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Abstract

Accurate and fast decoding of speech imagery from electroencephalographic
(EEG) data could serve as a basis for a new generation of brain computer interfaces
(BClIs), more portable and easier to use. However, decoding of speech imagery
from EEG is a hard problem due to many factors. In this paper we focus on
the analysis of the classification step of speech imagery decoding for a three-class
vowel speech imagery recognition problem. We empirically show that different
classification subtasks may require different classifiers for accurately decoding and
obtain a classification accuracy that improves the best results previously published.
We further investigate the relationship between the classifiers and different sets of
features selected by the common spatial patterns method. Our results indicate
that further improvement on BCIs based on speech imagery could be achieved
by carefully selecting an appropriate combination of classifiers for the subtasks
involved.
keywords: speech imagery, brain computer interface, classification methods.

1 Introduction

Brain computer interfaces (BCIs) translate brain electrical signals into commands without
the need for motor intervention [18, 32]. BCIs were originally conceived for providing
communication and control to people with severe muscular or neural handicaps [32], but
have since then been also applied to applications oriented to healthy individuals [2]. An
essential component of a BCI is a decoding algorithm that translates signals to actions.
Machine learning methods are usually applied for this purpose [19]. Usually, a subject
participates in a series of sessions in which brain recordings are collected and used to
train a supervised classifier. In a second stage, the classifier is used online to decode the
user’s intention from the analysis of his brain recordings.

Most BCIs use the visual modality for control and feedback. However, there are sit-
uations where the user may lack the sense of sight or experience difficulties to watch a
computer screen. In these situations, non-visual BCI systems can provide an alternative
form of communication [30]. One of the most promising types of non-visual BCI systems



are speech imagery interfaces where the task consists of decoding speech from neurological
recordings. This approach has a number of benefits: it is a natural form of communi-
cation, particularly for mobile communication; it is also a more direct and efficient way
to control a BCI device; and auditory and tactile feedback could be implemented as an
alternative to more framework-dependent visual feedback.

Several studies have shown that it is possible to decode a variety of speech components
from neural activity [5, 6, 20, 22]. However, although phoneme and word classification
is possible, the conception of practical BCIs based on speech imagery is still a long-
term goal. One of the obstacles is that classification accuracies can depend very much
on the type of neurological recordings used. While invasive recordings taken from the
cortex area show that classification accuracy well above chance level can be obtained,
linguistic decoding from EEG recordings have not always been successful. Good results
6, 7,12, 25,27, 28, 30, 31], and also lower than chance or very low classification accuracies
[4, 8, 23], have been reported.

There are many issues involved in the ability to accurately recover speech imagery
from EEG data. For example, it has been hypothesized [23] that high accuracy decoding
results for words presented in blocks may be due to temporal correlated artifacts that
are detected by the classifiers. In general, further research is needed to elucidate the
aspects that influence speech imagery recognition. Two of these aspects are the choice of
the classifier and the way this choice is related to the method used for feature selection.
(Classification algorithms and feature selection strategies play a fundamental role in BClIs
and a panoply of methods have been proposed for these purposes [15, 19]. It is expected
that gains in vowel imagery decoding could be obtained from a better understanding of
how the choice of the classifier is related to this particular type of mental task.

In this paper we present a detailed investigation of how the choice of the classifier
and the method for feature selection influence the classification accuracy in the problem
of vowel speech imagery recognition from EEG data. Ten different classification methods
are applied to EEG data obtained from three subjects in three different tasks: imaginary
speech of the English vowels /a/ and /u/, and a no action state as control [9]. We further
extend the analysis of the classification algorithms by evaluating how is their behavior
related to the features produced by different eigenvalues in the common spatial pattern
(CSP) method [24].

The paper is organized as follows. In the next section, the experimental design is
presented. Section 3 presents the classification problem, discuss a number of issues related
to the CSP methods, and introduces the classification algorithms used in the comparisons.
Related work is discussed in Section 5. Section 4 shows the results of the classification
algorithms and discuss the implications of these results. Section 6 concludes the paper
and present some lines for future research.

