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Luis Vega González, para optar al
grado de Doctor en Ciencias, Sección
de Matemáticas, por la Universidad del
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Cuando emprendes tu viaje hacia Ítaca
debes rogar que el viaje sea largo,

lleno de peripecias, lleno de experiencias.
No has de temer ni los lestrigiones ni a los ćıclopes,

ni la cólera del airado Posidón.
Nunca tales monstruos hallarás en tu ruta

si tu pensamiento es elevado, si una exquisita
emoción penetra en tu alma y en tu cuerpo.

Los lestrigones y los ćıclopes
y el feroz Posidón no podrán encontrarte
si tú no los llevas ya dentro, en tu alma,

si tu alma no los conjura ante ti.
Debes rogar que el viaje sea largo,

que sean muchos los d́ıas de verano;
que te vean arriba con gozo, alegremente,

a puertos que tú antes ignorabas.
Que puedas detenerte en los mercados de Fenicia,

madreperlas, coral, ébano y ámbar,
y perfumes placenteros de mil clases.
Acude a muchas ciudades de Egipto

para aprender, y aprender de quienes saben.
Conserva siempre en tu alma la idea de Ítaca:

llegar alĺı, he aqúı tu destino.
Mas no hagas con prisa tu camino;
mejor será que dure muchos años,

y que llegues, ya viejo, a la pequeña isla,
rico de cuanto habŕıas ganado en el camino.
No has de esperar que Ítaca te enriquezca:
Ítaca te ha concedido ya un hermoso viaje.

Sin ellas, jamás habŕıas partido;
mas no tiene otra cosa que ofrecerte.

Y si lo encuentras pobre, Ítaca no te ha engañado.
Y siendo ya tan viejo, con tanta experiencia,

sin duda sabrás qué significan las Ítacas.

Ítaca. Konstant́ınos Kaváfis.





Abstract

We consider the Helmholtz equation in Rd, d ≥ 3, with electric and magnetic potentials.
The aim of this thesis is to study the direct problem of such an equation for potentials that
decay at infinity, but also have singularities at the origin. We use integration by parts to
achieve this. A main tool is a multiplier method in spirit of the so called Morawetz estimate.

We prove that there exists a unique solution of this equation such that satisfies some
a-priori estimates together with some Sommerfeld radiation condition. We then deduce
some extra information about the behavior of the solution for different classes of electric
and magnetic potentials, which allows us to derive some applications related to the spectral
properties for the magnetic Schrödinger operator.
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Introduction

The classical partial differential equations of mathematical physics, formulated and in-
tensively studied by the great mathematicians of the nineteenth century as for example,
D’Alembert, Euler and Lagrange, remain the foundation of investigations into waves, heat
conductions, electromagnetism and other physical problems. Although the issue of existence
and uniqueness of solutions of ordinary differential equations has a very satisfactory answer
with the Picard-Lindelöf theorem, that is far from the case for partial differential equations.

Problems involving stationary phenomena, i.e. phenomenas which are independent of
time, can be reduced to equations of elliptic type. The Helmholtz equation is a second order
elliptic partial differential equation

∆u(x) + k2u(x) = f(x), (0.0.1)

where ∆ =
∑d

j=1
∂2

∂x2j
is the Laplacian, k is the wave number and u, f are real or complex

valued functions on the euclidean space Rd. This equation is encountered in many branches
of mathematical physics as in the theory of elasticity or the theory of electromagnetic waves.
For k = 0 it coincides with Poisson’s equation

∆u(x) = f(x). (0.0.2)

The theory of Helmholtz’s equation is close to that of Poisson’s equation or of the Laplace
operator, but there are a few peculiarities concerning the uniqueness of solution (for k2 > 0).
It is well known that the solution of Poisson’s equation in a whole space Rd is unique in the
class of generalized functions and tends to zero at infinity. However, this statement is not
true for Helmholtz’s equation. For example, when d = 3

u(x) = −sin k|x|
4π|x|

(0.0.3)

is a non zero solution of the corresponding homogeneous equation

∆u(x) + k2u(x) = 0. (0.0.4)

This also happens in all dimensions d ≥ 1. In order to isolate the class of unique solutions for
Helmholtz’s equation, there must be additional restrictions on the behavior of the solution
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Introduction

at infinity. These restrictions are the so-called Sommerfeld radiation conditions, which are
typically read by

lim
|x|→+∞

|x|
d−1
2

(
∂u(x)

∂|x|
∓ iku(x)

)
= 0 (0.0.5)

uniformly in x
|x| ∈ S

d−1 = {x ∈ Rd : |x| = 1}. The condition with the minus sign corresponds

to divergent waves (outgoing to infinity), while the plus sign is related to convergent waves
(incoming from infinity).

The limiting absorption principle provides one way for isolating the unique solution of
the Helmholtz equation (0.0.1). One shall add the absorption term iεu to the left-hand side
of Helmholtz’s equation obtaining

∆uε + (k2 + iε)uε = f(x). (0.0.6)

Then from the self-adjointness of the Laplace operator on Rd, we have that its spectrum is
real and thus when ε 6= 0, it follows that for any generalized function f with compact support,
there exists a solution of the equation (0.0.6) in the set of all generalized functions of slow
growth. Uniqueness of solution follows from the study of the corresponding homogeneous
equation

∆uε + (k2 + iε)uε = 0. (0.0.7)

Looking at the Fourier side of the above identity, we get

(−|ξ|2 + k2 + iε)F [uε] = 0, (0.0.8)

which makes it obvious that uε = 0 for ε 6= 0.
As a consequence, the uniform limit in x of uε → ±0, that we will denote by

u± = R(k2 ± i0)f = lim
ε→±0

uε, (0.0.9)

produces the unique solution of the non homogeneous Helmholtz equation (0.0.1) satisfying
the corresponding Sommerfeld radiation condition (0.0.5). In the three dimensional case,
these solutions can be expressed by

u =
e±ik|x|

4π|x|
∗ f, (0.0.10)

where Φ(x) = eik|x|

4πi
is the fundamental solution of the Helmholtz equation (0.0.1). For a

higher dimensions, the fundamental solution of the Helmholtz equation in Rd can be given
by Hankel’s function as follows

Φ(x) = cd
k
d−2
2 H

(1)
(d−1)/2(k|x|)

|x|
(d−2)

2

, where cd =
1

2i(2π)
d−2
2

. (0.0.11)
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Introduction

Hence the asymptotic behavior of Hankel’s functions allows us to deduce the behavior of Φ
at infinity. Therefore, we can conclude that the outgoing solution of the equation (0.0.1)
satisfies

u(x) = cdk
d−1
2
eik|x|

|x| d−1
2

u∞

(
k,

x

|x|

)
+ o(|x|−

(d−1)
2 ) as |x| → ∞. (0.0.12)

The function u∞ is known as the far field pattern or scattering amplitude of u and is given
by the following limit

u∞(k, ω) = lim
|x|→∞

cd,k|x|
d−1
2 e−ik|x|u(ω|x|) (0.0.13)

in L2(Sd−1) where ω = x
|x| , provided that the above limit exists. The scattering amplitudes

are the data used in inverse scattering problems. From these data one tries to reconstruct
the inner structure of any system ruled by any equation which is the Helmholtz equation in
some exterior domains. In some cases, what is observable are the scattering cross-sections,
i.e., the absolute values of the far field pattern. The problem of how to obtain the phases
of the scattering amplitudes from these datas is highly nontrivial and in general, does not
have a unique solution (see [KoSc] and the references given there).

The Helmholtz equation can also be understood as an eigenvalue problem of the Laplace
operator. In this case, one would be interested in the study of the resolvent operator

R(k2) = (∆ + k2 + i0)−1. (0.0.14)

Resolvent estimates are crucial in order to prove the limiting absorption principle for the
corresponding operator. Among the family of a-priori estimates for the Helmholtz equation,
the most celebrated and widely used one is due to Agmon [A], where it is proved that

‖R(k2)f‖L2
−δ
≤ C(δ)

|k|
‖f‖L2

δ
(0.0.15)

with
‖f‖L2

δ
:= ‖(1 + |x|2)

δ
2f‖L2 , (0.0.16)

for δ > 1. From this, it may be concluded that u = R(k2)f is the unique outgoing solution
of the equation (0.0.1) satisfying

lim
|x|→+∞

|x|
d−1
2

(
∂u

∂|x|
− iku

)
= 0. (0.0.17)

Later on, Agmon and Hörmander [AH] showed that estimate (0.0.15) held with the L2
δ norms

replaced by the norms

|||u|||R0 := sup
R>R0

(
1

R

∫
|x|≤R

|u(x)|2dx
)1/2

3
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and

NR0(f) :=
∑
j>J

(
2j+1

∫
C(j)

|f(x)|2dx
)1/2

+

(
R0

∫
|x|≤R0

|f(x)|2dx
)1/2

with R0 = 1, where C(j) = {x ∈ Rd : 2j−1 ≤ |x| ≤ 2j} and J is defined by 2J−1 ≤ R0 ≤ 2J .
The norms |||u|||1 and N1(f) are known as Agmon-Hörmander norms. We drop the index
R0 if R0 = 0, getting then the Morrey-Campanato norm and its dual,

|||u||| := sup
R>0

(
1

R

∫
|x|≤R

|u(x)|2dx
)1/2

(0.0.18)

N(f) :=
∑
j∈Z

(
2j+1

∫
C(j)

|f(x)|2dx
)1/2

. (0.0.19)

Note that it is satisfied ∫
fg ≤

∑
j∈Z

[
2j
∫
C(j)

|f |2 1

2j

∫
C(j)

|g|2
]1/2

≤ |||g|||N(f). (0.0.20)

The Agmon-Hörmander estimate was improved by Kenig, Ponce and Vega [KPV] to the
Morrey-Campanato norm in their study of the nonlinear Schrödinger equation. In fact, they
proved

|||u||| ≤ Ck−1N(f). (0.0.21)

This estimate plays a fundamental role in solving Schrödinger evolution equations with
nonlinear first order terms.

It is of interest to know whether the limiting absorption principle, the existence of the
far field pattern or the resolvent estimates are still true when the free operator H0 = ∆
is perturbed by an external potential. First we consider a zero order perturbation of H0

given by the differential operator ∆ + V (x), where V (x) is a real function, also called an
electric potential. In the free case V ≡ 0, the seminal papers by Agmon and Hörmander
[A], [AH], inspired a huge literature (see for example [A], [AH], [Be], [Ik], [Is], [Mou] [MU],
[Ka3],. . . ) which has been produced in order to obtain weighted L2-estimates for solutions of
Helmholtz equations. As it is well known, apart from the limiting absorption principle, one
of the consequences of the Agmon-Hörmander estimate is related to the spectral properties
of ∆ + V which have applications to scattering theory.

The classical work of Agmon [A] shows the limiting absorption principle for short range
perturbations of H0. Fourier analysis is involved as a crucial tool in the proofs strategy;
however, Fourier transform does not permit in general to treat neither rough potentials nor
the case in which the same problems are settled in domains that are different from the whole

4
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space. For this reason, a great effort has been spent in order to develop multiplier methods
which work directly on the equation, inspired by the techniques introduced by Morawetz in
[Mo] for the Klein-Gordon equation. We point out that when V (x) = O(|x|−1−µ), µ > 0,
the phase of the Sommerfeld radiation condition that satisfies the solution of the equation
(H0 + V + λ)u = f is given by λ1/2 x

|x| .

Multiplier techniques are also used by Saito [S1], [S2], Isozaki [Is] or Mochizuki and
Uchiyama [MU] among others, in order to study existence and uniqueness of solution of the
Helmholtz equation

∆u+ V u+ λu = f (0.0.22)

with long range electric potential V . In all of them the Sommerfeld radiation condition that
the solution u satisfies is given by∫

|∇u− i(∇K)u|2 1

(1 + |x|)1−δ < +∞, (0.0.23)

being K = K(x, λ) an exact or approximate solution of the eikonal equation

|∇K|2 = λ+ V (x), (0.0.24)

such that ∇K has the form

∇K(x, λ) = Φ(x, λ)
x

|x|
+ (lower order terms). (0.0.25)

We emphasize that in general smoothness conditions on V are required for solving the eikonal
equation (0.0.24).

In order to prove the existence of the far field pattern of the solution u of the equation
(0.0.22) with long range potential, it is also necessary to solve an eikonal equation. This can
be found in [Is]. Here Isozaki proves the existence of the limit

lim
|x|→∞

|x|
d−1
2 e−iK(x,λ)R(λ+ i0)f(|x|ω) (0.0.26)

in L2(Sd−1), where ω = x
|x| , R(z) = (∆ + V + z)−1 and K(x, λ) is an approximate solution

of the equation (0.0.24). For this purpose, the limiting absorption principle for ∆ + V is
essential. In addition, the spectral representation theorem for Schrödinger operators with
long range potentials is obtained by considering the limit (0.0.26).

The references related to the resolvent estimates for the zero order perturbations of the
Laplacian in this thesis are due to Perthame and Vega ([PV1], [PV2]). They study the
Helmholtz equation in an inhomogeneous medium of refraction index n(x) = λ + V (x),
generalizing the estimate (0.0.21) to a variable case. They use a multiplier method with
appropriate weights as those used for the wave, Schrödinger or kinetic equations by Morawetz
[Mo], Lin and Strauss [LS] or Lions and Perthame [LP], respectively. This direct method

5
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permits them to treat coefficients with very low regularity and also cases in which V does
not vanish at infinity. We point out that the estimates are uniform for any λ ≥ 0 and have
the right scaling. Similar results but not scaling invariant were obtained in [JP] and [Zh1].
The scaling plays a fundamental role in the applications to nonlinear Schrödinger equation
[KPV] and in the high frequency limit for Helmholtz equations [BCKP], [CPR].

Let us pass now to consider first order perturbations of the Laplacian. We denote a
general perturbed Hamiltonian by

H = H0 + V (x,D), (0.0.27)

where Dj = −i ∂
∂xj

. Limiting absorption principle, resolvent estimates and scattering theory

related to the forward problem for H have been studied by Hörmander in a very general
framework for regular potentials. Hörmander’s approach is perturbative; hence, any special
structure of V (x,D) plays no role. We refer to ([H], Chapter XIV) for more details in this
approach.

In this manuscript we are interested in a very precise first order perturbation of the
Laplacian. More concretely, we wish to investigate the electromagnetic Schrödinger operator

HA = ∆ + V (x,D),

where
V (x,D) = 2iA(x) · ∇+ i∇ · A(x)− A(x) · A(x) + V (x). (0.0.28)

Here A : Rd → Rd is the magnetic vector potential and V : Rd → R is the electric scalar
potential. The standard covariant form of the electromagnetic Schrödinger hamiltonian is

HA = ∇2
A + V (0.0.29)

with
∇A = ∇+ iA. (0.0.30)

The magnetic potential A describes the interaction of a free particle with an external mag-
netic field. The magnetic field that corresponds to a magnetic potential A is given by the
d× d anti-symmetric matrix defined by

B = (DA)− (DA)t, Bkj =

(
∂Ak
∂xj
− ∂Aj
∂xk

)
k, j = 1, . . . , d. (0.0.31)

In geometric terms, it is given by the 2-form dA as

dA =
d∑

k,j=1

Bkj dx
k ∧ dxj. (0.0.32)

6
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In dimension d = 3, B is uniquely determined by the vector field curl A via the vector
product

Bv = curl A× v, ∀v ∈ R3. (0.0.33)

We also define the trapping component of B as

Bτ (x) =
x

|x|
B(x), (Bτ )j =

d∑
k=1

xk
|x|
Bkj (0.0.34)

and we say that B is non-trapping if Bτ = 0. Observe that in dimension d = 3 it coincides
with

Bτ (x) :=
x

|x|
× curl A(x).

Hence, Bτ (x) is the projection of B on the tangential space in x to the sphere of radius |x|,
for d = 3. Observe also that Bτ · x = 0 for any d ≥ 2, therefore Bτ is a tangential vector
field in any dimension and we call it the tangential component of the magnetic field B.

Related to the magnetic hamiltonian HA, several papers are devoted to the study of the
existence of a unique solution of the electromagnetic Helmholtz equation

(∇+ iA(x))2u+ V (x)u+ λu = f(x), x ∈ Rd. (0.0.35)

The first result goes back to the work of Eidus [E1] in 1962, where it is showed that there
exists a unique solution u(λ, f) of the equation (0.0.35) in R3 with the radiation condition

lim
r→∞

∫
|x|=r

∣∣∣∣ ∂u∂|x| − iλ1/2u

∣∣∣∣2 dσ(r) = 0. (0.0.36)

Here Aj(x) is assumed to vanish close to infinity and the electric potential satisfies V (x) =
O(|x|−2−α) with α > 1

6
at infinity.

In 1972, Ikebe and Saito [IS] extend the above result to any d ≥ 3 for potentials V
that are the sum of a long-range potential V1, being V1(x) = O(|x|−µ), ∂V1

∂|x| = O(|x|−1−µ)

at infinity and a short-range potential V2 such that V2(x) = O(|x|−1−µ), for µ > 0 when
|x| → ∞. Concerning the magnetic part, they require that Aj ∈ C1(Rd) such that each
component of the magnetic field holds |Bkj| ≤ C(1 + |x|)−1−µ for some C > 0, µ > 0,
|x| ≥ 1. By integration by parts they solve the electromagnetic Helmholtz equation

(∇+ A)2u+ V1u+ V2u+ λu = f (0.0.37)

in a L2(Rd)-weighted space with the spherical radiation condition∫
|x|≥1

∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 1

(1 + |x|)1−δ < +∞, (0.0.38)

7



Introduction

and a weighted L2 a-priori estimate∫
|u|2

(1 + |x|)1+δ
< +∞, (0.0.39)

where 0 < δ < 1 is a fixed constant.
In 1987, Saito [S] considers more general long-range potentials and proves the limiting

absorption principle for the equation (0.0.37) with a nonspherical radiation condition∫
|x|≥1

∣∣∣∇Au− i
√
λ∇Ku

∣∣∣2 1

(1 + |x|)1−δ < +∞, (0.0.40)

in the sense that ∇K is the outward normal of a surface which is not a sphere in general
and satisfies the eikonal equation

|∇K|2 = 1 +
V1

λ
.

Moreover, the same L2-weighted estimate (0.0.39) as in [IS] for the solution u is also proved.
There are not many works regarding to the far field pattern for the magnetic case. We

should mention the paper by Iwatsuka [Iw] where the author proves the existence of the limit

lim
n→∞

r
d−1
2

n e−ik(rnω,λ)u(rnω) (0.0.41)

in L2(Sd−1), being rn a sequence tending to infinity as n → ∞ and k(x, λ) is a real-valued
function of the form λ1/2|x| −m(x). The function m(x) depends on the magnetic potential
A(x) and is constructed as

m(x) =
d∑
j=1

xj

∫ 1

0

Aj(tx)dt, (x ∈ Rd). (0.0.42)

It is closely related to the gauge transformation which changes the magnetic potential A
into A − ∇m, but does not change the magnetic field. For this result, V is assumed to be
short range and Aj(x) ∈ C2(Rd) such that |Bjk(x)| ≤ C0(1 + |x|)−3/2−µ, for some C0, µ > 0.
However, singular magnetic potentials A, that are related to the tangential component of
the magnetic field B are not considered, see section 1.6.

The literature about resolvent estimates related to the magnetic Schrödinger operator
is more extensive. We are mainly interested in giving a-priori estimates for solutions u of
the equation (0.0.37) imposing conditions on the trapping component of the magnetic field
B, instead of on the magnetic potential A. The quantity Bτ was introduced by Fanelli
and Vega [FV] in which it is proved that weak dispersion for the magnetic Schrödinger
and wave equation holds, for example, for non-trapping potentials , i.e., Bτ = 0. This is
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also what happens in the stationary case, as it is shown in [F]. Following [PV1], Fanelli
generalizes the uniform a-priori estimate (0.0.21) to the magnetic case. This estimate has
several consequences about the so called Kato smoothing effects for solutions of the evolutions
problems which in general do not hold for long range potentials (see among others [BRV],
[DF], [Ka4], [KaYa], [LP], [LS1]). The uniform resolvent estimate∫

|u|2

|x|2
≤ C

∫
|x|2|f |2 (0.0.43)

also plays a fundamental role for dispersive estimates on the time dependent Schrödinger
operator, as for the study of the Strichartz estimates for the Schrödinger equation with
electromagnetic potential, see for example [DFVV], [FG], [M2], [M3]. Thus it is of interest
to investigate this estimate.

The aim of this thesis

The main purpose of this thesis is to study the forward problem for the Helmholtz equation
with electromagnetic potential, using multiplier techniques and integration by parts as main
tools. Our first concern will be the study of the limiting absorption principle for HA with
singular potentials and rather mild conditions on the potentials at infinity. We will see that
the behavior of the solution u of the equation

(HA + λ)u = f

changes depending on the classes of potentials we work with. We will also provide resolvent
estimates and Sommerfeld radiation conditions that will derive some applications related to
the cross-section and spectral properties for the Schrödinger operator HA.

To this end, the self-adjointness of HA with singular potentials in the Hilbert space
L2(Rd) will be essential. We will show that under some local integrability conditions on the
potentials A and V , HA is self-adjoint operator in L2(Rd). Thus it may be concluded that
the spectrum of this operator is real and consequently, we obtain the existence of solution
of the equation

HAu+ (λ± iε)u = f in L2(Rd),

with ε 6= 0 (see section 1.2 below).

In this dissertation we will follow carefully the above mentioned works [IS], [S], [PV1]
and [PV2].

Limiting absorption principle with singular potential

The first goal of the thesis is to prove the limiting absorption principle for the electromagnetic
Helmholtz equation with singular potentials. Let us decompose the electric potential V as

9
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V = V1 + V2 and let us consider the corresponding magnetic Schrödinger operator

L = (∇+ iA)2 + V1 + V2. (0.0.44)

Under appropriate assumptions on the potentials, we will construct the correct outgoing
solution of the resolvent equation

(L+ λ)u(x) = f(x), x ∈ Rd (0.0.45)

in some Hilbert space. Let z = λ ± iε and R(z) = (L + z)−1 be the resolvent of L defined
for z /∈ σ(L). Then we will state that the limit operators

R(λ± i0) = lim
ε→0

R(λ± iε) (0.0.46)

are well defined as bounded operators in some weighted L2 space. The solutions u± =
R(λ±i0)f obtained by using this method satisfy the equation (0.0.45) and the corresponding
radiation condition at infinity.

For this purpose we follow [IS], where existence of a unique solution of the equation
(0.0.45) is asserted imposing some asymptotic condition on Aj at infinity, while V1 is long
range and V2 is short range. More concretely, Ikebe and Saito require that there exist positive
constants c, µ > 0 and r0 ≥ 1 such that

(V1) for |x| ≥ r0, |V1(x)| ≤ c|x|−µ and the radial derivative ∂V1
∂|x| exists with ∂V1

∂|x| ≤ c|x|−1−µ.

(V2) |V2(x)| ≤ c|x|−1−µ, for |x| ≥ r0.

(B) Aj(x) is a real-valued C1-function with |Bjk(x)| ≤ c|x|−1−µ for |x| ≥ r0, j, k = 1, . . . , d,

where Bjk = ∂Ak
∂xj
− ∂Aj

∂xk
.

(UC) The unique continuation property holds for the differential operator L in Rd.

Then, using the integration by parts method under these assumptions the following is
proved:

Theorem 0.0.1. ([IS]) Let K be an open set in the upper half-plane of C of the form

K = {z = λ+ iε ∈ C : λ ∈ (a, b), ε ∈ (0, α)}, (0.0.47)

where 0 < a < b <∞ and 0 < α <∞. Let δ be a constant such that 0 < δ ≤ µ
2

and δ < 1.

(1) For λ ∈ K, there exists a strong limit

s− lim
ε→0

R(λ± iε) = R(λ± i0) ∈ B
(
L2

(1+δ)
2

, L2

− (1+δ)
2

)
. (0.0.48)
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(2) For f ∈ L2
(1+δ)

2

, u± = R(λ ± i0)f ∈ L2

− (1+δ)
2

is the unique solution of the equation

(0.0.45) with the Sommerfeld radiation condition∫
|x|≥1

∣∣∣∣∇Au± ∓ iλ1/2 x

|x|
u±

∣∣∣∣2 1

(1 + |x|)1−δ < +∞ (0.0.49)

and the a-priori estimate∫
|u±|2

(1 + |x|)1+δ
≤ C

∫
(1 + |x|)1+δ|f |2. (0.0.50)

One of our goals will be to improve the a-priori estimate (0.0.50) by showing that

λ|||u|||21 ≤ C(N1(f))2,

for λ ≥ λ0 > 0, which is stringer than the first one. We should mention here the paper by
Perthame and Vega [PV1] in which they prove the Morrey-Campanato type estimates for
the Helmholtz equation in an inhomogeneous medium of refraction index n(x) > 0 with very
low regularity and some growth at infinity. They prove that for d ≥ 3 the solution of the
equation

∆u+ n(x)u = −f(x)

satisfies

|||∇u|||2 + |||n1/2u|||2 + sup
R>0

1

R2

∫
|x|=R

|u|2dσR

+ (d− 3)

∫
|u|2

|x|3
+

∫
|∇⊥u|2

|x|
≤ C(N(f))2. (0.0.51)

These a-priori estimates were extended by Fanelli [F] to the magnetic case.
Using multiplier method and integration by parts, in Chapter 2 of this dissertation we are

able to strongly improve the result by Ikebe and Saito in several ways. First of all, we will
consider potentials that have the same decay as in [IS] at infinity, and thanks to the extra a-
priori estimates that will be proved following the ideas of [PV1] and [F], we can also permit
some singularities on them. Moreover, we can extend the range of the frequency λ from
λ ∈ (λ0, λ1) with 0 < λ0 < λ1 to any λ ≥ λ0 > 0. Finally, one of the most important tasks
is that we are able to extend the range of the exponent δ which appears in the Sommerfeld
radiation condition (0.0.38) from 0 < δ < 1 to 0 < δ < 2. This fact is a motivation of some
open questions related to the resolvent estimate∫

|u|2

|x|2
≤ C

∫
|x|2|f |2

and the existence of the far-field pattern for the magnetic Schrödinger operator which will
be studied in Chapter 4.
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Energy concentration and explicit Sommerfeld radiation condition

In order to prove the limiting absorption principle for the electromagnetic Helmholtz equation
(0.0.45) with more general long range potential, we will see that it is necessary to solve the
eikonal equation

|∇K|2 = 1 +
V1

λ
. (0.0.52)

To this end, although less decay on the potential V1 than in [IS] is required, more regularity on
it will be essential. More concretely, in 1987 Saito [S] proved that under the same assumptions
on the potential V2 and the magnetic field B as in [IS], if moreover the potential V2 admits
the singularity ∫

|x−y|≤1

|V2(x)|
|x− y|d−4+ν

dy <∞, ν > 0 (0.0.53)

and V1 is a bounded real-valued function belonging to C2(Rd\{0}) such that

|∂αV1(x)| ≤ C|x|−|α|, |α| ≤ 2, (0.0.54)

then there exists a unique solution of the Helmholtz equation (0.0.45) satisfying the Som-
merfeld radiation condition∫

|x|≥1

|∇Au− i
√
λ∇Ku|2(1 + |x|)δ−1 <∞ (0.0.55)

for all 0 < δ < 1. Here K = K(x, λ) is the solution of the eikonal equation (0.0.52) and has
the form

K(x, λ) = |x|g(x, λ), (0.0.56)

where for sufficiently large |x| and λ, there exist 0 < c0 < c1 <∞ such that

c0 ≤ g(x, λ) ≤ c1.

See [B] for more details.
In 2007, Perthame and Vega [PV2] showed that under some extra restriction on the

potential V1, then the solution of the Helmholtz equation

∆u+ n(x)u = f (0.0.57)

with n(x) = λ+ V1(x) that can have an angular dependency like

n(x) → n∞

(
x

|x|

)
as |x| → ∞, (0.0.58)

satisfies the Sommerfeld condition under the explicit form∫ ∣∣∣∣∇u− in1/2
∞

x

|x|
u

∣∣∣∣2 1

|x|
<∞. (0.0.59)
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It is a striking and unexpected feature that the index n∞ appears in this formula and not
the gradient of the phase as established by Saito [S]. This apparent contradiction is clarified
by the existence of an extra estimate on the energy decay deducing that the behavior of the
solution of the equation (0.0.57) can be very different to the one exhibited by free solutions.

In [PV2] Perthame and Vega study the inhomogeneous Helmholtz equation

∆u+ n(x)u+ iεu = −f(x), ε > 0 (0.0.60)

with n(x) > 0 such that

n = n1 + n2 with n2 ∈ L∞, (0.0.61)

‖n1/2
1 u‖L2 ≤ (1− c0)‖∇u‖L2 for some c0 > 0, (0.0.62)

2
∑
j∈Z

sup
C(j)

(x · ∇n(x))−
n(x)

:= β < 1, (0.0.63)

where C(j) = {x ∈ Rd : 2j−1 ≤ |x| ≤ 2j} and (a)− denotes the negative part of a ∈ R given
by (a)− = −min{0, a}. On the one hand, the authors provide the a-priori estimate

|||∇u|||2 + |||n1/2u|||2 +

∫
|∇⊥u|2

|x|
<∞ (0.0.64)

for solutions u of the equation (0.0.60). From this, if the index of refraction n(x) has a slow

and only radial decay to a constant n∞

(
x
|x|

)
at infinity, they show that u also satisfies the

energy estimate ∫
|x|≥1

|∇ωn∞(ω)|2 |u|
2

|x|
<∞, (0.0.65)

where ω = x
|x| . This inequality uses in a strong way the estimate for the tangential part of

the gradient of the solution in (0.0.64) and says that the points where |∇ωn∞(ω)| vanishes
on the sphere are the concentration directions for the energy |u|2. In other words, the
Sommerfeld condition hides the main physical effect arising for a variable n at infinity;
energy concentration on lines rather than dispersion in all directions.

The main goal of Chapter 3 of the thesis is to extend this result by Perthame and Vega
[PV2] to the magnetic case. Under certain hypotheses on n(x) and the magnetic field B, we
will show the energy estimate (0.0.65) for solutions of the magnetic Helmholtz equation

∇2
Au+ n(x)u+ iεu = f. (0.0.66)

Furthermore, we are also interested in the study of the limiting absorption principle for the
equation (0.0.66) with ε = 0. However, we are not able to do that assuming the conditions
considered for proving the energy estimate. In order to accomplish this task, we follow
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Saito [S] and by the same method as in the previous section, we allow singularities on the
potentials at the origin. Finally, a combination of the both results will permit to deduce the
explicit Sommerfeld condition∫ ∣∣∣∣∇Au− in∞

x

|x|
u

∣∣∣∣2 1

1 + |x|
<∞ (0.0.67)

for solutions obtained from the limiting absorption principle.

Resolvent estimates and Applications

The last part of the thesis concerns with new estimates which imply some applications related
to the spectral properties of the magnetic Schrödinger operator

HA = ∇2
A + V

with potentials that have strong singularity. Under smallness conditions on the trapping
component of the magnetic field B and on the electric potential V , we give uniform resolvent
estimates for the solution u of the equation

(HA + λ+ iε)u = f (0.0.68)

for any λ ∈ R, ε > 0. More concretely, we prove that the solution u ∈ H1
A(Rd) of the

equation (0.0.68) satisfies the following resolvent estimate for any λ ∈ R∫
|u|2

|x|2
≤ C

∫
|x|2|f |2, (0.0.69)

where C > 0 is independent of λ and ε.
Furthermore, we sharpen the Sommerfeld radiation condition proved in the previous

chapters for all λ ≥ λ0 > 0. In fact, we prove the radiation condition

sup
R≥1

R

∫
|x|≥R

|∇A(e−iλ
1/2|x|u)|2 ≤ C

∫
(1 + |x|)|x|2|f |2 (0.0.70)

for any λ ≥ λ0 > 0, where C = C(λ0) > 0 is independent of ε.
Estimate (0.0.69) implies on the one hand, the a-priori estimate

λ|||u|||21 ≤ C

∫
|x|2|f |2. (0.0.71)

Moreover, combining with the uniqueness result of the equation

(HA + λ)u = f, (0.0.72)
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we will derive the limiting absorption principle considering potentials with the singularity
ν|x|−2 and ν sharp at the origin. On the other hand, estimates (0.0.70) and (0.0.71) imply
existence of the cross-section of the solution u of the equation (0.0.72). In addition, if the
estimate (0.0.69) is also true, then we are able to deduce uniqueness of the cross-section.

Having disposed of the above results, our next goal will be to see some spectral properties
of the magnetic Schrödinger operator HA. To this end, the formula which relates the resolu-
tion of the identity for the self-adjoint operator HA with its resolvent will be fundamental.
Let R(z) = (HA + z)−1 denote the resolvent of HA, ∆ = (λ1, λ2) with 0 < λ1 < λ2 <∞ and
E(∆) the spectral measure associated with HA. By the well known formula (see section 1.5
below)

(E(∆)f, f) =
1

2πi
lim
ε→0

lim
ν→0

∫ λ2+ν

λ1−ν
(R(λ− iε)f −R(λ+ iε)f, f) dλ, (0.0.73)

we will show that HA is absolutely continuous on (0,∞) and we will give the spectral
representation of HA through the cross-section of the solution u = R(λ+i0)f of the equation
(0.0.72).

It is worth pointing out that although our hypotheses on the potentials will be given in
a more general setting, the ones that we should keep in mind for obtaining the resolvent
estimates are, on the one hand, small inverse square potentials V = ν1

|x|2 , |Bτ | = ν2
|x|2 with

sharp constants related to Hardy’s inequality. On the other hand, we have Coulomb type
electric potentials and long range magnetic potential A such that Bτ = 0 or Bτ is small.
(See section 1.6 below). Nevertheless, in order to get the Sommerfeld radiation condition
(0.0.70), one can preserve the same kind of singularity at the origin, but needs to require
more decay at infinity. In fact, we will assume

|Bτ |+ |V | ≤

{
c
|x|2 if |x| ≤ 1

c
|x|5/2+α if |x| ≥ 1.

(0.0.74)

for some c > 0, α > 0.
The proofs of the results of Chapter 4 are based on integration by parts. We emphasize

that in order to prove existence of the cross-section it is crucial to show that

|F(λ, r)f(ω)| ∈ H1(Sd−1), (0.0.75)

where
F(λ, r)f(ω) = C(λ)r

d−1
2 e−iλ

1/2ru(rω).

Property (0.0.75) follows from the Sommerfeld condition (0.0.70) combining with the a-
priori estimate (0.0.71). The existence of the far field pattern for the magnetic Schrödinger
operator HA would assert if we proved that

F(λ, r)f(ω) ∈ H1(Sd−1). (0.0.76)
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By our approach, this could be done by putting some restriction to the magnetic potential
A. Another way for that would be to follow Iwatsuka [Iw] where the definition of F(λ, r)f
is replaced by the next one

F(λ, r)f(ω) = r
d−1
2 e−ik(rω,λ)R(λ+ i0)f(rω). (0.0.77)

Here k(x, λ) = λ1/2|x| −m(x), where m(x) is a certain function depending on the magnetic
potential A and is constructed by using the trapping component of the magnetic field B, see
Lemma 1.6.1 below. However, this topic exceeds the scope of this thesis and we propose to
study it in the future.

