
Grade in Informatics Engineering
Computer Science

Bachelor Thesis

Analysis of facial expressions in children:
Experiments based on the DB Child Affective

Facial Expression (CAFE)

Author
Leire Roa Barco

2016

Contents

Contents iii

List of Figures vii

List of Tables ix

1 Introduction 1

2 Theoretical Neural Networks 3

2.1 Perceptrons . 3

2.2 Sigmoid neurons . 4

2.2.1 Tanh function . 5

2.2.2 Rectifier . 6

2.2.3 Radial Basis Function . 6

2.3 Architecture of Neural Networks . 7

2.3.1 Feedfordward Neural Networks 7

2.3.2 Other architecures of Neural Networks 8

2.4 Training of Feedfordward Neural Networks 9

2.4.1 Cost Function . 9

2.4.2 Backpropagation . 10

2.4.3 Other training algorithms . 11

2.4.4 Random Initialization . 12

iii

CONTENTS

3 Convolutional Neural Networks 13

3.1 Max Pooling . 14

3.2 Structure . 14

3.3 Feature Extractor . 18

3.4 General Description of MatConvNet . 19

3.4.1 Building Blocks . 19

3.4.2 Wrappers . 20

3.5 PreTrained Models . 20

4 Facial Expression Recognition 21

4.1 Action Units and Emotions . 22

4.2 Posed Facial Displays vs. Spontaneous Facial Displays 24

4.3 Facial Expression Configuration and Dynamics 24

4.4 Facial Expression Intensity . 25

4.5 Facial Expression Intentionality . 25

4.6 Context Dependency . 25

4.7 Databases . 26

4.8 Face Detection and Feature Extraction 27

4.9 Geometric Facial Feature Extraction and Facial Point Detection 28

4.10 Appearance-based Facial Features . 29

4.11 Appearance-based Facial Affect Recognition 30

4.12 Facial Muscle Action Detection . 30

4.13 Feature-based Methods for Coding AUs and their Temporal Segments . . 31

4.14 Appearance-based Methods for AU Coding 32

4.15 Automatic Detection of Pain . 33

4.16 Challenges, Opportunities and Recommendations 33

iv

5 DB for the project 35

5.1 Motivation . 35

5.2 Paperwork . 35

5.3 Structure and content . 35

5.4 Connection of the Database with Matlab 37

5.5 Check DB and prepare it for experiments 41

6 Experiments 45

6.1 Introduction . 45

6.2 Preprocess of Data . 45

6.3 Experimentation . 46

6.4 Results and Analysis . 46

6.4.1 Full dataset . 46

6.4.2 Open and close mouth dataset 48

6.5 Conclusions . 49

Appendixes

A Planification 53

A.1 Description of the concrete objectives of the project 53

A.1.1 Characterization of the product to develop 53

A.1.2 Characterization of the environment in which will be distributed . 53

A.1.3 License of the product . 54

A.2 Identification of the deliverables and its characteristics 54

A.2.1 Related to the object of the project itself 54

A.2.2 Related to the management of the project 54

A.3 WBS (Work Breakdown Structure . 55

v

CONTENTS

A.4 Quality . 55

A.4.1 Minimum Quality . 55

A.4.2 Process to secure the quality . 56

A.5 Study of analysis of the different databases and developing environment
to be used . 56

A.6 Description of the tasks to be done . 56

A.7 Milestones diagram . 57

A.8 Management of changes . 58

A.9 Identification of risks . 58

A.10 Mitigation of risks . 58

A.11 Viability . 59

A.12 Estimation of time . 59

B Matlab Files 61

B.1 Check Database .m file . 61

B.2 Check All Images .m file . 66

B.3 Crop images .m file . 69

B.4 Save features . 74

Bibliography 79

vi

List of Figures

2.1 Perceptron . 4

2.2 Sigmoid Neurons . 5

2.3 Logistic Function from [Wikimedia Commons, 2008] 5

2.4 Tanh function from [apiexamples.com, 2015] 6

2.5 Neural Network model . 7

2.6 Feedforward NN with backpropagation [Buranajun et al., 2007] 10

3.1 Maximum pooling from [Wikimedia Commons, 2015] 14

3.2 Usual structure of a CNN [LeCun and Yann, 1998] 15

3.3 Example of convolution in a photo [Raj, 2016] 16

3.4 Example of CNN [Vedaldi, 2015] . 18

4.1 Examples of FACs code for fear) . 23

4.2 Examples of facial action units (AUs) 23

5.1 MySQL Database . 38

5.2 App->DatabaseExplorer . 38

5.3 Database Explorer menu . 38

5.4 System DNS . 39

5.5 Database Explorer menu . 39

vii

LIST OF FIGURES

5.6 Database in Matlab . 40

5.7 Image outliers . 42

viii

List of Tables

6.2 Human classification general results . 46

6.3 Machine Classification general results 46

6.5 Each emotion results humans and machine classification 47

6.6 Machine Classification Subset mouth opened general results 48

6.8 Subset mouth opened each emotion results classified by humans and ma-
chine . 48

6.9 Subset mouth closed general results in machine classification 49

6.11 Subset mouth closed each emotion results in human and machine classi-
fication . 49

A.2 Total hours of the project . 60

ix

1. CHAPTER

Introduction

Humans can recognize facial expressions and trough them can deduce emotions. However
there are some human beings, like autistic persons, who can not deduce well emotions by
reading the human facial expressions. The aim of this paper is to use the computer as a
tool which can recognize the facial expresions of children between 4 and 8 years old and
deduce their emotions. It could be used in the future as a way to improve the emotional
intelligence of autistic children and persons with similar difficulties. Computer vision re-
searchers, who work in facial expression recognition, use machine learning systems for
taking large sets of appearance-features as input, and train the computer program on a
large database of examples.
In order to make it, we are going tu use Convolutional Neural Networks, but what are
CNN or ConvNet? To understand this, first we need to understand the (Artificial) Neural
Networks (ANNs). Neural networks are multi-class classifiers that are inspired by the bi-
ological neural networks (the central nervous systems of animals, in particular the brain).
This classifiers are repressented as systems of interconneceted "neurons" which exchange
messages between each other, as seen in Chapter 2. Usually to function they require huge
amounts of training data, they are computationally intensive to train and many times it
is hard to optimise. CNNs are really similar to this ones, they are also biological neural
networks, but in this case they use other kind of units as "neurons" called perceptrons
so that the use the minimal amounts of preprocessing, and are a type of neural networks
called Feed Fordward Neural Network. They have an implementation in Matlab called
Neural Network Toolbox [Demuth and Beale, 1993], but there is also another toolbox
which is not the official one of Matlab and it is open source, it is called MatConvNet

1

2 Introduction

[Vedaldi and Lenc, 2015], and due to any of these implementations, Matlab can obtain
the features of an image. Check Chapter 3 for more details.

As mentioned previously each one of the images has some features, and there are different
ways of detecting them, as we can see in the Chapter 4 where we can read about the state
of the art of the facial expression recognition. Nevertheless, in order to do any kind of
experiment, it is necessary to work with a database, and in our case we used a database
of children [LoBue, 2014], that needed some preprocessing before being able to use as it
is shown in Chapter 5. Finally, all the done experiments and the conclusions of them are
shown in the chapter 6.

2. CHAPTER

Theoretical Neural Networks

A neural network is a classifier that has inputs and output; it is a classifier made by con-
nected neurons in which every neuron calculates when it has to go on or go off depending
on the threshold, and as well as with the classifiers, neural networks are trained too, and
it is inspired by biological neural networks

2.1 Perceptrons

The "neurons" that compose any Neural Network can be of different kinds, and one of
the most basic ones are the perceptrons. This "neurons" were developed in the 1950s and
1960s by the scientis Frank Rosenblatt based on the work by Warren McCulloch and
Walter Pitts.

Perceptrons can be understood in two different ways: as a neuron or as a classifier. If we
understand the perceptron as a classifier, it is a type of linear classifier that takes several
binary inputs x1, x2, . . ., and produces a single binary output.

These elements have to one or more inputs x1, x2, . . ., xn, where each of the inputs have
a weight w1, w2, . . ., wn, and these weights are used to determine the output of the "neu-
ron" which is a single binary value. If a perceptron has an output but it has not inputs
the perceptron would simply output a fixed value, not the desired value. So, it is better
to interpret the input perceptrons not as perceptrons themselves, but as units defined to

3

4 Theoretical Neural Networks

Figure 2.1: Perceptron

output the desired values. The perceptron which can be understand as an algorithm for
learning a binary classifier whose function can be defined as follows:

f(x) =

1 if w ·x+b > 0

0 otherwise

Where w is the vector of the weights, x is the input real value vector and w · x is the dot
product ∑

n
i=0 wixi being n the number of inputs and b the bias. This bias shifts the decision

boundary away from the origin and does not depend on any input value. This function
basically describes an hyperplane that separates the two regions we want to classify.

One problem with the perceptrons is that the perceptron learning algorithm does not de-
terminate if the learning set is linearly separable, and because of this if the vectors are
not linearly separable it will never reach a point where all the elements are classified.
An example of this problem is the Boolean exclusive-or problem (XOR). However, ac-
cording to Rosenblatt’s theory, a Perceptron can also be understand as a neural network
of perceptron (a multi-layer perceptron which will be explained later) and the perceptron
algorithm is interpreted as a single-layer perceptron (which is the simplest feedfordward
neural network). This concept of multilayer network perceptron (MLP) is able to imple-
ment all the logic arithmetic operators such as AND, OR, XAND. among others, that can
lead to sophisticated decision making.

2.2 Sigmoid neurons

If we make a small change in the inputs of the perceptrons understanding them as func-
tions, the output might be highly affected by this. The sigmoid neurons, also known as
sigmoid functions, are the solution to this: They are a really similar classification func-
tion, but instead they can handle small changes in the input without the whole network

2.2 Sigmoid neurons 5

getting strongly affected.

Figure 2.2: Sigmoid Neurons

The sigmoid function as the perceptron function has as an input a vector x where each
of the values of the vector has its own weight of w1, w2, . . ., wn. However, unless in the
perceptron, the output is not a 0 or a 1, it is defined by a function called sigmoid function
δ (also called sigmoid activation function) defined by:

δ (z) = 1
1+e−z (2.1)

It is an S shape (sigmoid curve) function where the input z is w z = w · x + b, being w the
weight vector and x the input binary vector.

Figure 2.3: Logistic Function from [Wikimedia Commons, 2008]

As seen in the figure above, it has horizontal asymptotes in z→ ∞ that the value is 1 and
in z→−∞. So, when the value of z is negative and small, the sigmoid function is close to
the perceptron fucntion. In the other cases the functions are really different.

2.2.1 Tanh function

Another similar function to the sigmoid function is the tanh function (also called hyper-
boic funcition), which is nothing more than a rescaled version of the sigmoid function,
whose range is [-1,1] instead of [0,1]. Usually it converges faster inside a neural network
because of the derivative.

6 Theoretical Neural Networks

Figure 2.4: Tanh function from [apiexamples.com, 2015]

2.2.2 Rectifier

There is also a activation function close to the previously metioned ones called rectifier
which is defined as

f(x) = max(0,x) (2.2)

where x is the input to a neuron. This is the most used activation function for deep neural
networks and the units that use this method are called rectified liner units (ReLUs).

2.2.3 Radial Basis Function

A Radial Basis Function (RBF) φ (x) is a function with respect to the origin or to a certain
point (φ (x)=φ (‖ x ‖) and φ (x)=φ (‖ x− c ‖) respectively), where the usual norm is the
Euclidean norm, but it can be a different one. There are different kind of radial basis
functions where r=‖ x− xi ‖), the most common ones are:

• Gaussian function: φ (r) = e−(εr)2

• Multiquadratic function: φ (r) =
√

1+ eεr

• Inverse multiquadratic: φ (r) = 1√
1+eεr

However, it is mostly used in the form of

y(x) =
m

∑
i=1

wiφ(‖ x− xi ‖)hwere

where the function y(x) is the sum of N radial functions, each one with a differenct center
xi and weighted by an coeffient wi [Theodoridis and Koutroumbas, 2008].

2.3 Architecture of Neural Networks 7

2.3 Architecture of Neural Networks

2.3.1 Feedfordward Neural Networks

Feedfordward Neural Networks are acyclic graphs usually composed at least of 3 layers:
The input layer, the hidden layer and the output layer.

Figure 2.5: Neural Network model

If there are more than 3 layers in a Neural Network, all these extra layers are hidden layers.
Every layer is composed by units x1,x2..., and all the layers except the output layer also
have a bias units, that is the intercept term and it is usually represented with a "+1".

For example in the layer in the image we have a Neural Network composed of 3 layers,
and two of them the first and second layer are composed by 3 input units and a bias unit.
These bias units do not have any input connection to them, because they always output
the value "+1". So that, we have a neural network (Θ)=(Θ0, Θ1, Θ2). The representation
of this neural network is as follows:

a(j)
i = "activation" of unit i in layer j (a0 represents the bias unit).

Θ(j) = matrix of weights controlling function mapping from layer j to layer j+1.

g(x) = logistic activation function.

a(2)1 = g(Θ(1)
10 x0 +Θ

(1)
11 x1 +Θ

(1)
12 x2 +Θ

(1)
13 x3)

a(2)2 = g(Θ(1)
20 x0 +Θ

(1)
21 x1 +Θ

(1)
22 x2 +Θ

(1)
23 x3)

a(2)3 = g(Θ(1)
30 x0 +Θ

(1)
31 x1 +Θ

(1)
32 x2 +Θ

(1)
33 x3)

hΘ(x) = a3
1 = g(Θ(2)

10 a(2)0 +Θ
(2)
11 a(2)1 +Θ

(2)
12 a(2)2 +Θ

(2)
13 a(2)3)

8 Theoretical Neural Networks

If we want to put it in a more compact way, it can be expressed in a vectorized way:

z2 = Θ
(1)x z2 = Θ

(1)a(1)

a2 = g(z(2)) a(2)0 = 1

z3 = Θ
(2)a(2)

hΘ(x) = a(3) = g(z(3))

This kind of Neural Networks instead of being constrained to fit the features x1,x2,x3 to
logistic regression, it has the flexibility to learn its own features a(2)1 , a(2)2 , a(2)3 to fit into
logistic regression.

