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Abstract

Composition methods are useful when solving Ordinary Differential Equations (ODEs) as they
increase the order of accuracy of a given basic numerical integration scheme. We will focus on sy-
mmetric composition methods involving some basic second order symmetric integrator with different
step sizes [17]. The introduction of symmetries into these methods simplifies the order conditions
and reduces the number of unknowns. Several authors have worked in the search of the coefficients
of these type of methods: the best method of order 8 has 17 stages [24], methods of order 8 and
15 stages were given in [29, 39, 40], 10-order methods of 31, 33 and 35 stages have been also found
[24, 34]. In this work some techniques that we have built to obtain 10-order symmetric composition
methods of symmetric integrators of s = 31 stages (16 order conditions) are explored. Given some
starting coefficients that satisfy the simplest five order conditions, the process followed to obtain
the coefficients that satisfy the sixteen order conditions is provided.

Keywords: numerical methods for ODEs, symmetric numerical methods, symmetric composition,
same basic integrator.
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1. Introduction

We will consider the next Initial Value Problem (IVP):

y′(t) = f (t, y(t)) , y (a) = y0 (1.1)

where T = [a, b] is a finite interval and y : [a, b] → R
m and f : [a, b] × R

m → R
m are continuous

functions. When f satisfies the Lipschitz condition in the second variable, the problem (1.1) has a
unique solution in the interval T .

The above problem can be solved numerically, using a discretization of the time interval T = [a, b]
as follows:

a = t0 < t1 < . . . < tm−1 < tm = b (1.2)

We will denote ∆t = tj+1 − tj , ∀j = 0, . . . ,m − 1, by h = ∆t which is called the time step size.
Note that we are considering a constant time step size and therefore:

{

tj+1 = tj + h, ∀j = 0, . . . ,m− 1,

tj = t0 + j · h, ∀j = 0, . . . ,m
(1.3)

The numerical methods to solve (1.1) give an approximation of the analytical solution on each time
level defined above:

y(tj) ≈ yj , ∀j = 1, . . . ,m (1.4)

starting from y(a) = y0.

Many researches have been focused on developing convenient numerical methods with good ac-
curacy, good stability requirements or with the ability to preserve some conservation properties. In
this work we are interested in composition methods, which are particularly useful when integrating
numerically differential equations that have some special structure which is necessary to preserve.
A composition method is the result of composing different methods or the same method several
times. We will work with composition methods in which the same method is composed several
times using different step sizes. This basic method will be second order accurate and symmetric.
And also the composition will be developed symmetrically (this is described in depth in Section
3). Hence, we will work with symmetric composition methods of basic second order symmetric
integrators, centering our attention in the search of a technique to find the coefficients of a 10-order
and s = 31 stages method of this type.

The present work is organised as follows: in Section 2, a review about different numerical
methods to solve Initial Value Problems (IVPs) is done. In Section 3, we introduce symmetric
composition methods of symmetric integrators, providing some examples of these type of methods
and showing some numerical results. In Section 5, we introduce the first technique we have used to
find the coefficients of some 10-order and s = 31 stages methods. Our second technique is described
in Section 6. Finally, in Section 7, some conclusions and the main research goals for the future are
provided.
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2. Review of some numerical methods for Initial Value Problems

In this section we will review some of the numerical methods used to solve the problem (1.1).
The simplest numerical methods to obtain a solution of the problem (1.1) are the Euler’s methods:

• The explicit Euler method which is given by: yn+1 = yn + hfn, being fn = f(tn, yn).

• And the implicit Euler method: yn+1 = yn + hfn+1, being fn+1 = f(tn+1, yn+1).

Both methods are one-step methods, as only the differential equation and the numerical approxi-
mation at the previous time level are used to calculate the numerical approximation yn+1 at the
present time level tn+1. Another well known one-step method is the trapezoidal method, which is
second order accurate and unconditionally stable and it is given by the formula:

yn+1 = yn +
h

2
(fn + fn+1) (2.1)

Multistage methods constitute a variation of the one-step methods. They are one-step methods
that use the evaluation of the derivative in some intermediate points of the step, being the Runge-
Kutta methods an example of multistage methods. The general s-stage Runge-Kutta method for
the initial value problem (1.1) has the following form [7, 16, 27]:

yn+1 = yn + h
s∑

i=1

biki (2.2)

where:

ki = f(tn + cih, yn + h
s∑

j=1

aijkj), i = 1, 2, ...., s (2.3)

Constants aij , bi, ci are generally displayed in a table called Butcher array which can also be
written in matrix form, Table 1. Vectors b and c are s-dimensional and the matrix A has dimension
s× s:

b = [b1, b2, ..., bs]
T
, c = [c1, c2, ..., cs]

T
, A = [aij ]

c A

bT

Table 1: Butcher array in matrix form.

The Runge-Kutta methods can be explicit, implicit or half-implicit depending on the structure
of the matrix A = (aij). If A is strictly lower triangular, the method is explicit. If A is lower
triangular, the method is half-implicit and for a not lower triangular A, the method is implicit.
Gauss s-stage and 2s order formulae are an example of implicit Runge-Kutta methods [5]. Note
that for implicit Runge-Kutta methods the equation for ki (2.3) involves all the kj values. So in the
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case of implicit Runge-Kutta methods we have to solve an extended system of equations. If each
yn is a real number, then we have a system of s equations with s unknowns for each time step. If
each yn is a vector of dimension N , then we have a system of N · s equations in N · s unknowns.

The estimates for the local truncation error of Runge-Kutta methods are not computationally
cheap. This is one of the reasons why many studies have focused on the search of Runge-Kutta
methods of orders p and p + 1, sharing the same set of coefficients ci, aij . This process is known
as embedding and the resulting Runge-Kutta methods are called embedded Runge-Kutta methods.
The Butcher array of an embedded Runge-Kutta method is given by Table 2.

c A

bT

b̂T

ET

Table 2: Butcher array of the embedded Runge-Kutta methods.

The notation of the Table 2 has to be interpreted to mean that the method defined by c, A and
bT is of order p and the one defined by c, A and b̂T is of order (p + 1). In the embedded Runge-
Kutta methods the constants ki given by (2.3) are the same for both methods (for the method of
order p and order (p+ 1)). The vector ET is the difference b̂T − bT . We will denote by ŷn+1 and
yn+1 the solutions of orders (p+ 1) and p respectively:

ŷn+1 = yn + h

s∑

i=1

b̂iki, yn+1 = yn + h

s∑

i=1

biki (2.4)

In this context, the local truncation error can be estimated as the difference of the two values
ŷn+1 and yn+1:

ŷn+1 − yn+1 = h

s∑

i=1

Eiki (2.5)

where Ei = b̂i− bi. It is widely accepted that the Runge-Kutta embedding technique is an efficient
method to find the numerical solution of nonstiff problems [32]. There are also some embedded
Runge-Kutta methods implemented in MATLAB [1, 2, 31]: it is the case of the ode45 and the
ode23. The function ode45 is based on the embedded Runge-Kutta method proposed in [12], which
is known as DOPRI(5,4). It is a method of 7-stages, though in practice it operates as it only had
6-stages, because the last coefficient of the vector b̂T is zero. The function ode23 is also based in
another embedded Runge-kutta proposed in [4]. It is a method of 4-stages, but again it is the type
of method known as FSAL (First Same as Last) because of the last coefficient of the vector b̂T is
zero. So, in practice it is a 3-stage method.

The multistep methods constitute another variation of the one-step methods. They use k previ-
ous approximations yn, yn+1, ..., yn+k−1 of the exact solution in the points tn, tn+h, ..., tn+(k−1)h
to calculate yn+k in the point tn+k = tn + kh. A multistep method can be written as follows:

k∑

j=0

αjyn+j = hφ (fn+k, fn+k−1, ..., fn, tn;h) (2.6)
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being fn+j = f(tn+j , yn+j).

When the relationship among the values yn+j , fn+j for j = 0, 1, ..., k is linear, the multistep
method (2.6) is linear and it can be written as:

k∑

j=0

αjyn+j = h

k∑

j=0

βjfn+j (2.7)

where αj , βj are constants, αk 6= 0 and α0 and β0 non simultaneously zero. The method (2.7) is
explicit when βk = 0, and implicit when βk 6= 0. The method is one-step when k = 1. Three
classical linear multistep methods are the Adams Bashforth and Adams Moulton methods [20] and
the Backward Differentiation Formula (BDF). Because of their good stability properties the BDFs
are the most used [15, 18] and they are given by the expression:

k∑

j=0

α̂jyn+j = hfn+k (2.8)

When solving ODEs, sometimes the accuracy is not the only requirement asked to the numerical
method. For example, when we are working with a stiff problem, the numerical method used must
be accurate and it also needs an extensive stability region [11]. Stiffness is a delicate and important
concept when solving ODEs. Various authors [25, 27] say that there is no a rigorous definition
of stiffness. It depends on the ODE, on its initial conditions, on the numerical method used for
its resolution and on the time interval in which the ODE is solved. Another definition of stiffness
is given in [26], which says that stiffness occurs when different magnitude eigenvalues exist in the
solution, where this difference in the magnitude could happen in the real part or in the imaginary
part of the eigenvalues. Because of this requirement, in the last years many researches have been
focused on developing convenient numerical methods for stiff problems and a lot of improvements
have been made on the basis of the BDF. One of the modifications done to the BDFs are the NDFs
(Numerical Differentiation Formulae). It is a computationally cheap modification that consists of
anticipating a difference of order (k+1) multiplied by a constant κγk in the BDF formula of order k.
This term has a positive effect on the local truncation error, making the NDFs more accurate than
the BDFs and not much less stable. This modification was proposed by Shampine [32] but only
for orders k = 1, 2, 3, 4, because it is inefficient for orders greater than 4. Other modifications have
consisted in combining two multistep methods, using superfuture points (points that are outside
the actual time step) or using derivatives of superior order [19]. The blended method [33] consists in
a linear combination of the Adams Moulton method of order (k+1) and the k-order BDF method,
improving the stability properties of the method. In [8] and [9] Cash introduces methods using
superfuture points to solve stiff IVPs. These methods are known as extended BDF (EBDF) and
modified extended BDF (MEBDF). They consist of applying the BDF predictors twice and one
implicit multistep corrector. Both methods use superfuture points to gain stability and they are
A-stable up to order 4 and A(α)-stable up to order 9. In [10] a code based on the MEBDF is
described and in [21] Matrix free MEBDF (MF-MEBDF) methods are introduced to optimize the
computations of the EBDF. A different variation of the BDFs was introduced by Fredebeul [14], the
A-BDF method. In this method the implicit and explicit BDF are used in the same formula, with
a free parameter, being A(α)-stable up to order 7. Enright methods [13], Second derivative BDF
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method (SDBDF) [19] or the New Efficient Second Derivative Multistep Methods [23] are examples
of methods using the second derivative.

Another direction followed in the search of new methods consist of composing methods. Runge-
Kutta methods with the same step size have been composed leading to the Butcher group [6], cyclic
composition of multistep methods [35] and composition of low order Runge-Kutta methods has
been carried out increasing the stability [22]. In this work we will consider the composition of a
given basic one-step method with different step sizes. The aim of these type of compositions is to
increase the order of accuracy of the method while preserving some properties of the basic initial
method [29, 37, 38]. An s-stage composition method Ψh is given by:

Ψh = Φ
(s)
γsh
◦ Φ(s−1)

γs−1h
◦ ... ◦ Φ(1)

γ1h
(2.9)

being each Φ
(i)
γih

a basic integration method that takes a step of size γih, being γi and h real numbers.

When we take the same p-order base method Φh in (2.9), the following expression is obtained:

Ψh = Φγsh ◦ Φγs−1h ◦ ... ◦ Φγ1h (2.10)

Taking a basic p-order accurate Φh one-step method, the composition method (2.10) is (p+1)-order
accurate if the following equalities are satisfied:

{

γ1 + ...+ γs = 1

γp+1
1 + ...+ γp+1

s = 0
(2.11)

From (2.11) it can be concluded that this type of composition allows an increase of order only when
p is even (for odd p the second condition of (2.11) becomes impossible to satisfy). But this can be
overcome by replacing the composition (2.10) by the following formula:

Ψh = Φαsh ◦ Φ∗
βsh ◦ Φαs−1h ◦ Φ∗

βs−1h ◦ ... ◦ Φα1h ◦ Φ∗
β1h (2.12)

in which each Φh method is composed by its adjoint method Φ∗
h. The adjoint method Φ∗

h of a
method Φh is the inverse map of the original method with reversed time step:

Φ∗
h := Φ−1

−h (2.13)

For example, the implicit Euler method is the adjoint of the explicit Euler method.

