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Introduction

The main object of our study is calibrated G2 manifolds. Such a manifold is a
7-dimensional Riemannian manifold admitting a G2-structure whose fundamental
3-form, called the G2 form, is closed. In particular, we construct new examples of
those manifolds from symplectic half-flat manifolds of dimension six via mapping
tori, and show the existence of nilsoliton metrics determined by closed G2 forms.
For each of these latter G2 forms, we prove that the solution of its Laplacian flow
has long time existence.

Let (M, g) be a Riemannian manifold. The existence of a certain differential
form Ω on (M, g), such that Ω is parallel with respect to the Levi-Civita connection
of the Riemannian metric g, gives a powerful restriction on the holonomy group
of (M, g). This group acts in a natural way on the tangent space Tp(M) of M
in any point p. When (M, g) is complete, de Rham in [44] proved that unless
this representation is irreducible, M has a finite covering, which is a product of
Riemannian manifolds of smaller dimension. In 1955 Berger [15] gave the complete
list of the possible holonomy groups of a simply connected, irreducible and non-
symmetric Riemannian manifold (M, g) of dimension n:

i) SO(n) acting on Rn;

ii) U(m) ⊂ SO(n) acting on R2m, with n = 2m;

iii) SU(m) ⊂ SO(n) acting on R2m, with n = 2m;

iv) Sp(m) ⊂ SO(n) acting on R4m, with n = 4m;

v) Sp(m)Sp(1) ⊂ SO(n) acting on R4m, with n = 4m ≥ 8;

vi) G2 ⊂ SO(7) acting on R7, with n = 7;

vii) Spin(7) ⊂ SO(8) acting on R8, with n = 8.

It is remarkable that all but the two largest irreducible holonomy groups, SO(n)
and U(m), force the metric to be Einstein and in some cases Ricci-flat. More pre-
cisely, Riemannian manifolds whose holonomy group is contained in U(m) are
called Kähler manifolds; they have dimension 2m, and the Kähler form is a non-
degenerate 2-form which is parallel with respect to the Levi-Civita connection of

IX
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the Kähler metric. Riemannian manifolds with holonomy SU(m) are Kähler man-
ifolds such that the Kähler metric is Ricci-flat. On such a manifold, in addition
to the Kähler form there is a complex volume form which is parallel, and if it is
compact, then it is called Calabi-Yau manifold. A Riemannian manifold (M, g)
of dimension n = 4m is said to be hyper-Kähler if its holonomy group is con-
tained in Sp(m). Since Sp(m) ⊂ SU(2m) ⊂ U(2m), hyper-Kähler manifolds are
Kähler and Ricci-flat, and they have three complex structures compatible with the
hyper-Kähler metric. Quaternionic Kähler manifolds are those whose holonomy
group is contained in Sp(m)Sp(1). Such a manifold has a 4-form which is par-
allel. Alekseevsky in [2] proved that quaternionic Kähler manifolds of dimension
≥ 8 are Einstein. (Note that in dimension 4, an orientable Riemannian manifold
is called quaternionic Kähler if it is Einstein and selfdual [117].) The groups G2

and Spin(7) are the exceptional holonomy Lie groups. Riemannian manifolds with
holonomy contained in G2 or Spin(7) are Ricci-flat and have a 3-form or a 4-form,
respectively, which is parallel with respect to the Levi-Civita connection [20].

The geometrical structures associated to the cases ii) to vii) of the list of
Berger are known as special geometrical structures and the corresponding under-
lying Riemannian metric is called a special metric. For the exceptional holonomy
groups, that is, G2 and Spin(7) the corresponding geometrical structures are called
exceptional structures and the corresponding metric is said to be an exceptional
metric.

For many years after Berger’s result, the theory of G2 manifolds was a dormant
subject. In fact, there were doubts whether the two exceptional entries (G2 and
Spin(7)) in Berger’s list can be realized as holonomy groups. Only in 80’s, mani-
folds with holonomy G2 were constructed. In 1987, Bryant in [23] constructed local
examples, and then R. Bryant and S. Salamon in [26] produced complete mani-
folds with holonomy G2. The first examples of compact manifolds with holonomy
G2 and Spin(7) were given by Joyce [86, 87]. Kovalev in [89] and, recently, Corti,
Haskins, Nordström and Pacini in [43] produced new examples of compact man-
ifolds with holonomy G2. Since then, G2 manifolds became a central subject of
study not only in geometry and topology but also in mathematical physics, mainly
in the context of string theory and supersymmetry [58, 59, 60, 67, 113].

Let us consider the space O of the Cayley numbers, which is a non-associative
algebra over R of dimension 8. Thus, we can identify the 7-dimensional Euclidean
space R7 with the subspace of O consisting of pure imaginary Cayley numbers.
Then, the product on O defines on R7 the 3-form ϕ given by

ϕ = e127 + e347 + e567 + e135 − e236 − e146 − e245, (1)

where {e1, . . . , e7} is the standard basis of R7 and {e1, . . . , e7} is the dual basis.
Here, e127 stands for e1 ∧ e2 ∧ e7, and so on. The group G2 is the stabilizer of the
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3-form ϕ defined by (1) under the standard action of GL(7,R) on Λ3(R7)∗, that
is,

G2 = {A ∈ GL(7,R) | A∗ ϕ = ϕ}.

The Lie group G2 is compact, connected, simply connected and simple of dimen-
sion 14. It acts irreducibly on R7 and preserves the metric and orientation for
which {e1, . . . , e7} is an oriented orthonormal basis. Denote by ∗ϕ the Hodge star
operator determined by the orientation and the metric. Then G2 also preserves
the 4-form

∗ϕϕ = e1234 + e1256 + e1367 + e1457 + e2357 + e2467 + e3456.

A G2-structure on a 7-dimensional manifold M is a reduction of the structure
group GL(7,R) of its frame bundle to the exceptional Lie group G2. Therefore, a
G2-structure determines a Riemannian metric and an orientation on M . Manifolds
admitting G2-structure are called G2 manifolds. The presence of such a structure
is equivalent to the existence of a global 3-form ϕ, called G2 form, which can be
locally written as in (1) with respect to some (local) basis {e1, . . . , e7} of the (local)
1-forms on M (see subsection 1.1.2 for details). Such a G2 form ϕ on a manifold
M induces a Riemannian metric gϕ on M given by

gϕ(X, Y ) volM =
1

6
ιXϕ ∧ ιY ϕ ∧ ϕ,

for any vector fields X, Y on M , where volM is the volume form on M , and
ιX denotes the contraction by X. Let ∇ be the Levi-Civita connection of the
Riemannian metric gϕ. The G2-structure ϕ is called torsion free G2-structure if
∇ϕ = 0, so the holonomy group of (M, gϕ) is contained in G2; and ϕ is said to be
G2-structure with torsion if ∇ϕ 6= 0.

By [56], a manifold M with a G2-structure comes equipped not only with a
3-form ϕ and a Riemannian metric gϕ determined by ϕ, but also with a 2-fold
vector cross product P , which satisfy the relation

ϕ(X, Y, Z) = gϕ(P (X, Y ), Z),

where X, Y and Z are vector fields on M . Therefore, G2 manifolds can be con-
sidered the G2 analogues of almost Hermitian manifolds. Corresponding to the
almost complex structure and the Kähler form, one has the vector cross product
and the fundamental 3-form ϕ, respectively. It should be remarked that there
is one fundamental difference between almost complex structures and 2-fold vec-
tor cross products. Almost complex structures are defined without reference to a
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metric (although if a metric exists, a compatibility condition is required). In con-
trast to this, a 2-fold vector cross product has a unique (positivie definite) metric
associated with it (see subsection 1.1.2).

Fernández and Gray in [56] give a classification of G2 manifolds. They prove
that there are 16 classes according to how the covariant derivative of the fun-
damental 3-form behaves with respect to its decomposition into G2 irreducible
components. Within these classes one can find the G2 analogues of some classes of
almost Hermitian manifolds. For example, if ϕ is closed, then (M,ϕ) is a calibrated
G2 manifold in the sense of Harvey and Lawson [79], a G2 analogue of an almost
Kähler manifold; if dϕ is a multiple of ∗ϕϕ, (M,ϕ) is a nearly parallel G2 manifold,
a G2 analogue of a nearly Kähler manifold; if ϕ is coclosed (d ∗ϕ ϕ = 0) then M is
a cocalibrated G2 manifold, a G2 analogue of semi-Kähler manifolds. Moreover, if
ϕ is closed and coclosed, then the holonomy group of M is a subgroup of G2 [56],
that is, ϕ is parallel with respect to the Levi-Civita connection of the metric gϕ,
and M is a G2 analogue of a Kähler manifold.

Any orientable hypersurface M ⊂ R8 has a G2-structure induced by the vector
product of R8 [50, 56, 132]. In [56] it is proved that such a G2-structure is always
coclosed; moreover, it is nearly parallel if and only if M is the sphere S7 and it is
parallel if and only if M is totally geodesic.

However, constructing examples of compact calibrated G2 manifolds is not a
straightforward task. For instance, Cleyton and Swann in [36] classify calibrated
G2 manifolds on which a simple group acts with cohomogeneity one, but no com-
pact manifold occurs in this list. On the other hand, Fernández in [51] exhibited
the first example of a compact calibrated G2 manifold that does not have holonomy
G2. This example is given in terms of a nilpotent Lie algebra g and an element of
Λ3g∗ that corresponds to a closed left invariant 3-form on the associated simply
connected nilpotent Lie group. Since the structure constants are rational, there ex-
ists a uniform discrete subgroup [102] such that the quotient is a compact manifold,
called compact nilmanifold, which has a calibrated G2-structure. A classification
of compact nilmanifolds carrying left invariant closed G2 forms was given recently
in [38]. In Chapter 4 we shall return to this classification.

In the first and second chapter we pursue this approach and we produce new
examples of calibrated G2 manifolds, with a G2-structure with torsion, via mapping
tori of diffeomorphisms of SU(3)-manifolds carrying a symplectic half-flat structure
which is preserved by the diffeomorphism.

In section 1.1 we recall some results on SU(3)-structures and G2 manifolds.
An SU(3)-structure on a manifold M of real dimension 6 consists of an almost
Hermitian structure (g, J), with Riemannian metric g and almost complex struc-
ture J , such that (M, g, J) carries a complex volume form Ψ = ψ+ + i ψ−. In
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general, neither the 3-form Ψ nor the Kähler form ω of (g, J) are closed. Since G2

is the stabilizer of the transitive action of G2 on the six-sphere S6, it follows that
a G2-structure on a manifold induces an SU(3)-structure on any oriented hyper-
surface. If the G2 manifold has holonomy group contained in G2, then Chiossi and
Salamon in [33] prove that the SU(3)-structure is half-flat. (As we explain in the
subsection 1.1.1, the name half-flat structure is due to the behavior of the intrinsic
torsion of such a structure [33].) In terms of differential forms, an SU(3)-structure
(g, J,Ψ = ψ+ + i ψ−) on a 6-manifold is half-flat if

ω ∧ dω = 0, d ψ+ = 0,

where ω is the Kähler form of (g, J). This means that half-flatness is characterized
by the closure of ω2 = ω ∧ ω and the real part ψ+ of the complex volume form Ψ.

Conversely, it follows from a result of Hitchin [83] that every compact, real-
analytic half-flat 6-manifold can be realized as a hypersurface in a manifold with
holonomy contained in G2, though this is no longer true if the real-analytic hy-
pothesis is dropped [25]. Moreover, the G2-structure can be obtained from the
half-flat structure by solving certain evolution equations (PDE which turns into
an ODE in the homogeneous case), so that the construction of half-flat structures
is indirectly a means of constructing local metrics with holonomy in G2.

A half-flat structure (g, J,Ψ = ψ+ + i ψ−) is called symplectic half-flat if the
Kähler form ω of (g, J) is closed, and so symplectic. In this case, we denote
the Kähler form by F instead of ω. Thus, if the almost complex structure J is
integrable or, equivalently, Ψ is closed (see subsection 1.1.1) then (M, g, J) is a
Kähler manifold and, when M is compact, (M, g, J,Ψ) is a Calabi-Yau manifold
of complex dimension 3 assumed that the norm of Ψ is constant. Therefore,
symplectic half-flat manifolds can be considered as an extension of Calabi-Yau
manifolds to the non-integrable case.

Regarding G2-structures, it happens that if M has a symplectic half-flat struc-
ture (g, J,Ψ), and F is the Kähler form of (g, J), then the 3-form ϕ on M × R
given by

ϕ = F ∧ dt+ ψ+ (2)

is a closed G2 form with

∗ϕϕ = ψ− ∧ dt+
1

2
F 2,

where t is the coordinate of R. Moreover, the pair (dt, F ) is a cosymplectic struc-
ture on M × R in the sense of Libermann [97], or a co-symplectic structure in the
sense of Li [96], that is, dt and F are both closed and dt∧ F 3 is a volume form on
M × R. Hence M × R has a closed G2 form ϕ defined by (2) and a cosymplectic
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structure (dt, F ). This fact and the result of Li [96] mentioned below are the rea-
sons for which in section 1.3 we study mapping tori of diffeomorphisms preserving
a symplectic half-flat structure.

Let M be a 6-manifold with a symplectic half-flat structure (g, J,Ψ) with
Kähler form F (so F is a symplectic form) and let ν : M −→ M be a diffeo-
morphism. Independently of the symplectic half-flat structure that we have on
M , we can consider the mapping torus Mν of the diffeomorphism ν, that is, the
manifold obtained from M × [0, 1] by identifying the ends with ν,

Mν =
M × [0, 1]

(x, 0) ∼ (ν(x), 1)
.

Clearly, Mν = M × S1 if ν : M −→ M is the identity, and in general Mν is the
total space of a locally trivial fiber bundle π : Mν −→ S1 with fiber M . If the
diffeomorphism ν preserves the symplectic form F , then ν is called a symplec-
tomorphism, and the manifold Mν is said to be a symplectic mapping torus of
ν : (M,F ) −→ (M,F ). In this case, F defines a closed 2-form F̃ on Mν , and the

pair (α, F̃ ) is a cosymplectic structure on Mν in the sense of Libermann [97] since

dα = 0 = d F̃ and α ∧ F̃ 3 is a volume form, where α is the pullback to Mν of
the volume form of S1. In [96], Li proves the following nice structure theorem for
compact cosymplectic manifolds:

A compact manifold N has a cosymplectic structure if and only if N is a sym-
plectic mapping torus.

If M has a symplectic half-flat structure (g, J,Ψ = ψ+ + i ψ−), we say that a
diffeomorphism ν : M −→M is an SU(3)-diffeomorphism if

ν∗g = g, ν∗F = F, ν∗ψ+ = ψ+.

Then, ν also preserves the almost complex structure J and the complex volume
form Ψ since ψ− = J ψ+. Moreover, Mν has a cosymplectic structure. In Theorem
1.3.2 we prove that Mν has also a closed G2 form. However, we show that the con-
verse is not true. In fact, in Proposition 1.3.3, we construct a compact calibrated
G2 manifold which does not admit cosymplectic structure, and so it cannot be the
mapping torus of any SU(3)-diffeomorphism of a symplectic half-flat manifold.

As we said, compact Riemannian manifolds whose holonomy group is a sub-
group of G2 can be considered the G2 analogous of Kähler manifolds. Compact
Kähler manifolds satisfy a collection of topological obstructions: theory of Kähler
groups, evenness of odd-degree Betti numbers, Lefschetz property or the formality
[45, 126]. In symplectic geometry, formality allows to distinguish compact symplec-
tic manifolds which admit Kähler structures from those which do not [41, 45, 64].
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Intuitively, a simply connected manifold is formal if its rational homotopy type
is determined by its rational cohomology algebra. Simply connected compact
manifolds of dimension less than or equal to 6 are formal [63, 106]. We shall say
that M is formal if its minimal model is formal or, equivalently, if the de Rham
complex (Ω∗M,d) of differential forms on M and the algebra of the de Rham
cohomology (H∗(M), d = 0) have the same minimal model. In [63] the concept
of formality is extended to a weaker notion called s-formality. There, it is proved
that an orientable compact connected manifold, of dimension 2n or 2n-1, is formal
if and only if it is (n-1)-formal.

For any compact manifold (M, g) with holonomy G2, Joyce [87] proves that
its fundamental group is finite, the first Betti number vanishes and the cup prod-
uct by the cohomology class of the G2 form is an isomorphism between the de
Rham cohomology groups H2(M) and H5(M) (a type of Lefschetz property). But
nothing is known on the formality of such manifolds.

The first example of a compact calibrated G2 manifold was given by Fernández
in [51]. This 7-manifold is a compact nilmanifold whose first Betti number b1

is b1 = 5. The classification of compact G2 nilmanifolds with a left invariant
calibrated G2-structure was given recently in [38]. The first Betti number of these
manifolds is such that 2 ≤ b1 ≤ 5, or b1 = 7 for the 7-torus T7. Moreover,
excepting T7, all of them are non-formal. Examples of compact formal calibrated
G2 solvmanifolds (non-nilmanifolds) were given in [52]; in all these cases b1 = 3.
In section 1.2 we recall the results of Bazzoni, Muñoz and Fernández proved in
[8] on the formality of mapping tori. Then, in section 1.4, using Theorem 1.3.2
mentioned previously, we show new examples and, in particular, we construct a
compact calibrated G2 manifold with b1 = 1 which is formal.

In order to construct more examples of 7-dimensional manifolds with closed
G2 forms, a natural place to look is left invariant symplectic half-flat structures
on 6-dimensional solvable Lie groups, and then take the direct product of such
a Lie group by R. According to Magnin [100], and Bazzoni-Muñoz classification
[11], there are 34 isomorphism classes of nilpotent Lie groups, of which exactly 3
(including the Abelian Lie group) admit symplectic half-flat structure [40].

In Chapter 2, we classify the 6-dimensional solvable Lie algebras admitting sym-
plectic half-flat structure. To this end, we need the following results. Nilpotent
Lie algebras with half-flat structures have been classified by Conti [37]. Schulte-
Hengesbach has classified in [115] direct sums of two 3-dimensional Lie algebras
admitting half-flat structure, and the complete classification of decomposable half-
flat Lie algebras is achieved by Freibert and Schulte-Hengesbach in [65]. Moreover,
in [66] they classify arbitrary indecomposable Lie algebras admitting half-flat struc-
ture, except for the solvable case with 4-dimensional nilradical, which we study in
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sections 2.3 and 2.4 using, on the one hand, the classification of Turkowski [124]
of 6-dimensional solvable Lie algebras with 4-dimensional nilradical and, on the
other hand, the classification given in [99] of 6-dimensional unimodular solvable
Lie algebras admitting symplectic form. That list is given using as starting point
the original classification due to Mubarakzyanov [104].

In section 2.2 we investigate the case when the solvable Lie algebra is decom-
posable (Proposition 2.2.1, Proposition 2.2.2 and Proposition 2.2.3). The decom-
posable case 4⊕ 2 is of special interest, because such Lie algebras (solvable or not)
cannot admit a symplectic half-flat structure (Proposition 2.2.2). The indecom-
posable case is considered in section 2.3 for unimodular Lie algebras (Proposition
2.3.1), and in section 2.4 for non-unimodular (Proposition 2.4.1 and Proposition
2.4.2). As a consequence of the results proved, we see that the decomposable
solvable Lie algebras having symplectic half-flat structure are unimodular and, by
[19, 61, 70, 123, 130], the corresponding simply connected solvable Lie groups have
a co-compact discrete subgroup. Thus, they produce compact calibrated G2 solv-
manifolds. Moreover, in sections 2.2-2.4, we give an explicit symplectic half-flat
structure for the 8 (non-nilpotent) solvable Lie algebras admitting it, as well as,
for the 2 one-parameter families of (non-nilpotent) solvable Lie algebras that also
admit it (Proposition 2.2.1, Proposition 2.2.3, Proposition 2.3.1, Proposition 2.4.1
and Proposition 2.4.2).

To prove that the remaining Lie algebras having either symplectic form or half-
flat structure do not admit a symplectic half-flat structure we consider, in section
2.1, two obstructions to the existence of symplectic half-flat structure on a Lie
algebra.

The first obstruction is given in [65] as follows. Suppose that g is a 6-
dimensional Lie algebra with volume form µ. For any closed 3-form ρ on g, we
consider the endomorphism J̃∗ρ : g∗ −→ g∗ defined by

J̃∗ρα(X)µ = α ∧ (ιXρ) ∧ ρ,

for α ∈ g∗ and X ∈ g. Then in [65] it is proved the following result:

If g is a 6-dimensional Lie algebra with a volume form ν ∈ Λ6g∗, and there is
a non-zero 1-form α ∈ g∗ such that for any closed 3-form ρ ∈ Λ3g∗ and any closed
4-form σ ∈ Λ4g∗, the following condition

α ∧ J̃∗ρα ∧ σ = 0,

is satisfied, then g does not admit half-flat SU(3)-structures.

The second obstruction is a consequence of the obstruction to the existence of
closed G2 forms on 7-dimensional Lie algebras given in [38]. We have: If g is a



Introduction XVII

6-dimensional Lie algebra, and there exists X ∈ h = g⊕ R such that

(ιXφ)3 = 0,

for any closed 3-form φ on h, where ιX denotes the contraction by X, then g has
no symplectic half-flat structure.

Compact calibrated G2 manifolds have interesting curvature properties. As we
mentioned at the beginning of this introduction, a Riemannian manifold whose
holonomy group is contained in G2 is Ricci-flat, or equivalently, both Einstein and
scalar-flat. On a compact calibrated G2 manifold, both the Einstein condition [35]
and scalar-flatness [24] are equivalent to the holonomy being contained in G2. In
fact, Bryant in [24] shows that the scalar curvature is always non-positive.

The result mentioned of Cleyton and Ivanov in [35] can be considered a G2

analogue of the Goldberg conjecture for compact almost Kähler manifolds. This
conjecture states that the almost complex structure of a compact Einstein almost
Kähler manifold is integrable [68]. In [116], Sekigawa gives a proof of this conjecture
under the assumption that the scalar curvature of the almost Kähler manifold is
non-negative. On the negative side, a complete Einstein almost Kähler manifold,
with negative scalar curvature, which is not Kähler was constructed in [5], and
in [81] it was shown that this example is an almost-Kähler solvmanifold, that
is, a simply connected solvable Lie group endowed with a left invariant almost-
Kähler structure. Moreover, this Lie group is non-unimodular, since by [46] left
invariant Einstein metrics on unimodular solvable Lie groups are flat. We point
out that a left invariant Ricci-flat metric on a solvmanifold is necessarly flat [4],
but solvmanifolds can admit incomplete metrics with holonomy contained in G2

as it is shown in [67, 32].

Therefore, in relation to the G2 analogue of the Goldberg conjecture, by [24, 35]
we know that a closed G2 form on a compact manifold cannot induce an Einstein
metric, unless the induced metric has holonomy contained in G2. However, it is
still an open problem to see if the same property holds on non-compact manifolds.

The goal of Chapter 3 is to study the existence of G2-structures inducing Ein-
stein metrics on non-compact homogeneous Einstein manifolds and, more pre-
cisely, on non-compact homogeneous Einstein solvmanifolds, since all the known
examples of non-compact homogeneous Einstein manifolds belong to the class of
solvmanifolds, that is, they are simply connected solvable Lie groups endowed with
a left invariant Einstein metric [92]. More yet, according to a long standing con-
jecture attributed to D. Alekseevskii (see [16, 7.57]), these might exhaust the class
of non-compact homogeneous Einstein manifolds.

In section 3.1 we recall some results on Einstein solvmanifolds. A left invariant
metric on a Lie group S will be always identified with the inner product 〈·, ·〉 deter-
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mined on the Lie algebra s of S. Lauret in [93] showed that Einstein solvmanifolds
are standard, that is, satisfy the following additional condition: the correspond-
ing metric Lie algebra (s, 〈·, ·〉) has the orthogonal decomposition s = a ⊕ n with
n = [s, s] and a abelian. The dimension of a is also called the rank of s. Standard
Einstein solvmanifolds have been deeply studied by J. Heber, who has obtained
many remarkable structural and uniqueness results, by assuming only the stan-
dard condition (see [80]). In particular, Heber showed that a standard Einstein
metric is unique up to isometry and scaling among left invariant metrics and that
the study of standard Einstein solvmanifolds can be reduced to the rank-one case.
Using these results, in section 3.2 (Theorem 3.2.2) we show that, in dimension
six, the example given in [5, 81] is the unique example of Einstein (non-Kähler)
almost-Kähler solvmanifold. In Theorem 3.2.2 we also classify the 6-dimensional
solvmanifolds admitting a left invariant (non-flat) Kähler-Einstein metric.

In subsection 3.3.1 (Theorem 3.3.6) by using the classification of 7-dimensional
Einstein solvable Lie algebras and some obstructions to the existence of calibrated
G2-structures we prove that, in contrast to the almost-Kähler case, a seven dimen-
sional solvmanifold cannot admit any left invariant calibrated G2-structure ϕ such
that the induced metric gϕ is Einstein, unless gϕ is flat.

The class of cocalibrated G2 manifolds includes nearly parallel G2 manifolds,
which are always Einstein with non-negative scalar curvature. Since 7-dimensional
solvmanifolds cannot admit a left invariant nearly parallel G2-structure, it is a
natural problem to study the existence of left invariant cocalibrated G2 forms
such that the induced metric gϕ is Einstein. In subsection 3.3.2 (Theorem 3.3.12)
by using some obstructions to the existence of cocalibrated G2-structures we show
that a 7-dimensional Einstein solvmanifold (S, g) cannot admit any left invariant
cocalibrated G2-structure ϕ such that the induced metric gϕ = g.

Seven dimensional 3-Sasakian manifolds are always Einstein with Einstein con-
stant 6 and scalar curvature 42. By the results in [1] they admit a canonical co-
calibrated G2-structure inducing the Einstein metric. In section 3.4, using warped
products, we construct a new example of a (non-nearly parallel) coclosed G2 form
ϕ on a (non-compact) manifold such that ϕ determines an Einstein metric whose
Einstein constant is equal to 4, and so such a G2-structure is not 3-Sasakian.

According to the results mentioned in Chapter 3, we know that simply con-
nected solvable Lie groups can have an Einstein metric but they do not admit
any closed G2 form inducing an Einstein metric, unless the induced metric is flat.
Natural generalizations of Einstein metrics are given by Ricci solitons, which have
been introduced by Hamilton in [78]. A complete Riemannian metric g on a man-
ifold M is called Ricci soliton if its Ricci curvature tensor Ric(g) satisfies the
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following condition

Ric(g) = λg + LXg,

where λ is a real constant, X is a complete vector field on M , and LX denotes
the Lie derivative with respect to X. Moreover, such a metric g is said to be
homogeneous if its isometry group acts transitively on M , and hence g has bounded
curvature [94]; and g is called trivial if it is an Einstein metric or is the product of
a homogeneous Einstein metric with the Euclidean metric.

All known examples of non-trivial homogeneous Ricci solitons are left invariant
metrics on simply connected solvable Lie groups, whose Ricci operator satisfies the
condition

Ric(g) = λI +D,

for some λ ∈ R and some derivation D of the corresponding Lie algebra. The left
invariant metrics satisfying the previous condition are called nilsolitons if the Lie
group is nilpotent [90]. Thus, in the context of closed G2-structures, a natural
question arises:

Do there exist seven dimensional simply connected (non-Abelian) nilpotent Lie
groups with nilsoliton metric determined by a closed G2 form?

In Chapter 4, we give a positive answer to this question. In fact, we classify
7-dimensional simply connected non-Abelian nilpotent Lie groups with a closed G2

form which determines a nilsoliton metric. Moreover, for each one of those closed
G2 forms we solve its Laplacian flow.

In section 4.1, we recall some results on nilsoliton metrics and its existence.
Between them is to be noted that not all nilpotent Lie groups admit nilsoliton
metrics, but if a nilsoliton exists, then it is unique up to isometry and scaling [90].
Moreover, the nilsolitons metrics are strictly related to left invariant Einstein met-
rics on solvable Lie groups. Indeed, Lauret in [92] proves that a simply connected
nilpotent Lie group N has a nilsoliton metric if and only if its Lie algebra n is an
Einstein nilradical, which means that n has an inner product 〈·, ·〉 and there is a
metric solvable extension (s = n⊕a, 〈·, ·〉s) of (n, 〈·, ·〉) such that the inner product
〈·, ·〉s is Einstein. Furthermore, by [80, 93] such an Einstein metric has to be of
standard type and it is unique, up to isometry and scaling.

In section 4.2 we determine the nilpotent Lie algebras which admit both closed
G2 forms and nilsoliton metrics but the nilsoliton is not induced by any closed
G2 form; and in section 4.3 we classify the s-step nilpotent Lie algebras (s = 2, 3)
carrying a nilsoliton metric determined by a closed G2 form. For this, we use the
classification given in [38] of 7-dimensional nilpotent Lie algebras admitting closed
G2 forms. There it is proved that there are 12 isomorphism classes, including the
Abelian case which has a trivial nilsoliton because it is flat. On the other hand,
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we use the classification of 7-dimensional indecomposable nilpotent Lie algebras
admitting a nilsoliton given in [49]. Nevertheless, in [38] there appear two decom-
posable (non-Abelian) nilpotent Lie algebras, namely n2 and n3 in Theorem 4.2.1.
So, in the aforementioned paper [49], n2 and n3 are not studied. As we explain
below, except in the case of the Lie algebra denoted by n9 in Theorem 4.2.1, we
write explicitly the nilsoliton for all the cases having closed G2-structures.

Using the classifications in [38] and [47], we show that, up to isomorphism, there
is a unique nilpotent Lie algebra, namely n9 in Theorem 4.2.1, with a closed G2

form but not admitting nilsoliton metrics. However, all the other ten nilpotent Lie
algebras have a nilsoliton, and we can determine explicitly the nilsoliton except for
the Lie algebra n10 which is 4-step nilpotent (see also [47, 48, 49]). In Proposition
4.2.3 we prove that ni (i = 3, 5, 7, 8, 11) do not carry closed G2-structures inducing
the nilsoliton. Moreover, as we mention before, the existence of a nilsoliton on the
Lie algebra n10 was shown in [47, Example 2] but we do not know the nilsoliton
metric explicitly, and so we do not know whether or not there is a closed G2 form
inducing the nilsoliton. This is the reason why the result of Theorem 4.3.1 is
restricted to s-step nilpotent Lie algebras, with s = 2, 3. In fact, in Theorem
4.3.1, we show that, up to isomorphism, there are exactly four s-step nilpotent Lie
algebras (s = 2, 3) with a nilsoliton determined by a closed G2 form.

The Ricci flow became a very important issue in Riemannian geometry and
has been deeply studied. The same techniques are also useful in the study of the
flow involving other geometrical structures, like for example, the Kähler Ricci flow
that was studied by Cao in [29].

For any closed G2 form ϕ0 on a manifold M , Bryant in [24] introduced a natural
flow, the so-called Laplacian flow, given by

d
dt
ϕ(t) = ∆t ϕ(t),

d ϕ(t) = 0,

ϕ(0) = ϕ0,

where ϕ(t) is a closed G2 form on M , and ∆t is the Hodge Laplacian operator of
the metric determined by ϕ(t). Since the initial 3-form ϕ0 is closed, the de Rham
cohomology class [ϕ(t)] is constant in t. The short time existence and uniqueness of
solution for the Laplacian flow of any closed G2-structure, on a compact manifold
M , has been proved by Bryant and Xu in [27]. Also, long time existence and
convergence of the Laplacian flow starting near a torsion-free G2-structure was
proved in [129].

In section 4.4 (Theorem 4.4.2, Theorem 4.4.5, Theorem 4.4.8 and Theorem
4.4.10) we show long time existence of solution for the Laplacian flow on the
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four compact nilmanifolds admitting an invariant closed G2-structure which de-
termines the nilsoliton on the corresponding Lie algebra (see Theorem 4.3.1). To
our knowledge, these are the first examples of compact manifolds having a closed
G2-structure such that the solution of its Laplacian flow has long time existence.

Since the Laplacian flow is invariant by diffeomorphisms and the initial G2-form
ϕ0 is invariant, the solution ϕ(t) of the Laplacian flow has to be also invariant.
Therefore, we show that the Laplacian flow is equivalent to a (nonlinear) system
of ordinary differential equations which admits a unique solution. We prove that
the solution for the four manifolds is defined for any t ∈ [0,+∞). Moreover,
considering the Laplacian flow on the associated nilpotent Lie algebra as a bracket
flow on R7, in a similar way as Lauret did in [107] for the Ricci flow, we study the
convergence of the underlying metrics g(t) of the solution. We also show that, for
any t ∈ [0,+∞), the metric g(t) is a nilsoliton isometric to g(0).
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Chapter 1

G2 manifolds and mapping tori

“You take the blue pill, the story ends, you wake up in your bed and believe
whatever you want to believe. You take the red pill, you stay in Wonderland, and

I show you how deep the rabbit hole goes.”
Morpheus

The topological description of cosymplectic manifolds is due to Li [96]. There he
proves that a compact manifold M has a cosymplectic structure if and only if M is
the mapping torus of a symplectomorphism of a symplectic manifold. This result
may be considered an extension to cosymplectic manifolds of Tischler’s Theorem
[120] that asserts that the existence of a non-vanishing closed 1-form on a compact
manifold M is equivalent to the condition that M is a mapping torus.

In this Chapter we study mapping tori of diffeomorphisms of symplectic half-
flat manifolds such that the symplectic half-flat structure is preserved by the dif-
feomorphism. By Li [96], such mapping tori produce cosymplectic manifolds. In
Theorem 1.3.2 we prove that these mapping tori are also calibrated G2 manifolds.
But, in Proposition 1.3.3, we show that the converse is not true even if we assume
compactness of the G2 manifold. Moreover, using Theorem 1.3.2, we show new
examples of compact calibrated G2 manifolds and, in particular, the first example
of such a manifold whose first Betti number is b1 = 1.

1.1 Special structures on manifolds

In this section we recall some definitions and properties about the geometric struc-
tures that we consider throughout this work. If M is a differentiable manifold of
dimension m, and G is a subgroup of the linear group Gl(m,R), a G-structure
on M consists in a reduction of the structure group of the frame bundle of M
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to the Lie group G. Manifolds endowed with a G-structure are usually called G
manifolds. We will focus our attention on SU(3) and G2 manifolds.

From now on, we denote by Ω∗(M) and F(M) the algebras of differential forms
and differentiable functions on a differentiable manifold M , respectively, and by
X(M) the Lie algebra of vector fields on M .

1.1.1 SU(n)-structures

Definition 1.1.1. Let M be a differentiable manifold of dimension 2n. A U(n)-
structure, or an almost Hermitian structure, on M is a pair (g, J), where g is a
Riemannian metric and J is an almost complex structure on M , such that g and
J are compatible in the following sense:

g(JX, JY ) = g(X, Y ),

for X, Y ∈ X(M). A manifold M with such a structure is called an almost Her-
mitian manifold.

If (M, g, J) is an almost Hermitian manifold, the Kähler form of (g, J) is the
differential 2-form ω on M defined by

ω(X, Y ) = g(JX, Y ),

for X, Y ∈ X(M).
Since g is non-degenerate, the Kähler form of (g, J) is also non-degenerate,

that is, ωn 6= 0 at each point of M , where ωn denotes ω∧ (n. . . ∧ω. Moreover,
the compatibility condition of g and J implies that ω is compatible with J , which
means that

ω(X, Y ) = ω(JX, JY ),

for X, Y ∈ X(M).
Gray and Hervella in [74] prove that there are sixteen different classes of almost

Hermitian manifolds depending on the behavior of the covariant derivative of the
Kähler form. We recall here those that are needed in this thesis:

• (g, J) is almost Kähler iff dω = 0;

• (g, J) is nearly Kähler iff ∇X(J)X = 0 or, equivalently, dω = 3∇ω;

• (g, J) is complex iff J is an integrable almost complex structure, that is, the
Nijenhuis tensor NJ vanishes, NJ = 0;

• (g, J) is Kähler iff it is complex and almost Kähler or, equivalently, ∇ J = 0
which is equivalent to ∇ω = 0;
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where ∇ denotes the Levi-Civita connection of g, and the Nijenhuis tensor NJ is
given by

NJ(X, Y ) = [X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ],

for X, Y ∈ X(M).
We would like to note the following. A symplectic manifold (M,F ) is a pair

consisting of a 2n–dimensional differentiable manifold M with a closed 2–form F
which is non-degenerate (that is, F n never vanishes). The form F is called sym-
plectic. Any symplectic manifold admits an almost Hermitian structure (g, J)
such that F is compatible with J , and the Riemannian metric g is given by
g(X, Y ) = F (X, JY ), for any X, Y vector fields on M . Thus, (M, g, J) is an
almost Kähler manifold, with Kähler form F .

Examples of compact almost Hermitian manifolds in the mentioned classes
have been constructed by different authors [72, 73, 74, 88, 119]. Let us recall some
of these examples. The complex projective space CPn has a natural Hermitian
metric h which is defined as follows. Fix a basis on Cn+1, and a Hermitian metric
h0 on the tangent space Tp0(CPn) at p0 = [1 : 0 : . . . : 0]. Consider the (unique)
metric h on CPn which is U(n + 1)-invariant, that is, h is obtained by moving h0

by the matrices in U(n+ 1). Take homogeneous coordinates [z0 : z1 : . . . : zn], that
is, for each j such that 0 ≤ j ≤ n, consider the open set Uj of CPn defined by
zj 6= 0. Now, take U = {[z0 : z1 : . . . : zn]|z0 6= 0} ⊂ CPn. Then, U ∼= Cn, and the
point [1 : z1 : . . . : zn] ∈ U has coordinates z = (z1, ..., zn) ∈ Cn. The Hermitian
metric h and the Kähler form ω0 on CPn are expressed as

h(z) =
(1 + |z|2)

∑
dzi · dz̄i −

∑
i,j zj z̄i dzi · dz̄j

(1 + |z|2)2
,

and

ω0 =
i

2

(1 + |z|2)
∑
dzi ∧ dz̄i −

∑
i,j zj z̄i dzi ∧ dz̄j

(1 + |z|2)2
.

Then, it is easy to check that

ω0 =
i

2
∂∂ log(1 + |z|2),

and so dω0 = 0. Moreover, h = g + i ω0, where g = Reh is the Kähler metric
on CPn. Also, any compact complex submanifold S of CPn is a Kähler manifold
whose Kähler metric is the pullback to S of the Kähler metric g of CPn.

The most well known examples of compact nearly Kähler manifolds are the
6-sphere S6 and S3 × S3 [57, 72, 74]. They do not admit Kähler metrics since the
second Betti number is zero. The products of odd dimensional spheres S2l+1×S2k+1

(k, l ≥ 1) constitute the Calabi-Eckmann compact complex manifolds. Its complex
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structure is defined from the complex structures of Cl+1 and Ck+1, and considering
S2l+1 ⊂ Cl+1 and S2k+1 ⊂ Ck+1. More yet, Vaisman in [125] proved that S1×S2k+1,
where k ≥ 1, is locally conformally Kähler, but the natural complex structure of
S2l+1 × S2k+1, for k, l > 1, is not locally conformally Kähler [74]. Of course,
S1 × S2k+1 cannot be globally conformally Kähler because it does not have the
cohomology of a Kähler manifold.

The first example of a compact manifold admitting complex and symplectic
structures but no Kähler metric is the Kodaira-Thurston manifold KT [88, 119];
and the first example of a compact symplectic manifold M not admitting com-
plex structures was constructed by Fernández, Gotay and Gray in [55]. These
4-manifolds are not simply connected; they are actually nilmanifolds. (As we re-
call below, a compact nilmanifold is the compact quotient of a simply connected
and nilpotent Lie group by a discrete subgroup.) In fact, KT is the compact nil-
manifold defined by the structure equations de1 = de2 = de4 = 0, de3 = e1∧e2; and
M is the compact nilmanifold defined by the equations de1 = de2 = 0, de3 = e1∧e2,
de4 = e1 ∧ e3.

The classification of complex and symplectic nilmanifolds of dimension 6 was
given by Salamon in [114]. Generalizations to higher dimension 2n ≥ 6 of the
Kodaira-Thurston manifold are the generalized Iwasawa manifolds considered in
[41]. Such manifolds have complex and symplectic structures but carry no Kähler
metrics since they are non-formal. Examples of simply connected compact sym-
plectic non-Kählerian manifolds were given in [9, 64, 69, 76, 103]

Definition 1.1.2. An SU(n)-structure on a differentiable manifold M , of dimen-
sion 2n, is a triple (g, J,Ψ) such that (g, J) is an almost Hermitian structure on
M , and Ψ = ψ+ + i ψ− is a complex (n, 0)-form, which satisfies

(−1)n(n−1)/2
( i

2

)n
Ψ ∧Ψ =

1

n!
ωn,

where Ψ is the complex form obtained from Ψ by conjugation, and ω is the Kähler
form of (g, J).

It is clear that ω ∧ ψ+ = ω ∧ ψ− = 0 and ψ− = Jψ+, for any SU(n)-structure
(g, J,Ψ) on M with Kähler form ω. Moreover, if Ψ is closed, then the almost
complex structure J is integrable. In fact, for any (1, 0)-form µ, we have that
dµ ∧ Ψ = d(µ ∧ Ψ) = 0 since µ ∧ Ψ is an (n + 1, 0)-form and Ψ is closed. Thus,
the component of type (n, 2) of dµ ∧ Ψ vanishes. This implies that dµ has no
component of type (0, 2).

The different classes of SU(n)-structures are defined in terms of the forms ω,
ψ+ and ψ− in a similar way to the Gray-Hervella classification of U(n)-structures.
Some of these classes are the following [33]:



Special structures on manifolds 5

• (g, J,Ψ) is half-flat SU(n)-structure iff dωn−1 = dψ+ = 0;

• (g, J,Ψ) is symplectic half-flat SU(n)-structure iff dω = dψ+ = 0;

• (g, J,Ψ) is integrable SU(n)-structure iff dω = dψ+ = dψ− = 0 or, equiva-
lently, ∇ω = 0, ∇ψ+ = 0 and ∇ψ− = 0

Moreover, for n = 3, a new class of SU(3)-structures is introduced in [57] to
produce examples of nearly parallel G2 manifolds which are defined in subsection
1.1.2:

• (g, J,Ψ) is nearly half-flat SU(3)-structure iff dψ− = −2ω ∧ ω.

We will consider nearly half-flat SU(3) manifolds in Proposition 3.4.3 of Chapter
3.

In this context on classes of SU(n)-structures, we would like to resalt the fol-
lowing result due to Lichnerowicz [98] (see also [Corollary 2.97 and Proposition
10.29 in [16]]).

Theorem 1.1.3 [16, 98]. Let (M, g, J) be a Kähler manifold of (real) dimension
2n. Then, the Kähler metric g is Ricci-flat if and only if there exists a closed com-
plex volume (n, 0)-form which is parallel with respect to the Levi-Civita connection
of the Kähler metric g or, equivalently, the holonomy group of (M, g) is a subgroup
of SU(n).

Remark 1.1.4. Note that if (M, g, J,Ψ) is an integrable SU(n)-structure, then
not only is (M, g) a Kähler manifold but also Definition 1.1.2 implies that Ψ has
constant norm, and so g is Ricci-flat by Theorem 1.1.3. However, if (M, g, J) is
a Kähler manifold of (real) dimension 2n, and Ψ is a closed (n, 0)-form on M , in
general Ψ is not parallel with respect to the Levi-Civita connection of the Kähler
metric g. In fact, Ψ is parallel only if Ψ has constant norm. Nevertheless, if there
exists a closed (n, 0)-form Ψ on a Kähler manifold (M, g, J), then Yau’s Theorem
[131] implies that there exists a Ricci-flat Kähler metric g̃ on M . But, in general,
g̃ is not the metric g, and in some cases such a metric g̃ is not known explicitly.
This happens, for example, with Fermat quintic considered in section 1.4.

Definition 1.1.5. An SU(n)-structure (g, J,Ψ) is called torsion free SU(n)-
structure if it is integrable; otherwise (g, J,Ψ) is said to be SU(n)-structure with
torsion.

Next, we will focus on SU(3)-structures. In this case, one can provide more
details. First, we would like to note that, as we explain in subsection 1.1.2 (see
identities (1.8)), half-flat SU(3)-structures were used firstly by Hitchin [83] to
produce metrics in dimension 7 with holonomy contained in G2. However, the
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name half-flat SU(3)-structure on a 6-manifold is due to Chiossi and Salamon [33].
This nomenclature is due to the behavior of the intrinsic torsion of such a structure.
Since SU(3) is the stabiliser in SO(6) of ω and Ψ = ψ+ + i ψ−, the information
about the intrinsic torsion of an SU(3)-structure is contained in ∇ω and ∇Ψ,
where ∇ denotes the Levi-Civita connection. More precisely, the intrinsic torsion
of an SU(3)-structure belongs to the 42-dimensional spaceW ∼= T ∗⊗su(3)⊥, where
T ∗ denotes the real space underlying the complex space of (1, 0)-forms and su(3)⊥

denotes the orthogonal complement of su(3) in so(6,R). The spaceW decomposes
in SU(3)-modules as

W =W+
1 ⊕W−1 ⊕W+

2 ⊕W−2 ⊕W3 ⊕W4 ⊕W5,

with W±1 ∼= R, W±2 ∼= su(3), W4,W5
∼= R6 and W3 isomorphic to to real space

underlying the space of complex symmetric 2-tensors over C3. By [33], dω, dψ+

and dψ− are sufficient to know the intrinsic torsion. The conditions dω2 = 0 and
dψ+ = 0 for a half-flat SU(3)-structure force the intrinsic torsion to belong to the
21-dimensional space W−1 ⊕ W−2 ⊕ W3 and so half of the total 42 dimensions is
eliminated.

Examples of half-flat SU(3)-structures are given by nearly Kähler structures in
dimension 6. Indeed, if M is a 6-dimensional manifold with a nearly Kähler struc-
ture (g, J), then (M, g, J,Ψ = ψ+ + i ψ−) is a half-flat SU(3) manifold satisfying

3ψ+ = dω, dψ− = −2ω ∧ ω.

Symplectic half-flat SU(3)-structures were used in [56] to show the first example
of a (non-compact) calibrated G2 manifold (see subsection 1.1.2). Examples of
symplectic half-flat 6-manifolds are given at the end of this subsection. Also in
Chapter 2 we return to these manifolds.

As it was mentioned before, the existence of an SU(3)-structure on a manifold
M implies the existence of a certain metric on M (see [82]), but actually this
metric can be described in terms of the forms (ω, ψ+) as

g(X, Y )ω3 = −3 ιXω ∧ ιY (ψ+) ∧ ψ+,

where X, Y are vector fields on M , and ιX denotes the contraction by X. We can
also recover, up to scaling, its compatible almost complex structure as in [42]

(J∗ψ+
α)(X)ω3 = α ∧ ιXψ+ ∧ ψ+,

or, equivalently,
α(JX) = −J∗α(X),

for any 1-form α on M .
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Also, if (M, g, J,Ψ = ψ+ + i ψ−) is an SU(3) manifold, we may choose a local
orthonormal frame {e1, . . . , e6} such that Je1 = e2, Je3 = e4 and Je5 = e6. Then,
if {e1, . . . , e6} is the orthonormal local basis of the 1-forms on (M, g) dual to
{e1, . . . , e6}, we have that Je1 = −e2, Je3 = −e4 and Je5 = −e6. So, the Kähler
form ω of (g, J) and the complex volume form Ψ can be locally written as

ω = e12 + e34 + e56, Ψ = (e1 + i e2) ∧ (e3 + i e4) ∧ (e5 + i e6), (1.1)

where, for notational simplicity, we write eij for the wedge product ei ∧ ej, eijk

for ei ∧ ej ∧ ek, and so on. Thus,

ψ+ = e135 − e146 − e236 − e245, ψ− = −e246 + e235 + e145 + e136.

Moreover, for any SU(3)-structure (g, J,Ψ = ψ+ + i ψ−) we can write the forms
dω (where ω is the Kähler form of (g, J)), dψ+ and dψ− in terms of the so called
torsion forms (see below Proposition 1.1.6 and Definition 1.1.7). To this end, we
proceed as follows. Let us consider the inner product on Ωq(M) given by

〈α, β〉volM = α ∧ ∗β,

for α, β ∈ Ωq(M). In [14], it is proved that Ωq(M) splits orthogonally into compo-
nents Ωq

l (M) of dimension l, which are irreducible under the action of SU(3). The
representation of SU(3) on Ω1(M) is the six dimensional irreducible representation,
and the representation of SU(3) on Ωq(M) and Ω6−q(M) are the same because the
Hodge star operator ∗ : Ωq(M) −→ Ω6−q(M) is an isometry. Therefore, it suffices
to describe the representations of SU(3) on Ω2(M) and Ω3(M). By [14]

Ω2(M) = Ω2
1(M) ⊕ Ω2

6(M) ⊕ Ω2
8(M),

Ω3(M) = Ω3
Re(M) ⊕ Ω3

Im(M) ⊕ Ω3
6(M) ⊕ Ω3

12(M),
(1.2)

where, using the notation of [14], the summands appearing in (1.2) are:

Ω2
1(M) = Rω,

Ω2
6(M) = {?(α ∧ ψ+) |α ∈ Ω1(M)},

Ω2
8(M) = {β ∈ Ω2(M) | β ∧ ψ+ = 0 and ? β = −β ∧ ω},

and
Ω3
Re(M) = Rψ+, Ω3

Im(M) = Rψ−,
Ω3

6(M) = {α ∧ ω |α ∈ Ω1(M)} = {γ ∈ Ω3(M) | ? γ = γ},
Ω3

12(M) = {γ ∈ Ω3(M) | γ ∧ ω = 0, γ ∧ ψ+ = 0, γ ∧ ψ− = 0}.

Using these decompositions of the space Ωq(M), in [14] it is proved the follow-
ing.
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Proposition 1.1.6 [14]. The differential of the forms (ω, ψ+, ψ−) of an SU(3)-
structure on M can be written as:

dω = −3

2
σ0 ψ+ +

3

2
π0 ψ− + ν1 ∧ ω + ν3,

dψ+ = π0 ω
2 + π1 ∧ ψ+ − π2 ∧ ω,

dψ− = σ0 ω
2 + Jπ1 ∧ ψ+ − σ2 ∧ ω,

(1.3)

where σ0, π0 ∈ F(M), ν1, π1 ∈ Ω1(M), σ2, π2 ∈ Ω2
8(M) and ν3 ∈ Ω3

12(M).

Definition 1.1.7. The forms π0, σ0, π1, ν1, σ2, π2 and ν3, that appear in (1.3), are
called the torsion forms of the SU(3)-structure.