To facilitate access to the individual topics, the chapters of this dissertation are rendered
as self-contained as possible. The next chapter constitutes sufficient preparation for following
the main results of the thesis which are given and developed in Chapters 2, 3 and 4.

Notation

Throughout the thesis, C denotes an arbitrary positive constant and κ stands for a small
positive constant. In most of the cases, κ will come from the inequality ab ≤ κa2 + 1

4κ
b2,

which is true for arbitrary κ > 0. In the integrals where we do not specify the integration
space we mean that we are integrating in the whole Rd with respect to the Lebesgue measure
dx, i.e.

∫
=
∫
Rd dx.
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Chapter 1

Preliminaries

The purpose of this chapter is to provide a general background for the thesis to follow. We
review some of the standard facts related to the magnetic Hamiltonian HA and we introduce
the techniques that will be used to prove the main results of the manuscript.

1.1 H1
A space and the diamagnetic inequality

In differential geometry it is often necessary to consider connections, which are more com-
plicated derivatives than ∇. The simplest example is a connection on a U(1) bundle
over Rd, which merely means acting on complex-valued functions f by (∇ + iA(x)), with
A(x) : Rd → Rd being some preassigned, real vector field. The same operator occurs in the
quantum mechanics of particles in external magnetic fields (with d = 3). As we have already
seen, a magnetic field B : R3 → R3 in quantum mechanics involves replacing ∇ by ∇+ iA(x)
where A is called a magnetic vector potential and satisfies

curlA = B.

Unlike in the differential geometry setting, A need not be smooth, because we could add an
arbitrary gradient to A, A → A +∇ψ, and still get the same magnetic field. This is called
gauge invariance. The problem is that ψ (and hence A) could be a wild function even if B
is well behaved.

For these reasons we want to find a large class of A’s for which we can make (distribu-
tional) sense of (∇ + iA(x)) and (∇ + iA(x))2 when acting on a suitable class of L2(R3)
functions. For general dimension d, the appropriate condition on A, which we assume hence-
forth, is

Aj ∈ L2
loc(Rd) for j = 1, . . . , d. (1.1.1)

Because of this condition the functions Ajf are in L1
loc(Rd) for every f ∈ L2

loc(Rd). Therefore
the expression (∇ + iA)f called the covariant derivative (with respect to A) of f , is a
distribution for every f ∈ L2

loc(Rd).
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Hence, for each A : Rd → Rd satisfying (1.1.1), one could define the space H1
A(Rd) which

consists of all functions f : Rd → C such that

f ∈ L2(Rd) and (∂j + iAj)f ∈ L2(Rd) for j = 1, . . . , d. (1.1.2)

Observe that we do not assume that ∇f or Af are separately in L2(Rd). The inner product
in this space is

(f1, f2)A = (f1, f2) +
d∑
j=1

((∂j + iAj)f1, (∂j + iAj)f2) (1.1.3)

where (·, ·) is the usual L2(Rd) inner product. The second term on the right side of (1.1.3),
in the case that f1 = f2 = f , is called the kinetic energy of f . It is to be compared to the
usual kinetic energy ‖∇f‖2

2. As in the case of H1(Rd), H1
A(Rd) is complete.

If ψ ∈ H1
A(Rd), then (∇+ iA)ψ is an Rd-valued L2(Rd)-function. Hence

(∇+ iA)2ψ = ∆ψ + 2iA · ∇ψ + i∇ · Aψ − A · Aψ

makes sense as a distribution. But if f ∈ H1
A(Rd), it is not necessarily true that f ∈ H1(Rd).

However, |f | is always in H1(Rd) as the following shows.

Theorem 1.1.1. ([LL])(diamagnetic inequality) Let A : Rd → Rd be in L2
loc(Rd) and let f be

in H1
A(Rd). Then |f |, the absolute value of f , is in H1(Rd) and the diamagnetic inequality,

|∇|f |(x)| ≤ |(∇+ iA)f(x)|, (1.1.4)

holds pointwise for almost every x ∈ Rd.

It is called the diamagnetic inequality because it says that removing the magnetic field
(A=0) allows us to decrease the kinetic energy by replacing f(x) by |f(x)| (and at the same
time leaving |f(x)|2 unaltered).

Throughout the thesis we will mainly have functions u(x) that belongs to H1
A(Rd). How-

ever, at some point it will be necessary to show that u ∈ H1
loc(Rd). For this purpose, we will

make the following assumption. ∫
|x|≤R

|Au|2 ≤ CR

∫
|∇u|2 (1.1.5)

for any R > 0 and some CR > 0. Combining this condition with the diamagnetic inequality
(1.1.4), since

|∇u|2 = |∇Au|2 − |Au|2 + 2=Aū · ∇u, (1.1.6)

we conclude that if ∇Au ∈ L2(Rd) then ∇u ∈ L2
loc(Rd).
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1.2. Self-adjointness of HA = ∇2
A + V

1.2 Self-adjointness of HA = ∇2
A + V

For various reasons the property of being self-adjoint is a fundamental information in quan-
tum mechanics. So it is natural to ask whether this expression determines a self-adjoint
operator or not in a suitable Hilbert space. In this work, recalling that the spectrum of a
self-adjoint operator is real, the self-adjointness of HA will ensure the existence of solution
of the equation

HAu(x) + (λ± iε)u(x) = f(x), ε 6= 0 (1.2.1)

in Rd for any f ∈ L2(Rd) and u belonging to the Hilbert space H1
A(Rd) introduced above.

Let us recall some definitions and basic results to this issue. (See [RS1])

Definition 1.2.1. A densely defined operator T on a Hilbert space is called symmetric (or
Hermitian) if T ⊂ T ∗, that is, if their domains satisfy D(T ) ⊂ D(T ∗) and Tϕ = T ∗ϕ for all
ϕ ∈ D(T ). Here T ∗ denotes the adjoint of T . Equivalently, T is symmetric if and only if

(Tϕ, ψ) = (ϕ, Tψ) for all ϕ, ψ ∈ D(T ).

Definition 1.2.2. An operator T is called self-adjoint if T = T ∗, that is, if and only if T is
symmetric and D(T ) = D(T ∗).

Definition 1.2.3. A symmetric operator T is called essentially self-adjoint if its closure T
is self-adjoint.

An equivalent characterization of essential self-adjointness is that there exists a unique
self-adjoint extension of the operator to a larger domain.

When we deal with the magnetic Schrödinger operator we typically take L2(Rd) as the
Hilbert space mentioned in the previous definitions. The aim of this section is to show the
self-adjointness of HA, under some local integrability conditions on A and V , for the kind
of potentials we deal with in this dissertation (including singular potentials). Many authors
like Ikebe and Kato [IK], Leinfelder and Simander [LS], Avron, Herbst and Simon [AHS]
or Cycon, Froese, Kirsch and Simon [CFKS] among others has investigated the essential
self-adjointness of the electromagnetic Schrödinger operator HA in a suitable Hilbert space.

We will prove that HA is self-adjoint by using the definition and also the Riesz represen-
tation theorem. From now on we assume that∫

V |u|2 < 1−
∫
|∇u|2, (1.2.2)

Aj ∈ L2
loc, V ∈ L1

loc. (1.2.3)

and define the domain

D(HA) := {φ ∈ L2(Rd) :

∫
|∇Aφ|2 −

∫
V |φ|2 <∞}. (1.2.4)
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Remark 1.2.4. Potentials V that belong to the Morrey Space L2− d
p
,p with p > 1 and small-

ness condition on ‖V ‖
L
2− dp ,p

satisfy (1.2.2). Recall that for an open Ω ⊂ Rd, 1 ≤ p ≤ ∞ and

λ ≥ 0, the Morrey space Lλ,p is defined as

Lλ,p(Ω) = {u ∈ Lp(Ω) : ∃B <∞, r−λ
∫

Ωr(x0)

|u|p ≤ Bp ∀x0 ∈ Ω, r > 0},

with norm defined as the least such constant, i.e.

‖u‖Lλ,p =

(
sup

x0∈Ω,r>0
r−λ

∫
Ωr(x0)

|u|p
)1/p

(1.2.5)

where Ωr(x) = Br(x) ∩ Ω and Br denotes a ball of radio r.

Remark 1.2.5. Observe that by (1.2.2) and the diamagnetic inequality (1.1.4), we have∫
|∇Aφ| −

∫
V |φ|2 ≥ ν

∫
|∇Aφ|2 > 0,

for some 0 < ν < 1. Hence, if φ ∈ D(HA) we get that φ ∈ H1
A(Rd).

Lemma 1.2.6. Let Aj, V be real-valued functions satisfying (1.2.3). Then, H := D(HA) is
a Hilbert space with the inner product

(φ, ϕ)H = (φ, ϕ)L2 + (∇Aφ,∇Aϕ)L2 − (V φ, ϕ)L2 (1.2.6)

and the norm

‖φ‖2
H = ‖φ‖2

L2 + ‖∇Aφ‖2
L2 −

∫
V |φ|2. (1.2.7)

Proof. Since H1
A(Rd) is a Hilbert space, from Remark 1.2.5 it is very easy to check that

(φ, ϕ)H defined as above is an inner product.
We have to see that H is complete. Let φn be a Cauchy sequence in H, then so is in L2

and there exist φ ∈ L2, ψ ∈ L2 and ϕ ∈ L2 such that

lim
n→∞

‖φn − φ‖L2 = 0 (1.2.8)

and

lim
n→∞

‖∇Aφn − ψ‖L2 = 0,

lim
n→∞

∫
V |φn|2 =

∫
|ϕ|2.

We claim that ψ = ∇Aφ and ϕ such that |ϕ|2 = V |φ|2. By the local integrability assumptions
on the potentials, since φn → φ in L2, we get

∇Aφn → ∇Aφ and V φn → V φ (1.2.9)

in the distributional sense. Hence, φn → φ in H, which completes the proof.
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1.2. Self-adjointness of HA = ∇2
A + V

Now we can state our main result of this section.

Theorem 1.2.7. Under the hypotheses of Lemma 1.2.6 the Schrödinger operator HA defined
on L2(Rd) is self-adjoint. Moreover, it is the unique self-adjoint extension of HA on C∞0 (Rd)
such that the domain is contained in L2(Rd).

Proof. We begin by proving the self-adjointness of HA. To this end, let us first prove that

∀f ∈ L2(Rd) ∃!u ∈ D(HA) s.t. HAu− u = −f. (1.2.10)

Let us fix f ∈ L2(Rd) and define the linear functional Tf : H → C such that

Tf (ν) = (f, ν)L2 , ∀ν ∈ H. (1.2.11)

Then, by (1.2.2) we have that Tf is bounded, i.e.

|Tf (ν)| ≤ ‖f‖L2‖ν‖L2 ≤ C‖ν‖H. (1.2.12)

Hence, by using the Riesz Representation Theorem, we conclude that there exists a unique
φ ∈ H such that

(φ, ν)H = Tf (ν) ∀ν ∈ H. (1.2.13)

In fact,
− (∇2

Au+ V u− u, ν)L2 = (f, ν)L2 , (1.2.14)

for any test function ν. But since f ∈ L2, the functional

ν → (∇2
A + V − 1, ν)L2 (1.2.15)

extends uniquely to a continuous functional on L2(Rd). Hence, we get that for f ∈ L2 there
exists a unique u ∈ D(HA) ⊂ L2(Rd) satisfying

∇2
Au+ V u− u = −f, (1.2.16)

which is our first claim.
Let J = (HA−I)−1. Our next goal is to show that J is self-adjoint. Since J ∈ L(L2(Rd)),

it is sufficient to show that

(Ju, v)L2 = (u, Jv)L2 ∀u, v ∈ L2(Rd). (1.2.17)

Let u1 = Ju, v1 = Jv such that

HAu1 − u1 = u,

HAv1 − v1 = v.
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1. Preliminaries

Since (u1, HAv1) = (HAu1, v1) (i.e. HA is symmetric), then (u1, v) = (u, v1), and (1.2.17) is
proved.

As HA is symmetric, we shall have established the self-adjointness of HA by showing that
D(H∗A) ⊂ D(HA). Let u ∈ D(H∗A) and set f = H∗Au− u. Then

(f, v) = (u,HAv − v) ∀v ∈ D(HA), (1.2.18)

that is,

(f, Jw) = (u,w) ∀w ∈ L2. (1.2.19)

As a consequence, u = Jf which implies u ∈ D(HA). Thus D(H∗A) = D(HA) and the
self-adjointness follows.

The proof is completed by showing the uniqueness part of the theorem, since the sym-
metry is trivial. Assume that there exists another self-adjoint extension such that for any
φ ∈ D′(HA) ⊃ C∞0 (Rd), then φ ∈ L2(Rd). Since HA is self-adjoint on D′(HA),

(φ̃, (∇2
A + V )φ)L2 = ((∇2

A + V )φ̃, φ) (1.2.20)

for all φ̃ ∈ C∞0 . This means that φ ∈ L2, V 1/2φ ∈ L2 and ∇Aφ ∈ L2 in the distributional
sense. Thus, φ ∈ D(HA), i.e. D′(HA) ⊂ D(HA) and D(HA)∗ ⊂ (D′(HA))∗. Now since HA is
self-adjoint in D(HA) and D′(HA), D(HA) = D′(HA).

1.3 Multiplier method and integration by parts

The multiplier method technique has become an indispensable tool in the study of partial
differential equations due to its versatile technical power as well as due to its global na-
ture, which allows for obtaining results on existence or uniqueness for linear and nonlinear
problems in the language of suitable integrals.

By a multiplier method, we mean that given a partial differential equation

Lu = f in Ω ⊂ Rd, (1.3.1)

where L is, for example, a second order elliptic linear differential equation with sufficiently
smooth coefficients in Ω and f a given function of x, one seeks to:

1. Multiply (1.3.1) by a suitable multiplier M [u].

2. Integrate over Ω.

3. Manipulate the expression using integration by parts and eventual boundary conditions
to arrive at a potentially useful integral identity.
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1.3. Multiplier method and integration by parts

There is much artistry in both the choice of the multiplier M [u] as well as in the choice of
a suitable function space for u.

In this section, we consider the electromagnetic Helmholtz equation

(∇+ iA(x))2u+ V (x)u+ λu+ iεu = f(x), x ∈ Rd (1.3.2)

where λ ∈ R, ε > 0 and we derive such a integral identities basing on the standard technique
of Morawetz multipliers. This was introduced in [Mo] for the Klein Gordon equation and then
used in several other contexts (dispersive equations, kinetic equations, helmholtz equation,
etc.) We should mention here [PV1] as our reference work about the relation between
Morawetz methods and Morrey-Campanato estimates for the Helmholtz equation (when
A ≡ 0) and its generalization to the magnetic case due to Fanelli [F].

We remark that the idea of integrating by parts with the covariant form ∇A is to use the
Leibnitz formula

∇A(fg) = (∇Af)g + f(∇g), (1.3.3)

putting all the dissorted derivatives on the solution and the straight derivatives on the
multiplier.

In order to carry out the integration by parts argument below, we need some regularity
in the solution u. In general, it is enough to know that u ∈ H1

A(Rd). Moreover, since we are
including singularities in our potentials, it is necessary to put some restrictions on them to
check that the contributions of these terms make sense. To this end, apart from the condition
(1.2.2), the following assumptions on V and Bτ will be needed throughout the thesis.∫

(r∂rV )|u|2 ≤ C

∫
|∇u|2, (1.3.4)∫

|x|2|Bτ |2|u|2 ≤ C

∫
|∇u|2, (1.3.5)

for some C > 0, where r = |x| and ∂rV = x
|x| · ∇V denotes the radial derivative of V .

Before stating the integral identities, we need some notation. We denote the radial
derivative and the tangential component of the gradient by

∇r
Au =

x

|x|
· ∇Au, |∇⊥Au|2 = |∇Au|2 − |∇r

Au|2, (1.3.6)

respectively. We drop the index A if A = 0, and in this case we write the radial derivative
as ∂r and the tangential one as ∇⊥ or ∂τ . In addition, the following a-priori estimates are
also necessary.

Lemma 1.3.1. Let ϕ ∈ C∞ a real-valued radial function so that there exist C > 0, k0 ≥ 0
where |ϕ(k0+1)| ≤ C. Then, for a suitable f , the solution of the Helmholtz equation (1.3.2)
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1. Preliminaries

satisfies

ε

∫
ϕ(k0)|u|2 ≤

∫
|ϕ(k0+1)||∇r

Au||u|+
∫
|f ||ϕ(k0)||u| (1.3.7)

∫
ϕ(k0)|∇Au|2 ≤

∫
(λ+ V )ϕ(k0)|u|2 +

∫
|ϕ(k0+1)||∇r

Au||u|

+

∫
|f ||ϕ(k0)||u|. (1.3.8)

Proof. We just need to multiply the equation (1.3.2) by ϕ(k0)ū and integrate it over Rd.
Then, the imaginary part gives (1.3.7) and (1.3.8) follows by taking the real part.

Corollary 1.3.2. In particular, the solution of the Helmholtz equation (1.3.2) satisfies the
a-priori estimates

ε

∫
|u|2 ≤

∫
|f ||u| (1.3.9)

∫
|∇Au|2 ≤

∫
(λ+ V )|u|2 +

∫
|f |||u|. (1.3.10)

Remark 1.3.3. Note that under appropriate assumption on the potential V , if there exist
C > 0, k0 ≥ 0 such that |ϕ(k0+1)| ≤ C, by induction on k we get∫

ϕ(k)(|u|2 + |∇Au|2) < +∞ ∀k ≤ k0, (1.3.11)

for u ∈ H1
A(Rd) and suitable f .

Now we are ready to formulate the key equalities of this manuscript.

Lemma 1.3.4. Let ϕ : Rd → R be regular enough. Then, the solution u ∈ H1
A(Rd) of the

Helmholtz equation (1.3.2) satisfies∫
ϕλ|u|2 −

∫
ϕ|∇Au|2 +

∫
ϕV |u|2 −<

∫
∇ϕ · ∇Auū

= <
∫
ϕfū, (1.3.12)

ε

∫
ϕ|u|2 −=

∫
∇ϕ · ∇Auū = =

∫
ϕfū, (1.3.13)
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1.3. Multiplier method and integration by parts

Proof. Let us multiply the equation (1.3.2) by the symmetric multiplier ϕu in the L2-sense,
obtaining ∫

∇2
Auϕū+ (λ+ iε)

∫
ϕ|u|2 +

∫
ϕV |u|2 =

∫
fϕū. (1.3.14)

Note that integration by parts gives∫
∇2
Auϕū =−

∫
∇ϕ · ∇Auū−

∫
ϕ|∇Au|2.

Thus taking the real part of (1.3.14) we obtain (1.3.12). The imaginary part gives (1.3.13).

Lemma 1.3.5. Let ψ : Rn 7−→ R be regular enough. Then, any solution u ∈ H1
A(Rd) of the

equation (1.3.2) satisfies

∫
∇Au ·D2ψ · ∇Au+ <1

2

∫
∇(∆ψ) · ∇Auū+ ε=

∫
∇ψ · ∇Auu

−=
∫ d∑

j,k=1

∂ψ

∂xk
Bkj(∇A)juū−

1

2

∫
∆ψV |u|2 −<

∫
V∇ψ · ∇Auū

= −<
∫
f∇ψ · ∇Au−

1

2
<
∫
f∆ψū, (1.3.15)

where D2ψ denotes the Hessian of ψ, while (∇A)j = ∂j + iAj.

Proof. Let us consider the anti-symmetric multiplier

A = ∇ψ · ∇A +
1

2
∆ψ. (1.3.16)

We multiply the equation (1.3.2) by Au in the L2-sense. Observe that since A is anti-
symmetric then

<(u,Au) = 0.

In addition, the operator ∆ψ is symmetric, then <iε(u,∆ψu) = 0. Thus taking the real part
yields

<(∇2
Au,Au) + <(V,Au)− ε=(u,∇ψ · ∇Au) = <(f,Au).

Now, let us write

<(∇2
Au,Au) = <

∫
∇2
Au∇ψ · ∇Au+

1

2
<
∫
∇2
Au∆ψū

≡ I1 + I2.
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1. Preliminaries

On the one hand, integration by parts gives

I2 =− <
2

∫
∇(∆ψ) · ∇Auū−

1

2

∫
|∇Au|2∆ψ. (1.3.17)

On the other hand, we have

I1 =
d∑

k,j=1

<
∫ (

∂

∂xj
+ iAj

)(
∂u

∂xj
+ iAju

)
∂ψ

∂xk

(
∂ū

∂xk
− iAkū

)

= −
d∑

k,j=1

<
∫ (

∂u

∂xj
+ iAju

)
∂ψ

∂xk

[(
∂

∂xj
− iAj

)(
∂ū

∂xk
− iAkū

)]
−
∫
∇Au ·D2ψ · ∇Au

≡ I11 −
∫
∇Au ·D2ψ · ∇Au.

Note that(
∂

∂xj
+ iAj

)(
∂u

∂xk
+ iAku

)
=

(
∂

∂xk
+ iAk

)(
∂u

∂xj
+ iAju

)
− iBkju, (1.3.18)

with Bkj =
∂Aj
∂xk
− ∂Ak

∂xj
. Hence, by (1.3.18) and integration by parts we obtain

I11 =
d∑

k,j=1

<
∫ (

∂u

∂xj
+ iAju

)
∂ψ

∂xk

(
∂

∂xk
+ iAk

)(
∂u

∂xj
+ iAju

)

+

∫
|∇Au|2∆ψ + =

d∑
k,j=1

∫ (
∂u

∂xj
+ iAju

)
∂ψ

∂xk
Bkjū.

Therefore, we conclude

I11 =
1

2

∫
|∇Au|2∆ψ + =

d∑
k,j=1

∫
∂ψ

∂xk
Bkj

(
∂u

∂xj
+ iAju

)
ū.

As a consequence, we get

<(∇2
Au,Au) = −

∫
∇Au ·D2ψ · ∇Au−

1

2
<
∫
∇(∆ψ) · ∇Auū

+ =
∫ d∑

j,k=1

∂ψ

∂xk
Bjk(∇Au)jū,

where (∇Au)j = ∂ju+ iAju. This combining with (1.3.17) gives (1.3.15).
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1.3. Multiplier method and integration by parts

Remark 1.3.6. The integration by parts gives very precise information about the relevant
quantities related to the electromagnetic field. It is of a particular interest the part concerning
the magnetic potential A. Note that in the above identities only appear the quantity Bjk.
Moreover, if we consider radial multipliers, then since ∂ψ

∂xk
= xk
|x|ψ

′, by (0.0.34) one could
rewrite the magnetic term as

=
d∑

k,j=1

∫
∂ψ

∂xk
Bkj

(
∂u

∂xj
+ iAju

)
ū = =

d∑
j=1

∫
ψ′(Bτ )j

(
∂u

∂xj
+ iAju

)
ū

= =
∫
ψ′Bτ · ∇Auū.

Thus the tangential component of the magnetic field is the only term that appears related to
the magnetic potential A.

Remark 1.3.7. Observe that if u ∈ H1
A(Rd) and the multipliers are radial, by Remark 1.3.3

all terms of the above identities that do not contain any potential are finite. In addition, if
|ϕ| ≤ C and |ψ′(r)| ≤ r, then by (1.2.2), (1.3.4), (1.3.5), the potential terms are controlled.
It is easy to check that the terms containing the potential V in the identity (1.3.15) can be
rewritten as

1

2

∫
ψ′∂rV |u|2 = −1

2

∫
V∆ψ|u|2 −<

∫
V∇ψ · ∇Auū. (1.3.19)

Remark 1.3.8. Note that we can consider the anti-symmetric multiplier as

A = E · ∇A +
1

2
divE, (1.3.20)

where E is a real vector field.

These integral identities will be used to prove the main results of the thesis. A suitable
multipliers must be chosen in order to estimate from above and below the corresponding
terms of (Lu,M [u]). One needs to show the positivity of the terms that wants to control and
estimate the remaining terms. Moreover, a precise combination of them implies the following
key equality that will be used in the next three chapters and plays a fundamental role for
proving the different versions of the Sommerfeld radiation condition of this manuscript.

Proposition 1.3.9. Let ψ : Rd 7−→ R a regular radial function so that there exist C > 0,
k ≥ 0 such that |ψ(k)| ≤ C. Then, any solution u ∈ H1

A(Rd) of the Helmholtz equation
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(1.3.2) satisfies

1

2

∫
ψ′′|∇r

Au− iλ1/2u|2 +

∫ (
ψ′

|x|
− ψ′′

2

)
|∇⊥Au|2 (1.3.21)

+ <(d− 1)

2

∫
∇
(
ψ′

|x|

)
· ∇Auū+

ε

2λ1/2

∫
ψ′
∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2
−=

∫
ψ′ūBτ · ∇Au−

d− 1

2

∫
ψ′

|x|
V |u|2 −<

∫
V ψ′∇r

Auū

+
ε

2λ1/2
<
∫
ψ′′∇r

Auū−
ε

2λ1/2

∫
ψ′V |u|2

= − ε

2λ1/2
<
∫
ψ′fū−<

∫
fψ′(∇r

Aū+ iλ1/2ū)− (d− 1)

2
<
∫

ψ′

|x|
fū.

Proof. The proof consists in the combination of the above identities. We first compute

(1.3.15) + (1.3.12) + λ1/2(1.3.13)

putting ϕ = 1
2
ψ′′ in (1.3.12). Then since ψ is radial, letting r = |x| yields

∇Au ·D2ψ · ∇Au = ψ′′|∇r
Au|2 +

ψ′

r
|∇⊥Au|2 (1.3.22)

and

∆ψ =
(d− 1)ψ′

r
+ ψ′′. (1.3.23)

Thus by Remark 1.3.6 we obtain

1

2

∫
ψ′′(|∇r

Au|2 + λ|u|2)−=λ1/2

∫
ψ′′∇r

Auū+

∫ (
ψ′

r
− ψ′′

2

)
|∇⊥Au|2

+ <d− 1

2

∫
∇
(
ψ′

r

)
· ∇Auū+ ελ1/2

∫
ψ′|u|2 − ε=

∫
ψ′

x

|x|
· ∇Auū

− d− 1

2

∫
ψ′

r
V |u|2 −<

∫
V ψ′

x

|x|
· ∇Auū−=

∫
ψ′ūBτ · ∇Au

= −<
∫
fψ′

x

|x|
· ∇Aū−

(d− 1)

2
<
∫

ψ′

|x|
fū+ =λ1/2

∫
ψ′fū.

Let us subtract now the identity (1.3.12) multiplied by ε from the above equality with
the choice of the test function

ϕ =
1

2λ1/2
ψ′. (1.3.24)

Hence, from the fact that∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 = |∇Au|2 + λ|u|2 − 2λ1/2= x

|x|
· ∇Auū, (1.3.25)

we get the square related to ε, and we conclude (1.3.21).
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Remark 1.3.10. For V ∈ C1(Rd), by integration by parts the electric terms in (1.3.21) can
be rewritten as

1

2

∫
(ψ′′V + ψ′∂rV )|u|2 =

1

2

∫ [(
ψ′′ − ψ′

r

)
V +

ψ′

r
∂r(rV )

]
|u|2. (1.3.26)

Remark 1.3.11. Noting that |∇Au|2 = |∇r
Au|2 + |∇⊥Au|2, in the case that ψ′

r
− ψ′′

2
≥ νψ′′

for some ν > 0, from (1.3.25) the first four terms of the equality (1.3.21) gives the control
of the so-called Sommerfeld square∫

ψ′′
∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 . (1.3.27)

1.4 Magnetic Hardy type inequalities

In the course of providing a new proof of Hilbert’s double series theorem, G. H. Hardy [Ha]
discovered the inequality ∫ ∞

0

u(x)2

x2
dx ≤ 4

∫ ∞
0

|u′(x)|2dx, (1.4.1)

which is valid for absolutely continuous u such that u(0) = 0 and u′ ∈ L2(0,∞). The
generalization of this inequality to higher dimensions (see [OK] for historical background)
reads as follows ∫

Rd

|u(x)|2

|x|2
dx ≤ 4

(d− 2)2

∫
Rd
|∇u(x)|2dx, (1.4.2)

for u ∈ H1(Rd), d ≥ 3.

In this section we introduce the magnetic version of the Hardy inequality (1.4.2) that we
will use throughout this work. We first give the same type of inequality in a ball of radius
R > 0 and then we derive the standard one on the whole Rd. In addition, we give a variant
of this inequality with a different weight.

Theorem 1.4.1. Let d ≥ 3, A : Rd → Rd, ∇A = ∇ + iA. Then, for any f ∈ H1
A(Rd) and

any R > 0 the following inequality holds:∫
|x|≤R

|f |2

|x|2
≤ 4

(d− 2)2

∫
|x|≤R

|∇Af |2 +
2

(d− 2)R

∫
|x|=R

|f |2dσR. (1.4.3)

Proof. We only need to prove (1.4.3) for f ∈ C∞0 , then we conclude by density. Let us
observe that, for all α ∈ R

0 ≤
∣∣∣∣∇Af + α

x

|x|2
f

∣∣∣∣2
= |∇Af |2 + α2 |f |2

|x|2
+ 2α< x

|x|2
· ∇Aff̄ . (1.4.4)
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Let us integrate the above identity over {|x| ≤ R}. Thus by integration by parts, using the
Leibnitz formula (1.3.3) we have

2α<
∫
|x|≤R

x

|x|2
· ∇Aff̄ = −(d− 2)α

∫
|x|≤R

|f |2

|x|2
+ α

∫
|x|=R

|f |2

|x|
dσR.

Combining this with (1.4.4) we get

{−α2 + (d− 2)α}
∫
|x|≤R

|f |2

|x|2
≤
∫
|x|≤R

|∇Af |2 +
α

R

∫
|x|=R

|f |2dσR (1.4.5)

for all α ∈ R. Finally, observe that

max
α∈R
{ −α2 + (d− 2)α} =

(d− 2)2

4
(1.4.6)

when α = d−2
2

and this completes the proof.

Remark 1.4.2. Observe that in the same manner we can see that∫
|x|≥R

|f |2

|x|2
+

2

(d− 2)R

∫
|x|=R

|f |2dσR ≤
4

(d− 2)2

∫
|x|≥R

|∇Af |2. (1.4.7)

Remark 1.4.3. Letting R→∞ in (1.4.3), we obtain the standard version of the magnetic
Hardy inequality ∫

|f |2

|x|2
≤ 4

(d− 2)2

∫
|∇Af |2, (1.4.8)

which will be used very often along this thesis.

Finally, we will give another Hardy type inequality for the magnetic case.

Theorem 1.4.4. Let d ≥ 3, A : Rd → Rd, ∇A = ∇ + iA. Then, for any f ∈ D(HA) the
following inequality holds: ∫

|f |2

|x|
≤ 4

(d− 1)2

∫
|x||∇Af |2. (1.4.9)

Proof. This inequality can be proved in much the same way, considering the following integral

0 ≤
∫ ∣∣∣∣|x|1/2∇Af + α

x

|x|3/2
f

∣∣∣∣2
=

∫
|x||∇Af |2 + α2

∫
|f |2

|x|
+ 2α<

∫
x

|x|
· ∇Aff̄ . (1.4.10)
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1.5 Spectral representation

The spectral theory of operators is very important for an understanding of the operators
themselves.

Let T be a linear transformation defined everywhere over a general Banach space. A
complex number z = λ+ iε is said to be in the resolvent set ρ(T ) of T if zI−T is a bijection
with a bounded inverse. Rz(T ) = (zI − T )−1 is called the resolvent of T at z. If z /∈ ρ(T ),
then z is said to be in the spectrum σ(T ) of T . In the case that T is a self-adjoint operator
on a Hilbert space H, then it follows that σ(T ) is a subset of R.

Our main interest in this section is to present a formula that gives the resolution of the
identity for a self-adjoint operator T on the Hilbert space H in terms of its resolvent. If B
is a Borel subset of R and 1B is the indicator function of B, then 1B(T ) is a self-adjoint
projection on H. Then the associated spectral measure

E : B → E(B) = 1B(T ) (1.5.1)

is a projection-valued measure called the resolution of the identity for the self-adjoint oper-
ator T . The identity operator can be expressed as the spectral integral I =

∫
1dE and the

operator T can be represented as

T =

∫ ∞
−∞

λdE(λ). (1.5.2)

Working with specific operators it is important to have a method for calculating the
spectral measure dE(λ). The following theorem gives a way of doing it for a self-adjoint
operator T in terms of its resolvent R(z) = (zI − T )−1. Note that since the spectrum of a
self-adjoint operator is real, R(z) is defined for all non-real z.

Theorem 1.5.1. ([DS]) If E is the resolution of the identity for the self-adjoint operator T
and B = (a, b) is an open interval such that a < λ < b, then in the strong operator topology

(E(B)f, f) = lim
ν→0

lim
ε→0

1

2πi

∫ b−ν

a+ν

(R(λ− iε)f −R(λ+ iε)f, f) dλ, (1.5.3)

where (·, ·) denotes the inner product in the Hilbert space H.

1.6 Examples of magnetic potentials

This section is intended to give some magnetic potentials such that the results of this thesis
are applicable. Recall that the magnetic field associated to the vector potential A is a d× d
anti-symmetric matrix defined by

B = DA− (DA)t, Bjk =
∂Ak
∂xj
− ∂Aj
∂xk

(1.6.1)
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1. Preliminaries

and is the quantity which is physically measurable. As we have already mentioned (see
Remark 1.3.6), using integration by parts one only needs to consider the components Bjk of
the magnetic field and moreover, if we take radial multipliers, we can restrict our attention
to the tangential component of the magnetic field given by

Bτ =
x

|x|
B. (1.6.2)

This issue allows us to consider singular magnetic potentials. Thus potentials A that
produce non-trapping magnetic fields (Bτ ≡ 0) are particularly interesting for us. Small Bτ

also plays an important role in the study of the dispersive estimates for magnetic Schrödinger
equation (see for example [DFVV], [FG], [FV]). Hence, we will focus on the understanding
of the relation between the magnetic potential A and the quantity Bτ .

Let us first recall the conditions that are required to the potential A in the known
results related to the magnetic Schrödinger hamiltonian HA that have been mentioned in
Introduction. On the one hand, the theory of Agmon and Hörmander [AH] where the
forward problem for perturbations of general elliptic operators is studied, is valid for short
range magnetic potentials A, i.e.

|A(x)| ≤ C

(1 + |x|)1+µ
, C, µ > 0. (1.6.3)

On the other hand, in the work of Ikebe and Saito [IS] where the multiplier techniques are
used for proving the limiting absorption principle for the magnetic Schrödinger equation,
the authors require that Aj is a real-valued C1 function satisfying

|Bjk(x)| ≤ C

(1 + |x|)1+µ
. (1.6.4)

Finally, concerning the far field pattern of the solution of the magnetic Schrödinger equation,
Iwatsuka [Iw] assumes regular magnetic potentials such that the magnetic field decays more
than short range one. More concretely, in [Iw] Aj(x) are real-valued C2 functions and

|Bjk| ≤ C(1 + |x|)−
3
2
−µ. (1.6.5)

The regularity of the magnetic potential A is fundamental in order to construct a function
m(x) that permits to deduce the desired conclusion. This function m(x) were used by
Kuroda [Ku5] and is closely related to the gauge transformation which changes the magnetic
potential A into A−∇m, but does not change the magnetic field.

