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RARRES3 suppresses breast cancer lung metastasis
by regulating adhesion and differentiation
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Abstract

In estrogen receptor-negative breast cancer patients, metastatic
relapse usually occurs in the lung and is responsible for the fatal
outcome of the disease. Thus, a better understanding of the biol-
ogy of metastasis is needed. In particular, biomarkers to identify
patients that are at risk of lung metastasis could open the avenue
for new therapeutic opportunities. Here we characterize the
biological activity of RARRES3, a new metastasis suppressor gene
whose reduced expression in the primary breast tumors identifies
a subgroup of patients more likely to develop lung metastasis. We
show that RARRES3 downregulation engages metastasis-initiating
capabilities by facilitating adhesion of the tumor cells to the lung
parenchyma. In addition, impaired tumor cell differentiation due
to the loss of RARRES3 phospholipase A1/A2 activity also contrib-
utes to lung metastasis. Our results establish RARRES3 downregu-
lation as a potential biomarker to identify patients at high risk of
lung metastasis who might benefit from a differentiation treat-
ment in the adjuvant programme.

Keywords breast cancer; lung metastasis; metastasis suppressor

Subject Categories Cancer; Stem Cells

DOI 10.15252/emmm.201303675 | Received 18 November 2013 | Revised 3 April

2014 | Accepted 23 April 2014 | Published online 27 May 2014

EMBO Mol Med (2014) 6: 865–881

Introduction

Breast cancer (BC) is a highly heterogeneous disease, and there is

clinical evidence of distinct patterns of disease relapse (Kennecke

et al, 2010). In fact, the capacity of metastatic BC cells to grow in

diverse environments may give rise to metastatic speciation, as indi-

cated by the coexistence of tumor cells with distinct organ tropisms

(bone, lung, liver, and brain) in patients with advanced BC (Nguyen

et al, 2009). Analysis of gene expression profiles in experimental

models of estrogen receptor-negative (ER�) BC contributed to identi-

fying potential genes regulating or initiating lung metastasis (Minn

et al, 2005; Eckhardt et al, 2012). Among the set of genes whose

expression in breast tumor is associated with lung relapse, several

encoded cytokines or secreted products that supported transendo-

thelial migration from circulation into the lung parenchyma (Gupta

et al, 2007; Padua et al, 2008). Additional genes, such as the extra-

cellular matrix protein TNC, support the critical stem and progenitor

cell pathways NOTCH and WNT and the viability of metastatic

cancer cells in the lungs (Oskarsson et al, 2011). Interestingly, gene

signatures associated with poor prognosis or site-specific metastasis

indicate that relevant rearrangements in aggressive tumors and

metastatic cells may also involve gene silencing (van‘t Veer et al,

2002; Minn et al, 2005; Lo et al, 2010; Cancer Genome Atlas

Network, 2012). The silenced genes may encode several potential

metastasis suppressors, responsible for the inhibition of overt

metastasis at a secondary organ without affecting tumor growth at

the primary site (Horak et al, 2008). RARRES3, a member of the

lung metastasis gene signature (LMS) previously described (Minn

et al, 2005), was identified in this group of genes as a potential

metastasis suppressor.

The description of metastasis as an orderly sequence of basic

steps—local invasion, intravasation, survival in circulation, extrava-

sation, matrix remodeling, reinitiation, and colonization—has

helped to rationalize the complex set of biological properties that

must be acquired in order for a particular malignancy to progress

toward overt metastatic disease (Vanharanta & Massague, 2013).

In addition to acquiring motility properties, adapting adhesion
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capacity, and remodeling the new microenvironment to enable

metastasis, cancer cells also turn off differentiation programmes

(Yang & Weinberg, 2008) and secure stemlike properties (Mani

et al, 2008). In mouse models of BC and in patient samples, the loss

of expression of differentiation markers correlates with tumor

progression and metastasis (Kouros-Mehr et al, 2008a; Yu et al,

2012). GATA3 transcription factor determines luminal epithelial cell

differentiation in the mammary gland (Kouros-Mehr et al, 2008b).

Additionally, reduced GATA3 expression is strongly predictive of BC

poor prognosis (Mehra et al, 2005) due to decreased cellular differ-

entiation (Kouros-Mehr et al, 2008a) and increased tumor-initiating

capacity (Asselin-Labat et al, 2011). However, it is unknown

whether genes that promote the maintenance of differentiation

attributes in basal-like ER� BC tumors restrain the malignant pheno-

type and metastatic dissemination by limiting metastasis-initiating

capacity.

RARRES3 is a small protein with phospholipase A1/2 (PLA1/2)

activity, responsible for producing signaling lipid secondary messen-

gers in the form of arachidonic and eicosanoid derivatives (Han

et al, 2010). Interestingly, RARRES3 was identified as a retinoic acid

responder gene, and its expression was proposed to cause G0 growth

arrest in BC cells (DiSepio et al, 1998). Retinoic acid, a regulator of

gene transcription and an inducer of cellular differentiation, has

long been associated with differentiation patterns in both normal

and cancer cells, with particular impact on certain hematopoietic

malignancies (Grimwade et al, 2010). In this context, high expres-

sion of aldehyde dehydrogenase ALDH1A1, an enzyme that cata-

lyzes the oxidization of retinol to retinoic acid (Marchitti et al,

2008), has been linked to retinoid metabolism and the attenuation

of self-renewal capacity in normal hematopoietic stem cells (Chute

et al, 2006). Similarly, it has been suggested that BC cells that retain

tumor-initiating capacity select for the loss of expression of

ALDH1A1 (Ginestier et al, 2007, 2009). Given the putative condition

of RARRES3 as a responder gene to retinoic acid and its intrinsic

catalytic activity (DiSepio et al, 1998; Han et al, 2010), the associa-

tion of RARRES3 silencing in primary tumors with an increased lung

metastatic activity is intriguing.

On the basis of these lines of evidence, we investigated whether

cancer cells expressing RARRES3 have a selective disadvantage for

metastasis, in particular in the lung microenvironment. Using BC

cells, here we show that RARRES3 protein inhibits lung metastasis

at two levels. First, RARRES3 blocks adhesion to the lung paren-

chyma and, second, the phospholipase activity of RARRES3 stimu-

lates differentiation attributes, thus blunting metastasis-initiating

functions at the lung required for the ER� BC cells to establish a

lesion.

Results

RARRES suppression in breast tumors

RARRES3 is among the lung metastasis gene set whose mRNA

expression level in breast tumors is associated with relapse to the

lungs (Minn et al, 2005). In particular, in highly metastatic popula-

tions to the lung, RARRES3 mRNA is downregulated (Minn

et al, 2005), thereby suggesting a potential metastasis suppressor

function. To study this relationship, we confirmed the inverse

association of RARRES3 expression with lung metastasis previously

described in the MSKCC primary breast cancer set (n = 82) and,

particularly, in those tumors defined as positive according to the

lung metastasis signature (LMS) (Minn et al, 2005) (Fig 1A).

Furthermore, our analysis was increased to cover a primary BC set

including 560 patient samples with annotated clinical follow-up

(MSK/EMC BC tumor dataset) (Bos et al, 2009) (details on the data-

set in Supplementary Materials and Methods). The reduced expres-

sion of RARRES3 in primary tumors was significantly associated

with the risk of lung metastasis (Fig 1B). Since low expression of

RARRES3 strongly correlates with a higher propensity to develop

lung metastasis (Fig 1B), and because RARRES3 levels vary widely

between ER+ versus ER� samples, we analyzed the effect of

RARRES3 separately in the two tumor sets. This was particularly

relevant given that ER status is a strong determinant of lung metas-

tasis-free survival in BC patients (Supplementary Fig S1A). On the

basis of ER status, we show that the inverse association of RARRES3

expression with high probability of lung metastatic disease is

specific for the ER� tumor set (Fig 1C). Moreover, within the ER�

subgroup, RARRES3 expression levels were exclusively inversely

associated with risk of lung metastasis, but were not associated with

the risk of bone or brain colonization (Supplementary Fig S1B and

C). To date, compelling evidence associates high risk of BC relapse

only with loss of expression of the metastasis suppressors PEBP1,

NM23-H1, and IRF5. NM23-H1 has been proposed to act as a general

metastasis suppressor in various tumor types (Marino et al, 2013),

while PEBP1 and IRF5 have been described as bona fide metastasis

suppressor genes in BC (McHenry et al, 2008; Li et al, 2009; Bi et al,

2011). Interestingly, PEBP1 expression levels are decreased in

primary tumors (MSK/EMC dataset) that relapse to brain and lungs,

thereby confirming the accuracy of our analysis, while RARRES3

levels in these clinical samples have prognostic value exclusively for

the prediction of lung metastasis (Supplementary Table S1). In

summary, these analyses highlighted RARRES3 as a putative key

lung metastasis suppressor whose expression is reduced in primary

BC tumors.

