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1

Introduction

The current use of information technologies in many different domains of to-
day’s world is leading to a generation of vast amounts of data. The sources of
data are growing exponentially. Everyday, new systems are being monitored
with more and more sensors and devices that track the status of a machine,
register the sales of a shop or control the condition of a patient in a hospi-
tal. The storage and management of this vast amount of data has already
challenged the capability of information systems. Many times, data is col-
lected without a clear perspective of its posterior utility. However, the need
of maintaining a historical archive does not justify the collection of such an
amount of data nor the investments that it requires. Thus, the analysis of the
collected data with the objective of extracting useful information is, nowa-
days, an expanding issue. Data holders aim to obtain the knowledge that
allows them to improve their everyday procedures. Companies aspire to the
expected economical reward of these improvements. Other projects, such as
the UN Global Pulse, attempt to acquire knowledge which eventually could
enable the standard of living to improve.

Collected data involves limited value since, because it consists of records
of past events, it does not provide any new knowledge or information. The
entry in the Collins English Dictionary for “data” states that it is “a series
of observations, measurements, or facts”, whereas “information” is defined as
the “knowledge acquired through experience or study”. Data is not knowledge
on its own; it needs to be analyzed and interpreted in order to extract some
kind of useful information from it. Classical data analysis techniques have
traditionally been used to extract information from data. However, due to the
limited resources available for the experts, these techniques usually required a
substantial amount of time to analyze a database. This fact used to restrict the
number of cases/variables which could be considered. Dealing with the vast
data collections that new information technologies gather requires other kinds
of methodologies. Beyond the classical data analysis techniques, data mining
and machine learning computational methodologies aim to extract informa-
tion from data by taking advantage of the high processing power of computers.
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Fig. 1.1. General procedure of supervised classification problems.

These methods use preprocessed and structured data, which is analyzed by
means of certain statistical techniques to figure out hidden relationships and
extract interesting information.

One of these kinds of computational data analysis methodologies super-
vised classification techniques. In a classification problem there is a finite and
known set of possible categories which the different cases of the problem be-
long to. In this context, learning means inferring from a set of examples the
mapping of cases to categories which underlies the problem. The term su-
pervised indicates that the provided set of cases is fully categorized. Thus,
supervised classification techniques try to infer from the categorized data the
function that maps cases and categories in order to build a classification model
that anticipates the category of new cases.

However, the use of the new information technologies has not uniformly
reduced the cost of collecting different types of data. Whereas collecting exam-
ples has become easier in many problems, obtaining their respective categories
remains a hard/costly task. This has given rise to the question of whether it
is possible to learn with missing data in the collected set of examples. Specif-
ically, in this dissertation we focus on the difficulty to collect and provide the
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complete categorization of the examples which are used to learn the classifier,
a novel subfield of machine learning known as weakly supervised classification
or partially labeled learning.

The attempt to solve new real-life problems throughout classification tech-
niques has made evident the difficulty/impossibility of obtaining, on many
occasions, a fully/reliably supervised dataset for training as required in the
standard supervised classification framework. The popular semi-supervised
learning framework [23] already considered a training dataset where only a
subset of examples are labeled (categorized). Based on the fact that a fully
reliable dataset is unavailable, different authors have proposed to take max-
imum advantage of the partial class information available in their particular
problem/application. This has quickly drawn a wide spectrum of classifica-
tion frameworks which provide weakly supervised examples, partially labeled
due to different causes. Sometimes, it is a problem of accessibility, where the
required information cannot be certainly assessed and only partial evidence
is available. In this way, the learning from label proportions [81] or learn-
ing from candidate labeling sets [115] problems provide some global figures
about the class labels of the examples separated in subsets. In others cases,
non-exhaustive labeling processes, which are cheaper and faster than the thor-
ough and exact traditional strategies, are carried out to obtain the training
information of supervision [35, 100, 101]. The referred powerful information
technologies have also been used to cheaply label the examples of a problem.
This is the case of learning from crowds [141], where many labelers of arguable
reliability subjectively categorize the collected examples, providing multiple
non-expert labelings that can be combined to learn a reliable classifier. In
this dissertation, our first contribution explores and describes the subfield of
weakly supervised classification, clearly delimiting what weak supervision is
and what it is not. Moreover, another two contributions explore the possibility
of learning to classify in two problems of the field with datasets that lack a
reliable labeling. Both problems are studied in-depth, and methodologies to
learn from their characteristic kind of data are proposed. Finally, the proposed
methodologies have been adapted to solve two real applications.

1.1 Contributions of the dissertation

The contributions of dissertation are organized in three parts: base theory,
methodological developments and applications.

In the first part, the theoretical bases of this dissertation are presented.
Specifically, in Chapter 2 supervised classification and its extension to the
multi-dimensional framework (where several class variables are jointly pre-
dicted) are defined. Standard supervised classification is then used as a guide
to explore the field of weakly supervised classification. Precisely, our first con-
tribution consists of a three-axes taxonomy of weakly supervised classification
problems that proposes a novel ordering of the field. Each of the three axes
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represents a fundamental characteristic for depicting weakly supervised clas-
sification problems: all these classification frameworks are characterized by
the models of supervision that they implement in the learning and prediction
stages and by their instance-label relationship. Similarities and differences be-
tween different weakly supervised frameworks are identified, and unexplored
areas that could lead to new challenging frameworks are characterized.

In Chapter 3, Bayesian network classifiers (BNCs) are presented, together
with their base concepts and properties. Specifically, the four kinds of graph
structures representative of the BNCs used in this dissertation (naive Bayes,
tree-augmented naive Bayes,K-dependence Bayesian classifier and a structure
specific for multi-dimensional classification) are presented. General strategies
for learning this kind of probabilistic graphical models from —both complete
and partial— data are also presented.

In Part II, our methodological contributions for learning from weakly su-
pervised problems are presented. The tackled problems are learning from label
proportions (LLP) and learning from crowds (CrL). Both are methodologies
based on the (Structural) Expectation-Maximization strategy (Section 3.3.2)
for learning Bayesian network classifiers (Section 3.4).

Specifically, our proposal for the LLP problem, where the only information
of supervision provided consists of label proportions associated with subsets
of instances, is presented in Chapter 4. The problem is analyzed, the useful-
ness of the partial class information provided in a range of scenarios of this
problem is assessed, and the class uncertainty that it introduces is character-
ized. Our SEM-based proposal, which shows a competitive behavior regarding
the state-of-the-art methods, can use two different exhaustive configurations
in the case of low class uncertainty and, by means of a MCMC approximate
procedure, scales well when the uncertainty of the problem grows. The sta-
tistical tests carried out looking for differences among the different versions
of the method do not show significant differences between the exhaustive and
the approximate probabilistic versions.

The second weakly supervised problem analyzed in Part II is the problem
of learning from crowds (Chapter 5). For the sake of simplicity, the binary
classification scenario is analyzed in the case of learning when the labels (cat-
egories) of the training examples are provided by a set of non-expert annota-
tors. The performance of basic techniques is analyzed in different scenarios,
establishing those where non-trivial techniques are expected to perform better.
Our proposal for learning BNCs in multi-dimensional classification problems
is based on the EM strategy. The reliability of the annotators is estimated
and their opinions are weighted accordingly. This has been achieved by the
adaptation of the counting procedure for estimating the maximum likelihood
parameters of the BNCs. Different configurations of the model estimate and
combine the reliability weights in different ways. Our proposal has been tested
in a set of experiments learning multi-dimensional Bayesian network classi-
fiers from synthetic and real datasets which are previously transformed to the
multi-dimensional learning from crowds framework.
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Two real applications related with each of the weakly supervised classifi-
cation problems theoretically studied in Part II are explored in Part III. Each
application is analyzed in a different chapter of this dissertation (Chapters 6
and 7), proposing an adapted methodology for dealing with the specific weakly
supervised classification problems resulting from both real applications.

In Chapter 6, a study of the assisted reproductive technologies (ART)
problem is analyzed in an integral way through the use of weakly supervised
techniques. Our solution uses all the information collected by physicians dur-
ing the whole ART procedure, also considering examples of uncertain fate for
model learning. Four different approaches are used: standard supervised clas-
sification, positive-unlabeled learning, learning from label proportions and,
a novel weakly supervised framework called learning from positive-unlabeled
proportions (PUP). State-of-the-art techniques are used to solve the standard
and positive-unlabeled learning problems. For the LLP problem, our method-
ological contribution presented in Chapter 4 is applied. The exposed SEM-
based methodology has been extended to deal with the PUP problem, which
only provides a minimum number of positive examples for each associated
subset of instances. Some results of clinical relevance have been inferred. The
learnt classifiers that predict the viability of a cycle show a good performance.
The relevance of the cycle features for determining embryo implantation is ap-
preciated, as well as the fact that the collected data does not fully describe
the embryo implantation, but it does describe the embryo development. Ob-
tained classifiers have been proved to rank the medium-quality embryos of our
case study more consistently than the currently conducted embryo selection
criteria. Thus, their probabilistic assessment could be used as an alternative
embryo score.

In the field of software engineering, the second real application (Chapter 7)
aims to classify software defects which are reported by users throughout issue
tracking systems. The labeling, carried out by human sources, is commonly
incomplete, noisy or erroneous. In our specific case, a set of defects reported
for the Compendium software project and labeled by five annotators have
been used to illustrate our proposals to the learning from crowds paradigm.
To the extent of our knowledge, the crowd learning framework is a novel ap-
proximation in the software engineering literature. In order to deal with this
real application, the methodology proposed in Chapter 5 has been adapted
to this multi-class problem. Moreover, two complementary approaches that
specifically deal with two characteristics of the problem (a binary decomposi-
tion strategy for the multi-class problem and a sampling boosting strategy for
the imbalance nature of the problem) have been successfully adapted to the
learning from crowds framework. In general, the experimental results show
the enhanced performance achieved by our crowd learning solutions regarding
standard supervised learning using the most-voted labels.

Finally, a fourth part is included where conclusions, future work and pub-
lications supporting this dissertation are presented.





Part I

Background
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Supervised Classification

Supervised classification [125] is one of the most popular fields of machine
learning. Its objective is to learn a classifier that reliably approximates a
classification task which is generalized/inferred from a set of categorized ex-
amples of a problem of interest. The learnt classifier is posteriorly used in the
prediction stage to anticipate the class label of new unlabeled examples. In
this context, the term “supervised” indicates that, in the learning stage, the
examples are always provided with their real class label (category).

However, a fully supervised dataset for training, as required in the stan-
dard framework, cannot always be provided. In some problems, only weakly
supervised data can be obtained. Solutions proposed for learning from differ-
ent kinds of partially labeled data have led to the foundation of a new subfield
of machine learning called weakly supervised classification [83, 122, 185] (a.k.a.
partially supervised learning). Weak supervision refers to the lack of a full su-
pervision for the provided data, which conditions the process of learning a
classifier. Nevertheless, a classifier can be efficiently inferred from this partial
class information in most of the occasions. Similarly, the examples for predic-
tion are traditionally provided completely unlabeled, although there exist sit-
uations where partial class information is also available during the prediction
stage [35, 101]. The kind of partial class information available in the predic-
tion stage has to be known previously to learn the classifier: the built classifier
has to know how to take advantage of that extra information. In this way, the
performance of the obtained classifiers can be easily enhanced [35, 101].

In this chapter, we introduce the formal definition of supervised classifi-
cation together with the related notation that will be used throughout this
dissertation. The definition of multi-dimensional supervised classification is
also formalized. Next, the first contribution of this dissertation, which con-
sists of a taxonomy of weakly supervised classification problems, is proposed.
Apart from (a) the type of supervision in the data provided for learning and
(b) the type of supervision in the data provided for prediction, the taxon-
omy considers another axis: (c) the instance-label relationship defined by the
problem (e.g., in the multi-label framework [178] each instance is categorized
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by a set of labels). By means of the proposed taxonomy, the (dis)similarities
between different classification frameworks can be assessed and discussed. Fi-
nally, the weakly supervised classification problems explored throughout this
dissertation are formally and individually defined.

2.1 Supervised classification

2.1.1 Base concepts

A random variable X is a function that assigns a value x to the outcomes
of a random experiment, and a random vector X = (X1, . . . , Xn) involves n
random variables, Xj. The n-tuple x = (x1, . . . , xn) resulting from assessing
a value from each random variable is an instance. In this dissertation, we only
consider discrete random variables. Thus, each random variable Xj has an
associated set of possible values xj ∈ {1, . . . , dj} of cardinality dj .

The joint probability distribution of X is given by p(X = x) or just
p(x). We denote the marginal probability distribution of X as p(x). The joint
probability distribution of Xi and Xj is represented by p(xi, xj), and p(xi|xj)
is the conditional probability distribution of Xi given Xj = xj .

2.1.2 Standard supervised classification

Formally, a supervised classification problem is described by a set of n predic-
tive variables X = (X1, . . . , Xn) and a class variable C. Each example of the
problem is an instance (x, c) = (x1, . . . , xn, c) of the random vector (X, C)
with the value xj ∈ Xj that takes each predictive variableXj in a specific situ-
ation and the associate class value c ∈ C. The instance space X = X1×· · ·×Xn

is defined as the set of all possible instances x, and the set of values that the
class variable can take, a.k.a. class labels, form the label space C.

A classifier Ψ̂ is a function that maps the instance space into the label
space:

Ψ̂ : X → C
(x1, . . . , xn) $→ c

In statistical classification, the existence of an unknown instance-label joint
probability distribution p(x, c) is assumed. In this context, a classification
rule is a classifier function that maps instances to class labels based on an
underlying probability distribution. For example, the standard winner-takes-
all rule returns the class label with the largest conditional probability given
the instance x:
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ĉ = Ψ̂(x) = argmax
c

p(c|x) (2.1)

Therefore, learning techniques infer the generative probability distribution
p(x, c) or, directly, the conditional probability distribution p(c|x) from a set of
examples D = {(x1, c1), . . . , (xN , cN )} which are assumed to be independent
and identically distributed (i.i.d.) samples of the original unknown probability
distribution. A classifier is learnt such that it minimizes some misclassification
cost function, the 0/1 loss function (constant 1-value cost for misclassified ex-
amples) being the simplest and most popular one. An advantageous classifier
will generalize and, given a new unlabeled example, will be able to accurately
infer its class label. This is measured by performance evaluation metrics. One
of these, the classification error, is defined as the probability that the classifier
Ψ̂ misclassifies an instance x,

ε(Ψ̂) = p(Ψ̂(X) %= C) = E(x,c)∼p(X,C)I[Ψ̂(x) %= c]

where I[condition] returns 1 if condition is true and 0 otherwise. Another
commonly used performance metric, the accuracy, is simply acc(Ψ̂) = 1−ε(Ψ̂).

2.1.3 Multi-dimensional supervised classification

A multi-dimensional (MD) classification problem [6, 148] is described by
a set of n predictive variables X = (X1, . . . , Xn) and m class variables
C = (C1, . . . , Cm). Accordingly, each example of the problem is an instance
(x, c) = (x1, . . . , xn, c1, . . . , cm) of the random vector (X,C) with the value
xj ∈ Xj that takes each predictive variable Xj in a specific situation and
the associate class values ck ∈ Ck. The instance space X is defined as in the
standard unidimensional problem. However, in this framework the label space
C = C1 × · · ·× Cm denotes all the possible joint label assignments c to the m
class variables (label configurations).

In the adaptation of the general definition of a classifier —a function that
maps the instance space into the label space— to the MD framework, a mul-
tidimensional classifier Ψ̂ returns a m-tuple of class labels:

Ψ̂ : X → C
(x1, . . . , xn) $→ (c1, . . . , cm)

In statistical classification, the existence of an unknown instance-label joint
probability distribution p(x, c) is assumed. In this context, a classification
rule maps instances to label configurations based on an underlying probability
distribution. The straightforward extension of the winner-takes-all rule, known
as joint classification rule is:

ĉ = Ψ̂(x) = argmax
c

p(c|x)
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In this framework, learning techniques infer the generative probability distri-
bution p(x, c) or, directly, the conditional probability distribution p(c|x) from
a set of examples D = {(x1, c1), . . . , (xN , cN)} which are assumed to be i.i.d.
samples of the original unknown probability distribution. Again, the objective
is to learn a classifier that generalizes and, given a new unlabeled example, is
able to accurately infer its label configuration. However, the generalization of
the classification error to MD domains,

ε(Ψ̂) = p(Ψ̂(X) %= C) = E(x,c)∼p(X,C)I[Ψ̂(x) %= c]

and the corresponding global accuracy, acc(Ψ̂) = 1−ε(Ψ̂), are very demanding.
That is, learning a classifier minimizing/maximizing one of these scores is a
hard task because failing in one of the m predicted class labels penalizes the
whole (joint) prediction. A simple alternative is the per-class performance
evaluation, where each class variable is evaluated separately,

εk(Ψ̂) = p(Ψ̂k(X) %= Ck) = E(x,c)∼p(X,C)I[Ψ̂k(x) %= ck]

where Ψ̂k(x) is the label assigned by classifier Ψ̂ to the class variable Ck. The
output of this evaluation metric is a vector ε = (ε1, . . . , εm).

2.2 Weakly supervised classification

Abstracted from the generative probability distribution, with a non-statistical
perspective, the existence of an unknown target function Ψ : X → C that (i)

individually categorizes each instance with a single label is usually assumed
in standard supervised classification [125]. Learning techniques infer (ii) from
a set of fully labeled examples D = {(x1, c1), . . . , (xN , cN )} of the problem a
mapping function or classifier Ψ̂ that approximates the real function Ψ . The
objective is to build a classifier Ψ̂ that accurately predicts the class label c of
(iii) new unlabeled examples (x, ?).

A quick look at recent literature is enough to realize that the increasing
number and variety of non-standard supervised classification problems cannot
be described by means of this standard definition. In the previous paragraph,
three well-established components of the definition have been emphasized. At
least one of the indicated components is not fulfilled by the non-standard clas-
sification frameworks collected for this work. First of all, not all the problems
involve samples which can be described by means of an instance-label pair:
e.g., the multi-label framework [178], where the examples are categorized with
one or more class labels. Secondly, some frameworks cannot provide a fully
labeled dataset for training: e.g., the semi-supervised framework [23], where
not all the training examples are labeled. Thirdly, certain class information
can be known for the examples at prediction time: e.g., someone could be
interested in categorizing a group of examples and it is known that they be-
long to different categories [101]. Each of these ideas, the three axes on which
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Categorization

SL ML

E
x
am

p
le SI Ψ : X → C Ψ : X → 2C

MI Ψ : 2X → C Ψ : 2X → 2C

Table 2.1. Four possible definitions of the target function Ψ . An example is com-
posed of a single (SI) or multiple (MI) instances. The categorization is composed of
a single (SL) or multiple (ML) class labels.

the proposed taxonomy is based, will be discussed in-depth in the following
subsections from the point of view of weakly supervised classification.

2.2.1 Instance-label relationship

In standard supervised classification, each instance represents an example
of the problem and is categorized with a single class label (single-instance
single-label, SISL). There exist other popular state-of-the-art frameworks that
do not follow this standard instance-label (IL) relationship: in the multi-label
classification framework [178], each single instance is categorized with multiple
(one or more) class labels (SIML); in the multiple-instance learning problem
[47], a set of instances (which represents an example) is categorized with a
single class label (MISL); and the multi-instance multi-label framework [201]
involves both examples of multiple instances and categorizations of multiple
labels (MIML).

In general, it may be agreed that a classifier Ψ̂ is built as an approximation
of the real unknown target function Ψ . The definition of the domain and
image of the target function Ψ determines the instance-label relationship of
a problem. On the one hand, the domain of Ψ comprises all the possible
examples of the problem, which compose the instance space X . There are two
possible configurations: each example is represented (a) by a single instance, as
in the standard framework [125], where the domain of Ψ matches the instance
space X , or (b) by multiple instances [47], where the domain of Ψ is the power
set 2X . On the other hand, the image of the target function Ψ comprises all the
possible categorizations, which compose the label space C. There are also two
possible configurations: a categorization is represented (a) by a single class
label, as in the standard framework, with the image of Ψ matching the label
space C, or (b) by multiple class labels [178], where the image is the power
set 2C. Thus, both the examples and the categorizations can show a single or
multiple configuration. This idea leads to a first subdivision of classification
problems: a different instance-label relationship is observed for each of the
four possible definitions of the unknown target function Ψ (Table 2.1).

Note that the instance-label relationship can be used for characterizing
both weakly and standard supervised classification problems, i.e., it is not
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an exclusive feature of weakly supervised classification problems. In the re-
lated literature, the interested reader can find classification problems with
an alternative IL relationship which provide standard fully supervised data
(e.g., all the illustrative frameworks mentioned so far in the current subsection
[178, 47, 201]), weakly supervised classification problems with the standard
IL relationship [35, 81] or problems that combine an alternative IL relation-
ship with weak supervision [175, 195]. The inclusion of this characteristic as
an axis of our taxonomy of weakly supervised classification problems allows
us to leave this feature out of the discussion over weak supervision —the IL
relationship has been confused several times with weak supervision [64]. From
this section on, example and categorization are used as two general terms that
take a particular meaning according to the instance-label relationship defined
by the target function of each specific problem.

2.2.2 Supervision in the learning stage

According to the standard definition of supervised classification, a set of fully
supervised examples has to be provided in the learning stage in order to learn
a classifier. Loss functions, performance evaluation, feature subset selection or
discretization techniques are a few examples of the different procedures that,
during the learning stage, take advantage of this requirement.

However, collecting such a complete set of examples is not always possi-
ble. Many authors have dealt with classification problems in which the class
information provided for the training examples is partial. The most popular
framework with this characteristic is probably the semi-supervised learning
[23] problem. Over the years, the determination of the researchers of the ma-
chine learning community, who have attempted to collect any kind of class
information available in their specific problem in order to learn with as much
supervision as possible, has led to the emergence of many different types of
supervision. For instance, in the partial labels problem [35], each training ex-
ample is provided with a set of candidate categorizations that includes the real
one. In the case of the multi-label learning with weak labels problem [175],
the set of labels provided with each example is actually a subset of the set of
labels that compose the real full categorization of the SIML example. In this
paper, we use the term supervision model to refer to the specific type of su-
pervision used to categorize the examples of a weakly supervised classification
problem. In Table 2.2, a representative set of supervision models collected in
the literature is briefly described.

In these novel frameworks, the use of a weak supervision model and the
consequent absence of a fully reliable labeling for the training dataset prevents
us from using standard supervised classification techniques. Specific method-
ologies have been proposed for dealing with different kinds of weakly super-
vised data. Eventually, proposed techniques have been proved to successfully
learn from the specific kind of data.
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Model References Description

Full-supervision [125, 178,
47, 201]

For each example, complete class information is provided.

Unsupervision [125] No class information is provided with the examples.

Semi-
supervision

[23] Part of the examples are provided fully supervised. The rest are
unsupervised.

Positive-
unlabeled

[19, 111,
60, 164]

Part of the examples are provided fully supervised, all of them
with the same categorization. The rest are unsupervised.

Candidate
labels

[35, 70, 90] For each example, a set of class labels is provided. In this set, the
class label(s) that compose the real categorization of the example
are included.

Probabilistic la-
bels

[94] For each example, the probability of belonging to each class label
is provided. This probability distribution is expected to assign
high probability to the real label(s).

Incomplete [14, 175,
196]

For each example, a subset of the labels that compose its real
categorization is provided (SIML or MIML, Table 2.1).

Noisy labels [12, 202] For each example, complete class information is provided, al-
though its correctness is not guaranteed.

Crowd [141, 192] For each example, many different non-expert annotators provide
their (noisy) categorization.

Mutual label
constraints

[100, 101,
162]

For each group of examples, an explicit relationship between their
class labels is provided (e.g., all the examples have the same cat-
egorization).

Candidate
labeling vectors

[115] For each group of examples, a set of labeling vectors (including
the real one) is provided. A labeling vector provides a class label
for each examples of a group.

Label propor-
tions

[128, 136,
81]

For each group of examples, the proportion of examples belonging
to each class label is provided.

Table 2.2. Collection of supervision models.

2.2.3 Supervision in the prediction stage

Traditionally, class information has only been supplied for the data provided
in the learning stage. According to the standard definition, a supervised clas-
sification problem provides completely uncategorized examples for prediction.
However, some authors have already proposed using weakly supervised exam-
ples in the prediction stage. The full-class set problem [101], where a classifier
is learnt from a traditional set of fully categorized examples, stands out be-
cause it implements a weak supervision model in the prediction stage. In the
motivating application, a teacher who wants to automatically register the at-
tendance at their lessons uses a set of individually identified (categorized)
photographs of the students to learn a classifier. Then, for the faces detected
in a photograph of the whole classroom, the classifier individually predicts the
identity of each face knowing that no identity can be predicted twice. That is,
the examples for prediction implement a mutual label constraints supervision
model: among the examples of the provided group, none has the same catego-
rization. Cour et al. [35] were also motivated by another application in which
face-images have to be classified according to their identity. In this case, at
the prediction stage each face is provided to the classifier with a set of possible
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identities (allegedly, considerably smaller than the complete set of identities).
That is, their motivating problem implements the candidate labels supervi-
sion model (see Table 2.2) in the prediction stage. With this information, the
classifier selects the predicted identity among a reduced set of candidates, and
not among the set of all possible identities (C). An interesting particularity of
this problem is that it implements the same supervision model in the learning
stage; it infers the classifier also from a set of examples labeled with candidate
labels too. In this way, a weakly supervised classification problem that shows
the same supervision model in both stages is solved.

The weak supervision of the examples provided in the prediction stage may
enhance the accuracy of the learnt classifiers. Partial class information can be
straightforwardly used to skew the probabilities of predicting the different
possible categorizations or, even, to discard some of them. Thus, contrary to
the consequences derived from their use in the learning stage, the use of weak
supervision models in the prediction stage is expected to enhance the perfor-
mance of the obtained classifiers. There is disparity in the computational cost
arising from the use of supervision models in this stage: Whereas the candidate
labels model reduces the number of possible categorizations that the classifier
considers (complexity reduction), the mutual label constraints model implies
joint predictions that can make the prediction task more complex. However,
in all the cases, the improvement in terms of classification performance is
unquestionable for all the supervision models. In spite of the benefits, state-
of-the-art weakly supervised frameworks rarely consider a weak supervision
model in the prediction stage. Certainly, partial class information in prediction
cannot be provided for all the problems. The class information is inherently
available in the prediction stage only in a limited set of problems and carrying
out a costly process for collecting weakly supervised examples in this stage
makes no sense: Precisely, classifiers are built to anticipate this information.
However, whenever partial class information is available for prediction, it is
highly advisable to build classifiers that take advantage of it. Note that while
the classifier is being built, it has to be taught to take advantage of the specific
partial class information provided for the prediction examples. That is, the
supervision models which a weakly supervised classification problem follows
in both learning and prediction stages determine the process of building a
solution.

2.3 A taxonomy of weakly supervised classification
problems

In the last few years, a spectrum of classification problems and applications
which depart from the standard definition of supervised classification have
been addressed by the community. In this paper, we characterize weakly super-
vised classification problems according to the supervision models implemented
in both learning and prediction stages. The consideration of the instance-label
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SUPERVISION MODEL

Problem Description Application (e.g.) IL rel. Learning Prediction
Standard problem [125] Learning with full categorized examples Handwritten digit

recogn.
SISL Full-supervision Unsupervision

Semi-supervised [23] Learning with categorized and uncategorized ex-
amples

Text classification SISL Semi-
supervision

Unsupervision

Positive-unlabeled [19] Learning with examples of a category and other
uncategorized examples

Spam detection, Gene
prediction

SISL Positive-
unlabeled

Unsupervision

Mislabeled data [12]
Ambiguous labels [202]

Learning with maybe wrong-categorized exam-
ples

Subjective labeler SISL Noisy Labels Unsupervision

Partial labels [35] Learning and prediction with uncategorized ex-
amples that have a set of possible categorizations

Classifying pho-
tographs with captions

SISL Candidate
labels

Unsupervision
/ Candidate
labels

Multiple labels [94] Learning with uncategorized examples that, with
some probability, belong to a certain categoriza-
tion

Bioinformatics SISL Probabilistic la-
bels

Unsupervision

Partial equivalence relations [100] Learning with groups of examples of the
same/different categorization

Computer vision SISL Mutual label
constraints

Unsupervision

Full-class set [101] Prediction for a group of examples, all of them
with a different categorization

Automatic attendance
recording

SISL Full-supervision Mutual label
constraints

Label proportions [81]
Aggregate outputs [128]

Learning with groups of examples only knowing
how many of them belong to each categorization

Embryo Selection,
Polls prediction

SISL Label propor-
tions

Unsupervision

Candidate labeling sets [115] Learning with groups of examples and sets of pos-
sible categorizing vectors

Classifying pho-
tographs with captions

SISL Candidate
labeling vectors

Unsupervision

Learning from crowds [141, 192] Learning with examples categorized with many
candidate noisy categorizations

Image annotation SISL Crowd Unsupervision

Multi-label [178] Learning with examples that belong to several
categorizations at the same time

Film genre prediction SIML Full-supervision Unsupervision

Semi-supervised multi-label [26] Learning with examples categorized with multiple
labels or uncategorized

Text categorization SIML Semi-
supervision

Unsupervision

ML with weak label [175]
ML incomplete class [14]

Learning with examples categorized with a subset
of the real multiple labels

Image annotation SIML Incomplete Unsupervision

Set classification [132] Prediction for a group of examples, all of them
with the same categorization

Face recognition with
multiple photos

SIML Full-supervision Mutual label
constraints

MIL [47] Learning with multiple-instance examples that
are positive if at least one of their instances is

Molecule activation
prediction

MISL Full-supervision Unsupervision

G-MIL [190] Learning with examples represented by several in-
stances with generalized function for positives

Key-and-lock predic-
tion problem

MISL Full-supervision Unsupervision

MISSL [138] Learning with categorized and uncategorized
multiple-instances examples

Content-based image
retrieval

MISL Semi-
supervision

Unsupervision

MIML [201] Learning with examples represented with several
instances that belong to several categorizations

Classifying texts, im-
ages or videos

MIML Full-supervision Unsupervision

SSMIML [195] Learning with multiple-instance examples catego-
rized with multiple labels or uncategorized

Video annotation MIML Semi-
supervision

Unsupervision

MIML with weak labels [196] Learning with multiple-instance examples catego-
rized with a subset of the real multiple labels

Image annotation MIML Incomplete Unsupervision

Table 2.3. Brief description of classification problems and characterization according to the three axes of the taxonomy.
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relationship of the problems allows us to delimit the field of weakly supervised
classification, highlighting the differences with other non-standard classifica-
tion problems which have been commonly misconceived as weakly supervised
problems. Using these three features to organize the spectrum of problems,
a taxonomy of weakly supervised classification problems is straightforwardly
obtained.

Table 2.3 shows a summary of the non-standard supervised classification
problems collected for this study. The name, a short description and an exam-
ple of a real application are used for depicting each problem, which is finally
characterized according to the three axes of the taxonomy. Although the col-
lection of problems is not exhaustive, we consider that it is large, varied and
representative for the exposed objective of illustrating the taxonomy. Other
problems could be easily incorporated to this taxonomy describing them ac-
cording to the three axes.

Similarities between supervision models. In their attempt to describe
the weakly supervised classification field, Garćıa-Garćıa and Williamson [64]
used the name of degrees of supervision. This suggestive name seems to allude
to a certain degree of supervision or amount of class information related to
each supervision model. Thus, one might be tempted to meet the challenge
of proposing a rank of supervision models according to their amount of class
information. However, this intuition is not completely precise: the same super-
vision model provides a different amount of information in different scenarios.
Consider, for example, the candidate labels supervision model. It can be agreed
that an example with two candidate categorizations involves more class infor-
mation than another with three candidates. Accordingly, a dataset with this
supervision model that has, on average, two candidate categorizations per ex-
ample involves more information than another dataset with three candidates
on average. Therefore, although it is unquestionable that full-supervision and
unsupervision are respectively the models with the most and the least class
information, it would be unfair to propose such a rank of supervision models
regarding the amount of class information.

However, although for the sake of simplicity no subdivision of supervision
models has been explicitly displayed in the taxonomy (nor in the correspond-
ing tables), they can be roughly separated in two groups: supervision models
that provide class information for each example individually and those that
provide class information jointly for a group of examples. On the one hand,
let us consider the novel probabilistic labels and candidate labels supervision
models (Table 2.2) for illustrating the similarities between supervision mod-
els in this first group. In the latter, a group of categorizations (including the
correct one) is provided for each example, whereas in the former a probabil-
ity distribution indicates the probability of each possible categorization being
the real one. The probabilistic labels model can represent the candidate labels
model (same probability, 1/t, for the t candidate labels and null probability
for the rest) but not the other way around. Let us now consider the incom-
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plete supervision model, defined only for SIML or MIML relationships. The
multiple label configuration implies that the image of the target function Ψ
is the power set of the label space (2C , Table 2.1); i.e., the set of all the
possible categorizations comprises all the subsets of C. In this context, the in-
complete supervision model provides, for each example, a subset of the labels
ĉ which are included in the real categorization, ĉ ⊆ c. This information can
be used to discard those categorizations which do not include the provided
labels. Thus, any remaining subset of labels c′ that does contain all the la-
bels in ĉ (c′ fulfills that ĉ ⊆ c′ ⊆ C) can be considered, in this context, a
candidate categorization. Other members of this first group are the standard
full-supervision, semi-supervision and positive-unlabeled models. On the other
hand, the second group of supervision models comprises the label proportions
and the mutual label constraints models (see Table 2.2), which can be seen
as restrictive versions of the candidate labeling vectors model. The label pro-
portions model can be described by those labeling vectors that assign class
labels to the examples fulfilling the provided label proportions of the group.
An analogous reconsideration can be used to fit the mutual label constraints
into the description of the candidate labeling vectors model. For example, if a
constraint indicates that all the examples of a group belong to the same class,
the corresponding consistent labeling vectors are those that assign the same
label to all the examples of the group.

Dissimilar problems. By means of this taxonomy, basic differences between
problems that otherwise could be considered as similar are noticed. For ex-
ample, the use of groups of instances, a feature shared by the learning from
label proportions (LLP) [81] and the multiple-instance learning (MIL) [47]
problems, has a different nature in both problems. On the one hand, the MIL
problem involves a target function that defines a MISL instance-label relation-
ship, that is, an example is described by means of a group of instances. On the
other hand, each single instance represents an example in the LLP problem
(i.e., it follows the standard SISL relationship) but the available class infor-
mation is not specific enough to individually categorize each example: “In a
group of three instances, two are positive examples and one is negative” is
valid class information (label proportions supervision model) in this problem.
A similar distinction can be made among frameworks that provide a group
of labels for each example: in the multi-label (ML) framework [178] —which
follows a SIML instance-label relationship— each categorization is composed
by a group of labels, whereas the partial labels problem [35] —which follows
the standard SISL instance-label relationship— implements the candidates
labels supervision model, where the provided group of labels is a set of can-
didate categorizations that includes the real one. Such a case of ambiguity,
where a problem of interest cannot be certainly defined according exclusively
to the provided data, should be elucidated by supplementary expert knowl-
edge. Thus, it is worth emphasizing the importance of a clear definition of
the problem that, by means of our three-axes taxonomy, can be placed in
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SISL SIML MISL MIML

Standard problem [125]
Semi-supervised [23]
Positive-unlabeled data [19]
Mislabeled data [12]
Ambiguous labels [202]
Partial labels [35]
Multiple labels [94]
Partial equivalence relations
[100]
Full-class set [101]
Label proportions [81]
Aggregate outputs [128]
Candidate labeling sets [115]
Learning from crowds [141]

Multi-label [178]
Semi-supervised multi-label
[26]
Set classification [132]
ML with weak label [175]
ML with incomplete class
[14]

MIL [47]
G-MIL [190]
MISSL [138]

MIML [201]
SSMIML [195]
MIML with
weak label [196]

Table 2.4. Classification problems distributed according to their instance-label
relationship.

the field of weakly supervised classification, revealing the (subtle) similarities
and differences with other frameworks. Being aware of these (dis)similarities,
future researchers may find the best way to deal with the weakly supervised
data of their (novel) problems in order to provide a suitable technique that
efficiently deals with it.

Unexplored frameworks. The gaps observed in our taxonomy may be seen
as further challenges, unexplored frameworks for the research community
which could involve real applications. For example, it is worth noting the
reduced number of addressed problems that combine both a non-standard
instance-label relationship and a scheme of supervision models alternative to
the standard one (full-supervision in learning stage, unsupervision in predic-
tion). As shown in Table 2.4, most of the current weakly supervised frame-
works show the standard single-instance single-label (SISL) relationship. Al-
though the ML, MIL and, more recently, MIML paradigms have received
considerable attention, only the semi-supervision model [23, 26, 138, 195] and
the incomplete supervision model [14, 175, 196] have been extensively applied
to problems with non-standard instance-label relationships.