In the composition of a method with its adjoint (2.12), the condition to obtain a (p+ 1)-order
accurate new method becomes:

{

β1 + α1 + ...+ βs + αs = 1

(−1)pβp+1
1 + αp+1

1 + (−1)pβp+1
2 ...+ (−1)pβp+1

s + αp+1
s = 0

(2.14)

being possible also for odd p to obtain a (p+ 1)-order new method.
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3. Symmetric Composition Methods of Symmetric Integrators

3.1. General theory and some methods

In the previous section we have defined a composition method and we have seen the possibility
that it gives to increase the order of the initial method. In this work we are interested in composition
methods in which the same basic method is used in the composition, being this method symmetric.
A method is symmetric if its adjoint is itself (self-adjoint method):

Φ∗
h = Φh (3.1)

For example, the trapezoidal method is symmetric.

An interesting special case of (2.10) is the symmetric composition obtained by taking:

γi = γs−i+1, i = 1, ...,
⌊ s

2

⌋

(3.2)

in which the composition is done symmetrically. The symbol ⌊s/2⌋ indicates the integer part of
s/2.

So we will center this work in symmetric composition methods of symmetric integrators. Which
means that:

• Composition methods which involve the same base method with different step sizes.

• The composition will be done in a symmetric way, chosing the coefficients as shown in (3.2).

In addition we will restrict our attention to symmetric composition methods of symmetric inte-
grators of order p = 2.

The introduction of the symmetry condition (3.2) in the method simplifies considerably the
order conditions, see [30]. We list here the order conditions through order ten:

s∑

k=1

γk = 1, (3.3)

s∑

k=1

γ3
k = 0, (3.4)

s∑

k=1

γ5
k = 0,

s∑

k=1

γ3
k

(
k∑

l=1

′

γl

)2

= 0, (3.5)

s∑

k=1

γ7
k = 0,

s∑

k=1

γ5
k

(
k∑

l=1

′

γl

)2

= 0,

s∑

k=1

γ3
k

k∑

l=1

′

γl

k∑

m=1

′

γ3
m = 0,

s∑

k=1

γ3
k

(
k∑

l=1

′

γl

)4

= 0,

(3.6)
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s∑

k=1

γ9
k = 0,

s∑

k=1

γ7
k

(
k∑

l=1

′

γl

)2

= 0,

s∑

k=1

γ5
k

k∑

l=1

′

γl

k∑

m=1

′

γ3
m = 0,

s∑

k=1

γ3
k

k∑

l=1

′

γl

k∑

m=1

′

γ5
m = 0,

s∑

k=1

γ3
k

(
k∑

l=1

′

γl

)2 k∑

m=1

′

γ3
m

m∑

n=1

′

γn = 0,

s∑

k=1

γ5
k

(
k∑

l=1

′

γl

)4

= 0,

s∑

k=1

γ3
k

(
k∑

l=1

′

γl

)3 k∑

m=1

′

γ3
m = 0,

s∑

k=1

γ3
k

(
k∑

l=1

′

γl

)6

= 0,

(3.7)

Summation with a prime indicates that the last term γj
i is taken as γj

i /2. The number of conditions
for a second order symmetric composition method of symmetric integrators is 1 (condition (3.3));
for 4-order there are two order conditions (3.3) and (3.4); for 6-order four conditions (3.3), (3.4)
and (3.5); for 8-order eight conditions (3.3)-(3.6); for 10-order sixteen conditions (3.3)-(3.7).

The minimal number of stages for an order p = 2k, p ≤ 10, composition scheme subject to
(3.2) is 2k − 1. For the minimal number of stages, the number of free parameters and algebraic
constraints is the same and Newton’s method can be used to find solutions. However, a number of
numerical comparisons have shown that it is better to take 2k+1 stages and use the additional free
parameters to optimize the coefficients. One of the suggested choices is to minimize ‖γ‖1, which
corresponds to the total distance travelled in the integration interval.

For order 8, the eight order conditions (3.3)-(3.6) have to be satisfied. This means that the
minimal number of stages s is 15. The coefficients γ1, γ2, ..., γ8 have to be calculated. There are
hundreds of solutions of this system, but the best 8-order methods have been found by [29, 39, 40].
By chosing s = 17 one degree of freedom is obtained when solving the system of equations. This
makes possible an improvement on the method. A good method of this type is given in [29]. But
the best known (in the sense of minimizing ‖γ‖1) 8-order and s = 17 stages method has been found
by Kahan & Li [24], and it is given by:

γ1 = γ17 = 0.13020248308889008087881763
γ2 = γ16 = 0.56116298177510838456196441
γ3 = γ15 = −0.38947496264484728640807860
γ4 = γ14 = 0.15884190655515560089621075
γ5 = γ13 = −0.39590389413323767733623154
γ6 = γ12 = 0.18453964097831570709183254
γ7 = γ11 = 0.25837438768632204729397911
γ8 = γ10 = 0.29501172360931029887096624

γ9 = −0.60550853383003451169892108

(3.8)

To obtain a 10-order method, sixteen order conditions have to be satisfaid, being the minimal
number of stages s = 31. The first 10-order and s = 31 and s = 33 stages methods were given by
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Kahan & Li [24]. The 33-stages and 10-order Kahan & Li’s method’s coefficients are the following:

γ1 = γ33 = 0.12313526870982994083
γ2 = γ32 = 0.77644981696937310520
γ3 = γ31 = 0.14905490079567045613
γ4 = γ30 = −0.17250761219393744420
γ5 = γ29 = −0.54871240818800177942
γ6 = γ28 = 0.14289765421841842100
γ7 = γ27 = −0.31419193263986861997
γ8 = γ26 = 0.12670943739561041022
γ9 = γ25 = 0.17444734584181312998
γ10 = γ24 = 0.44318544665428572929
γ11 = γ23 = −0.81948900568299084419
γ12 = γ22 = 0.13382545738489583020
γ13 = γ21 = 0.64509023524410605020
γ14 = γ20 = −0.71936337169922060719
γ15 = γ19 = 0.20951381813463649682
γ16 = γ18 = −0.26828113140636051966

γ17 = 0.83647216092348048955

(3.9)

Subsequently, a better 10-order and s = 33 stages method was calculated by Hairer, Lubich and
Wanner [17]:

γ1 = γ33 = 0.09040619368607278492161150
γ2 = γ32 = 0.53591815953030120213784983
γ3 = γ31 = 0.35123257547493978187517736
γ4 = γ30 = −0.31116802097815835426086544
γ5 = γ29 = −0.52556314194263510431065549
γ6 = γ28 = 0.14447909410225247647345695
γ7 = γ27 = 0.02983588609748235818064083
γ8 = γ26 = 0.17786179923739805133592238
γ9 = γ25 = 0.09826906939341637652532377
γ10 = γ24 = 0.46179986210411860873242126
γ11 = γ23 = −0.33377845599881851314531820
γ12 = γ22 = 0.07095684836524793621031152
γ13 = γ21 = 0.23666960070126868771909819
γ14 = γ20 = −0.49725977950660985445028388
γ15 = γ19 = −0.30399616617237257346546356
γ16 = γ18 = 0.05246957188100069574521612

γ17 = 0.44373380805019087955111365

(3.10)

Very good 10-order and s = 31, s = 33 and s = 35 stages methods have been given in [34] by
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Sofroniou and Spaletta. Their 10-order and s = 31 stages method’s coefficients are the following:

γ1 = γ31 = 0.14998070054317051502516939497857
γ2 = γ30 = 0.091208635101489291996105121514462
γ3 = γ29 = 0.50623124887796194535266557555255
γ4 = γ28 = 0.094789715925889154094231454089204
γ5 = γ27 = −0.19520875735034504160990960439871
γ6 = γ26 = −0.38816256756251756192331854792644
γ7 = γ25 = −0.27450555650873276528931810649505
γ8 = γ24 = 0.14264675556451861069659069043321
γ9 = γ23 = 0.067102518966825349346877396037809
γ10 = γ22 = −0.19643186370792190448674783323248
γ11 = γ21 = 0.29602854892160888804740587728740
γ12 = γ20 = 0.18917810251470701571585847859316
γ13 = γ19 = 0.19394700133244324371285167850479
γ14 = γ18 = 0.10120067580762238380456506324802
γ|5 = γ17 = −0.58186926782264021140090352527182

γ16 = 0.60772821879184217383575377417062

(3.11)

Their 10-order and s = 33 stages method’s coefficients:

γ1 = γ33 = 0.070711261586085399079302771810203
γ2 = γ32 = 0.090342080937267568345577914389234
γ3 = γ31 = 0.14103133297152486103524322594476
γ4 = γ30 = 0.40206004554029767537357060971803
γ5 = γ29 = −0.30239722849131075165735249848238
γ6 = γ28 = −0.22462355658241460137093154363351
γ7 = γ27 = 0.061496988956063121940380707068411
γ8 = γ26 = 0.11346847775740802675296685287062
γ9 = γ25 = 0.23654672241381781124636015203490
γ10 = γ24 = 0.27211409645898977643699556260890
γ11 = γ23 = 0.076129418470277234386530906651024
γ12 = γ22 = −0.18543093454238185309165565783301
γ13 = γ21 = −0.46495110925607623804616342747217
γ14 = γ20 = 0.10423014962104084592532590279051
γ15 = γ19 = 0.13621181452383232935841998116651
γ16 = γ18 = −0.27010275720513252644976102610064

γ17 = 0.48632639368142264147037913293721

(3.12)
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Figure 1: Cumulative weight plot for s = 33 stage and 10th order methods: left, Hairer; right, Kahan and Li.

Their 10-order and s = 35 stages method’s coefficients:

γ1 = γ35 = 0.078795722521686419263907679337684
γ2 = γ34 = 0.31309610341510852776481247192647
γ3 = γ33 = 0.027918383235078066109520273275299
γ4 = γ32 = −0.22959284159390709415121339679655
γ5 = γ31 = 0.13096206107716486317465685927961
γ6 = γ30 = −0.26973340565451071434460973222411
γ7 = γ29 = 0.074973343155891435666137105641410
γ8 = γ28 = 0.11199342399981020488957508073640
γ9 = γ27 = 0.36613344954622675119314812353150
γ10 = γ26 = −0.39910563013603589787862981058340
γ11 = γ25 = 0.10308739852747107731580277001372
γ12 = γ24 = 0.41143087395589023782070411897608
γ13 = γ23 = −0.0048663605831352617621956593099771
γ14 = γ22 = −0.39203335370863990644808193642610
γ15 = γ21 = 0.051942502962449647037182904015976
γ16 = γ20 = 0.050665090759924496335874344156866
γ17 = γ19 = 0.049674370639729879054568800279461

γ18 = 0.049317735759594537917680008339338

(3.13)

In Figures 1 and 2 the cumulative weight plot of the 10-order methods can be seen. We have
plotted the pairs (ci, i) for i = 1, 2, ..., s being ci =

∑i
j=1 γj .
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Figure 2: Cumulative weight plot for s = 31 (above left), s = 33 (above right) and s = 35 (below) stages and 10th
order methods (Sofroniou and Spaletta).
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3.2. Example of resolution: Euler equations

The motion of a rigid body, whose centre of mass is fixed at the origin, is modelled by Euler’s
equations: 





y′1 =
I2 − I3
I2I3

y2y3,

y′2 =
I3 − I1
I3I1

y3y1,

y′3 =
I1 − I2
I1I2

y1y2

(3.14)

The vector y = (y1, y2, y3)
T represents the angular momentum in the body frame, and Ii for i =

1, 2, 3 are the principal moments of inertia. The initial conditions are taken to be y1 = cos(11/10),
y2 = 0 and y3 = sin(11/10). The values of the principal moments are I1 = 2, I2 = 1 and I3 = 2/3.
The integration interval is [0,200]. The high precision reference solution at the end of the interval
is: 





y1(200) = −0.28324773514861346196610535435048
y2(200) = 0.50103924378337485218535801654655

y3(200) = 0.81775937580816814902177599212573

(3.15)

The ODE system (3.14) is solved by applying splitting:

dy

dt
= f (3.16)

which means that the vector field f is split into some parts. First, we will consider the case in which
it is split into two parts f = f1 + f2. Let φf1,h and φf2,h denote the exact solution (flow). A second
order symmetric integration method can be constructed using Strang splitting [28, 36]:

φf1,h/2 ◦ φf2,h ◦ φf1,h/2 (3.17)

Splitting into two vector fields yields methods of the form:

φf1,as+1
◦ φf2,bs ◦ φf1,as

◦ . . . ◦ φf2,b1 ◦ φf1,a1
(3.18)

Using the group property of flows, the coefficients for this splitting method are related to the
composition coefficients in the following way:







a1 = γ1/2, b1 = γ1

a2 = (γ1 + γ2)/2, b2 = γ2
...