RARRES3 prevents breast cancer lung metastasis

We studied the functional role of RARRES3 in experimental models

of BC metastasis to lung. We used the metastatic BC cell line MDA-

MB-231-LM2 (LM2), which was selected in vivo on the basis of a

high capacity to colonize the lungs in mice, and the corresponding

parental cell line MDA-MB-231, namely parental cells (Minn et al,

2005). LM2 cells showed a fivefold lower RARRES3 expression than

their parental counterparts (Supplementary Fig S2A and B) and have

been described to rapidly colonize the lungs when inoculated ortho-

topically in the mammary fat pad of immunodeficient mice (Padua

et al, 2008). We examined how RARRES3 overexpression (Supple-

mentary Fig S2A, B and C) modified the capacity of LM2 cells to

colonize the lungs (Fig 2A, B and C). Of note, modulation of

RARRES3 levels did not significantly alter the expression of any

other LMS gene in parental or LM2 cell derivatives (Supplementary

Fig S2A and B). In detail, Mock and RARRES3-overexpressing LM2

cells were injected into the mammary fat pad (MFP) of BALB/c

Nude mice, and tumors were allowed to grow until they reach

300 mm3. The tumors were then surgically resected, and lung

colonization was allowed to develop (Fig 2A). Seven days after
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mastectomy of the primary tumor, we assayed metastatic activity by

bioluminescence imaging (BLI) of luciferase-transduced LM2 cells

both in live animals and in the lungs ex vivo (Fig 2B). While six out

of eight mice inoculated with LM2-Mock cells presented luciferase

activity in the lungs, bioluminescence was detected in only two out

of nine animals injected with LM2-RARRES3 cells (Fig 2B). More-

over, the amount of luciferase detected differed significantly, as

shown in representative in vivo and ex vivo images of the lungs

(Fig 2B). The resulting metastatic lesions showed positive staining

for human Vimentin by immunohistochemistry (IHC), which specifi-

cally stains human MDA-MB-231 cells (Fig 2C). Several metastatic

foci were observed throughout the lungs of mice bearing LM2-Mock

tumors, while these were hardly observed in mice bearing LM2-

RARRES3 tumors. Interestingly, RARRES3 expression did not

provide any growth advantage to cells when implanted at the MFP,

as tested in an independent experiment (Fig 2D), or in vitro (Supple-

mentary Fig S3A). RARRES3-expressing tumors did not display any

change in vascular permeability, measured as effusion of intrave-

nously injected rhodamine-conjugated dextran into the tumor or

changes in VEGF expression levels (Supplementary Fig S3B and C).

In addition, RARRES3 expression in primary tumors did not lead to

differences in the number of circulating tumor cells, as measured by

relative levels of human GAPDH to murine B2M (Supplementary Fig

S3D). This observation suggests that the early steps of metastasis,

including tumor vascularization and intravasation, were not under

the influence of RARRES3 expression.

Next, we focused on the late steps of metastasis with an empha-

sis on lung colonization. To this end, we examined the effect of

RARRES3 restoration or depletion on lung metastatic colonization in

LM2 or parental MDA-MB-231 cells, respectively (the latter, by

means of two independent short hairpin RNAs (Supplementary Fig

S2A and B). We injected 2 × 105 cells into the lateral tail vein (TV)

of BALB/c Nude mice and monitored lung colonization over time.

Five days after cancer cell inoculation, the lung colonization signal

was reduced in cells expressing high levels of RARRES3, compared

to their counterparts, while growth upon this point was paralleled

in all groups (Fig 3A and B). The overexpression of RARRES3

greatly reduced the photon flux in the lungs of mice injected with

LM2 cells (Fig 3A); this effect correlated with decreased lung coloni-

zation, as observed in H&E sections (Fig 3A). Concurrently,

RARRES3-depleted parental cells exhibited enhanced capacity to

colonize the lungs (Fig 3B). No differences in proliferation were

observed among different groups, as measured by Ki-67 staining

(Fig 3A and B), thereby suggesting that proliferation did not account

for the differences observed at the metastatic site. Similarly,

although apoptosis was diminished in lung lesions arising from LM2

cells when compared to parental ones, the modulation of RARRES3

expression levels did not affect the amount of activated Caspase-3 in

lung lesions or at the primary tumor site (Supplementary Fig S4A).

Next, to generalize our findings, we validated the contribution of

RARRES3 to lung colonization in patient-derived CN37 cells (Gomis

et al, 2006) and in 4T1 mouse-spontaneous ER� metastatic BC cells

(Aslakson & Miller, 1992). CN37 and parental MDA-MB-231 cells

show similar RARRES3 expression, which we effectively downregu-

lated (Supplementary Fig S4B). CN37 cells showed a low metastatic

propensity to colonize the lungs. Control mice remained free of

disease for 24 weeks (Fig 3C). However, RARRES3-depleted CN37

cells were able to initiate new lesions after a long latency period,

and by week 20, lung colonization was observed in half the animals

injected with CN37 shRARRES3 #1 and #2 cells (Fig 3C). Lesions
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Figure 1. RARRES3 suppression in breast tumors.

A Box plot of RARRES3 expression levels in the MSKCC (n = 82) breast cancer tumor dataset according to ER and lung metastasis signature (LMS) status.
B Kaplan–Meier representation of the probability of lung metastasis-free survival in the MSK/EMC breast cancer tumor dataset (n = 560) according to RARRES3 levels of

expression. Low, medium, and high represent RARRES3 expression levels in the following way: low (< mean � SD), medium (≥ mean � SD and ≤ mean � SD), and
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C Kaplan–Meier representation of the probability of lung metastasis-free survival in 560 breast cancer cases according to the ER status and RARRES 3 expression levels
according to (B).
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caused by RARRES3-depleted CN37 cells continued to grow until

week 24 (Supplementary Fig S4C). As observed in parental MDA-

MB-231 cells, RARRES3 levels did not affect the capacity of CN37

cells to grow at the primary site, determined 10 weeks post-inocula-

tion (Supplementary Fig S4D). In contrast, 4T1 cells show reduced

RARRES3 expression compared to parental MDA-MB-231 cells,

which we increased by means of exogenous expression (Supplemen-

tary Fig S4E). 4T1 cells showed a high metastatic propensity to colo-

nize the lungs in syngeneic BALB/c mice, which developed overt

lung metastasis 20 days after inoculation. RARRES3-expressing 4T1

cells displayed a significant reduction in the capacity to colonize the

lung 20 days post-injection (Fig 3D).

Interestingly, human Vimentin IHC revealed significant increase

in lung metastatic foci when cells with low RARRES3 expression

were inoculated (LM2 cells or RARRES3-depleted parental cells)

compared to populations expressing high levels of RARRES3 (paren-

tal cells and RARRES3-expressing LM2) (Fig 3E). Although the area

of the lesions, as expected, was larger for LM2 cells than parental

ones, no differences were observed in LM2 or parental cells express-

ing different RARRES3 levels in comparison with their respective

controls (Fig 3A and B). This observation was consistent with the

lack of differences in proliferation or apoptosis, as measured by

Ki67 or caspase-3 activity, caused by variations in RARRES3 expres-

sion (Fig 3A and B and Supplementary Fig S4A). The above results

suggest that RARRES3 expression prevents lung colonization initial

steps.