From Proposition 1.1.6, the special classes of SU(3)-structures can also be
described by the behavior of the torsion forms as follows:

• (M, g, J,Ψ) is half-flat SU(3)-structure iff π0 = ν1 = π1 = π2 = 0;

• (M, g, J,Ψ) is nearly half-flat SU(3)-structure iff ν1 = π1 = σ2 = 0;

• (M, g, J,Ψ) is nearly Kähler iff π0 = ν1 = π1 = σ2 = π2 = ν3 = 0;

• (M, g, J,Ψ) is symplectic half-flat SU(3)-structure iff π0 = σ0 = ν1

= π1 = π2 = ν3 = 0;

• (M, g, J,Ψ) is integrable SU(3)-structure π0 = σ0 = ν1 = π1 = σ2

= π2 = ν3 = 0.

An effective technique to obtain compact examples of half-flat manifolds and,
in general, examples of some special Riemannian manifolds, consists in considering
left invariant structures on a rational nilpotent Lie group, that is, on a connected,
simply connected and nilpotent Lie group such that its structure constants are ra-
tional numbers, for some basis of left invariant 1-forms. Six dimensional nilpotent
Lie algebras are classified in [100], and recently in [11] was given the classification
of nilmanifolds up to rational and real homotopy type. Moreover, according with
Mal’cev Theorem [102], each associated Lie group has a uniform discrete subgroup,
giving rise to a compact quotient, called compact nilmanifold. Thus, an SU(3)-
structure on the Lie algebra determines a left invariant SU(3)-structure on the
associated nilmanifold, and viceversa.

Before showing examples of half-flat SU(3)-structures, let us recall that, for
compact nilmanifolds, Nomizu in [108] proves the following result:

Theorem 1.1.8 [108]. Let N = Γ\G be a compact nilmanifold, and let g be the
Lie algebra of G. Denote by (

∧
g∗, d) the Chevalley-Eilenberg complex of forms on
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g. Then the natural inclusion (
∧

g∗, d) ⊂ (Ω∗(N), d) induces an isomorphism in
cohomology,

Hk(N) ∼= Hk(g∗),

where H∗(N) denotes the de Rham cohomology group, of degree k, of the nilman-
ifold N = Γ\G.

The compact nilmanifolds admitting symplectic half-flat structure have been
classified by Conti and Tomassini in [40]. There it is proved the following result.

Theorem 1.1.9 [40]. The 6-dimensional nilpotent Lie algebras admitting sym-
plectic half-flat structures are:

(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 12, 13), (0, 0, 0, 12, 13, 23).

A symplectic half-flat structure (ω1, ψ
+
1 ), (ω2, ψ

+
2 ) and (ω3, ψ

+
3 ), respectively, is

given by

ω1 = e12 + e34 + e56, ψ+
1 = e135 − e146 − e236 − e245;

ω2 = e14 + e26 + e35, ψ+
2 = e123 + e156 − e245 − e346;

and

ω3 = e16 + 2e25 + e34, ψ+
3 = e123 + 2e145 + e246 − 2e356.

In all these cases, the dual basis {e1, . . . , e6} of {e1, . . . , e6} is an orthonormal basis
of g.

Here and in what follows, we use the following notation for Lie algebras. For
instance,

g = (0, 0, 0, 0, 12, 13),

means that there is a basis {e1, . . . , e6} of g∗ such that the Chevalley-Eilenberg
differential d is given by

de1 = 0, de2 = 0, de3 = 0, de4 = 0, de5 = e12, de6 = e13,

and similarly for the other Lie algebras.
The 6-dimensional compact nilmanifolds admitting either symplectic or half-

flat structures have been classified by Salamon in [114] and by Conti in [37], re-
spectively. In the following table we summarize the existence of symplectic and
half-flat structures on 6-dimensional nilpotent Lie algebras. There, for every Lie
algebra g, we suppose that {e1, . . . , e6} is an orthonormal basis of g.
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Table 1.1: SU(3)-structures on 6-dimensional nilpotent Lie algebras.

Structure equations Symplectic Half-flat
(0, 0, 0, 0, 0, 0) e12 + e34 + e56 e12 + e34 + e56

e135 − e146 − e236 − e245

(0, 0, 0, 0, 0, 12) e16 + e25 + e34 e13 + e24 + e56

e125 − e146 − e236 − e245

(0, 0, 0, 0, 0, 12 + 34) — e12 − e34 + e56

e145 − e136 − e246 − e235

(0, 0, 0, 0, 12, 13) e14 + e26 + e35 e14 + e26 + e35

e123 + e156 − e245 − e346

(0, 0, 0, 0, 12, 34) e15 + e36 + e24 −e13 + e24 − e56

−e126 + e236 + e145 + e345 + e146 + e125

(0, 0, 0, 0, 12, 14 + 23) e16 − e35 + e24 e13 − e56 + e24

e126 − e145 + e235 − e346

(0, 0, 0, 0, 13− 24, 14 + 23) e16 + e25 + e34 e12 + e34 + e56

e135 − e146 − e236 − e245

(0, 0, 0, 0, 12, 14 + 25) e13 + e26 + e45 e14 + e46 − e25 − e36

e156 − e123 + e236 − e345 + e246

(0, 0, 0, 0, 12, 15) e16 + e25 + e34 —
(0, 0, 0, 0, 12, 15 + 34) — e13 − e45 − e26

e156 + e124 − e235 − e346

(0, 0, 0, 12, 13, 23) e16 + 2e25 + e34 e16 + 2e25 + e34

e123 + 2e145 + e246 − e356

(0, 0, 0, 12, 13, 14) e16 + e25 + e34 —
(0, 0, 0, 12, 13, 24) e14 + e26 + e35 e16 + e23 + e45

e124 − e135 − e256 − e346

(0, 0, 0, 12, 13, 14 + 23) −e16 + e25 + 2e34 −e12 + e25 + e16 − e56 − e14 − e36

e246 + e123 + e136 + e134 + e345 + e156

(0, 0, 0, 12, 13 + 14, 24) e16 + e25 + e34 —
(0, 0, 0, 12, 14, 13− 24) e15 + e26 + e34 —
(0, 0, 0, 12, 13− 24, 14 + 23) e15 − e26 + e25 + e34 —
(0, 0, 0, 12, 14, 24) — —
(0, 0, 0, 12, 23, 14 + 35) — e13 + e45 − e26

e146 + e125 − e234 + e356

(0, 0, 0, 12, 23, 14− 35) — e13 + e26 − e45

e125 + e146 + e234 + e356

(0, 0, 0, 12, 13, 14 + 35) — e26 − e34 − e12 − e15

−e123 + e245 + e236 − e356 + e146

(0, 0, 0, 12, 14, 15) e26 + e35 + e14 e13 + e25 + e46

e124 − e156 + e236 + e345

(0, 0, 0, 12, 14, 15 + 24) e13 + e26 − e45 e13 + e24 − e36 − e56

e123 + e125 + e146 − e236 − e345

(0, 0, 0, 12, 14, 15 + 24 + 23) e16 + e25 − e34

e123 + e125 + e146 − e126

e236 − e345 − e235

(0, 0, 0, 12, 14, 15 + 23) e26 + e13 − e45 e26 − e56 − e24 − e13

−e234 − e345 − e124 + e145

+e146 − e235 − e236

(0, 0, 0, 12, 14− 23, 15 + 34) e16 + e35 + e24 e24 − e13 − e56

e236 + e125 + e345 + e146
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Table 1.1: SU(3)-structures on 6-dimensional nilpotent Lie algebras. Con-
tinued.

Structure equations Symplectic Half-flat
(0, 0, 12, 13, 23, 14 + 25) e16 + e35 + e24 + e15 e14 − e24 − e25 − e36

e156 − e256 − e123 − e345 + e246

(0, 0, 12, 13, 23, 14− 25) e16 − e35 + e24 + e15 e36 + e24 + e15

−2e345 − e134 − e123 − e235

e146 − 2e456 − e256

(0, 0, 12, 13, 23, 14) e15 + e24 + e26 − e34 e15 + e24 + e36

e123 − e146 + e256 + e345

(0, 0, 12, 13, 14, 15 + 23) e16 + e24 + e25 − e34 —
(0, 0, 12, 13, 14 + 23, 15 + 24) e16 + 2e34 − e25 e25 − e14 + e36 − e56√

2e345 − 1√
2
e156 − 1√

2
e246

+
√

2e123 −
√

2e125

(0, 0, 12, 13, 14, 15) e16 + e25 − e34 —
(0, 0, 12, 13, 14, 34− 25) — —
(0, 0, 12, 13, 14 + 23, 34− 25) — —

1.1.2 G2-structures

Similarly to the well-known vector product (or Gibbs vector product) of R3, there
exists also a vector product on R7 defined via the product of octonions, or Cayley
numbers, as follows. Let us consider the 8-dimensional real vector space O of the
octonions, which is a non-associative algebra over R with identity 1. Recall that
the product on O, that we denote by ◦, is given by

(p1, p2) ◦ (q1, q2) = (p1q1 − q2p2, q2p1 + p2q1), (1.4)

where pi, qi (i = 1, 2) are quaternions, and p denotes the conjugate of a quaternion
p, that is, if p is the quaternion p = a1 + a2i + a3j + a4k (ak ∈ R and i, j, k such
that i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j) then
p = a1 − a2i− a3j − a4k. We take an orthonormal basis {1, e0, . . . , e6} of O, such
that the product of the octonions satisfies

e2
i = −1, eiej = −ejei, (i 6= j),

eiei+1 = ei+3, ei+3ei = ei+1, ei+1ei+3 = ei with i ∈ Z7.

Such a basis is called Cayley basis. Consider the basis of O, described as the pairs
of quaternions

{(1, 0), (i, 0), (j, 0), (k, 0), (0, 1), (0, i), (0, j), (0, k)}.
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From the expression (1.4) of the product on O, can be easily obtained that the
basis {1, e0, . . . , e6} given, for example, by

1 = (1, 0), e0 = (i, 0), e1 = (j, 0), e2 = (0, k),

e3 = (k, 0), e4 = (0, i), e5 = (0, 1), e6 = (0, j),

is a Cayley basis.
We identify R7 with the 7-dimensional subspace of O consisting of the pure

imaginary Cayley numbers, that is, those such that the real part of the first quater-
nion is zero. Then, the vector product (or 2-fold vector cross product) on R7 is the
bilinear map

P : R7 × R7 −→ R7

given by
P (x, y) = x ◦ y + (x · y)1,

for x, y ∈ R7, and where x · y denotes the dot product of x and y. As the Gibbs
vector product on R3, the vector product P on R7 satisfies

(P (x, y)) · x = (P (x, y)) · y = 0, ||P (x, y)||2 = ||x||2 ||y||2 − (x · y)2,

for x, y ∈ R7. So, P (x, y) = −P (y, x). Gray in [71] proves that there exists a
2-fold vector cross product on Rm if and only if m = 3 or m = 7.

It is known that the vector product of R3 determines a volume form on R3,
and so a 3-form. Similarly, the pair (·, P ) on R7 determines the 3-form ϕ defined
by

ϕ(x, y, z) = (P (x, y)) · z.
Thus, with respect to a Cayley basis, ϕ has the expression

ϕ =
∑
i∈Z7

ei ∧ ei+1 ∧ ei+3.

Many authors use different bases in order to obtain an expression adapted to their
purposes. We consider an orthonormal basis {e1, . . . , e7} of (R7)∗ so that the
3-form ϕ has the following expression

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245. (1.5)

The subgroup of Gl(7,R) that fixes ϕ is the 14-dimensional compact, connected,
simple Lie group G2, that is,

G2 = {A ∈ Gl(7,R) |A∗ϕ = ϕ}.

The group G2 acts irreducibly on R7 and preserves the metric and orientation for
which the basis {e1, . . . , e7} dual to the basis {e1, . . . , e7} is an oriented orthonor-
mal basis of R7.
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Definition 1.1.10. Let (M, g) be a Riemannian manifold of dimension 7, with
Riemannian metric g. A vector product on (M, g) is a tensor field

P : X(M)× X(M) −→ X(M)

satisfying

g(P (X, Y ), X) = g(P (X, Y ), Y ) = 0, ||P (X, Y )||2 = ||X||2 ||Y ||2 − g(X, Y )2,

for X, Y ∈ X(M). A 7-dimensional Riemannian manifold with a vector product is
called G2 manifold.

Note that, in opposite with almost complex structures, if P is a vector product
on (M, g), the Riemannian metric g is determined by P . In fact, Fernández and
Gray in [56] prove that

P (X,P (X,P (X, Y ))) = −||X||2 P (X, Y ),

for X, Y ∈ X(M).
To describe the geometry of a G2 manifold (M, g, P ) it is very useful to consider

the differential 3-form ϕ on M given by

ϕ(X, Y, Z) = g(P (X, Y ), Z), (1.6)

for X, Y, Z ∈ X(M). This form ϕ, originally defined by Bonan [20], is called G2

form, or fundamental 3-form, of (M, g, P ), and it may be locally written as in
(1.5). Note that there is also the 4-form ∗ϕ on M associated to (g, P ), where ∗
denotes de Hodge star operator of (M, g). By (1.5), we have

∗ϕ = e3456 + e1256 + e1234 − e2467 + e2357 + e1457 + e1367.

Bryant in [23] proves that if (M, g, P ) is a G2 manifold, the G2 form ϕ of (g, P )
determines the metric gϕ = g on M as

gϕ(X, Y ) volM =
1

6
ιXϕ ∧ ιY ϕ ∧ ϕ, (1.7)

for any vector fields X, Y on M , where volM denotes the volume form on M . The
vector product P on M is given by (1.6). This leads to the following definition

Definition 1.1.11. A G2-structure on a 7-manifold M is defined by a differential
3-form ϕ on M such that (1.7) defines a Riemannian metric gϕ, and ϕ can be lo-
cally written as in (1.5) with respect to some (local) orthonormal basis {e1, . . . , e7}
of the (local) 1-forms on M .
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In [56] it is given a classification of G2 manifolds. Some of these classes are the
following:

• (g, P, ϕ) is almost parallel or calibrated G2-structure iff dϕ = 0;

• (g, P, ϕ) is semiparallel or cocalibrated G2-structure iff d ∗ ϕ = 0;

• (g, P, ϕ) is nearly parallel iff dϕ = c ∗ ϕ, where c ∈ R;

• (g, P, ϕ) is parallel iff ∇ϕ = 0 or, equivalently [56], dϕ = d ∗ ϕ = 0.

In order to show examples of G2 manifolds in some of these classes, firstly we
note that using the product of the octonions one can define a 3-fold vector cross
product P̃ on R8 [50], so that P̃ : R8 × R8 × R8 −→ R8 is a trilinear map. In [56]
it is proved that if M is an oriented hypersurface of R8, with unit normal vector
field U , then M has a natural G2-structure whose vector product P is defined by

P (X, Y ) = P̃ (U,X, Y ),

for X, Y ∈ X(M). This G2 manifold is always cocalibrated, and it is nearly parallel
if and only if M = S7; moreover, the G2-structure is parallel if and only if M is
flat [56].

Regarding calibrated G2 manifolds, the first example of a compact calibrated
G2 manifold was given by Fernández in [51]. This example is described as follows.
Let K7 be the 7-dimensional nilpotent Lie group

K7 = H(1, 2)× R2,

where H(1, 2) is the connected nilpotent Heisenberg group of dimension 5 consisting
of matrices of the form

a =


1 0 x1 z1

0 1 x2 z2

0 0 1 y
0 0 0 1

 ,

where x1, x2, z1, z2, y ∈ R. Then a global system of coordinates xi, y, zi (i = 1, 2)
for H(1, 2) is given by xi(a) = xi, y(a) = y, zi(a) = zi. Let u1 and u2 be the
natural coordinates on R2. A standard calculation shows that a basis {e1, . . . , e7}
for the left invariant 1–forms on K7 is given by

e1 = dx1, e2 = dx2, e3 = dy, e4 = dz1 − x1dy,

e5 = dz2 − x2dy, e6 = du1, e7 = du2.

Thus, the 3-form ϕ on K7 given by

ϕ = e367 + e157 + e247 + e123 + e345 − e146 + e256



Special structures on manifolds 15

is a left invariant and closed G2 form on K7. Therefore, it defines a closed G2 form
on the compact nilmanifold

V 7 = Γ\K7,

where Γ ⊂ K7 is the discrete subgroup of K7 consisting of the matrices of K7

whose entries are integer numbers.
In Chapter 4, Theorem 4.2.1, is described the classification of Conti and

Fernández of the compact nilmanifolds having left invariant closed G2 form.
It is well-known that if (g, P, ϕ) is a parallel G2-structure on M (that is, ϕ is

a closed and coclosed form), then the holonomy group of (M, g) is a subgroup of
G2 [56]. The first examples of compact G2 manifolds whose holonomy group is
G2 were given by Joyce in [86]. On the other hand, Hitchin in [83] proves that if
M is a 6-manifold with a half-flat SU(3)-structure (ω, ψ+, ψ−) which belongs to a
family (ω(t), ψ+(t), ψ−(t)) of half-flat structures on M , for some real parameter t
lying in some interval I = (t−, t+), and satisfying the evolution equations{

∂tψ+(t) = d̂ω(t),

ω(t) ∧ ∂t(ω(t)) = −d̂ψ−(t),

then M × I has a Riemannian metric whose holonomy is contained in G2. In fact,
it is easy to check that the 3-form ϕ and the 4-form ∗ϕ given by

ϕ = ω(t) ∧ dt+ ψ+(t), ∗ϕ = ψ−(t) ∧ dt+
1

2
ω(t)2 (1.8)

are closed. In general, if (ω, ψ+, ψ−) is an SU(3)-structure on M , then the 3-form
ϕ defined by

ϕ = ω ∧ dt+ ψ+ (1.9)

is a G2 form on M × R. Moreover, as we mentioned in the subsection 1.1.1, it is
clear that if (ω, ψ+, ψ−) is a symplectic half-flat SU(3)-structure on M (so we will
denote by F , instead of ω, its Kähler form), then

ϕ = F ∧ dt+ ψ+ (1.10)

is a closed G2 form on M ×R. Similarly, half-flat manifolds produce cocalibrated
G2 manifolds. In fact, if (ω, ψ+, ψ−) is a half-flat SU(3)-structure on M , then

ϕ = ω ∧ dt− ψ− (1.11)

is a coclosed G2 form on M × R since

∗ϕ = ψ+ ∧ dt+
1

2
ω2

is closed.
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Definition 1.1.12. A G2-structure (g, P ) is called torsion free G2-structure if it
is parallel, and otherwise (g, P ) is said to be G2-structure with torsion.

As in subsection 1.1.1, we denote by Ωq(M) the space of the differential q-forms
on M , and let 〈, 〉 be the inner product on Ωq(M) given by

〈α, β〉volM = α ∧ ∗β,

for α, β ∈ Ωq(M). In [56] it is proved that Ωq(M) splits orthogonally into com-
ponents Ωq

l (M) of dimension l, which are irreducible under the action of G2. The
representation of G2 on Ω1(M) is the seven-dimensional irreducible representation,
and the representation of G2 on Ωq(M) and Ω7−q(M) are the same because the
Hodge star operator ∗ : Ωq(M) −→ Ω7−q(M) is an isometry. Therefore, it suffices
to describe the representations of G2 on Ω2(M) and Ω3(M). In [23, 28, 56, 86, 113]
it is proved that

Ω2(M) = Ω2
7(M) ⊕ Ω2

14(M),

Ω3(M) = Ω3
1(M) ⊕ Ω3

7(M) ⊕ Ω3
27(M),

(1.12)

where the summands of (1.12) are characterized as

Ω2
7(M) = {∗(α ∧ ∗ϕ) | α ∈ Ω1(M)},

= {β ∈ Ω2(M) | β ∧ ϕ = 2 ∗ β},
Ω2

14(M) = {β ∈ Ω2(M) | β ∧ ϕ = − ∗ β},

and
Ω3

1(M) = {aϕ | a ∈ R},
Ω3

7(M) = {∗(α ∧ ϕ) | α ∈ Ω1(M)},
Ω3

27(M) = {γ ∈ Ω3(M) | γ ∧ ϕ = 0, γ ∧ ∗ϕ = 0}.

With this G2 decomposition, Bryant gave in [24] a description of dϕ and d ∗ ϕ.

Proposition 1.1.13 (Proposition 1, [24]). Let (M, g, P ) be a G2 manifold with
G2 form ϕ. Then, the forms dϕ and d ∗ ϕ are such that

dϕ = τ0 ∗ ϕ+ 3τ1 ∧ ϕ+ ∗τ3,

d ∗ ϕ = 4τ1 ∧ ∗ϕ+ τ2 ∧ ϕ,

where τ0 ∈ F(M), τ1 ∈ Ω1(M), τ2 ∈ Ω2
14(M) and τ3 ∈ Ω3

27(M).

Definition 1.1.14. The forms τ0, τ1, τ2 and τ3 are called the torsion forms of the
G2-structure.



Special structures on manifolds 17

Remark 1.1.15. We denote the index of the torsion forms according to its de-
gree. However, several authors write the index of the torsion forms according to
the dimension of the invariant subspace they belong to. Thus, the torsion forms
τ0, τ1, τ2 and τ3 are sometimes denoted in the related literature as τ1, τ7, τ14 and τ27,
respectively.

From Proposition 1.1.13 the classes of G2 manifolds mentioned before, can also
be described in terms of the torsion forms as follows:

• (g, P, ϕ) is almost parallel or calibrated G2-structure iff τ0 = τ1 = τ3 = 0;

• (g, P, ϕ) is semiparallel or cocalibrated G2-structure iff τ1 = τ2 = 0;

• (g, P, ϕ) is nearly parallel iff τ1 = τ2 = τ3 = 0;

• (g, P, ϕ) is parallel iff τ0 = τ1 = τ2 = τ3 = 0.

Now, we can characterize parallel G2-structures as follows.

Proposition 1.1.16 [24, 56]. Let (M, g) be a 7-dimensional Riemannian manifold
with a G2 form ϕ. Denote by ∇ the Levi-Civita connection of g. Then, the
following conditions are equivalent:

1. Hol(∇) ⊆ G2;

2. ∇ϕ = 0;

3. dϕ = d ∗ ϕ = 0;

4. τ0 = τ1 = τ2 = τ3 = 0.

1.1.3 Almost contact metric structures

We first recall some properties of almost contact metric structures, and then we
see the existence of such a structure on any G2 manifold with a non-zero vector
field [6].

Definition 1.1.17. Let M be a (2n+1)-dimensional manifold. An almost contact
metric structure on M is a quadruplet (φ, ξ, η, g), where φ : X(M) −→ X(M) is a
tensor field on M , ξ is a nowhere vanishing vector field, η is a differential 1-form,
and g is a Riemannian metric on M satisfying the conditions

φ2 = −Id+ ξ ⊗ η, η(ξ) = 1, g(φX, φY ) = g(X, Y )− η(X)η(Y ), (1.13)

for X, Y ∈ X(M). The vector field ξ is called Reeb vector field, and (M,φ, η, ξ, g)
is said to be almost contact metric manifold.
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Thus, if (M,φ, η, ξ, g) is an almost contact metric manifold, the kernel of η
defines a codimension one distribution H = ker η, and there is the orthogonal
decomposition of the tangent bundle TM of M

TM = H⊕L ,

where L is the trivial line subbundle generated by ξ. Note that conditions (1.13)
imply

φ(ξ) = 0 , η ◦ φ = 0 .

If (φ, ξ, η, g) is an almost contact metric structure on M , the fundamental 2-
form F of (φ, ξ, η, g) is the differential 2-form on M defined by

F (X, Y ) = g(φX, Y ) ,

where X, Y ∈ X(M). Hence,

F (φX, φY ) = F (X, Y ),

that is, F is compatible with φ, and η ∧ F n 6= 0 everywhere. Therefore, η ∧ F n is
a volume form.

Conversely (see [17, 18]), as for symplectic manifolds, it happens that if M is a
(2n+1)-dimensional manifold with a 2-form F and a 1-form η such that η∧F n is a
volume form on M , then there exists an almost contact metric structure (φ, ξ, η, g)
on M whose fundamental form is F . In fact, since η ∧ F n is a volume form, it
defines an isomorphism between the F(M)-module of the vector fields on M and
the F(M)-module of the 2n-forms on M . Thus, corresponding to the 2n-form F n,
there exists a unique vector field ξ on M such that

ιξ(η ∧ F n) = F n,

Therefore,
ιξF

n = 0,

which implies that
ιξ(η) = 1, ιξF = 0.

Then, F is a symplectic form on the distribution H = ker(η). Thus, proceeding as
in the case of symplectic manifolds, there exists an endomorphism φH : H −→ H
and a metric gH on H such that

φ2
H = −IdH,

and
F (X, Y ) = gH(φHX, Y ),
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on H. Now we define the metric g on M and the endomorphism φ : TM −→ TM
by

g(X, Y ) = gH(X, Y ), g(X, ξ) = 0, g(ξ, ξ) = 1,

and
φ(X) = φH(X), φ(ξ) = 0.

It is easy to check that (g, φ, η, ξ) is an almost contact metric structure on M with
fundamental form F , that is,

F (X, Y ) = g(φX, Y ),

for any vector fields X and Y on M .
An almost contact metric structure (φ, ξ, η, g) on M is said to be contact metric

if
g(φX, Y ) = dη(X, Y ) .

In this case η is a contact form, meaning η ∧ (dη)n 6= 0 at every point of M , and
the fundamental form F of (φ, ξ, η, g) is F = dη.

Just as in the case of an almost Hermitian structure, there is the notion of inte-
grability of an almost contact metric structure. More precisely, an almost contact
metric structure (φ, ξ, η, g) is called normal if the Nijenhuis tensor Nφ associated
to the tensor field φ, defined by

Nφ(X, Y ) = φ2[X, Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ]

satisfies the condition
Nφ = −dη ⊗ ξ .

This last condition is equivalent to the condition that the almost complex structure
J on M × R given by

J

(
X, f

∂

∂t

)
=

(
φX − fξ, η(X)

∂

∂t

)
is integrable, that is, (M ×R, J) is a complex manifold, where f is a differentiable
function on M×R, and t is the coordinate on R [17, 18]. In other words, φ defines
a complex structure on ker(η) compatible with dη.

A Sasakian structure is a normal contact metric structure, in other words, an
almost contact metric structure (η, ξ, φ, g) such that

NΦ = −dη ⊗ ξ, dη = F.

If (η, ξ, φ, g) is a Sasakian structure on M , then (M, η, ξ, φ, g) is called a Sasakian
manifold.
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Boyer and Galicki in [22] prove that Riemannian manifolds with a Sasakian
structure can also be characterized in terms of the Riemannian cone over the
manifold. More precisely, a Riemannian manifold (M, g) admits a compatible
Sasakian structure if and only if M × R+ equipped with the cone metric

gc = t2g + dt⊗ dt

is Kähler (but not necessarily Einstein). Furthermore, the Reeb vector field of the
Sasakian structure is Killing and the covariant derivative of φ with respect to the
Levi-Civita connection of g is given by

(∇Xφ)(Y ) = g(ξ, Y )X − g(X, Y )ξ ,

for any pair of vector fields X and Y on M .
In Chapter 3, we need some properties of 3-Sasakian manifolds [22]. Let (M, g)

be a Riemannian manifold of dimension 4n+3.

• (M, g) is 3-Sasakian if M × R+ with the cone metric gc = t2g + dt ⊗ dt
is hyperkähler or, equivalently, the holonomy group of (M × R+, gc) is a
subgroup of Sp(n+ 1). Thus, gc is Ricci-flat.

Taking into account that cone metrics are a particular type of warped product
metrics, we have

Proposition 1.1.18 [22]. Any 3-Sasakian manifold (M, g) of dimension 4n+ 3 is
Einstein with Einstein constant λ = 4n+ 2. Moreover, if (M, g) is complete, it is
compact with finite fundamental group.

In terms of tensor fields, 3-Sasakian manifolds can be defined as follows [22].
A Riemannian manifold (M, g) is 3-Sasakian if and only if there exist 3 almost
contact metric structures (φi, ξi, ηi, g) (i = 1, 2, 3), with respect to same metric g,
such that (φi, ξi, ηi, g) is Sasakian, for any i = 1, 2, 3, and

φiξj = −φjξi = ξk, ηi ◦ φj = −ηj ◦ φi = ηk,

φk = φiφj − ηj ⊗ ξi = −φjφi + ηi ⊗ ξj,

for any cyclic permutation (i, j, k) of (1, 2, 3).

By analogy with the terminology used in almost Hermitian geometry, we say
that:

• (φ, ξ, η, g) is almost cokähler iff dF = dη = 0;
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• (φ, ξ, η, g) is cokähler iff it is almost cokähler and normal, that is, dF = dη
= 0 and Nφ = −dη ⊗ ξ,

where F is the fundamental 2-form of (φ, ξ, η, g).
If (N, g, J) is an almost Kähler manifold with Kähler form ω, then the Rie-

mannian product N × R has an almost cokähler structure (φ, ξ, η, h), where

η = dt, ξ =
∂

∂t
, φ(X) = JX, φ(ξ) = 0,

and
h(X, Y ) = g(X, Y ), h(X, ξ) = 0, h(ξ, ξ) = 1,

for any vector fields X and Y on N , and where t is the coordinate on R.
Conversely, if (M,φ, ξ, η, g) is an almost cokähler manifold, then the Rieman-

nian product M × R (or M × S1) is an almost Kähler manifold (in particular,
Kähler if (φ, ξ, η, g) is a cokähler structure) with Kähler form

ω = F + η ∧ dt,

and (M, η, F ) is a cosymplectic manifold in the sense of Libermann [97] since
dη = dF = 0 and η ∧ F n is a volume form of M . Cosymplectic manifolds are also
called almost cosymplectic [18], and recently were called co-symplectic by Li [96].

The following result shows that cosymplectic manifolds constitute the odd di-
mensional analogue of symplectic manifolds.

Proposition 1.1.19 (Proposition 1, [96]). A manifold M admits a cosymplectic
structure if and only if the product M×S1 admits an S1-invariant symplectic form.

Before going to the topological characterization of compact cosymplectic man-
ifolds given by Li in [96], we would like to note the following. Suppose that (M,ϕ)
is a G2 manifold with a nowhere vanishing vector field ξ on M . (This happens for
example if M is compact [118].) Denote by gϕ the Riemannian metric induced by
ϕ. By normalizing ξ using gϕ, we may assume that ||ξ|| = 1. Then, in [6] it is
proved that M has an almost contact metric structure (η, F, gϕ) defined by

η(X) = gϕ(X, ξ), F = ιξ ϕ, (1.14)

for X ∈ X(M). In [6] it is proved that if M is compact and dϕ = 0, then the
almost contact metric structure given by (1.14) does not define a contact structure
on M compatible with the closed G2 form ϕ, that is, such that dη = ιξϕ. Also in
[121] it is proved the following result

Proposition 1.1.20 [121]. Let (M,ϕ) be a G2 manifold. Then the fundamental
2-form F of the almost contact metric structure given by (1.14) is closed if and
only if ξ is Killing. In this case, d η = 0 and the almost contact metric structure
is normal and hence a cokähler structure.
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Corollary 1.1.21 [121]. If (M,ϕ) is a G2 manifold with full G2 holonomy, then
dF 6= 0. In particular, the almost contact metric structure constructed above
cannot be almost cokähler, cokähler nor Sasakian.

In the last years, the geometry and topology of cokähler and almost cokähler
manifolds and, in particular, of cosymplectic manifolds have been studied by sev-
eral authors (see for example [8, 10, 12, 18, 22, 31, 30, 96] and the references
therein). Some of those results are given using mapping tori.

A theorem by Tischler [120] asserts that a compact manifold is a mapping torus
if and only if it admits a non-vanishing closed 1-form. This result was extended
recently to cosymplectic manifolds by Li [96]. Let us recall first some definitions.

Let N be a differentiable manifold and let ν : N → N be a diffeomorphism.
Then, we can define the diffeomorphism

ν̃ : N × R −−−−→ N × R
(x, t) 7−−−−→

(
ν(x), t+ 1

)
.

Denote by Γν̃ the infinite cyclic group of diffeomorphisms of N × R generated by
ν̃. Then, Γν̃ is a discrete group which acts freely and proper discontinuously on
N × R. The mapping torus Nν of ν is the quotient

Nν = (N × R)/Γν̃ . (1.15)

Thus, Nν is a differentiable manifold of dimension dimNν = (dimN) + 1. From
the topological point of view, the mapping torus Nν is just N× [0, 1] with the ends
identified by ν, that is,

Nν =
N × [0, 1]

(x, 0) ∼ (ν(x), 1)
.

The natural map
π : Nν → S1,

defined by π(x, t) = e2πit is the projection of a locally trivial fiber bundle with
fiber N .

Definition 1.1.22. Let (N,ω) be a symplectic manifold, and let ν : N −→ N be a
diffeomorphism. We say that the mapping torus Nν of ν is a symplectic mapping
torus if ν is a symplectomorphism, that is, ν∗ω = ω.

Remark 1.1.23. We would like to note that if (N,ω) is a symplectic manifold
(not necessarily compact), and ν : (N,ω) −→ (N,ω) is a symplectomorphism,
we can equip Nν with a cosymplectic structure as follows. First, we consider the
pullback to N ×R of the symplectic form ω via the projection map N ×R −→ N ,
and then we get a closed 2-form ω on N × R. Since ν is a symplectomorphism,
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we know that ω is ν-invariant, and so its pullback to N ×R is a closed 2-form ω,
which is Γν̃ -invariant. Hence, it induces a closed 2-form ω̃ on Nν. Similarly, for
the canonical 1-form dt on R we consider its pullback to N ×R, and it is also Γν̃ -
invariant, so dt defines a closed 1-form η on Nν. The pair (dt, ω) is a cosymplectic
structure on N × R and thus (η, ω̃) is a cosymplectic structure on Nν. Note also
that the Reeb vector field on N × R is just ∂

∂t
, which is preserved by ν̃, and hence

reduces to be the Reeb vector field on Nν.

For compact manifolds, Li in [96] proves the following result.

Theorem 1.1.24 (Theorem 1, [96]). A compact manifold M admits a cosymplectic
structure if and only if it is a symplectic mapping torus M = Nν.

Recently, Bazzoni and Goertsches in [10] show conditions under which the Reeb
vector field of a symplectic mapping torus is Killing.

Proposition 1.1.25 (Proposition 2.12, [10]). Let (N, g, J) be an almost Kähler
manifold with Kähler form ω, and let ν : (N,ω) −→ (N,ω) a symplectomorphism
such that ν∗ g = g. Then, the Reeb vector field of the symplectic mapping torus Nν

is a Killing vector field.

1.2 Massey products and formality of mapping

tori

In this section some definitions and results about formal manifolds and, in partic-
ular, about formality of mapping tori are reviewed [8, 45].

From now on, we work with graded algebras over the field of real numbers R,
and we denote by |a| the degree of an element.

A differential graded commutative algebra (A, d) over R (DGA for short) is a
pair (A, d), where A is a graded commutative algebra A = ⊕i≥0A

i over R, and
d : A∗ → A∗+1 is a derivation of degree 1, that is, d is a linear map such that d2 = 0
and, for homogeneous elements a and b,

d(a · b) = (da) · b+ (−1)|a|a · (db).

Given a differential graded commutative algebra (A, d), we denote its cohomology
by H∗(A). The cohomology of a differential graded algebra H∗(A) is naturally a
DGA with the product inherited from that on A and with the differential being
identically zero. The DGA (A, d) is connected if H0(A) = R, and (A, d) is
1-connected if, in addition, H1(A) = 0.

In our context, the main examples of DGAs are the de Rham complex
(Ω∗(M), d) of a differentiable manifold M , where d is the exterior differential,
and the de Rham cohomology algebra (H∗(M), d = 0).
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If (A, dA) and (B, dB) are DGAs, a map

φ : (A, dA)−−−−→ (B, dB),

is called morphism of DGA’s if φ is a morphism of algebras such that preserves
the degree and commutes with the differential, so φ ◦ dA = dB ◦ φ.

Definition 1.2.1. A DGA (A, d) is said to be minimal if

• A is the free algebra A =
∧
V over a graded (real) vector space V = ⊕kV k;

and

• there exists a basis {xi, i ∈ I} of V , for a well-ordered index set I, such that
|xi| ≤ |xj| if i < j, and each dxj is expressed in terms of the preceding xi
(i < j).

Note that the second condition implies that dxi does not have a linear part.

Definition 1.2.2. Let (M, dM) and (A, d) be two DGA’s. We say that (M, dM)
is a minimal model of (A, d) if (M, dM) is minimal, so M =

∧
V , and there

exists a morphism

ρ : (M, dM)−−−−−−→ (A, d),

of DGAs, such that it induces an isomorphism in cohomology

ρ∗ : H∗(M)
∼=−−−−−−→ H∗(A).

In [77], Halperin proved that any connected differential graded algebra (A, d)
has a minimal model unique up to isomorphism. For 1-connected differential al-
gebras, a similar result was proved earlier by Deligne, Griffiths, Morgan and Sul-
livan [45].

Definition 1.2.3. A minimal model of a connected differentiable manifold M is a
minimal model (

∧
V, d) of the de Rham complex (Ω∗(M), d) of differential forms

on M .

Thus, if (
∧
V, d) is a minimal model of a manifold M , then the cohomology of

(
∧
V, d) is, up to isomorphism, the cohomology of M . Moreover, if M is a simply

connected manifold, then the dual of the real homotopy vector space πi(M) ⊗ R
is isomorphic to V i for any i. This relation also happens when i > 1 and M is
nilpotent, that is, the fundamental group π1(M) is nilpotent and its action on
πj(M) is nilpotent for j > 1 (see [45]).
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Definition 1.2.4. A minimal differential algebra (
∧
V, d) is called formal if there

exists a morphism of differential algebras

ψ :
(∧

V, d
)
−→

(
H∗(

∧
V ), 0

)
,

inducing the identity map on cohomology. Also a differentiable manifold M is
called formal if its minimal model is formal.

Many examples of formal manifolds are known: spheres, projective spaces,
compact Lie groups, homogeneous spaces, flag manifolds, and compact Kähler
manifolds.

The formality of a minimal algebra is characterized as follows.

Theorem 1.2.5 [45]. A minimal algebra (
∧
V, d) is formal if and only if the space

V can be decomposed into a direct sum V = C⊕N with d(C) = 0 and d injective
on N , such that every closed element in the ideal I(N) in

∧
V generated by N is

exact.

This characterization of formality can be weakened using the concept of s-
formality introduced in [63].

Definition 1.2.6. A minimal algebra (
∧
V, d) is s-formal (s > 0) if for each i ≤ s

the space V i of generators of degree i decomposes as a direct sum V i = Ci ⊕ N i,
where the spaces Ci and N i satisfy the three following conditions:

1. d(Ci) = 0,

2. the differential map d : N i −→
∧
V is injective, and

3. any closed element in the ideal Is = I(
⊕
i≤s

N i), generated by the space
⊕
i≤s

N i

in the free algebra
∧

(
⊕
i≤s

V i), is exact in
∧
V .

A differentiable manifold M is s-formal if its minimal model is s-formal.
Clearly, if M is formal then M is s-formal, for any s > 0. The main result of
[63] shows that sometimes the weaker condition of s-formality implies formality.

Theorem 1.2.7 [63]. Let M be a connected and orientable compact differentiable
manifold of dimension 2n or (2n − 1). Then M is formal if and only if it is
(n− 1)-formal.

One can check that any simply connected compact manifold is 2-formal. There-
fore, Theorem 1.2.7 implies that any simply connected compact manifold of dimen-
sion ≤ 6 is formal.
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In order to detect non-formality, one can use also Massey products, which are
obstructions to formality. The simplest type of Massey products are the triple
(also known as ordinary) Massey products, which are defined as follows.

Let (A, d) be a DGA (in particular, it can be the de Rham complex of dif-
ferential forms on a differentiable manifold). Suppose that there are cohomology
classes [ai] ∈ Hpi(A), pi > 0, 1 ≤ i ≤ 3, such that a1 · a2 and a2 · a3 are exact.
Write

a1 · a2 = dx, a2 · a3 = dy. (1.16)

The (triple) Massey product of the classes [ai] is defined as

〈[a1], [a2], [a3]〉 = [a1 ·y+(−1)p1+1x ·a3] ∈ Hp1+p2+p3−1(A)

[a1] ·Hp2+p3−1(A) + [a3] ·Hp1+p2−1(A)
.

Note that a1 · y+ (−1)p1+1x · a3 is always closed, because d(a1 · y+ (−1)p1+1x · a3)
= (−1)p1a1 · a2 · a3 + (−1)p1+1a1 · a2 · a3 = 0, but its cohomology class in
Hp1+p2+p3−1(A) is not well-defined since it depends of the representatives x and y
in (1.16).

Theorem 1.2.8 [45]. A DGA which has a non-zero Massey product is non-formal.

To finish this section we recall the results proved in [8] about the formality of
the mapping torus of an orientation-preserving diffeomorphism ν of a manifold N .
Those results show that the formality of Nν depends on ν but not on the formality
of N .

Next, by multiplicity of the eigenvalue λ of an endomorphism A : V → V we
mean the multiplicity of λ as a root of the minimal polynomial of A.

First we notice that if ν : N −→ N is a diffeomorphism, the Mayer-Vietoris
sequence implies that the de Rham cohomology group of the mapping torus Nν of
ν is, up to isomorphism,

Hp(Nν) ∼= Kp(N)⊕ [dt] ∧ Cp−1(N), (1.17)

where
Kp(N) = ker

(
ν∗ − Id : Hp(N)→ Hp(N)

)
,

Cp−1(N) = coker
(
ν∗ − Id : Hp−1(N)→ Hp−1(N)

)
.

As it is described in [8], [α] ∈ Kp(N) defines a cohomology class [α̃] ∈ Hp(Nν). In
fact, if [α] ∈ Kp, then ν∗[α] = [α]. Therefore, ν∗α = α+ dβ for some (p− 1)-form
β on N . Consider now a function ρ(t), such that ρ = 0 near t = 0 and ρ = 1 near
t = 1. Thus, the closed p-form α̃ on N × [0, 1] defined by

α̃(x, t) = α(x) + d(ρ(t)β(x)),
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where x ∈ N and t ∈ [0, 1] is such that

ν∗α̃(x, 0) = ν∗α(x) = α(x) + dβ(x) = α̃(x, 1),

and thus defines a closed p-form on the mapping torus Nν .

Theorem 1.2.9 (Theorem 13, [8]). Let N be an oriented compact differentiable
manifold of dimension n, and let ν : N → N be an orientation-preserving diffeo-
morphism. Let M = Nν be the mapping torus of ν. Suppose that, for some p > 0,
the homomorphism ν∗ : Hp(N) → Hp(N) has eigenvalue λ = 1 with multiplicity
2. Then, M = Nν is non-formal since there exists a non-zero (triple) Massey
product. More precisely, if [α] ∈ Kp ⊂ Hp(N) is such that

[α] ∈ Im
(
ν∗ − Id : Hp(N)→ Hp(N)

)
,

the Massey product 〈[η], [η], [α̃]〉 does not vanish.

Also in [8], under certain conditions of ν, a partial computation of the minimal
model of Nν is given.

Theorem 1.2.10. With M = Nν as above, suppose that there is some p ≥ 2
such that ν∗ : Hk(N) → Hk(N) does not have the eigenvalue λ = 1 for any
k ≤ (p − 1), and that ν∗ : Hp(N) → Hp(N) does have the eigenvalue λ = 1 with
some multiplicity r ≥ 1. Put

Kj = ker
(

(ν∗ − Id)j : Hp(N)→ Hp(N)
)
,

where j = 0, . . . , r. So {0} = K0 ⊂ K1 ⊂ K2 ⊂ . . . ⊂ Kr.
Write Gj = Kj/Kj−1, for j = 1, . . . , r. The map F = ν∗ − Id induces maps

F : Gj → Gj−1, j = 1, . . . , r (here G0 = 0). Then the minimal model (ΛW,d) of
M = Nν is, up to degree p, given by the following generators:

W 1 = 〈a〉, da = 0,

W k = 0, k = 2, . . . , p− 1,

W p = G1 ⊕G2 ⊕ . . .⊕Gr, dw = a · F (w), w ∈ Gj.

Taking into account Definition 1.2.6, Theorem 1.2.10 implies that the spaces
Ci and N i (i = 1, . . . , p) of the minimal model (

∧
W, d) of Nν are

C1 = 〈a〉, N1 = 0, Ci = 0 = N i (i = 2, . . . , p− 1),

Cp = G1, Np = G2 ⊕ . . .⊕Gr.

Also if w ∈ Gr, then a · w ∈ I(N) and d (a · w) = 0, but a · w is not exact. Thus,
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Corollary 1.2.11. Under the conditions of Theorem 1.2.10, the mapping torus
Nν is always (p − 1)-formal (in the sense of Definition 1.2.6), and if r = 1, then
Nν is p-formal. Moreover, if r ≥ 2, then Nν is non-formal.

Note that if N is a compact symplectic manifold, and ν : N → N is a symplec-
tomorphism, then ν∗ : H2(N) → H2(N) always has the eigenvalue λ = 1, since
ν∗ : H2(N) → H2(N) fixes the symplectic form on N . Thus, as a consequence of
Theorem 1.2.10, we have

Corollary 1.2.12. Let N be a compact symplectic 2n-manifold, and assume that
ν : N → N is a symplectomorphism such that the map induced on cohomology
ν∗ : H1(N) → H1(N) does not have the eigenvalue λ = 1. Then, Nν is 2-formal
if and only if the eigenvalue λ = 1 of ν∗ : H2(N)→ H2(N) has multiplicity r = 1.

We will need also the following

Lemma 1.2.13. Let N be a compact manifold, and let ν : N −→ N be a diffeo-
morphism of finite order, that is, there exists p ∈ N such that (ν)p = Id. If there
exists k ≥ 1, such that λ = 1 is an eigenvalue of

ν∗ : Hk(N) −→ Hk(N),

then the multiplicity of λ = 1 is r = 1.

Proof. Suppose that, for some k ≥ 1, the map ν∗ : Hk(N) −→ Hk(N) has the
eigenvalue λ = 1 with multiplicity r > 1. Then, there exists a non-zero cohomology
class a ∈ Hk(N) such that

a ∈ ker
(
ν∗ − Id : Hk(N) −→ Hk(N)

)
,

and
a = (ν∗ − Id)(b),

where b ∈ ker
(
(ν∗−Id)2 : Hk(N) −→ Hk(N)

)
−ker

(
ν∗−Id : Hk(N) −→ Hk(N)

)
.

Since the order of ν is finite, there exists p ∈ N such that (ν∗)p = Id. Now let
us consider the map T : Hk(N) −→ Hk(N) given by

T = Id+ ν∗ + (ν∗)2 + · · ·+ (ν∗)p−1.

Then,
T (a) = p a. (1.18)

On the other hand, we obtain

T (a) = T
(
(ν∗ − Id)(b)

)
=
(
Id+ ν∗ + (ν∗)2 + · · ·+ (ν∗)p−1

)
(ν∗ − Id)(b)

=
(
(ν∗)p − Id

)
(b) = 0,

which contradicts (1.18) since p ≥ 1 and the cohomology class a is non-zero. Hence

ker(ν∗ − Id) ∩ Im(ν∗ − Id) = 0.
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1.3 Mapping torus of an SU(3)-diffeomorphism

As we mention in subsection 1.1.2, the Riemannian product of a symplectic half-flat
SU(3) manifold with R has a closed G2 form. In this section, we show conditions
under which the mapping torus of a diffeomorphism of a symplectic half-flat SU(3)
manifold has such a G2 form. Moreover, we show that if a 6-dimensional symplectic
half-flat Lie algebra is endowed with a particular type of derivation, then one can
construct a Lie algebra with a closed G2 form.

Definition 1.3.1. Let (N, g, J,Ψ = ψ+ + i ψ−) be an SU(3) manifold, and let
ν : N −→ N be a diffeomorphism. We say that ν : N −→ N is an SU(3)-diffeo-
morphism if ν preserves the SU(3)-structure, that is

ν∗g = g, ν∗ ◦ J = J ◦ ν∗, ν∗(ψ+) = ψ+.

Thus, ν also preserves the Kähler form ω of (g, J) and the 3-form ψ− = J ψ+,
that is,

ν∗ ω = ω, ν∗ ψ− = ψ− .

Hence, if ω is closed, Nν is a 7-dimensional cosymplectic manifold since ν is a
symplectomorphism (see Remark 1.1.23). Moreover, we have

Theorem 1.3.2. Let (N, g, J,Ψ = ψ+ + i ψ−) be a symplectic half-flat SU(3)
manifold, and let ν : N −→ N be an SU(3)-diffeomorphism. Then, the symplectic
half-flat SU(3)-structure (g, J,Ψ = ψ+ + i ψ−) on N induces a closed G2 form on
the mapping torus Nν of ν.

Proof. Since (N, g, J,Ψ = ψ+ + i ψ−) is a symplectic half-flat SU(3) manifold, we
know that the 3-form ϕ on N × R given by

ϕ = ψ+ + F ∧ dt (1.19)

is a closed G2 form, where F is the Kähler form (now, symplectic form) of (g, J)
and t is the coordinate of R. The form ϕ determines the metric h = g + (dt)2 on
N × R. Moreover, ϕ and h are both Γν̃ -invariant. So, taking into account (1.15),

they define a closed 3-form ϕ̃ and a Riemannian metric h̃ on Nν , respectively, where
h̃ is the metric induced by ϕ̃. The local expression of ϕ̃ is as in (1.5) because locally
ϕ has such an expression with respect to some local orthonormal basis of 1-forms
on N × R. Hence ϕ̃ is a closed G2 form.

We would like to note that the converse of the previous Theorem is not true
even if we assume that Nν is compact. For this, it is sufficient to show an example
of a compact calibrated G2 manifold which does not admit cosymplectic structures.
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Such an example is given as follows. Let us consider the 7-dimensional nilpotent
Lie algebra g whose dual space is spanned by {e1, . . . , e7} such that

de1 = 0 , de2 = 0 , de3 = e12 , de4 = e13 , de5 = e23 ,

de6 = e15 + e24 , de7 = e16 + e34 .
(1.20)

Mal’cev Theorem [102] implies that the simply connected Lie group G associated
with g has a uniform discrete subgroup Γ, so that

M = Γ\G

is a compact nilmanifold.

Proposition 1.3.3. The compact manifold M = Γ\G given by (1.20) has a closed
G2 form but does not carry cosymplectic structures.

Proof. Using Theorem of Nomizu (Theorem 1.1.8) we have that the real cohomol-
ogy groups of M are

H0(M) = 〈1〉,
H1(M) = 〈[e1], [e2]〉,
H2(M) = 〈[e14], [e25], [e26 − e35]〉,
H3(M) = 〈[e456 − e357 + e267], [−e345 + e246 − e237], [e256], [e147], [e126], [e135], [e137]〉,
H4(M) = 〈[e2356], [e2357 − e2456], [e1467], [e1347], [e1357], [e1237], [e1247]〉,
H5(M) = 〈[e12467], [e13467], [e23567]〉,
H6(M) = 〈[e134567], [e234567]〉,
H7(M) = 〈[e1234567]〉.