...

as = (γs−1 + γs)/2, bs = γs

as+1 = γs/2

(3.19)
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A symmetric generalization of (3.17) to the case in which the vector field is split in k ≥ 3 parts
is given by:

φf1,1/2 ◦ ... ◦ φfk−1,1/2 ◦ φfk,1/2 ◦ φfk−1,1/2 ◦ ... ◦ φf1,1/2 (3.20)

The ODE system (3.14) has been split into three components as follows:

H1 : y′1 = 0, y′2 =
y1y3
I1

, y′3 = −y1y2
I1

H2 : y′1 = −y2y3
I2

, y′2 = 0, y′3 =
y1y2
I2

H3 : y′1 =
y2y3
I3

, y′2 = −y1y3
I3

, y′3 = 0

(3.21)

being their exact solutions φf1,h, φf2,h and φf3,h:







φf1,h =
(

y1,0, y2,0 cos
(

h·y1,0

I1

)

+ y3,0 sin
(

h·y1,0

I1

)

, y3,0 cos
(

h·y1,0

I1

)

− y2,0 sin
(

h·y1,0

I1

))

φf2,h =
(

y1,0 cos
(

h·y2,0

I2

)

− y3,0 sin
(

h·y2,0

I2

)

, y2,0, y3,0 cos
(

h·y2,0

I2

)

+ y1,0 sin
(

h·y2,0

I2

))

φf3,h =
(

y1,0 cos
(

h·y3,0

I3

)

+ y2,0 sin
(

h·y3,0

I3

)

, y2,0 cos
(

h·y3,0

I3

)

− y1,0 sin
(

h·y3,0

I3

)

, y3,0

)
(3.22)

where y1,0, y2,0 and y3,0 are the initial conditions. Step sizes have been selected from 2−i, i=0,1/2,
..., 5.

In Figure 3 the work-precision comparison at the end of the interval can be seen. In the
horizontal axis the number of evaluations (number of steps multiplied by the number of stages) has
been represented and in the vertical, the difference between the exact and the calculated solution
at the end of the interval. A log-log scale plot has been done, which is a two-dimensional graph of
numerical data that uses logarithmic scales on both the horizontal and vertical axes. The Kahan and
Li’s method’s solution is in blue; in red Hairer’s method’s solution; in black the solution obtained
by the Sofroniou’s 31 stage method; in green Sofroniou’s 33 stage method’s solution and in brown
the one obtained by the Sofroniou’s 35 stage method.

It can be observed that even though the five presented methods are solving the problem (3.14)
adequately, the Sofroniou & Spaletta’s methods perform better than the rest of the methods. Also
the Sofroniou & Spaletta’s s = 31 stages method performs better than the Kahan & Li’s and Hairer,
Lubich & Wanner’s s = 33 stages method. It can also be observed among the Sofoniou & Spaletta’s
methods that the greater the number of stages the better the obtained accuracy. It seems that the
obtained accuracies makes up for the computational cost for the additional stages.

4. Starting points

We have calculated the points x = (γi)i=1,...,16 that satisfy the order conditions (3.3), (3.4), and
the first order condition of the expressions (3.5)-(3.7). Let call these five conditions the simplest five
order conditions. Take into account that we are solving a system of 5 equations and 16 unknowns.
Among the points that satisfy the simplest five order conditions, the ones that locally minimize ‖γ‖2
are selected. These points have some repeated components, having only 5 different components.
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Figure 3: Work-precision comparison at the end of the interval using a log-log scale for the Euler’s problem.

Different schemes of sixteen components points having 5 different components can be built.
Among all of them, the scheme in which 12 γi coefficients are equal, and the rest 4 γi coefficients
are different is the one that globally minimizes ‖γ‖2. Let denote this scheme by (12, 1, 1, 1, 1). These
points can be calculated by establishing 11 equalities between the 12 equal components and solving
the simplest five order conditions’ system. Solving this system of 16 equations (11 equalities and 5
order conditions) and 16 unknowns a real solution is obtained. Applying permutations of this real
solution, many solutions of the same system can be calculated. Exactly 15!/12! = 2730 points that
satisfy the five simplest order conditions and globally minimize ‖γ‖2 can be calculated. However,
the inconvenient of these points is that they contain few negative coefficients, resulting difficult to
find points satisfying the rest of the eleven order conditions around them.

Nevertheless, schemes of sixteen components points having 5 different components such as
(11, 2, 1, 1, 1), (10, 3, 1, 1, 1), (10, 2, 2, 1, 1), etc. do not globally minimize ‖γ‖2, but they can lo-
cally minimize ‖γ‖2 being the value of this minimum sufficiently small. However, again, it seems
difficult to find points satisfying the rest of the eleven order conditions around them.

As the solution found by Sofroniou and Spaletta is near of a local minimum that follows the
scheme (9, 4, 1, 1, 1), we have decided to chose the points that following the mentioned scheme
(9, 4, 1, 1, 1) locally minimize ‖γ‖2. In this case also a system formed by 16 equations (11 equalities
and 5 order conditions) and 16 unknowns is solved and a real solution is obtained. Applying
permutations of this real solution, many solutions of the same system can be calculated. Exactly
15!/(9! · 4!) = 150150 points that satisfy the five simplest order conditions and locally minimize
‖γ‖2 can be calculated. Among all these 150150 points, the ones having the cummulative weight
plot in the interval [0, 1] are 21871 points. Hence, these 21871 points have been selected as starting
points.
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5. Technique 1

In this section we will describe the first technique used to obtain new symmetric composition
methods of basic second order symmetric integrators. As it has been said before we will focus on
10-order and s = 31 stages methods. The equalities of the expression (3.2) for 31-stages can be
explicitely written as:

γ1 = γ31, γ9 = γ23,

γ2 = γ30, γ10 = γ22,

γ3 = γ29, γ11 = γ21,

γ4 = γ28, γ12 = γ20,

γ5 = γ27, γ13 = γ19,

γ6 = γ26, γ14 = γ18,

γ7 = γ25, γ15 = γ17,

γ8 = γ24, γ16

(5.1)

which means that we have to obtain γi for i = 1, ..., 16 satisfying the sixteen order conditions
(3.3)-(3.7). Let denote by x = (γi)i=1,...,16 the unknown solution. As it can be seen, when we
consider s = 31 stages there are no free parameters.

In order to work in a bounded domain, we will replace the condition (3.3) (the so called consis-
tency condition) by:

s∑

k=1

γ2
k = 18 (5.2)

Condition (5.2) means that the points y = (γi)i=1,...,31 are in the sphere of center 0 and radius√
18. Taking into account the equalities (5.1), the condition of being in the sphere is written as:

15∑

k=1

2γ2
k + γ2

16 = 18⇔
15∑

k=1

γ2
k +

γ2
16

2
= 9 (5.3)

There is a one-to-one correspondence between the solutions of (3.3)-(3.7) and the solutions of (3.4)-
(3.7) and (5.3), satisfying that

∑
γi 6= 0. So the system of equations that we will solve is formed

by the equations (5.3) and (3.4)-(3.7).

It has to be said that we are not losing generalization when we solve this new system (the one
formed by (5.3) and (3.4)-(3.7)) instead of the starting system (3.3)-(3.7). It has to be taken into
account that we can pass from the consistency condition (3.3) to the condition of being on the
sphere (5.3), and vice versa by doing:

• Moving from the sphere to the consistency condition: If we have a solution ys = (γi)i=1,...,31

that verifies conditions (5.3) and (3.4)-(3.7), the point yc = (γ̃i)i=1,...,31 given by:

γ̃i =
γi
λ
, being λ =

31∑

i=1

γi (5.4)
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will satisfy the consistency condition (3.3), as well as the conditions (3.4)-(3.7). This means
that the formula (5.4) allows to move from the condition of being on the sphere to the
consistency condition. And if ys satisfies the order conditions (3.4)-(3.7), the new point yc

will continue satisfying them.

• Move from the consistency condition to the sphere: In an equivalent way, if the point zc =
(γ̂i)i=1,...,31 satisfies the consistency condition (3.3) and the conditions (3.4)-(3.7), we can
obtain a point zs = (γ̄i)i=1,...,31 of the sphere that will continue satisfying the order conditions
(3.4)-(3.7):

zs =
(zc − c)

‖zc − c‖ ·R+ c (5.5)

being c the center of the sphere and R the radius of the sphere. In this case, c = 0 and
R =

√
18. So in this case, the formula (5.5) to obtain a point on the sphere given a point that

satisfies the consistency condition is reduced to:

zs =
zc

‖zc‖
·
√
18 (5.6)

which means that γ̄i =
γ̂i

√
∑s

i=1 γ̂i
2
·
√
18 for i = 1, ..., 31.

Let denote by F (x) = 0 the system of sixteen equations formed by (5.3) and (3.4)-(3.7) that
has to be solved. The aim is to obtain solutions x = (γi)i=1,...,16 of that system. The process that
we will follow to find such solutions will be:

• We will be given a starting point x0 = (γi)i=1,...,16 on the sphere that satisfies the simple
order conditions (condition (3.4), and the first equations of (3.5), (3.6) and (3.7)).

• F (x) is partially linearized around x = x0.

• New starting points are obtained.

• A local minimization algorithm is applied to the new starting points.

• If after local minimization ‖F (x)‖ is small enough, then Newton’s algorithm is applied to
obtain a solution of F (x) = 0.

In Figure 4 the main steps of this process are described.

5.1. Partial linealization

We will call simple order conditions to: the condition of being on the sphere, the condition (3.4),
and the first equations of (3.5), (3.6) and (3.7). That is to say:

15∑

k=1

γ2
k +

γ2
16

2
− 9 = 0,

s∑

k=1

γ3
k = 0,

s∑

k=1

γ5
k = 0,

s∑

k=1

γ7
k = 0,

s∑

k=1

γ9
k = 0

(5.7)
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Figure 4: Main process of technique 1.

We are given a starting point x0 = (γi)i=1,...,16 that satisfies the conditions explained in Section 4.
That is to say:

• It verifies the five simple order conditions (5.7).

• It follows the scheme (9, 4, 1, 1, 1).

• It locally minimizes ‖γ‖2.

• Its cummulative weight plot is in the interval [0, 1].

The function F (x) could be linealized as follows:

F (x) ≈ F (x0) + F ′(x0) · (x− x0) (5.8)

We will use the singular value decomposition to decompose the jacobian matrix J0 = F ′(x0).
Let suppose that it can be decomposed as follows:

J0 = P ·D ·QT (5.9)

being P and Q orthogonal matrices, and D a diagonal matrix.

We will introduce the following change of variable:

x = x0 +Qz (5.10)
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Or what is the same as (5.10): z = QT (x− x0).

A new function that depends on z will be defined:

R(z) = PT · F (x0 +Qz) (5.11)

The derivative of (5.11) is given by:

R′(z) = PT · F ′(x0 +Qz) ·Q (5.12)

We are interested in x that makes F (x) = 0. Or what is equivalent, we are interested in finding z

for which R(z) = 0.

From (5.12) the derivative in z = 0 can be calculated. And making use of the decomposition of
the jacobian (5.9) and taking into account the orthogonality of the matrices P and Q, we have:

R′(0) = PT · F ′(x0)
︸ ︷︷ ︸

P ·D·QT

·Q = PT · P ·D ·QT ·Q = D ⇒ R′(0) = D (5.13)

Using the Newton’s method we have:

R(z) ≈ R(0) +R′(0)(z− 0) = R(0) +Dz (5.14)

And from (5.14), R(z) = 0 can be solved:

z ≈ −D−1 ·R(0) (5.15)

being: R(0) = PT · F (x0).

So we can calculate the value of z in which R(z) = 0 using (5.15). This means that we only have
to substitute this value z in (5.10), and we will have the value of x in which F (x) ≈ 0, provided
that the linealization of F (x) around x = x0 is a sufficiently good approximation of F (x).

5.2. Obtaining more starting points given one starting point

Te second step of the process described in Figure 4 is the obtention of new starting points.
Given one starting point x0, the process to obtain new starting points has different parts:

1. Determine the significant part of the linealization following a criteria. The linealization will
give “better starting points” than the first one (x0, which corresponds to z = 0).

2. Set the non-significant part of the linealization following a criteria.

3. The generated point will have the status of starting point if it verifies some conditions.

These steps can be seen in Figure 5.
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Figure 5: Steps of the process of obtaining starting points.

5.2.1. Determine the significant part of the linealization

In Section 5.1 the function F has been linearized, a new variable z and a new function R(z) have
been defined and the way to obtain F (x) has been explained. What typically happens is that some
values of the diagonal matrix D are very small and the non-linear part becomes more significant
than the linear part, making the previous linealization useless. In this sense it is necessary to
determine the significant part of the linealization, that is to say, the part in which linealization will
be applied.

We have a starting point x0 = (γi)i=1,...,16 and we want to determine the positions in which the
linealization will be applied. We calculate the value of the 16 order conditions and the value of the
jacobian for this point:

F0 = F (x0) (5.16)

J0 = J(x0) (5.17)

being F0 = (F0,i)i=1,...,16 and J0 = (J0,i)i=1,...,16 vectors of sixteen components.

Next, the jacobian J0 is decomposed using the singular value decomposition (5.9), and the
change of variable (5.10) is introduced. The value of z1 is calculated using (5.15):

z1 = −D−1R(0) (5.18)

obtaining in this way z1 = (z1,i)i=1,...,16. The new value x1 is calculated using the change of variable
(5.10): x1 = x0 +Qz1.

All the components of the linealization will be taken into account if the following criteria is
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verified:
‖F (x1)‖ < p1 · ‖F (x0)‖ (5.19)

being p1 a constant that we will establish (p1 ∈ (0, 1)). Condition (5.19) means that the new value
x1 satisfies better than the starting point x0 the sixteen order conditions. It can be said that x1 is
a better starting point than x0.