RARRES3 suppresses metastatic cell adhesion to the
lung parenchyma

Next, we addressed the mechanism by which RARRES3 may prevent

lung metastasis. We initially investigated whether RARRES3 regu-

lates apoptosis in the circulation or at the metastatic site. Under the

former scenario, cell death may occur by anoikis due to the absence
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Figure 2. RARRES3 prevents breast cancer lung metastasis.

A Schematic representation of in vivo experimental procedure to evaluate lung metastatic potential from the orthotopic site. The indicated cell lines (5 × 105 cells)
were injected contralaterally into the fourth mammary fat pad of mice. Tumors reaching 300 mm3 were surgically removed. Seven days post-mastectomy, lung
metastasis burden originated from size-matched tumors was quantified.

B (Left panel) Quantification of ex vivo bioluminescent signal at the lungs in each experimental group subjected to the tumor growth/resection scheme described in
(A) at end point. n = 8 and n = 9 mice per group were used. Whiskers plots from min–max values were used. (Right panel) Representative bioluminescence images of
in vivo and ex vivo lung colonization of the mice are shown.

C Representative human Vimentin IHC staining of whole lung sections to highlight metastatic tumor lesions from (B) are shown. Inset panels (4× magnification) reflect
the size and multiple metastatic foci detected in the LM2-Mock group.

D LM2 cells (5 × 105) expressing an empty vector (LM2-Mock) or a RARRES3-expressing vector (LM2-RARRES3) were injected contralaterally into the fourth mammary
fat pad of mice, and tumor growth was measured over time. n = 20 per group. Data are averages � SEM.
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of cell attachment (Nagaprashantha et al, 2011). Anoikis, tested in

vitro by culturing cells in suspension, was reduced in LM2 cells

compared to the parental MDA-MB-231 line; however, RARRES3

downregulation or overexpression did not alter the fraction of cells

that succumbed to the lack of cell attachment (Fig 4A). Similarly,

we tested apoptosis in vivo 6 h post-injection, when cells were

trapped at the lung vasculature but had not yet extravasated. Apop-

tosis was assessed by injection of a luciferase ZVAD-protected

prosubstrate susceptible to be activated only upon Caspase-3/7 acti-

vation in apoptotic cells. In concordance with the results obtained

in vitro, LM2 cells exhibited lower levels of apoptosis than parental

cells, but RARRES3 did not modify the intensity of apoptosis in

parental or highly metastatic populations (Fig 4A).

In the absence of a direct cellular pro-apoptotic effect, we

hypothesized that RARRES3 instead controls the metastatic lung

colonization steps of extravasation/adhesion and/or metastatic

lesion initiation. First, we tested the contribution of RARRES3 to

lung extravasation and adhesion in vivo using LM2 cells with and

without RARRES3 overexpression. These cellular populations were

injected into mice and 2 days later the number of cells extravasated
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Figure 3. RARRES3 depletion facilitates lung colonization.

A LM2-Mock and LM2-RARRES3 cells (2 × 105) were injected into the tail vein of mice. Lung colonization was assayed by weekly bioluminescence imaging. Plots show
normalized photon flux in the lung over time (n = 10 per group). Representative H&E and Ki-67 staining of lung sections 4 weeks after engrafting are shown. Data
are averages � SEM.

B Parental MDA-MB-231 cells (2 × 105) transduced with a control vector (shControl) or two independent RARRES3 shRNA vectors (shRARRES3 #1 and #2) were injected
into the tail vein of mice. Lung colonization was assayed by weekly bioluminescence imaging. Plots show normalized photon flux in the lung over time (n = 10 per
group). Representative H&E and Ki-67 staining of lung sections 4 weeks after xenografting are shown. Data are averages � SEM.

C CN37 patient-derived metastatic breast cancer cells (2 × 105) transduced with a control vector (shControl) or two independent RARRES3 shRNA vectors (shRARRES3
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into the lung parenchyma was determined. While 39.75 (� 4.5)

LM2-Mock cells were observed per lung section, the overexpression

of RARRES3 significantly reduced these levels to 24.5 (� 1.9) cells

(Fig 4B), suggesting that alterations in features required for extrava-

sation, such as migration through an endothelial barrier, invasion or

adhesion, could account for this observation. It has been previously

reported that the capacity of LM2 cells to migrate through an endo-

thelial cell layer is 5-fold greater than that of MDA-MB-231 parental

cells (Gupta et al, 2007). However, RARRES3 expression levels did

not affect the migratory capacity of either of these cell populations
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Figure 4. RARRES3 impairs metastatic cell adhesion to the lung parenchyma.

A (Left panel) Percentage of apoptotic cells under anoikis conditions, as determined by FACS measurement of Anexin V staining. Same number of cells of the
indicated cell lines were plated, and measurements were taken at the indicated time point. Data are averages of three independent experiments � SD. (Right
panel) Apoptotic human luciferase activity of the indicated cell lines was measured in vivo using a Caspase-3 luciferin pro-substrate and normalized to total
luciferase activity at the indicated time points after injection (n = 5 per group). Data are averages � SEM. PI stands for post-injection.

B Cell tracker green-labeled LM2-mock and LM2-RARRES3 cell lines were injected via the tail vein and allowed to lodge in the lungs. Two day post-injection, mice
were inoculated with rhodamine-lectin and 30 min later were perfused with 5 ml of PBS to remove cells attached to the vasculature. Lungs were extracted,
flushed with PBS, and fixed-frozen in OCT, and frozen sections were obtained. Representative confocal images of extravasated cells (green) to the lung parenchyma
are shown. In red, vasculature staining using rhodamine-lectin. Right panel: Quantification of extravasated cells in each condition is plotted. n = 5 mice per group.
10 sections per mouse were scored. Data are averages � SD.

C, D Adhesion to collagen I and fibronectin, respectively. The MBA-MB-231 shControl, shRARRES3 #1 and #2, LM2-Mock and LM2-RARRES3 cells were labeled with cell
tracker green and plated (5 × 104) in triplicate in 24-well inserts coated with Collagen I (C) and Fibronectin (D). One hour post-plating, inserts were washed twice
with PBS to remove non-attached cells and fixed in PFA. Images were taken, and the area covered by cells was determined using Image J. The percentage of area
covered by cells in Collagen I (C) or Fibronectin (D) inserts is shown. Data are averages of three independent experiments � SD (n = 3).
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(Supplementary Fig S5A). Similarly, invasion properties, measured

as the capacity of cells to degrade and invade through a matrigel

layer, were not affected by RARRES3 expression levels, either in the

presence of growth factors or in growth factor-reduced matrigel

(Supplementary Fig S5B). In contrast, when we determined the

affinity of cells for lung extracellular matrix proteins by measuring

the adhesion to Type I collagen and fibronectin, significant differ-

ences were detected (Fig 4C and D). LM2-Mock cells in contact with

a Type I collagen or fibronectin matrix exhibited enhanced adhesion

compared to parental MDA-MB-231 shControl cells (Fig 4C and D).

Downregulation of RARRES3 in MDA-MB-231 parental cells caused

a marked increase in the capacity of cells to adhere to these two

matrices (Fig 4C and D). Correspondingly, RARRES3 overexpression

in highly metastatic LM2 cells reduced adhesion to Type I collagen

and fibronectin to the levels shown by parental shControl cells

(Fig 4C and D), confirming that RARRES3 expression attenuates cell

adhesion to the lung parenchyma.

RARRES3-PLA1/2 catalytic activity stimulates differentiation

The emergence of metastasis reflects the capacity of cancer cells not

only to overcome the need to adhere to the vasculature and extracel-

lular matrix but also to initiate a new lesion. Our observation that

high levels of RARRES3 expression reduced the number of meta-

static foci suggested that RARRES3 inhibits metastatic colony initia-

tion. We hypothesized that RARRES3 blocks the initiation of

metastatic lesions by promoting cellular differentiation signals

through its intrinsic phospholipase A1/2 catalytic activity. PLA1/2

activity is pivotal for the production of the arachidonic and lyso-

phospholipid precursors that result from the hydrolysis of the acyl

chain of phospholipids (Wang & Dubois, 2010). Upon downstream

modifications by cyclooxygenases, these precursors are modified to

active compounds called eicosanoids (prostaglandins and leukotri-

enes), which may signal as lipid secondary messengers and promote

differentiation (Wang & Dubois, 2010). We modeled the three-

dimensional structure of RARRES3 based on the structure of the

HREV107 family member and identified the key residues that form

the PLA1/2 catalytic domain of the human gene (Fig 5A and B),

including His23, His35, Arg18, and Cys113. These four residues,

conserved across species, comprise a well-defined catalytic core of

the above-described enzymatic activity (Fig 5B and Supplementary

Fig S6) (Uyama et al, 2009). By mutating two of the catalytic core

amino acids (H23P and C113S), we confirmed that RARRES3 PLA1/2

activity and its catalytic core residues were responsible for changes

in cellular arachidonic acid content (Fig 5C).

