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Al resto de compañeros de la universidad por todos los momentos vividos. A todas

mis amigas y amigos por estar siempre a mi lado. A mi familia, a mis padres y a

Pau. Y por último, a ti, por animarme cada d́ıa. Gracias a todos.

Esta Tesis ha sido financiada a través de una beca predoctoral concedida por la
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2.1 Functions in HI(t): (a) E0(t) and (b) ϕ(t). Parameters: τ =
Emax

0 t/~ where Emax
0 is the maximum value of E0(t) and τf = 2. . 28

2.2 Bare-state populations for (a) H0(t); (b) H(t) and HI(t). |c1(t)|2
(red circles), |c2(t)|2 (short-dashed blue line) and |c3(t)|2 (solid black
line). Parameters: τ = Emax

0 t/~ with Emax
0 the maximum value of

E0(t), τf = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 (a) Interaction energy for the reference Hamiltonian H0 (solid green

line) and for HI (short-dashed green line). (b) Hopping energy for
H0 (solid magenta line) and HI (short-dashed magenta line). The
same parameters as in Fig. 2.1. . . . . . . . . . . . . . . . . . . . . 30

2.4 Schematic representation of a 1 : 2 beam splitter. . . . . . . . . . . 32
2.5 (a) E0(t) and (b) ϕ(t). τ = Emax

0 t/~ where Emax
0 is the maximum

value of E0(t). τf = 2. . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Bare-state populations for (a)H0(t), and (b)H(t) andHI(t). |c1(t)|2

(red circles), |c2(t)|2 (short-dashed blue line) and |c3(t)|2 (solid black
line). Parameters: τ = Emax

0 t/~ with Emax
0 the maximum value of

E0(t), and τf = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



List of Figures x

2.7 (a) Interaction energy forH0 (solid green line) andHI (short-dashed
green line). (b) Hopping energy for H0 (solid magenta line) and HI

(short-dashed magenta line). The same parameters as in Fig. 2.5. . 35
2.8 Schematic representation of the 1 : 3 beam splitter. . . . . . . . . . 35
2.9 (a) E0(t) and (b) ϕ(t). τ = Emax

0 t/~, where Emax
0 is the maximum

value of E0(t). τf = 2. . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.10 Bare-state populations for (a)H0(t), and (b)H(t) andHI(t). |c1(t)|2

(red circles), |c2(t)|2 (short-dashed blue line) and |c3(t)|2 (solid black
line). Parameters: τ = Emax

0 t/~ with Emax
0 the maximum value of

E0(t), and τf = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.11 (a) Interaction energy forH0 (solid green line) andHI (short-dashed

green line). (b) Hopping energy for H0 (solid magenta line) and HI

(short-dashed magenta line). The same parameters as in Fig. 2.9 . 38

3.1 (a) Bias vs s for linear-in-time bias (green triangles), π pulse (short-
dashed red line), and FAQUAD (solid black line). (b) Final ground-
state population |b1(tf)|2 vs τf = Jtf/~ for linear-in-time bias
(green triangles), π pulse (short-dashed red line), and FAQUAD
(solid black line). (c) Bias vs s for FAQUAD (solid black line),
LA approach (blue dots), and UA approach (long-dashed magenta
line). The inset amplifies the kink of the UA approach. (d) |b1(tf)|2
vs τf = Jtf/~ for FAQUAD (solid black line), LA approach (blue
dots), and UA approach (long-dashed magenta line). The stars in
(b) and (d) correspond to integer multiples of the characteristic
FAQUAD time scale 2π/Φ12. ∆(0)/J = 66.7, U/J = 22.3. . . . . . 45

3.2 (a) Schematic representation of splitting from |0, 2〉 to |1, 1〉. (b)
Cotunneling from |0, 2〉 to |2, 0〉. . . . . . . . . . . . . . . . . . . . . 47

3.3 (a) Energy levels vs ∆. For n = 1, 2, 3: E1 (solid magenta line), E2

(long-dashed green line), and E3 (short-dashed orange line). U/J =
22.3. (b) |c2|2 vs τf for linear-in-time bias (green triangles) and
FAQUAD (solid green line). ∆(0)/J = 100, U/J = 33.45, and
τf = Jtf/~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 (a) Time dependence of the bias with FAQUAD. (b) |c1|2 vs τf
for linear-in-time bias (green triangles) and FAQUAD (solid green
line). ∆(0)/J = 66.7, U/J = 22.3, and τf = Jtf/~. . . . . . . . . . 48

3.5 (a) Single-particle energy levels for U0 = 0 (dashed lines) and
U0ML/~2 = 4 (solid lines) in units of E0 = 2π2

~
2/(ML2). The

ordering is E1(n = 0) < E2(n = 1) < E3(n = −1) < E4(n = 2) <
E5(n = −2) < .... (b) ΩF (s) for N = 1, 3, 5, 7, 9, from the bottom
up to the top. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



List of Figures xi

3.6 (a) Fidelity |〈ΨTG(tf)|ΦTG〉| for N = 3 [FAQUAD (solid black line)
and linear Ω(t) (short-dashed red line)] and N = 9 [FAQUAD
(blue circles) and linear Ω(t) (green triangles)]. ΨTG(tf) is the
time-evolved TG state starting from the ground state for Ω = 0,
and ΦTG is the ground state of the TG gas at Ω = π. (b) Fi-
delity |〈ΨTG(tf )|ΦTG〉| vs ǫ if FAQUAD is applied following a wrong
Ωe(t) = ΩF (t)(1+ ǫ) for N = 3 (solid black line) and N = 9 (short-
dashed red line). Here U0ML/~2 = 0.5. . . . . . . . . . . . . . . . . 51

4.1 Population inversion using trap deformations in three steps: demul-
tiplexing, bias inversion, and multiplexing. . . . . . . . . . . . . . . 56

4.2 (a) δinv(t) and (b) λinv(t). δ(0) = 2π × 78 Hz, λf = 190 s−1,
λ̇(0) = 190 s−2, and tf = 55 ms. . . . . . . . . . . . . . . . . . . . . 62

4.3 Lattice height V0, and trap frequency ω/(2π) using invariant-based
engineering and mapping. ∆x = 200 nm. . . . . . . . . . . . . . . 64

4.4 (a): Ground state at t = 0 (long-dashed, blue line); final state with
the shortcut (solid, blue line, indistinguishable from the ground
state of the final trap); final state with linear ramp for V0(t) and
ω = 2π × 78 Hz (short-dashed, magenta line). (b): Same as (a)
for the first excited state. Parameters like in Fig. 4.3 at t = 53
ms. The linear ramp for V0(t) ends in the same value used for the
shortcut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Fidelities with respect to the final ground state starting at the
ground state (a) and with respect to the final first excited state
starting at the excited state (b) versus final time tf , via shortcuts
(F inv

g and F inv
e , blue circles), or linear ramping of V0(t) (F lin

g and
F lin
e , red triangles). The fidelity is computed at 2 ms less than the

nominal tf . Other parameters as in Figs. 4.2, 4.3, and 4.4. . . . . . 66
4.6 Populations of the states for the shortcuts (a) and the linear ramp

for V0(t) (b). Ground state (P0, solid blue line); first excited state
(P1, long-dashed red line); second excited state (P2, short-dashed
black line). Parameters as in Fig. 4.4 (a). . . . . . . . . . . . . . . 67

5.1 Schematic of the asymmetric Y junction. . . . . . . . . . . . . . . . 72
5.2 Conversion efficiencies of a linearly separating Y junction using the

second mode as the input for different device lengths . . . . . . . . 75
5.3 Parameters for the invariant-based Y junction. . . . . . . . . . . . . 76
5.4 Mode-sorting operation of the invariant-based Y junction. Input

(a) fundamental mode (b) second mode. . . . . . . . . . . . . . . . 76
5.5 Mode-sorting operation of the linearly separating Y junction. Input

(a) fundamental mode (b) second mode. . . . . . . . . . . . . . . . 77
5.6 Output field profile of the Y junctions. Solid: invariant-based.

Dashed: linearly separating. Dash-dotted: waveguide walls. In-
put (a) fundamental mode (b) second mode. . . . . . . . . . . . . . 78

5.7 Conversion efficiencies as a function of width variation using the
second mode as the input. . . . . . . . . . . . . . . . . . . . . . . . 78



List of Figures xii

6.1 Schematic representation of demultiplexing (left arrow), bias inver-
sion (framed in dashed line, central arrow), and multiplexing (right
arrow). The densities of two one-atom eigenstates are represented
in all potentials. In the harmonic potentials (unframed potentials
on the left and right charts) the states are the ground state and first
excited state. In the two central charts with tilted double wells the
states are the lowest for each well. The color (white or gray) indi-
cates how they would evolve sequentially following the fast protocol
described in the text. For example, the gray state is initially the
ground state of the harmonic oscillator, then it becomes the lowest
state of the left well, and remains being the lowest state of that well
after the bias inversion. In the last step it becomes the first excited
state of the final harmonic oscillator. . . . . . . . . . . . . . . . . . 80

6.2 γ versus s = t/tf for the polynomial in Eq. (6.30) (solid black line)
and FAQUAD (short-dashed red line). γ0 = 86.4 zN, γ(tf ) = −γ0,
α = −4.7 pN/m, and β = 5.2 mN/m3. Also shown are the different
effective slopes adding a compensation to the polynomial, γeff(t) =
γ(t) − mγ̈(t)/(4α), for the mass of 9Be+ and times tf = 0.07 µs
(long-dashed blue line); tf = 0.1 µs (green dots); and tf = 0.3 µs
(magenta squares). . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Left: Ground state of the left well at t = 0 (long-dashed magenta
line) and at t = tf (magenta triangles), and final state with the
compensating force applied on the double well (solid blue line).
Right: Ground state of the right well: at t = 0 (short-dashed red
line) and at t = tf (red dots) and final state with the compensating
force applied (solid black line). tf = 4 ns and other parameters as
in Fig. 6.2 for 9Be+. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 (a) Fidelity |〈φL(tf)|ψ(tf)〉|, where |φL(tf )〉 is the lowest state lo-
cated in the left well in the final time configuration, and |ψ(tf)〉 is
the evolved state following the shortcut at final time. (b) Final ex-
citation energy for the process on the left well using compensating-
force (blue dots), fifth degree polynomial in Eq. (6.30) (solid black
line), and FAQUAD (short-dashed red line). The parameters are
for 9Be+ as in Fig. 6.2. . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 Evolution of the wave function densities following the shortcut in
Eq. (6.41) for states in left and right wells. The parameters are for
87Rb: dl = 5.18 µm, ω = 59.4× 2π Hz, V0/h = 1.4 kHz, ∆x0 = 200
nm, and tf = 63 µs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.6 (a) Fidelity |〈ϕ1(tf )|ψ(tf)〉|, where |ϕ1(tf)〉 is the lowest state pre-
dominantly of the left well at final time (the first excited state of
the double well) and |ψ(tf)〉 is the evolved state following the short-
cut at final time. (b) Final excitation energy. Compensating-force
approach (blue dots), fith degree polynomial in Eq. (6.30) with the
change γ(t) → ∆x(t) without compensation (solid black line), and
FAQUAD approach (short-dashed red line). The parameters are
chosen for 87Rb: dl = 5.18 µm, ω = 59.4× 2π Hz, V0/h = 1.4 kHz,
and ∆x0 = 200 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . 94



List of Figures xiii

A.1 Structural fidelities for the Bose-Einstein condensate. From left to
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Introduction

During the last three decades, the research in quantum optics has experienced

a phenomenal boost, largely driven by the rapid progress in microfabrication tech-

nologies, precision measurements, coherent radiation sources, and theoretical work.

Many quantum optical systems are employed to test and illustrate the fundamental

notions of quantum theory. They have also practical applications for communi-

cations, quantum information processing, metrology and the development of new

quantum-based technologies, whose physical aspects have by now become an in-

tegral part of quantum optics. Frequently, the manipulated systems are quite

simple, such as one or a few ions or neutral atoms in harmonic or double wells.

Bose-Einstein condensates involve of course many more atoms, but may still be

described by mean-field theories. Controlling these systems accurately has become

a major goal in contemporary Physics. Serge Haroche and David J. Wineland won

the Nobel Prize in 2012 after developing methods for manipulating individual ions

in Paul traps or photons in cavities while preserving their quantum-mechanical

nature.

This Thesis contributes to this goal by proposing fast operations for one to

few ultra cold atoms, or Bose-Einstein condensates, in a double well potential,

extending the results as well to optical waveguide systems. “Fast” is to be under-

stood with respect to adiabatic processes. The “adiabatic” concept may have two

different meanings: the thermodynamical one and the quantum one. In thermody-

namics, an adiabatic process is the one in which there is no heat transfer between

system and environment. In quantum mechanics, as stated by Born and Fock

(1928) in the adiabatic theorem: “a physical system remains in its instantaneous

eigenstate when a given perturbation is acting on it slowly enough and if there

is a gap between the eigenvalue and the rest of the Hamiltonian’s spectrum”. In

terms of the instantaneous eigenvalues En and their corresponding instantaneous

eigenvectors |φn〉, the adiabaticity condition, i.e., the condition that has to be

1
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satisfied to follow the adiabatic dynamics, can be written as

~

∣∣∣∣
〈φn(t)|∂tφm(t)〉
En(t)− Em(t)

∣∣∣∣≪ 1, n 6= m.

In this Thesis, we shall always understand “adiabatic” in the quantum-mechanical

sense. Quantum adiabatic processes are in principle useful to drive or prepare

states in a robust and controllable manner, and have also been proposed to solve

complicated computational problems. However, they are prone to suffer noise

and decoherence or loss problems due to the long times involved. This is often

problematic because some applications require many repetitions or too long times.

Shortcuts to adiabaticity (STA) are alternative fast processes that reproduce

the same final populations, or even the same final state, as the adiabatic process

in a finite, shorter time. The expression “shortcut to adiabaticity” was introduced

in 2010 by Chen et al. [1] to describe protocols that speed up a quantum adiabatic

process, usually, although not necessarily, through a non-adiabatic route. There

are many different approaches to design the shortcuts. For example, the coun-

terdiabatic or transitionless tracking approach formulated by Demirplak and Rice

(2003, 2005, 2008) [2–4] or independently by Berry (2009) [5], based on adding

counterdiabatic terms to a reference Hamiltonian H0 to achieve adiabatic dynam-

ics with respect to H0. Moreover, Lewis-Riesenfeld invariants (1969) [6] were used

to inverse engineer a time-dependent Hamiltonian H(t) from the invariant I(t).

Masuda and Nakamura (2010) developed a “fast-forward technique” for several

manipulations [7]. There are also alternative methods that use the dynamical

symmetry of the Hamiltonian or based on distributing the adiabaticity parameter

homogeneously in time, or Optimal Control Theory (OCT) [8]. In this Thesis I

will not only apply these existing methods but also develop new ones.

Since adiabatic processes are ubiquitous, the shortcuts span a broad range of

applications in atomic, molecular, and optical physics, such as fast transport,

splitting and expansion of ions or neutral atoms; internal population control, and

state preparation (for nuclear magnetic resonance or quantum information), vi-

brational mode multiplexing or demultiplexing, cooling cycles, many-body state

engineering or correlations microscopy [8]. The Thesis focuses on the double well

potential, which is an interesting model to study some of the most fundamental

quantum effects, like interference or tunneling. Using utracold atoms it has be-

come possible to study the double well at an unprecedented level of precision and
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control. This has allowed the observation of Josephson oscillations, nonlinear self-

trapping and recently, second-order tunneling effects. Few-body systems are lately

of much interest as they enable us to study finite-size effects for a deeper under-

standing of the microscopic mechanics in utracold atoms, and for the possibility

of realizing operations involving a few qubits. Also, double wells for single atoms

and Bose-Einstein condensates have been used for precise measurement in inter-

ferometry experiments. For trapped ions, the double well is used to implement

basic operations for quantum information processing, for example, separation or

recombination of ions, Fock states creation, or tunable spin-spin interactions and

entanglement.

The Thesis is divided into six chapters: The first chapter is devoted to fast

splitting of matter waves. The fast-forward approach is applied to speed up the

process and a two dynamical-mode model is introduced. This two-mode model will

be an important test-bed model during the whole Thesis. Linear and non-linear

matter waves (interacting Bose-Einstein condensates) are studied. Chapter 2 deals

with an interacting few-body boson gas in a two-site potential. In particular, we

investigate how to accelerate an insulator-superfluid transition and the implemen-

tation of a 1 : 2 and 1 : 3 beam splitter. To achieve these goals, a new STA method

based on Lie transforms is worked out. In chapter 3 I present one more new STA

method that uses the time dependence of a control parameter to delocalize in time

the transition probability among adiabatic levels. Some general properties are de-

scribed and the approach is used to speed up basic operations in three different

systems: a two-mode model, interacting bosons in a double well and a few-particle

system on a ring. In chapter 4 the invariant-based inverse engineering approach is

used to accelerate multiplexing or demultiplexing processes. The shortcut is de-

signed in the two-mode model and then it is mapped into a realizable coordinate

potential. Chapter 5 extends the results of the previous chapter to optical wave

guides systems. Finally, chapter 6 provides a strategy based on the compensating

force-approach to implement a fast bias inversion both in neutral atoms and in

trapped ions. Combining this fast bias inversion with fast multiplexing and de-

multiplexing processes, population inversions using only trap deformations can be

achieved.

Due to the length of the manuscript and the different topics discussed, the

notation is consistent within each chapter, but not necessarily throughout the

Thesis.





Chapter 1

Engineering fast and stable

splitting of matter waves

When attempting to split a coherent noninteracting atomic cloud by bifurcating

the initial trap into two well separated wells, slow adiabatic following is unstable

with respect to any slight trap asymmetry, and the matter wave “collapses” to

the deepest well. A generic fast chopping splits the wave but it also excites it.

Shortcuts to adiabaticity engineered to speed up the unperturbed adiabatic pro-

cess through nonadiabatic transients provide, instead, quiet and robust balanced

splitting. For a Bose-Einstein condensate in the mean-field limit, the interatomic

interaction makes the splitting, adiabatic or via shortcuts, more stable with re-

spect to trap asymmetry. Simple formulas are provided to distinguish different

regimes.

5
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1.1 Introduction

The splitting of a wave packet is an important operation in matter wave in-

terferometry [9–12]. A strategy to improve the interferometer performance is to

suppress the interaction [13, 14], so let us first consider a non-interacting Bose-

Einstein condensate. For this system, a complete wave splitting into two separated

branches is a peculiar operation because adiabatic following, rather than robust,

is intrinsically unstable with respect to a small external potential asymmetry [15].

The potential is assumed here to evolve from a single well to a final double-well

where tunnelling is negligible [16]. The ground-state wave function “collapses”

into the final lower well (or more generally into the one that holds the lowest

ground state as in [15]) and a very slow trap potential bifurcation fails to split

the wave except for perfectly symmetrical potentials. A fast bifurcation remedies

this but the price is typically a strong excitation which is also undesired, as it

produces loss of contrast in the interference patterns when recombining the two

waves [17]. We propose here a way around these problems by using shortcuts to

adiabaticity that speed up the adiabatic process along a nonadiabatic route [1].

Wave splitting via shortcuts avoids the final excitation and is significantly more

stable with respect to asymmetry than the adiabatic following. Specifically we

shall use a streamlined version [18] of the fast-forward (FF) technique of Masuda

and Nakamura [7] applied to the Gross-Pitaevskii (GP) or Schrödinger equations.

There have previously been found some obstacles to apply the invariants-based

method (quadratic-in-momentum invariants do not satisfy the required boundary

conditions [18]) and the transitionless-driving algorithm [2] (because of difficulties

in implementing counter-diabatic terms in practice).

In Sec. 1.2 we summarize the FF approach for condensates (interacting or not)

in one dimension and its application to splitting. In Sec. 1.3 the effect of a small

asymmetric perturbation is studied for noninteracting matter waves, and Sec. 1.4

analyzes and interprets the results with the aid of a moving two-mode model.

Sec. 1.5 studies the remarkable stability with respect to the asymmetry achieved

due to interatomic interactions in the mean-field limit, and different regimes are

distinguished. Finally, Sec. 1.6 discusses the results and open questions.
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1.2 Fast-forward approach

The FF method [7, 18, 19] may be used to generate external potentials VFF and

drive the matter wave from an initial single well to a final symmetric double-well.

The starting point is the three-dimensional (3D) time-dependent GP equation,

i~∂t|ψ(t)〉 = H(t)|ψ(t)〉, (1.1)

where H(t) = T + G(t) + V (t) includes kinetic energy T , external potential V ,

and mean field potential G. We are assuming an external local potential, where

“local” means here 〈x|V (t)|x′〉 = V (x, t)δ(x − x′). The kinetic and mean field

terms in the coordinate representation have the usual forms,

〈x|T |ψ(t)〉 =
−~

2

2m
∇2ψ(x, t), (1.2)

〈x|G(t)|ψ(t)〉 = g|ψ(x, t)|2ψ(x, t). (1.3)

The GP equation (1.1) is used to describe a Bose-Einstein condensate within the

mean field approximation and it takes into account the atom-atom interaction

through g, the atom-atom coupling constant. In the case of vanishing coupling

constant g = 0 the GP equation simplifies to the Schrödinger equation.

