
Konputazio Zientziak eta Adimen Artifizialaren Saila

Departamento de Ciencias de la Computación e Inteligencia Artificial

Instances of
Combinatorial Optimization Problems:

Complexity and Generation

by

Leticia Hernando Rodrı́guez

Supervised by Alexander Mendiburu and Jose A. Lozano

Dissertation submitted to the Department of Computer Science and Artificial
Intelligence of the University of the Basque Country (UPV/EHU) as partial

fulfilment of the requirements for the PhD degree in Computer Science

Donostia - San Sebastián, May 22, 2015

llzitbel
Texto escrito a máquina
(cc)2015 Leticia Hernando Rodríguez (cc by 4.0)





To David
and my parents





VII

ACKNOWLEDGEMENTS

I would like to thank my advisors Alexander Mendiburu and Jose Anto-
nio Lozano. Without their wise guidance, this dissertation would never have
been possible. Your patience and encouragement have been essential in the
development of this dissertation. Thank you very much.

I thank my colleagues in the Intelligent Systems Group with whom I have
shared these years, and also the members of other research groups at the
Faculty of Computer Science. Especially, I would like to thank Itzi and Borja
because of their help with the design of this dissertation cover; Jose, because
of his patience teaching me; Unai, because of the “A8s” ; and those who were
in my lab 309 when I started this long journey: Carlos, Juan, Jonathan and
Ekhiñe.
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1

Introduction

1.1 Preliminaries

Combinatorial optimization is related to operations research, algorithm the-
ory, and computational complexity theory. It has important applications in
several fields, including artificial intelligence, mathematics, and software en-
gineering. A Combinatorial Optimization Problem (COP) consists of finding
the points that minimize (or maximize) a function f , subject to a set of con-
straints, where the solutions are in a finite or countable infinite search space
[69]. That is, find π such that:

min (max) f(π), π ∈ Ω
subject to

gi(π) ≥ bi, i = 1, 2, . . . ,m
hj(π) = cj , j = 1, 2, . . . , s

where f , gi, and hj are general functions of π, and Ω is a finite or countable
infinite set. In particular, in this dissertation we focus on permutation-based
COPs. So, from now on, we refer to Ω as the space of permutations of size n.

Although this is the most common definition of a COP, there exist three
different versions for these problems, depending on what we are looking
for. Without loss of generality, we detail these three versions assuming mini-
mization. First, the optimization problem itself is what is called the optimiza-
tion version. We simplify its definition describing the objective as finding an
optimal solution π∗ such that:

π∗ = arg min
π∈Ω

f(π).

Secondly, if the aim of the problem is to know the cost of the optimal solution,
that is, the value of the objective function in the optimal point, it is referred
to as the evaluation version. Given a COP, the goal is to find f(π∗) such that:

f(π∗) ≤ f(π), ∀π ∈ Ω.
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The third version of a COP is particularly important in studying the com-
plexity of the problem. This is the recognition version. Given an instance and a
fixed integer L, the recognition version consists of determining if there is a fea-
sible solution such that the objective function evaluated in that point is lower
than or equal to L. That is, given a COP and L ∈ Z, it consists of answering
the following question:

Is there any π ∈ Ω such that f(π) ≤ L?

Unlike the two previously introduced versions, the recognition version is
in fact a question which has a yes or no answer. Obviously, solving the recog-
nition version of the problem is not harder than solving the evaluation ver-
sion. If we know the solution of the evaluation version, we just have to check
if the value is lower than or equal to L and the question of the recognition
version will be answered. It is also possible to show that the evaluation ver-
sion can be solved efficiently whenever the recognition version can. If we solve
the recognition version for many values of L, we can find the exact value for
which the solution of the instance changes from yes to no, and that value of
L will be the solution of the evaluation version. Moreover, it is known that
solving the evaluation version is not harder than solving the optimization one.
But, although there are problems for which the three versions are equivalent,
there is no known general method for solving the optimization version of the
problems by making use of an algorithm that efficiently solves the evaluation
version.

During the last 30 years, the analysis and solution of COPs has been con-
sidered as one of the biggest challenges in mathematics. A first step in this
analysis was the classification of the recognition version of these problems
in terms of its algorithmic complexity [38]. Roughly speaking, two class of
problems were detected. On the one hand, a set of problems (the P class) was
detected, which can be solved by means of a polynomial-time algorithm. This
class can be defined in terms of any mathematical formalism for algorithms,
such as the Turing machine. On the other hand, inside the NP-complete class
we find the problems for which there is no known polynomial-time algo-
rithm for solving all their instances and, if there was an efficient algorithm
that solved all the instances of one of the problems in the NP-complete class,
then all the instances of the NP-complete problems could be solved by an ef-
ficient algorithm. Some famous examples of NP-complete problems are the
Traveling Salesman problem, the Satisfiability problem, the Knapsack prob-
lem or the Graph Coloring problem [69].

Although this complexity classification is very relevant, it has its limita-
tions. Firstly, it is a classification based on the worst case scenario. This means
that, for the problems in the NP-complete class, there is no known algorithm
that solves all the instances of the problem in polynomial time. However,
it can be very easy to solve instances for which algorithms find a solution
very quickly. Secondly, these results of complexity are not applied to the op-
timization problem directly, but to the recognition version of the problem.
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Although, as previously mentioned, the recognition problem is not harder
than the optimization problem, some of the concepts and techniques used to
analyze the recognition version are not easy to transfer to the optimization
version.

A large group of researchers has carried out a more detailed complex-
ity analysis of the recognition problem, trying to assign a complexity mea-
sure to particular instances, instead of assigning it to the complete problem
[1, 41, 45, 49, 64, 65]. These studies focused on the Satisfiability and on the
Graph Coloring problem. One of the characteristics observed in these works
is a phenomenon called phase transition. This term comes from the field of
Physics but it has been moved to other disciplines such as Mathematics, and
particularly, combinatorial optimization. In general, a phase transition in a
system means a dramatic change in its properties when a control parame-
ter exceeds a critical value. In COPs, this phenomenon means that there is a
parameter of the problem for which, for a certain value of it, there is a dra-
matic change in the complexity of the instances. That is, for very small (or
large) values of the parameter, we find that the instances are very easy, while
for large (or small) values, they are very hard. Instances with values of that
control parameter close to the phase transition threshold can not easily be
proved easy or hard. This approach is very important, as it can help to guess
the difficulty of a given instance before trying to solve it. As an example, for
the recognition version of the Traveling Salesman problem, and using ran-
dom instances, the authors in [40] represented in Figure 1.1 the probability
of finding a tour according to different values of a control parameter, and the
phase transition phenomenon was observed.

Fig. 1.1. Figure taken from [40], where the authors represented, for the instances of
the recognition version of the Traveling Salesman Problem, the phase transition in
the probability of finding a tour when varying the values of a control parameter, for
different permutation sizes n.
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An interesting study would be to move these concepts of complexity of
instances and phase transition from the recognition to the optimization ver-
sion of the problem. Unfortunately, there is a huge difference between deter-
mining the complexity for instances of both versions. For example, to deter-
mine complexity for an instance of the recognition problem, we do not need
to consider a particular algorithm, because the complexity of the instance is
well determined by answering the yes-no question of the problem. However,
in the optimization problem, the complexity criterion established for an in-
stance directly depends on the algorithm chosen to solve it. This would mean
that we should establish one complexity criterion for each algorithm, but this
would be tedious due to the huge amount of algorithms available in the lit-
erature. A way to approach this issue would be to associate a structure to the
search space in the hope that every algorithm that uses the same structure of
the space will have the same (or almost similar) behavior, and therefore the
complexity of the instances will be determined by this structure, indepen-
dently of the algorithm that solves it.

In this sense, the research community has studied the complexity of COPs
once equipped with a neighbor system. A neighborhood N in a search space
Ω is a mapping that assigns a set of neighbor solutions N(π) ∈ P(Ω) to each
solution π ∈ Ω:

N : Ω −→ P(Ω)
π 7−→ N(π) .

As an example, in Figure 1.2 we represent all the space of permutations
of size 4, structured under the adjacent swap neighborhood. That is, two per-
mutations are connected if they differ from one and only one adjacent swap.

Fig. 1.2. Space of permutations of size 4 connected according to the adjacent swap
neighborhood.
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Based on the definition of neighborhood, we say that a solution π∗ ∈ Ω is
a local optimum if

f(π∗) ≤ f(π), ∀π ∈ N(π∗) (local minimum).

Obviously, one solution π∗ ∈ Ω can be a local optimum under a neighbor-
hood N1, but not when considering a different neighborhood N2. If σ∗ ∈ Ω
is a solution such that

f(σ∗) ≤ f(σ), ∀σ ∈ Ω,

then σ∗ is a global optimum. Clearly, the global optima are local optima for
any neighborhood.

In general, the triple (Ω, f , N ) is called a landscape, where Ω is the search
space, f is the objective function of the optimization problem and N is the
neighbor system. Obviously, there exist different landscapes (with different
complexities) for the same problem, depending on the neighborhood chosen.

Local search algorithms are metaheuristics commonly used to solve in-
stances of permutation-based COPs, which make use of this concept of
neighborhood. Particularly, in this dissertation, we use a deterministic best-
improvement local search. The steps followed by this algorithm are specified
in Algorithm 1, where it is assumed that we are dealing with a minimiza-
tion problem. In the case of a maximization problem, we just replace ”if
f(σi) < f(π∗)” (step 6) with ”if f(σi) > f(π∗)”. It is important to notice
that the neighbors are evaluated in a specific order, so that, in the case of two
neighbors having the same function value, the algorithm will always choose
that which was encountered first. We denote by H the operator that asso-
ciates, to each solution π, the local optimum π∗ obtained after applying the
algorithm (H(π) = π∗).

Algorithm 1 Deterministic best-improvement local search algorithm (assum-
ing a minimization problem)
1: Choose an initial solution π ∈ Ω
2: repeat
3: π∗ = π
4: for i = 1→ |N(π∗)| do
5: Choose σi ∈ N(π∗)
6: if f(σi) < f(π) then
7: π = σi
8: end if
9: end for

10: until π = π∗

The number of local optima that the neighborhood imposes on the search
space has attracted much attention because it also seems to be related to the
difficulty of finding the global optima [2, 3, 14, 30, 31, 39, 43, 71, 72]. That is
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why, the number of local optima has been considered as an indirect complex-
ity measure of an instance when solving it using a local search algorithm.
Moreover, as the number of local optima depends on the neighborhood, it
would be useful to take it into account in order to choose a priori the most
suitable neighborhood to solve a particular problem instance efficiently.

Unfortunately, in practice, given an instance of a COP and a neighbor-
hood, we do not know in advance the number of local optima. Thus, the
development of methods that efficiently estimate the number of local optima
seems to be a requirement in order to design algorithms that work in the
right neighborhood. While several approaches have been proposed to esti-
mate and bound the expected number of local optima for particular class of
instances of COPs [2, 3, 43], the literature is not so extensive when it is about
estimating the number of local optima of an individual instance. A key as-
pect to take into account when designing a method to estimate the number
of local optima of an instance is the distribution of the sizes of the attraction
basins.

Roughly speaking, an attraction basin B(π∗) is composed of all the solu-
tions that, after applying a local search algorithm starting from these solu-
tions, finishes in π∗. So, the attraction basin B(π∗) of a local optimum π∗ is
the set that can be defined in the following way:

B(π∗) = {π ∈ Ω | H(π) = π∗} .

The basin of attraction of a local optimum clearly depends on the neighbor-
hood, however, we omit it in order to simplify the notation. Supposing that
π∗1 , π

∗
2 , . . . , π

∗
v are all the local optima of the landscape, three important prop-

erties that the attraction basins fulfill are the following:

1. B(π∗i ) 6= ∅,∀i
2. B(π∗i ) ∩ B(π∗j ) = ∅,∀i 6= j

3.
v⋃
i=1

B(π∗i ) = Ω

So, the set of attraction basins of the local optima defines a partition of Ω.
The relative size of the attraction basin B(π∗) with respect to the search space
Ω, i.e., the proportion of solutions of the whole search space that belong to
the basin B(π∗), denoted as p = |B(π∗)|

|Ω| , is of special relevance.
Having information about all these properties that the neighborhood im-

poses on the instance: the number of local optima, their distribution along the
search space, the sizes of their attraction basins, etc., is relevant for studying
the performance and efficiency of local search algorithms. So, it could hap-
pen that an algorithm that uses a specific neighborhood works well when
it is applied to an instance, but the same algorithm with the same neigh-
borhood is not efficient for a different instance. In the first case, we say that
the instance is easy for the algorithm, while in the second case we say that
it becomes hard. Therefore, when comparing different algorithms, or when
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proposing a new technique that solves an instance, it is interesting to have at
our disposal instances with diverse characteristics, and, thus, different levels
of complexity for the algorithms.

However, it is difficult to find sets of instances of COPs and neighbor-
hoods whose properties are known beforehand. Furthermore, there are well-
known benchmarks of instances of different problems whose characteris-
tics, such as the number of local optima and their attraction basins, are not
known. Therefore, it is difficult to a priori guess the performance of the al-
gorithms without the knowledge of the characteristics of the instances. In
order to solve this deficiency, there exist proposals of generators of instances,
where the aim is to create instances with specific and fixed properties that
help to study the behavior of the algorithms.

Unfortunately, the portfolio of models that generate customized opti-
mization problem instances is not very extensive. Most of the proposals
found in the literature for this topic are for the continuous domain [37, 66, 67,
75, 95]. In the discrete domain, and particularly for binary spaces, we found a
proposal in [25]. In the space of permutations, we can find the following gen-
erators of instances [7, 23, 70, 87], and only in some of them are the authors
able to create instances where the global optimum is known. Moreover, this
is the only information provided, and these generators lack the flexibility to
generate instances with controlled properties. So, there is no clue about how
easy or difficult it is to solve the instance. Precisely, in [70], the authors state
that the toughest technical challenge to evaluate how close heuristic algo-
rithms come to the optimum is finding (or generating) suitable test instances
where applying those algorithms.

1.2 Permutation-based Combinatorial Optimization
Problems

Throughout this dissertation, three different permutation-based COPs will
be used. We denote by Ω the set of permutations of size n, and define a per-
mutation π ∈ Ω as a bijection of the set of integers {1, 2, . . . , n} onto itself. A
permutation is understood as an order of the items {1, 2, . . . , n}, this is:

π = (π(1)π(2) · · ·π(n))

where π(i) ∈ {1, 2, ..., n} is the item in the i-th position and π(i) 6= π(j),∀i 6= j.

1.2.1 Traveling Salesman Problem

Given a list of cities and their pairwise distances, the aim of the TSP is to find
the shortest tour that visits each city exactly once, returning to the initial city.
In particular, we work with instances of the Symmetric Traveling Salesman
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Problem, where the distance from the city A to the city B is considered the
same as from B to A.

Taking into account that the problem has n cities, the search space Ω
comes specified by the set of permutations of n elements, and the objective
function to minimize is:

F (π) =
∑n−1
i=1 dπ(i)π(i+1) + dπ(n)π(1),

where dπ(i)π(j) represents the distance between the cities π(i) and π(j), i 6= j.
Note that, in this problem, one solution can be represented by 2n differ-

ent permutations. Therefore the search space is of size n!/2n. For example, in
Figure 1.3, for n = 5, the 10 permutations π1, . . . , π10 represent the same tour.

π1 = (14325) π6 = (52341)
π2 = (43251) π7 = (23415)
π3 = (32514) π8 = (34152)
π4 = (25143) π9 = (41523)
π5 = (51432) π10 = (15234)

Fig. 1.3. Tour of length 5 represented by the permutations π1, π2, . . . , π10.

1.2.2 Permutation Flowshop Scheduling Problem

In the Permutation Flowshop Scheduling Problem (PFSP), n jobs have to be
scheduled on m machines in such a way that a criterion is minimized. A job
consists of m operations, and the j-th operation (j = 1, . . . ,m) of each job
must be processed on machine j for a given specific processing time without
interruption. The processing times are fixed non-negative values, and every
job is available at time zero. At a given time, a job can start on the j-th ma-
chine when its (j − 1)-th operation has finished on the machine (j − 1), and
machine j is idle.

The makespan is the total length of the schedule and, traditionally, has
been the criterion to be optimized in the PFSP. However, recently, Total Flow
Time (TFT) has captured the attention of the scientific community since it
is more meaningful for the current industry, and thus, this criterion will be
used in this dissertation. The following formula expresses mathematically
the concept of TFT for a permutation π of jobs, where cπ(i),m stands for the
completion time of job π(i) (i = 1, . . . , n) at machine m:

F (π) =

n∑
i=1

cπ(i),m.
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Being pπ(i),j the processing time required by job π(i) on machine j, the
completion time of job π(i) on machine j can be recursively calculated as:

cπ(i),j =


pπ(i),j i = j = 1

pπ(i),j + cπ(i)−1,j i > 1, j = 1

pπ(i),j + cπ(i),j−1 i = 1, j > 1

pπ(i),j + max{cπ(i)−1,j , cπ(i),j−1} i > 1, j > 1

Note that the search space in this case and in the next problem has size
n!.

1.2.3 Linear Ordering Problem

Given a matrix B = [bij ]n×n of numerical entries, the Linear Ordering Prob-
lem (LOP) consists of finding a simultaneous permutation π of the rows and
columns of B, such that the sum of the entries above the main diagonal is
maximized (or equivalently, the sum of the entries below the main diagonal
is minimized). The equation below formalizes the LOP function:

F (π) =

n−1∑
i=1

n∑
j=i+1

bπ(i)π(j)

where π(i) (π(j)) denotes the index of the row (column) ranked at position i
(j) in the solution π.

1.2.4 Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) is the problem of allocating a set
of facilities to a set of locations, with a cost function associated to the distance
and the flow between the facilities. The objective is to assign each facility to a
location such that the total cost is minimized. Specifically, we are given two
n×n input matrices with real values H = [hij ] and D = [dkl], where hij is the
flow between facility i and facility j and dkl is the distance between location
k and location l. Given n facilities, the solution of the QAP is codified as a
permutation π = (π(1)π(2) · · ·π(n)) where each π(i) (i = 1, . . . , n) represents
the facility that is allocated to the i-th location. The fitness of the permutation
is given by the following objective function:

F (π) =

n∑
i=1

n∑
j=1

hij · dπ(i)π(j)

1.3 Neighborhoods

The experiments carried out in this dissertation are based on three different
neighborhoods that have been commonly used in the COPs literature. These
are: the adjacent swap, the swap and the insert neighborhoods.
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1.3.1 Adjacent swap

Given a solution π = (π(1)π(2) · · ·π(n)), its adjacent swap neighbors are
those permutations obtained as the result of swapping two adjacent elements
of such solution π:

NA(π(1)π(2) · · ·π(n)) = {(π′(1)π′(2) · · ·π′(n)) | π′(k) = π(k),∀k 6= i, i+ 1,

π′(i) = π(i+ 1), π′(i+ 1) = π(i)} .

The number of adjacent swap neighbors of a permutation of size n is n− 1.
For example, in the space of permutations of size n = 5, the set of adjacent

swap neighbors of the permutation π = (12345) is:

NA(12345) = {(21345), (13245), (12435), (12354)}.

1.3.2 Swap

The swap or 2-exchange neighborhood considers that two solutions are
neighbors if one is generated by swapping two elements of the other, not
necessarily adjacent:

NS(π(1)π(2) · · ·π(n)) = {(π′(1)π′(2) · · ·π′(n)) | π′(k) = π(k),∀k 6= i, j,

π′(i) = π(j), π′(j) = π(i), i 6= j} .

Under this neighborhood, a solution has n(n− 1)/2 neighbors.
Taking the same permutation π = (12345) as in the previous case, the set

formed by its neighbors under the swap neighborhood is:

NS(12345) = { (21345), (32145), (42315), (52341), (13245),

(14325), (15342), (12435), (12543), (12354)}.

1.3.3 Insert

Two solutions are neighbors under the insert neighborhood if one is the re-
sult of moving an element of the other one to a different position:

NI(π(1)π(2) · · ·π(n)) =
{

(π′(1)π′(2) · · ·π′(n)) | π′(k) = π(k), ∀k < i and ∀k > j,

π′(k) = π(k + 1),∀i ≤ k < j, π′(j) = π(i)
}

∪
{

(π′(1)π′(2) · · ·π′(n)) | π′(k) = π(k), ∀k < i and ∀k > j,

π′(i) = π(j), π′(k) = π(k − 1),∀i < k ≤ j
}
.

The number of neighbors of a solution under the insert neighborhood is
n(n− 1)− (n− 1) = (n− 1)2.

Following with the same example, the set composed with the insert
neighbors of the permutation π = (12345) is the following:
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NI(12345) = { (21345), (23145), (23415), (23451),

(13245), (13425), (13452), (31245),

(12435), (12453), (41235), (14235),

(12354), (51234), (15234), (12534)}.

1.4 Outlook of the dissertation

This thesis is organized in three parts: (i) defining and estimating complexity
measures of instances of combinatorial optimization problems, (ii) designing
a tunable generator of instances of permutation-based combinatorial opti-
mization problems, and (iii) general conclusions, future work and publica-
tions derived from the thesis.

The first part of the dissertation, divided in 3 chapters, is devoted to estab-
lish and estimate complexity criteria for the instances of COPs. These mea-
sures do not depend on the type of problem or the algorithm used to solve
them, but just on the chosen structure for the search space, and would be
useful to know, in advance, if the structure chosen is suitable for efficiently
solving a given instance. In Chapter 2, we define two complexity measures:
the attraction basin size of the global optimum and the number of local op-
tima. Particularly, for the TSP under the swap neighborhood, we study the
evolution of these descriptors as the size of the problem grows, and we find
a phase transition phenomenon in the complexity of the instances. While
studying these complexity criteria, we noticed the difficulty of calculating the
exact number of local optima when the size of the problem is medium-large.
So, in Chapter 3, we review the existing methods for estimating the number
of local optima, as well as we bring to the optimization field some of meth-
ods that come from the statistics arena and that have been used by biologists
and ecologists to estimate the number of species in a population. We test
the different estimation methods in different instances: artificial, randomly
generated, real and those obtained from well-known benchmarks. We find
that the performance of the methods depends on properties of the instances,
such as the distribution of the sizes of the attraction basins. As a general con-
clusion the estimation methods that come from the statistics arena, provide
better results than those already known in optimization field, particularly, in
the case of small sample sizes. From this analysis, we learn that the relative
sizes of the attraction basins of the local optima are a main component in
the estimation of the number of local optima of the instances. Therefore, in
order to improve them, the development of accurate methods that estimate
these sizes of the attraction basins is fundamental. In Chapter 4, we propose
two methods to estimate the attraction basin sizes of the local optima. The
results obtained with both of them for instances of different problems and
considering different neighborhoods are analyzed.
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In the second part of the dissertation, Chapter 5 proposes a generator of
instances of permutation-based COPs. Our main concern was to provide a
highly tunable tool. In this sense in our generator the researcher can choose
the set of permutations she/he wants to be the local optima (including the
global optima) together with additional parameters that influence the sizes
of the basin of attraction of the local optima. The generator is defined as a
linear programing problem, where the function to optimize also helps to ob-
tain qualitative properties of the instances to generate. We also prove that,
with our generator, we are able to create instances comparable to benchmark
instances in terms of locality, and we also study the influence of the different
parameters, as well as give examples of the utility of the instances produced
by the generator when analyzing the behavior of different algorithms. We
remark that the most outstanding characteristic of our generator is that, by
tuning the parameters involved in it, we are able to control the properties of
the output instances. This allows us to conduct a deep analysis of the perfor-
mance of the optimization algorithms.

Finally, the third part draws the general conclusions of the dissertation,
points out possible future works and lists the publications produced during
this thesis.



Part I

Measuring complexity of instances of
combinatorial optimization problems





2

Complexity measures: Attraction basin size of the
global optimum and number of local optima

2.1 Introduction

Permutation-based combinatorial optimization considers problems where
the objective is to find the permutation (or permutations) that maximizes
or minimizes an objective function [69]. The solution of these problems is of
great importance, because they naturally appear in different fields such as
science, engineering or industry. One of the most paradigmatic examples of
this type of problems is the Traveling Salesman Problem (TSP): given a list
of n cities and a matrix with the distances between each pair of cities, the
objective of the TSP is to find a tour that visits every city exactly once, with
minimal total length.

Metaheuristic algorithms have been proved as efficient methods for solv-
ing hard permutation-based COPs. Most of these methods are based on, or
use a kind of local search that relies on the neighborhood structure over the
search space. The properties of this neighborhood can cause dramatical dif-
ferences in the performance of those local search methods [35, 48, 55, 63, 74,
86]. Thus, these properties determine the complexity that the algorithms us-
ing that neighborhoods will find when solving a specific instance.

Literature gathers several papers related to complexity measures for in-
stances of COPs. First, we find papers that propose complexity measures for
particular algorithms or specific operators used inside a given algorithm.
A first study about the complexity of TSP instances was developed in [40]
where, starting from random instances, the number of nodes that appeared
when it was solved with a Branch & Bound algorithm was assigned as a
complexity measure. This type of complexity measure depends on the algo-
rithm, but there are also studies in which the measures deal with the opera-
tors. In [24, 68] fitness distance correlation was used as a complexity measure,
mainly related to Genetic Algorithms. This function measures the correlation
between the value of the objective function and the distance to the nearest
global optimum. In [27], the point quality is proposed as a local complexity
measure, where distance is measured as a function of the neighborhood and
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it is analyzed for five different neighborhoods [77]. Another paper related
to the analysis of complexity is [86], where the authors proposed a network
characterization of NK landscapes, constructing a graph whose vertices rep-
resent the local maxima in the landscape, and the edges account for the tran-
sition probabilities between their corresponding basins of attraction. Such
networks were exhaustively extracted on representative NK landscape in-
stances, and statistical characterization of their properties were performed.
For the TSP, it has been proved that with the swap neighbor system it is an
elementary landscape [22, 81, 94]. So, we can obtain the autocorrelation coef-
ficient and the autocorrelation length of the landscape, which are parameters
that measure the ruggedness of a landscape [6]. These parameters are useful
to compare landscapes of the same problem in terms of its ruggedness and
to choose a suitable neighborhood. Unfortunately, these measures give char-
acteristics of the whole landscape, and therefore are not valid to compare
specific instances of the same landscape.

In this study we focus on local search algorithms. As we have previously
mentioned, the same local search algorithm can produce different results in
the same instance depending on the neighborhood chosen. So, the difficulty
that a local search finds when solving an instance of a COP, comes specified
by the properties that the neighborhood used in the algorithm provokes. Of
course, different neighborhoods draw different shapes (ruggedness) in the
landscapes, but, in addition, the same neighborhood can cause very different
properties for distinct instances of the same problem. Thus, before solving
an instance of a COP with a local search algorithm, we should decide which
neighborhood is the most convenient for such a specific instance.

In order to measure the complexity of an instance for local search algo-
rithms, we establish different criteria according to the characteristics that the
neighborhood imposes on the search space. Mainly, we consider two proper-
ties as complexity measures. The first one is the proportion of the size of the
basin of attraction of the global optimum over the size of the search space
(from now on, we denote this proportion as ABsize-GO). We suppose that, if
ABsize-GO is large, the instance is easy, because the probability of ending at
the global optimum is high. Secondly, we choose the proportion of the num-
ber of different local optima that appear in an instance over the size of the
search space (denoted as Num-LO). In this case we assume that, the higher
Num-LO is, the harder the instance. It is well known that Num-LO is a very
important property that makes an instance easy or difficult to solve when
using a local search algorithm. However, it is possible to find instances with
many local optima whose basins of attraction are small in size, while the
global optimum has a very large basin. So, the distribution of the sizes of the
basins of attraction must also be considered [39].

