
Gradu Amaierako Lana/Trabajo Fin de Grado

Fisikako Gradua/Grado en F́ısica

Quantum Machine Learning

Cristian Romero Garćıa

Director:

Dr. Mikel Sanz

Codirector:

Prof. Enrique Solano

Department of Physical Chemistry
Faculty of Science and Technology

University of the Basque Country UPV/EHU

Leioa, September 2016

Contents

Contents 3

1 Introduction and Objectives 5

2 Classical Machine Learning 7
2.1 The Concept of Algorithm . 7

2.1.1 Elements of an Algorithm 9
2.2 Machine Learning Algorithms 10

2.2.1 Definition and Explanation 11
2.2.2 Classification of Machine Learning Algorithms 12
2.2.3 Relevance and Applications 18
2.2.4 Memory and non-Markovianity in Machine Learning . 19

2.3 Physical Implementation of Algorithms 21
2.3.1 Physical Implementation of ML Algorithms 22

3 Quantum Information and Quantum Computing 25
3.1 A Glimpse of Quantum Information 25
3.2 Quantum Computing . 26

3.2.1 Grover’s Algorithm . 28
3.2.2 Types of Quantum Computing 30
3.2.3 Analog and Digital Quantum Computers 31

4 Quantum Machine Learning 33
4.1 Artificial Neural Networks . 34

4.1.1 Quantum Neural Networks 36
4.2 Evolution of Open Quantum Systems 36

4.2.1 ML in Open Quantum Systems 38

5 Conclusions 41

Bibliography 43

3

Chapter 1

Introduction and Objectives

In the age of Internet, information management and pattern recognition
in large databases are fundamental labours. It is a cornerstone in most of
the social, artistic, scientific and business activities. We need to transmit,
analyze, compute and modify this information among other things. In con-
sequence, the design of new tools to efficiently deal with this problems has
become essential.

Among these tools, those that automatize in some way the management
of information are proving very useful, due to the effectiveness they show
with a minimum human intervention. The fields of machine learning and
applied artificial intelligence design and study these algorithms, which learn
how to process information automatically. Additionally, based on higher
computational power or the limitation shown by current computer archi-
tectures, new ideas are currently being explored. Quantum computing is
one of the most promising alternatives, and is receiving lot of attention and
investments from different governments, companies, and institutions.

Recently, the new field of quantum machine learning has emerged, with
the goal of combining machine learning and quantum computing. The ob-
jective is finding quantum implementations of machine learning algorithms
which have the expected power of quantum computers and the flexibility
and learning capabilities of machine learning algorithms.

In this work, we explain the basic ideas behind quantum machine learn-
ing, reviewing first the fundamental concepts to understand it. In the Chap-
ter 2, we will introduce classical machine learning with some definitions and
classifications, proposing a internal structure for the machine learning al-
gorithms which we think could help in the understanding of their essential
characteristics. Also, in the sections 2.3, we will present a brief discussion
about what, in our opinion, are important aspects in the physical imple-

5

6 CHAPTER 1. INTRODUCTION AND OBJECTIVES

mentation of machine learning algorithms.

In the Chapter 3, basic notions of quantum information and quantum
computing are provided, including as an example Grover’s quantum search
algorithm. Finally, in the Chapter 4, quantum machine learning is intro-
duced, giving the fundamental ideas of a field with only a couple of years of
existence, and focusing on the example of quantum neural networks. In the
end of the chapter, proposals for implementing machine learning algorithms
in open quantum systems are discussed.

The objectives of this work are:

• Understand what is machine learning, capturing the ideas behind the
running mode of these algorithms, and getting the different classifica-
tions.

• Realize about the fundamental notions of quantum computing and
understand the power and limitations of quantum computing devices.

• Capture the fundamentals of quantum machine learning, as well as
some current approaches and examples.

• Analyze the characteristics required in a physical system which imple-
ments a machine learning algorithm. In the quantum realm, discuss
the possibility of implementing quantum machine learning algorithms
in open quantum systems.

Chapter 2

Classical Machine Learning

Machine learning is one of the more active fields in computer science. Due
to the accessibility of internet and the current digital devices such as lap-
tops, smartphones, digital cameras, etc, a massive volume of new data is
continuously produced. Therefore, the amount of data which needs to be
managed every day is huge, and the possibility of doing it manually turned
out to be unfeasible long time ago. The situation affects not only our every
day life, but also to some fields of science as astrophysics, biology, particle
physics or psychology, in which huge volumes of experimental and observa-
tional data are continually collected and need to be analyzed. In all these
cases, new approaches are needed to manage and analyze these data in an
efficient and automatic way. The answer to this relevant question seems to
relay on machine learning and artificial intelligence.

In this Chapter, basic notions of machine learning are introduced, giving
some definitions and analyzing the most relevant approaches. First, some
fundamental concepts about algorithms are introduced, emphasizing their
importance. Then, the idea of machine learning is explained, providing
different classifications of the algorithms and giving some examples which
we find helpful to understand it. Finally, some ideas are shown related
with the physical implementation of machine learning algorithms in non-
universal computing machines, revisiting concepts such as memory and non-
Markovianity.

2.1 The Concept of Algorithm

When we want to solve a problem, we need a way of solving it. We need
a collection of instructions, which is known as an algorithm, that will help
us finding the solution. In this context, an algorithm is a sequence of op-
erations that we have to follow to get the solution of the problem. Let us
illustrate this idea with a simple example. Let us imagine we have a list of

7

8 CHAPTER 2. CLASSICAL MACHINE LEARNING

numbers which we want to sort in growing order. This problem, commonly
known as a sorting problem, is very usual in computer science and there are
plenty of algorithms to solve it [1]. Without going into details, two of these
algorithms are explained to illustrate better the concept.

1 4 2 3
Bubble sort Selection sort

Figure 2.1: Scheme of two different sorting algorithms. This algorithms

are known as Bubble sort and Selection sort and they solve the problem of sorting

a list of numbers. In this example four numbers are ordered numerically. The first

procedure compares adjacent numbers swapping those which are not in numerical

order. The second algorithm finds the smallest number and moves it to the sorted

section.

In the example of Fig 2.1, four integers have to be ordered numerically.
This numbers are one, two, three and four, and are represented graphi-
cally with rectangles whose heights are proportional to the numbers. The
problem is solved when each rectangle have a equal or higher one to his right.

The first algorithm, called Bubble sort, consists in comparing each pair
of adjacent numbers of the list and swapping them if they are not in numeri-
cal order. This process is repeated until no more numbers are interchanged,
which means that the list is in order. In the example of Fig 2.1, only one

2.1. THE CONCEPT OF ALGORITHM 9

run is needed to sort the numbers, but in general, if we have a list with N
integers, the maximum number of steps is given by N(N−1)

2 ∝ O(N2) .

The Selection sort algorithm works in a group of the total list of num-
bers, represented by a grey rectangle in the figure. Initially, the whole list
is taken and the algorithm starts finding the smallest number. This is in-
terchanged with the first of the group. As this number is already sorted,
the size of the working group can be reduced, leaving out the ordered el-
ements. The same process is repeated until the list is completely ordered.
This algorithm shows a similar behavior, with a complexity given by O(N2).

When we find different algorithms to solve the same problem, as in this
example, normally they need different resources. Some of them are faster,
others need less physical memory, while others may give the correct solution
only with certain probability. Finding or choosing an adequate algorithm is
an important step in the resolution of a problem, since it determines how
easy is going to be to solve the problem given some available resources.