If (5.19) is not verified, not all the linealization will be considered, which means that the new
value x1 is not better than x0. But we can determine a part in which linealization can be used and
which verifies an equivalent condition as (5.19). The part that will be linearized will be determined
by following these steps:

(a) i = 0.

(b) Make z1(16− i) = 0. That is to say, z1 = (z1,1, z1,2, ..., z1,15, 0). This means that the number
0 is introduced in the positions j = 16− i+ 1, ..., 16 of the vector z1.

(c) i← i+ 1.

(d) Recalculate x1 using (5.10): x1 = x0 +Qz1.

(e) Evaluate F (x1).

(f) Comparing norms:
‖F (x1)j=1,...,16−i‖ < p1 · ‖F (x0)j=1,...,16−i‖ (5.20)

(g) If condition (f) is not satisfied, we return to step (b).

This process has been described in Figure 6.

Following this process the part which will follow the linealization rule is determined and the rest
components of z1 will be set to zero. That is to say the components j = 1, ..., 16− i will follow the
linealization and the components j = 16− i+ 1, ..., 16 will be set to zero.

z1,lin = (z1,j), for j = 1, ..., 16− i (5.21)

z1,zero = (0)j , for j = 16− i+ 1, ..., 16 (5.22)

5.2.2. Set the non-significant part of the linealization

The next step will be to calculate randomly the components of z1 that have been set to zero
(the components z1,j for j = 16− i+ 1, ..., 16). These components will be chosen randomly in the
interval (−1, 1). Let be z1,random the part that will be completed randomly. Once the components
are chosen, the vector z1,random is resized in the way that verifies:

‖z1,random‖ = ‖z1,lin‖ · p2 (5.23)

being p2 a constant that we will establish. The overall vector z1 is z1 = [z1,lin, z1,random], satisfying
the condition (5.23). This process is described in the Algorithm 1.
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Figure 6: Determination of the significant part of the linealization.

5.2.3. Filtering out starting point candidates

Up to the moment the linearized part has been determined and the part that is not going to be
linearized has been chosen as explained in Section 5.2.2. The overall vector z1 = [z1,lin, z1,random]
that has been built in this way will be used to calculate the new starting point x1 = x0 +Qz1 only
if the following condition is satisfied:

‖R(z1)‖ < p3 · ‖R(0)‖ (5.24)

being p3 a constant that we will establish. Only when the condition (5.24) is satisfied will be
calculated the new starting point x1 = x0 + Qz1. Otherwise, again the z1,random part will be set
as explained in Section 5.2.2, z1 will be set to z1 = [z1,lin, z1,random] and the condition (5.24) will
be checked.
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Algorithm 1 Algorithm to determine the random part of z1.

1: procedure lirandom(z1lin, z1zero, p2)
2: s ← size(z1zero)
3: s ← max(s) ⊲ s is the number of elements in the vector z1zero
4: for i=1:s do
5: z1zero(i) ← 2*rand-1 ⊲ The function “rand” gives a random number of (0, 1)
6: end for

7: ⊲ Make the norms verify the next condition: ‖z1random‖ = ‖z1lin‖ · p2
8: nlin ← norm(z1lin)
9: nrand ← norm(z1zero)

10: z1random ← z1zero*nlin/nrand*p2 ⊲ scale z1zero
11: z1 ← [z1linT z1randomT ] ⊲ Concatenate vectors
12: z1 ← z1T

13: end procedure

The overall process to obtain new starting points described in Section 5.2 is provided in Algo-
rithm 2. In this algorithm the variable n1 indicates the number of starting points that we want to
create given a starting point x0.

5.3. Applying local minimization to the new starting points

Given the new starting point x1 that has been generated in the previous section, the point that
minimizes the function F will be calculated. For this aim, the Matlab local minimization function
“lsqnonlin” is applied and we have defined the function that will be minimized:

M(x1) =

[

H(x1, 1), k ·
(

15∑

i=1

γi +
γ16
2
−

15∑

i=1

γ̃i +
γ̃16
2

)]

(5.25)

being H(x1, 1) the value after substituting t = 1 in the homotopy function defined by:

H(x, t) = F (x)− (1− t) · F (x0) (5.26)

x1 = (γ)i=1,...,16 the new starting point created following the process, and x0 = (γ̃)i=1,...,16 the first
starting point and k a constant that this time has been established as k = 10−5. The second part
of the expression (5.25) means that we want to obtain points which coefficients measure something
similar to the coefficients of x0. The function M has 17 components: the 16 components of H(x, t)
and the additional component will measure the coefficients.

5.4. Some numerical results

Our first goal is to try if we are able to find the 10-order s = 31 stages Sofroniou and Spaletta’s
solution (3.11) using the mentioned starting points. Among all the 21871 points we have, a point
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Algorithm 2 Algorithm to determine new starting points.

1: Input: x0, n1, p1, p2, p3 ⊲ n1 is the quantity of starting points that we want to create
2: x0sig ← zeros(n1,16)
3: f0sig ← zeros(n1,16)
4: normf0sig ← zeros(n1,1)
5: F0 ← mxrealRest(x0, 1, zeros(1,15)) ⊲ Evaluate the order conditions in x0 and t = 1
6: J0 ← mxrealJacobian(x0, 1, zeros(1,15)) ⊲ Evaluate the Jacobian of the order conditions in x0

and t = 1
7: [P,D,Q] ← Singular Value Decomposition of J0
8: z1 ←-inv(D) ∗ PT ∗ F0T

9: x1 ← x0T +Q ∗ z1 ⊲ Change of variable
10: x1 ← x1T

11: F1 ← mxrealRest(x1, 1, zeros(1,15))
12: R0 ← PT · F0
13: R1 ← PT · F1
14: n0 ← norm(R0)
15: n1 ← norm(R1)
16: i ← 0
17: while n1 >= p1 ∗ n0 do ⊲ Determine the linerized part
18: z1(end-i) ← 0
19: i ← i+1
20: x1 ← x0T +Q ∗ z1 ⊲ Recalculate x1
21: x1 ← x1T

22: F1 ← mxrealRest(x1, 1, zeros(1,15))
23: R1 ← PT · F1
24: n0 ← norm(R0(1:end-i)) ⊲ Recalculate the norm of the possible lin. part

25: n1 ← norm(R1(1:end-i)) ⊲ Recalculate the norm of the possible lin. part

26: end while ⊲ After finishing the previous While bucle the linearized part is determined
27: Gn0 ← PT ∗ F0T

28: gn0 ← norm(Gn0)
29: for j=1:n1 do ⊲ For the creation of each new starting point the following process is followed

30: gn1 ← gn0*p3+1
31: while gn1 > gn0 ∗ p3 do ⊲ Criteria to be considered starting point

32: z1lin ← z1(1:end-i)
33: z1zero ← z1(end-i+1:end)
34: z1 ← linrandom (z1lin, z1zero, p2) ⊲ linrandom has been explained in Algorithm 1
35: x1 ← x0T +Q ∗ z1 ⊲ Recalculate x1
36: x1 ← x1T

37: F1 ← mxrealRest(x1, 1, zeros(1,15))
38: Gn1 ← PT ∗ F1T

39: gn1 ← norm(Gn1)
40: end while

41: x0sig(j,:) ← x1
42: ff ← mxrealRest(x1, 1, zeros(1,15))
43: f0sig(j,:) ← ff
44: normf0sig(j) ← norm(ff)
45: end for
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that is quite similar to the solution is selected. The chosen point x0 has been the following:

γ1 = γ31 = 0.127878789499696
γ2 = γ30 = 0.127878789499696
γ3 = γ29 = 0.356988485581094
γ4 = γ28 = 0.127878789499696
γ5 = γ27 = −0.202029287967921
γ6 = γ26 = −0.202029287967921
γ7 = γ25 = −0.202029287967921
γ8 = γ24 = 0.127878789499696
γ9 = γ23 = 0.127878789499696
γ10 = γ22 = −0.202029287967921
γ11 = γ21 = 0.127878789499696
γ12 = γ20 = 0.127878789499696
γ13 = γ19 = 0.127878789499696
γ14 = γ18 = 0.127878789499696
γ|5 = γ17 = −0.420682194566747

γ16 = 0.441803510720145

(5.27)

We can obtain a point that satisfies the condition of being on the sphere using (5.6), x0,s:

γ1 = γ31 = 0.454509202796914
γ2 = γ30 = 0.454509202796914
γ3 = γ29 = 1.268815200894017
γ4 = γ28 = 0.454509202796914
γ5 = γ27 = −0.718056301402089
γ6 = γ26 = −0.718056301402089
γ7 = γ25 = −0.718056301402089
γ8 = γ24 = 0.454509202796914
γ9 = γ23 = 0.454509202796914
γ10 = γ22 = −0.718056301402089
γ11 = γ21 = 0.454509202796914
γ12 = γ20 = 0.454509202796914
γ13 = γ19 = 0.454509202796914
γ14 = γ18 = 0.454509202796914
γ|5 = γ17 = −1.495196581320806

γ16 = 1.570266361105709

(5.28)

Using the point x0,s (5.28), we apply the overall process, obtaining n1 = 200 new starting points
and taking p1 = p3 = 0.5, p2 = 1. With each of this new starting points local minimization has
been applied. The best point that we obtain following this process is x̂best (which is a point that
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satisfies the consistency condition):

γ1 = γ31 = 0.149980166757970
γ2 = γ30 = 0.091209376694612
γ3 = γ29 = 0.506230734715795
γ4 = γ28 = 0.094789495557464
γ5 = γ27 = −0.195208621182677
γ6 = γ26 = −0.388162197150489
γ7 = γ25 = −0.274505111979716
γ8 = γ24 = 0.142646518254726
γ9 = γ23 = 0.067102617758162
γ10 = γ22 = −0.196431578067715
γ11 = γ21 = 0.296028212910127
γ12 = γ20 = 0.189178035331035
γ13 = γ19 = 0.193946569643248
γ14 = γ18 = 0.101200654564512
γ|5 = γ17 = −0.581868670815763

γ16 = 0.607727594017418

(5.29)

We have to pass the point x̂best to the sphere to calculate how this point satisfies the sixteen
conditions. After doing this we get: ‖F (x̂best,s)‖ = 8.095236171459589e − 09. Using this point
x̂best,s and applying Newton’s algorithm (it can also be done by following a homotopy continuation
algorithm), we could improve this result. The improved point on the sphere that has been calculated
is xi,s which is given by:

γ1 = γ31 = 0.391898821758196
γ2 = γ30 = 0.238327708152066
γ3 = γ29 = 1.322779725993880
γ4 = γ28 = 0.247685054485755
γ5 = γ27 = −0.510079508389213
γ6 = γ26 = −1.014266851165851
γ7 = γ25 = −0.717281648710886
γ8 = γ24 = 0.372735260138248
γ9 = γ23 = 0.175338547052314
γ10 = γ22 = −0.513275479198167
γ11 = γ21 = 0.773521120431214
γ12 = γ20 = 0.494321437409558
γ13 = γ19 = 0.506782546219677
γ14 = γ18 = 0.264436860646363
γ|5 = γ17 = −1.520421491878899

γ16 = 1.587990801662441

(5.30)

and obtaining this time ‖F (xi,s)‖ = 1.102509095666297e − 12. And applying the consistency
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condition to xi,s we get the point xi,c given by:

γ1 = γ31 = 0.149980700546958
γ2 = γ30 = 0.091208635096261
γ3 = γ29 = 0.506231248881590
γ4 = γ28 = 0.094789715927509
γ5 = γ27 = −0.195208757351316
γ6 = γ26 = −0.388162567565133
γ7 = γ25 = −0.274505556512013
γ8 = γ24 = 0.142646755566363
γ9 = γ23 = 0.067102518966024
γ10 = γ22 = −0.196431863710003
γ11 = γ21 = 0.296028548924095
γ12 = γ20 = 0.189178102514962
γ13 = γ19 = 0.193947001335706
γ14 = γ18 = 0.101200675807723
γ|5 = γ17 = −0.581869267826854

γ16 = 0.607728218796252

(5.31)

As it can be observed our point xi,c is the point of Sofroniou and Spaletta’s method (3.11).
Hence, up to this moment it seems that if we chose the starting point that is similar to Sofroniou
and Spaletta’s solution and we follow the process we have designed, we are able to obtain the
method (3.11). We could also obtain the same point by creating only 100 new starting points,
and also creating only 50. But it has not been possible to obtain this solution in any of the trials
performed creating only 5 or 10 new starting points.

5.5. Deciding the starting points that will not follow the process

As it has been said in Section 4, we have 21871 starting points to try with. Since local mini-
mization is computationally expensive, we want to eliminate some of them following a criteria. The
process of building better starting points and applying the local minimization will be followed with
the starting points that have not been eliminated. The criteria that we will use to eliminate some
starting points is the following:

• The first part will be the same as in Algorithm 2. We are given a point x0 on the sphere and
we determine the part that will be linearized.