Table 2.5 shows the distribution of the collected problems according to
the supervision models implemented in their learning (rows) and prediction
(columns) stages. Note that those supervision models that do not make sense
in each stage are not shown: e.g., the unsupervision model in the learning stage
or the full-supervision model in the prediction stage. Neither are the probabilis-
tic labels, candidate labeling vectors, label proportions, incomplete and crowd
supervision models displayed in columns because these have never been used
for prediction. In general, the trend towards using the standard scheme of su-
pervision models or, at least, using the unsupervision model in the prediction
stage remains strong. Few works [101, 35, 132] that take advantage of weakly
supervised data in the prediction stage appear in the literature. Although it
is evident that the availability of weakly supervised data in the prediction
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SUPERVISION MODEL IN PREDICTION STAGE

Unsupervision Candidate labels Mutual label con-
straints

Full-supervision Standard problem [125]
Multi-label [178]
MIL [47]
G-MIL [190]
MIML [201]

Full-class set [101]
Set classification
[132]
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E Semi-supervision Semi-supervised [23]

Semi-supervised multi-label [26]
MISSL [138]
SSMIML [195]

Positive-unlabeled Positive-unlabeled data [19]

Candidate labels Ambiguously labeled data [201]
Partial labels [35]

Partial labels [35]

Probabilistic labels Multiple labels [94]

Incomplete ML weak label [175]
ML incomplete class [14]
MIML weak label [196]

Noisy labels Mislabeled data [12]
Ambiguously labeled data [202]

Crowd Learning from crowds [141]

Mutual label con-
straints

Partial equivalence relations
[100]

Candidate labeling
vectors

Candidate labeling sets [115]

Label proportions Label proportions [81]
Aggregate outputs [128]

Table 2.5. Classification problems distributed according to the supervision models
implemented in the learning and prediction stages.

stage is not as usual as in the learning stage, the number of problems that use
a weak supervision model in the prediction stage is still strikingly reduced.
It is especially noteworthy due to the fact that this kind of information can
be easily used to enhance the performance of the learnt classifiers. Only one
problem that learns and predicts with weakly labeled data has been docu-
mented, the partial labels problem [35]. Its idea of collecting and providing the
same kind of partial class information in both learning and prediction stages
seems suitable for other frameworks described in the literature, especially for
those problems that implement weak supervision models which have emerged
as a cheap alternative for collecting labels. Indeed, this approach becomes
meaningless if collecting the weakly supervised data in the prediction stage
becomes a hard and costly process. That is, this kind of approach is suitable
for problems which inherently/effortlessly provide partial class information at
prediction time. Once the community becomes conscious of the presence of
weak supervision in the prediction stage, other problems/applications which
can benefit from it are expected to be identified and novel proposals with
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alternative schemes of supervision models are presumed to fill gaps of the
state-of-the-art (Table 2.5).

Possible extensions of the proposed taxonomy. Standard supervised
classification has a clear definition of the information that a classifier must
return: the predicted categorization of the examples. However, some authors
have described problems where a different kind of information is expected.
This is the case of Ning and Karypis [132] who, in spite of dealing with a
problem with an underlying SIML relationship (Table 2.1), learns a classifier
which predicts a single label that is shared by a provided group of examples.
In other problems, the expected prediction consists of a subset, a ranking or
a probability distribution over all the possible class labels according to their
correspondence with the provided example [43, 73, 118]. Note that the kind
of information that a classifier is expected to return for each example has to
be known when the classifier is built and, from this point of view, it could
constitute an extra axis of the presented taxonomy.

Beyond the four instance-label relationships addressed in this paper (Ta-
ble 2.1), different frameworks have been proposed in the literature: problems
where there exists no absolute membership to any categorization for the ex-
amples (label ranking [16, 184] or label distribution [66, 187]), or problems
where the image of the target function cannot be represented just by a single
class variable (e.g., multi-dimensional framework [6, 133]). These frameworks
are known under the general names of structured output and/or multi-target
learning [179, 186]. It would be interesting to investigate if the taxonomy axis
that represents the instance-label relationship should take a wider definition
to cover these non-standard problems.

2.4 Weakly supervised problems in this dissertation

Throughout this dissertation, four different weakly supervised classification
frameworks are considered. Two of them are studied in-depth and explored in
Part II. Each of the four frameworks are used in Part III for modeling a real
application. In this section, all of them are formally described.

2.4.1 Learning from label proportions

Learning from label proportions (LLP) is a weakly supervised classification
framework that, sharing the description and objectives of the standard su-
pervised classification (Section 2.1.2), only differs in the supervision model
implemented in the learning stage. In this case, the N training examples are
individually unlabeled. The dataset (see a graphical description in Figure
2.1(a)) is divided in b bags D = B1∪B2∪ · · ·∪Bb, where Bi∩Bj = ∅, ∀i %= j.

A bag Bi = {xi1,xi2, . . . ,xiNi} groups Ni instances (
∑b

i=1 Ni = N) and
provides the only information of supervision in this paradigm: the Nic values
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(d) CrL

Fig. 2.1. Graphical description of the partially labeled training data that charac-
terizes the different weakly supervised frameworks explored in this dissertation.

or counts (
∑

c∈C Nic = Ni) which indicate the number of instances in Bi that
belong to class label c. Similarly, bag class information can be provided in
terms of proportions [136], pic = Nic/Ni ∈ [0, 1], with

∑

c∈C pic = 1.

2.4.2 Learning from positive and unlabeled examples

Positive-unlabeled (PU) learning is a weakly supervised classification frame-
work only defined for binary classification problems —i.e., the label space
comprises two labels (|C| = 2) which are commonly referred to as positive and
negative labels (C = {−,+}). Regarding the standard supervised classifica-
tion (Section 2.1.2), this framework only differs in the supervision model in
the learning stage. Just a subset of the examples of the training dataset D
is labeled; the rest of the instances are unlabeled. Specifically, all the labeled
instances have the same positive (main) class label. Thus, D = DP ∪ DU

where DP = {(x1,+), (x2,+), . . . , (xNP ,+)} is the subset of NP positive in-
stances and DU = {x1,x2, . . . ,xNU} is the subset of NU unlabeled instances
(with N = NP + NU ). Figure 2.1(a) shows a graphical description of the
representative PU dataset D.

2.4.3 Learning from positive and unlabeled proportions

The learning from positive and unlabeled proportions (PUP) framework is
a novel weakly supervised problem with a supervision model in the learning
stage halfway between the label proportions and positive-unlabeled supervi-
sion models. As the PU framework, it works over binary classification prob-
lems, C = {−,+}. Similar to LLP, the examples of the training dataset D
(Figure 2.1(c)) are provided grouped in b bags D = B1 ∪B2 ∪ · · ·∪Bb, where
Bi ∩Bj = ∅, ∀i %= j. Each bag Bi = {xi1,xi2, . . . ,xiNi} groups Ni examples
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and the associated Ni+ value (Ni+ ≤ Ni) indicates the minimum number of
positive examples in Bi. There are other (Ni−Ni+) examples in Bi which are
unlabeled: nothing is known about their class label. As a standard supervised
classification problem (Section 2.1.2), the objective is to learn a classifier that
infers the label of new unseen examples.

2.4.4 Learning from crowds

The learning from crowds (CrL) framework implements a weak supervision
model in training which, for each example, provides the labels annotated
by a set of subjective non-expert annotators. The information of supervi-
sion of each instance xi can be codified by a t-tuple li, where lia ∈ C indi-
cates the class label assessed by annotator Aa for xi. Therefore, the dataset
(see a graphical description in Figure 2.1(d)) is composed of N examples
D = {(x1, l1), (x2, l2), . . . , (xN , lN )}. As only the way in which the informa-
tion of supervision is collected and provided has changed, the objective and
other assumptions of standard supervised classification (Section 2.1.2) remain
the same.

Learning from crowds in MD domains. In this dissertation, the learning
from crowds paradigm is also explored in multi-dimensional domains. In this
case, the information of supervision of each instance xi can be codified by
a (t ×m)-matrix Li, where Li

ak indicates the label for the class variable Ck

assessed by annotator Aa for that instance xi. Therefore, the dataset of a
problem of multi-dimensional learning from crowds (MDCrL) is composed of
N examples as follows,D = {(x1,L1), (x2,L2), . . . , (xN ,LN )}. As the crowds
only affect the way in which the information of supervision is collected and
provided, the objective and other assumptions of standard MD classification
(Section 2.1.3) remain the same.
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Bayesian Networks

Bayesian network models [97, 131] are based on the sound and well-studied
theory of probabilistic graphical models [21, 105]. Apart from the induction of
classification functions, they have been used for probabilistic inference [107],
optimization [104] and in the field of bioinformatics [102].

Bayesian network classifiers [5] are a specific case of Bayesian network
models that have been regularly used as probabilistic classifiers. Depending
on the level of dependencies between the variables codified by the model,
they range from very simple classifiers, such as naive Bayes [76], to complete
structures that link every pair of variables. The outstanding interpretability of
Bayesian network models has motivated our choice as probabilistic classifiers
for this thesis. Influences and dependencies among variables can be induced
from the explicit probability relationships. The use of probabilistic classifiers
allows us to obtain the conditional probability distribution over the class labels
given an instance. This kind of information is essential in our methodological
developments (Part II) for learning from weakly supervised data, and in our
analyses of real applications (Part III) for supplying detailed class information
to the final users.

Firstly, different concepts used in the definition of probabilistic graphi-
cal models are presented. Then, probabilistic graphical models and Bayesian
networks are formally defined. State-of-the-art techniques for learning these
models with complete and missing data are exposed. Finally, Bayesian net-
work classifiers and, specifically, the different types of models considered in
this dissertation are described.

3.1 Basic concepts

Probabilistic graphical models rely on both probability and graph theory.
Some concepts of these areas need to be clarified before proceeding to intro-
duce the probabilistic graphical models and the Bayesian networks.
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A graph is a pair G = (X,R) where X = {X1, . . . , Xn} is a non-empty
finite set of nodes and R is a set of edges. An edge Rij , which represents a
link among the pair of nodes (Xi, Xj), is undirected if edge Rji also belongs
to R. Otherwise (Rji %∈ R), Rij is a directed edge or arc.

A directed graph is defined as a graph G = (X,R) where all the edges
Rij ∈ R are arcs. In this context, we say that Xi is a parent of Xj —and Xj

is a child of Xi— if Rij ∈ R is an arc in G. Moreover, a path is a sequence
of T arcs in R such that the destination node of any arc is the origin of

the following arc (given R(t)
ij and R(t+1)

kh , j = k and t ∈ {1, . . . , (T − 1)}).
Alternatively, a path can be defined as a sequence of (T +1) nodes such that
the t-th node is a parent of the (t+1)-th node in G, with t ∈ {1, . . . , T }. Given
a directed graph G, Xi is an ancestral node of Xj if there is a path from Xi

to Xj in G. Based on this concept, the ancestral set of nodes containing Y is
the set of nodes formed by Y ⊂ X and all the ancestral nodes of the elements
of Y in G = (X,R).

A directed graph G is acyclic (DAG) if no circular path —a path that
starts and ends in the same node— is found. An ancestral ordering of a DAG
G = (X,R) is a total ordering of the nodes in X such that, for all Rij ∈ R,
the order satisfies that Xi appears before Xj . The moral graph associated to
a DAG G is the undirected graph obtained by adding an arc between all the
pairs of nodes with a child in common in G and then transforming all the arcs
into undirected edges.

The concept of d-separation is fundamental for understanding the seman-
tic of the probabilistic graphical models based on DAGs. The intuitive def-
inition of this concept presented by Lauritzen [106] relies on the concept of
u-separation for undirected graphs.

Definition 1. Given an undirected graph G = (X,R) and three disjoint sub-
sets of nodes (U , Y and Z) of X, U u-separates Y and Z in G if every
path in G between a node belonging to Y and another belonging to Z contains
at least one node belonging to U .

X1

X4 X6

X3 X5

X2

(a) Original structure

X1

X4 X6

X3

X2

(b) Ancestral set of Q

X1

X4 X6

X3

X2

(c) Moral graph of (b)

Fig. 3.1. Graphical example of introduced concepts. X1 is a parent of X3. In red,
a path between X1 and X3. If U = {X3, X4}, Y = {X1} and Z = {X6} (with
Q = U ∪Y ∪Z), (b) shows the ancestral set of nodes of Q and (c) its moral graph.
U d-separates Y and Z as any path between Y and Z goes through U .
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Definition 2. Given a DAG G = (X,R) and three disjoint subsets of nodes
(U , Y and Z) of X, U d-separates Y and Z in G if U u-separates Y and
Z in the moral graph of the smallest ancestral set of nodes which contains Y ,
Z and U .

3.2 Probabilistic graphical models

A probabilistic graphical model (PGM) is a mathematical tool that allows us
to model a joint probability distribution over a set of random variables X =
{X1, . . . , Xn}. It is represented by a pair (G, θ) composed of a graph structure
G codifying the dependence relationships between the random variables and
a set of parameters θ. Although different types of graphs have been used to
represent the structure of probabilistic graphical models, we are interested in
probabilistic graphical models based on directed acyclic graphs (DAG-based
PGMs).

In probability theory, given three disjoint sets of random variables U ,
Y and Z, Y is conditionally independent of Z given U if and only if
p(y|z,u) = p(y|u), for any possible configuration u, y and z. In DAG-based
PGMs, conditional independence can be expressed in terms of the previously
introduced d-separation criterion:

Definition 3. Given a PGM (G, θ) with a DAG G = (X,R) and three dis-
joint subsets of variables (U , Y and Z) of X, Y is conditionally independent
of Z given U if U d-separates Y and Z in G.

Assuming that the set of variables X is ordered according to some an-
cestral ordering of the DAG G, the set of parents of a variable Xj (PAj) d-
separates Xj from any previous variable in the ancestral ordering, Xi (i < j).
That is, Xj is conditionally independent of any Xi (i < j) given its parents,
PAj . By means of this property, the joint probability distribution ofX, which
is usually expressed given the chain rule as:

p(x) = p(x1, . . . , xn) =
n
∏

j=1

p(xj |x1, . . . , xj−1) (3.1)

when codified by a DAG-based PGM, can be factorized as:

p(x) =
n
∏

j=1

p(xj |paj) (3.2)

The second component of a PGM, besides the graph structure, is a set of
parameters θ. Although, for the sake of simplicity, Equation 3.2 will be used
throughout this dissertation, its complete expression should be:

p(x|θ) =
n
∏

j=1

p(xj |paj , θ)
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X1

X4X3

X2
Xj dj PAj Dj

X1 3 ∅ -

X2 2 ∅ -

X3 2 (X1, X2) 6

X4 2 X2 2

Xj Model parameters

X1 θ1∅1 = p(x11), θ1∅2 = p(x12), θ1∅3 = p(x13)

X2 θ2∅1 = p(x21), θ2∅2 = p(x22)

X3 θ311 = p(x31|x11, x21), θ321 = p(x31|x11, x22), θ331 = p(x31|x12, x21),

θ341 = p(x31|x12, x22), θ351 = p(x31|x13, x21), θ361 = p(x31|x13, x22),

θ312 = p(x32|x11, x21), θ322 = p(x32|x11, x22), θ332 = p(x32|x12, x21),

θ342 = p(x32|x12, x22), θ352 = p(x32|x13, x21), θ362 = p(x32|x13, x22)

X4 θ411 = p(x41|x21), θ421 = p(x41|x22), θ412 = p(x42|x21), θ422 = p(x42|x22)

Fig. 3.2. Example of a Bayesian network model: structure, table of parents and
number of possible values, and model parameters. It models a joint probability
distribution which factorizes as p(x1, x2, x3, x4) = p(x1)·p(x2)·p(x3|x1, x2)·p(x4|x2).

3.3 Bayesian network models

Bayesian network models are DAG-based PGMs where all the random vari-
ables are discrete. Thus, a Bayesian network model consists of a DAG G and
a set of parameters θ. The consideration of DAGs allows the joint probability
distribution p(x) to factorize according to Eq. 3.2, which usually involves a
considerably reduced set of parameters, θ, with respect to that of the general
factorization (Eq. 3.1).

The set of parameters θ defines all the probability distributions p(xjl|pajk).
Each parameter θjkl = p(xjl|pajk) denotes the probability that variable Xj

takes its l-th possible value given that the parents PAj of Xj take their k-th
value. Each variable Xj has its own set of dj possible values. Accordingly, the
set of possible values of a random vector is the product of the set of possible
values of each random variable in it. In this way, the parents PAj of variable
Xj take Dj =

∏

i/Xi∈PAj
di different values.

3.3.1 Learning Bayesian network models from data

Both the graph of conditional (in)dependencies and the model parameters of
a Bayesian network model can be estimated from a set of examples of a do-
main of interest or can be provided by means of domain-expert knowledge.
The latter option, although it may be affordable in the case of simple models,
becomes impracticable as the size of the model (nodes, arcs and corresponding
parameters) grows: the induction of the structure gets more and more difficult
and the probabilities to consider get more complicated to understand and esti-
mate by means of expert knowledge. The former option, inferring a BN from a
set of previous examples of the problem, is usually a more feasible and, nowa-
days, more popular approach. Many different techniques have been proposed
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in the literature to learn Bayesian networks. Several thorough surveys, where
different proposals are collected and discussed, have been published [79, 131].

When only a dataset is provided, a method that learns Bayesian net-
work models usually implements two stages: the structural learning, where
the structure G of conditional (in)dependencies is inferred, and the parametric
learning, where all the model parameters needed to codify the joint probability
distribution θ are estimated.

Parametric learning estimates a particular set of parameters θ from the
provided data based on some criterion. Among the different techniques pro-
posed in the literature for parametric learning, the best known approaches
are the maximum likelihood (ML) and the maximum a posteriori (MAP) es-
timations.

ML, the estimation technique considered throughout this dissertation, se-
lects the set of parameters θ̂ (for a fixed graph structure G) that maximizes
the probability of observing the dataset D:

θ̂ = argmax
θ

p(D|G, θ) = argmax
θ

N
∏

i=1

p(xi|G, θ)

The parameters that maximize the likelihood function p(D|G, θ) can be
obtained by means of frequency counts [79]:

θ̂jkl =
Njkl

Njk

In practice, a smoothing technique is usually implemented to prevent as-
signing zero or one probabilities. In this dissertation, the Laplace estimator,
a classic additive smoothing technique, has been used. Therefore, the param-
eters θ̂ are calculated as:

θ̂jkl =
Njkl + 1

Njk + dj

When using a Bayesian approach for learning, an a priori distribution
over all the possible sets of parameters is used —particularly, the Dirichlet
distribution— and the estimation of the parameters is naturally carried out by
the MAP estimation: the set of parameters θ̂ that has the highest a posteriori
probability given the dataset D and a graph structure G:

θ̂ = argmax
θ

p(θ|G, D) ∝ argmax
θ

p(D|G, θ) · p(G, θ)

The set of parameters θ̂ that maximizes this expression can be calculated,
given the set of hyper-parametersα = (αjk1, . . . ,αjkdj ), which are the param-
eters of the a priori Dirichlet distribution that represents the prior knowledge
about the θ̂, by means of the following formula:
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θ̂jkl =
Njkl + αjkl

Njk + αjk

where Njkl is the number of examples in D where the variable Xj takes

its l-th value and PAj takes its k-th configuration, Njk =
∑dj

l=1 Njkl and

αjk =
∑dj

l=1 αjkl.
Note that the smoothed Laplace estimator can, in this way, be seen as a

MAP (or Bayesian) estimator with all the αjkl hyper-parameters equal to 1.

Structural learning infers from a set of examples D the graph of condi-
tional (in)dependencies of a Bayesian network model. Proposed techniques
can be roughly divided in two groups: algorithms that detect conditional
(in)dependencies and algorithms with a score+search approach.

On the one hand, (in)dependence detection based algorithms try to repre-
sent by means of a DAG a large percentage (all of them, if possible) of the de-
tected conditional (in)dependence relationships. Some methods are provided
a dataset D where independence tests are carried out to establish conditional
independencies. Others use a provided joint probability distribution where
the conditional independencies can be checked or, directly, a list of candidate
conditional independencies. In this first group, the most popular method is
probably the PC algorithm [172].

On the other hand, score+search algorithms tackle the problem of struc-
ture induction as an optimization problem. The search of the best structure
is an NP-hard problem [28]. Therefore, heuristic search methods are used to
obtain fitted structures in a reasonable time. Greedy search [32], genetic algo-
rithms [103], estimation of distribution algorithms [8], Markov Chain Monte
Carlo [129] and nature-inspired optimization [38] are a few examples of search
techniques which have been already used to infer the graph structure G.

A scoring function for graph structures usually guides the search process.
Different types of scoring function have been proposed. One of them is the
marginal likelihood (averaged probability of a dataset D given a structure G
over all the possible values of the parameters). This score, a.k.a. K2 score,
can be calculated in a closed form under certain assumptions [32]. The log-
likelihood (for a given structure G, the maximum likelihood estimation of
the parameters θ can be obtained and, subsequently, the log-likelihood of
D given G and θ) has also been considered. However, due to the fact that
it increases as the G structure gets more complex, a penalization term is
usually added. This penalization term usually consists of the product of the
network dimension (e.g., number of parameters) and a penalization function.
In this context, the Bayesian information criterion (BIC) is the most popular
score [154]. Scoring functions based on information theory have also been
proposed. The minimum description length criterion (MDL) [145] states that
the best structure to describe a dataset is that which minimizes the encoding
length of the data and the model. The resulting equation is similar to that of
the BIC metric, although it is obtained in a completely different way. Other



3.3 Bayesian network models 31

scores, such as entropy [84] or mutual information [31], have also been used
to guide the structural search of Bayesian network models.

3.3.2 Learning Bayesian networks in the presence of missing data

As previously explained, in the case of availability of a complete dataset, the
network structure of a Bayesian network model can be inferred using heuris-
tic methods and all the model parameters can be calculated with maximum
likelihood estimates by means of frequency counts. However, the presence of
missing data increases the complexity of the learning process.

In this dissertation, we are especially interested in methodologies that
learn both the parameters and structure of a Bayesian network from weakly
supervised data —i.e., from data that present missing values in the class
variable. In the general case, different techniques have been proposed in the
literature to learn BN models from incomplete data, most of them based on
local structural search. For instance, Ramoni and Sebastiani [139] proposed a
hill climbing method to build a DAG and applied Bound and Collapse [140]
to learn the parameters (the sufficient statistics are calculated by means of a
convex optimization process that uses upper and lower bounds of the statistics
as initialization). The proposal of Riggelsen [143] also uses a hill-climbing
strategy, and its main novelty is an imputation procedure based on the Markov
blanket of the variable with missing values to predict its value. In a different
approach, the iterative method proposed by Singh [166] creates, at each step,
t datasets by predicting the value of the missing data with the BN obtained in
the previous iteration. For each complete dataset, a BN is learnt, and then the
t BNs are merged. Other methods use different techniques to learn BN models
from incomplete data: evolutionary methods [129, 194], boostrap [50], MCMC
[129, 144], etc. There also exists extensive literature about learning BNs for
clustering considering the existence of a hidden variable which would reflect
the cluster/class membership (i.e., the class labels of the training examples
are missing) [135].

However, many of the aforementioned methods for learning in the pres-
ence of missing values [50, 166, 194] make use of the Structural Expectation-
Maximization strategy [57] (or of the basic Expectation-Maximization strat-
egy [45]). In this dissertation, this widely used and theoretically-founded strat-
egy has been implemented to learn Bayesian network models from weakly
supervised data.

The Expectation-Maximization (EM) strategy , proposed by Dempster
et al. [45], is an iterative procedure that can be used to obtain the maximum
likelihood parameters in the presence of missing data. It can also be used
to obtain the maximum a posteriori estimate or to fill up missing data. Each
iteration consists of two steps, expectation (E) and maximization (M). The E-
step estimates the missing data as the conditional expectation of the likelihood
given the current fit for the model parameters. In the M-step, the model
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parameters are re-estimated such that the likelihood is maximized given the
data completed in the E-step. Under fairly general conditions, the iterative
increment of the likelihood has been proved to converge to a stationary value.
Most of the times, a stationary value means local maximum since convergence
to a global maximum is not guaranteed, although in some rare cases it can be
trapped in a non-optimal point such as a saddle point [121].

Following the description of the EM strategy given by McLachlan and
Krishnan [121] for computing the maximum-likelihood estimate, if y is con-
sidered the observed data, x the completed data and θ the real vector of
model parameters (unknown), the two steps of the (t+ 1)-th iteration are:

E-step: Using the current estimate θ̂
(t)

of the parameters, calculate the con-
ditional expectation of the complete-data log likelihood, logL(θ|x), given
the observed data vector y:

Q(θ; θ̂
(t)
) = E

θ̂
(t){logL(θ|x) | y}

M-step: Choose θ̂
(t+1)

such that, for all θ ∈ Θ:

Q(θ̂
(t+1)

; θ̂
(t)
) ≥ Q(θ; θ̂

(t)
)

The Structural Expectation-Maximization (SEM) strategy , proposed
by Friedman [57], adds a structural learning stage to the classical paramet-
ric EM strategy for inferring the graph structure from data when it is not
provided. It incorporates an outer loop to the parametric-convergence loop of
the classical strategy, and iteratively improves an initially-proposed structure.
In this dissertation, this structural improvement uses a one-step local search
algorithm, searching for the structure that maximizes the complete-data min-
imal description length (MDL) score. If the local MDL-maximal structure is
the current one, the algorithm stops. Otherwise, it tries to find the best set of
model parameters for the new maximal structure as the first stage of a new
iteration of the structural outer loop.

The neighborhood for the local search is composed of all the structures
that can be obtained by removing, adding or reversing an arc. If a Bayesian
network model of constrained structure is used, a valid operator consists of
removing an arc from the original structure and adding another different arc
which fulfills the restrictions of the considered type of model. That is, it should
only consider those changes that produce a network structure of the same type
as the original structure.

3.4 Bayesian network classifiers

In this dissertation, we use Bayesian network models as probabilistic classi-
fiers. Although the number of different types of Bayesian network models that
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have been used in the literature for classification purposes is noteworthy [5],
we are only interested in a type of classifiers whose structure is specially de-
signed for the classification task.

As presented in Chapter 2, a supervised classification problem is described
by a set of n predictive variablesX = (X1, . . . , Xn) and a special variable, the
class variable C. A Bayesian network classifier is also represented by a pair
(G, θ) where θ is the set of parameters of the conditional probability functions
of each variable given its parents, and G = (V ,R) codifies the DAG among
the (n+1) random variables, V = (X1, . . . , Xn, C). A classification task aims
to infer the value c of the class variable given a case of the problem x and, to
this end, it could be assumed that the class variable depends on the predictive
variables (Eq. 2.1). However, the number of parameters of such a Bayesian
network would be exponential to the number of predictive variables, n, re-
quiring a costly learning process. If the Bayes theorem and the factorization
of Eq. 3.2 are applied:

p(c|x) =
p(x|c) · p(c)

p(x)
=

1

p(x)
· p(c) · p(x|c) ∝ p(c) ·

n
∏

j=1

p(xj |paj , c)

this expression where all the predictive variables are conditioned to the class
variable is obtained. In a classification task, the example x is given and,
therefore, p(x) is constant. As the objective is to find the class label c that
maximizes the conditional probability given the example, argmaxc p(c|x), the
term p(x) can be removed: The class label c that maximizes the resulting
expression, which is directly proportional (1/p(x) > 0) to p(c|x), is the same
as that which maximizes the conditional probability. Based on this reason-
ing, Bayesian network classifiers where the class variable is parent of all the
predictive variables (and not the other way around) have been shown to be
appropriate for classification. The general classification rule can be defined as:

ĉ = argmax
c

p(c) ·
n
∏

j=1

p(xj |paj, c)

where paj is the value of the set of predictive variables which are parents
of Xj in the DAG, apart from the class variable. Depending on the restric-
tions imposed on the sets of parents PAj , models of different complexity are
obtained. Specifically, naive Bayes (NB), tree augmented naive Bayes (TAN)
and K-dependence Bayesian network (KDB) classifiers are considered in this
dissertation (see Figure 3.3). Based on the assumption of conditional inde-
pendence between the predictive variables given the class variable, the naive
Bayes presents the simplest network structure. In spite of its simplicity, it has
achieved very competitive results in many domains [76]. TAN and KDB are
the next step forward in terms of network structure complexity: they allow
models to capture some conditional dependencies between predictive variables.
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(a) Naive Bayes
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(b) TAN
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(c) KDB (K = 2)

Fig. 3.3. Examples of the structure of naive Bayes, tree-augmented naive Bayes
and K-dependence Bayesian network classifiers.

3.4.1 Naive Bayes

The naive Bayes (NB) classifier [76] (a.k.a. simple Bayesian classifier, inde-
pendent Bayes or idiot Bayes) assumes conditional independence between the
predictive variables given the class variable. This assumption is reflected in
its representative simple and fixed graph structure (Figure 3.3(a)) and allows
the classifier to be defined as:

ĉ = argmax
c

p(c) ·
n
∏

j=1

p(xj |c)

Learning a naive Bayes classifier can be performed efficiently. The para-
metric learning only involves the learning of the probabilities p(c) and the
conditional probabilities p(xj |c). Moreover, structural learning is not neces-
sary since naive Bayes classifiers have a fixed structure. In this way, given a
complete dataset, the time complexity of the learning process of naive Bayes
classifiers is O(N · n).

3.4.2 Tree augmented naive Bayes

A tree augmented naive Bayes (TAN) is a Bayesian network classifier based
on naive Bayes that considers a weaker assumption of conditional indepen-
dence than that assumed in naive Bayes models. The structure keeps the
class variable as a parent of all the predictive variables, although additional
edges between predictive variables are allowed. That is, dependencies between
predictive variables can be captured. These dependencies between predictive
variables are incorporated encoded as a tree (see Figure 3.3(b)). In this way,
each predictive variable has, at most, two parents in the network structure:
the class variable and one (if any) predictive variable. In this case, the classi-
fication rule is defined as:

ĉ = argmax
c

p(c) ·
n
∏

j=1

p(xj |xi, c)
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where Xi is the predictive variable parent of Xj in the tree structure, if any.
Friedman et al. [58] proposed an algorithm to learn TAN structures from

complete datasets in polynomial time, O(N · n2). It is an adaptation of the
Chow-Liu algorithm [31] that uses the conditional mutual information be-
tween predictive variables given the class rather than the mutual information.
The algorithm creates a complete undirected graph with the edges weighted
according to the conditional mutual information between the linked variables
given the class. The Kruskal algorithm [98] is then used to obtain the maxi-
mum weighted spanning tree. Next, using a randomly chosen predictive vari-
able as the root, the edges of the obtained (undirected) tree are directed in
accordance. Finally, the class variable is included in the structure and arcs
from it to all the predictive variables are included in the DAG. Accordingly,
as new arcs are included in the DAG, the number of parameters which have
to be estimated during the parametric learning step increases: the enlarged
set of conditional probabilities p(xj |xi, c), apart from p(c).

3.4.3 K-dependence Bayesian classifiers

Regarding TAN, a K-dependence Bayesian classifier (KDB) is a step forward
in the level of dependencies considered between predictive variables. The KDB
structure is also based on that of the naive Bayes classifier, but allowing
each predictive variable to have, at most, K predictive variables as parents
(besides the class variable). Following this definition, the TAN classifier can
be considered a 1-dependence Bayesian classifier (1DB), and the naive Bayes
classifier, a 0DB; therefore, KDB can be seen as a generalization of both
classifiers. The classifier can be defined as:

ĉ = argmax
c

p(c) ·
n
∏

j=1

p(xj |paj, c)

where PAj is, at most, a set of K predictive variable parents of Xj (0 ≤
|PAj | ≤ K).

Due to the fact that learning unrestricted Bayesian network models is NP-
hard, Sahami [152] proposed a greedy algorithm that learns KDB structures
from complete datasets in time O(N ·n2·|C|·d2max), where dmax is the maximum
number of values that a predictive variable may take. The algorithm first
calculates the mutual information of each predictive variable with respect to
the class and the conditional mutual information of all the pairs of predictive
variables given the class. Iteratively, it selects the variable with the largest
mutual information with respect to the class which has not yet been chosen.
It selects the K previously chosen variables with largest conditional mutual
information with the current variable given the class. If the set of already
considered variables is smaller than K, it uses all the variables of this set.
Then, K + 1 arcs (at most) are included in the DAG pointing to the current
variable: one from each chosen variable and another from the class variable.
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X3X2X1 X4
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Fig. 3.4. MBC structure considered in Chapter 5.

This process is repeated until all the variables are connected in the DAG.
Regarding the parametric learning, the set of parameters to be estimated
for this kind of classifiers includes p(c) and the enlarged set of conditional
probabilities p(xj |paj , c).

3.4.4 Multi-dimensional Bayesian network classifiers

Multi-dimensional Bayesian network classifiers [6] (MBCs) generalize the stan-
dard Bayesian network classifiers to classification problems with more than
one class variable (see definition in Section 2.1.3). As any Bayesian net-
work, it is represented by a pair (G, θ). However, the graph structure of a
MBC, G = (V ,R), codifies the arcs R (conditional dependencies) between
nodes V = (X1, . . . , Xn, C1, . . . , Cm) (random variables) which, in this case,
comprise n predictive variables X = (X1, . . . , Xn) and m class variables
C = (C1, . . . , Cm). The set of arcs R is usually partitioned into three subsets:
RC , which collects the arcs exclusively between the class variables;RX , which
collects the arcs between the predictive variables; andRXC , which collects the
arcs from the class variables to the predictive variables. The MBC definition
incorporates the restriction that arcs from the predictive to the class variables
are not allowed in RXC .

Different types of MBCs have been proposed in the literature [6, 39,
148, 182]: multi-dimensional naive Bayes (MDnB), tree-augmented (MD-
TAN), polytree-augmented (MDPoly) or J/K dependences Bayesian classi-
fier (MDJ/K). In this dissertation, we have used a basic MBC structure (Fig.
3.4): a tree between the class variables and each predictive variable having all
the class variables as parents. The classification rule of this kind of MBC is
defined as:

ĉ = argmax
c

p(c) ·
n
∏

j=1

p(xj |c)

where c is a joint class label assignment to all the class variables and p(c) =
p(cr) ·

∏

k &=r p(ck|cl) is decomposed according to the tree structure (being Cr

the root class variable and Cl the class variable parent of Ck).
The MBCs selected for this dissertation provide a fixed structure which

does not need to be learnt —it consists of m fixed NB structures and a tree



3.4 Bayesian network classifiers 37

among class variables which, in practice, has been fixed. As the number of pa-
rameters resulting from the referred structure strongly depends on the number
of class variables (m), the corresponding parametric learning process would
become unfeasible in a MD problem with many classes. Without this draw-
back, several methods to learn from data completely labeled MBC structures
which involve a restrained number of parameters have been proposed in the
related literature [6, 148]. However, this kind of MBCs (Fig. 3.4) has only been
considered in a controlled experimental setting (Section 5.5) where we have
used a reduced number of class variables. Avoiding the structural learning
step is, for the referred study, an interesting property which facilitates the in-
terpretability of the obtained results. Thus, the learning process is reduced to
parametric learning of a set of parameters which is composed of p(cr), p(ck|cl)
and p(xj |c).
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Learning from label proportions

In the first part of this thesis we have described the field of weakly super-
vised classification. A problem of this field, where the information of super-
vision cannot be completely collected, is the learning from label proportions
framework. In this problem, formally introduced in Section 2.4.1, the pro-
vided training dataset is composed of unlabeled instances and is divided into
disjoint groups. General class information is given within the groups: the pro-
portion of instances of the group that belong to each class. Among the many
different real applications described in the literature for this framework, the
assisted reproductive technologies —posteriorly in this dissertation we pro-
pose a solution for dealing with this real application— and the election votes
problems —personal votes are collected in polling stations, all the votes are
aggregated in each polling station and only the global figures are published—
stand out. To deal with the exposed problem, we propose a method based
on the Structural EM strategy (Section 3.3.2) that learns Bayesian network
classifiers (Section 3.4). Four versions of our proposal are evaluated on syn-
thetic data and compared with state-of-the-art approaches on real datasets
from public repositories. The results obtained show a competitive behavior
for the proposed algorithm.

4.1 Introduction

In classical supervised classification, the objective is to build a predictive
model from a dataset of labeled instances such that, given a new unlabeled
example, the model will assign it to one of the already-known class labels.
In the most common situation, each instance in the dataset consists of the
description of the example and its associated class label [77]. Moreover, other
problems where obtaining labeled examples is difficult (semi-supervision) have
received considerable attention in the literature [23]. However, in recent years
new problems in which the available class-membership information of the pro-
vided examples (a.k.a. information of supervision) does not consist of the typ-
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ical class value for each (labeled) instance have been proposed. Thus, standard
learning strategies, which have been developed for learning from supervised
or semi-supervised domains, can not be straightforwardly applied. Therefore,
new specific strategies (or adaptations of classical strategies) that learn from
the new kinds of non-fully labeled datasets are necessary. The specific tech-
niques, in order to be efficient, are expected to extract as much knowledge as
possible from the available information of supervision.