Depending on which parameters it chooses for z1 it can learn some interesting features,
and therefore we can end up with a better hypothesis than if we were constrained to use the
features x1, x2, x3 or contrained to use the polinomio terms x1x2, x2x3 [Turing Finance, 2014].
1

2.3.2 Other architecures of Neural Networks

Till now we have talked about acyclic directed graphs where the output from one layer is
used as the input to the next layer. This kind of networks are called Feedforward Neural
Networks. Nevertheless, there are other kind of artificial networks that have cycles, which
are called Recurrent Neural Networks. In these models the idea is that neurons are acti-
vated for a limited time before getting deactivated. The activated neurons might stimulate
other neurons to get activated later, for a limited period of time, and this can cause even
more neurons to get activated, so we get kind of a cascade of activation of neurons. In
these models the cycle is not a problem because the neurons are affected after a period
of time, not instantaneously. There are also some kind of networks like the Radial Ba-
sissFunction (RBF) Network, which is a function that has built into it a distance criterion
with respect to a center, or Modular Neural Networks like the Associative Neural Network
(ASNN) where several small networks cooperate to solve problems, to mention some, but
we are going to focus on Convolutional Neural Networks. However, all of this kind of
Multilayer Network have one thing in common: They implement linear discriminants, but
in a space where the inputs have been mapped nonlinearly, and because of that they admit

1If the network has s j units in layer j, s j + 1 units in layer j + 1, then Θ j will be of dimension
s j+1x(s j+1).

2.4 Training of Feedfordward Neural Networks 9

pretty simple algorithms where the form of the nonlinearity can be learned from training
data.

2.4 Training of Feedfordward Neural Networks

Any multilayer Neural Network needs to be trained in order to learn the features of the
model, so that it is easier for the Network to solve the classification problem we want to
solve.

2.4.1 Cost Function

The cost function of a Neural Network is a measure of how good the Neural Network is
performing, and learning algorithms search through the solution in order to find a function
that minimizes the cost.

Having a training set (x(1),y(1)), (x(2),y(2)), . . . ,(x(n),y(n)), we define the regularized logis-
tic regression cost as follows:

J(Θ) =− 1
m
[

m

∑
i=1

y(i) loghΘ(x(i))+(1− yi) log(1−hΘ(x(i)))]+
λ

2m ∑
n

j = 1
Θ

2
j

The first term of the sum represents the cost function and the second term is the regulariza-
tion term (Note that we start the sumatory from j=1 beause we did not regularize the bias
term Θ0). If we are doing a binary classification with for example a tanh function, then we
would have y=0 or y=1, and hΘ ∈ R and there would only be one layer. Whereas, if we
have a multiclass classification, y∈Rk, and we would have k outputs units, so hΘ(x)∈Rk,
always being k ≥ 3.

The cost function for the whole Neural Network would be:

J(Θ) =− 1
m
[

m

∑
i=1

K

∑
k=1

y(i)k log(hΘ(x(i)))k +(1− y(i)k) log(1− (hΘ(x(i)))k)]+

λ

2m

L−1

∑
l=1

sl

∑
i=1

sl+1

∑
j=1

(Θ
(l)
ji)

2

As in the previous equation, the first term of the equation is the cost function itself and

10 Theoretical Neural Networks

Figure 2.6: Feedforward NN with backpropagation [Buranajun et al., 2007]

the second term is the regularization term, where we do not regularize the bias terms.
hΘ(x) ∈ Rk and hΘ(x)i = ith output.

2.4.2 Backpropagation

One of the most popular methods for training this layers is the backpropagation algo-
rithm, an algorithm based on gradient descent (a first order optimization algorithm that
minimizes functions by iteratively moving in the negative direction of the function gradi-
ent). It is a suppervised training algorithm used for training artificial network, that takes
an input and forwards it through all the layer till the last layer. Once in there it compares
the expected output with the real output and an error value is calculated for each one of the
outpus. This errors are backpropagated till the input layers, but this layers do not obtain
all the same error value, they receive a value depending on their contribution to the total
error. The idea is that once the training is done, and each time the training is done again,
the neurons will learn to recognize the features of the inputs and the intermediate layers
will organize themselves.

The algorithm of this process would be:

Training set (x(1),y(1)), . . ., (x(m),y(m))
Set ∆

(l)
i, j =0 (for all l, i, j) (used to compute ∂

∂Θ
(l)
i j

J(Θ)

for m times do
Set a(1)=x(i)

2.4 Training of Feedfordward Neural Networks 11

Perform forward propagation to compute a(l) for l = 2,3, . . . ,L
Using y(i), compute δ (L)=a(L)-y(i)

Compute δ (L−1),δ (L−2),. . .,δ (2)

Use backpropagation ∆
(l)
i j :=∆

(l)
i j +δ

(l+1)
i (a(l))T

end for
if j 6= 0 then

D(l)
i j := 1

m∆
(l)
i j + λΘ

(
i jl)

else
D(l)

i j := 1
m∆

(l)
i j

end if

In the algorithm, first of all we have a training set of m elements. Then the deltas are set
to 0 because these are going to be used as acumulators to compute the partial derivatives.
Then we loop through the whole training set, and when we are in the i=1 that means we
will be working with the sample (xi,yi). First of all we set the activations of the input layer
to equal xi, then we compute propagation to the rest of the layers till the last layer, layer L.
After that yi is used to compute the error δ (L) for the output layer (it is the hypotesis output
a(L) - what the target label was). Then, with backpropagation we are going to calculate
δ (L−1), δ (L−2), ..., δ 2 (There is no δ 1 because we do not associate the error term with the
input layer). Finally we use the delta terms to accumulate the derivative terms. At the end
we compute Di, j, where if j=0 it means that that is a bias term. And, that is the partial
derivative of the cost function to each of the parameters, and that can be used in gradient
descent or other optimization algorithms.

Depending on how it is implemented we might end up calculating δ also.2 To solve it, we
can use gradient checking and implement d

dθ
J(θ)≈ J(θ+ε)−J(θ−ε)

2ε
[Yu et al., 2015]

[Huang et al., 2015][Zhous et al.,].

2.4.3 Other training algorithms

The most popular and most used algorithm is the backpropagation algorithm, however,
there are also other training algorithms, which, unless the backpropagation algorithm, are
useful to optimize both, the architecture and weights of neural networks.

One of them is the Particle Swarm Optimization (PSO), where we construct a population

2There is no δ (1) because the first layer corresponds to the input layer and that is just the feature we
observed in our trainning set, and it does not have any errors associated with it.

12 Theoretical Neural Networks

called swarm of candidate solutions (particles). These solutions are moved according to
the best know position in the search-space as well as the entire swarm’s best knowng
position. Whenever improved places are found, they will guide the movements of the
swarm. This process is repeated iteratively, however, it is not guaranteed that in each
iteration a learning is going to occur, and it is neither sure whether a propper solution is
going to be found.

Another algorithm is the Genetic Algorithm (GA). In this algorithm a population of vector
represented neural networks is constructed. Then 3 steps are done: Selection, the top
percentage of the population are selected using the sum-squared error of each network;
Crossover, a child solution is created in each offspring with weights from both ’parent’
neural networks; and finally, Mutation, to maintain the diversity in the population, a small
percentage of the population are selected to go under mutation.

2.4.4 Random Initialization

In order to work with a Neural Network it is neccesary to initialize the input Θ so that
the Network starts to learn. One option might be to initialize the Θ to zeros, however, if
we do this, after each update all the hidden layers are computing the exact some features,
and this prevents the Neural Network form learning something interesting. So, it would
be a better idea to intialize each Θ

(l)
i j to a radom value in [−ε,ε]. This process is called

symetry breaking. However, this still fails to break the symetry in a full neural network,
so we need to do the following steps:

• Implement backpropagation

• Do gradient checking

• Use gradient descent or one of the advanced optimization algorithims to minimize
J(Θ) for the parameters starting from this randomly initialized parameters (symetry
breaking)

Hopefully it will be able to find a good value of Θ.

3. CHAPTER

Convolutional Neural Networks

A Convolutional Neural Network is a kind of neural network where the weights are
shared: all the neurons in the hidden layer share the same parametrization (the weight
vector and the bias, forming a feature map are the same for each pixel in the layer), and
because of this the gradient of a shared weight is the sum of the gradients of the param-
eters being shared. Since some parameters are shared the total number of parameters is
reduced drastically in comparison with other Neural Networks. It uses small convolution
kernels to search across the input image for specific visual features, and it uses a neural-
network back-end to interpret the patterns of features that emerge from the convolutional
layers. It also uses the back-propagation algorithm, that is not only used for trainning the
neuron connection, it is also utilized to train the convolution kernels. Due to all the pre-
viously mentioned features, when a CNN classifies, instead of diving the classification
plane with straight lines, it is able to divide it with curve lines.

In studies of classifiers for high dimensional image data Convolutional Neural Networks
(CNNs) have become the representatives among other deep learning methods. Until the
stochastic diagonal Levenberg-Marquardt algorithm for CNN proposed by LeCun in 1998
[LeCun and Yann, 1998] there were not efficient training algorithms. Handwritten char-
acter recognition, natural image processing, etc, are famous engineering application of
CNNs.

A interesting property of convolutional layers is that if the input image is shifted, the
feature map output will be shifted by the same amount, but will be left unchanged oth-
erwise, so that the convolutional networks are robust against shifts and distorsions of the

13

14 Convolutional Neural Networks

input, as shown in the book [Sun and Jin, 2016], where they used a Convolutional Neural
Network stochastic gradient descent with I2 regularization for human facial expression
classification, and the experiment showed that this networks have the capacity to clasify
expression images with transational distortion. The weight sharing technique has also an
interesting side effect: it reduces the number of free parameters, reducing the "capacity"
of the machine and reducing the gap between test error and training error.

3.1 Max Pooling

Max Pooling is a form of non-linear down-sampling that divides the input image into a
set of non-overlapping rectangles and for each such sub-region, outputs the maximum
value, that then can be used for classification. By doing this, the computation is reduced
for upper layers and it provides a form of translation invariance; by adding robustness to
position, max-pooling reduces the dimesion of intermediate representations.

Figure 3.1: Maximum pooling from [Wikimedia Commons, 2015]

The typical values are 2x2, however, for very large images may be necessary to use 4x4
pooling in the lower-layers. Nevertheless, we might be careful because it reduces the
dimension of the signal by a factor of 16, and may be taking rid of too much information.

There is also another kind of pooling called average pooling, where in every sub-region
the average of the values are taken (See Figure 6).

3.2 Structure

One typical case of Convolutional Neural Networks, is LeNet-5 that is composed by layer
called C1, S2, C3, S4, C5 and F6, where the C1 and C3 are convolution layer, S2 and S4
are subsampling layers and F6 is the output feature map.

3.2 Structure 15

Figure 3.2: Usual structure of a CNN [LeCun and Yann, 1998]

The convolution layer is a layer that uses the convolutional kernel throught the pixels in
the layer and gives as a result a bit smaller frame in which the value of each pixel expresses
how closely the cell cornered at the pixel resembled the feature in the convolution kernel.
This resulting figure might have different shapes. This is due to the kernel which is a small
matrix that depending on the values can cause different effects like sharpening and edge
detecion among others.

For every of the layer in the CNN, this convolution process will be repeated many times,
each times with a different kernel, and this results will create what we call a feature map.
Each of this maps will have nearly the same number of pixels as the original image, but
the processing needed for this is really small compared with what a neural layer would
have required.

After all of that, the convolutional layer applies a de-linearization to make sure that the
outputs are not a linear combination of the inputs.

An example of a convolution is the next one, where a photo is processed by a 3x3 kernel
(the second matrix) and creates 4 feature layers.

If a CNN has more than one convolutional layer, the deeper layers will have multiple
feature maps, as the first one does, but this feature maps will come from 3D rather than
2D convolutions. That means, that each pixel in the feature map will be a weighted sum
of a small 3D kernel times the pixels in the corresponding cells from each of the feature
maps in the preceding layer.

16 Convolutional Neural Networks

Figure 3.3: Example of convolution in a photo [Raj, 2016]

Sub-sampling layers on the other hand, are really different to convolutional layers, they
do a local averaging and sub-sampling so that it reduces the resolution of the feature map,
and reduces the sensitivity of the output shifts.

The structure of the inside of the LeNet-5 Neural Network and their use with the gradient
based learning is the following one:

First input image is transformed by 3-dimensional convolution with six 5*5*1 sized ker-
nels, added by bias term, activated by tanh function. After that, they get the first set of six
feature maps called C1.In this layer, each unit in each feature map is connected to a 5x5
neighborhood in the input. The size of the feature map is 28x28 which prevents connec-
tion from the input from falling off the boundary. C1 contains 156 trainable parameters,
and 122,304 conections.

Second, max-polling proccess is applied and S2 layer will be get. Layer S2 is a sub-
sampling layer with 6 feature maps of size 14x14. Each unit in each feature map is con-
nected to a 2x2 neighborhood in the corresponding feature map in C1. The four inputs to
a unit in S2 are added, then multiplied by a trainable coefficient, and added to a trainable
bias. The result is passed throug H a sigmoidal function. The 2x2 receptive fields are non-
overlapping, therefore feature maps in S2 have half the number of rows and column as
feature maps in C1. Layer S2 has 12 trainable parameters and 5,880 connections.

