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Abstract

This paper addresses the valuation of an operating wind farm and the
finite-lived option to invest in such a farm under different reward and/or
support schemes. They range from a feed-in tariff to a premium on top
of electricity market price, to a transitory subsidy to capital expenditure.
The availability of futures contracts on electricity with ever longer matu-
rities allows to undertake valuations based on market data. The model
considers two sources of uncertainty, namely the future electricity price
(which shows seasonality) and the level of wind generation (which is in-
termittent in addition to seasonal). Lacking analytical solutions we resort
to a trinomial lattice (which supports mean reversion in prices) combined
with Monte Carlo simulation at each of the nodes in the lattice. Our data
set refers to the UK. The numerical results show the impact of a number
of factors involved in the decision to invest: the subsidy per unit of elec-
tricity generated, the initial lump-sum subsidy, the investment option’s
maturity, and price volatility.

Keywords: wind farms, electricity, stochastic load factor, futures mar-
kets, real options.



1 Introduction

Public support to renewable energies is usually justified on three grounds: cli-
mate change, security of supply, and industrial policy. Some of the positive
effects from renewables’ development are global, e.g. the abatement of green-
house gas emissions, and the reduction of investment unit costs (because of the
learning effect). Impacts from enhanced energy security and industrial policy,
instead, are derived at the national level.

Renewable sources are getting ever more relevant in the generation of electric
energy. Major drivers are the decreasing costs of renewable technologies and
strong support from government agencies. This trend is expected to continue
in the years ahead (European Commission [5]). Pérez-Arriaga and Batlle [15]
analyze the impact of a strong penetration of renewable, intermittent generation
on the planning, operation, and control of power systems. See also EWEA [6]
and NREL [12].

Within this set of technologies wind stands apart, with solar photovoltaic
(PV) and concentrated solar power (CSP) somewhat behind. The increasing role
of these intermittent generation technologies gives rise to important challenges
in the operation of the electric system. Regarding solar energy, it is more
predictable than wind over short periods of time. It also displays a diurnal
seasonality which overlaps with the hours of strongest load thus coinciding with
the times of highest prices. This suggests that the prices at the times of strongest
operation of solar plants will approach peak prices.

One of the problems afflicting wind energy is certainly intermittence. How-
ever, this problem is less acute when dealing with a large balancing area since
the behavior of wind correlates less than perfectly across all the sites in the
area (provided there is enough transmission capacity). Further deployment of
renewable energies (wind in particular) would also benefit significantly from
greater storage capacities. A minor concern is that wind energy is not quite
carbon free.! Large-scale deployment of turbines can also disrupt local wildlife
and fauna, affect local temperature and even global weather. These negative
impacts are hard to quantify but this does not render them less real.

Despite these shortcomings the fact remains that in principle the potential
of wind goes well beyond global needs. Marvel et al. [11] use a climate model to
estimate the amount of power that can be extracted from both surface and high-
altitude winds, considering only geophysical limits. According to their results,
surface wind turbines alone could extract kinetic energy at a rate of at least
400 terawatts (TW, one trillion watts) while the level of present global primary
power demand approaches 18 TW. On the other hand, Jacobson and Archer
[8] define the saturation wind power potential as the maximum wind power
that can be extracted upon increasing the number of wind turbines over a large
geographic region, independent of societal, environmental, climatic, or economic

IFor example, the very construction of a wind turbine consumes energy (fossil to a large
extent). Ortegon et al. [13] report a CO2 emission factor for wind power in the range 20-
38 gCO2/kWh and 9-13 gCO2/kWh for on-shore and offshore applications, respectively. O
focurse, this consideration also applies to coal stations or nuclear plants.



considerations. This saturation potential is over 250 TW at 100 meters up
globally (100 m above ground is the hub height of most modern wind turbines),
assuming conventional wind turbines distributed everywhere on Earth.

Empirical evidence shows, though, that actual deployment of this technology
is well below that potential. Several barriers (whether economic, social, or
other type) are probably playing a role in hampering adoption across the globe.
Regarding economic barriers, casual observation allows to identify a number of
support schemes which are presumably aimed at providing greater certainty to
potential investors in this technology; see Klessmann et al. [9]. In other words,
uncertain returns on these investments are considered a major cause for concern.