By [38] we know that a closed G2 form ϕ on M = Γ\G is given by

ϕ = e127 + e147 + e125 + e136 + e234 − e256 − e456 − e267 + e357.

Now, let us suppose that M has a cosymplectic structure (η, F ). Then, η is a
differential 1-form and F a differential 2-form on M such that d η = dF = 0 and
η ∧ F 3 is a volume form. Hence η, F and η ∧ F 3 define non-zero cohomology
classes on M . But

[η] = λ [e1] + µ [e2], [F ] = a [e14] + b [e25] + c [e26 − e35],

for some real numbers λ, µ, a, b and c. Therefore,

[F 3] = −6 a c2 e123456,

which implies that [η ∧ F 3] = 0, for any a, b, c ∈ R, since e123456 = de23457. This is
not possible for a cosymplectic structure on a compact manifold.



Mapping torus of an SU(3)-diffeomorphism 31

For cocalibrated G2 manifolds we have:

Theorem 1.3.4. Let (N, g, J,Ψ = ψ+ + i ψ−) be a half-flat SU(3) manifold, and
let ν : N −→ N be an SU(3)-diffeomorphism. Then, the mapping torus Nν of ν
has a coclosed G2 form.

Proof. Since (N, g, J,Ψ = ψ+ + i ψ−) is a half-flat SU(3) manifold, we know that
the 3-form ϕ on N × R given by

ϕ = F ∧ dt− ψ−,

is such that

∗ϕ =
1

2
F ∧ F + ψ+ ∧ dt,

and therefore is a coclosed G2 form, where F is the Kähler form of (g, J) and t is
the coordinate of R. The form ϕ determines the metric h = g + (dt)2 on N × R.
Moreover, ϕ and h are both Γν̃ -invariant. So, taking into account (1.15), they

define a coclosed 3-form ϕ̃ and a Riemannian metric h̃ on Nν , respectively, where
h̃ is the metric induced by ϕ̃. The local expression of ϕ̃ is as in (1.5) because
locally ϕ has such an expression with respect to some local orthonormal basis of
1-forms on N × R. Hence ϕ̃ is a coclosed G2 form.

Next, we show that if a symplectic half-flat Lie algebra, of dimension 6, is
endowed with a particular type of derivation, then one can construct a Lie algebra
of dimension 7 with a closed G2 form. For this, we use that if h is a 6-dimensional
Lie algebra, and D a derivation of h, the vector space

g = h⊕D Rξ

is a Lie algebra with the Lie bracket given by

[U, V ] = [U, V ]|h, [ξ, U ] = D(U), (1.21)

for any U, V ∈ h.
We recall that a closed G2 form on a real Lie algebra g of dimension 7 is a

closed 3-form ϕ on g such that ϕ can be written as in (1.5) with respect to some
basis {e1, . . . , e7} of the dual space g∗ of g.

On the one hand, we know that (see for example [14]) there exists a real
representation of the complex matrices via

ρ : gl(3,C)−−−−→ gl(6,R).

In fact, if A ∈ gl(3,C), ρ(A) is the matrix (Bij)
3
i,j=1 with

Bij =

(
ReAij ImAij
−ImAij ReAij

)
,
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where Aij is the (i, j) component of A.
Let (g, J,Ψ = ψ+ + i ψ−) be an SU(3)-structure on a 6-dimensional Lie algebra

h. We know that the SU(3)-structure on h guarantees the existence of a basis
{e1, . . . , e6} of the dual space h∗ of h, such that the Kähler form ω of (g, J) and
the 3-forms ψ+ and ψ− have the canonical expression (1.1), that is,

ω = e12 + e34 + e56,

ψ+ = e135 − e146 − e236 − e245,

ψ− = e136 + e145 + e235 − e246.

(1.22)

Definition 1.3.5. Let (g, J,Ψ = ψ+ + i ψ−) be an SU(3)-structure on a 6-
dimensional Lie algebra h, and let ω be the Kähler form of (g, J). We say that a
basis {e1, . . . , e6} of h is an SU(3)-basis if ω, ψ+ and ψ− are expressed as in (1.22)
with respect to the dual basis {e1, . . . , e6} of h∗.

Now, suppose that (g, J,Ψ = ψ+ + i ψ−) is a symplectic half-flat structure on
a 6-dimensional Lie algebra h, and let D be a derivation of h such that D = ρ(A),
where A ∈ sl(3,C). Then, the matrix representation of D with respect to an
SU(3)-basis (in the sense of Definition 1.3.5) {e1, . . . , e6} of h is the following

D =


a11 a12 a13 a14 a15 a16

−a12 a11 −a14 a13 −a16 a15

a31 a32 a33 a34 a35 a36

−a32 a31 −a34 a33 −a36 a35

a51 a52 a53 a54 −a11 − a33 −a12 − a34

−a52 a51 −a54 a53 a12 + a34 −a11 − a33

 , (1.23)

where aij ∈ R.

Proposition 1.3.6. Let (h, g, J,Ψ = ψ++i ψ−) be a symplectic half-flat Lie algebra
of dimension 6, and let D = ρ(A) (A ∈ sl(3,C)) be a derivation of h whose matrix
representation, with respect to an SU(3)-basis (in the sense of Definition 1.3.5)
{e1, . . . , e6} of h, is as in (1.23). Then, the Lie algebra

g = h⊕D Rξ,

with the Lie bracket given by (1.21), has a closed G2 form.

Proof. We define the G2 form ϕ on g = h⊕D Rξ by

ϕ = ω ∧ η + ψ+, (1.24)

where η is the 1-form on g such that η(X) = 0, for all X ∈ h, and η(ξ) = 1.
Then, for U, V,W, T ∈ h we have

dϕ(U, V,W, T ) = dψ+(U, V,W, T ) = 0,
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since ψ+ is closed.
Now,

dϕ(U, V,W, ξ) = −ϕ([U, V ],W, ξ) + ϕ([U,W ], V, ξ)− ϕ([U, ξ], V,W )

− ϕ([V,W ], U, ξ) + ϕ([V, ξ], U,W )− ϕ([W, ξ], U, V ),

which by definition of ϕ is

− ω([U, V ],W ) + ω([U,W ], V )− ω([V,W ], U)− ψ+([U, ξ], V,W )

+ ψ+([V, ξ], U,W )− ψ+([W, ξ], U, V ) = dω(U, V,W ) + ψ+(D(U), V,W )

+ ψ+(U,D(V ),W ) + ψ+(U, V,D(W )).

Therefore, since ω is closed, using (1.21) we obtain

dϕ(U, V,W, ξ) = ψ+(D(U), V,W ) + ψ+(U,D(V ),W ) + ψ+(U, V,D(W )).

Taking into account the expressions of D and ψ+ in terms of the SU(3)-basis
{e1, . . . , e6}, we see that

ψ+(D(ei), ej, ek) + ψ+(ei, D(ej), ek) + ψ+(ei, ej, D(ek)) = 0,

for every triple (ei, ej, ek) of elements of the basis {e1, . . . , e6} of h. For example,
let us see that ψ+(D(e1), e2, e3) + ψ+(e1, D(e2), e3) + ψ+(e1, e2, D(e3)) = 0. We
have

ψ+(D(e1), e2, e3) + ψ+(e1, D(e2), e3) + ψ+(e1, e2, D(e3))

= ψ+(a11e1 − a12e2 + a31e3 − a32e4 + a51e5 − a52e6, e2, e3)

+ ψ+(e1, a12e1 + a11e2 + a32e3 + a31e4 + a52e5 + a51e6, e3)

+ ψ+(e1, e2, a13e1 − a14e2 + a33e3 − a34e4 + a53e5 − a54e6)

= a52 − a52 = 0.

Thus, the 3-form ϕ defined by (1.24) is a closed G2 form on g.

As an application of the previous Proposition, we show a new example of a
compact solvmanifold with a closed G2 form. Let h be the 6-dimensional nilpotent
Lie algebra defined by the equations

h = (0, e35, 0, 2e15, 0, e13).

The almost Hermitian structure (g, J) on h given by

g =
6∑
i=1

ei ⊗ ei, Je1 = e2, Je3 = e4, Je5 = e6
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is such that its Kähler form is

ω = e12 + e34 + e56.

Thus, (g, J) together with the complex volume form Ψ = ψ+ + i ψ−, where

ψ+ = e135 − e146 − e236 − e245,

ψ− = e136 + e145 + e235 − e246

define a symplectic half-flat structure on h, since ω and ψ+ are closed.
Consider now the derivation D of h that with respect to the SU(3)-basis

{e1, . . . , e6} of h has the following representation
1

1
2

2

 ,

that is,

D(e1) = 2e3, D(e2) = 2e4, D(e3) = e1, D(e4) = e2, D(e5) = D(e6) = 0.

Now, consider the Lie algebra

g = h⊕D Re7,

which, according to (1.21), is defined by the equations

g = (e37, e35 + e47, 2e17, 2e27 + 2e15, 0, e13, 0).

Then, Proposition 1.3.6 implies that the 3-form ϕ given by

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245

is a closed G2 form on g. Indeed, using the equations defining g, one can check that
ϕ is closed because 0 = d(e127 + e347 + e567) = d(e135) = d(e146 + e236) = d(e245).

Let G be the simply connected solvable Lie group with Lie algebra g, and let
H be the simply connected nilpotent Lie group with Lie algebra h. Denote by
e ∈ H the identity element. Note that G = Rnφ H, where φ is the unique action
φ : R −→ Aut(H) such that, for any t ∈ R, the morphism (φt)∗|e : h −→ h is given
by

(φt)∗|e = exp(tD),
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where D is the derivation previously defined of the Lie algebra h of H, and exp
denotes the map exp : Der(h)→ Aut(h).

In order to show that there exists a discrete subgroup Γ of G such that the
quotient space Γ/G is compact we proceed as follows. The SU(3)-basis {e1, . . . , e6}
of h is a rational basis for h and, with respect to this basis, we have

exp(tD) =



cosh(
√

2t)
√

2
2

sinh(
√

2t)

cosh(
√

2t)
√

2
2

sinh(
√

2t)√
2 sinh(

√
2t) cosh(

√
2t)√

2 sinh(
√

2t) cosh(
√

2t)
1

1


.

In particular, if we consider t0 =
√

2
2

arc cosh(3), then cosh(
√

2 t0) = 3 and

sinh(
√

2 t0) = 2
√

2. Thus exp(t0D) is a matrix whose entries are integer num-
bers. Therefore, expH(Z〈e1, . . . , e6〉) is a co-compact subgroup of H preserved by
φto. Consequently,

Γ = (t0 Z) nφ exp
H(Z〈e1, . . . , e6〉)

is a co-compact subgroup of G (see [19, Proposition 7.2.5]). Hence, the compact
quotient Γ/G is a compact solvmanifold endowed with an invariant closed G2 form.

Remark 1.3.7. Note that the Lie algebra h of the previous example is the third
nilpotent Lie algebra that appears in Theorem 1.1.9. In fact, consider the basis
{f 1, f 2, f 3, f 4, f 5, f 6} of h given by

f 1 = e1, f 2 = e3, f 3 = e5, f 4 = e6, f 5 =
1

2
e6, f 6 = e2.

Then, the structure equations of h with respect to the basis {f i} are
(0, 0, 0, f 12, f 13, f 23) which are the equations defining h in Theorem 1.1.9.

For cocalibrated Lie algebras we have the following result.

Proposition 1.3.8. Let (h, g, J,Ψ = ψ+ + i ψ−) be a half-flat Lie algebra, and let
D be a derivation of h whose matrix representation, with respect to an SU(3)-basis
(in the sense of Definition 1.3.5) {e1, . . . , e6} of h, lies in sp(6,R). Then, the Lie
algebra

g = h⊕D Rξ,

with the Lie bracket given by (1.21), has a coclosed G2 form.
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Proof. Since D ∈ sp(6,R) with respect to the SU(3)-basis {e1, . . . , e6}, we can
write

D =


a11 a12 a13 a14 a15 a16

a21 −a11 a23 a24 a25 a26

−a24 a14 a33 a34 a35 a36

a23 −a13 a43 −a33 a45 a46

−a26 a16 −a46 a36 a55 a56

a25 −a15 a45 −a35 a65 −a55

 .

Consider the G2 form on g = h⊕D Rξ given by

ϕ = ω ∧ η − ψ− . (1.25)

Thus

∗ϕ =
1

2
ω ∧ ω + ψ+ ∧ η,

where η is the 1-form satisfying that η(X) = 0, for all X ∈ h, and η(ξ) = 1.
For U, V,W, T,R ∈ h, we have

d ∗ ϕ(U, V,W, T,R) = dω ∧ ω(U, V,W, T,R) = 0,

since ω ∧ ω is closed.
Now, we determine d ∗ ϕ(U, V,W, T, ξ),

d ∗ ϕ(U, V,W, T, ξ) = − ∗ ϕ([U, V ],W, T, ξ) + ∗ϕ([U,W ], V, T, ξ)− ∗ϕ([U, T ], V,W, ξ)

+ ∗ϕ([U, ξ], V,W, T )− ∗ϕ([V,W ], U, T, ξ) + ∗ϕ([V, T ], U,W, ξ)

− ∗ϕ([V, ξ], U,W, T )− ∗ϕ([W,T ], U, V, ξ) + ∗ϕ([W, ξ], U, V, T )

− ∗ϕ([T, ξ], U, V,W ),

which by the definition of ∗ϕ is exactly

− ψ+([U, V ],W, T ) + ψ+([U,W ], V, T )− ψ+([U, T ], V,W )− ψ+([V,W ], U, T )

+ ψ+([V, T ], U,W )− ψ+([W,T ], U, V ) +
1

2
ω ∧ ω([U, ξ], V,W, T )

− 1

2
ω ∧ ω([V, ξ], U,W, T ) +

1

2
ω ∧ ω([W, ξ], U, V, T )− 1

2
ω ∧ ω([T, ξ], U, V,W )

= dψ+(U, V,W, T ) +
1

2
ω ∧ ω(D(U), V,W, T ) +

1

2
ω ∧ ω(U,D(V ),W, T )

+
1

2
ω ∧ ω(U, V,D(W ), T ) +

1

2
ω ∧ ω(U, V,W,D(T )).

Therefore, since ψ+ is closed, we have

d ∗ ϕ(U, V,W, T, ξ) = +
1

2
ω ∧ ω(D(U), V,W, T ) +

1

2
ω ∧ ω(U,D(V ),W, T )

+
1

2
ω ∧ ω(U, V,D(W ), T ) +

1

2
ω ∧ ω(U, V,W,D(T )).
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By using the expressions of D and ω with respect to the SU(3)-basis {e1, . . . , e6},
we obtain

ω ∧ ω(D(ei), ej, ek, el) + ω ∧ ω(ei, D(ej), ek, el)

+ ω ∧ ω(ei, ej, D(ek), el) + ω ∧ ω(ei, ej, ek, D(el)) = 0,

for every quadruplet (ei, ej, ek, el) of elements of the SU(3)-basis of h. Thus, the
G2 form ϕ defined by (1.25) is coclosed on g.

Next, we show a new example of a compact solvmanifold with a coclosed G2

form. Let h be the 6-dimensional Abelian Lie algebra defined by the structure
equations

h = (0, 0, 0, 0, 0, 0).

The almost Hermitian structure (g, J) on h given by

g =
6∑
i=1

ei ⊗ ei, Je1 = e2, Je3 = e4, Je5 = e6

is such that its Kähler form is

ω = e12 + e34 + e56.

Thus, (g, J) together with the complex volume form Ψ = ψ+ + i ψ−, where

ψ+ = e135 − e146 − e236 − e245,

ψ− = e136 + e145 + e235 − e246,

define an SU(3)-structure on h. Clearly, dω2 = dψ+ = 0. So (g, J,Ψ = ψ+ + i ψ−)
is a half-flat SU(3)-structure on h.
Consider now the derivation D of h given by

1
−1

1
−1

1
−1

 ∈ sp(6,R),

that is,
D(e1) = e1, D(e2) = −e2, D(e3) = e3,

D(e4) = −e4, D(e5) = e5, D(e6) = −e6.

Take the Lie algebra
g = h⊕D Re7.
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Thus, according to (1.21), the structure equations of g are

g = (e17,−e27, e37,−e47, e57,−e67, 0).

Then, Proposition 1.3.8 implies that the 3-form ϕ given by

ϕ = e127 + e347 + e567 + e136 + e145 + e235 − e246

is a coclosed G2 form on g. In this case, the 4-form ∗ϕ is given by

∗ϕ = e1234 + e1256 + e3456 + e1357 − e1467 − e2367 − e2457,

which is closed because each term that appear in that expression is closed.
Let G be the simply connected and completely solvable Lie group of dimension

7 consisting of matrices of the form.

a =



ex7 x1

e−x7 x2

ex7 x3

e−x7 x4

ex7 x5

e−x7 x6

1 x7

1


,

where xi ∈ R, for 1 ≤ i ≤ 7. Then a global system of coordinates {xi, 1 ≤ i ≤ 7}
for G is defined by xi(a) = xi, and a standard calculation shows that a basis for
the left invariant 1-forms on G consists of

e1 = e−x7dx1, e2 = ex7dx2, e3 = e−x7dx3, e4 = ex7dx4,

e5 = e−x7dx5, e6 = e−x7dx6, e7 = dx7,

which means that g is the Lie algebra of G. Now we notice that the Lie group G
may be described as a semi direct product G = R nφ R6, where R acts on R6 via
the linear transformation φt of R6 given by the matrix

φt =


et

e−t

et

e−t

et

e−t

 .
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Thus the operation on the group G is given by

a · b = (b1e
a7 +a1, b2e

−a7 +a2, b3e
a7 +a3, b4e

−a7 +a4, b5e
a7 +a5, b6e

−a7 +a6, b7 +a7),

where a = (a1, . . . , a7) and b = (b1, . . . , b7). Hence G = R nφ R6, where R is a
connected Abelian sugbroup, and R6 is the nilpotent commutator subgroup.

Now we show that there exists a discrete subgroup Γ of G such that the quotient
space Γ\G is compact. To construct Γ it suffices to find some real number t0 such
that the matrix defining φt0 is conjugated to an element A of the special linear
group SL(6,Z) with distinct real eigenvalues λ and λ−1. In these conditions we
could find a lattice Γ0 in R6 which is invariant under φt0 , and take

Γ = (t0 Z) nφ Γ0.

To this end, we consider the matrix A ∈ SL(6,Z) given by

A =


2 1
1 1

2 1
1 1

2 1
1 1

 ,

with triple eigenvalues 3+
√

5
2

and 3−
√

5
2

. Taking t0 = log(3+
√

5
2

), we have that the
matrices φt0 and A are conjugated. In fact, take

P =



1 −1+
√

5
2

1 −1−
√

5
2

1 −1+
√

5
2

1 −1−
√

5
2

1 −1+
√

5
2

1 −1−
√

5
2


.

Then, a direct calculation shows that

PA = φt0P =



3+
√

5
2

1+
√

5
2

3−
√

5
2

1−
√

5
2

3+
√

5
2

1+
√

5
2

3−
√

5
2

1−
√

5
2

3+
√

5
2

1+
√

5
2

3−
√

5
2

1−
√

5
2


.
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So, the lattice Γ0 in R6 defined by

Γ0 = P (m1,m2,m3,m4,m5,m6)t,

where m1,m2,m3,m4,m5,m6 ∈ Z and (m1,m2,m3,m4,m5,m6)t is the transpose
of the vector (m1,m2,m3,m4,m5,m6), is invariant under the group t0Z. Thus

Γ = (t0 Z) nφ Γ0

is a co-compact subgroup of G. Hence, the compact solvmanifold Γ\G has an
invariant coclosed G2 form.

1.4 Examples of compact calibrated G2 mani-

folds

In this section, we apply the results of the previous sections to produce new exam-
ples of compact calibrated G2 manifolds. Moreover, we prove that 7-dimensional
Lie algebras with b1 = 6 cannot admit closed G2 forms.

Example 1. A compact calibrated G2 manifold with b1 = 1

According with (1.10), we know that the product of a compact symplectic
half-flat manifold M with S1 has a closed G2 form. Moreover, this G2 form is
also coclosed if the symplectic half-flat structure on M is integrable (in the sense
mentioned in subsection 1.1.1).

Next, using the results of the previous section, we show a closed and coclosed G2

form on a non-trivial mapping torus of an SU(3)-diffeomorphism of a 6-dimensional
Calabi-Yau manifold.

We consider the so-called Fermat quintic X, that is, the Calabi-Yau manifold
of (complex) dimension 3 defined as the zero-locus of

z5
0 + z5

1 + z5
2 + z5

3 + z5
4 = 0, (1.26)

where [z0 : z1 : z2 : z3 : z4] denotes the five homogeneous coordinates on the
complex projective space CP4. Then, X is a complex submanifold of CP4 of
complex dimension 3. In fact, as we explained in subsection 1.1.1, the standard
holomorphic atlas of CP4 contains 5 charts. If

U = {[z0 : z1 : z2 : z3 : z4] | z0 6= 0} ⊂ CP4,
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then U ∼= C4, and the point [1 : z1 : z2 : z3 : z4] ∈ U ⊂ CP4 has coordinates
z = (z1, z2, z3, z4) ∈ C4. Now, if [1 : z1 : z2 : z3 : z4] ∈ X, there is a constraint on
z1, z2, z3 and z4, namely,

1 + z5
1 + z5

2 + z5
3 + z5

4 = 0. (1.27)

Note that the point [1 : 0 : 0 : 0 : 0] ∈ CP4 does not live in X. Suppose that z4 6= 0
or, equivalently,

1 + z5
1 + z5

2 + z5
3 6= 0.

Then, equation (1.27) means that we can express z4 in terms of the coordinates
z1, z2 and z3 as

z4 = z4(z1, z2, z3) = −λk 5

√
1 + z5

1 + z5
2 + z5

3 ,

where λ = e2πi/5 and k ∈ {0, 1, 2, 3, 4}. Therefore, this generates 5 charts for X.
Also note that these charts could be also described as subsets of the collection of
points of the form [z′4 : z′1 : z′2 : z′3 : 1], with z′4 6= 0. In a similar way, we can also
express, for example, z1 in terms of z2, z3 and z4. So, we have 50 = 5 · 5 · (4/2)
charts which describe completely the Fermat quintic X.

Consider the inclusion j : X ↪→CP4. Then, the pullback of the Kähler form
ω0 (given in subsection 1.1.1) on CP4 defines on the Fermat quintic X the Kähler
form

ω = j∗(ω0),

which is compatible with the metric g induced on X by the Fubini-Study metric
on CP4. Moreover, the Kähler manifold (X, g, ω) has a non-vanishing holomorphic
3-form Ψ, which is given as follows [13, 112]. Let [1 : z1 : z2 : z3 : z4(z1, z2, z3)] be
a chart of X. Then,

Ψ =
dz1 ∧ dz2 ∧ dz3

z4
4

.

This form was defined in [13], and one can see in [112] that Ψ is preserved by
changes of coordinates. Thus, Ψ is a (globally) defined holomorphic 3-form on
X. Clearly, if we examine the behavior of Ψ on any chart of X, we see that it
is nowhere vanishing. But (g, ω,Ψ) does not define a Calabi-Yau structure on X
since the norm of Ψ is non-constant.

Therefore, by Yau’s Theorem [131], we know that there exists a Ricci-flat
Kähler metric g̃ on the complex manifold (X, J). (But, as we mentioned in Re-
mark 1.1.4, the explicit expression of the Ricci-flat Kähler metric g̃ on X is not
known.) Then, Lichnerowicz’s Theorem (see Theorem 1.1.3) implies that there
exists a closed complex volume (n, 0)-form Φ which is parallel with respect to the
Levi-Civita connection of the metric g̃. From now on, we denote by ω̃ the Kähler
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form of the Ricci-flat Kähler structure (g̃, J). Thus, ( g̃, J,Φ) is an integrable
SU(3)-structure on X, that is, (X, g̃, J,Φ = φ+ + i φ−) is a Calabi-Yau manifold.

To determine the cohomology of the quintic X we use that X satisfies Lefschetz
theorem on hyperplane sections [75, p.156]. This means that j : X ↪→ CP4 is 3–
connected, that is, up to homotopy CP4 is constructed out of X by attaching cells
of dimension 4 and higher. Thus [21, p.217], for r < 3, there is an isomorphism
j∗ : Hr(CP4) → Hr(Z) induced by j on cohomology and, for r = 3, there is a
monomorphism j∗ : H3(CP4) ↪→ H3(X). Hence, the Betti numbers bi(X) of X are
such that

b0(X) = 1, b1(X) = b5(X) = 0, b2(X) = b4(X) = 1, b3(X) = 204,

because the Euler characteristic χ(X) of X is χ(X) = −200 (see for example [112]).
Therefore, if we denote by hi,j the dimension of the Dolbeault cohomology group
H i,j(X), we conclude that h1,0 = h0,1 = 0, h2,0 = h0,2 = 0 and h1,1 = 1. Since
h3,0 = h0,3 = 1, we obtain h2,1 = h1,2 = 101. Hence, if ω̃ and Φ = φ+ + i φ− are
the Kähler form and the complex volume form on the Ricci-flat Kähler manifold
(X, g̃, J), respectively, considered before, then H1,1(X) = 〈[ω̃]〉, H3,0(X) = 〈[Φ]〉
and H0,3(X) = 〈[Φ̄]〉.

In order to define an SU(3)-diffeomorphism of (X, g̃, J, Φ = φ+ + i φ−) we
proceed as follows. Let G be the group of the Kähler isometries of (X, g̃, J). We
know that G is a finite group because (X, g̃) is a simply connected compact Ricci-
flat manifold (Corollary 6.2 of [7]). Consider µ ∈ G. Let us see when µ is an
SU(3)-diffeomorphism of (X, g̃, J,Φ = φ+ + i φ−). Since µ defines an action of G
on H3,0(X), we have a morphism of groups

µ : G→ GL(H3,0(X)).

Because the space H3,0(X) has (complex) dimension 1, GL(H3,0(X)) is isomorphic
to C∗ and so Abelian. Now, the first group isomorphism theorem (or fundamental
homomorphism theorem) implies that G/kerµ is Abelian since it is isomorphic to
a subgroup of GL(H3,0(X)). Thus, the commutator subgroup [G,G] of G is such
that

[G,G] ⊂ kerµ.

This means that any element of [G,G] preserves the complex volume form Φ, and
so it defines an SU(3)-diffeomorphism of the Fermat quintic (X, g̃, J,Φ = φ++i φ−)
as a Calabi-Yau manifold.

In order to construct a compact G2 calibrated manifold, we need also the
following result on the Kähler isometries of a simply connected compact Calabi-
Yau manifold.
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Proposition 1.4.1 [101]. Let M be a simply connected compact Calabi-Yau man-
ifold of complex dimension n, and let f be an isometry of M . Then, f fixes the
Kähler cohomology class [ω] on M if and only if the order of f is finite.

Now, we have the following

Theorem 1.4.2. Let ( g̃, J,Φ = φ+ + i φ−) be the Calabi-Yau structure on the
Fermat quintic X defined by (1.26), and let G be the group of the Kähler isometries
of (X, g̃, J). Take ν ∈ [G,G]. Then, the mapping torus Xν of ν is a compact
formal calibrated and cocalibrated G2 manifold with first Betti number b1(Xν) = 1.

Proof. By Theorem 1.3.2 and Theorem 1.3.4, we know that the SU(3)-structure
( g̃, J,Φ = φ+ + i φ−) on X induces the closed and coclosed G2 form ϕ on Xν given
by

ϕ = ψ+ + ω̃ ∧ η.
In fact, ϕ is also coclosed because ∗ϕ = ψ− ∧ η + 1

2
ω̃2 is closed.

Since X is simply connected, (1.17) implies that b1(Xν) = 1. Moreover, using
again (1.17), and taking into account Lemma 1.2.13 and Proposition 1.4.1, we have
that the de Rham cohomology groups of Xν are

H0(Xν) = 〈1〉,
H1(Xν) = 〈[η]〉,
H2(Xν) = 〈[ω̃]〉,

H3(Xν) = 〈[η ∧ ω̃]〉 ⊕ ker
(
ν∗ − Id : H3(X)→ H3(X)

)
,

H4(Xν) = 〈[ω̃2]〉 ⊕ [η] ∧H3(X),

H5(Xν) = 〈[η ∧ ω̃2]〉,
H6(Xν) = 〈[ω̃3]〉,
H7(Xν) = 〈[η ∧ ω̃3]〉.

Note that φ+ and φ− define cohomology classes in H3(Xν) since φ+ and φ− are
closed ν∗-invariant forms on X, that is, the cohomology classes [φ+] and [φ−]
belong both to the space ker(ν∗ − Id : H3(X)→ H3(X)). More yet, if

x ∈ ker(ν∗ − Id : H3(X)→ H3(X)),

then [η] ∧ x is a non-zero cohomology class in H4(Xν). Indeed,

x 6∈ Im(ν∗ − Id : H3(X)→ H3(X)),

because, by Lemma 1.2.13, the eigenvalue λ = 1 of the map

ν∗ − Id : H3(X)→ H3(X)
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has multiplicity r = 1.
By Theorem 1.2.10, we know that Xν is 2-formal (in the sense of Definition

1.2.6). To prove that it is 3-formal, we see that the minimal model of Xν is the
differential graded algebra (ΛW,d), where W i = Ci +N i is such that, for i ≤ 3,

C1 = 〈a〉, N1 = 0,

C2 = 〈b〉, N2 = 0,

C3 ∼= ker
(
ν∗ − Id : H3(X) −→ H3(X)

)
, N3 = 0.

Since N i = 0 (i = 1, 2, 3), we conclude that Xν is 3-formal and, by Theorem 1.2.7,
Xν is formal.

Example 2. Compact calibrated non-flat G2 manifolds with b1 = 7.

Tomassini and Vezzoni in [122] construct a family of symplectic half-flat
structures (Jt, ω,Ψt) on the 6-dimensional torus T6, coinciding with the standard
Calabi-Yau structure for t = 0, but which is not Calabi-Yau for t 6= 0.

Theorem 1.4.3 [122]. There exists a family (Jt, ω,Ψt) of symplectic half-flat
structures on the 6-dimensional torus T6, such that (J0, ω,Ψ0) is the standard
Calabi-Yau structure on T6, but (Jt, ω,Ψt) is not integrable for t 6= 0. Such a
structure (Jt, ω,Ψt) is defined as follows:{

Jt(∂r) = e−tλr∂3+r,

Jt(∂3+r) = −etλr∂r ,

for r = 1, 2, 3, where ∂r = ∂
∂ xr

, and a = a(x1), b = b(x2), c = c(x3) are three smooth

functions on R6 such that

λ1 = b(x2)− c(x3), λ2 = −a(x1) + c(x3), λ3 = a(x1)− b(x2)

are Z6-periodic;
ω = dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6, (1.28)

and

Ψt = i (dx1 + ietλ1dx4) ∧ (dx2 + ietλ2dx5) ∧ (dx3 + ietλ3dx6) . (1.29)

In [122] it is proved that (T6, Jt, ω,Ψt) is a symplectic half-flat manifold, for
any t ∈ R, and Jt is non-integrable for t 6= 0; moreover, in this case (t 6= 0),
λ1, λ2, λ3 are non-constant. Note that the corresponding metric gt is given by

gt = e(λ2+λ3)tdx1 ⊗ dx1 + e(λ1+λ3)tdx2 ⊗ dx2 + e(λ1+λ2)tdx3 ⊗ dx3

+ e(2λ1+λ2+λ3)tdx4 ⊗ dx4 + e(λ1+2λ2+λ3)tdx5 ⊗ dx5 + e(λ1+λ2+2λ3)tdx6 ⊗ dx6.

Now, taking into account subsection 1.1.2 and, in particular, the expression of
the G2 form given by (1.10), we have
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Proposition 1.4.4. The 7-torus T7 has a family of closed G2 forms ϕt, inducing
a non-flat metric for t 6= 0,

ϕt = ψ+
t + ωt ∧ η,

where ωt,Ψt = ψ+
t + i ψ−t are given by (1.28) and (1.29), respectively, and η is the

volume form on S1.

In order to prove that 7-dimensional Lie algebras with b1 = 6 do not carry
closed G2 forms, we need the following restriction to the existence of closed G2-
structures proved in [38].

Proposition 1.4.5 [38]. Let g be a 7-dimensional Lie algebra. If there is a non-
zero X in g such that (ιXϕ)3 = 0 for every closed 3-form on g, then g has no
closed G2-structures.

Proposition 1.4.6. Let g be a 7-dimensional Lie algebra with b1 = 6. Then, g
cannot admit closed G2 forms.

Proof. Since b1 = 6, there exists a basis {e1, . . . , e7} of g∗ such that g is defined
by the equations

dej = 0, j = 1, . . . , 6,

de7 = β + e7 ∧ α,
(1.30)

where β ∈ Λ2(e1, . . . , e6) and α ∈ Λ1(e1, . . . , e6). (Note that g has to be solvable
because dim [g, g] = 1.) Suppose that g has a closed G2 form ϕ. Then we can
write

ϕ = γ + e7 ∧ δ,

where γ ∈ Λ3(e1, . . . , e6) and δ ∈ Λ2(e1, . . . , e6). Using (1.30), we see that d γ = 0,
since γ ∈ Λ3(e1, . . . , e6). Also, d δ = 0 because δ ∈ Λ2(e1, . . . , e6). Then, the
condition dϕ = 0 is equivalent to de7 ∧ δ = 0, that is, to

(β + e7 ∧ α) ∧ δ = 0.

This gives
β ∧ δ = 0, α ∧ δ = 0.

Since δ ∈ Λ2(e1, . . . , e6), γ ∈ Λ3(e1, . . . , e6) and ϕ = γ + e7 ∧ δ, we have that
δ = ιe7ϕ. Now, by Proposition 1.4.5, δ is non-degenerate, that is, δ3 6= 0. Moreover,
α ∈ Λ1(e1, . . . , e6) is a 1-form, so the condition α ∧ δ = 0 implies that α = 0 and
hence g has to be nilpotent. But, by the Conti-Fernández classification [38], there
are no nilpotent Lie algebras with b1 = 6 and admitting closed G2-structure.
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Chapter 2

Six dimensional symplectic
half-flat solvable Lie algebras

“La géométrie est l’art de raisonner juste sur des figures fausses.”
René Descartes

In order to construct examples of 7-dimensional manifolds with a closed G2

form, a natural place to look is left invariant symplectic half-flat structures on
6-dimensional Lie groups. According to Magnin’s classification [100], there are 34
isomorphism classes of nilpotent Lie algebras, of which exactly 3 (including the
Abelian Lie algebra) admit symplectic half-flat structures [40].

In this Chapter, we give a complete classification of 6-dimensional solvable Lie
algebras for which the corresponding simply connected solvable Lie group has left
invariant symplectic half-flat structure.

Taking into account the classification of 6-dimensional decomposable Lie alge-
bras with half-flat structures given in [115] and [65], we show that there are 21
(non-nilpotent) solvable Lie algebras as well as 4 one-parameter families of solvable
Lie algebras having both half-flat structures and symplectic forms. Then, we prove
that only 2 of those 21 Lie algebras and only 1 of the 4 one-parameter families
carry symplectic half-flat structures (Propositions 2.2.1, 2.2.2 and 2.2.3).

For indecomposable Lie algebras we study separately unimodular and non-
unimodular ones. For unimodular Lie algebras we consider the classification given
in [99] of 6-dimensional unimodular Lie algebras with symplectic forms. We show
that only 3 of those Lie algebras have symplectic half-flat structures (Proposi-
tion 2.3.1). Non-unimodular indecomposable Lie algebras are studied taking into
account the dimension of their nilradical. For those with 5-dimensional nilradi-
cal we consider the classification given in [66] of 6-dimensional Lie algebras (with
5-dimensional nilradical) endowed with half-flat structures. On the other hand,
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we use the list of Turkowski [124] of the 6-dimensional solvable Lie algebras with
4-dimensional nilradical. For these latter Lie algebras, there is no classification of
those with a half-flat structure. In Propositions 2.4.1 and 2.4.2, we determine a
symplectic half-flat structure on 4 non-unimodular indecomposable (non-nilpotent)
solvable Lie algebras and on 1 one-parameter family. To prove that the remaining
Lie algebras do not admit such a structure we consider, in section 2.1, two ob-
structions to the existence of symplectic half-flat structures on a Lie algebra. All
these results appear in [62].

2.1 Obstructions

In this section we give some obstructions to the existence of symplectic half-flat
structures on a 6-dimensional Lie algebra, and use them in the following sections
to classify the solvable Lie algebras with such a structure. To this end, we need
the characterization of SU(3)-structures given in [82, 83] in terms of certain stable
forms which satisfy some additional compatibility conditions as we explain in the
following:

Definition 2.1.1 [82, 83]. A 3-form ρ on a 6-dimensional oriented vector space
(V, ν) is stable if its orbit under the action of the group GL(V ) of the automor-
phisms of V is open.

If (V, ν) is a 6-dimensional oriented vector space, we have the isomorphism

κ : Λ5V ∗ −→ V ⊗ Λ6V ∗

η 7−→ X ⊗ ν,

where X ∈ V is such that η = ιXν. Then, for any 3-form ρ on (V, ν), we have the
linear transformation Kρ : V −→ V ⊗ Λ6V ∗ given by

Kρ(X) = κ(ιXρ ∧ ρ).

Thus, we also have λ(ρ) ∈ (Λ6V ∗)2 defined by

λ(ρ) =
1

6
trK2

ρ .

Moreover, λ(ρ) enables us to construct a volume form φ(ρ) on V as

φ(ρ) =
√
|λ(ρ)| ∈ Λ6V ∗.

Here, we would like to note that for any one-dimensional vector space L, an element
u ∈ L ⊗ L is defined to be positive (u > 0) if u = s ⊗ s for some s ∈ L; and u
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is negative if −u > 0. Therefore, we have well-defined square roots of positive
elements in L⊗ L.

In [83] it is shown that the stability of ρ is characterized by the open condition
λ(ρ) 6= 0 or, equivalently, by φ(ρ) 6= 0.

It is well known that a 2-form F ∈ Λ2V ∗ is stable if and only if it is non-
degenerate, that is, if

φ(F ) =
1

6
F 3 6= 0.

Definition 2.1.2 [82, 83]. A pair of stable forms (F, ρ) ∈ Λ2V ∗ × Λ3V ∗ is called
compatible if

F ∧ ρ = 0,

and normalized if
φ(ρ) = 2φ(F ).

Note that if λ(ρ) < 0, the endomorphism

Jρ =
1

φ(ρ)
Kρ

defined by a stable 3-form ρ, gives rise to an almost complex structure. The action
of J∗ρ on 1-forms is given by the formula

J∗ρα(X)φ(ρ) = α ∧ ιXρ ∧ ρ. (2.1)

Thus, such a pair (F, ρ) induces a pseudo Euclidean metric, g(·, ·) = F (Jρ·, ·) which
satisfies on 1-forms the identity

α ∧ J∗ρβ ∧ F 2 =
1

2
g(α, β)F 3, (2.2)

for α, β ∈ V ∗.
For us the relevant result is the following characterization of SU(3)-structures.

Proposition 2.1.3 [82, 83]. An SU(3)-structure on a 6-dimensional oriented vec-
tor space (V, ν) is determined by a pair of compatible and normalized stable forms
(ω, ψ+) ∈ Λ2V ∗ × Λ3V ∗ inducing a positive-definite metric and with λ(ψ+) < 0.

A symplectic half-flat structure on an oriented Lie algebra g is an SU(3)-
structure (ω, ψ+) such that dω = 0 and dψ+ = 0, where d denotes the Chevalley-
Eilenberg differential on the dual g∗.

Notice that if (ω, ψ+) defines an SU(3)-structure, ω is non-degenerate and
Ψ = ψ+ + i ψ− is a complex volume form.

Let g be a 6-dimensional Lie algebra with an SU(3)-structure (ω, ψ+). We
denote by Zk(g) the space of closed k-forms on g, by S(g) the space of symplectic
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forms on g, and by Ann(ψ+) the annihilator of ψ+ in the exterior algebra Λ∗g∗,
that is

Zk(g) = {θ ∈ Λkg∗|dθ = 0},
S(g) = {ω ∈ Z2(g) | ω ∧ ω ∧ ω 6= 0},

Ann(ψ+) = {θ ∈ Λ∗g∗|θ ∧ ψ+ = 0}.

In [65] it is proved the following obstruction to the existence of half-flat struc-
tures on Lie algebras.

Proposition 2.1.4 [65]. Let g be a 6-dimensional Lie algebra with a volume form
ν ∈ Λ6g∗. Then, g does not admit any half-flat SU(3)-structures if there is a
non-zero 1-form α ∈ g∗ satisfying

α ∧ J̃∗ρα ∧ σ = 0,

for all closed 3-forms ρ ∈ Λ3g∗ and all closed 4-forms σ ∈ Λ4g∗, where J̃∗ρα is
given by

J̃∗ρα(X)ν = α ∧ (ιXρ) ∧ ρ, (2.3)

for each X ∈ g.

Proposition 2.1.5. Let g be a 6-dimensional Lie algebra. Then g has no sym-
plectic half-flat structures if one of the following conditions is satisfied:

1. There is a non-zero 1-form α on g such that

α ∧ J̃∗ρα ∧ F 2 = 0,

for each F ∈ S(g) ∩ Ann(ρ), and for each 0 6= ρ ∈ Z3(g).

2. There are some X, Y ∈ g such that

F
(
J̃ρ(X), X

)
· F
(
J̃ρ(Y ), Y

)
≤ 0,

for any F ∈ S(g) ∩ Ann(ρ), and for any 0 6= ρ ∈ Z3(g).

Proof. Suppose that g has a symplectic half-flat structure (ω, ψ+). From (2.3) we
have that for any 1-form α on g and any X in g,

J∗ψ+
α(X)ω3 = 3α ∧ (ιXψ+) ∧ ψ+.

On the other hand, if ν denotes a volume form on g∗

J̃∗ψ+
α(X)ν = α ∧ (ιXψ+) ∧ ψ+.
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Therefore, J∗ψ+
and J̃∗ψ+

are proportional since

J̃∗ψ+
α(X)ν =

1

3
J∗ψ+

α(X)ω3.

Now, from (2.2) it follows that if the condition of the part (1.) is satisfied,
then the induced metric by (ω, ψ+) is degenerate since there exists α ∈ g∗ such
that

g(α, α) = 0.

So there is no symplectic half-flat structure on g.
To prove part (2.) we use that the metric induced by an SU(3)-structure

(ω, ψ+) is determined by g(·, ·) = ω(·, Jψ+·). Hence, condition (2.) implies that
there exist X, Y on g such that

g(X,X) · g(Y, Y ) ≤ 0,

and thus g is not positive-definite.

Moreover, from Proposition 1.4.5, we obtain the following obstruction to the
existence of symplectic half-flat structures on Lie algebras.

Lemma 2.1.6. Let g be a 6-dimensional Lie algebra. If there exists a non-zero
vector X of the Lie algebra h = g⊕ R such that for all closed 3-forms φ on h the
2-form ιXφ is degenerate, that is

(ιXφ)3 = 0,

then g has no symplectic half-flat structures.

Proof. We know that a symplectic half-flat structure (ω, ψ+) on a 6-dimensional
Lie algebra g induces the closed G2 form ϕ = ω ∧ dt + ψ+ on the Lie algebra
h = g ⊕ R, where t is the coordinate of R. Suppose that for any closed 3-form φ
on h, there exists X ∈ h such that (ιXφ)3 = 0. Then, by Proposition 1.4.5, h does
not admit closed G2 forms, and so g has no symplectic half-flat structures.

2.2 Decomposable symplectic half-flat Lie alge-

bras

We determine the 6-dimensional decomposable and (non-nilpotent) solvable Lie
algebras admitting symplectic half-flat structure. A Lie algebra g is said to be
decomposable if g is the direct sum g = g1 ⊕ g2 of two ideals g1 and g2 of g.

From now on, we use
p⊕ q,

to denote a decomposable Lie algebra g = g1 ⊕ g2 such that dim(g1) = p and
dim(g2) = q.
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2.2.1 3⊕ 3 Lie algebras

We use the classification of the 6-dimensional solvable Lie algebras with half-flat
structures given in [115]. Then we see that the 3⊕3 decomposable (non-nilpotent)
solvable Lie algebras which have both symplectic and half-flat structures are those
appearing in the following Table 2.1, where F denotes a symplectic form and
(ω, ψ+) a half-flat structure.

Table 2.1: 3 ⊕ 3 decomposable (non-nilpotent) solvable Lie algebras
admitting both symplectic and half-flat structures.

g str. equations half-flat str. simplectic str.
e(2)⊕ e(2) (0,−e13, e12, 0,−e46, e45) ω = 2e14 + e25 + e36 F = e14 + e23 + e56

ψ+ = e123 − e156 + e246 − e345
+e126 − e135 + e234 − e456

e(1, 1)⊕ e(1, 1) (0,−e13,−e12, 0,−e46,−e45) ω = e14 + e23 + 2e56 F = e14 + e23 + 2e56

ψ+ = e125 − e126 − e135 − e136
+e245 + e246 + e345 − e346

e(2)⊕ R3 (0,−e13, e12, 0, 0, 0) ω = e14 + e25 + e36 F = e14 + e23 + e56

ψ+ = e126 − e135 + e234 − e456
e(1, 1)⊕ R3 (0,−e13,−e12, 0, 0, 0) ω = e14 + e25 + e36 F = e14 + e23 + e56

ψ+ = e126 − e135 + e234 − e456
e(2)⊕ e(1, 1) (0,−e13, e12, 0,−e46,−e45) ω = e14 + e25 + e36 F = e14 + e23 + e56

ψ+ = −2e234 + e135 − e126
−e246 − e345 + e456

e(2)⊕ h (0,−e13, e12, 0, 0, e45) ω = e14 + e25 + e36 F = e14 + e23 + e56

ψ+ = −e234 + 5
4
e135 − e126

+e345 + e456

e(1, 1)⊕ h (0,−e13,−e12, 0, 0, e45) ω = e14 + e25 + e36 F = e14 + e23 + e56

ψ+ = −e234 + 5
4
e135 − e126

−e345 + e456

e(2)⊕ r2 ⊕ R (0,−e13, e12, 0,−e45, 0) ω = e12 + e34 − e56 F = e16 + e23 + e45

ψ+ = e236 − e245 + e135 + e146

e(1, 1)⊕ r2 ⊕ R (0,−e13,−e12, 0,−e45, 0) ω = e12 + e34 − e56 F = e16 + e23 + e45

ψ+ = e236 − e245 + e135 + e146

Note that, in Table 2.1, the only 3 ⊕ 3 non-unimodular solvable Lie algebras
are e(2)⊕ r2 ⊕ R and e(1, 1)⊕ r2 ⊕ R.

Proposition 2.2.1. Let g be a 6-dimensional decomposable and (non-nilpotent)
solvable Lie algebra such that g = g1⊕ g2, where dim(g1) = dim(g2) = 3. Then, g
has symplectic half-flat structure if and only if g = e(1, 1)⊕ e(1, 1).

Proof. First we observe that in [122] it is proved that the Lie algebra e(1, 1)⊕e(1, 1)
defined by the structure equations

e(1,1)⊕ e(1,1) = (0,−e13,−e12,0,−e46,−e45),

has a symplectic half-flat structure. The differential forms ω and ψ+ appearing in
Table 2.1 are closed and determine an SU(3)-structure since with the change of
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basis given by

f 1 = e1, f 2 = e4, f 3 = e2, f 4 = e3, f 5 = e5 − e6, f 6 = e5 + e6,

the forms ω and ψ+ have the following expression

ω = f 12 + f 34 + f 56,

ψ+ = f 135 − f 146 − f 236 − f 245.

Next, we show that no other Lie algebras included in Table 2.1 have a sym-
plectic half-flat structure. For the following Lie algebras we use Proposition 2.1.5
(2.) for suitable vectors X and Y of the Lie algebra.

• For the Lie algebra e(2)⊕ e(2) defined by the structure equations

e(2)⊕ e(2) = (0,−e13, e12,0,−e46, e45),

the spaces Zk
(
e(2)⊕ e(2)

)
(k = 2, 3) are:

Z2
(
e(2)⊕ e(2)

)
= 〈e12, e13, e14, e23, e45, e46, e56〉,

and

Z3
(
e(2)⊕ e(2)

)
=〈e123, e124, e134, e145, e146, e156, e234, e136 + e245,

− e135 + e246,−e126 + e345, e125 + e346, e456〉.

Thus, the expression of any pair (F, ρ) ∈ Z2
(
e(2)⊕ e(2)

)
×Z3

(
e(2)⊕ e(2)

)
is

F = b1e
12 + b2e

13 + b3e
14 + b4e

23 + b5e
45 + b6e

46 + b7e
56,

and

ρ = a1e
123 + a2e

124 + a11e
125 − a10e

126 + a3e
134 − a9e

135 + a8e
136 + a4e

145

+ a5e
146 + a6e

156 + a7e
234 + a8e

245 + a9e
246 + a10e

345 + a11e
346 + a12e

456,

where ai and bj are real numbers for 1 ≤ i ≤ 12 and 1 ≤ j ≤ 7. From these
expressions of F and ρ, we have

g(e5, e5) · g(e6, e6) = F (J̃ρe5, e5) · F (J̃ρe6, e6) = −(a3a4 + a6a7)2b2
7 ≤ 0.

Then, Proposition 2.1.5 (2.) applies for X = e5 and Y = e6. Thus, e(2)⊕e(2)
has no symplectic half-flat structure.
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• For
e(2)⊕ R3 = (0,−e13, e12,0,0,0),

the spaces of closed 2-forms and 3-forms are

Z2
(
e(2)⊕ R3

)
= 〈e12, e13, e14, e15, e16, e23, e45, e46, e56〉,

and

Z3
(
e(2)⊕ R3

)
=〈e123, e124, e125, e126, e134, e135, e136,

e145, e146, e156, e234, e235, e236, e456〉.

Then, if (F, ρ) ∈ Z2
(
e(2)⊕ R3

)
× Z3

(
e(2)⊕ R3

)
we have

F = b1e
12 + b2e

13 + b3e
14 + b4e

15 + b5e
16 + b6e

23 + b7e
45 + b8e

46 + b9e
56,

ρ = a1e
123 + a2e

124 + a3e
125 + a4e

126 + a5e
134 + a6e

135 + a7e
136 + a8e

145

+ a9e
146 + a10e

156 + a11e
234 + a12e

235 + a13e
236 + a14e

456,

where ai and bj are real numbers. These expressions of F and ρ imply that

F (J̃ρe2, e2) = 0.