In order to test the validity of our descriptors, we have conducted some
experiments, focusing on the TSP and the swap neighborhood. We have cho-
sen the swap neighbor system because many successful algorithms have
been proposed based on it [8, 29, 46, 62, 88]. We are based on [40, 96], where,
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for the recognition problem of the TSP considering random instances, it was
proved that an instance-dependent parameter exists which makes the in-
stance hard or easy. In this case, this parameter is related to the length of the
tour L. There also exists a value for this parameter for which the complex-
ity changes rapidly, appearing the phase transition phenomenon. In more
recent works [5, 51], the authors also state that for problems such as the
Number Partitioning problem and the Satisfiability problem the properties
of the instances change as the values of different parameters vary. Therefore,
the complexity of the instances varies with these parameters and also the
phase transition phenomenon appears. The main difference of our proposed
complexity measures with the existing ones is that we establish complexity
measures for instances of the optimization problem that do not depend on
the algorithm that solves them, and in using them, we find phase transition
patterns in the complexity of the instances.

The rest of this chapter is organized as follows. We evaluate the complex-
ity measures in Section 2.2. First, we carry out an analysis of the evolution of
our descriptors as the dimension of the problem increases. Next, given a ran-
dom instance of the TSP optimization problem, we study the probability of
this instance having values of the descriptors higher than or equal to certain
values, and a phase transition behavior is observed similar to what had been
seen in the recognition version [40] but taking our complexity measures as
parameters. Finally, in Section 2.3 we conclude and explain some ideas de-
rived from this work, and that are developed in the following chapters.

2.2 Evaluation of the complexity measures

2.2.1 Experimental setup

The goal of the experimentation is to analyze the evolution of our complexity
measures and to try to find patterns of phase transition for the TSP under the
swap neighbor system. To do this, we base our work on similar ones done
for the recognition version of the problem [1, 40, 41, 45, 49, 64, 65]. We work
with random instances of the TSP. Based on [40], the instances were created
by placing n cities (for n = 6, 7, ..., 25) uniformly at random on a square
of area 100 in an Euclidean space and calculating the matrix that gives the
distance between every pair of cities.

For each n we randomly created 500 instances. The number of local op-
tima and their attraction basins are exhaustively calculated for each instance.
In order to do that, Algorithm 1, which chooses the best neighbor solution at
each step, is applied starting from each point of the search space. Although
we would have liked to calculate our complexity measures (ABsize-GO and
Num-LO) exactly for each instance, this is very time consuming for values of
n higher than 15 because of the exponential growth of the size of the search
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space ((n−1)!/2 1). This is the reason why the exact descriptors have been cal-
culated only for n ≤ 15. For n ≥ 16 we have estimated the values of the sizes
of the attraction basins of the local optima by proceeding in the following
way: for each instance, we have taken 10! random permutations as initial so-
lutions and, for each of these initial solutions, the local search algorithm has
been applied. For n ≥ 16, ABsize-GO has been estimated as the proportion
of the attraction basin size of the global optimum over the 10! permutations.
In addition, using an integer programming formulation we checked that the
minimum local optimum obtained with the local search in each instance for
n ≥ 16 is exactly the global optimum of the instance.

However, for Num-LO, we have only worked with exact values, that is,
instances with n up to 15. This is because there are no reliable estimators
for this parameter. Although there exist many works that explain techniques
to estimate the number of local optima [14, 30, 31, 39, 43, 57, 82, 83], these
techniques are not applicable in our problem because they can not give us
a precise estimation of our parameter for a particular instance. In fact, these
estimations are made for the expected number of local optima of all instances
of the problem, and not for a specific instance. In Chapter 3, we delve into this
matter, and present a deep comparison of methods that estimate the number
of local optima of instances of COPs.

2.2.2 Evolution of the complexity measures

In this section the evolution of the complexity descriptors is analyzed in rela-
tion to the size of the problem. Figure 2.1(a) shows the average of ABsize-GO
of the 500 instances for different values of n. It can be observed that, as n
increases, this value decreases. While for n = 6 the average of ABsize-GO is
higher than 0.96, for n = 15 the average is 0.2075, and for n = 25 it is 0.0031.
These values show the important decrease of this parameter. The exact values
of the averages for each n can be consulted in Table 2.1, as well as the average
numbers of local optima that are found for the different permutation sizes.
As previously mentioned, we only report this number for n ≤ 15.

Figure 2.1(b) shows the average of Num-LO that are obtained from each
of the 500 instances for n = 6, 7, ..., 15. Taking into account that the y axis is
represented at logarithmic scale, it can be observed that the average Num-LO
decreases exponentially as n increases. This graph approximates to the fol-
lowing function: e−1.6n+5.6. Table 2.2 gives the exact values for this average
of Num-LO. The important decrease of Num-LO can lead us to think that, ac-
cording to this complexity descriptor, instances are easier as n increases, but
this is not true. It must be taken into account that ABsize-GO also decreases.

1 Notice that we are working with cyclic permutations and considering the symmet-
ric TSP. This is why the size of the search space is (n− 1)!/2 instead of n!.



2.2 Evaluation of the complexity measures 19

6 8 10 12 14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

1

local optimum
global optimum

n

A
v
e
ra
g
e
o
f
A
B
s
iz
e
-G
O

(a)

6 7 8 9 10 11 12 13 14 15
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

n

P
ro
p
o
rt
io
n
o
f
th
e
N
u
m
L
O e

−1.6n+5.6

A
v
e
ra
g
e
o
f
N
u
m
-L
O

-1.6n+5.6

e

(b)

Fig. 2.1. (a) Average of ABsize-GO and the proportions of the maximum basin of at-
traction of the local optima, which are not the global optima, obtained from each of
the 500 instances, against the number of cities n. (b) Average of Num-LO that appear
in each of the 500 instances, at logarithmic scale, against the number of cities n.

This means that the local optima (which are not the global optimum), have a
larger basin of attraction as n grows. This fact leads us to represent, in Figure
2.1(a) plotted with ’+’, the proportion of the size of the largest basin of attrac-
tion of a local optimum that appears in the instance, that is, the maximum
basin of attraction of the local optima (not being the global optimum).

Observing the plot, it can be seen that the proportion of the size of the
largest basin of attraction of the local optima of an instance decreases for n
higher than 11, but much more slowly than that of the global optimum. Table
2.1 (fourth and fifth columns) shows the values that correspond to the pro-
portion of the size of the biggest basin of attraction of the local optima. If we
compare the average values (second and fourth columns), it can be observed
that, for n = 6, there is a huge difference between ABsize-GO and the pro-
portion of the maximum attraction basin of a local optimum. However, this
difference becomes smaller as n increases, so the size of the basin of attraction
of the local optimum approaches to ABsize-GO as n grows.

Figure 2.2 represents the variances of our complexity descriptors. For
ABsize-GO (Figure 2.2(a)), the variance increases for n up to 10, but from then
on, it decreases rapidly. Notice that, for low n, no more than two or three lo-
cal optima are found on average, so this number is considerably low, and
this means that some instances have just one optimum (the global one) but
other instances have the global optimum plus one or two more local optima.
Therefore, there is a huge difference in ABsize-GO of these different instances,
and thus the variance is also considerably high. As can be observed in Table
2.1, the variances of ABsize-GO are, for each n, higher than those of the pro-
portion of the size of the maximum basin of attraction of the local optima.
In Figure 2.2(b), an exponential decrease at the variance of Num-LO is ob-
served. We have to take into account that we have represented the y axis at
logarithmic scale so as to better appreciate it.
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Fig. 2.2. (a) Variance of ABsize-GO obtained from each of the 500 instances, against the
number of cities n. (b) Variance of Num-LO that appear in each of the 500 instances,
at logarithmic scale, against the number of cities n.

Table 2.1. Averages and variances of ABsize-GO, and the same for the proportions
of the maximum basin of attraction of the local optima. The last column shows the
average number of local optima.

Global optimum Local optimum Average number of
n Mean Variance Mean Variance local optima
6 0.9665 0.008888 0.0324 0.008085 1.13
7 0.9273 0.019201 0.0667 0.015521 1.30
8 0.8760 0.029832 0.1102 0.022005 1.62
9 0.7888 0.045748 0.1512 0.022505 2.65

10 0.7020 0.051290 0.1659 0.015503 5.31
11 0.6123 0.050583 0.1669 0.011993 11.02
12 0.4697 0.046021 0.1665 0.008734 25.68
13 0.3681 0.037620 0.1429 0.004959 62.99
14 0.2740 0.027339 0.1134 0.003004 152.56
15 0.2075 0.020804 0.0920 0.002675 348.71
16 0.1368 0.009592 0.0705 0.001166 —
17 0.0996 0.006441 0.0526 0.000800 —
18 0.0685 0.003271 0.0404 0.000614 —
19 0.0464 0.001889 0.0282 0.000258 —
20 0.0310 0.000988 0.0192 0.000117 —
21 0.0215 0.000340 0.0147 0.000092 —
22 0.0139 0.000272 0.0093 0.000052 —
23 0.0091 0.000131 0.0059 0.000017 —
24 0.0055 0.000050 0.0041 0.000012 —
25 0.0031 0.000021 0.0025 0.000003 —
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Table 2.2. Averages and variances of Num-LO.

n Mean Variance
(*e-4) (*e-10)

6 188.33333 347500.0000000
7 36.16667 23055.2469136
8 6.44444 898.5638700
9 1.31450 57.5919430
10 0.29266 2.9439807
11 0.06074 0.0956951
12 0.01287 0.0039111
13 0.00263 0.0001554
14 0.00049 0.0000046
15 0.00008 0.0000001

2.2.3 Finding phase transitions

Gent and Walsh [40] focused their study on the recognition version of the TSP
and found a phase transition behavior when they represented the probability
that a tour of length L exists according to a control parameter. We move this
concept of complexity from instances of the recognition problem to instances
of the optimization problem, taking our complexity descriptors as parame-
ters: ABsize-GO and Num-LO. First, for each n, we sort in ascending order,
the 500 values of ABsize-GO obtained from the 500 instances. Secondly, we
calculate the empirical distribution function. The same procedure has been
used for Num-LO.

Figure 2.3 shows, for n = 6, 7, ..., 25 from right to left, respectively, the
probability of an instance having ABsize-GO higher than or equal to the dif-
ferent values represented in the x axis. Notice that this axis is in logarithmic
scale. It can be observed that, for high values of n, the probability of the
proportion of solutions that reach the global optimum being higher than or
equal to the indicated values decreases rapidly. Moreover, this probability
tends to be concentrated in smaller values as n increases, showing a slight
phase transition phenomenon.

Figure 2.4 shows, for n = 6, 7, ..., 15 from right to left, respectively, the
probability of an instance having Num-LO higher than or equal to the val-
ues indicated in x axis. Notice again that this axis is in logarithmic scale. It
can be observed that, when our parameter varies, a huge change in probabil-
ity occurs (it decreases rapidly) and a phase transition phenomenon can be
observed. Furthermore, as in the case of ABsize-GO, the value for which the
transition occurs, becomes smaller as n increases. The higher the value of n
is, the sharper the decrease.
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Fig. 2.3. Probability of an instance having ABsize-GO higher than or equal to the dif-
ferent values represented in x axis, taking into account that the x axis is in logarithmic
scale, for n = 6, 7, ..., 25 from right to left, respectively.
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Fig. 2.4. Probability of an instance having Num-LO higher than or equal to the values
indicated in x axis, taking into account that the x axis is in logarithmic scale, for n =
6, 7, ..., 15 from right to left, respectively.
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2.3 Conclusions

In this chapter we have carried out a study about the complexity of random
instances of the TSP. The final aim is to find complexity descriptors able to
predict the difficulty of the instance for a local search algorithm. In addition,
we are also interested in finding a phase transition behavior in the complex-
ity of the instances when varying these complexity descriptors.

Inside combinatorial optimization, there have been many studies focused
on the recognition version of different problems trying to find complexity
criteria for the instances [1, 40, 41, 45, 49, 64, 65, 96] and, in some of these
studies, the phase transition phenomenon is observed. In addition to these
works, numerous researchers have worked with metaheuristic algorithms
and operators, establishing criteria of complexity [24, 27, 68]. However, in
these works the phase transition phenomenon has not been dealt with.

We propose here two measures in order to classify instances of the COPs
according to their complexity, particularly for the TSP. First, the proportion
of the attraction basin size of the global optimum over the size of the search
space: ABsize-GO. Secondly, the proportion of the number of local optima
over the size of the search space: Num-LO. We have studied the evolution of
both descriptors as n grows, being n the size of the problem. It has been ob-
served that, as n grows, the average of ABsize-GO decreases rapidly. Regard-
ing the variance, an increase up to n = 10 has been observed and, for n > 10,
it decreases very quickly. For values of n close to 10, there is a huge differ-
ence between the attraction basin size of the global optimum of the different
instances. So, for these values of n some instances will be considered very
easy to be solved, and there are also instances that will be considered very
hard to be solved. This phenomenon deserves further research as it could be
related to the process used for generating the instances.

For Num-LO, there is a very fast decrease as n increases, and this also
happens for the variance. According to this complexity measure, this would
indicate that, as n grows instances are easier. However, it is important to take
into account that, as n increases, ABsize-GO decreases, so the basins of attrac-
tion of the rest of the local optima (that are not the global optimum) have to
increase. In fact, as n grows, the average sizes of the basins of attraction of
the local optima approach to that of the global optimum.

Finally, in this chapter, and based on experiments carried out in [40], we
have found a phase transition on the complexity of the instances, taking as
parameters our two complexity measures. This phenomenon has appeared
when representing the probability of the instances having values of the com-
plexity measures higher than or equal to certain values. For our first descrip-
tor, and for high values of n, this probability decreases rapidly and tends
to be concentrated in smaller values of the descriptor as n increases. In the
case Num-LO, with a small variation of our parameter, a fast decrease occurs
also in probability. Moreover, as n increases, the value of our parameter for
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which this huge change occurs decreases and the probability decreases more
quickly.

In this chapter, we have shown that the proposed measures are in re-
lation with the complexity of the instances. However, it is computationally
unaffordable to calculate them even for moderate values of n. Moreover, if
we were able to calculate ABsize-GO, this would mean that we would know
the global optimum. Therefore, we extend this initial work looking for tech-
niques that can be applied to estimate the number of local optima (Chapter
3) and the attraction basin sizes of these local optima (Chapter 4).



3

An evaluation of methods for estimating the
number of local optima in combinatorial
optimization problems

3.1 Introduction

There are several characteristics of a neighborhood that influence the behav-
ior of a local search algorithm. However, probably, the most relevant is the
number of local optima it generates [35, 48, 55, 63, 74, 86]. Therefore, the
knowledge about the number of local optima that a neighborhood gener-
ates in an instance of a COP can have a high impact on the choice of the
local search algorithm used to solve the instance. On the first hand, differ-
ent neighborhoods generate different number of local optima. Of course, as
a general rule, the higher the size of the neighborhood the lower the number
of local optima. But, given two neighborhoods of the same size complexity
(number of local solutions in the same order of magnitude), the one that gen-
erates a lower number of local optima will always be preferred.

Given an instance of a COP and a neighborhood, the exact calculation of
the number of local optima is impractical, except for extremely low dimen-
sions (n ≤ 14). Furthermore, this exact calculation requires, in most of the
cases, the exhaustive inspection of every solution in the search space, what
makes this approach usefulness. Therefore, we have to resort in statistical es-
timation methods in order to have an approximation of the number of local
optima of a landscape. However, even if we were able to exactly calculate
the number of local optima, we still would have to face another challenge,
that is, how to represent such number. When the dimension of a problem is
high (for instance, n ≥ 200) and the size of the search space is exponential in
n, the number of local optima are usually so high that can not be accurately
represented in the computer. The alternative choice to represent the propor-
tion of solutions of the search space that are local optima deals with similar
issues as this number is too small to be accurately represented. Therefore,
the estimation of the number of local optima of an instance of a COP is only
plausible for moderate values of the problem size.

In spite of the useful information that the knowledge of the number of
local optima can provide in order to choose the best algorithm for solving a
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COP instance, there have not been many proposals in the literature. This can
probably be due to the difficulty of the estimation problem. These proposals
are mainly divided into three groups. A first group of proposals try to find
expected values on the number of local optima, departing from the hypothe-
sis that the instances have been generated uniformly at random [2, 3, 43]. In a
second group we mainly include proposals that have been developed in the
metaheuristics community. Finally, a third group includes a set of proposals
that were not designed with the objective of estimating the number of local
optima, but were adapted to this problem.

Most of these approaches assume that the attraction basins are equally-
sized [14, 31], and they propose methods to obtain lower bounds for the num-
ber of local optima. Under this assumption on the attraction basins, there are
works where biased estimators are obtained, and they try to correct this bias
to provide an unbiased estimator [30, 71, 72]. On the other hand, there are
papers where the sizes of the attraction basins are assumed to fit a certain
type of parametric distribution, such as gamma or lognormal. For example,
in [39], the authors assume a gamma distribution for the relative sizes of the
attraction basins.

So, the estimation of the number of local optima can help, not only to mea-
sure the complexity of the instance, but also to choose the most convenient
neighborhood to solve it. This work is connected to the area of evolutionary
computation as the analysis of the set of local optima in a landscape associ-
ated to the problem can be related to the investigation of some properties of
evolutionary algorithms, such as properties of the stable steady-state points
in Genetic Algorithms [73, 89].

The problem of estimating the number of local optima can be compared
with a well-known problem in biology: Estimating the number of different
species in a population. In the Statistics field, we can find plenty of algo-
rithms and methods used to estimate the number of species in a population.
In fact, [31] noticed the connection between these two problems, and they
applied the Schnabel-Census method, already used for estimating species,
for estimating the number of local optima. In [11], as well as in [78, 79, 80],
an exhaustive classification of methods for estimating the number of species
is given. In those works the literature is organized depending on the sam-
pling model, population specification, and philosophy of the estimation. We
can also find recent papers [18, 90] that give estimators for the number of
classes by assuming that the species abundance follows a Poisson-Gamma
model, and others [91, 92] in which estimators are based on the conditional
likelihood of a Poisson mixture model. Unfortunately, there are extreme dif-
ficulties associated with estimating the population size [59].

In this work, we present an evaluation of methods for estimating the
number of local optima, that not only use the methods proposed in the com-
binatorial optimization field, but also those developed for the species prob-
lem in the statistics arena. After describing them in detail, we test their per-
formance under three different scenarios:
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1. Simulated instances of combinatorial optimization problems.
2. Random instances of the Traveling Salesman Problem.
3. Instances of the Traveling Salesman Problem with real distances between

cities, and instances of the Flowshop Scheduling Problem obtained from
the well-known Taillard’s benchmark.

The rest of the chapter is organized as follows. The preliminary mathemati-
cal background is given in Section 3.2. In Section 3.3 we explain in detail the
selected estimate methods. Section 3.4 shows the experimental results when
applying the methods to synthetic data as well as to real instances, and dis-
cusses the results observed for the different methods, providing clues to help
select the most suitable estimation algorithm for a given instance. Finally, the
conclusions are presented in Section 3.5.

3.2 Statistics

The problem we are considering in this chapter, that is, estimating the num-
ber of local optima, can be considered as a classical estimation problem in
statistics. Therefore, the most common way of solving it is by constructing
an estimator by collecting a set of statistics from a sample. Due to the fact
that we want to estimate the number of local optima, our sample has to be
related to the local optima. Basically, most of the presented methods start by
taking a uniformly distributed random sample S = {π1, π2, ..., πM} ⊆ Ω of
size M . The local search algorithm is applied to each solution in S, and from
the M local optima obtained we get the r (≤ M ) different ones into the set
S∗ = {π∗1 , ..., π∗r}.

Two important statistics that will be used for the estimation methods are
αi and βi. We denote by αi (i ∈ {1, 2, ..., r}) the number of initial solutions of
the sample that belong to the attraction basin of the local optimum π∗i :

αi =
∣∣ {π ∈ S | H(π) = π∗i }

∣∣ =
∣∣ {π ∈ S | π ∈ B(π∗i )}

∣∣ ≤ ∣∣B(π∗i )
∣∣.

With this information, the following statistic is calculated:

βj =
∣∣ {αi | αi = j, i ∈ {1, 2, ..., r}}

∣∣ , ∀j ≥ 1.

So, βj is the number of local optima that have been seen exactly j times in
the sample. In the following section, we call β0 the number of local optima in
the search space that have not been found in the sample. Notice that βj = 0 ,
∀j > M . Two interesting relations are the following:

M∑
j=1

βj = r and
∑M
j=1 j ∗ βj = M.
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Table 3.1. A classification of the estimate methods selected on both the combinato-
rial optimization field and the statistics area, according to the sampling model. The
methods analyzed in this chapter are in bold and their abbreviations are indicated
between brackets.

SAMPLING METHOD (ABBREVIATION) REFERENCEMODEL

C
O

M
BI

N
A

TO
R

IA
L

O
PT

IM
IZ

A
T

IO
N

Multinomial

Method based on the Birthday problem [14]

Confidence [31]

First Repetition Time (FRT)

Intervals Maximal First Repetition Time (MFRT)

Schnabel-Census (Sch-Cen)

Bias [30]
Jackknife (Jckk)

Correction Bootstrap (Boots)

Gamma Method based on a Gamma model [39]

ST
A

TI
ST

IC
S

Multinomial

[17]Chao 1984 (Chao1984)

[19]
Chao & Lee 1 (ChaoLee1)

Chao & Lee 2 (ChaoLee2)

Poisson - Gamma

[18]Chao & Bunge (ChaoBunge)

Poisson-Compound Gamma Model [90]

Mixed Poisson [92]Penalized Nonparametric
Maximum Likelihood Approach

3.3 Estimation methods

In this section we present a review of the methods proposed in the literature
for estimating the number of local optima, as well as the most widespread
methods for estimating the number of species in a population. Table 3.1
shows the methods collected from the combinatorial optimization and also
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from the statistics area. Inside the combinatorial optimization field we find
the following methods: a method based on the Birthday problem [14], First
Repetition Time, Maximal First Repetition Time and Schnabel-Census [31],
Jackknife and Bootstrap [30], and a method based on Gamma distributions
[39]. In the statistics field, the selected methods are: Chao 1984 [17], Chao
& Bunge [18], Chao & Lee 1 and Chao & Lee 2 [19], a Poisson-Compound
Gamma Model [90] and a Penalized Nonparametric Maximum Likelihood
Approach [92].

We discarded some of the methods shown in Table 3.1, due to their
poor performance [14], high dependence with the sample size [39], or the
high computation time [90, 91, 92] observed in preliminary experiments. The
methods analyzed in this chapter are highlighted in bold.

The five methods proposed in the field of optimization are explained in
detail. First Repetition Time (FRT), Maximal First Repetition Time (MFRT)
and Schnabel-Census are methods that provide lower bounds and that can
be used for computing confidence intervals, while Jackknife and Bootstrap
are bias correcting non-parametric methods. FRT has attracted our interest
because it is a parameter-less method, whereas MFRT and Sch-Cen only de-
pend on one parameter which is the sample size. So, these three methods
do not require too much computation time. Jackknife is a method that also
depends on the sample size and it is very fast. Bootstrap not only needs the
sample size, but also another parameter: the number of repetitions inside the
method. The fact of carrying out repetitions causes the method to take more
time than the other methods in providing the estimated value.

In a second step, we present methods proposed in the field of statis-
tics used by biologists and ecologists when determining how many differ-
ent classes of species are in a population of plants or animals. They are
non-parametric methods, but they are based on particular sampling models.
Chao1984, ChaoLee1 and ChaoLee2 are based on multinomial sampling, while
ChaoBunge is based on a mixed Poisson sampling model. The main reason for
choosing these methods is that, according to preliminary experiments, they
do not require too much computation time and, in general, they give very
good estimates.

3.3.1 Methods proposed in the field of optimization

3.3.1.1 Methods used for computing confidence intervals

In this section we describe the methods proposed in [74]: First Repetition
Time, Maximal First Repetition Time and Schnabel-Census Procedure. These
three methods assume that all the attraction basins of the local optima are
equal in size. Under this assumption, and supposing a finite multinomial
model, they give (with a high probability) lower bounds for the number of
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local optima. First, we explain the common aspects of these three methods,
and then, the particular details of each of them are given.

Let us start by considering that the continuous distribution function Fv(t)
of a random variable T that depends on a parameter v is known, and this
distribution function is a strictly monotonically decreasing function on this
parameter v, that is:

if v2 > v1 then Fv2(t) < Fv1(t) , ∀t.

Now, the (1 - ε1 - ε2)*100% confidence interval for the parameter v is calcu-
lated. So, the goal is to find [v1 , v2], with v1 < v2, and such that P(v1 ≤ v ≤
v2) = 1 - ε1 - ε2, from the known distribution function Fµ(t) = P (T ≤ t | v =
µ). Taking into account that τ ∈ N is an observed value sampled from this
distribution, we obtain:

v1 = min {µ | 1− Fµ(τ − 1) ≥ ε1} , v2 = max {µ | Fµ(τ) ≥ ε2} .

Following the framework of [74], we work with the fixed value ε1 = 0.05. So,
these methods will define v1 as a lower bound with probability 0.95 when
ε2 = 0, and consequently v2 is infinity.

Particularly, in FRT, MFRT, and Schanbel-Census methods, we will de-
note v as the number of local optima. Let p = (p1, p2, ..., pv) be the vector of
probabilities of finding the corresponding local optima, that is, the relative
sizes of the attraction basins of the local optima. If p = p̄ = ( 1

v ,
1
v , ...,

1
v ) then

all the local optima have the same probability of being found. These meth-
ods calculate the distribution function Fp̄(t) according to a random variable
T , which in each case will determine different concepts.

1. The First Repetition Time method
This method starts taking uniformly at random a solution π1 from the
search space Ω, and a local search algorithm (in our case, algorithm H)
is applied to π1, ending at a local optimum π∗1 . This process is repeated
until a local optimum is seen twice.
The random variable T denotes, in this case, the number of initial solu-
tions πi taken until a local optimum is repeated. The distribution function
of T corresponding to the vector p is Fp(t). It can be proved [74] that for
any t ≥ 2, Fp(t) is minimal only at p = p̄ = ( 1

v ,
1
v , ...,

1
v ), where v is the

number of local optima.
Now, the distribution function Fp̄(t) is calculated for the variable T .

Fp̄(t) = P (T ≤ t | p = p̄) = 1− P (T > t | p = p̄),

where P (T > t | p = p̄) is the probability of finding none of them re-
peated in the t first optima:

P (T > t | p = p̄) =
v

v
.
v − 1

v
...
v − t+ 1

v
=

(
1

v

)t(
v

t

)
t!.
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So,

Fp̄(t) = 1−
(

1

v

)t(
v

t

)
t!.

Assuming that τ is the value obtained from the sample for the variable T ,
the estimate for the number of local optima v1 is given by the following
formula:

v̂FRT = v1 = min

{
µ
∣∣∣ ( 1

µ

)τ−1(
µ

τ − 1

)
(τ − 1)! ≥ 0.05

}
.

