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Abstract

We introduce and analyze a new solution concept for TU games:
The Surplus Distributor Prekernel. Like the prekermel, the new solu-
tion is based on an alternative motion of complaint of one player
against other with respect to an allocation. The SD-prekernel con-
tains the SD-prenucleolus and they coincide in the class of convex
games. This result allows us to prove that in bankruptcy problems
the SD-prekernel and the Minimal Overlapping rule select the same
allocation.
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1 Introduction

In the literature of TU games, the prenucleolus (Schmeidler, 1969) is one of
the most important single-valued solution concepts. The prenucleolus of a
game is contained in its prekernel, which also makes the study of this solution
concept attractive.
The prenucleolus for TU games is a lexicographic value that selects the

vector of satisfactions of coalitions, which lexicographically dominates any
other vector of satisfactions of coalitions. When this vector is selected its
associated allocation is automatically selected and this proves to be the pre-
nucleolus of the game.
The prekernel selects allocations where each pair of players is fairly treated

since a complaint by a player i against player j equals a complaint by j
against i. A complaint by i against j is the minimal satisfaction obtained
by a coalition containing i and excluding j. In some cases the prekernel is
single-valued and therefore coincides with the prenucleolus, which provides
an alternative definition of the prenucleolus. This is the case for convex
games (Maschleret al (1972) and veto balanced games (Arin and Feltkamp,
1997).
When the satisfactions of coalitions are weighted by using a system of

weights for the size of the coalitions different weighted prenucleoli and weighted
prekernels may be defined. In the per capita prenucleolus satisfactions are
divided by the size (cardinality) of the coalition. In this way, the satisfac-
tion of the coalition is divided equally among its members. Each member of
the coalition receives the same part of the total surplus of the coalition (the
difference between the total payoff received by the coalition and its worth).
Arin and Katsev (2014) propose a different way of computing the sat-

isfactions of coalitions given an allocation. Similarly to the per capita pre-
nucleolus, a division of the surplus of the coalition among its members is
proposed. By contrast with the per capita prenucleolus, we do not consider
an equal division of the surplus of coalitions.
Once a new way of computing the vector of satisfactions associated with

an allocation is drawn up, the SD-prenucleolus is defined in identical terms
by considering the allocations whose vectors of satisfactions dominate any
other vector of satisfactions.
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A new solution concept, the SD-prekernel, can immediately be defined
by considering the notion of a complaint associated with the new vector of
satisfactions. The aim of this paper is to introduce and analyze this new
solution for TU games: The SD-prekernel.
The new solution, in general, is neither single-valued nor a subset of the

core. We prove that in the class of totally relevant games the SD-prekernel
and the SD-prenucleolus coincide. Convex games are totally relevant games.
These results are used to prove that the SD-prenucleolus of a bankruptcy
game coincides with the outcome provided by the rule known as the Minimal
Overlapping rule. Aumann and Maschler (1985) show that the prenucleolus
of bankruptcy games and the Talmud rule provide the same outcomes.
The rest of the paper is organized as follows: Section 2 introduces TU

games and the SD-prenucleolus. In Section 3 we define the SD-prekernel
and show that, in general, it is neither single-valued nor a subset of the
core. Section 4 proves that in the class of totally relevant games the SD-
prekernel is single-valued. Section 5 ends the paper by showing that in the
class of bankruptcy games the SD-prekernel and the Minimal Overlapping
rule coincide.

2 Preliminaries

2.1 TU Games

A cooperative n-player game in characteristic function form is a pair (N, v),
where N is a finite set of n elements and v : 2N → R is a real-valued
function in the family 2N of all subsets of N with v(∅) = 0. Elements of N
are called players and the real valued function v is called the characteristic
function of the game. Any subset S of N is called a coalition. Singletons are
coalitions that contain only one player. A game is monotonic if whenever
T ⊂ S then v(T ) ≤ v(S). The number of players in S is denoted by |S|.
Given S ⊂ N we denote by N\S the set of players of N that are not in
S. A distribution of v(N) among the players, an allocation, is a real-valued
vector x ∈ RN where xi is the payoff assigned by x to player i. A distribution
satisfying

∑
i∈N

xi = v(N) is called an effi cient allocation and the set of effi cient

allocations is denoted by X(N, v). We denote
∑
i∈S
xi by x(S). The core of a
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game is the set of imputations that cannot be blocked by any coalition, i.e.