Although the two procedures of the example are not the best, they are
useful to understand the concept of algorithm. Note that we can use pencil
and paper, an abacus, a digital computer, or any device as tools to solve
a problem, but the algorithm is always essential, since this is the set of
instructions which tell us how to use these tools. Therefore, we can say that
it is the core of any problem solving process.

2.1.1 Elements of an Algorithm

The concept of algorithm and its definition have evolved during centuries,
but it is not until the mid 20th century when a more formal approach is
taken. Mathematicians like Kurt Gödel, Alan Turing and Alonzo Church
analyzed the computing processes in a more theoretical manner, developing
abstract models of computation which allow the analysis of algorithms in-
dependently of any physical implementation.

Figure 2.2 is the most basic diagram of an algorithm, reducing it to its
essential elements. The algorithm is represented as an abstract entity which
receives some input data, processes it, and gives an output. Any computa-
tional process can be represented in this way. Both input and output have to
be included for being as general as possible. The input is the set of external
data codifying the problem which we want to solve, and the output gives
the answer or solution to the problems.

Another important aspect of this diagram is the internal state. Without
it, we can think that algorithms are simply static mathematical functions

10 CHAPTER 2. CLASSICAL MACHINE LEARNING

Input
Algorithm

Output
Internal State

Figure 2.2: Diagram of an algorithm. Some of the representative parts of

an algorithm are shown; the input, the output and the internal state.

that map inputs to outputs, but this turns out to be a very limited vision.
When the concept of internal state is introduced, computation gets a more
powerful meaning, since we can consider it a process in which the internal
state adapts depending on the input, and gives different outputs for the
same input due to the adaptability of the internal state.

In this sense, the computation is a evolution process of the internal state
while solving a problem. In other words, we can consider an algorithm a
dynamical entity interacting with the input data and giving an output which
depends on it. It is noteworthy to mention that the existence of the internal
state is independent of the input an the output, the same algorithm can thus
give different outputs even receiving the same input. This is because the
internal state when the input is given can be different and, in consequence,
the evolution of the state and the corresponding output to.

2.2 Machine Learning Algorithms

Choosing an algorithm from a list like in the sorting example is not always
possible. For most of the problems either we do not know how to create the
algorithms, they are inaccurate, or they are really too resource consuming
to being solved. For example, imagine that you want a computer program
to identify a face in a picture, or the voice of a particular person. We are
used to do these tasks everyday, but developing an algorithm to solve them
in a computer is a hard problem, and they usually turn to be inefficient and
inaccurate.

So what happens if we can not find an efficient or accurate algorithm to
solve a specific problem? During years, the only option in this situation has
been trying to find faster and more efficient algorithms. Nowadays, with
the power of the computers and computing devices, these tools have become
powerful enough to approach the developing and construction of algorithms
in new ways. Machine learning is one of this approaches.

2.2. MACHINE LEARNING ALGORITHMS 11

2.2.1 Definition and Explanation

Machine learning studies algorithms which learn and adapt from data [2, 3].
When it is said that an algorithm learns, it means that given the problem
which we want to solve, the algorithm is able to modify himself based on
some data to solve it more efficiently. These data are given to the algorithm
as input, and it extracts from them the information which is relevant for
solving the problem. The input data are commonly called experience and
the information that the algorithm extracts in the process, knowledge, as
shown in Fig. 2.3

AlgorithmData
experience knowledge

Output
prediction

Figure 2.3: Machine learning algorithm conceptual scheme. This

algorithms extract from the data the information needed to make future predictions.

In some sense, the algorithm extracts knowledge from experience and uses it to make

predictions.

We can say that machine learning algorithms extract, by learning from
experience, the knowledge that is necessary to accomplish a task or solve
some problem. This knowledge is used by the algorithm itself to give us
an answer about unexperienced data. So there are two important concepts
in these algorithms, the ability of generalizing from data by extracting the
relevant information, and the use of this information to make predictions in
other cases.

On a deeper analysis, machine learning algorithms can be understood as
composed internally by two algorithms. We call them static and dynamic al-
gorithms, and they are represented in Fig 2.4. The dynamic one receives the
input data, processes it and gives an output in a similar way to the algorithm
of Fig 2.2, but the difference now is that it can behave potentially in many
different ways. The static algorithm is responsible of choosing this behav-
ior depending of the problem which we want to solve. To achieve this, the
static algorithm receives data from the dynamic one (input, output, inter-
nal state, etc.) and some extra learning data necessary to learn the problem.

In this analysis, we can say that learning consists in finding in the space
of possible behaviors of the dynamic algorithm a behavior that executes
a particular task better than the current behavior. The criterion used to
evaluate how good a behavior for a specific task is, depends on the type of
machine learning algorithm and on the learning data available.

12 CHAPTER 2. CLASSICAL MACHINE LEARNING

Input
Dynamic
Algorithm Output

Static
Algorithm

Machine learning
algorithm

Learning
Data

Figure 2.4: Machine learning algorithm operation scheme. Machine

learning algorithms can be understood as internally composed of two algorithms.

The dynamic algorithm have a wide range of possible behaviors and is the responsi-

ble of solving the desired problem, giving us the correct outputs for the inputs. The

static algorithm fixes the behavior of the dynamic one based on the experienced

data and some extra learning data.

When designing machine learning algorithms, there are two important
things. On the one hand, the dynamic algorithm needs a sufficiently large
space of possible behaviors, since this allows it to be more flexible and adapt
easier to the problem. On the other hand, the static algorithm has to be
designed to efficiently find an optimum behavior of the dynamic algorithm
to solve a particular task given some learning data.

2.2.2 Classification of Machine Learning Algorithms

Although machine learning algorithms share some characteristics such as
the ability of learning, it is a very wide discipline, and these algorithms can
be classified in to groups based on different criteria. In general, this clas-
sification is not exclusive and the same algorithm can be included in more
than one group at the same time. Even so, making this categories helps to
capture the essential ideas of different algorithms and it allows us to explore
better what machine learning is about.

The most common criterion employed in these classifications is based on
the learning method, grouping algorithms depending on the type of learning
data they need (see Fig 2.5). It consists of mainly three different groups:

2.2. MACHINE LEARNING ALGORITHMS 13

Input
Dynamic
Algorithm Output

Static
Algorithm

Supervised
Learning

Examples

Input
Dynamic
Algorithm Output

Static
Algorithm

Reinforcement
Learning

Rewards

Input
Dynamic
Algorithm Output

Static
Algorithm

Unsupervised
Learning

Figure 2.5: Classification of machine learning algorithms. Three dif-

ferent kinds of algorithm are shown, depending of the type of learning data they

receive. In supervised learning, examples of some inputs and their desired outputs

are received. Reinforcement learning works with rewards which quantifies how well

is being the problem solved. Unsupervised learning does not receive any especial

learning data.

Supervised Learning

Supervised learning algorithms use learning data to infer a mapping between
inputs and outputs, and that mapping is used to make predictions on new
and unlearned data. The training data is a set of examples, where each
example consist in a input and his desired output. In this sense, it is similar
to a problem of function fitting, although in the current case our purpose is
not only finding a function but also using it for the predictions.

To make correct predictions in unseen data, the algorithm have to ex-
tracts the relevant information to attain this, rater than simply finding a
behavior that maps correctly the learning inputs to outputs, but fails in the
unseen data. In some way, the algorithm have to learn from the data rater
than learning the data.

14 CHAPTER 2. CLASSICAL MACHINE LEARNING

Analyzing a supervised algorithm with our model of two internal algo-
rithms, we can say that to learn a correct mapping, the static algorithm has
to be able to chose a behavior for the dynamic algorithm which reproduces
in an acceptable way the input to output relation given by the learning data.