Third, the layers C3 and C4 are created with the exactly same mecanism. Layer C3 is a
convolutional layer with 16 feature maps. Each unit in each feature map is connected to

3.2 Structure 17

several 5x5 neighborhoods at identical locations in a subset of S2’s feature maps. Layer
C3 has 1,516 trainable parameters and 151,600 connections. Whereas layer S4 is a sub-
sampling layer with 16 feature maps of size 5x5. Each unit in each feature map is con-
nected to a 2x2 neighborhood in the corresponding feature map in C3 in a similar way as
C1 and S3. Layer S4 has 32 trainable parameters and 2,000 connections.

Fourth, two fully connected layers called C5 and F6 are calculated by the same way as the
conventional neural networks. Layer C5 is a convolutional layer with 120 feature maps.
Each unit is connected to a 5x5 neighborhood on all 16 of S4’s feature maps. There is a
full connection between S4 and C5 because the size of S4 is also 5x5 and the size of C5’s
feature map is 1x1. Layer C5 has 48,120 trainable connections. Layer F6 on the other
hand contains 84 units and is fully connected to C5. It has 10,164 trainable parameters.
[LeCun and Yann, 1998][Sun and Jin, 2016].

Finally in order to enable the classifer to reject unreasonable inputs a Gaussian layer is
used to compute the distance between 84-dimension activation data of F6 and 10 fixed
binary codes. Training progress could be understood as a fitting job with respect to F6
in order to minimize the Gaussian distance between F6 layer′s activation and its nearest
binary code.

As in classical neural networks, units in layers up to F6 compute a dot product between
their input vector and their weight vector, to which bias is added.

If we consider x0 as the inputs and fL as the loss function, an L - 1 layered CNN can be
considered as a system built by a cascade of transformation modules f1(x;w),f2(x;w),...,
fL(x;w) whose inputs and outputs are connected one after another. Each transformation
is differentiable, thus the gradient-based learning algorithm can be employed for training
CNNs.

Sun and Jin use the Alex-Net and Zeiler′s Net [Sun and Jin, 2016], and consider them as
representative of the modern CNNs. They have used LeNet-5 and have simplified some
of its unnecessary processes and made some improvements like normalization and anti-
overfitting mechanisms: In the Alex-Net the layers are divided into two groups in which
activations are calculated individually except in the first and last layer. In most layers there
are no relations between the two groups in order to reduce communication traffic between
the GPUs. A GPU (Graphic Processing Unit) is logic chip that is specialized in diplaying
functions; it renders images, animation and video for the computer′s screen.
The overall network has a 150528-dimensional input layer, and the number of neurons
in the remaining layers is given by 253440, 186624, 64896, 43264, 4096 and 1000 re-

18 Convolutional Neural Networks

Figure 3.4: Example of CNN [Vedaldi, 2015]

spectively. The way of diving layer into groups, the number of neurons in each layers
and the layer type are all alternative, thus different architecture could be devised for dif-
ferent problems and for different GPUs. They ask for a compromise between reducing
the time cost and performance of each epoch, to make the network converges faster. To
sum up, CNN have four characteristics: 1-Using convolution/local receptive field to share
weights. 2-Using sub-sampling/pooling. 3-Having 2-5 convolutional layers and 1-2 fully
connected layers followed by 4-Learning weight parameters by hierarchical first order
optimization algorithms such as BP algorithm.

3.3 Feature Extractor

A feature extractor and a classifier are two essential modules in image pattern recognition
system. An extraordinary feature extractor could produce a feature representation with
more discriminant information and less correlations than the original pixel data so that the
job of classifier becomes simpler and more efficient and a super classifier could perform
its job well using no complex feature extractors. We know few popular techniques of
feature extractor such as SIFT and HOG. Nowadays some novel classifiers and feature

3.4 General Description of MatConvNet 19

extractors based on deep learning may show us fantastic results. However, if we want to
create a reliabe extractor, it could be easily got by cutting the Soft-Max layer off at the end
of CNNs and keeping the rest layer′s trainable parameters fixed. The features from one of
each hidden layers, especially from the last one, could be invoked as the inputs of other. It
means that when we train a classifier we can achieve a feature extractor inside the classifier
at the same time. Based on it Zeiler [Zeiler and R., 2011] proposed the theory of feature
generalization. It means that abundant feature information is included in nature images
which also have a large scale of categories. Then a pre-trained network for natural images
could be applied to the processing of specific data conveniently. It is important to say that
the method above mentioned applies GPU based high performance computing techniques
and it accelerates the training speed. In the case of the facial expression analysis the
most well-know studies (the ones by Ekman [Friesen and Ekman, 1976] and Sun and Jin
[Sun and Jin, 2016]), in their studies feature extractor and classifier are both sensitive to
the position and shape of the five senses. In the case of facial expression classification,
feature extractor and classifier should keep invariant between different individuals, and
should keep invariant in the conditions of different perspective projection distortions.

3.4 General Description of MatConvNet

There are many toolboxes in Matlab to implement different kinds of Neural Networks, but
as mentioned above, we are going to work mainly with Convolutional Neural Networks,
so we are going to use that implementation in Matlab, which is called MatConvNet. 1.

MatConvNet is an implementation of Convolutional Neural Networks for MATLAB,
whith an emphasis on simplicity and flexibility. It is composed by multiple simple build-
ing blocks that are easy to use functions such as RELU function, feature pooling etc.,
that are expressed as MATLAB commands, and they can be combined to create the CNN
architectures.

3.4.1 Building Blocks

This toolbox is componed by building blocks which are simple really efficient func-
tions like for example ReLUs (Rectifier Linear Units who compute the f(x)=max(0,x)
function) which can be combined to create more complex algorithms. Some of the most

1The version of the MatConvNet used to develop the examples is the 1.0-beta20

20 Convolutional Neural Networks

popular ones are vlnnconv (convolution), vlnnconvt (convolution transpose or deconvolu-
tion), vlnnpool (max and average pooling), vlnnsigmoid (sigmoid activation) or vlnnbnorm

(batch normalization). This blocks are usually written in MATLAB with the structure
y=vlnn<block>(x,w), but can be written in C++ and in CUDA, because MATLAB has
support for GPU computation, so that it is possible to write new blocks while keeping
the computational efficiency. Each of the blocks is able to function also in the backward
direction to compute the derivatives. This can be done by passing a third optional argu-
ment dzdy, which represents the output of the network with respect to y (the input data
and parameters).

3.4.2 Wrappers

A wrapper is a function or script that calls another function. This is useful because, for
example, if we have different wrappers, they can call the same simulation with different
parameters, and keeping different wrappers is a way of keeping track of what simulations
you have. varargin and varargout are an option to write wrapper functions that accept
up to 64 inputs and pass them directly to another function. In MatConvNet there are two
kinds of wrappers: SimpleNN, which is the usual one in the computational blocks, and
DagNN which is a more complex wrapper that accepts arbitrary graph topologies. An
example of a really used SimpleNN wrapper is vlsimplenn which takes as an input a net,
input x and potentially outputs dzdy depending on the implementation.

3.5 PreTrained Models

There are in the webpage of MatConNet [Vedaldi and Lenc, 2015] with pretrained mod-
els to classify images or to produce image encondings. However it is possible that the
images to work with any of this pretrained network are needed to be This pretrained mod-
els are focused on a specific kind of photos, like for example the one that detects whether
an image contains letters or no, or one to extract face features. There is also a huge im-
age classification comptetition called ImageNet ILSVRC, and there are also some neural
networks from there like for example the GoogLeNet or AlexNet. However, in our exper-
iments, since we are going to focus on faces, we are going to use th VGG-Face, which is
trained using images of the Internet Movie Data Base celebrity list.

4. CHAPTER

Facial Expression Recognition

Pantic and Bartlett [Pantic and Barlett, 2007] explain in the book Face Recognition the
current state of the question of machine analysis of facial expressions. It is well known
that the human face is used for human beings to gather information of other members of
our species and that it is the most important means of communicating an understanding
affective estates and intentions.

Our face is a communicative system capable of huge flexibility and specificity, and con-
veys information via theses four kind of signals:

• Static facial signals: Permanent features of the face.

• Slow facial signals: Changes in the appearance of the face that occur gradually
over time.

• Artifcial signals: Exogenous features of the face.

• Rapid facial signals: Visually detectable temporal changes in the facial appear-
ance.

If we combine this information with the Technology, and especially with Computer Sci-
ence, we can see that facial expressions provide a way to communicate basic information
about needs and demands to machines. For example if we combine facial spotting with
facial expression interpretation it could be used for monitoring human reactions during
videoconferences. Similarly, automated detectors of fatigue, depression and anxiety could

21

22 Facial Expression Recognition

form another step toward personal wellness technologies. It is obvious that cognitive and
medical scientists are interested on it and it is interesting too for lawyers, police, safe
industrial systems for workers, vial security systems which check for fatigue in drivers
etc.

In fact, there is a relatively recently initiated research area of affective computing that lies
on sensing, detecting and interpreting human affective states and devising appropriate
means for handling this affective information in order to enhance current Human Com-
puter Interaction designs (HCI). However, although humans analyze face expressions with
no effort, the development of an automated system that accomplishes this task is really
difficult.

Following with the research of Pantic and Stewart, recent advances in machine analysis
of facial expressions focus on four areas: Face detection, Facial feature extraction, Facial
muscle action detection and Emotion recognition.

4.1 Action Units and Emotions

There are two main streams in the automatic analysis of facial expressions: one works to
detect facial affect (emotion) and involves facial affect recognition methods. The other
works on techniques for facial muscle action detection (action unit, AU). They come
from two different approaches to facial expression in psychological research: one is all
about interpretation, and says that the aim is to infer what underlies a displayed facial
expression; it is called ′Message judgment′. The other attempt to be objective and his aim
is to describe the surface of the facial movement o facial component shape and is called
′Sign judgment′.

Most facial expressions analyzers differentiate six basic emotions: Fear, Sadness, Hap-
piness, Anger. Disgust and Suprise. Automatic detection of these six basic emotions in
controlled displays can be done with accuracy, but in environments of real applications is
a more difficult problem, and it is beginning to be explored.

In Sign judgement approaches, there is a widely used method for manual labeling of
facial actions, and it is the FACS (Facial Action Coding System). It defines 44 different
action units (AUs, which are the smallest visually discernable facial movements) and sets
rules for recognition of AU’s temporal segments (onset, apex and offset) in a face video.
It provides an objective and comprehensive language for facial expressions descriptions,
and it allows discovery of new patterns related to emotional states.

4.1 Action Units and Emotions 23

Figure 4.1: Examples of FACs code for fear)

Subjective judgement of expressions is less reliable than objective coding for finding re-
lationships between facial expression and other state variables.

Three research groups are the forerunners in Sign judgement: Bartlett et al. [Bartlett et al., 1996],
Lien et al. [Lien et al., 1998], and Pantic et al. [Pantic et al., 1998]. They use different
strategies including expert rules and machine learning methods as neural networks, and
they use feature-based image representations like facial points or appearance-based image
representations, including wrinkles and furrows of the face.

Figure 4.2: Examples of facial action units (AUs)

The main criticisms that these research works received from cognitive and computer sci-
entists is that they are not applicable in real-life situations, when facial expressions change
rapidly. On the other hand, several works have recently emerged on machine analysis of
AUs in spontaneous facial expression data (Cohn et al. [Cohn et al., 2004a], Bartlett et
al. [Bartlett et al., 2005], and Valstar et al. [Valstar et al., 2006]). These works employ
probabilistic, statistical and ensemble learning techniques, which seem to be suitable for
automatic AU recognition from face image sequences.

24 Facial Expression Recognition

4.2 Posed Facial Displays vs. Spontaneous Facial Displays

It is important to make a distinction between spontaneous facial behavior or deliberately
displayed facial behavior. On one hand the volitional facial movements originate in the
cortical motor strip and they tend to be less smooth, with more variable dynamics; on the
other hand spontaneous facial movements originate in the subcortical areas of the brain
and they are synchronized, smooth, symmetrical and consistent.

Furthermore, there is another question about facial behavior: it is biologically driven or
socially learned? Researchers agree that most types of facial expressions are learned, like
language, and have culturally specific meanings linked to their cultural context. On the
other hand, there are a limited number of facial expressions of emotion that appear to
be biologically produced, and similar across all cultures, for example anger, contempt,
disgust, fear, happiness, sadness and surprise.

There is one only reported method to automatically discern spontaneous from deliber-
ately displayed facial behavior and is the one of Valstar et al [Valstar and Pantic, 2006]. It
employs parameters like speed, intensity, duration and the occurrence of brow actions to
classify them as deliberate or spontaneous facial actions. For example, it has been shown
that the differences between spontaneous and deliberately displayed brow actions (AU1,
AU2, AU4) is in the duration and the speed of onset and offset of the actions, and in the
order and the timing of actions’ occurrences.

4.3 Facial Expression Configuration and Dynamics

Automatic recognition of facial expression configuration (in terms of AUs) has been the
focus of the research efforts. They are important because the dynamics of facial expression
are essential for categorization of psychological states like various types of pain or mood.
They are also a key parameter in differentiation between posed and spontaneous facial
displays (for example spontaneous smiles are smaller in amplitude, longer in duration
and slower in onset and offset time than pose smiles).

Recent studies analyze explicitly the temporal dynamics of facial expressions. They ex-
plore the automatic segmentation of AU activation into temporal segments (neutral, onset,
apex, offset) in frontal-and profile-view face videos. Pantic & Patras [Pantic and Patras, 2005]
employ rule-based reasoning to encode AUs and their temporal segment. By the contrast,

4.4 Facial Expression Intensity 25

biologically inspired learning techniques, such as neural networks, employ rule-based
techniques, which emulate human unconscious problem solving processes, inspired by
human conscious problem solving processes. Studies in cognitive sciences (Ambady &
Rosenthal [Ambady and Rosenthal, 2005]), suggest that Learning techniques inspired by
human unconscious problem solving processes may be more suitable for facial expression
recognition than those inspired by human conscious problem solving. Valstar & Pantic
[Valstar and Pantic, 2006] also presented evidence supporting this assumption.