Lemma 1.6.1. ([Iw])

m(x) = x

∫ 1

0

A(tx) dt. (1.6.6)

∇m(x) = A(x) +

∫ 1

0

txB(tx)dt. (1.6.7)
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1.6. Examples of magnetic potentials

Proof.

∂jm(x) =
d∑

k=1

[∫ 1

0

Aj(tx)dt+ xk

∫ 1

0

t∂jAk(tx)dt

]

=
d∑

k=1

[∫ 1

0

Aj(tx)dt+ xk

∫ 1

0

tBjk(tx)dt+ xk

∫ 1

0

t∂kAj(tx)dt.

]
Now, since ∫ 1

0

txk∂kAj(tx)dt =

∫ 1

0

t
d

dt
Aj(tx)dt

= Aj(x)−
∫ 1

0

Aj(tx)dt,

(1.6.7) follows.

Remark 1.6.2. Note that if we take Ã = A−∇m, then by (1.6.2) we get

(i) Ã = −
∫ 1

0
|x|tBτ (tx)dt.

(ii) x · Ã = x · A− x · ∇m = −
∫ 1

0
txB(tx)txdt

t
= 0.

Therefore, if A is regular enough, we always can restrict to magnetic potentials A such that
x · A = 0 (transversality condition) and

A(x) = −
∫ 1

0

txB(tx)dt. (1.6.8)

Remark 1.6.3. Observe that in the case that Bτ = 0, it follows that A = ∇m, which implies
B = 0. Thus when the magnetic potential A is regular, potentials such that Bτ = 0 are not
interesting.

Let us see what happens if one considers singular magnetic potentials A. Note that if
A(x) has singularities at the origin, the integral (1.6.6) is not well defined.

Remark 1.6.4. In the case that the magnetic potential A has singularities at the origin, we
could define the function m(x) as

m(x) = −x
∫ ∞

1

A(tx)dt. (1.6.9)

Then the argument of Iwatsuka will work if

lim
t→∞

tAj(tx)dt = 0. (1.6.10)

This condition is satisfied if A(x) is short range.
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When the magnetic potential A(x) is singular at the origin, we define

mε(x) = x

∫ 1

ε

A(tx)dt (1.6.11)

and observe that under the condition

lim
ε→0

εAj(εx) = 0, (1.6.12)

we get the same conclusions as Iwatsuka does. This suggests that potentials A that do
not satisfy condition (1.6.12) are interesting. In particular, magnetic potentials A that are
homogeneous of degree −1 need a special attention.

A general example of potential A such that Bτ is nonzero is the following:

Example 1.6.5. Let h(x) be a homogeneous function of the zero order (h(x) = h(λx),
x · ∇h(x) = 0) and we define

A(x) = xϕ(|x|)h(x). (1.6.13)

Then we have

Bjk = [xj∂kh(x)− xk∂jh(x)]ϕ(|x|) (1.6.14)

and it follows that
d∑
j=1

xj
|x|
Bjk = |x|ϕ(|x|)∂kh. (1.6.15)

As a consequence, we obtain
Bτ = |x|ϕ(|x|)∇h(x). (1.6.16)

Note that Bτ is short-range if ϕ(|x|) = O(|x|−1−µ), µ > 0. Thus A(x) = O(|x|−µ).

From this example, choosing the function ϕ(|x|) appropriately, one can generate singular
magnetic potentials such that Bτ is small.

Example 1.6.6. Let A(x) = xϕ(|x|)h(x) as above and take ϕ(|x|) = 1
|x|2 . Then A(x) is

homogeneous of degree −1 and we have Bτ = ∇h
|x| . Since ∇h is homogeneous of order −1, it

follows that
Bτ ∼

ν

|x|2
, ν > 0. (1.6.17)

In this manuscript we can handle with this kind of potentials with ν small and we are
able to prove the limiting absorption principle and uniform resolvent estimate for it. In
addition, we prove the existence of the cross-section for singular magnetic potentials such
that Bτ ≡ 0. Note that as A(x) is singular, Iwatsuka’s approach does not work for this case
and the question related to the existence of the far field pattern is unanswered. We propose
this as an interesting problem for studying in the future.

Therefore, we are interested in giving singular magnetic potentials such that Bτ ≡ 0.
Some explicit examples in the three dimensional case are the following:
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Example 1.6.7. We consider some singular potentials. Let us take

A =
1

x2 + y2 + z2
(−y, x, 0) =

1

x2 + y2 + z2
(x, y, x)× (0, 0, 1). (1.6.18)

One can easily check that

∇ · A = 0, B = −2
z

(x2 + y2 + z2)2
(x, y, z), Bτ = 0. (1.6.19)

Example 1.6.8. Another (more singular) example is

A =

(
−y

x2 + y2
,

x

x2 + y2
, 0

)
=

1

x2 + y2
(x, y, z)× (0, 0, 1). (1.6.20)

Here we have B = (0, 0, δ), where δ is the Dirac’s delta function and we obtain Bτ = 0.
We should point out that in this case Aj /∈ L2

loc. Hence, we can not guaranteed the self-
adjointness of ∇2

A for d ≥ 3. In fact, this is a question still unanswered. However, it is
considered as an interesting example introduced by Aharonov-Bohm. The two dimensional
is done by Felli, Ferrero and Terracini [FFT].

These two examples are particular cases of the following more general singular magnetic
potentials with Bτ = 0.

Lemma 1.6.9. Let x 6= 0 and assume that

(i) λA(λx) = A(x).

(ii) x · A(x) = 0.

Then Bτ ≡ 0.

Proof. From (i), we have

Aj(x) + xk∂kAj(x) = 0 ∀j, k. (1.6.21)

Condition (ii) implies
δjkAk + xk∂jAk = 0. (1.6.22)

Thus we obtain
(xB)k = xj(∂jAk − ∂kAj) = 0. (1.6.23)
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Chapter 2

Limiting absorption principle with
singular potentials

The purpose of this chapter is to study the limiting absorption principle for the Schrödinger
operator

L =
d∑
j=1

(∇j + iAj)
2 + V1 + V2 (2.0.1)

in the Hilbert space L2(Rd), d ≥ 3, with potentials that admit singularities at a point. Aj
denotes the j-component of the vector potential, V1 is a long-range potential and V2 is a
short-range one. Regarding to the magnetic part, our goal is to only impose conditions
on the magnetic field B. However, in order to ensure the self-adjointness of L we need to
assume some local integrability condition on the magnetic potential A. In the remainder of
this chapter we require that∫

(V1 + V2)|u|2 < 1−
∫
|∇u|2, Aj ∈ L2

loc, V1, V2 ∈ L1
loc. (2.0.2)

Thus we have that L is self-adjoint on L2(Rd) with form domain

D(L) = {f ∈ L2(Rd) :

∫
|∇Af |2 −

∫
(V1 + V2)|f |2 <∞}. (2.0.3)

See section 1.2 for more details.
Under suitable assumptions on the potentials, our goal is to prove that there exists a

unique solution of the resolvent equation

(L+ λ)u = f, λ > 0 (2.0.4)

satisfying a specific Sommerfeld radiation condition together with some a-priori estimates.
We will construct this solution u from the solution of the equation

(L+ λ+ iε)uε = f, ε > 0, (2.0.5)
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2. Limiting absorption principle with singular potentials

whose existence is established by the self-adjointness of L. In fact, u will be the limit of
uε in the Morrey-Campanato space. We point out that we need two main ingredients for
this purpose. On the one hand, the a-priori estimates and Sommerfeld radiation condition
for any solution uε ∈ H1

A(Rd) of (2.0.5) will be needed. On the other hand, we shall assert
uniqueness of solution of the equation (2.0.4) if such a radiation condition is satisfied.

It is a simple matter to show the uniqueness result for (2.0.5). Letting f = 0, we only need
to multiply the corresponding equation by u in the L2-sense and take the imaginary part.
Thus we get ε‖u‖2 = 0 and so u = 0. Uniqueness criterion for the equation (2.0.4) presents
a more delicate problem. In this case, we shall study the homogeneous electromagnetic
Helmholtz equation

(∇+ iA)2u+ (V1 + V2)u+ λu = 0 (2.0.6)

and show that if u ∈ (H1
A)loc(Rd) is a solution of (2.0.6), then u is identically zero. The

proof of this result is adapted from [M1] or [Z]. Nevertheless, as far as we know, it does not
seem to appear in the literature for potentials as the one we can treat. Using the multiplier
method we prove that u = 0 in Ω = {x ∈ Rd : |x| ≥ R} for R > 0 large enough. Then we
apply the unique continuation property to deduce that u vanishes in Rd. Hence, in order to
accomplish this task, we need that the unique continuation property holds for L. The best
reference here is due to Regaboui [R], where it is proven that if u ∈ H1

loc satisfies

|P (x,D)u| ≤ C1|x|−2|u|+ C2|x|−1|∇u|, (2.0.7)

with C2 > 0 small enough and P (x,D) =
∑d

j,k=1 ajkDjDk is an elliptic operator with

Lipschitz coefficients such that ajk(0) is real in a connected open subset Ω of Rd containing
0, then u ≡ 0 in Ω. Thus for using this result, we will write the magnetic Schrödinger
operator L as a first order perturbation of the Laplacian,

L = ∆ + 2iA · ∇+ i∇ · A− A · A+ V1 + V2 (2.0.8)

and note that u satisfies

|∆u+ λu| ≤ 2|A||∇u|+
(
|∇ · A|+ |V1|+ |V2|+ |A|2

)
|u| (2.0.9)

if |x| ≤ 1.
The crux of the limiting absorption principle are certain L2-weighted a-priori estimates

for the operator (L+ z)−1, z = λ+ iε, such that are preserved after the limiting procedure.
The classical result on the free resolvent case, which is usually denoted by

R0(z) = (∆ + z)−1, (2.0.10)

is due to Agmon [A] and states that the limits

R0(λ± i0) = lim
ε→0

R0(λ± iε) (2.0.11)
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exist in the norm of bounded operators from L2
s(Rd) to L2

−s(Rd) for any s > 1, where

‖u‖L2
s

= ‖(1 + |x|)su‖L2 . (2.0.12)

The convergence is uniform for λ belonging to any compact subset of ]0 + ∞[, and the
following estimate holds

‖R0(λ± i0)f‖L2
−s
≤ C(s)√

λ
‖f‖L2

s
, λ > 0, s > 1. (2.0.13)

There is an analogue result for the electromagnetic case due to Ikebe and Saito [IS], where
the authors assert the existence of a unique solution of the equation (2.0.4) in which they
impose on Aj some asymptotic growth condition at infinity, V1(x) is a long range potential
and V2(x) a short range one. In fact, they require that there exist positive constants c, µ > 0
and r0 ≥ 1 such that

(V1) for |x| ≥ r0, |V1(x)| ≤ c|x|−µ and the radial derivative ∂V1
∂|x| exists with ∂V1

∂|x| ≤ c|x|−1−µ.

(V2) |V2(x)| ≤ c|x|−1−µ, for |x| ≥ r0.

(B) Aj(x) is a real-valued C1-function with |Bjk(x)| ≤ c|x|−1−µ for |x| ≥ r0, j, k = 1, . . . , d,

where Bjk = ∂Ak
∂xj
− ∂Aj

∂xk
.

(UC) The unique continuation property holds for the differential operator L in Rd.

The general idea of the proof of the main theorem, that largely improves the result by
Ikebe and Saito [IS] (see Theorem 0.0.1), is based on the multiplier technique and integration
by parts. We follow their ideas combined with the ones used by Perthame and Vega [PV1].

2.1 Assumptions and main results

Let us consider the inhomogeneous Helmholtz equation

(∇+ iA)2u+ V1u+ V2u+ λu+ iεu = f (2.1.1)

in Rd, where λ, ε > 0 and f is a suitable function on Rd. We work with potentials that decay
at infinity and can have singularities at a point that we will take to be at the origin. We will
use a multiplier method based on radial multipliers. Thus just information for the tangential
component of the magnetic field B (see Remark 1.3.6) will be needed. Nevertheless, in order
to assert the unique continuation property, it is necessary to put some restrictions on the
whole B when we are close to the origin.

One question still unanswered is whether the unique continuation property is satisfied
assuming only the decay on the tangential part of B. We will not develop this point here, but
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2. Limiting absorption principle with singular potentials

we propose to study it in the future. A possible approach would be to show an appropriate
Carleman estimate for the magnetic Hamiltonian L. In section 2.5 we start the analysis of
this problem and we obtain partial results for Bτ = 0. We also are interested in the case
when Bτ is small, proposing its study for the future.

From now on, we assume that the magnetic potential A satisfy

|∇ · A| ≤ C

|x|2
, (2.1.2)

for some C > 0. We point out that this condition is only needed for the unique continuation
property.

We may now state our main assumptions on the potentials.

Assumption 2.1.1. Let V1(x), Aj(x), j = 1, . . . , d, V2(x) be real-valued functions, r0 ≥ 1
and µ > 0. For d ≥ 3, if |x| ≥ r0 we assume

|V1(x)|
|x|

+ (∂rV1(x))− + |Bτ (x)|+ |V2(x)| ≤ c

|x|1+µ
, (2.1.3)

for some c > 0, where ∂rV1 is considered in the distributional sense and (∂rV1)− denotes the
negative part of ∂r(V1). On the other hand, we require

V1(x) = (∂rV1(x))− = 0 if |x| ≤ r0, (2.1.4)

and

|V2(x)| ≤ c

|x|2−α
if |x| ≤ r0, α > 0, (2.1.5)

for some c > 0.
If d > 3, we consider

|B| ≤ C
∗

|x|2
|x| ≤ r0, (2.1.6)

for some C∗ > 0 small enough. Finally, in dimension d = 3 we assume

|B| ≤ c

|x|2−α
|x| ≤ r0, α > 0, (2.1.7)

for some c > 0.

Remark 2.1.2. Note that the requirements on the magnetic field B at the origin differ
depending on the dimension. This is due to the fact that we give an extra a-priori estimate
for the solution u of the equation (2.0.4) when d > 3, see (2.1.14) below.
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Remark 2.1.3. For d > 3 we may allow the potential V2(x) to be more singular. Moreover,
we can also permit some singularity on the potential V1(x) and its repulsive part (∂rV1(x))−.
When |x| ≤ r0, one can actually require

|V2(x)| ≤ C
∗∗

|x|2
(2.1.8)

and

(∂rV1(x))− ≤
C∗∗

|x|3
,
|V1(x)|
|x|

≤ C
∗∗∗

|x|3
(2.1.9)

for sufficiently small C∗∗> 0 and for some C∗∗∗ > 0. See section 2.4 for more details.

Remark 2.1.4. Observe that in order to use the unique continuation result ([R]), by (2.0.9)
we need to verify that

|∇ · A| ≤ C1|x|−2 (2.1.10)

and
|A| ≤ C2|x|−1 (2.1.11)

provided that C2 > 0 is small. On the one hand, note that condition (2.1.2) gives (2.1.10).
On the other hand, from (2.1.6) when d > 3 with C∗ small enough and (2.1.7) when d = 3,
by the Biot-Savart law it may be concluded that (2.1.11) holds. It is worth pointing out that
condition (2.1.2) is only required in order to assure that this result is applicable.

Our first theorem is the uniqueness result.

Theorem 2.1.5. Let d ≥ 3, λ ≥ λ0 > 0 and assume (2.1.3)-(2.1.5) and (2.1.6) or (2.1.7).
Let u ∈ (H1

A)loc be a solution of (2.0.6) such that

lim inf

∫
|x|=r

(|∇Au|2 + λ|u|2)dσ(x)→ 0, as r →∞. (2.1.12)

Then u ≡ 0. Moreover, if for some δ > 0∫
|x|≥1

∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 1

(1 + |x|)1−δ <∞ (2.1.13)

is satisfied, then (2.1.12) holds.

The uniqueness result allows us to state the main result of this chapter.

Theorem 2.1.6. Let C∗ small enough, λ0 > 0, f ∈ L2
1+δ
2

and assume that one of the following

two conditions is satisfied:

(i) d > 3, with (2.1.3)-(2.1.5) and (2.1.6)
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2. Limiting absorption principle with singular potentials

(ii) d = 3, with (2.1.3)-(2.1.5) and (2.1.7).

Then, for all λ ≥ λ0 there exists a unique solution u ∈ (H1
A)loc(Rd) of the Helmholtz equation

(2.0.4) satisfying

λ|||u|||21 + |||∇Au|||21 +

∫
|∇⊥Au|2

|x|
+ sup

R>1

1

R2

∫
|x|=R

|u|2dσR

+ (d− 3)

∫
|u|2

|x|3
≤ C(N1(f))2 (2.1.14)

and the radiation condition∫
|x|≥1

∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 1

(1 + |x|)1−δ ≤ C

∫
Rd

(1 + |x|)1+δ|f |2, (2.1.15)

for all 0 < δ < 2 such that δ < µ, where C = C(λ0) > 0.

Remark 2.1.7. The smallness of the constant C∗ is required for the unique continuation
property proved by Regbaoui [R]. As we said, this constant is not explicit.

Remark 2.1.8. The case Bτ = 0 is particularly interesting as we saw in section 1.6. In the
Appendix B, Theorem 2.5.2, we give a unique continuation result for this kind of potentials.
As a consequence, if V1 = V2 = 0 Theorems 2.1.5 and 2.1.6 will hold in this case.

Remark 2.1.9. In order to prove the Morrey-Campanato type estimates (2.1.14), condition
(2.1.6) can be replaced by

|Bτ | ≤
(d− 1)(d− 3)

|x|2
. (2.1.16)

Theorem 2.1.6 extends a similar result proved by Ikebe and Saito in the 70’s (see Theorem
0.0.1). Firstly, our estimates are not only for λ ∈ (λ0, λ1) with 0 < λ0 < λ1 < ∞ as
in [IS], but also for all λ ≥ λ0 > 0. We also extend the Sommerfeld radiation condition
(0.0.49) from δ ∈ (0, 1) to the range δ ∈ (0, 2) and we are able to give a more general one
containing the limit case δ = 0 (see Remark 2.2.9). Concerning the a-priori estimates, note
that (2.1.14) is stronger than (0.0.50) in the sense that it gives more information about
the solution and improves the L2-weighted estimate from the L2

− (1+δ)
2

norm to the Agmon-

Hörmander norm. More importantly, we are able to consider singular potentials and the
estimate (2.1.14) is uniform on λ for λ ≥ λ0 > 0. This permits to prove the Lp-Lq estimates
for the electromagnetic Helmholtz equation with singular potentials. (See [G1], chapter 2
and [G]).

In order to recover the a-priori estimates in the full frequency range λ ≥ 0, a stronger
decay on the potentials is needed. In 2009, Fanelli [F] proved (2.1.14) for any λ ≥ 0 in Rd and
very recently, Barceló, Fanelli, Ruiz and Vilela [BLRV] also get the analogous estimates for
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2.2. Proof of Theorem 2.1.6

the Helmholtz equation with electromagnetic-type perturbations in the exterior of a domain.
In fact, if such an estimate holds for λ ≥ 0, it would imply as a by product the absence of
zero-resonances (in a suitable sense) for the operator L. This is in general false with our
type of potentials. For example, if we reduce to the case ∆u+ V u = 0, the natural decay at
infinity for the non-existence of zero-resonances is |x|−(2+δ), δ > 0.(See for example [BRV],
Section 3 and [F] Remark 1.3).

The general outline for proving the main result consists of the following steps:

1. We take a sufficiently large λ1(> λ0) and we derive the Morrey-Campanato type esti-
mates for any λ ≥ λ1 proceeding as in [PV1].

2. We prove that for any λ ≥ λ0 the Sommerfeld radiation condition is true if the Morrey-
Campanato type estimates hold.

3. We use a compactness argument (in the spirit of [IS]) to deduce the result for all
λ ≥ λ0.

4. From the estimates proved in the previous steps and by the uniqueness theorem, we
prove the limiting absorption principle for the Schrödinger operator L satisfying As-
sumption 2.1.1.

2.2 Proof of Theorem 2.1.6

According to the steps given above, the proof will be divided into four parts.

2.2.1 A priori estimates for λ large enough (λ ≥ λ1)

We begin by proving the Morrey-Campanato type estimates for solutions of the equation
(2.1.1) for λ large enough. Since our assumptions on the magnetic field differ depending
on the dimension, we first give a detailed proof of the result for d > 3. Then the three
dimensional case follows by the same method.

Theorem 2.2.1. For dimension d > 3, let ε > 0, f such that N(f) < ∞. Let C∗ <√
(d− 1)(d− 3). Assume that (2.1.3)-(2.1.5) and

|Bτ | ≤
C∗

|x|2
if |x| ≤ r0 (2.2.1)

hold. Then there exists λ1 > 0 such that for any λ ≥ λ1 the solution u ∈ H1
A(Rd) of the

Helmholtz equation (2.1.1) satisfies

λ|||u|||2 + |||∇Au|||2 +

∫
|∇⊥Au|2

|x|
+ sup

R>0

1

R2

∫
|x|=R

|u|2dσR +

∫
|u|2

|x|3

≤ C(1 + ε)(N(f))2, (2.2.2)
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2. Limiting absorption principle with singular potentials

where C = C(λ1) > 0 is independent of ε.

Proof. The proof is based on the identities which are established in Chapter 1 (section 1.3).
Note that in this case we take V = V1 +V2. Hence, for any ϕ, ψ real-valued radial functions,
adding up (1.3.12) and (1.3.15), by Remark 1.3.6 together with Remark 1.3.7 we have∫

∇Au ·D2ψ · ∇Au−
∫
ϕ|∇Au|2 −<

∫ (
∇ϕ− ∇(∆ψ)

2

)
· ∇Auū

+

∫
λ|u|2 +

∫
Rd
ϕV1|u|2 +

1

2

∫
∇V1 · ∇ψ|u|2 −=

∫
ψ′Bτ · ∇Auū

+

∫ (
ϕ− ∆ψ

2

)
V2|u|2 −<

∫
V2∇ψ · ∇Auū

= ε=
∫
∇ψ · ∇Auū+ <

∫ (
ϕ− ∆ψ

2

)
fū−<

∫
f∇ψ · ∇Au. (2.2.3)

Let us define for R > 0 the function ψ(x) =
∫ |x|

0
ψ′(s)ds, where

ψ′(x) =

{
|x|
2R

+M if |x| ≤ R,(
M + 1

2

)
if |x| ≥ R,

(2.2.4)

for arbitrary M > 0,

ϕ(x) =

{
1

4R
if |x| ≤ R,

0 if |x| ≥ R,
(2.2.5)

and we put these multipliers into (2.2.3).
First, note that since N(f) <∞ then f ∈ L2(Rd). Thus it is guaranteed the existence of

solution of (2.1.1) in H1
A(Rd). As a consequence, the terms on the right-hand side of (2.2.3)

are finite. It is easy to check that∣∣∣∣ε= ∫ ∇ψ · ∇Auū+ <
∫ (

ϕ− ∆ψ

2

)
fū−<

∫
f∇ψ · ∇Au

∣∣∣∣
≤ C

(
‖f‖2

L2 + ‖∇Au‖2
L2 + ‖u‖2

L2

)
<∞.

Let us show the positivity of the left-hand side of (2.2.3) with the above choice of the
multipliers. By (1.3.22), it follows easily that∫

∇Au ·D2ψ · ∇Au−
∫
ϕ|∇Au|2 >

1

4R

∫
|x|≤R

|∇Au|2 +M

∫
|∇⊥Au|2

|x|
,

∫
ϕλ|u|2 =

1

4R

∫
|x|≤R

λ|u|2.
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2.2. Proof of Theorem 2.1.6

In addition, since ϕ and ψ′′ are discontinuous in {|x| = R}, note that integrating by parts
the term

−<
∫ (
∇ϕ− ∇(∆ψ)

2

)
· ∇Auū (2.2.6)

gives a surface integral. In fact, after substituting our test functions in (2.2.6), we get

−<
∫ (
∇ϕ− ∇(∆ψ)

2

)
· ∇Auū >

M(d− 1)(d− 3)

4

∫
|u|2

|x|3

+
(d− 1)

8R2

∫
|x|=R

|u|2dσR.

Let us analyze the terms containing the potentials. In what follows, σ = σ(c, µ, r0, α,M)
denotes a positive constant where the parameters c, µ, r0, α have been introduced in Assump-
tion 2.1.1 and M > 0 is related to the multipliers. For simplicity of notation, we use the
same letter σ for all constants related to the potentials. Moreover, we will use κ for a small
positive constant coming from the inequality ab ≤ κa2 + 1

4κ
b2.

In order to estimate the term involving the magnetic field, observe that since Bτ is a
tangential vector to the sphere, we have

Bτ · ∇Au = Bτ · ∇⊥Au. (2.2.7)

Hence,

=
∫
ψ′Bτ · ∇Auū ≤ (M + 1/2)

∫
|x|≤r0

|Bτ ||∇⊥Au||u|

+ (M + 1/2)

∫
|x|≥r0

|Bτ ||∇⊥Au||u|

≡ B1 +B2,

where by (2.1.3), (2.2.1) and Cauchy-Schwarz inequality, yields

B1 ≤ C∗(M + 1/2)

(∫
|x|≤r0

|∇⊥Au|2

|x|

)1/2(∫
|x|≤r0

|u|2

|x|3

)1/2

(2.2.8)

and

B2 ≤ (M + 1/2)

∫
|x|≥r0

|x|1/2|Bτ |
|∇⊥Au||u|
|x|1/2

≤ M

2

∫
|x|≥r0

|∇⊥Au|2

|x|
+
c(M + 1/2)2

2M

∑
j≥j0

2−2µj

∫
C(j)

2j
|u|2

2j

≤ M

2

∫
|x|≥r0

|∇⊥Au|2

|x|
+ σ|||u|||2.
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2. Limiting absorption principle with singular potentials

We next turn to estimate the V1 terms. Similarly, by (2.1.3) and (2.1.4), we get

−
∫
ϕV1|u|2 ≤

1

4

∫
r0≤|x|≤R

|V1||u|2

|x|

≤ 1

4

∑
j≥j0

∫
C(j)

|V1||u|2

2j
≤ σ|||u|||2 (2.2.9)

and

−1

2

∫
∇ψ · ∇V1|u|2 ≤

1

2

∫
(∇ψ · ∇V1)−|u|2

≤ (M + 1/2)

2

∑
j≥j0

∫
C(j)

(∂rV1)−|u|2

≤ σ|||u|||2. (2.2.10)

As far as the potential V2 is concerned, let us first take j1 = j1(α) < j0 such that

c
∑
j≤j1

2αj < η, c
∑
j≤j1

22αj < η (2.2.11)

where η > 0 stands for a small constant, being c and α are as in (2.1.5). To simplify notation,
we continue to write η for any small constant related to the potentials. We fix r1 < r0 by
2j1−1 ≤ r1 ≤ 2j1 . Then, by (2.1.3), (2.1.5) and Cauchy-Schwarz inequality, we have

<
∫
V2∇ψ · ∇Auū ≤ (M + 1/2)

∫
|x|≤r0

|V2||∇Au||u|

+ (M + 1/2)

∫
|x|≥r0

|V2||∇Au||u|

≡ V21 + V22. (2.2.12)

Let us make now the following observation.

∑
j≤0

∫
C(j)

|u|2

2j(3−γ)
≤
∑
j≤0

∫ 2j

2j−1

∫
|x|=r

|u|2

r2
2−j(1−γ)

≤ sup
R≤1

1

R2

∫
|x|=R

|u|2
∑
j≤0

∫ 2j

2j−1

2j(γ−1)

≤ sup
R>0

1

R2

∫
|x|=R

|u|2
∑
j≤0

2jγ (2.2.13)
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2.2. Proof of Theorem 2.1.6

and
∑

j≤0 2γj <∞ if γ > 0. According to the above remark, using again the Cauchy-Schwarz

inequality and the relation ab ≤ 1
16
a2 + 4b2, we have

V21 ≤ c(M + 1/2)

[∑
j≤j1

∫
C(j)

|∇Au||u|
2j(2−α)

+

j0∑
j=j1

2−j(1−α)

∫
C(j)

|∇Au||u|
2j

]

≤ η

(
sup
R>0

1

R

∫
|x|≤r1

|∇Au|2
) 1

2
(

sup
R>0

1

R2

∫
|x|=R

|u|2
) 1

2

+
1

16
sup
R>0

1

R

∫
r1≤|x|≤R

|∇Au|2 + σ|||u|||2

and

V22 ≤ (M + 1/2)
∑
j≥j0

(∫
C(j)

|∇Au|2

2j

)1/2(∫
C(j)

|u|2

2j(1+2µ)

)1/2

≤ 1

16
sup
R>0

1

R

∫
r1≤|x|≤R

|∇Au|2 + σ|||u|||2.

Analysis similar to the above gives

−
∫
ϕV2|u|2 ≤

c

4

∫
|x|≤r0

|u|2

|x|3−α
+

1

4

∑
j≥j0

∫
C(j)

|V2||u|2

|x|

≤ η sup
R≤r1

1

R2

∫
|x|=R

|u|2dσR + σ|||u|||2

and

1

2

∫
∆ψV2|u|2 ≤

(
d

4
+
M(d− 1)

2

)∫
Rd

|V2||u|2

|x|

≤ η

(
d

4
+
M(d− 1)

2

)
sup
R≤r1

1

R2

∫
|x|=R

|u|2dσR

+ σ|||u|||2.

In order to simplify the reading, let us introduce

a1 =

(
sup
R>0

1

R

∫
|x|≤r1

|∇Au|2
)1/2

, a2 =

(∫
|x|≤r0

|∇⊥Au|2

|x|

)1/2

,

a3 =

(∫
|x|≤r0

|u|2

|x|3

)1/2

, a4 =

(
sup
R>0

1

R2

∫
|x|=R

|u|2dσR
)1/2

.
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2. Limiting absorption principle with singular potentials

Therefore, it turns out that the potential terms on (2.2.3) are lower bounded by

− M

2

∫
|x|≥r0

|∇⊥Au|2

|x|
− C∗(M + 1/2)a2a3 − (M + 1/2)ηa1a4 − ηa2

4

− 1

8
sup
R>0

1

R

∫
r1≤|x|≤R

|∇Au|2 − σ|||u|||2.

Our next step is to estimate the right-hand side of (2.2.3). Let us start by the ε term.
From the a-priori estimate (1.3.10), by the assumptions (2.1.3)-(2.1.5) and the Hardy in-
equality (1.4.8), it may be concluded that∫

|∇Au|2 ≤ λ

∫
|u|2 + σ

∫
|u|2 +

∫
Rd
|f ||u|. (2.2.14)

Recall that σ denotes a positive constant related to the potentials. Hence combining (2.2.14)
with (1.3.9), by Cauchy-Schwarz inequality and the fact that

∫
|f ||u| ≤ N(f)|||u|||, we obtain

ε=
∫
∇ψ · ∇Auū ≤ (M + 1/2)ε

∫
|∇Au||u|

≤ (M + 1/2)ε1/2

(
ε

∫
|u|2
)1/2(∫

|∇Au|2
)1/2

≤ (M + 1/2)ε1/2

∫
|f ||u|

+ (M + 1/2)ε
1
2

(∫
|f ||u|

) 1
2
(

(λ+ σ)

∫
|u|2
) 1

2

≤ (M + 1/2)(ε1/2 + (λ+ σ)1/2)

∫
|f ||u|

≤ κ(1 + λ)|||u|||2 + C(1 + ε)(N(f))2. (2.2.15)

It remains to estimate the terms containing f which can be handled in much the same way
as the rest. In fact, it follows that

<
∫
f

(
ϕ− 1

2
∆ψ

)
ū ≤ M + 1

2

∫
|f ||u|
|x|

≤ (M + 1)

2

∑
j∈Z

(
2j
∫
C(j)

|f |2
) 1

2
(∫

C(j)

|u|2

23j

) 1
2

≤ κ sup
R>0

1

R2

∫
|x|=R

|u|2dσR + C(N(f))2
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2.2. Proof of Theorem 2.1.6

and

<
∫
f∇ψ · ∇Au ≤ (M + 1/2)

∫
|f ||∇Au|

≤ κ|||∇Au|||2 + C(N(f))2.

Finally, due to the freedom on the choice of R, let us take the supremum over R > 0 on
the both sides of the inequality. Thus from the above estimates, we obtain(

λ

4
− σ

)
|||u|||2 +

M

2

∫
|x|≥r0

|∇⊥Au|2

|x|
+

(
d− 1

8
− ν
)
a2

4 +
a2

1

4
− νa1a4

+
1

8
sup
R>0

1

R

∫
r1≤|x|≤R

|∇Au|2 +
M(d− 1)(d− 3)

4

∫
|x|≥r0

|u|2

|x|3

+Ma2
2 +

M(d− 1)(d− 3)a2
3

4
− C∗(M + 1/2)a2a3

≤ κ
[
(1 + λ)|||u|||2 + |||∇Au|||2 + a2

4

]
+ C(ε+ 1) (N(f))2 .

Observe that we need

Ma2
2 +

M(d− 1)(d− 3)

4
a2

3 − C∗(M + 1/2)a2a3 > 0, (2.2.16)

which is satisfied if
1

(d− 1)(d− 3)
(C∗)2 (M + 1/2)2

M2
< 1. (2.2.17)

Letting M →∞, we obtain
(C∗)2 < (d− 1)(d− 3), (2.2.18)

which is our assumption.
Consequently, taking κ, ν small enough and λ1 = λ1(σ, κ, j1) > 0 large enough, we

conclude (2.2.22), which is our claim.

The result is slightly different in the 3d-case.

Theorem 2.2.2. For dimension d = 3, let ε > 0, f such that N(f) < ∞ and assume that
(2.1.3)-(2.1.5), (2.1.7) hold. Then there exists λ1 > 0 so that for any λ ≥ λ1 the solution
u ∈ H1

A(Rd) of the Helmholtz equation (2.1.1) satisfies

λ|||u|||2 + |||∇Au|||2 +

∫
|∇⊥Au|2

|x|
+ sup

R>0

1

R2

∫
|x|=R

|u|2dσR

≤ C(1 + ε)(N(f))2, (2.2.19)

being C independent of ε.
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2. Limiting absorption principle with singular potentials

Proof. The proof follows by the same method as in the d > 3 case. We will use the same
multipliers as in the previous theorem fixing M = 1/2. The main difference is that when

d = 3 we do not get the term related to
∫
Rd
|u|2
|x|3 on the left-hand side of the inequality.

Therefore, it is not possible to estimate the magnetic term as in (2.2.8). This requires the
assumption (2.1.7) on the magnetic field B. Thus in this case, using the same notation as
in the previous theorem we obtain

B1 ≤
∫
|x|≤r1

|Bτ ||u||∇⊥Au|+
∫
r1≤|x|≤r0

|Bτ ||∇⊥Au||u|

≤ η

(∫
|x|≤r1

|∇⊥Au|2

|x|

)1/2(
sup
R≤r1

∫
|x|=R

|u|2
)1/2

+
1

4

∫
r1≤|x|≤r0

|∇⊥Au|2

|x|
+ σ|||u|||2.

The rest of the proof runs as before.

Remark 2.2.3. Note that if we did not take λ big enough, we would obtain

|||∇Au|||2 +

∫
|∇⊥Au|2

|x|
+(d− 3)

∫
|u|2

|x|3
+ sup

R>0

1

R2

∫
|x|=R

|u|2dσR

≤ C(1 + ε){|||u|||2 + (N(f))2}.