2 Experimental design and data acquisition

Three subjects participated in the experiment. Each subject was instructed to perform
three mental tasks: imaginary speech of the English vowels /a/ and /u/, and a no action
state as control. A randomly selected visual cue was displayed on a computer monitor
placed in front of the subject. Vowel /a/ was represented with an image of an open
mouth, vowel /u/ with an image of rounded lips, and control with a continuation of the



fixation cross. Subjects were instructed to perform and maintain the appropriate task
until the visual cue disappeared 2 s later. Each epoch had a duration of 3 s, 1 s of
pre-stimulus and 2 s of stimulus. 50 trials were performed for each task, resulting in a
total of 150 trials per subject.

EEG was recorded using a BioSemi ActiveTwo system (BioSemi B.V., Amsterdam,
Netherlands) with 64 4+ 8 active electrodes and a sampling rate of 2048 Hz. Data was
downsampled in software to 256 Hz. The 8 extra electrodes were used for: EEG reference
(1), measure vertical and horizontal electrooculography (2), and detect unwanted mouth
electromyography (2). The remaining 3 extra electrodes were unused. Trials were in-
spected for movement artifact and only 4 trials in one subject (S2) needed to be rejected
and repeated in an extra session.

3 Classification problem and classifiers

The general classification problem consists of decoding, from the EEG recordings of a
subject, one of the three possible classes (vowels /a/ and /u/, and a no action state
as control). However, we approach the problem as in [9], solving three different binary
classification that consists in distinguishing for every possible pair of classes. Each binary
problem is called a task and the three possible tasks (F1,F2F3) are solved for each
possible subject (S1,52,S3). As an initial step CSPs are computed from the EEG signals
and features constructed using these patterns are then used for classification.

3.1 Feature selection and common spatial patterns

The goal of the CSP method is to construct a number of distinctive time-series whose
variances contain the most discriminative information between the classes [24]. The raw
EEG data of a single trial is represented as an N x T matrix E, where N is the number of

channels and T is the number of samples per channel. The normalized spatial covariance
of the EEG can be obtained from:

/
o FE (1)
trace(EE")
where ’ denotes the transpose operator and trace(x) is the sum of the diagonal elements
of z. For each of the two distributions to be separated (i.e., vowels /a/ and /u/), the
spatial covariance Cy, € [a,u] is calculated by averaging over the trials of each group.
The composite spatial covariance is given as

C. can be factored as C. = UA.U., where U, is the matrix of eigenvectors and A. is the
diagonal matrix of eigenvalues. Note that from now on the eigenvalues are assumed to
be sorted in descending order. The whitening transformation

P =/ 1U! (3)
equalizes the variances PC’CP_’/ in the space spanned by U,, i.e., all eigenvalues PC.P’" of
are equal to one. If C and C, are transformed as S, = PC,P’ and S, = PC.P’ then S,
and 9, share common eigenvectors B.



The projection of whitened EEG onto the first and last eigenvectors in B will give
feature vectors that are optimal for discriminating two populations of EEG in the least
squares sense. With the projection matrix W = (B’P’), the decomposition (mapping) of
a trial is given as Z = WE. The columns of W~ are the CSPs.

In our experiments we used the same data investigated in [9] where the two fist and
the two last CSPs were used. Each CSP produces a vector of 128 features.

3.2 Classifiers

We select ten classifiers that differ according to their functioning principles, search strate-
gies, and efficiency considerations. Previously, only support vector machines (SVMs) [29]
had been applied to this data [9]. The classifiers selected, as implemented in the scikit-
learn software [21] programmed in Python language, were:

e Regularized logistic regression with norm 11 (L11) [33]
e Regularized logistic regression with norm 12 (L12) [33]
e Linear discriminant analysis (LDA) [13]

e k-nearest neighbor classifier (KNN) algorithm [1] with & = 3 and using the Eu-
clidean distance

e Gaussian naive Bayes classifier (GNB)

e Gradient boosting (GB) [14] with the number of trees n; = 100 and the maximum
depth of the tree mazr, = 11

e Random forests (RF) [3] with n, = 100 and maz, = 11
e Decision tree (DT) mazy =n
e Randomized decision trees (RDT) [16]

e Nearest-centroid classifier using Euclidean distance (NCC) [26]

When no information about the parameters is provided above, the classifiers were
applied with their defaults parameters in scikit-learn®.