4.4 Facial Expression Intensity

Researchers say that expressions can vary in intensity. Then we need to define intensity:
it is the relative degree of change in facial expressions as compared to a related relaxed,
neutral facial expression.

How can we measure the intensity? It is possible by using the FACS (Facial Action Coding
System), which provides a 5-point intensity scale to describe AU intensity variation and
enable manual quantification of AU intensity (Ekman et al. [Ekman et al., 2002]) fully
automated methods that accomplish this task are yet to be developed.

4.5 Facial Expression Intentionality

How can we determine which type of message a shown facial expression communicates?
To interpret it is important to know the context in which the observer signal has been
displayed, where the expresser is, what his or her current task is, are other people involved
and who the expresser is.

4.6 Context Dependency

Since the problem of context-sensing is extremely difficult to solve, we need pragmatic
approaches when learning the grammar of human facial behavior. Unfortunately existing
automated facial expression analyzers are context insensitive.

To develop facial behavior analyzer machines we need to take into account some factors

26 Facial Expression Recognition

that influence affective data collection. Thinking about it, Picard [Picard, 1997] outlined
five factors:

• Spontaneous versus posed emotions.

• Lab setting versus real-world.

• External expression or internal feeling.

• Does the subject know that is being recorded or not?

• Does the subject know that he is a part of an experiment about emotion?

4.7 Databases

There are some isolated pieces of facial database:

• One is the Ekman-Hager Facial Action Exemplars (Ekman et al. [Donato et al., 1997])
which has been used by several research groups to train and test their methods for
AU detection from frontal-view facial expression sequences.

• We have too the JAFFE database (Lyons et al. [Lyons et al., 1999]), which contains
219 static images of 10 Japanese females displaying posed expressions of six basic
emotions.

• Other one is the Cohn-Kanade facial expression database ([Kanade et al., 2000]),
which is the most widely used in research on automated facial expression analysis
and contains image sequences of 100 subjects posing a set of 23 facial displays, and
contains FACS codes in addition to basic emotion labels.

• We have also the most comprehensive database for research on automated facial
expression analysis, which is the MMI facial expression database (Pantic et al.
[Pantic et al., 2005]), but it still lacks metadata about the context. It has two parts:
one first part with deliberately displayed facial expressions (over 4000 videos and
6000 static images of single AU, multiple AU and six basic emotions; and a second
part with Spontaneous facial displays (65 videos of spontaneous facial displays in
terms of AUs and emotions, in which were 18 adults and 11 children , male and
female, Caucasian, Asian and African).

4.8 Face Detection and Feature Extraction 27

• Other database is UT Dallas, similar to the second part of the MMI facial expression
database, and works in terms of AUs and emotions, independently of the stimulus
category is needed.

• There is other one called the RU-FACS Spontaneous Expression Dataset and con-
sists of 100 subjects participating in ’false opinion’ paradigm.

• Finally, the database used in our project is the Child Affective Facial Expression
(CAFE), from the Depearment of Psychology at Rutgers University Newark in New
Jersey (USA) and it will be explained in other part of the work set

Except of the MMI facial expressions database, which was built as a web-based direct-
manipulation database, the existing facial expression databases are neither easy to access
nor easy to search.

4.8 Face Detection and Feature Extraction

We have numerous techniques for face detection in images, but most of them can detect
only upright faces in frontal or near-frontal view. Different methods are:

• Rowley et al [Rowley et al., 1998] used a multi-layer neural network to learn the
face and non-face patterns from the intensities and spatial relationships of pixels in
face and non-face images.

• Moghaddam and Pentland [Moghaddam and Pentland, 1997] developed a proba-
bilistic visual learning method based on density estimation in a high-dimensional
space using an eigenspace decomposition. They used it to face localization, coding
and recognition.

• Scheiderman and Kanade [Schneiderman and Kanade, 2000] developed Statistical
method for 3D object detection.

• Viola and Jones proposed the most commonly used method: it is a real-time face
detector. It has several adapted versions, as the one of AdaBoost, which can employ
image filters and permit a high speed of the detector.

When the machine has detected the presence of a face, the next step is to extract the in-
formation from it. The problem of facial feature extraction from the scene may be divided
into, at least, three dimensions:

28 Facial Expression Recognition

• Is temporal information used?

• Are the features holistic (spanning the whole face) or analytic (spanning subparts
of the face)?

• Are the features view-or volume based (2D/3D)?

Most of the facial expression analyzers are directed toward 2D facial feature extraction.
The extracted facial features are one of these:

• Geometric features, such as the shapes of the facial components (eyes, mouth, etc.),
and the location of facial points (mouth, corners of the eyes, etc.)

• Appearance features, which represent the texture of the facial skin including wrin-
kles, bulges, and furrows.

Approaches to the facial expression analysis based on 3D face modelling have been re-
cently proposed. Gokturk et al. [Gokturk et al., 2002], Cohn et al. [Cohn et al., 2004b],
Gross et al. [Gross et al., 2006] and they are very relevant to produce view independent
facial signal recognition systems, but they need a large amount of manually annotated
training data and a manual selection of landmark facial points in the first frame of the
input video, based on which the model will be warped to fit the face.

4.9 Geometric Facial Feature Extraction and Facial Point De-

tection

Previous methods are either texture-based methods (modeling local texture around a given
facial point) or texture- and shape-based methods (learned from a set of labeled faces and
trying to fit the shape to any unknown face). A texture based method was applied by
AdaBoost to determine facial feature point candidates for each pixel in an input image
and used a shape model as a filter. This method uses 20 facial characteristic, but they
regard the localization of a point as a SUCCESS if the distance between the automatically
labeled point and the manually labeled point is less than 30

To handle this issue Vukadinovic and Pantic [Vukadinovic and Pantic, 2005] developed a
novel, robust, fully automated facial point detector. It is a textures based method -models
local image patches using Gabor wavelets and builds GentleBoost-based point detectors

4.10 Appearance-based Facial Features 29

based on these regions. The detected face region is divided in 20 regions of interest (ROIs),
each corresponding to one facial point to be detected. A combination of heuristic tech-
niques based on the analysis of the vertical and horizontal histograms of the upper and
lower half of the face region image is used for this purpose. Gabor features are among
the most effective texture-based features for face processing tasks. It is so because Gabor
filters remove most of the variability in image due to variation in lighting and contrast,
and at the same time they are robust against small shift and deformation. In the training
phase GentleBoos feature templates are learned using a representative set of positive and
negative examples. In the testing phase an automatically detected point displaced in any
direction, horizontal or vertical, less than 5% of inter-ocular distance from the true facial
point is regarded as SUCCESS. Overall, an average recognition rate of 93% was achieved
for 20 facial feature points. Fasel and colleagues developed a real-time feature detector
using a GentleBoost approach related to the one used for their face detector and combined
with a Bayesian model for feature positions. (Fasel, 2006). The Face is first detected and
then the location and scale of the face is used to generate a prior probability distribution
for each facial feature.

4.10 Appearance-based Facial Features

Humans can recognize facial expressions above chance from motion, using point-light
displays. However humans are very good for recognizing expressions from texture with-
out motion, for example static photographs.

Most computer vision researchers consider the problem of facial expression recognition
and in the appearance-based features include: Gabor filters, Integral image filters (also
known as box filters and Haar-filters), Features based on edge-oriented histograms and
Active Appearance Models, spatio-temporal features. Active Appearance Models include
Motion energy images and motion history images, Learned image filters from independent
component analysis (ICA), Principal component analysis (PCA), Local feature analysis
(LFA) and Linear discriminant analysis (e.g. fisherfaces).

A reservation about appearance-based features for expression recognition is that they are
affected by lighting variation and individual differences. However, machine learning sys-
tems taking large sets of appearance-features as input, and trained on a large database of
examples, are emerging as robust systems in computer vision.

The importance of appearance-based features for expression recognition is emphasized

30 Facial Expression Recognition

by several studies that suggest that appearance-based features may contain more informa-
tion about facial expression than displacements of a set of points. Bartlett and colleagues
(Dionato et al. [Donato et al., 1999]) compared a number of appearance-based represen-
tations on the task of facial action recognition using a simple nearest neighbor classifier.
They found that Gabor wabelets and ICA gave better performance than PCA, LFA, Fisher
discriminants, and also outperformed motion flow field templates. More recent compar-
isons found an interaction between feature-type and classifier, where AdaBoost performs
better with integral image filters, while SVMs performs better with Gabors. The possi-
ble motive is that AdaBoost performs feature selection and does well with redundancy
whereas SVMs were calculated on the full set of filters and don’t go well with redun-
dancy.

4.11 Appearance-based Facial Affect Recognition

The appearance-based facial expression recognition system developed by Bartlett et al.
[Bartlett et al., 2003] is a system that automatically detects frontal faces in the video
stream and codes each frame with respect to 7 dimensions: neutral, anger, disgust, fear,
joy, sadness, surprise. It operates in near-real-time, and first performs automatic face and
eye detection using the appearance-based method of Fasel et al. [Bartlett et al., 2005],
then select extracts subsets of the features and passes them to an ensemble of classifiers
which make a binary decision about each of the six basic emotions plus neutral. Best re-
sults were obtained by selecting a subset of Gabor filters using AdaBoost and then training
SVMs on the outputs of the filters selected by AdaBoost. The combination of AdaBoost
and SVMs enhanced both speed and accuracy of the system.

4.12 Facial Muscle Action Detection

Although FACS provides a good foundation for AU-coding of face images by human
observers, achieving AU recognition by a computer is a difficult task. It is so because
AUs can occur in more than 7000 different complex combinations, causing bulges and
movements of permanent facial features (for example jetted jaw) that are difficult to detect
in 2D face images There are 2 main groups who do research in this field: Pantic and her
colleagues, and Barlett and her colleages.

4.13 Feature-based Methods for Coding AUs and their Temporal Segments 31

4.13 Feature-based Methods for Coding AUs and their Tem-

poral Segments

Pantic and her colleagues wanted to automate the analysis of facial expressions in terms
of facial muscle actions that constitute the expressions. Work was aimed at AU coding in
static face images. Recent work addressed the problem of automatic AU coding in face
video. They experimented with rule-based and Support Vector Machine based methods for
recognition of AUs in either near frontal-view or near profile view face image sequences.
The methods proposed address the problem of temporal modeling of facial expressions.
These methods are suitable for encoding temporal activation patterns (onset - apex - off-
set) of AUs shown in an input face video. Nowadays the only systems to date for explicit
recognition of temporal sements of AUs are the ones by Pantic and colleagues (2005)

It is necessary to understand how to achieve automatic AU detection from the profile view
of the face to build a technological framework for automatic AU detection from multiple
views of the face. Pantic and Patras (2006) proceed under two assumptions: one is that
the input image sequence is non-occluded (left or right) near profile-view of the face with
possible in-image-plane head rotations, and the other is that the first frame shows a neutral
expression.

This method for AU coding in near profile-view face video was tested on MMI facial
expression database only, and the accuracy of the method was measured with respect to
the misclassification rate of each ′expressive′ segment of the input sequence. For 96 test
samples they achieved an average recognition rate of 87% for 27 different AUs. occurring
alone or in combination in an input video.

Another system created by Valstar and Pantic used a System that detects AUs and their
temporal segments (neutral, onset, apex, offset) using a combination of Gentle Boost
learning and Support Vector Machines (SVM). GentleBoost is used to select the most
informative features. An AU can be in four different phases 1-Onset phase: Muscles are
contracting and the appearance of the face changes as the facial action grows stronger;
2-Apex phase: The facial action is at its apex and there are no more changes in facial
appearance due to this particular facial action; 3-Offset phase: the muscles are relaxing
and the face returns to its neutral appearance; 4-Neutral phase: There are no signs of
activations of the facial actions;

As every facial action can be divided into four temporal segments (neutral, onset, apex,

32 Facial Expression Recognition

offset) Valstar and Pantic consider the problem to be a four-valued multi-class clas-
sification problem and they use a one-versus-one approach to multi-class SVMs (mc-
SVMs).Experiments were done on MMI database only and there was a 95% precision.

It seems that human observers detect activation of these AUs based on the presence of
a certain movement like an upward movement of the lower eyelid, but also based on the
appearance of the facial region around the eye corner, like the crow feet wrinkles. Such
an appearance change may be of a different duration from the movement of the eyelid
resulting in an erroneous estimation of AU duration by the system that takes only facial
movements into account. Because of that using geometric and appearance features might
be the best choice in the case of such AUs

4.14 Appearance-based Methods for AU Coding

Barlett and colleagues developed an appearance-based system for fully automated facial
action coding developed. It is user independent and operates in near-real time, at about 6
frames per second. The system detects 30 AUs. The system captures information about
AU intensity, that can be employed for analyzing facial expression dynamics. Pantic used
heuristic, rule based methods, and/or designing special purpose detectors for this methods.
Barlett uses machine learning. Over 200 examples are needed to obtain high precision.

Kappor (2003) created another appearance-based system for fully automated AU coding.
The system uses infrared eye tracking to register face images employing machine learning
techniques on feature-based representations. In the research of Pantic and Bartlett it was
trained with 2568 examples from 119 subjects. Positive examples consisted of the last
frame of each sequence which contained the expression apex. Negative examples con-
sisted of all apex frames that did not contain target AU plus neutral images obtained from
the first frame of each sequence, for a total of 2568-N negative examples of each AU.

The system obtained a mean of 91% agreement with human FACS labels. In the test, there
was far grater number of non-targets that were all images not containing the desired AU
(2568-N). A more reliable performance measure is area under the ROC (receiver-operator
characteristic curve, or A′). This curve is obtained by plotting hit rate (true positives)
against false alarm rate (false positive) as the decision threshold varies.