Again, Proposition 2.1.5 (part (2.)) applies for X = Y = e2.

• For e(1, 1)⊕ R3 defined by

e(1,1)⊕ R3 = (0,−e13,−e12,0,0,0),

we have

Z2
(
e(1, 1)⊕ R3

)
= 〈e12, e13, e14, e15, e16, e23, e45, e46, e56〉,

and

Z3
(
e(1, 1)⊕ R3

)
=〈e123, e124, e125, e126, e134, e135, e136, e145, e146,

e156, e234, e235, e236, e456〉.

Then, any pair (F, ρ) ∈ Z2
(
e(1, 1)⊕ R3

)
× Z3

(
e(1, 1)⊕ R3

)
is of the form

F = b1e
12 + b2e

13 + b3e
14 + b4e

15 + b5e
16 + b6e

23 + b7e
45 + b8e

46 + b9e
56,

ρ = a1e
123 + a2e

124 + a3e
125 + a4e

126 + a5e
134 + a6e

135 + a7e
136 + a8e

145

+ a9e
146 + a10e

156 + a11e
234 + a12e

235 + a13e
236 + a14e

456,

for any real numbers ai and bj. Now we obtain that

F (J̃ρe2, e2) = 0.

Hence, it is sufficient to consider X = Y = e2.
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• Consider
e(2)⊕ e(1,1) = (0,−e13, e12,0,−e46,−e45).

The spaces Zk
(
e(2)⊕ e(1, 1)

)
, for k = 2, 3, are

Z2
(
e(2)⊕ e(1, 1)

)
= 〈e12, e13, e14, e23, e45, e46, e56〉,

and

Z3
(
e(2)⊕ e(1, 1)

)
=〈e123, e124, e134, e145, e146, e156, e234,

− e136 + e245,−e135 + e246, e126 + e345, e125 + e346, e456〉.

Then, any pair (F, ρ) ∈ Z2
(
e(2)⊕e(1, 1)

)
×Z3

(
e(2)⊕e(1, 1)

)
has the following

expression

F = b1e
12 + b2e

13 + b3e
14 + b4e

23 + b5e
45 + b6e

46 + b7e
56,

ρ = a1e
123 + a2e

124 + a3e
134 + a4e

145 + a5e
146 + a6e

156 + a7e
234

+ a8(−e136 + e245) + a9(−e135 + e246) + a10(e126 + e345)

+ a11(e125 + e346) + a12e
456,

and we obtain that

F (J̃ρe2, e2) · F (J̃ρe3, e3) = −4(a8a10 − a9a11)2b2
4 ≤ 0.

Thus, we take X = e2 and Y = e3 in Proposition 2.1.5 (2.).

• The Lie algebra e(2)⊕ h defined by the structure equations

e(2)⊕ h = (0,−e13, e12,0,0, e45),

is such that

Z2
(
e(2)⊕ h

)
= 〈e12, e13, e14, e15, e23, e45, e46, e56〉,

and

Z3
(
e(2)⊕ h

)
=〈e123, e124, e125, e134, e135, e145, e146, e156,

e234, e235, e136 + e245,−e126 + e345, e456〉.

Then, any pair (F, ρ) ∈ Z2
(
e(2)⊕ h

)
× Z3

(
e(2)⊕ h

)
is given by

F = b1e
12 + b2e

13 + b3e
14 + b4e

15 + b5e
23 + b6e

45 + b7e
46 + b8e

56,
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ρ = a1e
123 + a2e

124 + a3e
125 + a4e

134 + a5e
135 + a6e

145 + a7e
146 + a8e

156

+ a9e
234 + a10e

235 + a11(e136 + e245) + a12(−e126 + e345) + a13e
456.

It is not necessary to impose the condition F ∧ ρ = 0 since

F (J̃ρe6, e6) = 0.

Hence, we take X = Y = e6.

• Take the Lie algebra

e(1,1)⊕ h = (0,−e13,−e12,0,0, e45).

We have

Z2
(
e(1, 1)⊕ h

)
= 〈e12, e13, e14, e15, e23, e45, e46, e56〉,

and

Z3
(
e(1, 1)⊕ h

)
=〈e123, e124, e125, e134, e135, e145, e146, e156,

e234, e235, e136 + e245, e126 + e345, e456〉.

Consequently, any pair (F, ρ) ∈ Z2
(
e(1, 1) ⊕ h

)
× Z3

(
e(1, 1) ⊕ h

)
can be

expressed as

F = b1e
12 + b2e

13 + b3e
14 + b4e

15 + b5e
23 + b6e

45 + b7e
46 + b8e

56,

ρ = a1e
123 + a2e

124 + a3e
125 + a4e

134 + a5e
135 + a6e

145 + a7e
146 + a8e

156

+ a9e
234 + a10e

235 + a11(e136 + e245) + a12(e126 + e345) + a13e
456.

Exactly as for e(2)⊕ h we also obtain that

F (J̃ρe6, e6) = 0,

Therefore, we can consider X = Y = e6.

For the two Lie algebras e(2)⊕ r2⊕R and e(1, 1)⊕ r2⊕R we use Proposition
2.1.5 (1.) for an appropriate 1-form α on the Lie algebra.
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• For e(2)⊕ r2 ⊕ R,

e(2)⊕ r2 ⊕ R = (0,−e13, e12,0,−e45,0),

the spaces Zk (k = 2, 3) are

Z2
(
e(2)⊕ r2 ⊕ R

)
= 〈e12, e13, e14, e16, e23, e45, e46〉,

and

Z3
(
e(2)⊕ r2 ⊕ R

)
=〈e123, e124, e126, e134, e136, e145, e146, e234,

e236,−e135 + e245, e125 + e345, e456〉.

Thus, any pair (F, ρ) ∈ Z2
(
e(2)⊕ r2 ⊕ R

)
× Z3

(
e(2)⊕ r2 ⊕ R

)
is given by

F = b1e
12 + b2e

13 + b3e
14 + b4e

16 + b5e
23 + b6e

45 + b7e
46,

and

ρ = a1e
123 + a2e

124 + a3e
126 + a4e

134 + a5e
136 + a6e

145 + a7e
146 + a8e

234

+ a9e
236 + a10(−e135 + e245) + a11(e125 + e345) + a12e

456.

An easy computation shows that

J̃∗ρe
4 = (2a3a10 + 2a5a11) e1 + 2a9a11e

2 − 2a9a10e
3

+ (a6a9 − a5a10 + a3a11 − a1a12) e4,

for arbitrary real numbers ai and bj. So,

e4 ∧ J̃∗ρe4 ∧ F 2 = 0.

Hence, we can apply Proposition 2.1.5 (1.) with α = e4.

• For e(1, 1)⊕ r2 ⊕ R,

e(1,1)⊕ r2 ⊕ R = (0,−e13,−e12,0,−e45,0),

the spaces Zk (k = 2, 3) are

Z2
(
e(1, 1)⊕ r2 ⊕ R

)
= 〈e12, e13, e14, e16, e23, e45, e46〉,

and

Z3
(
e(1, 1)⊕ r2 ⊕ R

)
=〈e123, e124, e126, e134, e136, e145, e146, e234,

e236,−e135 + e245,−e125 + e345, e456〉.
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Then, any pair (F, ρ) ∈ Z2
(
e(1, 1) ⊕ r2 ⊕ R

)
× Z3

(
e(1, 1) ⊕ r2 ⊕ R

)
can be

expressed as follows

F = b1e
12 + b2e

13 + b3e
14 + b4e

16 + b5e
23 + b6e

45 + b7e
46,

and

ρ = a1e
123 + a2e

124 + a3e
126 + a4e

134 + a5e
136 + a6e

145 + a7e
146 + a8e

234

+ a9e
236 + a10(−e135 + e245) + a11(−e125 + e345) + a12e

456.

Now we have

J̃∗ρe
4 = (2a3a10 + 2a5a11) e1 − 2a9a11e

2 − 2a9a10e
3

+ (a6a9 − a5a10 + a3a11 − a1a12) e4,

for arbitrary real numbers ai and bj. So,

e4 ∧ J̃∗ρe4 ∧ F 2 = 0.

Hence, we can apply Proposition 2.1.5 (1.) with α = e4.

2.2.2 4⊕ 2 Lie algebras

According to [65], there are 6 (non-nilpotent) solvable Lie algebras as well as a
one-parameter family of type 4⊕ 2 with half-flat structures. Below, in Table 2.2,
we consider only those also admitting symplectic forms and such that cannot be
decomposed as 3⊕ 3. As usual, we denote by F a symplectic form and by (ω, ψ+)
a half-flat structure.

Table 2.2: 4 ⊕ 2 decomposable (non-nilpotent) solvable Lie algebras ad-
mitting both symplectic and half-flat structures.

g str. equations half-flat str. symplectic str.
A4,1 ⊕ r2 (e24, e34, 0, 0, 0, e56) ω = −e16 + e25 − e34 F = e14 + e23 + e56

ψ+ = e123 − e145 + e156

−e246 + e345 − 2e356

A
− 1

2
4,9 ⊕ r2 ( 1

2
e14 + e23, e24,− 1

2
e34, 0, 0, e56) ω = e16 − 3e24 + 2e25 + e35 F = e13 + e24 + e56

ψ+ =
√

3(e124 + 2e134 − e135
+e146 − 2e156 + 2e236

+4e245 − e345 + 29
2
e456)

A4,12 ⊕ r2 (e13 + e24,−e14 + e23, 0, 0, 0, e56) ω = e16 − 2e23 + e25 + e34 − e36
ψ+ = e123 + 2e134 − e136 + e145 F = e13 + e24 + e56

+e156 − e235 − e246 + 2e356

r2 ⊕ r2 ⊕ r2 (0,−e12, 0,−e34, 0,−e56) ω = e12 − e23 − e25 − e35 + e46 F = e12 + e34 + e56

ψ+ = e124 − e126 + 2e134 + 3e156

−e234 + e256 + e345 + 2e356



Decomposable symplectic half-flat Lie algebras 59

We should remark that all the Lie algebras appearing in Table 2.2 are non-
unimodular.

Proposition 2.2.2. Let g be a 6-dimensional decomposable and (non-nilpotent)
solvable Lie algebra such that g = g1⊕g2, where dim(g1) = 4, dim(g2) = 2. Then,
g has no symplectic half-flat structure.

Proof. We use Proposition 2.1.5 (1.) for an appropriate 1-form α on the Lie
algebra.

• For the Lie algebra

A4,1 ⊕ r2 = (e24, e34,0,0,0, e56),

we have
Z2
(
A4,1 ⊕ r2

)
= 〈e14, e15, e24, e34, e45, e56〉,

and

Z3
(
A4,1 ⊕ r2

)
=〈e124, e134, e145, e156, e234, e245,−e246 + e256,

e345,−e346 + e356, e456〉.

Then, any pair (F, ρ) ∈ Z2
(
A4,1 ⊕ r2

)
× Z3

(
A4,1 ⊕ r2

)
is of the form

F = b1e
14 + b2e

15 + b3e
24 + b4e

34 + b5e
45 + b6e

56,

ρ = a1e
124 + a2e

134 + a3e
145 + a4e

156 + a5e
234 + a6e

245

− a7e
246 + a7e

256 + a8e
345 − a9e

346 + a9e
356 + a10e

456,

for any real numbers ai and bj. So,

e4 ∧ J̃∗ρe4 ∧ F 2 = 0.

Hence, we can apply Proposition 2.1.5 (1.) with α = e4.

• The Lie algebra A
− 1

2
4,9 ⊕ r2 with structure equations

A
−1

2
4,9 ⊕ r2 =

(1

2
e14 + e23, e24,−1

2
e34,0,0, e56

)
,

is such that

Z2
(
A
− 1

2
4,9 ⊕ r2

)
= 〈e13,

1

2
e14 + e23, e24, e34, e45, e56〉,
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and

Z3
(
A
− 1

2
4,9 ⊕ r2

)
=〈e124, e134, e135, e234,

1

2
e145 + e235,

1

2
e146 − e156 + e236,

e245,−e246 + e256, e345,
1

2
e346 + e356, e456〉.

Then, any pair (F, ρ) ∈ Z2
(
A
− 1

2
4,9 ⊕ r2

)
× Z3

(
A
− 1

2
4,9 ⊕ r2

)
is given by

F = b1e
13 +

b2

2
e14 + b2e

23 + b3e
24 + b4e

34 + b5e
45 + b6e

56,

ρ = a1e
124 + a2e

134 + a3e
135 +

a5

2
e145 +

a6

2
e146 − a6e

156 + a4e
234 + a5e

235

+ a6e
236 + a7e

245 − a8e
246 + a8e

256 + a9e
345 +

a10

2
e346 + a10e

356 + a12e
456.

Therefore, the expression of J̃∗ρe
4 is

J̃∗ρe
4 = 2a3a6e

3 +(a4a6 + a2a8 − a3a8 − a1a10) e4 +(2a5a6 + 2a3a8) e5 +2a2
6e

6,

so that
e4 ∧ J̃∗ρe4 ∧ F 2 = 0.

Thus, we apply Proposition 2.1.5 (1.) with α = e4.

• For A4,12 ⊕ r2, that is,

A4,12 ⊕ r2 = (e13 + e24,−e14 + e23,0,0,0, e56),

the spaces Zk
(
A4,12 ⊕ r2

)
, with k = 2, 3, are

Z2
(
A4,12 ⊕ r2

)
= 〈e13 + e24,−e14 + e23, e34, e35, e45, e56〉,

and

Z3
(
A4,12 ⊕ r2

)
=〈e123, e134, e234,−e145 + e235, e135 + e245, e136 − e156 + e246,

e146 − e236 + e256, e345, e356, e456〉.

Thus, any pair (F, ρ) ∈ Z2
(
A4,12 ⊕ r2

)
× Z3

(
A4,12 ⊕ r2

)
has the following

expression

F = b2e
13 − b1e

14 + b1e
23 + b2e

24 + b3e
34 + b4e

35 + b5e
45 + b6e

56,

ρ = a1e
123 + a2e

134 + a5e
135 + a6e

136 − a4e
145 + a7e

146 − a6e
156 + a3e

234

+ a4e
235 − a7e

236 + a5e
245 + a6e

246 + a7e
256 + a8e

345 + a9e
356 + a10e

456.
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So,

e3 ∧ J̃∗ρe3 ∧ F 2 = 0,

that is, we can apply Proposition 2.1.5 (1.) with α = e3.

• The Lie algebra r2 ⊕ r2 ⊕ r2 defined by

r2 ⊕ r2 ⊕ r2 = (0,−e12,0,−e34,0,−e56)

is such that

Z2
(
r2 ⊕ r2 ⊕ r2

)
= 〈e12, e13, e15, e34, e35, e56〉,

and

Z3
(
r2 ⊕ r2 ⊕ r2

)
=〈e123, e125, e134, e135, e156,−e124 + e234,

− e126 + e256, e345, e356,−e346 + e456〉.

Then, any pair (F, ρ) ∈ Z2(r2 ⊕ r2 ⊕ r2)× Z3(r2 ⊕ r2 ⊕ r2) is given by

F = b1e
12 + b2e

13 + b3e
15 + b4e

34 + b5e
35 + b6e

56,

ρ = a1e
123 − a6e

124 + a2e
125 − a7e

126 + a3e
134 + a4e

135 + a5e
156

+ a6e
234 + a7e

256 + a8e
345 − a10e

346 + a9e
356 + a10e

456.

Hence

(e1 + e3) ∧ J̃∗ρ (e1 + e3) ∧ F 2 = 0,

so, we can apply Proposition 2.1.5 (1.) with α = e1 + e3.

2.2.3 5⊕ 1 Lie algebras

According to Theorem 1.1.9, the unique (non-Abelian) nilpotent Lie algebra which
is decomposable and has symplectic half-flat structure is the Lie algebra defined by
(0, 0, 0, 0, 12, 13). Thus, we use the classification given in [65] of 5⊕1 decomposable
(non-nilpotent) solvable Lie algebras which have half-flat structure. There it is
proved that there are 13 (non-nilpotent) solvable Lie algebras and 4 one-parameter
families with such a structure. In the following table we describe which of them
also admit a symplectic form.
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Table 2.3: 5 ⊕ 1 decomposable (non-nilpotent) solvable Lie algebras ad-
mitting both symplectic and half-flat structures.

g str. equations half-flat str. symplectic str.

A−1,β,−β
5,7 ⊕ R (e15,−e25, βe35,−βe45, 0, 0) ω = −e13 + e24 + e56 F = e12 + e34 + e56

0 < β < 1 ψ+ = e126 + e145 + e235 + e346

A−1,−1,1
5,7 ⊕ R (e15,−e25,−e35, e45, 0, 0) ω = −e13 + e24 + e56 F = −e13 + e24 + e56

ψ+ = e126 + e145 + e235 + e346

A−1
5,8 ⊕ R (e25, 0, e35,−e45, 0, 0) ω = −e13 + e24 + e56 F = e12 + e34 + e56

ψ+ = e126 + e145 + e235 + e346

A−1,0,γ
5,13 ⊕ R (e15,−e25, γe45,−γe35, 0, 0) ω = −e13 + e24 + e56 F = e12 + e34 + e56

γ > 0 ρ = e126 + e145 + e235 + e346

A0
5,14 ⊕ R (e25, 0, e45,−e35, 0, 0) ω = −e13 + e24 + e56 F = e12 + e34 + e56

ψ+ = e126 + e145 + e235 + e346

A−1
5,15 ⊕ R (e15 + e25, e25,−e35 + e45, ω = −e13 + e24 + e56 F = −e14 + e23 + e56

−e45, 0, 0) ψ+ = e125 + e146 − e236 − e345

A0,0,γ
5,17 ⊕ R (e25,−e15, γe45,−γe35, 0, 0) ω = −e13 + e24 + e56 F = e12 + e34 + e56

0 < γ < 1 ρ = e126 + e145 + e235 + e346

Aα,−α,15,17 ⊕ R (αe15 + e25,−e15 + αe25, ω = e13 + e24 + e56 F = e13 + e24 + e56

α ≥ 0 −αe35 + e45,−e35 − αe45, 0, 0) ρ = e125 − e146 + e236 − e345
A0

5,18 ⊕ R (e25 + e35,−e15 + e45, e45, ω = e12 − e34 − e56 F = e13 + e24 + e56

−e35, 0, 0) ψ+ = e136 + e145 − e235 + e246

A−1,2
5,19 ⊕ R (−e15 + e23, e25,−2e35, ω = e13 + e24 − 2e25 − e56 F = e12 + e34 + e56

2e45, 0, 0) ψ+ = −e126 + e145 − e234
e346 − e356

A5,36 ⊕ R (e14 + e23, e24 − e25, ω = 1
12
e12 + e13 + e16 F = e14 + e23 + e56

e35, 0, 0, 0) − 1
4
e24 + e46 + e56

ψ+ = − 1
6
e124 + 1

2
e125 − e134 − e135

+4e146 + 4e236 + 3e345 + 3e456

A5,37 ⊕ R (2e14 + e23, e24 + e35, ω = − 1
3
e16 + 3e24 + e35 F = 2e14 + e23 + e56

−e25 + e34, 0, 0, 0) ψ+ = −e125 + 3e134 + 2e146

e236 + 6e345 − 13
3
e456

Note that, in Table 2.3, the only 5 ⊕ 1 non-unimodular solvable Lie algebras
are A5,36 ⊕ R and A5,37 ⊕ R.

Proposition 2.2.3. Let g be a 6-dimensional decomposable and (non-nilpotent)
solvable Lie algebra such that g = g1 ⊕ g2, with dim(g1) = 5 and dim(g2) = 1.
Then, g has symplectic half-flat structure if and only if g is either g = A−1,−1,1

5,7 ⊕R
or g = Aα,−α,15,17 ⊕ R, with α a non-negative real number.

Proof. We show first that A−1,−1,1
5,7 ⊕R and Aα,−α,15,17 ⊕R have a symplectic half-flat

structure.

• For A−1,−1,1
5,7 ⊕ R defined by

A−1,−1,1
5,7 ⊕ R = (e15,−e25,−e35, e45,0,0),
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the differential forms ω and ψ+ appearing in Table 2.3 are closed and deter-
mine an SU(3)-structure. In fact, let us consider the change of basis given
by

f 1 = −e1, f 2 = e3, f 3 = e2, f 4 = e4, f 5 = −e6, f 6 = e5.

Then, in this new basis, ω and ψ+ are

ω = f 12 + f 34 + f 56,

ψ+ = f 135 − f 146 − f 236 − f 245.

• For the one-parameter family of Lie algebras

Aα,−α,1
5,17 ⊕ R = (αe15 + e25,−e15 + αe25,−αe35 + e45,−e35 − αe45,0,0),

we have that any Lie algebra corresponding to a non-negative real number
α has a symplectic half-flat structure. Actually, the differential forms ω and
ψ+ appearing in Table 2.3 are closed and determine an SU(3)-structure. This
can be checked from the fact that with the change of basis

f 1 = e1, f 2 = e3, f 3 = e2, f 4 = e4, f 5 = e5, f 6 = e6,

the forms ω and ψ+ are described canonically.

Notice that Aα,β,γ5,17
∼= A−α,−β,γ5,17 , thus we can restrict the study to α ≥ 0.

Now, we prove that there are no more Lie algebras from Table 2.3 having a
symplectic half-flat structure. For the next ones we use Proposition 2.1.5 (2.) with
appropriate vectors X and Y .

• The Lie algebra A−1,β,−β
5,7 ⊕ R (with 0 < β < 1) has the following structure

equations

A−1,β,−β
5,7 ⊕ R = (e15,−e25, βe35,−βe45,0,0).

Thus, any pair (F, ρ) ∈ Z2(A−1,β,−β
5,7 ⊕ R)× Z3(A−1,β,−β

5,7 ⊕ R) is given by

F = b1e
12 + b2e

15 + b3e
25 + b4e

34 + b5e
35 + b6e

45 + b7e
56,

and

ρ = a1e
125 + a2e

126 + a3e
135 + a4e

145 + a5e
156 + a6e

235 + a7e
245

+ a8e
256 + a9e

345 + a10e
346 + a11e

356 + a12e
456,
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where ai and bj are real numbers. These expressions of F and ρ imply that

F (J̃ρe1, e1) = 0,

that is, Proposition 2.1.5 (2.) can be applied for X = Y = e1.

• For
A−1

5,8 ⊕ R = (e25,0, e35,−e45,0,0),

any pair (F, ρ) ∈ Z2(A−1
5,8 ⊕ R)× Z3(A−1

5,8 ⊕ R) is of the form

F = b1e
12 + b2e

15 + b3e
25 + b4e

26 + b5e
34 + b6e

35 + b7e
45 + b8e

56,

and

ρ = a1e
125 + a2e

126 + a3e
135 + a4e

145 + a5e
156 + a6e

234 + a7e
235

+ a8e
245 + a9e

256 + a10e
345 + a11e

346 + a12e
356 + a13e

456.

Now, we obtain that
F (J̃ρe3, e3) = 0.

Hence, it is sufficient to consider X = Y = e3.

• The Lie algebra A−1,0,γ
5,13 ⊕ R (with 0 < γ) with structure equations

A−1,0,γ
5,13 ⊕ R = (e15,−e25, γe45,−γe35,0,0)

is such that the pair (F, ρ) ∈ Z2(A−1,0,γ
5,13 ⊕ R)× Z3(A−1,0,γ

5,13 ⊕ R) is

F = b1e
12 + b2e

15 + b3e
25 + b4e

34 + b5e
35 + b6e

45 + b7e
56,

and

ρ = a1e
125 + a2e

126 + a3e
135 + a4e

145 + a5e
156 + a6e

235 + a7e
245

+ a8e
256 + a9e

345 + a10e
346 + a11e

356 + a12e
456.

These expressions of F and ρ imply that

F (J̃ρe1, e1) = 0.

Then, Proposition 2.1.5 (2.) applies with X = Y = e1.
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• For
A0

5,14 ⊕ R = (e25,0, e45,−e35,0,0),

the pairs (F, ρ) ∈ Z2(A0
5,14 ⊕ R)× Z3(A0

5,14 ⊕ R) are given by

F = b1e
12 + b2e

15 + b3e
25 + b4e

26 + b5e
34 + b6e

35 + b7e
45 + b8e

56,

and

ρ = a1e
125 + a2e

126 + a3e
135 + a4e

145 + a5e
156 + a6e

234 + a7e
235

+ a8e
245 + a9e

256 + a10e
345 + a11e

346 + a12e
356 + a13e

456.

We obtain again that
F (J̃ρe1, e1) = 0,

and hence, it is sufficient to consider Proposition 2.1.5 (2.) with X = Y = e1.

• The Lie algebra A−1
5,15 ⊕ R is defined by

A−1
5,15 ⊕ R = (e15 + e25, e25,−e35 + e45,−e45,0,0).

Thus, any pair (F, ρ) ∈ Z2(A−1
5,15 ⊕ R)× Z3(A−1

5,15 ⊕ R) is given by

F = −b2e
14 + b1e

15 + b2e
23 + b3e

24 + b4e
25 + b5e

35 + b6e
45 + b7e

56,

and

ρ = a1e
125 + a2e

135 + a3e
145 − a6e

146 + a4e
156 + a5e

235 + a6e
236 + a7e

245

+ a8e
246 + a9e

256 + a10e
345 + a11e

356 + a12e
456.

The expressions of F and ρ imply that

F (J̃ρe1, e1) = 0.

Thus, Proposition 2.1.5 (2.) applies for X = Y = e1.

• For

A0,0,γ
5,17 ⊕ R = (e25,−e15, γe45,−γe35,0,0),

(with 0 < γ < 1), the pairs (F, ρ) ∈ Z2(A0,0,γ
5,17 ⊕ R) × Z3(A0,0,γ

5,17 ⊕ R) are of
the form

F = b1e
12 + b2e

15 + b3e
25 + b4e

34 + b5e
35 + b6e

45 + b7e
56,
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and

ρ = a1e
125 + a2e

126 + a3e
135 + a4e

145 + a5e
156 + a6e

235

+ a7e
245 + a8e

256 + a9e
345 + a10e

346 + a11e
356 + a12e

456.

We obtain that
F (J̃ρe2, e2) = 0,

and then, it is sufficient to consider X = Y = e2.

• The Lie algebra A0
5,18 ⊕ R, given by the structure equations

A0
5,18 ⊕ R = (e25 + e35,−e15 + e45, e45,−e35,0,0),

is such that the pair (F, ρ) ∈ Z2(A0
5,18 ⊕ R)× Z3(A0

5,18 ⊕ R) is of the form

F = b2e
13 + b1e

15 + b2e
24 + b3e

25 + b4e
34 + b5e

35 + b6e
45 + b7e

56,

ρ = a1e
125 + a2e

135 + a7e
136 + a3e

145 + a4e
156 + a5e

235 + a6e
245

+ a7e
246 + a8e

256 + a9e
345 + a10e

346 + a11e
356 + a12e

456.

These expressions of F and ρ imply that

F (J̃ρe2, e2) = 0.

Then, Proposition 2.1.5 (2.) applies for X = Y = e2.

• For

A−1,2
5,19 ⊕ R = (−e15 + e23, e25,−2e35,2e45,0,0),

the pairs (F, ρ) ∈ Z2(A−1,2
5,19 ⊕ R)× Z3(A−1,2

5,19 ⊕ R) are given by

F = b1e
12 − b2e

15 + b2e
23 + b3e

25 + b4e
34 + b5e

35 + b6e
45 + b7e

56,

and

ρ = a1e
125 + a2e

126 + a3e
135 − a4e

145 − a6e
156 + a4e

234 + a5e
235 + a6e

236

+ a7e
245 + a8e

256 + a9e
345 + a10e

346 + a11e
356 + a12e

456.

We obtain that
F (J̃ρe4, e4) = 0,

thus, it is sufficient to consider Proposition 2.1.5 (2.) for X = e4 and Y = e4.

For the two Lie algebras left, that is, A5,36 ⊕R and A5,37 ⊕R we use Propo-
sition 2.1.5 (1.) with a convenient 1-form α on the Lie algebra.
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• For the Lie algebra

A5,36 ⊕ R = (e14 + e23, e24 − e25, e35,0,0,0),

any pair (F, ρ) ∈ Z2(A5,36 ⊕ R)× Z3(A5,36 ⊕ R) is described by

F = b1e
14 + b1e

23 − b2e
24 + b2e

25 + b3e
35 + b4e

45 + b5e
46 + b6e

56,

and

ρ = − 2a1e
124 + a1e

125 + a2e
134 + a2e

135 + a4e
145 + a5e

146 + a3e
234 + a4e

235

+ a5e
236 + a6e

245 − a7e
246 + a7e

256 + a8e
345 + a9e

356 + a10e
456.

Computing the expression of J̃∗ρ we obtain that

J̃∗ρe
4 = 2a1a5e

2 + 2a2a5e
3 + 2a1a9e

4 + (2a2a7 − 2a1a9) e5,

for arbitrary real numbers ai and bj. So,

e4 ∧ J̃∗ρe4 ∧ F 2 = 0.

Hence, we can apply Proposition 2.1.5 (1.) with α = e4.

• The Lie algebra A5,37 ⊕ R is defined by the structure equations

A5,37 ⊕ R = (2e14 + e23, e24 + e35,−e25 + e34,0,0,0).

Thus, the pairs (F, ρ) ∈ Z2(A5,37 ⊕ R)× Z3(A5,37 ⊕ R) are of the form

F = 2b1e
14 + b1e

23 + b3e
24 − b2e

25 + b2e
34 + b3e

35 + b4e
45 + b5e

46 + b6e
56,

and

ρ = 3a2e
124 + a1e

125 − 3a1e
134 + a2e

135 + 2a4e
145 + 2a5e

146 + a3e
234 + a4e

235

+ a5e
236 + a6e

245 + a9e
246 − a8e

256 + a7e
345 + a8e

346 + a9e
356 + a10e

456.

An easy computation shows that

J̃∗ρe
4 = 2a1a5e

2 + 2a2a5e
3 + (2a1a8 − 2a2a9) e4 + (−2a2a8 − 2a1a9) e5,

for real numbers ai and bj. Therefore,

e4 ∧ J̃∗ρe4 ∧ F 2 = 0,

Hence, we can apply again Proposition 2.1.5 (1.) with α = e4.

Remark 2.2.4. The Lie algebra e(1, 1) ⊕ e(1, 1) is unimodular and the corre-
sponding simply connected solvable Lie group admits a compact quotient as it is
shown in [123]. For the simply connected solvable Lie groups corresponding to
A−1,−1,1

5,7 and Aα,−α,15,17 with α ≥ 0, conditions for the existence of lattice are given
in [19, Propositions 7.2.1 and 7.2.14]. In particular, there is a lattice for the cases
A−1,−1,1

5,7 and Aα,−α,15,17 for α = 0 and for some positive α.
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2.3 Unimodular indecomposable symplectic

half-flat Lie algebras

This section is dedicated to studying symplectic half-flat structures on unimodular
indecomposable solvable Lie algebras of dimension six. The classification of these
Lie algebras is given in Proposition 2.3.1.

By Theorem 1.1.9, we know that g6,N3 = (0, 0, 0, 12, 13, 23) is the only indecom-
posable nilpotent Lie algebra admitting symplectic half-flat structures. Therefore,
in the following we focus our attention on (non-nilpotent) solvable Lie algebras.

By [99] there exist 15 unimodular indecomposable 6-dimensional (non-
nilpotent) solvable Lie algebras with symplectic forms. We show that only 3 of
them have symplectic half-flat structures.

Table 2.4: Unimodular indecomposable (non-nilpotent) solvable Lie al-
gebras admitting symplectic forms [99].

g str. equations symplectic str.

g0,−1
6,3 (e26, e36, 0, e46,−e56, 0) F = e16 + e23 + e45

g0,0
6,10 (e26, e36, 0, e56,−e46, 0) F = e16 + e23 + e45

g
−1, 1

2
,0

6,13 (−1
2
e16 + e23,−e26, 1

2
e36, e46, 0, 0) F = e13 + e24 + e56

g
1
2
,−1,0

6,13 (−1
2
e16 + e23, 1

2
e26,−e36, e46, 0, 0) F = e12 + e34 + e56

g−1
6,15 (e23, e26,−e36, e26 + e46, e36 − e56, 0) F = e16 + 1

2
e25 + e34

g−1,−1
6,18 (e23,−e26, e36, e36 + e46,−e56, 0) F = e16 + e24 + e35

g0
6,21 (e23, 0, e26, e46,−e56, 0) F = e12 + e36 + e45

g0,0
6,36 (e23, 0, e26,−e56, e46, 0) F = 2e16 − e34 + e25

g0
6,38 (e23,−e36, e26, e26 − e56, e36 + e46, 0) F = −2e16 + e34 − e25

g0,−1
6,54 (e16 + e35,−e26 + e45, e36,−e46, 0, 0) F = e14 + e23 + e56

g0,0
6,70 (−e26 + e35, e16 + e45,−e46, e36, 0, 0) F = e13 + e24 + e56

g6,78 (−e16 + e25, e45, e24 + e36 + e46, e46,−e56, 0) F = e14 + e35 − e26

g0,−1,−1
6,118 (−e16 + e25,−e15 − e26, e36 − e45, e35 + e46, 0, 0) F = e14 + e23 − e56

n±1
6,84 (−e45,−e15 − e36,−e14 + e26 ∓ e56, e56,−e46, 0) F = ∓e16 + e25 + e34

Proposition 2.3.1. Let g be a 6-dimensional unimodular indecomposable and
(non-nilpotent) solvable Lie algebra. Then, g has symplectic half-flat structures
if and only if g = g0

6,38, g = g0,−1
6,54 or g = g0,−1,−1

6,118 .

Proof. First we give a symplectic half-flat structure on g0
6,38, g0,−1

6,54 and g0,−1,−1
6,118 .
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• The Lie algebra g0
6,38 is defined by the structure equations

g0
6,38 = (e23,−e36, e26, e26 − e56, e36 + e46,0).

Therefore, the forms

ω = −2e12 + e34 − e25,

ψ+ = −2e135 − 2e124 + e236 − e456

are closed, and they determine an SU(3)-structure since with the change of
basis given by

{f 1 = −2e1, f 2 = e6, f 3 = e3, f 4 = e4, f 5 = e5, f 6 = e2},

the forms ω and ψ+ have the following expression

ω = f 12 + f 34 + f 56,

ψ+ = f 135 − f 146 − f 236 − f 245.

• For

g0,−1
6,54 = (e16 + e35,−e26 + e45, e36,−e46,0,0),

the forms

ω = e14 + e23 + e56,

ψ+ = e125 − e136 + e246 + e345

are closed, and they define an SU(3)-structure. In fact, with respect to the
new basis

{f 1 = e1, f 2 = e4, f 3 = e2, f 4 = e3, f 5 = e5, f 6 = e2},

the pair (ω, ψ+) is given by the canonical expression.

• The Lie algebra g0,−1,−1
6,118 is defined by the structure equations

g0,−1,−1
6,118 = (−e16 + e25,−e15 − e26, e36 − e45, e35 + e46,0,0).

Thus, the forms

ω = e14 + e23 − e56,

ψ+ = e126 − e135 + e245 + e346
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are closed, and they determine an SU(3)-structure, because with the change
of basis given by

{f 1 = e1, f 2 = e4, f 3 = e2, f 4 = e3, f 5 = e6, f 6 = e5},

the forms ω and ψ+ are expressed as

ω = f 12 + f 34 + f 56,

ψ+ = f 135 − f 146 − f 236 − f 245.

For the remaining Lie algebras of Table 2.4 we show the details of how Propo-
sition 2.1.5 rejects the existence of symplectic half-flat structures.

• For the Lie algebra g0,−1
6,3 , whose structure equations are

g0,−1
6,3 = (e26, e36,0, e46,−e56,0),

any pair (F, ρ) with F ∈ Z2(g0,−1
6,3 ) and ρ ∈ Z3(g0,−1

6,3 ) is given by

F = b1e
16 + b2e

23 + b3e
26 + b4e

36 + b5e
45 + b6e

46 + b7e
56,

and

ρ = a1e
123 + a2e

126 + a3e
136 + a4e

146 + a5e
156 + a6e

236 + a7e
246

+ a8e
256 + a9e

345 + a10e
346 + a11e

356 + a12e
456.

Now J̃∗ρ is such that

J̃∗ρe
6 = (−a2a9 − a1a12) e6 − 2a1a9e

3,

for arbitrary real numbers ai and bj. Therefore,

e6 ∧ J̃∗ρe6 ∧ F 2 = 0.

Thus, we apply Proposition 2.1.5 (1.) for the 1-form α = e6 and consequently
g0,−1

6,3 does not admit symplectic half-flat structures.

• The Lie algebra g0,0
6,10 has structure equations

g0,0
6,10 = (e26, e36,0, e56,−e46,0).

Then, any pair (F, ρ) with F ∈ Z2(g0,0
6,10) and ρ ∈ Z3(g0,0

6,10) is given by

F = b1e
16 + b2e

23 + b3e
26 + b4e

36 + b5e
45 + b6e

46 + b7e
56,
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and

ρ = a1e
123 + a2e

126 + a3e
136 + a4e

146 + a5e
156 + a6e

236 + a7e
246

+ a8e
256 + a9e

345 + a10e
346 + a11e

356 + a12e
456.

Now J̃∗ρ is such that

J̃∗ρe
6 = −2a1a9e

3 + (−a2a9 − a1a12) e6.

Thus,
e6 ∧ J̃∗ρe6 ∧ F 2 = 0.

Hence, we can apply Proposition 2.1.5 (1.) for the 1-form α = e6.

• For the Lie algebra g
−1, 1

2
,0

6,13 , whose structure equations are

g
−1,1

2
,0

6,13 =
(
− 1

2
e16 + e23,−e26,

1

2
e36, e46,0,0

)
,

any pair (F, ρ) ∈ Z2
(
g
−1, 1

2
,0

6,13

)
× Z3

(
g
−1, 1

2
,0

6,13

)
is given by

F = b1e
13 + b2

(
− 1

2
e16 + e23

)
+ b3e

24 + b4e
26 + b5e

36 + b6e
46 + b7e

56,

ρ = a1e
126 + a2e

135 + a3e
136 + a4

(1

2
e146 − e234

)
+ a5

(1

2
e156 + e235

)
+ a6e

236 + a7e
245 + a8e

246 + a9e
256 + a10e

346 + a11e
356 + a12e

456.

We have that J̃ρ is such that

J̃ρe1 = (a4a5 − a3a7 + a2a8)e1 − a2a4e2 + 2a1a2e4,

which implies
F (J̃ρe1, e1) = 0.

Therefore, we apply Proposition 2.1.5 (2.) with X = Y = e1.

• The Lie algebra g
1
2
,−1,0

6,13 is described by

g
1
2
,−1,0

6,13 =
(
− 1

2
e16 + e23,

1

2
e26,−e36, e46,0,0

)
.

Thus, any pair (F, ρ) ∈ Z2
(
g

1
2
,−1,0

6,13

)
× Z3

(
g

1
2
,−1,0

6,13

)
is of the form

F = b1e
12 − b2e

16

2
+ b2e

23 + b3e
26 + b4e

34 + b5e
36 + b6e

46 + b7e
56,
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and

ρ = a1e
125 + a2e

126 + a3e
136 − a4e

146

2
+
a5e

156

2
+ a4e

234 + a5e
235 + a6e

236

+ a7e
246 + a8e

256 + a9e
345 + a10e

346 + a11e
356 + a12e

456.

A direct calculation shows that

J̃ρe1 = (−a4a5 + a2a9 − a1a10) e1 − a1a4e3 − 2a1a3e4,

for arbitrary real numbers ai and bj. Then

F (J̃ρe1, e1) = 0.

Now, we apply Proposition 2.1.5 (2.) with X = e1 and Y = e1.

• For the Lie algebra g−1
6,15 defined by the structure equations

g−1
6,15 = (e23, e26,−e36, e26 + e46, e36 − e56,0),

any pair (F, ρ) ∈ Z2(g−1
6,15)× Z3(g−1

6,15) is given by

F = b2e
16 − b4e

16 + b1e
23 + b2e

25 + b3e
26 + b4e

34 + b5e
36 + b6e

46 + b7e
56,

ρ = a1e
123 + a3e

125 + a2e
126 + a3e

134 + a4e
136 − a5e

146 + a6e
156 + a5e

234

+ a6e
235 + a7e

236 + a8e
246 + a9e

256 + a10e
346 + a11e

356 + a12e
456.

Thus,

J̃ρe4 = (−2a5a12) e1+(2a3a12)e2+(−a3a9 + a3a10 + a1a12) e4+
(
2a2

5 + 2a3a8

)
e5,

which implies that
F (J̃ρe4, e4) = 0.

Therefore, we can apply Proposition 2.1.5 (2.) with X = Y = e4.

• For the Lie algebra g−1,−1
6,18 whose structure equations are

g−1,−1
6,18 = (e23,−e26, e36, e36 + e46,−e56,0),

any pair (F, ρ) ∈ Z2(g−1,−1
6,18 )× Z3(g−1,−1

6,18 ) is of the form

F = b2e
16 + b1e

23 + b2e
24 + b3e

26 + b4e
35 + b5e

36 + b6e
46 + b7e

56,

and

ρ = a1e
123 + a2e

126 + a3e
135 + a4e

136 − a5e
146 + a6e

156 + a5e
234 + a6e

235

+ a7e
236 + a8e

246 + a9e
256 + a10e

346 + a11e
356 + a12e

456.
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Now J̃∗ρ is such that

J̃∗ρe
3 = (−2a5a6 − a3a8 + a1a12) e3 + (2a6a8 + 2a5a9 + 2a2a12) e6,

therefore
e3 ∧ J̃∗ρe3 ∧ F 2 = 0.

Thus, we consider Proposition 2.1.5 (1.) for the 1-form α = e3.

• The Lie algebra g0
6,21 is defined by

g0
6,21 = (e23,0, e26, e46,−e56,0).

We have that any pair (F, ρ) ∈ Z2(g0
6,21)× Z3(g0

6,21) is of the form

F = b1e
12 + b2e

23 + b3e
26 + b4e

36 + b5e
45 + b6e

46 + b7e
56,

ρ = a1e
123 + a2e

126 + a3e
136 − a4e

146 + a5e
156 + a4e

234 + a5e
235

+ a6e
236 + a7e

245 + a8e
246 + a9e

256 + a10e
346 + a11e

356 + a12e
456.

Then, J̃∗ρ satisfies that

J̃∗ρe
2 = (−2a4a5 − a3a7 + a1a12) e2 + (−2a5a10 − 2a4a11 − 2a3a12) e6.

So,
e2 ∧ J̃∗ρe2 ∧ F 2 = 0,

and we apply Proposition 2.1.5 (1.) with the 1-form α = e2.

• Consider the Lie algebra g0,0
6,36 whose structure equations are

g0,0
6,36 = (e23,0, e26,−e56, e46,0).

Any pair (F, ρ) ∈ Z2(g0,0
6,36)× Z3(g0,0

6,36) is given by

F = b1e
12 + b2e

23 + b3e
26 + b4e

36 + b5e
45 + b6e

46 + b7e
56,

ρ = a1e
123 + a2e

126 + a3e
136 + a4e

146 + a5e
156 + a5e

234 − a4e
235 + a6e

236

+ a7e
245 + a8e

246 + a9e
256 + a10e

346 + a11e
356 + a12e

456.

Then, J̃∗ρ is such that

J̃∗ρe
2 =

(
−a2

4 − a2
5 − a3a7 + a1a12

)
e2 + (−2a5a10 + 2a4a11 − 2a3a12) e6,

therefore
e2 ∧ J̃∗ρe2 ∧ F 2 = 0.

Thus, we take α = e2 in Proposition 2.1.5 (1.).
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• For the Lie algebra g0,0
6,70, defined by the equations

g0,0
6,70 = (−e26 + e35, e16 + e45,−e46, e36,0,0),

any pair (F, ρ) ∈ Z2(g0,0
6,70)× Z3(g0,0

6,70) is given by

F = b1e
13 + b1e

24 + b2e
34 − b3e

26 + b3e
35 + b4e

36 + b5e
16 + b5e

45 + b6e
46 + b7e

56,

ρ = a1e
125 + a2e

136 + a3e
156 − a4e

145 + a4e
235 + a5e

146 + a5e
236 + a6e

135

+ a6e
245 + a7e

246 + a8e
256 + a9e

345 + a10e
346 + a11e

356 + a12e
456.

A direct calculation shows that

J̃ρe1 = (2a4a5 − a2a6 + a6a7 − a1a10) e1 + (−2a2a4 − 2a5a6) e2 + (2a1a5)e3

− (2a1a2)e4,

and

J̃ρe2 = (2a4a7 − 2a5a6) e1 + (−2a4a5 + a2a6 − a6a7 − a1a10) e2 + (2a1a7)e3

− (2a1a5)e4,

which implies

F (J̃ρe1, e1) = −2b1a1a5, and F (J̃ρe2, e2) = 2b1a1a5.

Thus, we can consider Proposition 2.1.5 (2.) with the pair X = e1 and
Y = e2.

• Take the Lie algebra g6,78 defined by

g6,78 = (−e16 + e25, e45, e24 + e36 + e46, e46,−e56,0).

Any pair (F, ρ) ∈ Z2(g6,78)× Z3(g6,78) is of the form

F = b1e
14 + b2e

16 + b3e
24 − b2e

25 + b1e
26 + b1e

35 + b3e
36 + b4e

45 + b5e
46 + b6e

56,

ρ = a1e
124 + a2e

126 − a2e
145 + a3e

146 + a4e
156 + a5e

235 + a6e
236 + a7e

245

+ a8e
246 + a9e

256 − a6e
345 + a10e

346 + a3e
356 − a5e

356 + a11e
456.

We obtain that

J̃ρe1 = (a1a3 + a5a3 − a1a5) e1 +
(
2a2

2 − 2a1a4

)
e3,

which implies that
F (J̃ρe1, e1) = 0.

Hence, we apply Proposition 2.1.5 (2.) for X = Y = e1.
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• For the Lie algebras g = n±6,84, whose structure equations are

n±6,84 = (−e45,−e15 − e36,−e14 + e26 ∓ e56, e56,−e46,0),

any pair (F, ρ) ∈ Z2(n±6,84)× Z3(n±6,84) is given by

F = b1e
14 − b1e

26 + b2e
15 + b2e

36 + b3e
16 ∓ b3e

25 ∓ b3e
34 + b4e

45 + b5e
46 + b6e

56,

ρ = a1e
124 − a1e

135 + a2e
125 + a2e

134 ± a2e
246 + a3e

126 + a3e
345 + a4e

136

− a4e
245 + a5e

145 + a6e
146 + a7e

156 + a8e
125 ± a8e

356 + a8e
134 + a9e

256

+ a10e
346 + a11e

456.

Therefore,

J̃ρe2 =
(
−a1a2 + a2

3 − a2
4 ± a1a8 + a2a9 + a8a9 − a2a10 − a8a10

)
e2

+
(
∓2a2

2 + 2a3a4 ∓ 2a2a8 − 2a1a9

)
e3,

and so,

F (J̃ρe2, e2) = 0.

Now, we apply Proposition 2.1.5 (2.) for X = e2 and Y = e2.

Remark 2.3.2. The simply connected solvable Lie group whose Lie algebra is
g0

6,38 admits a lattice by [19, Proposition 8.3.3]. For g0,−1
6,54 , it is shown in [61] that

the corresponding simply connected Lie group has also a compact quotient by a
lattice. Finally, the simply connected solvable Lie group corresponding to g0,−1,−1

6,118

admits a lattice by [130].

2.4 Non-unimodular indecomposable symplectic

half-flat Lie algebras

In this section we complete the classification of 6-dimensional solvable Lie algebras
carrying symplectic half-flat structures.

A 6-dimensional solvable Lie algebra with nilradical of dimension lower than 4
is decomposable or nilpotent [104]. So, we are left to study Lie algebras with 4 and
5-dimensional nilradical. We study which of those admit also symplectic forms,
and describe them in Table 2.5, where F denotes a symplectic form and (ω, ψ+) a
half-flat structure.
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Table 2.5: Non-unimodular indecomposable solvable Lie algebras with
5-dimensional nilradical admitting both symplectic and half-flat struc-
tures.

g str. equations half-flat str. symplectic str.

A
− 2

3
, 1
3
,−1

6,13 (− 1
3
e16 + e23,− 2

3
e26, 1

3
e36, ω = −2e16 + e34 + e52 F = −2e16 + e34 − e25

e46,−e56, 0) ψ+ = −2e135 − 2e124 − e356 + e246

A
3
2
,− 3

2
6,39 (− 1

2
e16 + e45, e15 + 1

2
e26, ω = −e12 − e34 + 2e56 F = −2e15 + e34 + e26

3
2
e36,− 3

2
e46, e56, 0) ψ+ = e135 + 2e146 + 2e236 − e245

A1,−1
6,39 (e45, e15 + e26, e36,−e46, e56, 0) ω = 2e16 + e23 − e34 + e45 F = e15 + e26 + e34

ψ+ = −e124 + e135 + 2e236

+2e256 + 2e346

A−1
6,42 (e45, e15 + e26, e36 + e56, ω = 2e16 + e23 − e34 + e45 F = e15 + e26 + e34 − e16

−e46, e56, 0) ψ+ = −e124 + e135 + 2e236

+2e256 + 2e346

A±1
6,51 (e45, e15 ± e46, e36, 0, 0, 0) ω = e16 + e23 − e34 + e45 F = e14 + e16 ± e25 + e36

ψ+ = −e124 + e135 + e236

+e256 + e346

A−1,−2
6,54 (e16 + e35,−2e26 + e45, 2e36, ω = −e13 − e24 + e56 F = e14 + e23 + e56

−e46,−e56, 0) ψ+ = e126 − e145 + e235 − e346

Aα,α−1
6,54 (e16 + e35, (α−1)e26 + e45, ω = −e13 − e24 − αe56 F = e14 + e23 + e56

0<α<2 (1−α)e36,−e46, αe56, 0) ψ+ = −αe126 − e145 + e235 + αe346

A2,1
6,54 (e16 + e35, e26 + e45,−e36, ω = e31 + e42 + 2e65 F = −e13 − e24 − 2e56

−e46, 2e56, 0) ψ+ = 2e346 + e235 − e145 − 2e126

A1
6,56 (e16 + e35, e36 + e45, 0, ω = −e13 − e24 − e56 F = e14 + e23 + e56

−e46, e56, 0) ψ+ = −e126 − e145 + e235 + e346

A1,2
6,65 (e16 + e35, e16 + e26 + e45, ω = −e13 − e24 − 2e56 F = e13 + e16 + e26 + e45

−e36, e36 − e46, 2e56, 0) ψ+ = −2e126 − e145 + e235 + 2e346

A
α,α

2
6,70 (α

2
e16 − e26 + e35, ω = e13 + e24 − αe65 F = e13 + e24 − αe65

α 6= 0 e16 + α
2
e26 + e45,−α

2
e36 − e46, ψ+ = −αe126 − e145 + e235 + αe346

e36 − α
2
e46, αe56, 0)

A
− 3

2
6,71 ( 3

2
e16 + e25, 1

2
e26 + e35, ω = e41 + e23 + 2e56 F = −e14 + e23 + 2e56

− 1
2
e36 + e45,− 3

2
e46, e56, 0) ψ+ = −e245 + 2e346 − 2e126 − e135

A−3
6,76 (−5e16 + e25,−2e26 + e45, ω = e13 − 8e26 − 3

4
e34 + e45 F = −5e16 + e25 + e34

e24 − e36, e46,−3e56, 0) ψ+ = e124 − 6e136 − 8e156

+e235 − 8e346

A1,5,9
6,82 (2e16 + e24 + e35, 6e26, ω = e14 − 3e24 − 12e26 − e35 F = 2e16 + e24 + e35

10e36,−4e46,−8e56, 0) ψ+ = e125 − 12e136 − e234
36e236 − 12e456

A−3
6,94 (−e16 + e25 + e34,−2e26 + e35, ω = −e14 − e25 − 3

2
e34 − 3e36 F = −e16 + e25 + e34

−3e36, 2e46, e56, 0) ψ+ = 3e126 − e135 + e234

− 9
2
e236 − 3e456

A
− 5

3
6,94 ( 1

3
e16 + e25 + e34,− 2

3
e26 + e35, ω = e12 − 1

7
e23 + 7

2
e25+ F = 1

3
e16 + e25 + e34

− 5
3
e36, 2e46, e56, 0) e34 − 7

3
e36 + 7

3
e56

ψ+ = 1
3
e126 − e135 + 7

3
e146 + e234

+ 7
3
e236 + e245 + 7

6
e256 + 49

6
e456

A−1
6,94 (e16 + e25 + e34, e35, ω = e14 + e15 − 3e16 F = e16 + e25 + e34

−e36, 2e46, e56, 0) −3e26 + e34

ψ+ = e123 − 3e146 + 3e156

−e245 + 3e246 + 3e356
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Proposition 2.4.1. Let g be a 6-dimensional non-unimodular indecomposable and
(non-nilpotent) solvable Lie algebra with 5-dimensional nilradical. Then, g admits

symplectic half-flat structure if and only if g = A
− 2

3
, 1
3
,−1

6,13 , g = A2,1
6,54, g = A

α,α
2

6,70 (α 6=
0), or g = A

− 3
2

6,71.