The classifiers investigated cover the methods most commonly applied to BCI im-
plementations [19]. Some of these classifiers consider interactions between the features,
some others incorporate regularization techniques, or take into account similarity metrics
between the data.

4 Results

The goal of our experiments were: 1) Evaluate the performance of the classifiers across
subjects and tasks when all the information is used. 2) Determine how the choice of the
CSP component impacts the classification accuracy.

!See http://scikit-learn.org/stable/index.html for more details on the code.
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4.1 Comparison between the classifiers

We applied the ten classification methods to the set of 512 features. Classifiers were
learned using the training data from which the CSPs had been extracted and evaluated
on test data. 30 repetitions of the learning process were run. In each repetition, one
classifier was learned using 29 of the 30 epochs, for each of the two tasks involved in the
binary classification process (e.g., vowel /a/ versus /u/). This is a framework similar
to leave-one-out cross-validation but instead of evaluating the classifiers in the fold left
out, they were all evaluated in the test data that comprises 20 epochs. Notice that the
application of the standard leave-one-out cross-validation method would have implied
learning different CSPs in each of the repetitions. By dividing, the cases in two groups,
train and test, we compute the CSPs using the complete set of training data only once.
We can still compute estimates on the accuracies because each classifier is learned with
a different subset of the training data.

Mean and standard deviation of the accuracy of the classifiers on the test data were
computed and are shown in Table 1. This table also includes results using a non-linear
SVM [29] as presented in [9]. For SVM, only 20 repetitions in two groups were applied.
Therefore, these results are included here just as a reference.

In Table 1, the best accuracy for each combination of pairs of tasks and subjects
is highlighted in bold. It can be seen from the table that there is a clear split in the
behavior of the algorithms among the subjects. GNB is the best algorithm for subject
S1, reaching accuracies over 89% for all tasks. For subject S2, RDT clearly achieves the
best accuracies, and for subject S3, RDT and RF exhibit the same behavior for task
F1, while GNB obtains the best accuracies for tasks F2 and F3. SVM results are clearly
improved for subjects S1 and S2 and slightly outperformed for subject S3.

A multiple comparison test using the Tukey’s honestly significant difference criterion
was applied to the classification results to look for significant differences between algo-
rithms. The output of 30 classifiers was used to assess for these differences. Results are
summarized in Table 2 where cell (r,¢) indicates the number of times algorithm ¢ was
significantly better than algorithm r in the 9 possible combinations. For instance, cell
(1,4) indicates that LI1 achieved significant better results than KNN in 2 scenarios. Cell
(4,1) indicates that KNN was better than LIl in 4 of 9 scenarios. In the remaining 3
scenarios there were not significant differences in the behavior of these two algorithms.

The last row in Table 2 shows the number of times each algorithm was outperformed
by the others (07). The last column shows the number of times each algorithm outper-
forms the rest (o7). The algorithms that showed a clear difference between o and o~

were: RF (22), GNB (20), and RDT (12).

4.2 Influence of the CSP components

In the second part of the experiments, the classifiers were applied to the 128 features
associated to each of the 4 CSPs. The goal of the experiment was two-fold: to evalu-
ate the ability of the classifiers to use partial information about the brain signals, and
to determine if the classifiers’ performance, and consequently the ranking between the
algorithms, held for the four groups of variables.