In this dissertation, we deal with problems in which the relation between
an instance and its associated class label is lost. This may be due to the
black-box nature of the problem, privacy preserving, non-monitoring process,
etc. In this framework, the unlabeled instances are grouped and only global
class information is available for the instances of each group: the label pro-
portions. A particular application of this general framework is the problem
of embryo selection in assisted reproductive technologies (ART) [126]. In the
most critical step of an ART cycle, gynecologists have to select the embryos to
be transferred to the uterus of the woman among a set of embryos that have
been cultured for several days (in Spain, by law, 3 embryos at most can be
transferred in an ART cycle). During the culture period, some relevant fea-
tures are observed and collected for each individual embryo. Then, after the
transference, doctors can observe, using preclinical imaging techniques, the
number of those transferred embryos that are implanted (and induce a preg-
nancy), but it is not possible to know which individual embryo is implanted.
Thus, in a dataset for this problem, each instance represents a transferred
embryo and each group includes the embryos transferred in the ART cycle
that it represents. The class label, which should indicate whether or not the
specific transferred embryo became implanted or not, is individually unknown
for the instances of the dataset. However, some kind of information of supervi-
sion is available for each group of instances: the number of positive instances
(implanted embryos) in the corresponding ART cycle.

Another real case that involves the same kind of data is that of election
votes, where some parties stand for institutions and, in each polling station,
each party gets a known number of votes. The global election results are
known, but which party each citizen voted for is unknown. By knowing the
population census and some socioeconomic data of the voters, it could be
possible to estimate the probability of a citizen voting for a party [99]. More
real instances of the problem include the analysis of single particle mass spec-
trometry data [128], e-commerce [136], spam and image filtering [136], fraud
detection [150], etc.

The presented problem relates to the multiple-instance learning problem
since, in both cases, the training dataset is divided into disjoint groups of
instances. Multiple-instance learning (MIL) [47] is a supervised classification
problem where an example is represented by a group of instances and there is
a global label per group (or example). In MIL, the objective is to learn from
and classify groups of instances. However, the problem we are dealing with
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considers class label assignments to the individual instances, despite being
unknown in training time.

There exist in the literature several methods to deal with the learning
from label proportions (LLP) problem. The first time that a method was
proposed to learn from this kind of data was in [99], where Kück and Freitas
present a MCMC strategy. But it was Musicant et al. [128] who gave the first
definition of the LLP problem, which they called aggregated outputs. They
use the counts of labels (instead of proportions) as general class information
per group. In their paper, basic adaptations of KNN, ANN, SVM and Decision
Trees are proposed.

Simultaneously, Quadrianto et al. [136] gave an alternative definition based
on label proportions. Their method, called MeanMap, models the conditional
class probability using conditional exponential models. Although their method
is primarily defined to deal with problems where the label proportions of
the test set are known, it incorporates a functionality that estimates these
proportions when they are not given. Following a similar definition of the
problem but without requiring label proportions of the test set, Rueping [150]
proposes an algorithm to learn SVMs for this problem.

Other authors implement a different strategy to learn from LLP datasets.
Their contributions consist of a procedure that firstly reduces the uncertainty
of the data provided, estimating the class label of each unlabeled instance.
This generates a complete dataset which can be used to train a classifier
using any classical method for supervised data. In this way, Chen et al. [27]
proposed a method based on kernel K-means for solving this problem of label
assignment. Later, Stolpe and Morik [174] presented a similar method which
solves this problem using an evolutionary strategy that looks for the predictive
variable weights that lead to the clustering (K-means) that best fits the label
proportions.

The main contributions of this chapter are as follows:

• The development of an algorithm based on the Structural Expectation-
Maximization (SEM) strategy [57] to learn Bayesian network classifiers
for the LLP problem.

• The development of several variants of the method, two of which have
been specifically designed to deal with (complex) LLP scenarios with high
degree of uncertainty in the class label of the individual instances.

• The use of joint label assignments, i.e., only the label assignments which
fulfill the label proportions of the groups are considered.

• The proposal of a new framework for testing LLP methods, which covers
the whole spectrum of LLP scenarios in terms of complexity for a given
dataset.

The Bayesian network classifiers that our SEM method learns show a good
performance behavior through different LLP scenarios of increasing class un-
certainty. Moreover, it obtains competitive results with respect to state-of-
the-art methods.
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The rest of the chapter is organized as follows. In the next section, the
class uncertainty in the LLP problem is explored. Then, four versions of a
new algorithm based on the Structural EM strategy which learns Bayesian
network classifiers in the LLP framework are proposed. Later, the experi-
ments are presented in four subsections: an experimental demonstration of
the usefulness of the extra class information provided in the LLP problems
using the semi-supervised learning approach as a baseline-performance refer-
ence, an evaluation of the approximate reasoning of our method by means of
local probabilistic label assignments, an analysis on synthetic data that eval-
uates the efficacy of our proposals in different experimental conditions, and
a comparison with state-of-the-art approaches. Finally, some conclusions and
future work are presented.

4.2 The problem of learning from label proportions

In a problem of learning from label proportions (LLP), the examples are
grouped in bags —or disjoint sets of examples— where each instance has
been separated from its label. For some reason, the individual pairing relation
(instance, label) is lost and, therefore, each bag provides two separate equal-
sized unpaired groups: the group of instances and the group of labels. The
group of labels can be presented as the proportion of instances that belong
to each class label. Note that these label proportions do not indicate a belief
(probability) in the number of instances that belong to each class but the
real exact number. Formally defined in Section 2.4.1, the weak supervision
model in the learning stage, which is responsible of the presence of groups of
instances in its characteristic training dataset, is the only difference in this
problem regarding the standard supervised classification.

4.2.1 Uncertainty associated to the label proportions

The difficulty of pairing each instance with its class label could be thought
as a basic definition of uncertainty associated to the label proportions. Thus,
assuming that each bag has its own label proportions and, therefore, involves
its particular uncertainty, it is possible to distinguish between two kinds of
bags. On the one hand, if all the instances in bag Bi belong to the same class
(∃c ∈ C : Nic = Ni), there is class certainty and the individual instances
may be considered labeled. This kind of bag is called full bag. Following the
example of the embryo selection in ART, a bag is full if the corresponding ART
cycle finished with either all the embryos implanted or no embryo implanted.
However, bags usually have instances that belong to different classes (∀c ∈ C :
Nic < Ni). In this case, the class label of an individual instance is unknown
(class uncertainty), although the instances in Bi are known to belong to one of
the class labels specified in the label proportions of Bi. This kind of bags are
known as non-full bags. Following the previous example, this case is observed
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when some of the transferred embryos (but not all of them) became implanted.
It is important to note that the uncertainty in a non-full bagBi is higher when
the labels are well-distributed (balanced), i.e., the difference among counts
Nic, for all c ∈ C, is minimized.

The combined uncertainty of the bags that configure a LLP dataset of in-
terest determines the complexity of learning in that scenario. In this way, the
least complex LLP scenario has a dataset exclusively composed of full bags,
which is the configuration of minimal uncertainty. As mentioned before, the
instances of a full bag may be considered labeled instances, so the least com-
plex LLP scenario is as complex as the same problem in a classical supervised
scenario. On the contrary, the dataset of the most complex LLP scenario is
only composed of non-full bags, all of them with the label proportions match-
ing the proportions of the class labels in the whole dataset. Note that this
is not in contradiction with the previous paragraph, where the bag with bal-
anced label proportions is considered the most uncertain bag. Consider a LLP
problem where the proportions of the class labels in the whole dataset are not
balanced. The presence of bags with balanced label proportions (the most
uncertain bag) in the scenario necessarily implies the presence of other bags
with the label proportions even more unbalanced than the label proportions
of the whole dataset (a less uncertain bag). Therefore, as the low uncertainty
unbalanced bags compensate the high uncertainty of the balanced bags, this
bag configuration may not represent the most complex scenario. In addition
to the distribution of labels, the uncertainty is also determined by the bag
size (Ni), as the proportion of instances with uncertain labels in the whole
dataset indirectly depends on this value.

4.3 Learning Bayesian network classifiers for the LLP
problem

Two basic solutions to the LLP problem would be to set the expected counts
for each instance of the dataset with the label proportions of the whole dataset
or with the label proportions of the corresponding bag. However, both are
suboptimal solutions, quickly overcome by applying some of the classical tech-
niques that deal with datasets that have missing data, such as the SEM strat-
egy. As explained in Section 3.3.2, the Structural EM strategy provides a
suitable framework to learn, in the presence of missing data [57], the prob-
abilistic classifiers used in this dissertation, the Bayesian network classifiers
(Section 3.4). It extends the classical two-steps strategy (Expectation and
Maximization steps for parametric learning) to alternate the phases of network
structure estimation and parametric learning. Although this general strategy
can be used to learn in the presence of missing data, it is not designed to
deal with the additional information provided by the label proportions, which
could be used to improve the learning process. We propose a method based
on the Structural EM strategy that exploits the extra information of the bag
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Algorithm 1 Pseudo-code of the Structural EM strategy.
1: procedure StructuralEM(D,maxItP,maxItS, ε)
2: D̂ ← initializeData(D)
3: G(0) ← structuralLearning(D̂)
4: i = 0
5: repeat

6: θ(0) ← parametricLearning(D̂,G(i))
7: j = 0
8: repeat

9: D̂ ← completeData(D, θ(j),G(i))
10: θ(j+1) ← parametricLearning(D̂,G(i))
11: j = j + 1
12: until (diff(θ(j), θ(j−1)) < ε) Or (j = maxItP )
13: D̂ ← completeData(D, θ(j),G(i))
14: G(i+1) ← findMaxNeighborStructure(D̂,G(i))
15: i = i+ 1
16: until (G(i) = G(i−1)) Or (i = maxItS)
17: return (G(i),θ(j))
18: end procedure

label proportions during the learning process in order to obtain more accurate
Bayesian network classifiers. The pseudo-code of Algorithm 1 illustrates the
mechanics of the Structural EM strategy implemented by our LLP method.

In order to build an initial model, the method first learns the whole net-
work structure from a complete dataset that previously has been obtained in
the data-initialization step (line 2 in Algorithm 1). This first structure is learnt
by means of the specific methods presented in Section 3.4 for each type of clas-
sifier; the method of Friedman et al. [58] for TAN classifiers, and the method
of Sahami [152] for KDB classifiers (line 3 in Algorithm 1). Later, this original
structure will be iteratively improved (line 14 in Algorithm 1) using a one-step
local search method. The neighborhood for the local search is composed of all
the structures that can be obtained by removing one edge from the original
structure and adding another different edge which keeps the conditional inde-
pendence assumptions of the given type of classifier. That is, it only considers
those changes that produce a network structure of the same type as the orig-
inal structure. For example, the neighborhood of a TAN classifier groups all
the tree augmented naive Bayes structures that can be obtained by remov-
ing one conditional dependence between two predictive variables and adding
another dependency between a different pair of predictive variables. The best
step is calculated according to the last version of the complete dataset (line
13 in Algorithm 1).

The initial model is completed with the parametric learning step (line 6
in Algorithm 1), which performs a classical maximum-likelihood learning of
the model parameters given the current structure. Using the same procedure,
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the model parameters are re-estimated (line 10 in Algorithm 1) for each new
completion of the dataset (line 9 in Algorithm 1).

There are two procedures in the Structural EM strategy that are suscep-
tible to using the information provided by the label proportions and both
involve filling up the missing data. On the one hand, the data-initialization
procedure where the original dataset is completed according to some heuristic
criteria that fulfills the label proportions (line 2 in Algorithm 1). On the other
hand, the data-completion procedure (lines 9 and 13 in Algorithm 1), which
takes into account the prediction given by the current fit of the model in order
to complete the dataset fulfilling the label proportions.

The most important application of the information given by the label pro-
portions is its use in the reduction of the number of possible assignments of
labels to the instances of non-full bags (unlabeled instances). Given a group
of Ni unlabeled instances with a class variable that takes its value from a set
C, the number of possible assignments in this scenario without any further
label information is |C|Ni, because all the possible assignments are considered
(each instance with each possible class label in C). But, if this group of in-
stances forms a bag Bi with its corresponding label counts {Nic}c∈C (or label
proportions, note that pic = Nic/Ni, ∀c ∈ C), which indicate that there are
Nic instances that belong to class c in Bi, the number of possible assignments
will be reduced to:

si =

(

Ni

Ni1 . . . Nic

)

=
Ni!

∏

c∈C Nic!
(4.1)

because not all the label assignments are possible. In this situation, the as-
signment of a label to an instance in Bi affects other assignments in the same
bag, i.e., the assignment of xj ∈ Bi to class c affects the probability that any
of the other instances in Bi belongs to each possible class label. For this rea-
son, the individual assignments of labels can not be considered independently
in a LLP scenario; joint assignments of labels to all the instances of a bag
should be considered. A joint assignment is represented as a completion of la-
bels, e = (e1, e2, . . . , eNi), where each ej takes its value from C and represents
the class value that is assigned to the j-th instance of Bi. According to the
previous reasoning, only those completions that fulfill the label proportions
of the corresponding bag are allowed:

pic =
1

Ni

Ni
∑

j=1

I[ej = c], ∀c ∈ C

where I[condition] returns 1 if condition is true and 0 otherwise. The com-
pletions that fulfill this condition are known as consistent completions. Each
bag Bi has its own set Zi of consistent completions of size si.

In the same way, a probabilistic completion E assigns instance xj to class
label c with probability Ejc, where

∑

c∈C Ejc = 1 and Ejc ≥ 0, ∀xj ∈ Bi

and ∀c ∈ C. Specifically, a probabilistic consistent completion of a bag Bi is
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a probabilistic joint assignment that fulfills, on average, the label proportions
of Bi:

pic =
1

Ni

Ni
∑

j=1

Ejc, ∀c ∈ C

Since it is impossible to consider individual label assignments to the in-
stances in a non-full bag of a LLP problem, the probability of assigning a
label c to an instance xj cannot be independently calculated. It should be
calculated by means of the probability of the joint assignment of labels to
all the instances of the bag. As instances are considered to be independently
generated, the joint probability is calculated as the product of the conditional
probabilities of each class label given the corresponding instance, using the
current model. In this way, for a non-full bag Bi, the joint probability of a
consistent completion, e, is:

p(e|Bi) =
Ni
∏

j=1

p(C = ej |X1 = xj
1, . . . , Xn = xj

n) (4.2)

As previously mentioned, the information of the label proportions has been
incorporated to our method in the data-initialization (line 2 in Algorithm
1) and data-completion (lines 9 and 13 in Algorithm 1) procedures. Both
procedures build consistent completions to complete the missing data of the
original dataset: the class label of instances in non-full bags. In the data-
completion procedure, where there exists a current fit of the model that can
be used to fill up the dataset in a more reliable way, we propose three different
approaches to build the consistent completions using this model. Note that
the techniques explained are applied individually to each bag of the dataset.

PEM is a probabilistic version that, in order to fill up the class variable of
the instances in a non-full bag Bi, calculates the probability of these instances
belonging to each possible class. These calculations use the concept of joint
probability (Equation 4.2) and consider all the consistent completions in order
to build the probabilistic consistent completion (E) that fills up the missing
data. Given an instance xj in Bi, the probability of belonging to class c (Ejc)
is calculated by adding up the joint probability of the consistent completions
that assign instance xj to the class label c and, then, normalizing it with
respect to all possible class labels:

Ejc =

∑

e∈Zi|ej=c p(e|Bi)
∑

e∈Zi
p(e|Bi)

(4.3)

In the initialization of this version, the dataset is completed with the proba-
bilistic completion E that assigns the instances in Bi to each class label with
probability equal to the label proportions of the bag:

Ejc = pic, ∀x
j ∈ Bi ∧ ∀c ∈ C
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NPEM is a non-probabilistic version. In the initialization procedure,
the instances of each bag Bi are assigned to the class label that indicates a
randomly-chosen consistent completion e of Bi. In the data-completion pro-
cedure, this version considers all the consistent completions and selects the
one with the highest joint probability. Then, according to the selected con-
sistent completion, each instance in the bag is assigned to the corresponding
label.

The two versions presented, PEM and NPEM, need to go through all
the consistent completions in order to calculate the (probabilistic) consistent
completion that fills up the original dataset, which determines the complexity
of the methods. In this way, in the E-step of both versions PEM and NPEM,
estimating the consistent completion of a non-full bag of Ni instances has a
time complexity:

Ni · ((|C|− 1) · T (M) + (|C|− 1)) +Ni · si

where si is the number of consistent completions (Eq. 4.1) and T (M) is the
time complexity required by the current fit of the model M to calculate the
conditional probability pM(c|x) (it is calculated for |C| − 1 labels as the last
one can be calculated by summing up the others). This is computationally
expensive and becomes unfeasible when the uncertainty of the LLP scenario
grows, which in LLP implies a large number of consistent completions per bag.
We propose a third version to deal with high complexity scenarios, i.e., LLP
scenarios where bags are large and/or their label proportions are balanced.

MCEM also carries out a probabilistic completion. While it is initial-
ized as the PEM version, it uses a Markov Chain Monte Carlo (MCMC)
procedure to obtain an approximate probabilistic completion in the data-
completion stage [121]. MCMC [67, 13] is an iterative procedure that uses
Markov chains to approximate a probability distribution f of interest and the
Monte Carlo strategy to approximate expectations from samples X(t) drawn
from the Markov chain, E(f(X); s) ≈ 1

s

∑s
t=1 f(X

(t)). If the Markov chain
fulfills irreducibility and aperiodicity conditions, as samples are drawn from
a finite number of possible states, the sequence converges to a stationary dis-
tribution that simulates the probability distribution of interest.

Since the samples drawn previous to the chain convergence stay dependent
on the initial state, MCMC implements a burn-in stage in which these samples
are not considered to calculate the expectations [13]. It is usually the end-user
who determines the number of discarded samples according to their estimation
of the time needed for the chain to converge. In this way, the MCMC procedure
requires two parameters: the number of samples for the burn-in stage (bi), and
the number of samples that are actually used to approximate the expectation
(s).

Specifically, our approach implements a rejection MCMC procedure [67].
Rejection means that, during the sampling process, a new sample can be
rejected if its probability is lower than the probability of the previous sample.
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Algorithm 2 Pseudo-code of the MCMC process implemented in MCEM.
1: procedure MCMC(bi, s, {Nic}c∈C)
2: for t = 1→ (bi+ s) do
3: ê ∼ nextConsistentCompletion(e(t), {Nic}c∈C)
4: u ∼ U(0, 1)
5: if u ≤ α(e(t), ê) then
6: e(t+1) ← ê

7: else

8: e(t+1) ← e(t)

9: end if

10: end for

11: return Ejc = 1
s

∑bi+s
t=bi+1 I[e

(t)
j = c], (j ∈ {1, . . . , Ni}) ∧ (c ∈ C)

12: end procedure

When this happens, the place of the rejected sample is filled in by a copy of
the previous sample. Then, given the current state X(t), the probability that
a state X̂ becomes the new sample X(t+1) in the Markov chain, p(X̂|X(t)),
is:

p(X̂|X(t)) =











0 X̂ %∈ S(X(t))

α(X(t), X̂)

|S(X(t))|
X̂ ∈ S(X(t))

where S(X(t)) is the set of all the possible next states of X(t) in the Markov
chain, and α(·, ·) represents the probability of non-rejection. This is defined
as:

α(X,Y ) = min(1, pM(Y )/pM(X))

where X and Y are possible states of the Markov chain, and pM(·) is the
probability of a state given the current fit of the model M.

In this method, the MCMC process performs as shown in Algorithm 2
for each non-full bag Bi. The parameters bi and s are the number of samples
drawn for burn-in and to calculate the expectation, respectively. Each Markov
chain state (or sample, X̂) represents a consistent completion e of Bi. In this
Markov chain, the next state e(t+1) (abusing the notation, we use e(t) to
denote the consistent completion e ∈ Zi sampled at step t, X(t) = e) could
be any state with a consistent completion that has swapped two assignments
of different labels from e(t). The number of possible next states for any state
e(t) is:

|S(e(t))| =
∑

c,c′∈C|c &=c′

Nic ·Nic′

It can be easily demonstrated that the implemented Markov chain ful-
fills the aperiodicity and irreducibility conditions, and that in the limit, the
stationary distribution is our probability distribution pM(·) of interest.
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Fig. 4.1. Average computational time needed by the four versions of the proposed
algorithm to learn TAN classifiers over 30 datasets (sampled from TAN models, with
31 binary variables —including the class variable— and 1000 examples). The bag
size (Ni) is varied to simulate different experimental conditions. All the tests have
been performed with an Intel Core i5 (2,3 GHz) with 4GB of main memory.

In practice, the next state is composed in such way that two randomly cho-
sen instances assigned to different classes in e(t) just swap their class labels
(nextConsistentCompletion(·, ·) in Algorithm 2). Moreover, in our approach
the probability pM(·) is the joint probability of the consistent completion of
the given state using the current fit M of the Bayesian network model (Equa-
tion 4.2). The MCMC process approximates the probability of each instance
in Bi belonging to each class and uses these probabilities to compose the
probabilistic completion, E, which is then used to complete the data. The
probability of assigning an instance xj to a class c is approximated as the
proportion of samples of the chain in which the referred instance belongs to
class c:

Ejc =
1

s

bi+s
∑

t=bi+1

I[e(t)j = c], ∀xj ∈ Bi ∧ ∀c ∈ C (4.4)

Therefore, the time complexity of this version MCEM is independent of
the uncertainty that involves the specific LLP scenario. In this case, the time
required to compute the approximate probabilistic completion of a non-full
bag is constant in the number of samples (bi for burn-in and s for calculating
expectations):

Ni · ((|C|− 1) · T (M) + (|C|− 1)) +Ni · (bi+ s)

The behavior that motivated us to build this third version of the method is
shown in Fig. 4.1. It represents the computational time spent by the method
to learn tree-augmented naive Bayes (TAN) classifiers using the different data-
completion approaches. The computational time that MCEM needs to learn
a classifier is almost constant when the dataset is aggregated with different
bag sizes (Ni). However, the other two previously presented methods become
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unfeasible as Ni grows. A similar figure is obtained if other Bayesian network
classifiers are learnt, but in different time-scales according to their learning
complexities (TAN [58] or 2DB [152]). These complementary figures can be
seen in the webpage associated with this study1.

The application of the MCMC procedure to all the bags carried out by this
third version of the method can produce a senseless situation. As shown in Fig.
4.1, in the least complex LLP scenarios our MCEM method spends twice or
even three times the computational time required by the exhaustive versions
(PEM and NPEM) to perform the exact calculations that MCEM tries to
approximate. This matter is addressed in a fourth version of the method:

PMEM is a hybrid of both probabilistic versions previously presented.
The ideas behind PEM, which calculates the exact probability of each class
label for the instances of a bag taking into account the label proportions, and
MCEM, which approximates these probabilities through a MCMC procedure,
are combined in this last version. By default, PMEM builds up a probabilis-
tic completion calculating the probability of an instance belonging to each
class label as PEM does (Eq. 4.3). If the number of consistent completions
of a specific bag is unfeasible to this exhaustive approach (see Fig. 4.1), an
approximate probabilistic completion is built up by means of the MCMC
procedure (MCEM, Eq. 4.4). The decision threshold, which could be an inter-
esting topic for future research, is based on the MCMC-specific parameters.
Thus, if the number of consistent completions of a particular bag is larger
than the summation of bi (number of samples for burn-in) and s (number of
samples for calculating the expectation), the approximate MCEM version is
applied. Otherwise, it makes use of PEM.

The immediate benefit of this approach can be observed in Fig. 4.1. In
general, it is the best proposal in terms of computational time: in scenarios of
low uncertainty, it behaves similarly to PEM and in more complex scenarios
it overcomes MCEM since the probabilistic completion of some particularly
unbalanced bags (the label proportions indicate that a specific class label is
under- or over-represented in that bag) is addressed with the exact procedure
of PEM. According to this description, the time complexity of this last version
for computing the probabilistic consistent completion of a non-full bag is:

Ni · ((|C|− 1) · T (M) + (|C|− 1)) +Ni ·min{si, (bi+ s)}

4.4 Experiments

We have designed a set of experiments with four main objectives: (1) to test
the benefit of using the information provided by the label proportions dur-
ing the learning process, (2) to analyze the precision of the approximations

1 http://www.sc.ehu.es/ccwbayes/members/jeronimo/LLP/
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performed by our MCMC procedure, (3) to evaluate our proposals when deal-
ing with different experimental conditions and (4) to compare it with other
state-of-the-art methods in LLP.

The most common real applications of LLP involve private data, which
reduces the public availability of real LLP datasets. For this reason, it is
common in the related literature to use synthetic [99] or classical supervised
datasets [128, 136], and transform them into LLP domains in order to validate
the proposed algorithms. In these experiments, we use both kinds of data.

The proposed methods have been implemented using a publicly available
Java language data mining library2 developed by our research group. In the
webpage associated with this study we release an easy-to-use executable code
of our proposal.

Simulating LLP datasets. A classical labeled dataset can be transformed
into a LLP dataset by building (or aggregating) bags with labeled instances.
Aggregation is the process in which, somehow, the instances of a dataset are
grouped in bags and, for each bag, the class labels are separated from their
instances and used to calculate the label proportions.

In our preliminary study [80], in order to control the complexity of an
aggregated LLP dataset, we proposed a method for aggregation that allows
to control the uncertainty in the bags of an aggregated dataset. Based on
the method proposed by Musicant et al. [128], we use the mean label entropy
(MLH) to measure the uncertainty of a LLP dataset. MLH calculates the
entropy of the label distribution (given by the label proportions) that the
bags of the dataset have on average.

The method aggregates bags in a dataset such that the MLH value of
the dataset reaches a desired value. First, the instances of the original labeled
dataset are ordered according to their class label, where the instances with the
same label appear consecutively. The minimum MLH value is obtained when
bags are aggregated with contiguous instances over this ordered dataset. Based
on this, by swapping two instances that have different labels and are located
in different bags, the MLH value is modified. Then, a simple way to configure
a dataset with a specific level of entropy is to swap instances until the desired
MLH level is reached. In order to make this more comprehensible, MLH is
mapped into the interval [0, 1] dividing it by the maximum MLH value of the
domain. A LLP dataset is considered to reach its maximum MLH value when
all its bags are non-full bags and all of them fulfill the label proportions of
the whole dataset.

Evaluation of learning methods in the LLP scenario. The evaluation
of a learning method in a LLP scenario presents new challenges. The instances
of a LLP dataset are provided grouped in bags and, some of these (non-full
bags) are indivisible for the validation process since the class labels of individ-
ual instances are unknown (i.e., different labels in a bag make it impossible to

2 ICLab: http://sourceforge.net/projects/iclab/
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know, a priori, the specific label of each instance). Therefore, the adaptation
of classical validation techniques (cross-validation, training/test, bootstrap...)
to this framework is not immediate since some dataset divisions are invalid.
In particular, the popular cross-validation (CV) technique requires perform-
ing a division of the dataset into validation folds such that the number of
instances in all the folds is the same. Making such a division of the original
LLP dataset in CV-folds by respecting the integrity of the bags and, at the
same time, trying to keep the same number of instances in each fold is not
straightforward. In fact, this problem can be seen as a generalization for more
than two subsets of the classical combinatorial optimization problem called
“number partitioning”.

This issue is even more complicated when the validation folds are also
required to be stratified. In this case, the optimization problem is constrained
by an additional condition: the general label proportions of the folds have to
fulfill the global label proportions of the dataset.

In order to skip this optimization process and to be able to compare with
other methods in the related literature, in these experiments we reproduce
the strategy for the evaluation of the LLP methods that other authors have
carried out previously [128, 136]. Given the original labeled dataset, first it
is divided into folds for validation using classical validation techniques for
labeled datasets. Next, the instances in those folds used for training are sep-
arated from their labels as long as bags are aggregated. Thus, the instances
for testing remain the original labeled instances, which makes the validation
easier. However, as the aggregation step depends on a previous validation di-
vision, the validation process is performed with different bag configurations at
each iteration. Moreover, information that is unavailable in a real LLP dataset
(individual instance labels) is used to stratify the training/testing datasets in
the validation process.

Default setting of the method parameters. Our method requires some
parameters to work. We have configured the current implementation with a
set of default values for these parameters. If need, they can be easily changed.

The base strategy of our proposal, the Structural EM approach, uses
three parameters: a threshold that indicates parametric convergence —the
loop stops when the relative difference between the MLE value of two models
learnt in consecutive iterations is below this threshold—, and that is set by
default to 0.1%; and the maximum numbers of iterations for both structural
and parametric convergence, which are both fixed to 200 iterations by default.
The MCEM version also requires another two parameters to be set: by de-
fault, 1000 samples of burn-in and 10000 samples to approximate the label
probability expectation.
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4.4.1 The usefulness of the information provided by the label
proportions: the semi-supervised learning approach as
baseline-performance reference

A typical LLP dataset has full and non-full bags, that is, a subset of in-
stances with known class labels (those in full bags, where all the instances
belong to the same known class) and a complementary subset of instances
with unknown class labels (those in non-full bags). From this point of view,
LLP resembles the description of a semi-supervised dataset [23]. In fact, a
LLP dataset can be easily transformed into a semi-supervised dataset by re-
moving the bag configuration of the LLP domain. Moreover, the objective
of both LLP and semi-supervised approaches is to predict the class of new
unlabeled single instances. In this way, semi-supervised learning can be con-
sidered the most similar learning approach with respect to LLP if the extra
information that the LLP approach considers is not taken into account. In
the following set of experiments, our aim is not to compare the LLP and
semi-supervised frameworks, but to check the benefits of the use of this extra
information in the learning process, using the semi-supervised approach as a
baseline-performance reference.

For these experiments we have used synthetic datasets, which are sampled
from tree-augmented naive Bayes (TAN) models. The sampled models have
30 binary predictive variables and a class variable with 2 or 3 class labels. The
model parameters are randomly generated by sampling a Dirichlet distribution
with all the hyper-parameters equal to 1. The datasets have been sampled
with 100 or 1000 examples. For each combination of these characteristics,
30 datasets have been sampled, resulting in a final number of 120 synthetic
datasets (2 class cardinalities × 2 sample sizes × 30 datasets).

In order to generate different semi-supervised learning scenarios, we trans-
form LLP datasets specifically generated with increasing complexity. We es-
tablish the required uncertainty for a LLP scenario with a particular con-
figuration of two parameters: the bag size (Ni) and the MLH entropy. As
explained in Section 2.1, the uncertainty of a LLP dataset is related to the
number of full/non-full bags (the larger the uncertainty, the lower the number
of full bags). In these experiments, the semi-supervised datasets are obtained
as follows: given a LLP dataset (generated as explained before), the instances
in a full bag are transformed into labeled instances of the resulting semi-
supervised dataset; those in non-full bags are the unlabeled instances in the
semi-supervised domain. Thus, although we do not establish manually the
proportion of unlabeled instances in semi-supervised experiments, by control-
ling both parameters (Ni and MLH) we can infer the proportion of unlabeled
instances in the resulting semi-supervised dataset. In this case, we use bag size
values Ni = {3, 15, 30, 50} and entropy values MLH = {0.0, 0.25, 0.5, 0.75}.

Specifically for these experimental setting, we have implemented a method
for semi-supervised learning which follows the basic Structural EM strategy as
explained in Section 3.2. It performs a probabilistic completion and, therefore,
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in the E-step the missing data (i.e., class value of unlabeled instances) is
completed using the probability that the particular instance belongs to each
possible class label (according to the current fit of the model). Similar to
PMEM (the other method tested), the semi-supervised method performs an
uninformed initialization, where the unlabeled instances are assigned to a
randomly-chosen class.

Our PMEM version (which was selected due to its ability to cope efficiently
with all the aggregated LLP scenarios) and the exposed semi-supervised
method are evaluated learning three different types of Bayesian network classi-
fiers (NB, TAN and 2DB) in different experimental conditions. Both methods
have been validated using a 10 × 5 fold cross validation (CV). As explained
before, the synthetic dataset is aggregated into a LLP dataset using only the
training instances at each iteration of the CV process. Subsequently, this LLP
training set is transformed into a semi-supervised dataset by removing its bag
configuration. This procedure guarantees that both the division in folds for
the CV process and the relative proportion of labeled/unlabeled instances are
the same for the evaluation of both methods.

Note that, as any EM-based algorithm, tuning the methods could partially
improve their performance in these experiments. However, for the sake of
simplicity, we have used a basic configuration for both the LLP and the semi-
supervised methods in order to design a fair experimental setting and not to
confuse the purpose of these experiments: to emphasize the potential of the
label proportions.

Results. A summary of the experiments is shown in Fig. 4.2. Each subfigure
represents a set of experiments using different dataset characteristics (2 or
3 class labels, and 100 or 1000 instances). In order to analyze the results,
two general considerations have to be taken into account. In general, since
it is more difficult to guess the correct label of an instance if the number of
candidate labels is larger, the uncertainty involving partial-unlabeled datasets
with 2 possible class labels is considered to be lower than the uncertainty of
datasets with 3 possible class labels. On the other hand, more accurate models
can be learnt when more data is available.

When the dataset has a binary class, a semi-supervised method is able
to learn models as accurate as those learnt by a LLP method when there
is low uncertainty in terms of entropy (MLH) and bag size (Ni). When the
uncertainty grows, the performance of the semi-supervised method decreases;
in this scenario, a larger dataset can not compensate the information provided
by the label proportions. Thus, the difference between the performance of the
two methods remains noticeable (Figures 4.2(a) and 4.2(c)).

While the behavior is similar for datasets with 3 class labels, the results
are even more sensitive to the degree of uncertainty. Variations of the pa-
rameters that define the uncertainty of a LLP scenario (bag size and, mainly,
entropy) cause large differences between the performance of the LLP and the
semi-supervised approaches (Figures 4.2(b) and 4.2(d)). In this case, a larger
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(a) Datasets of N = 100 and |C| = 2
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(b) Datasets of N = 100 and |C| = 3
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(c) Datasets of N = 1000 and |C| = 2
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(d) Datasets of N = 1000 and |C| = 3

Fig. 4.2. Mean accuracy and associated standard deviation of our PMEM and
the semi-supervised method to learn TAN classifiers in a 10 × 5 fold CV over 30
datasets (sampled from TAN classifiers with 30 binary predictive variables). Each
subfigure represents experiments with different dataset size (N) and number of class
values (|C|). In the x-axis, 16 different LLP scenarios used to aggregate the synthetic
datasets (the combination of 4 values of bag size Ni = {3, 15, 30, 50} and 4 values
of entropy MLH = {0.0, 0.25, 0.5, 0.75}) are represented.

dataset can compensate the information provided by the label proportions
only when the uncertainty is low, i.e., the values of one or both parameters,
bag size (Ni) and entropy (MLH), are low.

Taking as a reference the semi-supervised learning framework, where no
information of supervision is available for the unlabeled instances, the addi-
tional information of supervision provided by the label proportions has been
shown to be a solid contribution to learn more accurate classifiers. In the
least complex scenarios, with a large number of full bags, the difference of
performance between both frameworks can be overcome with more examples.
However, the contribution of the label proportions is really significant when
dealing with a complex LLP scenario. In this case, a larger dataset can not
compensate the extra information of LLP.
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4.4.2 An evaluation of the MCMC procedure by means of
probabilistic label assignments

In the previous experiments we have shown the importance of incorporating
the label proportions to the learning process. According to Figure 4.2, the
behavior of the hybrid PMEM method remains similar along the complexity
spectrum of LLP scenarios; from the least complex domains, where PMEM
uses the exhaustive procedure (PEM), to more complex scenarios, where it
applies the approximate MCMC procedure (MCEM). Based on these results,
we could think that the MCEM method is able to approximate precisely the
exact reasoning of PEM. In this section, we have carried out a set of experi-
ments in order to test this hypothesis. For this comparison, we have study the
probabilistic labels assigned by both methods in order to show how MCEM
approximates the behavior of PEM not only in terms of accuracy.

The same synthetic datasets generated for the previous set of experiments
have been used: 120 TAN-generated synthetic datasets (2 class cardinalities
× 2 sample sizes × 30 datasets). Our exact PEM method, and the approxi-
mate MCEM have been evaluated learning three different types of Bayesian
network classifiers (NB, TAN and 2DB) in different experimental conditions.
Both methods have been validated using a 10×5 fold cross validation (CV) in
different LLP scenarios, aggregated with bag size values Ni = {3, 7, 15} and
entropy values MLH = {0.0, 0.25, 0.5, 0.75}. As PEM is the version which per-
forms exact calculations, it has been taken as a reference in the experiments.
Note that the presence of this exhaustive method restricts the bag size values
that can be used in the comparison (see Fig. 4.1).

In order to evaluate the comparison from different points of view, several
relevant measures have been collected:

• Difference in terms of Root Mean Square Error (RMSE) between the fi-
nal probabilistic labels assigned by PEM and MCEM to the unlabeled
instances of the training dataset.

• Difference in terms of RMSE between the final probabilistic labels assigned
by PEM to the unlabeled instances of the training dataset and their real
labels.

• Difference in terms of RMSE between the probabilistic labels assigned to
the test instances by the classifiers learnt with PEM and MCEM.

• Difference in terms of RMSE between the probabilistic labels assigned to
the test instances by the classifiers learnt with PEM and their real labels.