2. The Maximal First Repetition Time method
In this case a uniformly distributed random sample S of size M is
taken from the search space: S = {π1, π2, ..., πM} ⊆ Ω. Then, a local
search is applied to each solution of the sample, so that M local optima
{π∗1 , π∗2 , ..., π∗M} are obtained. Notice that not all of them have to be dif-
ferent. Then, starting from π∗1 and taking the local optima in order of
appearance, subsequences Si ⊆ S are created, where each of them ends
with its first re-occurrence of a local optimum. It is as if we were repeat-
ing the First Repetition Time procedure many times. If there is no local
optima repeated, then the unique subsequence obtained is S1 = S of size
M .
The number of subsequences obtained is denoted by s. The variable that
denotes the length of the j-th subsequence is Tj , and T (s) = maxjTj
represents the maximum length of all the subsequences.
The distribution function of the variable T (s) corresponding to the vector
of probabilities of the local optima p is

F (s)
p (t) = P (T (s) ≤ t | p) = P (Tj ≤ t, j = 1, ..., s | p).

As in the previous case, for a fixed value of t and a fixed value of s, it can
be proved [74] that F (s)

p is minimal when p = p̄ = ( 1
v ,

1
v , ...,

1
v ).

The distribution function F (s)
p̄ (t) for the variable T (s) is:

F
(s)
p̄ (t) =

s∏
i=1

P (Ti ≤ t | p = p̄) =

[
1−

(
1

v

)t(
v

t

)
t!

]s
.

If τ is the value obtained from the sample for the variable T (s), then the
estimate for the number of local optima v1 is given by the following for-
mula:

v̂MFRT = v1 = min

{
µ
∣∣∣ 1−

[
1−

(
1

µ

)τ−1(
µ

τ − 1

)
(τ − 1)!

]s
≥ 0.05

}
.
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3. Schnabel Census Procedure
This method has also been used in ecology to provide an estimate of the
size of a population of animals. It consists of taking a sample of size M
and counting the number of distinct animals seen. However, we include
it in this section because there are already works [30, 74] that have used
this method to estimate the number of local optima in COP. The way to
proceed in the case of estimating the number of local optima is similar to
the problem of estimating the number of animals.
Firstly, a uniformly distributed random sample S = {π1, π2, ..., πM} ⊆ Ω
of size M is taken from the search space Ω, and a local search algo-
rithm is applied to each solution in S, obtaining r different local optima
{π∗1 , π∗2 , ..., π∗r}, with r ≤M .
Let R be the random variable that represents the number of different
local optima found. The distribution function for the variable R, when a
sample of size M has been taken from Ω and when it corresponds to the
vector of probabilities of the local optima p is:

Fp(r, v,M) = P (R ≤ r |M,v,p) =

r∑
i=1

P (R = i |M,v,p).

If p = p̄, then P (R = i | M,v) = v!S(M,i)
(v−i)!vM , where S(M, i) is the Stirling

number of the second kind, that is, the number of all possible partitions
of an M -element set into i non-empty subsets.
Then,

Fp̄(r, v,M) =

r∑
i=1

v!S(M, i)

(v − i)!vM
.

The estimate for the number of local optima v1 is given by the following
formula:

v̂Sch−Cen = v1 = min

{
µ
∣∣∣ 1−

r−1∑
i=1

µ!S(M, i)

(µ− i)!µM
≥ 0.05

}
.

3.3.1.2 Bias-correcting nonparametric methods

In this section we describe the application of two commonly used bias-
correcting methods to the problem of estimating the number of local optima.
These methods are Jackknife and Bootstrap, and their specific use in this con-
text was proposed in [30, 31, 71, 72]. While in the original papers only the
mechanic of the algorithm is provided, we have also added the assumptions
of the methods, as we consider them relevant for our work.

Jackknife and Bootstrap are nonparametric methods based on ideas of
resampling. Moreover, they use the concept of bias of an estimator (the dif-
ference between the estimated value and the real value) to improve an initial
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estimate. There is an important difference that the authors make between
the application of Jackknife and the application of Bootstrap. In the Jackknife
method, no assumptions about the sampling model are made when calculat-
ing the initial biased estimate. However, the Bootstrap method has an under-
lying assumption about the sampling model because it uses the maximum
likelihood estimator as an initial biased estimator.

1. Jackknife
The Jackknife method starts from a biased estimator v̂, and assumes that
the bias decreases asymptotically as the size of the sample increases. The
underlying resampling technique consists of leaving the different points
πi of the initial sample out, and finding estimators that reduce the bias of
v̂. The mean of these estimates is considered the Jackknife estimator.
This method, in the same way as Schnabel Census Procedure, was previ-
ously proposed for the estimation of population sizes [12]. In the context
of estimating the number of local optima [30], a uniformly distributed
random sample S = {π1, ..., πM} of sizeM is taken from the search space.
After applying a local search algorithm to each solution πi ∈ S, the set of
local optima L∗ = {π∗1 , π∗2 , ..., π∗M} is obtained, with r ≤M different local
optima.
Next, one point πi is left out from the sample S. The subset L∗i ⊆ L∗ that
contains the local optima that correspond to all the solutions in S − {πi}
is considered: L∗i = L∗−H(πi). If this idea is repeated leaving each of the
points out from the original sample once each time, we obtain M subsets
L∗1,L∗2, ...,L∗M ⊆ L∗, with r−1, r−2, ..., r−M ≤ r different local optima.
The biased estimator v̂ = r of v is assumed to be of the form r = v +
a1
M + a2

M2 + a3
M3 + .... Thus, the bias is of order 1

M . The purpose is to find
an estimator that reduces the bias to O( 1

M2 ). So, for each i ∈ {1, 2, ...,M},
the following estimator is defined:

ri = Mr − (M − 1)r−i , (3.1)

so that ri = v +O

(
1
M2

)
.

Since

r−i = r − ji , where ji =

0 if ∃ πk 6= πi ∈ S s.t.H(πk) = π∗i

1 otherwise
(3.2)

then, from (3.1) and (3.2) the estimator is:

ri = r + (M − 1)ji , ∀i ∈ {1, 2, ...,M}.

The Jackknife estimator for the number of local optima is the mean value
of ri:
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v̂Jckk =
1

M

M∑
i=1

ri = r +
M − 1

M
β1,

where β1 is the number of local optima which have only been seen once.
Notice that when the sample size tends to infinity, β1 tends to 0, and
therefore, the estimate for the number of local optima tends to the real
number of local optima. So, this is an unbiased estimator.

2. Bootstrap
The Bootstrap method starts from a biased estimator v̂, obtained from
a sample S. Resamples from S are taken and the biased estimate is cal-
culated in each case. With this information, an estimator of the bias is
provided. So, the result of adding the estimated bias to the initial v̂ is the
Bootstrap estimator.
In the application of this method to the estimation of the number of lo-
cal optima [30], we start from the set S∗ = {π∗1 , π∗2 , ..., π∗r} of r different
local optima. Assuming a multinomial model [71], with equally sized at-
traction basins, the probability distribution of the random variableR that
represents the number of different local optima found in the sample S is
given by

P (R = r) = v!
(v−r)!

S(M,r)
vM

, 1 ≤ r ≤ min{M,v} ,

where S(M, r) is again the Stirling number of the second kind. From this,
the maximum likelihood estimate v̂ML

r of v is obtained by solving the
equation:

M ∗ log
(

1− 1

v

)
− log

(
1− r

v

)
= 0.

If r/M is small (lower than 0.3) the best estimate for the number of local
optima [71] is actually r, because it is assumed that with small values
it is likely that all local optima have been found. So, in this case it is
considered that v̂ML

r = r.
Afterwards, a resample with replacement of the same size M from S
is taken, obtaining r1 different local optima, and the maximum likeli-
hood estimate of r1 is considered: v̂ML

r1 . The same procedure is repeated
b times, that is, b resamples with replacement from S are taken, obtaining
{r1, r2, ..., rb} different local optima, and the maximum likelihood esti-
mate for each ri is calculated: {v̂ML

r1 , v̂ML
r2 , ..., v̂ML

rb
}.

With the maximum likelihood estimates for the number of local optima
of the resamples {v̂ML

r1 , v̂ML
r2 , ..., v̂ML

rb
} and the maximum likelihood esti-

mate for the number of local optima obtained in the original sample v̂ML
r ,

the bias can be estimated and used as a bias correction for v̂ML
r . The bias

can be calculated as the difference between the maximum likelihood es-
timate of the number of local optima found with the original sample and
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the average maximum likelihood estimates of the number of local optima

from the resamples: bias = v̂ML
r − 1

b

b∑
i=1

v̂ML
ri .

Hence, the Bootstrap estimator for the number of local optima is v̂ =
v̂ML
r + bias, so:

v̂Boots = 2v̂ML
r − 1

b

b∑
i=1

v̂ML
ri .

A very important observation is that, as the sample size tends to infinity,
the number of local optima found tends to be the real number of local
optima. In addition, as r/M is very small (M is very large, and r is con-
stant), the maximum likelihood estimate is the number of local optima
found from the sample. Moreover, the bias tends to 0, so the estimate
tends to be the real number of local optima.

3.3.2 Methods proposed in the field of statistics

In this section we present four nonparametric methods based on sampling
models: Chao1984 [17], ChaoLee1, ChaoLee2 [19] and ChaoBunge [18]. Although
they were proposed to estimate the number of species in a population, we
explain here their specific application to our problem. An important consid-
eration is that they assume an infinite population, while the common COP
have a finite search space. However, we treat the search spaces as if they were
infinite because of their large cardinality.

All of the methods presented below start from a sample

S = {π1, π2, ..., πM} ⊆ Ω

of size M . A local search algorithm is applied to each solution πi ∈ S and r
different local optima {π∗1 , π∗2 , ..., π∗r} are obtained.

1. Chao 1984
This is a nonparametric method proposed in [17] based on multinomial
sampling that has been used to estimate the number of classes in an infi-
nite population.
The estimator given by this method is the result of adding to the number
of local optima obtained from the sample a quantity that depends only
on the number of local optima seen once and twice in the sample.
This method is based on the estimate of the expected value of the number
of unobserved local optima Eβ0 . [44] proved that if j2 = O(M), then

Eβj ∼
v∑
i=1

(Mpi)
j e−Mpi

j! , where pi is the relative size of the attraction basin

of the local optimum π∗i . The method considers the following distribution
function:
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F (π) =

∑
Mpi≤π

(Mpi)e
−Mpi

v∑
i=1

(Mpi)e−Mpi

and it assumes that the number of unobserved local optima is of the fol-

lowing form: Eβ0 ∼
v∑
i=1

e−Mpi ∼ (Eβ1)

∫ M

0

π−1 dF (π).

We want to obtain an estimator F̂ (π) of F (π) and thus, find an estimator
v̂ of v that is the sum of r and the estimated number of unobserved local
optima. That is,

v̂ = r + β1

∫ M

0

π−1 dF̂ (π).

The moment estimates were proposed in [17] to obtain an estimator F̂ (π)
of F (π), and once attained, a lower bound for v was found. As the sample
sizeM tends to infinity, the lower bound tends to the Chao1984 estimator:

v̂chao1984 = r +
β2

1

2β2
.

It is very important to take into account that this estimator works when
the information is concentrated on the low order occupancy numbers,
that is, when β1 and β2 carry most of the information. If β2 = 0, that is, if
there is no local optima seen exactly twice from the sample, the method
does not work. Moreover, β1 is also very important in this estimator, be-
cause if β1 = 0, the estimate is just the number of local optima obtained
from the sample. We find these situations, for example, when M is much
higher than the real number of local optima. In this case, it is unlikely
that the local optima will be found only once or twice. Furthermore, we
can also find β1 = 0 and β2 = 0 when the attraction basins are close
in size, because the different local optima are probably found the same
number of times. Notice that only if we force the method to return r as
the estimate for the number of local optima when β1 = 0 and β2 = 0, we
can ensure that when M tends to infinity we obtain the real number of
local optima.

2. Chao & Lee
[19] proposed two new estimators based on the estimators proposed by
[32]. The methods are also nonparametric, used for infinite population,
and based on multinomial sampling.
They are the first methods that included the idea of sampling coverage.
These estimators are the sum of the number of local optima observed
many times, and quantities dependent on the number of local optima
found few times in the sample.
Given a sample S, the sample coverage C is defined as the sum of the
probabilities of the observed local optima. That is, the sum of the relative
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sizes of the attraction basins of the local optima found. Obviously, C is a
random variable and an estimator Ĉ of C [42] is Ĉ = 1 − β1/M . Notice
that if all the local optima have the same probability of being chosen, that
is

p1 = p2 = ... = pv =
1

v
,

then
C =

r

v
.

So, an initial estimator of v is

v̂1 =
r

Ĉ
.

Based on [32] and using v̂1, Chao and Lee proposed an estimator v̂ of v
of the following form:

v̂ = v̂1 +
M(1− Ĉ)

Ĉ
γ2, (3.3)

where γ = 1
p̄

[
v∑
i=1

(pi − p̄)2/v

]1/2

is the coefficient of variation (with p̄ =

1
v

v∑
i=1

pi).

Notice that γ2 = v
v∑
i=1

p2
i − 1. Therefore, they suggested:

γ2 =

v
M∑
i=1

i(i− 1)βi

M(M − 1)
− 1.

Chao and Lee distinguished between what they call abundant species
and rare species. Transferring these concepts to our problem, we will
distinguish between easy-to-find local optima and hard-to-find local op-
tima. We define a local optimum π∗k as hard-to-find if αk ≤ δ for some cut-
off value δ. So, the easy-to-find local optima are the π∗k such that αk > δ.
One can select this cut-off value in advance, but there are studies [20],
that are based on empirical experience set δ = 10. We call rh the num-
ber of hard-to-find local optima, and re the number of easy-to-find local
optima.
So, taking this distinction into account, the estimators are the following:

v̂ChaoLee1 = re +
rh

Ĉh
+
β1

Ĉh
γ̂h

2
1 , γ̂h

2
1 = max


rh

Ĉh

δ∑
i=1

i(i− 1)βi

Mh(Mh − 1)
− 1, 0
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v̂ChaoLee2 = re +
rh

Ĉh
+
β1

Ĉh
γ̂h

2
2,

γ̂h
2
2 = max

γ̂h
2
1

1 + (1− Ĉh)

δ∑
i=1

i(i− 1)βi

(Mh − 1)Ĉh

 , 0


where Mh =
δ∑
j=1

jβj and Ĉh = 1− β1/Mh.

It is important to take into account that if Ĉh = 0, the method does
not work. This occurs when β1 6= 0 and βi = 0,∀i ∈ {2, ..., δ}. Nei-
ther does the method work when Mh = 0 or Mh = 1, that is, when
βi = 0,∀i ∈ {1, ..., δ}, or when ∃i ∈ {1, ..., δ} such that βi = 1 and
βj = 0,∀j 6= i. In these cases we redefine the estimators as the num-
ber of the different local optima that appear in the sample r. Only under
this consideration, we ensure having an unbiased estimator and there-
fore, obtaining the real number of local optima when M tends to infinity.

3. Chao & Bunge
A new estimate technique was proposed by [18]. This estimator is also
nonparametric in form, but it has some optimality properties under a
particular parametric model. This method is based on a mixed Poisson
sampling model. It is closely related to the estimators in [19].
This method bases the estimate of unobserved local optima on

(β1, β2, ..., βδ)

for some cut-off value δ, and then they complete the estimate by adding
the number of local optima found more that δ times in the sample.
Firstly, they showed that, for the Gamma-Poisson case, the expected pro-
portion of duplicates in the sample, denoted by θ, can be estimated by

θ̂ = 1 −
β1

M∑
k=1

k2βk(
M∑
k=1

kβk

)2 . Secondly, and based on this estimator, they pro-

posed the following estimator for the expected number of unseen op-

tima: β̂0 = (θ̂−1 − 1)
M∑
k=2

βk − β1. Thirdly, with this estimator of the un-

seen optima, the estimator of the number of local optima was defined as

v̂∗ = (θ̂−1 − 1)
M∑
k=2

βk − β1 + r =
M∑
k=2

βk
θ̂

.

Finally, based on the data (β1, β2, ..., βδ) and the estimator v̂∗, and taking
into account the distinction between hard-to-find local optima (rh) and
easy-to-find local optima (re), their final proposed estimator of v is:
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v̂ChaoBunge = re +

δ∑
k=2

βk

θ̂
, θ̂ = 1−

β1

δ∑
k=1

k2βk( δ∑
k=1

kβk

)2
(3.4)

where θ̂ takes only into account the hard-to-find local optima, and not all
the local optima found in the sample.
Notice that, if δ > max{j | βj 6= 0}, then all the local optima are consid-
ered as hard-to-find, and therefore

v̂ChaoBunge =

M∑
k=2

βk

θ̂
, θ̂ = 1− β1

M2

M∑
k=1

k2βk.

It is important to take into account that if we have a sample in which
β1 6= 0 and βi = 0,∀i ∈ {2, ..., δ}, then θ̂ = 0 and therefore the method
does not work. In these cases, we consider that θ̂ = 1 and so, the estimate
is just r. Considering this point we have that, as M tends to infinity, we
obtain the real number of local optima.

3.4 Experiments

The accuracy of the different estimators presented in the previous section
has been tested on three different datasets: simulated instances of COPs, in-
stances of the Traveling Salesman Problem (TSP) taking random distances,
and instances of the TSP with real distances between different cities, as well
as instances of the Flow Shop Scheduling Problem (PFSP) obtained from
the well-known Taillard’s benchmark. Using these datasets we can first test
the methods over a wide set of instances with different characteristics (the
dataset with simulated instances) and then check whether these conclusions
can be generalized for artificial and real instances (second and third datasets).
In these three scenarios, we work with problems for which we already know
the number of local optima, which allows us to evaluate the accuracy of the
different estimates. We report a comparison of the different methods, giving
recommendations of the methods that provide the best estimates.

3.4.1 Synthetic data

3.4.1.1 Experimental design

The aim of this section is to study the performance of the methods when they
are applied to instances with different number of local optima and different
distributions of the sizes of the attraction basins. Therefore, we are interested
in a set of data that includes instances with attraction basins very similar in
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size, as well as instances with very different sizes of attraction basins. How-
ever, it is not easy to obtain many real or random instances with the desired
characteristics. On the one hand, looking for the real number of local optima
and the sizes of their attraction basins of a given instance of a COP would
require high computation time. On the other hand, it is not easy to find in
the literature instances with a high number of local optima that are realistic
enough. These are the reasons why we decide to simulate instances of COP,
instead of working with real ones.

As far as the methods for estimating the number of local optima are con-
cerned, an instance of a COP is determined by the number of local optima
and the size of their attraction basins. Therefore, we can summarize an in-
stance as the pair (v,p), where v denotes the number of local optima and

p = (p1, p2, ..., pv), with 0 < pi < 1 , ∀i ∈ {1, 2, ..., v},
v∑
i=1

pi = 1, is the vector

that gives the relative sizes of the attraction basins of the local optima. So, we
create instances just assuming a certain number of local optima and assign-
ing to each local optimum a probability of being chosen (or a certain relative
size of its attraction basin).
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Fig. 3.1. Average variance of the values of the samples obtained from D(v, d), for the
different values of d, and for v = 100, 1000 and 10000. The Y axis is at logarithmic
scale.

One way to do that is by sampling a Dirichlet distribution. When a Dirich-
let distribution with v parameters D(d1, d2, ..., dv) is sampled, a vector with
v values (r1, r2, ..., rv) is obtained that fulfills the following two relations:

0 < ri < 1 , ∀i ∈ {1, 2, ..., v} and
v∑
i=1

ri = 1.

So, we take advantage of this property of the Dirichlet distribution to simu-
late the relative sizes of the attraction basins of v local optima. We simplify
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the sampling by assuming d1 = d2 = ... = dv = d, so that we sample Dirichlet
distributions with only two parameters: D(v, d).

For the parameter v we decide to work with the following values: 100,
1000 and 10000. Regarding d, working with many values of this parameter
would be unfeasible. We decide to make an initial experiment to choose val-
ues of d that could simulate very different distributions of the sizes of the at-
traction basins. In order to choose these values, we sample different D(v, d),
for v = 100, 1000 and 10000, and d = 0.1, 0.2, 0.3, ..., 4.8, 4.9, 5. For each v
and d we take 100 samples and calculate the variance of the v data obtained
in each sample. Then, according to the average of the 100 variances of each
case, we will choose the values of d that we will use to simulate the instances.
Figure 3.1 shows the average values of the 100 variances obtained for each
combination of d and v.

Observing the plot, we choose the following values for d: 0.1, 0.2, 0.5
(high-medium variance) and 2, 4 (low variance). Once the values of d are
decided, we obtain 10000 samples of a Dirichlet distribution for each com-
bination of d and v, that pretend to be 10000 different instances of COPs for
each case. So, we have a set of 150000 instances divided in 15 equally sized
groups according to v and d. Each method is run 100 times for each of the sim-
ulated instances using two different sample sizes:M = 1000 andM = 10000.
The results provided are the average of the 100 values. Note that as FRT does
not depend on the sample size, it is only applied 100 times for each instance.

3.4.1.2 Results

In this section we analyze the performance of the methods and compare them
taking into account the different parameters (v, d and M ). Firstly, we check
if the methods provide useful estimates. Secondly, we use nonparametric
tests to rank the methods and study the significant differences among the
observed results. Finally, a more qualitative study is developed, emphasiz-
ing an important characteristic which is the stability of the methods.

The closeness of the estimates provided by the methods to the value we
want to estimate is the most important factor. Obviously, there are methods
that estimate better than others, but it does not mean that the estimates pro-
vided by the best methods are close enough to the real value. In order to
check if we are able to obtain good estimates with these methods, we choose
for each combination of v, d, and M , the method that provides the best av-
erage estimation over all the 1000000 results (10000 instances x 100 repeti-
tions). In Figure 3.2 we represent the average estimate obtained with this best
method and the real number of local optima (with a dashed line) for each v
and d. As expected, the quality of the estimate depends on the parameters of
the instances (v and d) and the sample size. For small values of d (0.1, 0.2 and
0.5, i.e. high variance of the sizes of the attraction basins) the estimates are
really far from the real number. Furthermore, the higher the number of local
optima, the worse the estimate (see Figure 3.2 (a)-(c)-(e) and (b)-(d)-(f)). For
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Fig. 3.2. Boxplot that represents the estimations provided by the best method (on
average over the 10000 instances x 100 repetitions) for the different values of d. The
datasets are created assuming 100 ((a), (b)), 1000 ((c), (d)), and 10000 ((e), (f)) local
optima, which are indicated in each figure with a dashed line. In (a), (c) and (e) the
methods are applied with sample size 1000, while in (b), (d) and (f) the sample size is
10000.
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scenarios where the sizes of the attraction basins are quite similar (d = 2, 4),
the methods provide precise estimates. As regards the sample size, it can be
observed that the larger the sample size, the better the estimates provided
are (see Figure 3.2 (a)-(b), (c)-(d) and (e)-(f)). However, this improvement is
not enough to reach accurate results in cases of low values of d.

Continuing with the study of the methods, we carry out a statistical anal-
ysis to compare the estimates obtained for the different methods. We con-
sider three different scenarios for comparison according to the parameters of
the study (M,v, d). In the first scenario considered, the estimates are grouped
in two sets according to M = 1000 and 10000. The second scenario considers
three different sets that contain the estimates of the instances with v = 100,
1000 and 10000 local optima. In the last scenario the estimates are grouped
in five sets, according to the parameter d = 0.1, 0.2, 0.5, 2, 4. A nonparamet-
ric Friedman’s test with level of significance α = 0.05 is used to test if there
are statistical significant differences between the estimates provided by the
9 methods in the different scenarios. It provides a ranking of the methods
while also giving an average rank value for each method. As we always find
statistical differences in all the cases, we proceed with a post-hoc test which
carries out all pairwise comparisons. Particularly, we use the Holm’s proce-
dure fixing the level of significance to α = 0.05. Pairwise significant differ-
ences are found between all of the methods in the three scenarios.

Table 3.2 shows the ranking obtained for the methods with the Fried-
man’s test in the first scenario, when using a sample of size M = 1000 (first
pair of columns) and M = 10000 (last pair of columns). The lower the rank,
the worse the performance of the method is. So, the methods are ordered
from best to worst. Therefore, the best methods when separating the esti-
mates according to the sample size, are ChaoLee2 and ChaoBunge.

In Table 3.3 the ranking for the methods is shown, but this time for the
second scenario, that is, when grouping the estimates for the instances cre-
ated with v = 100 (the first pair of columns), v = 1000 (the pair of columns in
the middle), and v = 10000 (the last pair of columns). In these three cases the
Holm’s procedure states that significant differences exist among each pair of
methods. From this table we can observe that the lower the number of local
optima, the better the estimates provided by Chao1984 are. On the contrary,
ChaoLee2 improves its performance as the number of local optima grows.

Finally, Table 3.4 shows the ranking obtained for the methods when the
estimates are separated according to the instances created with the same
Dirichlet parameter d. This ranking gives an idea of the method that is better
to use according to the variance of the sizes of the attraction basins of the lo-
cal optima. For high variance (small values of d) the recommended method
is ChaoBunge, but ChaoLee2 also provides very good estimates. For instances
with quite similar sizes of attraction basins the best method is ChaoLee2.

From the statistical analysis, we can conclude that the worst methods in
all scenarios are FRT, MFRT and Sch-Cen. On the other hand, we can not
conclude that there is a best overall method for all scenarios. However, if
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Table 3.2. Average rankings of the methods according to the sample size M

M=1000 M=10000
Method Ranking Method Ranking
ChaoLee2 7.79 ChaoBunge 7.78
ChaoBunge 7.03 ChaoLee2 6.88
Chao1984 6.87 Chao1984 6.68
ChaoLee1 6.50 Jckk 6.31
Jckk 5.67 ChaoLee1 5.71
Boots 4.59 Boots 4.71
Sch-Cen 3.27 Sch-Cen 3.63
MFRT 1.94 MFRT 1.88
FRT 1.35 FRT 1.41

Table 3.3. Average rankings of the methods according to the number of local optima
v

v=100 v=1000 v=10000
Method Ranking Method Ranking Method Ranking
Chao1984 7.25 ChaoBunge 8.25 ChaoLee2 8.33
ChaoBunge 7.05 ChaoLee2 7.30 ChaoLee1 7.06
ChaoLee2 6.37 Chao1984 6.85 ChaoBunge 6.91
Jckk 6.35 Jckk 6.03 Chao1984 6.24
ChaoLee1 5.40 ChaoLee1 5.87 Jckk 5.58
Boots 5.21 Boots 4.51 Boots 4.23
Sch-Cen 3.93 Sch-Cen 3.20 Sch-Cen 3.22
MFRT 2.22 MFRT 2.00 FRT 1.92
FRT 1.22 FRT 1.00 MFRT 1.52

we consider the first three best methods, ChaoBunge and ChaoLee2 are always
among them. So, in case of lack of information about the number of local
optima of the instance, or the sizes of their attraction basins, using both of
them we will probably be obtaining more accurate estimates than by using
any other method.