Table 3 shows the best absolute classification accuracies obtained by the algorithms
across the four groups. Cells in bold indicate situations where the classification accuracies



S/F Logistic 11 Gaussian Naive Bayes Randomized decision tree
F1 F2 F3 F1 F2 F3 F1 F2 F3

S1 | 72+£3|83+£2|68+3(90+1|92+1 |924+0 || 87 £2 | 952 | 84+3
S2 | 62£3 | 67E£2 | 57E3 || 782 | 642 | 5941 || 79+4 | 78+4 | T1£4
S3 | 573 | 65£2 | 55F£4 | 62+2 | 80+1|62E£2|68+4 | 75+3 | 57+4

Logistic 12 Gradient boosting Nearest centroid classifier
F1 F2 F3 F1 F2 F3 F1 F2 F3

S1 68+3|83+2|61+3 66+6 | 824+6 | 64+6 82+1 | 8+2 | 64+2
S2 74+2 | 67412 | 57+3 64+3 | 6845 | 70+5 66+2 | 63+4 | 59+ 2
S3 | 57+£3|64+1|57+3 || 61+£6 | 69+5 | 50+4 || 59+1 | 66+£1 | 52+3

LDA Random forest SVM
F1 F2 F3 F1 F2 F3 F1 F2 F3
S1 72+£3 | 79+4|66+£3 || 87+3 | 96+2 | 81+4 || 79+3 | 82+4 | 72+3
S2 | 654+4|656+4|60+4 | 7T5E3 | 74+5 | 705 || 7T1£5 | 7244 | 60+5
S3 | 57+3|656+£3|47+3 || 68+4 | 77T+3 | 59+6 || 674 | 80+3 | 56+4
KNN Decision tree

F1 F2 F3 F1 F2 F3
S1 | 77+2 | 87T+1 | 77+2 | 674 | 84+5 | 62+6
S2 | 61+2|66+1|64+1 1 63+£4 | 66+6 | 69+5
S3 | 67+2 | 71+1|58+2 | 61+6 | 6844 | 50+4

Table 1: Mean and standard deviation of the classification accuracies obtained by the
classifiers on the test data. Classifiers use the 512 features corresponding to the four
CSP.

achieved by one of the sets of features associated to any of the four CSPs improved the
accuracy obtained by the same classifier for the complete set of features (corresponding
cell in Table 1). For all classifiers, there are situations where a subset of the variables
improves the accuracies achieved using all the features. Furthermore, in 2 out the 9 cases,
corresponding to pairs (S3,F3) and (S3,F1), the best accuracy results were obtained using
only a subset of the features.

Figure 1 focuses on the 3 classifiers that produce the highest accuracies: GNB, RF,
and RDT which are respectively represented in the figure by their index in Table 2 (i.e.,
5, 7, and 9). For these classifiers, the figure shows the accuracies obtained using the
features associated to each of the four CSPs. It can be appreciated in the figure how
accuracies are highly influenced by the CSPs. For instance, best accuracies for the pair
(F1,51) are obtained by all classifiers by the third CSP. However, for the pair (F2,51),
the best accuracies are achieved using the fourth CSP.

Classifiers LI1 | LI2 | LDA | KNN | GNB | GB | RF | DT | RDT | NCC | Tot.
Logistic 11 0 5 5 2 1 3 0 3 0 3 22
Logistic 12 3 0 4 2 1 3 0 4 1 3 21
LDA 4 5 0 1 2 3 0 3 0 3 21
KNN 4 2 2 0 3 6 0 6 2 6 31
Gaussian Naive Bayes 1 2 0 2 0 7 5 7 4 7 35
Gradient boosting 4 3 5 3 0 0 1 7 0 5 28
Random forest 1 2 0 5 2 1 0 8 5 9 33
Decision tree 4 2 5 3 1 2 1 0 0 4 22
Randomized decision tree 1 1 0 2 3 2 4 2 0 9 24
Nearest centroid classifier 4 5 4 2 2 3 0 4 0 0 24
Total 26 | 27 25 22 15 30 11 44 12 49 0

Table 2: Results of the statistical test on the difference between the performance of the
classifiers. Cell (r,c¢) indicates the number of times algorithm ¢ was significantly better
than algorithm r in the 9 possible combinations of tasks and subjects.
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Figure 1: Classification accuracies obtained by GNB, RF, and RDT using features asso-
ciated to each of the four CSP for all pairs of tasks and subjects.