Remark 2.2.4. If we denote

m(x) =
|V1(x)|
|x|

+ (∂rV1(x))− + |Bτ (x)|+ |V2(x)|, (2.2.20)

in order to prove the previous two results, the requirement on m is that∑
j≥j0

2j sup
|x|∼2j

m(x) < +∞. (2.2.21)

The notation |x| ∼ 2j means that x ∈ C(j) = {x ∈ Rd : 2j−1 ≤ |x| ≤ 2j} and j0 is such that
2j0−1 ≤ |x| ≤ 2j0.

Remark 2.2.5. Observe that from the above results it follows that

λ|||u|||21 + |||∇Au|||21 +

∫
|∇⊥Au|2

|x|
+ sup

R>1

1

R2

∫
|x|=R

|u|2dσR +

∫
|u|2

|x|3

≤ C(1 + ε)(N1(f))2, (2.2.22)

Remark 2.2.6. Since singularities on the potentials at the origin are allowed, we reduce to
the case d ≥ 3. When d = 1, 2, the problems come from the terms (2.2.6) and (2.2.15).
Similar results to those in [PV1], section 5 could be obtained for weaker singularities in
dimension d = 2.
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2.2.2 Sommerfeld radiation condition

Our next goal is to quantify the Sommerfeld radiation condition proving that it is upper
bounded by the Agmon-Hörmander norm of the solution. To this end, the basic idea is to
build the full form of the Sommerfeld terms, using the integral identities proved in Lemmas
1.3.4 and 1.3.5. We will proceed analogously to the proof of Proposition 1.3.9. We emphasize
that since the Sommerfeld condition is applied at infinity, it is sufficient to know the behavior
of the potentials for |x| ≥ R, R big enough.

Proposition 2.2.7. For d ≥ 3, let λ0 > 0, ε > 0, f ∈ L2
1+δ
2

and suppose that (2.1.3) holds.

Then, there exists a positive constant C = C(λ0, r0, µ) such that for all λ ≥ λ0 the solution
u ∈ H1

A(Rd) of the equation (2.1.1) satisfies∫
|x|≥1

∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2( 1

(1 + |x|)1−δ + ε(1 + |x|)δ
)

≤ C(1 + ε)

[
|||u|||21 + (N1(f))2 +

∫
|x|≥1

(1 + |x|)1+δ|f |2
]
, (2.2.23)

for all 0 < δ < 2 such that δ < µ, where µ is given in Assumption 2.1.1.

Proof. The proof consists in the construction of the squares of the left hand side of (2.2.23).
We use a combination of the identities of the lemmas 1.3.4 and 1.3.5, following the ideas
of the proof of Proposition 1.3.9. The main difference is that in this case we put a cut-off
function in all test functions.

Let us denote r = |x| and we define a radial function Ψ : Rd → R by

Ψ(x) =

∫ |x|
0

Ψ′(s)ds,

with

Ψ′(r) = (1 + r)δ, 0 < δ < 2. (2.2.24)

Let us consider a cut off function θ ∈ C∞(R) such that 0 ≤ θ ≤ 1, dθ/dr ≥ 0 with

θ(r) =

{
1 if r ≥ 2
0 if r ≤ 1,

and set θr0(x) = θ
(
|x|
r0

)
, where r0 is given in Assumption 2.1.1.

Let us compute

(1.3.15) +
1

2
(1.3.12) + λ1/2(1.3.13)− ε

2λ1/2
(1.3.12)
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2. Limiting absorption principle with singular potentials

with the following choice of the multipliers

ψ′(x) = Ψ′(r)θr0(x)

ϕ(x) = Ψ′′(r)θr0(x)

ϕ(x) = Ψ′(r)θr0(x)

ϕ(x) = Ψ′(r)θr0(x),

respectively.

Note that by (2.2.24) we have

Ψ′

r
− Ψ′′

2
>

(2− δ)
2δ

Ψ′′. (2.2.25)

Thus since 0 < δ < 2, letting ν = 2−δ
2δ

> 0 we obtain

δ

2

∫
(1 + |x|)δ−1|∇r

Au− iλ1/2u|2θr0 + δν

∫
(1 + |x|δ−1)|∇⊥Au|2θr0

+
1

2

∫
(1 + |x|)δ

(
θ′

r0

|∇r
Au− iλ1/2u|2 +

ε

λ1/2

∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 θr0
)

≤ <
∫
∇
(

Ψ′θ′

r0

+
(d− 1)Ψ′θr0

|x|

)
· ∇Auū−

ε<
2λ1/2

∫
∇(Ψ′θr0) · ∇Auū

+ =
∫

Ψ′Bτ · ∇⊥Auūθr0 +
1

2

∫
(Ψ′′V1 + ∂rV1Ψ′)|u|2θr0

+
1

2

∫ (
(d− 1)Ψ′θr0

|x|
+

Ψ′θ′

r0

)
V2|u|2 + <

∫
V2Ψ′∇r

Auūθr0

−<
∫
fΨ′

{[
θr0

(
d− 1

2|x|
+

ε

2λ1/2

)
+
θ′

r0

]
ū+ (∇r

Aū+ iλ1/2ū)θr0

}
.

Let us now estimate the right hand-side of the above inequality applying similar argu-
ments and using the same notation as in the proof of Theorem 2.2.1. Since

<∇r
Auū = <(∇r

Au− iλ1/2u)ū (2.2.26)

and δ < 2, the first term can be upper bounded

κ

∫
|∇r

Au− iλ1/2u|2
(

(1 + |x|)δ−1θr0 +
(1 + |x|)δθ′

r0

)
+ C(κ)|||u|||21, (2.2.27)

for any κ > 0. Concerning the ε term, note that by integration by parts and the a-priori
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estimate (1.3.9), we have

− ε<
2λ1/2

∫
∇(Ψ′θr0) · ∇Auū =

ε

4λ1/2

∫
∆(Ψ′θr0)|u|2

≤ Cε

λ1/2

∫
|x|≥ r0

2

|u|2

(1 + |x|)2−δ

≤ C

λ
1/2
0

N1(f)|||u|||1. (2.2.28)

We now pass to the terms containing the potentials. By (2.1.3) it follows easily that for
δ < µ yields

1

2

∫ [
(Ψ′′V1 + ∂rV1Ψ′)θr0 +

(d− 1)Ψ′θr0
|x|

V2 +
Ψ′θ′

r0

V2

]
|u|2 ≤ C|||u|||21.

If moreover, we apply tha Cauchy-Schwarz inequality, then we get

=
∫

Ψ′Bτ · ∇⊥Auūθr0 ≤ C

(∫
|∇⊥Au|2(1 + |x|)δ−1θr0

)1/2

|||u|||1

and combining with (2.2.26), gives

<
∫
V2Ψ′∇r

Auūθr0 ≤ C

(∫
|∇r

Au− iλ1/2u|2(1 + |x|)δ−1θr0

)1/2

|||u|||1.

Thus the potential terms can be estimated by

κ

∫
(1 + |x|)δ−1

(
|∇⊥Au|2 + |∇r

Au− iλ1/2u|2
)
θr0 + C|||u|||21. (2.2.29)

Finally, applying the same reasoning to the terms containing f , we obtain that they are
upper bounded by

κ

∫
(1 + |x|)δ−1|∇r

Au− iλ1/2u|2θr0 + C(κ)

∫
(1 + |x|)1+δ|f |2θr0

+ C|||u|||1
(∫

(1 + |x|)1+δ|f |2θr0
)1/2

+
Cε

λ1/2
|||u|||1/21 (N1(f))1/2

(∫
(1 + |x|)1+δ|f |2θr0

)1/2

.

As a consequence, choosing κ small enough, we deduce (2.2.23) and the proof is over.
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2. Limiting absorption principle with singular potentials

Remark 2.2.8. Note that if m(x) was as in (2.2.20), it would be enough that the potentials
satisfy ∑

j≥j0

2j sup
x∈C(j)

m(x)Ψ′(|x|) < +∞. (2.2.30)

Remark 2.2.9. Observe that the previous proof does not work neither for the δ = 0 case,
nor for the δ = 2 case. When δ = 0, Ψ′(|x|) = 1 and Ψ′′(|x|) = 0. Then, we would not obtain
the main square in the left hand side of the inequality. On the other hand, when δ = 2, the
problem comes from the term

<
∫
∇
(

Ψ′θ′

r0

+
(d− 1)Ψ′θr0

|x|

)
· ∇Auū. (2.2.31)

If Ψ′(r) = (1+r)2 one needs to estimate the term
∫
|x|≥r0/2

|u|2
|x| , which is not upper bounded by

|||u|||21. Moreover, we do not get the estimate for the tangential component of the magnetic
gradient and thus we are not able to absorb the term containing the magnetic field. The
δ = 2 case is particularly interesting and needs special attention so that it will be studied in
the last chapter.

As we mentioned in the previous section, the above result can be extended for a more
general case which contains the δ = 0 one. For this purpose, we will make more general
assumptions on the potentials. According to the above Remark 2.2.4, it is required that

m(x) ≤ h(x) for |x| ≥ r0, (2.2.32)

where h(x) = h(|x|) is such that ∑
j≥j0

2j sup
|x|∼2j

h(|x|) < +∞. (2.2.33)

In particular, ∫ +∞

r0

h(r)dr < +∞. (2.2.34)

From (2.2.33), one can deduce that there exists g(x) = g(|x|) such that

g(x)→∞ as |x| → ∞,

and ∑
j≥j0

2j sup
|x|∼2j

h(|x|)
∫ |x|

0

g(r)

r
dr < +∞. (2.2.35)

It suffices to define

F (x) = −
∫ +∞

|x|
h(t)dt (2.2.36)
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2.2. Proof of Theorem 2.1.6

and choose
g(x) = −ah(|x|)|x| (F (x))−a−1 where 0 < a < 1. (2.2.37)

We will only consider g(|x|) such that

g(|x|) ≤ 2(1− ν)g1(|x|), 0 < ν < 1, (2.2.38)

where

g1(|x|) =

∫ |x|
0

g(r)

r
dr. (2.2.39)

We also require ∑
j≥j0

2−2j sup
|x|∼2j

g1(|x|) < +∞, (2.2.40)

which fails if g(|x|) = |x|2. From this, we get∫
|x|≥r0

g(|x|)
|x|
|∇r

Au− iλ1/2 x

|x|
u|2 + ε

∫
|x|≥r0

g1(|x|)|∇Au− iλ1/2 x

|x|
u|2

+ ν

∫
|x|≥r0

|∇τ
Au|2

|x|
g1(|x|) ≤ C

∫
|x|≥ r0

2

|x|(g1(|x|))2

g(|x|)
|f |2. (2.2.41)

2.2.3 Compactness argument when λ ∈ [λ0, λ1]

Our next objective is to show that for any λ ∈ [λ0, λ1],

λ|||u|||21 ≤ C(N1(f))2. (2.2.42)

In order to get this estimate, we begin by proving the following a-priori estimate.

Lemma 2.2.10. Under the hypotheses of Theorem 2.1.6, for each R > 0 any solution
u ∈ H1

A(Rd) of the equation (2.1.1) satisfies∫
|x|≤R

|∇Au|2 ≤ C(1 + λ)

∫
|x|≤R+1

|u|2 +

∫
|x|≤R+1

|f |2. (2.2.43)

Proof. Let ψ ∈ C∞0 such that 0 ≤ ψ ≤ 1 and

ψ(x) =

{
1 if |x| ≤ R,
0 if |x| ≥ R + 1.

(2.2.44)

Note that u ∈ H1
A(Rd) satisfies

(∇2
A + V1 + V2 + λ+ iε)(ψu) = ψf + u∆ψ + 2∇Au · ∇ψ. (2.2.45)
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2. Limiting absorption principle with singular potentials

Let us multiply the above identity by ψū, integrate over Rd and take the real part. Hence,
by integration by parts we get∫

|∇A(ψu)|2 ≤ λ

∫
|x|≤R+1

|u|2 +

∫
|V1 + V2||ψu|2 +

∫
|x|≤R+1

|f ||u|

+

∫
|∇A(ψu)||∇ψ||u|.

Now by the assumption (2.0.2) on the potentials V1, V2 and the diamagnetic inequality (1.1.4)
we have ∫

|V1 + V2||ψu|2 <
∫
|∇A(ψu)|2.

Hence, by Cauchy-Schwarz inequality it follows that∫
|∇A(ψu)|2 ≤ C(1 + λ)

∫
|x|≤R+1

|u|2 +

∫
|x|≤R+1

|f |2, (2.2.46)

which gives (2.2.43) and the lemma follows.

Remark 2.2.11. Note that since∫
|∇(ψu)|2 ≤ C

∫
(|∇A(ψu)|2 + |Aψu|2), (2.2.47)

applying the condition (1.1.5) on the magnetic potential A to |u|, then by the diamagnetic
inequality (1.1.4) it follows that∫

|∇(ψu)|2 ≤ C

∫
|∇A(ψu)|2. (2.2.48)

This combined with (2.2.46) gives the well known elliptic a-priori estimate∫
|x|≤R

|∇u|2 ≤ C(1 + λ)

∫
|x|≤R+1

|u|2 +

∫
|x|≤R+1

|f |2 (2.2.49)

for solutions of the equation (2.1.1).

Having disposed of this preliminary step, we can return to show (2.2.42).

Proposition 2.2.12. For d ≥ 3, under the assumptions of Proposition 2.2.7 above, let
λ0 > 0, λ ∈ [λ0, λ1], with λ1 > λ0 and ε ∈ (0, ε1). Then, the solution of the equation (2.1.1)
satisfies

λ|||u|||21 + |||∇Au|||21 ≤ C(1 + ε)(N1(f))2, (2.2.50)

where C is independent of ε.
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2.2. Proof of Theorem 2.1.6

Proof. Our proof starts recalling that∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 = |∇Au|2 + λ|u|2 − 2=λ1/2 x

|x|
· ∇Auū.

Let us integrate the above identity over the sphere Sr := {|x| = r}, obtaining∫
Sr

(λ|u|2 + |∇Au|2)dσr =

∫
Sr

|∇Au− iλ1/2 x

|x|
u|2dσr

+ 2=λ1/2

∫
Sr

x

|x|
· ∇Auūdσr. (2.2.51)

Let us multiply now equation (2.1.1) by ū, integrate it over the ball Br := {|x| ≤ r} and
take the imaginary part. Since ε > 0, it follows that

=
∫
Sr

x

|x|
· ∇Auūdσr ≤ =

∫
Br

fū. (2.2.52)

Combining this with (2.2.51) yields∫
Sr

(λ|u|2 + |∇Au|2)dσr ≤
∫
Sr

|∇Au− iλ1/2 x

|x|
u|2dσr + 2=λ1/2

∫
Br

fū. (2.2.53)

Now, let R > ρ ≥ r0 and denote j0 and j1 by 2j0−1 < ρ < 2j0 and 2j1−1 < R < 2j1 ,
respectively. Let us multiply both sides of (2.2.53) by 1

R
and integrate from ρ to R with

respect to r. Then we have

1

R

∫
ρ≤|x|≤R

(λ|u|2 + |∇Au|2) ≤ 1

R

j1∑
j=j0

∫
C(j)

∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2
+ κλ|||u|||21 + C(κ)(N1(f))2

≡ I1 + I2, (2.2.54)

for κ > 0 and by (2.2.23) we get

I1 ≤
1

R

j1∑
j=j0

(1 + 2j)1−δ
∫
C(j)

1

(1 + 2j)1−δ

∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2

≤ C(1 + ε)

j1∑
j=j0

(1 + 2j)1−δ

2j1
(|||u|||21 + (N1(f))2)

+ C(1 + ε)

j1∑
j=j0

(1 + 2j)1−δ

2j1

∫
2j≥ r0

2

(1 + 2j)1+δ|f |2

≤ C(1 + ε)

[
j1∑
j=j0

2−δj|||u|||21 +

(
1 +

j1∑
j=j0

1 + 2j

2j1

)
(N1(f))2

]
. (2.2.55)
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2. Limiting absorption principle with singular potentials

As a consequence, from (2.2.54) and (2.2.55), taking κ small enough and ρ big enough, we
deduce

1

R

∫
ρ≤|x|≤R

(λ|u|2 + |∇Au|2) ≤ λ

2
|||u|||21 + C(1 + ε)(N1(f))2.

It remains to prove that ∫
|x|≤ρ

(λ|u|2 + |∇Au|2) ≤ C(N(f))2. (2.2.56)

Let us assume that (2.2.56) is false. Then, for each n ∈ N, there exist εn ∈ (0, ε1) with
0 < ε1 <∞, λn ∈ [λ0, λ1] and un, fn such that

(∇+ iA)2un + (V1 + V2)un + λnun + iεnun = fn, (2.2.57)

with ∫
|x|≤ρ

(λn|un|2 + |∇Aun|2) = 1 (2.2.58)

and

N1(fn) ≤ 1

n

(
lim
n→∞

N1(fn) = 0
)
. (2.2.59)

Since λn ∈ [λ0, λ1] and εn ∈ (0, ε1), we may assume with no loss of generality that λn → λ0

and εn → ε0 where λ0 ∈ [λ0, λ1], ε0 ∈ [0, ε1], as n tends to ∞.
On the other hand, from (2.2.58) and condition (1.1.5) on A, one can easily deduce that

{un} is a bounded sequence in H1
loc. Hence, by the Rellich-Kondrachov theorem, one can

conclude that there exists a subsequence of un, unp , such that

unp → u in L2
loc, as p→∞, with u ∈ L2

loc, (2.2.60)

which implies

sup
R>1

1

R

∫
|x|≤R

|unp − u|2dx → 0. (2.2.61)

Moreover, from Lemma 2.2.10, if we denote vn = unp − u, noting that

gp ≡ (HA + λ+ iε)vn

= i(ε0 − ε)u+ (λ0 − λ)u− fn → 0 in L2
loc (2.2.62)

as p→∞, one can also deduce∫
|x|≤R

|∇Avn|2 ≤ C(1 + λ)

∫
|x|≤R+1

|vn|2 +

∫
|x|≤R+1

|gp|2.

Hence,

∇Aunp → ∇Au in L2
loc, as p→∞, with ∇Au ∈ L2

loc. (2.2.63)
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2.2. Proof of Theorem 2.1.6

As a consequence, by (2.2.58) u satisfies∫
|x|≤ρ

(λ|u|2 + |∇Au|2) = 1. (2.2.64)

In addition, it follows that

(u, (L+ λ+ iε0)ϕ) = (0, ϕ) ∀ϕ ∈ C∞0 (2.2.65)

and therefore, u also satisfies

(∇+ iA)2u+ (V1 + V2)u+ λ0u+ iε0u = 0 (2.2.66)

in the distributional sense. Thus by uniqueness of solution of the equation (2.2.66), we
conclude that u ≡ 0, which contradicts (2.2.64).

We have thus proved that for R > 1

1

R

∫
|x|≤R

(λ|u|2 + |∇Au|2) ≤ λ

2
|||u|||21 + C(1 + ε)(N1(f))2.

Taking the supremum over R, we get (2.2.50) and the proof is complete.

Remark 2.2.13. The same reasoning applies to the more general case mentioned in Remark
2.2.9, using the Sommerfeld radiation condition (2.2.41). The details are omitted.

2.2.4 Limiting absorption principle

Our next concern will be the existence of solution of the equation (2.0.4), which is stated in
the following lemma.

Lemma 2.2.14. Let λ > 0, {un} be a sequence such that for any ρ > 0∫
|x|≤ρ

(λ|un|2 + |∇Aun|2) < +∞ (2.2.67)

and let εn ∈ (0, 1) be a convergent sequence with εn → 0 as n→∞, f such that N(f) <∞.
Assume that

(HA + λ+ iεn)un = f

and {un} satisfies the radiation condition∫
|x|≥1

∣∣∣∣∇Aun − iλ1/2 x

|x|
un

∣∣∣∣2 (1 + |x|)δ−1 < +∞ (2.2.68)

59



2. Limiting absorption principle with singular potentials

for some δ > 0 and for all n = 1, 2, . . .. Then, {un} has a strong limit u in (H1
A)loc such that

satisfies

(HA + λ)u = f∫
|x|≤ρ

(λ|u|2 + |∇Au|2) < +∞∫
|x|≥1

∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 (1 + |x|)δ−1 < +∞,

for δ > 0.

Proof. This follows in much the same way as in the proof of Proposition 2.2.12 by the
compactness argument. Since εn → 0 as n → ∞, the same reasoning applies to this case
and we deduce that there exists a subsequence of un, unp , such that unp → u in (H1

A)loc as
p→∞ where u ∈ (H1

A)loc and satisfies

(∇+ iA)2u+ (V1 + V2)u+ λu = f,∫
|x|≤ρ

(λ|u|2 + |∇Au|2) <∞.

In addition, if we denote Du = ∇Au− iλ1/2 x
|x|u, we also get that Dunp converges to Du

in L2(E1)loc, where E1 = {|x| ≥ 1}. As a consequence, we obtain Dunp → Du in L2
δ−1
2

(E1)

satisfying ∫
|x|≥1

∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 (1 + |x|)δ−1 <∞. (2.2.69)

Finally, we shall show that the sequence {un} itself converges in (H1
A)loc to the u obtained

above, which in turn implies that {Dun} converges to {Du} in L2
loc(E1). In fact, let us assume

that there exists a subsequence {nq} of {n} such that

‖u− unq‖L2
loc

+ ‖∇Au−∇Aunq‖L2
loc
≥ γ (q = 1, 2, . . .) (2.2.70)

with some γ > 0. Then, proceeding as above, we can find a subsequence {n′q} of {nq} which
satisfies

un′q → u
′

in (H1
A)loc, (2.2.71)

u
′

being a solution in (H1
A)loc of

∇2
Au
′
+ λu

′
+ (V1 + V2)u

′
= f (2.2.72)
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2.2. Proof of Theorem 2.1.6

such that
∫
|x|≥1

∣∣∣∇Au
′ − iλ1/2 x

|x|u
′
∣∣∣2 (1 + |x|)δ−1 < +∞. Finally, by Theorem 2.1.5 we assert

that u′ obtained above is unique which implies that u and u′ must coincide. Hence, from
(2.2.71) it follows that

unq → u in (H1
A)loc,

which contradicts (2.2.70). Thus {un} converges to u in (H1
A)loc and the lemma follows.

Finally, the preceding lemma together with the uniqueness result for (2.0.4) (Theorem
2.1.5) allows us to construct the unique solution u = u(λ, f) as the limit of a sequence of
solutions {un = u(λ+ iεn, f)} (εn → 0) obtained above.

Theorem 2.2.15 (Limiting absorption principle). Under the assumptions of Theorem 2.1.6,
let {εn} ⊂ (0, 1) be a sequence tending to 0. Let un = u(λ+ iεn, f). Then {un} converges in
(H1

A)loc to a u such that

λ|||u|||21 + |||∇Au|||21 ≤ C(N1(f))2, (2.2.73)

where C = C(λ0) > 0 and solves (HA + λ)u = f.
The limit u = u(λ, f) is independent of the choice of the sequence {εn} and is deter-

mined as the unique solution of the equation (2.0.4) that satisfies the Sommerfeld radiation
condition ∫

|x|≥1

(1 + |x|)δ−1

∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 ≤ C

∫
(1 + |x|)1+δ|f |2,

for any 0 < δ < 2, being C = C(λ0) > 0.

Proof. Let f ∈ L2
1+δ
2

. Take {εn} ⊂ (0, 1) such that εn → 0 as n → ∞. We know that there

exists a unique solution un ∈ H1
A of the equation (L+ λ+ iεn)u = f satisfying

λ|||un|||21 + |||∇Aun|||21 ≤ C(εn + 1)(N1(f))2

‖Dun‖L2
δ−1
2

(E1) ≤ C‖f‖2
1+δ
2

for all n = 1, 2, . . ., where Du = ∇Au− iλ1/2 x
|x|u and E1 = {|x| ≥ 1}. Then one can see from

Lemma 2.2.14 that {un} has a strong limit in (H1
A)loc which is a solution of the equation

(L+ λ)u = f and it is easy to check that satisfies

λ|||u|||21 + |||∇Au|||21 ≤ C(N1(f))2 (2.2.74)

‖Du‖L2
δ−1
2

(E1) ≤ C‖f‖2
1+δ
2

. (2.2.75)

By the uniqueness result (see Theorem 2.1.5), it follows that the u obtained above is a unique
solution of (L+ λ)u = f satisfying (2.2.75) and the proof is complete.
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2. Limiting absorption principle with singular potentials

2.3 Proof of Theorem 2.1.5

The proof is based on multiplier method and integration by parts. It will be divided into
three steps.

Let R > r0 ≥ 1, r0 being as in Assumption 2.1.1. Our first goal is to show that there
exists µ > 0 such that ∫

|x|>R
(|∇Au|2 + |u|2) ≤ C

R1+µ

∫
R
2
≤|x|≤R

|u|2. (2.3.1)

For this purpose, we multiply the equation (2.0.6) by

∇ψ · ∇Au+
1

2
∆ψū+ ϕū, (2.3.2)

where ψ, ϕ are regular radial real-valued functions, and we integrate it over the ball {|x| <
R1}, being R1 > R. Applying similar arguments as in the proofs of Lemmas 1.3.4 and 1.3.5
we get ∫

|x|<R1

∇Au ·D2ψ · ∇Au−
∫
|x|<R1

ϕ|∇Au|2 +

∫
|x|<R1

ϕλ|u|2

=
1

4

∫
|x|<R1

(∆2ψ − 2∆ϕ)|u|2 −
∫
|x|<R1

ϕV1|u|2 −
∫
|x|<R1

ϕV2|u|2

− 1

2

∫
|x|<R1

∇V1 · ∇ψ|u|2 + =
d∑

k,m=1

∫
|x|<R1

∂ψ

∂xk
Bkm(∇A)muū

+
1

2

∫
|x|<R1

V2∆ψ|u|2 + <
∫
|x|<R1

V2∇ψ · ∇Auū−<
∫
|x|=R1

∇r
Auϕū

+
1

4

∫
|x|=R1

(∇(∆ψ)− 2∇ϕ) · x
|x|
|u|2 +

1

2
<
∫
|x|=R1

∇r
Au∆ψu

− 1

2

∫
|x|=R1

x

|x|
· ∇ψ|∇Au|2 +

1

2

∫
|x|=R1

(λ+ V1)
x

|x|
· ∇ψ|u|2. (2.3.3)

Let us consider a cut off function θ with

θ(r) =

{
1 if r ≥ 1
0 if r < 1

2
,

θ′ ≥ 0 for all r, and set θR(x) = θ
(
|x|
R

)
. Then, for R such that R

2
> r0 ≥ 1 and R < R1 we

define the multiplier ψ such that

∇ψ(x) =
x

R
θR(x) (2.3.4)
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2.3. Proof of Theorem 2.1.5

and ϕ by

ϕ(x) =
1

2R
θR(x). (2.3.5)

Let us insert (2.3.4) and (2.3.5) into the identity (2.3.3). Hence, by (1.3.22) the left-hand
side can be lower bounded by∫

|x|<R1

∇Au ·D2ψ · ∇Au−
∫
|x|<R1

ϕ|∇Au|2 +

∫
|x|<R1

ϕλ|u|2

>
1

2R

∫
|x|<R1

(
|∇Au|2 + λ|u|2

)
θR. (2.3.6)

Regarding to the right-hand side of (2.3.3), first note that

1

4

∫
|x|<R1

(∆2ψ − 2∆ϕ)|u|2 ≤ C

R3

∫
R
2
<|x|<R

|u|2. (2.3.7)

In order to analyze the terms containing the potentials, here and subsequently, we will use
η = η(R) to denote a positive constant depending on R that tends to 0 as R tends to infinity.
Thus by (2.1.3) and the Cauchy-Schwarz inequality we have

=
d∑

j,k=1

∫
|x|<R1

∂ψ

∂xk
Bkm(∇A)muū ≤

∫
|x|<R1

|Bτ ||x|
R
|u||∇Au|

≤
j2∑
j=j1

2−jµ
∫
|x|<R1

θR|u||∇Au|

≤ η(R)

∫
|x|<R1

(|u|2 + |∇Au|2)θR.

Similarly,

<
∫
|x|<R1

V2∇ψ · ∇Auū ≤ η(R)

∫
|x|<R1

(|u|2 + |∇Au|2)θR, (2.3.8)

−
∫
|x|<R1

(
∇V1 · ∇ψ

2
+ ϕV1

)
|u|2 ≤ η(R)

∫
|x|<R1

|u|2θR. (2.3.9)

Finally, since supp θ′R ⊂ {R2 < |x| < R}, yields∫
|x|<R1

(
∆ψ

2
− ϕ

)
V2|u|2 ≤ η(R)

∫
|x|<R1

|u|2θR

+
c

2R2+µ

∫
R
2
<|x|<R

|u|2. (2.3.10)
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2. Limiting absorption principle with singular potentials

Let us analyze now the surface integrals of the equality (2.3.3). An easy computation shows
that by (2.3.4), (2.3.5) and condition (2.1.3) applying to V1, the boundary terms are upper
bounded by

1

R

∫
|x|=R1

|u||∇r
Au|+

1

2

∫
|x|=R1

(|∇Au|2 + λ|u|2) +
1

2Rµ
1

∫
|x|=R1

|u|2. (2.3.11)

As a consequence, from (2.3.6)-(2.3.11) yields

1

2R

∫
|x|<R1

(|∇Au|2 + λ|u|2)θR ≤ η(R)

∫
|x|<R1

(|u|2 + |∇Au|2)θR

+
C

R2+µ

∫
R
2
<|x|<R

|u|2

+ C(λ0)

∫
|x|=R1

{
|∇Au|2 + λ|u|2)

}
.

Now, taking R large enough such that

min(1, λ)

2
− η(R) > 0, (2.3.12)

it follows that

1

R

∫
R<|x|<R1

(|∇Au|2 + |u|2) ≤ C

R2+µ

∫
R
2
<|x|<R

|u|2

+ C

∫
SR1

(|∇Au|2 + λ|u|2). (2.3.13)

Letting R1 →∞ in the above inequality, by (2.1.12) we conclude that (2.3.1), which is our
claim.

Our next step is to prove that for R > r0 ≥ 1 and any m ≥ 0, then∫
|x|>R

|x|m(|∇Au|2 + |u|2) < +∞. (2.3.14)

We do it by induction. Let γ = 1 + µ and first note that from the first step one can easily
deduce that for any R ≥ 1 holds∫

|x|≥2R

|x|γ(|u|2 + |∇Au|2) ≤
∑
j≥J

(2jγ)

∫
2j−1≤|x|≤2j

(|u|2 + |∇Au|2)

≤ C
∑
j≥J

∫
2j−2≤|x|≤2j−1

|u|2 ≤ C

∫
|x|≥R

(|u|2 + |∇Au|2)

≤ C

Rγ

∫
R
2
≤|x|≤R

|u|2,

64



2.3. Proof of Theorem 2.1.5

being J such that 2J−1 ≤ 2R ≤ 2J . The same conclusion can be drawn for any m ≥ 0.
Indeed, assuming that∫

|x|≥R
|x|m(|u|2 + |∇Au|2) ≤ C

R1+µ

∫
R
2
≤|x|≤R

|u|2, (2.3.15)

it follows that (2.3.15) is true when m is replaced by m+ γ. Thus we obtain (2.3.14).
We next claim the exponential decay. Let us multiply again the equation (2.0.6) by

(2.3.2), but instead of integrating over a ball, we do it over the whole Rd. Note that this is
equivalent to adding the identities (1.3.12) and (1.3.15) with f = 0. Thus we get the identity
(2.2.3) with the right-hand side equals to 0. Let us now choose the multipliers as

∇ψ(x) = |x|m+1 x

|x|
θR(x),

ϕ(x) =
1

2
|x|mθR(x),

for R ≥ 2r0 ≥ 1, m ≥ 1 and θR being as above.
For simplicity of notation, we continue to write η = η(R) for a function depending on R
such that η(R) → 0 as R → ∞. Thus analysis similar to that in the first step shows that
taking R large enough such that

min{1, λ}
2

− η(R) > 0, (2.3.16)

we get ∫
|x|m(|∇Au|2 + |u|2)θR ≤

∫ (
η(R)m|x|m−1 + Cm3|x|m−2

)
|u|2θR

+

(
Cm2

R2
+

c

2R1+µ

)∫
R
2
<|x|<R

|x|m|u|2.

Let us take now m = δl with 0 < δ < 2/3 and multiply both sides of the above inequality

by tl

l!
, t ≥ 1 and l ≥ 3. Making the sum with respect to l from 3 to ∞ we have(

1− 2t

3
Rδ−1η(R)− 9

2
R3δ−2t3

)∫
e|x|

δt(|∇Au|2 + |u|2)θR

≤
∫

(|∇Au|2 + |u|2)

(
1 + t|x|δ +

t2

2
|x|2δ

)
θR

+
(
CR2(δ−1)t2 +

c

2R1+µ

)∫
R
2
<|x|<R

e|x|
δt|u|2. (2.3.17)
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2. Limiting absorption principle with singular potentials

Fix t ≥ 1 and 0 < δ < 2
3
. Then, for sufficiently large R = R(t) such that

2t

3
Rδ−1η(R) +

9

2
t3R3δ−2 < 1,

by (2.3.14) we conclude that ∫
|x|>R

e|x|
δt(|∇Au|2 + |u|2) < +∞. (2.3.18)

Therefore, ∫
e|x|

δt(|∇Au|2 + |u|2) < +∞ (2.3.19)

We are now in a position to show that u = 0 almost everywhere in {|x| > 2R}. Set
v = et|x|

δ/2u with t ≥ 1 and 0 < δ < 2/3. Then, by a direct computation v satisfies the
equation

∇2
Av + [λ+ V1 + V2]v − δt|x|δ−1 x

|x|
· ∇Av

+

[
δ2t2|x|2(δ−1)

4
− δ(δ + d− 2)t|x|δ−2

2

]
v = 0. (2.3.20)

We multiply (2.3.20) by

|x| x
|x|
· ∇Av +

d− 1

2
v̄

(the combination of the symmetric and the antisymmetric multipliers, (2.3.2) with ∇ψ = x
and ϕ = −1/2), integrate it over {|x| > R} for some R > 2r0 and take the real part. Hence,
it follows that

min{1, λ}
2

∫
|x|>R

(|∇Av|2 + |v|2) +
(2δ − 1)δ2t2

4

∫
|x|>R

|x|2δ−2|v|2

+ δt

∫
|x|>R

|x|δ
∣∣∣∇r

Av
∣∣∣2 ≤ δt(d+ δ − 2)

2

(
3d− 5

2
+ δ

)∫
|x|>R

|x|δ−2|v|2

+ η(R)

∫
|x|>R

(|v|2 + |∇Av|2) +
1

2

∫
SR

λ|x||v|2

+

(
d− 1

4
+
R

2
+ η(R) +

δ2t2R2δ−1

8

)∫
SR

(|v|2 + |∇Av|2).

Consequently, combining the right-hand side of the above inequality with the left-hand side,
for R large enough and for any t ≥ 1, 0 < δ < 2/3, λ ≥ λ0, it follows that∫

|x|≥R
|v|2 ≤ Cδ

(
t2 +R(1 + λ)

) ∫
SR

(|v|2 + |∇Av|2), (2.3.21)
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which implies ∫
|x|>2R

|u|2 ≤ Cδe
−tRδ

(
1 + λ+

t2

R

)
, (2.3.22)

being Cδ independent of t. Thus letting t→∞, we obtain that u = 0 almost everywhere in
{|x| > 2R}. The unique continuation property ([R]) implies then u = 0 almost everywhere
in Rd.