• We have explained before the process to obtain z1 that satisfies:

R(z1) = 0 (5.32)

And we have found the part that will be linearized. Let denote by R[j] the part that will be
linearized:

R[j] =








R1(z1)
R2(z1)

...
Rj(z1)








(5.33)
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Take into account that z1 has two parts z1 = (z
[j]
1 , 0). That is to say, the coordinates of z1

are zero in the components k = j + 1, ..., s. We do some iterations using Newton’s method in
order to satisfy:

R[j](z
[j]
1 , 0) = 0 (5.34)

Iterations will be done as follows:
{

h = −D−1 ·R(zk[j], 0)

z
[j]
k+1 = z

[j]
k + h[j]

(5.35)

In each iteration x1 will be calculated:

x1 = x0 +Q

(

z
[j]
1

0

)

(5.36)

In this way the point x1 = (γi)i=1,...,16 is calculated which will be considered starting point
to follow the process if the following is satisfied:

∣
∣
∣
∣
∣

s∑

i=1

γi

∣
∣
∣
∣
∣
≥ value (5.37)

which means that |∑s
i=1 γi| has not to be very small.

We know that for the starting point that gives the Sofroniou and Spaletta’s solution the variable
value is:

value = 3.36 (5.38)

Different intervals for the variable value have been chosen and the number of starting points
that belong to each interval have been calculated, see Table 5.5.

interval [0,1) [1,2) [2,3) [3,4) [4,5) [5,10) [10,20) [20,50) [50,100) [100,1000)

points in interval 259 313 553 1250 3367 3142 833 647 384 938

cumulative sums 259 572 1125 2375 5742 8884 9717 10364 10748 11681

Table 3: Number of starting points with
∣

∣

∑

s

i=1
γi

∣

∣ in each interval, and cumulative sums.

It seems reasonable to try the process with the starting points for which value ≥ 3. Only
around 1125 points out of the 21871 do not satisfy this condition, which means that our beginning
list of 21871 nearly is not reduced. Hence, the amount of points to follow the process with is still
huge. This process is explained in the Algorithm 3, where we can insert the interval for the variable
value. That is to say, the points with value ∈ [liminf, limsup] shown in Table 5.5 are calculated
using this algorithm. If we want to use this algorithm to discard the points that will not follow
the process, it is sufficient to call this function only with the first three inputs x0, p1 and liminf ,
chosing liminf = 3 and to change the condition of the line 37 of the Algorithm 3 as follows:

if abs(balio)≥liminf then
aurrera ← 1

end if

That is to say, the points satisfying value ≥ 3 will follow the process described in Figure 4.
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Algorithm 3 Algorithm to discard starting points.

1: procedure clean(x0, p1, liminf, limsup) ⊲ x0 is a starting point in the sphere
2: F0 ← mxrealRest(x0, 1, zeros(1,15)) ⊲ Evaluate order conditions in x0 and t = 1

(mxrealRest is the homotopy)
3: J0 ← mxrealJacobian(x0, 1, zeros(1,15))⊲ Evaluate the Jacobian of the order conditions in

x0 and t = 1
4: [P,D,Q] ← Singular Value Decomposition of J0
5: invD ← inv(D)
6: z1 ←-invD ∗ PT ∗ F0T

7: x1 ← x0T +Q ∗ z1 ⊲ Change of variable
8: x1 ← x1T

9: F1 ← mxrealRest(x1, 1, zeros(1,15))
10: R0 ← PT · F0
11: R1 ← PT · F1
12: n0 ← norm(R0)
13: n1 ← norm(R1)
14: i ← 0
15: while n1 >= p1 ∗ n0 do ⊲ Determine the linerized part
16: z1(end-i) ← 0
17: i ← i+1
18: x1 ← x0T +Q ∗ z1 ⊲ Recalculate x1
19: x1 ← x1T

20: F1 ← mxrealRest(x1, 1, zeros(1,15))
21: R1 ← PT · F1
22: n0 ← norm(R0(1:end-i)) ⊲ Recalculate the norm of the possible lin. part

23: n1 ← norm(R1(1:end-i)) ⊲ Recalculate the norm of the possible lin. part

24: end while

25: ⊲ After finishing the previous While bucle the linearized part is determined and z1 and x1 are
obtained

26: z0 ← z1
27: for k=1:4 do ⊲ Newton Raphson iteration, 4 iterations
28: incrz1 ← -invD ∗ PT ∗ F1T

29: z1(1:end-i) ← z0(1:end-i) + incrz1(1:end-i)
30: x1 ← x0T +Q ∗ z1
31: x1 ← x1T

32: F1 ← mxrealRest(x1, 1, zeros(1,15))
33: z0 ← z1
34: end for

35: balio ← sum(x1)+sum(x1(1:end-1))
36: aurrera ← 0
37: if abs(balio)>= liminf & abs(balio)< limsup then

38: aurrera ← 1
39: end if

40: end procedure
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5.6. Attempt to improve Algorithm 2

In this section we do an attempt to improve the process described in Section 5.2. Following the
process of Section 5.2, we have been able to obtain Sofroniou and Spaletta’s solution, but using
the same starting point we could not find more adequate solutions, as the solutions that we obtain
have big coefficients after applying the consistency condition.

So, the first decision we took was to follow the consistency condition without using the sphere.
We have used a scaled version of the consistency condition:

2 ·
15∑

i=1

γi + γ16 = 6 (5.39)

which means that after obtaining one solution, the γi coefficients have to be divided by 6. From
the expression (5.39), γ16 will be solved:

γ16 = 6− 2 ·
15∑

i=1

γi (5.40)

and it will be substituted in all the order conditions. This means that our new unknown xn will have
15 components and we will have also 15 conditions to satisfy (as the scaled consistency condition is
included in all of them). After having caculated the first 15 components, γ16 is calculated obtaining
(γ)i=1,...,16. Because of this change we have to adapt also some concepts explained in the previous
version:

1. The condition to be considered new starting point (5.37) changes. Now the point x1 =
(γi)i=1,...,16 will be considered starting point to follow the process if the following is satisfied:

s∑

i=1

γ2
i ≤ value (5.41)

which means that
∑s

i=1 γ
2
i has not to be very large.

In this sense, the value that we had before for the starting point that gives the Sofroniou and
Spaletta’s solution (5.38) also changes:

value = 52.46 (5.42)

2. Also the function (5.25) that has to be minimized changes:
{

γ16 = 6− 2 ·∑15
i=1 γi

M̂(x1) = [H(x1, 1), k(γ1, γ2, ..., γ16)]
(5.43)

A point with 15 components enters in the function and γ16 is calculated. Then, the function
M̂ that has to be minimized is defined, being H(x1, 1) as before the value after substituting
t = 1 in the homotopy function defined by (5.26) (even though now the homotopy H(x, t) has
15 components), k a constant that this time has been established also as k = 10−5. The second
part of the expression (5.43) means that we want to obtain a point with small coefficients.
The function M̂ has 31 components: the 15 components of H(x, t) and the additional part
with 16 componets to assure the coefficients will be small.
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Apart from the previous considerations derived of the use of the scaled consistency condition,
some new criteria have been introduced in this new process changing the decision to be considered
as starting point. The new process will consist in the following steps:

1. Determine the significant part of the linealization following the same process as in Section
5.2.1.

2. Set the non-significant part of the linealization following the same process as in Section 5.2.2.
After finishing the first two steps, the linearized part is determined and, z1 = [z1,lin, z1,random]
and x1 are calculated. The following steps will consist in the decision to consider the new
point x1 as starting point.

3. The first condition that z1 has to satisfy in order to consider the point x1 as new starting
point will be similar to something that has been explained in Section 5.5. We have denoted
by R[j] the part that has been linearized (5.33). Take into account in this point of the process
that the random part of z1 has been completed: z1 = [z1,lin, z1,random]. We will do some
iterations using Newton’s method in order to obtain a new point with a smaller value in
the function R[j] than the starting point, maintaining the random part (which means that
the Newton’s method will affect only the linearized part). Hence, iterations will be done as
follows: {

h = −D−1 ·R(zk[j], z1,random)

z
[j]
1,k+1 = z

[j]
1,k + h[j]

(5.44)

The notation z
[j]
1,k means the value of z

[j]
1 obtained in the kth iteration using Newton’s method.

And the new point z1,k = [z
[j]
1,k, z1,random] will follow the process only if it satisfies this

condition: ∥
∥
∥R[j](z1,k)

∥
∥
∥ ≤ p4 ·

∥
∥
∥R[j](z1,0)

∥
∥
∥ (5.45)

being k the number of iterations that Newton’s method will do (for example k = 4) and p4 a
constant that we will establish.

4. Using the value z1,k that satisfies the condition (5.45), the point x1 will be calculated: x1 =
x0 +Qz1,k. This point x1 = (γi)i=1,...,16 will have to satisfy the condition (5.41) to be a new
starting point, that is to say:

s∑

i=1

γ2
i ≤ value

One consideration about this has to be done, as this value is different before or after the
Newton’s iterations for the starting point that gives the Sofroniou and Spaletta’s solution:

value =

{

52.46 before Newton’s 4 iterations

155.19 after Newton’s 4 iterations
(5.46)

5. If the point x1 = (γi)i=1,...,16 satisfies the condition (5.41), a third condition will be verified.
This third condition is the condition (5.24) used in Algorithm 2:

‖R(z1)‖ < p3 · ‖R(0)‖

6. The number of trials in which these three conditions will be checked will be set using the
parameter m. That is to say, given a starting point x0, we will create a better starting point
and the trials done with the z random part will be m at maximum.
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See Algorithm 4 in which these new criteria are introduced to consider a new point as starting
point.

5.6.1. Problems found when finding numerical results

Following the process described in this section it has turned more difficult to obtain results. By
chosing the following parameters p1 = p3 = p4 = 0.5, value = 200, p2 = 2.4 and after creating 1000
new starting points, some results having the norm of the 15 order conditions around e − 8 have
been obtained. These points have been improved using the homotopy continuation algorithm until
this norm was of e− 11 order, but we were unable to obtain the Sofroniou and Spaletta’s solution.
The parameter p2 has been established taking into account the distance between the starting point
and the Sofroniou’s solution. As in this version we are considering the first 15 components of the
points, this distance has been calculated as follows:

d =
√

6 · x0(1 : 15)− 6 · xs(1 : 15) = 2.18 (5.47)

being x0(1 : 15) and xs(1 : 15) the first 15 components of the starting point and the Sofroniou and
Spaletta’s solution. These components have been multiplied by 6, as we are considering the scaled
consistency version.

Hence, taking into account the experiments performed with this new version, we can say that
the attempt to improve the Algorithm 2 has not succeeded.

6. Technique 2

Up to now we have been following the process described in Section 5 to obtain symmetric
composition methods of s = 31 stages and 10 order of accuracy. As we have not obtained the
expected results we will change the strategy. A symmetric composition method of s = 31 stages
and 10th order of accuracy must verify the 16 order conditions given by (3.3)- (3.7). We have 21871
starting points that satisfy the simple order conditions and respond to the scheme (9, 4, 1, 1, 1).

We will define a function with 15 conditions and 16 unknowns. The 15 conditions will be
equalities between the unknowns or order conditions that the unknowns have to satisfy. The values
of the unknowns that satisfy the established 15 conditions define a curve. A different function with a
new condition (again, an equality between two unknowns or an order condition) will be also defined,
and it will be possible to test if while moving along the 15-condition curve, this new condition is
satisfied. Let call test condition to this new condition. If one point in the 15-condition curve
satisfies the test condition, one of the 15 conditions could be interchanged by this test condition. In
this way, a new curve of points satisfying 14 of the starting conditions and the test condition will
be obtained. This process is reversible, being possible to return to the original 15-condition curve
(it is enough to establish as test condition the condition that has been interchanged). The process
to move from some conditions to others has been implemented in C language, and some MEX files
are used to call them from Matlab.
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Algorithm 4 Algorithm to determine new starting points.

1: Input: x0, m, p1, p2, p3, p4, value
2: ⊲ Given a starting point x0 on the sphere, we will create a better starting point. The trials

done with the z random part will be m at maximum. The parameters p1, p2, p3, p4, value are
the ones that appear in the criteria that will be used.