• Accuracy of the classifiers learnt with PEM over the test instances.
• Accuracy of the classifiers learnt with MCEM over the test instances.

The referred RMSE difference has been calculated as follows:

RMSE(E(u),E(v)) =
1

N

N
∑

i=1

√

√

√

√

1

|C|

|C|
∑

c=1

(E(u)
ic − E(v)

ic )2
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whereE(u) andE(v) are two probabilistic completions that assign a class label

c to the i-th instance with probability E(u)
ic and E(v)

ic , respectively. When the
comparison involves real labels, they are adapted to the probabilistic frame-

work as follows: if c is the real label of the i-th instance, E(o)
ic = 1; the rest of

class values are assigned zero probability (∀c′ %= c ∈ C, E(o)
ic′ = 0).

Figure 4.3 shows the results of the presented comparison. Four subfigures
describe the training process and its corresponding test step in two scenarios
which only differ in the size of the dataset used (N = {100, 1000}). All the
subfigures in Fig. 4.3 show mean values over 30 datasets × 10 repetitions.
Related standard deviations are not included for the sake of clarity.

According to the continuous lines of Fig. 4.3(a) and Fig. 4.3(b), which show
the RMSE difference of the probabilistic labels between PEM and MCEM,
the approximate assignments of MCEM fit precisely the exact probabilistic
labels of PEM. As expected, the difference slightly increases in larger complex
scenarios. Moreover, when the dataset size (N) increases, the difference is
reduced to 0 in almost any scenario. With larger datasets, the classifiers also
tend to fit better the real labels (dashed lines), with the only exception of
NB classifiers. That is, both methods are learning from data completed with
similar probabilistic label assignments, which in fact are both close to the real
labels (remember that in these experiments only generative TAN models are
used).

As the RMSE differences of the top figures have been calculated with the
last assignment of probabilistic labels to the instances of the training dataset
previous to learn the definitive classifiers, it could be expected that if dashed
lines are not placed in the lower part of the top figures (i.e., the probabilistic
label assignments of PEM and MCEM do not fit the real labels), the pre-
dictions performed by these classifiers will not be accurate. For example, the
referred behavior is observed with 2DB classifiers: when the dashed lines rise
(in the top figures), the accuracy rates of the corresponding classifiers decrease
in the bottom figures, and the differences between the probabilistic labels pre-
dicted by the classifiers (learnt with PEM and MCEM; continuous lines), and
between those of PEM and the real labels (dashed lines) increase. Obviously,
differences between the probabilistic label assignments of PEM and MCEM
are also reflected in the different accuracy rates obtained by the correspond-
ing classifiers (see the non-concentric disconnected markers in the bottom-row
figures). This behavior is partially compensated with a larger dataset, which
allows the methods to learn more precise probabilistic labels.

From the previous reasoning, we could formulate the following statement:
the more imprecise the probabilistic labels in training, the less accurate the
learnt classifiers. As explained, it holds in that direction; however, the opposite
(more precise labels induce more accurate classifiers) is not correct. This is
reflected in the behavior of the TAN classifiers, which overfit the training data.
The difference between the probabilistic labels assigned by our methods and
the real labels is relatively low in training (dashed lines in top figures) and
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(b) Probabilistic label comparisons in
training instances (N = 1000).
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(c) Probabilistic label comparisons and
accuracy in test instances (N = 100).
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Fig. 4.3. Results of the comparison between PEM and MCEM evaluated in a 10×5
fold CV over 30 datasets (sampled from TAN classifiers with 31 binary variables,
including class variable). The learnt NB, TAN and 2DB classifiers are displayed with
different markers. In the x-axis, 12 different LLP scenarios are used to aggregate the
synthetic datasets (the combination of bag size values Ni = {3, 7, 15} and entropy
values MLH = {0.0, 0.25, 0.5, 0.75}).
Figures in each column represent experiments with different dataset sizes (N =
{100, 1000}).
Figures in the top row show the results of the comparison in training instances:
the continuous lines represent the RMSE difference between the final probabilistic
labels assigned by PEM and MCEM; the dashed lines represent the RMSE difference
between PEM and the real labels.
Figures in the bottom row show the results of the comparison in test instances:
the continuous lines represent the RMSE difference between the probabilistic labels
assigned by classifiers learnt with PEM and MCEM; the dashed lines represent the
RMSE difference between PEM and the real labels. The disconnected markers show
the mean accuracy of the classifiers learnt by PEM (medium size) and MCEM (large
size).
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becomes notably larger in test (dashed lines in bottom figures). This implies
a low accuracy of the TAN classifiers, as observed.

As the underlying generative models in these experiments are based on
TAN models, the naive Bayes classifiers (which are not able to capture rela-
tionships between predictive variables) show the least accurate behavior. In
this case, although the approximate MCMC procedure fits the exact proce-
dure almost perfectly, neither MCMC nor the exact approach can fit the real
labels.

4.4.3 Experiments with synthetic data

The main objective of this set of experiments with synthetic data is the study
of the behavior of the four versions of the proposed method learning three
types of Bayesian network classifiers from datasets aggregated in different
LLP scenarios. Based on the previous experimental setting, we have performed
an extended comparison with additional configurations for each experimental
characteristic in order to validate our proposals over a broader set of LLP
scenarios.

In order to sample the synthetic datasets, in addition to TAN models,
naive Bayes, 2-dependence Bayesian network and Bayesian networks with
unrestricted structure models have been used. Moreover, we have generated
datasets with an intermediate number of examples (N = 500). Therefore, in
these experiments the total number of synthetic datasets is 720 (4 generative
models × 2 class cardinalities × 3 sample sizes × 30 datasets per configura-
tion).

Regarding the aggregation of LLP scenarios with different uncertainty lev-
els, the two involved parameters, bag size (Ni) and MLH entropy, take val-
ues Ni = {3, 7, 15, 20, 30, 40, 50} and MLH = {0.0, 0.25, 0.5, 0.75}. As shown
in Fig. 4.1, only the versions of our method based on MCMC can deal
with bag sizes larger than 20, so PEM and NPEM are not evaluated for
Ni = {30, 40, 50}.

Finally, we introduce another feature to the experimental configuration:
three types of Bayesian network classifiers (NB, TAN and 2DB) are learnt by
our algorithms for each synthetic dataset and LLP scenario.

As a summary, we have evaluated the 4 versions of the method using
10×5 fold CV when learning 3 Bayesian network classifiers from 720 synthetic
dataset, each of them aggregated in 28 different LLP scenarios.

Results. In order to analyze the results of the large set of experiments per-
formed in this section, we use different techniques. First of all, the statistical
framework proposed by Demšar [46] and Garćıa and Herrera [63] is applied.
This framework indicates a way to perform a statistical validation looking for
significant differences in the performance of the methods under comparison. In
our case, where several methods have to be compared, this framework first per-
forms a Friedman test, which analyzes whether the methods follow the same
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probability distribution (null-hypothesis). If the Friedman test null-hypothesis
is rejected, several post-hoc tests are applied to compare the methods by pairs.

In this section, we have analyzed the obtained results from two different
points of view: a comparison of our four methods (where the classifiers are
considered another characteristic of the experimental setting); and a compari-
son where the learnt classifiers are considered as a part of the learning method
(4 learning methods × 3 types of classifiers: 12 SEM+BNC methods). Two
blocks of statistical tests have been applied, each of them from one of these
two points of view.

Firstly, the presented statistical framework has been applied to compare
the performance of the four versions of our proposal from a general point
of view. In this way, we take into account the experiments performed by
all the versions, discarding the experiments with bag size Ni = {30, 40, 50},
which were only tested in our MCMC-based versions. As exposed before, there
are 24 groups of 30 datasets generated with the same characteristics. In this
comparison, each dataset is aggregated in 16 different LLP scenarios and NB,
TAN and 2DB classifiers are learnt from the aggregated LLP datasets. Then,
taking into account all these factors, for each version of the method, the results
of 34560 experiments have been obtained and used in this test.

A Friedman test [46] comparing the results of the different versions of our
method (PEM, NPEM, MCEM and PMEM) indicates that they do not follow
the same probabilistic distribution. Given the average ranks of Table 4.1,
the referred test determines that there are statistically significant differences
between the results of the four versions of our proposal when the type I error
is fixed to α = 0.05.

As the Friedman test rejects the null hypothesis, post-hoc paired tests
have been performed to discover differences between pairs of methods using
the Holm procedure [46]. In this case, the post-hoc paired tests can not find
statistical differences between the PEM and the PMEM versions of our pro-
posal at α = 0.05, which could be expected as PMEM probably has used the
exact approach —the same as PEM— frequently (only bag sizes lower than
or equal to 20 have been tested). The rest of the tests reject the correspond-
ing null hypothesis, indicating statistically significant differences between the
pairs of methods compared. As a conclusion of this first set of statistical tests,
based on the obtained results, the version with the largest rank, NPEM, can
be considered the worst proposal, whereas a single best proposal can not be
established between PEM and PMEM.

The second set of statistical tests has been applied to find significant dif-
ferences between different types of Bayesian network classifiers learnt with

Method NPEM MCEM PMEM PEM

Av. Rank 2.791 2.427 2.397 2.385

Table 4.1. Average Ranks of the versions of our proposal
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each version of our method (SEM+BNC combinations). In this way, 12 meth-
ods are considered in the comparison: each combination of a version of our
method (PEM, NPEM, MCEM and PMEM) and a type of classifier (NB,
TAN and 2DB). Therefore, the number of experimental conditions (11520) is
three times smaller than in the previous comparison, since the type of clas-
sifier was considered before as a factor of the experimental conditions, being
now part of the methods under comparison.

By means of the Friedman test, which rejects the null hypothesis, the re-
sults of the 12 tested methods are proved to involve statistically significant
differences. Moreover, Figure 4.4 shows a graphical representation of the sig-
nificant differences found between pairs of methods by the subsequent Holm
procedure. Each method is positioned in the scale according to its mean rank.
Methods connected by a bold horizontal line are not significantly different at
the fixed α = 0.05 threshold. According to this figure, the null hypothesis of
the paired tests, which considers that the results of the two methods under
comparison follow the same distribution, is not rejected in the following cases:

• When the versions PEM, MCEM and PMEM are tested learning the same
type of Bayesian network classifier, the Holm procedure can not find signif-
icant differences between them. The main conclusion is that both the ap-
proximate versionMCEM, and consequently the combined version PMEM,
are able to obtain similar results with respect to PEM, regardless of the
type of Bayesian network classifier.

• NPEM learning NB classifiers, and PEM and PMEM learning TAN classi-
fiers, do not show statistical differences. This shows the inability of NPEM
to learn Bayesian network classifiers as accurate as the other versions of
our method. Although this depreciate behavior is observed with all the
BN classifier, in this case the NB classifiers (which are globally ranked
in an intermediate position) learnt by the NPEM show similar accuracy
rates than other versions learning TAN classifiers (the classifier with lowest
average results as shown in Tab. 4.4).

As previously explained, the uncertainty that involves the considered LLP
scenario determines the complexity of the learning process in a LLP domain

9 8 7 6 5

MCEM+2DB
PEM+2DB
PMEM+2DB
PMEM+NB
PEM+NB
MCEM+NB

NPEM+TAN
MCEM+TAN
PMEM+TAN

PEM+TAN
NPEM+NB

NPEM+2DB

Fig. 4.4. Result of the Holm procedure, applied to the 12 SEM+BNC combinations
(NB, TAN and 2DB classifiers learnt with the four methods), finds statistically
significant differences at α = 0.05. Each method is positioned in the scale according
to its ranking and the bold horizontal lines link methods that are not significantly
different.
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Fig. 4.5. Comparison of the capability of the four versions of our proposal to
cope with the uncertainty of different LLP scenarios. In these figures, the average
accuracies of TAN classifiers learned in different LLP scenarios are shown. Datasets
of N = {100, 500, 1000} instances, 30 predictive variables and a class variable of 2
or 3 class labels were generated from 2DB models (30 datasets for configuration).
Each line links the results of a version of our method in different LLP scenarios
that have the same bag size (Ni) and only differ in the entropy value, MLH =
{0.0, 0.25, 0.5, 0.75}.

and, in this study, it is measured with two parameters: bag size (Ni) and
MLH entropy. Thus, the uncertainty level grows when the values of these pa-
rameters increase. The capability of the four versions of our method to learn
accurate classifiers in different LLP scenarios (which are simulated varying
both parameters) is shown in Figure 4.5. In order to perform a more reliable
comparison, the type of generative model (2DB) of the synthetic data and
the type of learnt classifier (TAN) are fixed. We can conclude that NPEM
is the most sensitive version to the increase of uncertainty, particularly when
the available data is scarce (N = 100). MCEM, the strictly approximated
approach, shows a behavior similar to that of PEM, the exact probabilistic
approach. PMEM, the hybrid that combines the exact and approximate ap-
proaches, also shows a behavior consistent with the methods on which it is
based. MCEM and PMEM, the only feasible versions when there exist bags
of size Ni = {30, 40, 50}, show in these complex LLP scenarios a moderate
reduction of accuracy. The differences between them are almost indiscernible
in the results of the tests performed over datasets with two class values, which
makes us think that PMEM must have had few opportunities to apply the
exact reasoning approach. However, in the experiments with datasets of 3
class values the improvement is clear, which gives an idea of the additional
complexity that involves a non-binary class variable and the difficulties of our
approximate approach to learn in these scenarios. In general, although they
can not be compared with the exact PEM version (the reference version in
less complex scenarios), the behavior of the approximate versions in LLP sce-
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narios with large bags draws a decreasing curve that follows the dynamic of
the performance reduction of other less complex scenarios.

Although the behavior of the different versions of the method is similar
for 2 or 3 class values (Figures 4.5(a) and 4.5(b)), they display different scales
of accuracy. The different scale is due to the added complexity of the domain
with three class labels with respect to the domain with only two class labels.

Moreover, the influence of the increasing size of the datasets can be ap-
preciated in both subfigures of Fig. 4.5. The larger the datasets, the lower
the effect of the uncertainty in the accuracy of the learnt classifiers. This is
also reflected by means of the associate standard deviations, which are con-
siderably reduced when the dataset size is increased. That could mean that
the learnt models are more accurate, i.e., the SEM method frequently reaches
similar optimal states. In fact, with large datasets, the differences between the
versions of the methods become almost imperceptible.

From this set of experiments with synthetic data, we can conclude that
the version that implements strictly a probabilistic approximated completion,
MCEM, provides consistent estimations with respect to the real approach. In
this way, statistical tests show that the results of MCEM are not significantly
different from those of PEM. However, the most important conclusion is that
the hybrid PMEM method can be reliably used in any LLP scenario, since it
has been shown to properly integrate the exact and approximate approaches
to take the best of both.

4.4.4 Comparison with state-of-the-art methods

In this last set of experiments, we present a comparison with a representative
subset of LLP state-of-the-art methods. The papers in the current litera-
ture can be grouped depending on their definition of the LLP problem: those
that follow a LLP definition based on proportions (Kück and Freitas [99],
Quadrianto et al. [136], Rueping [150], Stolpe and Morik [174]); and those
that follow a LLP definition based on aggregated outputs or counts (Musi-
cant et al. [128], Chen et al. [27]). We have compared our method with the
LLP techniques proposed in the most referenced paper (in related literature)
of each group: Quadrianto et al. [136] and Musicant et al. [128]. These are
compared with the four versions of our proposal learning three different types
of Bayesian network classifiers (NB, TAN and 2DB). As exposed before, when
Ni is larger than 20, MCEM and PMEM are the only affordable techniques.

Due to the non-public availability of some executable-code of these meth-
ods, we have designed separated comparisons for each paper. In the compari-
son with Quadrianto et al. [136], we carry out an honest reproduction of their
experiments. With respect to the Musicant et al. [128] proposals, we have re-
produced their best method following their description. In the same way, we
have decided to use the same datasets which are, in both cases, real datasets
from two public repositories (UCI [54] and LibSVM [22]). Equal-frequency
with 3 intervals is used to discretize continuous variables.



66 4 Learning from label proportions

dataset
MeanMap PMEM

unweighted weighted NB TAN 2DB
WDBC 23.29 ± 2.68 14.22 ± 1.79 12.13 ± 4.49 10.18± 2.90 11.95 ± 3.88
Australian 34.44 ± 4.03 29.58 ± 3.71 22.99 ± 1.96 16.96± 1.49 16.68 ± 1.05
SVMguide3 24.28 ± 2.20 18.50± 1.73 34.05 ± 3.74 31.13 ± 2.60 28.13 ± 1.59
Splice 33.43 ± 1.65 21.12 ± 2.59 22.12 ± 0.54 30.82 ± 1.03 40.05 ± 1.15
Protein 57.46 ± 0.02 57.46 ± 0.02 47.84± 1.09 48.20 ± 0.82 48.68 ± 1.12
SensIT 28.25 ± 2.60 23.51± 0.78 32.72 ± 0.64 33.77 ± 1.36 34.60 ± 2.14
DNA 20.01 ± 1.26 16.80 ± 1.19 14.55± 0.74 19.28 ± 1.32 17.13 ± 1.03

Table 4.2. Comparison of the PMEM version of our method, learning different
types of Bayesian network classifiers, with respect to the unweighted and weighted
MeanMap (Quadrianto et al. [136]). Several UCI/LibSVM datasets are aggregated
using overdetermined systems for binary or 3-class label datasets. 10×10 fold CV is
used for validation. The results are shown in terms of mean classification error and
its associated standard deviation.

Comparison with Quadrianto et al. [136] proposal. The first compari-
son is performed with respect to the proposals of Quadrianto et al. [136]. The
authors use real datasets from two public repositories (UCI [54] and LibSVM
[22]) that are aggregated in different ways in order to create different LLP
scenarios. The authors do not use any general strategy to transform labeled
datasets into LLP datasets, but they specify the label proportions in a fixed
number of bags with different bag sizes for each experiment. In terms of the
number of bags, the authors carry out experiments where the number of bags
is equal to the number of classes (b = |C|), and experiments where the number
of bags is larger (called overdetermined systems in [136]).

For the first set of experiments (b = |C|), in the case of class-binary
datasets, the authors aggregate a LLP dataset with two bags: A full bag (only
instances of class 1) and a non-full bag with its label proportions matching
the proportions of the class labels in the original dataset. This definition is
equivalent to that of the positive unlabeled learning framework [19]. In the case
of datasets with three classes, the authors propose similar extreme conditions.
We consider that it makes no sense to use a LLP method to learn from this
kind of data when the literature provides specific methods to cope with this
extreme scenario. For this reason, our comparison does not cover this set of
experiments.

In overdetermined system experiments, where the number of bags is larger
than the number of class labels, 8 bags are aggregated following a table of label
proportions exposed in [136] for class-binary datasets and, in a similar way,
6 bags are aggregated for 3-class label datasets. For these datasets, the au-
thors evaluate two versions of their proposal, called weighted and unweighted
MeanMap.

We have reproduced the experimental conditions of the overdetermined
systems and, using the same datasets, our hybrid PMEM method has been
evaluated using 10× 10 fold cross validation (the validation approach used in
the framework of Quadrianto et al. [136]). Given the fact that bags in these
experiments are huge (in the smallest dataset, WDBC, more than 85% of
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the non-full bags aggregated with overdetermined systems have more than
30 instances), the exhaustive PEM and NPEM versions can not be applied.
Moreover, in such complex LLP scenarios, although PMEM is not expected
to improve significantly the results of MCEM, it has been chosen for these
experiments in order to take advantage of the least complex bags, if possible.
For the same reason, the rest of versions of our method can not be applied.
The MCMC-specific parameters were fixed to 10, 000 iterations of burn-in and
10, 000 samples. Some datasets could not be used because, in their original
form [54, 22], they have more than 2 classes and the authors used them as
binary datasets without specifying how the original data was transformed.

The results are shown in Table 4.2 in terms of mean classification er-
ror and its associated standard deviation. Results for both the weighted and
unweighted versions of the Quadrianto et al. [136] method and our PMEM
version learning different types of Bayesian network classifiers are shown.
The classifiers learnt by PMEM show competitive results with respect to
Quadrianto et al. [136] proposals. In four of seven domains, our method
achieves a lower error rate than their method. In only two domains, weighted
MeanMap clearly outperforms PMEM. In the case of the Splice dataset, it is
not possible to establish the method with best results without a detail specific
comparison. Despite the fact that weighted MeanMap [136] shows a slightly
lower error rate than PMEM learning NB classifiers in this domain, it also
shows a larger standard deviation that makes the error difference non-reliable.
Therefore, in more than a half of the datasets used in this reproduction of the
Quadrianto et al. experimental setting [136], PMEM actually outperforms
their best version.

Comparison with Musicant et al. [128] proposals The second compar-
ison is performed with respect to the proposals of Musicant et al. [128]. In
this paper, the authors present their techniques (basic adaptations to the LLP
approach of K-Nearest Neighbor, Artificial Neural Network, Support Vector
Machine and Decision Tree classifiers) and evaluate them in different LLP
scenarios. The evaluation was performed over three UCI [54] datasets: Iono-
sphere, Dermatology and Breast Cancer Wisconsin. Looking at the results of
their experimental section, the method that learns Decision Trees (DT) [128]
shows the best general performance. Bearing this in mind, we have decided
to compare only with the DT proposal in order to reduce the size of this
comparison,.

Musicant et al. [128] indicate that their methods could be tuned in or-
der to improve the results. Similarly, the objective of these experiments is to
show how different LLP scenarios affect the learning process of each method.
This can only be fairly achieved by fixing the base classifier parameters and,
in order to generate different experimental conditions, modifying only the
parameters that determine the uncertainty of a LLP scenario (bag size and
entropy). In this way, we have reproduced the method that learns DT classi-
fiers according to the provided description [128] and, for the parameters of our
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Table 4.3. Comparison of our proposal with Musicant et al. [128] best method,
Decision Trees. For each version of our method and each LLP scenario, three rows
are shown, representing a different type of Bayesian network classifier: NB, TAN and
2DB (from top to bottom). Results are shown in terms of accuracy and associated
standard deviation, evaluated over 3 UCI [54] datasets for increasing bag size (Ni,
vertical axis) and entropy (MLH, horizontal axis) using a 10× 5 fold CV.

proposal (Structural EM and MCMC-specific parameters), the default values
previously exposed have been used.

With the implementation of their method, we can use our aggregation
procedure to simulate different LLP scenarios. As explained before, although
the aggregation method of Musicant [128] is similar, our method covers the
spectrum of LLP scenarios of different complexity in a more complete manner.
In this way, we use bag size values Ni = {3, 7, 15, 30, 50} and MLH entropy
values MLH = {0.0, 0.25, 0.5, 0.75}. The four versions of our proposal and the
Musicant et al. [128] method that learns DT classifiers have been evaluated
over the three UCI [54] datasets that are used in the exposed paper. For each
experiment, the results of our methods learning NB, TAN and 2DB classifiers
are presented in terms of accuracy and associated standard deviation in Table
4.3.
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Fig. 4.6. Comparison over three datasets of the degradation of our PMEM version
learning 2-dependence Bayesian network classifiers and the proposal of Musicant et
al. [128] that learns decision trees (DT). In the x-axis, 8 LLP scenarios are repre-
sented, with Ni = {3, 50} and MLH = {0.0, 0.25, 0.5, 0.75}. Mean accuracies and
associated standard deviation over a 10× 5 fold CV are shown.

Due to space constraints, only a representative subset of the experiments is
shown in Table 4.3 (the complete comparison can be observed in the webpage
associated with this study). As it can be seen in the table, our methods are
able to learn Bayesian network classifiers which are, in the three domains and
in all the LLP scenarios, more accurate than the DT method of Musicant
et al. [128]. The classifiers learnt using the DT method of Musicant et al.
[128] undergo a higher degradation (in terms of accuracy) than the classifiers
learnt by any of the four versions of our proposal as the uncertainty of the
LLP scenario increases.

With the objective of highlighting this behavior, Figure 4.6 reflects the loss
in terms of accuracy of the classifiers learnt by the DT method [128] and that
of the 2DB classifiers learnt with our PMEMmethod in extreme LLP scenarios
(the lowest –Ni = 3 and MLH = 0.0– and the highest –Ni = 50 and MLH
= 0.75– uncertain scenarios are displayed). On one hand, in the Dermatology
and Breast Cancer Wisconsin domains the DT classifiers show an accuracy
degradation of more than 25 points in percentage terms. Similarly, in the third
domain (Ionosphere), DT classifiers lose more than 30 percentage points. On
the other hand, 2DB classifiers learnt with PMEM show a degradation of 3-4
points in the three domains. Thus, the results show that the loss of accuracy
between these extreme scenarios is much smaller when our method is used,
which indicates that our proposal deals with the uncertainty of LLP problem
in a better way than the DT of Musicant et al. [128]; or from the opposite
point of view, it can be considered that PMEM efficiently takes advantage of
the extra information given by the label proportions.

4.5 Conclusions and future work

In this chapter we have proposed four competitive versions of a Structural EM
method to learn Bayesian network classifiers for a classification problem where
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the only information of supervision provided consists of label proportions
associated with subsets of instances (LLP).

We have shown that the label proportions associated to the bags (groups of
instances) provide relevant class information that can be used to learn more
accurate classifiers. Specifically, our proposal shows a competitive behavior
with respect to state-of-the-art techniques, as has been shown in the com-
parison with the most representative and influential LLP methods. Among
the four versions of our method, a probabilistic version that performs ex-
act calculations, PEM, shows the best results, but it is not scalable when
the uncertainty of the problem grows. We have overcome this issue with the
proposal of another probabilistic version, MCEM, that performs an approxi-
mation to the exact version, showing a good behaviour in situations that are
unaffordable for PEM. The associated statistical tests do not show significant
differences between both versions.

Finally, we propose the PMEM version, which combines the exact and
approximate procedures in a method that only uses approximate reasoning
(MCEM) when the exact approach (PEM) is unfeasible. It uses the MCMC-
specific parameters to establish a threshold (burn-in, bi, plus number of sam-
ples for calculating estimations, s) for the maximum number of explored con-
sistent completions. For future work it would be interesting to study the pos-
sibility of calculating automatically and for each bag individually the param-
eters of the MCMC procedure (burn-in and number of samples). This would
imply a non-constant threshold in the maximum number of explored consis-
tent completions for each bag in PMEM, so it would also be necessary to
study the implications of this decision. More questions could be raised about
this issue: would it be worth carrying out the exact approach when the num-
ber of consistent completions (si) is slightly larger than the current threshold
(bi+s)? That is, if si exceeds the number of samples generated in the MCMC
procedure (bi + s) by a small number of consistent completions, which ap-
proach should be applied? What should be considered “a small number” in
this context?

For future work, it would also be interesting to follow the idea expressed
by Kück and Freitas [99] regarding the “relaxation” of the notion of label
proportions. That is, considering a problem with groups of instances where
each group is provided with the probabilities that a randomly chosen instance
of the bag belongs to each possible class label. Learning from this new frame-
work would involve new challenges, although we consider that we could apply
the knowledge acquired in this study as the new framework can be seen as a
generalization of the LLP problem.
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Learning from crows in multi-dimensional

domains

In the introduction of this dissertation (Section 2.2), different reported factors
that make the process of fully labeling a dataset impossible have been exposed.
In the previous chapter, we analyzed a weakly supervised classification prob-
lem motivated by a real application that undergoes an untraceable process
after which the label of each example cannot be certainly assessed. In this
chapter we discuss a weakly supervised classification problem that involves a
source of uncertainty of a completely different nature: the questionable relia-
bility of the annotator who labels the examples.

Formally defined in Section 2.4.4, learning from crowds is a classification
problem where the provided training instances are labeled by multiple (usu-
ally conflicting) annotators. Several platforms, such as the Amazon Mechan-
ical Turk, provide an environment where a proposed labeling task is solved
by many different volunteers. These platforms can be used to cheaply ob-
tain the labels for a set of examples. Nevertheless, as the reliability of the
volunteers is usually questionable, not one but many labelings are collected.
In different scenarios of this problem, straightforward strategies show an as-
tonishing performance. In this chapter, we characterize the crowd scenarios
where these basic strategies show a good behavior. In parallel, we identify
those scenarios where non-trivial methods for combining the multiple labels
are expected to overcome straightforward strategies. In this context, we also
extend the learning from crowds paradigm to the multi-dimensional classifi-
cation domain (Section 2.4.4). By measuring the quality of the annotators,
the presented EM-based method overcomes the lack of a fully reliable label-
ing for learning multi-dimensional Bayesian network classifiers (Section 3.4.4):
As the expertise is identified and the contribution of the relevant annotators
promoted, the model parameters are optimized. The good performance of our
proposal is demonstrated through different sets of experiments.



72 5 Learning from crows in multi-dimensional domains

5.1 Introduction

Supervised classification is a field of machine learning that develops tech-
niques which try to replicate automatically the categorizing behavior of a
classification problem of interest. Provided a set of examples together with
certain category information (class labels), the inherent relationship between
instances and class labels is deduced. The reliability of the provided training
labeling is a strong assumption based on which most of the techniques that
take part in the machine learning process have been developed (evaluation
techniques, performance scores, learning methods, etc.).

Relaxing the reliability assumption, the partially supervised learning
framework [155] deals with datasets in which the training examples are not
completely/certainly labeled, mainly due to the difficulty and high cost of the
expert labeling process. In the case of learning from crowds (CrL) [141], each
instance of the provided dataset is labeled by several annotators of unknown
trustfulness. As no gold-standard (i.e., a reliable class-membership informa-
tion for the instances) is provided, both the learning and the evaluation have
to be performed using the subjective labels of a crowd of mainly non-expert
annotators.

Dealing with the low reliability that characterizes the data collected from a
crowd is the main challenge of CrL. Many sources of noise that would harm the
truthfulness of the provided labels have been modeled in different proposals
of the related literature. However, extremely basic strategies to combine the
labels provided by several annotators report excellent results in different crowd
scenarios. In this study, we analyze the characteristics of these scenarios, and
identify the rest of crowd scenarios where an alternative (more elaborate)
methodology would outperform the basic approaches.

The interest in the CrL methodology has mainly been motivated by the
easy and cheap access to data that the emerging information technologies fa-
cilitate. It is reasonable to apply this cheap labeling procedure to problems
where the data collection process is expensive, such as the multi-dimensional
(MD) framework [6, 148] where several class variables have to be labeled for
each example. The difficulty of obtaining labeled (training) data in a MD
problem relates to the set of class variables that have to be labeled for each
example. Learning with completely labeled training data, the MD problem
—which has also been studied as a specific instantiation of the more gen-
eral multi-target learning framework [199]— has received ample attention,
with different proposals as the multi-dimensional Bayesian network classifiers
(MBC) [6].

Combining both CrL and MD frameworks, we present a novel methodology
for learning MBCs using data labeled by a crowd of annotators. It recognizes
the annotator reliability as a relevant source of noise, a standard consideration
in the related literature [192, 141, 41, 42, 191, 30]. In this way, our method —
based on the Expectation-Maximization (EM) strategy [45]— is able to model
the expertise of the annotators of the crowd. The estimated truthfulness of



5.2 Related problems 73

the annotators is used to calibrate their contribution to the learning process,
promoting the labels provided by outstanding annotators.

The rest of the chapter is organized as follows. First of all, a review of
partially supervised problems allows us to locate in the related literature the
problem of interest, the multi-dimensional learning from crowds (MDCrL).
Next, we characterize the crowd scenarios where the weak performance of
basic strategies justifies the use of more complex methodologies. Then, our
method for learning (the parameters of) MBCs from a crowd is presented,
followed by a set of experiments that test it in complex crowd scenarios.
Finally, some conclusions and future work are presented.

5.2 Related problems

Following the non-complete supervision idea of the semi-supervised learning
paradigm (where only a subset of the training examples are labeled), over
the past decades different partially supervised learning problems have been
explored. Learning accurate classifiers remains the main objective of these
classification problems, although the lack of a gold-standard prevents the use
of standard learning methodologies, requiring the development of specific tech-
niques. The more recently fashioned CrL problem is closely related with other
partially supervised problems that have received significant attention for many
decades.

For example, the learning from multiple experts framework [37, 167, 181]
combines the labels of a fixed set of known experts. Its development has
been closely related to the interest in real applications where the difficulty of
labeling instances is high (e.g., medical diagnosis, CAD systems, etc.). Dawid
and Skene [37] proposed an EM method that estimates, for each expert, the
probability of confusing two class labels using an estimated gold-standard.
Later, Smyth et al. [167] proposed using degrees of certainty associated with
each provided label in order to focus the learning process on highly reliable
instances. The main contribution of Wiebe et al. [193] was a procedure that
searches for possible correlations between the labels of different experts. The
self-consistency of the labels provided by an expert allows Valizadegan et al.
[181] to identify labelers that introduce random noise, the least damaging
kind of noise. The opposite strategy consists of learning a classifier from the
annotations of each expert and, finally, combining all the models [112]. This
strategy works only in those scenarios where all the annotators label a large
set of the instances. In a CrL problem, where each (non-expert) annotator
chooses the instances to label, a classifier learnt from the annotations of a
lazy annotator could perform poorly.

Another characteristic that defines a CrL problem is the low reliability
of the provided labels. As it cannot be assumed that the annotators are do-
main experts, the subjective labeling may involve incompleteness, imprecise-
ness and/or incorrectness. The learning from noisy data problem [12, 202]



74 5 Learning from crows in multi-dimensional domains

faces the same challenges in the case of a single labeler. Without the possibil-
ity of comparing with other points of view (annotators), different strategies
have to be used to identify the wrong-labeled instances. Shanmugam and
Breipohl [160], who proposed two effective strategies to correct the wrong la-
bels, demonstrated that the degree of noise can be compensated with larger
datasets. This idea was posteriorly reasserted by Lugosi [114] in his key study
of sources of noise, where three kinds of error are identified: random error,
external error (depends on the right label), and consistent error (depends on
the instance). Lugosi proved that the first two kinds of error are asymptotic
optimal (i.e., the error can be compensated with a larger dataset), whereas
the latter can only be overcome with labels of different annotators (i.e., a
multi-expert/crowds framework).

In the learning from partial labels problem [35], being unable to certainly
label an instance, a set of labels is provided with the guarantee that the
real label is in the provided set. As the different labels of the set cannot be
attributed to independent sources (multiple annotators), the selection among
the candidate labels is based on the consistency with other similar instances.
Jin and Ghahramani [94] proposed an extended problem where a probability
distribution over the set of candidates measures the confidence on each label. A
CrL problem which has lost the information about the annotator that provided
each label follows this formulation. Jin and Ghahramani used an EM method
to assess the most-probable label for each instance while the classifier is learnt.

Combining ideas of two well studied problems of the state-of-the-art, the
multiple labeling and the noisy/uncertain labels, the learning from crowds
(CrL) problem has led to a new successful and useful learning paradigm [161,
168]. Snow et al. [168] measured the value of the contribution of non-expert
annotators: the knowledge of a domain expert might be matched with the
combined knowledge of four non-expert annotators. In another key study,
Sheng et al. [161] compared the benefits of relabeling an instance making
use of a different annotator (i.e., increasing the reliability of the labeling)
with respect to obtaining new labeled instances (i.e., exploring the instance
space). Restricted by a limited number of annotators, the authors defend that
repeated labeling loses effectiveness as the reliability of the annotators drops.

In order to cope with the unreliability of the annotations, a vast major-
ity of the state-of-the-art CrL techniques [192, 141, 41, 42, 191, 30] try to
infer the expertise of the annotators, which later is used to calibrate their
contribution in the learning process. Additionally, Dekel and Shamir [41] pro-
posed a method to detect annotators which provide contrary information (evil
teachers). The same authors [42] remove the labels of very unreliable annota-
tors, which would not affect the performance of the learnt model in the case
of a large dataset. Trying to cover different sources of noise, Whitehill et al.
[192] proposed modeling the instance difficulty, and Welinder et al. [191] stud-
ied the annotator reliability from three points of view: competence, expertise
and bias of their annotations. For the problem of evaluation, Cholleti et al.
[30] proposed using iteratively each annotator as gold-standard for learning
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different classifiers and finally combining them. However, probably the most
general and challenging proposal was presented by Raykar et al. [141], who de-
veloped an EM method (adjustable to binary/multi-class/ordinal/regression
problems) that iteratively estimates a set of reliability weights from an esti-
mated gold-standard to induce a predictive model.

In their proposal, Raykar et al. [141] model the ability of each annotator
to predict each class label individually, an idea that applies to the multi-
label and multi-dimensional domains, where different categories are assessed
for each instance. As far as we know, the few studies that consider multi-
label problems labeled by many annotators do not assess the reliability of the
annotators. An usual strategy [159, 175, 14] reduces the framework to deal
with a multi-label problem with weak labels : for each instance, annotators only
provide the labels which they are sure about (i.e., a subset of its real set of
labels). Eventually, the most similar problem to our MDCrL framework was
proposed by Younes et al. [197]: a multi-label problem annotated by multi-
ple noisy annotators. Given a subset with the assigned (or dismissed) labels
for each instance, the method has to look for a complete assignment of la-
bels which fulfills the provided incomplete labeling. With a more unorganized
provision of the data, the folksonomy (or social tagging) problem [176] tries
to learn from instances labeled by many (unidentified) annotators who tag
with an unrestricted set of terms (or labels). The unlimited number of labels
per instance and the unavailability of a close set of possible class labels are
probably the main challenges of a problem with many real applications (e.g.,
recommender systems of the collaborative Web).