By solving Eq. (1.1) in coordinate space, V (x, t) may be written as

V (x, t) =
i~〈x|∂tψ(t)〉 − 〈x|T +G(t)|ψ(t)〉

〈x|ψ(t)〉 , (1.4)

with 〈x|ψ(t)〉 = ψ(x, t). By introducing into Eq. (1.4) the ansatz

〈x|ψ(t)〉 = r(x, t)eiφ(x,t), r(x, t), φ(x, t) ∈ R, (1.5)

we get

V (x, t) = i~
ṙ

r
− ~φ̇+

~
2

2m

(
2i∇φ · ∇r

r
+ i∇2φ− (∇φ)2 + ∇2r

r

)
− gr2, (1.6)

where the dot means time derivative. The real and imaginary parts are

Re[V (x, t)] = −~φ̇+
~
2

2m

(∇2r

r
− (∇φ)2

)
− gr2, (1.7)

Im[V (x, t)] = ~
ṙ

r
+

~
2

2m

(
2∇φ · ∇r

r
+∇2φ

)
. (1.8)
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Our purpose is to design a local and real potential such that an initial eigenstate of

the initial Hamiltonian, H(0), typically the ground state, but it could be otherwise,

evolves in a time tf into the corresponding eigenstate of the final Hamiltonian,

H(tf). We assume that the full Hamiltonian and the corresponding eigenstates

are known at the boundary times.

By construction the potential of Eq. (1.6) is local. If we impose Im[V (x, t)] = 0,

i.e.,
ṙ

r
+

~

2m

(
2∇φ · ∇r

r
+∇2φ

)
= 0, (1.9)

then we get from Eq. (1.7) a local and real potential.

In the inversion protocol r(x, t) is designed first, and Eq. (1.9) is solved for φ

to get VFF (x, t) := Re[V (x, t)] from Eq. (1.7). To ensure that the initial and final

states are eigenstates of the stationary GP equation we impose ṙ = 0 at t = 0 and

tf . Then Eq. (1.9) has solutions φ(x, t) independent of x at the boundary times

[18]. Using this in Eq. (1.7) at t = 0, and multiplying by eiφ(0), we get

[
− ~

2

2m
∇2 + V (x, 0) + g|ψ(x, 0)|2

]
ψ(x, 0)=−~φ̇(0)ψ(x, 0).

The initial state ψ(x, 0) is an eigenstate of the stationary GP equation with chem-

ical potential −~φ̇(0) = µ(0). Note that the above solution of φ (with ṙ = 0 at

boundary times) admits the addition of an arbitrary function that depends only

on time and modifies the zero of energy. A similar result is found at tf .

In the remainder of this chapter we will restrict to the one dimensional case so

the potential in Eq. (1.4) is reduced to

V (x, t) =
i~〈x|∂tψ(t)〉 − 〈x|T +G|ψ(t)〉

〈x|ψ(t)〉 , (1.10)

with 〈x|T |ψ(t)〉 = −~2

2m
ψ′′(x, t) and 〈x|G(t)|ψ(t)〉 = g1N |ψ(x, t)|2ψ(x, t). The

primes denote derivatives with respect to x, g1 is the effective 1D-coupling con-

stant of the Bose-Einstein condensate, and N is the number of atoms. For the

numerical examples we consider 87Rb atoms. Using in Eq. (1.10) the ansatz



Chapter 1. Engineering fast and stable splitting of matter waves 9

x (µm)

t (
s)

 

 

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6

a)

x (µm)

t (
s)

 

 

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6

b)

Figure 1.1: Contour plot of VFF in units ~ω from Eq. (1.11) for (a) a three-
well interpolation and (b) a Y -shaped form. Parameters: ω = 780 rad/s, and

tf = 320 ms.

〈x|ψ(t)〉 = r(x, t)eiφ(x,t), r(x, t), φ(x, t) ∈ R, the real and imaginary parts will be

Re[V (x, t)] = −~φ̇+
~
2

2m

(
r′′

r
− (φ′)2

)
− g1Nr

2, (1.11)

Im[V (x, t)] = ~
ṙ

r
+

~
2

2m

(
2φ′r′

r
+ φ′′

)
, (1.12)

where the dot means time derivative.

In the following two sections we consider first g1 = 0 and split an initial single

Gaussian state f(x, 0) = e−x2/2a20 (a0 =
√

~/mω) into a final double Gaussian

f(x, tf) = e−(x−xf )
2/2a20 +e−(x+xf )

2/2a20 . In previous works [7, 18] use has been made

of the interpolation r(x, t) = z(t)
{
[1−R(t)]f(x, 0)+R(t)f(x, tf )

}
, where R(t) is a

smooth, monotonously increasing function from 0 to 1, and z(t) is a normalization

function. This produces a triple-well potential at intermediate times. Here we use

instead the two-bump form r(x, t) = z(t)[e−[x−x0(t)]2/2a20 + e−[x+x0(t)]2/2a20 ], which

generates simpler Y -shaped potentials (see Fig. 1.1). We impose ẋ0(0) = ẋ0(tf) =

0, so ṙ = 0 at the boundary times. In the numerical examples x0(s) = xf (3s
2−2s3),

where s = t/tf , and xf = 4µm (see e.g. [20]); Equation (1.12) is solved with the

initial conditions φ(x = 0) = ∂φ
∂x
|x=0 = 0.
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1.3 Effect of the perturbation

Assume now a perturbed Hamiltonian Hλ = T + Vλ with Vλ = VFF + λθ(x),

where θ(x) is the step function and λ the potential imbalance. Except in the

final discussion, we assume that λ is some uncontrollable and hard-to-avoid small

perturbation, typically unknown, due to imperfections of the experimental setting.

The adiabatic splitting becomes unstable, as we shall see, but the instability does

not depend strongly on this particular form, chosen for simplicity. It would also

be found, for example, for a linear-in-x perturbation, a smoothed step, slightly

different frequencies for the final right and left traps, or a shifted central barrier

[15]. In the final potential configuration, with negligible tunneling, the two wells

are independent, and the global ground state is localized in one of them.

To analyze the effects of the perturbation on the wavefunction structure and

on the shortcut dynamics, we compute several wavefunction overlaps:

• FS = |〈ψ−
0 (tf )|ψ−

λ (tf )〉|, the (black) short-dashed line in Fig. 1.2, is the

“structural fidelity” between the (perfectly split) ground state ψ−
0 (tf ) of

the unperturbed potential VFF (tf ) and the final ground state ψ−
λ (tf) of the

perturbed potential Vλ. This would be the fidelity found with the desired

split state if the process were adiabatic. FS(λ) decays extremely rapidly

from 1 at λ = 0 to 1/
√
2, which corresponds to the collapse of the ground

state of the perturbed potential Vλ into the deeper well.

• F
(0)
D = |〈ψ−

0 (tf)|ψ(tf)〉|, the (blue) long-dashed line in Fig. 1.2, is the fidelity

between the state dynamically evolved with Hλ, ψ(x, tf) = 〈x|eiHλtf/~|ψ(0)〉,
and ψ−

0 (tf). ψ(0) = ψ−
λ (0) is the initial ground state with Vλ(0). If ψ(0) =

ψ−
0 (0) is used instead, the results are indistinguishable; see the overlap FI =

|〈ψ−
λ (0)|ψ−

0 (0)〉| ≈ 1, [green dotted line] in Fig. 1.2. The flat F
(0)
D (λ) at small

λ, in sharp contrast to the rapid decay of FS(λ), demonstrates the robustness

of the balanced splitting produced by the shortcut. Shorter process times

tf make the splitting more and more stable [compare Figs. 1.2(a)-1.2(c)].

(We assume condensate lifetimes of the order of seconds; see e.g., [21].) In

principle, tf may be reduced arbitrarily. In practice, this reduction implies

an increase in transient energy excitation that requires accurate potential

engineering for higher energies [22]. Considering that the time-averaged

standard deviation of the energy ∆E should be limited at some value a

general bound is tf > h/(4∆E) [23]. For the trap frequency in the examples
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Figure 1.2: Different fidelities versus the perturbation parameter λ for the FF

approach (lines) and the two-mode model (symbols). F
(0)
D : (blue) long-dashed

line and circles; FD: (red) solid line and squares; FS : (black) short-dashed line
and triangles; FI : (green) dotted line and diamonds. The vertical (orange) line
is at 0.2/(tfω). (a) tf = 20 ms. (b) tf = 90 ms. (c) tf = 320 ms. ω = 780

rad/s.

(780 rad/s) and setting ∆E = ~ω the bound saturates for a time tf = 2 ms,

10 times shorter than our shortest time in Fig. 2.

• FD = |〈ψ(tf)|ψ−
λ (tf )〉| [solid (red) line in Fig. 1.2] is the fidelity between

the dynamically evolved state ψ(tf) and the final ground state ψ−
λ (tf ) for

the perturbed potential. If the process is adiabatic, then FD ≈ 1. For very

small perturbations FD ≈ FS. In this regime the dynamical wave function

ψ(tf) is not affected by the perturbation and becomes ψ−
0 (tf), up to a phase
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factor; note that F
(0)
D ≈ 1 there. We understand and quantify below this

important regime as a sudden process in a moving-frame interaction picture.

As λ increases, the energies of the ground and excited states of Vλ separate

and the process becomes less sudden and more adiabatic. In Fig. 1.2(c)

for tf = 320 ms and for large values of λ, FD approaches 1 again, the final

evolved state collapses to one side and becomes the ground state of Vλ. For

the shorter final times in Figs. 1.2(a) and 1.2(b), larger λ values are needed

so that FD approaches 1 adiabatically.

1.4 Moving two-mode model

Static two-mode models have been previously used to analyze splitting processes

or double-well dynamics [11, 24, 25]. Here we add the separation motion of left

and right basis functions to provide analytical estimates and insight. In terms of a

(dynamical) orthogonal bare basis |L(t)〉 =
(

0

1

)
, |R(t)〉 =

(
1

0

)
our two-mode

Hamiltonian model is

H(t) =
1

2

(
λ −δ(t)

−δ(t) −λ

)
, (1.13)

where δ(t) is the tunneling rate [11, 24, 25]. We may consider λ constant through a

given splitting process, for the time being, and equal to the perturbative parameter

that defines the asymmetry. A more detailed approach discussed later does not

produce any significant difference. The instantaneous eigenvalues are

E±
λ (t) = ±1

2

√
λ2 + δ2(t), (1.14)

and the normalized eigenstates take the form

|ψ+
λ (t)〉 = sin

(
α
2

)
|L(t)〉 − cos

(
α
2

)
|R(t)〉,

|ψ−
λ (t)〉 = cos

(
α
2

)
|L(t)〉+ sin

(
α
2

)
|R(t)〉,

(1.15)

where α = α(t) is the mixing angle given by tanα = δ(t)/λ.
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The bare basis states {|L(t)〉, |R(t)〉} are symmetrical and orthogonal-moving

left and right states. Initially they are close to each other and δ(0) ≫ λ. The in-

stantaneous eigenstates ofH are the symmetric ground state |ψ−
0 (0)〉 = 1√

2
(|L(0)〉+

|R(0)〉) and the antisymmetric excited state |ψ+
0 (0)〉 = 1√

2
(|L(0)〉 − |R(0)〉) of the

single well. At tf we distinguish two extremes:

i) For δ(tf) ≫ λ the final eigenstates ofH tend to symmetric and antisymmetric

splitting states |ψ∓
λ (tf)〉 = 1√

2
(|L(tf)〉 ± |R(tf)〉);

ii) For δ(tf) ≪ λ the final eigenfunctions of H collapse and become right-and

left-localized states: |ψ−
λ (tf )〉 = |L(tf)〉 and |ψ+

λ (tf)〉 = |R(tf)〉.

Since δ(tf) is set as a small number to avoid tunneling in the final configuration,

the transition from one to the other regime explains the sharp drop of FS at small

λ ≈ δ(tf).

1.4.1 Moving-frame interaction picture

We define now a moving-frame interaction-picture (IP) wave function ψA =

A†ψS, where A =
∑

β=L,R |β(t)〉〈β(0)| and ψS is the Schrödinger-picture wave

function. ψA obeys

i~ψ̇A = (HA −KA)ψ
A, (1.16)

with

HA = A†HA, (1.17)

KA = i~A†Ȧ, (1.18)

but for real 〈x|R(t)〉 and 〈x|L(t)〉, the symmetry 〈x|R(t)〉 = 〈−x|L(t)〉 makes

KA = 0.

Inverting Eq. (1.15) the bare states may be written in terms of the ground and

first excited states and energies. The two-level model approximates the actual

dynamics by first identifying |ψ±
0 (t)〉 and E±

0 (t) with the instantaneous ground

and excited states and energies of the unperturbed FF Hamiltonian.1 We combine

them to compute the bare basis in coordinate representation and then the matrix

elements 〈β ′|Hλ|β〉 = Hβ′β
λ , for β 6= β ′. From Eq. (1.13), δ(t) = −2HRL

λ =

1Contrast this with the variational approach in [26].
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−2HLR
λ .2 Once all matrix elements are set we solve the dynamics in the moving

frame for the two-mode Hamiltonian. The initial state may be the ground state

of the perturbed or unperturbed initial potential. The agreement with the exact

results is excellent (see the symbols of Fig. 1.2), which denotes the absence of

higher excited states. This two-level model thus provides a powerful interpretative

and control tool. To gain more insight we now perform further approximations.

1.4.2 Sudden and adiabatic approximations

The fidelities at low λ may be understood with the sudden approximation in

the IP. Its validity requires [27]

tf ≪ ~

∆HA

, (1.19)

where ∆HA = [〈ψ(0)|HA
2|ψ(0)〉 − 〈ψ(0)|HA|ψ(0)〉2]1/2. We take |ψ(0)〉 = |ψ−

0 (0)〉
and HA = 1

tf

∫ tf
0
dt′HA(t

′), where the matrix elements of HA(t
′) in the basis

{|β(0)〉} coincide with the matrix elements of H in Eq. (1.13), when the latter

are expressed in the basis {|β(t′)〉}. The condition for the sudden approximation

to hold becomes

λ≪ 2~

tf
. (1.20)

Vertical lines mark λ = 0.2~/tf in Fig. 1.2 and demonstrate that indeed this

condition sets the range in which F
(0)
D ≈ 1 so that the fast protocol provides

balanced splitting in spite of the asymmetry.

The increase in FD with increasing λ can be explained using the adiabatic

approximation. The adiabaticity condition is here [29]

|〈ψ−
λ (t)|∂tψ+

λ (t)〉| ≪
1

~
|E−

λ (t)− E+
λ (t)|, (1.21)

which, using Eqs. (1.14) and (1.15), takes the form

∣∣∣∣∣
~λδ̇(t)

2[λ2 + δ(t)2]3/2

∣∣∣∣∣≪ 1. (1.22)

2 For β = β′, we may consistently calculate λ′(t) := 2(HRR

λ
− V0) = −2(HLL

λ
− V0), where

V0 = [E−

λ
(t) + E+

λ
(t)]/2 is a shift to match the zero-energy point between the FF and the two-

mode models. λ′ differs slightly from the constant λ at short times, but the results of substituting
λ by λ′ are hardly distinguishable in the calculations, so the treatment with λ is preferred for
simplicity.
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Figure 1.3: Fidelities vs dimensionless coupling constant for λ/(~ω) = 0.02,
tf = 320 ms, and xf = 4 µm. Lines are the same as in Fig. 1.2. Symbols are
for a two-level model like Eq. (1.13) with the nonlinear diagonal terms g2|cR,L|2
added, where g2 = g1

∫
dx|R(x)|4 = g1

∫
dx|L(x)|4 and |cR,L|2 are populations

for left and right states [28]. The vertical line is at ĝ1N =
√
2πλ/~ω; see the

Appendix A.

1.5 Interacting Bose-Einstein condensates

We now generalize the results of the two previous sections for a condensate

with interatomic interaction in the mean-field framework. We calculate the ground

states χN(x) and χN
2
(x) of a harmonic trap that holds a Bose-Einstein condensate

with N and N/2 atoms and define f(x, t) = [1−R(t)]χN(x) +R(t)χN
2
(x), where

R(t) = 3(t/tf)
2 − 2(t/tf )

3. r(x, t) is constructed as

r(x, t) =
{
f [x− x0(t), t] + f [x+ x0(t), t]

}
/z(t), (1.23)

where z(t) is a normalization factor and x0(t) = xfR(t). We then get VFF from

Eq. (1.11) and evolve the initial ground state with the GP equation using the

perturbed potential Vλ(t).

The fidelities are shown in Fig. 1.3 versus the dimensionless coupling constant

ĝ1N = g1N/(~ωa0). Note the stabilization of F
(0)
D towards 1 upon increasing

the interaction (this implies more stable shortcuts). FD increases too, as the

dynamics tends to be more adiabatic. The structural fidelity jumps to 1 around

ĝ1N =
√
2πλ/~ω from the linear case value 1/

√
2, i.e., balanced splitting by
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Figure 1.4: Fidelities for a Bose-Einstein condensate; lines are the same as
in Fig. 1.2. Equation (1.23) is used to design the potential VFF . Parameters:

xf = 4 µm, ω = 780 rad/s, ĝ1N=0.138, and tf = 45 ms.

adiabatic following is robust versus trap asymmetry for ĝ1N ≫ λ/~ω (see the

Appendix A). The extra filling of the lower well increases the nonlinear interaction

there opposing the external potential imbalance.

The two-level model may also be extended to interacting condensates with

minor modifications, also providing an accurate description (see Fig. 1.3). Adia-

baticity fails eventually when decreasing tf and/or g1, but the shortcut provides

then balanced splitting (see the example of Fig. 1.4): for small λ, adiabatic follow-

ing would be stable (see FS and compare to the sharp drop in Fig. 1.2 for linear

dynamics), but the process is not quite adiabatic (FD < FS) for the chosen time,

tf = 45 ms -more time would be needed. The shortcut is nevertheless more stable

than the hypothetical adiabatic process (F
(0)
D > FS).

1.6 Discussion

We have designed simple Y -shaped (position and time dependent) potential

traps to fully split noninteracting matter waves rapidly without final excitation,

avoiding the instability of the adiabatic approach with respect to slight trap asym-

metries. We also avoid or mitigate in this manner the decoherence and noise that

affect slow adiabatic following [16, 17]. The bifurcation may be experimentally

implemented with optical traps created with the aid of spatial light modulators

[30]. A simpler approximate approach would involve two Gaussian beams. Fur-

ther manipulations, such as the application of differential ac Stark phase shifts

could be combined with the proposed technique [16]. Also, a differential phase
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among the two final wave parts will develop due to the imbalance, allowing for

precision metrology [20, 21], without the time limitations of methods based on

adiabatic splitting [21]. In addition, optimal control methods [9–11] complement

the present approach to further improve stability and/or optimize other variables

such as the transient excitation.

A unique feature of the above application of shortcuts to adiabaticity, compared

to previous ones [1, 31–33], is that the shortcut does not attempt to reproduce the

result of an adiabatic following of the perturbed asymmetrical system in a shorter

time. (The assumption has been made so far that the perturbation is uncontrolled

and, possibly, unknown.) Instead, the shortcut reproduces the balanced splitting of

the adiabatic following corresponding to the unperturbed, perfectly symmetrical

system. In other words, shortening the time here is not really the goal, but it

means to achieve stability.

Other operations may actually make positive use of the instability due to po-

tential asymmetries. In particular, the ground- and first-excited-state components

of the initial trap could be spatially separated by a controlled, slightly asymmet-

rical adiabatic bifurcation. Moreover, both states would become ground states of

the right and left final traps, so the process may as well be used as a population

inversion protocol from the excited to the ground state.

We have also analyzed and exemplified the effect of interatomic interactions

for a condensate in the mean-field regime. The interaction changes the behavior

of the system with respect to asymmetry, stabilizing dramatically balanced split-

ting. The total adiabatic collapse of the wave onto one of the two final separated

wells requires, in this case, a significant perturbation, proportional to the coupling

constant. Compared to the noninteracting case, this offers different manipulation

opportunities, in particular, the possibility of considering the asymmetric pertur-

bation as a known, controllable parameter, so that the imbalance between the two

wells may be prepared at will. Examples of this type of manipulation may be

found in [34–36]. Shortcuts to adiabaticity and, in particular, the FF approach

may be readapted to that scenario by designing the fast protocol taking into ac-

count the known, controlled asymmetry. The emphasis would be again, as in most

applications of the shortcuts, on accelerating and reproducing the result of a slow

process.
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Shortcuts to adiabaticity could play other roles in systems described by a

double-well with varying parameters. They have been applied, in particular, to

speed up the generation of spin-squeezed many-body states in bosonic Josephson

junctions [37]. Here we suggest other applications: for example, Stickney and

Zozulya [38] have described a wave-function recombination instability due to the

weak nonlinearity of the condensate. Specifically, they consider an initially weak

ground symmetric mode of the double-well which is exponentially amplified at the

expense of an initially strong excited asymmetric mode when the wells are recom-

bined. Similarly to the instability due to asymmetry described in this chapter for

noninteracting waves, the nonlinear instability is in fact enhanced by adiabatic

following. A shortcut-to-adiabaticity strategy as the one followed in this chapter

would stabilize the recombination. Our present results may as well be applied to

design Y-junctions in planar optical waveguides [39–41], since the equation that

describes the field in the paraxial approximation is formally identical to the linear

Schrödinger equation, with the longitudinal coordinate playing the role of time.

Finally, partial splitting, in which the final two wells are not completely separated

and tunnelling is still allowed, may as well be considered.



Chapter 2

Shortcuts to adiabaticity in

three-level systems using Lie

transforms

Sped-up protocols that drive a system quickly to the same populations that

can be reached by a slow adiabatic process may involve Hamiltonian terms which

are difficult to realize. We use the dynamical symmetry of the Hamiltonian to

find, by means of Lie transforms, alternative Hamiltonians that achieve the same

goals without the problematic terms. We apply this technique to three-level sys-

tems (two interacting bosons in a double well, and beam splitters with two and

three output channels) driven by Hamiltonians that belong to the four-dimensional

algebra U3S3.