3:
... ⊲ Lines 1-28 are the same as in the Algorithm 2, changing only the aspects related to the
scaled consistency condition

4: p ← 0
5: z1lin ← z1(1:end-i)
6: z1zero ← z1(end-i+1:end)
7: while p < m do

8: z1 ← linrandom (z1lin, z1zero, p2) ⊲ Chose the random part of z1
9: x1 ← x0T +Q ∗ z1

10: x1 ← x1T

11: F1 ← mxrealRest(x1, 1, zeros(1,15))
12: Gnini ← PT ∗ F1T

13: gninij ← norm(Gnini(1:end-i))
14: z0 ← z1
15: for k=1:4 do ⊲ Newton Raphson iteration, 4 iterations
16: incrz1 ← -invD ∗ PT ∗ F1T

17: z1(1:end-i) ← z0(1:end-i) + incrz1(1:end-i)
18: x1 ← x0T +Q ∗ z1
19: x1 ← x1T

20: F1 ← mxrealRest(x1, 1, zeros(1,15))
21: z0 ← z1
22: end for

23: Gn1 ← PT ∗ F1T

24: gn1 ← norm(Gn1)
25: gn1j ← norm(Gn1(1:end-i))
26: if gn1j ≤ p4 ∗ gninij then

27: balio ← sum(x1)+sum(x1(1:end-1))
28: if abs(balio)≤ value then

29: if gn1 ≤ gn0 ∗ p3 then

30: Accept x1 as starting point and apply local minimization
31: p ← m+1 ⊲ It could be also p=p+1 and obtain another starting point
32: else

33: p ← p+1
34: end if

35: else

36: p ← p+1
37: end if

38: else

39: p ← p+1
40: end if

41: end while
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In this context, we will define a function F = (fi)i=1,...,18 of 18 components in the following
way: 





f1 = ρ1

fi = λiρi + (1− λi)
∑16

j=1 (αi,jγi)− αi,17, i = 2, ..., 15

f16 = (1− ν) (β · (x− x0)− (t− t0)) + ν ((1− t)β · (x− x0) + tg(x))

g(x) =
∑15

i=1 µiρi+1 +
∑16

i=1 (ξiγi)− ξ17

f18 = −2
(a0
R

)2

(6.1)

being x0 a point that satisfies the simple order conditions and 11 equalities between the γi coeffi-
cients. The aim is to obtain a new point x that satisfies the sixteen order conditions. The 17th
function of F has been denoted by g (f17 = g). Before explaining the 18 functions that form the
function F , we will explain the components and the parameters that appear in the expression (6.1):

• x is the unknown of 16 components that has to be calculated: x = (γi)i=1,...,16.

• ρ1 is the condition of belonging to the sphere of center 0 and radius R = 4 (we have changed
the previous radius of R =

√
18).

• ρi is the ith order condition, i = 2, ..., 16.

• λi, for i = 2, ..., 15 can take the values 0, 1. In total, there are 14 λi parameters.

• µi, for i = 1, ..., 15 can take the values 0, 1. In total, there are 15 µi parameters.

• αi,j , for i = 2, ..., 15 and j = 1, ..., 17 can take the values -1, 0, 1. In total there are
14× 17 = 238 αi,j parameters.

• ξi, for i = 1, ..., 17 can take the values -1, 0, 1. In total, there are 17 ξi parameters.

• The function f18 of the expression (6.1) gives a measure of the coefficients of the new point
x = (γi)i=1,...,16, being:

a0 =
2
∑15

i=1 γi + γ16
2

(6.2)

This makes a total of 285 parameters (considering also the radius of the sphere as a parameter).

Functions fi for i=2, ..., 15 and g are used to establish an order condition (ρi for i=2, ...,
16) or an equality among the coefficients γi. The function g is the one used to establish the test

condition mentioned before. Only one order condition or one equality between two parameters can
be established in each of the functions fi for i=2, ..., 15 and g. Some observations:

• It can be observed that the parameters λi and µi are multiplying the order conditions ρi.
Hence, these parameters will be used to activate the order conditions: if their value is 0 the
order conditions will not be activated, and if it is 1, the order condition will be activated.
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• It can also be observed that the parameters αi,j and ξi will be used to activate the equalities
between the components of the solution x = (γi)i=1,...,16. For example, if we want to set the
equality γ2 = γ12 in the equation f4, the following values of the parameters have to be taken:
first of all the order condition ρ4 will be deactivated by chosing λ4 = 0, α4,2 = 1, α4,12 = −1,
α4,j = 0 for j = 2, 3, ..., 11, 13, ..., 17. Another option could be by interchanging the values
of α4,2 and α4,12, that is to say: α4,2 = −1 and α4,12 = 1 and the rest 0 as before. In the
same way, if we want to activitate the same equality in the 17th component of F , we can do
ξ2 = 1, ξ12 = −1 and the rest ξi = 0 (or ξ2 = −1, ξ12 = 1 and the rest ξi = 0).

So, the set of parameters λi, µi, αi,j and ξi makes possible to establish order conditions or equalities
between components. The first 15 components of F , fi for i = 1, ..., 15 will be the ones that the
point that we have verifies (order conditions or equalities between γi). In the 17th component of
F , function g, we will specify another condition (order condition or equality between components)
that a new point we are looking for has to verify. This means that we can pass from a point that
satisfies the conditions specified in fi for i = 1, ..., 15, to another point that will satisfy also the
condition specified in g. We will see some examples in order to clarify this:

• For a point (γi)i=1,...,16 that satisfies the 16 order conditions, the values of the parameters
will be the following: R = 4; αi,j = 0 for i = 2, ..., 15 and j = 1, ..., 17; λi = 1 for i = 2, ...,
15; µi = 0 for i = 1, ..., 14 and µ15 = 1; ξi = 0 for i = 1, ..., 17.

• For a point (γi)i=1,...,16 that satisfies the first 15 order conditions and the equality γ2 = γ12
the values of the parameters will be the following: R = 4; αi,j = 0 for i = 2, ..., 15 and j = 1,
..., 17; λi = 1 for i = 2, ..., 15; µi = 0 i = 1, ..., 15; ξ2 = 1, ξ12 = −1 and the rest values of
ξi = 0.

If we have a point that satisfies certain conditions, another point that differs from the previous in
one condition (one different order condition or one different equality between γi) could be obtained,
by changing each time one condition that will be specified in the 17th component of F . This means
for example that, having a starting point that satisfies the first 15 order conditions and one equality
between γi, we can try to obtain a new point that satisfies the overall sixteen order conditions, or
viceversa.

The function f16 of the expression (6.1) has two parts. The addend multiplied by (1 − ν) is a
moving hiperplane that will be used to move along the curve specified by the first fi i = 1, ..., 15
functions until a point satisfying g is found. The parameter β is a 16-components vector parallel
to the curve we are moving along. The parameter t measures the distance that we have moved
along the specified curve. The second addend, which is multiplied by ν means that when ν = 1 and
moving from t = 0 to t = 1 the condition written in the function g will be satisfied.

6.1. The first experiments

6.1.1. Going backwards

In this first experiment we will take the Sofroniou and Spaletta’s solution 10-order and s = 31
stages method (3.11). This solution (3.11) verifies the 16 order conditions given by (3.3)-(3.7).
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Starting from this point, we will obtain its projection in the sphere of radius R = 4. That is to say,
the consistency condition is changed by the condition of being on the sphere of center 0 and R = 4.
This new point continues verifying the order conditions (3.4)-(3.7). So, taking as starting point this
point on the sphere, we will go backwards until we obtain the point given by (5.27) which verifies
the simple five order conditions and the scheme (9, 4, 1, 1, 1), that is to say 11 equalities among its
γi coefficients:

{

γ1 = γ2 = γ4 = γ8 = γ9 = γ11 = γ12 = γ13 = γ14

γ5 = γ6 = γ7 = γ10
(6.3)

being γ3, γ15 and γ16 the different coefficients. So, we can say that in (γi)i=1,...,16, γ1 appears nine
times following (6.3), γ5 four times following (6.3), and γ3, γ15 and γ16 appear once.

First of all, it has to be said that starting from Sofroniou and Spaletta’s method (3.11), it has
been possible to obtain the starting point given by (5.27), which satisfies the simple five order
conditions and the equalities given by (6.3).

In Figure 7, we can see the way followed from Sofroniou’s method (3.11) to the point (5.27).
Some observations about Figure 7:

• The starting point has been denoted by Sofr. & Spal. in Figure 7. This point satisfies the
sixteen order conditions.

• In the process represented in Figure 7 the point given by (5.27) has been obtained, which
satisfies the simple five order conditions and the equalities given by (6.3). In this figure it has
been denoted by “Point A0”.

• Eleven steps have to be done in order to obtain the point (5.27) denoted by “Point A0” at
the bottom of the figure. In each of these steps, one order condition is lost each time and
one equality between the coefficients γi is gained. It is written in each step which equality in
which equation is inserted. For example, in the first step the equality γ2 = γ4 is inserted in
equation f15, which means that the order condition ρ15 is lost. In this first step, 4 points that
satisfy the order conditions ρ1-ρ14 and ρ16 (which are written in equations f1-f14 and f16)
and the equality γ2 = γ4 are found. The notation used for the points we are obtaining in each
step is pi,j being i the number that indicates how many order conditions are satisfied, and
j the number of points found in that step following the way and the previous point marked
in the scheme (it does not mean that all the points obtained in the previous step have been
analysed).

• The simple order conditions are ρ1, ρ2, ρ3, ρ5 and ρ8 (which can be activated in the functions
f1, f2, f3, f5 and f8).

• The branches that are not followed until the end have not been explored.

• The order in which the equalities are set matters. It can happen that in one point of the
process one equality does not give any results. However, in a posterior step of the process, it
is possible to obtain one result establishing this equality that has failed before. So the failure
of an equality in a concrete point of the process does not mean that this possibility will fail
later.
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Sofr.

&Spal.

p15,1 p15,2 p15,3 p15,4

p14,1 p14,2

p13,1 p13,2

p12,1 p12,2 p12,3 p12,4

p11,1 p11,2

p10,1 p10,2 p10,3 p10,4

p9,1 p9,2 ... p9,9

p8,1 p8,2 ... p8,10

p7,1 p7,2 ... p7,10

p6,1 p6,2 ... p6,11

Point

A0

In f15 γ2 = γ4 In f15 γ2 = γ4

In f14 γ4 = γ12 In f14 γ4 = γ12

In f13 γ5 = γ7 In f13 γ5 = γ7

In f12 γ12 = γ14

In f11 γ1 = γ2 In f11 γ1 = γ2

In f10 γ1 = γ8

In f9 γ1 = γ9

In f7 γ5 = γ10

In f6 γ1 = γ13

In f4 γ5 = γ6

In g γ2 = γ11

Figure 7: Going backwards from Sofroniou’s solution.
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6.1.2. Going forwards

In a similar way, the way to go from the starting point (5.27) to the Sofroniou and Spaletta’s
solution has been followed. The experiments has been developed in the following way:

• This time the starting point is at the bottom of the Figure 7. It is denoted by “Point A0”.
This point satisfies the simple 5 order conditions (ρ1, ρ2, ρ3, ρ5, ρ8) and 11 equalities between
the γi coefficients. This equalities have been included in the same way the backwards process
has been developed. That is to say:

In f15, γ2 = γ4
In f14, γ4 = γ12
In f13, γ5 = γ7
In f12, γ12 = γ14
In f11, γ1 = γ2
In f10, γ1 = γ8
In f9, γ1 = γ9
In f7, γ5 = γ10
In f6, γ1 = γ13
In f4, γ5 = γ6
In g, γ2 = γ11

(6.4)

• We want to go up in the process until we obtain a point that satisfies the sixteen order
conditions.

• The process to go up have been done as follows:

– We are in the “Point A0”. A first step is given activating ρ4 in g and losing the equality
γ2 = γ11 as a consequence. There are eleven points that satisfy this condition p6,1, ...,
p6,11.

– As ρ4 is satisfied, this is activated in f4, losing the equality γ5 = γ6 that has been in f4.
And we follow the process from one of the points p6,j . In the second step ρ6 is activated
in g and losing the equality γ5 = γ6 in f4. There are ten points that satisfy this condition
p7,1, ..., p7,10.

– And the rest of the steps are similar until the top of the Figure 7 is reached obtaining
the point Sofr. & Spal.

In Figure 7 the way followed to go up and down has been marked using a thicker blue line.
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Figure 8: Cumulative weight plot for s = 31 stage and 10th order new method.

Following the forwards way and the process described in this second technique, we have been
able to find a new point that satisfies the sixteen order conditions, see in Figure 8 its cumulative
weight plot. This new point is the following:

γ1 = γ31 = 0.154573955942749
γ2 = γ30 = 0.084916229764423
γ3 = γ29 = 0.510725963869653
γ4 = γ28 = 0.096972445176156
γ5 = γ27 = −0.196353863540888
γ6 = γ26 = −0.391377961592734
γ7 = γ25 = −0.278523979360953
γ8 = γ24 = 0.144663174620264
γ9 = γ23 = 0.066283988663858
γ10 = γ22 = −0.199028217131776
γ11 = γ21 = 0.299036966780720
γ12 = γ20 = 0.189133242229514
γ13 = γ19 = 0.198214273246474
γ14 = γ18 = 0.101260161817474
γ15 = γ17 = −0.587096566393321

γ16 = 0.613200371816777

(6.5)

6.1.3. The algorithms up to now

In this section we will explain the algorithms that we need to do the way down (going backwards)
and the way up (forwards):

• An algorithm to change parameters is required. Given a set of parameters (λi, µi, αi,j , ξi)
which indicates the conditions (order conditions or equalities) that the present point satisfies,
a new set of parameters is obtained. The aim is to obtain a new point that will satisfy
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the order conditions and equalities determined in this new set of parameters. When going
backwards one order condition will be lost and one equality will be gained. When going
forwards the contrary will happen. An algorithm has been designed to change parameters
when going backwards and another one to change parameters when going forwards.