Correlations of the automated system with the human expert intensity scores were next
computed: Mean correlation between the SVM margin and the expert FACS coders was
0.83 which is nearly as high as the human-human correlation of 0.84. Similar findings

4.15 Automatic Detection of Pain 33

were obtained using an AdaBoost classifer, where the AdaBoost output, which is the like-
lihood ratio of target/non target correlated positively with human FACS intensity scores.

Test were also done in the RU-FACS Dataset of spontaneous expressions. Mean area
under the ROC for the spontaneous action units was 0.75. The SVM margin correlated
positively with AU intensity in the spontaneous data.

4.15 Automatic Detection of Pain

The automated AU recognition system described above was used to differentiate faked
from real pain expressions using the automated AU detector. Each subject experienced
three experimental conditions: baseline, real pain, and posed pain. The trained linear SVM
for each of 20 AUs in one versus all mode, irrespective of combinations with other AUs.
The results were passed to another set of three SVMs, trained to detect real pain, fake
pain and baseline. In a preliminary analysis of 5 subjects tested the system correctly iden-
tified the experimental condition for 93% of samples in a 3-way forced choice. The 2-way
performance for fake versus real pain was 90. This is considerably higher than the perfor-
mance of naive human observers.

4.16 Challenges, Opportunities and Recommendations

Pantic and Bartlett [Pantic and Barlett, 2007] summarize the recent work of two forerun-
ning research groups in this research field, namely that of Pantic and her colleagues and
that of Barlett and her colleges

The research on automatic detection of facial muscle actions, which produce facial ex-
pressions like happiness and anger, witnessed a significant progress in the past years.

The majority of the past work in the field does not analyze the properties of facial expres-
sion temporal dynamics, but there are a few approaches to automatic segmentation of AU
activation into temporal segments (neutral, onset, apex offset)

Also, even though most of the past work on automatic facial expression analysis is cen-
tered on posed facial expressions, there are a few efforts on machine analysis of sponta-
neous facial expressions. Similarly there are a few works on context-sensitive interpreta-
tion of facial expressions and an attempt to discern in an automatic way spontaneous from
volitionally displayed facial behavior.

34 Facial Expression Recognition

When it comes to automatic AU detection, existing methods do not yet recognize the full
range of facial behavior. The use of a combination of methods based on geometric features
and methods based on appearance features is necessary if the full range of human facial
behavior is to be coded in an automatic way.

Existing methods for machine analysis of facial expressions discussed throughout the
research of Pantic and Bartlett assume that the input data are near frontal- or profile-view
face image sequences showing facial displays that always begin with a neutral state. In
reality, such assumption cannot be made. Noisy and partial data should be expected.

Probabilistic graphical models, like Hidden Markov Models (HMM) and Dynamic Bayesian
Networks (DBN) are well suited for accomplishing a statistical prediction and its prob-
ability by considering previously observed data (time scale) with respect to the current
data (time instance). These models can handle noisy features, temporal information and
partial data by probabilistic inference.

It remains unresolved how the grammar of facial behavior can be learned (in human-
centered manner or in an activity-centered manner) and how this transformation can be
properly represented and used to handle ambiguities in the observation data. Another
related issue that should be addressed is how to include information about the context:
environment, user, user′s task, so that a context-sensitive analysis of facial behavior could
be achieved.

They believe that a large, focused interdisciplinary, international program directed to-
wards computer understanding of human behavioral patterns, as shown by means of facial
expressions, should be established if we want to achieve breakthroughs in this field.

5. CHAPTER

DB for the project

5.1 Motivation

Most of the previous work done in face analysis it is done with faces of adult people,
however, due to the problems of doing research with underage people among other things,
there are not many databases with faces of children.

5.2 Paperwork

Due to the problems of having photos of underage people, it was neccesary to ask for a
written permission to the New York University, where it is stated that the images of the
database are going to be used only for this research and no other purposes, and it is stated
that it is forbidden to show any image of the children in any report or article. After that a
permission was granted to access the database through Databrary, which is a video data
library for developmental science.

5.3 Structure and content

The database used in this project is The Child Affective Facial Expression (CAFE)
[LoBue, 2014] set which is a collection of photographs of 2- to 8-year old children with

35

36 DB for the project

a median M=5.3 years and with a rho r=2.7-8.7 years. This dataset of the Department
of Psychology at Rutgers University Newark in New Jersey contains posing for 6 emo-
tional facial expressions according to Ekman (PUT REFERENCE): sadness, happiness,
surprise, anger, disgust and fear plus a neutral face. The set is composed of photos of 154
models: 90 female models and 64 male models (27 African American, 16 Asian, 77 Cau-
casian/European American, 23 Latino and 11 South Asian). The structure of the database
in the downloaded zip is the following:

• materials-9822-Top-level_materials

– 11185−Sortable_Excel_ f ile_with_basic

– 13855−LoBlue_T hrasher,_2015

• sessions

– 6280

– 6281

– ...

– 6435

– 6436

• description.html

• spreadsheet.csv

Each of the folders represents a set of photos of a children, but all of the folders does not
contain the same number of photos, because there are not photos of each children with all
the emotions. There are two kinds of photos of emotions, one is with the mouth open and
the other one is with the mouth closed. Each of the folders can have photos of the subject
expresing emotions with the mouth open or closed indiferently, but there can be cases
where all the photos of the subject are with the mouth open or with the mouse close, and
there might not be all the emotions in a subject. All of the photos included in the dataset
contain the image centered in the child’s face, with their chin approximately 1/6 from the
bottom of the image, and all of the images contained FACS codes because all the photos
that did not include any were deleted from the original database. In order to make the
images have this codes, the photographer made the children copy the faces and tell them
which emotions to show in the face, and if any elements were missing, the photographer

5.4 Connection of the Database with Matlab 37

prompted the children to revise their facial expressions [Lobue and Thrasher, 2015]. This
photographer was trained in SPAFF which is a system that includes procedures for recog-
nizing facial muscle movements associated with 17 codable emotional states in real time,
and also incorporates the FACS coding system of Ekman and Colleges [Ekman, 1992].
This database originally is composed by two subsets: Subset A which contains the stereo-
typical exemplars of the various facial expressions, the "basic" emotions we explained
previously, and Subset B expressions that vary around the "basic" expression, but mini-
mizing potential ceiling and floor effects. However, this division is not used in our exper-
iments.

5.4 Connection of the Database with Matlab

In order to make it easier to work with the database it is a good idea to connect Matlab
to MySQL. To do that there are two options: ODBC or JDBC. ODBC stands for Open
Database Connnectivity and it is a standard application programming interface for ac-
cesing database management systems (DBMS). ODBC was developed by SQL Access
Group in 1992 when there were no ways of communicating between a database and an
application. It is not dependent of a specific programming language or a database system
or operating system, but since Microsoft adapted to it, it is mostly used in Windows. It
is procedural. Java Database Connectivity is an application programming interface for
Java programming language. It is suitable for object oriented databases, and there is a
JDBC-to-ODBC bridge that enables connections to any ODBC-accesible data source.

ODBC is slower than JDBC, but since in this case the connection was going to be made
with Matlab and it uses some C++ features, ODBC was chosen. In this case the develop-
ment was made in a Windows platform, however there are also Linux ODBC drivers.

In order to connect the database from Matlab, first of all it is necessary to have a database
schema created in MySQL (Check image 5.1).

After having that, go to the App tab and click in the Database Explorer (Check image
5.2).

Cancel the emerging window and after that click in the Database Explorer tab, and click
on New->ODBC to create a new ODBC connection from Matlab (Check image 5.3).

38 DB for the project

Figure 5.1: MySQL Database

Figure 5.2: App->DatabaseExplorer

Figure 5.3: Database Explorer menu

5.4 Connection of the Database with Matlab 39

After that go to the DNS System tab, and if you see your MySQL Schema name, that
means that your that schema is already linked to the Matlab environment (Check image
5.4).

Figure 5.4: System DNS

If your MySQL Schema is not in there, you should click the add button and fill the gaps
in the next window. (Check image 5.5).

Figure 5.5: Database Explorer menu

After that you will be able to see the connected database in Matlab, like in the next image
(Check image 5.6).

40 DB for the project

Figure 5.6: Database in Matlab

5.5 Check DB and prepare it for experiments 41

Then in order to manage the queries it is necessary to make a connection to the database
with the function database, create a pointer with the query and bring all the information
that is needed. It is possible also to add, delete or update information from this tables by
creating the corresponding query, or by creating the changes locally in the tables that we
charge in Matlab and then using update with the database connection opened to upload
the changes to MySQL.

1 conn = database(db_name, 'root', 'root');

2 if (isempty(conn.Message))

3 disp('Database connected);

4 else

5 disp('Cannot connect database');

6 disp(conn.Message);

7 return; % stop running

8 end

9

10 sql = sprintf('SELECT `session-id`, `participant-ID` FROM

spreadshhet');

11 curs = exec(conn, sql);

12 curs = fetch(curs);

13 sprdata = get(curs, 'Data');

5.5 Check DB and prepare it for experiments

In order to check that everything was alright on the database and prepare it for the exper-
iments, some Matlab scripts were created. This scripts made calls to the MySQLWork-
bench, and do modifications in the tables in order to make it easier to work with the
database or to check everything is alright.

The first script checkDatabase.m takes care of checking that every photo has a assigned
a user that exists. It creates a new column to check depending on if it has or not a user
that exists writes "Yes" or "No" in the column and then counts the number of "Yes" to
check wether is the same as the number of users, to check at the same time whether all the
users are used (After execution this column is deleted). Doing this, a problem appeared:

42 DB for the project

In the table sortable, there were some participant with a participant identifier ending with
the letter ’b’, however, in the table spreadsheet, there were no participant identifiers that
match those ones. However, there were some of the identifiers repeated (some of those
ones are the ones that should have the ’b’ at the end). So, I added the ’b’ at the end of the
identifiers in the spreadsheet table, after this change everything is properly configured,
and that there are no users without images or images have not a user asigned in the other
table.

The second script checkAllImages.m gives each table the real filename, because the one
in the table is not the original one.

The third script cropImages.m creates a new folder called ’sessions_cropped’ that includes
all the original images cropped and centered into the children faces. It also takes care of
reducing the scale of the too big images. This process of centering in the face of the
children and cropping it sometimes fails, because the bounding box focuses too much in
a certain place confusing it with the image of the whole face.

In order to detect this outliers and delete them a query was used to detect the files to delete

1 SELECT COUNT(DISTINCT `Filename`) AS r FROM faces_db.sortable s INNER JOIN (SELECT `result-id`

FROM faces_db.results WHERE faces_db.results.x >650 AND faces_db.results.y>650) z ON s.`

Filename`=z.`result-id`;

and these lines were deleted also from MySQL. This script checks the size of the images,
because when cropping the images if the bounding box is centered in a really specific area
it is going to cut that small area. So, those images whose size is considerably smaller than
the rest are the images that should not be taking into consideration (Check Figure 5.1).

Figure 5.7: Image outliers

As seen in the figure, the images with a size less than 500x500 pixels, should be discarded.
However, there is one image, that should be checked manually, because it is in the limit.

5.5 Check DB and prepare it for experiments 43

After checking it, it turned out that the image is also not valid, because although a part of
the face appears, the eyes and the mouth are cutted. So, the images that should be taken
are the ones with more than 650x650 pixels.

Finally, in order to save the features of each of the images another script was create save-
Features.m. This script uses a pre-trained Convolutional Neural Network in faces into the
images of the database [Parkhi et al., 2015], and extracts the features of each one of this
images. This results are stored inside the folder of cropped images created before, and the
names of the variables are stored in the tables to manage the DBs.

6. CHAPTER

Experiments

6.1 Introduction

The objective of this experiments is to check whether well does a computer recognize
the emotions on childrens in the range of age 2-8, since most of the work that has been
previously done it has been done on adults or children from 10 years old and up. In order
to do any experiment there is always a fixed process to follow:

Preprocess Data Experiment
Analyse and

Interpret Results

6.2 Preprocess of Data

First of all the data should be preprocessed, in our case as explained in Chapter 5 we cropp
the images to have less background in the image and center them more in the face, and we
delete the outliers that appear because of this process. In our case, we are going to do 2
experiments, one with the full dataset, and another one with one dataset containing all the
images of the children with the mouth open, and another one containing all the images of
the children with the mouth closed. So, this two datasets were also created.

45

46 Experiments

6.3 Experimentation

The experiments were all realized in Weka with the .csv files obtained from Matlab. Dif-
ferent classifieres were tried both in the full dataset and in the dataset divided in two, and
in the next section the most relevant ones were used to make the comparation with the
rest of them and with the one in the original article that was used with the DataBase.

However, in the original article, to detect the emotions and make the statistics, 100 un-
trained adults were used, and they were showed the full set of images twice. These adults
were undergraduate students (half male and half female and the M=21.2 years) from the
Rutgers University-Newark campus. These 100 participants were 17% African Ameri-
can, 27% Asian, 30% White and 17% Latino (the other 9% did not indicate their race or
ethnicity).

6.4 Results and Analysis

6.4.1 Full dataset

The results by humanas and by classification in the full dataset were the following ones:

Mean correct
T1

Mean correct
T2

Std. deviation
T1

Std. error of
mean T1

Cronbach′s
alpha (T1, T2)

0.66 0.66 0.47 0.001 0.77

Table 6.2: Human classification general results

Name of classifier Correctly classified Mean abs. error Outliers in

J48 10-fold cross validation 39.0428% 0.1778 Yes
SVM (Lin. Kernel) 10-fold cross val. 63.1402% 0.1053 Yes
SVM 10-fold cross val. Sigm. Kernel 63.6824% 0.10308 No
SVM 10-fold cross val. Lineal Kernel 55.1899% 0.128 No
K-Means with Crossvalidation 39.417% 0.2108 No
J48 Crossvalidation 38.0912% 0.18 No

Table 6.3: Machine Classification general results

6.4 Results and Analysis 47

Emotion Precission Angry Disgust Fear Happy Neutral Sad Surprise
J48 10-fold cross

validation
0.446 0.385 0.285 0.419 0.543 0.211 0.2

SVM (Linear Kernel)
10-fold cross val.