C(N, v) = {x ∈ X(N, v) : x(S) ≥ v(S) for all S ⊂ N} .

It has been shown that a game with a nonempty core is balanced (Shapley
(1967) and Bondareva (1963)), and games with nonempty core are therefore
called balanced games. Player i is a veto player if v(S) = 0 for all S where
player i is not present. A balanced game with at least one veto player is
called a veto balanced game.
A game is balanced when it has a nonempty core (Bondareva (1963) and

Shapley (1967)). We say that a game (N, v) is convex if

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ N.

A solution ϕ on a class of games Γ0 is a correspondence that associates a
set ϕ(N, v) in RNwith each game (N, v) in Γ0 such that x(N) ≤ v(N) for all
x ∈ ϕ(N, v). This solution is effi cient if this inequality holds with equality.
The solution is single-valued if the set contains a single element for each
game in the class.
Given x ∈ RN the satisfaction of a coalition S with respect to x in a game

(N, v) is defined as f(S, x) := x(S)− v(S).

Given x ∈ RN the satisfaction of a coalition S with respect to x in a
game (N, v) is defined as f(S, x) := x(S)−v(S). Let θ(x) be the vector of all
satisfactions at x arranged in nondecreasing order. The weak lexicographic
order �L between two vectors x and y is defined by x �L y if there is an
index k such that xl = yl for all l < k and xk > yk or x = y.

Schmeidler (1969) introduced the prenucleolus of a game (N, v), denoted
by PN(N, v), as the unique allocation that lexicographically maximizes the
vector of nondecreasingly ordered satisfactions1 over the set of allocations.
In formula:

PN(N, v) = {x ∈ X(N, v) |θ(x) �L θ(y) for all y ∈ X(N, v)} .

The prenucleolus is single-valued and selects a core allocation whenever
the game is balanced.

1The same solution concept can be defined using the notion of excess instead of satis-
faction. Given a game (N, v) and an allocation x, the excess of a coalition S with respect
to x in game (N, v) is defined as follows: e(S, x) := v(S)− x(S).
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The per capita prenucleolus is defined in a similar way by using the notion
of per capita satisfaction instead of satisfaction. Given S, S 6= ∅, and x the
per capita satisfaction of S at x is

fpc(S, x) :=
x(S)− v(S)

|S| .

Other weighted prenucleoli can be defined in a similar way whenever a
weighted satisfaction function is defined.
Given a TU game (N, v) and an allocation x ∈ X(N, v) the complaint of

player i against player j is defined as follows:

sij(x) = min
S:i∈S,j 6∈S

f(S, x).

The prekernel of a TU game (N, v) is:

PK(N, v) = {x ∈ X(N, v) : sij(x) = sji(x) for all i 6= j}

Similarly, the per capita prekernel can be defined using per capita satis-
factions when defining the complaints.
Some convenient and well-known properties of a solution concept ϕ on Γ0

are the following:

• ϕ satisfies anonymity if for each (N, v) in Γ0 and each bijective map-
ping τ : N −→ N such that (N, τv) in Γ0 it holds that ϕ(N, τv) =

τ(ϕ(N, v)) (where τv(τT ) = v(T ), τxτ(j) = xj (x ∈ RN , j ∈ N, T ⊆
N)). In this case (N, v) and (N, τv) are equivalent games.

• ϕ satisfies the equal treatment property (ETP) if for each (N, v)

in Γ0 and for every x ∈ ϕ(N, v) interchangeable players i, j are treated
equally, i.e. xi = xj. Here, i and j are interchangeable if v(S ∪ {i}) =

v(S ∪ {j}) for all S ⊆ N\ {i, j} .

Given a game (N, v), a real number α > 0 and a vector β ∈ RN we define
game (N, vα,β) as follows:

vα,β(S) = αv(S) +
∑
i∈S

βi for all S ⊆ N.