19
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2.1 Introduction

“Shortcuts to adiabaticity” are manipulation protocols that take the system

quickly to the same populations, or even the same state, that can be reached by a

slow adiabatic process [8]. Adiabaticity is ubiquitous in preparing a system state

in atomic, molecular, and optical physics, so many applications of this concept

have been worked out, in both theory and experiment [8]. Some of the engineered

Hamiltonians that speed up the adiabatic process in principle may involve terms

which are difficult or impossible to realize in practice. In simple systems the dy-

namical symmetry of the Hamiltonian can be used to eliminate the problematic

terms and provide instead feasible Hamiltonians. Examples are single particles

transported or expanded by harmonic potentials [42, 43], or two-level systems

[31, 33, 44]. In this chapter we extend this program to three-level systems whose

Hamiltonians belong to a four-dimensional dynamical algebra. This research was

motivated by a recent observation by Opatrný and Mølmer [45]. Among other

systems they considered two (ultracold) interacting bosons in a double well within

a three-state approximation. Specifically, the aim was to speed up a transition

from a “Mott-insulator” state with one particle in each well, to a delocalized “su-

perfluid” state. The reference adiabatic process consisted in slowly turning off

the interparticle interaction while increasing the tunneling rate. To speed up this

process they applied a method of generating shortcuts based on adding a “coun-

terdiabatic” (cd) term to the original time-dependent Hamiltonian [2–5, 31], but

the evolution with the cd term turns out to be difficult to realize in practice [45].

In this chapter we shall use the symmetry of the Hamiltonian (its dynamical alge-

bra) to find an alternative shortcut by means of a Lie transform, namely, a unitary

operator in the Lie group associated with the Lie algebra. Since other physical

systems have the same Hamiltonian structure the results are applicable to them

too. Specifically, the analogy between the time-dependent Schrödinger equation

and the stationary-wave equation for a waveguide in the paraxial approximation

[46–51] is used to design short-length optical beam splitters with two and three

output channels.

In Sec. 2.2 we describe the theoretical model for two bosons in two wells. In

Sec. 2.3 we summarize the counterdiabatic or transitionless tracking approach and

apply it to the bosonic system. Section 2.4 sets the approach based on unitary

Lie transforms to produce alternative shortcuts. In Sec. 2.5 we introduce the

insulator-superfluid transition and apply the shortcut designed in the previous
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section. In Sec. 2.6 we apply the technique to generate beam splitters with two

and three output channels. Section 2.7 discusses the results and open questions.

Finally, in the Appendix B some features of the Lie algebra of the system are

discussed.

2.2 The model

An interacting boson gas in a two-site potential is described within the Bose-

Hubbard approximation [52, 53] by

H0 =
U

2

2∑

j=1

nj(nj − 1)− J(a1a
†
2 + a†1a2), (2.1)

where aj (a
†
j) are the bosonic particle annihilation (creation) operators at the jth

site and nj is the occupation number operator. The on-site interaction energy is

quantified by the parameter U and the hopping energy by J . They are assumed

to be controllable functions of time. For two particles the Hamiltonian in the

occupation number basis |2, 0〉 =

(
1

0

0

)
, |1, 1〉 =

(
0

1

0

)
, and |0, 2〉 =

(
0

0

1

)
is

given by [45]

H0 =




U −
√
2J 0

−
√
2J 0 −

√
2J

0 −
√
2J U


 = UG4 − 4JG1, (2.2)

where

G1 =
1

2
√
2




0 1 0

1 0 1

0 1 0


 , G4 =




1 0 0

0 0 0

0 0 1


 . (2.3)

This Hamiltonian belongs to the vector space (Lie algebra) spanned by G1, G4,

and two more generators,

G2 =
1

2
√
2




0 −i 0

i 0 i

0 −i 0


 , G3 =

1

4




1 0 1

0 −2 0

1 0 1


 , (2.4)
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with nonzero commutation relations

[G1, G2] = iG3,

[G2, G3] = iG1,

[G3, G1] = iG2,

[G4, G1] = iG2,

[G2, G4] = iG1. (2.5)

This four-dimensional Lie algebra, U3S3 [54], is described in more detail in the

Appendix B. To find the Hermitian basis we calculate [G1, G4], and then all com-

mutators of the result with previous elements. This operation is repeated for all

operator pairs until no new linearly independent operator appears.

To diagonalize the Hamiltonian (2.2) it is useful to parameterize U and J as

[45]

U = E0 cosϕ,

J =
E0

4
sinϕ, (2.6)

where E0 = E0(t) and ϕ = ϕ(t), so that

H0 = E0




cosϕ − 1
2
√
2
sinϕ 0

− 1
2
√
2
sinϕ 0 − 1

2
√
2
sinϕ

0 − 1
2
√
2
sinϕ cosϕ


 . (2.7)

The instantaneous eigenvalues are

E1 =
E0

2
(cosϕ− 1), (2.8)

E2 = E0 cosϕ, (2.9)

E3 =
E0

2
(cosϕ+ 1), (2.10)
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corresponding to the normalized eigenstates

|φ1〉 =




1
2

√
1− cosϕ

1√
2

√
1 + cosϕ

1
2

√
1− cosϕ


 , (2.11)

|φ2〉 =
1√
2




1

0

−1


 , (2.12)

|φ3〉 =




1
2

√
1 + cosϕ

− 1√
2

√
1− cosϕ

1
2

√
1 + cosϕ


 . (2.13)

2.3 Counterdiabatic or transitionless tracking ap-

proach

For the transitionless driving or counterdiabatic approach formulated by Demir-

plak and Rice [2–4] or equivalently by Berry [5], the starting point is a time-

dependent reference Hamiltonian

H0(t) =
∑

n

|n0(t)〉E(0)
n (t)〈n0(t)|. (2.14)

The approximate time-dependent adiabatic solution of the dynamics withH0 takes

the form

|ψn(t)〉 = eiξn(t)|n0(t)〉, (2.15)

where the adiabatic phase reads

ξn(t) = −1

~

∫ t

0

dt′E(0)
n (t′) + i

∫ t

0

dt′〈n0(t
′)|∂t′n0(t

′)〉. (2.16)

Defining now the unitary operator

A(t) =
∑

n

eiξn(t)|n0(t)〉〈n0(0)|, (2.17)
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a Hamiltonian H(t) = i~ȦA† can be constructed to drive the system exactly along

the adiabatic paths of H0(t) as

H(t) = H0(t) +Hcd(t),

Hcd(t) = i~
∑

n

[|ṅ0(t)〉〈n0(t)| − 〈n0(t)|ṅ0(t)〉|n0(t)〉〈n0(t)|] , (2.18)

whereHcd(t) is purely nondiagonal in the {|n0(t)〉} basis and the overdot represents

time derivative.

We may change the E
(0)
n (t), and therefore H0(t) itself, keeping the same |n0(t)〉.

We could for example make all the E
(0)
n (t) zero, or set ξn(t) = 0 [5]. Taking into

account this freedom the Hamiltonian for transitionless driving can be generally

written as

H(t) = −~

∑

n

|n0(t)〉ξ̇n〈n0(t)|+ i~
∑

n

|∂tn0(t)〉〈n0(t)|. (2.19)

Subtracting Hcd(t), the generic H0 is

H0(t) =
∑

n

|n0(t)〉
[
i~〈n0(t)|∂tn0(t)〉 − ~ξ̇n

]
〈n0(t)|. (2.20)

For our system [|n0(t)〉 → |φn〉], the counterdiabatic term takes the form

Hcd = i~(|φ̇1〉〈φ1|+ |φ̇3〉〈φ3|). (2.21)

Taking into account Eqs. (2.11), (2.12), (2.13), and their respective time deriva-

tives we get

Hcd = −~ϕ̇G2. (2.22)

Implementing this interaction is quite challenging as discussed in detail in [45]. In

particular, a rapid switching between G1 and G4, to implement G2 through their

commutator, is not a practical option [45]. Our goal in the following is to design

an alternative Hamiltonian to perform the shortcut without G2.
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2.4 Alternative driving protocols via Lie trans-

forms

The main goal here is to define a new shortcut different from the one described

by i~∂tψ(t) = H(t)ψ(t), where H(t) = H0(t) + Hcd(t). A wave function ψI(t),

which represents the alternative dynamics, is related to ψ(t) by a unitary operator

B(t),

ψI(t) = B†(t)ψ(t), (2.23)

and obeys i~∂tψI(t) = HI(t)ψI(t), where

HI(t) = B†(t)[H(t)−K(t)]B(t), (2.24)

K(t) = i~Ḃ(t)B†(t). (2.25)

These are formally the same expressions that define an interaction picture. How-

ever, in this application the “interaction picture” portrays a different physical

setting from the original one [33]. In other words, HI is not a mathematical aid

to facilitate a calculation in some transformed space, but rather a physically real-

izable Hamiltonian different from H . Similarly, ψI represents in general different

dynamics from ψ. The transformation provides indeed an alternative shortcut if

B(0) = B(tf ) = 1, so that ψI(tf) = ψ(tf) for a given initial state ψI(0) = ψ(0).

Moreover, if Ḃ(0) = Ḃ(tf ) = 0 also the Hamiltonians coincide at initial and final

times, H(0) = HI(0) and H(tf) = HI(tf). These boundary conditions may be

relaxed in some cases as we shall see.

We carry out the transformation by exponentiating a member G of the dynam-

ical Lie algebra of the Hamiltonian,

B(t) = e−iαG, (2.26)

where α = α(t) is a time-dependent real function to be determined. This type

of unitary operator B(t) constitutes a “Lie transform”. Lie transforms have been

used, for example, to develop efficient perturbative approaches that try to set the

perturbation term of a Hamiltonian in a convenient form in both classical and

quantum systems [55, 56].
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Note that K in Eq. (2.25) becomes −~α̇G and commutes with G. Then, HI ,

given now by

B†(H −K)B = eiαG(H −K)e−iαG

= H − ~α̇G+ iα[G,H ]− α2

2!
[G, [G,H ]]− i

α3

3!
[G, [G, [G,H ]]] + · · · ,

(2.27)

depends only on G, H , and its repeated commutators with G, so it stays in the

algebra. If we can choose G and α so that the undesired generator components in

H cancel out and the boundary conditions for B are satisfied, the method provides

a feasible, alternative shortcut. In the existing applications of the method [8, 33],

and in this chapter we proceed by trial an error, testing different generators. In

the present application we want the Hamiltonian HI to keep the structure of the

original one, with nonvanishing components proportional to G1 and G4. We may

quickly discard by inspection G1, G2, and G3 as candidates for G. Choosing

G → G4 in Eq. (2.26), and substituting into Eqs. (2.24) and (2.27), the series of

repeated commutators may be summed up. HI becomes

HI = (E0 cosϕ− ~α̇)G4

− (E0 sinϕ cosα + ~ϕ̇ sinα)G1

− (E0 sinϕ sinα− ~ϕ̇ cosα)G2. (2.28)

To cancel the G2 term, we choose

α(t) = arccot

[
E0(t)

~ϕ̇(t)
sin[ϕ(t)]

]
. (2.29)

Substituting Eq. (2.29) into Eq. (2.28) we have finally

HI =

[
cosϕE3

0 sin
2 ϕ+ ~

2 sinϕĖ0ϕ̇+ ~
2E0 (2 cosϕϕ̇

2 − sinϕϕ̈)

E2
0 sin

2 ϕ+ ~2ϕ̇2

]
G4

−
[
E0 sinϕ

√
1 +

~2 csc2 ϕϕ̇2

E2
0

]
G1, (2.30)

which has the same structure (generators) as the reference Hamiltonian but dif-

ferent time-dependent coefficients.
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2.5 Insulator-Superfluid transition

On changing the U/J ratio, the system may go from a Mott-insulator (the two

particles isolated in separate wells) to a superfluid state (in which each particle

is distributed with equal probability in both wells). From Eq. (2.11), the Mott-

insulator ground state is |φ1〉 = |1, 1〉 and in the superfluid regime the ground

state becomes |φ1〉 = 1
2
|2, 0〉+ 1√

2
|1, 1〉+ 1

2
|0, 2〉. To design a reference process (one

that performs the transition when driven slowly enough) we consider polynomial

functions for E0(t) and ϕ(t). Since we want to drive the system from |1, 1〉 to
1
2
|2, 0〉+ 1√

2
|1, 1〉+ 1

2
|0, 2〉, we impose in Eq. (2.11)

ϕ(0) = 0,

ϕ(tf ) = π/2. (2.31)

To have the wells isolated at t = 0 but connected (allowing the particles to pass

from one to the other) at t = tf we also set

E0(0) = 0,

E0(tf ) 6= 0, (2.32)

so that J(0) = U(0) = 0 and J(tf ) 6= 0. Moreover, for a smooth connection with

the asymptotic regimes (t < 0, t > tf) we set

ϕ̇(0) = 0,

ϕ̇(tf ) = 0. (2.33)

This implies that Hcd(0) = Hcd(tf) = 0; see Eq. (2.22). The condition

ϕ̈(tf) = 0 (2.34)

is also needed to implement alternative shortcuts, in particular, to satisfy Ḃ(tf) =

0. At intermediate times, we interpolate the functions as E0(t) =
∑1

j=0 ajt
j and

ϕ(t) =
∑4

j=0 bjt
j, where the coefficients are found by solving Eqs. (2.31), (2.32),

(2.33) and (2.34). These functions are shown in Fig. 2.1. In this and other figures

τ = Emax
0 t/~, where Emax

0 is the maximum value of E0(t).
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Figure 2.1: Functions in HI(t): (a) E0(t) and (b) ϕ(t). Parameters: τ =
Emax

0 t/~ where Emax
0 is the maximum value of E0(t) and τf = 2.

The actual time evolution of the state

|Ψ(t)〉 = c1(t)|2, 0〉+ c2(t)|1, 1〉+ c3(t)|0, 2〉 (2.35)

is given by solving Schrödinger’s equation with the different Hamiltonians. For

this particular transition, |Ψ(0)〉 = |φ1(0)〉 and the ideal target state is (up to a

global phase factor) |Ψ(tf)〉 = |φ1(tf)〉.

The dynamics versus time τ is shown in Fig. 2.2 for τf = 2. For this short time

H0(t) fails to drive the populations to 1/2 and 1/4, whereas when Hcd(t) is added

the intended transition occurs successfully. As for the alternative Hamiltonian in

Eq. (2.30), with B = e−iαG4 , and α in Eq. (2.29), we find

B(tf) = 1,

Ḃ(0) = Ḃ(tf) = 0 (2.36)
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Figure 2.2: Bare-state populations for (a) H0(t); (b) H(t) and HI(t). |c1(t)|2
(red circles), |c2(t)|2 (short-dashed blue line) and |c3(t)|2 (solid black line). Pa-

rameters: τ = Emax
0 t/~ with Emax

0 the maximum value of E0(t), τf = 2.

[Eq. (2.34) is necessary to have α̇(tf ) = 0 and consequently Ḃ(tf) = 0], whereas

B(0) =




e−iπ/2 0 0

0 1 0

0 0 e−iπ/2


 6= 1. (2.37)

However B†(0)|1, 1〉 = |1, 1〉 so ψI(0) = ψ(0) and HI provides the desired shortcut.

Solving numerically the dynamics for HI(t) we obtain a perfect insulator-

superfluid transition [see Fig. 2.2(b)]. Notice that, as G4 is diagonal in the bare

basis, the bare populations are the same for the dynamics driven by H and HI ;

see Fig. 2.2(b).

In order to compare our approach with other protocols we reformulate HI as

HI =




U I −
√
2JI 0

−
√
2JI 0 −

√
2JI

0 −
√
2JI U I


 = U IG4 − 4JIG1. (2.38)
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Figure 2.3: (a) Interaction energy for the reference Hamiltonian H0 (solid
green line) and for HI (short-dashed green line). (b) Hopping energy for H0

(solid magenta line) and HI (short-dashed magenta line). The same parameters
as in Fig. 2.1.

Comparing Eqs. (2.38) and (2.30) we find that

U I =
1

(E0)
2 sin2 ϕ+ ~2(ϕ̇)2

{
cosϕ(E0)

3 sin2 ϕ

+ ~
2 sinϕĖ0ϕ̇+ ~

2E0

[
2 cosϕ(ϕ̇)2 − sinϕϕ̈

]}
,

JI =
1

4
E0 sinϕ

√
1 +

~2 csc2 ϕ(ϕ̇)2

(E0)
2 . (2.39)

Figure 2.3 shows the functions UI and JI . We have set HI(tb) = H0(tb), for

tb = 0, tf , since Hcd(tb) = 0 and Ḃ(tb) = 0. In the same way as Eq. (2.6) we can

rewrite the above energies as

U I = EI
0 cosϕ

I ,

JI =
EI

0

4
sinϕI , (2.40)
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where EI
0 = EI

0(t) and ϕ
I = ϕI(t). The inverse transformation is

ϕI = arctan

(
4
JI

U I

)
,

EI
0 =

U I

cosϕ′ . (2.41)

Consider a simple protocol with E0(t) = EM
0 (t) = const and a linear ϕM(t) from

0 and π/2 [45]. Setting the value of EM
0 so that

∫
EM

0 dt =
∫
EI

0dt, it is found

that the simple protocol needs τf = 18.8 to perform the transition with a 0.9999

fidelity. In other words, the protocol based on HI is 9.4 times faster according to

this criterion.

2.6 Beam splitters

The three-level Hamiltonian (2.2) describes other physical systems apart from

two bosons in two wells. For example, it represents in the paraxial approximation,

and substituting time by a longitudinal coordinate three coupled waveguides [46–

51], where J is controlled by waveguide separation and U by the refractive index.

In particular J and U may be manipulated to split an incoming wave in the central

waveguide into two output channels (corresponding to the external waveguides)

or three output chanels [50, 51]. The Hamiltonian also represents a single particle

in a triple well [57], where U plays the role of the bias of the outer wells with

respect to the central one and, J the coupling coefficient between adjacent wells.

The beam splitting may thus depict the evolution of the particle wave function

from the central well either to the two outer wells or to three of them with equal

probabilities.

For three-well or three-waveguide systems1 the minimal channel basis for left,

center and right wave functions is |L〉 =
(

1

0

0

)
, |C〉 =

(
0

1

0

)
, and |R〉 =

(
0

0

1

)
.
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Figure 2.4: Schematic representation of a 1 : 2 beam splitter.

2.6.1 1:2 beam splitter

To implement a 1 : 2 beam splitter (see Fig. 4.3), the goal is to drive the

eigenstate from |φ1(0)〉 = |C〉 to |φ1(tf) = 1√
2
(|L〉+ |R〉). As in the previous

section we use polynomial functions for E0(t) and ϕ(t) to set a reference process.

We impose

ϕ(0) = 0,

ϕ(tf) = π (2.42)

in Eq. (2.11). The wells (waveguides) should be isolated at initial and final times.

If morever all wells are at equal heights at those times we set

E0(0) = E0(tf ) = 0,

E(tf/2) 6= 0 (2.43)

to satisfy H0(0) = H0(tf ) = 0. We also impose

ϕ̇(0) = 0,

ϕ̇(tf ) = π (2.44)

to smooth the functions at the time boundaries and make Hcd(tb) = 0. In addition

ϕ̈(tf) = 0 (2.45)

is imposed to satisfy Ḃ(tf) = 0. At intermediate times E0(t) =
∑2

j=0 ajt
j and

ϕ(t) =
∑4

j=0 bjt
j , with the coefficients deduced from Eqs. (2.42), (2.43), (2.44)

and (2.45). These functions are shown in Fig. 2.5.

1The Hamiltonian (2.2) also describes a three-level atom under appropriate laser interactions;
see [49].
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Figure 2.5: (a) E0(t) and (b) ϕ(t). τ = Emax
0 t/~ where Emax

0 is the maximum
value of E0(t). τf = 2.

Figure 2.6 shows the dynamics for τf = 2. This time (corresponding to the

splitter length in the optical system) is too short for the reference Hamiltonian

H0(t) to drive the bare-basis populations to 0 and 1/2. On adding Hcd(t) the

transition occurs as desired. As in Sec. 2.4, we construct an alternative shortcut

HI(t) without G2 using the transformation B = e−iαG4 . With α in Eq. (2.29),

Ḃ(0) = Ḃ(tf ) = 0, whereas

B(0) = B(tf ) =




e−iπ/2 0 0

0 1 0

0 0 e−iπ/2


 . (2.46)

This is enough for our objective as B†(0)|C〉 = |C〉, and B†(tf)|ψ(tf)〉 = −i|ψ(tf )〉.

Solving numerically the dynamics for HI(t) we obtain a perfect 1 : 2 beam

splitting [see Figs. 2.7 and 2.6(c)].

To compare the new shortcut and the simple approach with EM
0 = const and

ϕM(t) = t
tf
π, we set

∫
EM

0 dt =
∫
EI

0dt. The constant-E0 protocol needs τf > 18.6
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Figure 2.6: Bare-state populations for (a) H0(t), and (b) H(t) and HI(t).
|c1(t)|2 (red circles), |c2(t)|2 (short-dashed blue line) and |c3(t)|2 (solid black
line). Parameters: τ = Emax

0 t/~ with Emax
0 the maximum value of E0(t), and

τf = 2.

to achieve 0.9999 fidelity, so the protocol driven by HI is 9.3 times faster.