0.562 0.584 0.576 0.73 0.729 0.571 0.467

SVM 10-fold cross
validation Sigm. Kernel

0.593 0.597 0.59 0.73 0.708 0.569 0.456

SVM 10-fold cross
validation Linear Kernel

0.6 0.416 0.611 0.662 0.592 0.611 0.471

K-Means with
Crossvalidation

0.456 0.468 0.346 0.398 0.376 0 0.533

J48 Crossvalidation 0.411 0.33 0.233 0.507 0.507 0.198 0.299

Humans Time 1 0.66 0.64 0.42 0.85 0.66 0.62 0.72

Humans Time 2 0.65 0.66 0.49 0.83 0.65 0.63 0.65

Table 6.5: Each emotion results humans and machine classification

As seen in the 6.2 Table, the maximum mean value obtained with human classification is
66% whereas with machine classification the maximums are between 55% and 63.68%,
being the best results the ones classified with SVM in combination with another classi-
fier. It is surprising to check that even though there are some outliers that should be giving
problems the SVM (Linear Kernel) 10-fold cross val, obtains the 2nd best possition in cor-
rectly classifing all the images but since the outliers are were only 8 photos, it is possible,
that this fact is not affecting much. It is also surprising to check that even though the SVM
10-fold cross validation Sigmoid Kernel obtains the most corretly classified instances, it
is also the one with the lowest mean absolute error. Regarding the emotions, in the human
in the first tryout the classification of the emotions was slightly better than in the second
one, but there were no substantial changes. It was not suprising to see that highest values
of most of the emotions were in the classifications done with SVM. Nevertheless, it was
not expected to see that the values obtained with the SVMs are more normalized than the
ones obtained with the human classification, furthermore, it was also remarkable that the
fear emotion was really well classified by the machines, but the humans failed to classified

48 Experiments

it so accurately, but in the case of the suprise it is the other way around. This is probably
becasue Surprise and Fear are two emotions that have FACS points in common and are
easy to mistake them.

6.4.2 Open and close mouth dataset

The experiment with two datasets is to check whether it is easier for the to detect the
emotions in pictures with the mouth opened, with the mouth closed or if there is not a big
difference at all. The results obtained in the open mouth dataset were the following ones:

Name of classifier Correctly classified Mean abs. error Outliers in
SVM Linear kernel. Crossvalidation 61.125% 0.1111 No
J48 (trees) Crossvalidation 34.75% 0.1989 No
KNN 7 classees Crossvalidation 31.875% 0.2168 No

Table 6.6: Machine Classification Subset mouth opened general results

Emotion Precission
Open Mouth

Angry Disgust Fear Happy Neutral Sad Surprise

SVM Linear kernel.
Crossvalidation

0.563 0.53 0.556 0.705 0.663 0.29 0.802

J48 (trees)
Crossvalidations

0.258 0.406 0.212 0.292 0.365 0.111 0.527

KNN 7 classes
Crossvalidation

0.321 0.438 0.233 0.347 0.278 0.043 0.769

Human Time 1 0.66 0.73 0.38 0.74 0.4 0.45 0.72

Human Time 2 0.68 0.77 0.46 0.73 0.4 0.47 0.65

Table 6.8: Subset mouth opened each emotion results classified by humans and machine

The results with the open mouth dataset were worse that both the ones obtained with the
humans and the best ones obtained with SVM in the full database. However, the best case
in this subset was still obtained with SVM combined with another classifier. Nevertheless
in this case specially the sad emotion is really low compared to the one obtained by the
human classification or the ones in the full daatabase with SVM.

6.5 Conclusions 49

The results obtained by human in the closed mouth images dataset:

Name of classifier Correctly classified Mean abs. error Outliers in
KNN Crossvalidation 5 classes 31.5104% 0.2992 No
SVL Lineal Kernel. Crossvalidation 59.375% 0.1625 No
J48 (trees) Crossvalidation 38.8021% 0.2572

Table 6.9: Subset mouth closed general results in machine classification

Emotion Precission
Open Mouth

Angry Disgust Fear Happy Neutral Sad Surprise

KNN Crossvalidation 5
classes

0.614 - 0.17 0.307 0.305 0 -

SVL Lineal Kernel.
Crossvalidation

0.733 - 0.563 0.496 0.639 0.45 -

J48 (trees)
Crossvalidation

0.549 - 0.349 0.387 0.393 0.108 -

Human Time 1 0.66 0.54 0.45 0.93 0.86 0.75 -
Human Time 2 0.64 0.56 0.38 0.91 0.84 0.74 -

Table 6.11: Subset mouth closed each emotion results in human and machine classification

In the case of the subset with the mouth closed, the results are also worse than in the
full dataset results, but they are even worse than the results in the mouth open images
database, and it happens the same as before, the results with the SVM combined with
another classifier are the ones having the better results.

6.5 Conclusions

Taking into consideration that the results that we are comparing with are results not cre-
ated by a machine, they are created by humans, which tend to recognize emotions so
precisely, the results are pretty good, because the results with the SVN Linear Kernel
with crossvalidation (63% of precission), which are the best results we could get, are re-
ally close to the results of the people (66%). Cropping the image and getting it closer to
the camera improved in a way the results we had at first which were around 40%. How-
ever, it must be mentioned that due to the newness of the database, that there is not further
research in people so young and that the fact of extracting emotions is a complex problem,

50 Experiments

the results should be compared in further investigations. It was also interesting to see that
the used pretrained network was trained with a database of faces of older people, and even
thought the results were not that bad, and it is important to notice that as people get older,
the facial features modify legerely over time, whereas the face of a children has nearly
no expressions in the skin. It would be also interesting if instead of using a pretrained
model like the one used in the experiments in here, further investigations train a neural
network with images of faces of children, to see if the results can even pass the ones from
the humans. Moreover, not using only faces of children with the head properly centered,
but having also photos of children with the head a bit tilted to one side would be also
interesting.

Appendixes

51

A. APPENDIX

Planification

A.1 Description of the concrete objectives of the project

A.1.1 Characterization of the product to develop

The products to be developed are a study of the basic resources for the analysis and
classification of child expressions and a fully functional program that after being trainned
with some photos of children, when new photos of children are shown it can classify in
which percentage this children are happy, surprised, afraid, disgusted, angry and sad,.

A.1.2 Characterization of the environment in which will be distributed

The documentation with the results of the fully developed product and the analysis of the
basic resources for the analysis and classification of child expressions and the developed
software itself will be uploaded in an electronic format to ADDI. And after being pre-
sented to the thesis comitte and being accepted by it, the full product will be published in
the webpage of ADDI.

53

https://addi.ehu.es/handle/10810/1650

54 Attachment A

A.1.3 License of the product

All the documentation and the code created for this activity will be distributed under the
Creative Commons Attribution license: Licensees may copy, distribute and perform the
work and make derivative work based on it only if they give the author or licensor the
credits in the manner specified by these. If any of this material is used (either in printed
or electronic format), the authors must be acknowledged this way:

• The full names of the original authors must be recognized.

• A link to where either the documentation, the code of both were downloaded (ADDI)
must be mentioned.

The attributtion and acknowledment for the development of this thesis will be mentioned
in the Bibliography section.

A.2 Identification of the deliverables and its characteristics

A.2.1 Related to the object of the project itself

• Fully functional expression recognition software

• Study of the basic resources sfor the analisis of emotions from the expressions in
children faces

• Slides for presenting the project in front of the thesis comitte

• Report of the project

A.2.2 Related to the management of the project

• Planification document which should contain the following:

– Scope of the project

– The deliverables and their characteristics

– WBS (Work Breakdown Structure of the project

Planification 55

– Timetable of the project

– Plan of quality

– Adquisitions

This document should be available for the 18th of february at 15:00

• Document of monitoring and control of the project. It should contain the activities
done, when they have been done and the effort (time) spend in each of them. It
should also contain:

– Significant deviations between the expected time to spend and the real time
spend

– Planification, execution, management and control of the adquisitions

A.3 WBS (Work Breakdown Structure

A.4 Quality

A.4.1 Minimum Quality

• The software is fully working

• The sofware recognizes the percentage of each of the 6 emotions in the given photos

• The software classifies the images depending on the percentages of the emotions

56 Attachment A

• The analysis contains the basic resources for the analysis of emotions from the
expressions on children faces

A.4.2 Process to secure the quality

All the deliverables for this project; the ones related to the management as well as the
working software and the analysis must be finnished a week before the limit of the delivery
day. That gives time the director of the thesis to have a revision and a general analysis with
a margin of time, in case any modification is needed. Also the weekly meetings with the
director make it possible to have a control of how the project is going, in case some big
deviation or problem is happening.

A.5 Study of analysis of the different databases and develop-

ing environment to be used

After considering some alternatives of Databases, the chosen database is CAFE. This de-
cision was based on this database being free and it included photos of children frontally.
Some other databases like Face Databases were found, but they contained images of
adults, not children, or they did not contain faces of emotions, so they were not appropi-
ate for this project. All the changes necessary for the analysis of the DB will be done
in Matlab, and this will be connected to MySQL to make the operations easier. All the
experiments will be done in WEKA.

A.6 Description of the tasks to be done

Planification:

• Evaluation of the resources, concretion of the scope, analysis of risks, minimum
quality...

• Analisis of the created software

• Management of the obtaining of the database

• Write the planification

Planification 57

Software development:

• Study the best development environment

• Adquisition of the database

• Check the requirements of the adquired database

Monitoring and control:

• Monitoring and control of the tasks

Study of basic resources for expression analysis:

• Analysis of bibliography

Report of the project:

• Explanation of the project itself

• Theory about the project and how it is applied

A.7 Milestones diagram

First prevision

58 Attachment A

Second prevision Because of different problems happened during the month of may and
june, such as problems with the use of the DB and with the experiments we decided to
change the first prevision and to make a second one in which we would present the project
on the month of September. As a consecuence the software development was made during
the months of june, july and beginning of august; the project report and the monitoring
control document were made for the beginning of september, and the slides were made
for the beginning of september also.

A.8 Management of changes

At any point in the project it is possible that some kind of change it it is needed, so it is
necessary to have a good reaction plan, as it is necessary to do it with the risks.

• There will be a margin every week in case more hours than the planned ones are
needed

A.9 Identification of risks

• The legal difficulties for obtaining images of children

• The possibility of having a lot of knowledge in the chosen development environ-
ment

• The possibility of not finding pre-developed software, plugin or similar that has
fully working convolutional neural networks

A.10 Mitigation of risks

There will probably be some kind of database that has images of children faces, and
with the right management of permits that should be fixed. Regarding not having a lot of
knowledge in the chosen environment it is assumable since similar tools must have been
used during the previous study years. Furthermore, it have been taken into account to put
some hours for studying this environment, and if necessary there is an extra margin to
learn it. Last, the convolutional newral networks, it is a really famous topic so, some of

Planification 59

the open communities in the Internet should have develop some kind of plugin to work
with this, and even if there is not any code for the chosen environment, this other work
can be adapted to work in the environment.

A.11 Viability

If as stated with the thesis director, 5 hours a day are spent working in the project, that
would made 300 hours, which is in the range of time that should be spent in the project.
Even if more time is needed, there is an extra time that can be used without exceeding the
maximum time to be spent in the project. So, after analysing the risks, the only one that
appears are the restrictions of having images of children, but if an appropiate database
is obtained, and the tasks are done on time according to what has been stated in this
document, the project is viable and result should be more than satisfactory.

A.12 Estimation of time

60 Attachment A

Name of task Esstimated
hours

Real hours

Software
Matlab instalation 2h 2h
Neural Networks
Get bibliography of NN 2h 3h
Document the theory 50h 70h
Meetings 10h 11h
Monitoring and control 3h 4h
Convolutional Neural Networks
Get bibliography of CNN 3h 4h
Document the theory 50h 60h
Meetings 15h 15h
Monitoring and control 4h 4h
Facial Expression Recognition
Get bibliography of Expression Recognition 3h 4h
Document the theory 40h 50h
Meetings 2h 2h
Monitoring and control 3h 3h
Database
Study of the necessary features 3h 4h
Search for DB 3h 4h
Permissions for DB 2h 2h
Connectivity MySQL and Matlab 5h 10h
Check DB and prepare it for the project 15h 20h
Experiments
Prepare files for WEKA 20h 20h
Do experiments 10h 15h
Analysis 15h 15h
Meetings 20h 20h
Monitoring and control 5h 5h
Appendices
Planification 10h 15h
Total 295h 362h

Table A.2: Total hours of the project

B. APPENDIX

Matlab Files

B.1 Check Database .m file

1 %%

2 % Script to see errors in DB

3 %

4 % Column used is added in sortable

5 % Column usedones is added in spreadsheet

6 % All the elements in spreadsheet are checked to

7 % see if all the elements are used.