Although the statistical analysis gives a global picture of the performance
of the methods, it is also relevant to consider some aspects that are not re-
flected in the hypothesis tests. One of these aspects is that of stability. Imag-
ine that we have some instances with similar properties (the same number of
local optima and similar distribution of sizes of the attraction basins). We are
interested in knowing if the method will provide comparable estimates for
the different instances, or if they will be extremely different. In the first case
we say that the method is stable, while in the second it is unstable. ChaoBunge
is a very unstable method in certain situations, while the rest of the methods
are very stable. Under some circumstances, ChaoBunge provides a very good
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Table 3.4. Average rankings of the methods according to the Dirichlet parameter d

d=0.1 d=0.2 d=0.5
Method Ranking Method Ranking Method Ranking
ChaoBunge 8.37 ChaoBunge 8.02 ChaoBunge 7.39
ChaoLee2 7.52 ChaoLee2 7.31 ChaoLee2 7.13
Chao1984 7.07 Chao1984 7.01 Chao1984 7.08
Jckk 6.30 Jckk 6.58 Jckk 7.01
ChaoLee1 5.51 ChaoLee1 5.82 ChaoLee1 6.05
Boots 4.06 Boots 4.07 Boots 4.13
Sch-Cen 3.06 Sch-Cen 3.07 Sch-Cen 3.07
MFRT 2.05 MFRT 1.90 MFRT 1.73
FRT 1.05 FRT 1.23 FRT 1.40

d=2 d=4
Method Ranking Method Ranking
ChaoLee2 7.17 ChaoLee2 7.53
Chao1984 6.75 ChaoLee1 6.84
ChaoBunge 6.59 ChaoBunge 6.63
ChaoLee1 6.31 Chao1984 5.99
Boots 6.03 Boots 4.96
Jckk 5.16 Jckk 4.90
Sch-Cen 3.72 Sch-Cen 4.33
MFRT 1.80 MFRT 2.07
FRT 1.47 FRT 1.74

estimate for the number of local optima for most of the instances, but there
are instances where the given estimate is very far from v. For example, for
v = 100, M = 1000 and d = 0.1 (Figure 3.3 (a)). In other situations, for exam-
ple, for v = 1000, M = 1000 and d = 2 (Figure 3.3 (b)) it is the method that
provides the best estimates of the number of local optima for all instances.
In order to compare the performance of this method with ChaoLee2 in these
particular scenarios, the estimates provided by ChaoLee2 are also reflected in
Figure 3.3 (b). We provide all the figures that represent the estimates given
by each method for each v and each d, in the Appendix 9.1.1.

We conclude from the tables that ChaoBunge is one of the best methods,
but we find specific situations where the estimate provided is very far from
the real value we want to estimate. In order to know if the estimate provided
by ChaoBunge is valid, we could also apply other methods, such us ChaoLee2,
and compare both results. If these estimates are close enough, the one pro-
vided by ChaoBunge could be accepted. Otherwise, if these estimates are very
far one from each other, we are almost sure that ChaoBunge is giving a useless
estimate. So, we consider that a suitable way for estimating the number of lo-
cal optima of an instance is not by using a single method, but a comparison
of different methods.
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Fig. 3.3. Estimates of the number of local optima provided by ChaoBunge (a) and
ChaoBunge and ChaoLee2 (b) for 10000 synthetic instances created by sampling
D(100, 0.1) and D(1000, 2), respectively. The sample size used in both cases is 1000.
In (a) we see the instability of the ChaoBunge method, but in (b) it is stable.

3.4.2 Random instances of TSP

3.4.2.1 Experimental design

In order to contrast our initial conclusions, in this section we work with
random instances of the Traveling Salesman Problem. Particularly, we work
with random instances of the Symmetric Traveling Salesman Problem with
14 and 15 cities. The instances were created by placing 14 and 15 points re-
spectively, uniformly at random on a square of area 100 in an Euclidean
space [40]. Afterwards, we calculated the matrix that gives the Euclidean dis-
tance between every pair of cities. We randomly created 500 instances with
14 cities, and 110 instances with 15 cities.

For the purpose of measuring the accuracy of the estimation methods we
first calculated the exact number of local optima of the instances when us-
ing the swap neighborhood (NS). So, applying to each solution of the search
space a deterministic local search algorithm (see Algorithm 1 in Section ??)
with a swap neighborhood, the exact number of local optima of the instance
and their corresponding sizes of the attraction basins are obtained. Notice
that in the symmetric TSP there are 2n permutations encoding the same so-
lution. Therefore, we only take into account one of all these different repre-
sentations, and thus we search in a space of size (n− 1)!/2.

The different methods for estimating the number of local optima were
applied to all the instances considering two sample sizes: M = 1000 and
10000. For each instance the methods are repeated 100 times and we evaluate
and compare the average estimates of each method.
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3.4.2.2 Results

A first step in the analysis of the methods when applying them to random
instances of the TSP is the study of the accuracy of the estimates provided
by the methods. Secondly, a parameter d is associated to each instance and,
as in the previous section, the performance of the methods is studied again
according to d, v and M .

In order to check if the methods provide useful estimates, the average
errors of the estimates with respect to the real number of local optima are
calculated. Table 3.5 shows the average relative errors and the standard de-
viations (in brackets) grouped by the number of cities and the sample size.

A general conclusion deduced from Table 3.5 is that for n = 14 the meth-
ods provide better estimates than for n = 15. Table 3.5 also confirms the im-
provement of the estimates as the sample size grows. It is remarkable that for
n = 15 cities (higher number of local optima than for n = 14) and sample size
M = 1000, the estimates are very far from the real value, and the standard
deviations for these estimates are considerably high. Particularly, ChaoBunge
has a very high standard deviation when the sample size is 1000. This fact
confirms the unstable behavior observed in the previous experiments. The
instability of this method is a consequence of the variability on the estimation
of the parameter θ̂ (see equation (3.4) of Section 3.2). If β1 >> βi (2 ≤ i ≤ δ),
then θ̂ ≈ 0 and the estimation v̂ChaoBunge in this case is very large and very
far from the real value. This occurs when we have a sample where a lot of
local optima are seen only once, but there is a small number of local optima
seen twice, three times, etc. These particularities are commonly found when
the sample size is small with respect to the number of local optima, or even
when the variance of the sizes of the attraction basins of the local optima is
high.

To visualize the performance of the methods, in Figure 3.4 we represent
the estimates provided. We first arrange the instances according to the num-
ber of local optima and take 10 groups of 11 instances. For each group we cal-
culate the average estimate of each method. We represent the five methods
that provide the best results: Jckk, Boots, Chao1984, ChaoLee1 and ChaoLee2.
ChaoBunge is removed from the plots because of its instability. Figure 3.4
shows the average estimates obtained for the instances of the TSP with 15
cities, for sample size 1000 (up) and 10000 (bottom). We observe from the
graphs that, when the number of local optima is lower than 400 − 500, the
estimates are close to the real values. However, as the number of local optima
grows, the estimates provided by all the methods tend to distance themselves
from the real number of local optima. For sample size 1000, it can be clearly
seen that in all groups the best method is ChaoLee2, while ChaoLee1, Chao1984
and Jckk provide similar estimates. For sample size 10000, we observe that
Jckk is the best method. Additional figures representing the estimations pro-
vided by each method for each instance, can be found in the Appendix 9.1.2.
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Table 3.5. Average relative errors and standard deviations (in brackets) of the esti-
mates provided by the different methods, according to the number of cities n and the
sample sizeM . The range for the real number of local optima of the instances appears
in brackets under the number of cities n.

FRT MFRT Sch-Cen Jckk Boots Chao1984 ChaoBunge ChaoLee1 ChaoLee2

n = 14 M=1000 96.15

89.20 43.61 27.95 36.75 26.08 27.15 28.42 22.70

(34 ≤ v ≤ 648) (3.48)

(17.76) (76.89) (71.81) (74.53) (57.02) (5949.52) (49.49) (45.48)

M=10000 87.15 14.29 5.65 10.28 6.71 7.34 8.93 7.86
(23.55) (29.03) (14.61) (21.50) (14.77) (15.49) (15.99) (13.83)

n = 15 M=1000 97.46

93.04 59.38 44.42 52.87 41.42 59.46 41.72 33.78

(97 ≤ v ≤ 1087) (2.11)

(11.48) (66.19) (83.04) (73.92) (62.66) (19247.69) (61.08) (61.47)

M=10000 91.68 26.47 14.64 20.91 16.33 14.64 18.16 16.20
(15.19) (47.48) (29.51) (39.67) (24.74) (14.20) (24.32) (18.40)
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Fig. 3.4. Estimates of the number of local optima provided by the different methods
for 110 random instances of the TSP with 15 cities. The 110 instances are arranged
according to the number of local optima, and are put in 10 groups of 11 instances
each. The average of the 11 estimates is shown by the histogram for each method.
The methods consider a sample of size 1000 (top graph) and 10000 (bottom graph).
The solid line indicates the number of local optima of the instances.
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We compare the methods according to different parameters, as proceeded
in the previous section. Firstly, a parameter d is associated to each instance,
supposing that the sizes of the attraction basins were created sampling a
Dirichlet distribution with that particular d. Due to the fact that we know
the number of local optima v of the 610 random instances of the TSP, for
each value of v we sample Dirichlet distributions D(v, d), for each d =
0.1, 0.2, 0.5, 2, 4. We take 100 samples for each v and d and the variance of
the v data is calculated in each sample. On the other hand, the variance of
the relative sizes of the attraction basins of the local optima of each of the
random instances is calculated. For each instance, we compare the variance
of its relative sizes of the attraction basins with the variances obtained when
sampling D(v, d), being v the corresponding number of local optima of that
instance. We associate to each instance the value of d for which the variance
of the instance is closer to the average variance of D(v, d).

A classification of the instances according to d and v is carried out and
we realize that most of the instances have low values of d, that is, they have
high variances of the sizes of the attraction basins of the local optima. Table
3.6 shows the number of instances that we associate with the different val-
ues of d depending on the different number of local optima. Next, we study
the performance of the methods taking into account d, v and M , and we
compare it with the results of the previous section. As we have only found
one instance with parameter d = 4, we analyze it separately. We saw in the
previous section that the three methods that provided the best estimates for
d = 0.1, 0.2, 0.5, 2 as well as for M = 1000, 10000, were Chao1984, ChaoLee2
and ChaoBunge. Table 3.7 shows the percentage of instances for which the
three best estimates are provided by these three methods, according to d
and M . We observe that for M = 1000 the percentages are lower than for
M = 10000 and this is because when M = 1000 ChaoBunge is more unstable
than for M = 10000. For small values of d (d = 0.1, 0.2, 0.5), and when the
sample size used by the methods is 1000, the best method is ChaoBunge in
more than 77% of the estimates. In 379 of the 610 instances the second best
method is ChaoLee2, and the third best method is Chao1984 in 367 of the 610
instances. These results corroborate the conclusions obtained from the anal-
ysis of the methods for the synthetic instances (Table 3.4). When sample size
is 10000, for small values of d, Chao1984 provides very good estimates, and in
most of the instances it is the best method. The reason is that almost all of the
instances that have been associated a low value of d have also a low num-
ber of local optima and, as was seen in Table 3.3, the best method in these
scenarios is Chao1984.

We only find one instance with a high value of d, and furthermore, it is the
instance that has the highest number of local optima (v = 1087). When the
methods are applied to this instance with sample size 1000, the best estimates
are provided by ChaoLee2 and ChaoLee1. As we saw in Table 3.4, these are the
best methods for d=4. On the other hand, when sample size is 10000, the
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best methods are ChaoBunge and ChaoLee2. This matches the results shown
in Table 3.2 (last pair of columns) and Table 3.3 for v = 1000.

Table 3.6. Number of instances that are assigned different values of d according to v.

30 < v < 500 500 < v < 1100

d=0.1 346 0
d=0.2 155 0
d=0.5 81 3
d=2 13 11
d=4 0 1

Table 3.7. Percentages of the number of instances for which the best three estimates
obtained are provided by Chao1984, ChaoBunge and ChaoLee2.

M = 1000 M = 10000

d=0.1 80.64% 97.40%
d=0.2 78.71% 99.35%
d=0.5 55.95% 100.00%
d=2 41.67% 95.83%

3.4.3 Instances of TSP and PFSP

3.4.3.1 Experimental design

This section is devoted to experiments with real instances of COPs, as well
as instances taken from the Taillard’s benchmark. We work with 10 instances
of the Traveling Salesman Problem (with real distances between cities) and
other 10 instances of the Permutation Flowshop Scheduling Problem.

For the TSP we take the real distances between 14 cities of the continents
Africa, America, Asia and Europe, and 14 cities of The United States, Spain
and Australia and Pacific cities 1. For the PFSP we consider instances with
13 jobs and 5 machines, obtained from the well-known benchmark proposed
by Taillard 2 that has been commonly used by numerous authors, such as

1 http://www.mapcrow.info
http://locuraviajes.com/blog/wp-content/uploads/2011/08/cuadro-distancias-
ciudades-espaa.gif

2 http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir
/ordonnancement.html
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[9, 15, 84]. The instances of both TSP and PFSP used in this section of the
experiments are available in the website 3.

We apply Algorithm 1 to each instance starting from each solution of the
search space. Notice that the size of the search space of the TSP instances is
13!/2, while the instances of the PFSP have a search space of size 13!. In this
section we consider two neighborhoods: swap and insert.

The different methods for estimating the number of local optima are ap-
plied to all the instances using both neighborhoods. The reason why we have
considered these two neighborhoods in this section is that they provoke dif-
ferent situations for the estimates obtained with the different methods. As
the insert neighborhood explores at each step more solutions than the swap
neighborhood, the number of local optima obtained when considering the
first neighborhood is probabilistically lower than when assuming the second
one.

3.4.3.2 Results

In this final section of this chapter, our aim is to extend the previous analysis
focusing on the accuracy of the methods and their relation to the sample
size. For this purpose we first look for the minimum sample size that allows
each method to reach estimates closed to the real number of local optima.
We consider that a method that needs a smaller sample size to provide good
estimates will be more useful. In addition, we also analyze the effect of the
sample size on the methods using small as well as large sample sizes, in order
to find the methods that provide better estimates in more realistic situations.
That is, when the sample size is very small compared with the real number
of local optima of the instance.

In order to study the sample sizes needed to obtain good estimates, we
choose for each method the minimum sample size for which at least 95 of 100
estimates provided are closer than 95% from the real number of local optima
of each instance under each neighborhood. The algorithm used to obtain the
minimum sample sizes starts with M = 100. It doubles the value of M , un-
til it succeeds or reaches the maximum sample size considered (6553600 =
100x216). In case of success for a given M , a bisection procedure is applied
until the difference between the last accepted sample size and the previously
discarded one is 100. So, it converges to the minimum sample size wanted.
We repeat this process 10 times and show the average values.

Tables 3.8 and 3.9 show the average sample sizes that the methods need
when they are applied to the TSP and PFSP instances, respectively. In both
tables, each row represents an instance and a neighborhood. The first half of
the tables is related to the insert operator and the second half to the swap
operator. Inside each group, instances are put in an ascending order accord-
ing to the number of local optima (first column). In most of the instances the
3 http://www.sc.ehu.es/ccwbayes/members/leticia/EstimationNumOpt

/EstNumOptInst.html
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MFRT method is not able to fulfill the condition stated (a line is drawn for
these cases). Notice that FRT is not taken into account because this method
does not depend on the sample size and, as we saw in the previous sections,
this method provides such bad estimates that we decided to take it out from
the study in this section.

Table 3.8. Average of the minimum sample sizes obtained for which at least 95 of 100
estimates provided by each of the methods are closer than 95% to the real number
of local optima for each TSP instance under insert and swap neighborhoods. The
minimum sample size obtained for each instance is in bold.

Number of MFRT Sch-Cen Jckk Boots Chao1984 ChaoBunge ChaoLee1 ChaoLee2local optima

T
S
P

In
se

rt

1 100 100 100 100 100 100 100 100
2 100 100 100 100 100 100 100 100
2 100 100 100 100 100 100 100 100
5 650 100 110 100 100 100 100 100
9 —— 1320 2030 1220 1330 1910 1870 1840
9 353940 200 250 200 200 230 200 200

12 —— 1690 2750 1650 1750 2520 2600 2590
22 —— 2740 4330 2720 3600 4030 3580 4000
29 —— 2260 3360 2270 2670 5240 2860 5480
32 —— 2370 3490 2320 2960 3110 2750 2950

T
S
P

Sw
ap

67 —— 23270 28810 22010 37130 34250 24280 28590
73 —— 522490 483810 515930 647950 1095310 793700 1009610
90 —— 55220 44460 57090 81340 174680 55320 152200
92 —— 24980 30450 20020 39110 23770 21740 23250

103 —— 40450 26450 32110 48070 35920 36390 36790
117 —— 179670 132460 173490 251070 228310 165270 177680
188 —— 88860 47150 66520 129460 75440 74640 70690
201 —— 93970 45850 68870 107460 69160 70890 65720
393 —— 224390 91510 150410 167600 168980 167560 166950
455 —— 275540 89380 161850 189310 189850 199250 193950

Looking at the overall results, one could conclude that the best meth-
ods are Jackknife and Bootstrap, because in almost all instances they need a
smaller sample size to provide very good estimates. This fact seems to be in
conflict with almost all the results obtained in the previous sections, where
Chao1984, ChaoBunge, ChaoLee1 and ChaoLee2 seemed to be the most promis-
ing. However, this result agrees with that observed in the previous section,
where Jckk provided better estimates than the rest of the methods for sample
size 10000. Therefore, and in order to obtain additional information about the
performance of the methods, we decided to study the estimates provided by
them when the sample sizes are small. This idea arose when we realized that
in real life we have to face problems of such high dimensions that they have a
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Table 3.9. Average of the minimum sample sizes obtained for which at least 95 of 100
estimates provided by each of the methods are closer than 95% to the real number
of local optima for each PFSP instance under insert and swap neighborhoods. The
minimum sample size obtained for each instance is in bold.

Number of MFRT Sch-Cen Jckk Boots Chao1984 ChaoBunge ChaoLee1 ChaoLee2local optima

P
F
S
P

In
se

rt

14 —— 3320 5540 3150 3640 4720 4830 4760
70 —— 17920 19380 16520 25220 17680 16390 18130

134 —— 25710 25730 18880 45320 21540 19870 20750
160 —— 47300 28170 34350 63310 39850 37040 35380
190 —— 19930 11630 13770 32110 16050 15910 15960
285 —— 23820 9840 15260 19310 16620 18110 17240
404 —— 29830 10670 18430 19880 18790 20100 19270
461 —— 51320 17550 31200 35040 34770 36670 33560
506 —— 77700 24780 45910 52990 54730 58060 56180
923 —— 137950 40850 79530 88750 92460 94730 93780

P
F
S
P

Sw
ap

192 —— 39410 19540 29300 55320 31750 32290 33600
1643 —— 445780 134260 254870 264950 264640 285060 264130
1846 —— 628440 199600 363320 338380 323990 366380 338730
1997 —— 592030 177390 341020 337870 343950 370630 354610
2130 —— 912200 273490 527160 508690 521420 576430 539570
2382 —— 763420 227140 435560 411080 426840 466190 431230
2386 —— 613130 179250 353810 346650 357130 384600 363640
5119 —— 2149000 643230 1229450 1098740 1093250 1235370 1128300
6485 —— 1671460 456690 927350 863640 875150 994270 900410
8194 —— 2052570 568480 1148250 1032760 1058350 1204950 1094970

huge number of local optima. So, the sample we are able to deal with is usu-
ally tiny compared to the number of local optima. Thus, we are interested in
finding methods that do not need such a large sample size to provide a good
estimate.

We apply the methods taking small sample sizes (compared to the num-
ber of local optima) and analyze them according to the estimate they pro-
vide. We have only considered the instances with more than 100 local optima,
without making distinctions between the two neighborhoods. We take sam-
ple sizes in the range 50-600 with steps of 50. MFRT and Sch-cen have been
removed from the study because for the instances with the highest number
of local optima, the estimates provided by these methods are lower bounds
very far from the real values. So we analyze Jckk, Boots, Chao1984, ChaoBunge,
ChaoLee1 and ChaoLee2.

The methods are applied 100 times for each sample size. We carry out the
nonparametric Friedman’s test with level of significance α = 0.05 to the es-
timates, grouping them according to the sample size. We observe that there
are statistical significant differences between the estimates provided by the
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Table 3.10. Best methods obtained from the Friedman’s test for the TSP and PFSP
according to the sample size. The average relative error of the estimates provided by
these methods is also shown.

Sample size Best method Average relative error

TSP
50 ... 350 ChaoLee2 22.56

400 ... 450 ChaoLee2, ChaoBunge 18.76, 20.05
500 ... 600 ChaoBunge 11.46

PFSP 50 ... 600 ChaoLee2 49.95

six methods for all the sample sizes. We continue with the Holm’s procedure
which carries out all pairwise comparisons, setting the level of significance
to α = 0.05. Table 3.10 shows the best methods obtained from the Friedman’s
test for the TSP and PFSP according to the sample sizes. For the TSP, and us-
ing sample sizes lower than 400, we find that the best method is ChaoLee2
and significant differences between ChaoLee2 and the rest of the methods
are found. For sample sizes 400 and 450, the best methods are ChaoLee2 and
ChaoBunge. There are no significant differences between them, but there are
between them and the rest of the methods. For sample sizes larger than 450,
the best method in the ranking is ChaoBunge, with significant differences be-
tween this method and the rest. For the PFSP instances, and for all sample
sizes, ChaoLee2 is the best performing method, and when we study the pair-
wise significant differences with the Holm’s procedure we can see that there
are significant differences between ChaoLee2 and the rest of the methods.

Let’s now study in detail the estimates obtained for the two instances
with the highest number of local optima. Tables 3.11 and 3.12 show the
average of 100 estimates provided by each method for small sample sizes
(with respect to the number of local optima) for the instances 9 and 10 of
PFSP, respectively, when using the swap neighborhood. These tables show
that, when sample size is small, Boots and Jckk provide worse estimates than
the other methods. Obviously, the estimates improve as the sample size
grows for all methods, except for ChaoBunge. As was seen in previous sec-
tions, the ChaoBunge method is very unstable. The estimate provided by this
method varies significantly depending on the sample size. Notice that al-
though ChaoLee2, ChaoLee1 and Chao1984 provide the best estimates, these
are also far from the real number of local optima.

If we analyze all the results obtained in this section, on the one hand,
we find that Jckk and Boots need a smaller sample size than the rest of the
methods to provide very good estimates. On the other hand, ChaoLee2 and
ChaoBunge are considered the best methods for small sample sizes. So, we
suspect that there is a threshold for the sample size where the estimates pro-
vided by ChaoLee2 and ChaoBunge, or even ChaoLee1 and Chao1984, are worse
when compared with the estimates provided by Jckk and Boots.
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Table 3.11. Average of 100 estimates provided by each method for small sample sizes
for the instance 9 of PFSP when using swap neighborhood.

Instance 9 PFSP. Real number of local optima: 6485

Method M=50 M=100 M=150 M=200 M=250 M=300 M=350 M=400 M=450 M=500 M=550 M=600

Jckk 92 171 241 304 363 418 469 517 563 605 646 687
Boots 64 122 173 220 265 307 344 381 416 449 481 511

Chao1984 508 683 741 756 798 835 879 919 968 1016 1061 1099
ChaoBunge 254 390 508 259 425 607 600 533 1345 53853 519 393

ChaoLee1 576 682 799 847 876 910 950 988 1032 1074 1129 1176
ChaoLee2 789 1009 1221 1293 1290 1292 1341 1378 1441 1493 1584 1664

Table 3.12. Average of 100 estimates provided by each method for small sample sizes
for the instance 10 of PFSP when using swap neighborhood.

Instance 10 PFSP. Real number of local optima: 8194

Method M=50 M=100 M=150 M=200 M=250 M=300 M=350 M=400 M=450 M=500 M=550 M=600

Jckk 95 182 262 335 405 470 532 593 648 702 754 803
Boots 66 129 185 241 292 340 386 431 473 512 551 587

Chao1984 1018 1050 1048 1077 1150 1194 1240 1278 1334 1367 1405 1445
ChaoBunge 341 476 753 1634 5392 1144 5634 1211 1165 1279 4140 540

ChaoLee1 701 1035 1055 1061 1140 1200 1274 1323 1402 1443 1492 1543
ChaoLee2 745 1195 1195 1247 1396 1492 1633 1718 1858 1915 1992 2080

These suspicions motivate us to represent the estimates obtained by the
different methods for the two instances with the highest number of local op-
tima as the sample size grows. Here, we just plot the estimates corresponding
to Jckk, ChaoLee1 and ChaoLee2 to see the threshold mentioned more clearly.
Nevertheless, more detailed graphs are available in the Appendix 9.1.3. In
Figure 3.5 we take into account very small sample sizes as well as high sam-
ple sizes (from M = 50 to M = 200000). We observe that, when the sample
size is small, the best methods are ChaoLee2 and ChaoLee1. There is a threshold
(for sample size between 20000 and 60000) where Jckk improves its estimates
compared with those provided by ChaoLee1, and for sample size between
80000 and 200000, the estimates given by Jckk also improve those provided
by ChaoLee2. The reason is that with a small growth in the sample size, the es-
timate provided by Jckk improves more than the estimates given by ChaoLee1
or ChaoLee2. So, our recommendation is to use the Jckk and Boots methods
when we are able to work with large sample sizes. But, if we suspect that our
sample is very small compared to the real number of local optima, the best
methods to apply are ChaoLee2 or ChaoLee1.
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Fig. 3.5. Average of 100 estimations obtained by the different methods for the instance
number 9 (up) and instance number 10 (bottom) of PFSP using the swap neighbor-
hood as the sample size grows.

3.5 Conclusions

In this chapter we have reviewed different methods for estimating the num-
ber of local optima of instances of COPs. Our main contribution is the com-
parison of methods in the optimization field with some methods previously
used for estimating the number of species in a population in the field of
statistics.

The methods have been applied to three datasets: synthetic instances, in-
stances of the TSP with 14 and 15 cities taken at random, and instances of
TSP with real distances between cities and instances of PFSP taken from the
well-known Taillard’s benchmark. The main conclusions observed for all the
methods in the three scenarios are the following:

1. When the attraction basins are similar in size, the methods provide esti-
mates close to the real number of local optima. Of course, the higher the
sample, the more precise the estimates.

2. The further the sizes of the attraction basins from the uniformity, the
worse the estimates. In fact, in the real instances (where the variance of
the sizes of the attraction basins is very high) the predictions are really
far from the real number of local optima.

Based on the results observed through the experiments, we provide the
following rules of thumb:
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• If we are able to take a sample of large size with respect to the number of
local optima, we recommend using Jckk.

• If we suspect that our sample size is small (with respect to the number
of local optima), we recommend using ChaoBunge and ChaoLee2. Due to
the instability observed for ChaoBunge, both methods should be executed
independently. If the results provided are close, ChaoBunge is usually the
choice. Otherwise, select ChaoLee2.

• If analyzing the sample we realize that each (or most) of the initial solu-
tions reach different local optima, that is r = M and β1 = M , none of the
previous methods can be applied. In this case, we can base our estimator
on the proportion of local optima over the sample size [14, 43].