2.6.2 1:3 beam splitter

We also describe briefly a 1 : 3 beam splitter; see Figs. 2.8-2.11. The aim is

to drive the system from |φ1(0)〉 = |C〉 to equal populations in |L〉, |C〉, and |R〉.
To design a reference protocol we use polynomial interpolation for E0(t) and ϕ(t)

(see Fig. 2.9), with the same boundary conditions as for the 1 : 2 splitter but

with ϕ(tf) = 0.60817π = arccos(−1/3) and the additional condition Ė0(tf) = 0

[to satisfy U I(tf) = U(tf ) so that HI(tf) = H0(tf )]. The Lie transform may be

applied as before on the protocol with the counterdiabatic correction; see Fig.

2.10(b).

A simple protocol with EM
0 and ϕ(t) = t

tf
0.60817π needs τf = 22, if

∫
EM

0 dt =∫
EI

0dt, for a 0.9999 fidelity, so the protocol based on HI is 11 times faster.
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Figure 2.7: (a) Interaction energy for H0 (solid green line) and HI (short-
dashed green line). (b) Hopping energy for H0 (solid magenta line) and HI

(short-dashed magenta line). The same parameters as in Fig. 2.5.

Figure 2.8: Schematic representation of the 1 : 3 beam splitter.

2.7 Discussion

We started with shortcuts to adiabaticity for three-level systems with U3S3

symmetry (a four-dimensional Lie algebra) that include Hamiltonian terms which

are difficult to implement in the laboratory. Alternative shortcuts without them

have then been found by means of Lie transforms. These transformations are for-

mally equivalent to IP transformations. However the resulting IP Hamiltonian and

state represent a different physical process from the original (Schrödinger) Hamil-

tonian and dynamics. We have set shortcuts for different physical systems. For
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Figure 2.9: (a) E0(t) and (b) ϕ(t). τ = Emax
0 t/~, whereEmax

0 is the maximum
value of E0(t). τf = 2.

two particles in two wells we have implemented a fast insulator-superfluid transi-

tion. For coupled waveguides, or a particle in a triple well we have implemented

fast beam splitting with one input channel and two or three output channels. In

all cases the IP Hamiltonian involves only two realizable terms (generators).

A related method has been worked out in [58]. Both approaches rely on Lie

algebraic methods and aim at constructing shortcuts to adiabaticity. However,

we do not use dynamical invariants explicitly in the current approach, whereas

the bottom-up approach in [58] engineers the Hamiltonian by making explicit

use of its relation to dynamical invariants. In contrast, we start here from an

existing, known shortcut –for example the one generated by a counterdiabatic

method; then, a Lie transform is applied to generate alternative, feasible, or more

convenient shortcuts, as in [33]. A connection between the transformation method

and dynamical invariants is sketched briefly in the Appendix B but it deserves a

separate study. We note that the dynamics of all our examples takes place in a

degenerate eigenspace of an algebraic invariant which is not proportional to the

unit matrix and commutes with all members of the algebra. The degeneracy is

required to produce nontrivial dynamics, so identifying degenerate subspaces of
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Figure 2.10: Bare-state populations for (a) H0(t), and (b) H(t) and HI(t).
|c1(t)|2 (red circles), |c2(t)|2 (short-dashed blue line) and |c3(t)|2 (solid black
line). Parameters: τ = Emax

0 t/~ with Emax
0 the maximum value of E0(t), and

τf = 2.

nontrivial invariants, as well as the conditions allowing the cancellation of certain

generators will be instrumental in finding further applications in systems described

by other Lie algebras.

Optimal control theory (OCT) offers an alternative way to generate fast dy-

namics [59, 60]. In this chapter no optimization has been attempted, but the

combination of shortcut-to-adiabaticity techniques offering multiple exact proto-

cols with perfect fidelity, such as the one based on Lie transforms, and OCT, has

been shown to be fruitful [61–63]. OCT may select among the protocols generated

the ones that optimize a physically significant variable [61–63].

Within the scope of the algebra U3S3, other physical systems that could be

treated are in quantum optics (three-level atoms) [64, 65], nanostructures (triple

wells or dots) [66], optics (mode converters) [40, 41], or Bose-Einstein condensates

in an accelerated optical lattice [67].
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Figure 2.11: (a) Interaction energy for H0 (solid green line) and HI (short-
dashed green line). (b) Hopping energy for H0 (solid magenta line) and HI

(short-dashed magenta line). The same parameters as in Fig. 2.9



Chapter 3

Fast quasi-adiabatic dynamics

We work out the theory and applications of a fast quasi-adiabatic approach to

speed up slow adiabatic manipulations of quantum systems by driving a control

parameter as near to the adiabatic limit as possible over the entire protocol du-

ration. We find characteristic time scales, such as the minimal time to achieve

fidelity 1, and the optimality of the approach within the iterative superadiabatic

sequence. Specifically, we show that the population inversion in a two-level sys-

tem, the splitting and cotunneling of two-interacting bosons, and the stirring of a

Tonks-Girardeau gas on a ring to achieve mesoscopic superpositions of many-body

rotating and nonrotating states can be significantly speeded up.

39
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3.1 Introduction

Developing technologies based on delicate quantum coherences of atomic sys-

tems is a major scientific and technical challenge due to pervasive noise-induced

and manipulation errors. Shortening the process below characteristic decoherence

times provides a way out to avoid the effects of noise, but the protocol (time de-

pendence of control parameters) should still be robust with respect to offsets of

the external driving parameters. Shortcuts to adiabaticity (STA) are a set of tech-

niques to reduce the duration of slow adiabatic processes, minimizing noise effects

while keeping or enhancing robustness [1, 8, 68]. There are different approaches

but, as we have already discussed in the previous chapter, they are not always

easy to implement in practice, because of the need to control many variables, or

the difficulty to realize certain terms added to the original Hamiltonian to speed

up the adiabatic dynamics. Here we work out the theory and present several

applications of a simple, but effective, fast quasi-adiabatic (FAQUAD) approach

that engineers the time dependence of a single control parameter λ(t), without

changing the structure of the original Hamiltonian, H [λ(t)], to perform a process

as quickly as possible while making it as adiabatic as possible at all times. The

two goals are contradictory so a compromise is needed.

3.2 The method

We impose that the standard adiabaticity parameter [69] is constant throughout

the process, and consistent with the boundary conditions (BC) of λ(t) at t = 0

and t = tf .

In the simplest scenario we assume that the adiabatic process driven by chang-

ing λ(t) involves a passage through at least one avoided crossing. While real

systems are in general multilevel, only the two quasicrossing levels (say E1, E2)

in the instantaneous basis {|φj〉} need to be considered under the adiabaticity

condition [69],

~

∣∣∣∣
〈φ1(t)|∂tφ2(t)〉
E1(t)− E2(t)

∣∣∣∣≪ 1. (3.1)
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(More levels can be taken into account if necessary.) We then impose

~

∣∣∣∣
〈φ1(t)|∂tφ2(t)〉
E1(t)−E2(t)

∣∣∣∣ = ~

∣∣∣∣∣
〈φ1(t)|∂H∂t |φ2(t)〉
[E1(t)− E2(t)]2

∣∣∣∣∣ = c, (3.2)

and as λ = λ(t) and t = t(λ) we apply the chain rule to write

λ̇=∓ c

~

∣∣∣∣
E1(λ)−E2(λ)

〈φ1(λ)|∂λφ2(λ)〉

∣∣∣∣=∓ c

~

∣∣∣∣∣
[E1(λ)− E2(λ)]

2

〈φ1(λ)|∂H∂λ |φ2(λ)〉

∣∣∣∣∣, (3.3)

where the overdot is a time derivative and ∓ applies to a monotonous decrease or

increase of λ(t). Equation (3.3) must be solved with the BC λ(0) and λ(tf), which

fixes c and the integration constant. The corresponding FAQUAD solution, λF (t),

changes quickly when the transitions among instantaneous eigenstates are unlikely

and slowly otherwise. An equation equivalent to Eq. (3.3) has been applied to

specific models [29, 70–74], for example, the two-level system [72] and three-level

lambda systems [71].

In this chapter, we derive important properties of FAQUAD including charac-

teristic time scales, such as the minimal time to achieve fidelity 1, and its opti-

mality within the iterative superadiabatic sequence. We also apply FAQUAD to

several physical systems for which other shortcut techniques are difficult or im-

possible to implement, including a process for creating a collective superposition

state between rotating and nonrotating atoms on a ring.

The FAQUAD strategy belongs to a family of processes that use the time de-

pendence of a control parameter to delocalize in time the transition probability

among adiabatic levels. In the parallel adiabatic transfer technique [75, 76] the

level gap is required to be constant, which prevents it from being applicable when

the initial and final gaps are different [see the Tonks-Girardeau (TG) gas example

below]. The uniform adiabatic (UA) method developed in [77] relies on a compar-

ison of transition and relaxation time scales and predicts (in a notation consistent

with the one used in the work)

λ̇ = ∓cUA

~

∣∣∣∣
[E1(λ)−E2(λ)]

2

∂[E1(λ)−E2(λ)]/∂λ

∣∣∣∣ . (3.4)

Furthermore, the local adiabaticity (LA) approach [78, 79] predicts an equation

similar to Eq. (3.3), however without the factor 〈φ1(λ)|∂H∂λ |φ2(λ)〉. This leads to

a different constant, cLA, and time dependence of the parameter, λLA(t), and
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therefore different minimal times as illustrated below. Note that in [78] Eq. (3.3)

is also written down but not applied as such.

3.2.1 General Properties

We rewrite Eq. (3.3) in terms of s = t/tf and define λ̃(s) := λ(stf) so that

λ̇(t) = λ̃′
1

tf
, (3.5)

where the prime is the derivative with respect to s. We get

λ̃′ = ∓ c̃

~

∣∣∣∣
E1 − E2

〈φ1|∂λ̃φ2〉

∣∣∣∣
λ̃

, (3.6)

with

c̃ = ctf = ∓~

∫ λ̃(1)

λ̃(0)

dλ̃∣∣ E1−E2

〈φ1|∂λ̃φ2〉
∣∣
λ̃

. (3.7)

It is thus enough to solve the FAQUAD protocol once, i.e., using Eq. (3.6) we get

λ̃F (s) and c̃ to satisfy λ̃(s = 0) and λ̃(s = 1), and then adapt (scale) the result for

each tf , as λF (t = stf ) = λ̃F (s), and c = c̃/tf . Similarly, the gap

ω12(t) =
E1(t)− E2(t)

~
(3.8)

is given in terms of a universal gap function ω̃12[λ̃F (s)] as ω12(t) = ω̃12[λ̃F (t/tf )].

Depending on c̃, a large time tf might be necessary to make the process fully

adiabatic (i.e., with a small enough c) but, surprisingly, much shorter times for

which the process is not fully adiabatic also lead to the desired results.

Since the system is nearly adiabatic, this is explained by adiabatic perturbation

theory. In the adiabatic basis the wave function is expanded as [69, 80]

|Ψ(t)〉 =
∑

n

gn(t)e
iβn(t)|φn(t)〉, (3.9)

where

βn(t) = −1

~

∫ t

0

En(t
′)dt′ + i

∫ t

0

〈φn(t
′)|φ̇n(t

′)〉dt′. (3.10)

From

i~|Ψ̇(t)〉 = H(t)|Ψ(t)〉 (3.11)
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we get, choosing 〈φn(t)|φ̇k(t)〉 to be real (in particular 〈φn(t)|φ̇n(t)〉 = 0),

ġn(t) = −
∑

k 6=n

eiWnk(t)〈φn(t)|φ̇k(t)〉gk(t), (3.12)

where

Wnk(t) =

∫ t

0

ωnk(t
′)dt′ (3.13)

is a dynamical-gap phase and

ωnk(t) :=
En(t)− Ek(t)

~
. (3.14)

Integrating,

gn(t)−gn(0)=−
∑

k 6=n

∫ t

0

eiWnk(t
′)〈φn(t

′)|φ̇k(t
′)〉gk(t′)dt′, (3.15)

which is still exact. Assuming that the initial state is |φm(0)〉 and approximating

gk(t
′) = δkm one finds to first order, for n 6= m,

g(1)n (t) = −
∫ t

0

〈φn(t
′)|φ̇m(t

′)〉eiWnm(t′)dt′, (3.16)

which should satisfy |gn(t)| ≪ 1 for an adiabatic evolution. In FAQUAD, setting

n = 2, m = 1 and neglecting transitions to further states, 〈φ2(t)|φ̇1(t)〉 = crω21(t),

with r = sgn[〈φ2(t)|φ̇1(t)〉ω21], so we find (higher-order corrections are also explicit)

g
(1)
2 (t)=−r

∫ t

0

cω21(t
′)eiW21(t′)dt′= icr(eiW21(t)−1). (3.17)

Note the scaling W21(tf ) = tfΦ21 where Φ21 =
∫ 1

0
ω̃21(s)ds, and ω̃21(s) = ω21(stf ).

The oscillation period for the final population with FAQUAD is T = 2π
Φ12
, which

is also a good estimate of the minimal (final) time to pass through the avoided

crossing with fidelity 1 [since g
(1)
2 (T ) = 0]. The upper envelope for the probability

of level 2 is 4c̃2/t2f . The period, envelope, and Eq. (3.17) are important general

results of this work. The oscillation is due to a quantum interference: g
(1)
2 (tf )

results from the sum of paths where the jump at time t′ from 1 to 2 has an

amplitude cω21(t
′). eiW21(t′) represents the dynamical phases before and after the

jump, as

eiW21(t′) = e
−i
~

∫ t′
0
dt′′E2(t′′)e

−i
~

∫ tf

t′ dt′′E2(t′′)e
i
~

∫ tf
0 dt′′E2(t′′), (3.18)
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where the last exponential is a phase factor independent of t′.

To illustrate these general properties, we will first examine the two-level model,

a paradigmatic test bed. Then, to show the power of FAQUAD, we will apply it

to more complicated atomic systems.

3.3 Population inversion

Consider first a two-mode model with a single avoided crossing. In the bare

basis, |1〉 =
(

1

0

)
and |2〉 =

(
0

1

)
, the time-dependent state is |Ψ(t)〉 = b1(t)|1〉+

b2(t)|2〉 and
H =

(
0 −

√
2J

−
√
2J U −∆

)
, (3.19)

where the bias ∆ = ∆(t) is the control parameter, and U > 0 and J > 0 are

constant. The instantaneous eigenvalues are

E1 =
1

2
(U −∆− P ), (3.20)

E2 =
1

2
(U −∆+ P ), (3.21)

where P = P (t) =
√

8J2 + U2 − 2U∆(t) + ∆2(t), and the normalized eigenstates

are

|φ1〉 =
1√

1 + (U−∆+P )2

8J2

(
1

2
√
2J
(U −∆+ P )

1

)
, (3.22)

|φ2〉 =
1√

1 + (U−∆−P )2

8J2

(
1

2
√
2J
(U −∆− P )

1

)
.

(3.23)

The goal is to drive the eigenstate from |φ1(0)〉 = |2〉 to |φ1(tf)〉 = |1〉. To

design the reference adiabatic protocol we impose on ∆(t) the BC ∆(0) ≫ U, J

and ∆(tf ) = 0. The FAQUAD protocol is shown in Fig. 3.1(a) compared to a

linear-in-time ∆(t) and a constant ∆ = U . The final ground-state populations

|b1(tf)|2 versus dimensionless final time τf = Jtf/~ are shown in Fig. 3.1(b).

Since the dressed states are essentially pure bare states at initial and final times,

their populations in bare and dressed state bases coincide at these times. For
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Figure 3.1: (a) Bias vs s for linear-in-time bias (green triangles), π pulse
(short-dashed red line), and FAQUAD (solid black line). (b) Final ground-state
population |b1(tf )|2 vs τf = Jtf/~ for linear-in-time bias (green triangles), π
pulse (short-dashed red line), and FAQUAD (solid black line). (c) Bias vs s
for FAQUAD (solid black line), LA approach (blue dots), and UA approach
(long-dashed magenta line). The inset amplifies the kink of the UA approach.
(d) |b1(tf )|2 vs τf = Jtf/~ for FAQUAD (solid black line), LA approach (blue
dots), and UA approach (long-dashed magenta line). The stars in (b) and
(d) correspond to integer multiples of the characteristic FAQUAD time scale

2π/Φ12. ∆(0)/J = 66.7, U/J = 22.3.

∆ = U between 0 and tf , “Rabi oscillations” (we use a terminology appropriate

for quantum optics but of course the two-level model is more broadly applicable)

occur [see Fig. 3.1(b)]. The conditions for a π pulse or multiple π pulses are

met periodically over tf , alternated with times where the probability drops to

zero because of destructive interference among two dressed states superposed with

equal weights. By contrast the FAQUAD process is dominated by one dressed

state and the influence of the transitions to the other one is minimized, because

they are small in amplitude, and because at certain times they completely cancel

each other out by destructive interference. The time interval between population

maxima for FAQUAD is 2π/Φ1,2 [also shown in Figs. 3.1(b) and 3.1(d) by stars],

i.e., it is not governed by the Rabi frequency. The first maximum is at a small tf

similar to the one for the π pulse, but broader. The FAQUAD maxima are more

stable with respect to errors in ∆ as tf increases, whereas the flat-pulse maxima
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decrease their stability. Figure 3.1(b) also shows the poorer results of the linear

ramp for ∆(t).

FAQUAD is compared to the LA and UA approaches in Figs. 3.1(c) and 3.1(d).

It provides shortcuts at smaller process times (it achieves 0.9998 probability three

times faster than LA) and an analytically predictable behavior via the perturbation

theory analysis. Let us now consider more complicated atomic systems where

FAQUAD can be applied whereas other STA techniques cannot.

3.4 Interacting bosons in a double well

Pairs of interacting bosons in a double-well potential may be manipulated to

implement universal quantum logic gates for quantum computation or to observe

fundamental phenomena such as cotunneling of two atoms [81, 82]. We shall speed

up two processes: the splitting of the two particles from one to the two separate

wells, and cotunneling (see Fig. 3.2). The boson dynamics in a double well with

tight lateral confinement is described by a two-site Bose-Hubbard Hamiltonian1

[82]. The Hamiltonian in the occupation number basis |2, 0〉 =

(
1

0

0

)
, |1, 1〉 =

(
0

1

0

)
, and |0, 2〉 =

(
0

0

1

)
is

H =




U +∆ −
√
2J 0

−
√
2J 0 −

√
2J

0 −
√
2J U −∆


 , (3.24)

where the bias ∆ = ∆(t) is the control function, J is the hopping energy, and U the

interaction energy. We write the time-dependent states as |Ψ(t)〉 = c1(t)|2, 0〉 +
c2(t)|1, 1〉 + c3(t)|0, 2〉. Adiabatic processes that change ∆(t) slowly, keeping the

U/J ratio constant, are possible to implement splitting or cotunelling. Speeding

them up by a “counterdiabatic” approach is not possible in practice because of

the need to apply new terms in the Hamiltonian which are difficult to implement.

Alternative techniques, like the one introduced in Chapter 2, could not be applied

[45] or are cumbersome [58, 83] because of the relatively large algebra involved.

The FAQUAD approach provides a viable way out.

1This Hamiltonian is similar to the one in the previous chapter [Eq.(2.2)] but we add two
diagonal terms that make the potential asymmetric.
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(a)

(b)

Figure 3.2: (a) Schematic representation of splitting from |0, 2〉 to |1, 1〉. (b)
Cotunneling from |0, 2〉 to |2, 0〉.

Figure 3.3: (a) Energy levels vs ∆. For n = 1, 2, 3: E1 (solid magenta line),
E2 (long-dashed green line), and E3 (short-dashed orange line). U/J = 22.3.
(b) |c2|2 vs τf for linear-in-time bias (green triangles) and FAQUAD (solid green

line). ∆(0)/J = 100, U/J = 33.45, and τf = Jtf/~.

- In a splitting process ∆(0) ≫ U, J and ∆(tf ) = 0 [see Fig. 3.2(a)]. The initial

ground state is |φ1〉 = |0, 2〉 and the final ground state |φ1〉 = |1, 1〉. Figure 3.3(a)

shows the dependence of the three eigenenergies with ∆. ∆F (t) is very similar to

the result for the two-level system in Fig. 3.1(a). The results of FAQUAD and

the linear protocol are compared in Fig. 3.3(b). The probability of the first peak
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Figure 3.4: (a) Time dependence of the bias with FAQUAD. (b) |c1|2 vs τf for
linear-in-time bias (green triangles) and FAQUAD (solid green line). ∆(0)/J =

66.7, U/J = 22.3, and τf = Jtf/~.

for FAQUAD, 0.998 at τf = 1.2, is achieved with the linear ramp for τf = 43.

- In a speeded-up cotunneling, shown in Fig. 3.2(b), the goal is to drive the

system fast from |φ1(0)〉 = |0, 2〉 to |φ1(tf)〉 = |2, 0〉 intermediated by |1, 1〉 [the

Hamiltonian (3.24) does not connect |2, 0〉 and |0, 2〉 directly]. We impose ∆(0) ≫
U, J and ∆(tf ) = −∆(0) to have |0, 2〉 and |2, 0〉 as the ground states at initial and

final times, respectively. The energy levels versus ∆ are depicted in Fig. 3.3(a)

for repulsive interaction (U > 0). Figure 3.4(a) shows the FAQUAD trajectory for

∆(t) for the repulsive strong-interaction regime, U/J = 22.3. Figure 3.4(b) depicts

the final probabilities of the bare state |2, 0〉 for FAQUAD and a linear protocol

that needs about τf = 65 to achieve the value of the first peak of the FAQUAD

method (|c1|2 = 0.998 at τf = 2.3). The minima in the FAQUAD probability go

in this case below the lower envelope 1− 4c̃2/t2f predicted by perturbation theory.