4.3 Discussion

The analysis of the experiments reveals that tasks can be optimally solved for different
subjects using different classifiers. This is particularly evident when observing the be-
havior of GNB for subject S1, and of RDT for subject S2. The relevant point here is
that classification algorithms may be able to capture different mechanisms related to the
vowel imagery decoding. However, it is clear that there is only a small number of classi-
fiers that achieve good results as the statistical tests show. Therefore, it makes sense to
split the search for classifiers into two phases. A screening phase in which classifiers are
evaluated in the training data and a second phase where the best classifiers found for the
combinations of tasks and subjects are applied to test data.

The fact that some problems are better solved using only a subset of variables as-
sociated to a single CSP indicates that also for imagery classification problems feature
subset selection is critical. Our analysis suggests that separating the features according
to the CSP and evaluating the accuracy of each subset of features separately can provide
a natural way to diminish the cost of the feature subset selection process. It is also
clear that using all the features does not always produces the best accuracies. However,
regularized classifiers were not among the best contenders for any of the classification
tasks.

5 Related work

A number of papers have proposed different variants for decoding imagined speech from
EEG data. Usually, only a subset of vowels and consonants is used for the experiments



or the word alphabet is very reduced. Similarly, one or few classifiers are usually used to
analyze the data without an exhaustive investigation of the role played by the classifier.
In this section, we review some of the previous approaches.

In [25], EEG data was collected from 5 subjects that were instructed to imagine 7
words (internal speech). Prototype waves of each word were learned from the filtered
EEG signals from each sensor Test samples were correctly recognized with accuracies
between 34% and 97%. One aspect that might help to explain the good classification
results achieved in this paper is that the training and test cases were constructed from
multiple (10) trials. Another issue, relevant to the decoding results is that no traditional
classification algorithm was used since classification was based on the best fit between
prototype and test samples.

In [10], EEG signals were analyzed to decode the rhythm in which imagined syllables
were produced. 7 subjects performed 120 experiments for each combination of 2 syllables
and 3 rhythms. Joint time-frequency analysis was conducted using the Hilbert spectrum
(HS) [17]. Features were extracted from the normalized HS, and a Bayesian classifier
based on multi-class LDA was applied. Accuracies between 48.33% and 72.67% were
obtained for the different subjects. Notably, the relevant features found by the method
helped to classify the imagined speech rhythm but failed to classify both rhythm and
syllable.

Few papers have addressed the comparison of different classifiers in word imagery
decoding problems. One of the few exception is the work presented [27, 28]. This work
investigated the ability to decode the imagined words from a reduced five-word vocabulary
in EEG signals taken from 21 subjects. Information about four EEG-channels was used
for classification. They used discrete wavelet transform as features, and applied three
classifiers: naive Bayes, RF, and SVM. RF obtained the best average results considering
the 21 subjects. However, as also occurred in our experiments, the ranking between the
classifiers varied depending on the subject.

Chi et al. [7] achieved classification accuracies above 70% on pairwise comparisons
between five imagined phonemes using LDA. Lower classification accuracies were achieved
in the same work using the Naive Bayes classifier. D’Zmura et al [12] asserted the
importance of using spectral features in the problem of classifying two different syllables
with three different rythms. Hilbert envelopes of each electrode waveform were computed
and the average signal envelope across each electrode was used to form a template for
each class. Finally matched filters were used for classification. A classification accuracy
of 87% was obtained for one of the four subjects included in the experiment. The same
dataset was used by Brigham and Kumar [4] that applied autoregressive methods and a
3-Nearest Neighbor classifier. Classification for each subject did not perform better than
chance. This is an example of word imagery decoding problems where two classification
approaches have produced drastic differences in the obtained accuracies.

The potential use of covert speech for BCIs have been also investigated with other
techniques like functional magnetic resonance imaging (fMRI) [20], electrocorticography
(ECoG) [22], magnetoencelography (MEG) [25], and micro-electrode recordings [5, 6].