Next, we evaluated the contribution of RARRES3 PLA1/2 catalytic

activity to cell differentiation processes through lipid signaling medi-

ators such as arachidonic derivatives. Interestingly, Peroxisome

proliferator-activated receptors (PPARs) are a group of nuclear recep-

tor proteins that function as transcription factors and whose activity

is dependent on arachidonic derivatives (Sertznig et al, 2007).

PPARs play an essential role controlling cellular metabolism, devel-

opment, and differentiation (Sertznig et al, 2007). We investigated

whether PPAR function was sensitive to RARRES3 catalytic activity,

by using a PPAR-specific luciferase reporter assay based on three

copies of the rat acyl-CoA oxidase peroxisome proliferator response

element, Aox-3x-PPRE-Luc. We found that RARRES3 expression

increased the reporter transcription and a RARRES3-DEAD mutant

abrogated this effect (Fig 5D). To further evaluate the clinical rele-

vance of the catalytic activity of RARRES3 and its association with

differentiation markers in BC, we initially focused on 13 well-known

PPAR target genes associated with differentiation processes (Sertznig

et al, 2007), including lipid metabolism enzymes, fatty acid transport

and uptake genes, the peroxisome maintenance gene, and gene tran-

scription. We found that the expression of these genes significantly

correlated with RARRES3 expression in ER� BC primary tumors

(Fig 5E). Interestingly, the expression levels of six of these genes

(PEX11A, ACOX2, ACAD8, HMGCS2, SLC27A2, and FABP5) were

individually and significantly associated with risk of lung metastasis

recurrence in these tumors (Fig 5E). Next, we performed a cross-

validation of our group of PPAR-dependent RARRES3-correlated

genes in the combined expression dataset of 211 clinically annotated

human primary ER� breast tumors (MSK/EMC dataset). The

outcome of interest was time to lung recurrence (TTR) after primary

tumor surgical removal. Using gene set enrichment analysis (GSEA)

(Subramanian et al, 2005), we found a strong negative association

between the PPAR-dependent RARRES3-correlated gene set and an

increased risk of lung recurrence upon therapeutic treatment (nor-

malized enrichment score of �1.88 and a false discovery rate of

0.001) (Fig 5F). On the basis of these lines of evidence, we interro-

gated whether RARRES3 expression in primary ER� tumors also

correlated with well-established mammary epithelial differentiation

genes. With this aim and to determine the genes significantly associ-

ated with changes in RARRES3 expression, we performed a correla-

tion analysis between RARRES3 and all the other genes in the MSK/

EMC primary tumor expression dataset (Affymetrix U133Aplus2).

RARRES3 expression correlated positively with the differentiation

genes GATA2 and GATA3, and inversely with the EZH2 polycomb

protein, a pluripotency marker gene (Fig 5G). Collectively, these

observations strongly support the notion that the retention of

RARRES3 expression and the production of signaling mediators and

precursors through its PLA1/2 activity are associated with BC tumors

preserving some of their differentiation attributes.

RARRES3 prevents metastasis colony initiation

A potential consequence of RARRES3 expression in BC cells is the

retention of certain differentiation properties, which could challenge

metastasis-initiating functions. To test this hypothesis, we measured

the lung metastasis-initiating capacity of limiting dilutions of Mock

and RARRES3-expressing LM2 cell populations upon intrapulmo-

nary injections into BALB/c Nude mice. The cells were injected

directly into the lung parenchyma (absence of extravasation/adhe-

sion) as opposed to subcutaneously or in the MFP, since the

extracellular matrix component of the lung metastatic niche has

been reported to be crucial for lung metastasis-initiating capacity

(Oskarsson et al, 2011). Tumor emergence was used as a surrogate

of the metastasis-initiating capacity of cells. Mock and RARRES3-

overexpressing LM2 cells inoculated in high numbers (5,000 cells)

colonized the lungs with a similar frequency and latency

(Supplementary Fig S7A). At lower dosages (500 or 50 cells), Mock

LM2 cells retained the capacity to colonize the lungs with high effi-

ciency, whereas RARRES3-expressing ones displayed a reduced

capacity (Fig 6A). Similarly, at low dosages (500 and 50 cells), 4T1

murine metastatic cells expressing RARRES3 showed reduced meta-

static initiation capacity in the lungs (Fig 6B and Supplementary Fig
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S7A). In contrast, increased frequency of lung colonization for

RARRES3-depleted CN37 cells in low dosages (1,000 cells) was

detected (Fig 6A). Therefore, the reduction in metastasis-initiating

capacity paralleled the expression of RARRES3.

Next, we analyzed the contribution of RARRES3 expression to

the rate of oncosphere formation in 3D and 2D culture conditions, a

readout of pluripotency (Dontu et al, 2003; Liao et al, 2007;

Grimshaw et al, 2008) that determines the ability of a single BC cell

to start a new colony. For this purpose, we grew the various

RARRES3-expressing cell populations previously established

(MDA-MB-231, CN37, and 4T1 cells) in matrigel. 3D culture systems

recapitulate organotypic growth with respect to a polarized pheno-

type, specialized cell–cell contacts, and attachment to an underlying

basement membrane (Schmeichel & Bissell, 2003; Debnath &

Brugge, 2005). All of these features are required for the proper

control of cellular proliferation, survival, and differentiation. We

seeded the various RARRES3-expressing LM2, CN37, and 4T1 cells

into a 3D matrix as described in the experimental section. The

number of colonies formed was quantified and compared in

each cellular population (Fig 6C and Supplementary Fig S7B).
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Figure 5. RARRES3 PLA1/2 catalytic activity triggers differentiation-signaling mediators.

A Homology 3D structural model of RARRES3 (red) aligned with the structure of H-REV107 (violet) (Ren et al, 2010).
B The conserved catalytic residues of RARRES3 and H-REV107 showing the proposed similarity of function.
C Human Arachidonic Acid (AA) levels (ng/ml) measured in cell extracts of MDA-MB-231 Parental and LM2 cellular derivatives expressing different levels of RARRES3.

Data are represented as the mean of three independent experiments � SEM.
D Luciferase activity of 3x-AOX peroxisome proliferation response element reporter plasmid in MDA-MB-231 parental cells transiently transfected with Mock, RARRES3-

and RARRES3-DEAD-expressing vectors. Activity of 3xAOX promoter was normalized to control condition and presented in arbitrary units. Data are mean of three
independent experiments with � SD.

E The correlation coefficient and significance of RARRES3 expression levels in ER� BC primary tumors from the MSK/EMC meta-cohort against the expression of 13 PPAR
target genes represented in the U133A affymetrix array are shown, together with the p value associated with each correlation. Moreover, the risk of lung metastasis
(HR) associated with the expression of each of those genes in primary tumors is also reported.

F Gene set enrichment analysis (GSEA) representing association of HR of lung metastasis with the PPAR target RARRES3-correlated gene set in the human breast cancer
dataset (MSK/EMC expression dataset). NES-normalized enrichment score; FDR-false discovery rate; HR-hazard ratio.

G The correlation coefficient of RARRES3 expression levels in ER� BC primary tumors from the MSK/EMC meta-cohort against the expression of all the genes
represented in the U133A affymetrix array is shown. In red, differentiation GATA transcription factors. In black, some PPAR target genes described in (E). In green,
stemness gene.
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Interestingly, increased RARRES3 expression reduced the capacity of

all the cell types to undergo organotypic growth. Catalytic

RARRES3-DEAD mutant overexpression in LM2 cells did not abro-

gate the capacity of these cells to form 3D spheroids (Fig 6C and

Supplementary Fig S7A). This observation suggests that the enzy-

matic activity of the protein is necessary for RARRES3 to prevent

the initiation of the 3D structures from a single cell. Similarly,

oncosphere formation from single cells in low-attachment plates

was also tested in various RARRES3-expressing MDA-MB-231 cell

populations. One cell per well was seeded in a 96-well plate, and

the ability to form oncospheres was determined 2 weeks later.