The reason is a leak through the narrow avoided crossing at ∆ = 0 from the

second to the third energy level [see Fig. 3.3(a)]. The leak occurs at total process

times in which the first avoided crossing produces a minimum of the ground-state

probability.
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Figure 3.5: (a) Single-particle energy levels for U0 = 0 (dashed lines) and
U0ML/~2 = 4 (solid lines) in units of E0 = 2π2~2/(ML2). The ordering is
E1(n = 0) < E2(n = 1) < E3(n = −1) < E4(n = 2) < E5(n = −2) < .... (b)

ΩF (s) for N = 1, 3, 5, 7, 9, from the bottom up to the top.

3.5 Collective superpositions of rotating and non-

rotating atoms on a ring

Creating a macroscopic or mesoscopic superposition of a many-particle system

is a difficult task and of interest for research in quantum information, quantum

metrology and fundamental aspects of quantum mechanics. However, it was re-

cently proposed that a low-dimensional gas of interacting bosons in the TG limit

[84] placed on a ring can be perturbed in such a way, that a robust superposition

of two angular momentum states can be achieved. This perturbation corresponds

to the introduction of a narrow potential, which is then accelerated to a certain

value to spin up the gas [85].

For a single particle this is described by

i~∂tψ(x, t)=

{
− ~

2

2M

∂2

∂x2
+U0δ[x− x0(t)]

}
ψ(x, t), (3.25)
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where the stirrer is represented by a δ function of strength U0 and periodic BC

are assumed. In a comoving frame one can then define y = x − x0(t) and the

Hamiltonian is

H =
1

2M

[
P̂y − ~Ω(t)/L

]2
+ U0δ(y), (3.26)

where L is the ring perimeter, ~Ω(t) = Mẋ0 and P̂y = −i~∂/∂y. The instanta-

neous energy eigenvalues are

E(n) =
2~2π2

L2M
α2
n, (3.27)

and the αn are solutions of

4π~2αn

MLU0

= cot(παn − Ω/2) + cot(παn + Ω/2). (3.28)

For U0 → 0, the αn tend to n−Ω/(2π), with n = 0,±1,±2, . . . , where the different

signs are for clockwise or counterclockwise rotation in the laboratory frame, and

the nth eigenstates are plane waves with momentum n~2π/L. For 0 < Ω < π the

energies in the moving frame increase for n 6 0 and decrease for n > 0. For U0 = 0

the spectrum shows degeneracies at Ω = 0, π, which turn into avoided crossings

once the stirrer couples different angular momentum eigenstates, as shown in Fig.

3.5(a). Adiabatically increasing the stirring frequency from Ω = 0 to π then, allows

us to drive the system into a superposition of two angular momentum states, and

for a TG gas with an odd number of particles N it can be shown that the ground

state at Ω = π corresponds to macroscopic superposition between states with

angular momentum zero and N~.

To design an optimal Ω(t) for the TG gas, we note that the fidelity depends

mostly on leakage from the highest occupied levels. This can be seen by considering

the time evolved TG gas state ΨTG(x1, x2, . . . , xN ) defined by

ΨTG =
1√
N !

∏

i<j

sgn(xi − xj)
∑

µ∈P
ǫµψµ1(x1) · · ·ψµN

(xN ), (3.29)

where P represents the set of all permutations of {0, 1, . . . , N − 1}, ǫµ is the

antisymmetric tensor of the permutation µ, and ψi are the one-particle orbitals.

Assuming that the system is isolated and contains only N eigenvectors φj, the

orbitals can be expressed as ψi =
∑

j Uijφj with U some unitary operator. If we

now compare ΨTG to the ground state ΦTG of the TG gas at the final Ω, we can
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Figure 3.6: (a) Fidelity |〈ΨTG(tf )|ΦTG〉| for N = 3 [FAQUAD (solid black
line) and linear Ω(t) (short-dashed red line)] and N = 9 [FAQUAD (blue circles)
and linear Ω(t) (green triangles)]. ΨTG(tf ) is the time-evolved TG state starting
from the ground state for Ω = 0, and ΦTG is the ground state of the TG gas
at Ω = π. (b) Fidelity |〈ΨTG(tf )|ΦTG〉| vs ǫ if FAQUAD is applied following a
wrong Ωe(t) = ΩF (t)(1+ǫ) for N = 3 (solid black line) and N = 9 (short-dashed

red line). Here U0ML/~2 = 0.5.

calculate the fidelity F = |〈ΦTG|ΨTG〉| as

F =
1

N !

∣∣∣∣∣
∑

ν,µ

ǫνǫµ〈φν1|ψµ1〉 · · · 〈φν1|ψµ1〉
∣∣∣∣∣

=
1

N !

∣∣∣∣∣
∑

ν,µ

ǫνǫµUµ1,ν1 · · ·UµN ,νN

∣∣∣∣∣
= |det(U)| = 1, (3.30)

since U is unitary. Of course, in reality the system we consider contains more than

N eigenvectors and the fidelity does not remain 1, but this argument shows that

leaking between two occupied states does not influence the fidelity of a TG gas at

all; only leaks into modes above the Fermi level do, such as with nonzero mixing

terms UN,N+1. We should therefore optimize ΩF (s) for the avoided crossing of

the highest occupied level as shown in Fig. 3.5(b). The corresponding final-state
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fidelities forN = 3 and 9 with respect to the exact ground states clearly outperform

the ones for the linear ramp [see Fig. 3.6(a)]. The linear ramp fidelity deteriorates

as N increases whereas, remarkably, the fidelity of the FAQUAD protocol stays

constant. The effect of an error of the form Ωe(t) = ΩF (t)(1 + ǫ) is shown in Fig.

3.6(b).

3.6 Discussion

The FAQUAD approach to speed up adiabatic manipulations of quantum sys-

tems achieves significant time shortenings by distributing homogeneously the adi-

abaticity parameter along the process while satisfying the boundary conditions of

the control parameter. We have derived general time scales and we have demon-

strated its applicability in different systems, in particular where other approaches

are not available, and expect a broad range of applications in quantum, optical,

and mechanical systems, due to the ubiquity of adiabatic methods.

A natural extension is to attempt a scheme similar to Eq. (3.2) in a superadia-

batic rather than an adiabatic frame [86]. The set of nested frames is described in

detail in [86]. A brief summary is provided here. Let us start with a Schrödinger

picture Hamiltonian H0(t) and corresponding wave function ψ0(t). Defining the

unitary operator

A0(t) =
∑

n

|φn(t)〉〈n| (3.31)

with |φn(t)〉 the adiabatic basis in Eqs. (3.22) and (3.23), and |n〉 the bare basis,

the Hamiltonian that governs the dynamics of the interaction picture state A†
0ψ0

is

H1(t) = A†
0(H0 −K0)A0, (3.32)

where K0 = i~Ȧ0A
†
0. For the two level model, taking into account Eq. (3.19) in

Eq. (3.32) we get

H1 =

(
1
2
(U − P −∆) i

√
2J~∆̇
P2

−i
√

2J~∆̇
P2

1
2
(U + P −∆)

)
, (3.33)
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with instantaneous eigenvalues

E
(1)
1 =

1

2

(
U −∆−

√
P 6 + 8J2~2∆̇2

P 2

)
, (3.34)

E
(1)
2 =

1

2

(
U −∆+

√
P 6 + 8J2~2∆̇2

P 2

)
, (3.35)

and normalized eigenstates

|φ(1)
1 〉 =




−2iJ~∆̇

(P 6+8J2~2∆̇2)1/4
√

−P 3+
√

P 6+8J2~2∆̇2

√

−P 3+
√

P 6+8J2~2∆̇2
√
2(P 6+8J2~2∆̇2)1/4


, (3.36)

|φ(1)
2 〉 =




2iJ~∆̇

(P 6+8J2~2∆̇2)1/4
√

P 3+
√

P 6+8J2~2∆̇2

√

P 3+
√

P 6+8J2~2∆̇2
√
2(P 6+8J2~2∆̇2)1/4


. (3.37)

The first superadiabatic frame is defined by the unitary operator

A1(t) =
∑

n

|φ(1)
n (t)〉〈n|. (3.38)

The state A†
1ψ1 is governed by the Hamiltonian

H2(t) = A†
1(H1 −K1)A1, (3.39)

where K1 = i~Ȧ1A
†
1.

Note that superadiabaticity, i.e., the possibility to neglect K1, does not nec-

essarily imply adiabaticity, which amounts to neglecting K0. Also, a shortcut to

superadiabaticity is only a STA if the superadiabatic states |φ(1)
n 〉 coincide, up to

phase factors, with the eigenstates of H0, |φn〉, at boundary times. This will im-

ply additional boundary conditions on the control parameter. The equation that

substitutes Eq. (3.2) for the lowest superadiabatic scheme beyond the adiabatic

level is

~

∣∣∣∣∣
〈φ(1)

1 (t)|∂tφ(1)
2 (t)〉

E
(1)
1 − E

(2)
2

∣∣∣∣∣ = c. (3.40)
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Using Eqs. (3.34), (3.35), (3.36) and (3.37) in (3.40), we get a second-order dif-

ferential equation for ∆:

√
2J~2P 4(−3Ṗ ∆̇ + P ∆̈)

(P 6 + 8J2~2∆̇2)3/2
= c. (3.41)

To satisfy |φ(1)
1 (0)〉 = |φ1(0)〉 = |2〉 and |φ(1)

1 (tf)〉 = |φ1(tf)〉 = |1〉 (up to phase

factors) we have to impose four boundary conditions,

∆(0) ≫ U, J, ∆(tf ) = 0,

∆̇(0) = 0, ∆̇(tf ) ≫ ∆(0), U, J, (3.42)

that cannot be satisfied with two integration constants plus the c. The mismatch

between number of conditions and free parameters actually gets worse when in-

creasing the order of superadiabaticity in further iterations. In the second supera-

diabatic frame defined by the unitary operator

A2(t) =
∑

n

|φ(2)
n (t)〉〈n|, (3.43)

due to the K2 = i~Ȧ2A
†
2 term, second-order derivatives of the control parameter

appear in the superadiabatic eigenstates, so the number of boundary conditions

necessary to satisfy |φ(2)
1 (0)〉 = |2〉 and |φ(2)

1 (tf )〉 = |1〉 (up to phase factors)

increases to 6. Moreover, the differential equation resulting from applying the

FAQUAD concept in the second superadiabatic basis is of third order in ∆. Once

again, the differential equation cannot satisfy the six boundary conditions with

three integration constants plus the c. In general, as the order of the iteration

increases, the number of boundary conditions to satisfy grows as 2n+ 2, where n

is the order of the iteration, while the order of the differential equation increases

as n + 1. Hence, the adiabatic frame is in fact optimal to apply the FAQUAD

concept within the series of iterative superadiabatic frames, as it is the only one

for which the number of conditions equals the number of free parameters available.



Chapter 4

Vibrational mode multiplexing of

ultracold atoms

Sending multiple messages on qubits encoded in different vibrational modes of

cold atoms or ions along a transmission waveguide requires us to merge first and

then separate the modes at input and output ends. Similarly, different qubits

can be stored in the modes of a trap and be separated later. We design the fast

splitting of a harmonic trap into an asymmetric double well so that the initial

ground vibrational state becomes the ground state of one of two final wells, and

the initial first excited state becomes the ground state of the other well. This

might be done adiabatically by slowly deforming the trap. We speed up the

process by inverse engineering a double-function trap using dynamical invariants.

The separation (demultiplexing) followed by an inversion of the asymmetric bias

and then by the reverse process (multiplexing) provides a population inversion

protocol based solely on trap reshaping.

55
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Figure 4.1: Population inversion using trap deformations in three steps:
demultiplexing, bias inversion, and multiplexing.

4.1 Introduction

One of the main goals of atomic physics is to achieve an exhaustive control of

atomic states and dynamics [87]. The ultracold domain is particularly suitable for

this aim as it provides a rich scenario of quantum states and phenomena. Atom

optics and atomtronics [88] intend to manipulate cold atoms in circuits and devices

for applications in metrology, quantum information, or fundamental science. These

devices are frequently inspired by electronics (e.g., the atom diode [89, 90], the

transistor [88], atom chips [91]), or optics (e.g., beam splitters [92], or multiplexing

[93, 94]).

In this chapter we shall focus on a cold-atom realization of multiplexing, a

basic process in modern telecommunications. Multiplexing is the transmission of

different messages via a single physical medium. A multiplexer combines signals

from several emitters into a single medium, whereas a demultiplexer performs the

reverse operation. The concept of multiplexing is relevant for quantum information

processing (for its use in quantum repeaters, see [95, 96], or for trapped ions

[97]). We envision here optical or magnetic waveguides for atoms holding several

transverse orthogonal modes [98–101]. If the qubit is encoded in the internal

state of the atom, several qubits may be carried out simultaneously by different

modes. To develop such a quantum-information architecture, fast multiplexers or

demultiplexers that could join the modes from different waveguides into one guide,

or separate them, are needed. We shall discuss trap designs for demultiplexing

since the multiplexer would simply operate in reverse. For a proof of principle, we

propose the simplified setting of a single initial harmonic trap for noninteracting

cold atoms whose first two eigenstates will be separated, as in the first step of

Fig. 4.1, into two different wells. In a complete demultiplexing process, the final

wells should be independent, with negligible tunneling. The challenge is to design

the splitting (a) without final excitation of higher vibrational levels, (b) in a short

time, and (c) with a realizable trap potential. Condition (a) may be achieved by

an adiabatic asymmetric splitting [15, 102] in which, for moderate bias compared
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to the vibrational quanta, the initial ground state becomes the ground state of the

well with the lowest energy, and the excited state becomes the ground state of the

other well (see Chapter 1). This adiabatic approach generally fails to satisfy the

condition (b), which we shall implement applying STA [1, 8, 44, 73]. As for (c),

we shall make use of a simple two-level model for the shortcut design, and then

map it to a realistic potential recently implemented to realize an atomic Josephson

junction [35]. Finally, several applications, such as separation of multiple modes,

population inversion, or controlled excitation, will be discussed.

4.2 Slow adiabatic and fast quasi-adiabatic pro-

cesses

Suppose that a harmonic potential evolves adiabatically into two well-separated

and asymmetric wells as in the first step of Fig. 4.1. To accelerate the dynamics we

shall use the moving two-level approximation presented in Chapter 1 (Section 1.4).

This moving two-level approximation is based on a process where a symmetrical

potential evolves from an initial harmonic trap to a final double well. Then, we

construct a time-dependent orthogonal bare basis |L(t)〉 =
(

0

1

)
, |R(t)〉 =

(
1

0

)

of left and right states, obtained by a linear combination of the instantaneous

ground and first excited states. An approximate two-mode Hamiltonian model for

a generally asymmetrical process is written in this basis as

H2×2(t) =
~

2

(
λ(t) −δ(t)
−δ(t) −λ(t)

)
, (4.1)

where, for the double well configuration, δ(t) is the tunneling rate, and ~λ(t) the

relative gap, or bias, between the two wells. Note that, this Hamiltonian is just

the Hamiltonian in Eq. (1.13) multiplied by a factor ~. For the initial harmonic

potential at t = 0, λ(0) = 0 and δ(0) = ω0. The instantaneous eigenvalues are

E±
λ (t) = ±~

2

√
λ2(t) + δ2(t), (4.2)
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and the normalized eigenstates

|ψ+
λ (t)〉 = sin

(α
2

)
|L(t)〉 − cos

(α
2

)
|R(t)〉,

|ψ−
λ (t)〉 = cos

(α
2

)
|L(t)〉+ sin

(α
2

)
|R(t)〉, (4.3)

where the mixing angle α = α(t) is given by tanα = δ(t)/λ(t). The boundary

conditions on λ(t) and δ(t) are

δ(0) = ω0,

λ(0) = 0,

δ(tf) = 0,

λ(tf) = λf , (4.4)

which correspond, at time t = 0, to a harmonic well, and at time tf to two

independent wells with asymmetry bias ~λf .

To design a FAQUAD process, we shall first assume the simplifying conditions:

λ(t) = λ constant and λ/δ(0) ≪ 1. Thus, α(0) ≈ π/2 and the initial eigenstates

essentially coincide with the ground and first excited states of the harmonic oscil-

lator. As we have seen in Chapter 1, for a constant λ, the adiabaticity condition

reads [102] ∣∣∣∣∣
λδ̇(t)

2[λ2 + δ(t)2]3/2

∣∣∣∣∣≪ 1. (4.5)

To get the FAQUAD solution we proceed as in Chapter 3. Therefore, imposing a

constant value c for the adiabaticity parameter and using the boundary conditions

for δ in Eq. (4.4), we fix the integration constant and the value of c,

c =
ω0

2λ
√
ω2
0 + λ2 tf

. (4.6)

The solution of the differential equation for δ(t) takes finally the form

δfa(t) =
ω0λ(tf − t)√

λ2t2f + ω2
0t(2tf − t)

. (4.7)
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Although this protocol can be work for shorter times for which the process is not

fully adiabatic, the FAQUAD approach is limited by

tf =
2π

φ12

, (4.8)

where φ12 =
∫ 1

0
ω̃12(s)ds, and ω̃12(s) = ω12(stf ) [see Chapter 3, Subsection 3.2.1].

We shall now work out an alternative, faster protocol based on invariants, in

which the boundary conditions on λ(t) and δ(t) will be exactly satisfied.

4.3 Invariant-based inverse engineering

4.3.1 Lewis-Riesenfeld invariants

The Lewis-Riesenfeld [6] theory is applicable to a quantum system that evolves

with a time-dependent Hermitian Hamiltonian H(t), which supports a Hermitian

dynamical invariant I(t) satisfying

i~
∂I(t)

∂t
− [H(t), I(t)] = 0. (4.9)

Therefore, its expectation values for an arbitrary solution of the time-dependent

Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = H(t)|Ψ(t)〉 (4.10)

do not depend on time. I(t) can be used to expand |Ψ(t)〉 as a superposition of

“dynamical modes” |ψn(t)〉,

|Ψ(t)〉 =
∑

n

cn|ψn(t)〉,

|ψn(t)〉 = eiαn(t)|φn(t)〉, (4.11)

where n = 0, 1, . . . ; cn are time-independent amplitudes, and |φn(t)〉 are orthonor-
mal eigenvectors of the invariant I(t),

I(t) =
∑

n

|φn(t)〉λn〈φn(t)|. (4.12)
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The λn are real constants, and the Lewis-Riesenfeld phases are defined as [6]

αn(t) =
1

~

∫ t

0

〈
φn(t

′)

∣∣∣∣i~
∂

∂t′
−H(t′)

∣∣∣∣φn(t
′)

〉
dt′. (4.13)

We use, for simplicity, a notation for a discrete spectrum of I(t) but the general-

ization to a continuum or mixed spectrum is straightforward. We also assume a

non-degenerate spectrum.

4.3.2 Inverse engineering

Supose that we want to drive the system from an initial Hamiltonian H(0)

to a final one H(tf), in such a way that the populations in the initial and final

instantaneous bases are the same, but admitting transitions at intermediate times.

To inverse engineer a time-dependent Hamiltonian H(t) and achieve this goal, we

may first define the invariant through its eigenvalues and eigenvectors. The Lewis-

Riesenfeld phases αn(t) may also be chosen as arbitrary functions to write down

the time-dependent unitary evolution operator U

U =
∑

n

eiαn(t)|φn(t)〉〈φn(0)|. (4.14)

U obeys i~U̇ = H(t)U , where the dot means time derivative. Solving formally

this equation for H(t) = i~U̇U †, we get

H(t) = −~

∑

n

|φn(t)〉α̇n〈φn(t)|+ i~
∑

n

|∂tφn(t)〉〈φn(t)|. (4.15)

According to Eq. (4.15), for a given invariant there are many possible Hamilto-

nians corresponding to different choices of phase functions αn(t). In general I(0)

does not commute with H(0), so the eigenstates of I(0), |φn(0)〉, do not coincide

with the eigenstates of H(0). H(tf) does not necessarily commute with I(tf) ei-

ther. If we impose [I(0), H(0)] = 0 and [I(tf ), H(tf)] = 0, the eigenstates will

coincide, which guarantees a state transfer without final excitations. In typical

applications, the Hamiltonians H(0) and H(tf) are given, and set the initial and

final configurations of the external parameters. Then we define I(t) and its eigen-

vectors accordingly, so that the commutation relations are obeyed at the boundary

times and, finally, H(t) is designed via Eq. (4.15). While the αn(t) may be taken
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as fully free time-dependent phases in principle, they may also be constrained by

a pre-imposed or assumed structure of H(t).

We will focus now on the two-level system, so for the Hamiltonian in Eq. (4.1),

there is a dynamical invariant I(t) of the form [44]

I(t) =
~

2
Ω0

(
cos θ(t) sin θ(t)eiϕ(t)

sin θ(t)e−iϕ(t) − cos θ(t)

)
, (4.16)

where ϕ(t) and θ(t) are auxiliary (azymuthal and polar) angles, and Ω0 is an

arbitrary constant with units of frequency. The role of the invariant is therefore

to drive the initial eigenstates of H2×2(0) to the eigenstates of H2×2(tf). In our

application this implies a unitary mapping from the first two eigenstates of the

harmonic oscillator to the ground states of the left and right final wells.

