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Abstract. Hartle’s model provides the most widely used analytic framework to describe
isolated compact bodies rotating slowly in equilibrium up to second order in perturbations
in the context of General Relativity. Apart from some explicit assumptions, there are some
implicit, like the “continuity” of the functions in the perturbed metric across the surface of the
body. In this work we sketch the basics for the analysis of the second order problem using the
modern theory of perturbed matchings. In particular, the result we present is that when the
energy density of the fluid in the static configuration does not vanish at the boundary, one of the
functions of the second order perturbation in the setting of the original work by Hartle is not
continuous. This discrepancy affects the calculation of the change in mass of the rotating star
with respect to the static configuration needed to keep the central energy density unchanged.

1. Introduction

One of the aims of our programme to study Hartle’s model [1] within the general modern theory
of perturbations is to analyse with rigour the implicit assumptions made in the original model
regarding the continuity and/or differentiability of the functions in the metric of the perturbed
configuration at the boundary of the star. In order to do that we have studied the problem of the
perturbed matching by making use of modern spacetime and matching perturbation theory, only
achieved in full generality and to second order in [2]. This work is a parallel continuation of the
analysis started in [3] based on the theoretical analysis of a completely general perturbative
approach to second order around static configurations of the exterior (asymptotically flat)
vacuum problem of stationary and axisymmetric bodies with arbitrary matter content presented
in [4].

In this short contribution to the ERE2014 we present the main result concerning the matching
problem and continuity of functions in Hartle’s model, which eventually implies a correction of
the change in mass of the star needed by the perturbed configuration to keep the value of the
central energy density unchanged with respect to the static configuration.

1.1. Hartle’s model

Hartle’s model [1] describes the equilibrium configuration of a slowly rotating isolated body in a
perturbation scheme in the context of General Relativity. It is a global model, where the interior
of the body is a perfect fluid with a barotropic equation of state, no convective motions and
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rigid rotation and the exterior is an asymptotically flat vacuum. These are matched across a
timelike hypersurface that represents the common boundary between the star and the vacuum.
The whole model is stationary and axially symmetric, but also equatorial symmetry is
assumed. The perturbations are computed up to second order around a static, spherically
symmetric configuration and they are driven by a single parameter. In this section we present the
basics of Hartle’s model and the relevant results for the present work just as they are presented
in the original paper [1], except that we make explicit the appearance of the perturbation
parameter, denoted here as e. In particular, Q in [1] appears here as ) for some constant €2.
The “perturbed” metric used in [1] describes both the interior and exterior regions at once

A(r)
go = =0 (1428%(r,0)) di* + 0 (1 42t MDY ”:(T’ 6)> dr?
—1—7“2(1 + 282/<:(r, 9)) {d@2 + sin? O(dp — ew(r, H)dt)ﬂ + 0(83), (1)

where 7 runs from 0 to oco. It is implicitly assumed that in this set of coordinates this metric is, at
least, continuous. The static and spherically symmetric background configuration is determined
by the functions v(r) and A(r). In this background, the common boundary of the interior and
the exterior is located at r = a, so that the fluid region extends up to r = a and the vacuum
from there to co. The first order perturbation is described by the function w(r,6) and the
second order perturbation by h(r,0), m(r,0) and k(r,8). As it is well known, the choice of the
perturbation parameter € is not relevant, since one can obtain other families of solutions by
scaling. The physics of the model will restrict the scalability (see Eq. (1) in [1]). Therefore, the
functions in (1) can be taken to correspond to the functions with the same name in [1].
The energy density F and pressure P of the background interior read from

1 1
N==(1-eN+re’snB, v ==(e)—1)+re’snP (2)
r T

for the fluid with @ = e~/29,. These are combined with the pressure isotropy condition to give
the usual TOV equation, which can be integrated given a value of the central energy density. It
is useful to define M (r) :=r(1 — e *)/2 and j(r) := e~*)/2 in order to cast the equations for
the perturbations in a compact way. In vacuum, j(r) =1 and M (r) = M, and thus

e ) _ g 2M (3)
r
where M is a constant recognized as the mass of the nonrotating star by the assumption of
continuity of A(r) at = a. The first order perturbation for the fluid velocity reads (") = eQ0,,
for some constant 2, and the field equations (ty) provide a PDE for w(r, 6). At this point, w is
implicitly assumed to be C!, so that regularity conditions at the origin together with asymptotic
flatness are used to show that w must be a function of r alone. Thence, w(r) is integrated given
its value at the origin. In vacuum w(r) = 2Jr3 for some constant .J, which can be determined
from the interior by continuity at r = a [1].
At second order the fluid flow is proportional to 0, and the dependence of w propagates
through the field equations leading to the finite expansions