While only 30.2% of parental shControl cells formed oncospheres,

up to 76% of LM2 cells showed this potential (Fig 6D). RARRES3

downregulation enhanced the capacity of the parental cell line to

form oncospheres, while overexpression of RARRES3 dramatically

abrogated this property in LM2 cells in a PLA1/2 activity-dependent

manner (Fig 6D). Moreover, the levels of RARRES3 mRNA were

decreased in oncospheres produced by MDA-MB-231 cells compared
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Figure 6. RARRES3 induces cellular differentiation thus impairing metastasis initiation.

A Mock- and RARRES3-expressing LM2 cells or shControl and shRARRES3 CN37 cells at the indicated dilutions were intrapulmonary injected, and grow in the lungs
assessed by luciferase bioluminescence over time. Kaplan–Meier plots of the probability of lung metastasis-free survival and log-rank test were used. n = 7 mice per
group was used unless indicated otherwise.

B Mock- and RARRES3-expressing 4T1 cells at the indicated dilutions were intrapulmonary injected, and grow in the lungs was confirmed macroscopically 20 days
post-implantation. Contingency plots and Fisher exact test were used. Representative images are shown (white dashed line limits tumor area). n = 8 mice per group
were used.

C Equal limiting dilutions of the indicated cell lines were plated in Matrigel. The number of organotypic spheres per plate was counted. Shown is the average of three
independent experiments � SD. Representative images are shown. Scale bar represents 50 lm.

D Limiting dilutions of the indicated cell lines were performed, and one cell was plated per well of 96-well plates. One plate per cell line was cultured. The percentage
of wells that generated oncospheres was calculated. Shown is the average of three independent experiments � SD.

E Human mRNA qPCR analysis of the indicated genes and cell lines in oncospheres cultures is shown. Shown is the average of at least three independent
experiments � SD.

F Human mRNA qPCR or IHC analysis of the indicated genes on lung metastasis of mice inoculated with Mock and RARRES3-expressing LM2 cells is shown (n = 7).
Shown is the average all samples � SD or a representative image of these tumors.

G RW.4 cells expressing a control vector (W4), a RARRES3, or a RARRES3-DEAD mutant-overexpressing vector (W4-RARRES and W4-RARRES3-DEAD) were cultured in the
presence or absence of 1M all-trans retinoic acid (ATRA) for 3 days. Upper panels: representative images of the cultures are shown. Lower panels: qPCR analysis of
RARRES3, GATA6, and PPIA (control) mRNAs of the indicated cultures was performed. Data are average of three independent experiments � SD.
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to the respective original cells in culture (Supplementary Fig S7C).

The reduction in the capacity of RARRES3-expressing LM2 cells to

form spheroids was correlated with higher expression of the differ-

entiation markers GATA3 and GATA2, associated with RARRES3

expression in primary tumors (Fig 6E). Similarly, lung metastatic

tumors in mice originated from RARRES3-expressing LM2 cells also

showed increased expression of some differentiation attributes,

including the differentiation transcription factor GATA3, as well as

some PPAR targets (PPARD, PPARG, and ACSL5) significantly corre-

lated with RARRES3 expression in primary tumors (Fig 6F).

The maintenance of a stem phenotype is frequently associated

with the expression of pluripotency genes and the absence of differ-

entiation markers (Dontu et al, 2003; Sparmann & van Lohuizen,

2006; Chou et al, 2010). Our previous observations reinforced the

notion that RARRES3 promotes differentiation. To test this hypothe-

sis and assess the capacity of RARRES3 to engage differentiation, we

used a pluripotent embryonic mouse cell line, RW-4, where differen-

tiation can be easily monitored. Treatment of RW-4 cells with all-

trans retinoic acid (ATRA) induces differentiation, a process that is

controlled by GATA6, since its absence precludes differentiation

(Capo-Chichi et al, 2005). Thus, GATA6 controls and also can be

used as a marker of the differentiation status in these cells (Capo-

Chichi et al, 2005). RW-4 cells were cultured in gelatin plates in the

absence of feeders. Under these conditions, the cells grew in tight

groups, and only a few isolated cells that accomplished differentia-

tion presented a long shape and attached to the plate (Fig 6G). Over-

expression of RARRES3 induced the differentiation of RW-4 cells, a

phenotype that is easily detected by the presence of numerous

differentiated cells attached to the plate and the size reduction of the

groups of pluripotent cells (Fig 6G). This phenotype was abrogated

in the absence of RARRES3 catalytic activity (Fig 6G). As a control,

we treated RW-4 cells with ATRA. As expected, almost all the cells

in the plate engaged in differentiation (Fig 6G). To quantify the

extent of differentiation induced by RARRES3, we analyzed the

mRNA levels of GATA6 by quantitative PCR. RARRES3 induced the

expression of GATA6 by up to fourfold, whereas ATRA induced an

increase of 13-fold (Fig 6G). These results indicate that the catalytic

activity of RARRES3 induces the differentiation of pluripotent mouse

embryonic cells and is associated with the retention of differentia-

tion markers in experimental systems of BC and primary tumors.

These observations support the concept that RARRES3 prevents the

initiation of lung metastatic lesions by enforcing the retention of

differentiation features.

Discussion

Here we provide novel evidence on the role of RARRES3 in prevent-

ing BC lung metastasis by the combined inhibition of metastatic

adhesion and initiation. We have shown that RARRES3 impedes the

adhesion of BC cells to the lung parenchyma while enforcing the

retention of differentiation properties, thus restraining the adhesion

and initiation of new lesions by the metastatic cells in the lungs

(Fig 7).

RARRES3 expression did not cause any differences in primary

tumor growth, angiogenesis, or proliferation. On the contrary, this

metastasis suppressor modulated mainly steps required at the meta-

static site, including metastatic initiation. The acquisition of low

expression levels of RARRES3 in ER� BC primary tumors that metas-

tasize to the lung is directly associated with a reduction in GATA

differentiation genes (Chou et al, 2010) and inversely correlated

with expression of the EZH2 pluripotency gene marker (Sparmann &

Lung
metastasis

Breast 
primary tumor

Risk Lung metastasis Competence to
initiate a lesion

ER-negative Breast Cancer

RARRES3 suppression

PLA1/2 activity

 Disables differentiation processes Facilitates adhesion 
to lung parenchyma 

Competence to
seed at the lungs

Figure 7. Schematic model.
Model showing how RARRES3 suppression contributes to ER� breast cancer primary tumors metastasis to the lung. This suppression enables adhesion to the lung
parenchyma, thus facilitating seeding at the lungs. Moreover, RARRES3 suppression and loss of its PLA1/2 catalytic activity disable differentiation signals, which, in turn,
provide metastasis initiation competence to breast cancer cells to colonize the lung.
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van Lohuizen, 2006). GATA3 has been shown to suppress lung

metastasis from mouse and human mammary tumors by a mecha-

nism that involves cell fate specification (Kouros-Mehr et al, 2008a;

Dydensborg et al, 2009). In contrast, the maintenance of a stem

phenotype, associated with self-renewal properties, is critical for cells

to establish new lesions (Al-Hajj et al, 2003; Dontu et al, 2003; Li

et al, 2007; Liao et al, 2007), which in ER� BC would be favored by

the loss of expression or catalytic activity of RARRES3.