Proof. The half-flat structure (ω, ψ+) given in Table 2.5 for the Lie algebras g =

A
− 2

3
, 1
3
,−1

6,13 , g = A2,1
6,54, g = A

α,α
2

6,70 (α 6= 0) and g = A
− 3

2
6,71 is symplectic half-flat.

In the following, we show that there are no more Lie algebras of Table 2.5 having
a symplectic half-flat structure. To this end, we use Lemma 2.1.6 for appropriated
vector X of the corresponding Lie algebra.

• For the Lie algebra A
3
2
,− 3

2
6,39 , defined by the structure equations

A
3
2
,−3

2
6,39 =

(
− 1

2
e16 + e45, e15 +

1

2
e26,

3

2
e36,−3

2
e46, e56,0

)
,

we consider the 7-dimensional Lie algebra

A
3
2
,− 3

2
6,39 ⊕ R.

Then, any 3-form φ = Z3
(
A

3
2
,− 3

2
6,39 ⊕ R

)
is of the form

φ = a1e
146 + a2e

156 + a3(e135 + 2e236) + a4e
245 − a5(e145 − e246) + a6e

256

+ a7(2e157 + e267)− a8(e136 − e345) + a9e
346 + a10e

347 + a11e
356

+ a12e
367 + e13e

456 − a14(e167 − 2e457) + a15e
467 + a16e

567,

where ai are arbitrary real numbers. Thus, the 2-form µ = ιe1φ has the
expression

µ = a1e
46 + a2e

56 + a3e
35 − a5e

45 + 2a7e
57 − a8e

36 − a14e
67.

Therefore, µ is degenerate and Lemma 2.1.6 applies for X = e1.

• The Lie algebra A1,−1
6,39 is defined by the structure equations

A1,−1
6,39 = (e45, e15 + e26, e36,−e46, e56,0).

Then, φ ∈ Z3
(
A1,−1

6,39 ⊕ R
)

is given by

φ = a1e
135 + a2e

136 + a3e
145 + a4e

146 + a5e
156 + a6e

157 + a7e
167 + 2a1e

236

+ a8e
245 − a3e

246 + a9e
256 +

a6

2
e267 − a2e

345 + a10e
346 + a11e

347

+ a12e
356 + a13e

367 + a14e
456 − 2a7e

457 + a15e
467 + a16e

567.

Thus, Lemma 2.1.6 applies for X = e2.
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• For the Lie algebra A−1
6,42, given by

A−1
6,42 = (e45, e15 + e26, e36 + e56,−e46, e56,0),

we consider a closed 3-form φ ∈ Z3
(
A−1

6,42 ⊕ R
)
. So,

φ = a1e
124 + a2e

126 + a3e
134 + a4e

135 + a5e
136 + a6e

145 + a7e
146 + a8e

156

+ a9e
157 + a10e

167 + 2a4e
236 − a2e

245 − a3e
246 + a11e

256 + a9e
267

− a5e
345 + a12e

346 − a10e
347 + a13e

356 + a14e
367 + a15e

456 + a16e
457.

Then, Lemma 2.1.6 can be applied with X = e2.

• The Lie algebras A±1
6,51 are defined by

A±1
6,51 = (e45, e15 ± e46, e36,0,0,0).

Any closed 3-form φ ∈ Z3
(
A±1

6,51 ⊕ R
)

has the following expression

φ = a1e
124 + a2e

125 + a3e
135 + a4e

136 + a5e
145 + a6e

146 + a7e
147 + a8e

156

+ a9e
157 + a10e

167 + a3e
236 + a11e

245 ± a2e
246 + a12e

256 ± a10e
257 − a4e

345

+ a13e
346 + a14e

356 + a15e
367 + a16e

457 + a17e
467 + a18e

567.

Therefore, Lemma 2.1.6 fulfils for X = e3.

• For the Lie algebra A−1,−2
6,54 , with structure equations

A−1,−2
6,54 = (e16 + e35,−2e26 + e45,2e36,−e46,−e56,0),

a closed 3-form on A−1,−2
6,54 ⊕ R is

φ = a1e
126 + a2e

136 − a1e
145 + a3e

146 + a4e
147 + a5e

156 + a6e
157 + a7e

167

+ a1e
235 + a3e

236 + a4e
237 + a8e

246 + a9e
256 + a10e

267 + a11e
345 + a12e

346

+ a13e
356 + a7e

357 + a14e
367 + a15e

456 − a10

2
e457 + a16e

467 + a17e
567.

Thus, we apply Lemma 2.1.6 for X = e1.

• Take the family of Lie algebras Aα,α−1
6,54 with 0 < α < 2. It is given by

Aα,α−1
6,54 = (e16 + e35, (α− 1)e26 + e45, (1− α)e36,−e46, αe56,0).

The expression of any φ ∈ Z3
(
Aα,α−1

6,54 ⊕ R
)

is

φ =αa2e
126 + a1e

136 + a2e
145 + a3e

146 + a4e
147 + a5e

156 + a6e
167 − a2e

235

+ a3e
236 + a4e

237 + a7e
246 + a8e

256 + (α− 1)a14e
267 + a9e

345 + a10e
346

+ a11e
356 + a6e

357 + a12e
367 + a13e

456 + a14e
457 + a15e

467 + a16e
567.

Now, we can apply Lemma 2.1.6 with X = e1.
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• For the Lie algebra g = A1
6,56, given by the structure equations

A1
6,56 = (e16 + e35, e36 + e45,0,−e46, e56,0),

any φ ∈ Z3
(
A1

6,56 ⊕ R
)

is of the form

φ = a1e
126 + a2e

134 + a3e
136 + a1e

145 + a4e
146 + a5e

147 + a6e
156 + a7e

167 − a1e
235

+ a8e
236 + a5e

237 + a4e
245 − a8e

245 + a9e
246 + a10e

256 + a11e
345 + a12e

346

+ a13e
356 + a7e

357 + a14e
367 + a15e

456 + a16e
457 + a17e

467 + a18e
567,

thus, we use Lemma 2.1.6 with X = e1. Hence A1
6,56 does not admit sym-

plectic half-flat structure.

• The Lie algebra g = A1,2
6,65 is defined by

A1,2
6,65 = (e16 + e35, e16 + e26 + e45,−e36, e36 − e46,2e56,0).

A closed 3-form φ on A1,2
6,65 ⊕ R is expressed as

φ = a1e
126 + a2e

136 + a3e
137 +

a1

2
e145 + a4e

146 + a5e
156 + a6e

167 − a1

2
e235

+ a4e
236 + a7e

246 + a8e
256 + a9e

267 + a10e
345 + a11e

346 + a12e
356 + a6e

357

− a9e
357 + a13e

367 + a14e
456 + a9e

457 + a15e
467 + a16e

567.

Thus, we apply Lemma 2.1.6 for X = e2.

Following the same procedure we obtain that for the remaining Lie algebras

of Table 2.5, that is, A−3
6,76, A

1,5,9
6,82 , A

−3
6,94, A

5
3
6,94 and A−1

6,94 we can apply Lemma
2.1.6 with X = e1.

It remains to study solvable Lie algebras with 4-dimensional nilradical. To this
end, we use the list of [124] that contains 12 Lie algebras and 31 families depending
at least of one parameter. Indeed, there are 14 one-parameter families, 10 two-
parameter families, 4 three-parameter families and 3 four-parameter families. We
prove that from all them only 1 Lie algebra has symplectic half-flat structures.
First we study which of those Lie algebras admit symplectic forms and we describe
them in the following table.
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Table 2.6: Non-unimodular indecomposable symplectic solvable Lie alge-
bras with 4-dimensional nilradical.

g str. equations symplectic str.

Nα,β,−α,−β
6,1 αβ 6= 0 (αe15 + βe16,−αe25 − βe26, e36, e45, 0, 0) F = e12 + e36 + e45

Nα,β,0,−1
6,1 αβ 6= 0 (αe15 + βe16,−e26, e36, e45, 0, 0) F = e23 + e45 + αe15 + βe16

Nα,β,−1,0
6,1 αβ 6= 0 (αe15 + βe16,−e25, e36, e45, 0, 0) F = e24 + e36 + αe15 + βe16

N−1,β,−β
6,2 (−e15 + βe16, e25 − βe26, e36, e35 + e46, 0, 0) F = e12 + e35 + e46

N0,−1,γ
6,2 (−e16, e25 + γe26, e36, e35 + e46, 0, 0) F = γe26 + e25 + e13 + e35 + e46

N0,β,0
6,7 (−e26, e16, e35, e35 + βe36 + e45, 0, 0) F = e12 + e35 + βe36 + e45

β 6= 0

Nα,β,−α,−β
6,13 (αe15 + βe16,−αe25 − βe26, e36 − e45, F = e12 + e36 − e45

α2 + β2 6= 0 e35 + e46, 0, 0)
(α, β) 6= (0,±2)

N0,−2,0,2
6,13 (−2e16, 2e26, e36 − e45, e35 + e46, 0, 0) F = e12 + e35 + e46

Nα,β,0
6,14 αβ 6= 0 (αe15 + βe16, e26,−e45, e35, 0, 0) F = αe15 + βe16 + e34 + e26

N0,β,γ,0
6,15 (e15 + γe16 − e26, e16 + e25 + γe26, F = e15 + γe16 + e34 − e26

β 6= 0 −βe45, βe35, 0, 0)

N0,0
6,16 (e16, e15 + e26,−e45, e35, 0, 0) F = e15 + e26 + e34

N0
6,17 (0, e15, e36 − e45, e35 + e46, 0, 0) F = e12 + e35 + e46

N0,β,0
6,18 β 6= 0 (e16 − e25, e15 + e26,−βe45, βe35, 0, 0) F = −e15 + e26 + e34

N0,−1
6,20 (−e56,−e26, e36, e45, 0, 0) F = e23 + e45 + e16

Nα,0
6,22 (e15 + αe16, e26, 0, e35, 0, 0) F = e15 + αe16 + e34 + e26

α 6= 0

Nα,0
6,23 (e15 − e26, e16 + e25, 0, e35 + αe36, 0, 0) F = e16 + e25 + e34

N0
6,26 (−e56, e26,−e45, e35, 0, 0) F = e15 + e26 + e34

N6,28 (−e24 + e15,−e34 + e26,−e35 + 2e36, F = e15 − e24 − e35 + 2e26

e45 − e46, 0, 0)

Nα,β
6,29 (−e23 + e15 + e16, e25, e36, αe45 + βe46, 0, 0) F = −e23 + e15 + e16 + αe45 + βe46

α2 + β2 6= 0
Nα

6,30 (−e23 + 2e15, e25, e26 + e35, αe45 + e46, 0, 0) F = e15 − e23 + e46 + αe45

Nα
6,32 (−e23 + e45 + e16, e25 + αe26, F = −e23 + e45 + e16

(1− α)e36 − e35, e46, 0, 0)
N6,33 (−e23 + e15 + e16, e25, e36, e36 + e46, 0, 0) F = −e23 + e15 + e46 + e16

Nα
6,34 (−e23 + e15 + (1 + α)e16, e25 + αe26, F = −e23 + e15 + (1 + α)e16 + e35 + e46

e36, e35 + e46, 0, 0)

Nα,β
6,35 (−e23 + 2e16,−e35 + e26, e36 + e25, F = −e23 + 2e16 + αe45 + βe46

α 6= 0 αe45 + βe46, 0, 0)
Nα

6,37 (−e23 + e45 + 2e16, e26 − e35 − αe36, F = −e23 + e45 + 2e16

e25 + αe26 + e36, 2e46, 0, 0)
N6,38 (−e23 + e15 + e16, e25, e36,−e56, 0, 0) F = −e23 + e15 + e16 + e46

N6,39 (−e23 + 2e16,−e35 + e26, e25 + e36,−e56, 0, 0) F = −e23 + e45 + 2e16

Proposition 2.4.2. Let g be a 6-dimensional non-unimodular indecomposable and
(non-nilpotent) solvable Lie algebra with 4-dimensional nilradical. Then, g has
symplectic half-flat structure if and only if g = N0,−2,0,2

6,13 .

Proof. The Lie algebra N0,−2,0,2
6,13 , defined by the structure equations

N0,−2,0,2
6,13 = (−2e16,2e26, e36 − e45, e35 + e46,0,0),
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has a symplectic half-flat structure. In fact, the differential forms

ω = e12 + e35 + e46,

and

ψ+ = e134 − e156 − e236 + e245,

are closed and determine an SU(3)-structure since, with the change of basis given
by

{f 1 = e1, f 2 = e2, f 3 = e3, f 4 = e5, f 5 = e4, f 6 = e6},

the forms ω and ψ+ have the canonical expression, that is,

ω = f 12 + f 34 + f 56,

ψ+ = f 135 − f 146 − f 236 − f 245.

Next, using Proposition 2.1.5 and Lemma 2.1.6, we show that no more Lie algebras
appearing in Table 2.6 have symplectic half-flat structure. For the Lie algebras

Nα,β,−α,−β
6,1 (αβ 6= 0), N−1,β,−β

6,2 , N0,−1,γ
6,2 , N0,β,0

6,7 ,

Nα,β,α,β
6,13 with α2 + β2 6= 0,

(
(α, β) 6= (0,±2)

)
and N0

6,17,

we discard the existence of a symplectic half-flat structure by applying Lemma
2.1.6 with X = e4.

For the Lie algebras

Nα,β,0,−1
6,1 (αβ 6= 0),Nα,β,−1,0

6,1 (αβ 6= 0),Nα,β,0
6,14 (αβ 6= 0),N0,β,γ,0

6,15 ,N0,0
6,16,N

0,β,0
6,18 (β 6= 0),

N0,−1
6,20 ,N

α,0
6,22(α 6= 0),Nα,0

6,23,N
0
6,26,N

α,β
6,29(α2 + β2 6= 0),Nα

6,30,N
α
6,32,N6,33,N

α
6,34,

Nα,β
6,35(α 6= 0),Nα

6,37,N6,38,N6,39,

we apply Lemma 2.1.6 with X = e1.

Finally, on N6,28 we can apply Proposition 2.1.5 (2.) for X = e5 and Y = e6,
which completes the proof.

Therefore, by Theorem 1.1.9, Proposition 2.2.1, Proposition 2.2.2, Proposi-
tion 2.2.3 and Proposition 2.3.1 we have
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Theorem 2.4.3. A unimodular (non-Abelian) solvable Lie algebra g has symplec-
tic half-flat structure if and only if it is isomorphic to one in the following list:

e(1, 1)⊕ e(1, 1) = (0,−e13,−e12, 0,−e46,−e45),

ω = e14 + e23 + 2e56, ψ+ = (e12 + e34) ∧ (e5 − e6) + (−e13 + e24) ∧ (e5 + e6);

g5,1⊕ R = (0, 0, 0, 0, e12, e13),

ω = e14 + e26 + e35, ψ+ = e123 + e156 + e245 − e346;

A−1,−1,1
5,7 ⊕ R = (e15,−e25,−e35, e45, 0, 0),

ω = −e13 + e24 + e56, ψ+ = −e126 − e145 − e235 − e346;

Aα,−α,15,17 ⊕ R = (αe15+e25,−e15+αe25,−αe35+e45,−e35−αe45, 0, 0), α ≥ 0,

ω = e13 + e24 + e56, ψ+ = e125 − e146 + e236 − e345;

g6,N3 = (0, 0, 0, e12, e13, e23),

ω = e16 + 2e25 + e34, ψ+ = e123 + 2e145 + e246 − 2e356;

g0
6,38 = (e23,−e36, e26, e26 − e56, e36 + e46, 0),

ω = −2e16 + e34 − e25, ψ+ = e123 − 2e124 + e236 − e456;

g0,−1
6,54 = (e16 + e35,−e26 + e45, e36,−e46, 0, 0),

ω = e14 + e23 + e56, ψ+ = e125 − e136 + e246 + e345;

g0,−1,−1
6,118 = (−e16 + e25,−e15 − e26, e36 − e45, e35 + e46, 0, 0),

ω = e14 + e23 − e56, ψ+ = e126 − e135 + e245 + e346.

Remark 2.4.4. Note that in the previous theorem, only the first 4 Lie algebras
are decomposable while the remaining 4 are indecomposable; and the Lie algebras
g5,1⊕ R and g6,N3 are the unique (non-Abelian) nilpotent Lie algebras admitting
symplectic half-flat structure. (These Lie algebras g5,1⊕ R and g6,N3 are, in The-
orem 1.1.9, the second and third algebras, respectively.) Moreover, in Proposition
2.2.1 was defined a symplectic half-flat structure on e(1, 1) ⊕ e(1, 1); in Proposi-
tion 2.2.3 was defined such a structure on A−1,−1,1

5,7 ⊕ R and Aα,−α,15,17 ⊕ R, where

α ≥ 0, and a symplectic half-flat structure on g0
6,38, g0,−1

6,54 and g0,−1,−1
6,118 was defined

in Proposition 2.3.1.

Regarding non-unimodular solvable Lie algebras, from Proposition 2.4.1 and
Proposition 2.4.2, we have:

Theorem 2.4.5. A non-unimodular solvable Lie algebra g has symplectic half-flat
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structure if and only if it is isomorphic to one in the following list:

A
− 2

3
, 1
3
,−1

6,13 =
(
− 1

3
e16 + e23,−2

3
e26,

1

3
e36, e46,−e56, 0

)
,

ω = −2e16 + e34 + e52, ψ+ = −2e135 − 2e124 − e356 + e246;

A2,1
6,54 = (e16 + e35, e26 + e45,−e36,−e46, 2e56, 0),

ω = −e13 − e24 − 2e56, ψ+ = e346 + e235 − e145 − 2e126;

A
α, 1

2
α

6,70 =
(α

2
e16 − e26 + e35, e16 +

α

2
e26 + e45,−α

2
e36 − e46, e36 − α

2
e46, αe56, 0

)
,

with α ∈ R− {0},
ω = e13 + e24 + αe56, ψ+ = αe126 − e145 + e235 + αe346;

A
− 3

2
6,71 =

(3

2
e16 + e25,

1

2
e26 + e35,−1

2
e36 + e45,−3

2
e46, e56, 0

)
,

ω = −e14 + e23 + 2e56, ψ+ = −e245 + 2e346 − 2e126 − e135;

N0,−2,0,2
6,13 = (−2e16, 2e26, e36 − e45, e35 + e46, 0, 0),

ω = e12 + e35 + e46, ψ+ = e134 − e156 − e236 + e245.

Therefore, in all these cases, g is indecomposable.



84 Six dimensional symplectic half-flat solvable Lie algebras



Chapter 3

G2-structures on Einstein
solvmanifolds

“Dios, concédeme Serenidad para aceptar las cosas que no puedo cambiar, Valor
para cambiar aquellas que puedo, y Sabiduŕıa para reconocer la diferencia.”

Plegaria de la Serenidad

The G2 analogue of the Goldberg conjecture for compact Einstein almost
Kähler manifolds was studied in [35]. There, Cleyton and Ivanov proved that
if ϕ is a closed G2 form inducing an Einstein metric gϕ on a compact manifold,
then ϕ is parallel with respect to the Levi-Civita connection of the metric gϕ. But
nothing is known for closed G2 forms inducing Einstein metrics on non-compact
manifolds.

In this Chapter, we consider (non-compact) solvmanifolds and, for those man-
ifolds, we study a G2 analogue of the Goldberg conjecture. In Theorem 3.3.5 we
prove that 7-dimensional solvable Lie groups do not carry any left invariant closed
G2 form defining an Einstein metric, unless the metric is flat. Moreover, in section
3.3.2 we study a G2 analogue for coclosed G2 forms of the Goldberg conjecture. In
Theorem 3.3.11 we show that 7-dimensional solvable Lie groups do not admit any
left invariant coclosed G2 form defining an Einstein metric, unless the metric is
flat. On the other hand, in section 3.4, using warped products we construct a new
example of a (non-nearly parallel) coclosed G2 form ϕ on a non-compact manifold
such that ϕ induces an Einstein metric. The results appearing in this chapter can
be found in [53].
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3.1 Standard solvable Lie algebras and Einstein

metrics

In this section, we recall some results on solvable Lie groups, of arbitrary dimen-
sion, with a left invariant metric g which is Einstein in the Riemannian sense, that
is, the Ricci curvature tensor Ric(g) satisfies

Ric(g) = λg,

where λ is a constant.

Note that all the known examples of non-compact homogeneous Einstein man-
ifolds are simply connected solvable Lie groups S endowed with a left invariant
metric (see for instance the survey [92]). Moreover, according to a long standing
conjecture attributed to D. Alekseevskii (see [16, 7.57]), these might exhaust the
class of non-compact homogeneous Einstein manifolds. In [46] the following re-
sult concerning unimodular solvable Lie groups admitting a left invariant Einstein
metric is proved.

Theorem 3.1.1 [46]. Left invariant Einstein metrics on unimodular solvable Lie
groups are flat.

Therefore, we will study non-unimodular solvable Lie groups. A left invariant
metric on a Lie group S will always be identified with the inner product 〈·, ·〉
determined on the Lie algebra s of S. The pair (s, 〈·, ·〉) is said to be a metric Lie
algebra.

Lauret in [93] characterizes the Einstein metric solvable Lie algebras as the
metric solvable Lie algebras which are standard in the following sense.

Definition 3.1.2. Let (n, 〈·, ·〉) be a metric nilpotent Lie algebra. A metric solv-
able extension of (n, 〈·, ·〉) is a metric solvable Lie algebra (s, 〈·, ·〉s) such that s
has the orthogonal decomposition s = n ⊕ a, where n = [s, s], [a, a] ⊂ n and
〈·, ·〉s|n×n = 〈·, ·〉. The metric solvable Lie algebra (s, 〈·, ·〉s) is standard, or has
standard type, if a is an Abelian subalgebra of s; in this case, the dimension of a
is called the rank of the metric solvable extension.

Remark 3.1.3. Note that an standard metric solvable extension (s, 〈·, ·〉s) of a
metric nilpotent Lie algebra (n, 〈·, ·〉n) is not unique even if we fix the dimension
of s. For example, consider the metric nilpotent Lie algebra (h3, 〈·, ·〉), where h3

denotes the 3-dimensional Heisenberg Lie algebra defined by

h3 = (0, 0, e12),
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and where the inner product 〈·, ·〉 is given by 〈·, ·〉 = (e1)2 + (e2)2 + (e3)2. Then, it
admits different standard metric solvable extensions like

s1 =
(1

2
e14,

1

2
e24, e12 + e34, 0

)
,

and
s2 = (e14, e24, e12 + 2e34, 0).

In these examples, the first one is Einstein, while the second one is not.

Theorem 3.1.4 [93]. Any Einstein metric solvable Lie algebra (s, 〈·, ·〉s) has to be
of standard type (in the sense of Definition 3.1.2).

Standard Einstein, simply connected, solvable Lie groups constitute a distin-
guished class that has been deeply studied by J. Heber, who has obtained many
remarkable structural and uniqueness results, by assuming only the standard con-
dition (see [80]).

Theorem 3.1.5 [80]. (Uniqueness) A simply connected solvable Lie group admits
at most one standard Einstein left invariant metric up to isometry and scaling.

In [94], it is proved that any nilpotent Lie algebra of dimension lower than or
equal to 5 admits an Einstein solvable extension. Moreover, in [127] it is shown
that the same is true for any of the 34 nilpotent Lie algebras of dimension six.
Using these results, we obtain a classification of all 7-dimensional rank-one Einstein
solvable Lie algebras (see Table 3.1, at the end of the subsection 3.3.1). Also, a
classification of 6 and 7-dimensional Einstein solvable Lie algebras of higher rank
was given in [128].

Furthermore, the study of standard Einstein simply connected solvable Lie
groups can be reduced to the rank-one case, that is, dim a = 1, where a is the
Abelian part in the decomposition given in Definition 3.1.2 (see [80]). More pre-
cisely, in [80, Sections 4.5,4.6] Heber shows the following theorem.

Theorem 3.1.6 [80]. Let s = n⊕ a be a non-unimodular solvable Lie algebra, of
standard type, endowed with an Einstein inner product 〈·, ·〉, with Einstein constant
λ. Then λ < 0 and, up to isometry, it can be assumed that adA is symmetric for
any A ∈ a. In that case, the following conditions hold.

1. There exists H ∈ a such that the eigenvalues of adH |n are all positive integers
without common divisors.

2. The restriction of 〈·, ·〉 to the solvable Lie algebra RH ⊕ n is also Einstein.

3. a is an Abelian Lie algebra of symmetric derivations of n and the inner
product on a must be given by 〈X, Y 〉 = − 1

λ
tr (adXadY ), for all X, Y ∈ a.
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Standard Einstein solvable Lie algebras are closely related to solvable metric
Lie algebras of Iwasawa type. Such a Lie algebra is defined as follows

Definition 3.1.7. A solvable metric Lie algebra (s, 〈·, ·〉) is of Iwasawa type if it
satisfies the conditions:

1. s is the orthogonal decomposition s = n⊕a, where n = [s, s] and a is Abelian;

2. the operator adH is symmetric, for H ∈ a;

3. there exists H0 ∈ a such that adH0 : n −→ n has positive eigenvalues.

One defines H0 ∈ a such that 〈H0, X〉 = tr(adX) holds for all X ∈ s. Then,
for some positive multiple H = kH0, the normal operator adH |n has eigenvalues
whose real parts µ1, . . . , µm are positive integers with no common divisors. Thus,
Theorem 3.1.6 implies the following

Corollary 3.1.8. Any standard Einstein simply connected solvable Lie group is
isometric to a solvable Lie group whose underlying metric Lie algebra is of Iwasawa
type.

3.2 Almost Kähler manifolds

As in section 1.1.1, an almost Hermitian manifold (M, g, J), with Riemannian
metric g and almost complex structure J , is said to be almost Kähler if the corre-
sponding Kähler 2-form ω defined by ω(·, ·) = g(J ·, ·) is closed.

In this section we study the existence of almost Kähler structures on 6-
dimensional solvable Lie groups whose underlying metric is Einstein. We obtain
that the unique 6-dimensional solvable Lie group carrying left invariant Einstein
(non-Kähler) almost Kähler structure is the example given by Apostolov, Draghici
and Moroianu in [5]. Moreover, we determine the 6-dimensional solvable Lie groups
admitting left invariant Kähler-Einstein metric.

For convenience, we will use the following notation for the coefficients appear-
ing on the Einstein extensions of the Lie algebras. We will always denote by a
the coefficient that appears on the rank-one Einstein extension. However, the
coefficients of the higher rank Einstein extensions will be denoted by bi.

Proposition 3.2.1 [91]. If k is a 6-dimensional Einstein solvable Lie algebra of
rank one, then k is one of the following eight Lie algebras:
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k1 =
( 2

13
ae16,

9

13
ae26,

10

13

√
3ae12 +

11

13
ae36,

20

13
ae13 + ae46,

10

13

√
3ae14 +

15

13
ae56, 0

)
,

k2 =
(1

4
ae16,

1

2
ae26,

1

4

√
30ae12 +

3

4
ae36,

1

4

√
30ae13 + ae46,

− 1

2

√
5ae14 − 1

2

√
5ae23 +

5

4
ae56, 0

)
,

k3 =
( 3

10
ae16,

2

5
ae26,

3

5
ae36,

1

5

√
30ae12 +

7

10
ae46,

1

5

√
15ae23 +

1

5

√
30ae14 + ae56, 0

)
,

k4 =
(1

2
ae16,

1

2
ae26,

1

2
ae36,

1

2
ae46, ae12 + ae34 + ae56, 0

)
,

k5 =
(1

2
ae16,

1

2
ae26, 2ae12 + ae36,

√
3ae13 +

3

2
ae46,

√
3ae23 +

3

2
ae56, 0

)
,

k6 =
(1

3
ae16,

1

2
ae26,

1

2
ae36, ae12 +

5

6
ae46, ae13 +

5

6
ae56, 0

)
,

k7 =
(1

2
ae16,

1

2
ae26,

1

2

√
7ae12 + ae36,

3

4
ae46,

3

4
ae56, 0

)
,

k8 =
(1

4
ae16,

1

2
ae26,

1

4

√
26ae12 +

3

4
ae36,

1

4

√
26ae13 + ae46,

3

4
ae56, 0

)
,

where {e1, . . . , e6} is an orthonormal basis of k with respect to the Einstein metric.

Theorem 3.2.2. Let (S, g) be a 6-dimensional solvable Lie group, and let (s, 〈·, ·〉)
be the metric Lie algebra of (S, g). Then,

1. (S, g) admits a left invariant Einstein (non-Kähler) almost Kähler structure
if and only if (s, 〈·, ·〉) is isometric to the rank-two Einstein solvable Lie
algebra

s =
(a

4
e15+

3a

4
e16,

a

2
e25−ae26,

√
5a

2
e12+

3a

4
e35−a

4
e36,

1

2

√
5ae13+ae45+

a

2
e46, 0, 0

)
.

2. (S, g) admits a left invariant Kähler-Einstein structure if and only if (s, 〈·, ·〉)
is isometric either to the rank-one solvable Lie algebra

s =
(a

2
e16,

a

2
e26,

a

2
e36,

a

2
e46, ae12 + ae34 + ae56, 0

)
,

or to the rank-two Einstein solvable Lie algebra

s =
(a

2
e15 + b1e

16 + b2e
26,

a

2
e25 + b2e

16 + b10e
26,

√
22

4
ae12 + ae35 + (b1 + b10)e36,

3

4
ae45 − 2(b1 + b10)e46, 0, 0

)
,
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where a = 4
√

66
33

√
3b2

1 + 5b10b1 + b2
2 + 3b2

10, or to the rank-three Einstein solv-
able Lie algebra

s =
(
ae14 −

√
6

2
ae15 +

√
2

2
e16, ae24 +

√
6

2
ae25 +

√
2

2
e26, ae34 −

√
2ae36, 0, 0, 0

)
.

Moreover, in all the Lie algebras that appear in 1. and 2., the Einstein inner
product is such that the basis {e1, . . . , e6} of the corresponding Lie algebra is
orthonormal.

Proof. A 6-dimensional Einstein solvable Lie algebra (s, 〈·, ·〉) is necessarily stan-
dard, so one has the orthogonal decomposition (with respect to 〈·, ·〉)

s = n⊕ a,

with n = [s, s] nilpotent and a Abelian.
We consider separately the different possibilities according to the rank of s,

that is, to the dimension of a.

Rank one
If dim a = 1 and n is Abelian, then it is known by [80, Proposition 6.12] that

the structure equations of s are

(ae16, ae26, ae36, ae46, ae56, 0),

where a is a non-zero real number. For this Lie algebra s we obtain that any closed
2-form ω is degenerate, that is, satisfies ω3 = 0 and so s does not admit symplectic
forms.

If dim a = 1, but n is (non-Abelian) nilpotent, then (s, 〈·, ·〉) is isometric to one
of the solvable Lie algebras ki (i = 1, . . . , 8) defined in Proposition 3.2.1 endowed
with the inner product 〈·, ·〉 such that the basis {e1, . . . , e6} is orthonormal.

For k1, kj, 5 ≤ j ≤ 8, we have again that any closed 2-form ω is degenerate, so
they do not carry symplectic form.

The Lie algebras k2 and k3 admit symplectic forms. However, one can check
that any almost complex structure J on ki (i = 2, 3) is such that 〈·, ·〉 6= ω(·, J ·).

For k4 we have that a symplectic form is

ω = µ1,2e
12 + µ1,6e

16 + µ2,6e
26 + µ1,2e

34 + µ3,6e
36 + µ4,6e

46 + µ1,2e
56,

where µi,j are real numbers with µ1,2 6= 0. In fact, such a form ω is closed and
ω3 = 2µ3

1,2e
123456 6= 0. Thus, if J is the almost complex structure on (k4, 〈·, ·〉)

satisfying 〈·, ·〉 = ω(·, J ·), then J is given as follows

Je1 = e2, Je3 = e4, Je5 = e6,
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where {e1, . . . , e6} is the dual basis to {e1, . . . , e6}. Such a J is integrable. There-
fore, (g, J, ω) are Kähler-Einstein structures on k4.

Rank two
In order to determine all the 6-dimensional rank-two Einstein solvable Lie al-

gebras, we need first to find the rank-one Einstein solvable extensions

s5 = n4 ⊕ R〈e5〉

of the 4-dimensional nilpotent Lie algebras n4, and then we consider the standard
solvable Lie algebra

s6 = s5 ⊕ R〈e6〉,

or, equivalently,

s6 = n4 ⊕ a,

where a = R〈e5, e6〉 is Abelian, and such that the basis {e1, . . . , e6} is orthonormal.

If n = [s, s] is Abelian, the rank-one Einstein extension s5 is defined by

(ae15, ae25, ae35, ae45, 0).

To find the rank-two Einstein solvable extension s6 we have to consider the struc-
ture equations 

de1 = ae15 + b1e
16 + b2e

26 + b3e
36 + b4e

46,

de2 = ae25 + b5e
16 + b6e

26 + b7e
36 + b8e

46,

de3 = ae35 + b9e
16 + b10e

26 + b11e
36 + b12e

46,

de4 = ae45 + b13e
16 + b14e

26 + b15e
36 + b16e

46,

de5 = de6 = 0.

Now, we impose that the inner product on s6, making the basis {e1, . . . , e6} or-
thonormal, has to be Einstein and that d2ej = 0, for j ∈ {1, . . . , 6}. Solving these
conditions, we find that the structure equations of s6 are

de1 = ae15 + b1e
16,

de2 = ae25 + (−b1 − b3 − b4) e26,

de3 = ae35 + b3e
36,

de4 = ae45 + b4e
46,

de5 = de6 = 0,

where a = 1
2

√
2(b2

1 + b2
3 + b2

4 + b1b3 + b1b4 + b3b4). But this Lie algebra does not
admit symplectic forms.
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The other possibilities for s5 are obtained beginning with the 4-dimensional
(non-Abelian) nilpotent Lie algebras, that is, the nilpotent Lie algebras defined
by the structure equations (0, 0, e12, 0) and (0, 0, e12, e13). Their rank-one solvable
extensions are (1

2
ae15,

1

2
ae25,

1

4

√
22ae12 + ae35,

3

4
ae45, 0

)
,

and (1

4
ae15,

1

2
ae25,

1

2

√
5ae12 +

3

4
ae35,

1

2

√
5ae13 + ae45, 0

)
,

respectively. To obtain the rank-two solvable Einstein extension of n = (0, 0, e12, 0)
we should consider the Lie algebra

de1 = 1
2
ae15 + b1e

16 + b2e
26 + b3e

36 + b4e
46,

de2 = 1
2
ae25 + b5e

16 + b6e
26 + b7e

36 + b8e
46,

de3 = 1
4

√
22ae12 + ae35 + b9e

16 + b10e
26 + b11e

36 + b12e
46,

de4 = 3
4
ae45 + b13e

16 + b14e
26 + b15e

36 + b16e
46,

de5 = de6 = 0.

Then, we impose the Jacoby identity and the condition that the inner product
has to be Einstein. We obtain the rank-two Einstein extension s6 defined by the
equations 

de1 = 1
2
ae15 + b1e

16 + b2e
26,

de2 = 1
2
ae25 + b2e

16 + b10e
26,

de3 = 1
4

√
22ae12 + ae35 + (b1 + b10)e36,

de4 = 3
4
ae45 − 2(b1 + b10)e46,

de5 = de6 = 0,

where a = 4
√

66
33

√
3b2

1 + 5b10b1 + b2
2 + 3b2

10, which admits the Kähler-Einstein struc-
tures given by

ω = µ1,2

(
ae12 + 2

√
2
11
ae35 + 2

√
2
11

(b1 + b10)e36
)

+ µ1,5(ae15 + 2b1e
16 + 2b2e

26)

+µ2,5(2b2e
16 + ae25 + 2b10e

26) + µ4,5

(
3ae45 − 8(b1 + b10e

46)
)

+ µ5,6e
56,

Je1 = e2, Je2 = −e1, Je3 = 2
√

2
11
e5 +

√
3
11
e6, Je4 =

√
3
11
e5 − 2

√
2
11
e6,

Je5 = −2
√

2
11
e3 −

√
3
11
e4, Je6 = −

√
3
11
e3 + 2

√
2
11
e4,

where µi are real parameters satisfying (b1 + b10)µ2
1,2µ4,5 6= 0. The almost complex

structure J is indeed integrable since the Nijenhuis tensor of J vanishes.
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From the rank-one Einstein solvable extension of n = (0, 0, e12, e13), we obtain
the rank-two Einstein solvable extension. For this, we have to consider the Lie
algebra 

de1 = a
4
e15 + b1e

16 + b2e
26 + b3e

36 + b4e
46,

de2 = a
2
e25 + b5e

16 + b6e
26 + b7e

36 + b8e
46,

de3 = 1
2

√
5ae12 + 3

4
ae35 + b9e

16 + b10e
26 + b11e

36 + b12e
46,

de4 = 1
2

√
5ae13 + ae45 + b13e

16 + b14e
26 + b15e

36 + b16e
46,

de5 = de6 = 0.

Therefore, imposing the condition d2ej = 0 (j = 1, . . . , 6) and the inner product
to be Einstein, the corresponding structure equations of s6 become

de1 = a
4
e15 + 3

4
ae16,

de2 = a
2
e25 − ae26,

de3 = 1
2

√
5ae12 + 3

4
ae35 − a

4
e36,

de4 = 1
2

√
5ae13 + ae45 + a

2
e46,

de5 = de6 = 0.

(3.1)

Moreover, s6 has the Einstein (non-Kähler) almost Kähler structure given by

ω = e13 + 2√
5
e45 + 1√

5
e46 − 1√

5
e25 + 2√

5
e26 ;

Je1 = e3, Je3 = −e1, Je2 = − 1√
5
e5 + 2√

5
e6, Je4 = 2√

5
e5 + 1√

5
e6,

Je5 = 1√
5
e2 − 2√

5
e4, Je6 = − 1√

5
e2 − 2√

5
e4,

which defines the inner product 〈·, ·〉 on s6 given by

〈·, ·〉 = (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2 + (e6)2.

Now, let (S, g) be the simply connected Lie group whose Lie algebra is s6.
Then, the Einstein almost Kähler structure on s6 defines a left invariant almost
Kähler structure (g, J) on S whose Kähler form is ω. Clearly the metric g is given
by

g = (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2 + (e6)2,

and its Ricci curvature tensor is such that

Ric(g) = −15

4
a2g.

This means that g is Einstein with non-positive scalar curvature. The almost
complex structure J is not integrable since its Nijenhuis tensor NJ does not vanish.
In fact,

NJ(e1, e2) = −
√

5ae3 6= 0, NJ(e1, e5) = ae1 6= 0, NJ(e1, e6) = −2ae1 6= 0.
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Rank three

For the rank-three Einstein extensions we proceed as for the previous exten-
sions. If dim a = 3 and n is Abelian, we already know that the rank-one Einstein
extension of n is exactly described by

(ae14, ae24, ae34, 0).

In order to find the rank-three Einstein solvable extension we have to consider the
structure equations

de1 = ae14 + b1e
15 + b2e

25 + b3e
35 + b4e

16 + b5e
26 + b6e

36,

de2 = ae24 + b7e
15 + b8e

25 + b9e
35 + b10e

16 + b11e
26 + b12e

36,

de3 = ae34 + b13e
15 + b14e

25 + b15e
35 + b16e

16 + b17e
26 + b18e

36,

de4 = de5 = de6 = 0.

After imposing the Einstein condition on the inner product and that d2ej = 0, j =
1, . . . , 6 we obtain that the structure equations of the corresponding Lie algebra
are 

de1 = ae14 −
√

6
2
ae15 +

√
2

2
ae16,

de2 = ae24 +
√

6
2
ae25 +

√
2

2
ae26,

de3 = ae34 −
√

2ae36,

de4 = de5 = de6 = 0,

which admits the almost Kähler structure given by

ω = µ1,4(
√

2e14 −
√

3e15 + e16) + µ2,4(
√

2e24 +
√

3e25 + e26) + µ3,4(−e34 +
√

2e36)
+µ4,5e

45 + µ4,6e
46 + µ5,6e

56;

Je1 = 1√
3
e4 − 1√

2
e5 + 1√

6
e6, Je2 = 1√

3
e4 + 1√

2
e5 + 1√

6
e6, Je3 = − 1√

3
e4 +

√
2
3
e6,

Je4 = − 1√
3
e1 − 1√

3
e2 + 1√

3
e3, Je5 = 1√

2
e1 − 1√

2
e2, Je6 = − 1√

6
e1 − 1√

6
e2 −

√
2
3
e3,

where µ1,4µ2,4µ3,4 6= 0 and actually the almost complex structure J is integrable
since NJ = 0. Thus, the metric

g = (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2 + (e6)2,

is Einstein because its Ricci curvature tensor is

Ric(g) = −3a2g.
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If dim a = 3 and n is (non-Abelian) nilpotent, then n is exactly h3 (the 3-
dimensional real Heisenberg Lie algebra) defined by the structure equations

(0, 0, e12).

We find the following rank-one Einstein solvable extension

(a
2
e14, a

2
e24, ae12 + ae34, 0).

Proceeding similarly as in the previous examples we find that h3 does not admit
a rank-three Einstein solvable extension unless it is flat. In fact, the rank-three
Einstein solvable extension of h3 has to be of the form

de1 = a
2
e14 + b1e

15 + b2e
25 + b3e

35 + b4e
16 + b5e

26 + b6e
36,

de2 = a
2
e24 + b7e

15 + b8e
25 + b9e

35 + b10e
16 + b11e

26 + b12e
36,

de3 = ae12 + ae34 + b13e
15 + b14e

25 + b15e
35 + b16e

16 + b17e
26 + b18e

36,

de4 = de5 = de6 = 0.

After imposing that dej = 0, for any j ∈ {1, . . . , 6}, and solving the equations
corresponding to the Einstein condition on the inner product we obtain that the
structure equations have to be

de1 = a
2
e14 + b1e

15 + b4e
16,

de2 = a
2
e24 − b1e

25 − b4e
26,

de3 = ae12 + ae34,

de4 = de5 = de6 = 0.

Thus, the metric

g = (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2 + (e6)2

is such that its Ricci curvature tensor is exactly

Ric(g) =− 3

2
a2(e1)2 − 3

2
a2(e2)2 − 3

2
a2(e3)2 − 3

2
a2(e4)2 − 2b2

1(e5)2 − 2b2
4(e6)2

− 4b1b4(e5 ⊗ e6).

Therefore, it cannot be Einstein unless it is flat.
Higher rank Einstein solvable extensions are always Ricci-flat, and therefore

because of Theorem 3.1.1 they are flat.

Remark 3.2.3. We would like to note that Lie algebras with structure equations
(3.1) are all isomorphic, for the different values of the parameter a 6= 0, since by
Theorem 3.1.5 the rank-one Einstein metric solvable extensions are unique. The
solvable Lie group corresponding to the Lie algebra defined by (3.1) is the example
given by Apostolov, Draghici and Moroianu in [5]. That example is a non-compact,
Einstein and non-Kähler almost Kähler manifold.
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3.3 Ricci curvature of G2 manifolds

Bryant in [24] gave a formula for the Ricci curvature of a G2 manifold in terms of
the torsion forms and its exterior derivatives. To describe this formula we define
the linear map

jϕ : Λ3(R7)−−−−→ S2(R7),

given by

jϕ(γ)(v, w) = ∗ϕ
(
(ιvϕ) ∧ (ιwϕ) ∧ γ

)
,

for γ ∈ Λ3(R7) and v, w ∈ R7. Note that jϕ satisfies jϕ(ϕ) = 6gϕ.
Using the map jϕ, Bryant in [24] describes the Ricci curvature tensor of a G2

manifold in terms of the torsion forms τ0, τ1, τ2 and τ3 as

Ric(gϕ) =−
(3

2
δτ1 −

3

8
τ 2

0 + 15|τ1|2 −
1

4
|τ2|2 +

1

2
|τ3|2

)
gϕ

+ jϕ

(
− 5

4
d
(
∗ϕ (τ1 ∧ ∗ϕϕ)

)
− 1

4
dτ2 +

1

4
∗ϕ dτ3

+
5

2
τ1 ∧ ∗ϕ(τ1 ∧ ∗ϕϕ)− 1

8
τ0τ3 +

1

4
τ1 ∧ τ2

+
3

4
∗ϕ (τ1 ∧ τ3) +

1

8
∗ϕ (τ2 ∧ τ2) +

1

64
Q(τ3, τ3)

)
,

(3.2)

where δ is the codifferential operator associated to gϕ, | · | denotes the norm of
differential forms and the map

Q : Λ3(R7)× Λ3(R7)−−−−→ Λ3(R7),

is defined as follows: if {ei}7
i=1 is a local orthonormal frame, for α, β ∈ Ω3(M)

Q(α, β) = ∗ϕ[εijkl
(
ι(ei∧ej) ∗ϕ α

)
∧
(
ι(ei∧ej) ∗ϕ β

)
],

with εijkl, the value of ∗ϕϕ(ei, ej, ek, el).
In general, for a n-dimensional Riemannian manifold (Nn, g) the codifferential

operator δ is the map

δ : Ωp(Nn)−−−−→ Ωp−1(Nn),

given by

δ = (−1)pn+n+1 ∗ d∗,

so, in particular, for a G2 manifold M

δ : Ωp(M)−−−−→ Ωp−1(M),
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the codifferential operator δ of gϕ is exactly

δ = (−1)p ∗ϕ d ∗ϕ .

It is also assumed that the norm | · | is the natural norm of differential forms, in
explanation, if F = fije

i∧ej with {ek} an orthonormal coframe, then |F | = fij ·fij.
The scalar curvature of a G2 manifold can be described in terms of the torsion

forms as

Scal(gϕ) = 12δτ1 +
21

8
τ 2

0 + 30|τ1|2 −
1

2
|τ2|2 −

1

2
|τ3|2. (3.3)

In general, the formulas for the Ricci curvature tensor and the scalar curvature
are complicated, but when we restrict them to special classes of G2-structures they
simplify.

If the G2 form is closed, then (as we explain in Chapter 1) the torsion forms
satisfy τ0 = τ1 = τ3 = 0. From (3.2) and (3.3), we obtain that the expression of
the Ricci curvature tensor and the scalar curvature of a manifold endowed with a
closed G2-structure are given respectively by

Ric(gϕ) =
1

4
|τ2|2gϕ + jϕ

(
− 1

4
dτ2 +

1

8
∗ϕ (τ2 ∧ τ2)

)
,

and

Scal(gϕ) = −1

2
|τ2|2.

Thus, the scalar curvature of a closed G2-structure is always non-positive. If a G2

manifold (M,ϕ) is such that ϕ is closed and the induced metric gϕ is Ricci-flat,
then it is parallel and therefore gϕ has holonomy contained in G2 [56]. Regarding
Einstein metrics, if we take into account that jϕ(ϕ) = 6gϕ one can check [24, Corol-
lary 2] that the Einstein condition is equivalent to the torsion form τ2 satisfying
the equation

dτ2 =
3

14
|τ2|2ϕ+

1

2
∗ϕ (τ2 ∧ τ2). (3.4)

Remark 3.3.1. Note that from the G2-type decomposition, if ϕ is closed, then τ2

is exactly δϕ. Thus, the Einstein condition (3.4) implies that the Hodge Laplacian
operator ∆ = δ ◦ d+ d ◦ δ of ϕ is exactly

∆ϕ =
3

14
|τ2|2ϕ+

1

2
∗ϕ (τ2 ∧ τ2).

From the G2-type decomposition of exterior forms we already know that τ2 ∈
Ω2

14(M). It is also known that, if a 2-form β belongs to Ω2
14(M), then β ∧ β ∈

Ω4
1(M) ⊕ Ω4

27(M), that is, it does not have part in Ω4
7(M). Even more, by [35,

Lemma 5.8] the Ω4
27(M) part of β ∧ β vanishes if and only if β vanishes itself.

With all these considerations we have the following:
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Proposition 3.3.2 [35]. (Cleyton-Ivanov) No compact manifold M can support a
closed G2-structure ϕ whose underlying metric gϕ is Einstein unless ϕ is parallel
(with respect to the Levi-Civita connection ∇ of gϕ).

Proof. (Bryant technique). From the Einstein condition (3.4), and the fact that
τ2 ∈ Ω2

14(M) and τ2 ∧ τ2 ∈ Ω4
1(M)⊕ Ω4

27(M), we obtain that

d
(1

3
τ 3

2

)
=

2

7
|τ2|4 ∗ϕ 1,

where ∗ϕ1 denotes the volume form. By Stokes’ theorem we get

0 =

∫
M

d
(1

3
τ 3

2

)
=

∫
M

2

7
|τ2|4 ∗ϕ 1,

which implies that τ2 = 0 and therefore ∇ϕ = 0.