5.3 Exploring different crowd scenarios

The classic supervised classification finds in the labels provided by a trust-
worthy domain expert the reliability required to learn accurate classifiers. The
CrL paradigm seeks this reliability in the group knowledge of a crowd of t an-
notators. Before a new method is proposed to deal with this kind of data, it
is interesting to pay attention to the particularities of the CrL problem. In
a considerable variety of crowd scenarios, simple methodologies for combin-
ing the group knowledge show a good behavior. In this section, we shed some
light on the advantages of two well-known basic approaches and describe their
favorable scenarios (in general, well-informed scenarios where the reliability
of some annotators is high and/or the number of annotators is large). Once
these favorable scenarios are characterized, the new method could focus on
the remaining scenarios and try to extract all the useful information from the
crowd knowledge.

Assuming that all the annotators are not equally reliable, this work has
been developed over the main hypothesis that the annotators with expert
knowledge can be identified among the crowd and used to improve the accu-
racy of the learnt classifiers. For the sake of simplicity, the different reasonings
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of this section have been carried out for the basic scenario where the anno-
tators label a single binary class variable. Accordingly, the labels provided
by annotator Aa have a specific reliability rate ra, which means that with
probability (1 − ra) the provided label is wrong. We will consider that an
annotator Ae is a domain expert if their real reliability rate re is larger than
the reliability rate ra of any other regular annotator (or novice) Aa. However,
we assume that there is one (and only one) domain expert in the crowd of
annotators, unless otherwise indicated. The presence of an only expert among
the crowd simplifies the identification and measurement of the relevance that
their contribution reaches during the learning process, with respect to the rest
of (novice) annotators.

5.3.1 The most-voted label strategy

The straightforward strategy in problems with multiple annotators is known
as majority voting (MV). For each example x, taking into account the labels
provided by the different annotators, the most frequent class label is consid-
ered the actual label:

MV (l) = argmax
c∈C

t
∑

a=1

I[la = c]

where I[condition] returns 1 if condition is true and 0 otherwise, and l is a
t-tuple that saves the label la provided by each annotator Aa. This proce-
dure outputs a new completely supervised dataset D where a specific (the
most-voted) class label is assigned to each instance, (x,MV (l)). In order to
learn a predictive model from this completed dataset, any standard supervised
classification technique can be used.

For the sake of clarity, let us assume that all the t annotators have the
same reliability rate, ra. In this way, the probability of having Y annotators
providing the real label for a single binary class variable follows a Binomial
distribution with t repetitions and success probability ra, Y ∼ B(t, ra). Thus,
the probability of the real label being the most-voted one is:

pMV
S = 1− F (t/2; t, ra) =
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Understanding pMV
S as the reliability of the labels obtained with MV, it can

be shown that these are more (or equally) reliable than the labels provided by
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Fig. 5.1. Evolution of the probability mass function of the Binomial distribution
B(t, r) as the value of one of its parameters —t is the number of trials and r the
probability of success— increases. Fixing the value of a parameter in both figures,
each lines represents the function for a specific value of the other parameter.

single annotators when ra > 0.5 and t > 2. In fact, as observed in Figure 5.1,
the probability of guessing the real label increases as one or both parameters
of the Binomial distribution B(t, ra) rise. Both Figure 5.1(a) and 5.1(b) show
the same trend: as the value of the specific parameter increases, the area
under the mass function curve shifts to the second half of the figure (where
the number of annotators who are right is Y > t/2). That is, the scenarios
where the majority of annotators provides the right label are more probable.
In practice, this approach is a very interesting solution in the case of rich
information of supervision (large t and/or ra) because of the high reliability
of the MV labels (pMV

S → 1).

5.3.2 Having found the expert: do we need a crowd? The expert
selection strategy

The vast majority of methods proposed in the CrL literature [192, 141, 41,
42, 191, 30] look for domain experts among the crowd of annotators in order
to give more relevance to their annotations during the learning process. In
different ways, all of them look for (different concepts of) expertise and pro-
pose successful approaches to integrate it in the learning process. But, if we
have found a domain expert among the crowd, can the rest of the annotators
contribute or should we ignore them? In order to answer this key question,
let us assume that we are able to identify an expert among a crowd of novice
labelers.

Contrary to what intuition says, identifying expertise does not suppose
hard work if there is at least some basic knowledge among the crowd. This
ability is observed in basic measures to estimate the reliability of the annota-
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Fig. 5.2. Expected relevance rate of a single expert annotator with respect to a
novice (E[we]/E[wa], Eq. 5.3) as the reliability of the expert (re) and the total
number of annotators (t) are increased. The reliability rate of the novices is fixed
(ra = 0.6).

tors: e.g., the mean consensus of the rest of annotators on the labels provided
by an annotator Aa in a dataset of N instances [168],

wa =
1

N

N
∑

i=1

1

t− 1

∑

a′ &=a

I[lia′ = lia] (5.2)

Assuming that the real reliability rates of the annotators (ra, a ∈ {1, . . . , t})
are available, the expected value of this estimated reliability weight (Eq. 5.2)
in the case of a binary class variable is,

E[wa] =
1

t− 1



ra
∑

a &=a′

ra′ + (1− ra)
∑

a &=a′

(1− ra′)



 (5.3)

Let us assume a crowd scenario where there is a domain expert Ae and
the rest of annotators are novices with the same reliability rate (ra), such
that re > ra. It can be shown that Eq. 5.2 is a measure which is able to
detect the expertise of the outstanding annotator(s) if the reliability rate of
the rest of annotators (novices) is ra > 0.5. Using Equation 5.3, the rate of
the expected weight of an expert annotator Ae with respect to the expected
weight of a novice Ae of the crowd can be easily calculated (i.e., E[we]/E[wa]).
Fig. 5.2 shows this expected relevance measure as, given a fixed crowd relia-
bility rate (ra = 0.6), the number of annotators (t) and expert reliability rate
(re) increase. The dark area in the upper-right corner of the figure indicates
that the expert relevance would increase with both re and t. While a larger t
adds strength to the process with extra viewpoints of additional annotators,
a larger re involves a higher probability of coincidences with other annota-
tors. Although not shown in Figure 5.2, Eq. 5.2 requires a minimum crowd
reliability (ra > 0.5) in order to identify the expert correctly. Otherwise, the
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real expert could be considered as a saboteur (ra < 0.5) or could just remain
undetected (ra = 0.5).

Under the realistic assumption that the real expert annotator can be found,
a simple solution is to consider his/her labels the correct ones and build a new
completely labeled dataset based on his/her predictions. As both this expert
selection (ES) approach and the MV technique select a single and specific
label assignment for instances annotated by a crowd, their reliability can be
compared. Let us consider the probability of obtaining the right label for both
approaches in a crowd scenario where there is a single domain expert (with
reliability rate, re) and the rest are novices (with the same reliability rate, ra).
In ES, once the expert has been found, the reliability rate re can be considered
as the probability of being right; for the MV approach, Eq. 5.1 can be extended
with individual reliability rates (re %= ra) to provide the probability of the
most-voted label being the real one. Using all this information, it is possible
to calculate the probability of both techniques providing the same label; i.e.,
the probability of the label provided by the expert also being the most-voted
one among all the annotators. Similarly, both approaches disagree in those
cases where the crowd contradicts the opinion of the expert: i.e., the most-
voted label does not coincide with the label provided by the expert. But
contradicting the expert opinion is not always a wrong idea as the expert fails
with probability (1− re). In this way, two situations of disagreement between
both techniques can be identified: (a) the crowd agrees the wrong label against
the correct opinion of the expert, which happens with probability,

pdefeat = re·p(Y ≤
t− 1

2
−1) = re·





)(t−1)/2−1*
∑

i=0

(

t− 1

i

)

· ria · (1− ra)
t−(1+i)





and (b) the crowd prevents a wrong labeling of the expert, with probability,
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If the number of annotators t is even, as ties in MV are solved randomly,
both probabilities pdefeat and psave have to be updated with the corresponding
tie-solving probability,

pdefeat = pdefeat +
1

2
re ·

(

t− 1

t/2

)

· rt/2−1
a · (1− ra)

t/2

psave = psave +
1

2
(1− re) ·

(

t− 1

t/2

)

· (1− ra)
t/2−1 · rt/2a

To conclude, the application of a MV strategy (instead of ES) is justified
in those scenarios where the probability of preventing the wrong opinion of
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Fig. 5.3. Probability of the crowd correcting a wrong label of the expert (psave,
dark surface) against the probability of the crowd damaging a correct annotation of
the expert (pdefeat, light surface). Both figures depend on the number of annotators
in the crowd (t), the reliability rates of the crowd annotators (ra) and the expert
(re).

the expert is larger than the probability of imposing a crowd-predicted wrong
label despite the correct opinion of the expert (psave > pdefeat). Figure 5.3
shows graphically the areas of domination of each approach, and the boundary
between them. According to the figure, the knowledge of a single expert is
enough when its reliability is significantly larger than the crowd reliability
(re >> ra). Similarly, as the number of annotators (t) increases, the reliability
of MV rises and the expert should be considered alone only if his/her reliability
is outstanding.

5.3.3 Scenarios for improvement: beyond basic crowd learning
strategies

While MV is the best strategy when there are a large number of both high-
reliable annotators and instances, ES overcomes MV when there are few an-
notators and one of them is a domain expert with an outstanding reliability.
The crowd scenarios that are not definitely solved with basic techniques are
those with data scarcity: few instances and labelers; absence of outstanding
experts. This general description characterizes the space of crowd scenarios
where a new method could overcome the basic alternatives studied.

A completely different point of view consists of using all the labels provided
by all the annotators in the learning process. It can be shown that, estimating
specific reliability weights per annotator (in a similar way to Eq. 5.2), the
degree of noise introduced in the learning process is reduced as the estimated
individual weights match the real reliability rates (wa = ra, a ∈ {1, . . . , t})
of the annotators. In the extreme scenario where only an expert annotator is
considered (fully) reliable (we = 1 and

∑

a &=e w
a = 0), although the noise is
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minimized, the diversity of opinions is lost (i.e., the expert selection strategy).
In this way, the new proposal will take advantage of the learning process to
assign a fair influence to each annotator, with the objective of promoting the
labels provided by the most reliable annotators over the labels of novices.

5.4 A method for learning MBCs from a crowd of
annotators

We have applied the CrL paradigm to the multi-dimensional classification
framework. As formally defined in Section 2.1.3, in a multi-dimensional clas-
sification problem there are multiple class variables and each example is as-
signed to a class label for each class variable. The MD framework has been
formally extended to the CrL paradigm (MDCrL) in Section 2.4.4: for each
example and class variable, annotators provide their labels according to their
subjective opinion. Thus, the vector of reliability weights discussed in the pre-
vious section for the unidimensional scenario is transformed into the multi-
dimensional domains by means of a matrix of reliability weights (wa

k , with
a ∈ {1, . . . , t} and k ∈ {1, . . . ,m}) which describes the expertise of each an-
notator Aa in each class variable Ck. Note that multi-label (ML) learning
can be considered as a particular case of the multi-dimensional framework
[6, 148, 199]. A ML problem which has a class variable with |C| possible labels
can be represented as a MD problem with |C| class variables, where the pres-
ence/absence of each class label in the ML problem is modeled by a binary
class variable in the equivalent MD problem. Throughout this transforma-
tion, all the reasoning presented for the MD framework also applies for ML
problems.

In this section, we present a general method that learns multi-dimensional
Bayesian network classifiers (Section 3.4.4) from the data collected from
a multi-dimensional classification problem which has been annotated by a
crowd. For this study, a specific type of MBCs has been selected (Figure 3.4).
It provides a fixed structure which does not need to be learnt —it consists
of m fixed NB structures and a tree among class variables which, in prac-
tice, has been fixed. As the number of parameters of these models sharply
increases with the number of class variables, their learning process becomes
unfeasible in problems with many classes. However, the proposed procedure
works in the same way for other kinds of MBCs and, in this way, several meth-
ods proposed in the related literature which are able to learn MBCs with less
complex structures from data completely labeled [6, 148] could be adapted.
In our preliminary work [81], the wrapper algorithm proposed by Bielza et al.
[6] was adapted to the MDCrL framework and embedded in a Structural EM
[57] method; this strategy adds an external structural learning loop to the
parametric EM procedure. In this work, we skip the structural learning step
through the use of these MBCs of fixed structure, which allows us to focus all
the efforts on the main objective: demonstrating the enhanced performance
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Algorithm 3 Pseudo-code of our EM method
1: procedure EM(D,maxIt, ε)
2: j = 0
3: ŵ ← initializeWeights(D)
4: θ(j) ← parametricLearning(D,ŵ)
5: repeat

6: j = j + 1
7: ŵ ← calculateWeights(D,θ(j−1))
8: θ(j) ← parametricLearning(D,ŵ)
9: until (diff(θ(j),θ(j−1)) < ε) Or (j = maxIt)
10: return θ(j)

11: end procedure

of the learnt models as the expert knowledge of outstanding annotators is
detected and properly promoted.

Therefore, our method is based on the standard EM strategy (Section
3.3.2), which allows us to combine the learning of the model parameters and
the estimation of the reliability weights of the annotators. It takes advantage
of all the information of supervision available to learn classifiers, especially
in complex crowd scenarios as described in the previous section (they can
be easily extended to the multi-dimensional framework). To do this, at each
iteration our proposal estimates from the data a set of reliability weights, w,
which specifies the reliability of the annotators. In parallel, model parameters
are estimated from this kind of data (repeatedly annotated examples and
annotator reliability weights) by means of a modification of the standard
frequency-counting procedure.

The proposed method (its pseudocode is shown in Algorithm 3) first cal-
culates the reliability weights of the annotators according to Equation 5.2,
for each class label independently. Next, it iterates the classic EM procedure.
First, the model parameters are estimated from the multiple and weighted
annotations. During this step, the per-class reliability weights of the annota-
tors have to be combined. In this work, two combination schemes have been
considered: the addition and the product of per-class weights. Secondly, the
reliability weights of each annotator in each class variable are re-estimated us-
ing the current fit of the model. To do this, two different approaches have been
considered: (1) the accuracy of the labels of the annotator with respect to the
predictions of the model, and (2) the probability according to the model of the
labels provided by the annotator. Both steps are iterated until convergence.

Thus, the method can use four different configurations depending on the
approach selected to perform the weight combination and the weight estima-
tion steps. In the following subsections, a detail description of the method is
provided together with the description of the alternative approaches for each
step.
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5.4.1 Combining per-class reliability weights for parameter
estimation in learning from crowds

The information of supervision available in a MDCrL problem consists of
multiple annotations for each instance and class variable. We have adapted
the standard parameter estimation procedure to collect frequency counts
from this kind of data, using the reliability weights wa

k (a ∈ {1, . . . , t} and
k ∈ {1, . . . ,m}) for performing an informed aggregation of the different con-
tributions.

Applying the chain rule to our MBCs (Section 3.4.4), the joint probability
of an example (x, c) factorizes as,

p(x, c) = p(cr) ·
∏

k &=r

p(ck|cl)
n
∏

j=1

p(xj |c)

As usual, each conditional probability can be calculated from the dataset
by means of frequency counts,

p(u1|u2, . . . , u|u|) = N(u1, . . . , u|u|)/N(u2, . . . , u|u|)

where (u1, . . . , u|u|) ⊂ (x, c) is the instantiation of a set of variables U =
{U1, . . . , Ui} ⊆ V = (X,C) = (X1, . . . , Xn, C1, . . . , Cm) and N(u) represents
the corresponding counts. The Laplace estimator, a classic additive smoothing
technique that prevents assigning zero or one probabilities, is implemented.
By means of an adaptation of the counting procedure, N(·), the parametric
learning process integrates the multiple and weighted labels,

N(u) =
t

∑

a=1

w↓u
a

∑

y∈X (D,Aa)

I[y[U1] = u1, . . . , y[U|u|] = u|u|]

where [Uj] indicates the index of the variable Uj ∈ U in the original set of vari-
ables V , and X (D,Aa) represents the set of instances of the original dataset
D labeled by annotator Aa. Finally, w↓u

a is the combined reliability weight as-
signed to annotator Aa when just the variables U ⊆ V are considered. In this
stage, a strategy has to be chosen in order to combine the per-class reliabil-
ity weights of all the annotators (wa

k), constrained to
∑t

a=1 w
↓u
a = 1. In this

work, two simple techniques that reach different orders of expert relevance are
discussed: product or addition based combinations.

On the one hand, the combined reliability weight w↓u
a of annotator Aa can

be calculated as the product of the per-class weights, taking into account only
those class variables in U ,

w↓u
a =

∏

Ck∈U∩C wa
k

∑t
a′=1

∏

Ck∈U∩C wa′

k
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where C is the subset of class variables in V and (U ∩ C) selects the class
variables contained in U . On the other hand, w↓u

a can be calculated as the
addition of the per-class weights,

w↓u
a =

∑

Ck∈U∩C wa
k

∑t
a′=1

∑

Ck∈U∩C wa′

k

In this study, we assume that the annotators may be experts in a subset of
the class variables, and novices in the rest of them. Due to the combination of
the per-class weights, the larger expert weight we

k of the annotator Ae in class
Ck can be neutralized if his/her expertise is limited to this class variable or,
alternatively, over-promoted if Ae is expert in a large subset of class variables.
Let us assume a simplistic scenario where our method only assigns two types
of weights (large —expert— wl, and small —novice— ws) and identifies an
expert Ae that stands out in cc class variables at the same time. In the case of
a count that involves all the class variables (U ∩C = C), the relevance rate
that reaches Ae with respect to other completely novice annotator Aa using
the product-based combination approach is

w↓u
e

w↓u
a

=

∏

Ck∈U∩C we
k

∏

Ck∈U∩C wa
k

=
(wl)cc · (ws)(m−cc)

(ws)m
=

(

wl

ws

)cc

= hcc

where h = wl

ws > 1 is the relevance that an expert can reach in a single class

variable (i.e., how much the expert labels will be over-promoted). Similarly,
when the addition-based approach is used,

w↓u
e

w↓u
a

=

∑

Ck∈U∩C we
k

∑

Ck∈U∩C wa
k

=
cc · wl + (m− cc) · ws

m · ws

=
cc · h · ws + (m− cc) · ws

m · ws
=

cc

m
· h+

m− cc

m

This second approach assigns to the expert a final relevance equivalent to
the mean per-class relevance (where the minimum value is 1 —irrelevant—,
and h is the maximum value). However, in the product-based combination
strategy, the relevance in each class variable is multiplied, which could finally
make an expert annotator extremely relevant (depending on h and, mainly,
on cc).

As explained before, our method normalizes the weights of the annotators
to sum up to 1 (

∑t
a=1 w

↓u
a = 1). This calculation, which depends on the

number of annotators, determines the expert relevance too. As the weight of
an expert w↓u

e rarely doubles the weight of a novice (w↓u
a < w↓u

e < 2w↓u
a ),

even after product-based per-class combination, the influence of the expert is
reduced to tilt the decision towards their provided labels in the case of a tie.
As observed in Figure 5.1(b), the probability of a tie decreases as the number
of annotators increases, which reduces the expected influence of the expert.
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5.4.2 Estimation of the reliability weights of the annotators

Without any other information, the degree of knowledge of the annotators is
calibrated according to the labels that they provide. To do this, the provided
labels have to be somehow evaluated. The best solution would be a compar-
ison with a gold-standard. However, the lack of this gold-standard makes us
consider alternative procedures, such as the direct comparison with other an-
notators carried out in the initialization of the method (Eq. 5.2). Once a first
fit of the model M has been learnt, it can be used to estimate a gold-standard.
Different gold-standards can be estimated according to the way in which the
model is used. In this work, we explore two approaches which estimate per-
class reliability weights that reach different degrees of expert relevance. In a
first accuracy-based approach, the model is used to obtain the joint classi-
fication of each instance: ĉ = argmaxc∈C pM(x, c). Then, each weight wa

k is
calculated as the mean accuracy of the annotator Aa in the class variable Ck,
using the configurations predicted by the model, ĉi, as a gold-standard:

wa
k =

1

N

N
∑

i=1

I[Li
ak = ĉik]

The performance of this evaluation approach is limited by the use of the
MBCs. As any probabilistic classifier, the classification error of a MBC model
M (at least as large as the Bayes error) is:

Error(M) =
∑

x∈X

pG(x) · [1− pG(ĉ|x)]

where G is the generative model and ĉ is the joint class labeling provided by
the classifier model M for sample x. Moreover, in a multi-dimensional domain,
the classification error of the model taking into account just a class variable
Ck can be calculated as:

Errork(M) =
∑

x∈X

pG(x) · [1− pG(ĉk|x)]

where pG(ck|x) =
∑

c′∈C pG(c
′|x) · I[c′k = ck] is the marginal probability of

class variable Ck. As we just consider labelers which provide wrong labels
randomly (random noise), this measure gives an upper bound on the relia-
bility weights calculated by means of this accuracy-based technique. For an
annotator with a reliability rate ra, the expected weight is,

E[wa
k ] = (1− Errork(M)) · ra + Errork(M) · (1− ra)

In our second approach, the weight wa
k is estimated using the probability

of the labels provided by annotator Aa for class variable Ck. The probability
of a class label given an instance xi is calculated as its marginal probability
according to the model M,
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Fig. 5.4. Comparison of the ability of both weight estimation techniques to recover
the real expert relevance: hest/hreal = (E[we

k] · ra)/(E[wa
k ] · re). The mean value

and associated standard deviation of this recovery rate calculated for 10 randomly
generated MBCs is shown. The vertical divisions separate points with different crowd
reliability values (ra = {0.5, 0.55, . . . , 0.7}). In each division, a line links points with
increasing expert reliability (re = {ra, ra + 0.05, . . . , ra + 0.25}); i.e., different real
expert relevance.

wa
k =

1

N

N
∑

i=1

pM(L
i
ak|x

i) =
1

N

N
∑

i=1

∑

c∈C

pM(c|x
i) · I[ck = Li

ak]

The expected value of a reliability weightwa
k calculated with this probability-

based technique is, in the case of binary class variables,

E[wa
k ] =

∑

x∈X

pG(x)·
∑

ck∈{0,1}

pM(ck|x)·(pG(ck|x) · ra + (1 − pG(ck|x)) · (1 − ra))

As this second weight estimation approach takes into account both right
and wrong (according to the model classifierM) labels to calculate the weights
wa

k , the expert annotators do not reach high relevance rates. We have used
small MBCs (10 binary variables, 3 of them classes, with parameters ran-
domly generated from a Dirichlet distribution with all the αi = 1) in or-
der to illustrate the expected ability of both approaches to recover the real
relevance rate of the experts. Thus, the ratio of the real expert relevance
(hreal = re/ra) and the expert relevance (hest = E[wa

k ]/E[wa
k]) that is ex-

pected to be discovered for any binary class variable Ck is shown in Figure 5.4.
By increasing the crowd and expert reliability rates (ra = {0.5, 0.55, . . . , 0.7}
and re = {ra, ra+0.05, . . . , ra+0.25} relative to the specific ra value), experts
of different real relevance are induced in order to show the diverging behavior
of both weight estimation approaches. According to the figure, no approach is
expected to fully recover the real expert relevance, which is more evident in the
case of outstanding experts. Even so, the accuracy-based approach recovers
the real relevance of the expert annotators in a larger proportion.
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5.5 Experiments

In this section, different sets of experiments are performed: the capabilities
of the proposed method are explored (expert detection and promotion), the
different configurations of the method are compared and, finally, our proposal
and the presented basic CrL techniques are compared in different crowd sce-
narios with synthetic and real (ML) data.

All the synthetic datasets used in this section have been sampled from one
of our MBC models with 10 binary variables: 7 predictive and 3 class variables.
The tree structure among the class variables, the only non-fixed part of the
MBC graph, is built by randomly visiting all the class variables and randomly
selecting a previously visited class variable as parent of the current one. Model
parameters are randomly generated by sampling a Dirichlet distribution with
all the hyper-parameters equal to 1.

Regarding the simulation of a dataset labeled by a crowd, an original MD
dataset (real or synthetic, but completely labeled) and a (t×m)-matrix that
codifies the probability of each annotator to provide the right label for each
class variable (reliability rates) are used. Given an instance of the original
dataset, the class label vector is replicated t times to simulate the labels
provided by t annotators. Then, for each annotator and each class variable,
the real label is maintained or swapped (only binary class variables are used)
according to the corresponding reliability rate.

In these experiments, our EM method stops when the relative difference
between the parameters of two models learnt in consecutive iterations is below
0.1%, or when the maximum number of 200 iterations is reached.

5.5.1 Recovering and using the expert knowledge

Working under the realistic assumption that the expert knowledge can be
discovered, one of the characteristics of our method is its ability to take ad-
vantage of this expert knowledge during the learning process. In Section 5.3
we showed that the detection of experts is not a challenging procedure in the
majority of cases. However, the discussed procedure —a basic approach that
assess the annotator reliability based on the consensus among the different
annotations (Eq. 5.2)— is not able to deal with the unfavorable information
(the crowd reliability is ra ≤ 0.5). Alternatively, our method employs an es-
timated gold-standard to assess the reliability of the annotators. In this first
experimental setting, we test whether the use of this gold-standard allows our
method to successfully deal with those scenarios where the basic approach
cannot identify the expert(s).

In this section, we study both the ability of the different configurations of
our proposal to identify the real experts and the degree of relevance that is
assigned to them (hest). As we actually know the identity of the real experts
(in these experiments there are 3, one per class variable), their relevance can be
calculated as hest = we

k/
∑

a &=e w
a
k . We consider that the method discovers the
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Fig. 5.5. Mean number of discovered real experts (left figure) and relevance assigned
to them (right figure). Experiments in synthetic data generated with one expert per
class variable and cc = 2, using the product-based weight combination procedure.
Results for both weight acquisition approaches (based on accuracy or probability) are
shown. Each vertical division groups experiments performed with the same crowd
reliability value (ra = {0.4, 0.45, . . . , 0.7}). In each division, a line links related
experiments with increasing expert reliability (re = {ra, ra +0.05, . . . , 0.95}), which
allows us to generate experts of different relevance.

real experts if their relevance is larger than one (hest > 1) in the corresponding
class variable Ck. For this comparison, a fixed number of annotators (t = 4)
has been used and, for each class variable, one of them has expert knowledge.
In order to simulate different kind of experts, we generate scenarios where a
single annotator is expert in several class variables at the same time (cc =
{1, 2, 3}). Additionally, 7 crowd reliability rates ra = {0.4, 0.45, . . . , 0.7} and
different expert reliability rates re = {ra, ra + 0.05, . . . , 0.95} relative to the
crowd reliability rate ra used in the specific experiment have been induced. In
total, 189 different crowd scenarios were generated, each of them replicated
1, 000 times (10 generative MBCs × 10 MD datasets × 10 crowd annotations)
and evaluated in a 10× 5-fold cross validation procedure.

Figure 5.5 collects the results of a representative subset of the experiments
(only those which use the product-based weight combination technique and
datasets with cc = 2). As expected, the method easily discovers 2 of the ex-
perts and tends to discover the 3 experts as the reliability of both experts
and novices rises. Even in those cases where the crowd reliability rate is not
favorable (ra ≤ 0.5), it is also able to detect the outstanding experts. When
novices label randomly (ra = 0.5), the real experts are mostly detected. When
the novices are saboteurs (ra < 0.5) and provide contrary information, the
method firstly follows the majority (wrong) opinion of the saboteurs, consid-
ering the real expert a harmful annotator (which explains the initial drop in
the number of discovered experts). However, as the real expert relevance rises
(large hreal = re/ra), the method is able to identify a larger number of real
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experts —i.e., the method, to some extent, figures out that the majority opin-
ion is wrong and promotes the expert knowledge. Figure 5.5 also reveals the
different behavior of the method depending on the implemented weight acqui-
sition procedure. As discussed in Section 5.4.2, the probability based weight
acquisition procedure assigns a lower relevance to the expert annotators in
comparison with the relevance obtained by means of the accuracy-based ap-
proach. Surprisingly, the probability-based approach finds a larger number of
experts than the accuracy-based approach.

Throughout this discussion, we have left aside the influence of the number
of classes of expertise (cc) of the expert(s). The contribution of a domain
expert that provides reliable labels for several class variables (a large cc)
strongly affects the learning process in complex crowd scenarios, where the
proposed methodology tends to select a global expert in all the classes. Let us
imagine a crowd scenario where an annotator Ae is a domain expert in cc = 2
classes (C1 and C2) and another annotator Ae′ is expert just in C3. According
to this idea, the system will assign a high reliability degree to Ae in all the
classes. Due to the per-class weight combination procedure, the contributions
of Ae to the counts that include the class variable C3 (in which Ae is just a
novice) are assigned larger weights than those of the real expert in C3, Ae′ .
Note that in the MBCs used in these experiments (10 binary variables, 3 of
them classes), more than 98% of the counts require the application of a per-
class weight combination procedure. Consequently, the model will consider
that the most reliable joint labeling is that provided by Ae, being unable to
detect that Ae′ is the real expert of class variable C3. Thus, as the performance
in the classes of expertise ofAe (C1 and C2) strengthens, the local performance
in C3 is affected negatively and, consequently, so is the global performance.

Figure 5.6 shows the influence of increasing the number of classes of exper-
tise (cc = {1, 2, 3}) —remember that a single expert per class is generated—
over the final results (in terms of micro/macro F1 measures [6]). As discussed
in Section 5.4.1, the referred influence varies with the way in which each per-
class weight combination approach deals with the reliability weights. Due to
the enhanced expert relevance that characterizes the product-based strategy,
better performing classifiers are learnt as the learning process relies more on
the expert opinion. As expected, this outstanding behavior of the product-
based combination strategy strengthens as the number of classes of expertise
(cc) rises.

5.5.2 Looking for the best configuration of the proposed method

In Section 5.3, we characterized the crowd scenarios where each basic CrL
strategy is the best option to combine the crowd information. We characterized
the crowds scenarios with data scarcity as the space where our (non-basic)
method could contribute to improving the results of these basic approaches.
Consequently, in this kind of scenarios we have studied the behavior of the
four different configurations of our proposal: two per-class weight combination
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Fig. 5.6. Having a single expert per class variable, the figures display the behavior
in terms of micro/macro F1 measures of both per-class weight combination strate-
gies (product-based —left column— and addition-based —right column—) as the
number of classes in which the same expert stands out increases (cc = {1, 2, 3}).
Each vertical division groups experiments performed with the same crowd reliabil-
ity value (ra = {0.5, . . . , 0.7}). In each division, a line links related experiments with
increasing expert reliability (re = {ra, ra + 0.05, . . . , ra + 0.25}).

procedures (addition-based —Add— and product-based —Prod—, presented
in Section 5.4.1) per two reliability weight estimation approaches (accuracy-
based —Acc— and probability-based —Prob—, presented in Section 5.4.2).
Additionally, we have considered the assignment of equal reliability weights
to all the annotators as a baseline strategy (Eq). The comparison with this
equal-weights strategy allows us to objectively grade the contribution of the
individual non-equal reliability weights that our method estimates. For the
sake of fairness, Eq has been applied together with both weight combination
procedures.

This comparison covers 360 different crowd scenarios: 4 different num-
bers of annotators t = {3, 4, 5, 6}, one expert per class with 3 different
numbers of common classes per expert cc = {1, 2, 3}, 5 crowd reliabil-
ity rates ra = {0.5, 0.55, 0.6, 0.65, 0.7} and 6 expert reliability rates re =
{ra, ra + 0.05, . . . , ra + 0.25} relative to the crowd reliability rate ra used in
the specific experiment. Each crowd scenario has been replicated 1, 000 times
(10 generative MBCs × 10 MD datasets × 10 crowd annotations), all of them
evaluated in a 10× 5-fold cross validation procedure.

In order to analyze the obtained results, we have used the statistical frame-
work proposed by Demšar [46] and Garćıa and Herrera [63]. This framework
indicates a way to perform a statistical validation looking for significant dif-
ferences in the performance of the methods under comparison. In our case,
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Method Eq+Add Eq+Prod Prob+Add Prob+Prod Acc+Prod Acc+Add

Av. Rank 4.32 4.28 3.74 3.23 2.84 2.59

Table 5.1. Average Ranks of the 4 configurations of the proposed method and
another 2 with equal weights according to mean accuracy results.

where several methods (and configurations) have to be compared, this frame-
work first performs a Friedman test, which analyzes whether the methods
follow the same probability distribution (null-hypothesis). If the Friedman
test null-hypothesis is rejected, several post-hoc tests are applied to compare
the methods by pairs.

According to the Friedman test [46], statistically significant differences do
exist between the mean accuracy results (mean value of the accuracy in each
class variable) of the different methods and configurations under comparison
(see average ranks in Table 5.1) when the type I error is fixed to α = 0.05.
As the Friedman test rejects the null hypothesis, post-hoc paired tests have
been performed to discover differences between pairs of configurations using
the Holm procedure [46] (see the associated critical difference diagram in Fig.
5.7). The post-hoc paired tests can not find statistically significant differences
(α = 0.05) between both configurations that use the accuracy-based weight
estimation approach (Acc+Prod and Acc+Add). Moreover, no statistical dif-
ference can be found between both Eq configurations and the Prob+Add con-
figuration (probability-based weight acquisition approach with addition-based
combination). This behavior can be explained as the difficulty of the Add com-
bination procedure to maintain or improve the low expert relevance that the
Prob approach produces. On the other hand, the Prod combination procedure
keeps and even takes advantage of that low Prob-obtained expert relevance.

Similar tests have been performed looking for statistical differences when
micro F1 and macro F1 measures are used. All of them find the same differ-
ences between the configurations using the accuracy-based weight estimation
technique (which show the best performance) and the rest of the configura-
tions. Only the statistical tests based on the micro F1 measure find statis-
tically significant differences between Acc+Add and the best configuration,
Acc+Prod.

5 4 3 2

Prob+Prod

Eq+Prod
Eq+Add

Prob+Add

Acc+Prod
Acc+Add

Fig. 5.7. Result of the Holm procedure marking statistically significant differences
found at α = 0.05. 4 configurations of our proposal and another 2 with equal weights
are located in the scale according to their ranking (based on mean accuracy results).
Bold horizontal lines link methods that are not significantly different.
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5.5.3 Comparison with basic CrL techniques in synthetic data

Once shown that the use of non-equal individual reliability weights improves
the performance of the learnt models, we have carried out a set of experiments
to compare our proposal with both basic CrL techniques discussed in Section
5.3: majority voting and expert selection. In the multi-dimensional framework,
the exposed techniques have been applied to each class variable separately.
Based on the conclusions of the previous experimental tests, we decided to
use the Acc+Prod configuration to set up our method.

As explained in Section 5.3, an alternative CrL proposal would be a no-
table contribution if it was able to overcome the simple techniques in crowd
scenarios of data scarcity. In this experimental setting, complex MDCrL sce-
narios are simulated using 8 different numbers of annotators t = {3, 4, . . . , 10},
one expert per class with 3 different numbers of common classes per expert
cc = {1, 2, 3}, 5 crowd reliability rates ra = {0.5, 0.55, 0.6, 0.65, 0.7} and 6
expert reliability rates re = {ra, ra + 0.05, . . . , ra + 0.25} relative to the spe-
cific ra. The obtained results are the mean value over 1, 000 replications of
the same crowd scenario (10 generative MBCs ×10 MD datasets ×10 crowd
datasets), all of them evaluated in a 10× 5-fold cross validation procedure.

Figure 5.8 shows the results of the comparison of our method using the
Acc+Prod configuration with respect to MV and ES by means of micro/macro
F1 andmean accuracy measures in a representative subset of the experimental
scenarios (t = {4, 6, 8} and cc = 2). As expected, the three measures show
that our method outperforms both baseline techniques in crowd scenarios with
small expert relevance and a reduced number of annotators. As the expert
relevance rises, the expert selection strategy reaches the performance of our
method and, with even higher degrees of relevance, it finally outperforms our
proposal (although Fig. 5.8 shows a maximum difference of re = ra + 0.25,
beyond this point the trend is expected to remain). On the other hand, an
increase in the number of annotators (t) benefits MV, which gets closer to the
behavior of our proposal as t increases (remember that MV does not require
any expert detection procedure). Specifically, it can be observed in Fig. 5.8
that the number of annotators (t) required by MV to show a similar behavior
to our method increases as the reliability rate of the novices (ra) decreases.

The same statistical framework [46, 63] used in the previous subsection
was applied to analyze the results of this comparison. All the statistical tests
(based on mean accuracy, micro F1 and macro F1 measures, using α = 0.05)
show the same differences: The Friedman test [46] finds statistically significant
differences between the results of the three methods, and the post-hoc paired
tests using the Holm procedure [46] discover differences between all the pairs
of methods.
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Fig. 5.8. Comparison of our method using the Acc+Prod configuration (AP) with
Majority Voting and Expert Selection in terms of mean accuracy and micro/macro
F1. Each column represents experiments with a different number of annotators,
t = {4, 6, 8}. Each vertical division groups experiments performed with the same
crowd reliability value (ra = {0.5, . . . , 0.7}). In each division, a line links related
experiments with increasing expert reliability (re = {ra, ra + 0.05, . . . , ra + 0.25}).