• ϕ satisfies covariance if the following condition is satisfied. If α > 0 ,
β ∈ RN and (N, v), (N, vα,β) ∈ Γ0 then ϕ(N, vα,β) = αϕ(N, v) + β.
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2.2 The SD-prenucleolus

Arin and Katsev (2014) introduce the SD-prenucleolus, a single-valued solu-
tion concept for TU games. In this section we recall some definitions and
results that are needed in the present paper. The definition of the SD-
prenucleolus is based on the concept of satisfaction of a coalition with re-
spect to an allocation. Given a game (N, v) and an allocation x ∈ X(N, v)

we calculate a new satisfaction vector (F (S, x))S⊂N . We define the compon-
ents of this vector recursively by defining an algorithm. The algorithm has
several steps (at most 2|N | − 2) and at each step we identify the collection
of coalitions H that has obtained the new satisfaction. In the first step this
collection H is empty. The algorithm ends when H = 2N \ {N}.
For a collection H ⊂ 2N \ {N} and a function F : H → R we will

define the function FH : 2N\ {H ∪ {N}} → R. To that end, we introduce
some notation. For H ⊂ 2N\{N} and S ⊂ N , we denote

σH(S) =
⋃

T∈H,T⊂S
T.

For S ⊂ N we denote by fH,F (i, S) the satisfaction of player i with respect
to a coalition S and a collection H (i ∈ σH(S)):

fH,F (i, S) = min
T :T∈H,i∈T⊂S

F (T ).

Now we define a value FH(S) for all S ∈ 2N\ {H ∪ {N}}. We consider
two cases (since it is evident that σH(S) ⊆ S):
1. Relevant coalitions. σH(S) 6= S. In this case the satisfaction of S is

FH(S) =

x(S)− v(S)−
∑

i∈σH(S)
fH,F (i, S)

|S| − |σH(S)| . (1)

Note that if collection H is empty then the current satisfaction of coalition
S coincides with its per capita satisfaction:

F∅(S) =
x(S)− v(S)

|S| .

2. Completed coalitions. σH(S) = S. In this case the satisfaction of S is

FH(S) = x(S)− v(S)−
∑
i∈S

fH,F (i, S) + max
i∈S

fH,F (i, S). (2)
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The algorithm that computes the new satisfaction vector, whose components
are denoted by F (S) = F (S, x), is the following:

Algorithm 1 Let (N, v) be a TU game and x ∈ X(N, v).
Step 1: Set k = 0, H0 = ∅ and F∅(S) = x(S)−v(S)

|S| .
Step 2: Set

Hk+1 = Hk ∪ {S 6∈ Hk : FHk(S) = min
T 6∈Hk

FHk(T )}.

Define for each S ∈ Hk+1 \ Hk:

F (S, x) = FHk(S).

Step 3: If Hk+1 6= 2N \ {N} then let k = k + 1 and go to Step 2.
Otherwise go to Step 4.
Step 4: Stop. Return the vector (F (S, x))S⊂N .

Given a TU game (N, v) and x ∈ X(N, v), we say that a coalition S ⊂ N

is relevant (completed) with respect to x if S was a relevant (completed)
coalition at the step where its satisfaction F (S, x) was determined. Given
a TU game (N, v), a player i ∈ S ⊂ N and x ∈ X(N, v) we denote by
fi(S, x) = min

T :i∈T⊆S
F (T, x) and zi(S, x) = xi − fi(S, x) the satisfaction and

the coalitional payoff of player i in coalition S at x. If there is no confusion
we write fi(S) and zi(S) instead of fi(S, x) and zi(S, x). Arin and Katsev
(2014) prove the following lemma which is used in the proof of Lemma ??.

Definition 1 Let (N, v) be a TU game. Then x ∈ SD(N, v) if and only if
for any y ∈ X(N, v) it holds that F x �L F y.

A TU game is relevant with respect to an allocation x (we say that the
game is x-relevant) if all coalitions are relevant with respect to x. Formally,

Definition 2 Let (N, v) be a TU game and x be an allocation. We say that
(N, v) is relevant with respect to x (x-relevant) if all coalitions are relevant
with respect to x.

Definition 3 A TU game (N, v) is totally relevant if the game is x-relevant
for each x ∈ X(N, v)..