4

Estimating the attraction basin sizes of the local
optima in permutation-based combinatorial
optimization problems

4.1 Introduction

As seen in Chapter 2, the attraction basin size of the global optimum and the
number of local optima can be useful indicators of the complexity of a given
instance. Unfortunately, for moderate values of n these measures can not be
exactly calculated. For this reason, in Chapter 3, we presented a review of
different techniques to estimate the number of local optima. According to
the experiments conducted, the methods that come from the statistical field
obtained the best results. Their accuracy, however, is highly affected by the
variance of the attraction basin sizes. That is, the more uniform the attrac-
tion basin sizes are, the better the estimation. Looking at the best performing
methods (ChaoLee and ChaoBunge), we can observe that their estimations rely
on the concept of sample coverage, that is, the sum of the probabilities of
finding the local optima observed in the sample. This concept is clearly re-
lated to the size of the attraction basins. Hence, if we were able to obtain an
accurate estimation of the sample coverage, we could improve the estima-
tion of these methods. Therefore, our interest in this chapter lies in finding
methods to estimate the attraction basin size of any local optimum.

The most intuitive way of obtaining the exact attraction basin of a lo-
cal optimum, would be by exhaustively applying the local search algorithm
starting from each solution of the search space, and taking those solutions
that finish at such local optimum. Of course, this is useless because if we
were able to do this process, we would be able to solve the optimization
problem instance. So, another method for calculating the attraction basin of
a local optimum is by considering, as the starting point, this local optimum.
Then a recursive procedure is applied and at each time the neighbors of the
current solution are checked whether they belong to the attraction basin. The
procedure finishes when there are no more possible solutions to add to the
attraction basin.

This last method is more efficient than the first one, as applying the local
search algorithm to any solution of the search space is not required, we only
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need to evaluate just some of the solutions. So, we could find local optima
for which this process rapidly returns their attraction basin sets. However, in
general, the number of solutions to evaluate in this process grows exponen-
tially with respect to the problem size. Therefore, for large permutation sizes,
there could be local optima for which it becomes computationally intractable
to exactly calculate their attraction basins.

The fact that there is no known method that calculates, in polynomial
time, the exact attraction basins of the local optima, or at least, their sizes,
leads us to focus on methods that estimate the sizes of the attraction basins.
In Chapter 2, we used an estimation method for the sizes of the attraction
basins. The method consisted of applying a local search to a sample of so-
lutions, estimating each proportion of the size of the attraction basin of the
local optima as the proportion of times that it has been reached in the sam-
ple. However, this method has a major weakness. It is supposed that there
are no more local optima in the search space except just those encountered in
the sample. Of course, in general, this is not true.

Given a local optimum, we propose in this chapter two methods for esti-
mating its attraction basin size. The first method is based on taking uniformly
at random solutions from the whole search space. In the second method, we
take into account the structure that the neighborhood imposes in the search
space. Particularly, the solutions are chosen paying special attention to their
distance to such local optimum. The distance can be defined in terms of the
neighborhood. For example, the distance between two permutations that are
neighbors is one. According to the results, the second method provides es-
timations closer to the real sizes of the attraction basins, but it also implies
greater computational efforts.

The rest of this chapter is organized as follows. In Section 4.2 we explain
in detail both methods and, in Section 4.3 we make a comparison of their
accuracy when they are applied to instances of PFSP and LOP, using the ad-
jacent swap as well as the insert neighborhoods. Finally, in Section 4.4 we
review the main conclusions obtained.

4.2 Two methods for estimating the attraction basin size

We propose two estimators to calculate the size of the attraction basin of a
given local optimum π∗. This estimation will be denoted by |B̂(π∗)|.

• Uniformly at random Method (UM)
Given a local optimum π∗, we sample solutions uniformly at random
from the search space counting those that belong to its attraction basin.
That is, we take a sample of size M of random initial solutions: S =
{π1, π2, . . . , πM} ⊆ Ω. The number of those solutions that belong to the
attraction basin of π∗ divided by the total number of solutions evaluated
(M ) is the estimated proportion of the size of the attraction basin of π∗
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over the size of the search space |Ω|. Therefore, the size of the attraction
basin of π∗ is this proportion multiplied by the size of the search space
(n!).
In Algorithm 2 we specify the steps to follow in order to estimate the
attraction basin size of π∗.

Algorithm 2 Uniformly at random Method (UM) to estimate the size of the
attraction basin of a local optimum π∗

1: Input: M
2: Initialize InAB = 0
3: for i = 1→M do
4: take a random permutation πi ∈ Ω
5: σ = H(πi)
6: if σ == π∗ then
7: InAB + +
8: end if
9: end for

10: |B̂(π∗)| = InAB
M
· n!

11: Output: |B̂(π∗)|

• Distance-based Method (DM)
In this second proposal, we do not take a random sample directly from
the whole search space Ω. Instead, given a local optimum π∗, we choose
the solutions from different subsets ofΩ related to π∗. That is, we consider
the different subsets Di = {πi1, πi2, . . . , πi|Di|} ⊆ Ω that are composed of
those solutions at distance i from the local optimum π∗. We say that two
permutations π1 and π2 are at distance i if, starting from π1, and mov-
ing from neighboring to neighboring solutions, the length of the smallest
path until reaching π2 is i. Particularly, two neighboring permutations are
at distance one.
Notice that any permutation in Ω \ {π∗} should belong to one, and just
one, of these subsets Di:

Di ∩Dj = ∅,∀i 6= j⋃
i

Di ∪ {π∗} = Ω.

So, given the local optimum π∗, we take samples S1, S2, . . ., of uniformly
at random solutions at distances 1, 2, . . ., respectively, from π∗:

S1 = {π1
1 , π

1
2 , . . . , π

1
M1
} ⊆ D1,

S2 = {π2
1 , π

2
2 , . . . , π

2
M2
} ⊆ D2,

· · ·
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We use the methods described in [52, 53, 54] to obtain these uniformly at
random solutions πij for the different distances. In order to estimate the
size of the attraction basin of π∗, we proceed in a similar way to the pre-
vious method but, we work with the different subsets Di independently.
That is, we record the number of solutions that belong to the attraction
basin of π∗ in each sample set Si, divided by the sample size considered
for each distanceMi, and multiplied by the total number of permutations
that exist in each subset Di (|Di|). Therefore, the sum of these quanti-
ties obtained for each distance plus one (π∗ itself is in its attraction basin
and has not been considered in any subset), is the resultant attraction
basin size of the local optimum π∗. This process is detailed in Algorithm
3, where MaxDist denotes the maximum distance between two permu-
tations and |Ddist| refers to the number of permutations at distance dist.
Both the maximum distance and the number of permutations at a given
distance depend on the problem size and the neighborhood used.

Algorithm 3 Distance-based Method (DM) to estimate the size of the attrac-
tion basin of a local optimum π∗.
1: Input: M = {M1, . . . ,MMaxDist}
2: |B̂(π∗)| = 1
3: for dist = 1→MaxDist do
4: Initialize InAB = 0
5: for j = 1→Mdist do
6: take a random permutation σ ∈ Ddist
7: π = H(σ)
8: if π == π∗ then
9: InAB + +

10: end if
11: end for
12: |B̂(π∗)| = |B̂(π∗)|+ InAB

Mdist
· |Ddist|

13: end for
14: Output: |B̂(π∗)|

The input parameter of the algorithm is M = {M1, . . . ,MMaxDist}, that is,
we need to set in advance the sample size used at each distance dist. On
the one hand, different subsets Di have different sizes, which could lead
us to change the sample size taking values proportional to |Di|. On the
other hand, the closer a permutation to the optimum, the more probable
it belongs to its attraction basin. Thus, we could consider the possibility
of taking more random solutions in the subsets Di than Dj , with i < j, or
even, to stop taking solutions from a certain distance on.
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4.3 Experiments

We analyze and compare the two proposed methods for estimating the sizes
of the attraction basins of the local optima for instances of different problems
and considering different neighborhoods.

We work with instances of the PFSP and the LOP, and we focus on two
common neighborhoods: adjacent swap and swap. For the PFSP we con-
sider 5 instances with 10 jobs and 5 machines, obtained from the well-known
benchmark proposed by Taillard 1. The 5 instances of the LOP have been ob-
tained from the xLOLIB benchmark [76], and the matrix size considered is
10x10.

So, in both problems the size of the search space is 10!. Notice that the
problem size is quite small. The reason is that, in order to measure the accu-
racy of the methods, we calculated the exact sizes of the attraction basins of
each of the local optima of the instances, and, therefore, working with large
permutation sizes becomes computationally unaffordable.

Regarding the parameters of the algorithms, we need to specify the sam-
ple sizes used. For the first method we choose samples of sizes: M =
{1125, 2250, 4500}. For the second method, we need to fix different sample
sizes Mi according to the distance. In order to study different possibilities,
for the second method we consider three different cases:

1. Equal Sample sizes for each distance (ES): Mi = Mj ,∀i 6= j.

2. Sample sizes Proportional to the number of permutations at each dis-
tance (SP): Mi ∝ |Di|.

3. Sample sizes Decreasing as the distance increases (SD): Mi ∝ 1
i , and

Mi = 0, i > MaxDist/2.

We should use the same (or almost similar) total sample size, when compar-
ing the second method with the first one. So, we need to choose, in this case,
Mi such that

M ≈
MaxDist∑
i=1

Mi ≈

1125
2250
4500

(4.1)

We show in Table 4.1 the sample sizes used at each distance according to
the neighborhood, in order to fulfill equation (4.1). In Table 4.2, the number
of permutations of size 10 at each distance from a given permutation for the
adjacent swap and swap neighborhoods is facilitated.

Both algorithms are applied 10 times to each local optimum for each sam-
ple size, and the average estimations of the sizes of the attraction basins are
recorded and compared to the real one.
1 http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir

/ordonnancement.html
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Table 4.1. Sample sizes used.

Adjacent swap Swap
UM DM-ES DM-SP DM-SD (i ≤ 22) DM-ES DM-SP DM-SD (i ≤ 4)

1125 25
⌈
|Di|
3300

⌉ ⌈
302
i

⌉
125

⌈
|Di|
3240

⌉ ⌈
540
i

⌉
2250 50

⌈
|Di|
1630

⌉ ⌈
608
i

⌉
250

⌈
|Di|
1616

⌉ ⌈
1080
i

⌉
4500 100

⌈
|Di|
811

⌉ ⌈
1217
i

⌉
500

⌈
|Di|
807

⌉ ⌈
2160
i

⌉

Table 4.2. Number of permutations of size 10 at different distances from a given per-
mutation according to the adjacent swap and the swap neighborhoods.

Adjacent swap Swap
dist #perms dist # perms dist # perms dist # perms

1 9 16 135853 31 86054 1 45
2 44 17 162337 32 64889 2 870
3 155 18 187959 33 47043 3 9450
4 440 19 211089 34 32683 4 63273
5 1068 20 230131 35 21670 5 269325
6 2298 21 243694 36 13640 6 723680
7 4489 22 250749 37 8095 7 1172700
8 8095 23 250749 38 4489 8 1026576
9 13640 24 243694 39 2298 9 362880

10 21670 25 230131 40 1068
11 32683 26 211089 41 440
12 47043 27 187959 42 155
13 64889 28 162337 43 44
14 86054 29 135853 44 9
15 110010 30 110010 45 1

We first analyze the estimations obtained for the attraction basin size of
the global optimum. In Table 4.3, we report the relative errors ||B̂(π∗)|−|B(π∗)||

|B(π∗)|
for the UM and the DM distinguishing the three different ways of taking the
sample (ES, SP and SD), and according to the problem and neighborhood
considered. The values indicated in this table are, for each instance, the aver-
age errors obtained from the 10 repetitions of each method. As we can appre-
ciate, when estimating the attraction basin size of the global optimum, there
is not a best overall method. However, we can obtain some conclusions from
this table. The estimation methods provide quite different results for differ-
ent instances. This fact leads us to think of the diversity of instances that we
can find when considering the same problem and neighborhood. In general,
for both problems, UM, DM-ES and DM-SP obtain estimations that are worse



4.3 Experiments 65

for the adjacent swap neighborhood than for the swap neighborhood. On the
contrary, the results given by the DM-SD when considering the swap neigh-
borhood are really poor. We must remember that the DM-SD takes a lower
number of solutions as the distance to the global optimum increases, and it
stops taking solutions at MaxDist/2. The bad performance of this method
indicates that, when using the swap neighborhood, the attraction basin of
the global optimum is composed by a high number of solutions that are far
from it, but this does not occur when using the adjacent swap neighborhood.
Of course, even if we increase the sample size with this method, as we stop
considering solutions at certain distance, for both neighborhoods we do not
obtain better results. For the UM, in general, we observe that as we increase
the sample size, the estimations improve. Nevertheless, this does not hap-
pen with the DM. In order to show the average exact values of attraction
basin sizes obtained with the different methods, as well as the real sizes, we
include Table 4.4. In this table we can appreciate the global accuracy of the
estimations. In fact, we observe the poor estimations given by the DM-SD for
the swap neighborhood, which are always much lower than the real values.

Table 4.3. Relative errors of the attraction basin sizes of the global optimum.

M = 1125 M = 2250 M = 4500

UM DM-ES DM-SP DM-SD UM DM-ES DM-SP DM-SD UM DM-ES DM-SP DM-SD

PF
SP A

dj
ac

en
ts

w
ap 1 0.25 0.10 0.24 0.24 0.23 0.10 0.04 0.07 0.03 0.24 0.22 0.03

2 0.21 0.18 0.04 0.23 0.00 0.03 0.12 0.10 0.31 0.00 0.01 0.11
3 0.44 0.20 0.27 0.03 0.12 0.10 0.04 0.04 0.23 0.00 0.22 0.02
4 0.80 0.01 0.08 0.10 0.10 0.10 0.21 0.04 0.10 0.04 0.22 0.06
5 0.02 0.17 0.33 0.45 0.02 0.02 0.23 0.08 0.12 0.02 0.06 0.03

Sw
ap

1 0.00 0.03 0.06 0.61 0.02 0.01 0.01 0.62 0.02 0.02 0.00 0.61
2 0.08 0.07 0.03 0.55 0.00 0.05 0.00 0.56 0.03 0.04 0.01 0.59
3 0.07 0.01 0.02 0.68 0.05 0.02 0.01 0.69 0.02 0.02 0.03 0.69
4 0.02 0.05 0.07 0.39 0.04 0.06 0.07 0.43 0.02 0.02 0.01 0.40
5 0.01 0.03 0.01 0.71 0.00 0.02 0.00 0.72 0.00 0.00 0.01 0.72

LO
P A

dj
ac

en
ts

w
ap 1 0.01 0.05 0.03 0.17 0.05 0.01 0.01 0.11 0.02 0.05 0.00 0.08

2 0.71 0.19 0.25 0.02 0.33 0.13 0.15 0.11 0.17 0.05 0.10 0.08
3 0.92 0.11 0.37 0.18 0.39 0.03 0.26 0.12 0.09 0.07 0.15 0.09
4 0.09 0.03 0.20 0.17 0.01 0.09 0.04 0.05 0.03 0.04 0.02 0.01
5 0.04 0.06 0.06 0.14 0.04 0.02 0.01 0.07 0.04 0.00 0.00 0.07

Sw
ap

1 0.00 0.05 0.01 0.79 0.00 0.04 0.01 0.80 0.00 0.01 0.00 0.80
2 0.07 0.02 0.03 0.65 0.02 0.04 0.02 0.63 0.04 0.04 0.01 0.65
3 0.10 0.00 0.02 0.46 0.00 0.12 0.00 0.38 0.04 0.07 0.00 0.44
4 0.01 0.01 0.00 0.81 0.01 0.00 0.01 0.81 0.01 0.01 0.02 0.81
5 0.01 0.01 0.00 0.81 0.02 0.01 0.00 0.81 0.00 0.01 0.00 0.81
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We continue with the comparison of the methods by reporting in Table
4.5 the average relative error and the variances (in brackets) given by each
method for all the local optima (including the global optimum) of each in-
stance. We observe that, clearly, on average terms, the method that provides
the best results for the instances of the PFSP considering the adjacent swap
neighborhood is DM-SD, where we find the lowest errors and very small
variances. For the instances of the LOP considering the adjacent swap neigh-
borhood, the DM-SD performs well, but we also find good results for the
DM-ES. For both problems, when using the swap neighborhood, as was ob-
served for the attraction basin size of the global optimum, the results given
by DM-SD are really bad (high errors and high variances). The best method
on average for almost all instances for the swap neighborhood is DM-ES. So,
for this neighborhood it seems convenient to take the same number of solu-
tions at different distances. As a general rule, the higher the sample size, the
lower the average relative errors and variances. Except for the DM-SD when
using the swap neighborhood, that results are almost similar for the different
sample sizes.

We carry out a statistical analysis to compare the estimation obtained for
the different methods. A nonparametric Friedman’s test with level of signif-
icance α = 0.05 is used to test if there are statistical significant differences
between the estimates provided by the 4 methods in the different scenar-
ios (according to problem and neighborhood). This test provides a ranking
of the methods while also giving an average rank value for each method.
As we always find statistical differences in all the cases, we proceed with
a post-hoc test which carries out all pairwise comparisons. Particularly, we
use the Holm’s procedure fixing the level of significance to α = 0.05. In
the case of the PFSP with the adjacent swap neighborhood, we find that the
best method is the DM-SD with significant differences. When using the swap
neighborhood, the best method is the DM-ES but with no significant differ-
ences with the DM-SP. For the LOP and the adjacent swap neighborhood, the
best methods are the DM-SD and the DM-ES with no significant differences,
while for the swap neighborhood the UM, the DM-ES and the DM-SP are
the best methods without significant differences among them. Of course, for
both problems with the swap neighborhood the worst performing one is the
DM-SD with significant differences.
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4.4 Conclusions

We have presented two methods for estimating the size of the attraction basin
of a given local optimum. These estimators are based on the proportion of
solutions that belong to its attraction basin when a sample is taken from the
whole search space. The estimation of the attraction basin sizes of the lo-
cal optima could help to, for example, estimate the proportion of the search
space that has been explored and, therefore, to have knowledge of the shape
of the landscape.

In the first method proposed (UM), the proportion of the size of the attrac-
tion basin of the local optimum is estimated as the proportion of solutions of
a random sample that belong to it. The second method (DM), which is more
computationally demanding, consists of taking random solutions at differ-
ent distances from the search space, and estimating the total size considering
the sum of the estimations of the sizes that are related to each distance. In
this second method, the sample size taken at each distance is of high rele-
vance. We have noticed differences in considering different ways of taking
the samples for the different neighborhoods.

First, we consider the case where the same sample size is taken for each
distance (DM-ES). Then, we take samples of sizes proportional to the number
of permutations that are at the different distances (DM-SP). Finally, the sam-
ples are chosen with sizes that decrease as the distance to the local optimum
increases, and we stop taking solutions further than MaxDist/2 (DM-SD).

The main result observed is that for the swap neighborhood, the DM-SD
provides bad estimations. We have concluded that this is due to the fact that,
for this neighborhood, the attraction basins of the local optima must have
a high number of solutions far from it. The methods perform similar for in-
stances of both problems. However, we observe differences in the estimations
provided for the different instances considering the same problem. Another
important observation derived from this analysis is that the sample size does
not have a high influence on the three versions of the DM, while it has to be
taken into account if we use the UM. Of course, the higher the sample size
considered in the UM, the more accurate the estimations.

After observing the results of the statistical analysis, we recommend the
following:

• If we are working under the adjacent swap neighborhood, we should ap-
ply the DM-SD .

• If we are under the swap neighborhood, the use of the DM-ES or the DM-
SP is recommended.

We could study the estimations provided by these methods considering
other different neighborhoods. The performance of these methods, of course,
depend on some properties of the instances, above all, the distributions of
the sizes of the attraction basins. Therefore, we could think of other ways
of taking the samples according to the different distances. However, these
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methods should be designed focusing on the specific distance considered,
as the way of choosing the sample sizes is the most important aspect that
influences their behavior.



Part II

A tunable generator of instances of
permutation-based combinatorial optimization

problems





5

Generator of instances

5.1 Introduction

In the optimization arena, the evaluation of algorithms is usually measured
by means of benchmark problems. However, algorithms show different be-
haviors for different problems, or even for different instances of the same
problem. So commonly, when trying to study their performance, assump-
tions are needed to be made on the algorithm itself, the problem to which it
is applied or the specific instance of the problem. Thus, having information
about the characteristics of the problem instances at hand would be really
useful for improving the design of algorithms or to identify the best per-
forming algorithm from a toolbox. Due to the difficulty of having real in-
stances whose properties we know a priori at our disposal, generators are
designed in order to provide a large set of instances with different character-
istics. Therefore, a tunable generator of optimization problem instances that
depends on a reduced number of parameters able to control the properties
of the instance is an important and useful tool for this purpose.

In [75] a software framework that generates multimodal test functions
for optimization in the continuous field was presented. In [37, 66, 67, 95] the
authors proposed a continuous search space generator based on a mixture
of Gaussians. A proposal in the discrete domain, and particularly for binary
spaces, can be found in [25], where a NK landscape generator is described.
We also find a proposal of a generator of instances in the dynamics optimiza-
tion field: the moving peaks benchmark [10].

Unfortunately, these generators lack the flexibility to generate instances
with controlled properties. Most of them are based on populating a cost ma-
trix (depending on the problem they focus on) by taking random values, or
taking random points in a square and calculating the distances between each
pair of points. The complexity of the instances varies according to the inter-
val (values and variances) used during the random sampling. On the other
hand, as pointed out in [28, 70], there are proposals in the literature that cre-
ate instances where the optimum is known. Nevertheless, this is the only
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information provided, and there is no clue about how easy or difficult it is
to solve the instance. Precisely, in [70], the authors state that the toughest
technical challenges are finding (or generating) suitable test instances, and
assessing how close heuristic algorithms come to the optimum.

Related to this, we present a generator for permutation-based COPs. Our
work is inspired by [37], where the authors proposed a generator of opti-
mization problem instances in the continuous domain. We adapt the con-
cepts that they used to those that are similar but in the permutation space.
For example, instead of working with Gaussian density functions we work
with Generalized Mallows distributions. This distribution is an exponential
probability model that depends on a consensus permutation and spread pa-
rameters (analogous to the mean and the variance in the Gaussian function).
We study the influence of the parameters that the generator uses when creat-
ing the instances. We also provide some clues on how to tune them with the
aim of controlling the properties of the instances. We pay special attention
to a particular property, the number of local optima, and set restrictions in
the parameters so as to have a predefined number of them in the resultant
instance. In order to obtain a solution for these restrictions in the parameters,
the generator is seen as a linear programming problem, and a linear function
is defined that promotes obtaining qualitative properties in the generated
instance.

In our framework, the cost of generating the instances, as well as the
cost of evaluating each solution of the search space, is dominated by the
number of local optima. In order to test our generator, we take into account
properties that generators of problem instances in optimization should have
when the resultant instances are used to evaluate Evolutionary Algorithms
[36, 37, 50, 93]. Specifically, we carry out experiments to evaluate two im-
portant properties: the flexibility of the generator, and its ability to create
instances of very different complexity levels for common metaheuristics. To
test the first property, we adjust different parameters of our generator. We
considered it interesting to check the ability of the generator to provide, for
small problem sizes, instances almost identical to those found in well-known
benchmarks. We compare the instances by means of the sizes of the attraction
basins of the local optima. To evaluate the second property of the generator,
we generate instances playing with the size of the attraction basins for the
global and local optima, in addition to varying the location of the different
local optima. Then, three different algorithms, a Local Search (LS), an Es-
timation of Distribution Algorithms (EDA), and a Genetic Algorithm (GA)
are applied to observe their behavior when solving the different types of in-
stances. According to the results, the generator arises as a very useful tool to
perform coarse as well as fine grain analysis of optimization algorithms, as
the practitioner can observe the algorithms under controlled scenarios (in-
stances). Derived from the experiments, an interesting and novelty property
in the performance of the EDA and the GA is observed.
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The rest of the chapter is organized as follows. In Section 5.2 we explain
the Mallows and the Generalized Mallows models, which are the basis of our
generator. In Section 5.3 the most common distances used for the Generalized
Mallows model are detailed. Our generator is introduced in Section 5.4 and
additional details are provided in Section 5.5. In Section 5.6 we present three
examples of how to tune the parameters involved in the model to create in-
stances with different properties. The experimentation is shown in Section
5.7, firstly, testing the flexibility of the model by comparing created instances
with instances of common benchmarks, and secondly, comparing and ana-
lyzing properties in the performance of different metaheuristics when ap-
plying them to instances created with our generator with different input pa-
rameters. Finally, the conclusions are presented in Section 5.8.

5.2 Mallows and Generalized Mallows models

5.2.1 Mallows model

The Mallows model [60] is an exponential probability model for permu-
tations based on a distance. Inside the space of permutations Ω, a spe-
cial permutation which is worth mentioning is the identity permutation,
e = (123 · · ·n) which maps each item i to position i. By composing two per-
mutations σ and π of n items, we obtain a new permutation σπ such that
σπ(j) = σ(π(j)). Specifically, the inverse π−1 of π is the permutation such
that ππ−1 = e. Note that the composition between a permutation and the
identity is the same permutation: πe = eπ = π.

The Mallows distribution is specified by two parameters: the consensus
permutation π0 ∈ Ω and the spread parameter θ ∈ R. Hence, the probability
assigned to each π ∈ Ω is:

p(π|π0, θ) =
1

Z(θ)
e−θd(π,π0)

where Z(θ) =
∑
π′∈Ω e

−θd(π′,π0) is a normalization term and d(π, π0) is a
distance between π and the consensus permutation π0.

Different values for the parameter θ produce different distributions. For
instance, when θ = 0 it is the uniform distribution. However, when θ > 0,
then π0 is the permutation with the highest probability. The rest of permuta-
tions π ∈ Ω − {π0} have probability inversely exponentially proportional to
θ and their distance to π0. In this sense, the Mallows distribution with θ > 0
is usually considered analogous to the Gaussian distribution on the space
of permutations. In Figure 5.1 we represent the probability assigned to the
permutations of size n = 5 for different θ values considering the Kendall-tau
metric (this distance is introduced in Section 5.3.1). In the X axis we repre-
sent the permutations symmetrically distributed according to their distance
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to the consensus permutation π0, in order to see the analogy with the Gaus-
sian distribution. We observe that the larger the value of θ, the more peaked
the distribution becomes around the consensus permutation.

Fig. 5.1. Probability assigned to permutations by three Mallows functions centered
at π0 and with θ = 0.1, 0.3 and 0.7. In the X axis the permutations are distributed
symmetrically according to their distance to π0.

5.2.2 Generalized Mallows model

The Mallows model is a simple yet efficient probability model for permuta-
tions. However, the fact that it uses just a single spread parameter limits its
flexibility. In this sense, it assigns the same probability to all the permuta-
tions that are at the same distance from the consensus permutation. That is,
for any distance d:

∀π 6= π′ ∈ Ω s.t. d(π, π0) = d(π′, π0), then p(π) = p(π′).

In [33], an extension of this model was proposed, called the Generalized
Mallows (GM) model. For this model, we need to work with a distance which

is able to be decomposed d(π1, π2) =
n−1∑
s=1

ds(π1, π2), in such a way that each

ds is related with the s-th item (position) of the permutation. Therefore, a
different spread parameter θs ∈ R can be associated to each of the elements
ds that is involved in the decomposition of the distance, so that instead of
using one spread parameter, a vector of them is defined. In this distribution,
the probability assigned to any permutation π ∈ Ω is:
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p(π|π0, θ
1, . . . , θn−1) =

1

Z(θ1, . . . , θn−1)
e
−
n−1∑
s=1

θsds(π,π0)
,

where
Z(θ1, . . . , θn−1) =

∑
π′∈Ω

e−
∑n−1
s=1 θ

sds(π
′,π0).