Our data suggest that the PLA1/2 catalytic activity of RARRES3 is

central to its differentiation function. PLA1/2 enzymes are catalyti-

cally responsible for the production of arachidonic acid, which is

subsequently processed to produce prostanoids and leukotrienes

(Wang & Dubois, 2010). Prostaglandins and leukotrienes modulate

the proliferation, migration, and invasion of tumor epithelial cells

through multiple signaling pathways in both an autocrine and para-

crine fashion (Wang & Dubois, 2010). Moreover, these signal media-

tors are key molecules in the regulation of differentiation and stem

cell homeostasis (Ginestier et al, 2009; Wang & Dubois, 2010). Here

we show that the strong requirement of the PLA1/2 catalytic activity

of RARRES3 to sustain differentiation reflects, in part, an increase in

PPAR activity and expression of its downstream targets. PPAR

signaling provides a survival advantage to BC cells upon loss of

attachment (Carracedo et al, 2012), and activation of PPARA with

the chemical agonist compound Wy14643 reduces the development

of malignant mammary tumors in a tumor-prevention setting

(Pighetti et al, 2001). Some of the PPAR-regulated pro-differentiation

activities described herein may be reduced in BC cells expressing

low levels of RARRES3, thus facilitating metastatic features. This

may explain why BC primary tumors that will metastasize express

low levels of RARRES3. The induction of differentiation appears to

be a common mechanism by which cells restrain their metastatic

capacity in tumors of distinct origin. However, this observation does

not explain why, among ER� tumors, those expressing low levels of

RARRES3 exhibit significantly poorer lung metastasis-free survival,

while metastasis to bone or brain remains largely unaffected.

In addition to supporting a reduction in metastasis initiation

capacity, we show that RARRES3 modulates the ability of metastatic

tumor cells to specifically attach to the lung parenchyma, which may

explain the specific differences observed in lung extravasation capac-

ity. RARRES3 loss of expression favored the adhesion of ER� BC cells

to extracellular matrix proteins of the lung. While the lung paren-

chyma is composed mainly of Types I and III collagen, elastin, fibro-

nectin, proteoglycans, and glycosaminoglycans (Suki et al, 2005;

Pelosi & Rocco, 2008), the brain extracellular matrix has a unique

composition, and matrix proteins common in other tissues are virtu-

ally absent in the brain (Dityatev et al, 2010). The lack of association

of RARRES3 expression levels with brain metastasis may be explained

by the fact that RARRES3 specifically modulates adhesion to the lung

parenchyma and not to that of the brain. In addition to extravasation

and homing through an endothelial cellular layer and to a specific

matrix, the blood–brain barrier (BBB) may be a limiting step for cell

colonization of the brain (Cardoso et al, 2010). Thus, extravasation

to the brain may require the concerted acquisition and loss of expres-

sion of multiple genes, while a single gene would not have sufficient

strength to drive this phenotype (Bos et al, 2009). On the other hand,

the absence of a vasculature barrier or collagen/fibronectin-rich

matrix to overcome in bone metastasis might be the molecular ratio-

nale for the lack of RARRES3 downregulation in highly metastatic

populations to the bone (Kang et al, 2003). In summary, the decrease

in RARRES3 expression may confer metastatic cells an advantage to

adhere to the lung parenchyma, thus facilitating subsequent lung

colonization over other potential metastatic tissues.

Our data indicate that RARRES3 is a clinically relevant gene that

restrains the lung metastatic capacity of BC cells and whose levels

in the primary tumor may also predict risk of specific relapse. The

contribution of RARRES3 to differentiation over self-renewal

suggests that reduced RARRES3 expression would also be predictive

for cancer patients that exhibit therapy-resistant tumors. In fact, the

characteristics that stem cells exhibit underlie their capacity to

survive conventional therapies (Schott et al, 2013). Therefore,

tumors expressing low levels of RARRES3 may require new thera-

pies designed to target BC-initiating cells. In addition, our results

support the notion that RARRES3 activation leads to the differentia-

tion of BC tumor cells and contributes to limiting metastasis

progression. Thus, screening for compounds that activate RARRES3

may contribute to the development of new differentiation-inducing

strategies to target therapy-resistant tumors. Alternatively, depend-

ing on the latter strategies effectiveness to enforce differentiation,

RARRES3 activation could offer a useful pretreatment to improve

the effect of conventional therapies. On the basis of the mechanistic

and clinical data presented above, it is suggestive to use retinoic

acid in the adjuvant setting to induce RARRES3 metastasis suppres-

sor function, given its current use to treat certain hematological

diseases. The chemopreventive use of retinoids has been described

to reduce the appearance of secondary neoplasias in patients with

lung, head and neck, liver, and breast cancer (Fields et al, 2007).

Nevertheless, some contradictory results have strongly curtailed its

potential in the treatment of solid tumors (Lotan et al, 1995) and

may support the development of alternative strategies to increase

RARRES3 expression.

Materials and Methods

Cell culture

LM2 cell derivative is a lung metastatic subline derived from the

MDA-MB-231 breast cancer cell line in Prof. Massagué’s laboratory

(Minn et al, 2005). CN37 is a pleural effusion patient-derived cellu-

lar population (Gomis et al, 2006). 4T1 cells were originated from a

spontaneous BALB/c mouse breast cancer tumor (Aslakson &

Miller, 1992). Stable cell lines expressing the shRNA RARRES3 or a

non-silencing shRNA were generated as described (Tarragona et al,

2012). For RARRES3 overexpression in cells, the RARRES3 sequence

was cloned into the retroviral vector pBabePuro/hygro. Stable cell

lines expressing the various vectors described were generated under

puromycin selection for 48 h or hygromycin selection for 14 days.

All cell lines were stably transfected with TK-GFP-Luciferase

construct and sorted for GFP.

Animal studies and xenografts/syngeneic models

All animal work was approved by the institutional animal care and

use committee of IRB Barcelona. Female BALB/c Nude (MDA-MB-

231 cells), NOD/SCID (CN37 cells), or BALB/c wild-type mice (4T1

cells) were used.
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For tail vein injections, cells were resuspended in 1× PBS and

injected into tail vein of mice using a 26G needle, as previously

described (Tarragona et al, 2012). Prior to the injection of tumor

cells, mice were anesthetized with ketamine (100 mg/kg body

weight) and xylazine (10 mg/kg body weight), and immediately

after injection they were imaged for luciferase activity. Mice were

monitored weekly using IVIS imaging, unless otherwise indicated.

Lung tumor development was followed once a week by biolumines-

cence imaging, taking a photo of upper dorsal region that corre-

sponds to lung position. Bioluminescent images were quantified

with Living Image 2.60.1 software. All obtained values were normal-

ized to those obtained at day 0. 4T1 lung colonization capacity was

scored 20 days post-inoculation by H&E. Three sections per mouse

lungs separated 25 lm were counted. The average of the total area

of the metastasis normalized to total lung area was measured. Then,

the average of all mice total lung metastasis area was plotted.

For the injection of tumor cells at the orthotopic site, mice were

anesthetized as described above, and tumor cells mixed with growth

factor-reduced matrigel (BD Bioscience) before inoculation (1:1).

Once palpable, tumors were measured with a digital caliper, and the

tumor volume was calculated. For metastatic experiments in Fig 2A,

tumors were resected when reaching 300 mm3.

For the injection of cells directly into the lungs, mice were anes-

thetized as described above, and the indicated number of cells was

counted and then suspended in 25 ll of 1× PBS and mixed 1:1 with

growth factor-reduced matrigel (BD Bioscience). To avoid injecting

the heart of BALB/c Nude, NOD/SCID, or BALB/c wild-type mice, a

total of 50 ll of this solution was injected directly between the 3rd

and the 4th costal bone. Dilutions including 50, 500, 1,000, and

5,000 cells were used. On the day of injection (day 0), luciferase

activity was assessed with IVIS. Subsequently, this activity was

measured to score tumor initiation of colonization. In case of 4T1

cells, 20 days post–injection, mice were killed and lungs analyzed

for macroscopic lesion detection. Lesions were confirmed by H&E

staining.

For in vivo lung extravasation assays, CellTrackerTM Green (Invi-

trogen)-marked cells (5 × 105) were suspended in 200 ll of cold 1×

PBS and injected into the tail vein. After 48 h, we then injected

50 lg (100 ll) of rhodamine-lectin into the same vein to label the

vasculature. Mice were perfused via heart with 5 ml of 1× PBS and

sacrificed 30 min later. Lungs were removed, the trachea was

perfused, and lungs frozen in OCT. OCT sections were then

analyzed.