The two notions play a central role in the proof of the main theorem of
this paper.
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3 The SD-prekernel

The SD-prekernel arises naturally whenever this new satisfaction vector is
considered. We define the complaint by a player i against a player j as the
minimal satisfaction obtained with coalitions that contain player i but not
player j.
Given a TU game (N, v) and an allocation x ∈ X(N, v) the complaint by

player i against player j, denoted by sij(x), is defined as follows:,

sij(x), (x) = min
S:i∈S,j 6∈S

F (S, x).

Unlike the prekernel, the following remarks identify coalitions that may
be used as complaints by the players.

Remark 1 Let (N, v) be a game and x ∈ X(N, v) Then min
S:i∈S,j 6∈S

F (S, x) =

fi(N\ {j} , x).

Remark 2 If T ∈ arg min
S:i∈S,j 6∈S

F (S, x) then T is relevant with respect to x.

We now introduce the SD-prekernel, denoted by SD-PK.

Definition 4 Let (N, v) be a TU game. Then

SD-PK(N, v) = {x ∈ X(N, v) : sij(x) = sji(x) for all i 6= j}

The SD-prekernel satisfies equal treatment of equals, covariance and an-
onymity. The SD-prenucleolus of a game is contained in its SD-prekernel. In
some cases, this inclusion is strict.

Example 1 Consider a 4-player game (N, v) defined as follows:

v(S) =


4 if S = N
0 if |S| = 1 or S ∈ {{1, 2} , {3, 4}}
2 otherwise.

It can be checked that SD-PK(N, v) = {(x, x, 2− x, 2− x) : 0 ≤ x ≤ 2}
and that the SD(N, v) = (1, 1, 1, 1).

Next example shows that in some cases the SD-prekernel is multivalued
while the prekernel is single-valued.
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Example 2 Consider a 4-person glove game (N, v) defined as follows:

v(S) =


24 if S = N
0 if |S| = 1 or S ∈ {{1, 2} , {3, 4}}
2 otherwise.

Note that SD-PK(N, v) = {(5 + x, 5 + x, 7− x, 7− x) : 0 ≤ x ≤ 2} 2 and
that SD(N, v) = (6, 6, 6, 6) that is the only allocation contained in the
prekernel..
In the class of two-player games the SD-prekernel coincides with the SD-

prenucleolus and the prenucleolus. Let ({i, j} , v) be a two-player game Then

SD-PK({i, j} , v) = {(v({i}+ α, v({j}+ α)}

where α = v({i,j}−v({i})−v({j})
2

.

This result follows from the fact that the SD-prekernel satisfies effi ciency,
equal treatment of equals and covariance.
Finally, we show that, in general, the SD-prekernel does not need to be a

subset of the core.

Example 3 Let N = M1 ∪M2 = {1, 2, 3} ∪ {4, 5} and consider a 5-person
glove game (N, v) defined as follows:

v(S) =


0 if S = N
0 if |S| = 3 and |S ∩M2| = 1
−10 otherwise.

The game is balanced since (0, 0, 0, 0, 0) ∈ C(N, v).Note that x = (−2,−2,−2, 3, 3) ∈
SD-PK(N, v) since F (S, x) = −1

6
if v(S) = 0, S 6= N, and the rest of coali-

tions have a positive satisfaction.

4 Totally relevant games

In this section we prove the coincidence of the SD-prekernel and the SD-
prenucleolus in the class of totally relevant games . This class contains the
class of convex games that includes the class of bankruptcy games.

2Let (N, v), (N,w) be two games such that w(N) > v(N) and w(S) = v(S) if S 6= N .
If x ∈ SD-PK(N, v) then x+ (w(N)−v(N)|N | , .., w(N)−v(N)|N | ) ∈ SD-PK(N,w).
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The proof of the result requires some previous results that are introduced
below in two subsections. The first subsection investigates the SD-reduced
game property, a property that is satisfied by the SD-prekernel. The second
subsection establishes that when totally relevant games are considered, the
set of coalitions with minimal satisfaction with respect to a prekernel alloc-
ation contains an antipartition.