Notice that, the Mallows model can be seen as a particular case of the GM
model, where θs = θ,∀s. So, from now on, we will refer to the GM model
taking the Mallows model as a specific case of it, and we will consider that
θs ∈ R+,∀s.

5.3 Distances

As seen in the previous section, the GM model makes use of a distance or
metric. The metrics utilized in this chapter are the Kendall-tau and the Cay-
ley distances, as they are the most commonly jointly used with this proba-
bilistic model [34, 54, 56, 58, 61].

We define a distance or metric between two permutations π1 and π2 [26]
as a function

d : ΩxΩ −→ R
(π1, π2) 7−→ d(π1, π2)

that fulfills the following properties ∀π1, π2, π3 ∈ Ω:

1. Non-negativity: d(π1, π2) ≥ 0 (with equality iff π1 = π2).
2. Symmetry: d(π1, π2) = d(π2, π1).
3. Triangle inequality: d(π1, π2) ≤ d(π1, π3) + d(π3, π2).

Specifically, the two metrics considered in this chapter also fulfill the left-
invariant property:

d(π1, π2) = d(π3π1, π3π2).

5.3.1 Kendall-tau distance

The most commonly used distance in the GM model is the Kendall-tau
[13, 21, 61]. This metric measures the minimum number of adjacent swaps
between two permutations. Formally, given two permutations π1 and π2, we
write this metric as:

dK(π1, π2) =
∑
r≺π1s

1[s≺π2r] (5.1)

where r ≺π s means that the item r precedes s in the permutation π, and 1[·]
denotes the indicator function. As it fulfills the left-invariant property, we
can write indistinctly dK(π1, π2) or dK(π−1

2 π1, e). The Kendall-tau distance
can be decomposed into the following form:
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dK(π1, π2) = dK(π−1
2 π1, e) =

n−1∑
s=1

Vs(π
−1
2 π1, e) (5.2)

where Vs(π, e) (s = 1, 2, ..., n − 1) is the number of items r > s that precede
the item s in π, that is:

Vs(π, e) =
∑
r>s

1[r≺πs].

Notice, that we define each Vs(π, e) with respect to the identity permutation,
so that when decomposing the Kendall-tau distance between two permu-
tations π1 and π2, we just need to consider the distance between the com-
position π−1

2 π1 and e. From now, we simplify the notation by writing Vs(π)
instead of Vs(π, e).

For example, lets suppose that we have two permutations of size n = 4:

π1 = (4132) and π2 = (1342).

Thus,
π−1

2 = (1423) and π−1
2 π1 = (3124).

Therefore,

dK(π1, π2) = dK(π−1
2 π1, e) =

n−1∑
s=1

Vs(π
−1
2 π1) = 1 + 1 + 0 = 2.

As the terms Vs (for s = 1, 2, ..., n− 1) are bounded:

0 ≤ Vs ≤ (n− s),

the maximum distance between two permutations that can be reached by
this metric is

(n− 1) + (n− 2) + ...+ 1 =
n(n− 1)

2
.

When using the Kendall-tau metric in the GM model, we consider a
different spread parameter θs associated to each Vs. So that the model de-
pends on a consensus permutation π0 ∈ Ω and the spread parameters θ =

(θ1, · · ·, θn−1) ∈ (R+)
n−1. The normalization term Z(θ) = Z(θ1, . . . , θn−1)

has the following closed form that does not depend on π0:

Z(θ) =

n−1∏
s=1

[
1− e−(n−s+1)θs

1− e−θs
]
.

Therefore the probability assigned to each permutation π ∈ Ω can be
written as:

p(π|π0,θ) =

n−1∏
s=1

[
1− e−θs

1− e−(n−s+1)θs

]
e
−
n−1∑
s=1

θsVs(π
−1
0 π)

.
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5.3.2 Cayley distance

The Cayley distance dC(π1, π2) between two permutations π1 and π2 mea-
sures the minimum number of swaps (not necessarily adjacent) that are
needed to transform π1 into π2. A concept closely related to the Cayley
distance is the number of cycles in the permutations. A cycle is a subset
{i1, i2, ..., ir} of the set of the items of the permutation such that

π(i1) = i2 , π(i2) = i3 , ... , π(ir) = i1.

As previously mentioned, when we calculate dC(π, e) we should count
the number of swaps to transform π into e. Note that, in this case, every swap
involves two items of the same cycle. So, the minimum number of swaps
needed to sort the r items of the same cycle is r − 1. This means that the
Cayley distance between π and e is n minus the number of cycles.

Taking this definition into account, we can decompose the Cayley dis-
tance between two permutations π1 and π2:

dC(π1, π2) = dC(π−1
2 π1, e) =

n−1∑
s=1

Xs(π
−1
2 π1, e) (5.3)

where

Xs(π, e) =

0 if s is the largest item in its cycle in π

1 otherwise

In this case, we also define Xs(π, e) with respect to the identity permuta-
tion e. So, similarly to the case of the Kendall-tau distance, we also simplify
the notation using Xs(π).

For instance, considering again

π1 = (4132) and π2 = (1342),

we have:

dC(π1, π2) = dC(π−1
2 π1, e) =

n−1∑
s=1

Xs(π
−1
2 π1) = 1 + 1 + 0 = 2.

The minimum number of cycles in a permutation is 1. This means that
the maximum distance between two permutations that can be given by this
metric is n− 1.

The GM distribution uses a different spread parameter θs for eachXs seen
in (5.3). Considering the vector of spread parameters θ = (θ1, · · ·, θn−1) ∈
(R+)

n−1, a closed form for the normalization term Z(θ) is also found [54]:

Z(θ) =

n−1∏
s=1

(1 + (n− s)e−θ
s

).
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Finally, the probability assigned to each π ∈ Ω under the Cayley metric is
defined by:

p(π|π0,θ) =
1

n−1∏
s=1

(1 + (n− s)e−θs)
e
−
n−1∑
s=1

θsXs(π
−1
0 π)

.

5.4 The generator of instances: Overview

In [37] the authors proposed a generator of instances of optimization prob-
lems in the continuous domain based on a mixture of Gaussian distributions
where each local optimum of the landscape corresponds with the mean of
a Gaussian distribution. The generated instances are such that the function
value of a solution is defined by the maximum value that any of the Gaussian
components associates to that solution. Inspired by that work, we present a
generator of instances of permutation-based COPs. The generator is founded
on a mixture of GM distributions.

The general idea of our approach to generate an instance is to choose m
consensus permutations {π1, π2, . . . , πm}, and m spread vectors of parame-
ters {θ1, . . . ,θm} to create m GM distributions with them:

p1(π|π1,θ1)

p2(π|π2,θ2)

...
pm(π|πm,θm)

where

pi(π|πi,θi) = pi(π|πi, θ1
i , θ

2
i , ..., θ

n−1
i ) =

e
−
n−1∑
s=1

θsi ds(π,πi)

Z(θi)
.

We also consider weights {w1, w2, . . . , wm}, (wi > 0,∀i) associated to each
of the GM distributions. From now on, we will assume that we generate in-
stances of maximization problems. In this sense, the objective function value
of a solution (permutation) of the instance is defined as the maximum value
reached by all the GM distributions multiplied by the corresponding associ-
ated weight:

f(π) = max
1≤i≤m

{wipi(π|πi, θ1
i , θ

2
i , . . . , θ

n−1
i )}. (5.4)

Thus, this model has (n + 1)m parameters: (n − 1)m spread parameters,
m consensus permutations, and m weights. Notice that we need to evaluate
m GM models in order to assign an objective function value to each solution
of the search space.
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5.5 The generator of instances: Particularities

Our aim is to provide a generator able to create instances with different prop-
erties. In order to do that, we should tune the parameters of our generator ap-
propriately. This is done by following two complementary tasks; one quanti-
tative and one qualitative. In the quantitative approach we add constraints to
the parameters in order to have a predefined number of local optima. These
constraints are linear in the weights of the GM components that define the
instance. The qualitative approach consists of the definition of a linear func-
tion on the weights that tries to promote certain characteristics of the instance
such as the relative size of the attraction basin of the global optimum versus
the local optima. Different linear functions can create different types of in-
stances.

As a result of this process, each instance of the generator is created by
solving a linear programming problem in the weights.

5.5.1 Controlling the local optima in the instance

In this section, we study the constraints we should add in order to ensure
that all the consensus permutations of the GM models are the local optima
in the generated instance. These local optima are defined when considering
a neighborhood determined by the solutions at distance one. Logically, the
particular distance used coincides with that used in the GM models (Kendall-
tau or Cayley).

Notice that by our definition of an instance, no other permutation of the
search space, apart from the consensus permutations, can be a local optimum
(local maximum). This means that with our generator we know that the num-
ber of local optima is always smaller or equal to the number m of GM com-
ponents. However, it is possible that a consensus permutation is buried by
a GM component centered at any other permutation, and thus, this permu-
tation will not be a local optimum. Hence, the key point is to ensure that all
the consensus permutations are, indeed, local optima for our instance. In this
way, we will be able to create instances with exactly m local optima.

In what follows, we will assume that it is not possible to find two local op-
tima with the same objective function value. Therefore, the distance between
two local optima needs to be higher than one, so the consensus permutations
need to satisfy:

d(πi, πj) ≥ 2,∀i 6= j. (5.5)

We remark that, although we work under this assumption, the generator
would be able to face with a situation in which f(πi) = f(πj), i 6= j.

By the definition of local maximum, the following constraint has to be
fulfilled for πi to be a local optimum:

f(πi) > f(π), ∀π ∈ Ω s.t. d(π, πi) = 1. (5.6)
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The following Lemma 1 shows a necessary condition for a consensus per-
mutation to be a local optimum. In Theorem 1 we give the necessary and
sufficient condition in the parameters to guarantee that all consensus per-
mutations are local optima in the instance.

Lemma 1. Let’s consider an instance I created with our generator and let πi be the
consensus permutation of the i-th GM model used in it. If πi is a local optimum in
the generated instance, that is:

f(πi) > f(π), ∀π ∈ Ω such that d(π, πi) = 1,

then the objective function value of πi is reached by the i-th GM model, i.e.:

f(πi) = max
1≤j≤m

{wjpj(πi|πj ,θj)} = wipi(πi|πi,θi)

=wi
e
−
n−1∑
s=1

θsi ds(πi,πi)

Z(θi)
=

wi
Z(θi)

. (5.7)

Proof. Let’s suppose that (5.7) is false, that is: ∃k 6= i such that

f(πi) = max
1≤j≤m

{wjpj(πi|πj ,θj)}

=wkpk(πi|πk,θk) = wk
e
−
n−1∑
s=1

θskds(πi,πk)

Z(θk)
.

Then, the objective function value of the first permutation found in the short-
est path between πi and πk, that is, the permutation π such that d(π, πi) = 1
and d(π, πk) = d(πi, πk)− 1, is:

f(π) = max
1≤j≤m

{wjpj(π|πj ,θj)}

≥wkpk(π|πk,θk) = wk
e
−
n−1∑
s=1

θskds(π,πk)

Z(θk)
.

Notice that

d(π, πk) =

n−1∑
s=1

ds(π, πk) < d(πi, πk) =

n−1∑
s=1

ds(πi, πk),

in fact, d(π, πk) = d(πi, πk) − 1, so that the elements involved in the decom-
position of the distance between π and πk need to be equal to the elements of
the decomposition of the distance between πi and πk, with the exception of
one that has to be one unit lower. This is:

ds(π, πk) = ds(πi, πk),∀s 6= t

dt(π, πk) = dt(πi, πk)− 1.
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So then,

n−1∑
s=1

θskds(π, πk) =
∑
s6=t

θskds(πi, πk) + θtk[dt(πi, πk)− 1] <

n−1∑
s=1

θskds(πi, πk)

⇒ e
−
n−1∑
s=1

θskds(π,πk)
> e
−
n−1∑
s=1

θskds(πi,πk)
,

and therefore

wk
e
−
n−1∑
s=1

θskds(π,πk)

Z(θk)
> wk

e
−
n−1∑
s=1

θskds(πi,πk)

Z(θk)
.

Thus, we have a permutation π such that d(π, πi) = 1 and f(π) > f(πi). This
proves that if (5.7) is not fulfilled, πi is not a local optimum.

ut

Theorem 1. A consensus permutation πi of any of the GM models involved in our
generator is a local optimum in the generated instance if and only if:

wi
Z(θi)

>
wj

Z(θj)
e
−
n−1∑
s=1

θsjds(π,πj)
,∀j 6= i, (5.8)

∀π such that d(π, πi) = 1.

Proof. The definition of local optimum is given by (5.6), so that: f(πi) >
f(π),∀π ∈ Ω s.t. d(π, πi) = 1. By lemma 1, f(πi) = wi

Z(θi)
, and therefore

we can rewrite (5.6) in the following form:

wi
Z(θi)

> max
1≤j≤m

 wj
Z(θj)

e
−
n−1∑
s=1

θsjds(π,πj)

 ,

∀π s.t. d(π, πi) = 1.
Obviously, this is fulfilled for j = i, so that this is equivalent to:

wi
Z(θi)

>
wj

Z(θj)
e
−
n−1∑
s=1

θsjds(π,πj)
,∀j 6= i,

∀π s.t. d(π, πi) = 1. Therefore, (5.8) is fulfilled.
Let’s suppose now that the constraints in (5.8) are satisfied, we will prove

that, then, πi is a local optimum. The definition of objective function value of
πi in our generator is the following:

f(πi) = max
1≤j≤m

 wj
Z(θj)

e
−
n−1∑
s=1

θsjds(πi,πj)

 .
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We can rewrite this expression, distinguishing between j = i and j 6= i, as:

f(πi) = max
j 6=i

 wi
Z(θi)

,
wj

Z(θj)
e
−
n−1∑
s=1

θsjds(πi,πj)


However, we know by (5.8) that

wi
Z(θi)

>
wj

Z(θj)
e
−
n−1∑
s=1

θsjds(π,πj)
,∀π s.t. d(π, πi) = 1

If this is fulfilled for all π such that d(π, πi) = 1, specifically, this is fulfilled
for the first permutation π′ found in the shortest path between πi and πj ,
such that d(π′, πi) = 1 and d(π′, πj) = d(πi, πj)− 1. Reasoning as in the proof
of the Lemma 1, the elements involved in the decomposition of the distance
between π′ and πj are:

ds(π
′, πj) = ds(πi, πj),∀s 6= t

dt(π
′, πj) = dt(πi, πj)− 1

and therefore

n−1∑
s=1

θsjds(π
′, πj) <

n−1∑
s=1

θsjds(πi, πj)⇒ e
−
n−1∑
s=1

θsjds(π
′,πj)

> e
−
n−1∑
s=1

θsjds(πi,πj)
.

So, (5.8) implies ∀π s.t. d(π, πi) = 1:

wi
Z(θi)

>
wj

Z(θj)
e
−
n−1∑
s=1

θsjds(πi,πj) ⇒ f(πi) =
wi

Z(θi)
> f(π).

ut

In conclusion, if the parameters fulfill the restrictions in (5.8), we know
that all the consensus permutations of the GM models of our generator are
local optima in the instance. By fixing the values of θsj in the inequalities
in (5.8), the restrictions are linear in the weights, and therefore they can be
solved with a linear programing problem. However, we can find inconve-
niences when working with the restrictions in (5.8).

On the one hand, we could have numerical problems. For example, for

high permutation sizes n, the values e
−
n−1∑
s=1

θsjds(π,πj)
will be close to 0 (as the

distances could be considerably high), and, due to precision limits, when
handling such values in the resolution of the linear programming problem,
the results could be stored as 0.00. Therefore, the desired restrictions are not
fulfilled and finally, the consensus permutations are not local optima in the
instance. On the other hand, the number of constraints needed to be fulfilled
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is considerably high: m(m− 1)(n− 1) and m(m− 1)n(n− 1)/2, in the case of
the Kendall-tau and the Cayley distances, respectively.

With the aim of avoiding the numerical instability of (5.8) and in order to
reduce the number of restrictions, we show in the following Theorem 2 suf-
ficient conditions to fulfill (5.8). In fact, we find a significant decrease in the
number of restrictions, as they are a total of m, independently of the distance
used. This reduction in the number of restrictions does not imply, however,
limitations in the flexibility of the generator to create different types of in-
stances.

Theorem 2. Let {w1, . . . , wm}, {θ1, . . . ,θm} and {π1, . . . , πm} be the weight val-
ues, the spread parameters and the consensus permutations, respectively, of the m
GM components used in our generator to create an instance I . If the following con-
straints are fulfilled:

wi
Z(θi)

>
wi+1

Z(θi+1)
, i = 1, . . . ,m− 1 (5.9)

[
2− e

−
(

min
j,s
{θsj}

)]
wm

Z(θm)
>

w1

Z(θ1)
(5.10)

then, the restrictions in (5.8) are satisfied.

Proof. From (5.9) we have:

wi
Z(θi)

>
wj

Z(θj)
,∀i < j

and obviously, as wj
Z(θj)

>
wj

Z(θj)
e
−
n−1∑
s=1

θsjds(π,πj)
, ∀π, then inequalities in (5.8)

when i < j are fulfilled. Thus, we just have to prove that (5.9) and (5.10)
imply (5.8) when i > j.

We can rewrite (5.10) in the following form:[
1− e

−
(

min
j,s
{θsj}

)]
wm

Z(θm)
>

w1

Z(θ1)
− wm
Z(θm)

(5.11)

As it is known by (5.9):

wm
Z(θm)

≤ wj
Z(θj)

,∀j.

So, (5.11) implies:[
1− e

−
(

min
j,s
{θkj }

)]
wj

Z(θj)
>

w1

Z(θ1)
− wm
Z(θm)

,∀j
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Moreover,

w1

Z(θ1)
− wm
Z(θm)

>
wj

Z(θj)
− wi
Z(θi)

,∀i > j

so that, [
1− e

−
(

min
j,s
{θsj}

)]
wj

Z(θj)
>

wj
Z(θj)

− wi
Z(θi)

,∀i > j

and thus

wi
Z(θi)

>
wj

Z(θj)
−

[
1− e

−
(

min
j,s
{θsj}

)]
wj

Z(θj)

⇒ wi
Z(θi)

>
wj

Z(θj)
e
−
(

min
j,s
{θsj}

)
(5.12)

Notice that as d(π, πj) ≥ 1,∀π 6= πj :

min
j,s
{θsj}<min

j,s
{θsj}d(π, πj) = min

j,s
{θsj}

n−1∑
s=1

ds(π, πj)

<

n−1∑
s=1

[θsjds(π, πj)].

Finally, inequality (5.12) implies

wi
Z(θi)

>
wj

Z(θj)
e
−
n−1∑
s=1

[θsjds(π,πj)]
.

ut

In summary, if restrictions (5.9) and (5.10) are fulfilled, we ensure that the
consensus permutations of the GM distributions are the local optima of the
instance when considering the neighborhood defined by the distance used
in the probabilistic models. Note that, by the Lemma 1, these constraints also
imply that the objective function value of a consensus permutation is reached
by the GM component centered at itself: f(πi) = wi

Z(θi)
. Thus, the restrictions

in (5.9) mean that: f(πi) > f(πi+1). So, π1 is the local optimum with the
highest objective function value, that is, the global optimum. Although the
restrictions in (5.9) impose an order in the local optima regarding their objec-
tive function value, this can be assumed without loss of generality. That is,
one can previously sort the consensus permutations in the desired order.
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5.5.2 The linear programming problem

Once the number of local optima has been established, in order to customize
the properties of an instance, we use a linear function in the weights associ-
ated to the GM models. This function carries out qualitative properties of the
instance. In the following section we use three different functions to exem-
plify three different kinds of landscapes regarding the sizes of the attraction
basins of the local optima. Of course, the careful choice of the location of the
different local optima (consensus permutations), as well as the choice of the
spread parameters, help in the generation of the instances with the requested
properties.

In general terms, the generator of instances of COPs based on permuta-
tions can be described as a 5-tuple (n,m,Σ,Θ,G), where:

• n ∈ N is the size of the permutation.

• m ∈ N is the number of GM functions (number of local optima of the in-
stance).

• Σ = {π1, π2, . . . , πm} is the set of consensus permutations of size n.

• Θ =

 θ1
1 · · · θn−1

1

· · · · · · · · ·
θ1
m · · · θn−1

m

 ∈ (R+)
m×(n−1)

is the matrix with the spread parameters of the m GM distributions.

• G is the linear objective function of the linear programming problem.

See Algorithm 4 to observe the steps that the generator follows. Notice
that in the linear programming problem (step 5 in the algorithm), we add the
constraint wm > 0, just to force the weights to be positive: if wm > 0, then
wi > 0,∀i, as (5.9) implies wi

Z(θi)
> wm

Z(θm) . We also force w1 < k ∈ R+, so as to
upper bound the values of the weights.

If required by the user, the framework can be adapted to generate in-
stances with two or more local optima with the same fitness value (for
example, to generate multimodal instances). For this to happen, equality
wi

Z(θi)
= wi+1

Z(θi+1) should be used instead of wi
Z(θi)

> wi+1

Z(θi+1) . Nevertheless,
note that, as defined previously, we do not consider the possibility of differ-
ent local optima to be neighbors (which could cause flat regions). The frame-
work could be adapted to that scenario by removing restriction (5.5), but this
change would also require to redefine the concept of local optimum, using
for example the definition given in [85]. However, this change could have
additional and unknown consequences, and thus, a deeper study should be
carried out depending on the definition of local optimum considered.

We would like to remark that the θ values should be chosen taking into
account the type of distance used and the permutation size n, in order to
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avoid numerical problems when calculating the normalization terms Z(θ).
We suggest using these values in the intervals:

[ln(
n− 1

2
), 3ln(n− 1)] for the Kendall-tau distance

and
[2ln(

n− 1

3
), 6ln(n− 1)] for the Cayley distance.

The source code (in R-project) of the generator is available in the website1.

Algorithm 4 Algorithm to generate instances of permutation-based Combi-
natorial Optimization Problems
1. Set n
2. Set m
3. Choose the consensus permutations:

π1, π2, ..., πm, such that: d(πi, πj) ≥ 2, ∀i 6= j.

4. Choose the spread parameters:

Θ =

 θ11 · · · θn−1
1

· · · · · · · · ·
θ1m · · · θn−1

m


5. Solve the linear programming problem in the weights {w1, . . . , wm}:

min/max{G(w1, ..., wm)}

subject to

wi
Z(θi)

>
wi+1

Z(θi+1)
, i = 1, . . . ,m− 1

w1

Z(θ1)
<

[
2− e

−
(
min
i,s
{θsi }

)]
wm

Z(θm)

wm > 0

w1 < k (k ∈ R+)

6. ∀π ∈ Ω define the objective function value as:

f(π) = max
1≤i≤m

 wi
Z(θi)

e
−
n−1∑
s=1

θsi ds(π,πi)



1 http://www.sc.ehu.es/ccwbayes/members/leticia/GeneratorOfInstances/
code.html
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5.5.3 Complexity of the generator

We can distinguish two kinds of complexity associated with the generator: (i)
the computational complexity of generating a particular instance, and (ii) the
cost of evaluating the objective function value of a solution in the generated
instance.

The first one is dominated by the solution of the linear programming
problem. In the literature, we can find powerful algorithms whose cost, in
the worst case, depends on the number of variables, which in our problem is
m: {w1, . . . , wm}.

Given an output instance of the generator, when assigning the objective
function value to any solution of the search space (ii), we should evaluate in
the worst case m components wipi(π|πi,θi) in order to look for the highest
value. Each of these evaluations implies the calculation of the n − 1 terms
of the decomposition of the distance (equalities (5.2) and (5.3)). In the case of
the Kendall-tau distance, the cost of calculating these terms isO(n2), whereas
for the Cayley distance it is O(n). Therefore, in the worst case, the cost in the
evaluation of each solution is O(mn2) and O(mn) for the Kendall-tau and
the Cayley distances, respectively. Commonly, in real instances of COPs, we
find that the number of local optima is considerably higher than the size of
the permutations [47]. So that we will be willing to generate instances with
m >> n. Thus, the cost of evaluating the solutions is principally conditioned
by the number of GM components used in the generator.

5.6 Creating Instances Using our Generator

In this section we present three examples of how to generate instances with
different properties. These three types of instances are associated with three
linear functions and three careful choices of the πi and θsi , ∀i, s. Basically, we
design instances for three different scenarios.

In the first scenario, we try to generate easy to optimize instances. In this
sense, our goal is to make the attraction basin of the global optimum π1 as
large as possible. Our second scenario contemplates difficult instances and
the function we optimize tries to make the attraction basin of the global op-
timum as small as possible. Our last setting generates instances in the mid-
dle of the two previous examples, where we attempt to have all the attrac-
tion basins of the local optima (including the global optimum) of similar
sizes. Obviously, these are just some illustrative examples but, by properly
choosing the linear function and tuning the rest of parameters, the generator
would be able to provide other kinds of instances.

5.6.1 Easy instances: Global optimum with a large attraction basin

In this example, we tune the parameters with the aim of obtaining an in-
stance with a large attraction basin for the global optimum. As this scenario
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describes a general situation, we do not refer to any specific distance. We as-
sume that {π1, π2, . . . , πm} are the consensus permutations in our generator,
so they are the local optima in the instance, where π1 is the global optimum.

First, we choose the linear function to optimize in the linear programming
problem. In this scenario, we propose maximizing the difference between the
objective function value of π1 (global optimum) and the objective function
value of π2 (local optimum with the highest value after π1):

GMaxGO = max

{
w1

Z(θ1)
− w2

Z(θ2)

}
.

By means of this linear function, we promote that those permutations π that
are close to π1 will receive an objective function value given by the first GM
component, i.e.:

f(π) = max
1≤i≤m

{wipi(π|πi,θi)} = w1p1(π|π1,θ1).

Thus, with the help of the rest of the parameters, we can easily force as many
solutions as possible to be in the attraction basin of π1.

The local optima can be chosen paying special attention to the distances
among them. For example, it is recommendable to choose π1 far from the rest
of the local optima, in order to contribute to obtaining a large attraction basin
for it. In doing this, we provoke a large number of solutions appear closer to
π1 than to the rest of local optima.

The parameters θ1,θ2, . . . ,θm are also essential when trying to control
the properties of the generated instance. In order to provide an easy and
intuitive example, let’s assume that we are in the situation θji = θki = θi,∀j 6=
k. So, we are considering the Mallows model. Under this assumption, we are
assigning the same objective function value to all the solutions that are at
the same distance from the consensus permutation. This situation gives us
intuition about how to choose the spread parameters in order to model the
different attraction basins of the local optima. If we want the global optimum
to have a large attraction basin, we should choose θ1 << θi, i ≥ 2, because, as
we saw in Section 5.2.1, the larger the value of θ the more peaked the Mallows
function. Hence, with a small θ those solutions close to π1 have an objective
function value similar to π1, and therefore the possibilities of having them in
the attraction basin of the global optimum are very high.