Finally assume that the Sommerfeld radiation condition (2.1.15) holds. Moreover, observe
that solutions of (2.0.6) satisfy (just multiply by ū and integrate over a ball of radius R),

=
∫
|x|=R

x

|x|
· ∇Auū = 0.

Hence, we have∫
|x|=R

(|∇Au|2 + λ|u|2)dσ(x) =

∫
|x|=R

∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 dσ(x),

which together with (2.1.15) establishes (2.1.12). The proof of the theorem is complete.

2.4 Appendix A: More singularities on the potentials

In this section it is shown that the main result is still true if we consider singularities on the
potential V1. Nevertheless, we will see that more singularity on the potential V2 breaks the
uniformity of the Morrey-Campanato estimates on λ. We will restrict our attention to the
case d > 3.

2.4.1 More singularities for V2

As we have mentioned in remark 2.1.3, one can allow more singularities on the potential V2.
In fact, one may require

|V2(x)| ≤ C
∗∗

|x|2
, if |x| ≤ r0, (2.4.1)

for sufficiently small C∗∗ > 0. However, in this case the constant C∗∗ will depend on λ and
the uniformity of the estimate (2.2.22) on λ for λ ≥ λ1 breaks down.

To see this, we follow the proof of Theorem 2.2.1 (with the same notation) and observe
that the only problem appears in the analysis of the term <

∫
V2∇ψ · ∇Auū. In this case,

we need the following a-priori estimate.
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2. Limiting absorption principle with singular potentials

Lemma 2.4.1. Assume that (2.1.3), (2.1.4), (2.1.8) hold. Then the solution u ∈ H1
A(Rd)

of the Helmholtz equation (2.1.1) satisfies∫
|x|≤r0

|∇Au|2

|x|
≤
(
λ+ C∗∗ +

d− 3

2
+ κ

)∫
|x|≤r0

|u|2

|x|3
+ σ|||u|||2

+ C(N(f))2, (2.4.2)

where σ > 0, C > 0 are independent of λ and ε.

Proof. It suffices to define the test function ϕ as

ϕ(x) =

{
1
|x| if |x| ≤ r0,

0 if |x| ≥ 2r0

(2.4.3)

and put into the identity (1.3.12).

Thus going back to the proof of Theorem 2.2.1, by (2.2.12) and using the same notation,
we get

<
∫
V2∇ψR · ∇Auū ≤

(
M +

1

2

)
C∗∗
(∫
|x|≤r0

|∇Au|2

|x|

) 1
2
(∫
|x|≤r0

|u|2

|x|3

) 1
2

+ σ|||∇Au||||||u|||
≡ V21 + V22.

Let us estimate V21 and V22. On the one hand, by (2.4.2) we have

V21 ≤ C∗∗
(
M +

1

2

)(
λ+ C∗∗ +

d− 3

2
+ κ

)1/2 ∫
|x|≤r0

|u|2

|x|3

+ C∗∗σ|||u|||
(∫
|x|≤r0

|u|2

|x|3

) 1
2

+ κ

∫
|x|≤r0

|u|2

|x|3
+ C(κ)(N(f))2.

On the other hand, yields

V22 ≤
1

8
|||∇Au|||2 + σ|||u|||2. (2.4.4)

As a consequence, writing

a =

(∫
|x|≤r0

|∇⊥Au|2

|x|

)1/2

, b =

(∫
|x|≤r0

|u|2

|x|3

)1/2

,
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2.4. Appendix A: More singularities on the potentials

in the same manner we obtain

λ

4
|||u|||2 +

(
1

8
− κ2

)
|||∇Au|||2 +Ma2 +

M(d− 1)(d− 3)

4
b2

+
M

2

∫
|x|≥r0

|∇⊥Au|2

|x|
+
M(d− 1)(d− 3)

4

∫
|x|≥r0

|u|2

|x|3

+

(
d− 1

8
− κ2

)
sup
R>0

1

R2

∫
|x|=R

|u|2dσR ≤ C∗(M + 1/2)ab

+ σ(C∗∗, λ)b2 + σ|||u|||2 + C(N(f))2.

Taking λ1 = λ1(M,d, σ, κ) > 0 large enough it suffices to show that for λ ≥ λ1

Ma2 − C∗(M + 1/2)ab+

[
M(d− 1)(d− 3)

4
− σ(C∗∗, λ)

]
b2 > 0. (2.4.5)

This is true if
1

(d− 1)(d− 3)

[
(C∗)2 (M + 1/2)2

M2
+

4σ(C∗∗, λ)

M

]
< 1. (2.4.6)

Letting M →∞ in (2.4.6), we choose C∗ and C∗∗ such that

1

(d− 1)(d− 3)

[
(C∗)2 + σ(C∗∗, λ)

]
< 1.

Observe that when C∗∗ = 0, we recover (2.2.18).

2.4.2 Singularities for V1

Neither the hypothesis nor the conclusion of the Theorem 2.1.6 when d > 3 is affected if we
assume V1 to be singular. If we consider

|(∂rV1)−| ≤
C∗∗

|x|3
, |V1| ≤

C∗∗∗

|x|2
when |x| ≤ r0, (2.4.7)

a slight change in the proof of Theorem 2.2.1 shows that the a-priori estimate (2.1.14) is
still satisfied. In fact, we only need to replace the definition of the symmetric multiplier ϕ
(2.2.5) by the following one.

ϕ(x) =

{
β

4R
if |x| ≤ R,

0 if |x| ≥ R,
(2.4.8)

with 0 < β ≤ 1. As a consequence, the condition (2.2.16) is also modified and in this case it
follows that

Ma2 +

[
M(d− 1)(d− 3)

4
− (M + 1/2)C∗∗

2
− β

4
C∗∗∗

]
b2

− C∗(M + 1/2)ab > 0 (2.4.9)

69



2. Limiting absorption principle with singular potentials

for any a, b > 0. Since β is arbitrary in the definition (2.4.8) of ϕ, we can choose β ∈ (−γ, γ),
for γ > 0 arbitrarily small. Thus we can neglect the term containing β, and (2.4.9) is satisfied
if

1

(d− 1)(d− 3)

[
(M + 1/2)2

M2
(C∗)2 + 2

(M + 1/2)

M
C∗∗
]
< 1. (2.4.10)

Finally, observe that

inf
M>0

(M + 1/2)2

M2
= inf

M>0

(M + 1/2)

M
= 1

and the infimum is reached in the limit as M →∞. Since M is also arbitrary in the definition
of ψ we can optimize in terms of C∗, C∗∗ and conclude that the last condition is

(C∗)2 + 2C∗∗ < (d− 1)(d− 3), (2.4.11)

which is in fact the same condition as in [F] (Assumption (1.19)). When (∂rV1)− = 0, we
recover (2.2.18).

2.5 Appendix B: Unique continuation and Carleman

estimates

Consider a partial differential operator P (x,D) in an open connected set G ⊂ Rd, d ≥ 2.
Then, the classical unique continuation problem can be formulated as follows:

• Let u be a solution to P (x,D)u = 0 such that u = 0 in an open subset of G. Then
u ≡ 0 in G.

The most common way of proving unique continuation results is by using Carleman esti-
mates.

The Carleman estimates are weighted energy type estimates with some large parameter
τ , which were first introduced by Carleman in 1939 to prove uniqueness of the continuation
results for elliptic systems with nonanalytic coefficients on the plane. His idea turned out to
be extremely fruitful, and in 1950-70s it was applied to many important partial differential
equations. At present, there are many (and in some cases complete) results on Carleman
estimates and on unique continuation property of second order equations, including elliptic,
parabolic, Schrödinger type, and hyperbolic equations. See [Ta].

The simplest Carleman estimate for the Laplace operator has the form

2λτ

∫
|x|τ |u|2 ≤

∫
|(∆ + λ)u|2|x|τ+2, (2.5.1)

for u ∈ C∞0 (Rd\{0}) where λ > 0, τ > 0. (see [H], Proposition 14.7.1). One could give a
very easy and short proof of (2.5.1) by a multiplier method and integration by parts.
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2.5. Appendix B: Unique continuation and Carleman estimates

1st proof of (2.5.1):

Let us define
v = |x|τu.

Then,

|x|τ (∆u+ λu) = ∆v − 2τ |x|−1 x

|x|
· ∇v + τ(τ + 1)|x|−2v − τ(d− 1)|x|−2v

= ∆v + τ 2|x|−2v − 2τ

|x|2

(
x · ∇v +

(d− 2)

2
v

)
+ λv. (2.5.2)

Let us now multiply (2.5.2) by g(v) = x · ∇v̄ + d−2
2
v̄ and integrate over the whole Rd. Thus

we get ∫
|x|τ (∆u+ λu)g(v) =

∫
(∆v + τ 2|x|−2v)g(v)− 2τ

∫
1

|x|2
|g(v)|2

+ λ

∫
vg(v).

After some integration by parts, by Cauchy-Schwarz inequality we obtain

λ

∫
|v|2 + 2τ

∫
|g(v)|2

|x|2
≤
∫
|x|τ |∆u+ λu||g(v)|

≤
(∫
|x|2τ+2|∆u+ λu|2

) 1
2
(∫

1

|x|2
|g(v)|2

) 1
2

≤ 1

4τ

∫
|x|2τ+2|∆u+ λu|2 + τ

∫
1

|x|2
|g(v)|2.

Therefore,

2λτ

∫
|x|τ |u|2 +

τ

2

∫
|x|τ−2

∣∣∣∣(τ + d− 2)

2
u+ x · ∇u

∣∣∣∣2
≤
∫
|x|τ+2|∆u+ λu|2.

In particular, we have (2.5.1).

There is also another simple version of this proof:

2nd proof of (2.5.1):

Let us denote

M =

∫
|x|2τ+2|∆u+ λu|2
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Let

L1 = ∆ + τ 2|x|−2 + λ, L2 = −2τ |x|−2

(
x · ∇+

d− 2

2

)
.

Note that L1 is symmetric and L2 is skew symmetric. It follows that

M =

∫
|x|2|∆v + τ 2|x|−2v − 2τ

|x|2

(
x · ∇v +

(d− 2)

2
v

)
+ λ|v|2

=

∫
|x|2|L1v + L2v|2

= ‖|x|L1v‖2 + ‖|x|L2v‖2 + 2<
∫
|x|2L1vL2v̄.

Now (2.5.1) follows since

2<
∫
|x|2L1vL2v̄ = 4τλ‖v‖2

and ‖v‖2 =
∫
|x|2τ |u|2.

Estimate (2.5.1) leads inmediately to a uniqueness theorem for a resolvent equation of a
zero order perturbation of the Laplacian, as Hörmander shows in [H].

Theorem 2.5.1. ([H], Theorem 14.7.2) Assume that u is a solution of the equation

(∆ + λ+ V )u = 0 (2.5.3)

where λ > 0 and V is multiplication by a function V (x) satisfying

|V (x)| ≤ C

|x|
. (2.5.4)

If (1 + |x|)τDαu ∈ L2 for all τ when |α| ≤ 1, it follows that u = 0.

Therefore, one could think that replacing the Laplacian ∆ in (2.5.1) by the magnetic
Laplacian (∇+iA)2, we would get the uniqueness theorem for the electromagnetic Helmholtz
equation (2.0.6) with the corresponding potentials.

The same reasoning as in the 2nd proof of (2.5.1) applies to the magnetic case and we get
the following:

Magnetic case

Let us denote in this case

M =

∫
|x|2τ+2|(∇+ iA)2u+ λu|2 (2.5.5)
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and

L1 = ∇2
A + τ 2|x|−2 + λ, L2 = −2τ |x|−2

(
x · ∇A +

d− 2

2

)
.

Hence, we have

M =

∫
|x|2|∇2

Av + τ 2|x|−2v − 2τ

|x|2

(
x · ∇Av +

(d− 2)

2
v

)
+ λv|2

=

∫
|x|2|L1v + L2v|2

= ‖|x|L1v‖2 + ‖|x|L2v‖2 + 2<
∫
|x|2L1vL2v̄.

Now, since

2<
∫
|x|2L1vL2v̄ = 4τλ‖v‖2 − 4τ=

∫
|x|Bτ · ∇Avv̄

and ‖v‖2 =
∫
|x|2τ |u|2, it follows that

λ

∫
|v|2 ≤ 1

4τ

∫
|x|2τ+2|(∇+ iA)2u+ λu|2 +

∫
|x||Bτ ||v||∇Av|. (2.5.6)

Observe that if Bτ = 0, then we obtain the corresponding Carleman estimate for the
magnetic Hamiltonian. Consequently, following [H] (see Theorem 2.5.1 above) we deduce
the following result.

Theorem 2.5.2. Assume that u is a solution of the equation

(∇2
A + λ)u = 0, (2.5.7)

such that (1 + |x|)τDαu ∈ L2 for all τ and |α| ≤ 1. If Bτ = 0, then u = 0.

Nevertheless, in the general case, one needs to control the magnetic gradient ∇A of the
solution u in order to absorb the magnetic term. Working with polynomial weights we have
not been able to obtain that. Looking at the literature and talking to some experts in the
field, it seems that one should go further and try with exponential weights. The idea would
be to set

v = wτu, (2.5.8)

where w = e−|x|
β
, β > 0. Then, we could expect some Carleman estimate that involves v

and ∇Av with exponential weights in the left-hand side of the inequality. We propose to
study this in the future.
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Chapter 3

Energy concentration and explicit
Sommerfeld radiation condition

This chapter is devoted to the study of the following Helmholtz equation

(∇+ iA(x))2u(x) + n(x)u(x) = f(x), x ∈ Rd (3.0.1)

with magnetic vector potential A : Rd → Rd, where n(x) = λ(1 + Ṽ1(x)) with Ṽ1 : Rd → R
is a variable index of refraction that does not necessarily converge to a constant at infinity,
but can have an angular dependency like

n(x)→ n∞

(
x

|x|

)
as |x| → ∞. (3.0.2)

We are interested in the study of the existence and uniqueness of solution of the equation
(3.0.1) by the limiting absorption method such that satisfies an appropriate radiation con-
dition. In addition, our goal is to show a new energy estimate for the solution u of the
equation

(∇+ iA(x))2u(x) + n(x)u(x) + iεu(x) = f(x), ε > 0 (3.0.3)

that characterizes the behavior of the solution at infinity. This estimate will be obtain by
integration by parts and is given by∫ ∣∣∣∣∇ωn∞

(
x

|x|

)∣∣∣∣2 |u|2

1 + |x|
< +∞, (3.0.4)

where ω = x
|x| . Thus we see that in this case the behavior of the solution at infinity can be

very different to the one exhibited by free solutions.
In the case that A ≡ 0, the existence of the energy estimate (3.0.4) has been established

by Perthame and Vega [PV2]. They consider the Helmholtz equation

∆u+ n(x)u+ iεu = −f(x), ε > 0 (3.0.5)
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with n(x) > 0 such that

2
∑
j∈Z

sup
C(j)

(x · ∇n(x))−
n(x)

< 1 (3.0.6)

is studied. Here C(j) denotes the annulus {2j−1 ≤ |x| ≤ 2j}, while (a)− = −min{0, a} is
the negative part of a ∈ R. We point out that this condition remains unchanged under the
transformation n → λn. By (3.0.6) it may be concluded that the solution of the equation
(3.0.5) satisfies the a-priori estimate

|||∇u|||2 + |||n1/2u|||2 +

∫
|∇⊥u|2

|x|
<∞. (3.0.7)

In addition, if there exists n∞ ∈ C3(Sd−1) such that n∞(ω) ≥ n0 > 0 and

|n(x)− n∞(ω)| ≤ n∞(ω)
Γ

|x|
, Γ > 0, n > 0, (3.0.8)

it follows that u also satisfies the energy estimate∫
|x|≥1

|∇ωn∞(ω)|2 |u|
2

|x|
<∞, (3.0.9)

where for a function n(ω) ∈ C1(Sd−1) with ω = x
|x| ,

∇ωn(ω) =
∂

∂ω
n(ω) := |x| ∂

∂τ
n

(
x

|x|

)
and

∂

∂τ
u(x) = ∇u(x)− x

|x|
∂

∂r
u(x),

∂

∂r
u(x) = ∂ru(x) :=

x

|x|
· ∇u(x).

The estimate (3.0.9) says that the points where |∇ωn∞(ω)| vanishes on the sphere are the
concentration directions for the energy |u|2. In other words, energy is not dispersed in all
directions but concentrated on those given by the critical points of ∇n(ω).

The role played by the critical points of n∞ was already pointed out by Herbst in [He],
where it is considered potentials V (x) such that

V (x) = |x|−σV
(
x

|x|

)
0 < σ < 2, ∀x ∈ Rd\{0}. (3.0.10)

This potential is also studied in [GVV] and [HS], for the study of the counterexamples of
Strichartz inequalities for Schrödinger equations with repulsive potentials and the existence
and completeness of the wave operator, respectively.
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One of the main contributions of this chapter is the extension of the energy estimate
(3.0.9) to the magnetic case. To this end, we will first prove the following a-priori estimate

|||n1/2u|||2 + |||∇Au|||2 +

∫
|∇⊥Au|2

|x|
≤ C

(
N

(
f

n1/2

))2

. (3.0.11)

We emphasize that the estimate for the tangential component of the magnetic gradient
turns out to be fundamental. For this purpose, we will require that n(x) and the tangential
component of the magnetic field satisfy the condition

2
∑
j∈Z

sup
C(j)

(x · ∇n(x))− + 22j|Bτ |2

n(x)
< 1. (3.0.12)

Note that when Bτ = 0, we get (3.0.6). Thus we will recover the a-priori estimate (3.0.7) of
[PV2]. For the energy estimate (3.0.9), it will be necessary to put some further restriction
to n(x) as in [PV2] and also to the magnetic field B. Nevertheless, it does not seem that
these conditions are sufficient to prove the limiting absorption principle for the equation
(3.0.1). Observe that the conditions that we are assuming here are weaker than the ones in
the previous chapter.

In order to get the limiting absorption principle for the electromagnetic Helmholtz equa-
tion (3.0.1) we will follow Saito [S]. This will allow us to add a short range potential V2

to the equation (3.0.1). Then, under suitable hypotheses on Ṽ1 and V2, we will prove the
existence of a unique solution of the equation

∇2
Au+ λ(1 + Ṽ1)u+ V2u = f (3.0.13)

for λ ∈ [λ0, λ1] with 0 < λ0 < λ1 <∞ satisfying the a-priori estimate

λ|||u|||21 + |||∇Au|||21 ≤ C(N1(f))2 (3.0.14)

and the radiation condition∫
|x|≥1

∣∣∣∇Au− i
√
λ∇Ku

∣∣∣2 1

(1 + |x|)1−δ < +∞, (3.0.15)

where K is the solution to the eikonal equation

|∇K|2 =
1

λ
n(x), n(x) = λ(1 + Ṽ1(x)). (3.0.16)

In fact, we will require that Ṽ1 satisfies

|∂αṼ1(x)| ≤ C∗|x|−|α| |α| ≤ 2, (3.0.17)
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3. Energy concentration and explicit Sommerfeld radiation condition

for a small constant C∗ > 0, while V2 will be as in Chapter 2 including singularities at the
origin. Regarding to the magnetic potential, in this case we need to impose conditions on
each component Bjk of the magnetic field. It is worth pointing out that we improve the
result by Saito showing the estimate (3.0.14) instead of the L2-weighted one (0.0.50) that is
showed in [S]. However, (3.0.14) is not enough for proving the energy estimate (3.0.9); as
we mentioned above, the estimate ∫

|∇⊥Au|2

|x|
<∞ (3.0.18)

is necessary in our approach.
Note that assumptions needed to obtain the energy estimate and those for the limiting

absorption principle are different and not comparable. On the one hand, if n = n∞ and
regular, (3.0.12) is trivially fulfilled. On the other hand, condition (3.0.17) with n = λ(1+Ṽ1)
does not imply the existence of the limit n∞. In addition, condition (3.0.8) does not need
any regularity assumption on n(x) as in (3.0.17). It is easy to see that if besides (3.0.17),
we require

|∂rṼ1(x)| ≤ c2|x|−1−µ, |x| ≥ 1, (3.0.19)

for some c2 > 0, µ > 0, then the index of refraction n(x) admits a radial limit n∞

(
x
|x|

)
as

|x| → ∞. Moreover, it follows that

|n(rω)− n∞(ω)| ≤ Γ|x|−µ (3.0.20)

for Γ > 0, where r = |x| and ω = x
|x| (see [PV2] for more details).

According to the above, this chapter will be divided into two parts. Firstly, we will extend
the work by Perthame and Vega [PV2] to the magnetic case, giving the a-priori estimate
(3.0.11) and the new energy estimate (3.0.9) for solutions u ∈ H1

A(Rd) of the magnetic
Helmholtz equation

(∇+ iA)2u+ n(x)u+ iεu = f, ε > 0, (3.0.21)

with n(x) = λ(1 + Ṽ1(x)). Secondly, basing on the paper by Saito [S], we will prove the
limiting absorption principle for the equation (3.0.13). A combination of the both results
will permit to deduce an explicit Sommerfeld condition∫ ∣∣∣∣∇Au− in1/2

∞
x

|x|
u

∣∣∣∣2 1

1 + |x|
< +∞ (3.0.22)

for solutions obtained from the limiting absorption principle. It is a very striking and unex-
pected feature that the index n∞ appears in this formula and not the gradient of the phase
as established by Saito [S]. This apparent contradiction is clarified by the existence of the
extra estimate (3.0.9) on the energy decay. In other words, the Sommerfeld condition hides
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the main physical effect arising for a variable n at infinity; energy concentration on lines
rather than dispersion in all directions.

Observe that in our approach it will be necessary to solve the eikonal equation

|∇K|2 = 1 + Ṽ1(x). (3.0.23)

Barles [B] proved that under the assumption (3.0.17) and for C∗ small enough, there exists
a solution of the equation (3.0.23) for |x| > R0 with R0 large enough, see section 3.1. In
general, one can not expect that the vector ∇K points at the direction x

|x| . An illustrative

example given by Saito [S] is to consider

Ṽ1(x) = −1

λ

x1

|x|
. (3.0.24)

Then Ṽ1(x) satisfies (3.0.17) for λ large enough and

K(x) = a(λ)|x| − b(λ)x1 (3.0.25)

with {
a(λ) = 1

2
[(1 + 1/λ)1/2 + (1− 1/λ)1/2]

b(λ) = 1
2
[(1 + 1/λ)1/2 − (1− 1/λ)1/2]

(3.0.26)

is a solution of the eikonal equation (3.0.23). This boundary condition differs from ours in
all points except when ∇n = 0 (n = λ + Ṽ1). Then the apparent contradiction is clarified
thanks to the estimate (3.0.9) which applies for this example. Note that in the trivial case
Ṽ1(x) = 0, one can take K(x, λ) = |x|.

It is worth pointing out that the self-adjointness of the Schrödinger operator

T = ∇2
A + λṼ1 + V2 (3.0.27)

is necessary for the limiting absorption principle. As in Chapter 2, in what follows we assume
(2.0.2) with V1 = λṼ1. Hence, we conclude that T is self-adjoint on L2(Rd) with form domain

D(T ) = {f ∈ L2(Rd) :

∫
|∇Af |2 −

∫
(λṼ1 + V2)|f |2 <∞}. (3.0.28)

The remainder of this chapter is organized as follows. In the next section, we give a brief
exposition of the eikonal equation and its properties that will be useful for the proofs of the
main results. Section 3.2 will be concerned with the new energy estimate. We will state and
prove the result that extends [PV2] to the magnetic case, see Theorem 3.2.3, showing first
the appropriate a-priori estimates given in Theorem 3.2.1 that permits to deduce the desired
conclusion. In section 3.3 we proceed with the study of the limiting absorption principle for
the equation (3.0.13) that is established in Theorem 3.3.4. The same reasoning as in Chapter
2 applies to this case. Therefore, we will restrict our attention to show the Sommerfeld
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3. Energy concentration and explicit Sommerfeld radiation condition

radiation condition (Proposition 3.3.5) and the a-priori estimates for the solution u of the
equation (3.0.13) with λ replaced by λ+ iε, ε > 0 (Proposition 3.3.7). The uniqueness result
will be also established and proved (Theorem 3.3.8) in this section in much the same way as
in the proof of Theorem 2.1.5 following Mochizuki [Mo] and Zhang [Zh]. Finally, section 3.4
provides a detailed proof of the new explicit Sommerfeld condition for the electromagnetic
Helmholtz equation (3.0.1) given in Theorem 3.4.1.

3.1 The Eikonal Equation

In order to determine the phase arising in the Sommerfeld radiation condition (3.0.15) and
to conclude the explicit one (3.0.22), we need to solve the eikonal equation

|∇K|2 = 1 + Ṽ1(x), x ∈ Rd. (3.1.1)

Setting the solution K = K(x,C∗) in terms of the bounded function g defined as

g(x,C∗) = |x|−1K(x,C∗), (3.1.2)

we derive the following Hamilton-Jacobi equation

|g|2 + 2r∂rg + |x|2|∇g|2 = 1 + Ṽ1(x), x ∈ Rd\{0}. (3.1.3)

From (3.1.3), under assumption (3.0.17), G. Barles [B] showed that there exist C0 > 0 and
r0 > 0 such that for any C∗ < C0 and for |x| ≥ r0 the equation (3.1.1) has a solution
K = K(x,C∗) satisfying

(i) K(x,C∗) is a real-valued C3 function.

(ii) Let 0 < c0 < c1 <∞. Then,

c0 ≤ g(x,C∗) ≤ c1. (3.1.4)

(iii) When C∗ → 0

|x|j(∂jg)(x,C∗) −→
{

1, j = 0
0, j = 1, 2, 3

(3.1.5)

uniformly for x ∈ {x ∈ Rd : |x| ≥ r0}.

Therefore, one can easily deduce the following identity that will be very useful in section
3.3.
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3.1. The Eikonal Equation

Lemma 3.1.1. ([S], Lemma 2.5) For the solution K of the eikonal equation (3.1.1) and for
1 ≤ i, j ≤ d, the following identity holds

∂2K

∂xi∂xj
=
|∇K|2

K
δij −

1

K

∂K

∂xi

∂K

∂xj
+

1

K
Fij(x,C

∗), (3.1.6)

where Fij(x,C
∗) is a bounded function of x for |x| ≥ r0 such that

lim
C∗→0

sup
|x|≥r0

|Fij(x,C∗)| = 0 (i, j = 1, . . . , d) (3.1.7)

and

δij =

{
1 i = j,
0 i 6= j.

Proof. Setting K(x,C∗) = |x|g(x,C∗) and x̃k = xk
|x| , we have

∂K

∂xi
= x̃ig + |x| ∂g

∂xi
. (3.1.8)

Then,
∂2K

∂xi∂xj
=
δijg

|x|
− x̃ix̃j

g

|x|
+ x̃i

∂g

∂xj
+ x̃j

∂g

∂xi
+ |x| ∂2g

∂xi∂xj
, (3.1.9)

which can be written as

∂2K

∂xi∂xj
=
δij
K
g2 − x̃ix̃j

K
g2 +

1

K
Gij(x,C

∗), (3.1.10)

with

Gij(x,C
∗) =

(
x̃i|x|

∂g

∂xj
+ x̃j|x|

∂g

∂xi
+ |x|2 ∂2g

∂xi∂xj

)
. (3.1.11)

On the other hand, from (3.1.8) it follows that{
x̃ig = ∂K

∂xi
− |x| ∂g

∂xi
,

|∇K|2 = g2 + 2g|x|x̃ · ∇g + |x|2|∇g|2.
Thus we obtain

x̃ix̃j
K

g2 =
1

K

∂K

∂xi

∂K

∂xj
− 1

K

(
|x| ∂g
∂xi

∂K

∂xj
+ |x|∂K

∂xi

∂g

∂xj
− |x|2 ∂g

∂xi

∂g

∂xj

)
,

which together with (3.1.10), gives (3.1.6) with

Fij = Gij − δij(2|x|x̃ · ∇g) + |x|2|∇g|2) + |x| ∂g
∂xi

∂K

∂xj

+ |x|∂K
∂xi

∂g

∂xj
− |x|2 ∂g

∂xi

∂g

∂xj
. (3.1.12)

The relation (3.1.7) follows from (3.1.5) and the lemma is proved.
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3. Energy concentration and explicit Sommerfeld radiation condition

From (3.0.15) and (3.0.18), in order to prove the explicit condition (3.0.22) we shall
deduce (see section 3.4) the estimate∫

|∂τKu|2
1

1 + |x|
< +∞. (3.1.13)

This is an energy estimate in itself which says that u concentrates along the critical points
of ∇τK. In fact, from the hypotheses (3.0.19) for the potential Ṽ1(x), it follows that these
critical point coincide with those of∇ωn∞ establishing a relation between the energy estimate
(3.0.9) and (3.1.13).

Lemma 3.1.2. (Theorem 3.2, [PV2]) Under assumptions (3.0.17) and (3.0.19), the solution
to (3.1.3) satisfies for C∗ small enough and x 6= 0

|∂rg| ≤ C∗r−1−µ, (3.1.14)

and g
(
r x
|x|

)
→ g∞

(
x
|x|

)
as r →∞, a smooth solution to the equation

g∞(ω)2 + |∇ωg∞(ω)|2 = n∞(ω), ω ∈ Sd−1. (3.1.15)

Moreover,
|∇⊥K| = |∇ωg∞(ω)|+O(r−µ) (3.1.16)

and
0 < C1|∇ωg∞| ≤ |∇ωn∞| ≤ C2|∇ωg∞|. (3.1.17)

Observe however that for the energy estimate (3.0.9) we do not need the existence of a
solution to the eikonal equation (3.1.1) which could well not exist.

3.2 The energy estimate

The purpose of this section is to extend the result by Perthame and Vega [PV2] to the
magnetic case. To be more precise, we are interested in proving the energy estimate∫

|∇ωn∞(ω)|2 |u|
2

|x|
≤ C(1 + ε)

(
N

(
f

n1/2

))2

(3.2.1)

for solutions u ∈ H1
A(Rd) of the magnetic Helmholtz equation

∇2
Au+ n(x)u+ iεu = f(x), ε > 0, (3.2.2)

with a variable index of refraction n(x), with a slow and only radial decay to a constant

n∞

(
x
|x|

)
at infinity. The estimate (3.2.1) uses in a strong way the a-priori estimate for the
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3.2. The energy estimate

Morrey-Campanato norm of the solution u of the equation (3.2.2) as well as the estimate for
the tangential part of its magnetic gradient.

Let us consider n(x) > 0 such that

n = n1 + n2 with n2 ∈ L∞, (3.2.3)

‖n1/2
1 u‖L2 ≤ (1− c0)‖∇u‖L2 for some c0 > 0, (3.2.4)

2
∑
j∈Z

sup
C(j)

(x · ∇n(x))− + 22j|Bτ |2

n(x)
:= β < 1, (3.2.5)

where C(j) = {x ∈ Rd : 2j−1 ≤ |x| ≤ 2j} and (a)− denotes the negative part of a ∈ R.
Then it follows the following result.

Theorem 3.2.1. Let d ≥ 3 and assume that (3.2.3)-(3.2.5) hold. Then the solution to the
Helmholtz equation (3.2.2) satisfies

M2 := |||∇Au|||2 + |||n1/2u|||2 +

∫
|∇⊥Au|2

|x|

≤ C(ε+ ‖n2‖L∞)

(
N

(
f

n1/2

))2

, (3.2.6)

where C is independet of ε and n.

Proof. Let R > 0 and we consider the functions ψ and ϕ given by

∇ψ(x) =

{
|x|
R

if |x| ≤ R,
x
|x| if |x| ≥ R,

(3.2.7)

ϕ(x) =

{
1

2R
if |x| ≤ R,

0 if |x| ≥ R.
(3.2.8)

Let us add the identity (1.3.15) to (1.3.12) with the above choices of the multipliers.
Thus, analysis similar to that in the proof of Theorem 2.2.1 gives

1

2R

∫
|x|≤R

(|∇Au|2 + n(x)|u|2) +

∫
|x|≥R

|∇⊥Au|2

|x|
+

(d− 1)

8R2

∫
|x|=R

|u|2

≤ 1

2

∫
(∂rn)−|u|2 +

1

R

∫
|x|≤R

|x||Bτ ||∇Au||u|+
∫
|x|≥R

|Bτ ||∇⊥Au||u|

+ ε

∫
|∇Au||u|+ 2

∫
|f ||∇Au|+ C

∫
|f ||u|
|x|

. (3.2.9)
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3. Energy concentration and explicit Sommerfeld radiation condition

The terms related to f can be treated as in the proof of Theorem 2.2.1, obtaining∫
|f ||u|
|x|

+

∫
|f ||∇Au| ≤ κ

(
|||∇Au|||2 + sup

R>0

1

R2

∫
|x|=R

|u|2
)

+ Cκ(N(f))2, (3.2.10)

where κ denotes an arbitrary positive small constant.
Let us study the potential terms. On the one hand, we have

1

2

∫
(∂rn)−|u|2 ≤

1

2

∑
j∈Z

∫
C(j)

(x · ∇n)−
2j−1n

n|u|2

≤
∑
j∈Z

(x · ∇n)−
n

|||n1/2u|||2. (3.2.11)

On the other hand, let J such that 2J−1 ≤ R ≤ 2J . Then by Cauchy-Schwarz inequality
yields

1

R

∫
|x|≤R

|x||Bτ ||∇Au||u| ≤
1

R

(∫
|x|≤R

|∇Au|2
) 1

2
(∫
|x|≤R

|x|2|Bτ |2|u|2
) 1

2

≤ 1

4R

∫
|x|≤R

|∇Au|2 +
∑
j≤J

22j|Bτ |2

n(x)
|||n1/2u|||2

and ∫
|x|≥R

|Bτ ||∇⊥Au||u| ≤
(∫
|x|≥R

|∇⊥Au|2

|x|

)1/2(∫
|x|≥R

|x||Bτ |2|u|2
)1/2

≤ 1

4

∫
|x|≥R

|∇⊥Au|2

|x|
+
∑
j≥J

22j|Bτ |2

n(x)
|||n1/2u|||2.

Finally, let us analyze the ε term. In this case, the a-priori estimate (1.3.10) reads as∫
|∇Au|2 ≤

∫
n|u|2 +

∫
|f ||u|,

which together with assumptions (3.2.3)-(3.2.4) implies∫
|∇Au|2 ≤ C

(∫
n2|u|2 +

∫
|f ||u|

)
.

Hence, by the same method as in (2.2.15) it follows that

ε

∫
|∇Au||u| ≤ κ|||n1/2u|||2 + Cκ(ε+ sup |n2|)

(
N

(
f

n1/2

))2

. (3.2.12)

As a consequence, plugging (3.2.10)-(3.2.12) into (3.2.9) and taking the supremmum over
R, by condition (3.2.5) we get (3.2.6), which is our claim.
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3.2. The energy estimate

Remark 3.2.2. The dimension two is a special case. In this case, with the above choice of
multipliers it follows that

∆(2ϕ−∆ψ) ≤ − C

|x|3
. (3.2.13)

Because of this singularity at zero, we cannot recover the full result (3.2.6) for d = 2 and we
cannot reach the right behavior close to 0. With some modifications in the proof (see [PV1],
section 5 for more details) and assuming that n > n0 > 0, then in the two dimensional case

it may be proved that for R0 = n
−1/2
0 the solution satisfies

|||∇Au|||2R0
+ |||n1/2u|||2R0

+

∫
|x|≥R0

|∇⊥Au|2

|x|
≤ C(1 + ε)

(
NR0

(
f

n1/2

))2

.