These algorithms can be adapted to solve a wide range of tasks, but they
are commonly used in classification problems, due to their flexibility when
different classes have to be learned. An example of one of this problems is
depicted in Fig 2.6. We have a big data base of unlabeled images, all of
them are either an image of an apple or an image of a banana. We need a
procedure to automatically classify the pictures in these two groups. Thus,
we are going to use a supervised learning algorithm.

BananaAlgorithm

Apple Algorithm

Banana

Algorithm

Apple

Algorithm

Learning Prediction

Figure 2.6: Supervised learning algorithm example. In the learning

stage the algorithm receives images along with their corresponding label, depending

on whether they are apples or bananas. In the prediction, unlearned images are

given to the algorithm and it have to be able of classifying them automatically

depending if a apple or a banana appears in the image.

First we train the algorithm by giving some of our images as input data
and pointing out in the learning data the class to which they belong, this
is, if they are apples or bananas. The images are represented by pixels,
and this are going to be the input. In this learning stage, the algorithm
learns to map the pixels of the input to the fruit they represent. When the
algorithm has been trained with a reasonable quantity of images, we can see
wether its predictions on the unlearned images are good. In this case, the
algorithm can be used to classify the rest of images. If there are errors in
the classification during the performance test, we can continue training the
algorithm until the predictions are correct.

2.2. MACHINE LEARNING ALGORITHMS 15

In this example, it is important to use images in the training which are
representative of each of the groups, since the algorithm is going to learn
faster the relevant features to classify fruits correctly.

Reinforcement Learning

These algorithms receive rewards as learning data. The reward is a quantity
that tells to the algorithm how well is the task being solved. The goal of
these algorithms is finding and using the strategy which gives the maximum
long term reward. To get it, they have less information than the supervised
learning algorithms, since now the algorithm does not receive the correct
output for certain inputs.

So we can say that the approach in reinforcement learning consist in
using the static algorithm to explore the space of possible behaviors of the
dynamic algorithm and find those that increase the received long term re-
ward.

Due to the nature of the learning by rewards, in these algorithms the
learning and prediction are made in parallel. The algorithm have to take the
correct output for certain input, and for this prediction is needed. Also, due
to these outputs, new rewards are received, allowing the algorithm to learn.
These two actions, prediction and learning, have to be made simultaneously
to reach to a optimum behavior. So the reinforcement learning algorithms
are online learning algorithms to, as is explained later.

Another aspect that differentiates these algorithms is the way in which
the learning data is received. In the supervised algorithms, the input and
his desired output are received at the same time. In the reinforcement al-
gorithms, instead, the rewards can be received in any moment after the
algorithm starts working. This means an extra challenge for the algorithm,
because it have to conclude which parts of his behavior have been responsi-
ble of the rewards. In this way it can search for new behaviors that conserve
these desirable parts and improve others.

An example of a situation where this type of algorithm might result prac-
tical is in the case of an algorithm which learns to play chess, represented in
Fig. 2.7. The input in this situation is the current state of the chessboard,
with the information of the position of all the pieces. The output is a pre-
diction of the best move given the current state of the board. The way that
the algorithm have of learning is through the rewards. The algorithm plays
some matches against a player, and in each of the plays that the algorithm
wins, it receives a positive reward. When it loses, instead, the reward is

16 CHAPTER 2. CLASSICAL MACHINE LEARNING

negative.

Algorithm

Figure 2.7: Reinforcement learning example. The algorithm receives the

state of the chessboard and it makes a decision of his next move. The algorithm

choses a strategy with the aim of maximizing his number of wins.

In this way, the algorithm should adapt itself in order to maximize the
long-term reward. The behavior changes progressively, exploring different
strategies which help to increase the received rewards. An important aspect
of this example is that there is not always a correct behavior, since it depends
on the player against whom you play. Even more, a particular player can
change his strategy between games, which means that the optimal behavior
also changes. A good reinforcement learning algorithm has to react fast to
these situations.

Unsupervised Learning

Unsupervised algorithms do not receive any learning data. In this type of
learning, patterns have to be found in the data, extracting the informa-
tion about what is more often repeated. In some way, the behavior of the
dynamic algorithm has to be selected with the aim of extracting the most
characteristic features of the input. This is done by the static algorithm,
as in the previous algorithms, but this time there is not learning data, so
the criteria for selecting the best behavior must be codified inside the static
algorithm.

Most of the criteria used are based on classifying the data in groups fol-
lowing some concept of similarity. These algorithms are named clustering
algorithms an they can learn how to extract hidden information in the data,
like categories and characteristics.

To see the difference between this and the rest of the mentioned algo-
rithms, we can use it in the example of the supervised learning algorithm.

2.2. MACHINE LEARNING ALGORITHMS 17

However, now there is not any example of classes to learn from. We only
have all the images of apples and bananas. The unsupervised algorithm
receives these inputs and have to be able to extract common characteristics
of these pictures.

If the criteria used in the static algorithm is some kind of clustering, the
algorithm is going to infer that there are two differentiated types of pictures,
those in which appears an apple and those of a banana. It also can happen
that the algorithm finds another possible classifications, clustering the pic-
tures based on form, color, etc. This property makes unsupervised learning
useful when hidden classes have to be discovered in big databases.

Other classification of the machine learning algorithms is based on the
way the learning data is received, and gathers the algorithms in two different
types:

Bach Learning

In the Bach learning algorithms, also known as offline learning algorithms,
there are two differentiated stages in the running process of the algorithm.
First, in the commonly called learning stage, the algorithm learns how to
solve a particular task by employing the learning data. Then, in the predic-
tion stage, the algorithm forecast the outcome for new data using the gained
knowledge.

In the learning stage, the static algorithm fixes the behavior of the dy-
namic algorithm. In the prediction stage, instead, the dynamic algorithm
make predictions using this behavior. Thus, when the learning have con-
cluded, no more changes are made in the behavior of the dynamic algorithm.
In this sense, it is like building a model that describes the input to output
relation and then using this model to make predictions.

Online Learning

Unlike the bach learning, in the online learning algorithms, the learning and
prediction stages are not well separated. These two phases are executed
simultaneously. At the same time that the algorithm is making predictions,
its behavior changes due to its progressive learning.

These algorithms are useful when there is not possibility of having the
learning data from the beginning. In some situations the data comes sequen-
tially, so the algorithm have to learn progressively at the same time that it
makes predictions. Something similar happens when the received data de-
pends on the previous predictions of the algorithm. In this situation, the

18 CHAPTER 2. CLASSICAL MACHINE LEARNING

algorithm has to make a prediction by using the behavior previously learned,
and in this way the learning process follows with the new data obtained.

If the criterion used in the classification of machine learning algorithms
is the nature of the output data, other two groups can be differentiated:

Classification algorithms

Classification algorithms learn to classify the input data in a reduced set of
classes. In this case, the output indicates to which of these classes belongs
the current input. A classic example of this type of algorithms is the mail
spam detector, in which the algorithm has to classify the input mails in to
two categories, depending whether they are considered spam or not.

Regression algorithms

These algorithms are the machine learning equivalent of the regression anal-
ysis procedures, in which a function approximating the relation between
some given inputs and outputs is estimated. In the machine learning case,
the algorithm infers this function based on the data. Then, this function is
used to predict the outcome for other inputs.

Since there are infinite numbers between any two real numbers, we need
a infinite number of tags to identify any real quantity in a real interval. So
real quantities can not be saved in a finite memory, and in consequence, in
a computer. Real numbers have to be approximated.