From the invariance property (4.9), choosing H(t) as the Hamiltonian in (4.1),

it follows that

δ(t) = −θ̇(t)/ sinϕ(t),
λ(t) = −δ(t) cot θ(t) cosϕ(t)− ϕ̇(t). (4.17)

The commutativity of I(t) and H2×2(t) at boundary times tb = 0, tf imposes the

conditions

λ(tb) sin[θ(tb)]e
iϕ(tb) + δ(tb) cos[θ(tb)] = 0,

λ(tb) sin[θ(tb)]e
−iϕ(tb) + δ(tb) cos[θ(tb)] = 0,

δ(tb) sin[θ(tb)] sin[ϕ(tb)] = 0. (4.18)

Taking into account Eq. (4.4), we get from Eq. (4.18),

θ(0) = π/2,

ϕ(0) = π,

θ(tf ) = 0,

θ̇(tf ) = 0. (4.19)
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Figure 4.2: (a) δinv(t) and (b) λinv(t). δ(0) = 2π × 78 Hz, λf = 190 s−1,
λ̇(0) = 190 s−2, and tf = 55 ms.

These conditions lead to indeterminacies in Eq. (4.17). To resolve them we apply

l’Hôpital’s rule repeatedly and find additional boundary conditions,

θ̇(0) = θ̈(0) = ϕ̇(0) = 0,
...
θ (0) = −ω0λ̇(0),

ϕ̈(0) = −λ̇(0),
ϕ(tf) = π/2,

ϕ̇(tf) = −λf
3
, (4.20)

with λ̇(0) 6= 0. At intermediate times, we interpolate the angles assuming a

polynomial ansatz, θ(t) =
∑5

j=0 ajt
j and ϕ(t) =

∑4
j=0 bjt

j, where the coefficients

are found by solving the equations for the boundary conditions. Thus, we obtain

the Hamiltonian functions δinv(t) and λinv(t) from Eq. (4.17). Figure 4.2 provides

an example of parameter trajectories.
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4.4 Mapping to coordinate space

Our purpose now is to map the 2× 2 Hamiltonian into a realizable potential,

V (x, t) =
1

2
mω2x2 + V0 cos

2

[
π(x−∆x)

dl

]
. (4.21)

This form has already been implemented [35] with optical dipole potentials, com-

bining a harmonic confinement due to a crossed beam dipole trap with a periodic

light shift potential provided by the interference pattern of two mutually coherent

laser beams. The control parameters are in principle the frequency ω, the dis-

placement ∆x of the optical lattice relative to the center of the harmonic well, the

amplitude V0 and the lattice constant dl, but in the following examples we fix dl

and ∆x; the other two parameters offer enough flexibility and are easier to control

as time-dependent functions. To perform the mapping, we minimize numerically

F [V0(t), ω(t)] = [δid(t)− δ(t)]2 + [λid(t)− λ(t)]2, (4.22)

using the simplex method. The functions δid(t) and λid(t) are designed according

to the shortcuts discussed before, and (following the same procedure as in Chapter

1) δ(t) and λ(t) are computed as

δ(t) = −2

~
〈L(t)|H|R(t)〉 = −2

~
〈R(t)|H|L(t)〉, (4.23)

λ(t) =
2

~
〈R(t)|H − Λ|R(t)〉 = −2

~
〈L(t)|H − Λ|L(t)〉, (4.24)

where H = H(V0(t), ω(t);∆x, dl) = − ~2

2m
∂2

∂x2 + V is the full Hamiltonian in co-

ordinate space with a kinetic energy term and the potential (4.21) and Λ(t) =

[E−
λ (t)+E+

λ (t)]/2 is a shift defined from the first two levels E∓ of H to match the

zero-energy point between the coordinate and the two-level system. Finally,

|R(t)〉 = (|g(t)〉+ |e(t)〉)/21/2,
|L(t)〉 = (|g(t)〉 − |e(t)〉)/21/2 (4.25)

form the base, where |g(t)〉 is the ground state and |e(t)〉 the first excited state of

the symmetrical Hamiltonian H0(V0(t), ω(t);∆x = 0, dl), defined as H but with

∆x = 0, which we diagonalize numerically. In our calculations, δ(t) and λ(t)

become indistinguishable from their ideal counterparts. Figure 4.3 depicts V0(t)
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Figure 4.3: Lattice height V0, and trap frequency ω/(2π) using invariant-
based engineering and mapping. ∆x = 200 nm.

and ω(t) for the parameters of Fig. 4.2. We use 87Rb atoms and a lattice spacing

dl = 5.18 µm. The sharp final increase of V0(t) makes the two wells totally

independent, but for most applications this strict condition may be relaxed to

avoid intrawell excitations.

Figure 4.4 demonstrates perfect transfer for the ground (a) and the excited

state (b) using the very same protocol in both cases, the one depicted in Figs. 4.2

and 4.3. (Thanks to the superposition principle, the same protocol would produce

a perfect demultiplexing for any linear combination of the ground and excited

states.) Initial and final states are represented, solving the Schrödinger equation

with the potential (4.21). We stop the process 2 ms before the nominal time tf ,

as the fidelity reaches a stable maximum there, and a further increase of V0 is not

required. We also include the results for the protocol in which ω is kept constant

and V0(t) is a linear ramp (with the same durations as the shortcut protocols). For

this linear protocol the final state includes a significant density in the “wrong” well.

This simple linear-V0 approach needs tf & 0.7 s to become adiabatic and produce

the same fidelity, 0.9997, found for a shortcut protocol ten times faster, tf = 0.07

s, the rightmost point in Fig. 4.5 (a). Figure 4.6 compares the populations in the

instantaneous basis of the (full, coordinate-space) Hamiltonian for the shortcut and
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Figure 4.4: (a): Ground state at t = 0 (long-dashed, blue line); final state
with the shortcut (solid, blue line, indistinguishable from the ground state of
the final trap); final state with linear ramp for V0(t) and ω = 2π×78 Hz (short-
dashed, magenta line). (b): Same as (a) for the first excited state. Parameters
like in Fig. 4.3 at t = 53 ms. The linear ramp for V0(t) ends in the same value

used for the shortcut.

the linear protocols when the system starts in the ground state, corresponding to

Fig. 4.4 (a). The shortcut protocol implies a transient exchange between ground

and (first) excited levels but finally takes the system to the desired ground state.

In contrast to the linear protocol, the excitation is permanent, leading to a poor

final fidelity.

In the two-level model, tf may be reduced arbitrarily, but in the coordinate

space Hamiltonian, levels 0-1 will only be “independent” as long as higher levels

are not excited. These excitations are the limiting factor to shorten the times

further with the current mapping scheme. Some guidance is provided by the

Anandan-Aharonov relation tf > h/(4∆E), where ∆E is the time average of the

standard deviation [23].
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Figure 4.5: Fidelities with respect to the final ground state starting at the
ground state (a) and with respect to the final first excited state starting at
the excited state (b) versus final time tf , via shortcuts (F inv

g and F inv
e , blue

circles), or linear ramping of V0(t) (F
lin
g and F lin

e , red triangles). The fidelity is
computed at 2 ms less than the nominal tf . Other parameters as in Figs. 4.2,

4.3, and 4.4.

4.5 Discussion

Vibrational multiplexing may be combined with internal-state multiplexing [97]

to provide a plethora of possible operations. Motivated by the prospective use

of multiplexing or demultiplexing for quantum information processing, we have

applied shortcuts to adiabaticity techniques to speed up the spatial separation of

vibrational modes of a harmonic trap. A similar approach would separate n modes

into n wells so as to deliver more information into different processing sites. The

number of modes that could be separated will depend on the asymmetric bias in

relation to other potential parameters: the bias among the extreme wells should

not exceed the vibrational quanta in the final wells. The bias determines possible

speeds, too, as smaller biases generally imply longer times.

Chapter 1 dealt also with splitting operations and shortcuts to adiabaticity,

but the objective was the opposite to our aim here. Since adiabatic following from

a harmonic trap to an asymmetric double well collapses the ground state wave to
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Figure 4.6: Populations of the states for the shortcuts (a) and the linear ramp
for V0(t) (b). Ground state (P0, solid blue line); first excited state (P1, long-
dashed red line); second excited state (P2, short-dashed black line). Parameters

as in Fig. 4.4 (a).

one of the two wells, a FF technique [7, 18] was applied to avoid the collapse and

achieve perfect, balanced splitting, as required, e.g., for matter-wave interferome-

try. The idea was that for a fast nonadiabatic shortcut, the perturbative effect of

the asymmetry becomes negligible. The stabilizing effect of interactions was also

characterized within a mean-field treatment. In the present chapter, the objective

is to send each mode of the initial harmonic trap as fast as possible to a different

final well, so we needed a different methodology. Instead of FF, which demands

an arbitrary control of the potential function in position and time, we have re-

stricted the potential to a form with a few controllable parameters (in practice we

have let only two of them evolve in time). Inverse engineering of the Hamiltonian

is carried out for a two-level model using invariants of motion, and the resulting

(analytical) Hamiltonian is then mapped to real space. The discrete Hamiltonian

is useful as it provides a simple picture to understand and design the dynamics at

will. The method provides also a good basis to apply OCT, which complements

invariant-based engineering (see. e.g. [62]) by selecting among the fidelity-1 proto-

cols according to other physical requisites. As for interactions and nonlinearities,
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they will generally spoil a clean multiplexing or demultiplexing processes, so we

have only examined linear dynamics here.

An application of the demultiplexing schemes discussed in this work is the pop-

ulation inversion of the first two levels of the harmonic trap without making use of

internal state excitations [103]. This is useful to avoid decoherence effects induced

by decay, or for species without an appropriate (isolated two-level) structure. The

scheme is based on the three steps shown in Fig. 4.1. A mechanical excitation of

the ground state level into the first excited state of a fixed anharmonic potential

was implemented by shaking the trap along a trajectory calculated with an OCT

algorithm [104]. Our proposed approach relies instead on a smooth potential de-

formation. This type of inversion could be applied to interacting Bose-Einstein

condensates as long as the initial states are pure ground or excited levels. The pro-

duction of twin-atom beams from the excited state is an outstanding application

[105].

Asymmetric double wells may also be used for other state-control operations

such as preparing nonequilibrium Fock states through a ladder excitation process.

The vibrational number may be increased by one at every step. Each excitation

would start and finish with demultiplexing and multiplexing operations from the

harmonic oscillator to the double well and vice versa, as described in the main

text. Between them the two wells are independent and their height or width can

be adjusted to produce the desired level ordering. For an even-to-odd vibrational

number transition, this requires an inversion of the bias, as in Fig. 4.1; transitions

from odd to even levels are performed by deepening the left well until the initially

occupied level on the right well surpasses one of the levels in the left well. The

steps may be repeated until a given Fock state is reached. Operating in reverse

mode, a given excited state could be taken down to the ground state, as in sideband

cooling, just with trap deformations, as we will see in Chapter 6.

Open questions left for future work include optimizing the robustness of pa-

rameter trajectories versus noise and perturbations [68], or finding time bounds

in terms of average energies, similar to the ones for harmonic trap expansions [22]

or transport [42]. The present results may also be applied for optical waveguide

design, as we will see in the next chapter, or to two-dimensional systems as a way

to generate vortices.



Chapter 5

Compact and high conversion

efficiency mode-sorting

asymmetric Y junction using

shortcuts to adiabaticity

We propose a compact and high conversion efficiency asymmetric Y junction

mode multiplexer/demultiplexer for applications in on-chip mode-division multi-

plexing. Traditionally, mode-sorting is achieved by adiabatically separating the

arms of a Y junction. We shorten the device length using invariant-based inverse

engineering and achieve better conversion efficiency than the adiabatic device.

69
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5.1 Introduction

As optical communications over single-mode optical waveguides are quickly ap-

proaching their capacity limits, using multiple spatial modes in optical transmis-

sion systems to increase information capacity has attracted lots of attention[106,

107]. In mode-division multiplexing (MDM) systems [108], the multiple propagat-

ing modes in the system provide the extra degrees of freedom for potential capacity

increase. However, to avoid intermodal dispersion, one needs to be able to excite

and detect the spatial modes independently in MDM systems. So far, most of

the efforts for the multiplexing or demultiplexing in MDM systems are focused on

fiber-based systems, but there is also interest in realizing integrated multimode

systems [109–111]. In integrated optical waveguides, the asymmetric Y junction

can be designed to function as a mode sorter [93, 94, 112]. The asymmetric Y

junction has a two-modes stem and two diverging single-mode arms with different

widths. When the fundamental (second) mode of the stem propagates through

the junction, it evolves into the fundamental mode of the wider (narrower) output

arm, and vice versa. The mode sorting behavior can be attributed to the fact that

a mode would evolve into the mode of the output arm with the closest effective

index [93]. However, this smooth evolution can only occur when the variation at

the junction is slow enough, such that the evolution is adiabatic, reducing the cou-

pling between the local eigenmodes (supermodes) of the structure. However, the

adiabatic criterion often leads to a small branching angle between the arms, and

thus, a long device length to achieve the desired arm separation. The challenge in

the integrated mode-sorting Y junction multiplexer or demultiplexer design is thus

to reduce the device lengths while minimizing the cross talk between the arms.

So far the efforts have been focused on optimizing the device length without

violating the adiabatic criterion [113]. There have also been attempts to find

the optimal shape function that minimizes the coupling between the supermodes

[114]. These approaches are based on the adiabatic approximation, and a well-

known criterion for mode-sorting operation of the asymmetric Y junction is given

by the mode conversion factor (MCF) as [93]

MCF =
|βA − βB|
θγAB

, (5.1)
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where θ is the branching angle of the Y junction arms, βA and βB are the propa-

gation constants of the modes supported by single mode arms A and B, and

γAB = 0.5
√
(βA + βB)2 − (2k0n)2 (5.2)

with n the cladding refractive index and k0 the free-space wavenumber. When the

MCF is larger (smaller) than 0.43, an asymmetric Y junction acts as a mode sorter

(power divider). For a given material system n, branching waveguides dimensions

βA and βB, and branch separation D, the required device length L = D/θ is

limited by θ, obtained from Eq. (5.1). Moreover, as long as there is finite coupling

between the supermodes in the adiabatic evolution, the conversion efficiency will

only be unity at specific operating points [115, 116].

Recently, many coherent quantum phenomena have been exploited to imple-

ment light manipulation in waveguide structures based on the analogies between

quantum mechanics and wave optics [46]. At the same time, the development in

new ways to manipulate quantum systems with high-fidelity and in a short inter-

action time using STA [8] has inspired the design of a family of novel coupled-wave

devices [40, 41, 51, 117–119]. In particular, the invariant-based inverse engineer-

ing approach [44, 74], introduced in Chapter 4, provides a versatile tool for the

design of fast and robust waveguide couplers [118], in which the system dynamics

are described using the eigenstates of the invariant I corresponding to the system

Hamiltonian H . While previous works [40, 41, 51, 119] have focused on grating-

assisted mode conversion in multimode waveguides, in this chapter, we apply the

STA to design short asymmetric Y junction mode multiplexer or demultiplexer

beyond the adiabatic limit.

5.2 The model

We consider the asymmetric Y junction shown schematically in Fig. 5.1, in

which a two-modes stem waveguide evolves to two single-mode waveguides A

(wider) and B (narrower) in a length L. The evolution of the fundamental modal
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Figure 5.1: Schematic of the asymmetric Y junction.

amplitudes in waveguides A and B can be described by the coupled mode equa-

tions as

d

dz

[
A

B

]
= −i

[
λ(z) −δ(z)
−δ(z) −λ(z)

][
A

B

]
= −iH

[
A

B

]
, (5.3)

where δ (real) is the coupling coefficient, and λ = (βB − βA)/2 describes the

mismatch. For the two-modes stem waveguide at z = 0, λ(0) = 0 and δ(0) = ω0.

Solving for the eigenvectors of H , we find two adiabatic supermodes,

|aA〉 = sinα|Ψ1〉+ cosα|Ψ2〉,
|aB〉 = cosα|Ψ1〉 − sinα|Ψ2〉, (5.4)

where |Ψ1〉 ≡
(
0
1

)
, |Ψ2〉 ≡

(
1
0

)
, and α = (1/2) tan−1(δ/λ). λ and δ are related to the

branch geometry, which is yet to be specified. We impose the boundary conditions

δ(0) = ω0,

λ(0) = 0,

δ(L) = 0,

λ(L) = λL, (5.5)

such that the structure corresponds to a two-modes stem waveguide at z = 0 and

two single-mode waveguides at z = L. For the conventional adiabatic Y junction

design, the goal is to design the evolution of λ and δ through the device geometry

such that the coupling between |aA〉 and |aB〉 are minimized. When the adiabatic

criterion is not satisfied, and there is a finite coupling between |aA〉 and |aB〉, the
mode-sorting performance will deteriorate. In the following, we use the invariant-

based inverse engineering approach to design a protocol in which the mode-sorting
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is achieved at a shorter length than required by the adiabatic criterion.

5.2.1 Invariant-based inverse engineering

Replacing the spatial variation z with the temporal variation t, Eq. (5.3) is

equivalent to the time-dependent Schrödinger equation (~ = 1) describing the

interaction dynamics of a two-state system, and H is the Hamiltonian.

As we have seen in the previous chapter, associated with H there are Hermitian

dynamical invariants I(t), fulfilling

∂tI +
1

i
[I,H ] = 0, (5.6)

so that their expectation values remain constant. I can be written as (where t is

replaced by z and hereafter)[44]

I(z) =
1

2

(
cos θ sin θeiϕ

sin θe−iϕ − cos θ

)
, (5.7)

where θ ≡ θ(z) and ϕ ≡ ϕ(z) are z-dependent angles. The eigenstates of the

invariant I(z) satisfy I(z)|φn(z)〉 = λn|φn(z)〉, and they can be written as

|φ+(z)〉 =
(

cos θ
2
e−iϕ

sin θ
2

)
,

|φ−(z)〉 =
(

sin θ
2

− cos θ
2
eiϕ

)
. (5.8)

An invariant I(z) of H(z) satisfies i~∂z(I(z)|Ψ(z)〉) = H(z)(I(z)|Ψ(z)〉)[6]. Ac-

cording to the Lewis-Riesenfeld theory, the state of the system can be written

as

|Ψ(z)〉 = Σncne
iγn(z)|φn(z)〉, (5.9)

where the cn are z-independent amplitudes, and the γn(z) are Lewis-Riesenfeld

phases. The z-independent cn implies that the system state will follow the eigen-

state of the invariant exactly without mutual coupling.

To engineer the Hamiltonian H(z) such that the mode sorting is exact, we will

proceed as in Chapter 4 (Sec. 4.3). We design the invariant first and then obtain

the Hamiltonian from it. Applying the boundary conditions [H(z), I(z)] = 0 at
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z = 0 and z = L such that the eigenvectors of H(z) and I(z) coincide at the input

and output, the invariant will drive the input eigenstates of H(z) to the output

eigenstates of H(z) exactly. Using the invariance condition (5.6), we find

δ(z) = −θ̇(z)/ sinϕ(z), (5.10)

λ(z) = −δ(z) cot θ(z) cosϕ(z)− ϕ̇(z). (5.11)

Using the commutativity of H(z) and I(z) at the input and output and Eq. (5.5),

we obtain

θ(0) = π/2,

ϕ(0) = π,

θ(L) = 0,

θ̇(L) = 0. (5.12)

These conditions lead to indeterminacies in Eqs. (5.10) and (5.11), so we apply

l’Hôpital’s rule repeatedly and find the additional boundary conditions [74]

θ̇(0) = θ̈(0) = ϕ̇(0) = 0,
...
θ (0) = −ω0λ̇(0),

ϕ̈(0) = −λ̇(0),
ϕ(L) = π/2,

ϕ̇(L) = −λL/3, (5.13)

with λ̇(0) 6= 0. With the boundary conditions in Eq. (5.13), the evolution of

the invariant parameters θ(z) and ϕ(z) can be obtained through interpolation,

assuming a polynomial ansatz (see Chapter 4). Then, the Hamiltonian functions

δ and λ can be obtained from Eqs. (5.10) and (5.11). We finally use the simplex-

based mapping method described in Sec. 4.4 to map the designed Hamiltonian to

a realizable waveguide geometry. Device performance will be related to the choice

of the interpolation ansatz. It is beyond the scope of this chapter to categorize or

evaluate the various ansatz that are possible; rather, we focus on the polynomial

ansatz to demonstrate the device concept.
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Figure 5.2: Conversion efficiencies of a linearly separating Y junction using
the second mode as the input for different device lengths

5.3 Numerical results

Now we illustrate the design of a compact mode-sorting asymmetric Y junction

in a conventional planar integrated optics platform, and perform beam propaga-

tion method (BPM) simulations to verify the designs. The scalar 2D BPM code

used in the simulations solves the scalar and paraxial wave equation using the finite

difference scheme with the transparent boundary condition. We choose a polymer

channel waveguide structure for beam propagation simulations. The design pa-

rameters are chosen as follows: 3 µm thick SiO2 (n =1.46) on a Si (n = 3.48)

wafer is used for the bottom cladding layer, the core consists of a 2.4 µm layer

of BCB (n = 1.53), and the upper cladding is epoxy (n = 1.50). The device is

simulated at 1.55 µm input wavelength and the TE polarization. Subsequent anal-

ysis are performed on the 2D structure obtained using the effective index method.

For the Y junction input and outputs, we choose an input stem waveguide width

of 5.8 µm supporting two modes, and the output single-mode waveguides widths

are WA(L)=3.5 µm and WB(L)=3.29 µm. We target a final waveguide separation

D(L) of 10 µm so that the coupling between the output branches is negligible. Sub-

stituting the corresponding waveguide parameters into Eq. (5.1), MCF=0.1277/θ

(with θ in degrees) indicating the device is a mode sorter for θ < 0.3◦. For a

conventional linearly separating adiabatic Y junction, this corresponds to a device

length of larger than 2 mm to achieve a final separation D(L) of 10 µm. In Fig.

