, green and blue channel of the camera,
measured for TiS3 samples with different thicknesses (from thicker to thinner).
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decreases for thinner samples.  
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Figure S6 shows polar plots of the transmittance as a function of excitation angle for 
samples of TiS3, BP, and MoS2 having comparable overall transmittance. It can be seen that 
the TiS3 sample has the strongest modulation of the transmittance with a b-axis to a-axis ratio 
of 30 compared with a ratio of 1.4 for BP. MoS2 shows little modulation as expected.  
 
 
 

 
Figure S6. Comparison between the angular dependent transmittance of TiS3 (left), BP 
(middle) and MoS2 (right). FIGURE C.3: Comparison between the angular dependent transmittance of TiS3 (left), BP

(middle) and MoS2 (right).
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[117] R. W. Godby, M. Schlüter, and L. J. Sham, “Accurate Exchange-Correlation Potential

for Silicon and Its Discontinuity on Addition of an Electron,” Phys. Rev. Lett. 56, 2415

(1986).

[118] A. Rubio, J. L. Corkill, M. L. Cohen, E. L. Shirley, and S. G. Louie, “Quasiparticle band

structure of AlN and GaN,” Phys. Rev. B 48, 11810 (1993).

[119] E. E. Salpeter and H. A. Bethe, “A Relativistic Equation for Bound-State Problems,”

Phys. Rev. 84, 1232 (1951).

[120] G. Onida, L. Reining, and A. Rubio, “Electronic excitations: density-functional versus

many-body Green’s-function approaches,” Rev. Mod. Phys. 74, 601–654 (2002).

[121] J. L. Murray, “The S-Ti (Sulfur-Titanium) system,” Bull. Alloy Phase Diagrams 7, 156–

163 (1986).

[122] J. C. Mikkelsen, “P-T-X phase diagram for Ti-S from (60-75) atomic sulfur,” Nuovo

Cim. B 38, 378–386 (1977).

[123] K. K. Liu, W. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Y. Su, C. S. Chang, H. Li,

Y. Shi, H. Zhang, C. S. Lai, and L. J. Li, “Growth of large-area and highly crystalline

MoS2 thin layers on insulating substrates,” Nano Lett. 12, 1538–1544 (2012).

[124] C.-P. Lu, G. Li, J. Mao, L.-M. Wang, and E. Y. Andrei, “Bandgap, Mid-Gap States, and

Gating Effects in MoS2,” Nano Lett. 14, 4628 (2014).

[125] B. H. Kim, M. Park, M. Lee, S. J. Baek, H. Y. Jeong, M. Choi, S. J. Chang, W. G. Hong,

T. K. Kim, H. R. Moon, Y. W. Park, N. Park, and Y. Jun, “Effect of sulphur vacancy on

geometric and electronic structure of MoS2 induced by molecular hydrogen treatment at

room temperature,” RSC Adv. 3, 18424 (2013).

[126] W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I.

Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum

disulfide,” Nano Lett. 13, 2615–2622 (2013).

[127] W. Setyawan and S. Curtarolo, “High-throughput electronic band structure calculations:

Challenges and tools,” Comput. Mater. Sci. 49, 299–312 (2010).

[128] F. Iyikanat, H. Sahin, R. T. Senger, and F. M. Peeters, “Vacancy Formation and Oxida-

tion Characteristics of Single Layer TiS3,” J. Phys. Chem. C 119, 10709–10715 (2015).

112

http://dx.doi.org/10.1103/PhysRevB.34.5390
http://dx.doi.org/10.1103/PhysRevLett.56.2415
http://dx.doi.org/10.1103/PhysRevLett.56.2415
http://dx.doi.org/10.1103/PhysRevB.48.11810
http://dx.doi.org/ 10.1103/PhysRev.84.1232
http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1021/nl2043612
http://dx.doi.org/10.1021/nl501659n
http://dx.doi.org/10.1039/c3ra42072h
http://dx.doi.org/10.1021/nl4007479
http://dx.doi.org/10.1016/j.commatsci.2010.05.010
http://dx.doi.org/ 10.1021/acs.jpcc.5b01562


[129] J. Kang, H. Sahin, H. D. Ozaydin, R. T. Senger, and F. M. Peeters, “TiS3 nanoribbons:

Width-independent band gap and strain-tunable electronic properties,” Phys. Rev. B 92,

75413 (2015).

[130] A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H. S. J. van der

Zant, and G. A. Steele, “Local Strain Engineering in Atomically Thin MoS2,” Nano Lett.

13, 5361–5366 (2013).

[131] S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S.-S. Li, A. Suslu, F. M. Peeters, Q. Liu,

J. Li, and S. Tongay, “Tuning the Optical, Magnetic, and Electrical Properties of ReSe2
by Nanoscale Strain Engineering,” Nano Lett. 15, 1660–1666 (2015).

[132] H. Mei, C. M. Landis, and R. Huang, “Concomitant wrinkling and buckle-delamination

of elastic thin films on compliant substrates,” Mech. Mater. 43, 627–642 (2011).