With this last idea in mind, we can say that regression in machine learn-
ing is a classification process, since the algorithm is classifying the input into
a very big group. Therefore, we can say that the main difference between
classification and regression is due to the quantity of classes in which the
inputs are classified.

2.2.3 Relevance and Applications

As already said, machine learning is a different approach to problem solving,
and it turns out to be very useful in situations where big data quantities
are available and need to be analyzed or classified. It is also practical when
some flexibility is needed, since the same algorithm can learn how to solve
different problems.

With the procedures of machine learning, problems that once were im-
possible, today can be solved with satisfactory results. This is why many
different applications have emerged. It is used in different areas such us pat-
tern recognition, voice recognition, computer vision, marketing, economics,

2.2. MACHINE LEARNING ALGORITHMS 19

medical diagnosis, personalized recommendation systems, search engines,
DNA sequences classification, etc. As they are so general and flexible, ma-
chine learning algorithms can be used in all these different and apparently
unrelated areas.

Many researchers are working in the machine learning field to, find new
algorithms which perform well in more situations, have a wider range of
possible behaviors, need less resources for learning, and generalize better
from experience.

One of the most active areas of research is known as deep machine learn-
ing or deep learning [2]. The idea of this field is to reach a higher level of
abstraction than with normal machine learning algorithms. As previously
explained, the learning process can be seen as an optimization problem to
find the behavior which performs effectively in a particular task. As in most
optimization problems, when the dimension of the space in which the prob-
lem has to be optimized grows, the computational power required must grow
very fast.

This is the reason why only machine learning algorithms with a reduced
behavior space have been used until few years ago, requiring a pre-processing
stage in the data to reduce their dimension, and to extract only the features
which are considered essential for the problem. Today, having more powerful
computers, this first feature extraction stage is not so necessary and can be
achieved directly by the machine learning algorithm automatically. Deep
learning studies these algorithms.

2.2.4 Memory and non-Markovianity in Machine Learning

An interesting question which may arise when studying these algorithms
is about the necessity of memory in a learning process. In the context of
machine learning, learning refers to the ability of an algorithm of changing
his behavior to perform better a task. To accomplish this, the external data
is used, extracting from it the necessary knowledge and using it to make a
forecast.

We can say that in a machine learning algorithm, predictions depends on
the data received in the past. In this sense, those algorithms have memory,
since their current behavior depends on the history of inputs. This memory
emerges in the machine learning algorithm in its static algorithm, since it is
the responsible of fixing the behavior of the dynamic algorithm depending
on the data previously received.

Depending on the problem which the algorithm is solving, the time

20 CHAPTER 2. CLASSICAL MACHINE LEARNING

length required for the memory can be very different. In some problems, a
short-term memory is enough, since the knowledge is only used short after
the learning. However, this is sometimes not sufficient, and a longer-term
memory is needed.

To understand better the role of memory in the physical implementation
of a machine learning algorithm, let us explain the concepts of Markovian
and non-Markovian dynamics.

Let us start by introducing the concept of stochastic processes. These
processes describe the system dynamics which evolves in a non-deterministic
or stochastic way, which means that even knowing the current or past states
of the system, the future state is random. However, we can study the evo-
lution of the probability distribution of finding the system in a given state.
Modeling these processes mathematically gives a useful tool to study the
evolution of different real systems, such as Brownian motion, signals of au-
dio and video, stock market, population processes, etc. It is important to
note that deterministic processes can be thought as being stochastic, but
without randomness.

Markov processes are a kind of stochastic processes, and receive this
name because they satisfy the Markov property. A process shows Marko-
vianity if the future probability distribution of the system can be determined
just by knowing the current state and it is independent of the previous his-
tory of states. So the conditional probability function of the future state to
the history of states depends only on the current state. It is commonly said
that Markovian processes are ”memoryless”, since they do not remember
their past.

Non-Markovian processes, as the name suggests, are processes that do
not satisfy the Markov property. In the same way in which Markovian pro-
cesses are called memoryless, the non-Markovian ones have properties that
take us to think in them as processes with memory. This is because non-
Markovianity implies that the evolution depends not only in the current
state but in the history of states, so the behavior of the process depends of
his past and in this sense it have memory.

In the classical case, due to the availability of powerful digital computers
with universal computing capabilities, this discussion is unnecessary, because
the memory can be simulated. In the quantum realm, instead, this universal
computers do not exist yet, so problem specific quantum simulators are the
only option. In this situation, and due to the presence of memory in a non-
Markovian evolution, it seams a natural procedure implementing machine
learning algorithms in physical quantum systems whose time evolution is

2.3. PHYSICAL IMPLEMENTATION OF ALGORITHMS 21

non-Markovian. This is going to be analyzed in Chapter 4.

2.3 Physical Implementation of Algorithms

While an abstract or schematic approach to the analysis of algorithms is
very productive from a theoretical point of view, it does not help us in im-
plementing these algorithms physically. More detailed explanations of the
internal working mode of the algorithms can be given instead of simply an-
alyzing their most essential characteristics as we have done, but even so, an
exact implementation can not be concluded from there.

If we want to build a physical implementation of a particular algorithm,
we need to translate the concepts that we have analyzed schematically into a
more physical realm. As aforementioned in the previous section, this is not
so relevant in the case of classical algorithms due to the existence of power-
ful universal classical computers. However, it will turn out to be key in the
discussion of Chapter 4, since we are far from a universal quantum computer.

Looking at the diagram depicted in Fig 2.2, there is a translation of the
used elements of the algorithm that seams to be natural to work with in to a
physical framework, and it emerges if the algorithm is considered as a phys-
ical system. After this, the rest of the elements find a acceptable physical
meaning. The input and the output can be seen as interactions between the
system and his environment, and the internal state of the algorithm meets
its analogous in the physical state of the system, which is represented by its
degrees of freedom (Fig 2.8).

Input
Interaction

Physical
System Output

Interaction
State

Figure 2.8: Physical algorithm implementation scheme. A basic trans-

lation of an algorithm to a physical system is shown. The internal state of the

algorithm is represented in the physical state and the input-output are considered

interactions between the system and the environment.

In this context, the computation performed by the algorithm is the dy-
namic evolution of this physical state. As the system interacts with the
environment, this affects his evolution and, in this way, modifies the result.
When the input and the output are treated as interactions, the input is the
interaction by which the environment modifies the system, and the output,

22 CHAPTER 2. CLASSICAL MACHINE LEARNING

on the contrary, is where the system is modifying the environment.

The distinction between input and output is subtle and not always clear
in a physical context. In the framework of classical physics, this distinction
can be done correctly, because the input is the interaction modifying the
evolution of the system and the output is simply a measurement in this sys-
tem. Classically this measurement does not modify the state of the system,
something that is expected if we are considering it as an output. In the
quantum realm, however, the measurements modifies the system, so it is
not completely correct considering it only like an output and the situation
is more complex.

In the design of a physical implementation of an algorithm there are some
important issues. The physical system must be adequately chosen so that
the abstract algorithm may be implemented and the information codified
and retrieved straightforwardly. Also, the dynamics of the system have to
be accurate representing the state transitions which are performed in the
algorithm that we want to implement.

2.3.1 Physical Implementation of ML Algorithms

When an algorithm is implemented in a physical system, the problems are
solved thanks to the evolution of the physical state of this system. In ma-
chine learning, the system has to be able to modify its behavior based on
the data, which is equivalent to saying that it have to be able to modify its
dynamics based on interactions with the environment. To explain this in a
more clear way, we are going to separate this physical system in to two parts
(see Fig 2.9) in a similar manner to what we have done with the machine
learning algorithm in the Chapter 3.