5.2, we show the simulated fractional power in the fundamental modes (conversion

efficiency) of waveguides A and B using the second mode as the input for different

device lengths. When the device length is greater than 10 mm, the mode-sorting

characteristics are well established. The transition from power divider to mode

sorter at around 2 mm predicted by MCF calculations is also evident. We also
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Figure 5.3: Parameters for the invariant-based Y junction.

Figure 5.4: Mode-sorting operation of the invariant-based Y junction. Input
(a) fundamental mode (b) second mode.

observe that the conversion efficiency starts to fall and will oscillate when the

length keeps increasing beyond 10 mm, as a result of finite coupling between the

supermodes [114].

For the invariant-based design, the boundary conditions in Eq. (5.5) are fixed by

the waveguide parameters at the device input and output. To map the Hamiltonian

to the waveguide parameters of the Y junction, we choose the widths of waveguides

WA(z) andWB(z) and the separationD(z) shown in Fig. 5.1 as the free parameters

in the simplex search. The resulting parameters are shown in Fig. 5.3 for a L = 8.5

mm device. The corresponding Y junction geometry is shown in Fig. 5.4. In Fig.

5.4(a), the BPM results show that the fundamental mode has evolved to waveguide

A at the output. And the evolution of the second mode to waveguide B is shown

in Fig. 5.4(b). We also show the BPM results for the linearly separating adiabatic

Y junction of the same length in Fig. 5.5. In Fig. 5.6, we compare the output field

of the invariant-based mode sorter and the linear mode sorter, both at a length of
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Figure 5.5: Mode-sorting operation of the linearly separating Y junction.
Input (a) fundamental mode (b) second mode.

8.5 mm. The conversion efficiency of the invariant-based design is calculated to be

0.98 for both modes while the linearly separating design is 0.92 for both modes.

The insertion loss of the invariant-based design are 0.267 dB and 0.185 dB for the

fundamental and the second modes, respectively, and 0.481 dB and 0.604 dB for

the linearly separating design. The higher insertion loss of the linearly separating

design can be attributed to coupling into the radiation modes. On the other

hand, the evolution of the invariant-based design should follow the eigenstates of

the invariant exactly without coupling into the radiation modes. The observed

loss can be attributed to small coupling into the radiation modes because the

ideal protocol is only approximately mapped to the coordinate space model in the

simplex-based mapping [74]. This also results in the conversion efficiency being

less than 1. Although the width of the invariant-based design is larger than the

linearly separating design, we note from Fig. 5.2 that the conversion efficiency of

the linearly separating design would not reach 0.98 even when the length of the

junction is increased to 60 mm. As a result, the invariant-based design can achieve

high conversion efficiency with a more compact device footprint. The fabrication

tolerance is studied by adding width variations δW to WA and WB while keeping

D unchanged in the simulations. The resulting conversion efficiencies for different

δW using the second mode as the input is shown in Fig. 5.7, indicating that the

proposed device has a large fabrication tolerance better than 1000 nm.



Chapter 5. Compact and high conversion efficiency mode-sorting asymmetric Y
junction using shortcuts to adiabaticity 78

−20 0 20x (µm)

a.
 u

. 

(a)

−20 0 20x (µm)

a.
 u

. 

(b)

Figure 5.6: Output field profile of the Y junctions. Solid: invariant-based.
Dashed: linearly separating. Dash-dotted: waveguide walls. Input (a) funda-

mental mode (b) second mode.
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Figure 5.7: Conversion efficiencies as a function of width variation using the
second mode as the input.

5.4 Conclusions

In conclusion, we demonstrated that the invariant-based inverse engineering ap-

proach can be applied successfully to asymmetric Y junction design. By describing

the system dynamics using the dynamical invariants, the system evolution can be

engineered to achieve mode sorting in a short distance. The compact design ex-

hibits a higher conversion efficiency than the conventional adiabatic design at a

shorter device length.



Chapter 6

Fast bias inversion of a double

well without residual particle

excitation

We design fast bias inversions of an asymmetric double well so that the lowest

states in each well stay in the same well they started, free from residual mo-

tional excitation. This cannot be done adiabatically, and a sudden bias switch

produces in general motional excitation. The residual excitation is suppressed

by complementing a predetermined fast bias change with a linear ramp whose

time-dependent slope compensates for the displacement of the wells. The process,

combined with vibrational multiplexing and demultiplexing, can produce vibra-

tional state inversion without exciting internal states, just by deforming the trap.

79
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Figure 6.1: Schematic representation of demultiplexing (left arrow), bias
inversion (framed in dashed line, central arrow), and multiplexing (right arrow).
The densities of two one-atom eigenstates are represented in all potentials. In
the harmonic potentials (unframed potentials on the left and right charts) the
states are the ground state and first excited state. In the two central charts with
tilted double wells the states are the lowest for each well. The color (white or
gray) indicates how they would evolve sequentially following the fast protocol
described in the text. For example, the gray state is initially the ground state
of the harmonic oscillator, then it becomes the lowest state of the left well, and
remains being the lowest state of that well after the bias inversion. In the last

step it becomes the first excited state of the final harmonic oscillator.

6.1 Introduction

In Chapter 4 a protocol to realize fast vibrational state multiplexing or de-

multiplexing of ultra cold atoms was introduced. By a properly designed time-

dependent potential deformation between a harmonic trap and a biased double

well, the states of a single atom in a harmonic trap can be dynamically mapped

into states localized at each well (vibrational demultiplexing; see the left arrow in

Fig. 6.1), or vice versa (multiplexing; see the right arrow in Fig. 6.1), faster than

adiabatically and without residual excitation at the final time. It was suggested

that these processes may be combined with a bias inversion to produce (i) state

inversions, from the ground to the first excited state of the harmonic trap and vice

versa, based on trap deformations only (see the evolution of gray and white states

in Fig. 6.1), or (ii) to produce vibrationally excited Fock states from an initial

ground state [74]. These are basic operations to implement quantum information

processing and fundamental studies. Thus the possibility to perform them with-

out exciting internal atomic states as an intermediate step is of much interest. For

trapped ions in particular, this amounts to a species-independent approach based

entirely on the charge and electric forces. In contrast, π-pulse sequences require

specific lasers for each system and a suitable level structure. In general, i.e., both

for ions and neutral atoms, a method not using internal-state excitation suppresses

decoherence and random kicks due to spontaneous decay. They may be important

limiting factors to preserve quantum dynamics with optical transitions [120].
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Among the possibilities to avoid decay from an intermediate state in a transition

among motional states, one might think of using Stimulated Raman adiabatic pas-

sage (STIRAP) [121], which in principle does not populate the upper, intermediate

state. This technique, however, is best suited for transitions involving a change

in internal state, and its application to purely vibrational transitions (within the

same internal state) is not straightforward. Numerical simulations show that sev-

eral motional states are populated [122], and in fact the experimental applications

of STIRAP for trapped ions have been only used for inducing carrier or sideband

transitions that involve changing the internal state [123].

The objective of this chapter is to design fast controlled bias inversions of a

double well so that the lowest states in each well remain as lowest states without

residual excitation. Unlike multiplexing, however, there is no truly adiabatic slow

process that achieves this state transformation. In the bias inversion depicted

within the dashed-line frame of Fig. 6.1, for example, a slow bias change would

preserve the order of the states according to their energy, so that the states rep-

resented in the third potential configuration would be interchanged (i.e., the gray

state in the right well, and the white one in the left well). Nevertheless, in the

limit in which the two wells are effectively independent, which in practice means,

for times shorter than the tunneling time among the wells, the intended state

transition might indeed be done slowly enough to be considered adiabatic. If we

approximate each “isolated” well by a harmonic oscillator, the intended transfor-

mation amounts to a “horizontal” displacement along the interwell axis together

with a rising or lowering of the energy of the wells. The latter effects, however, do

not affect the intrawell dynamics, so we may focus on the displacement. In other

words, within the stated approximations the bias inversion amounts to transport-

ing a particle in a harmonic potential. Thus, to achieve a fast transition without

residual excitation we may use STA designed to perform fast transport [8]. Specif-

ically, we shall use a compensating-force approach [42, 124], equivalent to the FF

scaling technique [7], based on adding to the potential a linear ramp with time-

dependent slope to compensate for the effect of the trap motion in the noninertial

frame of the trap. We shall compare this approach with a sudden bias switch, a

FAQUAD approach [125], or a smooth polynomial connection without compen-

sation. In Sec. 6.2 we introduce the compensating-force approach and Sec. 6.3

describes the alternative methods. In Sec. 6.4 numerical examples are presented

with parameters appropriate for trapped ions in multisegmented, linear Paul traps,
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and for neutral atoms in optical traps. Finally, in Sec. 6.5 we discuss the results

and open questions.

6.2 Compensating-force approach

If the double-well potential with nearly independent wells is subjected to a

bias inversion such that the trap frequencies of each well are essentially equal and

constant throughout, and the trajectories of the well minima move in parallel,

the process may be described by a parallel transport of two rigid harmonic os-

cillators, one for each well. The Hamiltonian potential near the minima may be

approximated as

V0(x− x0) =
1

2
mΩ2

0(x− x0)
2, (6.1)

where Ω0 is the angular frequency and x0 = x0(t) is the common notation for

either of the two minima.1 When needed, we may distinguish the minima as x0,±,

with x0,+ > x0,−. The Hamiltonian H0 = p2/2m+ V0(x− x0) has eigenenergies

En =

(
n+

1

2

)
~Ω0, (6.2)

and well-known normalized eigenstates φn(x− x0), proportional to Hermite poly-

nomials [69].

Adding to the Hamiltonian a linear term with an appropriate time-dependent

slope, the noninertial effect of the motion of the well will be compensated in the

trap frame [42, 124]. To define the trap frame consider the following position and

momentum displacement unitary operator

U = eipx0(t)/~e−imẋ0(t)x/~, (6.3)

where the overdot represents a time derivative. Starting from the Schrödinger

equation

i~∂t|ψ〉 = H0|ψ〉, (6.4)

the transformed wave function |Φ〉 = U|ψ〉 obeys

i~∂t|Φ〉 = UH0U †|Φ〉+ i~(∂tU)U †|Φ〉 = H ′
0|Φ〉, (6.5)

1We disregard purely time-dependent functions in each well. Differential phases among the
wells depending on these functions can be ignored since the traps are assumed to be independent.
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where the IP (trap frame) Hamiltonian is

H ′
0 =

p2

2m
+ V0(x) +mxẍ0 +

1

2
mẋ20, (6.6)

and V0(x) =
1
2
mΩ2

0x
2. The term mẋ20/2 only depends on time; it does not affect

the dynamics and can be ignored. To compensate the motion of the trap, we add

−mxẍ0 to H0. This produces −m(x + x0)ẍ0 in the trap frame and the resulting

potential in that frame is reduced to V0(x), again neglecting purely time-dependent

functions. V0(x) does not depend on time, so any stationary state in this trap frame

will remain stationary, and excitations are avoided.

6.3 Alternative methods

In this section we discuss three simple alternative approaches to perform the

bias inversion. They are all quite natural and simple approaches whose perfor-

mance can be compared to that of the compensating force approach.

6.3.1 Sudden approach

In the sudden approach the potential is changed abruptly from the initial to the

final configuration, but the state of the system remains unchanged immediately

after the potential change (in general it will evolve afterwards). If the target state

is ψtar the resulting fidelity is

Fs = |〈ψ(0)|ψtar〉|. (6.7)

6.3.2 Fast quasi-adiabatic approach

A quasi-adiabatic method to speed up adiabatic processes when there is one

control parameter λ(t) is based on distributing the adiabaticity parameter homo-

geneously in time (see Chapter 3). For instantaneous levels 0 and 1 this means

~

∣∣∣∣
〈φ0|∂tφ1〉
E0 − E1

∣∣∣∣ = c, (6.8)



Chapter 6. Fast bias inversion of a double well without residual particle
excitation 84

where the instantaneous eigenstates φ0, φ1 and eigenenergies E0, E1 depend on

time through their dependence on λ, and c is constant. By the chain rule this

becomes a first order differential equation for λ(t), and c is set so that the boundary

conditions for λ(t) at initial time, t = 0, and final time tf are satisfied. In the

transport of a particle with a harmonic oscillator of angular frequency Ω0 centered

at x0(t) we set λ(t) = x0(t). Using the energies and eigenstates of the first two

levels of the harmonic oscillator in Eq. (6.8), the FAQUAD condition becomes

simply
mẋ0(t)√
2~mΩ0

= c. (6.9)

The solution is the linear connection

x0(t) = x0(0) + [x0(tf )− x0(0)]
t

tf
. (6.10)

The minimal tf for which a zero of excitation energy appears is 2π/Ω0 [73, 125].

6.3.3 Polynomial connection without compensation

The final and initial values of the control parameter may as well be smoothly

connected without applying any compensation, for example, using a fifth order

polynomial that assures the vanishing of first and second derivatives of the pa-

rameter at the boundary times.

6.4 Examples

In the following examples, the potentials and parameters are adapted for a

trapped ion in a multisegmented Paul trap, and for a neutral atom in a dipole

trap.

6.4.1 Trapped ions

For a trapped ion we consider a simple double-well potential of the form

V (x, t) = βx4 + αx2 + γx, (6.11)
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with α(t) < 0 and β(t) > 0 [126–128]. α and β are assumed to be constant and

γ ≡ γ(t) time dependent. The bias inversion implies a change of sign of γ(t) from

γ0 > 0 to −γ0.

From ∂V
∂x

= 0 the condition for the extrema becomes

4βx3 + 2αx+ γ = 0. (6.12)

It is useful to define

A = 0,

B =
2α

4β
,

C =
γ

4β
, (6.13)

and

Q =
A2 − 3B

9
,

R =
2A3 − 9AB + 27C

54
. (6.14)

When R2 < Q3 there are two minima and one maximum. With α < 0 and β > 0,

this is satisfied for

|γ| <
(
2

3

)3/2
√

−α
3

β
. (6.15)

The trajectories of the minima are

x0,± = −2
√
Q cos

(
θ + (1± 1)π

3

)
− A

3
, (6.16)

where θ = arccos

(
R√
Q3

)
, 0 6 θ 6 π and the roots are taken to be positive. Up

to second order in γ they are

x0,− ≈ − 1√
2

√
−α
β
+

γ

4α
− 3γ2

√
−αβ

16
√
2α3

, (6.17)

x0,+ ≈ 1√
2

√
−α
β
+

γ

4α
+

3γ2
√
−αβ

16
√
2α3

. (6.18)
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The quadratic term in γ is negligible with respect to the linear term when

|γ| ≪ 4
√
2

3

√
−α

3

β
, (6.19)

which implies that the trajectories for the minima move in parallel. Note that this

inequality automatically implies the one in Eq. (6.15). Neglecting the quadratic

term, the two minima are given by

x0,± = ± 1√
2

√
−α
β
+

γ

4α
. (6.20)

The distance between the minima is

D = 2
√
Q

{
cos

(
θ

3

)
+ sin

[
1

6
(π + 2θ)

]}

≈
√
2

√
−α
β
+

3
√
−αβ

8
√
2α3

γ2. (6.21)

We may also compute the energy bias between the two wells as

δ = γD. (6.22)

The distance travelled by each well is, when (6.19) is fulfilled, d = γ0/(2α) [see

Eqs. (6.17) and (6.18)], and the effective frequency at each minimum

ω0 =

√
1

m

(
d2V

dx2

)

x=x0

. (6.23)

For Eq. (6.11) the effective frequencies are

ω0,± =

√
2

m

√

α+
2

3
β

{
A+6

√
Q cos

[
1

3

(
θ + (1± 1)π

3

)]}2

≈ 2

√
− α

m
∓ 3

2
√
2

√
β

α2m
γ. (6.24)

Hence, comparing the two terms, the condition for the frequencies to be essentially

constant

ω0,∓ ≈ Ω0 ≡ 2

√
− α

m
(6.25)

is again the inequality in Eq. (6.19).
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In the regime where the inequality (6.19) holds, we can apply the compensating

force approach to implement a fast bias inversion. Since the compensating term

−mxẍ0 is equal for both harmonic traps, we add it to V in Eq. (6.11), and the

resulting Hamiltonian H is

H =
p2

2m
+ βx4 + αx2 + (γ −mẍ0)x. (6.26)

Note that the compensation amounts to changing the time dependence of the slope

of the linear term from the reference process defined by γ(t) to

γeff(t) ≡ γ(t)−mẍ0(t) =
γ(t)−mγ̈(t)

4α
. (6.27)

To set γ(t) we design a connection between the initial and final configurations.

First note the boundary conditions

γ(0) = γ0 > 0,

γ(tf ) = −γ0, (6.28)

which we complement by

γ̇(tb) = 0,

γ̈(tb) = 0,

tb = 0, tf , (6.29)

so that ẋ0(tb) = ẍ0(tb) = 0. This implies that U(tb) = eipx0(tb)/~ and U̇(tb) = 0.

Therefore, the Hamiltonians and the wave functions in interaction and Schrödinger

pictures transform into each other by a simple coordinate displacement. At in-

termediate times, we interpolate the function as γ(t) =
∑5

n=0 cnt
n, where the

coefficients are found by solving Eqs. (6.28) and (6.29). Finally,

γ(t) = γ(0) + 10[γ(tf)− γ(0)]s3

− 15[γ(tf)− γ(0)]s4 + 6[γ(tf )− γ(0)]s5, (6.30)

where s = t/tf . This function and examples of γeff are shown in Fig. 6.2.

In order to compare the robustness of the compensating force method against

the alternative ones we consider a 9Be+ ion in the double well with the realistic

parameters α = −4.7 pN/m and β = 5.2 mN/m3, similar to those in [129]. For a
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Figure 6.2: γ versus s = t/tf for the polynomial in Eq. (6.30) (solid black line)
and FAQUAD (short-dashed red line). γ0 = 86.4 zN, γ(tf ) = −γ0, α = −4.7
pN/m, and β = 5.2 mN/m3. Also shown are the different effective slopes adding
a compensation to the polynomial, γeff (t) = γ(t)−mγ̈(t)/(4α), for the mass of
9Be+ and times tf = 0.07 µs (long-dashed blue line); tf = 0.1 µs (green dots);

and tf = 0.3 µs (magenta squares).

moderate initial bias compared to the vibrational quanta, such as

γ0 ∼
~Ω0

D
, (6.31)

the fidelity provided by the sudden approach is one for all practical purposes so we

can change the bias abruptly and reach the target state. The displacement of the

trap d may be compared with the oscillator characteristic length a0 =
√

~/mΩ0.

Their ratio is

R =
d

a0
=
γ0
2α

√
mΩ0

~
. (6.32)

For the Paul trap R ≈ 0.00065, which explains the high fidelity of the sudden

approach for a moderate bias inversion of the ion. At these bias values there is

really no need to apply a more sophisticated protocol than the sudden switch.

Henceforth, we assume a much larger γ0, but still satisfying the condition (6.19).

In particular, for an initial bias of 1000 Ω0~ (corresponding to γ0 = 86.4 zN), the

ratio becomes R ≈ 0.65. The maximum variation of the difference between the

trajectories of the minima is 3 pm, about three orders of magnitude less than the

displacement of each minimum (9.2 nm), so the minima follow parallel trajectories.

Furthermore, the maximum variation of the frequencies in Eq. (6.24) with respect

to Ω0 = 2π×5.6 MHz is 2π×3.7 kHz, so the effective frequency is nearly constant.

Figure 6.3 demonstrates the effect of the compensating-force approach. Start-

ing from the ground state of the lower (left) well, the final evolved state following
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Figure 6.3: Left: Ground state of the left well at t = 0 (long-dashed magenta
line) and at t = tf (magenta triangles), and final state with the compensating
force applied on the double well (solid blue line). Right: Ground state of the
right well: at t = 0 (short-dashed red line) and at t = tf (red dots) and final
state with the compensating force applied (solid black line). tf = 4 ns and other

parameters as in Fig. 6.2 for 9Be+.

the shortcut with compensation stays as the “ground state” of the left well. This

is actually defined as the lowest state of the double-well system predominantly

located on the left. There is a similar process for the right well. The final states

represented are obtained by solving the Schrödinger equation with the full Hamil-

tonian (6.26).

Figure 6.4 is for the process in the left well. It compares the fidelity at final

time and the excitation energy, defined as Eex = E(tf) − E0(tf ) where E(tf ) is

the final energy after the quantum evolution following the shortcut and E0(tf ) is

the ground state final energy of the upper harmonic well, using the polynomial

(6.30) for γ with and without compensation, as well as the results of the FAQUAD

approach. The fidelity without compensation tends to the fidelity of the sudden

approach (0.89) for very short final times. The method with compensation clearly

outperforms the others. In principle, a fundamental limitation of the approach is

due to the fact that the inequality (6.19), which guarantees parallel motion and

stable frequencies of the wells, should as well be satisfied by γeff , but, at very short

times, the dominant term of γeff ∼ −mγ̈/4α may be too large. To estimate this

short time limit we combine the mean-value theorem inequality for the maximum

[42], |γ̈|max > 4γ0/t
2
f , with Eq. (6.19) for γeff to find the condition

tf ≫
(
3mγ0

4
√
2

√
− β

α5

)1/2

. (6.33)

The factor on the right-hand side is 10−9 s for this example (see Fig. 6.4), which
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Figure 6.4: (a) Fidelity |〈φL(tf )|ψ(tf )〉|, where |φL(tf )〉 is the lowest state
located in the left well in the final time configuration, and |ψ(tf )〉 is the evolved
state following the shortcut at final time. (b) Final excitation energy for the
process on the left well using compensating-force (blue dots), fifth degree poly-
nomial in Eq. (6.30) (solid black line), and FAQUAD (short-dashed red line).