A number of financial incentives have been put in place; an overview can be
found in Daim et al. [4] and Snyder and Kaiser [17]. Feed-in tariffs are a guar-
anteed payment to generators of renewable electricity (say 90 €/MWh) over
a certain period of time (e.g. 20 years). This instrument is typical in several
EU countries, among them Germany and Spain. The UK instead incentivizes
renewable electricity through the use of renewable energy credits (the so-called
Renewables Obligation Certificates, or ROCs) which are further traded in their
specific market. EU nations also grant some tax exemptions (for instance, from
carbon taxes) and subsidies (to capital expenditure). In the US there is a pro-
duction tax credit at the federal level. The fact that it has expired three times
over the last ten years is not reassuring, however. A number of States have set
renewable portfolio standards whereby a certain fraction of the State’s electric-
ity must come from renewable sources. Some States also take part in a regional
greenhouse gas initiative, a cap-and-trade market for carbon. Regarding subsi-
dies, they are both lower and less certain than those in Europe.

A suitable valuation approach for wind projects must not only account for
intermittence and uncertainty. It must also take account of their irreversible
character and the flexibility enjoyed by project managers (e.g. the option to
delay investment). Under these circumstances, traditional valuation techniques
based on discounted cash flows have been found inferior to contingent claims or
real options analysis.

Following the latter approach, Boomsma et al. [1] assess both the time and
the size of the investment in renewable energy projects under different support
schemes. They consider up to three sources of uncertainty: steel price, electricity
price, and subsidy payment, all of which are assumed to follow uncorrelated geo-
metric Brownian motions (with the last one modulated by Markov switching).
For illustration purposes, they focus on a Norwegian case study. According to
their results, a fixed feed-in tariff encourages earlier investment than renewable
energy certificates. The latter, though, create incentives for larger projects.

Reuter et al. [16] instead pick Germany as a case study. In their model the
electric utility decides whether to add new generation capacity or not once a
year over the planning horizon. The new capacity can be either a fossil fuel
power plant (with a constant load factor) or a wind power plant (with a nor-
mally distributed load factor), both equally sized. The yearly electricity price is
subject to (normally distributed) exogenous shocks (assumed independent from
wind load factor). The third source of uncertainty concerns climate policy; it is



represented by the feed-in tariff which is a Markov chain with two possible values
and a given transmission matrix. This risk factor is also assumed independent
from the other two. Their results stress the importance of explicitly modeling
the variability of renewable loads owing to their impact on profit distributions
and the value of the firm. Besides, greater uncertainty about the future behav-
ior of the feed-in tariff requires much higher trigger tariffs for which renewable
investments become attractive (i.e. equally profitable as a coal-fired station of
equal capacity).

Here we address the present value of an investment in a wind park and the
optimal time to invest under different payment settings: (a) A fixed feed-in
tariff for renewable electricity over 20 years of useful life. (b) Electricity price
as determined by the market. (c) A combination of the market price and a
constant premium. (d) A transitory subsidy available only at the initial time.
We also develop sensitivity analyses with respect to changes in the investment
option’s maturity and electricity price volatility.

Our paper differs from others in several respects. We consider two sources of
uncertainty. We assume more general stochastic processes for the state variables;
in particular, we account for mean reversion in commodity prices (this fits better
the sample data as shown in Appendix A). We develop a trinomial lattice that
supports this behavior. We also make room for seasonal behavior in the price
of electricity and in wind load factor. Indeed, they turn out to be correlated to
some degree, which has been typically overlooked despite its impact on project
value. The underlying dynamics in the price of electricity is estimated from
observed futures contracts with the longest maturities available (namely, up to
five years into the future); this includes the market price of electricity price
risk. The dynamics of wind load factor is also estimated from actual (monthly)
time series alongside seasonality. The riskless interest rate is also taken from
(financial) markets. Both the project’s life and the option’s maturity are finite;
in our simulations below the size of the time step is not At = 1 (or one step
per year), but a much shorter At = 1/60 (five steps per month). In addition
to a fixed feed-in tariff and a premium over electricity price, another support
scheme that we consider is an investment subsidy that is only available at the
initial time but is foregone otherwise. We further provide numerical estimates
of the trigger investment cost below which it is optimal to invest immediately.

The paper is organized as follows. First we introduce the stochastic processes
for electricity price and wind load factor. Next we estimate these processes with
sample data from the UK. Valuation is then undertaken under two scenarios.
The first one adopts a now-or-never perspective. This is the setting where the
traditional Net Present Value rule applies. Numerical solutions are derived
from exact formulas when possible but also from Monte Carlo simulation. The
second scenario allows for optimally choosing the time to invest. In our case this
is accomplished by means of a trinomial lattice which supports mean reversion.
Several cases and sensitivity analyses are then addressed. A number of them
involve running whole simulations of electricity price and load factor at each
node in the lattice. We thus combine two numerical methods that are frequently
used in isolation. A section with the main results concludes.