These two parts gather two different degrees of freedom of the total sys-
tem. We have called them fast and slow systems, for reasons which are
explained below. The fast system is interacting with is environment in the
input and the output, and is the part that make predictions. The slow
system is interacting with the fast one, and it is responsible for fixing its
dynamics. To perform this, it receives information through his interaction
with the fast system.

It has been explained earlier that any learning algorithm shows some
kind of memory. So if we want to physically implement a machine learning
algorithm, we need a material way of having this memory. In the last de-
scription this is achieved with the separation done in the degrees of freedom.
The fast and slow degrees of freedom of the total system are grouped in the
fast and slow systems, respectively.

2.3. PHYSICAL IMPLEMENTATION OF ALGORITHMS 23

Input
Interaction

Fast
System

Output
Interaction Fast deegres

of freedom

Slow
System

Slow deegres
of freedom

Figure 2.9: Scheme of the physical implementation of Machine
Learning algorithms. We can separate the internal degrees of freedom of

the physical system in two systems, depending if they are fast or slow. The fast

degrees of freedom make the predictions and the slow ones retain the information

needed to perform these predictions. Because these systems are interacting, they

influence each other. The slow degrees of freedom affect the behavior of the fast

ones, fixing their dynamics. In the other hand, the fast degrees of freedom affect

the slow degrees permitting them to correct the information that they contain. In

this mutual interaction is where emerges the ability of learning.

As the slow system contains the slow degrees of freedom, it can retain
in the dynamics the information of the past data, and by means of the
interaction with the fast degrees of freedom it can modify their dynamic.
Therefore, the slow system is responsible of keeping the memory.

To be practical, the fast system have to be able of adopting a wide range
of possible behaviors, which means that his corresponding degrees of freedom
can show a wide range of different possible dynamics, in a similar way to
what we have described earlier for the dynamic algorithm. Achieving this in
the quantum realm, as is explained in Chapter 4, is an important challenge,
since quantum mechanics are extremely linear, what difficult the design of
rich and complex dynamics.

Chapter 3

Quantum Information and
Quantum Computing

3.1 A Glimpse of Quantum Information

As in classical information theory, where the elemental concept is the bit,
in quantum information there is a quantum equivalent called qubit. There,
the Boolean states 0 and 1 are represented by a pair of normalized and or-
thogonal quantum states labeled as |0〉 and |1〉, respectively.

These states form a basis in which any qubit state can by represented
as a superposition α |0〉 + β |1〉, where α, β ∈ C satisfy the normalization
condition. The possibility of being in a superposition brings to the qubit a
continuous of possible states, compared with a classical bit. This difference
open a new paradigm in information processing.

Another quantum property which also seems to be useful in quantum in-
formation is related with the fourth postulate of quantum mechanics. This
says that the state space of a composite physical system is the tensor prod-
uct of the state spaces of the component physical systems. Moreover, if we
have systems numbered 1 through n, and system number i is prepared in
the state |ψi〉, then the joint state of the total system is |ψ1〉⊗|ψ2〉⊗· · ·⊗|ψn〉.

This postulate shows how to describe a quantum system consisting of a
number of distinct physical systems, constructing a new Hilbert space from
the spaces of each of the original systems. An astounding concept related
to this postulate is the quantum entanglement. This phenomenon has re-
ceived a lot of attention since the beginnings of quantum mechanics (EPR
paradox) and nowadays continues being an active area of research. Let us
try to resume the basic idea in the following example [4].

25

26 CHAPTER 3. QUANTUM INFORMATION AND COMPUTING

Let us consider a quantum system, consisting of two qubits. The most
general state of one of these qubits is the superposition

|ψ〉 = c0 |0〉+ c1 |1〉 , (3.1)

were |0〉 and |1〉 are the two base vectors and c0, c1 ∈ C. These two
complex coefficients fix the quantum state of the qubit. Based on the fourth
postulate, if we combine the two qubits an analyze the system as a whole,
a possible state of the composed system can be

|ϕ〉 =
|0〉 |0〉+ |1〉 |1〉√

2
. (3.2)

The notation |u〉 |v〉 is a simplification of |u〉 ⊗ |v〉. This state is called a
Bell state and shows the interesting property that there are no single qubit
states |a〉 and |b〉 such that |ϕ〉 = |a〉 |b〉, a fact which is easily shown. We
are going to suppose that this is possible, so

|ϕ〉 = |a〉 |b〉 (3.3)

= (a0 |0〉+ a1 |1〉)(b0 |0〉+ b1 |1〉)

= a0b0 |0〉 |0〉+ a1b1 |1〉 |1〉+ a0b1 |0〉 |1〉+ a1b0 |1〉 |0〉 .

To obtain the Bell state, the coefficients have to be chosen to cancel the
last two terms of the sum conserving the rest. However, this is clearly im-
possible, since this removes at least one of the desired terms. In this way, we
have proved that the Bell state can not be obtained as the tensor product
of the individual qubits states.

This implies that when these qubits are separated a large distance, they
continue connected, even without the existence of any interaction between
them. In this situation, it is said that the qubits are entangled, because it is
impossible to separate the representation of the composite system into the
qubits states, they are interconnected, and the measurements performed on
one of the qubits affects the measurements made on the other. This property
has important implications in quantum information theory.

3.2 Quantum Computing

The mechanical calculators of Leibniz, Pascal and Schickard, the mechanical
computers of Charles Babbage, and also the first electric computers like the
Z3 and the ENIAC, all of them where supported and explained by classical
physics.

This changed with the appearance of the transistor and the semiconduc-
tor devices, which helped taking one more step in the process of miniatur-
ization of the computing machines. These electronic elements were invented

3.2. QUANTUM COMPUTING 27

thanks to the quantum theory, and they can not be understood without it.
Since then, with the aim of increasing the performance and reducing the
size of the computing devices, a lot of improvements have been made, and
the quantum mechanics have been essential in all of these steps.

Currently, due to physical limitations in this miniaturization process
and the necessity of more computational power, the paradigm is changing.
Rather than using the quantum physics only in the design of the computing
devices, as we have done until now, the idea is to codify also the informa-
tion in quantum states, using the physical quantum properties to perform
the computation.

One of the first ideas in this area come by Richard Feynman [5], who in
1982 observed that it seems impossible in general to simulate efficiently the
time evolution of a quantum system in a classical computer. To completely
describe a quantum system, the number of variables needed increases expo-
nentially in relation with the number of particles. The reason relies on the
exponential growing of the dimension of the Hilbert space of a composite
system, which is the multiplication of the dimensions of his subsystems. So
if we have N qubits, the Hilbert space that emerges in the interaction of
these N qubits have a dimension of 2N , which means that this is the number
of variables needed to characterize the system.

Due to the size of the resulting Hilbert spaces, and consequently, to the
huge computational power needed to update them, it is inefficient to simu-
late in general quantum systems in classical computers, even if the simulated
system is composed of a reasonably small number of particles. In this sit-
uation, Feynman noted that a quantum computer can be used to simulate
quantum systems efficiently, because all the things which make the compu-
tation hard classically, are natural in a quantum computer.

Around this idea, researchers suggested that maybe there are other prob-
lems which quantum computers can solve efficiently, apart from the quantum
simulations. If in general a quantum system can not be efficiently simulated
classically, it is very probable that some of the problems that this quantum
system is able to solve are also inefficient to be solved classically. Following
these ideas, quantum computing started as a new research field.