For in vivo tumor permeability assays, mice were injected intra-

venously with rhodamine-dextran (70 kDa, Invitrogen) at 2 mg per

20 g of body weight, and 3 h later they were perfused via heart with

5 ml of PBS and sacrificed. Tumors were extracted and fixed in

formalin. Paraffin-embedded tumors were sectioned and analyzed.

Oligonucleotide array assays

RNA sample collection and generation of biotinylated complemen-

tary RNA (cRNA) probe were carried out essentially as described in

the standard Affymetrix (Santa Clara, CA) GeneChip protocol. Ten

micrograms of total RNA was used to prepare a cRNA probe using a

Custom Superscript kit (Invitrogen). For expression profiling, 25 ng

of RNA per sample was processed using isothermal amplifica-

tion SPIA Biotin System (NuGEN technologies). Each sample was

hybridized with an Affymetrix Human Genome U133APlus2.0

microarray at the IRB Barcelona Functional Genomics Facility. All

microarray statistical analyses were performed using Bioconductor

(Gentleman et al, 2004). Background correction, quantile normali-

zation, and RMA summarization were performed as implemented in

Bioconductor’s affy package (Irizarry et al, 2009).

Patient gene expression datasets

The patients’ information is publically available and was down-

loaded from GEO Barrett et al (2007). The following cohorts were

used: (i) MSKCC set. GSE2603, including 82 breast cancer samples

(Minn et al, 2005); (ii) MSK/EMC. Pooled GSE2603, GSE2034,

GSE5327, and GSE12276. This pooled cohort has 560 patients’

samples. In order to remove systematic biases, the expression

measurements were converted to z-scores for all genes prior to

merging. ER+ patients were selected based on the bimodality of gene

ESR1. More information is provided in Supportive materials and

methods.

Lentiviral and retroviral production

293T cells were used for lentiviral production. Lentiviral vectors

expressing shRNAs against human RARRES3 from the Mission

shRNA Library were purchased from Sigma-Aldrich. Cells were

transfected with lentiviral vectors following standard procedures,

and viral supernatant was used to infect MDA-MB-231 and CN37

cells. Selection was done using Puromycin (2 lg/ml) for 48 h. As a

negative control in all the infections, a lentivirus with control

shRNA was used. 293T cells transfection with retroviral vectors was

done using standard procedures, and viral supernatant was used for

infection. An empty vector was used as a Mock control.

RARRES3 short hairpins sequence:

sh#1: CCGGCCCGCTGTAAACAGGTGGAAACTCGAGTTTCCACCT-

GTTTACAGCGGGTTTTTG

sh#2: CCGGGCGCTTGGAATCCTGGTTGTTCTCGAGAACAACCAG-

GATTCCAAGCGCTTTTTG

Control short hairpin:

ShControl: CCGGCATCGACAAGACTGCTAACCACTCGAGTGGTT-

AGCAGTCTTGTCGATGTTTTTG

Statistical analysis

Metastasis-free survival curves of mice were plotted using Kaplan–

Meier estimates and compared using the log-rank test. Categorical

variables were compared with the Fisher exact test. Continuous

variables were compared nonparametrically with the Wilcoxon test

or with a Student t-test depending on normality of the distribution.

Irrespectively of whether the direction of the differences was biolog-

ically expected to follow a certain direction (i.e. gene silencing),

two-sided tests were used, unless indicated otherwise. We consid-

ered P < 0.05 to be statistically significant.

Kaplan–Meier survival and correlation analysis in patient

samples: Publicly available and clinically annotated breast cancer

cohorts with gene expression profiles (GSE2603, GSE2034,

GSE5327, and GSE12276) were pooled as described above. Various

probes of the same gene were summarized via mean. Patients were

divided into groups on the basis of levels of expression using natural
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divisions (i.e. tertiles, median), and the Kaplan–Meier survival func-

tion was plotted. The hazard ratio (HR) and P value for each gene of

interest (RARRES3 or ESR1) were calculated using a Cox propor-

tional hazards model and performing likelihood ratio tests. The HR

was checked for constancy over time, fulfilling Cox model assump-

tions. All significance measurements were done using the parameter

of interest, RARRES3 or ESR1, expression as a continuous variable.

GSEA analysis

GSEA analysis was done as implemented in the phenoTest package

of Bioconductor.

RARRES3 gene expression correlation

Gene expression data of ER� patients (n = 211) of GSE2603,

GSE2034, GSE5327, and GSE12276 pooled breast cancer sample

cohort were used. A Spearman correlation test was performed for

each gene against RARRES3. We corrected for multiple testing using

the Benjamini and Hochberg method.

Protein extraction and Western blot

Cells were lysed with a buffer containing 1% Triton in 50 mM Tris/

HCl (pH 7.4) for protein extracts and processed as in Tarragona

et al, 2012. The antibodies used were anti-RARRES3 (Abyntek SA)

and a-Tubulin (Sigma). RARRES3 rabbit polyclonal antibody was

generated using RARRES3 (23-117Aa) produced in E. coli.

Quantitative real-time PCR

Total RNA was isolated and processed as described (Tarragona

et al, 2012). Human RARRES3, the other genes described (i.e.

PPARG, ACSL5, and ID1), human B2M and mouse B2M or GAPDH

as endogenous controls were amplified with commercially designed

TaqMan gene expression assays (Applied Biosystems).

RNA isolation from metastasis tumors

Lungs positive for luciferase observed ex vivo were collected, and

RNA was obtained by adding 600 ll of lysis buffer (from Ambion

kit) plus 1% b-Mercaptoethanol directly to the lungs. Lung tissue

was homogenized using a Pre-cellys 24 machine (20 s, two cycles)

(Bertin Tech). The homogenized extract was then passed through a

QIAshredder column (Qiagen, cat no. 19656), and RNA was purified

using a PureLink RNA mini kit (Ambion, cat no. 12183918A),

following the manufacturer’s instructions.

Histopathology and immunohistochemistry

Tissues were dissected, fixed in 10% buffered formalin (Sigma), and

embedded in paraffin or fixed-frozen OCT. Sections (2- to 3-lm
thick) were stained with hematoxylin and eosin (H&E). For Ki67

and Vimentin IHC staining, paraffin sections were deparaffinized

and rehydrated through a series of alcohols. Next, sections were

treated with peroxidase-blocking solution for 15 min and washed

two times with distilled water. In particular, for Ki67 IHC antigen

retrieval, sections were boiled for 20 min in citrate buffer pH6. They

were then washed three times with 1× PBS and blocked with 0.05%

BSA in 1× PBS for 30 min at room temperature. Then, sections were

incubated with primary antibody against human Ki67 (Novocastra

NCL-ki67p; dilution 1:500 in 0.05% BSA, 1× PBS) for 1 h at room

temperature. They were then washed three times with 1xPBS and

incubated with HRP-conjugated secondary antibody raised against

rabbit IgGs (BrightVision poly HRP-Anti_Rabbit IgG ready to use;

ImmunoLogic) for 45 min at room temperature. Slides were washed

three times with 1× PBS and incubated with DAB for 3 min. Hema-

toxylin counterstaining was then performed.

For Vimentin IHC antigen retrieval, sections were autoclaved for

10 min in citrate buffer (pH 6.0). Next, sections were washed three

times with 1× PBS and blocked with 1× PBS for 30 min at room

temperature. They were then incubated with primary antibody

against human Vimentin (Novocastra NCL-L-VIM-V9; dilution 1:100

in 1× PBS) for 2 h at room temperature. Further, sections were

washed three times with 1× PBS and incubated with HRP-conju-

gated secondary antibody raised against mouse IgGs (Bright Vision

poly HRP-Anti Mouse IgG ready to use; ImmunoLogic) for 30 min at

room temperature. Slides were then washed three times with 1×

PBS and incubated with DAB for 3 min. Hematoxylin counterstain-

ing was then performed.

For PPARD IHC antigen retrieval, sections were incubated in

citric buffer (pH 6.0) at 95°C 30 min. Mouse monoclonal PPARD F-7

antibody (Santa Cruz Biotechnology SC-74440) was used in 1:15

dilution. IHC detection was performed with the ABC kit, from Vector

Laboratories. Slides were counterstained in Harris hematoxylin,

dehydrated, cleared, and cover-slipped.