[133] D. Vella, J. Bico, A. Boudaoud, B. Roman, and P. M. Reis, “The macroscopic delam-

ination of thin films from elastic substrates.” Proc. Natl. Acad. Sci. 106, 10901–10906

(2009).

[134] A. Castellanos-Gomez, J. Quereda, H. P. van der Meulen, N. Agraı̈t, and G. Rubio-

Bollinger, “Spatially resolved optical absorption spectroscopy of single-and few-layer

MoS2 by hyperspectral imaging,” Nanotechnology 27, 115705 (2016).

[135] I. J. Ferrer, J. R. Ares, J. M. Clamagirand, M. Barawi, and C. Sánchez, “Optical proper-

ties of titanium trisulphide (TiS3) thin films,” Thin Solid Films 535, 398–401 (2013).

[136] C. Hartwigsen, S. Goedecker, and J. Hutter, “Relativistic separable dual-space Gaussian

pseudopotentials from H to Rn,” Phys. Rev. B 58, 3641–3662 (1998).

[137] S. Goedecker, M. Teter, and J. Hutter, “Separable dual-space Gaussian pseudopoten-

tials,” Phys. Rev. B 54, 1703–1710 (1996).

[138] S. Furuseth, L. Brattas, and A. Kjejshus, “On the crystal structures of TiS3, ZrS3, ZrSe3,

ZrTe3, HfS3, and HfSe3,” Acta Chem. Scand. 29, 623 (1975).

[139] M. Abdulsalam and D. P. Joubert, “Structural and electronic properties of MX3 (M =

Ti, Zr and Hf; X = S, Se, Te) from first principles calculations,” Eur. Phys. J. B 88, 177

(2015).

[140] M. Li, J. Dai, and X. C. Zeng, “Tuning Electronic Properties of Transition-Metal

Trichalcogenides via Tensile Strain,” Nanoscale , (accepted) (2015).

113

http://dx.doi.org/ 10.1103/PhysRevB.92.075413
http://dx.doi.org/ 10.1103/PhysRevB.92.075413
http://dx.doi.org/10.1021/nl402875m
http://dx.doi.org/10.1021/nl402875m
http://dx.doi.org/ 10.1021/nl504276u
http://dx.doi.org/10.1016/j.mechmat.2011.08.003
http://dx.doi.org/10.1073/pnas.0902160106
http://dx.doi.org/10.1073/pnas.0902160106
http://dx.doi.org/ 10.1088/0957-4484/27/11/115705
http://dx.doi.org/ 10.1016/j.tsf.2012.10.033
http://link.aps.org/doi/10.1103/PhysRevB.58.3641
http://dx.doi.org/10.1103/PhysRevB.54.1703
http://dx.doi.org/10.1140/epjb/e2015-60005-x
http://dx.doi.org/10.1140/epjb/e2015-60005-x
http://dx.doi.org/ 10.1039/C5NR04505C


Bibliography

[141] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov,

and A. K. Geim, “Two-dimensional atomic crystals.” Proc. Natl. Acad. Sci. U. S. A.

102, 10451–10453 (2005).

[142] S. Z. Butler, S. M. Hollen, and L. Cao, “Opportunities in Two-Dimensional Materials

Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).

[143] F. Schwierz, “Graphene transistors,” Nat. Nanotechnol. 5, 487–96 (2010).

[144] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer

MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).

[145] A. Meerschaut and J. Rouxel, “Pseudo-One-Dimensional MX3 and MX4 Transition

Metal Chalcogenides,” in Phys. Chem. Mater. with Low-Dimensional Struct. (Springer,

1986) pp. 205 –279.

[146] J. O. Island, R. Biele, M. Barawi, J. M. Clamagirand, J. R. Ares, C. Sánchez, H. S. J.

van der Zant, I. J. Ferrer, R. D’Agosta, and A. Castellanos-Gomez, “Titanium trisulfide

(TiS3): a 2D semiconductor with quasi-1D optical and electronic properties,” Sci. Rep.

6, 22214 (2016).

[147] P. Nozières and D. Pines, “Electron interaction in solids. General formulation,” Phys.

Rev. 109, 741–761 (1958).

[148] H. Ehrenreich and M. H. Cohen, “Self-consistent field approach to the many-electron

problem,” Phys. Rev. 115, 786–790 (1959).

[149] W. von der Linden and P. Horsch, “Precise quasiparticle energies and Hartree-Fock bands

of semiconductors and insulators,” Phys. Rev. B 37, 8351–8362 (1988).

[150] G. E. Engel and B. Farid, “Generalized plasmon-pole model and plasmon band structures

of crystals,” Phys. Rev. B 47, 15931–15934 (1993).

[151] A. J. Molina-Mendoza, J. G. Rodrigo, J. Island, E. Burzuri, G. Rubio-Bollinger, H. S. J.

van der Zant, and N. Agraı̈t, “Note: Long-range scanning tunneling microscope for

the study of nanostructures on insulating substrates,” Rev. Sci. Instrum. 85, 2014–2017

(2014).
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