4.1 The SD-reduced game property

Arin and Katsev (2014) introduce the notions of SD-reduced game and SD-
reduced game property.

Definition 5 Let (N, v) be a TU game, S ⊂ N and x ∈ X(N). A game
(S, vxS) is the SD-reduced game with respect to S and x if
1. vxS(S) = v(N)− x(N \ S)

2. for every T ( S

F (S,v
x
S)(T, xS) = min

U∈N\S
F (N,v)(U ∪ T, x).

For any game (N, v), S ⊂ N and x ∈ X(N) the SD-reduced game (S, vxS)

exists and is unique.

Definition 6 A solution φ satisfies the SD-reduced game property on Γ, SD-
RGP , if for every game (N, v) ∈ Γ then (xi)i∈S ∈ φ(S, vx) for any S ⊂ N

and any x ∈ φ(N, v).

This type of property3 plays a determinant role in the characterization
of lexicographic values such as the prenucleolus (Sobolev, 1975) and the per
capita prenucleolus (Kleppe, 2010). The reduced games associated with the
prenucleolus and the per capita prenucleolus can be reformulated explicitly.
The fact that the SD-prekernel satisfies the SD-RGP is immediately aper-

ient and widely use din the proofs of the main results of this paper.

3Note that the definition of this reduced game depends on the definition of the vector
of satisfactions. If the vector of satisfactions considered is (x(S) − v(S))S⊂N then the
associated reduced game property is satisfied by the prenucleolus (see Theorem 5.2.7 in
Peleg and Sudholter (2007)). See also Peleg (1986) for a characterization of the prekernel
using this reduced game property.
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Lemma 1 The SD-prekernel satisfies the SD-reduced game property.

Below, we show that SD-reduced games of totally relevant games are
totally relevant.

Lemma 2 Let (N, v) be a game, x be an allocation, S be a coalition and
xS = (xi)i∈S. If (N, v) is x-relevant then (S, vx) is xS-relevant.

Proof. Let xS = (xi)i∈S and let P and M be two subsets of S such that
M ∪ P 6= S. Assume, without loss of generality, that F (M,xS) ≥ F (P, xS).

We seek to prove that

F (M ∪ P, xS) ≤ max {F (M,xS), F (P, xS)} = F (M,xS).

Let F (M,xS) = F (M ∪Q, x) where Q ⊆ N\S and let F (P, xS) = F (P ∪
T, x) where T ⊆ N\S. Note that (M ∪Q) ∪ (P ∪ T ) 6= N.

Since all coalitions in the game (N, v) are relevant with respect to x,

F ((M ∪Q) ∪ (P ∪ T ), x) ≤

max {F (M ∪Q, x), F (P ∪ T, x)} = F (M ∪Q, x).

Note that (M ∪Q) ∪ (P ∪ T ) = (M ∪ P ) ∪ (Q ∪ T ). Therefore,

F (M ∪ P, xS) ≤ F ((M ∪Q) ∪ (P ∪ T ), x) ≤

≤ F (M ∪Q, x) = F (M,xS).

Consequently, (S, vx) is y-relevant.

An immediate consequence of this lemma is that if a game is totally rel-
evant then its SD-reduced games (with respect to any allocation) are totally
relevant.
Lemma 2 allows for a different interpretation of the SD-reduced game

of an x-relevant game. SD-reduced games with respect to x can be easily
computed according to the result established by the following lemma.

Lemma 3 Let (N, v) be a relevant game with respect to x and S ⊂ N .
Consider the SD-reduced game (S, vx) and T ⊂ S. Then

vx(T ) = v(T ∪ (N \ S))−
∑
i∈N\S

zi(T ∪ (N \ S)) =
∑
i∈T

zi(T ∪ (N \ S)).
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Proof. By Lemma 2, (S, vx) is xS-relevant. For game (S, vx) we denote by
fx,S the analog of function f in Algorithm 1. By definition of fx,Si (T ) it holds
that

fx,Si (T ) = min
i∈U⊆T

F (S,v
x)(U) = min

i∈U⊆T
min
R⊆N\S

F (U ∪R) =

= min
i∈M⊆T∪(N\S)

F (M) = fi(T ∪ (N \ S)).