2 Stochastic models

2.1 Electricity price

We specify the long-term price of electricity in a risk-neutral world as a mean
reverting stochastic process governed by the following differential equation:

dE; = df (t) + [kp(Ep — (By — f(t))) = Ap(Ey — f(t)|dt + op(E, — f(£)dWE,

or, rearranging,

dE, = df (t) + [kpEm — (kg + Ap)(Ey — f(t)]dt + op(E, — f())dWE. (1)

FEy is the time-t price of electricity while F,, is the level to which the desea-
sonalized price tends in the long run. f(¢) is a deterministic function that
captures the effect of seasonality in electricity prices. This function is defined
as f(t) = ycos(2m(t + ¢)), where the time ¢ is measured in years and the angle
in radians; when ¢ = —p we have f(t)=v and the seasonal maximum value is
reached. kg is the speed of reversion towards the “normal” level I,,. It can be
computed as kg = In 2/tlE/2, where tIE/2 is the expected half-life, i.e. the time
required for the gap between Ey— f(0) and E,, to halve. o is the instantaneous
volatility of electricity price changes; it determines the variance of E; at t. And
dWF is the increment to a standard Wiener process; it is normally distributed
with mean zero and variance dt. Last, AgFE; is the market price of electricity
price risk.

The mathematical expectation (under the risk-neutral probability measure
Q) at time ¢g, or equivalently the futures price with maturity ¢, is:

+ kEEm
ke + \g

+(Bry = f(ta))e” 000, @

F(Ey,,t) = E?(E,) = f(t) [1— e~ (hetAm)t=to)]

For a time arbitrarily far into the future (¢t — o0) we have F(Ey,, 00) — f(o0) =
%. Thus, (deseasonalised) electricity price in the long run is anticipated to
reach the long-term equilibrium level.

2.2 Wind electricity

Reuter et al. [16] consider wind stations and address the impact of uncertainty in
the load factor on their profits. As expected, the distribution of yearly profits is
more variable than under a constant load factor (equal to the long-term average).
In addition, the expected profit is smaller under a changing load factor. They
find similar evidence when analyzing the value of the firm. Thus assuming a
constant load factor leads to overestimating this technology’s profitability.



Table 1. Summary statistics for UK electricity futures (ICE).
Daily data from 12/01/2009 to 03/30/2012
Observations | Avg. Price (£/MWh) | Std. Dev.
All contracts 26,057 54.88 7.69
1 Month 604 44.95 6.03
6 Months 604 47.53 7.31
12 Months 594 49.68 5.60
24 Months 422 54.80 3.82
36 Months 422 58.34 4.21
48 Months 422 61.83 4.30
60 Months 25 68.59 0.59

Intermittence per se drives a sizeable wedge between installed capacity and
metered electricity; it can be measured through the load factor, W. We ex-
plicitly recognize the uncertain character of wind energy. All the interruptions
(whatever their reasons) are modeled through the stochastic behavior of the
load factor. The theoretical model assumed is:

Wi = g(t) + Wy, + ow W, dWV. (3)

Generation from wind stations shows a seasonal pattern. Our simulations below
assume this behavior in wind electricity, g(t), so the seasonality in the load factor
must be previously identified (from historical time series). W evolves around a
long-run average value W,,. And dWY is the increment to a standard Wiener
process; it is normally distributed with mean zero and variance dt.

3 Estimation

3.1 Electricity price process

We have 26,057 prices of monthly UK Base Electricity Futures from the Inter-
continental Exchange (ICE, London). The sample period goes from 12/01/2009
to 03/30/2012 thus comprising 604 trading days; see Table 1. The number of
traded contracts on the last day of the sample is 59, i.e. we use futures contracts
with maturities up to five years from now (thus they are long-term futures prices
instead of short-term forward prices or day-ahead prices). These prices for suc-
cessive months are assumed to reflect all the information available to the market
about generation costs and profit margins of power plants. In particular, they
take account of fuel prices, allowance prices, decommissioning of old plants, new
starts, etc.

We estimate the parameters underlying the stochastic model using all the
futures prices on each day by non-linear least-squares. Table 2 shows the results.
All the estimates are statistically significant. We get a coefficient of determina-
tion R? = 0.8579; the log-likelihood of this model is -64,707.64. See Appendix
A for a formal test of this model against the null hypothesis of a geometric



Table 2. Non-linear least-squares estimates of the price process.
Parameter | Estimate | Std. error | t-ratio p-value
ke + g 0.1134 0.001939 | 58.47 0.000
pele | 85.9128 | 0.542854 | 158.3 0.000
y 3.02281 0.020658 146.3 0.000
¢ (years) 0.03139 | 0.0010417 | 30.13 0.000

Brownian motion; the test results show that the mean-reverting process is a
much better choice than the standard GBM. For the last day in the sample
we compute Ey — f(tg) = 48.9135 £/MWh; this price is the starting point for
estimations of the electricity price in the future.