5.5.4 Comparison in real multi-label data

With the objective of testing our proposal in real data, a comparison in crowd
scenarios simulated from three real multi-label benchmarks1 (emotions, flags
and scene) has been performed. Based on the previous experimental setting,
we use the real ML data transformed to the MD framework and the crowd
annotations simulated as explained at the beginning of this section.

In this case, the experimental setting explores crowd scenarios with 3 dif-
ferent numbers of annotators t = {4, 6, 8}, 5 crowd reliability rates ra =
{0.5, 0.55, . . . , 0.7} and 6 expert reliability rates re = {ra, ra + 0.05, . . . , ra +
0.25} relative to the specific ra. Given a single expert per class, 4 differ-
ent numbers of common classes of expertise per expert have been inferred

1 http://mulan.sourceforge.net/datasets.html
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Fig. 5.9. Comparison in real ML data of the Acc+Prod configuration of our
method (AP), Majority Voting and Expert Selection. Each column shows the mi-
cro/macro F1 results of experiments with a different ML dataset (emotions, flags
and scene). Using 4 annotators and cc = 4, each vertical division groups exper-
iments performed with the same crowd reliability value (ra = {0.5, . . . , 0.7}). In
each division, a line links related experiments with increasing expert reliability
(re = {ra, ra + 0.05, . . . , ra + 0.25}).

cc = {1, 2, 4, 6} (the datasets have 6, 7 and 6 binary class variables, respec-
tively). This makes a total number of 360 different crowd scenarios tested
in each real ML dataset, all of them evaluated in a 10 × 5-fold cross val-
idation procedure. The results show the average value over 10 replications
(different crowd datasets). Continuous variables have been discretized using
equal-frequency with 3 intervals.

In a comparison of the Acc+Prod configuration of our method, MV and ES,
Figure 5.9 shows the results in terms of micro/macro F1 measures for a fixed
number of annotators (t = 4) and number of classes of expertise (cc = 4). The
performance of the three methods varies depending on the different domains
and their characteristics (Tab. 5.2). Whereas the results of the MV strategy

Dataset No. variables No. class variables (m) No. instances (N)

Emotions 78 6 593

Flags 26 7 194

Scene 300 6 2407

Table 5.2. Description of the three real ML datasets.
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are far from those of our method and ES in any scenario of the flags domain,
it shows a competitive performance in the emotions domain and overcomes
our proposal in the most-informed scenarios of the scene domain. This reflects
the difficulties of MV to deal with crowd scenarios of data scarcity such as
the flags domain. However, our method shows a good behavior in the three
domains and it is only clearly overcome in the most-informed scenarios of the
scene domain.

The behavior of the methods in the rest of tested scenarios is similar to
the one observed in Figure 5.9, showing the expected variations derived from
the increase in the number of annotators. The results of the whole set of
experiments were analyzed using the statistical framework [46, 63] previously
presented. Using micro F1 measures and α = 0.05, the Friedman test finds
statistically significant differences between the results of the three methods.
The post-hoc paired tests performed with the Holm procedure [46] cannot
find differences between ES and MV. Using macro F1 measures, the Friedman
test once more finds statistically significant differences between the results of
the three methods, and the post-hoc paired tests using the Holm procedure
discover differences between all the pairs of methods.

5.5.5 A more realistic scenario: Using multi-label classifiers as
annotators

In order to reduce our direct influence in the generation of the crowd annota-
tions, we have carried out a last set of experiments where each annotator is a
classifier. The presence of classifier models among the annotators of a crowd
has been detected and discussed in real CrL problems [41, 30, 200]. Based on
this idea, we follow the experimental setting of [200] and use the predictions
of the classifiers to simulate the annotations of different annotators. Without
access to real MDCrL data, we consider that the combination of this idea
with the real ML datasets (emotions, flags and scene) provides a realistic
framework to test our proposal.

In order to simulate the annotators of this last experimental setting, a set
of 8 multi-label classifiers implemented in the MULAN software2 has been
used: the lazy classifiers MLkNN and BRkNN, and the meta-classifiers Binary
Relevance, Calibrated Label Ranking and Classifier Chain using naive Bayes
and J48 as base classifiers.

The number of annotators in these experiments was fixed to t = 4 and,
consequently, the classifiers employed in the specific replication of the experi-
ment were randomly selected among the 8 previously presented. Each selected
technique is used to learn a ML classifier from the original ML dataset. Next,
the joint labeling that the different learnt ML classifiers predict for the in-
stances of the original dataset are obtained. Finally, these predicted labels are
used to simulate a MD dataset annotated by a crowd of 4 annotators. Each

2 http://mulan.sourceforge.net/
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Fig. 5.10. Comparison, using (t = 4) ML classifiers as annotators, of the Acc+Prod
configuration of our method (AP), Majority Voting and Expert Selection. Each col-
umn shows the micro/macro F1 results of experiments with a different ML dataset
(emotions, flags and scene). In each figure, the 30 experiment replications are located
in the horizontal axis according to their percentage of labels which were correctly
annotated by at least half of the annotators (as a measure of the complexity of crowd
scenarios). When several replications coincide in the same percentage value (shown
in the upper bar diagram), the mean value with the associated standard deviation
is shown.

experiment has been evaluated in a 10 × 5-fold cross validation procedure,
and the whole process has been replicated 30 times in order to reduce the
dependence on the random selection of classifiers.

Figure 5.10 shows the performance in terms of micro/macro F1 measures
of our proposal and the basic CrL techniques (ES and MV) in crowd scenarios
generated from the three ML domains. As the complexity of these experiments
has not been artificially induced, the type of figure displayed in previous ex-
periments cannot be used. Thus, each figure represents the 30 replications of
the experiment according to their complexity measured in an alternative way:
the proportion of labels correctly annotated by at least half of the annotators.
This measure might be also understood as the proportion of correct labels
which are also the most voted ones, that is, as its value tends to 100% the
probability of MV overcoming the results of the other methods rises.
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This alternative complexity measure also reflects the larger complexity of
the flags domain. The experiments performed with the emotions and, mainly,
the scene datasets are located over 90% in the horizontal axis according to this
measure, which represents a large correct annotation of the instances. How-
ever, in the case of the experiments with the flags dataset, few experiments
exceed that value. Particularly in the complex domains (flags and emotions),
our method shows a competitive behavior and is able to widely overcome the
results of the other techniques. However, in the scene domain, a dataset fa-
vorable for the MV strategy, our method only overcomes the results of that
basic strategy in a scenario where the complexity measure does not reach
80%. In this comparison, ES is not able to reach the behavior of the other two
methods.

5.6 Conclusions and future work

We have presented a general framework for learning multi-dimensional Bayesian
network classifiers from data annotated by a crowd of annotators. Focused on
improving the learning process in complex crowd scenarios, different ways
to incorporate the information of the reliability of the annotators have been
explored.

In order to reveal the strengths of the proposed method, this chap-
ter presents a complete study of basic CrL approaches, characterizing the
crowd scenarios where each discussed approach shows a better performance.
Throughout the chapter, a set of useful guidelines which can be used to select
the most convenient strategy to cope with a specific crowd scenario is pre-
sented. Finally, by means of a set of experiments performed with ML (real or
synthetic) datasets transformed to the MDCrL framework, our proposal has
been shown to overcome the simple approaches in crowd scenarios with data
scarcity.

In real crowd scenarios, it cannot be assumed that every annotator labels
all the instances and class variables —in this way, Sun et al. [175] proposed an
extra valid state for the annotations (class-member, non-member, unknown).
As future work, releasing this assumption would imply taking into account
annotators who label few instances. This would require the redesign of the
techniques that have been proposed to calculate the reliability weights. More-
over, in this study it is assumed that all the annotators provide wrong labels
randomly. On the contrary, considering non-random noisy annotators (e.g.,
someone that tends to label incorrectly only the examples of a specific area
of the instance space) could require a specific methodology.

Let us imagine a crowd scenario where the number of annotators labeling
each instance is very different; or a different scenario where a brilliant domain
expert labels only a few instances. It could be interesting to implement a
complete framework which is able to choose in run-time the best approach
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for each instance: majority voting if many labels have been provided, expert
selection only for the instances labeled by highly reliable experts, etc.



Part III

Applications





6

Assisted Reproductive Technologies

In medicine, the problem of the assisted reproductive technologies (ARTs) —
the difficulty of inducing a pregnancy without increasing the probabilities of
the intrinsically risky multi-pregnancy— has received considerable attention.
It is generally accepted in the related literature that there is room for advances
in this field. Particularly, many medical decisions have to be taken during the
whole procedure and, consequently, current research lines aim to increase the
knowledge on the problem to support the decisions of the physicians. With
this objective, different artificial intelligence and machine learning techniques
have been applied to the ART problem.

In collaboration with the Unit of Assisted Reproduction of the Donostia
Hospital, we have proposed an integral solution for the ART problem by means
of a case study. The main objective is to gain evidence about the relevance of
the collected data and its potential use for improving the rate of pregnancies.
Based on an embryo-uterine design, four different approaches which provide
valuable information for partially solving the ART problem have been pro-
posed by our multi-disciplinary team. Three of these approaches are configured
as weakly supervised classification problems, according to the description pro-
vided in Section 2.2. Contrary to the common practice in previous solutions
to the problem, where embryos of unknown fate are usually discarded, our
weakly supervised techniques consider every example (even embryos/cycles
whose fate cannot be certainly established). The four approaches have been
successfully tested in our case study. In the performed experiments, obtained
classifiers outperform the implemented embryo selection criteria, proposed
by the Spanish Association for Reproduction Biology Studies. Specifically,
medium-quality embryos are extensively reordered. The study reveals the lim-
its of the collected morphological features. Furthermore, it reflects the need
for a thorough study of the implantation process and the identification of new
features that describe it precisely.
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BLASTOCYTE?
EVALUATION

EVALUATION PREGNANCY?

SPERM
RETRIEVAL

STIMULATION OOCYTE
RETRIEVAL TRANSFERENCE

Fig. 6.1. Diagram of an ART cycle. Red boxes indicate an action with the pa-
tients. Yellow boxes indicate an action with oocytes/embryos. Both blue boxes
represent two observable outcomes: (a) Has the woman got pregnant? (b) Has a
non-transferred embryo reached blastocyte stage?

6.1 Introduction

Assisted reproductive technologies (ARTs) are a set of invasive medical tech-
niques that attempt to induce a pregnancy. Each trial of a reproduction treat-
ment applying a suitable ART is known as a cycle. When a woman undergoes
an ART cycle, she follows a treatment of ovarian stimulation for several weeks
in order to induce the development of multiple follicles with a large number of
oocytes. By means of a punction, oocytes are retrieved using an ultrasound-
guided transvaginal follicle aspiration. The mature oocytes are subsequently
fertilized and the resulting embryos cultured for several days. The next step,
the selection of the most promising embryo(s) to transfer to the uterus of the
woman is a critical decision in the ART procedure. After transference, the
occurrence of embryo implantation —a natural process that cannot be super-
vised by the specialist— determines the success of an ART cycle: Implantation
of at least one of the transferred embryos leads the cycle to a pregnancy. See
Figure 6.1 for a graphical description of a standard ART cycle.

An accurate identification of those cycles that will end up in a pregnancy
would surely be reflected in a significant improvement of the performance of
the ARTs. For decades, there has been a persisting discussion on the fea-
tures that determine the success of a cycle from those usually collected in
the different stages of the ART procedure. Considered features can be sepa-
rated in variables that describe the cycle —female and male evaluation, stim-
ulation, etc. (red boxes in Fig. 6.1)— and those that describe each single
oocyte/embryo (green stream and yellow boxes in Fig. 6.1). In their exhaus-
tive reviews, Achache and Revel [1] and Ebner et al. [49] collected and dis-
cussed an extensive set of variables that have been considered for assessing
the quality of both cycles and oocytes/embryos. The use of data analysis
techniques in many research works, where the contribution of different fea-
tures is evaluated, has resulted in the presentation of an unbounded number
of embryo scores and selection criteria [36, 49, 53, 153, 173, 183, 203]. More
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recently, taking advantage of the development of computational techniques,
different machine learning (ML) paradigms, such as supervised classification,
have been applied to the analysis of the ART problem by multidisciplinary
research teams [33, 40, 71, 126, 134, 137, 146]. In supervised classification,
a classification model that reproduces the inherent categorizing behavior of
a problem of interest —which is learnt from a set of previous examples—
is built. Each example describes a real case of the problem and is provided
annotated with its real category (class label). A classifier will anticipate (ac-
curately) the class label of new uncategorized examples. Applied to the ART
problem, a straightforward approach is to use the data collected from previ-
ous cycles to learn a classifier that predicts whether a new cycle will end up
in a pregnancy. The training examples (cycles) are certainly labeled from five
weeks after embryo-transfer, when the existence of an evolutive pregnancy can
be assessed by the use of ultrasound techniques. Many authors have used this
approach for evaluating the relevance of a reduced set of allegedly determining
variables (e.g., woman’s age, time of sterility or number of previous cycles)
[126, 146, 153]. On the contrary, in our study all the features collected by the
physicians (listed in Table 6.2) have been initially considered as predictive
variables: female and male characteristics, treatment, transference and a set
of features that summarizes the characteristics of the oocytes/embryos ob-
tained in the cycle. Although our learning techniques automatically calibrate
the contribution of each predictive variable (feature), the use of a larger set
of variables usually introduces irrelevant/redundant variables, which can be
harmful to the performance of the classifier [96]. Thus, feature subset selection
(FSS) techniques [72, 151] are applied for automatically identifying the rele-
vant predictive variables and discarding those that are uninformative. With
our strategy, physicians do not need to manually choose the relevant features:
The model inputs all the collected variables and automatically establishes
their contribution. Moreover, learnt classifiers can be used to test which cy-
cle configuration (e.g., stimulation treatment) maximizes the probability of
success.

As previously mentioned, the objective is to improve the pregnancy rate
of the ARTs. Traditionally, the number of embryos to transfer is assumed to
be positively correlated with the probability of pregnancy [52, 119]. Thus,
the multi-transference cycles (more than one embryo was jointly transferred

Implanted

0 1 2 3

T
ra
n
sf
er 1 32 8 - -

2 140 45 29 -

3 45 20 9 2

Table 6.1. Summary table with the number of ART cycles according to their num-
ber of transferred/implanted embryos in our case study.
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Fig. 6.2. Graphical description of the (partial) labeling of the training data that
characterizes the four (weakly) supervised approaches used in this paper.

in that ART cycle) exceed 85% of the cycles in our case study (Table 6.1).
Multi-transference may give room to the joint implantation of several embryos,
eventually leading to a multiple pregnancy (in 22% of the multi-transference
cycles of our case study; Table 6.1), which is widely considered risky for both
the woman and the developing fetus(es) [52, 68, 109, 119, 142]. Therefore,
multiple transference raises both the probability of pregnancy and the risk
of multiple pregnancy [52, 119]. In order to reduce the occurrence of multi-
ple pregnancy, legal restrictions limiting the maximum number of transferred
embryos were established (in our case study, Spanish law limits it to 3). As
the clinical ART procedure usually produces excess embryos, clinicians have
to select those to transfer. In part opportunity, in part necessity, embryos to
transfer have to be carefully selected as the transference of poor-quality em-
bryos is a major contribution to ART failure [1, 49]. In the related literature,
all these considerations have originated an interesting discussion on the pos-
sibility of selecting and transferring a set of promising embryos (or just one)
that will lead to a single pregnancy [52, 68, 109, 119]. In the general scenario,
the decision is two-fold: the number of embryos to transfer [109, 119] and
their individual selection among the obtained embryos. The aim to provide
an answer to the second question has motivated a different classification task
which predicts whether an embryo, in the case of being transferred, will get
implanted. Due to its utility for supporting the physicians’ decision on the
selection of embryos to transfer, this “implantation” prediction approach has
become the most popular application of ML techniques in the field of the
ARTs [33, 40, 71, 134, 137]. In our case study, the oocyte/embryonic morpho-
logical features collected by physicians (those required to apply the embryo
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selection criteria proposed in [3]; Table 6.3) have been used as predictive vari-
ables, whereas the class variable Implantation indicates whether the embryo
(example) got implanted. As non-transferred embryos never had the opportu-
nity to get implanted, only transferred embryos have been used for training
the classifiers in this approach. Contrary to the previous approach (pregnancy
prediction), a classical fully labeled dataset —Fig. 6.2(a)— cannot be collected
for this approach: Current medical techniques only allow clinicians to know
the number of implanted embryos, not their identity. Although it is a com-
mon practice in the related literature to discard the embryos of unknown fate
[40, 86, 137, 153, 183, 203], our specifically designed ML techniques allow us
to also use them in model learning. The conclusions drawn from the results
of any data analysis (including ML techniques) are affected by the sample
size. Hence the effort to incorporate any available example to our analysis. It
has already been shown that the weakly supervised ML techniques are able to
efficiently learn from this kind of partially labeled data. Specifically, the em-
bryo implantation approach is modeled by means of the learning from label
proportions (LLP) [81] paradigm: the training dataset is presented divided
in groups (bags) of unlabeled examples and, for each group, the number of
positive/negative examples is provided —Fig. 6.2(b).

However, both previously discussed approaches present a problem: The
conditions that benefit the implantation of an embryo and the consequent
pregnancy have not been fully understood [1, 49]. In general, the implantation
failure is assumed to be a consequence of embryonic or uterine factors. Fur-
thermore, although uterine cavity or genetic abnormalities, thin endometrium,
immunological factors or suboptimal ovarian stimulation [1, 34, 117, 165] have
been argued to explain the occasional failure of good prognostic embryos in
promising cycles, more research is required for a conclusive answer. When this
misunderstood implantation failure —denoted by its acronym MIF henceforth
in the chapter— repeatedly occurs in consecutive treatments, a recurrent im-
plantation failure is diagnosed [34, 117, 165]. MIF occurrence can be seen as
the limited ability of currently monitored cycle/embryonic features to describe
the implantation process. Therefore, the use of this data for learning classi-
fiers would limit their capability to predict a pregnancy or an implantation.
Partially inspired by the embryo-uterine (EU) model [171], two alternative
approaches that consider the impact of the MIF phenomenon from the point
of view of both cycles and embryos have been designed. To be successful, an
ART procedure requires both the transference of good quality embryos and a
cycle which is able to lead to a pregnancy [1, 171]. These two states, which are
independent/previous to implantation (or a hypothetical MIF occurrence) but
achieved by any successful ART procedure, are represented by our alternative
approaches.

Let us consider the first alternative approach, which learns classifiers that
anticipate the capability of an ART cycle to lead to a pregnancy. Note that
it does not predict pregnancies but it identifies good prognostic cycles that,
in the best scenario (i.e., it is carried out with promising embryos without
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Variable Possible values Brief description

Indication endometriosis, failed
intrauterine insemina-
tion, tubal factor, male,
mixed, other, unknown

Indication of the cycle

Infert.time numeric Time since infertility was detected
F
em

a
le

Age (0, 30], (30, 35], (35, inf) Age

BMI (0, 20], (20, 25], (25, inf) Body mass index

Prev.Pregnancy No, Yes Has she ever got pregnant?

Prev.Abortion No, Yes Has she ever aborted?

Prev.Cycles 0,1,2+ Number of previously undergone ART cycles

FSH [x ≤ 10], [10 < x] Quantity of follicle-stimulating hormone

AMH [0, 0.5], (0.5, 1], (1, inf) Quantity of anti-mullerian hormone

antralFol [x ≤ 4], [4 < x] Number of antral follicles

E2 [x ≤ 3000], [3000 < x] Quantity of estradiol

P4 [x ≤ 1.5], [1.5 < x] Quantity of progesterone

lEnd numeric Endometrial thickness

M
a
le Quality.Semen A, N, O, OA, OAT Quality of the semen

REM [0, 0.5], (0.5, 1], (1, inf) Total pregressive sperm recovery

S
ti
m
u
la
ti
o
n

Protocol PC, PL Stimulation protocol

Stimulation FSH+Lhrec, FSHrec,
FSHrec+hMG, FSHur,
FSHur+hMG, hMG

Stimulation treatment

dEst numeric Number of days of stimulation

unitFSH numeric Units of FSH

unitLH [0], (0, 1500], (1500, inf) Units of LH

S
u
m
m
a
ry

em
b
ry

o
s

No.Oocytes numeric Number of retrieved oocytes

No.MII numeric Number of mature oocytes (MII state)

No.Embryos numeric Number of embryos

FertilityRate [0, 0.5], (0.5, 1] No.Embryos / No.MII

No.Transf.Emb 1, 2, 3 Number of transferred embryos

SelectiveTransf No, Yes Were transferred embryos selected? (No.Embryos
> No.Transf.Emb)

O
u
tc
.

Pregnancy No, Yes Did she get pregnant?

No.Sacs 0, 1, 2, 3 Number of gestational sacs

Table 6.2. Features collected for each ART cycle.

MIF occurrence), would end up in a pregnancy. For the sake of simplicity,
we have decided to name this approach as “pregnanble” prediction, denot-
ing the characterization of a state that possibly (not certainly) leads to a
pregnancy. In this approach, the training examples represent cycles and are
described by all the cycle features (Table 6.2) —with the exception of those
describing the process of transference: No.Transf.Emb and SelectiveTransf.
The training dataset is divided in clearly separable two subsets. A subset of
positive examples (cycles), which is composed of all those cycles that ended
up in a pregnancy: As our target variable assesses the accomplishment of a
pre-requirement of the pregnancy, any cycle that ends up in a pregnancy was
obviously capable of leading to a pregnancy. Similarly, a cycle which failed
due to the transference of poor quality embryos (or to the referred MIF oc-
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Variable Possible values Brief description

O
o
cy

te

Vac No, Yes Presence of vacuoles

SER No, Yes Presence of smooth endoplasmic reticulum clusters

PVS Normal, Augmented Description of the perivitelline space

PB Normal, Abnormal Description of the first polar body

Technique IVF, ICSI Fertilization technique
D
+
1 PB.1 1, 2, 3+ Number of polar bodies

Z Z1, Z2, Z3, Z4 Scott’s pronuclear grade [156]

D
+
2

nCel.2 {4}, {2;5}, {other} Number of cells

frag.2 [0, 10], (10, 25],
(25, 35], (35, 100]

Percentage of cell fragmentation

symmet.2 No, Yes Are the blastomeres symmetric?

PZ.2 Normal, Abnormal Presence of abnormalities in the pellucid zone

vac.2 No, Yes Presence of vacuoles

multiNuc.2 No, Yes Presence of multi-nucleation in a cell (no.nuclei ≥ 2)

Quality.2 A, B, C, D ASEBIR quality grade [3]

Transfer No, Yes Embryo selected for transference

O
u
tc
.

Implanted No, Yes Did it get implanted?

Blastocyte No, Yes Did it reach the blastocyte stage?

Table 6.3. Features collected for each oocyte/embryo. Implanted and Blastocyte
variables cannot be always annotated by clinicians.

currence) cannot be considered as a negative example of this approach, whose
aim is the identification of promising cycle configuration. That is, the failure
of a cycle does not always imply a bad cycle configuration. And as current
medical techniques cannot determine which specific cause is responsible for
the failure of each cycle, the respective examples (second subset) are anno-
tated as unlabeled. This is modeled by means of another weakly supervised
classification paradigm, the positive unlabeled (PU) learning [18], where a
binary classifier is learnt from a dataset that only contains positive-labeled
and a majority of unlabeled examples —Fig. 6.2(c). PU techniques allow us
to learn from this kind of data, taking into account that there could be both
positive and negative examples in the unlabeled subset.

Applied to embryo assessment, this idea of anticipating the achievement
of a state previous to implantation characterizes embryos that, in favorable
conditions, are able to get implanted ; that is, embryos of correct develop-
ment. Two days after oocyte fecundation (D+2 ), when embryo selection and
transference are carried out in our case study, an embryo has only achieved a
basic development [49, 53, 71]. Our physicians carried on the culture of non-
transferred embryos and vitrified and preserved those that reached blastocyte
state. Blastocyte formation is considered an indicator of correct development
and desirable embryo quality [53, 71]. Thus, our fourth approach, the “im-
plantable” prediction, tries to identify embryos that reach this state (good
prognostic). The features of Table 6.3 are used for describing the examples
(embryos) and the approach is modeled by means of a weakly supervised
classification paradigm that uses as training data both transferred and non-
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Fig. 6.3. Relationship between the four approaches considered for the ART prob-
lem. A pregnancy1 occurs if at least one embryo implantation2 occurs. Although
some cases unexpectedly fail —the implantation process is not fully understood
yet— an embryo implantation2 requires a good prognostic embryo transferred in a
good prognostic cycle. The pregnanble3 and implantable4 approaches identify good
prognostic cycles and embryos, respectively.

transferred embryos. The latter, cultured in the laboratory until blastocyte
state, are individually labeled. However, fairly labeling the former subset leads
us to a weak supervision scenario. Implanted embryos did certainly develop to
blastocyte. As in the previous approach, a similar reasoning is applied to failed
embryos: A transfer-embryo that did not get implanted cannot be labeled (as
negative) because there are other valid causes for a failure apart from a halt in
its development. Additionally, as the implanted embryos are not individually
identified, the real label of each transferred embryo is only known for those cy-
cles where all the transferred embryos got implanted. As far as we know, this
is a new weakly supervised classification problem that has not been addressed
in the related literature. The training dataset —Fig. 6.2(d)— is divided in a
subset of labeled and another subset of unlabeled examples (non-transferred
and transferred embryos, respectively). The unlabeled examples are grouped
in bags (embryos transferred in the same cycle) and, for each bag, the number
of positive and the number of unlabeled examples are provided. Since it can
be seen as a combination of the weak supervision scenarios of the PU and LP
paradigms, henceforth we will refer to this framework as the positive unlabeled
proportions (PUP) problem.

The aim of the classifiers learnt with both alternative approaches is not to
predict the ART procedure success but to allow specialists to identify, in the
first case, valid cycle configurations and promising embryos in the second case.
Combined, they can be used to arrange a promising cycle that is predicted to
fulfill two basic requirements of a hypothetical pregnancy. All the relationships
among the four approaches are graphically described in Figure 6.3.

In this chapter, an integral analysis of an ART case study is carried out
using the exposed four approaches and their respective (weakly) supervised
classification frameworks. Next, specific solutions for learning Bayesian net-
work classifiers in each approach are explained. Then, a large set of experi-
ments designed to explore the predictive ability of the classifiers learnt in each
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approach is presented, their results are discussed and a set of conclusions is
drawn. Several interesting future research lines are noted.

6.2 Material and methods

6.2.1 Data

The database has been collected by the Unit of Assisted Reproduction of the
Hospital Donostia (Spain) during 18 months (January 2013 - July 2014). The
population consisted of 375 consecutive patients participating in the IVF-
ICSI program of Hospital Donostia. A total of 1835 embryos were analyzed.
Among them, all the selected embryos were transferred on day D+2 (48 hours
after fertilization). The embryo selection criteria of the Association for Re-
production Biology Studies [3] (ASEBIR, according to its initials in Spanish),
extensively used by assisted reproduction units in Spain, was followed.

The database is composed of a table of cycles and a separate table that
collects the respective embryos. The examples of the tables are related by a
one-to-n relationship: Each cycle with the set of oocytes extracted in that
procedure. In the table of cycles, the set of collected features includes char-
acteristics of the female and the male, stimulation treatment, statistics of
the collected embryos and outcome variables (See Table 6.2 for a complete
list). On the other hand, the features for describing embryos (Table 6.3) are
oocyte/embryonic quality grades, oocyte/embryonic morphological character-
istics and outcome variables. A complete description of the database can be
found in the webpage associated with this study1.

The database has been processed and specifically adapted to each of the
four frameworks. Table 6.4 shows the description of the dataset that is pro-
vided for each approach. Note that implantation and implantable approaches
are evaluated twice: using embryonic or cycle/embryonic features as predictive
variables.
1 http://www.sc.ehu.es/ccwbayes/members/jeronimo/art

Dataset Predictors Examples (-/+/?) Bags (full)

1 Pregnancy 26 330 : 217/113/0 –

2 Implantation 14/40 696 : 447/72/177 330 (256)

3 Pregnanble 24 375 : 0/158/217 –

4 Implantable 14/38 1835 : 741/367/727 375 (41)

Table 6.4. Description of the dataset obtained from the data collected in our case
study for each approach.
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6.2.2 Protocol

The IVF management mostly consisted of GnRH antagonist protocol. Briefly,
the suppression of pituitary FSH and LH secretion was performed with 0.25
mg cetrorelix (Cetrotide; Asta Medica, Frankfurt, Germany) administered
daily when two or more follicles reached 13-14 mm in diameter. In some
cases, down-regulation with a GnRH analogue, triptorelin acetate (Synarel,
laboratorios Seid) on a long protocol was performed. Ovarian stimulation was
performed with recombinant FSH (Gonal F, Merck Serono), highly purified
urinary FSH (Angelini) or highly purified urinary menopausal gonadotropins
(Menopur, Ferring) depending on the characteristics of each patient. The
doses of hMG and FSH have been adjusted according to the ovarian re-
sponse. Ovulation was triggered with 250 mg Ovitrelle (Serono) and transvagi-
nal ultrasound-guided oocyte retrieval was scheduled 36 hours after the hCG
injection. Oocytes were inseminated 4 hours after retrieval. Concerning the
choice of insemination technique, ICSI was performed in cases with less than
1.5 million motile sperm recovered after capacitation, low rates of fertilization
(< 30%) in a previous IVF cycle and/or previous intrauterine insemination
failures. In the remaining cases, conventional IVF was used. Finally, embryo
transfer was performed on day 2 and the luteal phase was supplemented with
micronized progesterone (Utrogestan, Laboratorios Seid or Progeffik, labora-
torios Effik), vaginally 200 mg/12 hours. Pregnancy test was carried out 14
days after embryo transference.

6.2.3 Methodologies for learning Bayesian network classifiers in
the four approaches

The four approaches designed in this analysis require specific methodologies
for learning Bayesian network classifiers (Section 3.4). In the context of the
ARTs, several authors have already used BNCs as probabilistic classifiers.
Sometimes, authors are able to provide a graph structure designed by ex-
pert knowledge [33]. In our work, similarly to Morales et al. [126], both the
structure and the parameters of the model are learnt from the data. Specifi-
cally, three kinds of Bayesian network classifiers have been considered: naive
Bayes (NB) [76], tree augmented naive Bayes (TAN) [58] and K-dependence
Bayesian network (KDB) [152]. Based on the assumption of conditional inde-
pendence between the predictive variables given the class variable, the naive
Bayes presents the simplest network structure (see Figure 3.3). TAN and KDB
are the next step forward in terms of network structure complexity and al-
low the models to capture some conditional dependencies between predictive
variables.

As the four approaches are represented by different (weakly) supervised
classification problems, specific techniques have been applied to solve each of
them. In the case of the cycle pregnancy prediction approach, where the train-
ing examples are fully labeled, standard supervised classification techniques



6.2 Material and methods 111

8 9 10 11 12
500

bi+s
2000

3500

Ni

Fig. 6.4. Graphical summary of the number of consistent completions of a bag
as its size (Ni) increases and the minimum number of positive examples decreases
(Ni+ = {Ni, Ni − 1, . . . , 0}). The horizontal black line marks the threshold (in this
study, bi+ s = 1100) for applying a MCMC approximation to estimate the labeling.

(Section 3.4) can be used for learning the three considered types of BNCs. The
methodology based on the Structural Expectation-Maximization (SEM) [45]
strategy proposed in Chapter 4 for learning BNCs from label proportions has
been used for dealing with the implantation prediction approach. Specifically,
the referred three types of BNCs have been learnt using the PMEM version. In
order to solve the pregnanble prediction approach, the methodology proposed
by Calvo et al. [18] for learning BNCs from the respective positive-unlabeled
dataset has been used. This is a wrapper method that combines the learning of
BNCs with the adjustment of the parameter p, which indicates the proportion
of positive examples in the unlabeled dataset.

Learning Bayesian network classifiers from positive-unlabeled pro-
portions. The fourth approach, the implantable prediction, is represented by
a different weakly supervised classification framework that, to our knowledge,
is novel in the related literature: the learning from positive and unlabeled
proportions (formally described in Section 2.4.3). In this novel weak super-
vised model, the examples in the dataset DPUP are provided grouped in b
bags where each bag provides a value Ni+ ≤ Ni which indicates the minimum
number of instances in Bi which have a positive class label. Fortunately, in
this specific application an additional set of fully labeled examples DL is pro-
vided. Therefore, as shown in Fig. 6.2(d), the final training dataset D is the
union of the referred DPUP and DL sets.

Inspired by our solution to the label proportions framework (Chapter 4),
we propose a SEM-based method for learning BNCs for this novel paradigm.
At each iteration of the EM procedure and for each bag, the probability of
all the consistent joint assignments of class labels to the instances of the
bag (any Ni-tuple of labels that contains at least Ni+ positive class labels,

2Ni −
∑Ni+−1

h=0

(

Ni

h

)

in total) is obtained using the current fit of the model.

Then, the dataset is completed by giving to each instance xj and class label
c a weight equal to the average probability of all the possible completions in
which instance xj has been labeled with class label c. Specifically, the devel-
oped technique is equivalent to the PMEM version of the method proposed
in Chapter 4, using a MCMC-based procedure for the most uncertain scenar-
ios. However, in this study no MCMC approximation has been necessary for
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estimating a probabilistic consistent completion. Remember that the MCMC
approximation is calculated when the number of consistent completions of a
bag is larger than the addition of the MCMC parameters, bi and s (Figure
6.4). Since the maximum bag size in the case study is Ni = 3, the method can
always calculate the exact probabilistic completion.

6.3 Results

A complete experimental setting has been designed to test the four method-
ologies presented for solving the different approaches. It tries to shed light on
the validity of each approach and the predictive ability of the learnt classi-
fiers. The exposed three types of BNCs (Fig. 3.3) have been learnt for each
experimental configuration. All the continuous variables have been discretized
using equal-frequency with 3 intervals. With respect to FSS, a multivariate
and univariate strategies have been used. The former applies correlation-based
feature subset selection [74] (with both backward and forward search strate-
gies) to obtain a subset of non-redundant predictive variables highly correlated
with the class variable. The latter carries out chi-square statistical tests be-
tween the class variable and each predictive variable, and uses the resulting
p-values to build an order of relevant predictive variables. Different exper-
iments have been carried out using the subset of the t most relevant vari-
ables (t ∈ {n, . . . ,max(np, 2)}, where np is the number of predictive variables
with a p-value > 0.05). The methods implemented for implantation and im-
plantable prediction approaches, which are based on the iterative EM strategy,
stop when the relative mean difference between the parameters of two mod-
els learnt in consecutive iterations is below 0.1%, or when 200 iterations are
completed. All the experiments have been validated using a (stratified, when
possible) 10 × 5 fold cross validation (CV). For the sake of clarity, only the
results of the best experimental configuration for each BN classifier are shown.
The complete tables of results are publicly available in the webpage associated
with this study.

Remember that the objective of these experiments is to show the predic-
tive ability of the data collected in the laboratories, which is supporting the
decision making process of the physicians in their daily practice. Learnt classi-
fiers have not been specifically tuned in any of the experiments or approaches.
Alternatives to enhance the performance of the learnt classifiers (e.g., proba-
bilistic classifier with the boundary not in 0.5 or loss functions that penalize
asymmetrically false positives and negatives) have not been considered. An
in-depth learning methodology to maximize a specific quality metric, subject
to the specialist’s preferences, is beyond the scope of this work.

6.3.1 Pregnancy prediction

The first set of experiments tests the performance of the methodology pre-
sented for solving the cycle pregnancy prediction approach. Table 6.5 shows
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BNC Accuracy Recall Precision F1 PPR

NB 0.64 ± 0.06 0.45 ± 0.09 0.48± 0.10 0.46± 0.07 0.33 ± 0.07

TAN 0.65 ± 0.05 0.30 ± 0.07 0.49± 0.11 0.37± 0.08 0.21 ± 0.05

2DB 0.65 ± 0.05 0.35 ± 0.09 0.49± 0.12 0.40± 0.08 0.25 ± 0.07

Table 6.5. Results of the pregnancy approach in terms of accuracy, recall, precision,
F1 and predicted positive rate (PPR) metrics. Each row shows experiments that
learn different BNCs: NB, TAN and 2DB.

the results of the experiments using four different performing measures: accu-
racy, recall, precision and F1 [169]. Evaluating the classifiers only by means
of accuracy could be unfair as, according to the results, the simplest classifier
(which always predicts the majority class) would be the most accurate classi-
fier. Recall and precision metrics, which provide information on the ability to
predict positive examples, have been used. In order to fairly analyze these re-
sults, the last column shows the percentage of instances predicted as positive
(PPR). It should be highlighted that TAN classifiers reach precision values of
0.5, meaning that half of the predicted pregnancies are real pregnancies. The
recall of NB classifiers is also close to 0.5, which indicates that almost half of
the real pregnancies were correctly identified. In terms of F1, a metric that
combines both recall and precision, NB models obtain the best results.