S/F Logistic 11 Gaussian Naive Bayes Randomized decision tree
F1 F2 F3 F1 F2 F3 F1 F2 F3

S1 | 6943 | 8242 | 66+3 || 87+0 | 87+0 | 73£2 || 87£2 | 88+£2 | 72+3
52 | 62+2 | 65+3 | 56+3 || 781 | 75+1 | 73£2 | T6+3 | 7T4d+4 | T1£4
S3 | 50+4 | 72£2 | 56+£3 || 70+1 | 79+2 | 66F£1 || 7T1+4 | 75+3 | 61£3

Logistic 12 Gradient boosting Nearest, centroid classifier
F1 F2 F3 F1 F2 F3 F1 F2 F3

S1 76 +1 | 77+1 | 64+£2 | 755 | 76+3 | 63£3 85+1|81+1 | 61+3
S2 60+3 | 63+2 | 55+2 7T0+5 | 70+4 | 59+6 68+1 |64+2 | 58+ 2
S3 61+3|68+2|59+3 60+8 | 7T14+6 | 61+3 || 58+2 | 72+1 | 65+ 3

LDA Random forest

F1 F2 F3 F1 F2 F3
S1 50+7 | 61+£8 | 53+9 || 83+3 | 86 +2 | 73+3
S2 | 54+4 [ 60£5 | 59+4 || 733 | 74+2 | 65+4
S3 60+7 | 568 | 50+6 T1+£5 | 71+3 | 60£3

KNN Decision tree

F1 F2 F3 F1 F2 F3
S1 | 7T7+£0 | 82+1|654+0 | 736 | 724+4 | 61+3
S2 | 61+£2|69+2 | 71+1| 69+5|66+5|59+7
S3 | 69+2 | 70+1 [ 64+1 | 605 | 69+5 | 60+3

Table 3: Mean and standard deviation of the classification accuracies obtained by the
classifiers on the test data. Each cell shows the best accuracy among the four classifiers
corresponding to the four CSP. Accuracies in bold are equal or better than those achieved
by the same type of classifiers using the 512 features.

6 Conclusions

In this paper we have conducted an exhaustive investigation of the performance of classifi-
cation algorithms for a speech imagery decoding problem. We have shown that previously
obtained results [9] can be improved for all tasks and subjects. Our empirical results re-
veal that simpler classifiers like Gaussian naive Bayes that do not consider dependencies
between the features can outperform the results obtained with SVM and with other
more complex classifiers. However, for one of the subjects, complex classifiers, able to
represent dependencies, outperformed all other methods. The fact that classifiers can
critically vary their performance accross subjects and tasks involved in vowel imagery
decoding seems to indicate that the classifiers can exploit different mental mechanisms.
One possible lesson from this is that the behavior of the classifiers could be used to group
subjects with similar underlying mechanism and that, when possible, different classifiers
should be tried for the tasks and subjects involved. This will not only help to improve the
classification results but to better understand how the variability of the speech imagery
process is manifested among the subjects.

The other question investigated in this paper is to what extent the choice of the CSP
influences the accuracies of the classifiers for the different tasks included in the study.
We have shown that the combination of features derived for the four most important
CSP can decrease, in certain cases the accuracies achieved by using all the features.
Furthermore, we have shown that any of the four CSPs (corresponding to the two first
and two last eigenvalues) does not always produce the most discriminative sets of features
for all combinations of tasks and subjects.

There are a number of ways the results presented in this paper could be extended.
One necessary step is to evaluate the behavior of multi-class classifiers to solve the more
challenging 3-state classifcation problem. However, a potential obstacle is that the tra-



ditional CSP algorithm is only of application to the binary classification problem. Some
CSP extensions to multiclass problems have been proposed [11], however some of these
extensions are more costly and it is not clear how the integration with the classification
algorithms should be conducted. As another possible development, results presented in
this paper could be also applied to design ensembles of classifiers that combine the out-
put of the binary classifiers. Finally, a contrastive analysis of the relevant features found
by the different classifiers for each task could help to unveil the potential mechanisms
involved in the mental imagery tasks. For instance, one of the questions that the classi-
fiers could help to answer is in which situations classification of EEG signals can be be
accurately decoded because of the imagined speech muscle movements or the imagined
speech itself [4]
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