8 % Both colums are deleted after that

9 %%

10

11 close all;

12 clear all;

13 clc;

14

15 db_name = 'faces_db';

16

17 % Specific data

18 sornewcolname = {'used'};

61

62 Attachment B

19 sortablename = 'sortable';

20

21 % General data

22 spnewcolname = {'usedones'};

23 sptablename = 'spreadsheet';

24

25 % Connect to database

26 conn = database(db_name, 'root', 'root');

27 if (isempty(conn.Message))

28 disp('Database connected');

29 else

30 disp('Cannot connect database');

31 disp(conn.Message);

32 return; % stop running

33 end

34

35 % Import whole table of info of each image

36 sql = sprintf('SELECT * FROM `%s`', sortablename);

37 incurs = exec(conn, sql);

38 % Import data into workspace from cursor object

39 incurs = fetch(incurs);

40 % Get data from database

41 indata = get(incurs, 'Data');

42

43 % Add new column in img detailed info table

44 sql2 = sprintf('ALTER TABLE `%s` ADD `%s` VARCHAR(10)',

sortablename, sornewcolname{1,1});

45 exec(conn, sql2);

46 fprintf('In table %s: column `%s` ADDED\n', sortablename,

sornewcolname{1,1});

47

48 [sorsizey, sorsizex] = size(indata);

49

50 % Import whole table of general data

Matlab Files 63

51 sql3 = sprintf('SELECT * FROM `%s`', sptablename);

52 incurs2 = exec(conn, sql3);

53 incurs2 = fetch(incurs2);

54 indata2 = get(incurs2, 'Data');

55

56 % Add new column in general info table

57 sql4 = sprintf('ALTER TABLE %s ADD `%s` VARCHAR(10)', sptablename,

spnewcolname{1,1});

58 exec(conn, 'ALTER TABLE spreadsheet ADD usedones VARCHAR(10)');

59 fprintf('In table %s: column `%s` ADDED\n', sptablename,

spnewcolname{1,1});

60

61 [spsizey, sizex] = size(indata2);

62

63 % Go through the elements in the general table, check if they are

in the

64 % specific table. Puts in the column 'Yes' if they are used, 'No

if not

65 for i=1:spsizey

66 %fprintf('i: %d\n', i);

67 participantid = indata2{i,5};

68 %fprintf('aux: %s\n', participantid);

69

70 sql5 = sprintf('SELECT `Participant` FROM %s WHERE `

Participant`=''%s''', sortablename, participantid);

71 curres = exec(conn, sql5);

72 curres = fetch(curres);

73 resdata = get(curres, 'Data');

74

75 [ressizey, ressizex] = size(resdata);

76 %fprintf('num elems: %d\n', ressizey);

77 if (ressizey>0)

78 used = 'Yes';

79 else

64 Attachment B

80 used = 'NO';

81 end;

82

83 sqlStr6 = sprintf('WHERE `participant`=''%s''', participantid)

;

84 update(conn, sortablename, sornewcolname, cellstr('Yes'),

sqlStr6);

85 sqlStr7 = sprintf('WHERE `participant-ID`=''%s''',

participantid);

86 update(conn, sptablename, spnewcolname, cellstr(used), sqlStr7

);

87 end;

88

89 % Recount the elements in general table to check if sizes match

90 sqlStr8 = sprintf('SELECT COUNT(*) FROM `%s` WHERE `%s`=''Yes''',

sptablename, spnewcolname{1,1});

91 fincurs = exec(conn, sqlStr8);

92 fincurs = fetch(fincurs);

93 result = get(fincurs, 'Data');

94

95 if (result{1,1}==157)

96 fprintf('%s table is OKAY\n', sptablename);

97 else

98 fprintf('ERROR in %s\n', sptablename);

99 end;

100

101 % Recount the elements in specific table to check if sizes match

102 sql9 = sprintf('SELECT COUNT(*) FROM %s WHERE `%s`=''Yes''',

sortablename, sornewcolname{1,1});

103 fincurs2 = exec(conn, sql9);

104 fincurs2 = fetch(fincurs2);

105 result2 = get(fincurs2, 'Data');

106

107 if (result2{1,1}==1192)

Matlab Files 65

108 fprintf('%s table is OKAY\n', sortablename);

109 else

110 fprintf('ERROR in %s\n', sortablename);

111 end;

112

113 % delete created columns in both tables

114 sql10 = sprintf('ALTER TABLE %s DROP %s', sortablename,

sornewcolname{1,1});

115 exec(conn, sql10);

116 fprintf('In table %s: column `%s` REMOVED\n', sortablename,

sornewcolname{1,1});

117 sql11 = sprintf('ALTER TABLE %s DROP %s', sptablename,

spnewcolname{1,1});

118 exec(conn, sql11);

119 fprintf('In table %s: column `%s` REMOVED\n',sptablename,

spnewcolname{1,1});

120

121

122 % close all cursor connections

123 close(incurs);

124 close(incurs2);

125 close(curres);

126

127 close(fincurs);

128 close(fincurs2);

129 fprintf('All cursor connections closed\n');

130

131 % close database connection

132 close(conn);

133 fprintf('Database connection closed\n');

66 Attachment B

B.2 Check All Images .m file

1 %%

2 % Script to relate folders to identifiers

3

4 % Gives each line in specific info table the real

5 % file name in the sessions folder which contains

6 % all the image files

7 %%

8

9 close all;

10 clear all;

11 clc;

12

13 db_name = 'faces_db';

14

15 % Specific data

16 sortablename = 'sortable';

17

18 % General data

19 sptablename = 'spreadsheet';

20

21 % New column with the name of the files in the folders

22 colname = {'Real Filename'};

23

24 % Path to the sessions folders

25 address = 'C:\Users\Usuario\Desktop\DB\IMPORTAR_2\sessions';

26

27 % Connect to database

28 conn = database(db_name, 'root', 'root');

29 if (isempty(conn.Message))

30 disp('Database connected');

31 else

Matlab Files 67

32 disp('Cannot connect database');

33 disp(conn.Message);

34 return; % stop running

35 end

36

37 sql = sprintf('ALTER TABLE %s ADD `%s` varchar(120)', sortablename

, colname{1,1});

38 exec(conn, sql);

39 fprintf('In table %s: column `%s` ADDED\n', sortablename, colname

{1,1});

40

41 [m n] = size(sortablename);

42

43 % Get folder names of directories

44 f = fullfile(address);

45 mydir = dir(f);

46 directoryNames = {mydir([mydir.isdir]).name};

47 directoryNames = directoryNames(~ismember(directoryNames,{'.','..'

}));

48

49 colnameaux = strcat('`', colname, '`');

50

51 % Go through the folders to get the names of the images inside it

52 for i=1:numel(directoryNames)

53 fprintf('Directory: %s\n', directoryNames{1,i});

54 auxfile = directoryNames{1,i};

55

56 % Get files that end with .jpg

57 foldaddress = strcat(address, '\', auxfile, '*.jpg');

58 f2 = fullfile(foldaddress);

59 foldir = dir(f2);

60

61 % Get the participant id from the general info table

68 Attachment B

62 sql2 = sprintf('SELECT `participant-ID` FROM %s WHERE `session

-id`=%s', sptablename, auxfile);

63 curs = exec(conn, sql2);

64 curs = fetch(curs);

65 participant = get(curs, 'Data');

66 participant = participant{1,1};

67

68 % Format the participant string to make queries

69 coma = '''';

70 participant = strcat(coma, participant, coma);

71

72 % Go through the images in the current folder

73 for filej = foldir'

74 imname = filej.name;

75 fprintf('File: %s\n', imname);

76 % Get common part of the im name

77 [token, remain] = strtok(imname, '-');

78 remainaux = remain(2:length(remain)-4);

79

80 % Format remainaux(filename) for query

81 coma = '''';

82 filename = strcat(coma, remainaux, coma);

83

84 % Get the IRT code to know which line has to be given the

file name

85 sql3 = sprintf('SELECT `IRT Code` FROM %s WHERE `

Participant`=%s AND LOCATE(%s, `Filename`)>0', sortablename,

participant, filename);

86 code = exec(conn, sql3);

87 code = fetch(code);

88 codedata = get(code, 'Data');

89

90 sql4 = sprintf('WHERE `IRT Code`=%d', codedata{1,1});

91

Matlab Files 69

92

93 update(conn, sortablename, colnameaux, cellstr(imname),

sql4);

94 close(code);

95 end;

96 end;

97

98 % Close all data connections

99 close(curs);

100 fprintf('All cursor connections closed\n');

101

102 % Close database connection

103 close(conn);

104 fprintf('Database connection closed\n');

B.3 Crop images .m file

1 %%

2 % Script to crop all the original images, create

3 % the same folder structure and add the new

4 % information to the specific information table

5 %%

6

7 close all;

8 clear all;

9 clc;

10

11 db_name = 'faces_db';

12

13 % Specific data

14 sortablename = 'sortable';

15

70 Attachment B

16 % General data

17 sptablename = 'spreadsheet';

18

19 % Column with the name of the files in the folders

20 colname = {'Real Filename'};

21

22 % New column with the cropped image file names

23 cropname = {'Cropped Filename'};

24

25 % Path to the sessions folders

26 address = 'C:\Users\Usuario\Desktop\DB\IMPORTAR_2\sessions';

27 cropaddress = strcat(address, '_cropped');

28

29 % Connect to database

30 conn = database(db_name, 'root', 'root');

31 if (isempty(conn.Message))

32 disp('Database connected');

33 else

34 disp('Cannot connect database');

35 disp(conn.Message);

36 return; % stop running

37 end

38

39 % Create folder for cropped images

40 mkdir(cropaddress);

41

42 sql = sprintf('SELECT * FROM %s', sortablename);

43 sorcurs = exec(conn, sql);

44

45 % Import data into workspace from cursor object

46 sorcurs = fetch(sorcurs);

47

48 % Get data from database

49 sordata = get(sorcurs, 'Data');

Matlab Files 71

50

51 [sorsizey sorsizex] = size(sordata);

52

53 sql2 = sprintf('SELECT * FROM %s', sptablename);

54 spcurs = exec(conn, sql2);

55 spcurs = fetch(spcurs);

56 spdata = get(spcurs, 'Data');

57

58 [spsizey spsizex] = size(spdata);

59

60 sql3 = sprintf('ALTER TABLE %s ADD `%s` VARCHAR(100)',

sortablename, cropname{1,1});

61 exec(conn, sql3);

62

63 coma = '''';

64

65 auxcropname = strcat('`', cropname, '`');

66

67 %go throught the images to create the crop images

68 for i=1:spsizey

69 fprintf('i: %d\n', i);

70 foldername = spdata{i,1};

71 participant = spdata{i,5};

72 participantfsql = strcat(coma, participant, coma);

73

74 % Get the full name of the original file

75 sql3 = sprintf('SELECT `Real Filename` FROM %s WHERE `

Participant`=%s', sortablename, participantfsql);

76 filescurs = exec(conn, sql3);

77 filescurs = fetch(filescurs);

78 filesdata = get(filescurs, 'Data');

79

80 % Create folders for the images following original folder

structure

72 Attachment B

81 imcropfoldaddress = strcat(cropaddress, '\', int2str(

foldername));

82 mkdir(imcropfoldaddress);

83

84 sizefilesdata = numel(filesdata);

85

86 % For each image in the folder i

87 for j=1:sizefilesdata

88 fprintf('j: %d\n', j);

89 imaddress = strcat(address, '\', int2str(foldername), '\',

filesdata{j,1});

90 im = imread(imaddress);

91

92 % Convert to single image

93 im_ = im2single(im);

94 fprintf(' Single image: %s\n', filesdata{j,1});

95

96 % Detect face and crop image

97 faceDetect = vision.CascadeObjectDetector();

98 bbox = step(faceDetect, im_);

99

100 % If the image is too big, bbx is empty, so reduce the

size of the

101 % image

102 while (numel(bbox)<1)

103 im_ = imresize(im_, 0.95);

104 bbox = step(faceDetect, im_);

105 end;

106

107 % Rectify the bboxes that have more than one answer

108 [ysize xsize] = size(bbox);

109 if (ysize>1)

110 bbox = bbox(ysize, :);

111 end;

Matlab Files 73

112

113 % Crop image of face

114 face = imcrop(im_, bbox);

115

116 auxfaceaddress = strcat(imcropfoldaddress, '\crpd',

filesdata{j,1});

117 newname = strcat('crpd', filesdata{j,1});

118

119 % Create new jpg image

120 imwrite(face, auxfaceaddress);

121 fprintf(' Image writed: %s\n', newname);

122

123 auxfilesdata = strcat(coma, filesdata{j,1}, coma);

124 sql4 = sprintf('WHERE `Real Filename`=%s', auxfilesdata);

125

126 % Add the new filename to the table

127 update(conn, sortablename, auxcropname, cellstr(newname),

sql4);

128 fprintf(' After update\n');

129

130 %clear variables

131 clear imaddress im im_ y x z bbox ysize xsize face

auxfaceaddress newname auxfilesdata sql4;

132 end;

133

134 % Close curs to folder

135 close(filescurs);

136 end;

137

138 % close database connection

139 close(conn);

140 fprintf('Database connection closed\n');

74 Attachment B

B.4 Save features

1 %%

2 % Script to save all features after applying the

3 % NN to all the images

4

5 % It creates a new table with 2 columns; 1 to

6 % relate it ith the rest of the tables, and another

7 % one with the name of the variable containing

8 % the variable with the features.