The homogeneity of the above estimate makes it compatible with the high frequencies
(replace n by µ2n). Moreover, (3.2.6) allows us to get the new energy estimate. As we have
already said, the estimate of the tangential component of the magnetic gradient given in
(3.2.6) turns out to be fundamental. In order to get it, we need the smallness assumption
given in (3.2.5). However, the condition (3.2.5) is necessary and can not be relaxed to a
Coulomb type of decay, even if smallness is added (see [PV2], Appendix for more details).

In order to prove the energy estimate (3.2.1), we need to impose some extra assumptions
on B and n. In fact, on the one hand we assume that∑

j≥0

22j|Bjk|2 <∞. (3.2.14)

On the other hand, it is required that

there exists n∞

(
x

|x|

)
∈ C∞

(
Sd−1

)
, n∞

(
x

|x|

)
≥ n0 > 0, (3.2.15)

and ∣∣∣∣n(x)− n∞
(
x

|x|

)∣∣∣∣ ≤ n∞

(
x

|x|

)
Γ

|x|
, Γ > 0, n > 0. (3.2.16)

Note that from (3.2.15) and (3.2.16) it may be concluded that

|n| ≤ C and n ≥ n0

2
for |x| large enough. (3.2.17)

We may now state the main result of this section. Its interest relies on the bounds stated
in Theorem 3.2.1.
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3. Energy concentration and explicit Sommerfeld radiation condition

Theorem 3.2.3. For dimensions d ≥ 3, we assume (3.2.5), (3.2.14)-(3.2.16) and use the
notation of Theorem 3.2.1. Then the solution of the Helmholtz equation (3.2.2) satisfies, for
R ≥ 1 large enough∫

|x|≥R

∣∣∣∣∇ωn∞

(
x

|x|

)∣∣∣∣2 |u|2|x| ≤ C

[
M2 +

(
N

(
f

n1/2

))2
]
, (3.2.18)

for some constant C independent of ε and n.

Proof. The proof consists in using the basic identity (1.3.15) with a test function that de-
pends on the behavior of n(x) at infinity. We choose R ≥ 1 such that (3.2.17) holds and
define

ψq(x) = q

(
|x|
R

)
n∞

(
x

|x|

)
(3.2.19)

for some non-decreasing smooth function

q(r) =

{
0 for r ≤ 1
r for r ≥ 2.

Let us put ψq into (1.3.15), obtaining

1

2

∫
λ∇Ṽ1 · ∇ψq|u|2 = −

∫
∇Au · ∇2

Aψq · ∇Au

− 1

2
<
∫
∇(∆ψq) · ∇Auū+ =

d∑
j,k=1

∫
∂ψq
∂xk

Bjk(∇A)juū

−<
∫
f∇ψq · ∇Au−

1

2

∫
f∆ψqū+ ε

∫
∇ψq · ∇Auū. (3.2.20)

We simplify the notation using q = q
(
|x|
R

)
, n∞ = n∞(ω). Observe that

∂ψq
∂xk

=
q′n∞
R

xk
|x|

+
q

|x|
∂n∞
∂ωk

. (3.2.21)

and

∆ψq =
q′′

R2
n∞ +

q′

R

d− 1

|x|
n∞ +

q

|x|2
∆ωn∞. (3.2.22)

The left hand side of the estimate (3.2.18) will come from the term∫
λ∇Ṽ1 · ∇ψq|u|2 =

∫
∇n · ∇ψq|u|2 (3.2.23)
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3.2. The energy estimate

which can be written as follows∫
∇n · ∇ψq|u|2 =

∫
q

∣∣∣∣∂n∞∂ω
∣∣∣∣2 |u|2|x|

+

∫
∂rn

q′

R
n∞|u|2

+

∫
q|x|∇τ (n− n∞)

∂n∞
∂ω

|u|2

|x|2

≡ I1 + I2 + I3. (3.2.24)

The first term on the right-hand side of (3.2.24) is the one that gives the lower bound of
what we want to control. By (3.2.5) (here smallness is not necessary) and (3.2.15), we get

I2 ≤
C‖n∞‖L∞

R2
|||n1/2u|||2. (3.2.25)

On the other hand, after integration by parts, by the diamagnetic inequality (1.1.4) and by
(3.2.16), we obtain

I3 = −
∫

q

|x|2
(n− n∞)

(
∆ωn∞|u|2 + 2

∂n∞
∂ω
|x|∇|u||u|

)
≤ C

R
‖n∞‖C2|||n1/2u|||2 + κ

∫
q

∣∣∣∣∂n∞∂ω
∣∣∣∣2 |u|2|x|2 +

C(κ)

R
|||∇Au|||2, (3.2.26)

for κ > 0.
Let us estimate now the remaining terms of the identity (3.2.20). A straightforward

computation gives

∇Au ·D2ψq · ∇Au =
q′′

R2
n∞|∇r

Au|2 +
q′

R|x|
|∇⊥Au|2n∞

+ 2<
(

q′

R|x|
− q

|x|2

)
∇r
Au
∂n∞
∂ω
· ∇⊥Au

+
q

|x|2
∇⊥Au ·D2

ωn∞ · ∇⊥Au. (3.2.27)

Thus since q′, q′′ and
(

q′

R|x| −
q
|x|2

)
are supported in the ball {|x| ≤ 2R}, by the Cauchy-

Schwarz inequality it follows that the absolute value of the above terms in the corresponding
integral are bounded by

C‖n∞‖C2

R

(∫
|∇⊥Au|2

|x|
+ |||∇Au|||2

)
. (3.2.28)
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3. Energy concentration and explicit Sommerfeld radiation condition

Moreover, by (3.2.22) and (3.2.17) one can easily check that

Re

∫
∇(∆ψq) · ∇Auū ≤ C‖n∞‖C3

∫ (
q

|x|3
+

q′

R|x|2

)
|∇Au||u|

≤ C‖n∞‖C3

R
|||n1/2u||||||∇Au|||.

As far as the term containing the magnetic potential is concerned, first note that by (3.2.21)
and (2.2.7) yields

d∑
j,k=1

∂ψq
∂xk

Bjk(∇A)ju =
q′n∞
R

Bτ · ∇⊥Au+
q

|x|

d∑
j,k=1

∂n∞
∂ωk

Bjk(∇A)ju. (3.2.29)

Thus by (3.2.5) and (3.2.14), we get

=
d∑

j,k=1

∫
∂ψq
∂xk

Bjk(∇A)juū ≤
C‖n∞‖
R

(∫
|x|≥R

|∇⊥Au|2

|x|

)1/2

|||n1/2u|||

+
C‖n∞‖C1

R
|||∇Au||||||n1/2u|||. (3.2.30)

We now turn to analyze the terms containing f . On the one hand, by (3.2.22), we have∫
|f ||∆ψq||u| ≤

C

R2

∫
|x|>R

|f ||u| ≤ C

R2
N

(
f

n1/2

)
|||n1/2u|||.

On the other hand, from (3.2.21) it follows that∫
|f ||∇ψq||∇Au| ≤

∫
q′

R
|f ||n∞||∇Au|+

∫
q

|x|
|f |
∣∣∣∣∂n∞∂ω

∣∣∣∣ |∇⊥Au|
≤ C‖n∞‖C1

R
N

(
f

n1/2

)(
|||∇Au|||+

(∫
|x|≥R

|∇⊥Au|2

|x|

)1/2
)
.

Finally, the last term to be bounded is

ε

∫
∇ψq · ∇Auū ≤

C‖n∞‖C1

R
ε

∫
|∇Au||u|, (3.2.31)

which can be done as in (3.2.12).
Therefore, from the above inequalities, taking κ small enough yields∫

q

∣∣∣∣∂n∞∂ω
∣∣∣∣2 |u|2|x|2 ≤ C1

R

(
|||n1/2u|||2 + |||∇Au|||2 +

∫
|x|≥R

|∇⊥Au|2

|x|

)
+
C2

R

(
N

(
f

n1/2

))2

, (3.2.32)
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3.3. Limiting absorption principle

which gives (3.2.18) and the proof of the theorem is over.

A combination of the above results asserts the desired energy estimate.

Corollary 3.2.4. For dimensions d ≥ 3, assume (3.2.3)-(3.2.5) and (3.2.14)-(3.2.16). Then
the solution of the Helmholtz equation (3.2.2) satisfies, for R ≥ 1 large enough∫

|x|≥R

∣∣∣∣∇ωn∞

(
x

|x|

)∣∣∣∣2 |u|2|x| ≤ C

(
N

(
f

n1/2

))2

, (3.2.33)

for some constant C independent of ε.

Remark 3.2.5. From Remark 3.2.2 the same result holds for the two dimensional case.

Remark 3.2.6. Condition (3.2.16) can be largely relaxed if, for example, n− n∞ is radial.
It can be instead assumed the alternative conditions∣∣∣∣n(x)− n∞

(
x

|x|

)∣∣∣∣ ≤ n
Γ

|x|δ
for |x| > R0,Γ > 0, δ > 0, R0 > 1 (3.2.34)

and that there exist β̃ < 1, δ > 0 and Γ̃ > 0 such that(
|x|∇⊥(n− n∞) · ∂n∞

∂ω

)
−
≤ β̃

∣∣∣∣∂n∞∂ω
∣∣∣∣2 + n(x)

Γ̃

|x|δ
. (3.2.35)

In particular, when n− n∞ is radial then (3.2.34) is sufficient.

Remark 3.2.7. Note that in order to prove the energy estimate we impose conditions in
each component of the magnetic field Bjk and not in the tangential component of B, as in
the first result. This is due to the fact that the test function chosen in the proof of Theorem
3.2.3 is not radial (see (3.2.21) and (3.2.29) above).

3.3 Limiting absorption principle

Our next goal is to prove the limiting absorption principle for the equation

∇2
Au+ λ(1 + Ṽ1)u+ V2u = f (3.3.1)

with λ > 0, ε > 0, where the given functions Ṽ1(x), V2(x), Aj(x) hold the following assump-
tions:
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3. Energy concentration and explicit Sommerfeld radiation condition

Assumption 3.3.1. Let Aj(x), j = 1, . . . , d, Ṽ1(x), V2(x) be real-valued functions, r0 ≥ 1
and µ > 0. Recall that we define each component of the magnetic field B as

Bjk =
∂Aj
∂xk
− ∂Ak
∂xj

, j, k = 1, . . . , d.

We require that the magnetic potential satisfies the condition

|∇ · A| ≤ c|x|−2, (3.3.2)

for some c > 0.
We assume that when d ≥ 3

|Bjk(x)|+ |V2(x)| ≤ c

|x|1+µ
, if |x| ≥ r0, (3.3.3)

and
|V2(x)| ≤ c

|x|2−α
if |x| ≤ r0, 0 < α < 2, (3.3.4)

for some c > 0.
If d > 3, we consider

|B| ≤ c1

|x|2
|x| ≤ r0, (3.3.5)

for some c1 > 0 small enough; in dimension d = 3 we require

|B| ≤ c

|x|2−α
|x| ≤ r0, 0 < α < 2, (3.3.6)

for some c > 0.
As far as the potential Ṽ1(x) is concerned, let Ṽ1(x) ∈ C2(Rd\{0}) and we assume

|∂αṼ1(x)| ≤ C∗|x|−α (|α| ≤ 2), (3.3.7)

where α = (α1, . . . , αd) is an arbitrary multi-index with nonnegative integers αj (1 ≤ j ≤ d),
|α| = α1 + · · ·+ αd, ∂

α = ∂α1
1 · · · ∂

αd
d and C∗ is a positive small constant (0 < C∗ < 1).

Remark 3.3.2. Observe that the assumptions required for V2 coincide with the ones in the
previous chapter. Regarding to the magnetic field B, the only difference is related to its
behavior at infinity; in this case we need to impose the condition on Bjk and not only on Bτ

as in (2.1.3). Concerning the long range potential Ṽ1, we require less decay at infinity, but
more regularity in order to construct the solution of the corresponding eikonal equation.

Remark 3.3.3. As in the previous chapter, Assumption 3.3.1 makes the unique continuation
result by Regaboui [R] applicable to the magnetic operator T (3.0.27). Unique continuation
property will be necessary for proving the uniqueness result for the equation (3.3.1).
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3.3. Limiting absorption principle

Then we state the main result of this section.

Theorem 3.3.4. Let c1, C∗ small enough, λ1, λ0 > 0 such that λ1 > λ0 and f ∈ L2
1+δ
2

.

Assume one of the following two conditions:

(i) d > 3, with (3.3.3), (3.3.4), (3.3.5), (3.3.7)

(ii) d = 3, with (3.3.3), (3.3.4), (3.3.6), (3.3.7).

Then, for any λ ∈ [λ0, λ1] there exists a unique solution u ∈ (H1
A)loc(Rd) of the Helmholtz

equation (3.3.1) satisfying

λ|||u|||21 + |||∇Au|||21 ≤ C(N1(f))2, (3.3.8)

and the radiation condition∫
|x|≥1

∣∣∇Au− iλ1/2∇Ku
∣∣2 1

(1 + |x|)1−δ ≤ C

∫
|x|≥1/2

(1 + |x|)1+δ|f |2, (3.3.9)

for any 0 < δ ≤ 1 such that δ < µ, where C = C(λ0).

This theorem is an analogue result of the work by Saito [S]. We improve this result in
the sense that we permit stronger singularities on the potentials at the origin and we give an
estimate of the Agmon-Hörmander norm of the solution u, recovering then the L2-weighted
estimate (2.2.36) which is the one proved in [S] for δ > 0.

To do this, we first prove the corresponding Sommerfeld radiation condition and a-priori
estimates for the solution of the equation

∇2
Au+ λ(1 + Ṽ1)u+ V2u+ iεu = f, (3.3.10)

for λ ∈ [λ0, λ1] with 0 < λ0 < λ1 < ∞ and ε > 0. We next turn to show the uniqueness
result related to this equation. Indeed, we will see that if u satisfies (3.3.10) with ε = 0
and f = 0, then u ≡ 0. Consequently, we will be in a position to construct the unique
solution of the equation (3.3.1) with the condition (3.3.9) at infinity. The detailed proof of
this construction is given in the previous chapter, see subsection 2.2.4. Thus we will omit it.

We begin by proving that the Sommerfeld radiation condition holds if the Agmon-
Hörmander norm of the solution of the electromagnetic Helmholtz equation (3.3.10) is
bounded. Making use of this inequality, we deduce the a-priori estimates when λ ∈ [λ0, λ1]
by the compactness argument already used in section 2.2. Finally, we state and prove the
uniqueness of solution of the equation (3.3.1).

Since the proofs are adapted from the ones of the main results of the previous chapter,
we will mainly focus on the analysis of the new terms, that is to say, Ṽ1.
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3. Energy concentration and explicit Sommerfeld radiation condition

3.3.1 Sommerfeld radiation condition

We proceed by proving the Sommerfeld condition in terms of the Agmon-Hörmander norm
of the solution. This result may be proved in much the same way as Proposition 2.2.7 of
Chapter 2.

Proposition 3.3.5. For dimensions d ≥ 3, let λ0 > 0, ε > 0, f ∈ L2
1+δ
2

and assume that

(3.3.3) holds. Then, there exists a positive constant C = C(λ0) such that for λ ≥ λ0 and C∗

small enough, any solution u ∈ H1
A(Rd) of the equation (3.3.10) satisfies for all R1 ≥ r0∫

K≥R1

|∇Au− i
√
λ∇Ku|2

(
1

(1 +K)1−δ + ε(1 +K)δ
)

+ (1− δ)
∫
K≥R1

|∇K|2|∇Au|2 − |∇K · ∇Au|2

(1 +K)1−δ

≤ C(1 + ε)

(
|||u|||21 + (N1(f))2 +

∫
K≥R1

(1 +K)1+δ|f |2
)
. (3.3.11)

Proof. The proof will be divided into three steps. As in the proof of Proposition 2.2.7, it
consists in the construction of the Sommerfeld terms using the identities proved in Lemma
1.3.4 and Lemma 1.3.5. The main difference in this case is that one must choose the multi-
pliers depending on the solution of the eikonal equation. Thus, by Remark 1.3.8 we consider
the anti-symmetric multiplier

A = E · ∇A +
1

2
divE (3.3.12)

and we need to chose the vector field E properly. By abuse of notation, we write ∇ψ instead
of E.

Let R1 ≥ r0. We take a cut off function θ ∈ C∞(R) such that 0 ≤ θ ≤ 1, dθ/dr ≥ 0 with

θ(r) =

{
1 if r ≥ R1 + 1
0 if r ≤ R1,

(3.3.13)

and set θ(K) = θ(K(x,C∗)). We define Ψ : R→ R such that

Ψ′(r) = (1 + r)δ, 0 < δ < 1

and we set Ψ(K) = Ψ(K(x,C∗)).
Step 1. Let us first compute

(1.3.15) + (1.3.12),

with the following choice of the multipliers

E = ∇ψ = Ψ′(K)∇Kθ(K)

ϕ(x) =
δ|∇K|2

2(1 +K)1−δ θ(K),
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3.3. Limiting absorption principle

respectively. Let us analyze all the terms of the resulting identity by the same method as in
the proofs of Propositions 1.3.9 and 2.2.7. In what follows, κ denotes an arbitrary positive
small constant and we use the same letter C for any positive constant.

On the one hand, by (3.1.6) and the fact that θ′ is nonnegative, we get∫
∇Au ·D2ψ · ∇Au−

∫
ϕ|∇Au|2 >

δ

2

∫
Rd

|∇K|2|∇Au|2

(1 +K)1−δ θ(K)

+

∫
θ(K)

(
(1 +K)δ

K
− δ

(1 +K)1−δ

)
{|∇K|2|∇Au|2 − |∇K · ∇Au|2}

+

∫
(1 +K)δ

K

d∑
k,j=1

(∇A)kuFkj(∇A)juθ(K)

≡ I1 + I2 + I3, (3.3.14)

where

I2 ≥ (1− δ)
∫

θ(K)

(1 +K)1−δ {|∇K|
2|∇Au|2 − |∇K · ∇Au|2}. (3.3.15)

On the other hand, observe that in order to get the term related to |u|2 of the Sommerfeld
square |∇Au− iλ1/2∇Ku|2, we need to use the eikonal equation (3.1.1). Indeed, we have∫

ϕλ(1 + Ṽ1)|u|2 =
δ

2

∫
|∇K|2λ|∇K|2|u|2

(1 +K)1−δ θ(K). (3.3.16)

Moreover, by the eikonal equation Ṽ1(x) = |∇K|2 − 1 and (3.1.6), it follows that

∂Ṽ1

∂xk
= 2

d∑
j=1

1

K
Fkj

∂K

∂xj
for all k = 1, . . . , d. (3.3.17)

Thus the other term involving the potential Ṽ1 gives

−λ
2

∫
∇Ṽ1 · ∇ψ|u|2 = −λ

d∑
k,j=1

∫
(1 +K)δ

K

∂K

∂xk
Fkj

∂K

∂xj
|u|2θ(K) ≡ I4.

Let us treat now the terms containing the magnetic field B and the potential V2. Since
c ≤ |∇K|2 ≤ c̃ for some c, c̃ > 0, by (3.3.3) and Cauchy-Schwarz inequality we get

d∑
k,m=1

∫
∂ψ

∂xk
Bkmu(∇A)mu ≤ C

∫
|Bkm||∇Au||u|(1 +K)δθ(K)

≤ κ

∫
|∇K|2|∇Au− i

√
λ∇Ku|2 θ(K)

(1 +K)1−δ

+ Cκ(
√
λ+ 1)|||u|||21. (3.3.18)
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3. Energy concentration and explicit Sommerfeld radiation condition

Similarly, by (3.3.3) we have

<
∫
V2∇ψ · ∇Auū ≤ κ

∫
|∇K|2|∇Au− i

√
λ∇Ku|2θ(K)

(1 +K)1−δ

+ Cκ(
√
λ+ 1)|||u|||21.

In addition, since

∆ψ = Ψ′′(K)|∇K|2θ(K) + Ψ′(K)∆Kθ(K) + Ψ′(K)|∇K|2θ′(K),

by (3.1.2), (3.1.5) it may be concluded that

−
∫
ϕV2|u|2 +

1

2

∫
V2(x)∆ψ|u|2 ≤ C|||u|||21. (3.3.19)

As a consequence, we get the inequality

δ

2

∫
|∇K|2(|∇Au|2 + λ|∇K|2|u|2)

θ(K)

(1 +K)1−δ

+ (1− δ)
∫

θ(K)

(1 +K)1−δ {|∇K|
2|∇Au|2 − |∇K · ∇Au|2}

− εIm
∫
θ(K)Ψ′(K)∇K · ∇Auū ≤ −I3 + I4

+ 2κ

∫
|∇K|2|∇Au− i

√
λ∇Ku|2θ(K)

(1 +K)1−δ + C(
√
λ+ 1)|||u|||21

−<
∫
f

(
Ψ′(K)∇K · ∇Au+

1

2
Ψ′(K)∆K

)
θ(K)ū

− <
2

∫
Ψ′(K)|∇K|2θ′(K)ū.

Step 2. In order to obtain the desired square, let us add to the above inequality the
identity (1.3.13) with the choice of a test function

ϕ(x) =
√
λ|∇K|2(1 +K)δθ(K). (3.3.20)

Hence, it follows that

=
∫
∇ϕ · ∇Auū = δ=

√
λ

∫
θ(K)

(1 +K)1−δ |∇K|
2∇K · ∇Auū

+
√
λ=
∫
|∇K|2θ′(K)(1 +K)δ∇K · ∇Auū

+ 2
√
λ=
∫

(1 +K)δ

K

d∑
k,j=1

(∇A)kuFkj
∂K

∂xj
ūθ(K)

≡ I5 + I6 + I7.
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The term I5 is used to complete the square |∇Au− i
√
λ∇Ku|2; I6 can be upper bounded by

κ

∫
|∇K|2|∇Au− i

√
λ∇Ku|2 θ(K)

(1 +K)1−δ + Cκ,R1(1 + λ)|||u|||21. (3.3.21)

In addition, denoting (DK)iu = (∇A)iu− i
√
λ∂K
∂xi
u, by (3.1.12) it may be concluded that

−I3 + I4 + I7 = −
∫

(1 +K)δ

K

d∑
k,j=1

(DK)kuFkj(DK)juθ(K)

≤ CC∗
∫
|∇K|2|∇Au− i

√
λ∇Ku|2θ(K)

(1 +K)1−δ . (3.3.22)

Therefore, we deduce

δ

2

∫
|∇K|2|∇Au− i

√
λ∇Ku|2 θ(K)

(1 +K)1−δ

+ (1− δ)
∫

θ(K)

(1 +K)1−δ {|∇K|
2|∇Au|2 − |∇K · ∇Au|2}

+ ε
√
λ

∫
|∇K|2(1 +K)δ|u|2θ(K)− ε=

∫
θ(K)(1 +K)δ∇K · ∇Auū

≤ C(λ+ 1)|||u|||2 + (3κ+ CC∗)

∫
|∇K|2|∇Au− i

√
λ∇Ku|2θ(K)

(1 +K)1−δ

−<
∫
f(1 +K)δ∇K · (∇Au+ iλ1/2∇Kū)θ(K)

− <
2

∫
fΨ′(K)(∆Kθ(K) + |∇K|2θ′(K))ū.

Step 3. Let us subtract the identity (1.3.12) multiplied by ε to the above inequality
choosing the test function

ϕ(x) =
1

2
√
λ

Ψ′(K)θ(K),

so that we get
ε

λ1/2

∫
|∇K|2(1 +K)δ|∇Au− iλ1/2∇Ku|2θ(K). (3.3.23)

In order to complete the estimate, by integration by parts and the a-priori estimate
(1.3.9), we have

ε<
∫
∇ϕ · ∇Auū =

ε

2

∫
∆ϕ|u|2

≤ Cε

∫
|u|2 ≤ CN1(f)|||u|||1. (3.3.24)
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Furthermore, by (3.3.3) we deduce

ε

∫
ϕV2|u|2 ≤

Cε

λ1/2

∫
|x|≥r0

|u|2

(1 + |x|)1+µ−δ

≤ Cε|||u|||21.

Finally, let us estimate the terms containing f . On the one hand, we have

−<
∫
f(1 +K)δ∇K · (∇Au+ iλ1/2∇Kū)θ(K)

≤ κ

∫
|∇K|2|∇Au− iλ1/2∇Ku|2 θ(K)

(1 +K)1−δ

+ C(κ)

∫
(1 +K)1+δ|f |2θ(K).

By (3.1.5), we get

−<
2

∫
Ψ′(K)(∆Kθ(K) + |∇K|2θ′(K))fū

≤ C

(
|||u|||21 +

∫
(1 +K)1+δ|f |2θ(K)

)
.

By the a-priori estimate (1.3.9), yields

− ε

2
√
λ
<
∫

(1 +K)δfūθ(K)

≤
(

4ε

λ

∫
|f |2(1 +K)1+δθ(K)

)1/2(
ε

∫
|u|2
)1/2

≤ C

(
ε

∫
|f |2(1 +K)1+δθ(K) + |||u|||21 + (N1(f))2

)
.

Consequently, taking κ > 0 and C∗ small enough, we obtain (3.3.11) and the proof is
complete.

Corollary 3.3.6. Under the assumption of Proposition 3.3.5, the solution u ∈ H1
A(Rd) of

the Helmholtz equation (3.3.10) satisfies∫
|x|≥r0

|∇Au− iλ1/2∇Ku|2

(1 + |x|)1−δ + ε

∫
|x|≥r0

(1 + |x|)δ|∇Au− iλ1/2∇Ku|2

≤ C(1 + ε)

(
|||u|||21 + (N1(f))2 +

∫
|x|≥r0

(1 + |x|)1+δ|f |2
)
, (3.3.25)

for λ ≥ λ0, C∗ small enough and C = C(λ0).

Proof. We need only take R1 = c0r0 with c0, r0 given in section 3.1 and use (3.1.4).
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3.3. Limiting absorption principle

3.3.2 A priori estimates for λ ∈ [λ0, λ1]

Using the previous result, we are now in a position to prove the a-priori estimates for the
frequency λ varying in a compact set.

Proposition 3.3.7. For d ≥ 3, under the hypotheses of Proposition 3.3.5, let λ0 > 0,
λ ∈ [λ0, λ1], with λ1 > λ0 and ε ∈ (0, ε1). Then, the solution u ∈ H1

A(Rd) of the Helmholtz
equation (3.3.10) satisfies

λ|||u|||21 + |||∇Au|||21 ≤ C(1 + ε)(N1(f))2, (3.3.26)

where C = C(λ0, ε1).

Proof. The proof is a combination of the proof of Proposition 3.1 in [S] and the proof of
Proposition 2.2.12 in Chapter 2.

Let BT be the interior of the closed surface ΣT = {x : K(x,C∗) = T} with T > r0 and
C∗ < C0, where r0 and C0 are given constants related to the assumptions of the potentials
and the solution to the eikonal equation, respectively (see Assumption 3.3.1 and section 3.1).
Let us multiply the equation (3.3.10) by ū, integrate over BT and take the imaginary part,
obtaining

=
∫

ΣT

∇K
|∇K|

· ∇Auū+ ε

∫
BT

|u|2 = =
∫
BT

fū.

From this it follows that

2
√
λ=
∫

ΣT

∇K
|∇K|

· ∇Auū ≤ 2
√
λ=
∫
BT

fū. (3.3.27)

Let us integrate now the identity

|∇Au|2

|∇K|
+ λ|∇K||u|2 =

1

|∇K|
|∇Au− i

√
λ∇Ku|2 + 2=

√
λ
∇K
|∇K|

· ∇Auū

over the surface ΣT . Then by (3.3.27) we get∫
ΣT

(
|∇Au|2

|∇K|
+ λ|∇K||u|2

)
≤
∫

ΣT

1

|∇K|
|∇Au− i

√
λ∇Ku|2

+ 2
√
λN1(f)|||u|||1. (3.3.28)

Let R > ρc0
c1

, where ρ ≥ r0, being c0, c1 as in (3.1.4). Let us multiply both sides of (3.3.28)

by 1
R

and integrate from ρc0 to Rc1 with respect to T . Hence, as |∇K|2 is lower bounded by
a positive constant we have

1

R

∫
ρc0≤K≤Rc1

(λ|u|2 + |∇Au|2) ≤ 1

R

∫
ρc0≤K≤Rc1

|∇Au− iλ1/2∇Ku|2

+ C
√
λN(f)|||u|||. (3.3.29)
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3. Energy concentration and explicit Sommerfeld radiation condition

On the other hand, observe that since K = |x|g and c0 ≤ g ≤ c1, yields

{ρ ≤ |x| ≤ R} ⊂ {ρc0 ≤ K ≤ Rc1} ⊂
{
ρc0

c1

≤ |x| ≤ Rc1

c0

}
.

Consequently, denoting j0 and j1 by 2j0−1 ≤ ρc0
c1
≤ 2j0 and 2j1−1 ≤ Rc1

c0
≤ 2j1 , respectively,

we deduce

1

R

∫
ρ≤|x|≤R

(λ|u|2 + |∇Au|2) ≤ 1

R

j1∑
j=j0

∫
C(j)

|∇Au− iλ1/2∇Ku|2

+ κλ|||u|||21 + C(κ)(N1(f))2. (3.3.30)

Now, note that we are in the same situation as in (2.2.54) of the proof of Proposition
2.2.12. Therefore, by (3.3.9), repeating the same reasoning to this case, it may be concluded
that for R > 1

1

R

∫
|x|≤R

(λ|u|2 + |∇Au|2) ≤ λ

2
|||u|||21 + C(1 + ε)(N1(f))2. (3.3.31)

Thus taking the supremum over R, the proposition follows.

3.3.3 Uniqueness result

This paragraph deals with the uniqueness of solution of the equation (3.3.1). Let us consider
the homogeneous Helmholtz equation

∇2
Au+ λ(1 + Ṽ1)u+ V2u = 0. (3.3.32)

Then we formulate the uniqueness theorem as follows.

Theorem 3.3.8. Let d ≥ 3, λ0 > 0 and assume (3.3.3). Let u be a solution of the equation
(3.3.32) with u,∇Au ∈ L2

loc such that

lim inf

∫
|x|=r

(|∇Au|2 + λ|u|2)dσ(x)→ 0, as r →∞, (3.3.33)

for λ ≥ λ0. Then u ≡ 0.
Moreover, if for some δ > 0 the condition∫

|x|≥1

|∇Au− iλ1/2∇Ku|2 1

(1 + |x|)1−δ <∞ (3.3.34)

is satisfied, then (3.3.33) holds.
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3.4. Explicit radiation condition

Proof. The proof follows by the same method as in the proof of Theorem 2.1.5. Although
the analysis of the terms related to Ṽ1 are slightly different, the same conclusion can be
drawn for this case.

In order to deduce (3.3.33) from (3.3.34), first observe that solutions of (3.3.32) satisfy

=
∫

ΣT

∇K
|∇K|

· ∇Auū = 0,

just multiplying the equation by ū and integrating over BT , the inside of the closed surface
ΣT = {x : K(x,C∗) = T}. Hence, we have∫

ΣT

(|∇Au|2 + λ|∇K|2|u|2)dσ(x) =

∫
ΣT

|∇Au− i
√
λ∇Ku|2dσ(x),

which together with (3.3.34) gives (3.3.33).

3.4 Explicit radiation condition

This section establishes the relation between the energy estimate (3.2.33) and the Sommerfeld
condition (3.3.9). We will see that when the variable index of refraction n(x) = λ(1 + Ṽ1(x))

has an angular dependency like n(x)→ n∞

(
x
|x|

)
as |x| → ∞, then the Sommerfeld condition

(3.3.9) at infinity still holds under the explicit form∫ ∣∣∣∣∇Au− in1/2
∞

x

|x|
u

∣∣∣∣2 <∞. (3.4.1)

Note that the spherical term

n1/2
∞ (ω)

x

|x|

appears in this formula instead of the phase as in (3.3.9), where ∇K is the outward normal
of the surface |K(x, λ)| = λ, which is not necessarily a sphere. This apparent contradiction
can be explained by the extra estimate (3.2.33) on the energy decay. In fact, it can be
interpreted as a concentration of the energy along the directions given by the critical points
of n∞.

The following result complements that of Saito [S] when V2 = 0 and extends the one
given in [PV2] to the magnetic case. Furthermore, it asserts the connection between the
previous two sections of this chapter.
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3. Energy concentration and explicit Sommerfeld radiation condition

Theorem 3.4.1. For dimension d ≥ 3, assume (3.2.5) and (3.3.7). Then for sufficiently
small C∗ > 0 and for any λ ∈ [λ0, λ1] with 0 < λ0 < λ1 <∞, there exists a unique solution
of the Helmholtz equation (3.0.1) satisfying∫ ∣∣∣∣∇Au− in1/2(x)

x

|x|
u

∣∣∣∣2 1

|x|
≤ Cδ

∫
(1 + |x|)1+δ|f |2, (3.4.2)

for some δ > 0. Moreover, if there exist n∞, Γ > 0 and µ > 0 such that∣∣∣∣n(x)− n∞
(
x

|x|

)∣∣∣∣ ≤ n(x)
Γ

|x|µ
for |x| large enough, (3.4.3)

then it follows that ∫
|x|≥1

∣∣∣∣∇Au− in1/2
∞

x

|x|
u

∣∣∣∣2 1

|x|
≤ C

∫
(1 + |x|)1+δ|f |2. (3.4.4)

Proof. The proof follows [PV2]. Let us first recall the tangential estimate∫
|∇⊥Au|2

|x|
≤ C(N(f))2 (3.4.5)

proved in Theorem 3.2.1 above and observe that (3.3.9) provides∫
|∇Au− iλ1/2∇Ku|2 1

1 + |x|
≤ C

∫
(1 + |x|)1+δ|f |2dx. (3.4.6)

Hence, just looking at the tangential part of the above inequality, by (3.4.5) it follows easily
that ∫

|x|≥r0
λ|∇⊥Ku|2 1

1 + |x|
≤ C

∫
|∇⊥Au|2

1 + |x|
+ C

∫
(1 + |x|)1+δ|f |2

≤ C

∫
(1 + |x|)1+δ|f 2|. (3.4.7)

Furthermore, since n = λ(1 + Ṽ1), from the eikonal equation (3.1.1) we have

n− λ|∂rK|2 = |λ1/2∇⊥K|2. (3.4.8)

Now, according to the properties (3.1.5) related to∇K, it is easy to see that ∂rK = g(x) +O(C∗) > 0.
Thus we obtain

|λ1/2∂rK − n1/2| = |λ1/2∇⊥K|2

|λ1/2∂rK + n1/2|
≤ C|λ1/2∇⊥K|2. (3.4.9)
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3.4. Explicit radiation condition

In addition, looking at the radial part in (3.4.6) we have∫
|x|≥r0

|∇r
Au− iλ1/2∂rKu|2

1

1 + |x|
≤ C

∫
(1 + |x|)1+δ|f |2. (3.4.10)

Consequently, by (3.4.7), (3.4.9), (3.4.10) and the fact that∣∣∣∣∇Au− in1/2 x

|x|
u

∣∣∣∣2 ≤ |∇r
Au− i

√
λ∂rKu|2 + |

√
λ∂rKu− n

1
2u|2

+ |∇⊥Au|2,

we get (3.4.2) which is our first claim.
Finally, assuming |n− n∞| ≤ C(1 + |x|)−δ and using (3.2.6) we conclude that∫ ∣∣∣∣∇Au− in1/2

∞
x

|x|
u

∣∣∣∣2 1

1 + |x|
≤ C

∫
|f |2(1 + |x|)1+δ (3.4.11)

and the proof is complete.
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Chapter 4

Resolvent estimates and Applications

In the last chapter of the thesis we study more topics related to the forward problem of the
magnetic Schrödinger operator

HA = ∇2
A + V (4.0.1)

with potentials that have a strong singularity at the origin. Besides the limiting absorption
principle and resolvent estimates for the solution u of the electromagnetic Helmholtz equation

(∇+ iA)2u+ V u+ λu = f, (4.0.2)

under suitable assumptions on the trapping component of the magnetic field, i.e.