h(r,0) = ho(r)+ha(r)Pa(cos ), m(r,0) = mo(r)+ma(r)Pe(cos 8), k(r,0) = ka(r)Pa(cos ), (4)

where r is chosen so that ko(r) = 0. That corresponds to a choice of gauge at second order,
which we call k-gauge. The problems for the [ = 0 and [ = 2 sectors separate and are studied
independently. In this text we restrict ourselves to the [ = 0 problem (for a complete analysis
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see [1,5]). The perfect fluid equations for the set {hg, mo} are presented in [1], instead, in terms
of the set {p{, mo}, where pj; (called the pressure perturbation factor in [1]) is related to hg by

1= holr) + py(r) — 572 wlr) — 9P, 5)

for some constant 7. The equations are written in [1] in terms of another radial coordinate R,
which runs from 0 to a. However, at this point we can treat R as a dummy variable, which for
convenience we recall here (€ (0, a]). The system for {p§(r), mo(r)} in r € (0, a] reads

Py = (6)
. . !
I 41 A Clut U I R P)TQPS o (87TP + 1>
12(r — 2M (r)) 3\ r—2M(r) r—2M(r) (r—2M(r))? 2
E' 1 2
m6 = 47TT2F(E + P)pg + Ej2r4w/2 — §T3jj/(w - 9)27 (7)

where ’ denotes a derivative with respect to the argument (r in this case). The system is solved

imposing regularity conditions at the origin, plus p§(0) = 0, thus forcing the central energy

density to stay unchanged with respect to the static configuration [1]. Therefore, v takes the

value h(0), which in principle is arbitrary (ho is determined up to an additive constant). In
vacuum, the equations for mg and hg provide the solutions for r > a
J? oM J?

mO(T):éM_Fv hO(T):_T—2M+7’3(T’—2M)’ (8)

where 0 M is a constant and the free additive constant in hg has been set so that hg vanishes at
infinity. dM is recognized in the asymptotic region as the change in mass needed to keep the
central energy density unchanged. The assumed continuity of mg at r = a in [1] yields
J2
IM =mo(a) + s 9)

which determines M in terms of the interior quantities, since mg(a) is the value of the function
mo obtained by the integration of the system (6), (7) out from the origin. Continuity of hq(r)
is used to fix the freedom left in hg in the interior and thus fix ~.

2. The perturbation method

The modern view of perturbation theory starts with a family of spacetimes (V.,g.) with
diffeomorphically related manifolds, from where a background spacetime say (Vy, g) is singled
out, so that Vy := V.—g and g := g.—¢. The diffeomorphism . : Vy — V- used to identify points
of the manifolds is employed to pull back g. onto the background spacetime, g. := ¥Z(g:). The
family of tensors g. defines the basic perturbative scheme on (Vy, g), where g := ge—o = ge—0, in
the particular gauge defined by .. The metric perturbation tensors are now simply defined as
the derivatives of g. with respect to € at € = 0 at each order of derivation. K; := 0.¢c|.—¢ and
K9 := 0:0:ge|e—0 will refer to the first and second metric perturbation tensors.

Given the above family (1), the spherically symmetric and static background metric reads

g= —e’M @2 4 A g2 4 2 (d02 + sin? Gdgoz), (10)

while the perturbation tensors to second order take the form K; = —2r2w(r, ) sin? dtdp and
) 5 ) ) 62)\(1”) 9
Ky = (~4e"Oh(r,0) + 2% (r,0)sin® 0) de® + 4—m(r, 0)dr

+472k(r, 0)(d6* + sin? Odp?). (11)
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Matter fields are introduced as an e-family of tensors 7. on (Vy,g), with corresponding
perturbations defined again by taking e-derivatives at € = 0. For an energy momentum tensor
of the form T, = (E. + P:)u: ® uc + P.g., those will be given in terms of the corresponding (unit)
fluid flow u. energy density E. and pressure P., expanded as @, = @ + ea(!) + %5217(2) +0(e?),

E.=E+eEW 4+ %52E(2) + 0%, P.=P+ePW 4+ %5213(2) + O(e%). (12)

The Einstein’s field equations for g. read G(gc)as = 877T:q3, from where the first and second
order field equations are obtained as 0:G(g:)agle=0 = 8m0:T:aplc=0 and 0:0-G(g:)aple=0 =
870:0:T-0p|c=0, respectively.