For nearly parallel G2-structures we know that the torsion forms are such
that τ1 = τ2 = τ3 = 0. Therefore, from (3.2) and (3.3), the expressions for the
Ricci curvature tensor and the scalar curvature of a nearly parallel G2 manifold
(M,ϕ) are respectively given by

Ric(gϕ) =
3

8
|τ0|2gϕ,

and

Scal(gϕ) =
21

8
|τ0|2.

Thus, nearly parallel G2-structures are always Einstein with non-negative scalar
curvature. It is also clear that a Ricci-flat nearly parallel manifold is parallel.

Finally, coclosed G2-structures are determined by the vanishing of the tor-
sion forms τ1 and τ2. In general, for a G2 manifold (M,ϕ), with ϕ coclosed, from
(3.2) and (3.3), we have that the Ricci curvature tensor and the scalar curvature
are respectively given by

Ric(gϕ) =
(3

8
τ 2

0 −
1

2
|τ3|2

)
gϕ + jϕ

(1

4
∗ϕ dτ3 −

1

8
τ0τ3 +

1

64
Q(τ3, τ3)

)
,

and

Scal(gϕ) =
21

8
τ 2

0 −
1

2
|τ3|2.

So, in general, nothing is known about the sign of the scalar curvature of the
Riemannian metric induced by a coclosed G2-structure. In contrast with the closed
and nearly parallel ones, manifolds with a coclosed G2-structure which are Ricci-
flat do not need to be parallel.
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Remark 3.3.3. We would like to note that for cocalibrated G2 manifolds an ana-
logue of Goldberg conjecture is no longer true. Indeed, there exist compact G2

manifolds (M,ϕ), with ϕ coclosed and such that the induced metric gϕ is Einstein,
but ϕ is non-parallel. For example, nearly parallel manifolds. But not all coclosed
G2 forms inducing Einstein metric are nearly parallel; 3-Sasakian manifolds con-
stitute a counterexample. In section 3.4 we describe an example of Einstein non-
nearly parallel manifold with a coclosed G2 form such that the induced metric is
not 3-Sasakian. Such an example is given using warped products.

3.3.1 Closed G2-structures

In this section we study the existence of closed G2 forms ϕ on 7-dimensional
solvable Lie algebras whose underlying Riemannian metric gϕ is Einstein. For this,
we use Proposition 1.4.5 (an obstruction to the existence of closed G2-structures),
and the following results.

Lemma 3.3.4. Let g be a 7-dimensional Lie algebra and ϕ a G2-structure on g.
Then the bilinear form gϕ : g× g→ R defined by

gϕ(X, Y ) vol =
1

6
(ιXϕ ∧ ιY ϕ ∧ ϕ),

has to be a Riemannian metric.

Proof. It is a direct consequence of (1.7).

By [115, Proposition 4.5], if a 3-form ϕ defines a G2-structure on a 7-
dimensional Lie algebra and we choose a non-zero vector X ∈ g of length one,
with respect to gϕ, then on the orthogonal complement of the span of X one has
the SU(3)-structure defined by the pair (α, β), where α and β are the 2-form and
the 3-form, respectively, given by

α = ιXϕ, β = ϕ− α ∧ η, (3.5)

where η = ιX(gϕ). So, α and β satisfy

α3 = α ∧ α ∧ α 6= 0, α ∧ β = 0. (3.6)

In contrast with the almost Kähler case, we have the following theorem.

Theorem 3.3.5. A 7-dimensional solvable Lie group does not admit any left in-
variant closed G2 form ϕ such that gϕ is Einstein, unless gϕ is flat.
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Proof. An Einstein solvable Lie algebra (s, 〈·, ·〉) is necessarily standard, so one
has the orthogonal decomposition (with respect to 〈·, ·〉), s = n⊕ a, with n = [s, s]
nilpotent and a Abelian. We will consider separately the different cases according
to the rank of s, that is, to the dimension of a.

Rank one
If dim a = 1 and n is Abelian, then by [80, Proposition 6.12] the structure

equations of the Einstein solvable extension s are

(ae17, ae27, ae37, ae47, ae57, ae67, 0),

where a is a non-zero real number. Calculating the general expression of a closed 3-
form on s, it is easy to check that s cannot admit closed G2 forms since Proposition
1.4.5 is satisfied for X = e1, . . . , e6.

If dim a = 1 and n is (non-Abelian) nilpotent, then Will in [127] proves that
(s, 〈·, ·〉) is isometric to one of the solvable Lie algebras gi, with i ∈ {1, . . . , 33},
that appear in Table 3.1 which is included at the end of this subsection, endowed
with the inner product such that the basis {e1, . . . , e7} is orthonormal. We may
apply Proposition 1.4.5 with X = e6 to all the Lie algebras gi (i = 1, . . . , 33)
with the exception of the Lie algebras g1, g4, g9, g18 and g28, showing in this way
that they do not admit any closed G2-structure. For the Lie algebras g1, g4, g9, g18

and g28 we first determine a generic closed 3-form ϕ and then, we apply [115,
Proposition 4.5], for each X = e1, . . . , e7 and η = ιX(gϕ). Thus, for each X, taking
α and β as in (3.5), we know by (3.6) that α ∧ α ∧ α 6= 0 and α ∧ β = 0.

Moreover, we have that the closed 3-form ϕ defines a G2-structure if and only
the matrix associated to the symmetric bilinear form gϕ, with respect to the or-
thonormal basis {e1, . . . , e7}, is positive definite. Since the Einstein metric is
unique up to scaling, a closed G2-structure induces an Einstein metric if and only
if the matrix associated to the symmetric bilinear form gϕ, with respect to the basis
{e1, . . . , e7}, is a multiple of the identity matrix. Then by a direct calculation we
have that the Lie algebras g1, g4, g9, g18 and g28 admit a closed G2-structure (see
Table 3.2) but they do not admit any closed G2-structure inducing an Einstein
(non-flat) metric. Next, we show the details of this result for the Lie algebra g28.
To this end, we see that any closed 3-form ϕ on g28 has the following expression:

ϕ =ρ1,2,7e
127 − 1

2
ρ5,6,7e

136 + ρ2,4,7e
137 +

1

2
ρ5,6,7e

145 − ρ2,3,7e
147 − ρ2,6,7e

157

+ ρ2,5,7e
167 +

1

2
ρ5,6,7e

235 + ρ2,3,7e
237 +

1

2
ρ5,6,7e

246 + ρ2,4,7e
247 + ρ2,5,7e

257

+ ρ2,6,7e
267 + ρ3,4,7e

347 + ρ3,5,7e
357 + ρ3,6,7e

367 + ρ3,6,7e
457 − ρ3,5,7e

467 + ρ5,6,7e
567,

where ρi,j,k are arbitrary real numbers denoting the coefficients of eijk.
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Thus, the induced metric g = gϕ is given by the matrix G with elements
Gi,j = g(ei, ej):

g(e1, e1) = −1
4
ρ1,2,7ρ

2
5,6,7, g(e1, e2) = 0, g(e1, e3) = 1

4
ρ2,3,7ρ

2
5,6,7,

g(e1, e4) = 1
4
ρ2,4,7ρ

2
5,6,7, g(e1, e5) = 1

4
ρ2,5,6ρ

2
5,6,7, g(e1, e6) = 1

4
ρ2,6,7ρ

2
5,6,7,

g(e1, e7) = 0, g(e2, e2) = −1
4
ρ1,2,7ρ

2
5,6,7, g(e2, e3) = −1

4
ρ2,4,7ρ

2
5,6,7,

g(e2, e4) = 1
4
ρ2,3,7ρ

2
5,6,7, g(e2, e5) = 1

4
ρ2,6,7ρ

2
5,6,7, g(e2, e6) = −1

4
ρ2,5,7ρ

2
5,6,7,

g(e2, e7) = 0, g(e3, e3) = −1
4
ρ3,4,7ρ

2
5,6,7, g(e3, e4) = 0,

g(e3, e5) = 1
4
ρ3,6,7ρ

2
5,6,7, g(e3, e6) = −1

4
ρ3,5,7ρ

2
5,6,7, g(e3, e7) = 0,

g(e4, e4) = −1
4
ρ3,4,7ρ

2
5,6,7, g(e4, e5) = −1

4
ρ3,5,7ρ

2
5,6,7, g(e4, e6) = −1

4
ρ3,6,7ρ

2
5,6,7,

g(e4, e7) = 0, g(e5, e5) =
ρ35,6,7

4
, g(e5, e6) = 0,

g(e5, e7) = 0, g(e6, e6) =
ρ35,6,7

4
, g(e6, e7) = 0,

g(e7, e7) = −ρ5,6,7ρ
2
2,3,7 + ρ1,2,7ρ

2
3,5,7 + ρ1,2,7ρ

2
3,6,7 + ρ2

2,5,7ρ3,4,7 + ρ2
2,6,7ρ3,4,7

+ρ2,5,7 (2ρ2,3,7ρ3,6,7 − 2ρ2,4,7ρ3,5,7)− 2ρ2,6,7 (ρ2,3,7ρ3,5,7 + ρ2,4,7ρ3,6,7)

Then, the system G = kI7, with k a non-vanishing real number and I7 the
identity matrix, does not have solution. Equivalently, the Lie algebra g28 does not
admit any closed G2-structure inducing an Einstein inner product.

Rank two
In order to determine all the 7-dimensional rank-two Einstein solvable Lie

algebras, we need first to consider the rank-one Einstein solvable extensions
s6 = n5 ⊕ R〈e6〉 of any of the eight 5-dimensional nilpotent Lie algebras n5

(see Proposition 3.2.1). Then we obtain the standard solvable Lie algebra
s7 = s6 ⊕ R〈e7〉 = n5 ⊕ a, with a = R〈e6, e7〉 Abelian and such that the basis
{e1, . . . , e7} is orthonormal.

For the rank-two Einstein extension of the nilpotent Lie algebra

n = (0, 0, e12, e13, e14),

we take into account the expression of its rank-one Einstein extension k1 which
is described in Proposition 3.2.1. Thus the structure equations of the rank-two
Einstein solvable extension are

de1 = 2
13
ae16 + b1e

17 + b2e
27 + b3e

37 + b4e
47 + b5e

57,

de2 = 9
13
ae26 + b6e

17 + b7e
27 + b8e

37 + b9e
47 + b10e

57,

de3 = 10
13

√
3ae12 + 11

13
ae36 + b11e

17 + b12e
27 + b13e

37 + b14e
47 + b15e

57,

de4 = 20
13
ae13 + ae46 + b16e

17 + b17e
27 + b18e

37 + b19e
47 + b20e

57,

de5 = 10
13

√
3ae14 + 15

13
ae56 + b21e

17 + b22e
27 + b23e

37 + b24e
47 + b25e

57,

de6 = de7 = 0.
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Imposing that the inner product
∑

i(e
i)2 is Einstein and the condition d2ej = 0,

where j ∈ {1, . . . , 7}, we have that the structure equations of the corresponding
7-dimensional rank-two Einstein solvable Lie algebra are

de1 = 1
3

√
6ae16 + 4ae17,

de2 = 3
2

√
6ae26 − 7ae27,

de3 = 5
3

√
18ae12 + 11

6

√
6ae36 − 3ae37,

de4 = 10
3

√
6ae13 + 13

6

√
6ae46 + ae47,

de5 = 5
3

√
18ae14 + 5

2

√
6ae56 + 5ae57,

de6 = de7 = 0.

Now, calculating the general expression of a closed 3-form ϕ, and using Lemma
3.3.4 and [115, Proposition 4.5], for η = ei (i ∈ {1, . . . , 7}), we have that the matrix
associated to gϕ, with respect to the basis {e1, . . . , e7}, cannot be a multiple of the
identity matrix. Thus, the Lie algebra previously defined does not admit a closed
G2-structure inducing the Einstein metric.

For the nilpotent Lie algebra

n = (0, 0, e12, e13, e14 + e23),

whose rank one Einstein extension is k2, is not obtained any 7-dimensional Einstein
Lie algebra of rank two. Concretely, a rank two Einstein extension of n would have
to be of the form

de1 = 1
4
ae16 + b1e

17 + b2e
27 + b3e

37 + b4e
47 + b5e

57,

de2 = 1
2
ae26 + b6e

17 + b7e
27 + b8e

37 + b9e
47 + b10e

57,

de3 = 1
4

√
30ae12 + 3

4
ae36 + b11e

17 + b12e
27 + b13e

37 + b14e
47 + b15e

57,

de4 = 1
4

√
30ae13 + ae46 + b16e

17 + b17e
27 + b18e

37 + b19e
47 + b20e

57,

de5 = −1
2

√
5ae14 − 1

2

√
5ae23 + 5

4
+ b21e

17 + b22e
27 + b23e

37 + b24e
47 + b25e

57,

de6 = de7 = 0.

However, after imposing the conditions d2ej = 0 (j = 1, . . . , 7) and the inner
product to be Einstein, we obtain that there are no values on the parameters bi
satisfying these conditions.

The nilpotent Lie algebra

n = (0, 0, 0, e12, e14 + e23)

has a rank-one Einstein extension given by k3. Therefore the structure equations
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of the rank-two Einstein solvable extension are

de1 = 3
10
ae16 + b1e

17 + b2e
27 + b3e

37 + b4e
47 + b5e

57,

de2 = 2
5
ae26 + b6e

17 + b7e
27 + b8e

37 + b9e
47 + b10e

57,

de3 = 3
5
ae36 + b11e

17 + b12e
27 + b13e

37 + b14e
47 + b15e

57,

de4 = 1
5

√
30ae12 + 7

10
ae46 + b16e

17 + b17e
27 + b18e

37 + b19e
47 + b20e

57,

de5 = 1
5

√
15ae23 + 1

5

√
30ae14 + ae56 + b21e

17 + b22e
27 + b23e

37 + b24e
47 + b25e

57,

de6 = de7 = 0.

After solving the equations corresponding to the condition d2ej = 0 (j = 1, . . . , 7)
and the inner product to be Einstein, the structure equations of the rank-two
Einstein extension are

de1 = 1
7

√
21ae16 − ae17,

de2 = 4
21

√
21ae26 + 2ae27,

de3 = 2
7

√
21ae36 − 2ae37,

de4 = 2
21

√
30
√

21ae12 + 1
3

√
21ae46 + ae47,

de5 = 2
21

√
30
√

21ae14 + 2
21

√
15
√

21ae23 + 10
21

√
21ae56,

de6 = de7 = 0.

Calculating the expression of a generic closed 3-form ϕ and using Lemma 3.3.4
and [115, Proposition 4.5] with η = e1, . . . , e7 or equivalently, with X = e1, . . . , e7,
we get that the matrix associated to gϕ, with respect to the basis {e1, . . . , e7},
cannot be a multiple of the identity matrix. Therefore, the metric induced by a
closed 3-form cannot be Einstein.

We already know that the rank-one Einstein extension of the nilpotent Lie
algebra

n = (0, 0, 0, 0, e12 + e34)

is described by k4 (see Proposition 3.2.1). Thus, the rank-two Einstein extension
of n is of the form

de1 = ae16 + b1e
17 + b2e

27 + b3e
37 + b4e

47 + b5e
57,

de2 = ae26 + b6e
17 + b7e

27 + b8e
37 + b9e

47 + b10e
57,

de3 = ae36 + b11e
17 + b12e

27 + b13e
37 + b14e

47 + b15e
57,

de4 = ae46 + b16e
17 + b17e

27 + b18e
37 + b19e

47 + b20e
57,

de5 = 2ae12 + 2ae34 + 2ae56 + b21e
17 + b22e

27 + b23e
37 + b24e

47 + b25e
57,

de6 = de7 = 0.

Therefore, we solve the corresponding conditions and obtain that the structure
equations of the 7-dimensional rank-two Einstein extension are
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

de1 = ae16 − b7e
17 + b2e

27 + b3e
37 + b4e

47,

de2 = ae26 + b2e
17 + b7e

27 + b4e
37 − b3e

47,

de3 = ae36 + b3e
17 + b4e

27 − b19e
37 + b14e

47,

de4 = ae46 + b4e
17 − b3e

27 + b14e
37 + b19e

47,

de5 = 2a(e12 + e34 + e56),

de6 = de7 = 0,

where a = 1
2

√
b2

7 + b2
2 + 2b2

3 + 2b2
4 + b2

14 + b2
19. Then, if we compute the expression

of a generic closed 3-form on this Lie algebra, we can apply Proposition 1.4.5 with
X = e5. Thus the rank-two Einstein extension does not admit closed G2 forms.

Now, we consider the nilpotent Lie algebra defined by the structure equations

n = (0, 0, e12, e13, e23).

It admits the rank-one Einstein extension given by k5. Then, the rank-two Einstein
extension of n is of the form

de1 = ae16 + b1e
17 + b2e

27 + b3e
37 + b4e

47 + b5e
57,

de2 = ae26 + b6e
17 + b7e

27 + b8e
37 + b9e

47 + b10e
57,

de3 = 4ae12 + 2ae36 + b11e
17 + b12e

27 + b13e
37 + b14e

47 + b15e
57,

de4 = 2
√

3ae13 + 3ae46 + b16e
17 + b17e

27 + b18e
37 + b19e

47 + b20e
57,

de5 = 2
√

3ae23 + 3ae56 + b21e
17 + b22e

27 + b23e
37 + b24e

47 + b25e
57,

de6 = de7 = 0.

We solve the equations corresponding to the inner product to be Einstein and
d2ej = 0, j = 1, . . . , 7. Thus, the structure equations of the rank-two Einstein
extension of n are 

de1 = ae16 + b19e
17 + b20e

27,

de2 = ae26 + b20e
17 − b19e

27,

de3 = 4ae12 + 2ae36,

de4 = 2
√

3ae13 + 3ae46 + b19e
47 + b20e

57,

de5 = 2
√

3ae23 + 3ae56 + b20e
47 − b19e

57,

de6 = de7 = 0.

We take the expression of a closed 3-form, namely ϕ. After calculating its
corresponding metric gϕ and its associated matrix G with respect to {e1, . . . , e7},
using [115, Proposition 4.5] for η = e1, . . . , e7 we have that the system G = kI7

(where k is a non-zero real number) has no solution.
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For the nilpotent Lie algebra

n = (0, 0, 0, e12, e13),

the rank-one Einstein extension is given by k6. Thus, the structure equations of
the rank-two Einstein extension associated to n are of the form

de1 = 1
3
ae16 + b1e

17 + b2e
27 + b3e

37 + b4e
47 + b5e

57,

de2 = 1
2
ae26 + b6e

17 + b7e
27 + b8e

37 + b9e
47 + b10e

57,

de3 = 1
2
ae36 + b11e

17 + b12e
27 + b13e

37 + b14e
47 + b15e

57,

de4 = ae12 + 5
6
ae46 + b16e

17 + b17e
27 + b18e

37 + b19e
47 + b20e

57,

de5 = ae13 + 5
6
ae56 + b21e

17 + b22e
27 + b23e

37 + b24e
47 + b25e

57,

de6 = de7 = 0.

Therefore, imposing the Einstein condition and the differential operator to vanish
when applied twice we obtain the two families of 7-dimensional rank-two Einstein
Lie algebras

1)



de1 = 2ae16 + 2(b19 + b25)e17,

de2 = 3ae26 − (b19 + 2b25)e27 + b12e
37,

de3 = 3ae36 + b12e
27 − (b19 + 2b25)e37,

de4 = 6ae12 + 5ae46 + b19e
47 + b12e

57,

de5 = 6ae13 + 5ae56 + b12e
47 + b25e

57,

de6 = de7 = 0,

and

2)



de1 =
√

2b25e
16 + 4b25e

17,

de2 = 3
2

√
2b25e

26 − 3b25e
27 − b12e

37,

de3 = 3
2

√
2b25e

36 + b12e
27 − 3b25e

37,

de4 = 3
√

2b25e
12 + 5

2

√
2b25e

46 + b25e
47 − b12e

57,

de5 = 3
√

2b25e
13 + 5

2

√
2b25e

56 + b12e
47 + b25e

57,

de6 = de7 = 0.

For 1) we calculate first a generic closed 3-forms ϕ and then, using [115, Propo-
sition 4.5] for X = e7, equivalently η = e7, we impose the condition α∧ β = 0. By
this condition we have, in particular, that

ρ1,2,3ρ1,3,4(b19 + b25) = 0,

where by ρi,j,k we denote the coefficient of eijk in ϕ. One can immediately exclude
the case ρ1,3,4 = 0, since otherwise the element G4,4 of the matrix associated to
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the metric gϕ has to be zero. Then we study separately the cases ρ1,2,3 = 0 and
b19 = −b25. In both cases we do not find any solution for the system S = G− kI7.

For 2) we consider separately the cases b12b25 6= 0, b12 = 0 and b25 = 0. In
the case b12b25 6= 0 we compute first a generic closed 3-form ϕ and then, using
[115, Proposition 4.5] for X = e7, we impose the condition α ∧ α ∧ α 6= 0, getting
the condition ρ1,2,5 6= 0. Thus, we take the system S = G − kI7 and get the
values of ρ2,5,6, ρ3,4,6, ρ3,5,6 and ρ2,3,6 from S5,5, S3,5, S4,4 and S3,4, respectively. Now
S3,3 = −k, and the system does not admit any solution.

For b12 = 0 we first compute the expression of a general closed 3-form ϕ and
then we use [115, Proposition 4.5] with X = e7, obtaining that ρ2,3,6, ρ2,4,6, ρ3,5,6

and ρ4,5,6 are all different from zero. Thus, the system S = G− kI7 does not have
solution. In the case b25 = 0 we first compute a generic closed 3-form ϕ and then
we apply Proposition 1.4.5 with X = e1, . . . , e5.

The nilpotent Lie algebra

n = (0, 0, e12, 0, 0)

admits a rank-one Einstein extension described by k7. Therefore, the rank-two
Einstein extension of n is given by



de1 = ae16 + b1e
17 + b2e

27 + b3e
37 + b4e

47 + b5e
57,

de2 = ae26 + b6e
17 + b7e

27 + b8e
37 + b9e

47 + b10e
57,

de3 = 1
2

√
7ae12 + ae36 + b11e

17 + b12e
27 + b13e

37 + b14e
47 + b15e

57,

de4 = 3
4
ae46 + b16e

17 + b17e
27 + b18e

37 + b19e
47 + b20e

57,

de5 = 3
4
ae56 + b21e

17 + b22e
27 + b23e

37 + b24e
47 + b25e

57,

de6 = de7 = 0.

We solve the equations corresponding to the inner product to be Einstein and
d2ej = 0, j = 1, . . . , 7. Then, we obtain the four families of 7-dimensional rank-
two Einstein Lie algebras, with structure equations

1)



de1 = ae16 + (−b7 + b13)e17 + b6e
27,

de2 = ae26 + b6e
17 + b7e

27,

de3 = a(
√

7e12 + 2e36) + b13e
37,

de4 = 3
2
ae46 − (2b13 + b25)e47 + b24e

57,

de5 = 3
2
ae56 + b24e

47 + b25e
57,

de6 = de7 = 0,
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where a = 2
21

√
21b2

7 − 21b7f13 + 63b2
13 + 21b2

6 + 42b25b13 + 21b2
25 + 21b2

24;

2)



de1 = ae16 + (−b7 + b13)e17 + b6e
27,

de2 = ae26 + b6e
17 + b7e

27,

de3 = a(
√

7e12 + 2e36) + b13e
37,

de4 = 3
2
ae46 − b13e

47 − b24e
57,

de5 = 3
2
ae56 + b24e

47 − b13e
57,

de6 = de7 = 0,

with a = 2
21

√
21b2

7 − 21b7b13 + 42b2
13 + 21b2

6;

3)



de1 = ae16 + 1
2
b13e

17 − b6e
27,

de2 = ae26 + b6e
17 + 1

2
b13e

27,

de3 = a(
√

7e12 + 2e36) + b13e
37,

de4 = 3
2
ae46 − (2b13 + b25)e47 + b24e

57,

de5 = 3
2
ae56 + b24e

47 + b25e
57,

de6 = de7 = 0,

where a = 1
21

√
231b2

13 + 168b13b25 + 84b2
25 + 84b2

24; and

4)



de1 = 1
3

√
3b25e

16 − 1
2
b25e

17 − b6e
27,

de2 = 1
3

√
3b25e

26 + b6e
17 − 1

2
b25e

27,

de3 = 1
3

√
3b25(

√
7e12 + 2e36)− b25e

37,

de4 = 1
2

√
3b25e

46 + b25e
47 − b24e

57,

de5 = 1
2

√
3b25e

46 + b24e
47 + b25e

57,

de6 = de7 = 0.

For all of them, after calculating a generic closed 3-form we can apply Proposi-
tion 1.4.5 with X = e3. Thus, the rank-two Einstein extension of n does not admit
closed G2-structures.

The nilpotent Lie algebra given by

n = (0, 0, e12, e13, 0)

has the rank-one Einstein extension described by k8. Thus, the structure equations
of the rank-two Einstein extension of n are

de1 = ae16 + b1e
17 + b2e

27 + b3e
37 + b4e

47 + b5e
57,

de2 = 2ae26 + b6e
17 + b7e

27 + b8e
37 + b9e

47 + b10e
57,

de3 =
√

26ae12 + 3ae36 + b11e
17 + b12e

27 + b13e
37 + b14e

47 + b15e
57,

de4 =
√

26ae13 + 4ae46 + b16e
17 + b17e

27 + b18e
37 + b19e

47 + b20e
57,

de5 = 3ae56 + b21e
17 + b22e

27 + b23e
37 + b24e

47 + b25e
57,

de6 = de7 = 0.
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Therefore, after solving the equations corresponding to the Einstein condition, and
the vanishing of the differential operator when it is applied twice, we obtain that
the structure equations of the rank-two Einstein solvable extension of n are

de1 = ae16 + (−b13 + b19)e17,

de2 = ae26 + (2b13 − b19)e27,

de3 = a(
√

26e12 + 3e36) + b13e
37,

de4 = a(
√

26e13 + 4e46) + b19e
47,

de5 = 3ae56 − (2b13 + b19)e57,

de6 = de7 = 0,

where a = 1
39

√
390b2

13 − 78b13b19 + 156b2
19.

We study separately the cases b13b19 6= 0, b13 = 0 and b19 = 0.
For b13b19 6= 0, using [115, Proposition 4.5] (that is, α∧α∧α 6= 0, with X = e7),

we may suppose ρ1,2,4ρ1,3,5 6= 0 for a generic closed 3-form ϕ. Now, we consider
the system

S = G− kI7,

where G is the matrix associated to gϕ and k a non-zero real number. From the
equation corresponding to S4,5, S3,4 and S2,2 we obtain the values of the parameters
ρ1,2,5, ρ1,2,3 and a. Substituting these values in the remaining equations and con-
sidering the equations corresponding to S2,4 and S2,5 we conclude that the system
S = 0 does not have solution. Indeed, the two equations corresponding to S2,4

and S2,5 imply that b13 = −19
5
b19 and b13 = 7

31
b19, which is a contradiction since

b13b19 6= 0.
In the case b13 = 0, using [115, Proposition 4.5] with η = e7, we may suppose

ρ1,3,5ρ3,4,7 6= 0 for a generic closed 3-form. Then, we get the expression of ρ2,5,7, k
and ρ2,3,7 from S5,5, S5,3 and S2,3, respectively. After substituting these values on
S we have that

S4,4 =
7ρ1,3,5

(
49ρ2

1,2,5 + 152ρ2
3,4,7

)
76
√

78
,

and thus, S4,4 6= 0, since ρ1,3,5 and ρ3,4,7 cannot vanish.
For b19 = 0, using [115, Proposition 4.5] with η = e7, we can consider

ρ1,3,5ρ3,4,7 6= 0 for any closed 3-form. Then we obtain ρ1,2,3, ρ2,5,6, ρ2,3,7 and
ρ1,3,5 from S3,4, S2,3, S2,4 and S3,3, respectively. Substituting these values of
ρ1,2,3, ρ2,5,6, ρ2,3,7 and ρ1,3,5 in the remaining equations we have that

S4,4 = −
959322ρ2

1,2,5ρ
4
3,4,7 + 59711k2

59711k
,

which implies again S4,4 6= 0. Then, the rank-two Einstein extension of n does not
admit any closed G2-structure inducing the Einstein metric.
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If n is the 5-dimensional Abelian Lie algebra, in order to obtain the rank-two
Einstein extension of n, namely s, we have to consider for s the structure equations

de1 = ae16 + b1e
17,

de2 = ae26 + b2e
27,

de3 = ae36 + b3e
37,

de4 = ae46 + b4e
47

de5 = ae56 + b5e
57,

de6 = de7 = 0.

By imposing that s is an Einstein Lie algebra (the inner product is the one
for which {e1, . . . , e7} is orthonormal), we get that the family of Lie algebras with
structure equations 

de1 = ae16 + (−b2 − b3 − b4)e17,

de2 = ae26 + b2e
27,

de3 = ae36 + b3e
37,

de4 = ae46 + b4e
47

de5 = ae56,

de6 = de7 = 0,

where a =
√

10b2
7 + 10b7b13 + 10b7b19 + 10b2

13 + 10b13b19 + 10b2
19. For these Lie al-

gebras we first calculate a generic closed 3-form ϕ, and then we may apply Propo-
sition 1.4.5 with X = e1, . . . , e5.

Rank three
In order to determine all the 7-dimensional rank-three Einstein solvable Lie

algebras, we need to find first the rank-one Einstein solvable extensions

s5 = n4 ⊕ R〈e5〉

of the two 4-dimensional (non-Abelian) nilpotent Lie algebras n4 as well as of
the Abelian one. Then we consider the standard solvable Lie algebra s7 =
s5 ⊕ R〈e6, e7〉 = n4 ⊕ a, with a = R〈e5, e6, e7〉 Abelian and such that the basis
{e1, . . . , e7} is orthonormal. We begin with the 4-dimensional nilpotent Lie alge-
bra

n = (0, 0, e12, e13),

which has the rank-one Einstein extension defined by

(
1

4
ae15,

1

2
ae25,

1

2

√
5ae12 +

3

4
ae35,

1

2

√
5ae13 + ae45, 0).
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Thus, the structure equations of the rank-three Einstein solvable extensions are

de1 = 1
4
ae15 + b1e

16 + b2e
26 + b3e

36 + b4e
46 + b5e

17 + b6e
27 + b7e

37 + b8e
47,

de2 = 1
2
ae25 + b9e

16 + b10e
26 + b11e

36 + b12e
46 + b13e

17 + b14e
27 + b15e

37

+b16e
47,

de3 = 1
2

√
5ae12 + 3

4
ae35 + b17e

16 + b18e
26 + b19e

36 + b20e
46 + b21e

17 + b22e
27

+b23e
37 + b24e

47,

de4 = 1
2

√
5ae13 + ae45 + b25e

16 + b26e
26 + b27e

36 + b28e
46 + b29e

17 + b30e
27

+b31e
37 + b32e

47,

de5 = de6 = de7 = 0.
(3.7)

After considering the equations corresponding to the inner product to be Einstein
and the condition of the differential operator to vanish when applied twice, we have
that the family of Lie algebras n does not admit a rank-three Einstein extension.

Consider now the nilpotent Lie algebra

n = h3 ⊕ R = (0, 0, e12, 0),

where h3 is the Lie algebra of the 3-dimensional nilpotent Heisenberg group, that
is, h3 = (0, 0, e12). Then, the rank-one Einstein extension of n is

(
1

2
ae15,

1

2
ae25,

1

4

√
22ae12 + ae35,

3

4
ae45, 0).

Therefore, the structure equations of the corresponding rank-three Einstein solv-
able extensions are

de1 = 1
2
ae15 + b1e

16 + b2e
26 + b3e

36 + b4e
46 + b5e

17 + b6e
27 + b7e

37 + b8e
47,

de2 = 1
2
ae25 + b9e

16 + b10e
26 + b11e

36 + b12e
46 + b13e

17 + b14e
27 + b15e

37 + b16e
47,

de3 = 1
4

√
22ae12 + 3

4
ae35 + b17e

16 + b18e
26 + b19e

36 + b20e
46 + b21e

17 + b22e
27

+b23e
37 + b24e

47,

de4 = 3
4
ae45 + b25e

16 + b26e
26 + b27e

36 + b28e
46 + b29e

17 + b30e
27 + b31e

37 + b32e
47,

de5 = de6 = de7 = 0.

Then, we obtain that the 7-dimensional rank-three Einstein extension of n = h3⊕R
has the structure equations

de1 = 1
2
ae15 − (b10 + 1

2
b28)e16 + b2e

26 + (−b14 + b23)e17 + b6e
27,

de2 = 1
2
ae25 + b9e

16 + b10e
26 + b13e

17 + b14e
27,

de3 = 1
4

√
22ae12 + ae35 − 1

2
b28e

36 + b23e
37,

de4 = 3
4
ae45 + b28e

46 − 2b23e
47,

de5 = de6 = de7 = 0,

(3.8)
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satisfying the conditions d2ei = 0 (i = 1, . . . , 4) and one of the two following:

1) a =

√
32b2

14 − 32b14b23 + 96b2
23 + 32b2

13

33
, b6 = b13,

b2 = b9 = ±

√
11

4b2
14 − 4b14b23 + b2

23 + 4b2
13

b13b23,

b10 = ∓ 1

11

√
11

4b2
14 − 4b14b23 + b2

23 + 4b2
13

(−13b14b23 + 6b2
23 + 2b2

14 + 2b2
13),

b28 = ± 2

11

√
11

4b2
14 − 4b14b23 + b2

23 + 4b2
13

(4b2
14 − 4b14b23 + b2

23 + 4b2
13);

2) a = 2

√
2

3
b23, b2 = ±1

2

√
11b2

23 − 4b2
10, b6 = b13 = b28 = 0, b14 =

1

2
b23.

For 1) we determine the general expression of a generic closed 3-form ϕ. Using
[115, Proposition 4.5] with X = e7, and the fact that a 6= 0, we consider the
condition α ∧ β = 0, where

α =ρ1,2,7e
12 +

(
2 (b14 − b23) ρ1,5,6 − (2b10 + b28) ρ1,5,7 − 2b13ρ2,5,6 + 2b9ρ2,5,7

a

)
e16

+ ρ1,5,7e
15 + ρ2,5,7e

25 +

(
−2b6ρ1,5,6 + 2b2ρ1,5,7 − 2b14ρ2,5,6 + 2b10ρ2,5,7

a

)
e26

+
2
√

2
11
b23ρ1,2,4

a
e34 +

2

√
2

11
ρ1,2,7 −

2
√

2
11
b23ρ1,2,5

a

 e35 + ρ4,5,7e
45

+

−2
√

2
11
b23ρ1,2,6

√
2
11
b28ρ1,2,7

a

 e36 +

(
8b23ρ4,5,6 + 4b28ρ4,5,7

3a

)
e46 + ρ5,6,7e

56

and

β =ρ1,2,4e
124 + ρ1,2,5e

125 + ρ1,2,6e
126 + ρ1,5,6e

156 + ρ2,5,6e
256 − 7ρ1,2,4√

22
e345

−

√
2
11
b28ρ1,2,4

a
e346 +


√

2
11
b28ρ1,2,5

a
+ 2

√
2

11
ρ1,2,6

 e356 + ρ4,5,6e
456.

Take the metric induced by ϕ, namely gϕ, whose corresponding matrix in terms
of the basis {e1, . . . , e7} is denoted by G. Then, the Einstein condition is equivalent
to the vanishing of the matrix system

S = G− kI7,
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where k is a non-zero real number. Considering the equations corresponding to
S3,4 and S3,3, we have that S2,2 6= 0. Therefore, the family of Lie algebras satisfying
condition 1) does not admit closed G2 form inducing the Einstein metric.

For 2) we start considering the conditions

a =
2

3

√
6b23, b6 = b13 = b28 = 0, b14 =

1

2
b23,

where b23 6= 0 since a 6= 0.
We calculate the expression of a generic closed 3-form ϕ. Then we use the

condition α ∧ β 6= 0 in [115, Proposition 4.5] for X = e7. Studying separately the
solutions of the equations corresponding to S3,3, S3,4, S2,3 and S1,3, can be checked
that this Lie algebra does not carry any closed G2 form inducing the Einstein
metric.

If n is the 4-dimensional Abelian Lie algebra, to get the rank-three Einstein
extension of n, namely s, we should consider the structure equations

de1 = ae15 + b1e
16 + b2e

17,

de2 = ae25 + b3e
26 + b4e

27,

de3 = ae35 + b5e
36 + b6e

37,

de4 = ae45 + b7e
46 + b8e

47,

de5 = de6 = de7 = 0.

(3.9)

The conditions of the inner product to be Einstein and d2(ei) = 0 imply

b7 = −b1 − b3 − b5, b8 = −b2 − b4 − b6,

2b1b2 + 2b3b4 + 2b5b6 + b2b3 + b2b5 + b1b4 + b4b5 + b1b6 + b3b6 = 0,

2b2
1 + 2b2

3 + 2b2
5 + 2b1b3 + 2b1b5 + 2b3b5 = 4a2.

We take the expression of a generic closed 3-form ϕ and use [115, Proposition 4.5]
with X = e7. Then, we consider the equations S1,2, S1,3, S1,4 and S2,3 obtaining
that

ρ1,2,5ρ1,3,5ρ1,4,5 = 0,

where ρi,j,k denotes the coefficient of eijk in ϕ. But, from S1,1 = 0 we obtain that
ρ1,2,5ρ1,3,5ρ1,4,5 6= 0. So the system S = 0 does not have solution, that is, the
rank-three Einstein solvable extension of the 4-dimensional Abelian Lie algebra
does not admit any closed G2 form inducing the Einstein metric.

Remark 3.3.6. Note that in the proof of Theorem 3.3.5, we study only the exis-
tence of closed G2 forms inducing Einstein metrics on the Einstein extensions of
rank two and three, which is sufficient to prove Theorem 3.3.5. But, we do not
care about closed G2 forms whose corresponding metric is not Einstein.
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Remark 3.3.7. Note that for the Lie algebra g28 with structure equations

g28 = (e17, e27, e37, e47, 2e13 − 2e24 + 2e57, 2e14 + 2e23 + 2e67, 0),

we are able to solve 48 of the 49 equations of the system G = kI7. The 3-form ϕ
on g28 given by

ϕ = −2e127 − 2e347 − e136 + e145 + e235 + e246 + 2e567,

is a closed G2 form, which induces the metric

gϕ = 2(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + e4 ⊗ e4 + e5 ⊗ e5 + e6 ⊗ e6 + 4e7 ⊗ e7).

We finish this subsection with Table 3.1 and Table 3.2, which were used in the
proof of Theorem 3.3.5. Table 3.1 contains the list due to Will [127] of the rank-one
Einstein 7-dimensional solvable Lie algebras, each of them defined in terms of a
basis {e1, . . . , e7} which is orthonormal with respect to the Einstein inner product.
In Table 3.2 we consider those Lie algebras admitting closed G2 form (but clearly
not inducing the Einstein inner product) and such a G2 form is also given.
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Table 3.1: Rank-one Einstein 7-dimensional solvable Lie algebras.

g1
(
a
2
e17, ae27,

√
13ae12 + 3

2
ae37, 4ae13 + 2ae47, 2

√
3e14 + 2ae23 + 5

2
ae57,

−
√

13ae25 + 2
√

3ae34 + 7
2
ae67, 0

)
g2

(
−
√
21
42

ae17,−
√
21
14

ae27, ae12 − 2
√
21

21
ae37,−2

√
3

3
ae13 − 5

√
21

42
ae47,

ae14 −
√
21
7
ae57, ae34 − ae25 − 3

√
21

14
ae67, 0

)
g3

(
−
√
14
56

ae17,−9
√
14

56
ae27, ae12 − 5

√
14

28
ae37,

√
6

2
ae13 − 11

√
14

56
ae47,

√
6

2
ae14 − 3

√
14
14

ae57,

ae15 − 13
√
14

56
ae67, 0

)
g4

(
ae17, 2ae27, 2

√
7e12 + 3ae37, 6

√
154

11
ae13 + 4ae47, 2

√
7ae14 + 2

√
1155
11

ae23 + 5ae57,

2
√
1155
11

ae15 + 5
√
154
11

ae24 + 6ae67, 0
)

g5

(
ae17, 3ae27, 2

√
14ae12 + 4ae37, 2

√
15ae13 + 5ae47, 6

√
2ae14 + 6ae57, 4

√
2ae15 + 2

√
15ae23 + 7ae67, 0

)
g6

(
a
2
e17, ae27,

√
10ae12 + 3

2
ae37,

√
10ae13 + 2ae47,

√
10ae23 + 5

2
ae57,

√
10ae14 + 5

2
ae67, 0

)
g7

(
ae17, ae27, 4ae12 + 2ae37, 2

√
5ae13 + 3ae47, 2

√
5ae23 + 3ae57, 4ae14 − 4ae24 + 4ae67, 0

)
g8

(
ae17, ae27, 4ae12 + 2ae37, 2

√
5ae13 + 3ae47, 2

√
5ae23 + 3ae57, 4ae14 + 4ae24 + 4ae67, 0

)
g9

(
−3
14
ae17, −11

28
ae27, −3

7
ae37,

√
5

2
ae12 − 17

28
ae47, ae14 − ae23 + −23

28
ae57, ae34 +

√
5
2
ae15 − 29

28
ae67, 0

)
g10

(
4
9
ae17, ae27, 4

3
ae37, 2

√
114
9

ae12 + 13
9
ae47, 2

9

√
190ae14 + 17

9
ae57, 2

√
114
9

ae15 + 2
√
114
9

ae23 + 7
3
ae67, 0

)
g11

(
a
3
e17, 2

3
ae27, 10

√
7

21
ae12 + ae37, 4

√
42

21
ae12 + ae47, 4

√
105
21

ae13 + 2
√
70

21
ae14 + 4

3
ae57,

2
√
6

3
ae15 + 2

√
7

3
ae24 + 5

3
ae67, 0

)
g12

(
a
2
e17, ae27, 11

6
ae37, 2

√
21

3
ae12 + 3

2
ae47, 2

√
21
3

ae14 + 2ae57, 2
√
14

3
ae15 + 2

√
14
3

ae24 + 5
2
ae67, 0

)
g13

(
2
9
ae17, ae27, 4

3
ae37, 2

√
93

9
ae12 + 33

27
ae47, 4

√
31

9
ae14 + 39

27
ae57, 2

√
93

9
ae15 + 5

3
ae67, 0

)
g14

(
a
2
e17, ae27, 3

4
ae37,

√
21
2
ae12 + 3

2
ae47,

√
14
2
ae13 + 5

4
ae57,

√
14
2
ae14 +

√
21
2
ae35 + 2ae67, 0

)
g15

(
ae17, ae27, ae37,

√
10ae12 + 2ae47,

√
10ae23 + 2ae57,

√
10ae14 +

√
10ae35 + 3ae67, 0

)
g16

(
ae17, ae27, ae37,

√
10ae12 + 2ae47,

√
10ae23 + 2ae57,

√
10ae14 −

√
10ae35 + 3ae67, 0

)
g17

(
ae17, ae27, 12

5
ae37, 4

5

√
31ae12 + 2ae47, 2

5

√
93ae14 + 3ae57, 2

5

√
93ae24 + 3ae67, 0

)
g18

(
ae17, ae27, 2ae37, 4ae12 + 2ae47, 2ae13 − 2

√
3ae24 + 3ae57, 2

√
3ae14 + 2ae23 + 3ae67, 0

)
g19

(
5ae17, 6ae27, 12ae37, 2

√
134ae12 + 11ae47,

√
402ae14 + 16ae57,

√
134ae13 −

√
402ae24 + 17ae67, 0

)
g20

(
ae17, ae27, 2ae12 + 2ae37, 2

√
3ae12 + 2ae47, 4ae14 + 3ae57, 2ae24 + 2

√
3ae23 + 3ae67, 0

)
g21

(
3ae17, 5ae27, 6ae37, 2

√
42ae12 + 8ae47, 2

√
21ae13 + 9ae57, 2

√
42ae14 + 2

√
21ae23 + 11ae67, 0

)
g22

(
6ae17, 5ae27, 9ae37, 2

√
93ae12 + 11ae47, 2

√
93ae13 + 15ae57, 4

√
31ae24 + 16ae67, 0

)
g23

(
ae17, 5

2
ae27, 3ae37,

√
37ae12 + 7

2
ae47,

√
74
2
ae13 + 4ae57,

√
37ae14 + 9

2
ae67, 0

)
g24

(
ae17, ae27, ae37,

√
6ae12 + 2ae47,

√
6ae13 + 2ae57,

√
6ae23 + 2ae67, 0

)
g25

(
5
√
31

124
ae17, 2

√
31

31
ae27, 9

√
31

124
ae37, 9

√
31

124
ae47, ae12 + 13

√
31

124
ae57,−

√
3

2
ae34 −

√
3

2
ae15 + 9

√
31

62
ae67, 0

)
g26

(
ae17, 2ae27, 3ae37, 3ae47, 4

√
2ae12 + 3ae57, 4

√
2ae15 + 4ae67, 0

)
g27

(
ae17, 3

4
ae27, 7

4
ae37, 3

2
ae47,

√
148
4

ae12 + 7
4
ae57,

√
74
4
ae14 +

√
37
2
ae25 + 5

2
ae67, 0

)
g28

(
ae17, ae27, ae37, ae47, 2ae13 − 2ae24 + 2ae57, 2ae14 + 2ae23 + 2ae67, 0

)
g29

(
ae17, ae27, 4

3
ae37, 4

3
ae47,

√
6ae12 + 2ae57,

√
6ae14 +

√
6ae23 + 7

3
ae67, 0

)
g30

(
a
2
e17, a

2
e27, a

2
e37, a

2
e47,
√

2ae12 + ae57,
√

2ae34 + ae67, 0
)

g31

(√
11
11

ae17, 3
√
11

22
ae27, 3

√
11

22
ae37, 2

√
11

11
ae47, ae12 + 5

√
11

22
ae57, ae13 + 5

√
11

22
ae67, 0

)
g32

(
a
2
e17, a

2
e27, a

2
e37, a

2
e47, 2

3
ae57,

√
11
3
ae12 +

√
11
3
ae34 + ae67, 0

)
g33

(
a
2
e17, a

2
e27, 3

4
ae37, 3

4
ae47, 3

4
ae57,

√
34
4
ae12 + ae67, 0

)
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Table 3.2: Closed G2-structures on rank-one Einstein solvable Lie alge-
bras.

s7 Closed G2-structure

g1 ϕ = 1
432

(
1440− 128

√
3
)
e123 +

√
13
2
e125 − (13312

√
3−748800)

44928
√
3

e127

+ 8
9
e135 − 2e137 − 1√

3
e146 −

√
3e147 + 10e157 − e167 − 1

3
e236 + e237

+ 1
576

(
1440 + 128

√
3
)
e247 + 1√

3
e267 + 1√

3
e345 − e357 − e457 + e567

g4 ϕ = − 7
2
√

5
e125 + e137 − 7

13e
146 − e147 + 1

2e
167 + 7

13e
236 − e237

+2e247 − e267 + 7
13e

345 + 1
2e

357 − e457 − e567

g9 ϕ = − 7
2
√

5
e125 + e137 − 7

13e
146 − e147 + 1

2e
167 + 7

13e
236

−e237 + 2e247 − e267 + 7
13e

345 + 1
2e

357 − e457 − e567

g18 ϕ = e123 − e127 − e136 +
√

3e145

+3e167 + e235 +
√

3e246 − 1
2e

347 + 3e567

g28 ϕ = −2e127 − 2e347 − e136 + e145 + e235 + e246 + 2e567

3.3.2 Coclosed G2-structures

In this section we study the existence of coclosed G2-structures ϕ on 7-dimensional
solvable Lie algebras whose underlying Riemannian metric gϕ is Einstein. We will
use the classification of the 7-dimensional Einstein solvable Lie algebras contained
in the previous section as well as the following results.

Lemma 3.3.8. Let (g, 〈·, ·〉) be a 7-dimensional metric Lie algebra. If there is
a non-zero vector X ∈ g such that (ιXφ)3 = 0 for every coclosed 3-form φ on
(g, 〈·, ·〉), then (g, 〈·, ·〉) has no coclosed G2-structure.

Proof. Suppose that (g, 〈·, ·〉) has a coclosed G2 form ϕ inducing the inner product
〈·, ·〉 on g. Then, according with [38], for any X ∈ g, we know that ιXϕ is the
two-form of an SU(3)-structure and therefore it is non-degenerate or, equivalently,
(ιXϕ)3 6= 0. In view of this contradiction we conclude that (g, 〈·, ·〉) does not admit
coclosed G2 forms.

Lemma 3.3.9. Let g be a 7-dimensional solvable Lie algebra with a coclosed G2

form ϕ inducing the inner product 〈·, ·〉 on g. Denote by ∗ the Hodge star operator
on (g, 〈·, ·〉). Then, there exists a real number λ such that

ϕ ∧ τ = 0 and ∗ ϕ ∧ τ = 0,

where τ is the 4-form on g given by

τ = − ∗ (dϕ− λ ∗ ϕ).
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Proof. Suppose that ϕ is a coclosed G2 form on g. By Proposition 1.1.13, we know
that dϕ and d ∗ ϕ are expressed in terms of the torsion forms as

dϕ = τ0 ∗ ϕ+ 3τ1 ∧ ϕ+ ∗τ3,

d ∗ ϕ = 4τ1 ∧ ∗ϕ+ τ2 ∧ ϕ,

where τ0 ∈ Λ0g∗ = R, τ1 ∈ Λ1g∗ = g∗, τ2 ∈ Λ2
14g
∗ and τ3 ∈ Λ3

27g
∗. The coclosed

condition (d ∗ ϕ = 0) implies that τ1 = τ2 = 0. Thus,

dϕ = τ0 ∗ ϕ+ ∗τ3.

This implies that
τ3 = − ∗ (dϕ− τ0 ∗ ϕ).

But, by (1.12), we know that

Λ3
27g
∗ = {ρ ∈ Λ3g∗ | ρ ∧ ϕ = 0 = ρ ∧ ∗ϕ}.

As τ3 belongs to the space Λ3
27g
∗, the conditions

ϕ ∧ τ3 = 0 and ∗ ϕ ∧ τ3 = 0

must be fulfilled. Thus, it is sufficient to take λ = τ0 and τ = τ3.

We recall that a 5-dimensional manifold N has an SU(2)-structure if there
exists a quadruplet of differential forms (η, ω1, ω2, ω3), where η is a 1-form and ωi
are 2-forms on N , satisfying ωi ∧ωj = δijv, v ∧ η 6= 0, for some nowhere vanishing
4-form v, and

ιXω3 = ιY ω1 =⇒ ω2(X, Y ) ≥ 0,

for any vector fields X and Y on N . Such structures were introduced by Conti
and Salamon in [39].