5.6.2 Hard instances: Global optimum with a small attraction basin

We propose, in this scenario, to minimize the difference between the objective
function value of the global optimum π1 and its neighbors. When looking for
the objective function value of the neighbors we need to calculate the values
of the elements involved in the decomposition of the distance between those
neighbors and all the local optima of the instance: {π1, π2, . . . , πm}. However,
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this calculation would imply a high computational cost. Therefore, we can
simplify this idea taking into account the following function to minimize:

GMinGO = min

{
w1

Z(θ1)
− 1

m− 1

m∑
i=2

wi
Z(θi)

e
−max

j
{θji }(d(π1,πi)+1)

}
.

Notice that the second element in the subtraction is the average of lower
bounds for the values assigned to those neighbor solutions given by the GM
components centered at the local optima which are different from the global
optimum. Thus, it is a lower bound for the objective function values of the
neighbors of π1, and therefore, minimizing this difference, we would be min-
imizing the desired difference. The aim of choosing this linear function is to
help the neighbor solutions of π1 to have their objective function value as-
signed by the GM component centered at other local optimum different to
π1, and thus, to belong to a different attraction basin.

For this scenario, π1 can be chosen as a consensus permutation that is
close to, at least, one local optimum. For example, this local optimum could
be π2, i.e., the local optimum with the highest objective function value after
π1. If π2 is near π1, there are less possibilities of having a large number of
solutions in the attraction basin of π1, because we can provoke (also taking
into account the rest of parameters) that the solutions belong to the attraction
basin of π2.

As we explained in the example above, choosing θji = θki , ∀j 6= k we
provide a more intuitive example. So, under this context, by denoting θi as
the spread parameter of the i-th Mallows model (θi = θ1

i = . . . = θn−1
i ), the

larger the value of θ1 in comparison to the rest of θi, i > 1, the smaller the
size of the attraction basin of the global optimum. Moreover, as an example
of a more difficult scenario, we try to obtain the size of the attraction basin of
π2 as large as possible by choosing θ2 << θi (i 6= 2).

5.6.3 Local optima with similar sizes of attraction basins

In this last example, we are interested in creating instances where all the local
optima (included the global optimum) have attraction basins similar in size.

Assuming that π1 is the global optimum, and πm is the local optimum
with the lowest objective function value, the considered function to mini-
mize in this case, is the difference between the objective function values of
these two permutations (and implicitly, minimize the difference between the
objective function values of all the local optima):

GSimAB = min

{
w1

Z(θ1)
− wm
Z(θm)

}
.

In this sense, the landscape created with this linear function is flatter than in
the other two examples.
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Taking into account that we want to obtain local optima with attraction
basins of similar sizes, these solutions should be uniformly distributed in
the search space. So that we could choose them in order for them to be in a
situation as similar to the following one as possible: d(πi, πj) ≈ d,∀i, j,where
d is the largest possible value.

The values of all θji should be similar for all the elements of the decom-
position of the distance, and also similar for all the GM components. That is,
with θsi = θ, ∀i, s, the Mallows models centered at all the consensus permuta-
tions have the same shape. This implies that we do not force any of the local
optima to have more solutions in their attraction basins than the rest of the
local optima.

5.7 Experiments

A generator of instances of COPs is a useful tool when analyzing, comparing,
and evaluating the behavior of different optimization algorithms. In this sec-
tion, we show the influence of the input parameters in the resultant instance,
and present several use cases of our generator with the aim of demonstrating
its importance and applicability.

First, we want to show that the generator is highly flexible. For this pur-
pose, we find it interesting to check if we are able to generate instances sim-
ilar to those available in well-known benchmarks. Thus, the first part of the
experimentation is devoted to this goal, working with small problem sizes.
Secondly, we demonstrate that, by tuning the input parameters, the user can
create different instances, placing emphasis on coarse grain characteristics
(such as the attraction basin sizes of the local optima) as well as on fine grain
characteristics (distribution of the local optima). This is a highlighting char-
acteristic of our generator, as it allows to conduct a deeper analysis of the
behavior of optimization algorithms.

5.7.1 Flexibility of the generator

In order to create an artificial instance similar to an instance that can be found
in well-known benchmarks (from now on we will refer to them as benchmark
instances), we carry out the following steps:

i) Calculate, for the benchmark instance, the local optima and the sizes of
their attraction basins.

ii) Use these values to fix three input parameters of our generator: n (per-
mutation size), m (number of local optima) and Σ (set of consensus per-
mutations).

iii) Choose one of the linear functions to optimize from those defined in Sec-
tion 5.6 (GMaxGO, GMinGO and GSimAB), taking into account the charac-
teristics of the benchmark instance. Of course, the generator allows the
user to define other linear functions.
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iv) Carry out a search over the space of Θ parameters to minimize the dif-
ference between the artificial instance and the benchmark instance. Note
that each time a set of Θ parameters is tested, the linear programming
problem needs to be solved.

A key point in the previous process is to define a way to measure the
similarity between the artificial and the benchmark instance (step iv). For
example, one option could be to compare the objective function values of
the solutions, trying to create an artificial instance with the same absolute
objective function values as the given benchmark instance. However, most
of the local and population-based algorithms only use the relative value of
the solutions instead of the exact function values. Therefore, we could rank
the solutions according to their objective function value in the artificial and
the benchmark instances, comparing both rankings. Nevertheless, consider-
ing that we generate the instances with locality criteria in mind, we have
used the difference between the attraction basin sizes of the artificial and
the benchmark instances as the similarity measure. Although we are aware
that this measure is not as appropriate as the ranking, if we find an artificial
instance whose attraction basin sizes are identical to those of benchmark in-
stances, then the behavior of a Local Search algorithm would be the same in
both instances.

We generate instances with properties similar to those of two well known
COPs: the Permutation Flowshop Scheduling Problem and the Linear Or-
dering Problem. We work with 5 instances of the PFSP obtained from the
well-known benchmark proposed by Taillard2, and 5 instances of the LOP,
obtained from the xLOLIB benchmark [76]. The size of the original instances
has been reduced to n = 8, that is, in the instances of the PFSP, we consider 8
jobs and 5 machines, and in the LOP instances, the size of the matrices is 8x8.
The instances used are available in the website3. The reason for choosing a
small permutation size is to keep, for each candidate Θ (step iv), the cost of
calculating the attraction basin sizes of the local optima affordable.

We consider two different neighborhoods: swap (NS) and adjacent swap
(NA). These neighborhoods can be defined using the Cayley and the Kendall-
tau distances, respectively. Particularly, as we defined in Section 1.3, the swap
neighborhood considers that two solutions are neighbors if they differ from
one swap (Cayley distance is one), whereas they are neighbor solutions un-
der the adjacent swap neighborhood if they differ from one adjacent swap
(Kendall-tau distance is one). Using a deterministic greedy local search algo-
rithm, we start from each solution of the search space with the aim of finding
the number of local optima and their attraction basin sizes. We denote by
B(πi) the attraction basin of πi in the benchmark instance, while B̂(πi) refers

2 http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir
/ordonnancement.html

3 http://www.sc.ehu.es/ccwbayes/members/leticia/GeneratorOfInstances
/Instances.html
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to the attraction basin of πi in the artificial instance created with our gener-
ator. The error εi is, therefore, εi = ||B(πi)| − |B̂(πi)||. We remark that, when
the local optima of a benchmark instance are calculated using NS (NA), the
artificial instance is generated using the Cayley distance (Kendall-tau metric)
in the GM models.

In order to choose the linear function to optimize in the linear program-
ming problem (step iii), we take into account the proportion of the attraction
basin size of the global optimum with respect to the size of the search space:
|B(π1)|
|Ω| . According to preliminary experiments, we choose in our generator

one of the objective functions: GMaxGO, GMinGO and GSimAB (explained in
Section 5.6), if such a proportion is higher than 0.6

m , lower than 0.4
m , or between

these two values, respectively.
As explained in the last step (iv), we look for the Θ values that generate

an instance with similar attraction basin sizes of the local optima. So as to
do this, we develop a search (Algorithm 5) in the space of the Θ parameters.
For each Θ parameters candidate we solve the linear programming problem,
and with the obtained instance we calculate the attraction basin sizes of the
local optima. Finally, we calculate the difference between the attraction basin
sizes in the generated artificial instance with those of the real instance.

Algorithm 5 Algorithm to adjust θji in the generator

Choose initial values for θji , ∀i, j
ρ = 0
repeat

Solve the linear programming problem in w1, . . . , wm.
Apply Algorithm 1 to calculate the attraction basin sizes of the local optima:
|B̂(πi)|
Find the errors εi = ||B(πi)| − |B̂(πi)||
for i = 1→ m do

if εi > |Ω|
100m

then
Update θji , ∀j

end if
end for
ρ = ρ+ 1

until εi ≤ |Ω|
100m

, ∀i or ρ = 100

In Tables 5.1 and 5.2 we provide, for PFSP and LOP respectively, the dif-
ferences between the sizes of the attraction basins of the local optima of each
benchmark instance and the instance generated with our model. The first five
rows in each table refer to the results when using theNA neighborhood in the
local search and the Kendall-tau distance in our generator. The last five rows
show the results for the same five instances when we utilize the NS neigh-
borhood for solving them and the Cayley distance in our generator. In the
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first column we provide the number of the instance (1-5), and in the second
column we indicate the number of local optima obtained in each case. The
third column shows the proportion of solutions of the search space that are
in the attraction basin of the global optimum but should not be there, or that
should be there but they are not, that is: ||B(π1)|−|B̂(π1)||

|Ω| . The fourth and the
fifth columns indicate the average and the variance of the proportion of so-
lutions of the search space that are not in the corresponding attraction basin.
Notice that we divide by 2|Ω|, because if a solution is not in its correspond-
ing attraction basin, the error is counted twice: in the attraction basin that it
is in and in the one that it should be in.

Table 5.1. Results obtained for the errors in the attraction basin sizes of the local op-
tima for the 5 instances of the PFSP, for the Cayley and the Kendall-tau distances.

Inst m
ε1
|Ω| ε̄ = 1

m

m∑
i=1

εi
2|Ω|

1
m−1

m∑
i=1

(
εi

2|Ω| − ε̄
)2

K
en

da
ll

1 296 0.007465 0.001312 0.000004
2 319 0.005903 0.000771 0.000001
3 424 0.003571 0.000732 0.000000
4 469 0.008656 0.000575 0.000001
5 655 0.004439 0.000418 0.000000

C
ay

le
y

1 10 0.000273 0.004058 0.000031
2 12 0.005357 0.007252 0.000073
3 24 0.000570 0.004384 0.000026
4 14 0.005456 0.005308 0.000042
5 22 0.001811 0.003102 0.000006

We observe from Tables 5.1 and 5.2 that the artificial instances generated
are almost identical in terms of sizes of attraction basins of the local optima.
The average error found in the sizes of the attraction basins of all the local
optima is lower than 0.14% in the PFSP instances when using the adjacent
neighborhood (Kendall-tau distance), and lower than 0.73% when applying
the swap neighborhood (Cayley distance). In the LOP instances, the errors
are lower than 0.12% and 0.81%, for the adjacent and the swap neighbor-
hoods (Kendall-tau and Cayley distances), respectively. Moreover, we ob-
serve that these errors are uniformly distributed among the attraction basins
of the local optima, as the variances are very small: less than 0.73 · 10−4 in all
cases and almost zero in some of them. We pay special attention to the diffi-
culty of finding the global optimum, and thus, to the error found in the sizes
of the attraction basins of the global optimum. For the instances of the PFSP
solved with the NA (Kendall-tau distance) the error is smaller than 0.0087,
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Table 5.2. Results obtained for the errors in the attraction basin sizes of the local op-
tima for the 5 instances of the LOP, for the Cayley and the Kendall-tau distances.

Inst m
ε1
|Ω| ε̄ = 1

m

m∑
i=1

εi
2|Ω|

1
m−1

m∑
i=1

(
εi

2|Ω| − ε̄
)2

K
en

da
ll

1 435 0.003423 0.001168 0.000002
2 720 0.003993 0.000700 0.000001
3 895 0.003795 0.000536 0.000001
4 920 0.004886 0.000542 0.000001
5 3737 0.001265 0.000111 0.000000

C
ay

le
y

1 28 0.002307 0.005175 0.000032
2 27 0.001910 0.008091 0.000037
3 19 0.002679 0.003836 0.000015
4 24 0.005704 0.005958 0.000013
5 319 0.004812 0.000877 0.000001

and for theNS (Cayley distance) the highest error found is 0.0055. In the LOP
instances the maximum errors found are 0.0049 and 0.0057 for the Kendall-
tau and the Cayley distances, respectively.

For illustrative purposes, we take one example of each of the problems
considered (PFSP and LOP) and we plot the sizes of the attraction basins of
the local optima for two pairs of benchmark and artificial instances, when
using the Cayley distance (swap neighborhood). The examples for the case
of the Kendall-tau are not shown due to the high number of local optima.
Particularly, Figure 5.2 shows the fifth instance of the PFSP and Figure 5.3
shows the third instance of the LOP. The remaining figures can be found in
the Appendix 9.2. For both figures, in the X axis the local optima are in-
dicated sorted by their objective function value. That is, the local optimum
number 1 is the global optimum, and the local optimum number m is the
local optimum with the lowest objective function value. As can be observed,
the sizes of the attraction basins of the local optima for the benchmark and
artificial instances are almost identical. Notice that, when an attraction basin
of a local optimum πi is larger or smaller than the attraction basin of the lo-
cal optimum πi+1 in the benchmark instance, it also happens in almost all of
the cases of the artificial instances. Thus, we can conclude that the generator
is flexible enough to create instances as complex as the instances found in
common benchmark problems.



5.7 Experiments 97

2 4 6 8 10 12 14 16 18 20 22
0

2000

4000

6000

8000

10000

12000

Local optima

A
tt

ra
c
ti

o
n

 b
a
s
in

 s
iz

e

PFSP n=8, m=22,

2−exchange neighborhood (Cayley)

 

 

Real instances

Artificial instances

Fig. 5.2. Sizes of the attraction basins of the 22 local optima found in the fifth instance
of the PFSP using the swap neighborhood. We represent those sizes found in the
benchmark instance with a circle, and the sizes obtained in the generated instance
with a triangle.
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Fig. 5.3. Sizes of the attraction basins of the 19 local optima found in the third in-
stance of the LOP using the swap neighborhood. We represent those sizes found in
the benchmark instance with a circle, and the sizes obtained in the generated instance
with a triangle.
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5.7.2 Tuning the parameters of the generator

We will show that our generator allows the user to control coarse grain fea-
tures of the instances, such as the sizes of the attraction basins of the local
optima, as well as to characterize the instances in a more detailed way. In
this section we work with the Mallows (not Generalized) models.

5.7.2.1 Choosing the linear functionG to optimize

As described previously, the generator allows the practitioner to define the
linear function G to optimize. In this case, without loss of generality, we
use the three functions introduced in Section 5.6: GMaxGO, GMinGO and
GSimAB . Our goal is to create instances with different attraction basin sizes
for the local optima. Based on this feature, one can expect that the easiest
instances will be those with a large attraction basin size for the global opti-
mum. Regarding the remaining parameters, we use four permutation sizes
n = {30, 40, 50, 100}, two different numbers of local optima m = {104, 105},
and two distances (Kendall-tau and Cayley). The consensus permutations
(local optima)Σ are taken uniformly at random. The range of values for θ has
been chosen following the recommendations given in Section 5.5.2 to avoid
numerical errors. We specify them according to the desired type of instance.
For each combination we create 10 instances.

• MaxGO-Instances:
In this set, we want to promote a radical difference between the sizes of
the attraction basins of the global optimum and the rest of the local op-
tima, with the aim of obtaining the attraction basin of the global optimum
as large as possible. We fix the value of θ1:
– θ1 = ln(n−1

3 ) for the Kendall-tau distance,
– θ1 = 2ln(n−1

3 ) for the Cayley distance.
The values of θi, i 6= 1 are chosen uniformly at random in the intervals:
– IK = [ln(n− 1), 2ln(n− 1)] for the Kendall-tau distance,
– IC = [3ln(n− 1), 4ln(n− 1)] for the Cayley distance.
Note that, in this sense, the value of θ1 is always smaller than the rest of
θi. The local optima are sorted such that

d(π2, π1) ≥ d(π3, π1) ≥ ... ≥ d(πm, π1) ≥ 2.

Therefore, the closest local optimum to the global optimum is the one that
has the minimum objective function value: πm.

• MinGO-Instances:
This set of instances is generated with the objective of having a small
attraction basin of the global optimum and a large attraction basin of the
closest local optimum. The values of θi, i 6= {1, 2}, are chosen uniformly
at random in the intervals IK and IC for the Kendall-tau and the Cayley
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distances, respectively, as in the MaxGO-Instances. The values for θ1 and
θ2 are chosen as the highest and the lowest. So, we choose:
– θ1 = 3ln(n− 1) and θ2 = ln(n−1

3 ) for Kendall-tau,
– θ1 = 6ln(n− 1) and θ2 = 2ln(n−1

3 ) for Cayley.
The local optima are sorted such that

2 ≤ d(π2, π1) ≤ d(π3, π1) ≤ ... ≤ d(πm, π1).

• SimAB-Instances:
In this set of instances, the values of θi,∀i, are chosen uniformly at ran-
dom from the intervals IK and IC for the Kendall-tau and the Cayley
distances, respectively, as in the previous two examples. Notice that this
time, we do not make any distinction between θ1, θ2 and the rest of θi. The
consensus permutations are also taken at random without taking into ac-
count the distances between them.

In order to confirm our suspicion, that is, that the difficulty of the problem
will be conditioned by the size of the attraction basin of the global optimum,
we apply a local search (LS) algorithm, an Estimation of Distribution Algo-
rithm (EDA) and a Genetic Algorithm (GA) to the three sets of instances pro-
posed above. The algorithms are run 20 times for each instance, and we take
the best solution reached by each algorithm for each repetition. The stopping
criterion in the algorithms is the evaluation of 1000n2 solutions. Below, we
detail the three algorithms used:

• LS: We use a random multi-start hill climbing approach where the best
solution found in the neighborhood is chosen at each step. The neighbor-
hoods used are: NA and NS for the instances where the Kendal-tau and
the Cayley distances, respectively, were used in the Mallows models.

• EDA: We use the EDA presented in [16] for solving permutation-based
problems. The authors used the Mallows distribution with the Kendall-
tau distance as the probability model. As proposed by the authors, the
population size is 10n, and the n best individuals are selected for learning
the probability distribution.

• GA: We use the GA proposed in [4]. As suggested by the authors, the
population size is 20n, a position based crossover operator (POS) and an
insertion mutation operator (ISM) are used, and a tournament selection
of size 2.

Tables 5.3, 5.4 and 5.5 show how the LS, the EDA and the GA, respec-
tively, behave according to the type of instance they are applied to. Par-
ticularly, the tables show the percentage of the times that the best solution
reached by the algorithm is the global optimum π1, the best local optimum
π2, or any other local optimum. For the case of the EDA and the GA not
reaching a local optimum, we have added additional information indicat-
ing which is the closest local optimum. With these results, we prove that
the MaxGO-Instances are, indeed, easy for the LS as the global optimum is
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reached 100% of the times. On the other hand, we also check that the MinGO-
Instances are instances where the global optimum is never seen. We find that
in the SimAB-Instances, it is also difficult to find the global optimum. How-
ever, the difference between the SimAB-Instances and the MinGO-Instances is
that in the MinGO-Instances there is a local optimum (π2 in all cases) that is
seen in 100% of the runs, whereas in the set of SimAB-Instances different local
optima are reached.

Table 5.3. Average percentage of the times that the best solution reached by the LS is
the global optimum π1, the local optimum π2, or other different local optimum.

Kendall-tau Cayley

Best solution MaxGO-Inst MinGO-Inst SimAB-Inst MaxGO-Inst MinGO-Inst SimAB-Inst

π1 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
π2 0.00% 100.00% 0.00% 0.00% 100.00% 0.00%
πi, (i 6= 1, 2) 0.00% 0.00% 100.00% 0.00% 0.00% 100.00%

Table 5.4. Average percentage of the times that the best solution reached by the EDA
is (or is close to) the global optimum π1, the local optimum π2, or other different local
optimum.

Kendall-tau Cayley

MaxGO-Inst MinGO-Inst SimAB-Inst MaxGO-Inst MinGO-Inst SimAB-Inst

π1 77.54% 0.00% 0.00% 0.00% 0.00% 0.00%
π2 0.00% 77.87% 0.00% 0.00% 0.00% 0.00%
πi, (i 6= 1, 2) 0.00% 0.00% 76.37% 0.00% 0.00% 0.00%

closest π1 22.46% 0.00% 0.00% 99.50% 0.00% 0.00%
closest π2 0.00% 22.13% 0.00% 0.00% 99.88% 0.00%
closest πi 0.00% 0.00% 23.63% 0.50% 0.12% 100.00%
(i 6= 1, 2)

For the Kendall-tau distance, when applying the EDA (Table 5.4) and the
GA (Table 5.5) to the MaxGO-Instances, the global optimum is reached, or,
if not, the best solution found is always closer to the global optimum than
to any other local optimum. In the MinGO-Instances, the global optimum is
never observed, however the best solution is π2, or, at least, the closest lo-
cal optimum to the best solution is π2. In the SimAB-Instances, π1 and π2 are
never found, and other different local optima, or solutions closer to other lo-
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Table 5.5. Average percentage of the times that the best solution reached by the GA is
(or is close to) the global optimum π1, the local optimum π2, or other different local
optimum.

Kendall-tau Cayley

MaxGO-Inst MinGO-Inst SimAB-Inst MaxGO-Inst MinGO-Inst SimAB-Inst

π1 40% 0.00% 0.00% 8.00% 0.00% 0.00%
π2 0.00% 40.00% 0.00% 0.00% 13.00% 0.00%
πi, (i 6= 1, 2) 0.00% 0.00% 31.00% 0.00% 0.00% 20.00%

closest π1 60% 0.00% 0.00% 92.00% 0.00% 0.00%
closest π2 0.00% 60.00% 0.00% 0.00% 87.00% 0.00%
closest πi 0.00% 0.00% 69.00% 0.00% 0.00% 80.00%
(i 6= 1, 2)

cal optima than to π1 and π2, are always seen. Despite for the Kendall-tau
(NA) most of the best solutions found are local optima, in the case of the
Cayley distance,the percentage of instances where the solution reached is
not a local optimum is really high. Particularly, for the instances generated
using the Cayley distance, we find that the best solution reached by the EDA
is never a local optimum. This is due to the fact that the probabilistic dis-
tribution assumed in the EDA is the Mallows model with the Kendall-tau
distance, and therefore it is difficult for this model to reach a local optimum
for the swap neighborhood. However, a really high percentage of the times
the best solutions found are closer to π1, π2 and other different πi for the
MaxGO-Instances, the MinGO-Instances and the SimAB-Instances, respectively.
This also happens to the GA when it is applied to the instances generated us-
ing the Cayley distance. However, this algorithm is able to find π1 and π2 in
the MaxGO-Instances and the MinGO-Instances, respectively, at least a small
percentage of the times.

We also record, for each instance and both population-based algorithms,
the distance of the best solution found to the global optimum of each run of
the algorithms distinguishing among the permutation sizes and the number
of local optima. In Table 5.6 we indicate the average distance of the best solu-
tion found to the global optimum for the MaxGO-Instances, MinGO-Instances
and SimAB-Instances. Each value indicated in the table is the average of the
results obtained for the 10 instances generated with the same properties and
the 20 repetitions of the algorithms. As expected, the values for the MaxGO-
Instances are considerably smaller than the values for the MinGO-Instances
and SimAB-Instances. So, as was seen in the previous tables, the best solu-
tions found in the MaxGO-Instances are closer to the global optimum than
the best solutions obtained in the other two sets of instances. According to
these results observed the MinGO-Instances and the SimAB-Instances are diffi-
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Table 5.6. Average distance of the solution found with the EDA and the GA to the
global optimum according the type of instance, the number of local optima, the per-
mutation size and the distance considered.

n = 30 n = 40 n = 50 n = 100
Kendall Cayley Kendall Cayley Kendall Cayley Kendall Cayley

M
ax

G
O

-I
ns

t

m = 104 EDA 8.20 15.70 0.00 22.58 0.00 30.70 0.92 75.88
GA 0.00 0.70 0.00 0.72 0.00 0.68 0.00 0.80

m = 105 EDA 146.88 15.32 74.34 22.82 0.00 30.94 0.96 76.00
GA 0.00 0.62 0.00 0.60 0.00 0.70 0.00 0.70

M
in

G
O

-I
ns

t

m = 104 EDA 123.84 25.00 235.20 35.38 390.34 45.14 1826.32 94.46
GA 114.10 19.28 235.20 28.86 386.10 38.30 1826.20 86.90

m = 105 EDA 178.02 24.00 243.80 34.70 361.22 44.72 1737.40 94.42
GA 97.70 18.26 210.90 27.38 355.20 36.50 1659.34 85.30

Si
m

A
B-

In
st m = 104 EDA 214.48 26.14 383.74 35.84 595.36 45.46 2399.92 94.88

GA 216.78 26.22 410.36 35.80 612.34 45.26 2379.90 95.40

m = 105 EDA 227.20 25.56 388.62 35.42 594.88 45.70 2479.50 94.68
GA 212.10 26.26 374.50 35.60 623.80 45.60 2457.86 95.02

cult for the EDA and the GA, as the distance of the best solution to the global
optimum in all cases is considerably high. We notice that the distances for
the SimAB-Instances are higher than those of MinGO-Instances. This is due to
the fact that, as we saw in Tables 5.4 and 5.5, the best solutions found with
both algorithms for the MinGO-Instances are closer to the local optimum π2

than to the rest of local optima. In fact, in most of the cases, the best solution
found for these instances is π2. So, as we create this set of instances denoting
by π2 the closest local optimum to π1, in Table 5.6 we obtain smaller distances
for the MinGO-Instances than for the SimAB-Instances (where the local optima
are chosen randomly).

5.7.2.2 Influence ofΣ andΘ

As seen in the previous experiments, changing the function to optimize, to-
gether with a careful ranking of randomly located local optima and choice of
parameters Θ, allows us to create instances with different qualitative charac-
teristics and hence complexities. However, it is also interesting to know the
sensitivity of the generated instances to the input parameters, i.e. the set of
permutations Σ, and the set of parameters Θ. It is clear that the location of
the local optima can have a high impact on the complexity of an instance.
Taking that into account, our generator provides complete freedom on the
choice of the location of the local optima. We can devise several ways to do
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that, such as: choosing random permutations, using some proximity crite-
rion between the global optimum and the local optima, or even creating a
matrix with distance constraints and looking for the set of permutations that
tries to fulfill such constraints.

The contribution of the set of parameters Θ is not so intuitive. They con-
trol the shape of the Mallows models involved in the generator and, thus,
they have a big influence on the attraction basin of the local optima. There-
fore, we consider it interesting to measure their contribution.

The experiments carried out to measure the sensitivity of the instances to
the input parameters are as follows. The permutation size and the number of
local optima have been fixed to n = 30 and m = 104, using the Kendall-tau
and the Cayley distances in the Mallows models. The linear function consid-
ered is GSimAB , as we think it is the least biased to analyze the influence of
the input parameters. We have evaluated 11 values for θ1 for each distance.
Nine of these values are the points that divide the intervals IK and IC previ-
ously defined, in 10 identical subintervals and the other two are the extremes
of the intervals. The rest of the spread parameters θi, i 6= 1, are chosen uni-
formly at random in those intervals IK and IC .