In order to construct the global model we consider a perfect fluid interior (4) region to be
matched to an asymptotically flat vacuum exterior (—) region. In the exact case, the matching
of spacetimes with boundary, say (V*, g%, ©%) requires an identification of the boundaries, £+
and Y7, that defines an abstract manifold ¥ diffeomorphic to both. The matching conditions
demand the existence of one such identification for which the first and second fundamental
forms as computed from either side, h* and k¥, agree. Let us assume that this construction
holds for each pair (VZ, =, 3F) (with ¢ fixed), so that there exists a family of diffeomorphically
related hypersurfaces 3. on which ﬁj = iL; , kT = /7 hold. By construction ¥y = S.—g is the
matching hypersurface of the already matched background. These conditions are formulated as
an e-family of equations defined on ¥ as follows. The spacetime gauges 1= project (down or up
[2]) the f]? families to the background spacetime (Voi, g*%) giving rise to corresponding families
of hypersurfaces Eéﬁ in (VS[, gt). In general, Zgﬁ do not coincide with Z(T. The prescription
of how points in ESE map to Egi is done through yet another diffeomorphism &, : 3y — f]s
that identifies 3. pointwise. This defines a second gauge freedom, the hypersurface gauge. The
combination of the two gauges allows us (i) to construct the mapping of the families Eéﬁ to Eoi
at each side, which describes the pointwise deformation of the hypersurfaces with respect to
Ea[(: Yo) in the gauges defined by T at either side, and (ii) to pull back hX and #F, down
(or up) to (Xg,h) with h = hf = hy, and thus obtain the families of tensors h= and xZ on
(X0, k) [2]. The e-derivatives evaluated on e define h(N* A2* xW* and k%, On the other
hand, the first and second order of the deformation is encoded in the the first and second order
deformation vectors [2]

Zi = Qi+ Ty, Zy =i+ 15 (13)
where 7+ are the unit normals to ESE, Q* are normal components and T the tangent parts
to Xg. Apart from the background configuration and the tensors Ki and K3, Zf and Zj
are (unknown) ingredients needed to compute RWE p@E cMWE and kK@% The explicit
expressions are found in Propositions 2 and 3 in [2] (see also [6, 7] for the first order case). The
perturbed matching conditions to first and second order are

RO+ — h(l)_, LD+ — /{(1)—’ B+ = h(Q)_, @+ — L2 (14)

The tensors h(ME, KA+ xWE and K@+ are, by construction, spacetime gauge invariant (they
are defined on (X, h)), but not hypersurface gauge invariant [2]. However, the equations (14) are
both spacetime and hypersurface gauge invariant [2]. Fulfilling the matching conditions at each
order requires showing the existence of two vectors Z+ (at each order) such that the equations
are satisfied.

The vectors Z depend fully on both spacetime and hypersurface gauges. Both (+) can be set
to zero simultaneously using the appropriate spacetime gauges 1. at each side. But one has to
be careful, then. Let us remark the fact that generally in the literature on perturbed matching
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it has been common to use spacetime gauges for which jfE/Q = 0, the so-called “co-moving”
gauges. This is fine if no other condition has been used to restrict the form in which the families
g are written, or equivalently, the form of K 1i and K;E But this is precisely the case in using
the k-gauge in (1). In order to compute the perturbed matching conditions in the k-gauge we
need to consider the deformation vectors Z , which, in fact, will determine how the surface gets
perturbed form the point of view of the k-gauge.

3. Background configuration

The interior and exterior regions are described, respectively, by a couple of spacetimes (VO+ ,g7)
and (V;,g~) with corresponding boundaries ¥§ and X5 and coordinates {t4,7+,0+,¢+}, S0
that (10) holds with + and —. Due to the symmetries the hypersurfaces E(J{ and X can be
finally cast as (see e.g. [8]) B¢ = {t+ =7, 74 =a,04+ = ¢,04 =9}, 35 ={t_ =7,7_ =a,p_ =
¢,0_ = ¥} without loss of generality. The coordinates {7, $,9} parametrize $o(= X§ = X7).