Hence,

vx(T ) = x(T )−
∑
i∈T

fx,Si (T ) = x(T )−
∑
i∈T

fi(T ∪ (N \ S)) =

=
∑
i∈T

zi(T ∪ (N \ S)).

Since coalition T ∪ (N \ S) is relevant in the game (N, v), by Lemma ??
v(T ∪ (N \ S)) =

∑
i∈T∪(N\S)

zi(T ∪ (N \ S)). Therefore,

∑
i∈T

zi(T ∪ (N \ S)) = v(T ∪ (N \ S))−
∑
i∈N\S

zi(T ∪ (N \ S)).

The next corollary presents a simple formula for computing some SD-
reduced games. This result is used in the proof of the main theorem.
Let (N, v) be a TU game and x ∈ X(N, v).We denote by B(x) the set of

coalitions with minimal satisfaction with respect to x.

Corollary 1 Let (N, v) be an x-relevant game. Let S ∈ B(x) and consider
the SD-reduced game (N\S, vx) and coalition T ⊂ N\S. Then vx(T ) = v(T ∪
S)− v(S).

Proof. Since S ∈ B(x), it holds that fi(S) = x(S)−v(S)
|S| . Since (N, v) is x-

relevant, for any i ∈ T such that S ⊂ T it holds that fi(T ) = fi(S). By
applying Lemma 3,

v(T ∪ S)− vx(T ) =
∑
i∈S

zi(T ∪ S) =
∑
i∈S

xi −
∑
i∈S

fi(T ∪ S) =

∑
i∈S

(xi − fi(S)) = x(S)− |S| x(S)− v(S)

|S| = v(S).
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4.2 Antipartition

The notion of antipartition (Arin and Inarra, 1998) also plays a central role
in the proof of the main result of this paper.
A collection of sets C = {S : S ⊂ N} is called antipartition if the collec-

tion of sets {N\S : S ∈ C} is a partition of N . An antipartition is a balanced
collection of sets.
In order to balance an antipartition Q each coalition receives the same

weight, i.e. 1
|C|−1 .

For any game (N, v) the satisfaction of an antipartition C is defined by

F(C, v) =
v(N)−

∑
S∈C

1
|C|−1v(S)

|N | .

If there is no confusion we write F(C) instead of F(C, v).

Let (N, v) be a TU game and x be an allocation. Denote by B(x) the set
of coalitions with minimal satisfaction at x.
The next lemma, proved in Arin and Katsev (2015), shows that the sat-

isfaction of an antipartition can be easily computed.

Lemma 4 Let (N, v) be a TU game and x ∈ X(N, v). If B(x) contains an
antipartition C then F (S) = F(C) for all S ∈ B(x).

Note that if the set of coalitions with minimal satisfaction with respect
to an allocation of the SD-prekernel of the game contains an antipartition
then the satisfaction of those coalitions only depends on the characteristic
function of the game.

Lemma 5 Let (N, v) be a TU game and let x ∈ SD-PK(N, v). If (N, v) is
x-relevant then B(x) contains an antipartition.

Proof. Let S be a maximal coalition in B(x), that is, there is no coalition T
in B(x) such that S ⊂ T. Since x ∈ SD-PK(N, v), for each i ∈ S there exists
a coalition, T i, such that i /∈ T i and T i ∈ B(x). Since (N, v) is x-relevant,
the maximality of S implies that N\S ⊂ T i. Let {T i : i ∈ S} be the set of
maximal coalitions for each i in S ((it may occur that T i = T j for players i, j).
Then {T i : i ∈ S} ∪ {S} is an antipartition. It is immediately apparent that
(N\T i) ∩ (N\S) is empty. If for any i, j ∈ S it holds that (N\T i) ∩ (N\T j)
is nonempty then T i ∪ T j 6= N which contradicts the maximality of T i and
T j since the fact that (N, v) is x-relevant implies that T i ∪ T j is in B(x).
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4.3 The SD-prekernel and the SD-prenucleolus

With the results above, we are in a position to establish one of the main
theorem of this paper.