For the location of the local optima, they have been chosen according to
three different configurations:

• 1st configuration: Global optimum surrounded by all the local optima, as
close as possible (see Algorithm 6).

• 2nd configuration: All the local optima are close except the global opti-
mum that is as far from them as possible (see Algorithm 7).

• 3rd configuration: All the local optima, including the global optimum, are
uniformly spread along the search space (see Algorithm 8).

In summary, we have a total of 66 combinations: 2 (types of distance) x 3
(distribution ofΣ) x 11 (values ofΘ). We create 10 instances for each possible
combination. As the criterion to evaluate the influence of the input parame-
ters we have used the attraction basin size of the global optimum. For each
of the generated instances we have estimated this size with the following
procedure (note that an exact basin calculation is computationally unfeasi-
ble): we run the LS algorithm of the previous section, recording the number
of times that π1 is seen. The proportion of times that the LS reaches π1 is an
estimator of the proportion of its attraction basin size.

Figures 5.4, 5.5 and 5.6 show the results for the 1st, 2nd and 3rd config-
urations of the local optima, respectively. Each point represents the average
value of the attraction basin sizes of π1 of 10 instances. The figures mainly
prove the big influence that the choice of θ1 has in the attraction basin of π1.
Although the localization of the local optima is relevant, (as can be seen with
small values of θ1) this influence is neglected by the peaky shape imposed in
the Mallows model that generates the global optimum for medium to high
values of θ1.
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Algorithm 6 Algorithm to choose the global optimum surrounded by all the
local optima, as close as possible.
1. Choose at random π1 ∈ Ω
2. k = 2
3. dist = 2
4. while k ≤ m do
5. t = 0
6. while t < 50 do
7. Choose at random πk ∈ Ω such that d(πk, π1) = dist
8. if ∃i < k such that πk = πi then
9. t = t+ 1

10. else
11. t = 0
12. k = k + 1
13. end if
14. end while
15. dist = dist+ 2
16. end while

Algorithm 7 Algorithm to choose all the local optima close except the global
optimum that is as far of them as possible.
1. Choose at random π1 ∈ Ω
2. k = 2
3. dist = 2
4. while k ≤ m− 1 do
5. t = 0
6. while t < 50 do
7. Choose at random πk ∈ Ω such that d(πk, π1) = dist
8. if ∃i < k such that πk = πi then
9. t = t+ 1

10. else
11. t = 0
12. k = k + 1
13. end if
14. end while
15. dist = dist+ 2
16. end while
17. Choose πm ∈ Ω such that d(πm, π1) = maximum distance
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Algorithm 8 Algorithm to choose all the local optima, including the global
optimum, uniformly spread along the search space.
1. Choose at random π1 ∈ Ω
2. k = 2
3. dist = 2
4. while k ≤ m do
5. Choose πk 6= πi, ∀i < k, such that d(πk, π1) = dist
6. if dist+ 2 ≤ maximum distance then
7. dist = dist+ 2
8. else
9. dist = 2

10. end if
11. k = k + 1
12. end while
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Fig. 5.4. Estimated attraction basin sizes of π1 for the 1st configuration.
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Fig. 5.5. Estimated attraction basin sizes of π1 for the 2nd configuration.
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Fig. 5.6. Estimated attraction basin sizes of π1 for the 3rd configuration.

5.7.2.3 A case study: Discovering differences between the LS, the GA and
the EDA

As a case of use of our generator, we show in this section an example on how
to utilize the generated instances to discover new facts about metaheuristic
algorithms. Particularly, we have tested the previously defined LS, EDA and
GA in all the instances generated in the previous section. Each algorithm has
been run 20 times in each instance.
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Fig. 5.7. Performance of the LS, the EDA and the GA with respect to the estimated
attraction basin size of the global optimum. Kendall-tau distance.

In Figures 5.7 and 5.8 we show the success ratio of the LS, the EDA, and
the GA (average proportion of the times that the best solution reached is the
global optimum) with respect to the estimated size of the attraction basin
of the global optimum, for the Kendall-tau and Cayley metrics, respectively.
As expected, a good correlation can be observed for the LS. The larger the
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Fig. 5.8. Performance of the LS, the EDA, and the GA with respect to the estimated
attraction basin size of the global optimum. Cayley distance.
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Fig. 5.9. Performance of the LS, the EDA, and the GA according to the average dis-
tance of the local optima to the global optimum. Kendall-tau distance.
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Fig. 5.10. Performance of the LS, the EDA, and the GA according to the average dis-
tance of the local optima to the global optimum. Cayley distance.
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attraction basin of the global optimum, the higher the probability of finding
it. In contrast, it is remarkable that the behavior of the EDA and the GA is
not so clearly correlated. In fact, there are cases of small attraction basins and
high success ratios and vice versa.

This type of scenario puts in value the usefulness of our generator: it al-
lows us to go further, analyzing the impact of other characteristics such as
the distribution of the local optima in the behavior of the algorithms. For
this purpose, in Figures 5.9 and 5.10 the success ratio of the LS, the EDA,
and the GA is measured related to the average distance of the global opti-
mum to the rest of the local optima. For these two figures, 10 instances of
each configuration of the local optima with similar attraction basin sizes of
the global optimum have been chosen (between 1.1 · 10−31 and 1.4 · 10−25 for
Kendall-tau and between 0.3 and 0.4 for Cayley). Due to this similarity, the
behavior of the LS is almost identical, independently of the average distances
between the local optima and the global optimum. However, this feature (av-
erage distance) notably affects the performance of the other two algorithms
(particularly clear is the influence in the GA).

In view of the experiments, we conjecture that, for the GA the average
distance between the local optima and the global optimum has a higher in-
fluence on its behavior than the size of the attraction basin of the global opti-
mum. The potential of our generator is shown, as it would allow to perform
a set of experiments analyzing the effect that reducing or increasing the av-
erage distance between the local optima and the global optimum has on the
GA.

Regarding the EDA, for the Kendall-tau distance, we can also conclude
that, if the global optimum is close to the rest of the local optima, the prob-
ability of finding it is a bit higher (near 0.04) than if the global optimum is
not so close (almost 0.00). Notice that in these instances the proportion of the
size of the attraction basin of the global optimum is very small, and the EDA
finds it difficult (in all the cases) to reach it. However, for the Cayley dis-
tance, despite the proportion of the size of the attraction basin of the global
optimum being considerably high (between 0.3 and 0.4), the EDA is not able
to reach the global optimum, not even in the case that the global optimum is
close to the rest of the local optima. We can conclude that this algorithm is
not suitable for this type of instances. This is another example of a conclusion
that we can obtain about the performance of this EDA when it is applied to
instances with the properties chosen.

5.8 Conclusions

In the optimization field we can find several proposals of generators of in-
stances. Above all, these generators are for the continuous domain, or for bi-
nary spaces. However, a few generators have been proposed for permutation-
based COPs, and they are not able to control many properties of the gen-
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erated instance. In this chapter, we present a flexible generator, based on a
mixture of GM models. The parameters of these GM models are input pa-
rameters for the generator, and by tuning them, the user can control quanti-
tative as well as qualitative properties of the resultant instance, such as the
attraction basin sizes, the number of local optima, or their location. We have
provided the restrictions that these parameters need to fulfill to obtain quan-
titative properties in the generated instance. Precisely, we have given suffi-
cient conditions to ensure that the instance has a predefined number of local
optima. Moreover, we have proposed to solve the constraints in the parame-
ters by means of a linear programming problem. For this purpose, we have
added a linear function to optimize that helps to obtain qualitative properties
in the instance.

We have tested two important properties of our generator: its flexibility
and its ability to create instances of very different complexities for local and
population-based common algorithms. To assess the first property, we have
considered instances of the PFSP and the LOP. We have measured the sim-
ilarity between the artificial and the benchmark instances by means of the
attraction basin sizes of the local optima. We find that, for small permutation
sizes (those computationally comparable), our generator is flexible enough
to create instances with almost the same sizes of attraction basins of the local
optima as the benchmark instances. In order to study the second property, we
have created a large set of instances of very different properties (permutation
size, number of local optima, size of the attraction basins of the local optima,
etc.) playing with the different input parameters available. According to the
results, we claim that our generator is a very useful tool for the community to
analyze and improve the performance of different optimization algorithms,
and therefore it supposes an innovative and relevant proposal in this arena.

The three linear functions presented in this work were considered taking
into account the size of the attraction basin of the global optimum. Neverthe-
less, we could consider other linear functions paying attention to the size of
the attraction basin of other local optimum, or bearing in mind the sizes of
the attraction basins of two or more local optima at the same time, or even
considering other different criteria. In summary, our generator is a tool flex-
ible enough to allow the user to define any kind of instance by setting the
appropriate parameter values.

As we have seen, the weakest point of our algorithm is the expensive cost
of evaluating a solution, that is basically conditioned by m (the number of
local optima). Therefore, in order to be able to work with a high number of
local optima, a key issue would be to think of different processes that help
to reduce the time complexity of one fitness evaluation. Starting by sorting,
from high to low, the local optima according to their fitness value, helps sig-
nificantly to reduce this time. For example, in the case of population-based
algorithms, when assigning a fitness to a given solution, we could stop the
process of looking for the maximum value given by the GM models, when
we find a value higher than the next fitness of the consensus permutation
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to test. According to a preliminary analysis, with this process we reduced
the time to 10%. In the case of local search algorithms, a kind of incremen-
tal evaluation could be carried out, and in order to evaluate the neighbors
it would not be necessary to evaluate all the models, because their change
in fitness is limited by the new distance (+1 or -1). Other techniques such as
parallelism could be also applied to make the computation times affordable.
It is important to delve into this aspect in order to be able to produce, with
our generator, instances with a large number of local optima, for which any
algorithm could find a solution in reasonable time.
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General conclusions

Many different algorithms have been proposed in the literature to solve ar-
tificial as well as real-world instances of COPs. However, in most cases it is
difficult to know beforehand if a particular algorithm will perform well on a
given instance. That is, it is possible to have an algorithm that is successful
in some instances and shows poor behavior for other instances of the same
problem. Indeed, given a set of instances of COPs and different algorithms
used to solve them, the behavior of these algorithms will be different de-
pending on the properties of the instances. So, it would be useful to extract
information from the instance in order to decide which algorithm or operator
would be the most appropriate to solve it. In this sense, we find authors who
are worried about establishing complexity measures associated to the type
of problem, the algorithm used to solve it, or the operator chosen.

In this dissertation we worked in the direction of establishing complexity
measures for local search algorithms when solving instances of permutation-
based COPs. The complexity found by the local search algorithms comes de-
rived from the neighborhood used, and, therefore, we focus on the properties
that this neighborhood provokes on the instances. We consider two principal
measures of complexity: the proportion of the attraction basin size of the
global optimum and the proportion of the number of local optima. Both de-
scriptors are directly related to the probability of finding the global optimum
using a local search algorithm. In general, the higher the number of local op-
tima, the more difficult it is to find the global optimum for the algorithm,
while the higher the size of attraction basin of the global optimum, the easier
it is to reach it. However, we are conscious that they should not be consid-
ered separately, as we could find an instance with a low number of local
optima that turns out to be difficult for the algorithm because the size of the
attraction basin of the global optimum is really small.

We have analyzed the evolution of these complexity measures as the
permutation size grows. Focusing on the well-known TSP under the swap
neighborhood, we have found that, as n grows, the average proportion of the
size of the attraction basin of the global optimum decreases. We can conclude
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from this result that, according to our first complexity measure, on average,
the instances become more difficult as n grows. Moreover, for values of n
close to 10, as the variance experimented an increase, there seemed to be a
huge difference between the complexity of different instances. We have also
observed a fast decrease, as n grows, in the proportion of the number of local
optima. So, although this would indicate that instances become easier with
n, it is important to also consider the results obtained for the attraction basin
of the global optimum. In fact, the proportions of the attraction basin size of
the rest of the local optima (which are not the global optimum) increased. An
important result derived from this study was the appearance of a phase tran-
sition phenomenon in the complexity of the instances, taking as parameters
these two complexity measures. That is, the probability of an instance hav-
ing values of the complexity measures higher than or equal to certain values
decreased rapidly. Moreover, the threshold where this sudden decrease oc-
curred appeared for small values of both descriptors as the permutation size
increased: between 10−3 and 1 for the proportion of the attraction basin size
of the global optimum and close to 10−5 for the proportion of the number of
local optima.

This initial experiments confirmed the validity of the proportions of the
attraction basin sizes of the global optima and the number of local optima
as complexity measures. However, in practice, the global optimum is not
known, and therefore the number of local optima is used as the main com-
plexity descriptor. It is computationally unfeasible to obtain the exact num-
ber of local optima for medium-large size instances, as the process requires,
in most of the cases, the exhaustive inspection of each solution of the search
space. Thus, our next step was devoted to reviewing estimation methods for
the number of local optima.

We reviewed the methods for estimating the number of local optima that
can be found in the optimization field. Furthermore, we introduced some
statistical methods used by ecologists to estimate the number of species in a
population. The methods that come from both fields were tested by applying
them to three different sets of instances: artificial instances generated by sam-
pling a Dirichlet distribution, random TSP instances, and TSP instances with
real distances between world cities as well as PFSP instances from the Tail-
lard’s benchmark. We found that the methods incorporated from the ecolo-
gists arena, and which have never been used before in the optimization field,
provided the best results for all the datasets. Particularly, when the attraction
basins of the different local optima were similar in size, the best method was
ChaoBunge. However, when the difference between the distinct sizes of the
attraction basins was high, the best results were given by ChaoLee2. More-
over, for small sample sizes (with respect to the number of local optima)
ChaoBunge and ChaoLee2 methods were the best-performers. However, we
observed an instability behavior in ChaoBunge, so we concluded that both
methods should be executed independently, and then compared. If the dif-
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ference between both results is large, we should rely on the estimation pro-
vided by ChaoLee2. Otherwise, ChaoBunge will be chosen.

As seen, the performance of these estimation methods depends on prop-
erties such as the sizes of the attraction basins of the local optima. Improving
the estimation of these attraction basin sizes, we would be able to improve
the quality of the estimation methods for the number of local optima. So, we
have proposed two methods for estimating the sizes of the attraction basins
of the different local optima. Both methods started from the local optimum
π∗ for which we wanted to estimate its attraction basin size. The first method
consisted of taking solutions at random from the whole search space. In the
second method, the search space was divided in different subsets, which cor-
respond to the sets of permutations at different distances. Three different
sample strategies have been used to sample these subsets. They were applied
to instances of two different problems and considering the adjacent swap and
swap neighborhoods. From the experiments, we concluded that the second
method with the right sampling strategy provides, in general, more accurate
estimations. However, it is important to take into account that this choice of
the sample strategy depends on the neighborhood considered. For the adja-
cent swap neighborhood, we saw that the DM-SD was the best performer,
while for the second neighborhood, they were DM-ES and DM-SP. In fact,
for the swap neighborhood the DM-SD provided very poor estimations.

Having information about the properties (complexity) of the instances
is useful when designing efficient algorithms, as we can study their perfor-
mance when applied to specific instances. So, it is important to have at our
disposal instances with very different properties, and moreover, have knowl-
edge about these properties beforehand. Thus, having a generator that is able
to create instances with fixed and known properties is an important and very
useful tool. We can find proposals of generators for the continuous and bi-
nary space, but little about the permutation space.

In the second part of this dissertation, we focused on the generation of
instances of permutation-based COPs. We have proposed a generator for the
space of permutations that depends on a number of parameters (the num-
ber of local optima and their distribution, among others). By tuning these
parameters, the user is able to control the properties of the output instances.
We have proved the flexibility of the generator by comparing the attraction
basin sizes of the local optima of the generated instances with those obtained
in instances of well-known benchmark problems. From this experiment, we
have seen that our generator is able to create instances where the sizes of the
attraction basins of the local optima are almost identical to those of bench-
mark problems or, at least, they match with the shape of the landscape. We
have also studied the influence of the different input parameters and have
given clues as to how to tune them in order to obtain instances with the de-
sired qualitative properties. Generated instances were later used to observe
the performance of an EDA, a GA and a local search algorithm. For instances
with specific characteristics, the difficulty found by the EDA and the GA is
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connected with the difficulty experimented by the local search. However, we
have seen that there are some properties (such as having local optima with
low fitness values close to the global optimum) that have a high influence on
the EDA and the GA, but do not affect the local search algorithm. This type
of experiments prove that the generator is an important and useful tool that
can help to analyze the performance and efficiency of many metaheuristics,
not only local search algorithms.



7

Future Work

In this dissertation we have proposed and discussed the validity of the num-
ber of local optima and the sizes of attraction basins as complexity measures
of instances, we have reviewed methods to estimate the number of local op-
tima, incorporating new methods from the statistical arena used by ecolo-
gists and finally we have proposed and designed a generator of instances
of permutation-based COPs. Related to each contribution, there are different
aspects that could be addressed as future work.

Regarding the complexity measures, the two descriptors analyzed in the
first part of the thesis are relevant to determine the complexity that a meta-
heuristic based on a local search finds when solving the instances of COPs.
However, we have seen that they should not be studied independently, as
they complement each other. Therefore, a way to measure complexity based
on a combination of both of them should be further studied.

Focusing on the estimation of the number of local optima, we plan sev-
eral future research lines. A first line is to improve the quality of some of the
presented methods. For example, methods such as ChaoBunge or ChaoLee2
depend on a cut-off value that determines the border between rare and abun-
dant species (hard-to-find and easy-to-find local optima). This cut-off value
could be properly tuned for each instance and sample size instead of be-
ing a fixed parameter. Another line of research has to do with the design of
completely new methods to estimate the number of local optima. Statistical
methods used by ecologists have not been explicitly designed to calculate
the number of local optima but the number of species, and these are two dif-
ferent problems. In fact, these methods do not use all the information that is
at hand. In this sense, and in order to design new estimation methods, we
need to consider the specific characteristics of our problem. We should in-
clude the size of the search space, as well as the size of the attraction basins
of the local optima that have been encountered in the sample. We can also
use the fact that the search space is structured and, therefore, it could be di-
vided based on a certain criterion, performing estimations for each region.
This could help us to make different estimations according to the distinct ar-
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eas and provide an accurate estimation for the total number of local optima
of the whole search space.

Another way to improve the methods to estimate the number of local
optima is by improving the method to estimate the attraction basins. In this
problem, we plan to incorporate more information to the estimation of the
attraction basins, such as the number of steps (solutions) traversed from the
initial solution to the local optima. It can provide valuable information about
the relative sizes of the attraction basins and their shapes.

Regarding the last contribution, i.e., the generator of instances, we have
seen that its weakest point is the cost of evaluating a solution, which is ba-
sically conditioned by m (the number of local optima). Therefore, in order
to be able to work with a large number of local optima, a key issue would
be to think of different processes that help to reduce the time complexity of
each fitness evaluation. A first step in this direction is to sort, from high to
low, the local optima according to their fitness value. That could significantly
help to reduce this time. For example, in the case of population-based algo-
rithms, when assigning a fitness value to a given solution, we could stop the
process of looking for the maximum value given by the GM models, when
we find a value higher than the next fitness of the consensus permutation
to test. According to a preliminary experimentation, using this process we
were able to reduce the execution time to 10%. In the case of local search
algorithms, a kind of incremental evaluation could be carried out and, in or-
der to evaluate the neighbors, it would not be necessary to evaluate all the
models, because their change in fitness is bounded by the distance (+1 or -1).
Other techniques, such as parallelism, could be also applied to reduce the
execution times.

Apart from the cost of evaluating a solution, we find it important to deal
with an issue that has already been mentioned. When generating the in-
stances we assume that two local optima can not have the same objective
function value. This has been done by forcing the distance between two dif-
ferent local optima to be higher than or equal to two. This framework does
not always reflect the reality, because we can find many instances of real
COPs with two neighboring local optima (and therefore with the same ob-
jective function value). This situation can cause, for example, maximal or
minimal flat regions, and this could have different consequences in the dis-
tribution of the attraction basins along the search space. So, a more detailed
analysis should be done to explore this case, according to the neighborhood
chosen. Moreover, we have not considered the possibility of generating in-
stances of symmetric optimization problems, such as the Symmetric TSP. One
of the implications of this type of problems is the appearance of several solu-
tions with the same fitness value. Furthermore, in these problems, we have to
be careful with the definition of neighborhood and distance. These character-
istics have important consequences in our generator, and therefore should be
taken into consideration in order to be able to design instances for symmetric
optimization problems.
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Publications

The research work carried out during this thesis has produced the following
publications:

8.1 Referred journals

• L. Hernando, A. Mendiburu, & J. A. Lozano (2015). A tunable generator
of instances of permutation-based combinatorial optimization problems.
IEEE Transactions on Evolutionary Computation. Accepted.

• L. Hernando, A. Mendiburu, & J. A. Lozano (2013). An evaluation of
methods for estimating the number of local optima in combinatorial op-
timization problems. Evolutionary Computation, 21(4), 625-658.

8.2 Book chapters

• R. Martı́, J. A. Lozano, A. Mendiburu & L. Hernando (2015). Multi Start
Methods and Local Optima. In R. Martı́, P. Pardalos and M. Resende, ed-
itors, Handbook of heuristics. Springer. In Press.

8.3 International conference communications

• L. Hernando, A. Mendiburu, & J. A. Lozano (2013). Generating Cus-
tomized Landscapes in Permutation-based Combinatorial Optimization
Problems. In the International Workshop on Intelligent Perception and Image
Understanding, Xi’an, China.

• L. Hernando, A. Mendiburu, & J. A. Lozano (2013). Generating Cus-
tomized Landscapes in Permutation-based Combinatorial Optimization
Problems. Learning and Intelligent OptimizatioN Conference (LION 7), Cata-
nia, Italy. In Volume 7997 of Lecture Notes in Computer Science, pages
299-303, Springer Berlin Heidelberg. [BEST PAPER AWARD].
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• L. Hernando, J. A. Pascual, A. Mendiburu & J. A. Lozano (2011). A study
on the complexity of TSP instances under the swap neighbor system.
IEEE Symposium on Foundations of Computational Intelligence (FOCI 2011),
Paris, France. In Proceedings of IEEE Symposium on FOCI2011, part of the
IEEE Symposium Series on Computational Intelligence 2011, pages 15-21.

8.4 National conference communications

• L. Hernando, J. A. Pascual, A. Mendiburu & J. A. Lozano (2010). Estudio
preliminar sobre la complejidad de las instancias del TSP bajo el sistema
de vecinos 2-opt. VII Congreso Español sobre Metaheursticas, Algoritmos Evo-
lutivos y Bioinspirados (MAEB 2010), Valencia, Spain.

• L. Hernando, A. Mendiburu & J. A. Lozano (2013). Generador de instan-
cias de problemas de optimizacion combinatoria basados en permuta-
ciones. IX Congreso Español sobre Metaheursticas, Algoritmos Evolutivos y
Bioinspirados (MAEB 2013), Madrid, Spain. [FINALIST OF THE GENIL
AWARD].

8.5 Collaborations

• J. Ceberio, L. Hernando, A. Mendiburu & J. A. Lozano (2013). Under-
standing Instance Complexity in the Linear Ordering Problem. 14th Inter-
national Conference on Intelligent Data Engineering and Automated Learning
(IDEAL-2013), Hefei, China. In Volume 8206 of Lecture Notes in Com-
puter Science, pages 479-486, Springer Berlin Heidelberg.
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Appendices

9.1 Appendix I

9.1.1 Estimation of the number of local optima in synthetic instances
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Fig. 9.1. Estimations of the number of local optima provided by the methods reviewed
in Chapter 3 for the synthetic instances created by sampling a Dirichlet with parame-
ter d = 0.1. The number of local optima are (from top to bottom) n = 100, 1000, 10000,
and the sample sizes considered are M = 1000 (left) and M = 10000 (right).
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Fig. 9.2. Estimations of the number of local optima provided by the methods reviewed
in Chapter 3 for the synthetic instances created by sampling a Dirichlet with parame-
ter d = 0.2. The number of local optima are (from top to bottom) n = 100, 1000, 10000,
and the sample sizes considered are M = 1000 (left) and M = 10000 (right).
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Fig. 9.3. Estimations of the number of local optima provided by the methods reviewed
in Chapter 3 for the synthetic instances created by sampling a Dirichlet with parame-
ter d = 0.5. The number of local optima are (from top to bottom) n = 100, 1000, 10000,
and the sample sizes considered are M = 1000 (left) and M = 10000 (right).
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Fig. 9.4. Estimations of the number of local optima provided by the methods reviewed
in Chapter 3 for the synthetic instances created by sampling a Dirichlet with parame-
ter d = 2. The number of local optima are (from top to bottom) n = 100, 1000, 10000,
and the sample sizes considered are M = 1000 (left) and M = 10000 (right).
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Fig. 9.5. Estimations of the number of local optima provided by the methods reviewed
in Chapter 3 for the synthetic instances created by sampling a Dirichlet with parame-
ter d = 4. The number of local optima are (from top to bottom) n = 100, 1000, 10000,
and the sample sizes considered are M = 1000 (left) and M = 10000 (right).
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9.1.2 Estimation of the number of local optima in random instances of
TSP
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Fig. 9.6. Estimations of the number of local optima provided by the methods reviewed
in Chapter 3 for the random instances of TSP. The number of cities considered are
n = 14 (top) and n = 15 (bottom), and the sample size used is M = 1000 (left) and
M = 10000 (right).
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9.1.3 Estimation of the number of local optima in benchmark instances of
PFSP

10
2

10
3

10
4

10
5

10
2

10
3

10
4

Sample size M (logarithmic scale)

N
um

be
r 

of
 lo

ca
l o

pt
im

a 
(lo

ga
rit

hm
ic

 s
ca

le
)

Instance9 of PFSF (2−exchange neighborhood)

 

 

real
Jckk
Boots
Chao1984
ChaoBunge
ChaoLee1
ChaoLee2

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
6

Sample size M (logarithmic scale)

N
um

be
r 

of
 lo

ca
l o

pt
im

a 
(lo

ga
rit

hm
ic

 s
ca

le
)

Instance10 of PFSF (2−exchange neighborhood)

 

 

real
Jckk
Boots
Chao1984
ChaoBunge
ChaoLee1
ChaoLee2

Fig. 9.7. Estimations obtained by the best methods among those reviewed in Chapter
3 for the instance number 9 (top) and instance number 10 (bottom) of PFSP using the
swap neighborhood as the sample size grows.
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9.2 Appendix II

9.2.1 Figures of the generator of instances for the PFSP
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Fig. 9.8. Sizes of the attraction basins of the different local optima found in each of
the five instances of the PFSP using the swap neighborhood. We represent those sizes
found in the benchmark instance with a circle, and the sizes obtained in the generated
instance with a triangle. The instances are, from left to right and from top to bottom,
the first, second, third, fourth and fifth.
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9.2.2 Figures of the generator of instances for the LOP
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Fig. 9.9. Sizes of the attraction basins of the different local optima found in each of
the five instances of the LOP using the swap neighborhood. We represent those sizes
found in the benchmark instance with a circle, and the sizes obtained in the generated
instance with a triangle. The instances are, from left to right and from top to bottom,
the first, second, third, fourth and fifth.
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