• Al algorithm to make a step is required. Given a point that satisfies certain conditions specified
using the values of the parameters, we obtain a new point that satisfies other conditions
specified by a new set of parameters. The same algorithm is used to do the backwards and
forwards ways.

• When going forwards, we have a point that satisfies the simple five order conditions and eleven
equalities between the coefficients γi. In this first experiment we knew in advance the equal
elements of this point and their positions, but in general, an algorithm that determines the
different values present in the point x = (γi)i=1,...,16 and their positions will be required.

• In the same way when going forwards, we will require an algorithm that will establish the
first set of parameters. This algorithm will determine the starting parameters (αi,j , ξi, µi,
λi) of the point that satisfies the simple five order conditions and the equalities identified by
the previous function.

6.2. Some preliminary analysis before developing the general forwards process

Before developing the general forwards process, which will consist taking each of the 21871
starting points that satisfy the five simple order conditions and following the process described
seeing if it is possible to obtain a point that satisfies the sixteen order conditions, the points that
have been obtained following the process marked in Figure 7 will be analysed. In this analysis we
are interested in three numerical values:

1. The topological distance: This quantity means how many intermediate points separate two
points, not how far apart they are. In each of the points, both directions of the present
point are followed to find the new points. Following one of the directions, the first point’s
topological distance will be 1, the second point’s topological distance 2, and so on. Following
the second direction, the same happens: the topological distance is k for the kth point ob-
tained. Sometimes, the two directions that have to be explored will be joined (the curve will
be closed), meaning that we will fall in the starting point after obtaining some points that
satisfy the established condition. For example, in a case in which 10 points are obtained and
the curve is closed, the topological distance of these points will be (1, 2,3, 4,5, 5, 4, 3,2, 1).

2. A measure of the coefficients: This measure will be defined using the component f18 =

−2
(a0
R

)2

defined in (6.2). Observe that it is a negative value.

3. The norm of the value of the sixteen order conditions: These sixteen order conditions can be
activated in the functions f1 − f15 and g of the expression (6.1). Let denote the function of
the sixteen order conditions as G(x) = (f1, f2, ..., f15, g). We will be interested in the value of
‖G(x)‖.

The analysis will be performed with two sets of points:
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• The first set will consist in the points obtained in the process described in Figure 7. Con-
sidering the process as a forwards process that starts in the point “Point A0”, this means
that: eleven points of the first step (p6,1, ..., p6,11) will be analysed; the ten points obtained
following one of the p6,j previous points will be analysed (p7,1, ..., p7,10); and so on.

• The second set will consist in considering more points that the ones have been marked in
Figure 7. The branches that have not been followed in this figure will be calculated and
many points that we obtain in the process will be analysed. We say many points and not
all the points, because the process to obtain all the points of all the branches is really time
consuming.

6.2.1. Analysis of the points of the first set

In this section the topological distance, the explained measure of the coefficients and the norm
of the sixteen order conditions of the first set of points will be analysed. In Table 4 we can see
the topological distance and the measure of coefficients of the first set of points. In this table the
following data are written:

• The quantity of points that conform the set in each step is written.

• The maximum value of the measure of the coefficients (as this measure is negative the maxi-
mum in absolute value has been considered) and the minimum (minimum in absolute value)
of the first set has been written.

• The mesaure of the coefficients of the point that allows following the process.

• The position of the measure of the coefficients of the point that allows following the process
ordered taking from maximum absolute value to the minimum (position 1 corresponds to the
point with the greatest absolute value).

• The topological distance of the point that allows following the process.

From Table 4 it can be concluded that the measure of the coefficients of the points that allow
following the process is on the interval [−0.20,−0.13]. The topological distances of the adequate
points varies between 1-5.

A similar table has been created with the norm of the sixteen order conditions of the first set
of points, Table 5, but it results difficult to conclude anything from it. The following data can be
seen there:

• The quantity of points that conform the set in each step.

• The maximum and the minimum values of ‖G(x)‖.

• The value of ‖G(x)‖ of the point that allows following the process.

• The position of ‖G(x)‖ of the point that allows following the process ordered from the maxi-
mum value to the minimum (position 1 corresponds to the point with the greatest ‖G(x)‖).
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Step number 1st step 2nd step 3rd step

Point top. distance 2 3 5

−2
(a0
R

)2

max
-0.312398460146025 -0.268628439269852 -0.215602343712106

−2
(a0
R

)2

min
-6.72750783657071e-07 -0.0349144123926289 -0.091318600051002

−2
(a0
R

)2

point
-0.186254772284937 -0.132013936329637 -0.166988089576315

Point position 4 7 5

Number of points 11 10 10

4th step 5th step 6th step 7th step

1 1 1 1

-0.200597297983226 -0.187123647764713 -0.159487684991583 -0.190499685106902

-0.00192166885238663 -0.109997050134757 -0.135296312995526 -0.127963980986809

-0.200597297983226 -0.168374260797779 -0.159487684991583 -0.137468297031783

1 2 1 3

9 4 2 4

8th step 9th step 10th step 11th step

1 1 1 1

-0.193120955717927 -0.186806493477043 -0.191590667525783 -0.189659525268255

-0.172254272979615 -0.179995355690231 -0.186797385230934 -0.186148238551586

-0.172254272979615 -0.179995355690231 -0.186797385230934 -0.189659525268255

2 2 4 1

2 2 4 2

Table 4: Topological distance and coefficients’ measure of the first set.

Given a topological distance for each step, an additional analysis has been developed analysing
the points with a smaller topological distance than the given one. In each step if the point that
allows to follow the process has topological distance m, the aim has been to study the points that
have a topological distance that is ≤ (m + 1). We list the results of this analysis step by step,
denoting with an asterisk (∗) the features of the point that allows to follow the process:

1. In the 1st step points with topological distance 1-3 are analysed, Table 6.

2. In the 2nd step points with topological distance 1-4 are analysed, Table 7.

3. In the 3rd step points with topological distance 1-5 are analysed, Table 8.

4. In the 4th step points with topological distance 1-2 are analysed, Table 9.

5. In the 5th step points with topological distance 1-2 are analysed, Table 10.

6. In the 6th step points with topological distance 1-2 are analysed, Table 11.

7. In the 7th step points with topological distance 1-2 are analysed, Table 12.

8. In the 8th step points with topological distance 1-2 are analysed, Table 13.

9. In the 9th step points with topological distance 1-2 are analysed, Table 14.

10. In the 10th step points with topological distance 1-2 are analysed, Table 15.

11. In the 11th step points with topological distance 1-2 are analysed, Table 16.
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Step number 1st step 2nd step 3rd step

‖G(x)‖max 212.380137377832 42.1866575302664 0.0362313019152408

‖G(x)‖min 1.16423621111419e-05 0.0184911310738061 0.00214997505358903

‖G(x)‖point 39.108188219442 0.0184911310738061 0.00214997505358903

Point position 2 10 10

Number of points 11 10 10

4th step 5th step 6th step 7th step

0.021561726236527 0.00864358774698865 0.00524650907498929 0.00885810487642527

5.57793351155797e-06 0.00108206639324003 0.00346675817524766 0.0026928647044555

0.0102278007641977 0.00371588433776787 0.00346675817524766 0.00404818207742273

7 3 2 2

9 4 2 4

8th step 9th step 10th step 11th step

0.00226928972957287 0.00166284205829303 0.000705392545784657 1.71326075912416e-14

0.000795880603936082 0.000702703505191104 0.00010124725974094 8.82441229641858e-15

0.000795880603936082 0.00166284205829303 0.000705392545784657 1.71326075912416e-14

2 1 1 1

2 2 4 2

Table 5: Norm of the sixteen order conditions of the first set.

Topological −2
(a0
R

)2

‖G(x)‖
distance

1 -0.289553090066448 1.164309628723169

2∗ -0.186254772284937∗ 39.108188219441963∗

3 -0.000000672750784 0.000011642362111

1 -0.270485839389751 2.123578606560379

2 -0.000181671394244 0.193719054723202

3 -0.000004685166919 1.164967768402042

Table 6: Study of some points of the step 1.

45



Topological −2
(a0
R

)2

‖G(x)‖
distance

1 -0.162026861492138 33.998529059380139

2 -0.153826367492559 27.317706449428037

3 -0.034914412392629 0.162274012521198

4 -0.268628439269852 0.237681318392343

1 -0.145209911825618 0.096637519613531

2∗ -0.132013936329637∗ 0.018491131073806∗

3 -0.206113678134081 28.974712435577434

4 -0.219264114322233 42.186657530266423

Table 7: Study of some points of the step 2.

Topological −2
(a0
R

)2

‖G(x)‖
distance

1 -0.119556120157140 0.018683634539122

2 -0.092510370137795 0.017244738825898

3 -0.091318600051002 0.013302196865789

4 -0.109072997166448 0.010081929456183

5 -0.138610624002485 0.004770155403930

5∗ -0.166988089576315∗ 0.002149975053589∗

4 -0.199914383075673 0.022561283653803

3 -0.215602343712106 0.036231301915241

2 -0.196401595811208 0.020686740636044

1 -0.197182410982100 0.022006729485499

Table 8: Study of some points of the step 3.

Topological −2
(a0
R

)2

‖G(x)‖
distance

1∗ -0.200597297983226∗ 0.010227800764198∗

2 -0.170964319735531 0.012648105625484

2 -0.110939502156744 0.001159408933126

1 -0.004268019723374 0.000000011144224

Table 9: Study of some points of the step 4.
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Topological −2
(a0
R

)2

‖G(x)‖
distance

1∗ -0.168374260797779∗ 0.003715884337768∗

2 -0.109997050134757 0.001082066393240

2 -0.161636567146025 0.006017995299712

1 -0.187123647764713 0.008643587746989

Table 10: Study of some points of the step 5.

Topological −2
(a0
R

)2

‖G(x)‖
distance

1∗ -0.159487684991583∗ 0.003466758175248∗

1 -0.135296312995526 0.005246509074989

Table 11: Study of some points of the step 6.

Topological −2
(a0
R

)2

‖G(x)‖
distance

1∗ -0.137468297031783∗ 0.004048182077423∗

2 -0.127963980986809 0.008858104876425

2 -0.146897375095611 0.002692864704456

1 -0.190499685106902 0.003178873443553

Table 12: Study of some points of the step 7.

Topological −2
(a0
R

)2

‖G(x)‖
distance

1∗ -0.172254272979615∗ 0.000795880603936∗

1 -0.193120955717927 0.002269289729573

Table 13: Study of some points of the step 8.

Topological −2
(a0
R

)2

‖G(x)‖
distance

1∗ -0.179995355690231∗ 0.001662842058293∗

1 -0.186806493477043 0.000702703505191

Table 14: Study of some points of the step 9.
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Topological −2
(a0
R

)2

‖G(x)‖
distance

1 -0.191524556343979 0.000380766760958

2 -0.191590667525783 0.000332854929302

2 -0.190801085135339 0.000101247259741

1∗ -0.186797385230934∗ 0.000705392545785∗

Table 15: Study of some points of the step 10.

Topological −2
(a0
R

)2

‖G(x)‖
distance

1 -0.186148238551586 8.824412296418578e-15

1∗ -0.189659525268255∗ 1.713260759124155e-14∗

Table 16: Study of some points of the step 11.

6.2.2. Analysis of the points of the second set

In this second analysis more points than in Section 6.2.1 are considered. The analysed points
are the following:

• Step 1: Starting from the point “Point A0” 11 points that satisfy 6 order conditions and 10
equalities are obtained. We analyse all these 11 points.

• Step 2: Starting from the 11 points of the step 1, 32 points that satisfy 7 order conditions
and 9 equalities are obtained. We analyse all these 32 points.

• Step 3: Starting from the 32 points of the step 2, 132 points that satisfy 8 order conditions
and 8 equalities are obtained. We analyse all these 132 points.

• Step 4: Starting from the 132 points of the step 3, 385 points that satisfy 9 order conditions
and 7 equalities are obtained. We analyse the first 50 of this set.

• Step 5: Starting from 50 points of the step 4, 257 points that satisfy 10 order conditions and
6 equalities are obtained. We analyse the first 50 of this set.

• Step 6: Starting from 50 points of the step 5, 105 points that satisfy 11 order conditions and
5 equalities are obtained. We analyse the first 50 of this set.

• Step 7: Starting from 50 points of the step 6, 69 points that satisfy 12 order conditions and
4 equalities are obtained. We analyse all these 69 points.

• Step 8: Starting from the 69 points of the step 7, 41 points that satisfy 13 order conditions
and 3 equalities are obtained. We analyse all these 41 points.
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• Step 9: Starting from the 41 points of the step 8, 66 points that satisfy 14 order conditions
and 2 equalities are obtained. We analyse all these 66 points.

• Step 10: Starting from the 66 points of the step 9, 25 points that satisfy 15 order conditions
and 1 equality are obtained. We analyse all these 25 points.

• Step 11: Starting from the 25 points of the step 10, 60 points that satisfy 16 order conditions
are obtained. We analyse all these 60 points.