Theorem 2 Let (N, v) be a totally relevant game. Then SD-PK(N, v) =

{SD(N, v)} .
Proof. Let x ∈ SD-PK(N, v) and assume that there exists y, y 6= x, such
that y ∈ SD-PK(N, v). By Lemma 5 B(y) and B(x) contain an antiparti-
tion. Since the satisfaction of an antipartition only depends on the charac-
teristic function, B(x) and B(y) contain the same antipartition. And for
any coalition S in the antipartition it must hold that y(S) = x(S). Fi-
nally, the SD-reduced games (S, vy) and (S, vx) coincide and since the SD-
prekernel satisfies SD-reduced game property, (xi)i∈S and (yi)i∈S belong to
SD-PK(S, vx). By Lemma 3 (S, vx) is relevant with respect to x and y. Con-
sider the game (S, vx). By Lemma 5 B((yi)i∈S) and B((xi)i∈S) contain an
antipartition. Since the satisfaction of an antipartition only depends on the
characteristic function, they contain the same antipartition. And for any
coalition T in the antipartition it must hold that y(S) = x(S). Finally, the
SD-reduced games (T, vy) and (T, vx) coincide and since the SD-prekernel
satisfies the SD-reduced game property, (xi)i∈S and (yi)i∈S belong to SD-
PK(T, vx). By Lemma 3 (T, vx) is relevant with respect to x and y. The
argument is repeated until the SD-reduced games are two-player games.

Arin and Katsev (2015) prove that convex games are totally relevant.
As a corollary of the proof of Theorem 2, note that if given a TU game

(N, v), if x, y ∈ SD-PK(N, v) then (N, v) is either not x-relevant or not
y-relevant.
Finally, we show that there are not totally relevant TU games with a

single-valued SD-prekernel.

Example 4 Consider a 3-player game (N, v) defined as follows:

v(S) =


3 if S = N
0 if |S| = 1
−2 otherwise.

It can be checked that SD-PK(N, v) = {(1, 1, 1)} and that the the game
is not relevant with respect to (1, 1, 1).
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5 Bankruptcy games

In this section we prove that in the class of bankruptcy games (O’Neill, 1982)
the SD-prenucleolus coincides with the Minimal Overlapping rule. Next, we
introduce bankruptcy problems, bankruptcy games and the Minimal Over-
lapping rule.
Bankruptcy problems model situations where a finite set of claimants

need to share an endowment that is not enough to satisfy fully all their
claims. Formally, consider an infinite set of potential claimants, indexed by
the natural numbers N. Each given bankruptcy problem involves a finite
number of claimants. Let N denote the class of non-empty finite subsets of
N. Given N ∈ N and i ∈ N , let ci be claimant i’s claim and c ≡ (ci)i∈N

the claims vector and let E be the endowment to be divided among the
claimants in N . A bankruptcy problem (or just problem) is a pair (c, E) ∈
RN+× R+, where N ∈ N , such that

∑
i∈N ci ≥ E. Let BN denote the class

of all problems with claimants set N . An allocation for (c, E) ∈ BN is a
vector x ∈ RN such that satisfies the non-negativity and claim boundedness
conditions, i.e. 0 5 x 5 c and the effi ciency condition

∑
i∈N xi = E.4 Let

X(c, E) be the set of allocations of (c, E). A bankruptcy rule (or just rule)
is a function defined on ∪N∈NBN that associates with each N ∈ N and each
(c, E) ∈ BN an allocation in X(c, E). For each N ′ ⊂ N we denote by cN ′ the
claim vector of claimants in N ′. Similarly, φN ′(c, E) = (φi(c, E)i∈N ′ .
Given a problem (c, E) ∈ BN , we denote by C =

∑
i∈N ci and L = C −E

the total claim and total loss respectively.

• The constrained equal awards rule divides the endowment equally among
the claimants under the constraint that no claimant receives more than
his/her claim.

Constrained equal awards rule, CEA: For each N ∈ N , each
(c, E) ∈ BN , and each i ∈ N ,

CEAi(c, E) ≡ min{β, ci} where β ∈ R+ solves
∑

i∈N min{β, ci} = E.

• The constrained equal losses rule divides the total loss equally among
the claimants under the constraint that no claimant receives a negative
amount.