Bτ =
x

|x|
B, (Bτ )j =

d∑
k=1

xk
|x|
Bjk

and the scalar potential V , we also are able to prove the existence and uniqueness of the
cross-section of u and some spectral properties of HA. Thus all the results that will be
showed here are true for singular magnetic potentials A such that Bτ ≡ 0, see section 1.6.

Under some smallness conditions on Bτ and V , in the first part of the chapter we will
study the electromagnetic Helmholtz equation

(∇+ iA)2 + V u+ λu+ iεu = f, ε > 0. (4.0.3)

On the one hand, we will prove that the solution u ∈ H1
A(Rd) of the equation (4.0.3) allowing

the sharp singularity |x|−2 of the electric potential V at the origin, satisfies the following
uniform estimate for any λ > ε > 0∫

|∇A(e−iλ
1/2|x|u)|2 ≤ C

∫
|x|2|f |2. (4.0.4)
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4. Resolvent estimates and Applications

and ∫
|∇Au|2 ≤ C

∫
|x|2|f |2 (4.0.5)

when λ ≤ ε. Note that by the magnetic Hardy inequality these estimates provide the
resolvent estimate ∫

|u|2

|x|2
≤ C

∫
|x|2|f |2. (4.0.6)

for all λ ∈ R and ε > 0.
Our second main result shows that for λ ≥ λ0 > 0 the solution u satisfies the radiation

condition

sup
R≥1

R

∫
|x|≥R

|∇A(e−iλ
1/2|x|u)|2 ≤ C

∫
(1 + |x|)|x|2|f |2 (4.0.7)

where C = C(λ0) > 0.
Having disposed of these results, the remainder of the chapter will be devoted to the study

of some spectral properties of the magnetic Schrödinger operator HA. For this purpose, we
will first give the limiting absorption principle for the equation (4.0.2) with singular potentials
of the type 1

|x|2 at the origin. Indeed, we will construct the solution u± = u(λ± i0, f) of the

equation (HA + λ)u± = f as the limit

u(λ± i0, f) = lim
ε→0

u(λ± iε, f), (4.0.8)

where u±ε = u(λ± iε, f) is the unique solution of the equation

(HA + λ± iε)u±ε = f. (4.0.9)

Once the limiting absorption method is applicable, the absolute continuity of HA on (0,∞)
readily follows.

Let R(z) = (HA + z)−1 denote the resolvent of HA so that R(z)f = u(z, f). On the one
hand, let us recall the formula that relates the spectral measure of HA with its resolvent.
Let ∆ = (λ1, λ2) where 0 < λ1 < λ2 < ∞ and E(∆) the spectral measure associated with
HA where ∆ varies over all Borel sets of the reals. Then we have the well known formula
(see section 1.5)

(E(∆)f, f) =
1

2πi
lim
ε→0

lim
ν→0

∫ λ2+ν

λ1−ν

(
=
∫
fūdx

)
dλ. (4.0.10)

From this, we will prove that HA is an absolute continuous operator on (0,∞). On the other
hand, we will be able to give the spectral representation of HA through the cross section of
the solution u+ = R(λ+ i0)f of the equation (4.0.2).

Let us denote r = |x|, ω = x
|x| and Sd−1 = {x ∈ Rd : |x| = 1}. As in the classical case, by

the asymptotic expansion of the free Helmholtz equation, if we denote

(F(λ, r)f)(ω) = C(λ)r
d−1
2 e−iλ

1/2ru(rω), ω ∈ Sd−1, (4.0.11)
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where C(λ) = e
(d−3)πi

4 π−1/2λ1/4, then the far field pattern of u is the limit

gλ(ω) = lim
r→∞

r
d−1
2 e−iλ

1/2ru(rω) in L2(Sd−1). (4.0.12)

and the cross-section its absolute value. More concretely, the cross-section is given by

|gλ(ω)| = lim
r→∞
|(F(λ, r)f)(ω)| in L2(Sd−1). (4.0.13)

The existence of the limit (4.0.13) together with a suitable Sommerfeld condition for the
solution u permits to show the identity∫

|x|=1

|gλ(ω)|2 = =
∫
fū. (4.0.14)

Consequently, a combination of (4.0.14) and (4.0.10) will provide some spectral properties
of HA.

There are several works in which the spectral representation for Schrödinger operators is
obtained from the limiting absorption principle, by considering the following limit

lim
r→∞

r
d−1
2 e−iK(x,λ)R(λ+ i0)f(rω) in L2(Sd−1). (4.0.15)

Here K(x, λ) is a real-valued function which behaves like λ1/2|x| at infinity and R(λ + i0)
denotes the boundary value of the resolvent of the corresponding operator on the upper side
of the positive real axis.

For H = −∆ + V , Agmon [A] obtained the spectral representation in the case of short
range potential V i.e., V (x) = O((1 + |x|)−1−δ), δ > 0, constructing the so called generalized
eigenfunctions. In this case, K(x, λ) = λ1/2|x|. For long range potentials, there have been
many investigations since [Ik]. The best reference for us is due to Isozaki [Is], where it is
given the spectral representation for H by considering the limit (4.0.15) with K(x, λ) as an
approximate solution of the eikonal equation

|∇K(x, λ)|2 + V (x) = λ. (4.0.16)

Here V (x) is a real-valued C3(Rd) function such that for some µ > 0

Dα
xV (x) = O(|x|−|α|−µ) as |x| → ∞ (0 ≤ |α| ≤ 3),

where Dx =
(

∂
∂x1
, . . . , ∂

∂xd

)
and α is a multi-index.

The magnetic case has been studied by Iwatsuka [Iw], taking K(x, λ) of the form λ1/2|x|−
m(x), where m(x) is a certain function depending on the magnetic potential A(x) and related
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4. Resolvent estimates and Applications

to the tangential component of the magnetic field B. More concretely, the function m(x) is
constructed as

m(x) =
d∑

k=1

xk

∫ 1

0

Ak(tx)dt, (x ∈ Rd). (4.0.17)

As a consequence, it may be concluded that

∂m

∂xj
= Aj(x) +

∫ 1

0

d∑
k=1

xkBkj(tx)dt. (4.0.18)

Observe that the function m(x) is related to the trapping component of the magnetic field
B. See section 1.6 for more details. Then the spectral representation theorem for HA is
obtained in the case of short range V and for magnetic potentials such that Aj ∈ C2(Rd) with

|Bjk| ≤ C0(1+|x|)− 3
2
−δ and

∣∣∣∂Bjk∂xj

∣∣∣ ≤ C0(1+|x|)−2−δ, where Bjk = ∂Ak
∂xj
− ∂Aj

∂Ak
(j, k = 1, . . . , d),

C0, δ > 0.

In our case, even though we consider long range perturbations, we will take K(x, λ) =
λ1/2|x| and we do not need to construct nor the solution of the eikonal equation as in [Is]
neither the function m(x) mentioned above (see [Iw] for more details). Therefore, following
[Ik] and [Iw], we will prove that the limit (4.0.13) exists and the identity (4.0.14) holds. As a
consequence, denoting Pac = E(0,∞) the projection onto the absolute continuous subspace
for HA, we will deduce

(Pacf, f) =

∫ ∞
0

‖gλ(ω)‖2
L2(Sd−1) dλ. (4.0.19)

4.1 Main results

Let us pass now to present the main results of this chapter. To this end, we first introduce
the framework in which we work in the sequel. According to section 1.2 of this dissertation,
the self-adjointness of HA, that is fundamental for deriving all theorems, can be concluded
under some local integrability assumptions on the potentials. More concretely, we have
already proved in section 1.2 that assuming∫

V |u|2 < 1−
∫
|∇u|2, (4.1.1)

Aj ∈ L2
loc, V ∈ L1

loc, (4.1.2)

then HA is self-adjoint operator in L2(Rd) with form domain

D(HA) := {φ ∈ L2(Rd) :

∫
|∇Aφ|2 −

∫
V |φ|2 <∞}. (4.1.3)

In order to get the estimate (4.0.4), we will make the following assumption:
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4.1. Main results

(H1) ∫
(∂r(rV ))−|u|2 < AV

∫
|∇u|2,

(∫
|x|2|Bτ |2|u|2

)1/2

< AB

(∫
|∇u|2

)1/2

,

where
AV + 2AB < 1. (4.1.4)

Remark 4.1.1. Note that from (4.1.1) it follows that∫
|x|V |u|2 <

∫
|x||∇u|2. (4.1.5)

We just only need to define w = |x|1/2u. Then, by (4.1.1) and integration by parts, we get∫
|x|V |u|2 =

∫
V |w|2 <

∫
|∇w|2

=

∫
|x||∇u|2 +

1

4

∫
|u|2

|x|
+ <

∫
x

|x|
· ∇uū

=

∫
|x||∇u|2 − (2d− 3)

4

∫
|u|2

|x|

<

∫
|x||∇u|2.

Remark 4.1.2. Observe that we are considering potentials that are singular at the origin
and that decay at infinity. In both cases, we require some smallness on them.

Remark 4.1.3. In this chapter it would be enough to assume∫
V |u|2 < 1−

∫
|∇Au|2, (4.1.6)∫

(∂r(rV ))−|u|2 < AV

∫
|∇Au|2, (4.1.7)(∫

|x|2|Bτ |2|u|2
)1/2

< AB

(∫
|∇Au|2

)1/2

, (4.1.8)

which are weaker conditions than (4.1.1) and (H1). Note that from assumptions (4.1.1) and
(H1) together with the diamagnetic inequality (1.1.4) we can conclude the above ones.
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4. Resolvent estimates and Applications

Now we are ready to state the first theorem.

Theorem 4.1.4. Let d ≥ 3, ε > 0, f such that ‖|x|f‖L2 < ∞ and assume that (4.1.1),
(H1) hold. Then, there exists C > 0 independent of λ, ε such that any solution u ∈ H1

A(Rd)
of the electromagnetic Helmholtz equation (4.0.3) satisfies

(i) For 0 < ε < λ, ∫
|∇A(e−iλ

1/2|x|u)|2 ≤ C

∫
|x|2|f |2. (4.1.9)

(iii) If λ ≤ ε, then ∫
|∇Au|2 ≤ C

∫
|x|2|f |2. (4.1.10)

Remark 4.1.5. Note that from the above result, by the magnetic Hardy inequality (1.4.8)
we deduce the uniform resolvent estimate∫

|u|2

|x|2
≤ C

∫
|x|2|f |2, (4.1.11)

for all d ≥ 3 and for any λ ∈ R.

One of the main significances of this theorem is that it allows one to deduce the resolvent
estimate (4.1.11). We emphasize that this weighted L2 estimate for the resolvent of HA

plays a fundamental role for proving dispersive estimates on the time dependent Schrödinger
operator. Moreover, it generalizes the corresponding result of Kato and Yajima [KaYa]
where the operator in question is restricted to the Laplace operator in Rd (d ≥ 3) and
it recovers a more recent results proved by Burq, Planchom, Stalker and Tahvilder-Zadeh
[BPST1], [BPST2] in their study of the Strichartz estimates for Schrödinger operator−∆+V .
Regarding to the magnetic Schrödinger operator, there are several works related to this
issue. Firstly, we should mention the papers by Fanelli and Vega ([FV]) and by D’Ancona,
Fanelli, Vega and Visciglia [DFVV] where they show magnetic virial identities and Strichartz
estimates for the Schrödinger equation with electromagnetic potential, respectively. Very
recently, Fanelli, Felli, Fontelos and Primo [FFFP] study the dispersive property of the
Schrödinger equation with singular electromagnetic potentials. Furthermore, Mochizuki [M3]
proves the estimate (4.1.11) assuming the following smallness conditions on the potentials

max{|B(x)|, |V (x)|} ≤ ε0

|x|2
in Rd (4.1.12)

where 0 < ε0 <
1

4
√

2
(d = 3) or <

(
(d−1)(d−3)

8

) 1
2

(d ≥ 4). In our case, the constant ε0 is

determined by the one that appears in the standard Hardy inequality, as we can see in the
following example:
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Example 4.1.6. Let us take

(∂r(rV ))− ≤
ν1

|x|2
, |Bτ | ≤

ν2

|x|2
, (4.1.13)

where
4ν1

(d− 2)2
+

2ν2

(d− 2)
< 1.

In particular,

V =
ν1

|x|2
with 0 < ν1 <

(d− 2)2

4
. (4.1.14)

Then, one can easily check that (4.1.1) and (H1) are held.

Example 4.1.7. One can also work with Coulomb type electric potential V and long range
magnetic potential A such that Bτ = 0. In fact, if we take

V (x) =
V∞

(
x
|x|

)
|x|

with V∞ < 0,

then ∂r(rV ) = 0 and our assumptions are satisfied.

We emphasize that under the assumptions of Theorem 4.1.4 above, it may be concluded
the uniqueness result for the equation (4.0.2). As a consequence, we deduce the limiting
absorption principle for the Helmholtz equation with potentials V and A that can have
sharp singularities at the origin. See section 4.4.1 below.

For the Sommerfeld radiation condition (4.0.7) one needs to put some further restrictions
on the potentials. In fact, one can preserve the same kind of singularity at the origin, but
needs to require more decay at infinity. We make the following assumption.

(H2)

|Bτ |+ |V | ≤

{
c
|x|2 if |x| ≤ 1

c
|x|5/2+α if |x| ≥ 1.

for some c > 0, α > 0.

We can now state the second result.

Theorem 4.1.8. For d ≥ 3, let λ0 > 0. Under the hypotheses of Theroem 4.1.4, if moreover
‖|x|3/2f‖L2 <∞ and (H2) holds, then for any λ ≥ λ0 solutions u ∈ H1

A(Rd) of the equation
(4.0.3) satisfies

sup
R≥1

R

∫
|x|≥R

|∇A(e−i
√
λ|x|u)|2 ≤ C

∫
(1 + |x|)|x|2|f |2, (4.1.15)

where C = C(λ0) > 0.
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4. Resolvent estimates and Applications

The radiation condition (4.1.15) extends the Sommerfeld condition given by∫
|x|≥1

|x|α|∇A(e−iλ
1/2|x|u)|2 <∞ (4.1.16)

for any 0 < α < 1 that has been proved in Chapter 2. In order to get (4.1.15), we will first
prove the a-priori estimate

λ|||u|||1 ≤ C

∫
|x|2|f |2 (4.1.17)

for λ > ε > 0, which can be easily obtained from the estimate (4.1.9) of Theorem 4.1.4. In
addition, we point out that estimate (4.1.15) is crucial to show that |F(λ, r)f | ∈ H1(Sd−1),
a fundamental property for proving the existence of the cross-section.

Under the hypotheses of Theorem 4.1.8, from (4.1.15) and (4.1.17) it may be concluded
that there exists a sequence {rn}n∈N tending to infinity such that

lim
n→∞

∣∣∣r d−1
2

n e−iλ
1/2rnu(rnω)

∣∣∣ = |gλ(ω)| in L2(Sd−1). (4.1.18)

However, the existence of the limit (4.1.18) for a certain sequence does not ensure uniqueness
of a cross-section.

Following Iwatsuka [Iw] and assuming that the potentials satisfy (4.1.1), (H1), by the
estimates (4.1.9) and (4.1.11) we will prove that for a given φ ∈ C∞(Sd−1) the following
limit exists

lim
r→∞

∫
|x|=1

|F(λ, r)f(ω)|2φ(ω). (4.1.19)

It is worth pointing out that a combination of (4.1.18), (4.1.19) ensures the existence
and uniqueness of cross-section for the magnetic case. In particular, we do it for singular
magnetic potentials A such that Bτ = 0. These potentials are not included in [Iw] and as far
as we know, there are no results related to the far field pattern of solutions of the magnetic
Schrödinger equation with singular magnetic potentials.

From (4.1.18), (4.1.19) and the limiting absorption principle we will be in a position to
give the spectral representation of the magnetic Schrödinger operator HA, which is estab-
lished by the third result of this chapter.

Theorem 4.1.9. Let the potential V and the trapping component of the magnetic field B
satisfy the hypotheses of Theorem 4.1.8. Then:

(1) There exists g = |gλ|2 ∈ L1(Sd−1) where

|gλ| = lim
r→∞
|r

d−1
2 e−iλ

1/2ru(rω)| in L2(Sd−1), (4.1.20)

such that satisfies ∫
Sd−1

g(ω)dσ(ω) ≤ C

∫
|x|2|f |2 (4.1.21)

for some C > 0.
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4.2. Proof of Theorem 4.1.4

(2) Let Pac = E(0,∞) be the projection onto the absolute continuous subspace for HA.
Then

(Pacf, f) =

∫ ∞
0

‖g(ω)‖L1(Sd−1) dλ. (4.1.22)

The rest of the chapter is devoted to the proofs of the above results. The next section
deals with the proof of the uniform resolvent estimates that has been stated in Theorem 4.1.4.
Section 4.3 establishes the key Sommerfeld radiation condition 4.1.15, proving Theorem 4.1.8.
Finally, in section 4.4 we present some applications of the first two results, which will imply
the proof of Theorem 4.1.9.

4.2 Proof of Theorem 4.1.4

The proof will be divided into two parts depending on the relation between ε and λ.

We begin with the case when 0 < ε < λ.

Proposition 4.2.1. Let d ≥ 3, 0 < ε < λ, f such that ‖|x|f‖L2 <∞. Assume that (4.1.1),
(H1) hold. Then, the solution u ∈ H1

A(Rd) of the Helmholtz equation (4.0.3) satisfies∫ ∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 +
ε

λ1/2

∫
|x|
∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 ≤ C

∫
|x|2|f |2, (4.2.1)

where C > 0 is independent of ε, λ.

Proof. The proof is based on the equality (1.3.21) that has been given in Proposition 1.3.9.
Let us denote r = |x|. We define

ψ(r) =
r2

2

so that ψ′(r) = r, ψ′′(r) = 1 and we put it into the identity (1.3.21). Thus by (1.3.25),
Remark 1.3.10 and integration by parts, it follows that

1

2

∫ ∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 +
ε

2λ1/2

∫
|x|
∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2
= =

∫
|x|Bτ · ∇Auū−

1

2

∫
(∂r(rV ))|u|2 +

ε

2λ1/2

∫
|x|V |u|2

+
ε(d− 1)

4λ1/2

∫
|u|2

|x|
− ε

2λ1/2
<
∫
|x|fū− (d− 1)

2
<
∫
fū

−<
∫
|x|f

(
∇r
Au+ iλ1/2ū

)
. (4.2.2)
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4. Resolvent estimates and Applications

Let v = e−iλ
1/2|x|u and observe that |v| = |u|, |∇Av| =

∣∣∣∇Au− iλ1/2 x
|x|u
∣∣∣. Let us estimate

the right-hand side of (4.2.2). We start with the observation that

Bτ · ∇Au = Bτ ·
(
∇Au− iλ1/2 x

|x|
u

)
. (4.2.3)

Hence by Cauchy-Schwarz inequality, (H1) and the diamagnetic inequality (1.1.4), we have

=
∫
|x|Bτ · ∇Auū ≤

(∫
|x|2|Bτ |2|v|2

)1/2(∫
|∇Av|2

)1/2

< AB

(∫
|∇|v||2

)1/2(∫
|∇Av|2

)1/2

≤ AB

∫
|∇Av|2. (4.2.4)

Similarly, we get

−1

2

∫
(∂r(rV ))|u|2 ≤ 1

2

∫
(∂r(rV ))−|u|2

<
AV
2

∫
|∇Av|2. (4.2.5)

and combining (H1) with (4.1.5), yields

ε

2λ1/2

∫
|x|V |u|2 < εAV

2λ1/2

∫
|x||∇Av|2.

Let us now compute the term ε
λ1/2

∫ |u|2
|x| . To this end, let δ > 0. Then since ε < λ and by

the a-priori estimate (1.3.9), we have

ε

λ1/2

∫
|u|2

|x|
=

ε

λ1/2

∫
|x|<λ1/2δ

ε

|u|2

|x|
+

ε

λ1/2

∫
|x|≥λ1/2δ

ε

∫
|u|2

|x|

≤ δ

∫
|u|2

|x|2
+
ε

δ

∫
|u|2

≤ δ

∫
|u|2

|x|2
+

1

δ

∫
|f ||u|. (4.2.6)

Consequently, by Cauchy-Schwarz inequality and magnetic Hardy inequality (1.4.8), it fol-
lows that

ε

λ1/2

∫
|u|2

|x|
≤ (δ + κ)

∫
|u|2

|x|2
+

1

4κδ2

∫
|x|2|f |2

≤ 4(δ + κ)

(d− 2)2

∫
|∇Av|2 + Cκ,δ

∫
|x|2|f |2, (4.2.7)
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4.2. Proof of Theorem 4.1.4

for κ > 0. The same reasoning applying to the terms containing f . By ε < λ and the a-priori
estimate (1.3.9) we deduce

− ε

2λ1/2
<
∫
|x|fū ≤ ε3/2

4λ1/2

∫
|u|2 +

ε1/2

4λ1/2

∫
|x|2|f |2

≤ ε

4

∫
|u|2 +

1

4

∫
|x|2|f |2

≤ κ

∫
|u|2

|x|2
+ Cκ

∫
|x|2|f |2

≤ 4κ

(d− 2)2

∫
|∇Av|2 + Cκ

∫
|x|2|f |2, (4.2.8)

−(d− 1)<
2

∫
fū ≤ 4κ

(d− 2)2

∫
|∇Av|2 + Cκ

∫
|x|2|f |2, (4.2.9)

−<
∫
|x|f

(
∇r
Au+ iλ1/2ū

)
≤ κ

∫
|∇Av|2 + Cκ

∫
|x|2|f |2, (4.2.10)

for arbitrary κ > 0.
Thus it may be concluded that

1

2

∫
|∇Av|2 +

ε

2λ1/2

∫
|x||∇Av|2

<

(
2AB + AV

2
+

(4κ+ d− 1)(δ + κ)

(d− 2)2
+

4κ

(d− 2)2
+ κ

)∫
|∇Av|2

+
εAV
2λ1/2

∫
|x||∇Av|2 + C

∫
|x|2|f |2.

Note that since u ∈ H1
A(Rd), by Remark 1.3.3 it is a simple matter to check that the right-

hand side of the above inequality is finite. Therefore, choosing κ, δ small enough and using
that AV + 2AB < 1, (4.2.1) is proved.

Remark 4.2.2. Note that the identity (4.2.2) is true for any d ≥ 1. However, since the
classical Hardy inequality is valid only in the three and higher dimensional case, the method
of proof breaks down when d = 1 and d = 2. In the two dimensional case, the main difficulty

concerns with the analysis of the term ε
λ1/2

∫ |u|2
|x| . Observe that if d = 1 this term disappears,

but we still need to estimate the term ε
λ1/2
<
∫
|x|fū.

The proof will be completed by showing that∫
|∇Au|2 ≤ C

∫
|x|2|f |2, (4.2.11)

for any λ ≤ ε and for all d ≥ 3.
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Proposition 4.2.3. Let d ≥ 3, λ ≤ ε and assume that (4.1.1) holds. Then the solution
u ∈ H1

A(Rd) of the equation (4.0.3) satisfies∫
|∇Au|2 ≤ C

∫
|x|2|f |2. (4.2.12)

Proof. For this purpose, let us multiply equation (4.0.3) by ū and integrate over Rd. Then,
taking the real part yields∫

|∇Au|2 = λ

∫
|u|2 +

∫
V |u|2 −<

∫
fū. (4.2.13)

Since λ ≤ ε, by assumption (4.1.1) together with the diamagnetic inequality (1.1.4) and the
a-priori estimate (1.3.9), we have∫

|∇Au|2 ≤ 2

∫
|f ||u|

≤
(∫

|u|2

|x|2

)1/2(∫
|x|2|f |2

)1/2

. (4.2.14)

This combining with the magnetic Hardy inequality gives (4.2.12), which is our claim.

Remark 4.2.4. We emphasize that when d ≥ 3, by the magnetic Hardy inequality (1.4.8)
any solution u ∈ H1

A(Rd) of the Helmholtz equation (4.0.3) satisfies for all λ ∈ R the resolvent
estimate ∫

|u|2

|x|2
≤ C

∫
|x|2|f |2, (4.2.15)

where C > 0 is uniform on ε and λ. Observe that this is the key inequality that is used in
[BPST2] for proving the Strichartz estimates.

4.3 Proof of Theorem 4.1.8

We now proceed to show the sharp Sommerfeld radiation condition (4.0.7). In order to get
this inequality, we first present some preliminaries. On the one hand, we need to control the
Agmon-Hörmander norm of solutions u of the electromagnetic Helmholtz equation (4.0.3).
On the other hand, we will give the α = 1 version of (4.1.16) in Rd, which consists of the
following estimate ∫

|x|
∣∣∣∣∇r

Au− iλ1/2u+
(d− 1)

2|x|
u

∣∣∣∣2 <∞ (4.3.1)

and will be useful for our purpose. Note that in this case we loss the tangential part of the
gradient and we add the term (d−1)u

2|x| to the usual Sommerfeld term.
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4.3.1 A priori estimate

We begin by proving the following a-priori estimate which follows from the inequality (4.2.1)
above.

Proposition 4.3.1. Let d ≥ 3, λ > ε > 0 and f such that, ‖|x|f‖L2 < ∞. Assume
that (4.1.1), (H1) hold. Then, any solution u ∈ H1

A(Rd) of the Helmholtz equation (4.0.3)
satisfies

λ|||u|||1 + |||∇Au|||1 ≤ C

∫
|x|2|f |2 (4.3.2)

where C > 0 is independent of ε, λ.

Proof. The proof follows applying similar arguments as in the proof of Proposition 2.2.12.
Let us start with the observation that∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 = |∇Au|2 + λ|u|2 − 2=λ1/2 x

|x|
· ∇Auū.

Let us integrate the above identity over the sphere Sr := {|x| = r}, obtaining∫
Sr

(λ|u|2 + |∇Au|2)dσr =

∫
Sr

|∇Au− iλ1/2 x

|x|
u|2dσr

+ 2=λ1/2

∫
Sr

x

|x|
· ∇Auūdσr. (4.3.3)

Let us multiply now equation (4.0.3) by ū, integrate it over the ball Br := {|x| ≤ r} and
take the imaginary part. Since ε > 0, it follows that

=
∫
Sr

x

|x|
· ∇Auūdσr ≤ =

∫
Br

fū. (4.3.4)

Combining this with (4.3.3) yields∫
Sr

(λ|u|2 + |∇Au|2)dσr ≤
∫
Sr

|∇Au− iλ1/2 x

|x|
u|2dσr + 2=λ1/2

∫
Br

fū. (4.3.5)

Let R ≥ 1. We multiply both sides of (4.3.5) by 1
R

and integrate from 0 to R with respect
to r. Then from what has already proved we obtain

1

R

∫
|x|≤R

(λ|u|2 + |∇Au|2) ≤ 1

R

∫
|x|≤R

∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2
+

(∫
|u|2

|x|2

)1/2(∫
|x|2|f |2

)1/2

≤ C

∫
|x|2|f |2. (4.3.6)
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As a consequence, taking the supremum over R ≥ 1, we obtain (4.3.2), which is the desired
conclusion.

4.3.2 α = 1 version for the constant coefficient case

We proceed to show (4.3.1) for the constant coefficient case, i.e. A ≡ 0, V = 0. Let us
consider the Helmholtz equation

∆u+ λu+ iεu = f. (4.3.7)

Then we can state the following inequality.

Lemma 4.3.2. Let d ≥ 1, λ > 0, ε > 0 and f such that ‖|x|3/2f‖L2 < ∞, ‖|x|2f‖L2 < ∞.
Then any solution u ∈ H1(Rd) of the equation (4.3.7) satisfies

1

4

∫
|x|
∣∣∣∣∂ru− iλ1/2u+

d− 1

2|x|
u

∣∣∣∣2 +
ε

4λ1/2

∫
|x|2

∣∣∣∣∇u− iλ1/2 x

|x|
u

∣∣∣∣2
≤ 1

4

∫
|x|3|f |2 +

d

4λ1/2

∫
|f ||u|+ ε

4λ1/2

∫
|x|2|f ||u|, (4.3.8)

Proof. The proof is based on the analogue identity of (1.3.21) for A ≡ 0, V = 0. Note that
in this case, ∇A ≡ ∇. Thus we have

1

2

∫
ψ′′(|∂ru|2 + λ|u|2)−=λ1/2

∫
ψ′′∂ruū+

∫ (
ψ′

|x|
− ψ′′

2

)
|∇⊥u|2

+ <(d− 1)

2

∫
∇
(
ψ′

|x|

)
· ∇uū+

ε

2λ1/2

∫
ψ′
∣∣∣∇(e−iλ

1/2|x|u)
∣∣∣2

+
ε

2λ1/2
<
∫
ψ′′∂ruū = − ε

2λ1/2
<
∫
ψ′fū−<

∫
fψ′(∂rū+ iλ1/2ū)

− (d− 1)

2
<
∫

ψ′

|x|
fū. (4.3.9)

Let us define

ψ(r) =
r3

3
, r = |x|

and we put it into (4.3.9). Hence, since∣∣∣∣∂ru− iλ1/2u+
(d− 1)

2|x|
u

∣∣∣∣2 = |∂ru|2 + λ|u|2 +
(d− 1)2

4|x|2
|u|2

− 2λ1/2=∂ruū+ <(d− 1)

2|x|
∂ruū, (4.3.10)
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we obtain

1

2

∫
Rd
|x|
∣∣∣∣∂ru− iλ1/2u+

(d− 1)

2|x|
u

∣∣∣∣2 +
ε

4λ1/2

∫
Rd
|x|2

∣∣∣∣∇u− iλ1/2 x

|x|
u

∣∣∣∣2
=

dε

4λ1/2

∫
Rd
|u|2 − 1

2
<
∫
f |x|2

(
∂rū+ iλ1/2ū+

(d− 1)

2
ū

)
− ε

4λ1/2
<
∫
Rd
|x|2fū, (4.3.11)

and the lemma follows.

Remark 4.3.3. It is not our purpose to give the corresponding estimate for the electromag-
netic case. However, under suitable assumptions on the potentials, (4.3.1) may be obtained
in much the same way as in the constant coefficient case, the only difference being in the
analysis of the potential terms.

4.3.3 Key Sommerfeld condition

We are now in a position to show the goal of this section.

Proposition 4.3.4. Let d ≥ 3, λ0, ε > 0 with λ0 > ε and f such that N(f) <∞, ‖|x|f‖L2 <
∞, ‖|x|3/2f‖L2 < ∞, ‖|x|2f‖L2 < ∞. Let the potentials satisfy (H2). Then, there exist
positive constants Ci, i = 1, 2 (independent of ε and λ) such that for any R ≥ 1 and λ ≥ λ0

the solution u ∈ H1
A(Rd) to the Helmholtz equation (4.0.3) satisfies∫

|x|≤R
|x|
∣∣∣∣∇r

Au− iλ1/2u+
(d− 1)

2|x|
u

∣∣∣∣2 +R

∫
|x|≥2R

|∇A(e−iλ
1/2|x|u)|2

+
ε

λ1/2

∫
|x|≤R

|x|2|∇A(e−iλ
1/2|x|u)|2 +

εR

λ1/2

∫
|x|≥2R

|x||∇A(e−iλ
1/2|x|u)|2

≤ C1

[∫ ∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 +

∫
|u|2

|x|2
+ |||u|||21

]

+ C2

[∫
(1 + |x|)|x|2|f |2 + ε

∫
|x|4|f |2

]
. (4.3.12)

Proof. Let R ≥ 1. Without loss of generality, noting that

inf
R≥R1

∫
|x|=R

|u|2 ≤ C|||u|||2R1

and

inf
R≥R1

∫
|x|=R

|x||u|2 ≤
∫
|u|2,

117



4. Resolvent estimates and Applications

there exists R1 such that R ≤ R1 ≤ 2R and satisfies∫
|x|=R1

|u|2 ≤ C|||u|||2R1
, (4.3.13)∫

|x|=R1

|x||u|2 ≤ C

∫
|u|2. (4.3.14)

We will prove the estimate (4.3.12) for this R1, and then, since R1 and R are comparable,
we will deduce the result for any R ≥ 1.

Let us define the multiplier

ψ′(|x|) =

{ |x|2 if |x| ≤ 1,

|x| if |x| ≥ 1,
(4.3.15)

and set ψ′R1
(|x|) = R2

1ψ
′
(
|x|
R1

)
. Thus we get

ψ′R1
(|x|) =

{ |x|2 if |x| ≤ R1,

R1|x| if |x| ≥ R1,
(4.3.16)

so that in the distributional sense yields

ψ′′R1
(|x|) =

{
2|x| if |x| ≤ R1,

R1 if |x| ≥ R1.
(4.3.17)

Let us put the above multiplier into the identity (1.3.21). For simplicity, we start by

considering the case when Aj = V = 0, j = 1, . . . , d. Thus denoting v = e−iλ
1/2|x|u we get∫

|x|≤R1

|x|
∣∣∣∣∇r

Au− iλ1/2u+
(d− 1)

2|x|
u

∣∣∣∣2 +
R1

2

∫
|x|≥R1

∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2
+

ε

2λ1/2

[∫
|x|≤R1

|x|2 |∇Av|2 +R1

∫
|x|≥R1

|x| |∇Av|2
]

=
dε

2λ1/2

∫
|x|≤R1

|u|2 +
ε(d− 1)R1

4λ1/2

∫
|x|≥R1

|u|2

|x|

− εR1

2λ1/2
<
∫
|x|≥R1

|x|fū−<
∫
|x|≤R1

f |x|2
(
∇r
Aū+ iλ1/2ū+

d− 1

2|x|
ū

)
−<R1

∫
|x|≥R1

|x|f(∇r
Aū+ iλ1/2ū)− (d− 1)R1

2
<
∫
|x|≥R1

fū

− ε

2λ1/2
<
∫
|x|≤R1

|x|2fū+
(d− 1)

4

∫
|x|=R1

|u|2 +
ε

4λ1/2

∫
|x|=R1

|x||u|2. (4.3.18)
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Let us analyze now the right hand side of the above equality. Note that the integral terms
over {|x| ≥ R1} correspond to the α = 0 case of (4.1.16) that has been already proved in the
previous section. The terms over {|x| ≤ R1} reduce to the α = 1 version above. Regarding
to these terms, by (4.3.8) we only need to estimate the following ones

1

λ1/2

∫
|f ||u| ≤ 1

λ
1/2
0

(
|u|2

|x|2

)1/2(∫
|x|2|f |2

)1/2

and

ε

λ1/2

∫
|x|2|f ||u| ≤ 1

λ
1/2
0

(
ε

∫
|u|2
)1/2(

ε

∫
|x|4|f |2

)1/2

. (4.3.19)

The surface integrals pose no problem. By (4.3.13) and (4.3.14) we have

∫
|x|=R1

|u|2 +
ε

λ1/2

∫
|x|=R1

|x||u|2 ≤ C|||u|||2R1
+

Cε

λ1/2

∫
|u|2

≤ C|||u|||2R1
+

C

λ1/2

(∫
|u|2

|x|2

)1/2(∫
|x|2|f |2

)1/2

.