9 %%

10

11 close all;

12 clear all;

13 clc;

14

15 % Name of the database

16 db_name = 'faces_db';

17

18 % Specific data table

19 sortablename = 'sortable';

20

21 % General data table

22 sptablename = 'spreadsheet';

23

24 % New table name, contains results

25 newtable = 'results';

26

27 % Column contains name of the results variable

28 name = 'Result Variable';

29

30 % Column name to identify new table in specific table

31 name2 = 'result-id';

Matlab Files 75

32

33 % Column of cropped images

34 cropcolum = 'Cropped Filename';

35

36 % Path to the cropped sessions folders

37 address = 'C:\Users\Usuario\Desktop\DB\IMPORTAR_2\sessions_cropped

';

38

39 % Connect to database

40 conn = database(db_name, 'root', 'root');

41 if (isempty(conn.Message))

42 disp('Database connected');

43 else

44 disp('Cannot connect database');

45 disp(conn.Message);

46 return; % stop running

47 end

48

49 % Handle the identifier and create table

50 % Create address of the variables column in new table

51 % Add identifier of the new table in the specific table

52 sql = sprintf('CREATE TABLE %s (`%s` VARCHAR(50) NULL, `%s`

VARCHAR(100) NULL)', newtable, name2, name);

53 exec(conn, sql);

54

55 % Get data of images to loop over them

56 sql2 = sprintf('SELECT `session-id`,`participant-ID` FROM %s',

sptablename);

57 curs = exec(conn, sql2);

58 curs = fetch(curs);

59 sprdata = get(curs, 'Data');

60

61 [y x] = size(sprdata);

62

76 Attachment B

63 % setup MatConvNet

64 run matlab/vl_setupnn

65

66 % load the pre-trained CNN

67 net = load('vgg-face.mat') ;

68

69 % Loop over the images

70 for i=1:y

71 fprintf('i: %d\n', i);

72 sql3 = sprintf('SELECT `%s`,`Filename` FROM %s WHERE `

Participant`=%s', cropcolum, sortablename, strcat('''', sprdata

{i,2}, ''''));

73 curs2 = exec(conn, sql3);

74 curs2 = fetch(curs2);

75 sordata = get(curs2, 'Data');

76

77 [y2 x2] = size(sordata);

78 foladdress = strcat(address, '\', int2str(sprdata{i,1}));

79

80 for j=1:y2

81 fprintf('j: %d\n', j);

82 imaddress = strcat(foladdress, '\', sordata{j,1});

83

84 im = imread(imaddress);

85 % note: 255 range

86 im_ = single(im) ;

87 % resize to 224x224 (expected input size in the network)

88 im_ = imresize(im_, net.meta.normalization.imageSize(1:2))

;

89 % normalize

90 im_ = bsxfun(@minus,im_,net.meta.normalization.

averageImage) ;

91 % apply net

92 res = vl_simplenn(net, im_) ;

Matlab Files 77

93 % extract 4K features

94 feat4K = reshape(res(end-2).x, 4096, 1);

95 % apply L2 norm to features

96 features = feat4K / norm(feat4K, 2);

97 % Convert into column

98 trfeature = features';

99

100 % Save the feature column in the table and in the cropped

image forlder

101 varname = strcat(sordata{j,2}, '_var.mat');

102 fprintf('Varname %s', varname);

103 varaddress = strcat(foladdress, '\', varname);

104 save(varaddress, 'trfeature');

105

106 % Insert the identifier in res table

107 fastinsert(conn, newtable, cellstr(strcat('`', name2, '`')

), cellstr(sordata{j,2}));

108

109 % Insert variable name in res table

110 sql4 = sprintf('WHERE `%s`=%s', name2, strcat('''',

sordata{j,2}, ''''));

111 update(conn, newtable, cellstr(strcat('`', name, '`')),

cellstr(varname), sql4);

112 end;

113

114 % Close pointer

115 close(curs2);

116 end;

117

118 % Close pointer

119 close(curs);

120 fprintf('All cursor connections closed\n');

121

122 % Close database connection

78 Attachment B

123 close(conn);

124 fprintf('Database connection closed\n');

Bibliography

[Ambady and Rosenthal, 2005] Ambady, N. and Rosenthal, R. (2005). Thin slices of ex-
pressive behavior as predictors of interpersonal consequences: A meta-analysis. Psy-

chological Bulletin, pages 256–274.

[apiexamples.com, 2015] apiexamples.com (2015). Tanh function.

[Bartlett et al., 2003] Bartlett, M., Littlewort, G., Braathen, B., Sejnowski, T., and Movel-
lan, J. (2003). A prototype for automatic recognition of spontaneous facial actions.
Advances in Neural Information Processing Systems, pages 1271–1278.

[Bartlett et al., 2005] Bartlett, M., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., and
Movellan, J. (2005). Recognizing facial expression: machine learning and application
to spontaneous behavior. Proc. IEEE Int Conf. Computer Vision and Pattern Recogni-

tion, pages 568–573.

[Bartlett et al., 1996] Bartlett, M., Viola, P., Sejnowski, T., Golomb, B., Larsen, J.,
Harger, J., and Ekman, P. (1996). Classfying facial actions. Advances in Neural Infor-

mation Processing Systems 8, pages 823–829.

[Buranajun et al., 2007] Buranajun, P., Sasananan, M., and S., S. (2007). Prediction of
product design and development success using artificial neural network.

[Cohn et al., 2004a] Cohn, J., Reed, L., Ambadar, Z., Xiao, J., and Moriyama, T. (2004a).
Automatic analysis and recognition of brow actions in spontaneous facial behavior.
Proc. IEEE Int Conf. Systems, Man and Cybernetics, pages 610–616.

[Cohn et al., 2004b] Cohn, J., Reed, L., Ambadar, Z., Xiao, J., and Moriyama, T. (2004b).
Automatic analysis and recognition of brow actions in spontaneous facial behavior.
Proc. IEEE Int Conf. Systems, Man and Cybernetics, pages 610–616.

79

80 Attachment B

[Demuth and Beale, 1993] Demuth, H. and Beale, M. (1993). Neural network toolbox
for use with matlab.

[Donato et al., 1997] Donato, G., Bartlett, M., Hager, J., Ekman, P., and Sejnowski, T.
(1997). Classifying facial actions. IEEE Trans. Pattern Analysis and Machine Intelli-

gence, pages 974–089.

[Donato et al., 1999] Donato, G., Bartlett, M., Hager, J., Ekman, P., and Sejnowski, T.
(1999). Classifying facial actions. IEEE Trans. Pattern Analysis and Machine Intelli-

gence, pages 974–989.

[Ekman, 1992] Ekman, P. (1992). Facial expressions of emotion: New findings, new
questions. Psychological science, pages 34–38.

[Ekman et al., 2002] Ekman, P., Friesen, W., and Hager, J. (2002). Facial action coding
system, a human face.

[Friesen and Ekman, 1976] Friesen, W. V. and Ekman, P. (1976). Pictures of facial affect.
Consulting psychologists press.

[Gokturk et al., 2002] Gokturk, S., Bouguet, J., Tomasi, C., and Girod, B. (2002). Model-
based face tracking for view independent facial expression recognition. Proc. IEEE Int

Conf. Face and Gesture Recognition, pages 272–278.

[Gross et al., 2006] Gross, R., Matthews, I., and Baker, S. (2006). Active appearance
models with occlusion. J. Image and Vision Computing, pages 593–604.

[Huang et al., 2015] Huang, G., Huang, G., Song, S., and You, K. (2015). Trends in
extreme learning machines: A review. Nural Networks, 61:32–48.

[Kanade et al., 2000] Kanade, T., Cohn, J., and Tian, Y. (2000). Comprehensive database
for facial expression analysis. Proc. IEEE Int Conf. Face and Gesture Recognition,
pages 46–53.

[LeCun and Yann, 1998] LeCun and Yann (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEE 86.11, pages 2278–2324.

[Lien et al., 1998] Lien, J., Kanade, T., Cohn, J., and Li, C. (1998). Subtly different
facial expression recognition and expression intensity estimation. Proc. IEEE Int Conf.

Computer Vision and Pattern Recognition, pages 853–859.

[LoBue, 2014] LoBue, V. (2014). The child affective facial expression (cafe) set.

BIBLIOGRAPHY 81

[Lobue and Thrasher, 2015] Lobue, V. and Thrasher, C. (2015). The child affective fa-
cial expression (cafe) set: Validity and reliability from untrained adults. Frontiers in

psychology, 5:1532.

[Lyons et al., 1999] Lyons, M., Budynek, J., and Akamatsu, S. (1999). Automatic clas-
sification of single facial images. IEEE Trans. Pattern Analysis and Machine Intelli-

gence, pages 1357–1362.

[Moghaddam and Pentland, 1997] Moghaddam, B. and Pentland, A. (1997). Probabilis-
tic visual learning for object recognition. IEEE Trans. Pattern Analysis and Machine

Intelligence, pages 696–710.

[Pantic and Barlett, 2007] Pantic, M. and Barlett, M. (2007). Machine analysis of facial
expressions. I-Tech Education and Publishing, pages 377–416.

[Pantic and Patras, 2005] Pantic, M. and Patras, I. (2005). Detecting facial actions and
their temporal segments in nearly frontal-view face image sequences. Proc. IEEE Int

Conf. on Systems, Man and Cybernetics, pages 3358–3363.

[Pantic et al., 1998] Pantic, M., Rothkrantz, L., and Koppelaar, H. (1998). Automation of
non-verbal communication of facial expressions. Proc. Conf. Euromedia, pages 86–93.

[Pantic et al., 2005] Pantic, M., Sebe, N., Cohn, J., and Huang, T. (2005). Affective mul-
timodal human-computer interaction. Proc. ACM Int Conf. on Multimedia, pages 669–
676.

[Parkhi et al., 2015] Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep face
recognition. British Machine Vision Conference.

[Picard, 1997] Picard, R. (1997). Affective computing. MIT Press.

[Raj, 2016] Raj, B. (2016). Convolution example.

[Rowley et al., 1998] Rowley, H., Baluja, S., and Kanade, T. (1998). Neural network-
based face detection. IEEE Trans. Pattern Analysis and Machine Intelligence, pages
23–38.

[Schneiderman and Kanade, 2000] Schneiderman, H. and Kanade, T. (2000). A statis-
tical model for 3d object detection applied to faces and cars. Proc. Conf. Computer

Vision and Pattern Recognition, pages 746–751.

82 Attachment B

[Sun and Jin, 2016] Sun, W. and Jin, Z. (2016). Advances in Face Image Analysis: The-

ory and Applications. Bentham Books.

[Theodoridis and Koutroumbas, 2008] Theodoridis, S. and Koutroumbas, K. (2008). Pat-

tern Recognition. Academic Press.

[Turing Finance, 2014] Turing Finance (2014). 10 misconceptions about neural net-
works.

[Valstar and Pantic, 2006] Valstar, M. and Pantic, M. (2006). Fully automatic facial ac-
tion unit detection and temporal analysis. Proc. IEEE Int Conf. Computer Vision and

Pattern Recognition, page 149.

[Valstar et al., 2006] Valstar, M., Pantic, M., Ambadar, Z., and Cohn, J. (2006). Sponta-
neous vs. posed facial behavior: Automatic analysis of brow actions. Proc. ACM Int

Conf. Multimodal Interfaces.

[Vedaldi, 2015] Vedaldi, A. (2015).

[Vedaldi and Lenc, 2015] Vedaldi, A. and Lenc, K. (2015). Matconvnet – convolutional
neural networks for matlab. In Proceedings of the ACM Int. Conf. on Multimedia.

[Vukadinovic and Pantic, 2005] Vukadinovic, D. and Pantic, M. (2005). Fully automatic
facial feature point detection using gabor feature based boosted classifiers. Proc. IEEE

Int Conf. Systems, Man and Cybernetics, pages 1692–1698.

[Wikimedia Commons, 2008] Wikimedia Commons (2008). The logistic sigmoid func-
tion.

[Wikimedia Commons, 2015] Wikimedia Commons (2015). Max pooling.

[Yu et al., 2015] Yu, W.and Zhuang, F., He, Q., and Shi, Z. (2015). Learning deep repre-
sentations via extreme learning machines. Neurocomputing, 149:308–315.

[Zeiler and R., 2011] Zeiler, M. D. and R., F. (2011). Visualizign and understanding

convolutional networks.

[Zhous et al.,] Zhous, S., Chen, Q., and Wang, X. Active deep learning method for semi-
supervised sentiment classification. Neurocomputing, 120:536–546.

	Contents
	List of Figures
	List of Tables
	Introduction
	Theoretical Neural Networks
	Perceptrons
	Sigmoid neurons
	Tanh function
	Rectifier
	Radial Basis Function

	Architecture of Neural Networks
	Feedfordward Neural Networks
	Other architecures of Neural Networks

	Training of Feedfordward Neural Networks
	Cost Function
	Backpropagation
	Other training algorithms
	Random Initialization

	Convolutional Neural Networks
	Max Pooling
	Structure
	Feature Extractor
	General Description of MatConvNet
	Building Blocks
	Wrappers

	PreTrained Models

	Facial Expression Recognition
	Action Units and Emotions
	Posed Facial Displays vs. Spontaneous Facial Displays
	Facial Expression Configuration and Dynamics
	Facial Expression Intensity
	Facial Expression Intentionality
	Context Dependency
	Databases
	Face Detection and Feature Extraction
	Geometric Facial Feature Extraction and Facial Point Detection
	Appearance-based Facial Features
	Appearance-based Facial Affect Recognition
	Facial Muscle Action Detection
	Feature-based Methods for Coding AUs and their Temporal Segments
	Appearance-based Methods for AU Coding
	Automatic Detection of Pain
	Challenges, Opportunities and Recommendations

	DB for the project
	Motivation
	Paperwork
	Structure and content
	Connection of the Database with Matlab
	Check DB and prepare it for experiments

	Experiments
	Introduction
	Preprocess of Data
	Experimentation
	Results and Analysis
	Full dataset
	Open and close mouth dataset

	Conclusions

	Planification
	Description of the concrete objectives of the project
	Characterization of the product to develop
	Characterization of the environment in which will be distributed
	License of the product

	Identification of the deliverables and its characteristics
	Related to the object of the project itself
	Related to the management of the project

	WBS (Work Breakdown Structure
	Quality
	Minimum Quality
	Process to secure the quality

	Study of analysis of the different databases and developing environment to be used
	Description of the tasks to be done
	Milestones diagram
	Management of changes
	Identification of risks
	Mitigation of risks
	Viability
	Estimation of time

	Matlab Files
	Check Database .m file
	Check All Images .m file
	Crop images .m file
	Save features

	Bibliography