Quantum computing studies the computers and universal computational
models which make use of quantum mechanic phenomena. It is about the
implementation of algorithms that sustain their work in quantum properties.
The theory of quantum mechanics have some aspects that are very different
from their classical counterpart, and sometimes there is no classical coun-
terpart at all, as in the cases of quantum entanglement and superposition.

28 CHAPTER 3. QUANTUM INFORMATION AND COMPUTING

These properties open new ways in the implementation of algorithms and
computing devices. Additionally, they can help to understand better some
aspects of the quantum mechanics which are still not well understood.

Nowadays, this field is still in his infancy and it has a long way ahead,
but even so, there are reasons to believe that the computational power of
these devices is larger than this of the conventional ones. Some advances
have been made finding quantum algorithms which perform faster than the
classical equivalents, such as the Shor’s algorithm for factorizing numbers
or the Grover’s one for searching in an unsorted list. Successful technologies
have emerged to implement these algorithms, such as trapped ions, super-
conducting circuits, nuclear magnetic resonance systems, photonics, etc.

3.2.1 Grover’s Algorithm

Grover’s algorithm is a quantum search algorithm [6]. The purpose is find-
ing in a group of elements those that satisfy a particular condition. To
do so, we have a black box, commonly called an oracle, with the ability of
recognizing those elements that satisfy the condition we are finding for. If
the size of the group is of N elements, classically we need to call the oracle
O(N) times to find all the elements that satisfy the condition, as we have
seen in Section 2.1. Surprisingly, thanks to the properties of the quantum
mechanics, Grover’s algorithm is able to achieve the same result in O(

√
N)

calls to the oracle. In some way, this algorithm makes different calls to the
oracle at the same time, exploiting the parallel processing capabilities of
quantum computing.

In this section, for the sake of clarity, a particular search problem is ex-
plained, specifically the case in which only one element satisfies the search
condition. However, the procedure can be extended to more general situa-
tions.

Let us consider a search list consisting of N elements. In order to repre-
sent them, Grover’s algorithm uses a Hilbert space of dimension N , which
can be obtained with n = log2N qubits. Each element of the list with in-
dex x is represented by a orthonormal base vector |x〉 in the state space of
the qubits. The goal is identifying the index ω, whose element satisfies the
search condition. To this end, the oracle is used, which is given by a unitary
operation which has the following properties{

Uω |x〉 = − |x〉 , if x = ω

Uω |x〉 = |x〉 , if x 6= ω ,
(3.4)

which can be equivalently expressed in a more compact manner by using the

3.2. QUANTUM COMPUTING 29

identity operator I and a projector into the |ω〉 ket, in the next expression:

Uω = I − 2 |ω〉 〈ω| . (3.5)

The algorithm consists in using the last oracle operator together with the
Grover diffusion operators, defined as

Us = 2 |s〉 〈s| − I , (3.6)

where |s〉 = 1√
N

∑N
x=1 |x〉 . These two are applied as follows. First the state

of the qubits is initialized to the |s〉 state. Then, the operators Uω and Us

are applied in this order iteratively r(N) times, whose expression is calcu-
lated later. Finally, after that, the system is measured, which is going to
give the eigenvalue λω with a high probability, from which the index ω can
be concluded.

To describe better this procedure, let us analyze it in the subspace
spanned by the vectors |ω〉 and |s′〉 = 1√

N−1
∑

x 6=ω |x〉, which represent the

desired solution and a superposition of all the states which are not solutions,
respectively. In this subspace, the initial state |s〉 is decomposed as

|s〉 =

√
1

N
|ω〉+

√
N − 1

N

∣∣s′〉 , (3.7)

and the operators Uω and Us are simple reflections in the two-dimensional
plane about vectors |s′〉 and |s〉, respectively. So, when the two operators
are applied one after the other, due to being reflections about different di-
rections, the resultant operation is a rotation. It is more clearly depicted in
the graphical representation in Fig 3.1, where the first Grover iteration step
is shown.

To obtain the angle of rotation θ, we can calculate the angle between
vectors |s〉 and |s′〉, knowing that it is half the rotation angle. From Eq. 3.7,
it is concluded that

sin
θ

2
=

1√
N

, (3.8)

from where the angle θ can be extracted in function of N .

The idea is repeating this iteration r times until our state vector is as
close as possible to the solution |ω〉. Therefore, r has to satisfy the following
expression

rθ +
θ

2
' π

2
. (3.9)

30 CHAPTER 3. QUANTUM INFORMATION AND COMPUTING

Figure 3.1: Grover’s iteration scheme. The unitary operators Uw and Us

are applied consecutively to the state |s〉. Being both operators reflections about

different directions, the resulting transformation is a rotation of angle θ.

When N � 1, Eq. 3.8 reduces to θ ' 2√
N

, and the iteration number r takes

the form:

r ' π

4

√
N . (3.10)

Therefore, the number of iterations needed to find the element ω with the
required precision is O(

√
N). Although the result of the measurement is

probabilistic, when N is large, the angle of rotation of each iteration is small,
allowing us to approach the state very close to the solution and ensure the
correct result with a high probability.

3.2.2 Types of Quantum Computing

All the quantum computing devices share the use of quantum phenomena in
their operation, but we can roughly distinguish two different types depending
of their purpose. Those are quantum simulators and quantum computers.

Quantum Simulator

Quantum simulators are based on Feynman’s ideas, whose aim is simulat-
ing a particular quantum model. These simulations result very useful in
situations when it is difficult to measure directly the system or when extra

3.2. QUANTUM COMPUTING 31

control is needed. These tools would be helpful to advance in research ar-
eas such as condensed-matter physics, high-energy physics, atomic physics,
quantum chemistry, cosmology, etc. Due to the necessity of better under-
standing complex quantum systems, simulations are essential in these areas.

In quantum simulators, the state of the simulated system is mapped
into the simulating system state, which belongs to a Hilbert space of the
same dimension. To simulate the evolution of this system, the Hamiltonian
acting on it has to be correctly engineered to evolve the state in a simi-
lar way to the simulated one. Finally, measurements are performed in the
system, obtaining the desired data. Due to the probabilistic nature of the
measurements, in general the process has to be repeated a number of times
to extract statistics.

Quantum Computer

Quantum computers are designed as universal devices with the aim of solving
more general problems beyond simulations. As aforementioned, quantum
systems show properties which can be exploited in a variety of calculations.

The power of quantum computers relies on the superposition of quan-
tum states, which allows the algorithms to run in superpositions of inputs,
calculating the results for many different inputs at the same time. However,
due to the collapse of the wave function after a measurement is performed,
only one of these results can be obtained. To avoid this problem, algorithms
have to be intelligently designed to give in the output the desired result with
a high probability. Additionally, to exploit this parallelism, the output of
the algorithm has to depend on all the results calculated in parallel.

3.2.3 Analog and Digital Quantum Computers

Quantum computing devices can be analog or digital depending on the
method used to achieve the desired time evolution for the quantum state.

In the analog procedure, a quantum system is chosen in a way which
allows us to solve a particular problem mapping the variables of the sim-
ulated system into the simulating system, and using his evolution to solve
the problem. These implementations are problem dependent, since for each
problem a quantum system which permits a correct mapping and a high level
of control must be found. Therefore, the disadvantage of analog computing
is that, as these devices are usually single purpose, finding a quantum sys-
tem for each problem can be a difficult task. Although, analog computing
devices can be very compact and efficient in resources, since they only have
the essential parts to solve the problem.