6.3.2 Implantation prediction

In this approach, the embryos in full bags (those that represent cycles where
all or no embryo became implanted) are actually labeled. These have been
used for calculating the ranking of relevant variables and for evaluation. A
leave-one-full-bag-out procedure has been used, which takes at each iteration
a full bag as the validation set. The CFS feature selection has been carried

BNC Accuracy Recall Precision F1 PPR

NB 0.86 ± 0.00 0.03 ± 0.00 0.40± 0.00 0.05± 0.00 0.01 ± 0.00

TAN 0.83 ± 0.00 0.04 ± 0.00 0.14± 0.00 0.06± 0.00 0.04 ± 0.00

2DB 0.85 ± 0.00 0.08 ± 0.00 0.30± 0.00 0.13± 0.00 0.04 ± 0.00

NB 0.76 ± 0.00 0.49 ± 0.00 0.29± 0.00 0.36± 0.00 0.23 ± 0.00

TAN 0.80 ± 0.00 0.27 ± 0.01 0.27± 0.01 0.27± 0.01 0.14 ± 0.00

2DB 0.78 ± 0.00 0.28 ± 0.00 0.24± 0.00 0.26± 0.00 0.16 ± 0.00

Table 6.6. Results of the implantation approach in terms of accuracy, recall, pre-
cision, F1 and predicted positive rate (PPR) metrics. Each row shows experiments
that learn different BNCs: NB, TAN and 2DB. The results of experiments performed
with two different datasets are shown: in upper rows, only the embryonic features are
used as predictive variables, and in lower rows, the cycle features are also included.
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BNC psRecall psF1 Lee PPR

NB 0.88± 0.06 0.61 ± 0.04 1.00 ± 0.14 0.78 ± 0.07

TAN 0.89± 0.06 0.61 ± 0.05 1.00 ± 0.15 0.79 ± 0.07

2DB 0.86± 0.06 0.60 ± 0.05 0.96 ± 0.14 0.78 ± 0.06

Table 6.7. Results of the pregnanble approach in terms of psRecall, psF1 [18], Lee
[108] and predicted positive rate (PPR) metrics. Each row shows experiments that
learn different BNCs: NB, TAN and 2DB.

out using a transformed dataset completed according to the label proportions
of the bags.

The same four measures used in the previous set of experiments (accuracy,
recall, precision and F1) characterize the results of this set of experiments in
Table 6.6. The horizontal division indicates the use of two different datasets:
(1) a dataset with just embryonic features as predictive variables and (2)
a dataset with embryonic and cycle features as predictive variables. Both
datasets are even more unbalanced than the dataset of the previous approach
(see Table 6.4) and the classifiers learnt only with embryonic predictors show
no predictive ability: PPR values are often 0 and they reach, at most, a poor
0.04. When the training dataset includes predictive variables of the cycle the
proportion of predicted positives rises notably, also improving the predictive
ability. NB classifiers stand out with the best results in terms of recall (values
close to 0.5), precision (values close to 0.3) and F1 (values over 0.3).

6.3.3 Pregnanble prediction

In this set of experiments in a positive-unlabeled framework, the wrapper
procedure that tunes parameter p (the real unknown proportion of positive
examples in the unlabeled subset) was set up with 3 repetitions and 5 candi-
date values. A 5 × 5 fold CV is used for validation in this inner tuning loop,
respecting the proportion of labeled examples in the division into CV folds of
the dataset. Regarding the FSS setting, an adaptation to the PU framework
of the standard CFS [20] has been implemented. In order to perform the chi-
square statistical tests, the unlabeled instances were considered as negatives.

In this approach, unlabeled data has to be used for evaluation and, there-
fore, the standard evaluation metrics are not valid. Table 6.7 shows the results
of the performed experiments in terms of three different performing metrics:
psRecall (proportion of examples in the labeled subset predicted as positive),
psF1 [18] (an F1-based metric for PU) and Lee [108] metrics. In this case,
there are few differences among the three kinds of classifiers. The classifiers
identify as positives 70 − 80% of the validation cycles, which is almost twice
the rate of labeled (positive) instances. Thus, the psRecall values are generally
larger than 0.8, which would indicate that the classifiers are able to identify
a majority of positive examples. Classification performance is evaluated in
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BNC Accuracy Recall Precision F1 PPR

NB 0.69 ± 0.03 0.53 ± 0.05 0.53± 0.05 0.53± 0.04 0.33 ± 0.04

TAN 0.69 ± 0.04 0.51 ± 0.08 0.54± 0.05 0.52± 0.05 0.31 ± 0.05

2DB 0.69 ± 0.03 0.53 ± 0.06 0.54± 0.06 0.53± 0.04 0.33 ± 0.04

NB 0.70 ± 0.03 0.57 ± 0.05 0.54± 0.05 0.56± 0.04 0.35 ± 0.03

TAN 0.68 ± 0.03 0.49 ± 0.06 0.52± 0.05 0.50± 0.04 0.31 ± 0.03

2DB 0.66 ± 0.03 0.49 ± 0.06 0.49± 0.06 0.48± 0.04 0.33 ± 0.05

Table 6.8. Results of the implantable approach in terms of accuracy, recall, pre-
cision, F1 and predicted positive rate (PPR) metrics. Each row shows experiments
that learn different BNCs: NB, TAN and 2DB. The results of experiments performed
with two different datasets are shown: in upper rows, only the embryonic features are
used as predictive variables, and in lower rows, the cycle features are also included.

other approaches by means of recall-precision. In the PU paradigm, the pre-
cision metric cannot easily be estimated/approximated. Given that the F1
metric is the harmonic mean of precision and recall, the psF1 values (signifi-
cantly lower than psRecall) could indicate a reduced performance in terms of
precision (large false positive rate).

6.3.4 Implantable prediction

In this approach, both transferred and non-transferred embryos have been
used as training examples. The non-transferred examples, which are certainly
labeled, have been used for calculating the ranking of relevant variables and
for evaluation. The CFS-based feature selection has been carried out using a
dataset completion that fulfills the proportions of positive examples, Ni+.

Once again, accuracy, recall, precision and F1 metrics depict the results
of these experiments in Table 6.8. As explained in Section 3.2, two datasets
(the first one using only the embryonic features as predictive variables and
the second one including variables of the associated ART cycle) are used. In
this case, the classifiers learnt with both datasets show a similar behavior.
The proportion of predicted positives (PPR) is generally larger than 0.3, and
precision, recall and F1 metrics usually exceed 0.5. NB classifiers are the
classifiers that show the best results, although TAN and 2DB classifiers are
competitive when the dataset with only embryonic predictive variables is used.

6.4 Discussion

The main objective of the assisted reproduction units is the improvement
of the pregnancy rate of the ARTs. We propose an integral solution for the
ART problem based on ML techniques which, taking into account all the
information collected by physicians, learn classifiers which could be used to
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Fig. 6.5. Precision-recall curve of the best classifiers (NB, TAN and 2DB from left
to right) learnt from the datasets with embryonic predictive variables (blue line)
and cycle-embryonic predictive variables (red line). Positive examples in the non-
full bags are assumed to be those with higher probability. The highlighted points
represent the classifiers using 0.25 and 0.5 as 0/1 class decision threshold, h.

improve the implantation (and pregnancy) rates. Our integral proposal deals
with up to four different subproblems, both previous and posterior to embryo
implantation, to understand the predictive capability of the collected data.
Classification techniques take advantage of all the available data. All the col-
lected features are considered although only a subset of relevant (regarding the
class) and non-redundant (among them) variables are finally used for model
learning. Thus, no personal preference determines the allegedly relevant vari-
ables to be considered. Similarly, even the embryos/cycles of unknown fate are
considered: Weakly supervised techniques take advantage of the unlabeled ex-
amples simultaneously guessing their category and learning the model.

The straightforward strategy to solve the ART problem using ML tech-
niques consists of learning classifiers that predict whether an ART cycle will
end up in a pregnancy. According to Table 6.5, the BNCs learnt in this ap-
proach have obtained significant results in our case study. One out of three
cycles is predicted as positive, that is, pregnancies are predicted in a realis-
tic proportion (see Table 6.4). Moreover, almost half of the real pregnancies
are correctly identified by learnt models (recall ≈ 0.45) and one out of two
cycles is correctly predicted as pregnancy (precision ≈ 0.5). To sum up, two
out of three cycles are accurately classified. Although moderate, these results
are promising since, as previously explained, tuning the learning process —
customized to the specialist’s preferences— can potentially produce classifiers
of enhanced performance.

This first approach does not consider embryos individually, but globally as
another feature of the cycle that has to be configured. This approach could be
used, for instance, to optimize the number of embryos to transfer in a given cy-
cle (No.Transf.Emb variable in Table 6.2). However, this first approach cannot
handle information about the individual embryos, which is essential to iden-
tify promising embryos and select those to transfer. For this task, our second
approach is a weakly supervised framework (label proportions [81]) that, using
past embryos of both known and unknown fate, learns classifiers to predict
the implantation of an embryo. As hypothesized, the learnt classifiers show
a reduced performance, revealing the difficulty of predicting an embryo im-
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plantation based on the data collected in this case study. The results in Table
6.6 vary sharply depending on the set of predictive variables used to describe
the examples (embryos). On the one hand, the results of the classifiers learnt
from the dataset described just by embryonic variables are poor: almost no
implantation is predicted. On the other hand, when the second dataset that
combines the embryonic and cycle features as predictive variables is used,
learnt classifiers show a significant improvement in terms of all the metrics.
Classifiers learnt from the second dataset achieve a realistic proportion of ex-
amples predicted as positive (predicted implantations). In terms of recall, half
of the real implanted embryos are predicted as positive. And almost one out
of three positively examples predicted as positive are real implanted embryos.
This could have been understood as evidence of the low power of the collected
(morphological) embryonic variables to predict an implantation. Only with the
inclusion of variables describing the respective cycle does the performance of
the learnt classifiers improve. Despite this dramatic difference in the results
of Table 6.6, the classifiers learnt from both datasets show a similar ability
to assign a variety of different posterior probabilities to the embryos used for
evaluation. It can be seen in Figure 6.5 that, if the threshold of the classifiers
learnt only with embryonic variables were tuned to optimize a metric (in this
case, recall or precision), their performance would match up that of the classi-
fiers learnt with both cycle and embryonic variables. These results remove all
doubts about the embryonic variables: Their contribution is determinant in
the implantation prediction. However, the area under the curve in Figure 6.5
is significantly larger (specifically in the case of NB and TAN models) when
the cycle variables are also considered. This demonstrates the asserted con-
tribution of the cycle information to the identification of promising embryos
for implantation [1, 33, 146, 171].

Both alternative approaches, pregnanble and implantable prediction, bor-
row the idea of identifying promising cycles and embryos from the EU model
[171], respectively, independently and previous to the implantation process
[71]. As explained before, failed cases cannot always be annotated as negative
examples according to this point of view. Incidentally, this allows us to avoid
considering the possibility of MIF occurrence. A wrong representation of the
problems could limit the predictive ability of classifiers of the pregnancy and
implantation approaches. The design of the classification tasks represented by
both alternative approaches fits the collected data in a more natural way than
those of the two first approaches. Therefore, these should produce classifiers
of enhanced performance regarding those of their equivalent pregnancy and
implantation approaches.

On the one hand, the lack of negative examples in the pregnanble predic-
tion approach makes its comparison with the equivalent pregnancy prediction
approach difficult. The psF1 results are hardly comparable with the real F1
values obtained in the pregnancy prediction approach. The psF1 metric, which
can be reliably used for model selection given that it is proportional to the real
F1 metric [18], does not approximate the real value. psRecall, a solid approx-
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Fig. 6.6. Estimation of the real recall value for results of Table 6.7 as p value
(assumed rate of positive examples in the unlabeled subset) increases. The formulae
rec = (PPR+·p++p·PPR?·p?)/(PPR++p·PPR?) is used, where PPR+ and PPR?

are the rates of predicted positives in the labeled and unlabeled subsets, respectively.
p+ and p? are the relative size of each subset regarding the whole dataset.

imation of the real recall metric, can be more easily interpreted. According
to Figure 6.6, the results of this approach are significantly better than those
of its equivalent pregnancy prediction approach in terms of recall: Even in
the worst case (p → 1), the classifiers of the pregnanble prediction approach
show larger recall values (0.78 >> 0.49). That is, a large proportion of the
real good prognostic cycles are identified as positives. Additionally, the signifi-
cantly lower psF1 values in comparison with those of psRecall could reveal the
reduced precision of the learnt classifiers, since the F1 metric is the harmonic
mean of precision and recall. That is, a considerable number of false positives
(real poor prognostic cycles predicted as positives) could be contributing to
increasing the rate of predicted positives (PPR). In practice, learnt classifiers
might seem quite uninformative since too many cycles are predicted as good
prognoses. However, if these classifiers are optimized to accurately identify
the negative case (i.e., poor prognostic cycles), a negative prediction of our
classifiers could be reliably understood as a recommendation to revise the
configuration of the cycle (e.g., stimulation treatment or number of embryos
to transfer). In order to do so efficiently, high precision values for the negative
class label are required, which unfortunately cannot be precisely estimated in
a positive-unlabeled framework.

On the other hand and focusing again on the embryos, the implantable
prediction approach undeniably improves the results of its equivalent implan-
tation prediction scheme. The behavior of the classifiers is better in terms of
all the metrics (recall values are 0.1 points higher on average, prediction values
are doubled and F1 values are 0.2 points higher). Contrary to their previously
commented influence on the results of the implantation approach, the results
of the classifiers that also consider the cycle features as predictive variables
barely improves in 0.03 points the results of the classifiers learnt only with
embryonic variables. This dissimilar behavior corroborates the definition of
the approach: the promising development of an embryo can be assessed previ-
ously and independently from the implantation procedure. Thus, the features
describing the embryo are the only relevant variables for this task. However,
the obtained results prove that the predictive capability of the collected em-
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bryonic features is not impressive. The features collected in our case study
for the oocytes/embryos, those recommended by the ASEBIR [3], are a set of
morphological variables. Several authors claim that the predictive capability
of scores exclusively based on morphological factors is limited [1, 49, 71]. The
search, study and collection of other non-morphological features such as pre-
implantation genetic diagnosis, embryo metabolomic and proteomic analysis,
embryo morphokinetics analysis or endometrial receptivity tests have been
proposed in the related literature [11, 10, 65, 95, 123, 134, 149, 158, 163].
This research line will surely allow authors to progress in the answer of this
open question; its solution is expected to bring a significant leap forward in
the ability to predict an embryo implantation and, consequently, in the per-
formance of the ARTs. The comparison of the results of both implantation
and implantable approaches supports the thought that the currently collected
data explains, to a larger extent, the promising embryo development, rather
than the embryo implantation. That is, other factors influence the implanta-
tion process, the uterus receptivity (good prognostic cycles, represented by the
pregnanble approach) or MIF occurrence. In any case, a better understanding
of the mechanisms regulating the embryo implantation is needed.

Based on the obtained results, it can be asserted that a recommender
system for the ART problem based on the presented approaches would pro-
vide valuable information that could imply an improvement in the selection
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Fig. 6.7. Graphical comparison of a BNC learnt with the implantable approach
and the ASEBIR quality grade [3].
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of promising embryos and/or the configuration of good prognostic cycles. As
shown in Figure 6.7(a), ordering embryos according to their probability of
good development (implantable approach) does not completely match up with
the ASEBIR ranking. ASEBIR proposes an ordinal four-categories ranking (A,
B, C and D), where A and D respectively indicate the best and worst embryos.
In detail, our classifiers generally agree with ASEBIR’s criteria on identifying
embryos of highest and lowest quality (A and D embryos). However, numerous
quality C embryos are considered by our classification model more promising
than a substantial set of quality B embryos. Both the precision-recall (PR) and
the receiver operator characteristic (ROC) curves in Figure 6.7 graphically
show the enhanced performance of our model with respect to the ASEBIR
ranking. The observed disagreement in medium-quality embryos was not sur-
prising since, as has been previously reported [53, 71], the most difficult task
is not the identification of the highly promising embryos, but the classifica-
tion of those of medium-quality. The reordering suggested by our ML models
is supported by the daily practice of our group of physicians, who already
consider an analogous variation of the ASEBIR criteria based on their direct
observation of the evaluated embryos. Although the classifiers learnt with this
implantable approach do not predict the implantation, the transference of
embryos with promising development is associated with higher implantation
rates [49, 53, 71]. Therefore, this fourth approach can provide a novel selection
criteria in order to choose the embryos to transfer.

6.5 Conclusions and future work

A case study of the ART problem is analyzed in an integral way through-
out the use of ML techniques. The reinterpretation of the objectives of the
ART problem has led us to design four different (novel) approaches which
are solved by means of weakly supervision classification techniques, consider-
ing also examples of uncertain fate for model learning. Specific solutions that
learn classification models (BNCs) taking the most of the available weakly
supervised data have been developed for each of these four approaches.

Our solution uses all the information collected by physicians during the
whole ART procedure and evaluates its predictive capability in the four pre-
sented classification tasks. The learnt classifiers that predict the viability of
a cycle show a promising performance. According to the results, the data
collected for our case study cannot fully describe an embryo implantation,
although the inclusion of the cycle features enhances the performance of the
classifiers that predict embryo implantation. Collected data fits better the
description of embryo development. Obtained classifiers have been proved to
rank the medium-quality embryos of our case study more consistently than
ASEBIR grade. The probabilistic assessment of the classifiers obtained for
the alternative approaches can be consistently used for cycle configuration
and embryo quality grading.
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Defect classification

In software engineering, software defect classification can be useful for sev-
eral tasks such as prioritizing software bugs or defect prediction. However,
performing such a classification is difficult and generally involves extensive
manual effort. These difficulties are usually reflected in the incomplete, noisy
and erroneous labeling of the reported defects. Machine learning techniques
have already been applied to automatically classify software defects. How-
ever, learning from a dataset labeled by a single subjective annotator, which
does not represent the ground truth, can perform poorly. Defect classification,
and all the problems where a set of partially reliable annotations can be col-
lected, is a suitable real application to be solved by means of crowd learning
techniques.

In this chapter, we apply an adaptation of the learning from crowds
methodology presented in Chapter 5 to deal with the defect classification
problem, an approximation that, to the extent of our knowledge, is novel in
the related literature. To illustrate our proposal, a real application of IBM’s
orthogonal defect classification problem working on the issue tracking system
of the Compendium software tool has been analyzed. The inferred framework
can be described as a nine-label multi-class imbalance classification problem
labeled by a set of five annotators. Apart from our learning from crowds
methodology (Chapter 5) adapted to multi-class frameworks, other two ap-
proaches are considered, each of them focus on a different characteristic of
the problem. On the one hand, a binary decomposition strategy specifically
tries to alleviate the additional complexity of multi-class framework. On the
other hand, a sampling strategy aims to deal with the class imbalance na-
ture of our problem. The three proposed techniques, all of them adapted to
the learning from crowds paradigm, are tested in a set of experiments where
the majority voting strategy is used as a baseline. In general, the results of
the designed experimental work show the enhanced performance of our crowd
learning solutions regarding classical supervised learning using the most-voted
labels.
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7.1 Introduction

Defect classification is an important task during maintenance used for defect
prioritisation, faster and cheaper defect resolution and analysis of module
and component quality. However, it is a time-consuming task which has been
traditionally performed manually by members of the developer team.

Recently, artificial intelligence based techniques, such as supervised clas-
sification, have been used to solve the problem of defect classification [88].
Standard supervised classification techniques infer the categorizing behavior
of a problem of interest from a set of previous examples. Each example, which
describes a specific case of the problem by means of a set of features, is pro-
vided together with its real category (class label). Given a set of certainly
labeled examples, standard learning techniques produce classifiers that antic-
ipate the category of new unlabeled examples (defects).

However, defect classification is quite a subjective task and achieving such
a reliably labeled dataset is difficult. It is common that two different anno-
tators disagree in categorizing the same report. Disagreement may happen,
for example, due to the different personal expertise of the annotators on the
specific fields or lack of a global perspective. Learning a classifier from a set of
examples labeled by a single annotator can lead to reproducing the possibly
inaccurate categorizations of that annotator. According to Lugosi’s study of
sources of error [114], taking into account the opinion (labeling) of several an-
notators for each example is a straightforward way to deal with the problem
of learning from a single unreliable annotator. This is the basic idea behind
the learning from crowds paradigm [141, 82], which combines the annotations
of many different (non-expert) annotators to learn a classifier for the problem
of interest.

In this study, we formulate this research question: can we learn to classify
defects using a set of (non-expert) opinions? We address the research ques-
tion proposing the use of machine learning techniques to infer a classification
model based on the novel learning from crowds paradigm. To do so, an il-
lustrative real application of the defect classification problem is analyzed. A
dataset with defects/requirements reported in the Bugzilla tracking system of
the Compendium project1 was used. A total of 5 annotators, with experience
in computer science, labeled the collected examples according to their sub-
jective point of view. Each annotator associated each example to a category
(impact) of the Orthogonal Defect Classification [29], a 13-category taxonomy
that allows developers to separate defects depending on their impact on the
costumer. The resulting dataset can be described as that of a multi-class im-
balance classification problem annotated by a crowd. We propose a diverse set
of approaches, all of them based on the learning from crowds paradigm, for
specifically dealing with different aspects of the problem:

• A standard crowd learning approach.

1 http://compendium.open.ac.uk/bugzilla/
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• The adaptation of a decomposition strategy, which explicitly deals with the
multi-class nature of our problem.

• An adaptation of a sampling strategy, which explicitly considers the un-
balanced nature of this multi-class problem.

The rest of the chapter is organized as follows. In the next section, a
throughout description of the defect classification problem is given and our
illustrative real application is characterized. Next, the different approaches
proposed to solve the problem are presented. Then, the experimental work
is presented and the results are shown and discussed. Section 6 enumerates
the threats to validity and, finally, some conclusions and future work are
presented.

7.2 Background

A software defect or bug is a non fulfillment of intended usage require-
ments [93]. For each defect, a report is usually generated throughout an issue
tracking system. A defect report is a clear description of the issue which can
be used to replicate and fix the problem.

7.2.1 Defect Classification

The classification of software defects aims to capture the semantics of the re-
ports of each type of defect. Software defect classification is valuable for several
tasks such as prioritising software defects, improvement of defect prediction,
assignment of defects to developers (team management), defect resolution,
identifying the quality of modules or components, etc.

There is a large amount of literature related to defect classification since
the seminal work by Endres [51] in 1975. Multiple models, variations and
customisation of the initial taxonomies have been proposed by Demillo and
Mathur [44], Grady [69], the IEEE Standard Classification for Software
Anomalies [92], HP’s Defect Origins, Types, and Modes [55] and the Orthogo-
nal Defect Classification (ODC) [29]. Wagner summarized in a short position
paper the work carried out on defect classification approaches and proposed
a set of challenges [188]. Recently, Hall et al. [75] have analysed the literature
and proposed a comprehensive taxonomy.

Orthogonal Defect Classification. Among all these taxonomies, IBM’s
ODC is the most popular classification scheme, in spite of having been criti-
cized due to a variety of alleged drawbacks such as being neither fully orthog-
onal nor consistent in the terminology [157], difficulties to apply in practice
[55], and complicated to customise to specific contexts [130, 48]. In a controlled
experiment with students, Falessi and Cantone [56] also reported that there is
affinity between some ODC defect types, that it is inefficient and that previous
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training is needed to apply it. Nevertheless, IBM and other organisations have
applied ODC to improve software development processes [17, 170, 9, 120].

ODC consists of a well defined four step process that must be followed: (i)
classify, as data collection step; (ii) validate, to provide feedback based on the
review of the classified defects; (iii) assess of ODC attributes and defect trend
analysis; and (iv) act to implement the actions. According to IBM [7], ODC
complements a defect report with a well-defined set of data. When a defect
is reported following the ODC process, three attributes have to be added: (i)
ODC activity, such as design review, unit test, etc.; (ii) ODC trigger, which is
the environment or condition that led to the failure; and (iii) ODC Defect Im-
pact, which relates the impact of the software defect on customer satisfaction.
ODC Impact can be used besides severity to focus quality improvement effort
on reducing the defects that most significantly impact customer satisfaction
(as opposed to reducing the total number of defects). Once a defect is closed,
further information is added: (i) target or entity fixed; (ii) defect type; (iii)
qualifier ; (iv) source; and (v) age or history of the entity fixed.

Typically, developers manually classify defects into the ODC categories
based on the reported descriptions. However, performing such a classification
is difficult and generally involves extensive manual effort using, for exam-
ple, root-cause defect analysis (RCA) [110, 15] Recently, the application of
machine learning techniques to software engineering problems is increasingly
being explored. For example, reported data has been used to automatically dis-
tinguish between defects and requirements as, although these typically follow
a similar software development life-cycle during maintenance, it is important
to differentiate them [85]. Antoniol et al. [2] reported on the classification of
reports during enhancement work or other kinds of activities. The authors
achieved between 77% and 82% of correct classification using decision trees,
naive Bayes and logistic regression.

Machine learning techniques have been also applied to the domain of mo-
bile applications. Thus, Maalej and Nabil [116] classify app reviews into four
categories: bug reports, feature requests, user experiences and ratings. Nat-
ural language processing techniques are applied to the manually annotated
reviews. Their methodology achieve large precision and recall values.

Closer to our work, Huang et al. [89] describe AutoODC, an automatic de-
fect classification approach based on ODC that categorizes reports stored in a
Bugzilla system. The authors propose a SVM classifier that makes predictions
taking advantage of certain defect descriptions manually added by developers.
Also, Thung et al. [177] classify ODC defects into three super-categories (con-
trol and data flow, structural, and non-functional) which cover all the ODC
defect types.

Crowdsourcing vs. Learning from crowds. In software engineering,
crowdsourcing [87] usually refers to outsource the software development to an
undefined network of developers through Web platforms. However, the idea of
using external annotators has been applied to select or prioritize requirements.
For example, Morales-Ramirez et al. [127] describe CrowdIntent, a platform
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for the identification of intentions in online discussions. In their experiment, 20
participants grouped in pairs annotated sentences from two online discussion
sites. The authors used the Kappa statistic to compute the agreement among
participants.

In machine learning, learning from crowds [141, 83] is a weakly supervised
classification problem where the examples (defects) provided for training the
classification model are unreliably categorized (i.e., no golden-truth is avail-
able). The provided examples are labeled by a set of annotators of unknown
trustfulness. Such labeling shows disagreements among annotators. In this
work, we propose to use the learning from crowds paradigm to improve the
classification of defects according to their impact. Different annotators (stake-
holders) with different opinions or knowledge about the impact of a particular
type of defects are used to categorize the training examples.

7.2.2 The Compendium Dataset

The dataset is composed of reports collected from the reporting system of
the Compendium project, a software tool for mapping information, ideas and
arguments. Issue tracking systems (ITS) or bug reporting systems are typi-
cally used by software projects for reporting and tracking defects as well as
proposing new functionalities. Nowadays, ITS are also used for other project
management and infrastructure decisions and code reviews. ITS organise the
information through tickets and track the life-cycle of each ticket since it was
first recorded until it is closed. Each ticket maintains data such as an identifier,
summary, description, opening/closing/modification dates, who reported the
defect, priority, severity, environment, current status, etc. There are multiple
open source ITS platforms. Examples include Bugzilla, Launchpad, GitHub
and RedMine. The ITS used by the Compendium project is implemented in
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A1 92 6 91 119 14 29 192 392 27

A2 82 14 20 4 15 36 236 267 288

A3 86 10 89 117 13 19 139 473 16

A4 87 12 21 86 14 28 239 279 196

A5 87 9 25 97 14 25 242 353 110

Table 7.1. No. of labels (categories) of each type assigned by each annotator to the
962 Bugzilla entries
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Bugzilla and collects support issues, feature requests and bug reports from
the Compendium community.

The collected dataset comprises 962 examples, all the entries available in
August 2014 (with the exception of some obvious spam). For each defect, only
the informative fields have been considered: severity, summary and descrip-
tion. Severity is a 3-value variable (Bug, Support or Feature) and the other
two are text fields.

Five annotators with experience in computer science were asked to anno-
tate the examples according to the 13-category ODC standard [29]. As also
observed by Huang et al. [89], only 9 out of the original 13 categories were
used by the annotators to annotate the examples of the dataset. Therefore, in
this study only the following 9 categories have been considered: Installability,
Integrity/Security, Migration, Reliability, Performance, Documentation, Re-
quirements, Usability and Capability. Table 7.1 shows the number of examples
that each annotator assigned to each class label. Although the number of ex-
amples assigned by the different annotators is almost the same for some class
labels (Installability, Performance and, to a lesser extent, Integrity/Security
and Documentation), there exists high variability in the majority of class la-
bels. Moreover, a similar number of annotations does not imply consensus.
Table 7.2 shows the assignment of examples to labels based on the consensus
among annotators: each cell shows the number of examples assigned to a class
label by a certain number (row) of annotators. The last row shows the num-
ber of examples in which the consensus label is supported by a majority of
annotators (three or more). This row provides an insight into the lack of ho-
mogeneity in the distribution of class labels. Therefore, the inferred framework
may be formulated as an multi-class imbalance problem labeled by a crowd
of 5 annotators. Specifically, Integrity/Security, Migration, Performance and
Documentation will be considered as minority classes.

7.3 Methods

In this analysis, supervised classification techniques are applied to improve
the software defect classification problem. Three approaches have been de-
signed, each of them learning Bayesian network classifiers (BNC, Section 3.4).
Specifically, three kinds of BNCs have been considered: naive Bayes (NB) [76],
tree augmented naive Bayes (TAN) [58] and K-dependence Bayesian network
(KDB) [152]. Based on the assumption of conditional independence between
the predictive variables given the class variable, the naive Bayes presents the
simplest network structure (see Figure 3.3). TAN and KDB are the next step
forward in terms of network structure complexity and allow models to capture
some conditional dependencies between predictive variables. For our purpose,
BNCs are particularly suitable: their interpretability is outstanding (influences
and dependencies among variables can be deduced from the explicit proba-
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2 6 0 27 26 2 4 61 40 10

3 6 3 11 32 1 4 66 69 48

4 20 2 11 39 3 12 100 129 10

5 59 5 2 1 9 9 37 96 2

[3,5] 85 10 24 72 13 25 203 294 60

Table 7.2. Number of examples in which a (sub)set of annotators agree in the
assigned class label. Each row involves a different number of annotators that support
that labeling. The last row shows the number of examples in which the majority of
annotators —three or more— agree in the assigned label.

bility relationships) and the developed techniques take advantage of their
probabilistic classifications/assessments.

7.3.1 Multi-class learning from crowds

As formally defined in Section 2.4.4, in the learning from crowds paradigm, the
real class label of the examples is unknown and only the subjective opinions
of a set of non-expert annotators is available. The information of supervision
of each instance xi can be codified by a t-tuple li, where lia ∈ C indicates the
class label assessed by annotator Aa and, thus, the dataset is composed of N
examples D = {(x1, l1), (x2, l2), . . . , (xN , lN )}.

Our Expectation-Maximization (EM) based method previously proposed
for the multi-dimensional learning from crowds framework (Section 5.4) has
been adapted to this unidimensional but multi-class problem. The EM strat-
egy [45] allows us to combine the estimation of a set of weights that model
the reliability of each annotator and the learning of the model using the labels
provided by a crowd of annotators. In our method, the E-step estimates the
reliability weights of the annotators and, in the M-step, the model parameters
are re-estimated such that the likelihood is maximized given the data and the
weights estimated in the E-step. Iteratively, both steps are repeated. When
TAN or KDB classifiers are learnt, the Structural EM (Section 3.3.2), which
adds an outer loop to the traditional EM procedure for combining model
parameter estimation and structural learning, is used.

For this study, two types of reliability weights, which codify the integrity
of the labeling provided by each annotator, have been considered. On the
one hand, a reliability weight per class label and annotator is used. These
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per-label weights (wa
c , for all a ∈ {1, . . . , t}) codify the reliability of each an-

notator Aa when they provide examples of a specific class label c. On the
other hand, the confusion-matrix weights (W a

cc′ , for all a ∈ {1, . . . , t} and
c, c′ ∈ {1, . . . , |C|}) codify, for each annotator, both the reliability of an an-
notator when they predict a class label and the probability of the annotator
providing label c when c′ is the real label. The classical counting procedure
for model parameter estimation has been adapted to incorporate the crowd
information (multiple weighted labelings). In the next subsection, a detailed
description of the adapted procedure is presented. Then, the estimation of the
annotator reliability weights carried out in the E-step is explained.

7.3.1.1 Parameter estimation in multi-class learning from crowds

The standard parameter estimation procedure has been adapted to collect
frequency counts from multiple noisy annotations per example, using the an-
notator reliability weights in order to carry out an informed aggregation of
the different contributions. Similar to the method proposed in Section 5.4,
the parameter estimation procedure to collect frequency counts integrating
the multiple and weighted labels can be expressed as follows:

N(u) =
∑

(x,l)∈D

|C|
∑

c=1

I[u1 = vJ1 , . . . , uk = vJk ] · F
l
c

where I[condition] is a function that returns 1 if condition is true and 0
otherwise, u = (u1, . . . , uk) is an instantiation of the random vector U =
(VJ1 , . . . , VJk), a sub-vector of the original V = (X, C) with {J1, . . . , Jk} ⊆

{1, . . . , n+1}. Finally, F
l
c is the labeling reliability factor corresponding to the

instantiation u according to the opinion of the annotators and their reliability
weights (constrained to

∑|C|
c=1 F

l
c = 1). Depending on the type of annotator

reliability weights, the labeling reliability factor F
l
c is calculated in a different

way. On the one hand, using the per-label weights (wa
c ), it is calculated as,

F
l
c =

∑t
a=1 I[la = c] · wa

c
∑|C|

c′=1

∑t
a=1 I[la = c′] · wa

c′

On the other hand, F
l
c is calculated using the confusion-matrix reliability

weights (W a
cc′) as follows,

F
l
c =

∑t
a=1 I[c ∈ l] ·W a

lac
∑|C|

c′=1

∑t
a=1 I[c

′ ∈ l] ·W a
lac′

7.3.1.2 Estimation of the reliability weights of the annotators

As shown in Section 5.3, a simple estimation of the reliability weights of the
annotators, which only uses the available multiple labelings, is obtained by
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means of the consensus criterion. In the case of per-label weights, the consensus
weight of an annotator Aa in class label c is,

wa
c =

1

Φ

N
∑

i=1

I[lia = c]
1

t− 1

∑

a′ &=a

I[lia′ = c] (7.1)

with a normalization factor Φ such that
∑|C|

c=1 w
a
c = 1. In the case of confusion-

matrix weights, the consensus weight of an annotator Aa in class label c is,

W a
cc′ =

1

Φ

N
∑

i=1

I[lia = c]
1

t− 1

∑

a′ &=a

I[lia′ = c′] (7.2)

Once a model fit M is available, both strategies to estimate the reliability
weights of the annotators (Section 5.4) are considered: (1) an accuracy-based
strategy (Acc), where the class label predicted by the model for each instance,
ĉ = argmaxc∈C pM(x, c), is used as golden truth, and (2) a probability-based
strategy (Prob), which uses the probability given by the model M to the labels
assigned by each annotator to calculate their reliability weights. In the case
of using per-label weights (wa

c ), both estimation techniques can be formulated
as,

wa
c =

1

Φ

N
∑

i=1

I[lia = c] · I[ĉi = c]

wa
c =

1

Φ

N
∑

i=1

I[lia = c] · pM(c|x
i)

(7.3)

with normalization factor Φ =
∑N

i=1 I[l
i
a = c]. And, in the case of using the

confusion-matrix reliability weights (W a
cc′), both estimation procedures are,

W a
cc′ =

1

Φ

N
∑

i=1

I[lia = c] · I[ĉi = c′]

W a
cc′ =

1

Φ

N
∑

i=1

I[lia = c] · pM(c
′|xi)

(7.4)

where Φ is in both cases a normalization constant such that
∑|C|

c′=1 W
a
cc′ = 1.

A procedure that updates the annotator reliability weights relying exclu-
sively in the discrimination ability of the learnt model could be detrimental.
If our EM procedure iteratively converges to a harmful classifier that only
predicts a subset of labels, the estimated reliability weights can considerably
differ from the real reliability values. In order to avoid this undesirable devi-
ation, our method allows us to use the consensus weights (Eq. 7.1 or Eq. 7.2,
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as appropriate) throughout the iterations of the EM process as a correction
term. Thus, in this case the annotator reliability weights are estimated us-
ing the average value among the consensus weights and the model-estimated
weights: i.e., (Eq. 7.1 + Eq. 7.3) / 2 or (Eq. 7.2 + Eq. 7.4) / 2.