In Tables 17 and 18, we can see the measure of the coefficients and the norm of the order
conditions of these points. Again, the values of the point that allows following the overall process
of Figure 7 have been noted down. This time the topological distance has not been calculated as
in steps 5, 6 and 7 we are not considering all the points of the process.

Step number 1st step 2nd step 3rd step

−2
(a0
R

)2

max
-0.312398460146025 -0.277498808718953 -0.565368924975638

−2
(a0
R

)2

min
-6.72750783657071e-07 -8.15953250920796e-07 -3.20618670773964e-07

−2
(a0
R

)2

point
-0.186254772284937 -0.132013936329633 -0.166988089576278

Point position 4 16 24

Number of points 11 32 132

4th step 5th step 6th step 7th step

-0.524724254653273 -0.357973232729286 -0.315798269231926 -0.258548452681552

-1.65759397709565e-28 -4.03741553615937e-25 -1.29890849787639e-05 -3.2301340245218e-05

-0.200597297983222 -0.16837426079775 -0.159487684991198 -0.137468297031408

23 47 42 28

50* (385) 50* (257) 50* (105) 69

8th step 9th step 10th step 11th step

-0.193120955717743 -0.186806493477135 -0.191590667526059 -0.189659525265751

-5.42085847786923e-07 -8.91170209750487e-07 -2.73462840023396e-18 -6.84432552978498e-11

-0.172254272979652 -0.179995355690239 -0.18679738523102 -0.189659525265751

2 2 2 1

41 66 25 60

Table 17: Coefficients’ measure of the second set.

6.3. The process of going forwards

After the analysis developed in Section 6.2, given a starting point that satisfies the five simple
order conditions, the process that we will continue to find the coefficients (γi)i=1,...,16 of the new
method will follow these criteria:

• In the first step all the points will be considered.
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Step number 1st step 2nd step 3rd step

‖G(x)‖max 212.380137377832 265.782309260689 8.6315373607896

‖G(x)‖min 1.16423621111419e-05 4.54574583717768e-09 7.15194791545681e-13

‖G(x)‖point 39.108188219442 0.0184911310738086 0.00214997505358381

Point position 2 26 115

Number of points 11 32 132

4th step 5th step 6th step 7th step

5.47320802605529 0.642489659790803 0.244671395967803 0.0307084279631623

3.77228920781469e-15 2.05947140273216e-12 4.33033458376227e-09 1.06048503834291e-07

0.0102278007641917 0.00371588433773466 0.00346675817524684 0.00404818207743281

191 189 81 51

50* (385) 50* (257) 50* (105) 69

8th step 9th step 10th step 11th step

0.0273533879086008 0.00852574082041072 0.000705392545781703 4.28888611692313e-07

2.13967610544086e-09 5.21842866036111e-09 1.67208590706232e-09 1.14661493610407e-16

0.000795880603934685 0.00166284205827681 0.000705392545781703 3.70772540537407e-14

25 19 1 13

41 66 25 60

Table 18: Norm of the sixteen order conditions of the second set.

• In the subsequent steps (steps 2-11), the points that have an established topological distance
will be considered to follow the process. To do this, a vector with topological distances will
be established, (d2, d3, ..., d11): variable distop. In this way, in the step i the points with
topological distance less than or equal to di will be considered. In the starting steps the
topological distance will be wider and then, it will be getting narrower. This criteria has
been thought because, it can be seen in Tables 6-16, that in the starting steps the topological
distance is greater than in the final ones.

• The norm of the sixteen order conditions will not be used as a criteria in the process. As
we can see in Tables 5, 6, 18 that sometimes the norm of the sixteen order conditions of the
adequate point is big (it is the case that we see in Table 6) or it is not the smallest one of the
set (see Tables 5 and 18).

• It seems reasonable to establish an upper bound and a lower bound for the measure of the
coefficients: variables top and bottom. If we observe Tables 4 and 17, it seems that the measure
of the coefficients is on the interval [−0.20,−0.13]. This interval could be wider, but it seems
reasonable its establishment.

• Finally, even though it cannot be seen in the included tables, some computational experiments
show us that when a point with very low coefficients is obtained in the process, it turns difficult
to obtain adequate points following the way of that point. Taking into account this, we will
also set a lower bound for the measure of the coefficients and when a point with a smaller
value than this lower bound is obtained the process will be interrupted: variable limit.
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Algorithm 5 Algorithm to obtain (γi)i=1,...,16 coefficients satisfying 16 order conditions.

1: Input: x0, distop, bottom, top, limit

2: a0 ← sphere(x0) ⊲ Pass x0 to the sphere of center 0 and r = 4
3: t0 ← 0
4: tend ← 16
5: beta0 ← (1, 01, 02, ..., 015)
6: equalpositions ← findequal(a0) ⊲ Find the different values in a0 and their positions
7: param0 ← setinitialparameters (equalpositions) ⊲ Set initial parameters: α0,i,j , λ0,i, µ0,i, ξ0,i
8: condition ← 4 ⊲ Order condition that want to satisfy
9: param1 ← setparameters (param0, condition) ⊲ Set parameters step 1: α1,i,j , λ1,i, µ1,i, ξ1,i

10: [bek1r,bekbeta1r] ← forwards1(a0, beta0, t0, tend, param1) ⊲ All points satisfying param1
11: [bek1, bekbeta1] ← cleanrepet(bek1r, bekbeta1r) ⊲ Clean the repetitions in bek1r
12: activate ← [4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16] ⊲ Vector with the rest 11 order conditions
13: for k=1:10 do ⊲ Steps 2-11
14: param2 ← changeforward(param1, activate(k1), activate(k1+1)) ⊲ New step parameters
15: if size(bek1, 2) > 0 then ⊲ If there are elements in bek1
16: a0 ← bek1(:,j)
17: beta0 ← bekbeta1(:,)
18: bek3r ← [ ] ⊲ Initialize to save points
19: bekbeta3r ← [ ] ⊲ Initialize to save β-s
20: for j1=1: size(bek1,2) do
21: [bek2,bekbeta2] ← forwards2(a0, beta0, t0, tend, param2, distop(k1), limit) ⊲

Obtain points satisfying distop(k1) and limit

22: absf18 ← Calculate |f18| of all the points of bek2
23: index ← find (absf18 < top & absf18 < bottom)
24: bek3r ← [bek3r bek2(:,index)] ⊲ Save elements of bek2 satisfying bottom < |f18| < top

25: bekbeta3r ← [bekbeta3r bekbeta2(:,index)]⊲ Save in bekbeta3r the corresponding β
26: end for

27: else

28: break

29: end if

30: [bek3, bekbeta3] ← cleanrepet(bek3r, bekbeta3r) ⊲ Clean the repetitions
31: bek1 ← bek3; bekbeta1 ← bekbeta3 ; param1 ← param2 ⊲ Update parameters
32: end for

33: if k1==10 & size(bek1,2)≥ 1 then ⊲ If the final step has been reached
34: for j=1:size(bek1,2) do
35: consis ← consistency(bek1(:,j)) ⊲ Pass to consistency condition each point
36: end for

37: else

38: end if

51



In the Algorithm 5, given a starting point x0 that satisfies the five simple order conditions, the
process that we will continue to find the coefficients (γi)i=1,...,16 of the new method satisfying the
sixteen order conditions is described.

6.3.1. Results of the process of going forwards

It has been explained the process that we will follow to go forwards, starting from a point that
satisfies the five simple order conditions. Four prameters have to established: distop, bottom, top,
limit. Some results and some considerations about the process of going forwards are presented in
this section.

• Starting from the starting point x0 given by (5.27) and chosing the following values for the
parameters: distop = [7, 6, 5, 4, 3, 2, 1, 1, 1, 1], bottom = 0.1, top = 0.3 and limit = 0.01.

– When we establish the equalities among the coefficients of the vector x0 as explained
in Figure 7, it is possible to obtain the coefficients of Sofroniou and Spaletta’s method
(3.11) and the coefficients of our new method (6.5).

– When we change the way in which the equalities among the coefficients of the vector x0

are set, and using the same parameters as before, we cannot reach either the Sofroniou
and Spaletta’s solution or our new solution. When we reach the 9th step of the 11 steps
that have to be done, we do not have any points so the process is finished. The values
of the parameters have to be widened in order to finish the overall process.

– If the values of the parameters are widened as follows: distop = [7, 6, 5, 4, 4, 4, 2, 2, 2, 2],
bottom = 0.01, top = 0.3 and limit = 0.01, the 11 steps of the process are done, 25 points
are found but even in this case the Sofroniou and Spaletta’s solution or our new solution
do not appear. And some of the obtained γi coefficients are quite large (|γi| ∈ [1, 3]).

– If we widen the parameter related to the topological distance, chosing distop = [10, 10, 10,
10, 10, 10, 5, 3, 3, 3], and bottom = 0.06, top = 0.4 and limit = 0.01, we do not have points
in the 10th step. Chosing a larger top and maintaining the rest of the parameters (that is
to say distop = [10, 10, 10, 10, 10, 10, 5, 3, 3, 3], bottom = 0.06, top = 0.5 and limit = 0.01)
the same happens.

– Using the following parameters: distop = [20, 20, 20, 20, 20, 20, 5, 3, 3, 3], bottom = 0.01,
top = 0.6 and limit = 0.001, after the 11 steps 117 points are obtained but most of them
have some coefficients verifying |γi| ∈ [1, 3]. There are only two cases in which all the
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coefficients remain on the interval [−1, 1]:

γ1 = γ31 = 0.216968225174685 0.228795449861804
γ2 = γ30 = 0.872929710391992 0.851862525878233
γ3 = γ29 = −0.419089368345931 −0.414041804166289
γ4 = γ28 = −0.388625593493059 −0.403002032787764
γ5 = γ27 = −0.357731244915905 −0.329525788276191
γ6 = γ26 = 0.979448960387542 0.973077901881892
γ7 = γ25 = −0.626561641226852 −0.621919440966130
γ8 = γ24 = 0.430047535082709 0.433832438014287
γ9 = γ23 = 0.118369840172629 0.101029552679953
γ10 = γ22 = −0.913872092979091 −0.898389013932081
γ11 = γ21 = 0.313759643379948 0.287842685973578
γ12 = γ20 = 0.338352126736173 0.352976982005111
γ13 = γ19 = 0.089984942816856 0.102208127748936
γ14 = γ18 = 0.415424629288281 0.394084868058467
γ15 = γ17 = −0.964943625165182 −0.959969701212588

γ16 = 0.791075905390409 0.802274498477561

(6.6)

In Figure 9 the cumulative weight plot of the two methods of the expression (6.6) has
been drawn. We can see that both methods do many side-to-side movements (zigzags)
and their cumulative weight plots are quite similar to Kahan and Li’s s = 33 stages and
10 order method (see Figure 1).
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Figure 9: Cumulative weight plot for s = 31 stage and 10th order methods: left image, left formula of (6.6) and right
image, right formula of (6.6).

• After having experimented with the point that gives the Sofoniou and Spaletta’s method, the
process described in Algorithm 5 has been carried out with the 21871 starting points. The
chosen parameters have been: distop = [7, 6, 5, 4, 4, 4, 2, 2, 2, 2], bottom = 0.1, top = 0.4 and
limit = 0.01.

This process is still in execution, having explored up to now 3059 points out of the 21871.
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The new point obtained up to this moment is the following:

γ1 = γ31 = 0.212278271248785
γ2 = γ30 = 0.632455152658572
γ3 = γ29 = −0.367655814001506
γ4 = γ28 = 0.515991253367719
γ5 = γ27 = 0.020298620699509
γ6 = γ26 = −0.387014967076971
γ7 = γ25 = 0.293430907070892
γ8 = γ24 = −0.010972470912696
γ9 = γ23 = −0.724126279821191
γ10 = γ22 = 0.190574978132295
γ11 = γ21 = 0.091802369911264
γ12 = γ20 = 0.280695074734112
γ13 = γ19 = 0.256646662172751
γ14 = γ18 = −0.336392014428401
γ15 = γ17 = −0.546324360287742

γ16 = 0.756625233065217

(6.7)

In Figure 10 the cumulative weight plot of the method (6.7) has been drawn.
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Figure 10: Cumulative weight plot for s = 31 stage and 10th order method (6.7).

7. Conclusions and future work

In this work we have built two techniques to obtain the coefficients of s = 31 stages (which is
the minimal number of stages) and 10 order symmetric composition methods of basic second order
symmetric integrators. The second technique has resulted the best of both techniques, allowing to
obtain some more results appart from the Sofroniou and Spaletta’s solution.
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The aim of this work has been the design and the application of these two techniques, which
can be used to find the solution of systems of polynomial equations (especially the ones that have
to be solved when building high order numerical integrators).

Our next goals are the following:

• To improve our techniques in order to see if we are able to calculate more results.

• To extend the second of the explored techniques to obtain 10 order methods with more than
s = 31 stages.

• To apply the second of the explored techniques for the construction of efficient 10 order
composition methods with processing (different composition methods with processing were
obtained by Blanes in [3], but only up to order 8).
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