32 CHAPTER 3. QUANTUM INFORMATION AND COMPUTING

The digital approach follows a modular design, having the quantum logic
gates as the unit to construct the devices. These gates are similar to the
classical logic gates, but they are applied on quantum states, which means
that the operation is applied simultaneously to each element of the quantum
superposition. These gates perform unitary transformations in the state of
the system, and some types can be differentiated depending on the form
of the unitary transformation that they perform. To achieve more complex
computations, these quantum gates are added together, using the output of
some of them as input of others.

This procedure of combining logic gates allows us to approximate any
unitary transformation with few type of gates. Indeed, depending on the
problem, the quantity of quantum gates required can be very large, resulting
in inefficient implementations due to the resources needed.

Chapter 4

Quantum Machine Learning

Quantum machine learning aims to implement machine learning algorithms
in quantum systems [7], by using the quantum properties such as superpo-
sition and entanglement to solve these problems efficiently.

The field of classical machine learning is receiving lot of attention and
investments from the industry. Nowadays, due to the huge quantities of data
with which we deal every day, new approaches are needed to automatically
manage, organize and classify these data. Classical machine learning, which
is a flexible and adaptable procedure, can recognize patterns efficiently, but
some of these problems can not be efficiently solved by these algorithms. The
companies whose labour consists in big databases management are aware of
these limitations, and are very interested in new approaches to accomplish
this. They have found in quantum machine learning one of these approaches.

Nevertheless, there is not a general theory to analyze and engineer
new quantum machine learning algorithms, and there are additionally some
unanswered related questions. One of the problems to be solved in quantum
machine learning is the limitation present in the quantity of input data that
the proposed implementations can handle. Although many-body quantum
systems have a Hilbert space whose dimension increases exponentially in re-
lation to the size of the system, permitting to store and manipulate a huge
quantity of data, an important problem is to initialize accurately and effi-
ciently this quantum state with the desired data. In machine learning this
stage is essential, since learning a problem needs a lot of learning data.

Another important problem is to obtain quantum dynamics with mem-
ory which simultaneously conserves its quantum properties. As discussed in
Section 2.2.4, memory is important in the implementation of machine learn-
ing algorithms in devices with non-universal computing capacities. This also
holds in the quantum realm. Obtaining this memory in quantum dynamics

33

34 CHAPTER 4. QUANTUM MACHINE LEARNING

is even more difficult, due to the unitary evolution.

The aim of this Chapter is introducing some fundamental ideas about
quantum machine learning. To this end, artificial neural networks are ex-
plained. This allows us to introduce the fundamentals of quantum neural
networks. Finally, following the ideas about memory and non-Markovian dy-
namics, in the Section 4.2 open quantum systems are introduced, and we dis-
cuss the implementation of machine learning algorithms in non-Markovian
open quantum systems.

4.1 Artificial Neural Networks

Artificial neural networks [2] are models inspired in biological neural sys-
tems. They are very common in machine learning due to their flexibility
and the large data inputs which they can handle. Additionally, they are
useful approximating a wide range of functions. The basic element of neural
networks is the neuron, which has some input values xi and a output value
y (see Fig 4.1).

w1

wn

x1

xn

y

Inputs

Output

Figure 4.1: Scheme of a artificial neuron. It receives inputs xi and gives a

output y. To calculate the output a function ϕ is used which receives the sum of

the inputs weighted by the wi parameters.

A neuron can be understood as a function ϕ that gives an output de-
pending on the sum of the inputs weighted by some wi parameters,

y = ϕ

(
n∑

i=1

wixi

)
. (4.1)

When these neurons are grouped connecting the output of one layer to
the inputs of other layers, a network is created, as shown in Fig. 4.2. Using
this network allows us to approximate most of the functions by adjusting the
weights of each neuron. There exist different procedures of modifying the
weights, depending of the available information about the function which

4.1. ARTIFICIAL NEURAL NETWORKS 35

we want to approximate. This flexibility allows the use of neural networks
in different types of machine learning algorithms. The adjustment of these
internal weights is better understood appealing to the dynamic and static
algorithms explained in the first chapter. In this representation, the neu-
ral network is the dynamic algorithm and the responsible of adjusting his
weights is the static algorithm.

x1

Inputs

Outputs

x2

x3

y1

y2

Figure 4.2: Scheme of an artificial neural network. A possible neuron

network is shown, with three inputs and two outputs. It has two neuron layers.

Using more layers permits approximating a wider range of functions, having the

option of adjusting more weights.

The best-known type of neural network is based on the so-called per-
ceptron neurons. Perceptrons perform a weighted sum of the inputs. If the
resulting value is greater than a threshold δ, then the output is 1, otherwise
the output is 0. So their corresponding ϕ function is a step function:

u =

n∑
i=1

wixi , ϕ =

{
1 if u > δ ,

0 otherwise.
(4.2)

The δ threshold should be adjusted in a similar manner as the weights.
In order to do this, we only have to add an extra input in each neuron which
always have the value −1, and hence, the threshold can be tunned as any
other weight.

There are more different ϕ functions for the outputs, but even with
these simple perceptron neurons, when grouping them correctly and adjust-
ing their corresponding weights with a acceptable algorithm, it is possible
to learn most of the classification problems.

36 CHAPTER 4. QUANTUM MACHINE LEARNING

4.1.1 Quantum Neural Networks

Quantum neural networks [8] are quantum versions of the artificial neural
networks. Due to the promising power of the quantum computing devices
and the flexibility of neural networks, there have been some recent attempts
of combining both fields. It is expected that the improvement with respect
to classical neural networks will be especially relevant in the learning stage,
in which thanks to quantum entanglement the weights can be adjusted in
paralell.

The most important challenge is combining the nonlinear dynamics of
neural networks with the linear, unitary dynamics of quantum computing.
Some proposals seem to obtain non-linear dynamics in the quantum system,
using to this end measurements in the system or implementing the algo-
rithm in an open quantum system [9]. Although no satisfactory procedure
has been found yet to implement a quantum neural network containing all
the interesting characteristics of neural and quantum computing together,
it is a promising approach to fully-functional quantum machine learning al-
gorithms.

4.2 Evolution of Open Quantum Systems

In quantum mechanics, the state of a system is represented by a vector in
the corresponding Hilbert space. This vector is commonly called ket and his
mathematical representation is |ψ〉. The ket is a complete representation,
in the sense that it gives as all the possible information of a system.

In most of the cases, however, we do not know all this information. For
these situations the quantum theory can be extended to describe systems
whose state is not completely known. Suppose a quantum system is in one of
a number of states |ψi〉, where i is an index, with corresponding probabilities
pi. The density operator for the system is defined by the equation

ρ ≡
∑
i

pi |ψi〉 〈ψi| . (4.3)

This operator is known as density matrix, and all postulates of quantum
mechanics can be reformulated in terms of it. This allows us to perform
the analysis of systems about whose state we have some type of uncertainty.
The density matrix becomes the most general representation of the state of
a system.

4.2. EVOLUTION OF OPEN QUANTUM SYSTEMS 37

Having introduced the density operator, we can differentiate two distinct
types of states. When it is possible to represent the state as a ket |ψi〉 with
pure certainty, it is said that the system is in a pure state. In this case, the
density operator is simply ρ = |ψ〉 〈ψ|. Otherwise, if the last property can
not be satisfied, the state is called a mixed state.