At (a)
The unit normals to X7 are taken to be it = —e™ 2 O+ |5+, under the condition that 7"
0

points VJ inwards and 7~ points V; outwards. This convention follows in order to call Var the
interior and V) the exterior.
The matching conditions are found to be equivalent to the set of equations (see e.g. [8])

W] =0, []=0, [\=0, (15)

where [f] = fﬂzg - f- |Ea for objects f* defined at either side, and a prime denotes
differentiation with respect to the corresponding radial coordinate, i.e. r4 or r_ accordingly.
Given f satisfying [f] = 0, we denote by f|s, either of the equivalent f+|20+ or f_|23,.

The perfect fluid of the static background interior (+) is already described above, with E and
P given by (2), while in the vacuum region (—) we have (3) for A\_(r_) and v_(r_). The matching
conditions (15) imply, in particular, that v4 (a) = —A4(a) = log (1 - %) . The expressions for
the differences of the derivative of the functions of the metric in terms of the differences of the
fluid variables on ¥ are thus found to be

av'(a)
2

[1/’] _ ae/\(a)gﬂp(a) =0, [)\,] _ a,e)‘(a)87TE(a), [V//} _ (1 + )e/\(a)SWE(a). (16)

Let us remark that whereas the matching conditions imply that P(r,) must vanish on X, the
energy density F(a) stays free. Its value will be determined, if any, by the barotropic equation
of state (EOS). In most cases the typical EOS’s for neutron stars show a behaviour in which
the pressure and energy density vanish together. This is also the case of the polytropic EOS,
but one can consider many other cases where this behaviour no longer stands. An example is a
fluid with constant density [9], and a more realistic case, strange quark matter EOS’s [10].

4. Second order perturbations

The study of the first order perturbations is out of the scope of this paper, but as a summary,
we find that one can set [w] = 0, whereas [w'] = 0 always holds. It can then be proven that the
first order configuration described in [1] (see above) follows (see [3]). Also, E(1) = P() =0,

At this point we assume that the functions {m®*, k¥ h*} in both regions satisfy (4). The
second order field equations for the perfect fluid, whose second order perturbation vector
is 72 = ¢=3v/2 {0294, + 2QK14p + Kot /2} 0 (let us drop the + subindex for the interior
quantities and 7 when not necessary) impose first the finite expansions for E() and P in (12)

EX(r,0) = EP (r) + B (r)Py(cos0), PA(r,0) = PP (r) + PP (r)Py(cosh).  (17)
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As known, the problems for [ = 0 and [ = 2 separate. Here we consider only the [ = 0
problem. The field equations for the sector [ = 0 provide the expressions for Eé2) and PO(Q) plus

an equation in the form h{ = F(h{, m{, mo). A convenient auxiliary redefinition of the second
order pressure is given by Py := P(§2) /2(E + P). On the other hand, a barotropic EOS requires

E’Pém — P E(()Z) = 0 (for [ = 0), which, combined with the equation for E(()Q) yields the equation
for m{, given by (7) renaming p§ — Py. Using this and differentiating the expression for PO(Q),
the equation for h{ can be rewritten as an equation for P, which just reads (6) with p§ — Po.
In short, the system for {Po(ry),mo(ry)} in ro € (0,a] corresponds indeed to the system for
{p§(R),mo(R)} in R € (0,a] given in [1], as expected. Equation (5) is a first integral of the
system and determines hg. Clearly, the solutions for the exterior m (r—) and hy (r—) are given
by (8) with r — r_.

The boundary conditions for these functions in Yy are obtained applying the perturbed
matching theory reviewed in Section 2. The whole procedure is presented elsewhere [5]. In this
contribution we only present one of the results. The second order matching conditions imply
that mZ do not agree in ¥ in general, since they must satisfy [mq] = —47r%E(a)730(a). This
fact contradicts the implicit assumption on the “continuity” of mg, in particular, made in [1]
(and other works, e.g. [9], [10]). As a result, using the exterior solution (8) for m the change
in mass reads, in terms of the functions used in [1], as

2 3

SM =mo(a) + = + 47%(@ — 2M)E(a)pi(a), (18)

a3
where mg(a)(= mg (a)) and pf(a) are obtained from the interior problem. A jump in a “mg”
function had been found already in [11], but the discrepancy with [1] was not established at the
moment. If the energy density of the static star E vanishes at the boundary expression (18)
agrees with that found in [1], i.e. (9). Indeed, most of the models for neutron stars considered
in the literature rely on EOS’s for which the energy density vanishes whenever the pressure
does. However, if F exhibits a non zero value at the boundary, one must take into account the
third term, which may become important depending on the EOS considered. As an example,
the aforementioned models for strange quark stars which exhibit a non zero value of F at the
boundary [10], as well as those in [9] are under study at present.
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