7.3.2 A decomposition strategy for dealing with the multi-class
problem: weighted voting one-vs-one

Our classification framework is multi-class (|C| = 9), a kind of problem that
is intrinsically more complex than one of binary classification [62, 113]: the
expected classification error increases with the number of possible class labels
(|C|). Multi-class decomposition groups a set of strategies which build multiple
binary classifiers that partially solve the multi-class problem. These strate-
gies produce a multi-class prediction combining the prediction of the binary
classifiers. Although the decomposition strategies are specially convenient for
certain types of classifiers that do not have a straightforward extension to the
multi-class paradigm, it has been claimed [61, 62] that the use of decomposi-
tion techniques enhances the performance of the base classifiers independently
of whether the base classifier can deal with multiple class labels or not.

Many different strategies have been proposed in the ML community for
binary decomposition. Among all the proposed strategies, one-vs-one (a classi-
fier is learnt for each pair of class labels) and one-vs-all (a classifier is learnt for
each class label considering as negative examples all the examples belonging to
the rest of the labels) are the most frequently used. With the objective of em-
phasizing the importance of the multi-class nature of this framework, we have
analyzed the inferred defect classification problem using decomposition tech-
niques. Avoiding the discussion about the best decomposition strategy that
could obscure the analysis of the results, one-vs-one (OvO) decomposition
with weighted voting has been implemented. This simple strategy provides a
methodology recognized in the related literature as yielding good classifica-
tion performance [91, 61]. Weighted voting OvO is based on the use of base
classifiers that are able to provide soft predictions, that is, a numeric value
indicating the strength of the confidence of the classifier on the predicted class
label instead of the class label alone. Thus, this strategy learns |C| · (|C|−1)/2
classifiers, each one learnt from the examples belonging to a different pair
of class labels. Given a new example, the label with the largest confidence
combining the soft predictions of the base binary classifiers is predicted. In
this study, naive Bayes (Fig. 3.3) has been chosen as the probabilistic base
classifier. Given its well-known performance [76] and simple learning process
(fixed structure and few parameters), it has been previously used for this pur-
pose [4]. Moreover, as a BNC, it computes conditional probabilities pM(c|x)
that can be used as soft predictions when applying weighted voting OvO. The
combination of the predictions of the probabilistic binary NB classifiers allows
us to provide a multi-class probability distribution,
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pM(c|x) =
1

|C|− 1

∑

c′ &=c∈C

pcc
′

M (c|x)

where pcc
′

M
(·|x), equal to pc

′c
M

(·|x), is a probability distribution over the class
labels {c, c′} given the example x according to the base classifier specifically
learnt for these two labels.

This strategy has been directly adapted to the learning from crowds
paradigm. Training examples of each base classifier are those that have been
assigned by any annotator to either of the class labels considered in the respec-
tive classifier. As

∑|C|
c=1 F

l
c = 1 and only 2 out of 9 class labels are considered

to learn a base classifier, a selected example involves a specific weight (≤ 1)
determined by the reliability of the annotators who assigned the example to
the class labels considered in that base classifier.

7.3.3 Dealing with multiple unbalanced class labels:
SMOTEBoost

As previously discussed, Table 7.2 makes it clear that our problem is a multi-
class imbalance framework. A class imbalance problem [78] appears in super-
vised classification when a dataset exhibits an unequal distribution between
the different class labels. This problem gives rise to many issues in different
stages of the learning process: how to train with few representatives of the mi-
nority classes, fair evaluation of classifiers, etc. All these issues compromise the
performance of the learning techniques [78]. The different proposals presented
in the related literature can be roughly divided into two groups: sampling and
cost-sensitive methods. Among them, SMOTE is a popular sampling tech-
nique based on the generation of synthetic examples that has achieved good
performance in comparison with competing methods [24, 78].

In order to deal with our multi-class imbalance classification problem,
we have chosen the SMOTEBoost technique [25]. This is a well-established
method in the related literature [189] which is based on the boosting algorithm
AdaBoost.M2 [56] and uses the SMOTE procedure [24] for specifically dealing
with the unbalanced nature of the problem. AdaBoost’s sampling technique
consecutively learns f (base) classifiers inducing, at each step, the learning
process to concentrate on the most difficult areas of the instance space to
enhance the discriminating ability of the final classifier. SMOTE modifies the
sampling distribution of AdaBoost to compensate the class imbalance problem
of the training dataset.

Similar to the previous approach, the probabilistic naive Bayes has been
chosen as base classifier, which can be learnt using weighted examples. This
property allows us to replace the resampling procedure of AdaBoost by a
learning process which considers examples weighted according to the sam-
pling distribution [24]. As classifiers are learnt with examples of all the class
labels, the conditional probability distribution over C given an example x is
calculated as follows,
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pM(c|x) =
1

Φ

f
∑

t=1

log

(

1

β(t)

)

· p(t)
M
(c|x)

where Φ is a normalization factor, p(t)
M
(·|x) is the conditional probability dis-

tribution according to the t-th base classifier and the β(t) value balances its
contribution.

In the adaptation to the learning from crowds paradigm, the AdaBoost
pseudo-loss has been calculated using as golden-truth the most voted labels
(weighted according to the annotator reliability weights). In the same way, we
initialize and update our sampling probability distribution. In order to identify
the k nearest neighbor examples with a certain class label in SMOTE, only
the examples whose most voted labels are the considered class label are taken
into account. Also in SMOTE, once a subset of original examples is chosen
for generating a synthetic example, the value of each variable is chosen as
the most common value among those assigned to the corresponding variable
in the examples of the subset. The same procedure is used to obtain each
annotator’s label.

7.4 Experimental work

7.4.1 Experimental settings

The three approaches for dealing with the presented ODC problem have been
tested in a set of experiments. Apart from the labels provided by the five
annotators, the original database involves two text fields (summary and de-
scription) and a categorical variable that defines the type of defect. In a
pre-processing stage, natural language processing techniques have been used
to extract a relevant set of variables from both text fields in order to trans-
form the available database into a dataset which can be handled by standard
machine learning techniques. Stop-words and punctuation marks have been
removed and upper-case characters changed to lower-case. Only words appear-
ing at least twice are considered. For each word a numeric variable is created
which, for each defect, takes as value the Term Frequency-Inverse Document
Frequency (TF-IDF) ratio. The most relevant 91 predictive variables (words)
according to the most-voted labels were selected. Finally, each numeric vari-
able has been transformed into a binary variable using a step function which
takes positive value if the original numeric value is larger than zero and, oth-
erwise, negative.

In order to delimit the experiments, many of the parameters of the
different techniques used by the three approaches have been fixed to de-
fault/recommended values. Our EM method uses two parameters: a threshold
indicating parametric convergence (set to 0.1%) and the maximum number
of iterations (fixed to 200). In the specific case of SMOTEBoost, f = 100
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classifiers (iterations) have been generated. It generates 10 replicas for each
example of the minority classes (c = {2, 3, 5, 6}). Five nearest neighbors are
considered for each minority example using the Hamming distance for cate-
gorical variables.

Classical evaluation techniques can be uninformative in unbalanced sce-
narios. Note that in our Compendium problem the examples belonging to two
class labels (Requirements and Usability) represent more than 50% of the in-
stances of the dataset (according to the most voted class labels, Table 7.2).
A classifier exclusively focused in predicting these two labels could reach, for
instance, a 0.5 accuracy value, a noteworthy result in a 9-label multi-class
classification problem. According to a per-class evaluation procedure, this il-
lustrative classifier would perform well in just two labels becoming useless for
the other seven labels. In order to present the results for the posterior dis-
cussion, metrics commonly used for assessing the performance in multi-class
imbalance problems have been considered: A-mean [124] (the mean of the re-
call values), maximum and minimum recall values, and the mean of the F1
measures [78]. Accuracy values are also presented in the tables of results as a
measure that helps us to understand how the global performance is sacrificed
in order to enhance the performance in the minority classes.

Additionally, the learning form crowds paradigm makes the evaluation of
the models even more difficult. The lack of a ground-truth (certain label-
ing) makes the use of standard evaluation techniques impossible. Given the
relatively recent emergence of the learning from crowds paradigm, the eval-
uation of classifiers learnt in these scenarios is still a field to be explored.
Urkullu et al. [180] recently presented the only work that, to the extent of
our knowledge, has addressed this issue. In their work, they propose different
evaluation strategies based on alternative crowd scenarios for model selection.
Their experimental results allow them to assert that the mean value of the
performance metric calculated using the labels of one annotator at a time as
ground-truth is, in comparison with the other considered proposals, a strat-
egy especially suitable for crowd scenarios where few annotators label a large
proportion of instances (in our case, 5 annotators labeled all the examples).
We obtained all the experimental results with a 10 × 5-fold cross validation
procedure [147].

7.4.2 Results

The results of the presented experiments are shown in Table 7.3 in terms of
A-mean. The results for five classifiers are displayed in the rows: three types of
Bayesian network classifiers (NB, TAN and 2DB) learnt using standard multi-
class learning (first approach, Section 7.3.1), weighted voting OvO (second
approach, Section 7.3.2), and SMOTEBoost (third approach, Section 7.3.3).

Three features of our crowd learning techniques are adjustable: the type
of annotator reliability weights (per-label and confusion-matrix ), the weight
estimation procedure (Prob and Acc) and the use, or not, of consensus weight
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correction. The eight different configurations (all the possible combinations of
the three referred features) are displayed in the columns of Table 7.3. In order
to assess the relevance of the improvement achieved with the use of these
non-trivial crowd learning techniques, the Majority Voting (MV) strategy is
used as a baseline. This simple strategy completes the dataset labeling each
example with the label most voted among the crowd of annotators and, in
this way, learns as in a standard supervised classification framework. The
best configuration for each approach (row) is highlighted.

Note that the performance of a classifier in all the class labels contributes
equally in the A-mean metric, which promotes the influence of the minority
classes. Complementarily, Table 7.4 shows the results of the experiments in
terms of minimum/maximum recall values. Both values aim to provide lower
and upper boundaries for the performance in the different class labels that
contribute in the computation of the A-mean metric. Table 7.5 shows the
results of the experiments in terms of F1-mean and Table 7.6 in terms of
accuracy. Although the accuracy metric is not suitable for class imbalance
problems, it can be used to appreciate variations in the global performance.

7.5 Discussion

The crowd learning techniques developed for solving our Compendium defect
classification task are based in our proposal for multi-dimensional frameworks
(Section 5.4), which has been adapted to the unidimensional multi-class frame-
work. Both the Prob and Acc procedures have been adapted to this framework
and tested in the experimental work. Although there are slight differences, the
Prob procedure outperforms Acc in the majority of experiments. The differ-
ences are more evident in experiments that use per-label reliability weights. In
this case, the configuration that involves per-label weights estimated with the
Acc procedure without consensus correction works particularly badly. It shows
low A-mean and accuracy values and only outperforms other configurations
in terms of maximum recall. That is, the classifiers learnt with this configura-
tion concentrate their predictions on one or very few (probablymajority) class
label(s) and ignore the rest. This is usually an undesirable property in class

Per-label Confusion-matrix

Classifier MV Prob Prob+Cons Acc Acc+Cons Prob Prob+Cons Acc Acc+Cons

1: NB 0.335 0.324 0.342 0.328 0.339 0.362 0.353 0.351 0.356

1: TAN 0.316 0.302 0.306 0.296 0.304 0.318 0.316 0.320 0.314

1: 2DB 0.295 0.324 0.348 0.320 0.341 0.285 0.291 0.288 0.286

2: OvO 0.337 0.350 0.354 0.297 0.344 0.361 0.355 0.362 0.356

3: SB 0.420 0.391 0.391 0.390 0.387 0.400 0.393 0.386 0.397

Table 7.3. Results in terms of A-mean of the different approaches (rows) for the dif-
ferent annotator reliability weight estimation and combination procedures. Majority
Voting (MV) is used as a baseline strategy.
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Per-label Confusion-matrix

Classifier MV Prob Prob+Cons Acc Acc+Cons Prob Prob+Cons Acc Acc+Cons

1: NB 0.06/0.81 0.01/0.87 0.04/0.87 0.00/0.87 0.04/0.87 0.10/0.85 0.09/0.86 0.09/0.85 0.09/0.86

1: TAN 0.03/0.80 0.00/0.85 0.02/0.85 0.01/0.87 0.02/0.85 0.08/0.83 0.03/0.83 0.07/0.81 0.04/0.82

1: 2DB 0.01/0.79 0.01/0.86 0.04/0.86 0.00/0.88 0.03/0.87 0.02/0.78 0.03/0.80 0.01/0.78 0.01/0.80

2: OvO 0.06/0.82 0.09/0.85 0.08/0.86 0.00/0.89 0.03/0.87 0.08/0.86 0.08/0.86 0.11/0.85 0.09/0.86

3: SB 0.14/0.73 0.04/0.79 0.09/0.72 0.02/0.77 0.06/0.77 0.10/0.78 0.11/0.80 0.10/0.75 0.11/0.79

Table 7.4. Results in terms of minimum and maximum recall of the different ap-
proaches (rows) for the different annotator reliability weight estimation and combi-
nation procedures. Majority Voting (MV) is used as a baseline strategy.

Per-label Confusion-matrix

Classifier MV Prob Prob+Cons Acc Acc+Cons Prob Prob+Cons Acc Acc+Cons

1: NB 0.333 0.314 0.332 0.315 0.327 0.362 0.352 0.350 0.356

1: TAN 0.311 0.284 0.294 0.275 0.290 0.316 0.313 0.322 0.312

1: 2DB 0.283 0.310 0.337 0.301 0.329 0.276 0.286 0.283 0.280

2: OvO 0.335 0.350 0.346 0.252 0.331 0.359 0.353 0.361 0.356

3: SB 0.408 0.331 0.323 0.328 0.322 0.349 0.340 0.321 0.349

Table 7.5. Results in terms of mean F1 of the different approaches (rows) for
the different annotator reliability weight estimation and combination procedures.
Majority Voting (MV) is used as a baseline strategy.

Per-label Confusion-matrix

Classifier MV Prob Prob+Cons Acc Acc+Cons Prob Prob+Cons Acc Acc+Cons

1: NB 0.500 0.496 0.502 0.492 0.499 0.495 0.493 0.493 0.494

1: TAN 0.498 0.496 0.500 0.493 0.497 0.484 0.482 0.483 0.483

1: 2DB 0.490 0.496 0.505 0.492 0.500 0.479 0.482 0.477 0.480

2: OvO 0.500 0.505 0.505 0.412 0.502 0.498 0.496 0.494 0.493

3: SB 0.484 0.439 0.426 0.429 0.429 0.441 0.426 0.408 0.433

Table 7.6. Results in terms of accuracy of the different approaches (rows) for
the different annotator reliability weight estimation and combination procedures.
Majority Voting (MV) is used as a baseline strategy.

imbalance problems, where an adequate performance in all the class labels is
desired.

Another interesting trend observed in these experiments is the different
performance of the classifiers learnt with consensus weight correction. When
per-label reliability weights are used, this correction works well and allows the
classifiers to achieve enhanced performance regarding the same classifier learnt
with the same configuration and no correction. The enhanced performance is
systematically observed in terms of all the metrics (A-mean, F1 and accuracy).
However, when confusion-matrix weights are used, the consensus correction
is revealed to be completely unnecessary: The performance is rarely improved
and, in some experiments, it even harms the results.

In general, the crowd learning techniques proposed in this work are appro-
priate for solving the problem of automating defect classification. The simplest
solution, a standard learning technique that uses the most-voted labels (MV)
marks a baseline, whose robust behavior has already been explained in Section
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5.3. In these experiments, the MV strategy achieves reasonable performance
and, in the case of SMOTEBoost, crowd learning techniques cannot outper-
form it. In the rest of cases, our techniques consistently outperform the simple
MV strategy.

With respect to the different approaches, we have successfully integrated
the different methodologies with the learning from crowds paradigm. In the
first case, standard crowd learning techniques induce BNCs which deal by
themselves with this multi-class problem. The best results are usually asso-
ciated to the experiments that learn naive Bayes classifiers. Learnt TAN and
2DB classifiers usually do not reach the overall performance of naive Bayes.
On the one hand, TAN classifiers are specially susceptible to the use of per-
label weights. On the other hand, the use of confusion-matrix weights seems
to be harmful to the performance of 2DB classifiers. In general, the perfor-
mance of naive Bayes classifiers stands out when confusion-matrix weights are
used. In this case, the differences with the other types of Bayesian network
classifiers are even more evident.

The second approach, the weighted voting OvO decomposition technique
learning binary naive Bayes classifiers, is generally the best strategy in terms
of accuracy. However, as mentioned earlier, this metric is not reliable in multi-
class imbalance situations. Moreover, the differences with respect to the naive
Bayes classifiers learnt in the first approach are inconsistent and, many times,
negligible (specifically in the experiments that use matrix reliability weights).
Thus, its enhanced accuracy performance could not compensate for the greater
complexity of the decomposition procedure.

The last approach aims to deal with the unbalanced nature of our multi-
class problem. The SMOTEBoost technique achieves the best performance in
terms of the A-mean, a metric which is effective for assessing the performance
in unbalanced scenarios. That is, this approach is the best option if the ability
to detect/classify examples of the minority classes is valued. As hypothesized,
SMOTEBoost partially sacrifices the performance in highly-populated class
labels but its performance in minority class labels is enhanced. Consequently,
the performance improvement in terms of the A-mean metric has a negative
impact on the accuracy values. Similarly, the minimum and maximum recall
values show also the corresponding expected trend.

7.6 Threats to Validity

Concerning external validity, an obvious threat arises because we only used one
project, Compendium. Software systems usually have specific features such as
application domain, development environment, number of people reporting,
etc. Therefore, different systems are likely to differ in the distribution of types
of defects. From this point of view, the proposed machine learning techniques
need to be adjusted to the specific environment of each problem.
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Concerning construct validity, the quality in the ITS makes it hard to eas-
ily classify defect data manually. We do not address other problems faced in
the defect repositories such as defect duplicates. Some preprocessing decisions
(such as removal of outliers or the text-to-feature preprocess configuration)
could have been different. Standard procedures and default values have been
used to limit the discussion to the usefulness of the class information pro-
vided by the multiple annotators. Moreover, the original database is publicly
available2 to make the experimentation replicable.

Internal validity is concerned with whether the automated classifications
has arisen as a result of chance or not. In case of 9 balanced class labels, the
probability of randomly assigning the right label to an example is 1/9 = 0.111.
Assuming a random assignation of labels according to the distribution of labels
observed in our class imbalance problem, the probability of being right is
approximately 0.235. Therefore, according to the A-mean values obtained by
the implemented machine learning techniques, it can be concluded that the
automated classifications are not a product of chance.

7.7 Conclusions and future work

In this study, the learning from crowds paradigm has been considered for
solving the defect classification problem. Three different approaches have been
proposed to deal with a real application of the ODC problem, characterized
as a multi-class imbalance framework.

The first approach implements a standard crowd learning framework, spe-
cific for multi-class problems, which learns Bayesian network classifiers. Sec-
ondly, a binary decomposition approach is carried out as an alternative strat-
egy to solve the multi-class problem. Finally, a third approach makes use of
SMOTEBoost to specifically deal with the unbalanced nature of this multi-
class problem. In all the cases two different kinds of reliability weights have
been considered for studying the accuracy of the different annotators. Crowd
learning techniques generally outperform the standard classification method-
ologies which use a training dataset completed with the most-voted labels.
Although further research is required, the obtained results encourage the use
of the learning from crowds paradigm to deal with the defect classification
problem.

In spite of the difficulties in evaluating a multi-class imbalance problem
labeled by a crowd of annotators, the results have shown that the SMOTE-
Boost based approach obtains the best results, confirming that the unbalanced
nature of our multi-class problem is a challenging critical issue. Moreover, it
can be seen that the best performance in case of use of per-label weights is
observed when they are corrected by means of the consensus weights. How-
ever, the consensus weight correction does not enhance the results of those

2 http://www.sc.ehu.es/ccwbayes/members/jeronimo/odc/
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experiments using the confusion-matrix weights. This may be due to a larger
stability of the confusion-matrix weights to represent the reliability of the
annotators. In terms of accuracy, a global metric which does not reflect the
performance in minority classes, both standard crowd learning techniques and
weighted voting OvO defeats SMOTEBoost. As expected, SMOTEBoost sac-
rifices the global accuracy performance to enhance the local performance in
every class label.

As future work, a more appropriate adaptation of SMOTEBoost to the
learning from crowds paradigm could be proposed. In general, a formal de-
scription and study of (multi-class) imbalance classification problems labeled
by a crowd of annotators may be of interest. Specifically, we would like to
study the effect of a set of unbalanced annotations provided by skewed anno-
tators on the learning process of a classification framework which is already a
class imbalance problem [198].
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Conclusions and Future Work

All the contributions of this dissertation are covered by the expanding field of
weakly supervised classification. Although almost from the very beginning of
the supervised classification discipline different problems which provide par-
tially labeled examples (e.g., the semi-supervised learning [23]) have been a
matter of study, in the last years there has been an explosion in the num-
ber of works and proposals dealing with different types of weakly supervised
classification frameworks. The field is wide and the solved problems vary. Our
first contribution consists of a taxonomy of weakly supervised classification
problems which aims to order the field and establish the basis for the discus-
sion about the similarities and differences among different weakly supervised
frameworks.

Then, our methodological contributions (Part II) explore two different
problems in the field: the learning from label proportions and the learning
from crowds problems. In the respective chapters, we presented our proposals
to learn Bayesian network classifiers from the specific weakly labeled data of
each problem. But the quick development of the field cannot be explained
without its close relationship with real-world applications. In our case, the
developed methodologies have been tested in two real applications (Part III):
the assisted reproduction technologies and the software defect classification
problems. Both applications have been studied and specific techniques have
been proposed to deal with them based on the methodological contributions
of Part II. Promising results have been obtained in both applications.

This final chapter is organized as follows. First of all, Section 8.1 individ-
ually draws a more detailed set of conclusions for each of the contributions of
this dissertation. Next, the list of publications obtained during the develop-
ment of this thesis is presented in Section 8.2. Finally, Section 8.3 identifies
possible research lines for future work that remain open after this dissertation.
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8.1 Conclusions

This dissertation has been devoted to the analysis of the capability of learning
to classify when the available data is weakly supervised. Along the develop-
ment of this thesis, we realized that the lack of a clear description of the
field of weakly supervised classification has led to the misconception of sev-
eral problems. Consequently, in Section 2.2 we provided a global description
of the field. Many non-standard classification problems have been considered
and compared with each other. This has allowed us to identify three funda-
mental characteristics for depicting the problems of the field: all the weakly
supervised classification frameworks are characterized by the models of super-
vision that they implement in the learning and prediction stages, and by their
instance-label relationship. Each of these characteristics are considered as an
axis of the proposed taxonomy of weakly supervised classification problems.
By means of this novel organization, the similarities and differences between
different weakly supervised frameworks can be assessed. A general division
of weak supervision models is formulated: the supervision models that pro-
vide class information for each example individually and those that provide
class information jointly for groups of examples. Additionally, unexplored ar-
eas that could lead to new challenging frameworks are identified in the gaps
of the tables inferred from the proposed taxonomy.

The rest of research works included in this dissertation, corresponding to
Chapters 4 to 7, are divided into two groups: methodological developments
and solutions to real applications of different weakly supervised frameworks.

8.1.1 Methodological contributions

In Chapter 4, we presented our first methodological study of a weakly su-
pervised classification problem, the learning from label proportions. The su-
pervision model implemented in the learning stage of this problem provides
class information for groups of examples: the proportions of examples in each
group that belong to each class label are provided. In line with previous studies
[128, 136], we have shown that this supervision model provides relevant class
information that can be used to learn more accurate classifiers. We have pro-
posed four competitive versions of a Structural EM method to learn Bayesian
network classifiers from label proportions.

Our proposal shows a competitive behavior with respect to state-of-the-
art techniques, as has been shown in a comparison with the most represen-
tative and influential LLP methods [128, 136]. Among the four versions of
our method, two versions which go through all the possible label assignments
perform exact calculations by means of probabilistic (the PEM version) and
non-probabilistic (NPEM) procedures. This probabilistic exact version has
shown the best results. However, both exact versions are not scalable when
the uncertainty of the problem and the number of possible joint label as-
signments grow. Another probabilistic version, MCEM, overcomes this issue
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performing an approximation to the exact version by means of a MCMC pro-
cedure. It shows a good behavior in scenarios that are unaffordable for PEM,
and the statistical tests associated to the experimental comparison do not
show significant differences between both versions. Both probabilistic versions
are combined in the fourth version, PMEM, such that approximate reasoning
(MCEM) is only used when the exact approach (PEM) is unfeasible. It uses
the MCMC-specific parameters (burn-in, bi, plus number of samples for cal-
culating estimations, s) to establish a threshold for the maximum number of
consistent completions that can be explored throughout the exact procedure.
This last version performs as well as PEM (no statistical significant differences
are found) and shows the best performance in terms of time-consumption.

In the second methodological study, we have gone into the learning from
crowds problem (Chapter 5). In this weakly supervised classification problem,
the supervision model implemented in the learning stage provides, for each ex-
ample, a set of labels annotated by different unreliable annotators. A complete
study of basic CrL strategies has been carried out, characterizing the crowd
scenarios where each strategy shows a better performance. The straightfor-
ward majority voting strategy, which consists of completing the dataset with
the most-voted labels to learn in a standard supervised classification frame-
work, shows its strength in informed scenarios (a considerable set of competent
annotators extensively label the examples of the dataset). From this study, a
set of useful guidelines to select the most convenient strategy to cope with a
specific crowd scenario can be inferred. We delimit the scenarios where the
use of non-trivial methodologies are justified to enhance the obtained classi-
fiers: scenarios with data scarcity where few unreliable annotators annotate
the training examples.

We propose a general framework for learning multi-dimensional Bayesian
network classifiers from data annotated by a crowd. Focusing on improving
the learning process in crowd scenarios of data scarcity, different ways to in-
corporate the information about the reliability of the annotators have been
explored. By means of a set of experiments performed with multi-label (syn-
thetic and real) datasets transformed to the MDCrL framework, our proposal
has been shown to overcome the simple approaches in crowd scenarios with
data scarcity.

8.1.2 Applications

Initially conceived as a real application of the learning from label proportions
problem, a case study of the problem of assisted reproductive technologies has
been analyzed in an integral way through the use of machine learning tech-
niques in Chapter 6. In collaboration with the Unit of Assisted Reproduction
of the Donostia Hospital, the reinterpretation of the objectives of the ART
problem has led to the design of four different approaches which provide a par-
tial solution to the problem. Three out of the four approaches are described as
(novel) weakly supervised classification problems and specific techniques have
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been used for learning from the available data in each of the frameworks. Apart
from a standard supervised classification problem, the other three subprob-
lems are represented by the positive-unlabeled, label proportions and a novel
weakly supervised classification problem. This novel framework, the learning
from positive unlabeled proportions, provides the proportion of positive (the
rest are assumed to be unlabeled) examples for each group in the training
dataset. A SEM-based method has been developed to learn from data labeled
by means of this novel weak supervision model.

Machine learning techniques had already been applied to the ARTs, al-
though using a limited number of predictors and discarding embryos of un-
certain fate. Our solution uses all the data collected by physicians during the
ART treatment, considering also examples of uncertain fate for model learn-
ing, and evaluates its relevance for the four conceived classification tasks. This
is one of the main differences with respect to the previous literature.

The learnt classifiers that predict the viability of a cycle show a promising
performance. According to the results of the experiments, the collected data
for characterizing embryos in our case study does not fully describe an embryo
implantation. More research is required in order to find new relevant factors
that determine the implantation of an embryo. In this direction, the experi-
mental results of Section 6.3 show the relevance of the features describing the
cycle for determining embryo implantation (and ART success). In fact, it can
be appreciated that the data currently collected for characterizing embryos
describes more consistently the embryo development. Classifiers obtained with
this approach have been proved to rank the medium-quality embryos of our
case study more reliably than ASEBIR [3] grade. These are promising results
due to the difficulty in establishing a reliable quality embryo grade, especially
for medium-quality embryos, as previously reported in the related literature.
They support the use of the obtained classifiers and their probabilistic embryo
assessments as an alternative embryo score.

In Chapter 7, a case study of the software defect classification problem
has been analyzed by means of the learning from crowds paradigm. The real
application, a set of defects reported in the issue tracking system of the Com-
pendium software project, is described as a multi-class imbalance problem
labeled by a set of five annotators. Apart from the methodology proposed
in Chapter 5, adapted to multi-class problems and successfully used to learn
BNCs (first approach), we have proposed two other approaches to deal with
our case study. On the one hand, weighted voting one-vs-one, a binary decom-
position strategy, has been implemented in the learning from crowds frame-
work. It aims to specifically deal with the multi-class nature of the defect
classification problem. On the other hand, our third approach makes use of
SMOTEBoost to specifically deal with the unbalanced nature of this multi-
class problem. In both cases, we have successfully integrated these classical
techniques of standard supervised classification into the framework of learn-
ing from crowds. As expected, SMOTEBoost overcomes the other two ap-
proaches in terms of A-mean (a performance metric specifically suitable for
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class imbalance problems). In terms of accuracy (a global metric which does
not reflect the performance in minority classes), both standard crowd learning
methodology and weighted voting OvO defeat SMOTEBoost. It can be ob-
served that SMOTEBoost concurs with a drop in global accuracy performance
of the classifier in order to enhance the local performance in every class la-
bel. In general, proposed crowd learning techniques generally outperform the
standard supervised classification methodologies which learn from a training
dataset completed with the most-voted labels. Therefore, the overall results
encourage the use of the learning from crowds paradigm to deal with defect
classification.

Regarding the configuration of our methodology to assess the reliability
of the annotators, there is no predominant configuration. It can be seen that
the best performance while using per-label weights is observed when they
are corrected by means of the consensus weights. However, the consensus
weight correction does not enhance the results of those experiments using
the confusion-matrix weights. This may be due to a larger stability of the
confusion-matrix weights to represent the reliability of the annotators.

8.2 Publications of the thesis

The research work conducted during this thesis has given rise to the following
publications and submissions:

8.2.1 List of publications in referred journals

• J. Hernández-González, I. Inza and J. A. Lozano (2015) Multidimen-
sional learning from crowds: usefulness and application of expertise detec-
tion. International Journal of Intelligent Systems 30(3); pp. 326–354.

• J. Hernández-González, I. Inza and J. A. Lozano (2013) Learning
Bayesian network classifiers from label proportions. Pattern Recognition
46(12); pp. 3425–3440.

8.2.2 List of submitted papers

• J. Hernández-González, D. Rodriguez, I. Inza, R. Harrison and J. A.
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• J. Hernández-González, I. Inza and J. A. Lozano (2015) A novel
weakly supervised problem: Learning from positive-unlabeled proportions.
In: Proceedings the 16th Conference of the Spanish Association for Artifi-
cial Intelligence (CAEPIA), Albacete, Spain; To appear.
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8.3 Future work

The research works carried out during the development of this thesis have
certainly left open multiple questions that would need further research. In this
section, we identify some of these open questions: ideas that would allow us
to progress in the comprehension of the explored weakly supervised problems
and suggestions for developing/adjusting the proposed methodologies.

In this dissertation, we have focused on weakly supervised classification.
However, there are many other non-standard classification problems that
could be considered in an extended taxonomy of classification problems. First
of all, there are problems which learn classifiers that do not provide full-
categorization predictions but a different kind of information, such as a rank-
ing or a probability distribution over all the possible class labels [73, 118].
Note that this characteristic fulfills the condition that we used to consider the
inclusion of features as axes of our taxonomy: when a solution is built, the
kind of information that a classifier is expected to return has to be known.
Beyond the four instance-label relationships considered in the proposed taxon-
omy (Table 2.1), many other frameworks have been proposed in the literature:
problems where there exists no absolute membership to any categorization for
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the examples (label ranking [16, 184] or label distribution [66, 187]), or prob-
lems where the image of the target function cannot be represented by just a
single class variable (e.g., multi-dimensional framework [6, 133]). It would be
interesting to investigate if the taxonomy axis that represents the instance-
label relationship should cover these non-standard problems, which are usually
named as structured output and/or multi-target learning [179, 186].

One of the main challenges in this field is the proposal of a whole frame-
work for learning and validating classifiers using exclusively weakly supervised
data. Many techniques (from evaluation to feature subset selection strategies)
are based on the availability of fully labeled examples. Therefore, the referred
standard techniques cannot be straightforwardly used for dealing with weakly
supervised problems. So far, the use of simulated datasets have allowed re-
searchers (including us) to develop and test novel methodologies that learn
from different weakly supervised problems. However, the use of real weakly
supervised datasets challenges the traditional learning and evaluation frame-
works as the ground truth is not available. We have faced these difficulties
when dealing with the real applications (Part III). With the current expan-
sion of the field, a complete framework for learning and evaluating classifiers
in absence of the ground truth would be extremely relevant.

As exposed in Section 2.2, it seems difficult to propose a ranking or global
description for the whole spectrum of the weak supervision models due to the
wide diversity of models found in the related literature. However, two groups
of supervision models have been recognized. It would be very interesting to
explore the possibilities of carrying out a formal mathematical study of the
ability of learning in each of the groups of supervision models, perhaps estab-
lishing boundaries in the expected error of the learnt classifiers depending on
the degree of class uncertainty in the provided data and sample size.

In Chapter 4, we have dealt with the learning from label proportions prob-
lem. Regarding the proposed methodology, specifically the final PMEM ver-
sion, it would be interesting to study the possibility of automatically calculat-
ing for each bag individually the parameters of the MCMC procedure (burn-in
and number of samples). This would establish a non-constant threshold in the
maximum number of consistent completions considered with the exact proce-
dure. The implications of this decision should also be studied.

From a theoretical point of view, it would also be interesting to consider
a weakly supervised problem similar to LLP with a relaxed notion of pro-
portions. That is, considering a supervision model with groups of examples
where each group provides a probability distribution over the class labels for
the examples of the bag. Similarly, another interesting extension for this kind
of group-based supervision models is the provision of class information for
non-disjoint groups of examples. Although, a priori, this particularity should
help to reduce the level of class uncertainty, an in-depth research is required
to establish the consequences of this relaxation.

In the context of learning from crowds, it is not realistic to assume that all
the annotators label all the examples. Relaxing this assumption would imply



148 8 Conclusions and Future Work

taking into account annotators who label few instances, making it more dif-
ficult to assess the reliability of annotators. This would require the redesign
of the techniques that have been proposed to calculate the reliability weights.
Similarly, in this dissertation it has been assumed that all the annotators pro-
vide wrong labels randomly. On the contrary, considering non-random noisy
annotators (e.g., someone that tends to label incorrectly only the examples
of a specific area of the instance space) requires the development of specific
methodologies to deal with this type of annotations.

Exploring the possible extensions of our methodology, let us imagine a
crowd scenario where the number of annotators that label each instance is
very different; or a different scenario where a brilliant domain expert labels
only sporadically. It could be interesting to implement a complete method
which is able to choose in run-time the most appropriate strategy for each
example: majority voting if many labels have been provided, expert selection
only for the examples labeled by highly reliable experts, etc.

With respect to our proposals for the problem of human assisted repro-
duction, it would be interesting to carry out a clinical study in order to verify
the enhanced performance of our classifiers with respect to the currently im-
plemented embryo selection criteria. In order to do so, a previous study has to
be carried out for finding the method configuration that optimizes the perfor-
mance of the obtained classifiers. From a medical point of view, more research
is required to find novel features influencing embryo implantation. In this way,
the arrangement of potentially successful cycles and embryos will hopefully
be improved. Moreover, the study carried out in Chapter 6, inspired by the
embryo-uterine approach, analyzed both datasets (cycle and embryos) sepa-
rately. As there exists a one-to-n relationship among the cycles and embryos,
it would be interesting to try to model this problem by means of data analysis
techniques for relational databases [59].

The software defect classification problem has opened several interest-
ing questions. We have adapted to the learning from crowds paradigm two
standard techniques that deal with specific issues of supervised classification
problems: one-vs-one multi-class decomposition and SMOTEBoost. The issues
that are solved by means of these techniques are observed in both standard
and weakly supervised classification problems. Therefore, as the learning from
crowds paradigm spreads out, it is expected that this and other types of stan-
dard supervised classification techniques are adapted to crowd learning. In
this context, the adaptation of SMOTEBoost, the only proposed approach
overcome by the MV strategy according to the experimental results, should
be redesigned. From a theoretical point of view, the (multi-class) imbalance
classification problem labeled by a crowd should be formally described. This
description could lead to the study of the interaction among the class imbal-
ance problem and the provision of unbalanced annotations. That is, to describe
the learning process of a class imbalance classification problem which has been
labeled by a set of skewed annotators [198].
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Lucania, Iñaki Inza, and Jose A. Lozano. Approaching sentiment analysis by
using semi-supervised learning of multi-dimensional classifiers. Neurocomput-
ing, 92:98–115, 2012.

134. Giacomo Patrizi, Claudio Manna, C. Moscatelli, and Luciano Nieddu. Pattern
recognition methods in human-assisted reproduction. International Transac-
tions in Operational Research, 11(4):365–379, 2004.

135. Jose Manuel Peña, Jose A. Lozano, and Pedro Larrañaga. An improved
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