One of the most useful applications of the density operator formalism
is the description of the subsystems of a composite quantum system. Let
us assume that we have two subsystems A and B, whose composite state is
described by the operator ρAB. The reduced density operator for the system
A is defined by

ρA ≡ trB(ρAB) , (4.4)

where trB is the partial trace over system B, defined as

trB(|a1〉 〈a2| ⊗ |b1〉 〈b2|) ≡ |a1〉 〈a2| tr(|b1〉 〈b2|) . (4.5)

Due to the reduced density operator, the measurements in the subsystem
A can be handled in the same way as in the closed systems. It can be proven
that the last definition of the partial trace is the only one which gives the
correct measurement statistics for the subsystems.

Once we have this reduced density matrix, we may want to know its time
evolution. This is essential when working with open quantum systems [10],
because the dynamics of these systems is affected by their environments.
Depending on the type of interaction between the subsystems or between
the system and the environment, there are some different procedures and
approximations.

A particularly useful method for describing this evolution is through the
Lindblad master equation, which takes the form

dρ

dt
= − i

~
[H, ρ] +

M∑
k=1

(
LkρL

†
k −

1

2
L†kLkρ−

1

2
ρL†kLk

)
. (4.6)

H is the Hamiltonian of the system, ρ is the state of the system and
the operators Lk are called Lindblad operators. The first term at the right
of the equation is the responsible of the unitary evolution, and the other
elements describe possible transitions that the system may undergo due to
interactions with the environment. The Lindblad operators contain all the
information about the system-environment interaction.

38 CHAPTER 4. QUANTUM MACHINE LEARNING

This master equation describes the non-unitary and Markovian time
evolution of the reduced density matrix of the system. It is derived con-
sidering the unitary evolution of the composite system by the Liouville-von
Neumann equation, in the approximation when the coupling between the
system and the environment is weak compared to system energies (Born
approximation) and the environment evolves at much faster timescales than
the system (Markov approximation). The last assumption means that the
environment has no memory and quickly relaxes to its steady state although
being interacting with the system. This implies that the evolution of the
density matrix is going to depend only in his current value.

In the last regime, there is no memory effect. In this Markovian ap-
proximation the system loses information to the environment during the
evolution, and this information never comes back. So to have some type of
memory in open quantum systems less strong assumptions are needed which
permits a information return from the environment to the system, allowing
the memory.

The most general known quantum master equation is Nakajima–Zwanzig’s
equation, which allows us the study of more general open quantum system,
even those with non-Markovian dynamics. However, solving this equation is
generally a very difficult task. A deeper research in open quantum systems
is needed, to find simpler methods to describe open quantum system with
memory.

4.2.1 ML in Open Quantum Systems

As mentioned in the Chapter 2, we are far from being able to implement
universal quantum computers which can beat classical computers. The only
practical alternatives in a short term are the single purpose quantum de-
vices and hybrid systems, since they are simpler and more controllable. If
we want to construct a machine learning algorithm in one of these devices,
memory is required, since it is essential in learning and in consequence in
machine learning.

The necessity of memory is problematic, since quantum devices com-
monly proposed for computation, which are small systems with unitary dy-
namics, do not show this desired memory. A option would be choosing a
larger system with more complex dynamics which can show memory in a
subsystem. However, this is also problematic, since describing and control-
ling one of these systems completely turns out to be extremely difficult.
Also, when the size of the quantum systems grows, conserving the quantum
properties without any quantum decoherence becomes really tricky.

4.2. EVOLUTION OF OPEN QUANTUM SYSTEMS 39

A natural solution may be to implement the machine learning algorithm
in a non-Markovian open quantum system using the environment as a re-
source. In this way, the memory can emerge naturally due to the non-
Markovian dynamics of the system and we could expect a more robust be-
havior against decoherence due to the interaction with the environment.

More explicitly, from the point of view of our proposed machine learning
algorithm physical separation, the open quantum system performs predic-
tions and the environment provides the necessary memory to perform this
predictions.

The challenge in this approach is to correctly design the system, the
environment and their mutual interaction, with the aim of implementing a
particular machine learning algorithm. A problem may be conserving the
quantum properties in a dissipative open system which shows the desired
memory. In order to show memory, the system has to be coupled to an
environment, and it is usually a dissipative dynamics. Therefore, due to
the quantum decoherence, the quantum properties disappear. With this in
mind, finding a balance between memory and quantum phenomena becomes
important.

Dynamics described by master equations do not seem to fit properly,
since they are too cumbersome when one try to describe networks of the
elements. To advance in this direction and yield practical results in quantum
machine learning, a deeper knowledge about open quantum systems and
their description is required.

Chapter 5

Conclusions

In this chapter we summarize the most important aspects learned in this
work.

• The principal difference of the machine learning algorithms with regard
to usual algorithms is the ability of learning based on the data. Unlike
conventional algorithms, whose behavior is determined in the design,
in machine learning, algorithms are adaptive and can learn how to
solve different problems. The learning consists in automatically finding
in a space of possible behaviors the one that solves a problem. To find
it, received data is used.

• Memory is necessary in the implementation of machine learning al-
gorithms in non-universal computing devices, due to the necessity of
performing predictions which depend on history and past data. Al-
though universal computers do not need this dynamic memory, since
they can simulate it, a higher number of fully-controllable resources
are needed, so in more direct physical implementations, memory seems
essential.

• Open quantum systems prove to be useful to implement quantum ma-
chine learning algorithms.

Until recent years, mostly closed quantum systems with unitary evo-
lution were considered for quantum computing. Ideas as quantum
error correction were devised with the aim of conserving in some way
the properties of ideally closed systems. This procedure is limited for
the enormous amount of resources required, and some algorithms like
those of ML, demand efficient implementations of the dynamics.

Therefore, open quantum systems started recently to be considered
for quantum computing, due to the rich dynamics that they can show.
Proposals of non-unitary dynamics based on measurements and feed-
back control have been made, but there is not a clear and general

41

42 CHAPTER 5. CONCLUSIONS

approach yet. One of the most important challenges is finding the
desired non unitary dynamics while retaining the quantum properties
which make quantum computation more powerful than classical one.

More work is required for finding systematic methods of using non-
Markovian dynamics to implement Quantum Machine Learning, having both
memory and the power of quantum computing. Probably with a better
comprehension of open quantum systems, novel ideas and proposals for an
efficient implementation of ML algorithms can emerge.

Bibliography

[1] D. E. Knuth, The art of computer programing (Addison-Wesley, New
Jersey, United States, 1973), Vol. 3, p. 105-139.

[2] E. Alpaydin, Introduction to machine learning (The MIT Press, Cam-
bridge, UK, 2014), Ed. 3, Chap. 1 and 11.

[3] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning
From Theory to Algorithms (Cambridge University Press, Cambridge,
UK, 2014), Chap. 1.

[4] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quan-
tum Information (Cambridge University Press, Cambridge, UK, 2000),
Chap. 1 and 6.

[5] R. P. Feynman, Simulating Physics with Computers, Int. J. Theor. Phys.
21, 467 (1982).

[6] C. Lavor, L.R.U. Manssur, and R. Portugal, Grover’s Algorithm: Quan-
tum Database Search. arXiv:quant-ph/0301079

[7] M. Schuld, I. Sinayskiy, and F. Petruccione, An introduction to quantum
machine learning, Contemporary Physics 56, 172 (2015).

[8] M. Schuld, I. Sinayskiy, and F. Petruccione, The quest for a Quantum
Neural Network, Quantum Information Processing 13, 2567 (2014).

[9] P. Pfeiffer, I. L. Egusquiza, M. Di Ventra, M. Sanz, and E. Solano,
Quantum Memristors, Scientific Reports 6, 29507 (2016).

[10] H. -P. Breuer and F. Petruccione, The theory of open quantum systems
(Oxford university press, Oxford, UK, 2002), p. 109-139.

43