For quantification of the number of foci per field, images from

Vimentin-immunostained lung sections were taken at 2× magnifica-

tion (three sections per lung and five animals per group). For each

section, the average number of foci per field was plotted. To analyze

the metastatic area, images were taken at 4× magnification, and the

area of each metastatic lesion was quantified with the Image J soft-

ware. Five images per section/animal were evaluated, and the aver-

age area plotted.

For quantification of Ki67, images from Ki67-immunostained

lung sections were taken at 40× magnifications (five fields per

section and five sections per lung lesion). Percentage of Ki67-posi-

tive cells relative to total number of cells was quantified. Total of

five mice per each group were analyzed.

Reporter assays

Renilla and luciferase reporter assays were performed as previously

described (Tarragona et al, 2012). The plasmid 3xAOX PPRE-TK-

LUC containing three copies of the peroxisome proliferator-response

element (PPRE) from the rat acyl-CoA oxidase was used. A Renilla

plasmid (Promega) was included to control for transfection effi-

ciency.

Migration assay

Cells were marked with 5 lM CellTrackerTM Green (Invitrogen)

following the manufacturer’s instructions and kept overnight in

medium with 0.1% FBS. Next day, 5 × 104 cells were seeded on

human fibronectin-coated Biocoat Cell Culture Inserts (Becton Dick-

inson Labware) in medium with 0.1% FBS, while the wells were
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loaded with complete medium. Eight hours after seeding, cells were

washed and fixed with 4% paraformaldehyde. Cells on the apical

side of each insert were scraped off, and migration to the basolateral

side was visualized with Nikon Eclipse TE2000-U fluorescent micro-

scope. Each sample was seeded in triplicate, and five fields from

each well were counted.

Invasion assay

Cells were marked with 5 lM CellTrackerTM Green (Invitrogen)

following the manufacturer’s instructions and were kept overnight

in medium with 0.1% FBS. Next day, 5 × 104 cells were seeded on

chambers coated with growth factor-reduced or completed matrigel

(BD Bioscience) in medium with 0.1% FBS, while the wells were

loaded with complete medium. Eight hours after the seeding, cells

were washed and fixed with 4% paraformaldehyde. Cells on the

apical side of each insert were scraped off, and the migration to the

basolateral side was visualized with Nikon Eclipse TE2000-U fluo-

rescent microscope. Each sample was seeded in triplicate, and five

fields from each well were counted.

Adhesion assay

Cells were marked with 5 lM CellTrackerTM Green (Invitrogen)

following the manufacturer’s instructions and kept overnight in

medium with 0.1% FBS. Next day, 5 × 104 cells were seeded in trip-

licates on collagen- or fibronectin-coated 24-well inserts. One hour

after the seeding, cells were washed and fixed with 4% paraformal-

dehyde. They were then visualized with a Nikon Eclipse TE2000-U

fluorescent microscope. Each sample was seeded in triplicate, and

five fields from each well were counted.

Flow cytometry analysis

Cells were stained using the Annexin V Apoptosis Detection kit (BD

Pharmingen), following manufacturer’s instructions. Data were

obtained using a BD FACSAria cell sorter and analyzed using FlowJo

software.

Oncospheres formation assay

To assess tumor initiation capacity in vitro, cells were counted and

plated into low-attachment 96-well plates at dilution of 1 cell per

well. They were then cultured in mammary epithelial basal medium

(MEBM, Lonza, cat no. CC-3151), supplemented with MEGM Single-

Quots (which contain Insulin, EGF, Hydrocortisone and GA-1000,

LONZA cat no. 4136), 1X B27 without retinoic acid (GIBCO, cat no.

12787-010), and 20 ng/ml of recombinant fibroblast growth factor

(GIBCO, cat no. PHG0026), and incubated in 5% CO2, 37°C in order

to obtain a first generation of oncospheres (anoikis and pluripotency

selection) after 15 days. The process was repeated to ensure second-

generation oncospheres (pluripotency selection). After 2 weeks of

culture, the oncospheres were counted under the microscope.

Organotypic 3D formation assay

Cells from first-generation oncospheres were spun down at 100 ×g for

5 min. The pellet was then disaggregated using 0.5% trypsin (Sigma,

cat no. T-3924) for 5 min at 37°C. Trypsin was blocked using DMEM/

F12 medium (GIBCO) supplemented with 10% FBS, and subsequently

cells were spun down at 600 ×g. Cells were counted and then resus-

pended in growth-reduced factor matrigel (BD Bioscience, cat no.

354230) in order to obtain 1,000 cells per 50 ll. Each drop was placed

in the center of one well of an adherent 24-well plate and incubated

for 15 min. After gel solidification, each well was replenished with

400 ll of MEBM medium supplemented with the same factors

described in the oncosphere formation assay. Media was replaced

every 2 days, and organotypic 3D structures were grown for 15 days.

Total spheroids were counted in each drop and considered positive

when exceeding 50 cells and a diameter of 50 lm.

Arachidonic acid levels determination

To determine arachidonic acid in cell extracts, a total of 10 million

cells were collected in 1 ml of 1× PBS and stored at �20°C. In order

to break the membranes, two cycles of freeze-thawing were

performed. Cells were then spun down at 2,000 ×g for 5 min at 4°C,

and supernatant was collected. Fifty microliters of each condition

was dispensed into the human arachidonic acid (AA) ELISA kit (cat.

no CSB-E09040 h, CUSABIO). Each condition was assessed in tripli-

cate, and standard curve and concentrations were assessed using

the professional soft “Curve Expert 1.3” provided by CUSABIO. The

data plotted are the average of three independent experiments.

Circulating tumor cells

Blood from mice was collected in tubes containing EDTA/heparin.

The fluid was transferred to 2-ml plastic tubes and centrifuged for

10 min at 86 ×g at 4°C. The supernatant was discarded. If the pellet

was bloody, 1 ml of ACK lysis buffer (Cambrex: 10-548) was added

for 5 min at room temperature and after that, the collected sample

was mixed with PBS to a total volume of 10 ml, centrifuged again

and decanted. RNA of the remaining cells was extracted. Human

B2M and mouse GAPDH taqman probes were used to assess the

amount of human versus mouse RNA in mouse blood.

Supplementary information for this article is available online:

http://embomolmed.embopress.org
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The paper explained

Problem
Breast cancer is the most frequently diagnosed cancer in women in
Europe and the United States. Despite a recent decrease in the inci-
dence of this disease, it continues to be the second leading cause of
death by cancer. Most of these deaths are caused by the metastatic
spread of the tumor. The lung is a common site of metastatic relapse
in ER-negative breast cancer patients, and metastasis is responsible
for the fatal outcome of the disease. Thus, a better understanding of
the biology of the metastatic process is needed if we are to tackle this
problem.

Results
In this study, we show that RARRES3 is a metastatic suppressor gene
in breast cancer. Using the MDA-MB-231 breast cancer cell line model
and derivatives, which have a strong metastatic capacity to lung, we
functionally validated that RARRES3 loss of expression in ER-negative
breast cancer cells confers a selective advantage for the colonization
of the lung. Tumor cells sometimes cannot grow or survive in the
absence of a supportive microenvironment. We show that loss of
RARRES3 expression facilitates the ability of the tumor cells to extrav-
asate and adhere to the lung extracellular matrix and facilitates the
initiation of proliferation to colonize the lung. Collectively, our results
show that genes selected for metastasis contribute to the different
steps of this process and represent the random accumulation of traits
that provide the necessary advantage for adaptation to the microenvi-
ronment of a different organ.

Impact
This study shows that RARRES3 restrains the lung metastatic capacity
of breast cancer cells and that RARRES3 levels in the primary tumor
are clinically relevant as may predict risk of relapse. The contribution
of RARRES3 to differentiation over self-renewal suggests that reduced
RARRES3 expression could be also predictive of therapy-resistant
tumors, identifying patients possibly requiring new therapies designed
to target breast cancer-initiating cells. Thus, screening for compounds
that activate RARRES3 may contribute to the development of new
differentiation-inducing strategies to target therapy-resistant breast
tumors.
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