We now turn to the potential terms. After substituting the above multiplier into the
identity (1.3.21), in the right-hand side of the resulting equality the integrals related to Bτ

and V are

=
∫
|x|≤R1

|x|2Bτ · ∇Auu−=R1

∫
|x|≥R1

|x|Bτ · ∇Auū−
∫
|x|≤R1

|x|V |u|2

− 1

2

∫
|x|≤R1

|x|2(∂rV )|u|2 − R1

2

∫
|x|≥R1

V |u|2 − R1

2

∫
|x|≥R1

|x|(∂rV )|u|2

+
ε

2λ1/2

∫
|x|≤R1

|x|2V |u|2 +
εR1

2λ1/2

∫
|x|≥R1

|x|V |u|2.

Let us treat the above terms. We start with the magnetic ones. Let us recall that v =
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e−iλ
1/2|x|u. Then, by Cauchy-Schwarz inequality, (H2), (4.2.1) and (4.2.3) we get

=
∫
|x|≤R1

|x|2Bτ · ∇Auu+ =R1

∫
|x|≥R1

|x|Bτ · ∇Auu

≤
∫
Rd
|x|2|Bτ ||∇Av||v|

≤
(∫

Rd
|∇Av|2

)1/2(∫
Rd
|x|4|Bτ |2|v|2

)1/2

≤
(∫
|∇Av|2

)1/2(
c

∫
|x|≤1

|u|2

|x|2
+ c

∫
|x|≥1

|u|2

|x|1+2α

)1/2

≤ C

[∫
|∇Av|2 +

∫
|u|2

|x|2
+ |||u|||21

]
.

As far as the electric potential is concerned, note that after integrating by parts the terms
containing ∂rV , one can rewrite them as follows

d− 1

2

∫
|x|≤R1

|x|V |u|2 + <
∫
|x|≤R1

V |x|2 x
|x|
· ∇Auū

+
(d− 1)R1

2

∫
|x|≥R1

V |u|2 + <R1

∫
|x|≥R1

V |x| x
|x|
· ∇Auū

+
ε

2λ1/2

∫
|x|≤R1

|x|2V |u|2 +
εR1

2λ1/2

∫
|x|≥R1

|x|V |u|2.

Then by Cauchy-Schwarz inequality, the a-priori estimate (1.3.9) and assumption (H2),
analysis similar to the above implies that these terms are upper bounded by

d− 1

2

∫
|x||V ||u|2 +

∫
|V ||x|2|∇Av|||v|+

ε

2λ1/2

∫
|x|2|V ||u|2

≤ C

(∫
|∇Av|2 +

∫
|u|2

|x|2
+ |||u|||21 +

∫
|x|2|f |2

)
.

Putting everything together the proposition follows.

Combining this result with Proposition 4.3.1 and estimate (4.2.15), provides the following
inequality which in particular proves Theorem 4.1.8.

Corollary 4.3.5. Under the hypotheses of Theorem 4.1.4, let ε > 0 and f such that also
satisfies ‖|x|3/2f‖L2 <∞, ‖|x|2f‖L2 <∞. Then, for any R ≥ 1 the solution u ∈ H1

A(Rd) of
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the Helmholtz equation (4.0.3) satisfies∫
|x|≤R

2

|x|
∣∣∣∣∇r

Au− iλ1/2u+
(d− 1)

2|x|
u

∣∣∣∣2 +R

∫
|x|≥R

|∇A(e−iλ
1/2|x|u)|2

+
ε

λ1/2

∫
|x|≤R

2

|x|2|∇A(e−iλ
1/2|x|u)|2 +

εR

λ1/2

∫
|x|≥R

|x||∇A(e−iλ
1/2|x|u)|2

≤ C

[∫
(1 + |x|)|x|2|f |2 + ε

∫
|x|4|f |2

]
, (4.3.20)

where C = C(λ0) is independent of ε.

Remark 4.3.6. Note that taking the supremum over R ≥ 1 in (4.3.20), we get (4.1.15) and
the proof is complete.

Remark 4.3.7. This result provides an extra a-priori estimate for the surface integral. In
fact, the solution u of the equation (4.0.3) holds∫

|x|=R
|u|2 <∞, ∀R ≥ 1. (4.3.21)

Note that we can rewrite (4.3.18) for any R ≥ 1 with the boundary terms in the left hand
side of the identity. Hence from (4.3.12) it is immediate that∫

|x|=R
|u|2 +

ε

λ1/2

∫
|x|=R

|x||u|2 ≤ C

(∫
(1 + |x|+ ε|x|2)|x|2|f |2

)
,

where C = C(λ0) > 0 is independent of ε.

4.4 Applications

Firstly, under the hypotheses of Theorem 4.1.4, we will prove the limiting absorption principle
for the equation (4.0.2) by the same method as in the previous chapters. Note that since
condition (4.1.9) for the solution of the equation (4.0.3) has been already showed, we can
restrict ourselves for proving the uniqueness result for the equation (4.0.2).

Secondly, we proceed with the study of the cross-section of the electromagnetic Helmholtz
equation (4.0.2), giving the proof of the first part of Theorem 4.1.9. This will follow by the
radiation condition (4.1.15) and the resolvent estimates (4.1.11), (4.3.2).

Finally, the limiting absorption principle and the existence and uniqueness of the cross-
section will allow us to give the spectral representation of HA, which completes the proof of
Theorem 4.1.9.
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4.4.1 Limiting absorption principle

Let us first state a uniqueness theorem for the electromagnetic Schrödinger operator with
potentials satisfying (H1) provided that

lim inf
R→∞

∫
|x|=R

V |u|2 = 0. (4.4.1)

Let us consider the homogeneous electromagnetic Helmholtz equation

(∇+ iA(x))2u+ V (x)u+ λu = 0. (4.4.2)

Theorem 4.4.1. Let d ≥ 1, λ0 > 0 and assume that (H1) and (4.4.1) hold. Let u be a
solution of (4.4.2) with u,∇Au ∈ L2

loc such that

lim
R→∞

1

R

∫
R≤|x|≤2R

(λ|u|2 + |∇Au|2) = 0. (4.4.3)

Then u ≡ 0.

Proof. The proof is based on the multiplier method. By (4.4.3), without loss of generality
there exists a sequence {Rj} tending to infinity such that

lim
Rj→∞

1

Rj

∫
Rj≤|x|≤2Rj

(λ|u|2 + |∇Au|2) = 0. (4.4.4)

Let us multiply the equation (4.4.2) by the combination of the symmetric and the antisym-
metric multipliers

∇ψ · ∇Au+
1

2
∆ψū+ ϕū,

where ψ, ϕ are a real valued functions and integrate over the ball {|x| < Rj}. Hence we have∫
|x|<Rj

∇Au ·D2ψ · ∇Au−
∫
|x|<Rj

ϕ|∇Au|2 +

∫
|x|<Rj

ϕλ|u|2

− 1

4

∫
|x|<Rj

(∆2ψ − 2∆ϕ)|u|2 +

∫
|x|<Rj

ϕV |u|2 +
1

2

∫
|x|<Rj

∇V · ∇ψ|u|2

= =
d∑

k,m=1

∫
|x|<Rj

∂ψ

∂xk
Bkmu(∇A)mu+

1

4

∫
SRj

∇(∆ψ) · x
|x|
|u|2

+
1

2
<
∫
SRj

x

|x|
· ∇Au∆ψu+

1

2

∫
SRj

x

|x|
· ∇ϕ|u|2 −<

∫
SRj

∇r
Auϕū

+
1

2

∫
SRj

(λ+ V )
x

|x|
· ∇ψ|u|2 − 1

2

∫
SRj

x

|x|
· ∇ψ|∇Au|2, (4.4.5)
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being SRj = {|x| = Rj}.
Let R such that 1 ≤ Rj

2
≤ R ≤ Rj and we consider the following multipliers

ϕ(x) =
1

2R
, ∇ψ(x) =

x

R
. (4.4.6)

Let us insert them into the identity (4.4.5). Noting that the boundary terms can be upper
bounded by

C

∫
|x|=Rj

{|∇Au|2 + (λ+ V )|u|2}dσRj , (4.4.7)

it follows that

1

2R

∫
|x|≤Rj

(λ|u|2 + |∇Au|2) ≤ 1

2R

∫
|x|≤Rj

(∂r(rV ))−|u|2

+
1

R

∫
|x|≤Rj

|x||Bτ ||∇Au||u|

+ C

∫
|x|=Rj

(|∇Au|2 + (λ+ V )|u|2). (4.4.8)

Let θ(r) ∈ C∞(R) be a cut-off function such that 0 ≤ θ ≤ 1, given by

θ(r) =

{
1 if r ≤ 1
0 if r ≥ 2

(4.4.9)

and set θR = θ
(
|x|
R

)
. Hence, by (H1) and the diamagnetic inequality (1.1.4) we have

1

2R

∫
|x|≤Rj

(∂r(rV ))−|u|2 ≤
1

2R

∫
(∂r(rV ))−|θRju|2

≤ AV
2R

∫
|x|≤Rj

|∇Au|2 +
C

R2
j

∫
Rj≤|x|≤2Rj

|u|2

+
AV
2R

∫
Rj≤|x|≤2Rj

|∇Au|2. (4.4.10)

Similarly, we obtain

1

R

∫
|x|≤Rj

|Bτ ||∇Au||u| ≤

(
1

R

∫
|x|≤Rj

|∇Au|2
) 1

2 (
1

R

∫
|∇A(θRju)|2

) 1
2

≤ (AB + κ)

R

∫
|x|≤Rj

|∇Au|2 +
C

R2
j

∫
Rj≤|x|≤2Rj

|u|2

+
C

R

∫
Rj≤|x|≤2Rj

|∇Au|2. (4.4.11)
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As a consequence, since {|x| ≤ R} ⊂ {|x| ≤ Rj}, it may be concluded that

sup
R≤Rj

1

R

∫
|x|≤R

λ|u|2 ≤ C

Rj

∫
Rj≤|x|≤2Rj

(|∇Au|2 + λ|u|2)

+ C

∫
|x|=Rj

((λ+ V )|u|2 + |∇Au|2). (4.4.12)

Then taking the lim inf in j, by (4.4.1) and (4.4.4) the theorem follows.

Remark 4.4.2. Note that in this case it is not needed the unique continuation property
for HA. The smallness conditions on the potentials allows us to prove uniqueness just by
multiplier method and integration by parts.

Combining the uniqueness of a solution of the equation (4.0.2) with the estimate (4.1.9)
for λ ≥ λ0 > 0, the same method as in section 2.2.4 imply the limiting absorption principle
for the electromagnetic Helmholtz equation assuming sharp singularities on V and Bτ .

Theorem 4.4.3. (LAP) Let λ0 > 0. Under the hypotheses of Theorem 4.1.4, if moreover V
holds (4.4.1), then there exists a unique solution u of the equation (4.0.2) such that for any
λ ≥ λ0 > 0 satisfies the radiation condition∫

|∇A(e−iλ
1/2|x|u)|2 ≤ C

∫
|x|2|f |2 (4.4.13)

and the a-priori estimate ∫
|u|2

|x|2
≤ C

∫
|x|2|f |2, (4.4.14)

where C > 0 is independent of λ.

Remark 4.4.4. It is worth pointing out that uniqueness result also follows by assuming
some local conditions on the potentials. In fact, given λ > 0 if we require that there exists
R0 = R0(λ) > 0 such that

(H1a) ∫
|x|≤R0

(∂r(rV ))−|u|2 < AV ΛR0 +

∫
|x|≤R0

(∂r(rV ))+|u|2,

(∫
|x|≤R0

|x|2|Bτ |2|u|2
)1/2

< ABΛ
1/2
R0
,

with

ΛR0 =

∫
|x|≤R0

|∇u|2 + sup
R≥R0

(d− 1)

2R

∫
|x|=R

|u|2,

124



4.4. Applications

where AV + 2AB < 1.

(H1b)

1

R0

∫
|x|≥R0

[(∂rV )−] |u|2 < A′′V λ|||u|||2R0
+

∫
|x|≥R0

1

|x|
(∂rV )+|u|2

1

R0

∫
|x|≥R0

|x|2|Bτ |2|u|2 < A′′Bλ|||u|||2R0
.

where
1− A′′V − 2A

′′

B > 0, (4.4.15)

then Theorem 4.4.1 follows. In this case condition (4.4.3) can be replaced with a weaker one,

lim inf

∫
|x|=R

(λ|u|2 + |∇Au|2)→ 0 as R→∞. (4.4.16)

Furthermore, combining these assumptions with the condition (4.1.1), it may be concluded
the Morrey-Campanato type estimate

λ|||u|||2R0
+ |||∇Au|||2R0

≤ C(1 + ε)(NR0(f))2, (4.4.17)

for all λ ≥ 0 being C independent of λ, ε and the Sommerfeld radiation condition∫
|x|≥1

|∇A(e−iλ
1/2|x|u)|2 ≤ C

∫
|x|2|f |2 + (1 + ε)(NR0(f))2, (4.4.18)

for the solution u of the equation (4.0.3).
As a consequence, we deduce the limiting absorption principle for the equation (4.0.2) with
potentials satisfying (4.1.1), (H1a), (H1b) such that the solution holds the a-priori estimate
(4.4.17). Note that the potentials given in Examples 4.1.6 and 4.1.7 also hold the above
assumptions. In fact, potentials that have the sharp singularity at the origin and that decay
as a short-range potential at infinity are included.

4.4.2 Cross-section

Our next goal is to prove existence and uniqueness of the cross-section of the solution u of
the equation (4.0.2), which proves Theorem 4.1.9 (i).

For this purpose, from (4.3.2) and (4.1.15) we first prove the existence of the strong limit

lim
rn→∞

∣∣∣r d−1
2

n e−iλ
1/2rnu(rnω)

∣∣∣ in L2(Sd−1) (4.4.19)
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for certain specified sequence {rn}n∈N tending to infinity as n→∞.
Furthermore, by the resolvent estimate (4.1.11) it may be concluded that there exists the

limit

lim
r→∞

∫
|x|=1

|F(λ, r)f(ω)|2 φ(ω) ∀φ ∈ C∞(Sd−1), (4.4.20)

being

(F(λ, r)f)(ω) = C(λ)r
d−1
2 e−iλ

1/2ru(rω), ω ∈ Sd−1. (4.4.21)

Consequently, we deduce the existence of the limit (4.1.20) and the first part of Theorem
4.1.9 follows.

Existence

Let us start proving the existence of the limit (4.4.19) which asserts existence of a cross.section.
This will follow under the hypotheses of Theorem 4.1.8.

Proposition 4.4.5. There exists a sequence {rn}n∈N tending to infinity such that |F(λ, rn)f |
converges strongly to |gλ| in L2(Sd−1) as n → ∞. |gλ| ∈ L2(Sd−1) is called scattering cross
section of u and satisfies ∫

Sd−1

|gλ(ω)|2 ≤ C

∫
|x|2|f |2. (4.4.22)

Proof. Our proof starts with the observation that from (4.1.15) and (4.3.2) there exists a
sequence {rn}n∈N that tends to infinity such that for each rn

r2
n

∫
|x|=rn

∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 dσr < +∞. (4.4.23)

and

λ

∫
|x|=rn

|u|2dσr < +∞, (4.4.24)

respectively.
We write x = rnω, where ω ∈ Sd−1 and we take

hn(ω) = (F(λ, rn)f) (ω). (4.4.25)

Thus we have ∫
Sd−1

|hn(ω)|2dσ(ω) = rd−1
n

∫
Sd−1

|u(rnω)|2dσ(ω)

=

∫
|x|=rn

|u(x)|2dσr. (4.4.26)
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Furthermore, by the diamagnetic inequality (1.1.4) we get∫
Sd−1

|∇ω|hn(ω)||2dσ(ω) = rd+1
n

∫
Sd−1

∣∣∣∇τ
∣∣∣e−iλ1/2rnu(rnω)

∣∣∣∣∣∣2 dσ(ω)

≤ r2
n

∫
|x|=rn

∣∣∣∇ ∣∣∣e−iλ1/2rnu∣∣∣∣∣∣2 dσr
≤ r2

n

∫
|x|=rn

∣∣∣∇A

(
e−iλ

1/2rnu
)∣∣∣2 dσr. (4.4.27)

Hence it may be concluded that |hn| ∈ H1(Sd−1) and by the Rellich theorem we deduce that
∃!|gλ| ∈ L2(Sd−1) such that |hn| → |gλ| in L2(Sd−1). This |gλ| is the cross-section of the
solution u. In addition, writing the solution u as

u(rnω) =
hn(ω)eiλ

1/2rn

r
d−1
2

n

, (4.4.28)

it follows that

lim
R→+∞

inf

∫
|x|=R

∣∣∣∣∣|u| − |gλ|
|x| d−1

2

∣∣∣∣∣
2

dσR = 0. (4.4.29)

Let us prove now (4.4.22). Let us multiply the equation (4.0.2) by ū and integrate over
the the ball {|x| ≤ R} for some R ≥ 1. Let us take the imaginary part, obtaining

=
∫
|x|=R

x

|x|
· ∇Auū = =

∫
|x|≤R

fū. (4.4.30)

Now observe that the left hand-side of the above equality can be written as

=
∫
|x|=R

x

|x|
·
(
∇Au− iλ1/2 x

|x|
u

)
ū+ λ1/2

∫
|x|=R

|u|2. (4.4.31)

Computing the lim inf as R→∞ on the both sides of the identity, since from (4.1.15) yields

lim
R→∞

inf

∫
|x|=R

∣∣∣∣∇Au− iλ1/2 x

|x|
u

∣∣∣∣2 dσ = 0, (4.4.32)

we conclude that

λ1/2 lim
R→∞

inf

∫
|x|=R

|u|2 = =
∫
Rd
fū. (4.4.33)

On the other hand, from (4.4.29) it is easily seen that∫
|x|=1

|gλ(ω)|2 dσ(ω) = lim
R→∞

inf

∫
|x|=R

|u|2. (4.4.34)
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Hence, by (4.4.33) and (4.4.34) we obtain∫
|x|=1

|gλ(ω)|2 dσ(ω) = λ1/2=
∫
Rd
fū, (4.4.35)

which combining with (4.3.2) gives the desired estimate and the proof is complete.

Remark 4.4.6. Observe that from the strong convergence

|F(λ, rn)f | → |gλ| in L2(Sd−1) as n→∞, (4.4.36)

we deduce
|F(λ, rn)f |2 → |gλ|2 in L1(Sd−1) as n→∞. (4.4.37)

We denote g(ω) = |gλ(ω)|2, ω ∈ Sd−1.

Remark 4.4.7. Note that under the assumptions that have been mentioned in Remark 4.4.4,
from the identity (4.4.35) and by the a-priori estimate (4.4.17) it follows that∫

|ω|=1

g(ω) ≤ C(NR0(f))2. (4.4.38)

The existence of the limit (4.4.19) for a certain sequence {rn}∞n=1 diverging to infinity
does not ensure uniqueness of the cross-section. Indeed, if we take another sequence {rm}m∈N
such that rm →∞ as m→∞, we get that there exists g1 ∈ L1(Sd−1) satisfying

lim
m→∞

∣∣∣r d−1
2

m e−iλ
1/2rmu(rmω)

∣∣∣2 = g1(ω) in L1(Sd−1). (4.4.39)

Uniqueness

Basing on the ideas developed by Isozaki [Is] and Iwatsuka [Iw] and adapting them to our
case, we prove the existence of the limit (4.4.20). This issue together with Proposition 4.4.5
proves uniqueness of a cross-section.

To this end, some properties related to the surface integral involving the solution u of the
equation (4.0.2) will be needed. Thus we will divide the proof into a sequence of lemmas.

Let us denote

Dr = ∇r
A − iλ1/2 +

(d− 1)

2r
. (4.4.40)

Remark 4.4.8. Note that from (4.1.9) and (4.1.11) it follows that∫
|Dru|2 ≤ C

∫
|x|2|f |2, (4.4.41)

for some C > 0.

128



4.4. Applications

Unless otherwise stated, in this paragraph we will work under the assumptions of Theorem
4.1.4.

Lemma 4.4.9. Let f such that ‖|x|f‖L2 is finite, u = R(λ+ i0)f . Let v such that λ|||v|||2 <
∞ and

∫ ∣∣∣∇A(e−iλ
1/2|x|v)

∣∣∣2 < +∞. Then

d

dr

∫
|x|=r

(Dru)v̄ dσr = −2iλ1/2

∫
|x|=r

(Dru)v̄ dσr + F (r) (4.4.42)

where
∫∞

1
|F (r)|dr <∞.

Proof. By a straightforward calculation we have

d

dr

∫
|x|=r

(Dru)v̄ =

∫
|x|=r
Dr(Dru)v̄ +

∫
|x|=r

(Dru)(Drv). (4.4.43)

By our second assumption on v and by Remark 4.4.8, the second term of the right hand side
of (4.4.43) belongs to L1((1,∞)). On the other hand, first note that

Dr(Dr) = ∇r
A(∇r

A) +
(d− 1)

r
∇r
A + λ− (d− 1)(d− 3)

4r2
− 2iλ1/2Dr. (4.4.44)

Moreover, we have∫
|x|=r

[
∇r
A(∇r

Au)v̄ +
(d− 1)∇r

Auv̄

r

]
=

∫
|x|=r
∇2
Auv̄ +

∫
|x|=r
∇⊥Au∇⊥Av. (4.4.45)

This is obtained by differentiating the Green’s formula∫
|x|<r
∇2
Auv̄ = −

∫
|x|<r
∇Au · ∇Av +

∫
|x|=r
∇r
Auv̄, (4.4.46)

with respect to r and by noting that ∇A = ∇r
A +∇⊥A is an orthogonal sum decomposition.

Hence, combining (4.4.44) with (4.4.45) and by the equation (4.0.2) we get∫
|x|=r

[
∇r
A(∇r

Au)v̄ +
(d− 1)

r
∇r
A + λuv̄

]
= F1(r), (4.4.47)

where

F1(r) =

∫
|x|=r
∇⊥Au∇⊥Av −

∫
|x|=r

V uv̄ +

∫
|x|=r

fv̄. (4.4.48)

In addition, by (4.3.2), (4.1.9), assumptions on v and (H3) it is very easy to check that
F1(r) ∈ L1((1,∞)). Furthermore, by (4.1.11) we also have∫

|x|=r

(d− 1)(d− 3)

4r2
uv̄ ∈ L1((1,∞)). (4.4.49)
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As a consequence, by (4.4.43)-(4.4.49) we deduce

d

dr

∫
|x|=r

(Dru)v̄ = −2iλ1/2

∫
|x|=r

(Dru)v̄ + F (r) (4.4.50)

where F (r) =
∫
|x|=r(Dru)(Drv) + F1(r) +

∫
|x|=r

(d−1)(d−3)
4r2

uv̄ ∈ L1((1,∞)), which completes

the proof of the lemma.

Lemma 4.4.10. Under the same assumption as in Lemma 4.4.9 it follows that∫
|x|=r

(Dru)v̄dσr → 0 as r →∞. (4.4.51)

Proof. Let us put φ(r) =
∫
|x|=r(Dru)v̄dσr. Then by Lemma 4.4.9 we have

d

dr
φ(r) = −2i

√
λφ(r) + F (r),

∫ ∞
1

|F (r)|dr < +∞. (4.4.52)

Letting ψ(r) = e2i
√
λrφ(r) we get

d

dr
ψ(r) = e2i

√
λrF (r), (4.4.53)

which implies

ψ(r) = ψ(1) +

∫ r

1

e2i
√
λsF (s)ds. (4.4.54)

Since F (s) ∈ L1((1,∞)), we have that there exists a limit

lim
r→∞

ψ(r). (4.4.55)

On the other hand, since
∫ |v|2
|x|2 < ∞ and Remark 4.4.8, by Cauchy-Schwarz inequality

we obtain ∫ ∞
1

r−1|φ(r)|dr <∞. (4.4.56)

Thus we conclude that
lim inf

r→∞
|ψ(r)| = 0,

which combining with the existence of the limit (4.4.55), gives

|ψ(r)| = |φ(r)| → 0 as r →∞.
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Lemma 4.4.11. Let f such that ‖|x|f‖L2 <∞, u = R(λ+ i0)f . Then it satisfies

(R(λ− i0)f −R(λ+ i0)f, f) = lim
r→∞

2i
√
λ

∫
|x|=r
|u|2. (4.4.57)

Proof. Since ∇2
Au+ V u+ λu = f , by using the following Green’s formula∫

|x|<r
f∇2

Ag = −
∫
|x|<r
∇Af · ∇Ag +

∫
|x|=r

f
x

|x|
· ∇Ag, (4.4.58)

yields ∫
|x|<r

(uf̄ − fū)dx =

∫
|x|<r

(u∇2
Au−∇

2
Auū)

=

∫
|x|=r

(∇r
Auu−∇

r
Auū)

=

∫
|x|=r

[
(Dru)u− (Dru)ū

]
− 2i
√
λ

∫
|x|=r
|u|2dσr.

By Lemma 4.4.10 and the fact that the left hand side of the above equality tends to
(R(λ+ i0)f −R(λ− i0)f, f) as r →∞, the lemma follows.

In view of Lemma 4.4.11, since∫
|x|=1

|(F(λ, r)f)(ω)|2 dσ =

∫
|x|=r
|u(rω)|2dσr, (4.4.59)

for f such that ‖|x|f‖L2 <∞ yields

1

2πi
(R(λ− i0)f −R(λ+ i0)f, f) = lim

r→∞
‖F(λ, r)f‖2

L2(Sd−1). (4.4.60)

Now we are in a position to prove the existence of the limit of |F(λ, r)f |2.

Lemma 4.4.12. Let f such that ‖|x|f‖L2 <∞. Given φ ∈ C∞(Sd−1) there exists the limit

lim
r→∞

∫
|x|=1

|F(λ, r)f(ω)|2 φ(ω). (4.4.61)

Proof. Let φ(ω) ∈ C∞(Sd−1) and we define

v = ρ(r)u(rω)φ(ω)
(
r = |x|, ω =

x

r

)
, (4.4.62)
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where ρ(r) ∈ C∞(R+) such that ρ(r) = 0 if r < 1 and ρ(r) = 1 if r > 2. Note that we have∫ |v|2
|x|2 <∞ and

∫
|∇A(e−iλ

1/2|x|v)|2 <∞.

Let

g = (∇2
A + V + λ)v. (4.4.63)

Then, by a straightforward calculation we have

g = fρφ+
2ρ

|x|
∇⊥Au · ∇ωφ+

ρ

|x|2
Λφu+ 2ρ′∇r

Auφ+ ρ′′uφ+
ρ′(d− 1)

|x|
uφ (4.4.64)

where Λ is the Laplace Beltrami operator on Sd−1. Therefore, from the a-priori estimates
(4.1.11) and (4.3.2) it follows that∫

|x|2|g|2 ≤ C

[∫
|x|2|f |2 +

∫
|∇⊥Au|2 + |||∇Au|||21 +

∫
|u|2

|x|2

]
≤ C

∫
|x|2|f |2.

Now letting u = R(λ+ i0)f , by Green’s formula (4.4.58) we see that∫
|x|<r

{
(∇2

Av)ū− v(∇2
Au)
}

=

∫
|x|=r
{(Drv)ū− v(Dru)}+ 2i

√
λ

∫
|x|=r

vū. (4.4.65)

Note that letting r →∞, the left hand side of the above identity tends to

(g,R(λ+ i0)f)− (v, f).

Since Drv = (Dru)ρφ if r > 2, by Lemma 4.4.10 the first term of the right hand side of
(4.4.65) tends to 0 as r →∞. Moreover, by the definitions of v and F(λ, r)f it follows that

lim
r→∞

2i
√
λ

∫
|x|=r

vū = lim
r→∞

2i
√
λ

∫
|x|=r
|u|2φ

= lim
r→∞

C(λ)

∫
|x|=1

|F(λ, r)f |2φ.

Therefore, we have shown that

(g,R(λ+ i0)f)− (v, f) = lim
r→∞

C(λ)

∫
|x|=1

|F(λ, r)f |2φ, (4.4.66)

which proves the lemma.
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Proof of Theorem 4.1.9 (i)

From the existence of the limit (4.4.61), together with the existence of the limit

lim
rn→∞

∫
|x|=1

|F(λ, rn)f(ω)|2 = g(ω) g ∈ L1(Sd−1) (4.4.67)

proved in Proposition 4.4.5, it may be concluded that

lim
r→∞

∫
|x|=1

|F(λ, r)f(ω)|2φ(ω) =

∫
|x|=1

g(ω)φ(ω) ∀φ ∈ C∞(Sd−1). (4.4.68)

In particular, if we take φ(ω) = 1 we obtain

lim
r→∞

∫
|x|=1

|F(λ, r)f(ω)|2 =

∫
|x|=1

g(ω). (4.4.69)

As a consequence, since g(ω) = |gλ(ω)|2, from (4.4.22) we deduce (4.1.21) and the proof is
complete.

Remark 4.4.13. Observe that from Proposition 4.4.5 and Remark 4.4.6, denoting F = {f :
‖|x|f‖L2 <∞, ‖|x|3/2f‖L2 <∞}, we have defined

Tλ :F → L2(Sd−1)

f → Tλf = |gλ| (4.4.70)

such that ∫
|x|=1

|Tλf |2 ≤ C

∫
|x|2|f |2. (4.4.71)

Moreover, from Remark 4.4.4 we have∫
|x|=1

|Tλf |2 ≤ C(N(f))2. (4.4.72)

Thus one may extend the operator Tλ for any f such that N(f) <∞. In fact, if we denote
B = {f : N(f) < ∞}, then it may be concluded that Tλ : B → L2(Sd−1) is a continuous
operator.

Remark 4.4.14. Adding some extra assumption on the magnetic potential A, one could
prove existence and uniqueness of the far field pattern. In fact, if we require |A| ≤ C

|x| , then

it may be concluded that F(λ, r)f(ω) ∈ H1(Sd−1). Hence, proceeding as in Proposition 4.4.5,
the existence of the far field pattern would follow.
In addition, if we put more restriction on the magnetic potential A, i.e. if we consider

133



4. Resolvent estimates and Applications

|A| ≤ C

(1+|x|)
3
2+µ

with µ > 0, then following Iwatsuka [Iw] we could also prove uniqueness of

the far field pattern. The only difference regarding to this part is in Lemma 4.4.12. In this
case, one needs to define v by

v = ρ(r)r−
(d−1)

2 eiλ
1/2rφ(ω).

Observe that if |A(x)| ≤ C
(1+|x|)γ with γ > 1

2
, then

∫ ∣∣∣∇A(e−iλ
1/2|x|v)

∣∣∣2 <∞. On the other

hand, by a straightforward calculation we have that if r > 2 yields

e−iλ
1/2rg = Cdr

− (d−1)
2
−2φ(ω)− (d− 1)

2
r−

(d−1)
2
−1 x

|x|
· A(x)φ(ω)

+ iλ1/2r−
(d−1)

2
x

|x|
· A(x)φ(ω)− r−

(d−1)
2 [A(x) · A(x) + V (x)]φ(ω)

+ r−
(d−1)

2
−1A · ∂φ

∂ω
+ r−

(d−1)
2
−2Λφ(ω).

Hence, for A and V decaying like (1 + |x|)− 3
2

+µ with µ > 0, we get
∫
|x|2|g|2 <∞. The rest

of the proof runs as before.

4.4.3 Spectral representation

Finally, our purpose is to study some spectral properties of the electromagnetic Schrödinger
operator

HA = ∇2
A + V

in Rd, d ≥ 3 with potentials satisfying the same assumptions as in Theorem 4.1.8. In
particular, we will prove the second part of Theorem 4.1.9.

Let us first recall that HA is a self-adjoint operator with form domain

D(HA) = {u ∈ L2(Rd) :

∫
|∇Au|2 −

∫
V |u|2 <∞}. (4.4.73)

Let E(B) the spectral measure associated with HA, where B varies over all Borel sets of the
reals. We shall first show that E((0,∞))HA is an absolutely continuous operator.

Let R(z) = (HA + z)−1 denote the resolvent of HA and recall that for z = λ + iε with
λ 6= 0, ε > 0 and f such that

∫
|x|2|f |2 <∞, a unique solution

u(z, f) = R(z)f(x)

of the equation (HA + z)u = f satisfying (4.3.2) can be determined.
Let λ > 0. From Theorem 4.4.3 it follows that for any f such that ‖(1 + |x|)f‖L2 <∞ a

unique solution u±(λ, f) of the equation

(HA + λ)u± = f
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satisfying the corresponding Sommerfeld radiation condition∫
|∇A(e∓iλ

1/2|x|u±)|2 <∞

can be constructed as the limit

u±(λ, f) = lim
ε→0

u(λ± iε, f) (4.4.74)

in (H1
A)loc. Let ∆ = (λ1, λ2) where 0 < λ1 < λ2 < ∞. Then, employing the following

well-known formula stated in section 1.5

(E(∆)f, f) = lim
ε→0

lim
ν→0

1

2πi

∫ λ2+ν

λ1−ν
(R(λ− iε)f −R(λ+ iε)f, f) dλ (f ∈ L2),

by (4.4.74), the fact that
(u(λ− iε, f)− u(λ+ iε, f), f)

is uniformly bounded for (λ, ε) ∈ [λ1, λ2] × [0, 1], together with the Lebesgue dominated
convergence theorem, one obtains

(E(∆)f, f) =
1

2πi

∫
∆

(u−(λ, f)− u+(λ, f), f) dλ. (4.4.75)

Thus noting that the space L2(1 + |x|) := {f :
∫

(1 + |x|)2|f |2 <∞} is dense in L2(Rd) and
(u−(λ, f)− u+(λ, f), f) is a continuous function of λ ∈ (0,∞), we state the following result.

Theorem 4.4.15. Under the hypotheses of Theorem 4.4.3, E((0,∞))HA is an absolutely
continuous operator. Moreover, it satisfies

(E(0,∞)f, f) =
1

2πi

∫ ∞
0

(u−(λ, f)− u+(λ, f), f) dλ. (4.4.76)

As a consequence, since (u−(λ, f)− u+(λ, f), f) = 2=
∫
fū and

=
∫
fū = Cλ

∫
|x|=1

g(ω),

we obtain (4.1.22) and Theorem 4.1.9 follows.

Remark 4.4.16. By Remark 4.4.4, replacing the assumption (H1) on the potentials by the
conditions (H1a), (H1b), the same results hold for f such that N(f) <∞.
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[BRV] J.A. Barceló, A. Ruiz, L. Vega, Weighted estimates for the Helmholtz equation and
consequences, J. Funct. Anal. Vol. 150 (1997), 2, 356-382.
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