Proposition 3.3.10. Let (g = n⊕ a, 〈·, ·〉) be a 7-dimensional rank-two Einstein
Lie algebra, and let {e1, . . . , e7} be an orthonormal basis of (g, 〈·, ·〉) such that
a = R〈e6, e7〉. Then, any G2-structure ϕ on g, with gϕ = 〈·, ·〉, induces an SU(2)-
structure on n such that the associated metric h is the restriction of gϕ to n.

Proof. By [115, Proposition 4.5] we know that the 2-form F = ιe7ϕ and the 3-
form ρ given by ρ = ϕ − F ∧ e7 determine an SU(3)-structure on R〈e1, . . . , e6〉
whose associated metric is the restriction of gϕ to R〈e1, . . . , e6〉. Now we can write
F = f 12 + f 34 + f 5 ∧ e6 and ρ + ıρ̄ = (f 1 + if 2) ∧ (f 3 + if 4) ∧ (f 5 + i e6), where
fi ∈ R〈e1, . . . , e5〉 and {f1, . . . , f5, e6} is orthonormal. Then by [39, Proposition
1.4] the forms

η = f 5, ω1 = f 12 + f 34, ω2 = f 13 + f 42, ω3 = f 14 + f 23
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define an SU(2)-structure on n. The basis {f1, . . . , f5} is orthonormal with respect
to the metric h induced by the SU(2)-structure. So, h coincides with the restriction
of gϕ to n.

Corollary 3.3.11. Let (g = n⊕a, 〈·, ·〉) be a 7-dimensional rank-two Einstein Lie
algebra, and let {e1, . . . , e7} be an orthonormal basis such that a = R〈e6, e7〉. If
for any coclosed 3-formϕ one of the two following conditions

• (ω2
i − ω2

j ) ∧ η 6= 0 for some i 6= j,

• ωi ∧ η 6= ∗hωi for some i

is satisfied, where (ω1, ω2, ω3, η) is the SU(2)-structure as in Proposition 3.3.10,
and h its corresponding metric, then, (g, 〈·, ·〉) does not admit any coclosed G2-
structure ϕ such that gϕ = 〈·, ·〉.

Proof. By Proposition 3.3.10, a G2-structure ϕ on (g = n ⊕ a, 〈·, ·〉), such that
gϕ = 〈·, ·〉 and a = R〈e6, e7〉, induces an SU(2)-structure (ω1, ω2, ω3, η) on n. By
definition of SU(2)-structure, the forms (ω1, ω2, ω3, η) have to satisfy the conditions
(ω2

i − ω2
j ) ∧ η = 0 for all i, j, and ωi ∧ η = ∗hωi for all i = 1, 2, 3.

We already know that 7-dimensional Einstein solvable Lie algebras cannot ad-
mit nearly-parallel G2-structures since the scalar curvature of such a structure has
to be positive. Next, we show that in general those metric Lie algebras do not
admit coclosed G2 form whose induced metric is Einstein.

Theorem 3.3.12. A 7-dimensional solvable Lie group cannot admit any left in-
variant coclosed G2-structure ϕ such that its induced metric gϕ is Einstein, unless
gϕ is flat.

Proof. According with Theorem 3.1.4, an Einstein solvable Lie algebra (s, 〈·, ·〉)
is necessarily standard, so one has the orthogonal decomposition (with respect to
〈·, ·〉)

s = n⊕ a,

where n = [s, s] is a nilpotent Lie algebra and a Abelian. We will consider sepa-
rately the different possibilities according to the rank of s, that is, the dimension
of a.

Rank one
If n is Abelian, then by [80, Proposition 6.12], we know that s has the structure

equations

s = (ae17, ae27, ae37, ae47, ae57, ae67, 0),
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where a is a non-zero real number. A generic coclosed 3-form ϕ on (s, 〈·, ·〉) has
the following expression

ϕ =ρ1,2,3e
123 + ρ1,2,4e

124 + ρ1,2,5e
125 + ρ1,2,6e

126 + ρ1,3,4e
134 + ρ1,3,5e

135 + ρ1,3,6e
136

+ ρ1,4,5e
145 + ρ1,4,6e

146 + ρ1,5,6e
156 + ρ2,3,4e

234 + ρ2,3,5e
235 + ρ2,3,6e

236 + ρ2,4,5e
245

+ ρ2,4,6e
246 + ρ2,5,6e

256 + ρ3,4,5e
345 + ρ3,4,6e

346 + ρ3,5,6e
356 + ρ4,5,6e

456.

We apply the aforementioned result [115, Proposition 4.5]. For example, for X =
e1, we have

α = ιe1ϕ =ρ1,2,3e
23 + ρ1,2,4e

24 + ρ1,2,5e
25 + ρ1,2,6e

26 + ρ1,3,4e
34 + ρ1,3,5e

35 + ρ1,3,6e
36

+ ρ1,4,5e
45 + ρ1,4,6e

46 + ρ1,5,6e
56

and therefore,
α ∧ α ∧ α = 0.

If n is (non-Abelian) nilpotent, then (s, 〈·, ·〉) is isometric to one of the solvable
Lie algebras gi (i = 1, . . . , 33) in Table 3.1, endowed with the Riemannian metric
such that the basis {e1, . . . , e7} is orthonormal. To study the Lie algebras g3, g13,
g23 and gj (25 ≤ j ≤ 33), we apply Lemma 3.3.8 with X = e7, and we see in this
way that they do not admit any coclosed G2-structure ϕ such that gϕ = 〈·, ·〉.

For the Lie algebras

g1, g2, g4, g5, g6, g20,

we write, for every of these algebras, the expression of a generic coclosed 3-form
ϕ, and then we determine the torsion forms τ0 and τ3. In all the cases, we obtain
that τ3 ∧ ϕ 6= 0 unless ϕ vanishes. So applying Lemma 3.3.9 we have that these
Lie algebras do not admit a coclosed G2-structure.

For the Lie algebras

gj, 7 ≤ j ≤ 24, j 6= 13, 20, 23, (3.10)

we first determine a generic coclosed 3-form ϕ and then, by applying [115, Proposi-
tion 4.5] with η = e1, . . . , e7, we impose the conditions (3.6) for the corresponding
forms α and β, which are defined as in (3.5). Moreover, we have that the coclosed
3-form ϕ defines a G2-structure if and only if the matrix associated to the symmet-
ric bilinear form gϕ, with respect to the orthonormal basis {e1, . . . , e7}, is positive
definite. Since the Einstein metric is unique up to scaling, a coclosed G2-structure
induces an Einstein metric if and only if the matrix associated to the symmetric
bilinear form gϕ, with respect to the basis {e1, . . . , e7}, is a multiple of the identity
matrix. By a direct computation we have thus that the Lie algebras (3.10) cannot
admit any coclosed G2-structure inducing an Einstein metric.
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Rank two

For the 7-dimensional rank-two Einstein solvable Lie algebras, using the same
notation as for the closed case (Theorem 3.3.5), we obtain the result for k1, k3, k5, k6,1

and k6,2 by the first condition of Corollary 3.3.11. For the other Lie algebras, that
is, k4, k7,1, k7,2, k7,3, k7,4, k8, as well as for the extension of the Abelian one, the result
is obtained using the second condition of Corollary 3.3.11.

Rank three

As we did in the subsection concerning closed G2-structures, we have to consider
the rank-three solvable Einstein extensions of the two (non-Abelian) nilpotent 4-
dimensional Lie algebras, as well as of the Abelian one.

From (3.7), we know that the 4-dimensional nilpotent Lie algebra with structure
equations

n = (0, 0, e12, e13)

does not admit a rank-three Einstein solvable extension.

For the nilpotent Lie algebra described by

n = h3 ⊕ R = (0, 0, e12, 0),

the rank-three Einstein solvable extension is given by (3.8). Then, we can take
the expression of a 3-form ϕ which is coclosed. The, we calculate the metric gϕ
induced by ϕ, and consider the matrix system

S = G− kI7,

where G is the matrix corresponding to gϕ with respect to {e1, . . . , e7}, and k
a non-zero real number. Thus, if we try to solve the system S = 0, which is
equivalent to the inner product to be Einstein, we obtain that S6,6 = k. Therefore,
the system S = G − kI7 does not have solution, and so the rank-three Einstein
extension of h3 ⊕ R does not admit coclosed G2-structure inducing the Einstein
metric of (3.8).

Finally we consider the rank-three Einstein extension of the 4-dimensional
Abelian Lie algebra. Its corresponding structure equations are described in (3.9).
As before, we take the general expression of a coclosed 3-form ϕ and we calculate
its induced metric. Imposing that the matrix system S (defined as before) must
vanish, we obtain again that S6,6 = k. Therefore, the system S = 0 does not have
solution or, equivalently, the rank-three Einstein extension of the 4-dimensional
Abelian Lie algebra does not admit coclosed G2-structure inducing the Einstein
metric of (3.9).
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3.4 An Einstein cocalibrated G2 manifold from

warped products

In this section, using warped products, we show an explicit example of a (non-
nearly parallel) coclosed G2 form inducing an Einstein metric on a non-compact
manifold. We point out that, according with Chapter 1 (see (1.11)), the Rie-
mannian product of a half-flat manifold by R (or by S1 in the compact case)
has a coclosed G2 form but the induced metric is not Einstein. Moreover,
Agricola and Friedrich in [1] prove that any 7-dimensional 3-Sasakian manifold
(M,φi, ξi, ηi, g; i = 1, 2, 3) has a canonical coclosed G2 form ϕ such that the in-
duced metric gϕ is gϕ = g and so is Einstein. But we will see that the metric of
our example is not 3-Sasakian.

Let (B, gB) and (F, gF ) be two Riemannian manifolds, and let f > 0 be a real
differentiable function on B. We denote by π and σ the projections of B×F onto
B and F , respectively. The warped product, namely M = B ×f F , is the product
manifold M = B × F endowed with the metric g given by

g = π∗(gB) + f 2σ∗(gF ).

The manifold B is called the base of M , F the fibre, and the warped product is
called trivial if f is a constant function. We denote by RicB the lift (pullback by π)
of the Ricci curvature of B, similarly for RicF ; and let Hess(f) be the lift to M of
the Hessian of f . By [109, p. 211] the warped product (M, g), where M = B×f F ,
is Einstein with Ric = λg if and only if (F, gF ) is Einstein (RicF = µgF ), with
Einstein constant µ, and the following conditions are satisfied

λgB = RicB − d
f
Hess(f),

λ = µ
f2
− ∆f

f
− (d− 1)

∣∣∣∇ff ∣∣∣2
gB
,

(3.11)

where ∆f = tr
(
Hess(f)

)
, ∇f denotes the gradient of f and d = dim(F ).

Moreover, when the base space has dimension 1 (dim(B) = 1), then equations
(3.11) reduce to

(f ′)2 +
λ

d
f 2 =

µ

d− 1
. (3.12)

The behavior of the solutions of (3.12) depends on the signs of λ and µ. Never-
theless, up to homotheties, those solutions (besides the constant case) are given in
the following table (Table 3.3) (see also [16]).
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Table 3.3: Solutions of the system (3.12)

µ −(d− 1) 0 d− 1 d− 1 d− 1
λ −d −d −d 0 d

f cosh t et sinh t t sin t

From this table follows the next result.

Theorem 3.4.1 (Theorem 9.110, [16]). Let (M, g) be a warped product, where M
= B ×f F , dim(B) = 1 and dim(F ) = d > 1. If (M, g) is a complete Einstein
manifold, then either M is a Ricci-flat Riemannian product, or B = R, F is
Einsten with non-positive scalar curvature and M has negative scalar curvature.

Now, let M = I ×f N be a warped product, where I is an open interval,
f : I → R is a differentiable function, f > 0, and (N, gN) is a 6-dimensional
Riemannian manifold. Then, by [16], the metric g on M given by

g = dt2 + f 2 gN

is Einstein if and only if gN is Einstein and (f ′)2 + ρMf
2 = ρN , where

ρM =
scal(g)

42
, ρN =

scal(gN)

30
,

or equivalently,

ρM =
λ

6
, ρN =

µ

5
,

where, as we mentioned before, λ and µ are the Einstein constant of (M, g) and
(N, gN), respectively.

From now on, we suppose that the 6-dimensional manifold N has an SU(3)-
structure (ω, ψ+, ψ−) which belongs to a one-parameter family of SU(3)-structures(
ω(t), ψ+(t), ψ−(t)

)
such that

ω(t) = f1(t)ω, ψ+(t) = f2(t)ψ+, ψ−(t) = f3(t)ψ−,

where the functions fi = fi(t) (i = 1, 2, 3) are real differentiable functions on an
open interval I. We will show conditions for (ω, ψ+, ψ−) and for the functions
fi = fi(t) under which the 3-form

ϕ = ω(t) ∧ dt+ ψ+(t) (3.13)

is either a closed or a coclosed G2 form on the warped product I ×f N inducing
an Einstein metric gϕ = f 2gN + dt2, for some real differentiable function f on I,
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and where gN is the Riemannian metric on N determined by (ω, ψ+, ψ−) . We
obtain some results taking certain functions f = f(t) and particular types of
SU(3)-structures (ω, ψ+, ψ−) on N .

First, we consider a family of SU(3)-structures
(
ω(t), ψ+(t), ψ−(t)

)
on N , for t

in some open interval I, such that

ω(t) = f 2(t)ω,

ψ+(t) = f 3(t)ψ+,

ψ−(t) = f 3(t)ψ−,

where f = f(t) > 0 is a real differentiable function on I. By (1.9) we know that,
for any t ∈ I, the 3-form ϕ(t) on N × R given by

ϕ(t) = ω(t) ∧ dt+ ψ+(t) (3.14)

is a G2 form inducing the metric

gϕ(t) = dt2 + gN(t),

where gN(t) denotes the Riemannian metric on N determined by the SU(3)-
structure

(
ω(t), ψ+(t), ψ−(t)

)
. Thus, the metric gϕ(t) is the warped product metric

gϕ(t) = dt2 + f 2(t)gN (3.15)

on I ×f N if and only if
gN(t) = f 2(t)gN .

In these conditions, the forms ϕ(t) and ∗ϕ(t) ϕ(t) can be expressed, in terms of the
function f and the SU(3)-structure (ω, ψ+, ψ−) on N , as follows

ϕ(t) = f 2(t)ω ∧ dt+ f 3(t)ψ+,

∗ϕ(t) ϕ(t) =
1

2
f 4(t)ω ∧ ω + f 3(t)ψ− ∧ dt.

Therefore,

dϕ(t) = f 2(t) d̂ω ∧ dt− 3f 2(t)f ′(t)ψ+ ∧ dt+ f 3(t) d̂ψ+,

d(∗ϕ(t) ϕ(t)) = f 4(t) d̂ω ∧ ω + 2f 3(t)f ′(t)ω ∧ ω ∧ dt+ f 3(t) d̂ψ− ∧ dt,
(3.16)

where, as it is usual in this context, d denotes the differential on M = I ×N , and
d̂ denotes the differential on N .
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Taking into account the first equation of (3.16), the closed condition for
ϕ(t) (dϕ(t) = 0), is equivalent to the following conditions on the SU(3)-structure
(ω, ψ+, ψ−) and on the function f = f(t){

d̂ψ+ = 0,

d̂ω = 3f ′(t)ψ+,
(3.17)

since f(t) > 0, for all t ∈ I. To study this system we use that the scalar curvature
of the underlying metric gϕ of a closed G2-structure ϕ is non-positive. Then, from
Table 3.3, we see that the function f(t) = sin t can be discarded in order to have an
Einstein warped product M = I×f N . Concretely, from Table 3.3, can be checked
that the Einstein constants µ and λ of (N, gN) and (M, g), respectively, are such
that λ and µ are > 0. Thus, (M, g) has positive scalar curvature and therefore the
metric g cannot be induced by a closed G2-structure. Considering the function
f(t) = cosh(t) the previous system (3.17) has not solution. This can be checked
by taking into account the fact that ω and ψ+ do not depend on the parameter t.
Thus, for f(t) = cosh(t), the second equation of (3.17) does not admit solution.
The same happens if f(t) = et or if f(t) = sinh(t). However, a solution of (3.17) is
obtained if f(t) = t (t ∈ R+). In this case, we get the following well known result
of Bryant and Salamon [23, 26] on the cone metric over a 6-dimensional nearly
Kähler manifold.

Proposition 3.4.2 [23, 26]. The cone metric over a Riemannian 6-manifold N
has holonomy contained in G2 if and only if N is a nearly Kähler manifold.

Proof. Suppose that (ω, ψ+, ψ−) is a nearly Kähler structure on N , that is, the
forms ω, ψ+ and ψ− satisfy dω = 3ψ+ and dψ− = −2ω2. Clearly, (ω, ψ+, ψ−)
belongs to the family of SU(3)-structures

(
ω(t), ψ+(t), ψ−(t)

)
on N such that

ω(t) = t2 ω, ψ+(t) = t3 ψ+, ψ−(t) = t3 ψ−,

and this family satisfies the system (3.17) for f(t) = t, where t ∈ R+. Therefore,
according with (3.13), the 3-form ϕ is defined by

ϕ = t2 ω ∧ dt+ t3 ψ+ (3.18)

is a closed G2 form on M = R+×N . Using that f(t) = t and (3.15), we have that
the induced metric gϕ is the cone metric of gN . So gϕ = dt2 + t2gN is Ricci-flat
since (N,ω, ψ+, ψ−) is a nearly Kähler manifold and so gN is Einstein and with
Einstein constant 5. Now, by (3.3), both properties (ϕ closed and gϕ Ricci-flat)
imply that the 3-form ϕ is also coclosed and so parallel with respect to the Levi-
Civita connection of the cone metric of gN .
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Conversely, suppose that (ω, ψ+, ψ−) is the SU(3)-structure on N inducing the
metric gN such that the cone metric gϕ = dt2 + t2gN has holonomy contained in
G2. This means that the G2 form ϕ defined as in (3.18) is closed and coclosed.
But the closedness of ϕ and ∗ϕ ϕ = −t3 dt ∧ ψ− + 1

2
t4 ω2 imply that dω = 3ψ+

and dψ− = −2ω2, respectively. Thus, (ω, ψ+, ψ−) is a nearly Kähler structure on
N .

From the second equation of (3.16), and using that f(t) 6= 0 since f(t) > 0,
the coclosed condition for ϕ(t) (d ∗ϕ(t) ϕ(t) = 0) is equivalent to the following
system of conditions involving the SU(3)-structure and the function f(t){

d̂ω ∧ ω = 0,

d̂ψ− = −2f ′(t)ω ∧ ω.
(3.19)

Regarding the possible functions f(t), from Table 3.3 we obtain that the previous

system only admits solution if f(t) = t and d̂ψ− = −2ω ∧ ω. Recall that, as we

mentioned in Chapter 1, an SU(3)-structure (ω, ψ+, ψ−) satisfying d̂ψ− = −2ω∧ω
is called nearly half-flat.

Proposition 3.4.3. Let N be a differentiable manifold, of dimension 6, endowed
with a nearly half-flat SU(3)-structure (ω, ψ+, ψ−) (d̂ψ− = −2ω2) whose underlying
metric gN is Einstein and with Einstein constant 5. Then, the 3-form ϕ on M =
R+ ×N defined by

ϕ = t2 ω ∧ dt+ t3 ψ+ (3.20)

is a coclosed G2 form on M = R+ ×N inducing the Ricci-flat metric given by the
cone metric of gN , that is,

gϕ = dt2 + t2gN .

Proof. From (3.13) and (3.19), the G2-structure on M = R+ × N determined by
the 3-form given by (3.20) is coclosed. Using (3.15), we have that the induced
metric gϕ is the cone metric of gN and so gϕ is Ricci-flat since gN is Einstein and
with Einstein constant 5.

Remark 3.4.4. Note that in general a coclosed G2 form inducing a Ricci-flat
metric is not closed, and so (in opposite with closed G2 forms inducing Ricci-flat
metric) it is not parallel with respect to the Levi-Civita connection of the metric.
However, as far as we know, examples of non-parallel coclosed G2 forms defining
a Ricci-flat metric are not known.

Now we consider the family of SU(3)-structures
(
ω(t), ψ+(t), ψ−(t)

)
on N , for

t in some open interval I, such that
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ω(t) = f 2(t)ω,

ψ+(t) = f 3(t)(cos t ψ+ − sin t ψ−),

ψ−(t) = f 3(t)(sin t ψ+ + cos t ψ−).

where f = f(t) > 0 is a real differentiable function on I. From (3.14), for any
t ∈ I, we have the forms ϕ(t) and ∗ϕϕ(t) on N × R given by

ϕ(t) = f 2(t)ω ∧ dt+ f 3(t) (cos t ψ+ − sin t ψ−),

∗ϕ(t)ϕ(t) =
1

2
f 4(t)ω ∧ ω + f 3(t)(sin t ψ+ + cos t ψ−

)
∧ dt.

(3.21)

Thus,

dϕ(t) =f 2(t) d̂ω ∧ dt− 3f 2(t)f ′(t)(cos t ψ+ ∧ dt− sin t ψ− ∧ dt)
+ f 3(t) sin t ψ+ ∧ dt+ f 3(t) cos t ψ− ∧ dt
+ f 3(t) cos t d̂ψ+ − f 3(t) sin t d̂ψ−,

d
(
∗ϕ ϕ(t)

)
=f 4(t) d̂ω ∧ ω + 2f 3(t)f ′(t)ω ∧ ω ∧ dt

+ f 3(t) cos t d̂ψ− ∧ dt+ f 3(t) sin t d̂ψ+ ∧ dt.

(3.22)

Therefore, according with the first equation of (3.22), the closed condition
for ϕ(t) is equivalent to the system

d̂ψ+ = 0,

d̂ψ− = 0,

d̂ω =
(
3f ′(t) cos t− f(t) sin t

)
ψ+

−
(
3f ′(t) sin t+ f(t) cos t

)
ψ−.

Now, Proposition 1.1.6 and the conditions d̂ψ+ = 0 = d̂ψ− imply that:

d̂ω = ν1 ∧ ω + ν3,

with ν1 ∈ Ω1(N6) and ν3 ∈ Ω3
12(N6). Therefore the previous system does not

admit any solution.
Taking into account the second equation of (3.22), the coclosed condition of

ϕ(t) is equivalent to the following system{
d̂ω ∧ ω = 0,

2f ′(t)ω ∧ ω = − sin t d̂ψ+ − cos t d̂ψ−.



126 G2-structures on Einstein solvmanifolds

Considering the possible functions f = f(t) making Einstein the warped product
metric, Table 3.3 implies that the only possibility is f(t) = sin t. Therefore, the
SU(3)-structure must satisfy the conditions

d̂ψ+ = 0 and d̂ψ− = −2ω ∧ ω. (3.23)

An SU(3)-structure satisfying (3.23) is called double half-flat SU(3)-structure in
[115, page 56].

Remark 3.4.5. Note that the existence of an SU(3)-structure (ω, ψ+, ψ−) on a
manifold N satisfying (3.23) is equivalent to the existence of an SU(3)-structure

(ω̃, ψ̃+, ψ̃−) on N such that

d̂ ψ̃+ = 0 and d̂ ψ̃− = λ ω̃ ∧ ω̃, (3.24)

where λ is a non-zero real number. In fact, if (ω, ψ+, ψ−) satisfies (3.23), then the

SU(3)-structure (ω̃, ψ̃+, ψ̃−) given by

ω̃ = (2/ λ)2 ω, ψ̃+ = −(2/ λ)3 ψ+, ψ̃− = −(2/ λ)3 ψ−

satisfies (3.24). Conversely, if (ω̃, ψ̃+, ψ̃−) is an SU(3)-structure satisfying (3.24),
then the SU(3)-structure (ω, ψ+, ψ−) given by

ω = (λ /2)2 ω̃, ψ+ = −(λ /2)3ψ̃+, ψ− = −(λ /2)3ψ̃−

satisfies (3.23). Conditions (3.24) are given in [115, page 56] to define dou-

ble half-flat SU(3)-structures. Note also that in the changes from (ω̃, ψ̃+, ψ̃−) to

(ω, ψ+, ψ−), and conversely from (ω, ψ+, ψ−) to (ω̃, ψ̃+, ψ̃−), we preserve the almost
complex structure but we change the metric.

For a double half-flat SU(3)-structure, we have the following result.

Proposition 3.4.6. Let (N,ω, ψ+, ψ−) be a 6-dimensional differentiable manifold
endowed with a double half-flat SU(3)-structure (in the sense of (3.23)) whose
underlying metric gN is Einstein and with positive scalar curvature. Then, the
3-form ϕ on (0, π)×N defined by

ϕ = sin2 t ω ∧ dt+ sin3 t (cos t ψ+ − sin t ψ−)

is a coclosed G2 form on (0, π)×N inducing the well-known Einstein metric with
positive scalar curvature

g = dt2 + sin2 t gN .
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Proof. A warped product (M, g), with M = (0, π)×N is Einstein with Ric = λg if
and only if (N, gN) is Einstein (with RicN = µgN) and equation (3.12) is satisfied.

From the possible solutions of system (3.12) (which are described in Table 3.3)
we see that the solution f(t) = sin t requires µ to be positive, or equivalently
Scal(gN) > 0. Therefore, the G2-structure

ϕ = sin2 t ω ∧ dt+ sin3 t (cos t ψ+ − sin t ψ−)

defines the metric
gϕ = dt2 + sin2 t gN ,

which is Einstein if and only if gN is Einstein with positive scalar curvature.
On the other hand, if (N,ω, ψ+, ψ−) is double half-flat, that is

d̂ψ+ = 0 and d̂ψ− = −2ω ∧ ω,

from equation (3.22) we have that

d(∗ϕ(t)ϕ(t)) = sin4 t d̂ω ∧ ω + 2 sin3 t cos t ω ∧ ω ∧ dt
+ sin3 t cos t d̂ψ− ∧ dt+ sin4 t d̂ψ+ ∧ dt

=2 sin3 t cos t ω ∧ ω ∧ dt− 2 sin3 t cos t ω ∧ ω ∧ dt = 0.

For the particular case of (N,ω, ψ+, ψ−) being nearly Kähler the following
known result holds.

Theorem 3.4.7. [57, Theorem 5.3] Let (N,ω, ψ+, ψ−) be a nearly Kähler mani-
fold. Then, the 3-form ϕ on (0, π)×N defined by

ϕ = sin2 t ω ∧ dt+ sin3 t (cos t ψ+ − sin t ψ−)

is a nearly parallel G2 form on (0, π)×N inducing the well-known Einstein metric

g = dt2 + sin2 t gN ,

where gN is the nearly Kähler metric on N .
If (N,ω, ψ+, ψ−) is compact, then (N × S1, ϕ) is a compact nearly parallel G2

manifold with two conical singularities at t = 0 and t = π.

Proof. Recall, that (N,ω, ψ+, ψ−) is a nearly Kähler manifold if and only if

d̂ω = 3ψ+ and d̂ψ− = −2ω ∧ ω.
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Thus, from (3.22) we have that

d(ϕ(t)) =3 sin2 t ψ+ ∧ dt− 3 sin2 t cos2 t ψ+ ∧ dt+ 3 sin3 t cos t ψ− ∧ dt
+ sin4 t ψ+ ∧ dt+ sin3 t cos t ψ− ∧ dt+ 2 sin4 t ω ∧ ω

=4 sin4 t ψ+ ∧ dt+ 4 sin3 t cos t ψ− ∧ dt+ 2 sin4 t ω ∧ ω.

Then, using (3.21), we obtain that the G2-structure ϕ(t) is nearly parallel since

d(ϕ(t)) = 4 ∗ϕ ϕ(t).

Next, we construct a 7-dimensional (non-compact) manifold M with a coclosed
G2 form ϕ which induces an Einstein metric on M which is not 3-Sasakian. We
also show that ϕ does not define a nearly parallel G2-structure.

Let us consider the sphere S3, viewed as the Lie group SU(2), with the basis
of left invariant 1-forms {e1, e2, e3} satisfying

de1 = e23, de2 = −e13, and de3 = e12.

Hence, the Lie algebra of S3×S3 is g = su(2)⊕ su(2), and its structure equations
are

g = (e23,−e13, e12, f 23,−f 13, f 12),

where {f i} denotes the basis of 1-forms on the second sphere.

Now, we consider the basis {h1, . . . , h6} of the dual space g∗ of g given by

h1 =
1

4
(e1+f 1), h2 =

1

4
(−e1+f 1), h3 =

√
2

4
e2, h4 =

√
2

4
f 2, h5 =

√
2

4
e3, h6 =

√
2

4
f 3.

With respect to this basis, the structure equations of the Lie algebra g of S3 × S3

turn into

g = (2h35 +2h46,−2h35 +2h46,−2h15 +2h25,−2h16−2h26, 2h13−2h23, 2h14 +2h24).

We define the SU(3)-structure (ω, ψ+, ψ−) on S3 × S3 by

ω = h12 + h34 + h56,

ψ+ = h135 − h146 − h236 − h245,

ψ− = −h246 + h235 + h145 + h136.

(3.25)

Then, an easy calculation shows that

d̂ω = 3ψ+ + ν3,

d̂ψ+ = 0,

d̂ψ− = −2ω ∧ ω,

(3.26)
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which means that (ω, ψ+, ψ−) is a double half-flat structure (in the sense of (3.23))
on S3 × S3, where ν3 ∈ Ω3

12(S3 × S3) is given by

ν3 = −h135 + h146 − h236 − h245 + 2h235 + 2h246. (3.27)

The second and third equations of (3.26) imply that the SU(3)-structure defined
by (3.25) is double half-flat but it is not nearly Kähler because ν3 6= 0, and hence

d̂ω 6= 3ψ+. We have that the metric g induced by (ω,Ψ = ψ+ + iψ−) on S3 × S3

is Einstein with positive scalar curvature. Indeed, g is given by

g = (h1)2 + (h2)2 + (h3)2 + (h4)2 + (h5)2 + (h6)2, (3.28)

and its Ricci curvature tensor is

Ric = 4 (h1 ⊗ h1 + h2 ⊗ h2 + h3 ⊗ h3 + h4 ⊗ h4 + h5 ⊗ h5 + h6 ⊗ h6).

Thus, g is Einstein with Einstein constant µ = 4.

Proposition 3.4.8. Let (ω, ψ+, ψ−) be the double half-flat SU(3)-structure on S3×
S3 defined by (3.25). Then, the 3-form ϕ on M = (0, π)×sin t (S3 × S3) given by

ϕ = sin2 t (h12 + h34 + h56) ∧ dt+ sin3 t cos t (h135 − h146 − h236 − h245)

− sin4 t (h136 + h145 + h235 − h246)
(3.29)

is a (non-nearly parallel) coclosed G2 form whose underlying metric is Einstein
but not a 3-Sasakian metric.

Proof. By Proposition 3.4.6, we know that the 3-form ϕ defined by (3.29) is a
coclosed G2 form on M = (0, π)×sin t (S3 × S3). Moreover, from (3.29) (or inter-
changeably from (3.22)) we have

dϕ = −4 ∗ϕ ϕ(t) + sin2(t)ν3 ∧ dt,
d
(
∗ϕ ϕ

)
= 0,

where ν3 is defined by (3.27). These equations not only imply that ϕ is coclosed
but also they imply that the G2-structure defined by ϕ is not nearly-parallel since
ν3∧dt 6= 0. Also, by Proposition 3.4.6, we know that ϕ induces the Einstein metric

gϕ = dt2 + sin2 t g

where g is the Einstein metric on S3×S3 given by (3.28). Now, a direct calculation
shows that the Einstein constant of gϕ is λ = 24

5
. Thus, the metric gϕ is not

3-Sasakian since, according with Proposition 1.1.18, the Einstein constant of a
3-Sasakian metric on a 7-dimensional manifold is 6.
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Chapter 4

Closed G2 forms inducing
nilsoliton metrics

“La matematica è l’alfabeto in cui Dio ha scritto l’Universo.”
Galileo Galilei

According to the previous chapter, we know that simply connected solvable
Lie groups can have an Einstein metric but they do not carry any closed G2 form
inducing the Einstein metric, unless the induced metric is flat. For nilsoliton
metrics a natural question is the following:

Do there exist 7-dimensional simply connected (non-Abelian) nilpotent Lie
groups with nilsoliton metric determined by a closed G2 form?

In this Chapter, we answer this question in the affirmative. Using the classi-
fication in [38] and in [47], we show that, up to isomorphism, there is a unique
nilpotent Lie algebra (denoted by n9 in Theorem 4.2.1 of section 4.2) with a closed
G2 form which does not admit nilsoliton metrics. It turns out that all the other ten
(non-Abelian) nilpotent Lie algebras have a nilsoliton. However, in Proposition
4.2.3 we prove that the Lie algebra ni (i = 3, 5, 7, 8, 11) (defined in Theorem 4.2.1
of section 4.2) has a nilsoliton but does not carry closed G2-structures inducing
the nilsoliton. For the Lie algebra, namely n10 in Theorem 4.2.1, the existence of a
nilsoliton was shown in [47, Example 2] but we do not know whether or not there
is a closed G2 form inducing it since we cannot explicit the nilsoliton. Since n10 is
4-step nilpotent, the result of Theorem 4.3.1 is restricted to s-step nilpotent Lie
algebras, with s = 2, 3. In fact, in Theorem 4.3.1, we show that, up to isomor-
phism, there are exactly four s-step nilpotent Lie algebras (s = 2, 3) with a closed
G2 form inducing a nilsoliton metric.

For each one of those closed G2 forms inducing nilsoliton metrics, we study in
section 4.4 the Laplacian flow introduced by Bryant in [24] for any closed G2 form.



132 Closed G2 forms inducing nilsoliton metrics

The short time existence and uniqueness of solution for this flow, on a compact
manifoldM , has been proved by Bryant and Xu in [27]. In Theorem 4.4.2, Theorem
4.4.5, Theorem 4.4.8 and Theorem 4.4.10, we show the first examples of compact
manifolds with a closed G2 form whose Laplacian flow has long time existence of
solution. The results of this Chapter can be found in [54].

4.1 Nilsoliton metrics. Einstein nilradicals

This section is devoted to recall some definitions and results about nontrivial ho-
mogeneous Ricci soliton metrics and, in particular, on nilsolitons (see for instance
[34], [90] and [85]).

A complete Riemannian metric g on a manifold M is said to be Ricci soliton
if its Ricci curvature tensor Ric(g) satisfies the following condition

Ric(g) = λg + LXg, (4.1)

for some real constant λ and some complete vector field X on M , where LX denotes
the Lie derivative with respect to X. If in addition X is the gradient vector field
of a smooth function f : M → R, then the Ricci soliton is said to be of gradient
type. Ricci solitons are called expanding, steady or shrinking depending on whether
λ < 0, λ = 0 or λ > 0, respectively.

We also need to distinguish the following types of Ricci soliton metrics. A
Ricci soliton metric g on M is called trivial if g is an Einstein metric or g is the
product of a homogeneous Einstein metric with the Euclidean metric; and g is said
to be homogeneous if its isometry group acts transitively on M , and hence g has
bounded curvature [94].

In order to characterize the nontrivial homogeneous Ricci soliton metrics, we
note that any homogeneous steady or shrinking Ricci soliton metric g of gradient
type is trivial. Indeed, if g is steady, one can check that g is Ricci flat, and so by [4] g
must be flat. If g is shrinking, then by the results in [105, Theorem 1.2] and in [111],
(M, g) is isometric to a quotient of P ×Rk, where P is some homogeneous Einstein
manifold with positive scalar curvature. Now, we should notice that this last result
for shrinking homogeneous Ricci soliton metrics is also true for homogeneous Ricci
solitons of gradient type [111]. Moreover, if a homogeneous Ricci soliton g on a
manifold M is expanding, then by [84] M must be non-compact; and from [110] all
Ricci solitons (homogeneous or non-homogeneous) on a compact manifold are of
gradient type. Conversely, as was proved by Lauret in [94] we have the following:

Lemma 4.1.1 [94]. Let g be a nontrivial homogeneous Ricci soliton on a manifold
M . Then, g is expanding and it cannot be of gradient type. Moreover, M is
non-compact.
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All known examples of nontrivial homogeneous Ricci solitons are left invariant
metrics on simply connected solvable Lie groups whose Ricci operator is a multi-
ple of the identity modulo derivations, and they are called solsolitons or, in the
nilpotent case, nilsolitons, which are defined as follows.

Definition 4.1.2. Let N be a simply connected nilpotent Lie group, and denote
by n its Lie algebra. A left invariant metric g on N is called a Ricci nilsoliton
metric (or simply nilsoliton metric) if its Ricci endomorphism Ric(g) differs from
a derivation D of n by a scalar multiple of the identity map I, that is, if there
exists a real number λ such that

Ric(g) = λI +D.

Lauret in [94] shows that if g is a nilsoliton metric on a simply connected
nilpotent Lie group N , then g is a Ricci soliton, that is, its Ricci curvature tensor
Ric(g) satisfies (4.1). In fact, since N is simply connected and D is a derivation
of the Lie algebra n of N , we can consider the flow φt : N −→ N , t ∈ R, where φt
is the unique automorphism of N such such that the morphism (φt)∗ : n −→ n is
given by

(φt)∗ = etD ∈ Aut(n).

Now, let XD be the left invariant vector field on N determined by φt, that is,

XD(p) =
d

dt |0
φt(p),

where p ∈ N . Then

LXDg =
d

dt |0
φ∗tg =

d

dt |0
g(e−tD·, e−tD·) = −2g(D·, ·).

This implies that the Ricci tensor is such that Ric(g) = cg− 1
2
LXDg, and henceforth

g is a Ricci soliton.
From now on, we will always identify a left invariant metric on a Lie group

N with an inner product 〈·, ·〉n on the Lie algebra n of N . Then, according to
Definition 4.1.2, we say that 〈·, ·〉n is a nilsoliton inner product (or simply nilsoliton)
on n if there exists a real number λ and a derivation D of n such that

Ric(n, 〈·, ·〉n) = λI +D. (4.2)

Nilsoliton metrics have properties that make them preferred left invariant metrics
on nilpotent Lie groups in the absence of Einstein metrics. Indeed, non-Abelian
nilpotent Lie groups do not admit left invariant Einstein metrics. Nevertheless,
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not all nilpotent Lie groups admit nilsoliton metrics, but if a nilsoliton exists, then
it is unique up to automorphism and scaling [90].

By Lauret’s results it turns out that nilsoliton metrics on simply connected
nilpotent Lie groups N are strictly related to Einstein metrics on the so-called
solvable rank-one extensions of N which were defined in section 3.1 (Definition
3.1.2).

Theorem 4.1.3 [92, 93]. A simply connected nilpotent Lie group N admits a
nilsoliton metric if and only if its Lie algebra n is an Einstein nilradical, that is, n
possesses an inner product 〈·, ·〉 such that (n, 〈·, ·〉) has a metric solvable extension
which is Einstein.

4.2 Nilsoliton metrics not induced by closed G2

forms

We determine the nilpotent Lie algebras with closed G2 form and nilsoliton inner
product which is not induced by any closed G2 form. We also show that, up to
isomorphism, there is a unique 7-dimensional nilpotent Lie algebra with a closed
G2 form but not having nilsolitons.

The classification of nilpotent Lie algebras admitting a closed G2-structure is
given in [38] as follows.

Theorem 4.2.1. Up to isomorphism, there are exactly 12 nilpotent Lie algebras
that admit a closed G2-structure. They are:

n1 = (0, 0, 0, 0, 0, 0, 0),

n2 = (0, 0, 0, 0, e12, e13, 0),

n3 = (0, 0, 0, e12, e13, e23, 0),

n4 = (0, 0, e12, 0, 0, e13 + e24, e15),

n5 = (0, 0, e12, 0, 0, e13, e14 + e25),

n6 = (0, 0, 0, e12, e13, e14, e15),

n7 = (0, 0, 0, e12, e13, e14 + e23, e15),

n8 = (0, 0, e12, e13, e23, e15 + e24, e16 + e34),

n9 = (0, 0, e12, e13, e23, e15 + e24, e16 + e34 + e25),

n10 = (0, 0, e12, 0, e13 + e24, e14, e46 + e34 + e15 + e23),

n11 = (0, 0, e12, 0, e13, e24 + e23, e25 + e34 + e15 + e16 − 3e26),

n12 = (0, 0, 0, e12, e23,−e13, 2e26 − 2e34 − 2e16 + 2e25).
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Using Table 1 in [47] we can determine which indecomposable Lie algebras ni
(4 ≤ i ≤ 12) do not have nilsoliton inner products. Note that the existence of
nilsolitons on n2 and n3 is not studied in [47] since they are decomposable. Con-
cretely, the correspondence between the indecomposable Lie algebras of Theorem
4.2.1 and Table 1 in [47] is the following:

n4
∼= 3.8, n5

∼= 3.11, n6
∼= 3.20, n7

∼= 2.39,

n8
∼= 2.5, n9

∼= 1.1(iv), and n10
∼= 1.3(i1).

Moreover, n11 and n12 are respectively isomorphic to the real form of 1.2(i−3) and
3.1(i2). In particular, we have that n9 is the only 7-dimensional nilpotent Lie
algebra with a closed G2 form but not admitting a nilsoliton.

Remark 4.2.2. Note that the Abelian Lie algebra n1 admits as rank-one Einstein
solvable extension the Lie algebra s1 with structure equations

(ae18, ae28, ae38, ae48, ae58, ae68, ae78, 0),

for some real number a 6= 0, and the nilsoliton on n1 is trivial because it is flat.

Since we are interested in non-trivial nilsolitons inner products, in the sequel
when we refer to a nilpotent Lie algebra we will mean a non-Abelian nilpotent Lie
algebra.

In order to classify the Lie algebras ni admitting a (non-trivial) nilsoliton but
with no closed G2 forms inducing it, we will use Proposition 1.4.5 (see Chapter 1,
section 1.4) which shows an obstruction to the existence of closed G2-structures
on 7-dimensional Lie algebras.

As we mentioned in Chapter 3, by [115, Proposition 4.5] we know that if ϕ
is a G2-structure on a 7-dimensional Lie algebra and we choose a non-zero vector
X ∈ g of length one with respect to gϕ, then on the orthogonal complement of
the span of X one has an SU(3)-structure given by the 2-form α = ιXϕ and the
3-form β = ϕ− α ∧ η, where η = ιX(gϕ). So in particular α ∧ β = 0.

By using these results we can prove the following proposition

Proposition 4.2.3. The Lie algebra ni (i = 3, 5, 7, 8, 11) has a nilsoliton inner
product but no closed G2-structure inducing it.

Proof. To prove that n3 has a nilsoliton, we consider the Lie algebra n3 defined
by the equations given in Theorem 4.2.1. Let 〈·, ·〉n3 be the inner product on n3

such that {e1, . . . , e7} is orthonormal. Then, 〈·, ·〉n3 is a nilsoliton because its Ricci
tensor

Ric = diag

(
− 1,−1,−1,

1

2
,
1

2
,
1

2
, 0

)
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satisfies (4.2), for λ = −5/2 and

D = diag

(
3

2
,
3

2
,
3

2
, 3, 3, 3,

5

2

)
.

Since the nilsoliton inner product is unique (up to isometry and scaling) it suffices
to prove that there is no closed G2 form inducing such an inner product.

Suppose that n3 has a closed G2 form φ such that

gφ = 〈·, ·〉n3 =
7∑
i=1

(ei)2. (4.3)

Thus, gφ has to satisfy
7∏
i=1

gφ(ei, ei) = 1. (4.4)

A generic closed 3-form γ on n3 has the following expression

γ =ρ1,2,3e
123 + ρ1,2,4e

124 + ρ1,2,5e
125 + ρ1,2,6e

126 + ρ1,2,7e
127 + ρ1,3,4e

134 + ρ1,3,5e
135

+ ρ1,3,6e
136 + ρ1,3,7e

137 + ρ1,4,5e
145 + ρ1,4,6e

146 + ρ1,4,7e
147 + ρ1,5,6e

156 + ρ1,5,7e
157

+ ρ1,6,7e
167 + ρ2,3,4e

234 + ρ2,3,5e
235 + ρ2,3,6e

236 + ρ2,3,7e
237 + ρ1,4,6e

245 + ρ2,4,6e
246

+ ρ2,4,7e
247 + ρ2,5,6e

256 + ρ2,5,7e
257 + ρ2,6,7e

267 + ρ1,5,6e
345 + ρ2,5,6e

346

+ (ρ2,5,7 − ρ1,6,7) e347 + ρ3,5,6e
356 + ρ3,5,7e

357 + ρ3,6,7e
367,

where ρi,j,k are arbitrary real numbers. Now, we show conditions on the coefficients
ρi,j,k so that φ = γ is a closed G2 form such that gφ satisfies (4.3). To this end, we
apply the aforementioned result of [115, Proposition 4.5] for X = ei (1 ≤ i ≤ 7)
and so η = ei by (4.3). For X = e1, thus η = e1, we have

α1 =ιe1φ = ρ1,2,3e
23 + ρ1,2,4e

24 + ρ1,2,5e
25 + ρ1,2,6e

26 + ρ1,2,7e
27 + ρ1,3,4e

34 + ρ1,3,5e
35

+ ρ1,3,6e
36 + ρ1,3,7e

37 + ρ1,4,5e
45 + ρ1,4,6e

46 + ρ1,4,7e
47 + ρ1,5,6e

56 + ρ1,5,7e
57

+ ρ1,6,7e
67,

and

β1 =φ− ιe1φ ∧ e1 = ρ2,3,4e
234 + ρ2,3,5e

235 + ρ2,3,6e
236 + ρ2,3,7e

237 + ρ1,4,6e
245

+ ρ2,4,6e
246 + ρ2,4,7e

247 + ρ2,5,6e
256 + ρ2,5,7e

257 + ρ2,6,7e
267 + ρ1,5,6e

345

+ ρ2,5,6e
346 + (ρ2,5,7 − ρ1,6,7) e347 + ρ3,5,6e

356 + ρ3,5,7e
357 + ρ3,6,7e

367.

But, α1 ∧ β1 = 0 describes a system of 6 equations. Hence, after apply the result
of [115, Proposition 4.5] for X = e2, . . . , e7, we obtain a system of 42 equations.
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This system and condition (4.3) imply that any closed G2 form on n3 satisfying
(4.4) is expressed as follows

φ =ρ1,2,3e
123 + ρ1,4,5e

145 + ρ1,6,7e
167 + ρ2,4,6e

246 + ρ2,5,7e
257

+ (ρ2,5,7 − ρ1,6,7) e347 + ρ3,5,6e
356.

(4.5)

Because φ should be a closed G2 form on n3, at least for certain coefficients ρi,j,k,
Proposition 1.4.5 implies that the coefficients appearing on (4.5) cannot vanish.
In particular, ρ2,5,7 − ρ1,6,7 6= 0. Now, denote by Gφ the matrix associated to the
inner product on n3 induced by the 3-form φ given by (4.5). Then, (4.3) implies
that Gφ = I7, for some ρi,j,k and then

S = Gφ − I7 = 0, (4.6)

for those coefficients. From now on, we denote by Si,j the (i, j) entry of the matrix
S. One can check that equations S1,1 = S2,2 = S5,5 = 0 imply that

ρ3,5,6 =
1

ρ1,4,5ρ2,5,7

, ρ2,4,6 = −ρ1,4,5 ρ1,6,7

ρ2,5,7

and ρ1,2,3 =
1

ρ1,4,5ρ1,6,7

.

Therefore the expression of S6,6 becomes

S6,6 =
(ρ1,6,7 − ρ2,5,7)(ρ1,6,7 + ρ2,5,7)

ρ2
2,5,7

,

and hence ρ1,6,7 = ±ρ2,5,7. But we know that ρ1,6,7 6= ρ2,5,7, and for ρ1,6,7 = −ρ2,5,7,
we have that S3,3 = −ρ1,2,3(ρ1,6,7−ρ2,5,7)ρ3,5,6 and so S 6= 0, which is a contradiction
with (4.6). This means that n3 does not admit a closed G2 form inducing the
nilsoliton given by (4.3).

To prove that n5 has a nilsoliton, we consider the Lie algebra n5 defined by the
structure equations

n5 = (0, 0,
√

3e12, 0, 0, 2e13, e14 +
√

3e25).

Consider the inner product 〈·, ·〉n5 such that the basis {e1, . . . , e7} is orthonormal.
Then, its Ricci tensor satisfies

Ric = diag
(
− 4,−3,−1

2
,−1

2
,−3

2
, 2, 2

)
.

Actually, Ric = −13
2
I7 +D, where D is the derivation of n5 given by

D = diag

(
5

2
,
7

2
, 6, 6, 5,

17

2
,
17

2

)
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and so 〈·, ·〉n5 =
∑7

i=1(ei)2 is a nilsoliton inner product.
Since the nilsoliton inner product is unique (up to isometry and scaling) it is

sufficient to prove that there is no closed G2 form on n5 inducing such an inner
product. Suppose that n5 has a closed G2 form φ such that gφ = 〈·, ·〉n5 .

A generic closed 3-form γ on n5 has the following expression

γ =ρ1,2,3e
123 + ρ1,2,4e

124 + ρ1,2,5e
125 + ρ1,2,6e

126 + ρ1,2,7e
127 + ρ1,3,4e

134 + ρ1,3,5e
135

+ ρ1,3,6e
136 + ρ1,3,7e

137 + ρ1,4,5e
145 + ρ1,4,6e

146 + ρ1,4,7e
147 + ρ1,5,6e

156

+ ρ1,5,7e
157 + ρ1,6,7e

167 + ρ2,3,4e
234 + ρ2,3,5e

235 + ρ2,3,6e
236 + ρ2,3,7e

237

+ ρ2,4,5e
245 +

1

2
ρ2,3,7e

246 + ρ2,4,7e
247 − 1

2

√
3ρ1,3,7e

256 +
√

3(ρ3,4,5 − ρ1,4,7)e257

+ ρ3,4,5e
345 − ρ1,6,7e

356 + ρ4,5,7e
457,

where ρi,j,k are arbitrary real numbers. Now we show conditions on the coefficients
ρi,j,k so that φ = γ is a closed G2 form such that gφ = 〈·, ·〉n5 . Proposition 1.4.5
(applied for X = e7) implies that

ρ1,6,7 ρ2,3,7 ρ4,5,7 6= 0. (4.7)

Now, we denote by Gφ the matrix associated to the inner product on n5 induced
by the generic closed 3-form φ. Then the condition gφ = 〈·, ·〉n5 implies (4.6) for
some coefficients ρi,j,k. From the equations S6,6 = S7,7 = S6,7 = S3,7 = S4,6 =
S3,3 = S3,6 = S4,7 = 0 we have that

ρ2,3,7 =
2

ρ2
1,6,7

, ρ4,5,7 =
1

2
ρ1,6,7, ρ2,3,6 = −2ρ2,4,7, ρ1,3,6 = −2ρ1,4,7,

ρ3,4,5 = 0, ρ1,3,4 =
1

2
ρ1,6,7, ρ1,3,7 = 2ρ1,4,6, ρ2,3,4 = 0.