The parameters are for 9Be+ as in Fig. 6.2.

is several orders of magnitude smaller than 2π/Ω0 and does not affect the fidelity

in the scale of times shown.

6.4.2 Neutral atoms

The potential introduced in Chapter 4 (Sec. 4.4),

Vna(x, t) =
1

2
mω2x2 + V0 cos

2

[
π(x−∆x)

dl

]
, (6.34)

forms also a double well. It was implemented in [35] with optical dipole potentials,

combining a harmonic confinement due to a crossed beam dipole trap with a

periodic light shift potential provided by the interference pattern of two mutually

coherent laser beams. ω is the angular frequency of the dipole trap about the waist

position, V0 the amplitude, ∆x the displacement of the optical lattice relative to

the center of the harmonic well, and dl is the lattice constant. (Double wells
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with a controllable bias may be also realized by two optical lattices of different

periodicity with controllable intensities and relative phase [82]). Here, the bias

inversion implies a change of sign of ∆x(t) from ∆x0 > 0 to −∆x0.

To check if the conditions to apply the compensating force approach hold here

as well, an analysis similar to the one in the previous example is now performed.

We approximate the potential around each minimum, V (±), up to fourth order.

From ∂V (±)

∂x
= 0 we get a cubic equation for each minimum. The positions of the

minima are thus given by

x0,± = −2
√
Q cos

(
θ(±) − 2π

3

)
− A(±)

3
, (6.35)

where

Q =
2d2l π

2V0 + d4lmω
2

4π4V0
,

A(±) = −3

2
(2∆x± dl),

θ(±) = cos

[−3dl(2∆x± dl)mπ
2
√
V0ω

2

2(2π2V0 + d2lmω
2)3/2

]−1

. (6.36)

Up to a second order in ∆x,

x0,± ≈ ±a + b∆x± c∆x2, (6.37)

where the coefficients are known explicitly but too lengthy to be displayed here.

Whenever the quadratic term is negligible with respect to the linear term (c∆x2 ≪
b∆x), we can approximate x0,± = ±a + b∆x (parallel motion). The distance

between the minima is given by

D =
1

3

{
A(−) −A(+) + 6

√
Q

[
− cos

(
π + θ(−)

3

)

+ cos

(
π + θ(+)

3

)]}
≈ 2a+ 2c∆x2. (6.38)

Moreover, ω0,± ≈ f ∓ g∆x, again with known but lengthy coefficients g and f . As

long as g∆x≪ f , we may set ω0,± ≈ Ω0 ≡ f .

For realistic parameters the conditions for parallel transport of the minima and

constant frequency are indeed satisfied. We consider a 87Rb atom in the trap

and set the parameters in Chapter 4 after the demultiplexing process, namely,
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dl = 5.18 µm, ω = 2π × 59.4 Hz, and V0/h = 1.4 kHz; the time-dependent

displacement ∆x = ∆x(t) is the control parameter to perform the bias inversion,

such that

∆x(0) = ∆x0,

∆x(tf ) = −∆x0, (6.39)

with ∆x0 = 200 nm. We also impose

∆̇x(0) = 0,

∆̈x(0) = 0,

∆̇x(tf ) = 0,

∆̈x(tf ) = 0 (6.40)

to achieve similar conditions in the derivatives of the minima x0. At intermediate

times, we interpolate the function as ∆x(t) =
∑5

n=0 dnt
n, where the coefficients

are found by solving Eqs. (6.39) and (6.40). Consequently, the connection between

the initial and final Hamiltonians is given by the same polynomial in Eq. (6.30)

changing γ(t) → ∆x(t). The double wells are much deeper and tight for trapped

ions than for neutral atoms; compare an intrawell angular frequency Ω0 of 2π×5.6

MHz for the ions versus 2π × 0.35 kHz for the optical trap. Therefore, in this

case, for a moderate initial bias compared to the vibrational quanta, the ratio

between the displacement of the trap d and the oscillator characteristic length a0

is R ≈ 0.67.

With the parameters given at time t = 0, the separation of the minima is

D = 5 µm, the bias between minima δ = 2.02× 10−32 J, and the effective angular

frequency Ω0 = 2π× 0.35 kHz, whereas the maximum variation of the frequencies

along the process is approximately 2π × 0.2 Hz. Furthermore, the maximum

deviation from D of the minima separation is 1.8 nm, whereas the displacement

of each minimum is about 0.4 µm. In summary, the minima do move in parallel

with constant, equal frequencies for practical purposes.

To accelerate the bias inversion we add the compensating term to V in Eq.

(6.34),

H =
p2

2m
+

1

2
mω2x2 + V0 cos

2

[
π(x−∆x)

dl

]
−mxẍ0. (6.41)
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Figure 6.5: Evolution of the wave function densities following the shortcut
in Eq. (6.41) for states in left and right wells. The parameters are for 87Rb:
dl = 5.18 µm, ω = 59.4 × 2π Hz, V0/h = 1.4 kHz, ∆x0 = 200 nm, and tf = 63

µs.

Figure 6.5 shows the evolution of the densities. Focusing on the left well, Fig.

6.6(a) demonstrates that the fidelity is exactly one (blue dots) with the compen-

sating force. However, using for the inversion the fifth degree polynomial in Eq.

(6.30) [with the change γ(t) → ∆x(t)] without compensation, the fidelity at short

final times decreases until the value of the sudden approach, 0.9. Furthermore, the

excitation (residual) energy Eex is approximately zero for the shortcut protocol,

compared to the excitation without compensation in Fig. 6.6(b).

6.5 Discussion

We have proposed a method to invert the bias of a double-well potential, in the

regime of independent wells, to keep the final states motionally unexcited within

the same original well. The method treats the bias inversion as a rigid transport of

the wells, which is justified for realistic parameters, and applies a “compensating-

force” to cancel the excitations. Examples have been worked out for ions or neutral

atoms, and comparisons have been provided with a sudden approach, a FAQUAD

approach, or a smooth polynomial connection of initial and final bias without

compensation. The compensating-force method clearly outperforms the others and

gives perfect fidelities under ideal conditions, up to very small times compared,

e.g., with the time 2π/Ω0 (one oscillation period) where FAQUAD provides a first

zero of the excitation energy. The feasibility of the approach may be analyzed in

the light of current technology in the two systems examined:
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Figure 6.6: (a) Fidelity |〈ϕ1(tf )|ψ(tf )〉|, where |ϕ1(tf )〉 is the lowest state
predominantly of the left well at final time (the first excited state of the double
well) and |ψ(tf )〉 is the evolved state following the shortcut at final time. (b)
Final excitation energy. Compensating-force approach (blue dots), fith degree
polynomial in Eq. (6.30) with the change γ(t) → ∆x(t) without compensation
(solid black line), and FAQUAD approach (short-dashed red line). The param-
eters are chosen for 87Rb: dl = 5.18 µm, ω = 59.4 × 2π Hz, V0/h = 1.4 kHz,

and ∆x0 = 200 nm.

1. For trapped ions we have considered initial and final values differing by

∆γ ≈ 200 zN, whereas resolutions of 15 zN of have been reported [130]. As

for the timing, much effort is being put into achieving suboscillation-period

resolutions for the potential update [131–133] in ion transport experiments.

The possibility to switch on and off potentials in a few nanoseconds, much

faster than the ion oscillation period, has been demonstrated [133]. The

designed bias inversion is thus in reach with current technology.

2. For neutral atoms, the minimal process times tf are not limited by the

method per se but by the technical capabilities to implement the maximal

compensating force. This force depends on the maximal acceleration of the

well, whose lower bound is known to be amax = 2d/t2f [42]. To implement

the compensation with a magnetic field gradient G, the gradient should

be of the order of G ≃ mamax/µB in an amount of time tf (µB is Bohr’s
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magneton). For rubidium atoms polarized in the magnetic level F = mF = 2

and the transport parameters considered above, this requires a magnetic field

gradient on the order of 40 T/m shaped on a time interval tf = 63 µs. This

is definitely challenging from an experimental point of view. Alternatively,

one can use the dipole force of an out of axis Gaussian laser beam. If the

double well is placed on the edge at a distance of w/2 where w is the waist

and if αp denotes the polarizability, the local potential slope experienced by

the atoms is on the order of αpP/w
3, where P is the power of the beam.

The compensation requires that P/w3 = m/αp. For instance, with an out-

of-resonance beam at a wavelength of 1 µm, the polarizability of rubidium-87

atoms is αp ≃ 1.3×10−36 m2s, and the compensation can be performed using

a 1W laser with a waist of 20 µm. As for the timing, a submicrosecond time

scale for shaping the offset potential is perfectly achievable using a control

of the intensity based on acousto-optics modulators.

A relevant feature of the proposed approach is that the reference process used to

design the corresponding compensation (we have used a polynomial for simplicity)

may be chosen among a broad family of functions satisfying Eqs. (6.28) and (6.29).

As in other STA approaches, this flexibility may be used to enhance robustness

versus noise and perturbations [68, 134, 135].

The bias inversion put forward here and the multiplexing and demultiplexing

protocols developed in [74], see Chapter 4, provide the necessary toolkit to perform

vibrational state inversions [104, 105], or Fock state preparations [74]. Applications

in optical waveguide design are also feasible [41]. As well, the fast bias inversion

is directly applicable to Bose-Einstein condensates [63, 136]. Generalizations for

conditions in which rigid transport does not hold are also possible using invariant

theory [42], which allows for finding processes without final excitation where both

the frequency and position of the well depend on time [137].





Conclusions

In this Thesis a set of Shortcuts-to-Adiabaticity (STA) techniques have been

developed and applied to speed up adiabatic processes in systems confines by

double-well potentials. The main results can be summarized as follows:

• Engineering fast and stable splitting of matter waves

– Wave-packet splitting is very unstable with respect to slight trap asym-

metries. The adiabatic following produces the collapse of the wave into

the lower well. We used the fast-forward (FF) approach to accelerate

and stabilize the separation.

– We also introduced a simple moving two-mode model, which combined

with sudden and adiabatic approximations provides a stability criterion.

This model has also played an important role in the rest of the Thesis.

– Furthermore, we applied the shortcut to speed up the splitting of a

condensate in the mean-field regime.

• Shortcuts to adiabaticity in three-level systems using Lie trans-

forms

– The shortcuts based on the counterdiabatic approach are, in most cases,

difficult to implement in the laboratory, so we developed alternative, re-

alizable protocols making use of the dynamical symmetry of the Hamil-

tonian.

– The new approaches have been designed by means of a Lie transform.

Although the transformations are formally equivalent to interaction-

picture (IP) transformations, the resulting IP Hamiltonian and state

represent a different physical process from the original one.
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– Mott-insulator transitions and beam splitter implementations have been

stabilized and accelerated thanks to the new, Lie-based STA.

• Fast quasi-adiabatic dynamics

– General properties of a “fast-quasi-adiabatic” (FAQUAD) method based

on using the time dependence of a control parameter to delocalize in

time the transition probability among adiabatic levels have been found.

– The approach has been applied to different systems where other ap-

proaches are not available. In particular, in a two-site boson system

and in a many-particle system.

– Another important result is the discovery that FAQUAD is optimal

within the sequence of iterative superadiabatic frames.

• Vibrational mode multiplexing of ultracold atoms

– Processes to achieve fast vibrational-state multiplexing or demultiplex-

ing have been designed. The invariant-based inverse engineering pro-

tocol has been applied in a two-mode model and then mapped onto a

realistic potential.

– While protocols calculated with an Optimal Control Theory (OCT)

algorithm are quite difficult to implement experimentally, our proposal

relies on a smooth potential deformation.

• Compact and high conversion efficiency mode-sorting asymmetric

Y junction using shortcuts to adiabaticity

– The power of the approach used to reproduce fast multiplexing and de-

multiplexing processes is demonstrated in the context of optical waveg-

uides. Specifically, a short mode-sorting asymmetric Y junction has

been worked out.

• Fast bias inversion of a double well without residual particle exci-

tation

– The compensating-force method has been applied to realize a fast bias

inversion, both for trapped ions and for neutral atoms.
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– The combination of the bias inversion and multiplexing/demultiplex-

ing processes can be used to induce vibrational state inversions based

on trap deformations only. The possibility of achieving a population

inversion without using internal-state excitations is of much interest.

In particular, for trapped ions this amounts to a species-independent

approach based entirely on the charge and electric forces.

– The implementation of a fast and stable bias inversion could be useful

also to produce vibrationally excited Fock states from an initial ground

state.





Appendix

101





Appendix A

Interaction versus asymmetry for

adiabatic following

Making some simplifying assumptions, we find the conditions under which the

interacting condensate ground state splits adiabatically, instead of collapsing into

the deepest well. We consider complete splitting of the trap into separated wells

and also δ(tf) ≪ λ, so that the noninteracting wave would collapse (see Sec. 1.4).

In atomic interferometry, the two split branches of the condensate have to be

individually addressed and manipulated during the differential phase accumulation

stage, so that tunnelling must be negligible [12, 16, 138]. We also assume that

the two ground states of the final wells can be approximated by ground states of

harmonic oscillators at ±xf , with the right one lifted by λ:

VL =
1

2
mω2(x+ xf )

2, (A.1)

VR =
1

2
mω2(x− xf)

2 + λ. (A.2)

The total energy is approximated as Etot = EL + ER. For j = L,R,

Ej = Nj

∫
dxφj

[
−~

2∂2x
2m

+ Vj

]
φj +

1

2
g1N

2
j

∫
dx|φj|4, (A.3)

where

φj(x) =
1

[
√
πa0]1/2

e[−(x±xf )
2/2a20], (A.4)
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Figure A.1: Structural fidelities for the Bose-Einstein condensate. From left
to right, ĝ1N = 0, 0.138, 0.55, 0.69, and 1.38. In all curves xf = 4 µm and

ω = 780 rad/s. Equation (1.23) was used to design the potential VFF .

and the total number of particles is N = NR +NL. The result is

EL = NL
~ω

2
+

ĝ1

2
√
2π

~ωN2
L, (A.5)

ER = NR

(
~ω

2
+ λ

)
+

ĝ1

2
√
2π

~ωN2
R, (A.6)

where

ĝ1 = g1/(~ωa0). (A.7)

From the minimum-energy condition, ∂Etot/∂NR = 0, it follows that

∆N

N
=

√
2π
λ/~ω

ĝ1N
, (A.8)

with ∆N = NL − NR. (See [21] for a similar treatment in the Thomas-Fermi

regime.) Thus, collapse into one well is avoided when λ/(~ωĝ1N) ≪ 1. This

relation sets the scale for the uncontrolled and, possibly, unknown asymmetry that

may be tolerated to achieve balanced splitting. Adiabatic control of population

imbalance requires control of the energy splitting of the order λ . (~ωĝ1N).

Figure A.1 shows the structural fidelity FS(λ) for several values of ĝ1N . The

sharp drop at ĝ1N = 0 is substituted by more and more stable curves as ĝ1N

increases. For the splitting described in [34] and [35] using 87Rb, we get ĝ1N ≈ 9.5,

quite large compared to the values in Fig. A.1. Under these conditions, adiabatic

splitting is very stable with respect to minor asymmetries. Moreover, FS decays

slowly with respect to λ, so that the relative population imbalance may be prepared

at will by controlling the asymmetry. In [34] and [35] the asymmetry is due to a



Appendix A. Interaction versus asymmetry for adiabatic following 105

potential shift that can be controlled with a standard deviation of 100 nm, whereas

a displacement of ∼ 1µm is required for the total collapse into one of the wells.





Appendix B

Lie algebra

The algebra of this three-level system is a four-dimensional Lie Algebra U3S3

according to the classification of four-dimensional Lie algebras in [54]. (For com-

parison with that work it is useful to rewrite the generators in the skew-Hermitian

base G̃k = −iGk, k = 1, 2, 3, 4.) U3S3 is a direct sum of the one-dimensional

algebra spanned by the invariant G4−G3, that commutes with all members of the

algebra, and a three-dimensional SU(2) algebra spanned by {G1, G2, G3}. Notice

that this realization of the three-dimensional (3D) algebra is not spanned by the

matrices

Jx =
1√
2




0 1 0

1 0 1

0 1 0


 , Jy =

1√
2




0 −i 0

i 0 −i
0 i 0


 , Jz =




1 0 0

0 0 0

0 0 −1


 , (B.1)

which correspond, in the subspace |2, 0〉, |1, 1〉, |0, 2〉, to the operators

Jx =
1

2

(
a†1a2 + a†2a1

)
, (B.2)

Jy =
1

2i

(
a†1a2 − a†2a1

)
, (B.3)

Jz =
1

2

(
a†1a1 − a†2a2

)
. (B.4)

In particular we cannot get the matrices for Jy or Jz by any linear combination of

our Gk matrices [see Eqs. (2.3-2.4)]. A second-quantized form for theGk consistent
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with the matrices includes quartic terms in annihilation and creation operators:

G1 =
1

4

(
a†1a2 + a†2a1

)
,

G2 =
1

4i

[
a†1a

†
2 (a1a1 + a2a2)−

(
a†1a

†
1 + a†2a

†
2

)
a1a2

]
,

G3 =
1

8

[(
a†1a

†
1 + a†2a

†
2

)
a1a1 − 4a†1a

†
2a1a2 +

(
a†1a

†
1 + a†2a

†
2

)
a2a2

]
,

G4 =
1

4

(
a†1a1 − a†2a2

)2
. (B.5)

These second-quantized operators do not form a closed algebra under commuta-

tion, but their matrix elements for two particles do.

An invariant (defined in a Lie-algebraic sense) commutes with any member of

the algebra. There are generically two independent invariants for U3S3 [139]. For

the matrix representation in Eqs. (2.3) and (2.4) they are

I1 = G2
1 = G2

2 = G2
3 =

1

8




1 0 1

0 2 0

1 0 1


 ,

I2 = G4 −G3 =
1

4




3 0 −1

0 2 0

−1 0 3


 . (B.6)

I1, which is not in the algebra, has eigenvalues

λ
(2)
1 = 1,

λ
(1,3)
1 =

1

2
, (B.7)

and I2, a member of the algebra, has eigenvalues

λ
(2)
2 = 0,

λ
(1,3)
2 =

1

4
. (B.8)
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The two invariants have the same eigenvectors,

|u(1)〉 =
1√
2
(|2, 0〉+ |0, 2〉),

|u(2)〉 =
1√
2
(|2, 0〉 − |0, 2〉),

|u(3)〉 = |1, 1〉, (B.9)

with |u(1)〉 and |u(3)〉 spanning a degenerate subspace.

Lie-algebraic invariants constructed with time-independent coefficients satisfy

as well the equation

i~
∂I1,2
∂t

+ [H(t), I1,2] = 0 (B.10)

so they are also dynamical invariants [6] [i.e., operators that satisfy Eq. (B.10)

whose expectation values remain constant]. The degenerate subspace of eigen-

vectors allows the existence of time-dependent eigenstates of time-independent

invariants. In particular, in all the examples in the main text, the dynamics takes

place within the degenerate subspace: the initial state is |u(3)〉 at t = 0 and ends

up in some combination of |u(1)〉 and |u(3)〉 at tf . The specific state as a function

of time is known explicitly, |ψI(t)〉 = eiα(t)G4e−i
∫ t
0 E1dt′ |φ1(t)〉; see Eq. (2.23). Note

that |φ1〉 and |φ3〉 in Eqs. (2.11) and (2.13) are two orthogonal combinations of

|u(1)〉 and |u(3)〉. Also |u(2)〉 = |φ2〉; see Eq. (2.12). In the nondegenerate subspace

spanned by |u(2)〉 “nothing evolves”, other than a phase factor, but the initial

states in the examples do not overlap with it.
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[75] S. Guérin, S. Thomas, and H. R. Jauslin, “Optimization of population

transfer by adiabatic passage,” Phys. Rev. A 65, 023409 (2002).
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[88] B. T. Seaman, M. Krämer, D. Z. Anderson, and M. J. Holland,

“Atomtronics: Ultracold-atom analogs of electronic devices,” Phys. Rev. A

75, 023615 (2007).

[89] A. Ruschhaupt and J. G. Muga, “Atom diode: A laser device for a

unidirectional transmission of ground-state atoms,” Phys. Rev. A 70,

061604 (R) (2004).

[90] M. G. Raizen, A. M. Dudarev, Q. Niu, and N. J. Fisch, “Compression of

Atomic Phase Space Using an Asymmetric One-Way Barrier,” Phys. Rev.

Lett. 94, 053003 (2005).

[91] J. Reichel and V. Vuletic, Atom Chips. John Wiley & Sons, Weinheim,

2011.

http://dx.doi.org/10.1103/PhysRevA.89.033403
http://dx.doi.org/10.1038/nature06011
http://dx.doi.org/10.1038/nature06112
http://dx.doi.org/10.1103/PhysRevA.89.053408
http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1103/PhysRevA.82.063623
http://dx.doi.org/10.1103/PhysRevA.87.043402
http://dx.doi.org/10.1103/PhysRevA.75.023615
http://dx.doi.org/10.1103/PhysRevA.70.061604
http://dx.doi.org/10.1103/PhysRevLett.94.053003


[92] G. L. Gattobigio, A. Couvert, G. Reinaudi, B. Georgeot, and
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