4The notation x 5 y means that for each i ∈ N , xi ≤ yi.
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Constrained equal losses rule, CEL: For each N ∈ N , each
(c, E) ∈ BN , and each i ∈ N ,

CELi(c, E) ≡ max{0, ci − β} where β ∈ R+ solves
∑

i∈N max {0, ci−β} = E.

The Minimal Overlapping rule for Bankruptcy problems.

• The Minimal overlapping rule, MO: For each N ∈ N , each
(c, E) ∈ BN , and each i ∈ N ,

MOi(c, E) =

{
CEAi(SR(c), E) if E ≤ cn

SRi(c) + CELi(c− SR(c), E − cn) otherwise.

where the vector of claims has been ordered such that c1 ≤ ... ≤ cn and

SRi(c) =
l−1∑
j=0

cj+1−cj
n−j for all l ∈ N.

According to this definition, SR(c) is a kind of boundedness. No claimant
receives less (more) that SRi(c) if the Endowment is greater (smaller) than
the highest claim.
Finally we introduce the TU game associated with a bankruptcy problem

(N, c, E) as a pair (N, v) where v(S) = max
{
E −

∑
l /∈S cl, 0

}
for all S ⊂ N.

The following example considers several bankruptcy problems with the
same vector of claims.

Example 5 Let N = {1, 2, 3, 4} and c = (4, 7, 9, 10). Then SR(c) = (1, 2, 3, 4).
Then,

MO(c, 4) = (1, 1, 1, 1) = CEA(c, 4)
MO(c, 7) = (1, 2, 2, 2)
MO(c, 10) = (1, 2, 3, 4) = SR(c, 10)
MO(c, 12) =
MO(c, 22) =

(1, 2, 4, 5)
(2, 5, 7, 8) = CEL(c, 22)

The main result of this section follows.

Theorem 3 Let (N, c, E) be a problem. Then MO(N, c, E) coincides with
the SD-prenucleolus of the associated TU game.

The proof is a consequence of the fact that in the class of convex games the
SD-prekernel coincides with the SD-prenucleolus and the following lemma.
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Lemma 6 Let (c, E) ∈ BN and (N, v) be its associated TU game. Let
MO(N, c, E) = x. Then sij(x) = fi(N\ {j} , x) = min(xi, F (N\ {j}) for
each pair i, j ∈ N .

Proof. Assume on the contrary that sij(x) = F (S, x) < min(xi, F (N\ {j}).
Clearly, in this case v(S) > 0.Consider claimant l ∈ N\S and F (S ∪ {l} , x).

Since v(S) > 0 and xl < cl, it is not diffi cult to check that F (S ∪ {l} , x) ≤
F (S, x). Following the same argument, if S∪{l} 6= N\ {j} , another claimant
p can be added, such that F (S ∪ {l} ∪ {p} , x) ≤ F (S ∪ {l} , x). At the end
a contradiction is obtained.

Lemma 7 Let (c, E) be a problem. Then MO(c, E) belongs to the SD-
prekernel of the associated TU game.

Proof. Let (N, v) be the associated TU game and let i, j ∈ N. Note that:

1. 1) If xi = SRi(c) then F (N\ {i}) = xi. 2) If xi < SRi(c) then
v(N\ {i}) = 0. 3) If xi > SRi(c) then F (N\ {i}) < xi.

Assume w. l. o. g. that xi. ≤ xj. We distinguish three cases.
1) xi < SRi(c). Then v(N\ {i}) = v(N\ {j}) = 0 and xi = xj =

F (N\ {i}) = F (N\ {j}).
2) xi = SRi(c). Then F (N\ {i}) = xi ≤ F (N\ {j}).
3) xi > SRi(c). Then xj ≥ SRj(c) and F (N\ {i}) = F (N\ {j}).
Aumann and Maschler (1985) prove that the nucleolus of bankruptcy

games and the Talmud rule coincide. Recently, Huijink et al. (2015) intro-
duce the claim-and-right rules family. They provide a formula to compute
the per capita nucleolus and show that it is a member of the aforementioned
family that also includes the Talmud rule and the Minimal Overlapping rule.
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