Therefore, S4,4 = −3
8
ρ2

1,6,7ρ2,3,7 which by (4.7) cannot vanish and so S 6= 0, which
is a contradiction with (4.6).

Consider now the Lie algebra n7 defined by the structure equations

n7 =
(

0, 0, 0, e12,

√
6

2
e13, e14 +

√
6

2
e23,
√

2e15
)
.

Let 〈·, ·〉n7 be the inner product on n7 such that the basis {e1, . . . , e7} is orthonor-
mal. Then, 〈·, ·〉n7 =

∑7
i=1(ei)2 is a nilsoliton since

Ric =

(
− 11

4
,−5

4
,−3

2
, 0,−1

4
,
5

4
, 1

)
= −4I7 +D,
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where

D = diag

(
5

4
,
11

4
,
5

2
, 4,

15

4
,
21

4
, 5

)
,

is a derivation of n7. As before, since the nilsoliton inner product is unique (up
to isometry and scaling) it suffices to prove that there is no closed G2 form on n7

inducing such an inner product.

Suppose that n7 has a closed G2 form φ such that gφ = 〈·, ·〉n7 . A generic closed
3-form γ on n7 has the following expression

γ =ρ1,2,3e
123 + ρ1,2,4e

124 + ρ1,2,5e
125 + ρ1,2,6e

126 + ρ1,2,7e
127 + ρ1,3,4e

134 + ρ1,3,5e
135

+ ρ1,3,6e
136 + ρ1,3,7e

137 + ρ1,4,5e
145 + ρ1,4,6e

146 + ρ1,4,7e
147 + ρ1,5,6e

156 + ρ1,5,7e
157

+ ρ1,6,7e
167 + ρ2,3,4e

234 + ρ2,3,5e
235 +

(√
6

2
ρ2,4,5 −

√
6

2
ρ1,4,6

)
e236 + ρ2,3,7e

237

+ ρ2,4,5e
245 + ρ2,4,6e

246 +

√
2

2
ρ2,5,6e

247 + ρ2,5,6e
256 +

(
ρ1,6,7 +

√
6

3
ρ3,4,7

)
e257

+

(√
6

2
ρ1,5,6 +

√
2ρ2,3,7

)
e345 +

√
6

2
ρ256e

346 + ρ3,4,7e
347 +

√
2ρ3,4,7e

356

+ ρ3,5,7e
357,

where ρi,j,k are arbitrary real numbers. Now, we show conditions on the coefficients
ρi,j,k so that φ = γ be a closed G2 form such that gφ = 〈·, ·〉n7 . Proposition 1.4.5
applied for X = e7 implies that

ρ1,6,7 6= 0. (4.8)

Now we apply the result of [115, Proposition 4.5] for X = ei (1 ≤ i ≤ 7) and so
η = ei by (4.3). For X = e1, we have

α1 =ιe1φ = ρ1,2,3e
23 + ρ1,2,4e

24 + ρ1,2,5e
25 + ρ1,2,6e

26 + ρ1,2,7e
27 + ρ1,3,4e

34 + ρ1,3,5e
35

+ ρ1,3,6e
36 + ρ1,3,7e

37 + ρ1,4,5e
45 + ρ1,4,6e

46 + ρ1,4,7e
47 + ρ1,5,6e

56 + ρ1,5,7e
57

+ ρ1,6,7e
67



140 Closed G2 forms inducing nilsoliton metrics

and

β1 =φ− ιe1φ ∧ e1 = ρ2,3,4e
234 + ρ2,3,5e

235 +

(√
6

2
ρ2,4,5 −

√
6

2
ρ1,4,6

)
e236 + ρ2,3,7e

237

+ ρ2,4,5e
245 + ρ2,4,6e

246 +

√
2

2
ρ2,5,6e

247 + ρ2,5,6e
256 +

(
ρ1,6,7 +

√
6

3
ρ3,4,7

)
e257

+

(√
6

2
ρ1,5,6 +

√
2ρ2,3,7

)
e345 +

√
6

2
ρ256e

346 + ρ3,4,7e
347 +

√
2ρ3,4,7e

356

+ ρ3,5,7e
357.

Therefore, α1 ∧ β1 = 0 describes a system of 6 equations. Hence, after apply
the result of [115, Proposition 4.5] for X = e2, . . . , e7, we obtain a system of 42
equations. This system together with the fact that ρ1,6,7 6= 0 and the condition
gφ = 〈·, ·〉n7 imply that any closed G2 form on n7 satisfying (4.4) is expressed as
follows

φ =ρ1,2,3e
123 + ρ1,4,5e

145 + ρ1,6,7e
167 + ρ2,4,6e

246 +

(
ρ1,6,7 +

√
6

3
ρ3,4,7

)
e257

+ ρ3,4,7e
347 +

√
2ρ3,4,7e

356.

(4.9)

Now we denote by Gφ the matrix associated to the inner product on n7 induced
by the 3-form φ given by (4.9). Then, the condition gφ = 〈·, ·〉n7 implies (4.6) is
satisfied for some coefficients ρi,j,k. From equations S1,1 = S3,3 = S4,4 = S6,6 = 0
we have

ρ1,2,3 =

√
2

2ρ3
3,4,7

, ρ1,4,5 = −
√

2ρ3,4,7, ρ1,6,7 = −ρ3,4,7, and ρ2,4,6 =

√
2

2ρ3
3,4,7

.

Therefore S5,5 = 1 and so S 6= 0 which is a contradiction with (4.6).

The metric Lie algebra n8 with structure equations Let the Lie algebra n8

be described by the structure equations

n8 = (0, 0, e12,−e13,−e23, e15 + e24,−e16 − e34),

and let 〈·, ·〉n8 be the inner product on n8 such that {e1, . . . , e7} is orthonormal.
Then, 〈·, ·〉n8 =

∑7
i=1(ei)2 is a nilsoliton because its Ricci tensor

Ric = diag

(
− 2,−3

2
,−1,−1

2
, 0,

1

2
, 1

)
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satisfies (4.2), for λ = −5
2

and

D = diag

(
1

2
, 1,

3

2
, 2,

5

2
, 3,

7

2

)
.

The nilsoliton inner product is unique (up to isometry and scaling) therefore
it suffices to prove that there is no closed G2 form on n8 inducing such an inner
product. A generic closed 3-form γ on n8 has the following expression

γ =ρ1,2,3e
123 + ρ1,2,4e

124 + ρ1,2,5e
125 + ρ1,2,6e

126 + ρ1,2,7e
127 + ρ1,3,4e

134 + ρ1,3,5e
135

+ ρ1,3,6e
136 + ρ1,3,7e

137 + (−ρ1,2,7 − ρ1,3,6) e145 + ρ1,4,6e
146 + ρ1,4,7e

147 + ρ1,5,6e
156

+ ρ1,5,7e
157 + ρ2,3,4e

234 + ρ2,3,5e
235 + ρ2,3,6e

236 + ρ2,3,7e
237 + ρ2,3,6e

245

+ (ρ1,5,6 − ρ2,3,7) e246 + ρ1,5,7e
247 + ρ2,5,6e

256 + ρ2,6,7e
267 + (ρ2,3,7 − 2ρ1,5,6) e345

+ ρ1,5,7e
346 − ρ2,6,7e

357 + ρ2,6,7e
456,

where ρi,j,k are real numbers. Now, we show conditions on the coefficients ρi,j,k
so that φ = γ is a closed G2 form such that gφ = 〈·, ·〉n8 . We apply the result
previously mentioned [115, Proposition 4.5] for X = ei (1 ≤ i ≤ 7) and so η = ei

by the condition gφ = 〈·, ·〉n8 . After solving the system of 42 equations we have
that any closed G2 form on n8 satisfying (4.4) is expressed as follows

φ =ρ1,2,3e
123 + ρ1,2,4e

124 + ρ1,2,5e
125 + ρ1,2,6e

126 + ρ1,3,5e
135 + ρ1,3,6e

136 − ρ1,3,6e
145

+ ρ2,3,4e
234 + ρ2,3,5e

235 + ρ2,3,6e
236 + ρ2,3,6e

245 + ρ2,5,6e
256.

(4.10)
Now denote by Gφ the matrix associated to the inner product on n8 induced by

the 3-form φ given by (4.10). Then Gφ = 0 obtaining a contradiction with (4.6).

It only remains to study the Lie algebra n11. According to Theorem 4.2.1,
n11 is defined by the structure equations

n11 = (0, 0, f 12, 0, f 13, f 24 + f 23, f 25 + f 34 + f 15 + f 16 − 3f 26).

We consider the new basis {ej}7
j=1 of n∗11 with

{e1 = f 2, e2 = −
√

3

3
f 1, e3 =

√
39

39
f 3 +

√
39

78
f 4, e4 = −

√
78

78
f 4,

e5 =

√
3

39
f 6, e6 = −1

3
f 5, e7 = −

√
3

1014
f 7}.

Thus, the Lie algebra n11 can also be described by the structure equations

n11 =
(

0, 0,

√
13

13
e12, 0,

√
13

13
e13 −

√
26

26
e14,

√
26

26
e24 +

√
13

13
e23,

√
13

26
e25 +

√
26

26
e34 +

√
39

26
e15 +

√
13

26
e16 −

√
39

26
e26
)
.
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Let 〈·, ·〉n11 be the inner product on n11 such that {e1, . . . , e7} is orthonormal.
Then, 〈·, ·〉n11 =

∑7
i=1(ei)2 is a nilsoliton because its Ricci tensor

Ric =
1

52
diag(−7,−7,−3,−3, 1, 1, 5)

satisfies Ric = −11
52
I7 + D, where D is the derivation of the Lie algebra n11 given

by

D =
1

13
diag(1, 1, 2, 2, 3, 3, 4).

It suffices to prove that there is no closed G2 form on n11 inducing such an inner
product. Lets suppose that n11 has a closed G2 form φ such that gφ = 〈·, ·〉n11 . A
generic closed 3-form γ on n11 has the following expression

γ =ρ1,2,3e
123 + ρ1,2,4e

124 + ρ1,2,5e
125 + ρ1,2,6e

126 + ρ1,2,7e
127 + ρ1,3,4e

134

+ ρ1,3,5e
135 + ρ1,3,6e

136 + ρ1,3,7e
137 + ρ1,4,5e

145 + ρ1,4,6e
146 + ρ1,4,7e

147

+ ρ1,5,6e
156 −

√
3

2
ρ3,4,7e

157 +
ρ3,4,7e

167

√
2

+ ρ2,3,4e
234 + ρ2,3,5e

235 + ρ2,3,6e
236

+

(
ρ1,3,7√

3
− 2ρ1,5,6√

3

)
e237 +

(
ρ1,2,7√

2
− ρ1,3,6√

2
+ ρ1,4,6 −

ρ2,3,5√
2

)
e245 + ρ2,4,6e

246

+ ρ2,4,7e
247 +

(
ρ1,5,6√

3
− 2ρ1,3,7√

3

)
e256 +

ρ3,4,7e
257

√
2

+

√
3

2
ρ3,4,7e

267

+

(
1

2
ρ1,4,7 −

ρ1,5,6√
2
− 1

2

√
3ρ2,4,7

)
e345

+

(
−
√

2

3
ρ1,3,7 −

1

2

√
3ρ1,4,7 +

ρ1,5,6√
6
− 1

2
ρ2,4,7

)
e346 + ρ3,4,7e

347 +
√

2ρ3,4,7e
356

where ρi,j,k are arbitrary real numbers.

Now, we show conditions on the coefficients ρi,j,k so that φ = γ is a closed
G2 form such that gφ = 〈·, ·〉n11 . We apply the result of [115, Proposition 4.5] for
X = ei (1 ≤ i ≤ 7) and so η = ei by the condition gφ = 〈·, ·〉n11 . After solving the
system of 42 equations we have that any closed G2 form on n11 satisfying (4.4) is
expressed as follows

φ =ρ1,2,3e
123 − ρ2,4,6e

145 −
√

3ρ2,4,6e
167 −

√
6

2
ρ3,4,7e

157 +

√
2

2
ρ3,4,7e

167 −
√

3ρ2,4,6e
245

+ ρ2,4,6e
246 +

√
2

2
ρ3,4,7e

257 +

√
6

2
ρ3,4,7e

267 + ρ3,4,7e
347 +

√
2ρ3,4,7e

356.

(4.11)
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As before denote by Gφ the matrix associated to the inner product induced by
the 3-form φ given by (4.11). Then, the condition gφ = 〈·, ·〉n11 implies (4.6), for
some ρi,j,k. Equations S6,6 = S7,7 = 0 imply that

ρ2,4,6 = −1

2
ρ3,4,7, and ρ3,4,7 = 2−1/3.

Therefore, S4,4 = −1
2

and so S 6= 0 which contradicts (4.6).

Remark 4.2.4. Note that the 4-step nilpotent Lie algebra n10 is isomorphic to
the Lie algebra 1.3(i)[λ = 1] in the classification given in [49] and the existence
of the nilsoliton was shown in [47, Example 2]. Since an explicit expression of
the nilsoliton is not known, we cannot apply the argument used in the proof of
Proposition 4.2.3. Thus, it remains open the question of whether the Lie algebra
n10 admits a closed G2 form inducing a nilsoliton or not. Moreover, the explicit
expression of the nilsolitons for n11 and n12 have been already determined in [49]
(see there page 20, Remark 3.5), but our basis is different for the nilsoliton on the
other Lie algebras.

4.3 Nilsoliton metrics determined by closed G2

forms

In this section we prove that, up to isomorphism, there are only four (non-Abelian)
s-step nilpotent Lie groups (s = 2, 3) with a nilsoliton metric determined by a left
invariant closed G2 form.

Theorem 4.3.1. Up to isomorphism, n2, n4, n6 and n12 are the unique s-step
nilpotent Lie algebras (s = 2, 3) with a nilsoliton inner product determined by a
closed G2-structure.

Proof. We will show that the Lie algebra ni (i = 2, 4, 6, 12) has a closed G2 form,
namely, ϕi such that the Ricci tensor of the inner product gϕi satisfies (4.2), for
some derivation D of ni and some real number λ.

For the Lie algebra n2 we consider the closed G2 form ϕ2 defined by

ϕ2 = e147 + e267 + e357 + e123 + e156 + e245 − e346. (4.12)

The inner product gϕ2 is the one making orthonormal the basis {e1, . . . , e7}, and
it is a nilsoliton since Ric = −2I7 +D, where

D = diag

(
1,

3

2
,
3

2
, 2,

5

2
,
5

2
, 2

)
,
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is a derivation of n2.

On the Lie algebra n4, we define the G2 form ϕ4 by

ϕ4 = −e124 − e456 + e347 + e135 + e167 + e257 − e236. (4.13)

Then, ϕ4 is closed and the inner product gϕ4 makes the basis {e1, . . . , e7} orthonor-
mal. Therefore, gϕ4 is a nilsoliton since Ric = −5

2
I7 +D, where D is the derivation

of n4 given by

D = diag

(
1,

3

2
,
5

2
, 2, 2,

7

2
, 3

)
.

For the Lie algebra n6 we consider the closed G2-structure defined by the
3-form

ϕ6 = e123 + e145 + e167 + e257 − e246 + e347 + e356. (4.14)

Therefore, the inner product gϕ6 is such that the basis {e1, . . . , e7} is orthonormal
and it is a nilsoliton since Ric = −5

2
I7 +D, where D is the derivation of n6 given

by

D = diag

(
1

2
, 2, 2,

5

2
,
5

2
, 3, 3

)
.

Theorem 4.2.1 implies that the Lie algebra n12 is defined by the equations

n12 = (0, 0, 0, h12, h23,−h13, 2h26 − 2h34 − 2h16 + 2h25).

If we consider the basis {e1, . . . , e7} of n∗12 given by{
e1 =

√
3

2
h2, e2 = h1 − 1

2
h2, e3 = h3, e4 = −1

4
h4, e5 =

1

4
h5 +

1

4
h6,

e6 = −
√

3

12
h5 +

√
3

12
h6, e7 = −

√
3

48
h7
}
,

then, n12 is described as follows

n12 =
(

0, 0, 0,

√
3

6
e12,−1

4
e23 +

√
3

12
e13,−

√
3

12
e23 − 1

4
e13,

−
√

3

6
e34 +

√
3

12
e25 +

1

4
e26 +

√
3

12
e16 − 1

4
e15
)
.

(4.15)

We define the G2 form ϕ12 by

ϕ12 = −e124 + e135 + e167 − e236 + e257 + e347 − e456. (4.16)
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Clearly ϕ12 is closed. Moreover, it defines the inner product gϕ12 which makes the
basis {e1, . . . , e7} orthonormal, and thus gϕ12 is a nilsoliton since Ric = −1

4
I7 + 1

8
D,

where D is the derivation of n12 given by

D = diag(1, 1, 1, 2, 2, 2, 3).

4.4 Solutions of Laplacian flow with long time

existence

Let us consider the nilpotent Lie algebra ni (i = 2, 4, 6) defined in Theorem 4.2.1,
and the Lie algebra n12 defined by (4.15). Let Ni be the simply connected nilpotent
Lie group with Lie algebra ni and closed G2 form ϕi (i = 2, 4, 6, 12) given by (4.12),
(4.13), (4.14) and (4.16), for i = 2, 4, 6 and 12, respectively. By Mal’cev theorem
[102], we know that Ni has a discrete subgroup Γi ⊂ Ni such that the quotient
space

Mi = Γi\Ni

is a compact manifold. Since ϕi (i = 2, 4, 6, 12) is a left invariant closed G2 form
on Ni, it descends to a closed G2 form ϕi on Mi.

The purpose of this section is to prove long time existence and uniqueness of
solution for the Laplacian flow of ϕi on Mi. Moreover, we show that the underlying
metrics g(t) of this solution converge smoothly, up to pull-back by time-dependent
diffeomorphisms, to a flat metric, uniformly on compact sets in Ni, as t goes to
infinity.

Let M be a 7-dimensional manifold with an arbitrary G2 form ϕ. The Laplacian
flow of ϕ, introduced by Bryant in [24], is given by

d

dt
ϕ(t) = ∆tϕ(t),

ϕ(0) = ϕ0,

where ∆t is the Hodge Laplacian of the metric gt determined by the G2 form ϕ(t).
In general, the expression of the Laplacian of a G2 form ϕ(t) is described in

terms of the torsion forms as:

∆tϕ(t) =τ0(t)2ϕ(t) + 3τ0(t) ∗
(
τ1(t) ∧ ϕ(t)

)
+ τ0(t)τ3(t) + 3 ∗ d ∗

(
τ1(t) ∧ ϕ(t)

)
+ ∗dτ3(t)− 4d

(
∗ (τ1(t) ∧ ∗ϕ(t))

)
+ dτ2(t),

(4.17)
with τ0(t) ∈ Ω0(M), τ1(t) ∈ Ω1(M), τ2(t) ∈ Ω2

14(M) and τ3(t) ∈ Ω3
27(M).



146 Closed G2 forms inducing nilsoliton metrics

Therefore, the behavior of the solution of the Laplacian flow is very different
for the different types of G2-structures. For example, the stable solutions of the
Laplacian flow, that is, d

dt
ϕ(t) = 0 are given by the G2 manifolds (M, g) such that

Hol(M) ⊆ G2.
The study of the Laplacian flow of a closed G2 form ϕ0 on a manifold M

consists to study long time existence, convergence and formation of singularities
for the system of differential equations

d

dt
ϕ(t) = ∆tϕ(t),

dϕ(t) = 0,

ϕ(0) = ϕ.

(4.18)

By Stoke’s theorem, the two first equations of the system (4.18) imply that all
the G2 forms ϕ(t) are cohomologous for any t.

In the case of closed G2 forms on compact manifolds, Bryant and Xu [27] gave
a result of short time existence and uniqueness of solution.

Theorem 4.4.1 [27]. If M is compact, then (4.18) has a unique solution for a
short time 0 ≤ t < ε, with ε depending on ϕ0 = ϕ(0).

Therefore if the initial 3-form ϕ0 is closed, taking (4.17) into account, the
Laplacian flow is described by 

d

dt
ϕ(t) = dτ2(t),

ϕ(0) = ϕ0,

In the following theorem we determine a global solution of Laplacian flow of
the closed G2 form ϕ2 on M2.

Theorem 4.4.2. The family of closed G2 forms ϕ2(t) on M2 given by

ϕ2(t) = e147+e267+e357+f(t)3e123+e156+e245−e346, t ∈
(
− 3

10
,+∞

)
, (4.19)

is the solution of the Laplacian flow (4.18) of ϕ2, where f = f(t) is the function

f(t) =
(10

3
t+ 1

) 1
5
.

Moreover, the underlying metrics g(t) of this solution converge smoothly, up to pull-
back by time-dependent diffeomorphisms, to a flat metric, uniformly on compact
sets in M2, as t goes to infinity.
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Proof. First we study the Laplacian flow of ϕ2 on N2. Let fi = fi(t) (i = 1, . . . , 7)
be some differentiable real functions depending on a parameter t ∈ I ⊂ R such
that fi(0) = 1 and fi(t) 6= 0, for any t ∈ I, where I is a real open interval. For each
t ∈ I, we consider the basis {x1, . . . , x7} of left invariant 1-forms on N2 defined by

xi = xi(t) = fi(t)e
i, 1 ≤ i ≤ 7. (4.20)

From now on we write fij = fij(t) = fi(t)fj(t), fijk = fijk(t) = fi(t)fj(t)fk(t), and
so forth. Then, the structure equations of N2 with respect to this basis are

dxi = 0, i = 1, 2, 3, 4, 7, dx5 =
f5

f12

x12, dx6 =
f6

f13

x13. (4.21)

Now, for any t ∈ I, we consider the G2 form ϕ2(t) on N2 given by

ϕ2(t) = x147 + x267 + x357 + x123 + x156 + x245 − x346

= f147e
147 + f267e

267 + f357e
357 + f123e

123 + f156e
156 + f245e

245 − f346e
346.

(4.22)
Note that ϕ2(0) = ϕ2 and, for any t, the 3-form ϕ2(t) on N2 determines the

metric gt such that the basis {xi = 1
fi
ei; i = 1, . . . , 7} of n2 is orthonormal. So,

g(t)(ei, ei) = fi
2.

Using (4.21), one can check that dϕ2(t) = 0 if and only if

f26(t) = f35(t), (4.23)

for any t. Assuming fi(0) = 1 and (4.23), to solve the Laplacian flow (4.18) of ϕ2,
we need to determine the functions fi and the interval I so that d

dt
ϕ2(t) = ∆tϕ2(t),

for t ∈ I. Using (4.22) we have

d

dt
ϕ2(t) =

(
f147

)′
e147 +

(
f267

)′
e267 +

(
f357

)′
e357 +

(
f123

)′
e123

+
(
f156

)′
e156 +

(
f245

)′
e245 −

(
f346

)′
e346.

(4.24)

Now, we calculate ∆tϕ2(t) = −d ∗t d ∗t ϕ2(t). On the one hand, we have

∗tϕ2(t) = x2356 − x1345 − x1246 + x4567 + x2347 − x1367 + x1257. (4.25)

So, x4567 is the unique nonclosed summand in ∗tϕ2(t). Then, taking into account
(4.23), we obtain

d(∗td ∗t ϕ2(t)) =
f6

f13

(
− f6

f13

x123 − f5

f12

x123

)
= −2

( f6

f13

)2

x123.
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Therefore, in terms of the forms eijk, the expression of −d(∗td ∗t ϕ2(t)) is

− d(∗td ∗t ϕ2(t)) = 2f123

( f6

f13

)2

e123 = 2
(f2(f6)2

f13

)
e123. (4.26)

Comparing (4.24) and (4.26) we see that, in particular, f156(t) = 1, for any t ∈ I.
Then, using (4.23), we have

f2(f6)2

f13

=
1

(f1)2
.

This equality and (4.26) imply that −d(∗td ∗t ϕ2(t)) can be expressed as follows

− d(∗td ∗t ϕ2(t)) = 2
1

(f1)2
e123. (4.27)

Then, from (4.24) and (4.27) we have that d
dt
ϕ2(t) = ∆tϕ2(t) if and only if the

functions fi(t) satisfy the following system of differential equations(
f147

)′
=
(
f267

)′
=
(
f357

)′
=
(
f156

)′
=
(
f245

)′
=
(
f346

)′
= 0,(

f123

)′
= 2

1

(f1)2
.

(4.28)

Because ϕ2(0) = ϕ2, the equations in the first line of (4.28) imply

f147(t) = f267(t) = f357(t) = f156(t) = f245(t) = f346(t) = 1, (4.29)

for any t ∈ I. From the equations (4.29) we obtain

f 2
1 = f 2

2 = f 2
3 .

Let us consider f = f1 = f2 = f3. Using again (4.29) we have

fi(t) =
(
f(t)

)− 1
2
, i = 4, 5, 6, 7.

Now, the last equation of (4.28) implies that f 4f ′ = 2
3
. Integrating this equation,

we obtain

f 5 =
10

3
t+B, B = constant.

But ϕ2(0) = ϕ2 implies f 3(0) = f123(0) = 1, that is, B = 1. Hence,

f(t) =
(10

3
t+ 1

) 1
5
,

and so the one parameter family of 3-forms {ϕ2(t)} given by (4.19) is the solution
of the Laplacian flow of ϕ2 on N2, and it is defined for every t ∈ (− 3

10
,+∞).
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Moreover, {ϕ2(t)} is also the solution of the Laplacian flow of ϕ2 on M2 since, for
any t ∈

(
− 3

10
,+∞

)
, ϕ2(t) is a left invariant closed G2 form on N2.

To complete the proof, we study the behavior of the underlying metric g(t) of
such a solution in the limit for t → +∞. Indeed, if we think of the Laplacian
flow as a one parameter family of G2 manifolds with a closed G2-structure, it can
be checked that, in the limit, the resulting manifold has vanishing curvature. For
every t ∈

(
− 3

10
,+∞

)
, denote by g(t) the metric on M2 induced by the G2 form

ϕ2(t) given by (4.19). Then,

g(t) =
(10

3
t+ 1

)2/5

e1 ⊗ e1 +
(10

3
t+ 1

)2/5

e2 ⊗ e2 +
(10

3
t+ 1

)2/5

e3 ⊗ e3

+
(10

3
t+ 1

)−1/5

e4 ⊗ e4 +
(10

3
t+ 1

)−1/5

e5 ⊗ e5 +
(10

3
t+ 1

)−1/5

e6 ⊗ e6

+
(10

3
t+ 1

)−1/5

e7 ⊗ e7.

Concretely, taking into account the symmetry properties of the Riemannian cur-
vature R(t) we obtain

R1212 = R1313 = − 3

4(1 + 10
3
t)
,

R1515 = R1616 = R3636 = R2525 =
1

4(1 + 10
3
t)
,

R2356 = − 1

4(1 + 10
3
t)
, Rijkl = 0 otherwise,

where Rijkl = R(t)(ei, ej, ek, el). Therefore, limt→+∞R(t) = 0.

Remark 4.4.3. Note that, for every t ∈ (− 3
10
,+∞), the metric g(t) is a nilsoliton

on the Lie algebra n2 of N2 isometric to g(0). In fact, taking into account (4.20)
and (4.22), it is sufficient to consider the isometry Ft : (n2, g(t)) −→ (n2, g(0))
such that, at the level of the dual space n∗2 of n2, it is given by F ∗t (ei) = xi(t), that
is,

F ∗t (ei) =
(10

3
t+ 1

)1/5

ei if i = 1, 2, 3 and

F ∗t (ei) =
(10

3
t+ 1

)−1/10

ei if i = 4, 5, 6, 7.

Then, with respect to the orthonormal basis (x1(t), . . . , x7(t)) dual to
(x1(t), . . . , x7(t)), we have

Ric(g(t)) = − 6

(3 + 10t)
Id+

3

(3 + 10t)
diag

(
1,

3

2
,
3

2
, 2,

5

2
,
5

2
, 2

)
=

3

(3 + 10t)
Ric(g(0)),
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where 3
(3+10t)

diag
(
1, 3

2
, 3

2
, 2, 5

2
, 5

2
, 2
)

is a derivation of the Lie algebra n2 of N2, for

every t. Moreover, the Ricci tensor Ric(g(t)) of g(t) is expressed as

Ric(g(t)) =−
(10

3
t+ 1

)−3/5

e1 ⊗ e1 − 1

2

(10

3
t+ 1

)−3/5

e2 ⊗ e2

− 1

2

(10

3
t+ 1

)−3/5

e3 ⊗ e3 +
1

2

(10

3
t+ 1

)−6/5

e5 ⊗ e5

+
1

2

(10

3
t+ 1

)−6/5

e6 ⊗ e6.

Remark 4.4.4. Note that the limit can be also computed fixing the G2-structure
and changing the Lie bracket as in [95]. We evolve the Lie brackets µ(t) instead
of the 3-form defining the G2-structure and we can show that the corresponding
bracket flow has a solution for every t. Indeed, if we fix on R7 the 3-form

x147 + x267 + x357 + x123 + x156 + x245 − x346,

the basis (x1(t), . . . , x7(t)) defines, for every positive t, a nilpotent Lie algebra
with bracket µ(t) such that µ(0) is the Lie bracket of n2. Moreover, the solution
converges to the null bracket corresponding to the Abelian Lie algebra.

In the following theorem we show a long time existence of solution for the
Laplacian flow (4.18) of the closed G2 form ϕ4 on the compact manifold M4.

Theorem 4.4.5. There exists a solution, ϕ(t) of the Laplacian flow of ϕ(0) = ϕ4

with
ϕ4 = −e124 − e456 + e347 + e135 + e167 + e257 − e236,

on M4 defined in the interval I = (tmin,+∞), where tmin is the negative real
number given by the elliptic integral

tmin = −3

2

∫ 1

0

x3/2(2− x3)−5/2dx.

Moreover, the underlying metrics g(t) of this solution converge smoothly, up to pull-
back by time-dependent diffeomorphisms, to a flat metric, uniformly on compact
sets in M4, as t goes to infinity.

Proof. We study now the Laplacian flow of ϕ4 on N4. Consider some differentiable
real functions fi = fi(t) (i = 1, . . . , 7) and hj = hj(t) (j = 1, 2, 3) depending on a
parameter t ∈ I ⊂ R such that fi(0) = 1, hj(0) = 0 and fi(t) 6= 0, for any t ∈ I
and for any i and j. For each t ∈ I, we consider the basis {x1, . . . , x7} of left
invariant 1-forms on N4 defined by

xi = xi(t) = fi(t)e
i, 1 ≤ i ≤ 4, x5 = x5(t) = f5(t)e5 + h1(t)e1,

x6 = x6(t) = f6(t)e6 + h2(t)e2, x7 = x7(t) = f7(t)e7 + h3(t)e4.
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From now on we write fij = fij(t) = fi(t)fj(t) and fijk = fijk(t) = fi(t)fj(t)fk(t).
The structure equations of N4 with respect to this basis are

dxi = 0, i = 1, 2, 4, 5, dx3 =
f3

f12

x12,

dx6 =
f6

f13

x13 +
f6

f24

x24, and dx7 =
f7

f15

x15.

(4.30)

For any t ∈ I, we define the G2 form ϕ(t) on N4 by

ϕ(t) =− x124 − x456 + x347 + x135 + x167 + x257 − x236

=
(
− f124 − f4h12 − f2h13 + f1h23

)
e124 − f456e

456 + f347e
347

+ f135e
135 + f167e

167 + f257e
257 − f236e

236 +
(
f46h1 − f16h3

)
e146

−
(
f45h2 + f25h3

)
e245 +

(
− f27h1 + f17h2

)
e127.

(4.31)

Clearly ϕ(0) = ϕ4 since fi(0) = 1 and hj(0) = 0. Moreover, using (4.30) and
(4.31), one can check that dϕ(t) = 0 if and only if

f16(t) = f34(t), f37(t) = f56(t),

for any t.
To study the Laplacian flow (4.18) of ϕ4, we need to determine the functions

fi, hj and the interval I so that d
dt
ϕ(t) = ∆tϕ(t), for t ∈ I. On the one hand,

using (4.31) we have

d

dt
ϕ(t) =

(
− f124 − f4h12 − f2h13 + f1h23

)′
e124 −

(
f456

)′
e456 +

(
f347

)′
e347

+
(
f135

)′
e135 +

(
f167

)′
e167 +

(
f257

)′
e257 −

(
f236

)′
e236

+
(
f46h1 − f16h3

)′
e146 −

(
f45h2 + f25h3

)′
e245 +

(
− f27h1 + f17h2

)′
e127.

(4.32)
On the other hand,

∗ϕ(t)ϕ(t) = x3567 + x1237 + x1256 − x2467 + x2345 + x1457 + x1346.

So, x3567 and x2467 are the nonclosed summands in ∗ϕ(t)ϕ(t).
Then, for ∆tϕ(t) = −d ∗ϕ(t) d ∗ϕ(t) ϕ(t) we obtain

∆tϕ(t) = −
(
f124(

f23
f21 f

2
2

+
f26
f22 f

2
4
)− f37h3

f15
− f26h1

f13

)
e124

+f135

(
f26
f21 f

2
3

+
f27
f21 f

2
5

)
e135 +

f5f26
f13

e245 +
f3f27
f1f5

e127.
(4.33)
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Comparing (4.32) and (4.33) we see that the functions fi, h1 and h3 satisfy

f167(t) = f236(t) = f257(t) = f347(t) = f456(t) = 1, f46(t)h1(t)−f16(t)h3(t) = 0,

for any t ∈ I. But these equations are satisfied if

f1 = f 2
23, f4 = f2, f5 = f3, f6 = f7 =

1

f23

, h1 = f2f
2
3h3. (4.34)

Using (4.34), we write (4.32) and (4.33) in terms of fi, h1 and h3. Then, we see
that d

dt
ϕ(t) = ∆tϕ(t) if and only if

f1 = u · v, f2 = f4 = v1/2, f3 = f5 = u1/2, f6 = f7 = (uv)−1/2,
h1 = 1

2
u5/2v − 1

2
u1/2, h2 = 0, h3 = 1

2
u3/2v1/2 − 1

2
(uv)−1/2,

(4.35)

where u = u(t) and v = v(t) are differentiable real functions satisfying the system
of ordinary differential equations

u′ = +
2

3

2− u3

u3v3
,

v′ = −2

3

1− 2u3

u4v2
,

(4.36)

with initial conditions
u(0) = v(0) = 1. (4.37)

Let us accept for the moment that (4.36)-(4.37) has a solution u = u(t), v = v(t)
defined in I = (tmin,+∞). Then, taking into account (4.31) and (4.35), the family
of closed G2 forms ϕ(t) solving (4.18) for ϕ4 is given by

ϕ(t) =
1

4
e124

(
−u4v2 + 2u2v − 4uv2 − 1

)
+

1

2
e127

(
u2v − 1

)
+ u2ve135

+ e167 − e236 +
1

2
e245

(
u2v − 1

)
+ e257 + e347 − e456,

for t ∈ (tmin,+∞). Moreover, {ϕ(t)} is also the solution of the Laplacian flow of
ϕ4 on M4 since, for any t ∈ (tmin,+∞), ϕ(t) is a left invariant closed G2 form on
N4.

The underlying metric g(t) of this solution converges to a flat metric. To
check that the corresponding manifold in the limit is flat, we note that all non-
vanishing coefficients of the Riemannian curvature R(t) of g(t) are proportional to
the function 2u(t)− u4(t).

Below (see Corollary 4.4.7) we show that the function u(t) satisfies

lim
t→+∞

u(t) = 21/3,
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and so
lim
t→+∞

R(t) = 0.

To study the system (4.36)-(4.37) we note that the first equation of (4.36)
implies that u′ > 0 since u(0) = 1 and the functions u = u(t), v = v(t) are both
positive. Moreover, we note also that the functions at the second member of (4.36)
are C∞ in the domain

Ω =
{

(u, v) ∈ R2 | 0 < u < 21/3, v > 0
}
,

in the phase plane. Then, for every point (u0, v0) ∈ Ω, there exists a unique
maximal solution (u, v), which has (u0, v0) as initial condition, and with existence
domain a certain open interval I such that either

lim
t→inf I

(
u(t)2 + v(t)2

)
= +∞,

or
lim

t→inf I

(
u(t), v(t)

)
∈ ∂Ω,

and either
lim

t→sup I

(
u(t)2 + v(t)2

)
= +∞,

or
lim

t→sup I

(
u(t), v(t)

)
∈ ∂Ω,

where ∂Ω denotes the boundary of Ω.

To complete the proof of Theorem 4.4.5, we study the system (4.36)–(4.37)
proving the two following results.

Proposition 4.4.6. The maximal solution
(
u(t), v(t)

)
of (4.36), satisfying the

initial conditions (4.37), belongs to the trajectory of equation

v =
1√

u(2− u3)
. (4.38)

Proof. From (4.36) we obtain

dv

du
= −v(1− 2u3)

u(2− u3)
,

that is,
dv

v
= − 1− 2u3

u(2− u3)
du.
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Integrating this equation and using (4.37), we have

log v = log
(
u(2− u3)−1/2

)
.

Therefore,

v =
1√

u(2− u3)
.

As a consequence we have the following corollary, which completes the proof
of Theorem 4.4.5.

Corollary 4.4.7. The maximal solution of (4.36)-(4.37),

I 3 t 7→
(
u(t), v(t)

)
∈ Ω

parametrizes the whole curve (4.38). Moreover, the maximal solution is defined in
the interval

I = (tmin,+∞),

where

tmin = −3

2

∫ 1

0

x3/2

(2− x3)5/2
dx, (4.39)

and {
limt→tmin u(t) = 0,

limt→tmin v(t) = +∞,

{
limt→+∞ u(t) = 21/3,

limt→+∞ v(t) = +∞.

Proof. Let I = (tmin, tmax) the existence interval of the maximal solution
(u(t), v(t)) of (4.36) satisfying the initial conditions (4.37). Using the previous
proposition and the first equation of (4.36) we see that

v(t) = (2u(t)− u(t)4)−1/2, u′(t) = − 2u(t)3 − 4

3u(t)3v(t)3
,

which imply

u′(t) =
2

3

(2− u(t)3)
5
2

u(t)
3
2

.

We define the functions x(t) and f(x) by

x(t) = u(t), f(x) =
2

3

(2− x3)
5
2

x
3
2

.

In order to find tmax, we can use that dx
dt

= f(x(t)) or, equivalently,

dx

f(x)
= dt.
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So, in particular, we have

dt

dx
=

3

2
x

3
2 (2− x3)−

5
2 .

Note that the function 3
2
x

3
2 (2− x3)−

5
2 is increasing from 0, for x = 0, to +∞, for

x = 2
1
3 . Then, integrating dx

f(x)
= dt between tmin and 0, and using that x(tmin) = 0

and x(0) = 1, we have that tmin is finite and equal to the real number

tmin = −3

2

∫ 1

0

x3/2(2− x3)−5/2dx.

Similarly, in order to find tmax we integrate again dx
f(x)

= dt between 0 and tmax.

Since x(tmax) = 2
1
3 we get

tmax = −3

2

∫ 2
1
3

1

x
3
2 (2− x3)−

5
2dx,

which implies that tmax is +∞ because this integral is not defined in x = 2
1
3 .

Concerning the Laplacian flow (4.18) of the closed G2 form ϕ6 on M6 we have
the following.

Theorem 4.4.8. There exists a solution, ϕ(t) of the Laplacian flow of ϕ(0) = ϕ6

with
ϕ6 = e123 + e347 + e356 + e145 + e167 − e246 + e257,

on M6 defined in the interval I = (tmin,+∞), where tmin is the negative real
number given by (4.39). Moreover, the underlying metrics g(t) of this solution
converge smoothly, up to pull-back by time-dependent diffeomorphisms, to a flat
metric, uniformly on compact sets in M6, as t goes to infinity.

Proof. Consider the Laplacian flow of ϕ6 on N6. We take differentiable real func-
tions fi = fi(t) (i = 1, . . . , 7) and hj = hj(t) (j = 1, 2) depending on a parameter
t ∈ I ⊂ R such that fi(0) = 1, hj(0) = 0 and fi(t) 6= 0, for any t ∈ I and for any
i and j. Now, for each t ∈ I, we consider the basis {x1, . . . , x7} of left invariant
1-forms on N6 defined by

xi = xi(t) = fi(t)e
i, 1 ≤ i ≤ 5,

x6 = x6(t) = f6(t)e6 + h1(t)e2,

x7 = x7(t) = f7(t)e7 + h2(t)e3.

For any t ∈ I, let ϕ(t) the G2 form on N6 defined by

ϕ(t) = x123 + x145 + x167 + x257 − x246 + x347 + x356. (4.40)
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In order to study the flow (4.18) of ϕ6, we proceed as in the proof of Theorem
4.4.5. We see that the forms ϕ(t) defined by (4.40) are a solution of (4.18) if and
only if the functions fi, h1 and h2 satisfy

f1 = u · v, f2 = f3 = v1/2, f4 = f5 = u1/2,

f6 = f7 = (uv)−1/2, h1 = h2 = −1

2
(uv)−1/2 +

1

2
u3/2v1/2,

where u = u(t) and v = v(t) are differentiable real functions satisfying the system
of ordinary differential equations

u′ =
2

3

2− u3

u3v3
,

v′ = −2

3

1− 2u3

u4v2
,

(4.41)

with initial conditions
u(0) = v(0) = 1. (4.42)

Clearly, the systems (4.41)-(4.42) and (4.36)-(4.37) are the same. Thus, the
maximal solution of (4.41)-(4.42) satisfies the properties expressed in Corollary
4.4.7 for the maximal solution of (4.36)-(4.37). Moreover, {ϕ(t)} is also the solu-
tion of the Laplacian flow of ϕ6 on M6 since, for any t ∈ (tmin,+∞), ϕ(t) is a left
invariant closed G2 form on N6.

To finish the proof we see that, for t ∈ (tmin,+∞), the expression of ϕ(t) is
given by

ϕ(t) =
1

4
(1 + 4uv2 − 2u2v + u4v2)e123 + e347 + e356 + e167 − e246 + e257

+ u2ve145 +
1

2
(1− u2v)(e136 − e127).

The underlying metric g(t) of this solution converges to a flat metric. To check
that the limit metric is flat, we note that all non-vanishing coefficients of the
Riemannian curvature R(t) of g(t) are proportional to the function

up(t)(2− u3(t))q,

where p and q are real numbers satisfying that q > 0. According with Corollary
4.4.7), we have that the function u(t) satisfies

lim
t→+∞

u(t) = 21/3,

and so
lim
t→+∞

R(t) = 0.
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Remark 4.4.9. Note that surprising in the N4 and N6 cases we get the same
system of equations.

Finally, for the Laplacian flow of the closed G2 form ϕ12 on M12 we have the
following.

Theorem 4.4.10. The family of closed G2 forms ϕ(t) on M12 given by

ϕ(t) = −e124+e167+f(t)6e135−f(t)6e236+e257+e347−e456, t ∈
(
−3,+∞

)
(4.43)

is the solution of the Laplacian flow of ϕ(0) = ϕ12, where f = f(t) is the function

f(t) =
(1

3
t+ 1

)1/8

.

Moreover, the underlying metrics g(t) of this solution converge smoothly, up to pull-
back by time-dependent diffeomorphisms, to a flat metric, uniformly on compact
sets in M12, as t goes to infinity.

Proof. It is sufficient to prove that (4.43) solves the Laplacian flow of ϕ12 on N12.
Let fi = fi(t) (i = 1, . . . , 7) be some differentiable real functions depending on a
parameter t ∈ I ⊂ R such that fi(0) = 1 and fi(t) 6= 0, for any t ∈ I, where I is an
open interval. For each t ∈ I, we consider the basis {x1, . . . , x7} of left invariant
1-forms on N12 defined by

xi = xi(t) = fi(t)e
i, 1 ≤ i ≤ 7. (4.44)

Then, from (4.15) the structure equations of N12 with respect to this basis are

dxi = 0, i = 1, 2, 3, dx4 =

√
3

6

f4

f12

x12,

dx5 = −1

4

f5

f23

x23 +

√
3

12

f5

f13

x13, dx6 = −
√

3

12

f6

f23

x23 − 1

4

f6

f13

x13,

dx7 = −
√

3

6

f7

f34

x34 +

√
3

12

f7

f25

x25 +
1

4

f7

f26

x26 +

√
3

12

f7

f16

x16 − 1

4

f7

f15

x15.

(4.45)

Now, for any t ∈ I, we consider the G2 form ϕ(t) on N12 given by

ϕ(t) = −x124 + x167 + x135 − x236 + x257 + x347 − x456 =

= −f124e
124 + f167e

167 + f135e
135 − f236e

236 + f257e
257 + f347e

347 − f456e
456.

(4.46)
Note that ϕ(0) = ϕ12 and, for any t, the 3-form ϕ(t) on N12 determines the
metric gt such that the basis {xi = 1

fi
ei; i = 1, . . . , 7} of n12 is orthonormal. So,
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gt(ei, ei) = f 2
i .

We need to determine the functions fi and the interval I so that d
dt
ϕ(t) = ∆tϕ(t),

for t ∈ I. Using (4.46) we have

d

dt
ϕ(t) =− (f124)′e124 + (f167)′e167 + (f135)′e135 − (f236)′e236

+ (f257)′e257 + (f347)′e347 − (f456)′e456.
(4.47)

Now, we calculate ∆tϕ(t) = −d ∗ϕ(t) d ∗ϕ(t) ϕ(t). On the one hand, we have

∗ϕ(t) ϕ(t) = x3567 − x2467 + x2345 + x1457 + x1346 + x1256 + x1237. (4.48)

So, x2467 and x1457 are the unique non closed summands in ∗ϕ(t)ϕ(t). Then, taking
into account the structure equations (4.45) and that xi(t) = fi(t)e

i, 1 ≤ i ≤ 7 we
obtain

∆tϕ(t) =− (f15 + f26)(f 2
5 f

2
6 + f 2

3 f
2
7 )

16f1f2f3f5f6

(e236 − e135)

+
(f15 + f26)(f 2

5 f
2
6 − f 2

3 f
2
7 )

16
√

3f1f2f3f5f6

(e136 + e235).

(4.49)

Comparing (4.47) and (4.49), in particular, we have that

(f124)′ = (f167)′ = (f257)′ = (f347)′ = (f456)′ = 0,

and since ϕ(0) = ϕ12 this imply that

f124(t) = f167(t) = f257(t) = f347(t) = f456(t) = 1, (4.50)

for any t ∈ I. From the equation (4.50) we obtain that the functions fi, where
i ∈ {3, 4, 5, 6, 7}, can be expressed in terms of f1 and f2 as follows

f3 = (f1f2)2, f4 =
1

f1f2

, f5 = f1, f6 = f2, f7 =
1

f1f2

.

Let us consider f = f1 = f2. With these concrete values (4.47) and (4.49) become

d

dt
ϕ(t) = (f 6(t))′(e135 − e236), (4.51)

and

∆tϕ(t) =
f(t)−2

4
(e135 − e236), (4.52)

respectively. From (4.51) and (4.52) finding a solution of the Laplacian flow is
equivalent to solve f 7f ′ = 1

24
. Integrating this equation, we obtain

f 8 =
1

3
t+B, B = constant.
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But ϕ(0) = ϕ12 implies that f(0) = 1, that is, B = 1. Hence

f(t) =
(1

3
t+ 1

)1/8

,

and so the one parameter family of 3-forms {ϕ(t)} given by (4.43) is the solution
of the Laplacian flow of ϕ12 on N12, and it is defined for every t ∈ (−3,+∞).
Finally, we study the behavior of the underlying metric g(t) of such a solution
in the limit. If we think of the Laplacian flow as a one parameter family of G2

manifolds with a closed G2-structure, it can also be checked that, in the limit, the
resulting manifold has vanishing curvature. Denote by g(t), t ∈ (−3,+∞), the
metric on N12 induced by the G2 form ϕ12(t) defined by (4.43). Then, g(t) has the
following expression

g(t) =
(1

3
t+ 1

)1/4

e1 ⊗ e1 +
(1

3
t+ 1

)1/4

e2 ⊗ e2 +
(1

3
t+ 1

)−1

e3 ⊗ e3

+
(1

3
t+ 1

)−1/2

e4 ⊗ e4 +
(1

3
t+ 1

)1/4

e5 ⊗ e5 +
(1

3
t+ 1

)1/4

e6 ⊗ e6

+
(1

3
t+ 1

)−1/2

e7 ⊗ e7.

Concretely, every non vanishing coefficient appearing in the expression of the
Riemannian curvature R(t) of g(t) is proportional to (t + 3)−1. Therefore,
limt→+∞R(t) = 0.

Remark 4.4.11. Note that, for every t ∈ (−3,+∞), the metric g(t) is a nilsoliton
on the Lie algebra n12 of N12 isometric to g(0). In fact, taking into account (4.44)
and (4.46), it is sufficient to consider the isometry Ft : (n12, g(t)) −→ (n12, g(0))
such that, at the level of the dual space n∗12 of n12, it is given by F ∗t (ei) = xi(t),
that is,

F ∗t (ei) =
(1

3
t+ 1

)1/8

ei if i = 1, 2, 5, 6,

F ∗t (ei) =
(1

3
t+ 1

)1/2

ei if i = 3, and

F ∗t (ei) =
(1

3
t+ 1

)−1/4

ei if i = 4, 7.

Then, with respect to the orthonormal basis (x1(t), . . . , x7(t)) dual to
(x1(t), . . . , x7(t)), we have

Ric(g(t)) = − 3

4(3 + t)
Id+

3

8(3 + t)
diag(1, 1, 1, 2, 2, 2, 3) =

3

(3 + t)
Ric(g(0)),
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where 3
8(3+t)

diag(1, 1, 1, 2, 2, 2, 3) is a derivation of the Lie algebra n12 of N12, for

every t. Moreover, the Ricci tensor Ric(g(t)) of g(t), is expressed as

Ric(g(t)) =− 1

8

(1

3
t+ 1

)−3/4

e1 ⊗ e1 − 1

8

(1

3
t+ 1

)−3/4

e2 ⊗ e2

− 1

8
e3 ⊗ e3 +

1

8

(1

3
t+ 1

)−3/2

e7 ⊗ e7.
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affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955),
279–330.

[16] Besse A., Einstein manifolds, Springer, Berlin, Heidelberg, New York, 1987.

[17] Blair D. E., Contact manifolds in Riemannian geometry, Lecture Notes in
Mathematics 509, Springer-Verlag,1976.

[18] Blair D.E., Riemannian geometry of contact and symplectic manifolds,
Progress in Math. 203, Birkhäuser, 2002.
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