Figure 1 displays the futures prices actually observed on the last day of the
sample (03/30/2012) along with those implied by our numerical estimates using
all the contracts traded every day. We can estimate the spot electricity price
for day ty from the futures contract with the nearest maturity using equation

(2):

E;

0

kpE _ kpE
— |F(E, t) — f(t) — —EZm | o(ke+Ap)(t—to) m ta).
(B, )= £() = 120 e B f(to)

The seasonally adjusted spot price is: Ey, — f(tp). Thus we compute a spot
price for every day. They behave more smoothly (or are less bumpy) than
actual futures prices.

Using the differential equation describing price behavior in the physical (as
opposed to risk neutral) world we get:

(Bt = f(t) _[_kpEm dt + o pdWE.

Eto - f(t()) B Eto - f(t())
Discretizing this formula we derive a regression model whose residuals allow us
to compute their volatility:

op = 0.255045.

On the other hand, the risk-free interest rate considered is r = 2.05 %, which
corresponds to the 10-year UK government debt in January 2012.

3.2 Wind electricity: load factor, seasonality, and drift
rate

In discrete time we have:

Wigar = g(t) + Wy, + JWvAthe?.



Futures Prices (GBP/Mwh)

70

ICE UK BASE ELECTRICITY FUTURES 03/30/2012 quotes

65
Real Futures Prices
——Esimates Futures Prices
== Estimated deseasonalized
60
[T
50 -
45
N S-S i nhn s i i A P T - AHH -

1 3 s 7 98 11 13 15 17 1% 21 23 25 27 29 31 33 35 37 39 41 43 45 47 4% 51 53 55 57 58

monthly maturity futures

Figure 1: UK base electricity futures prices on London ICE, 03/30/2012.




Table 3. Seasonal (OLS) estimates in wind load factor.
Dummy  Coeff. t-ratio | Dummy  Coeff. t-ratio

dy 8.7442 9.1273 dy -8.8292  -10.3039
dy -2.0608  -2.1511 ds -3.8895  -4.5392
ds 6.2505 6.5244 dy 1.4574 1.7009
dy -4.1947  -4.8954 dio 1.7411 2.0320
ds -4.6595  -5.4378 d11 12.4732  14.5565
dg -11.3065 -13.1949 d12 4.4757 5.2232

We are implicitly assuming that beyond (deterministic) seasonality the elec-
tricity price and the wind load factor are uncorrelated; in other words, they
can be correlated but only through their seasonal patterns. Based on past
(say, monthly) data one can get a numerical estimate of the above parameters
{g9(t), Wy,,ow }. Later on they can be used to simulate random paths over a
number of periods.

The sample comprises the monthly ratios between output electricity and
installed capacity for the whole UK from April 2006 to December 2010, i.e. 57
observations.? As a first step the seasonal component is taken out of the original
series. Estimation then proceeds on the deseasonalised series. The estimate of
the average value is W,,, = 24.0899 %. The results for the (dummy) monthly
variables appear in Table 3.3 They are depicted in Figure 2.

3.3 The joint effect of seasonalities in electricity price and
wind generation

As Table 3 suggests, the periods with (statistically) highest wind generation fall
in January and November. The highest prices of electricity are reached between
October and March; thus there is some overlapping. This time coincidence
allows UK farms’ owners to get a greater profitability from wind generation.
Other papers overlook this feature * yet our model takes it into account.

2The maximum possible output for each month is calculated from the installed capacity of
the wind farm: Maximum output (MWh) = Installed capacity (MW) * number of days * 24.
The actual output is then expressed as a percentage of the maximum possible output over the
same time interval. Source: CLOWD [2].

3This value of Wm is slightly higher than the average of 23 % cited for Germany by Reuter
et al. [16]. The dummy variables here do not display a symmetrical behavior; this is in
contradiction with their assumption of a normal distribution.

4This is the case, for example, when a constant annual capacity factor is chosen, say 35%.



15

w

in

Wind load factor seasonality (%)

-15

T

——Wind load factor seasonality
—— Electricity price seasonality

January ‘Fehm.ar\f' M April May . June July August [ septemb

~

[N

Eleetricity price seasonality (GBP/MWh)

~

Figure 2: Monthly load factor of UK wind farms 2006-10.



4 Valuation in a now-or-never setting: Monte
Carlo simulation

Uncorrelated random variables are generated according to the following discrete-
time schemes (see equations (2) and (3)):

BB (1 ke AR 4 (B, (1)) 55 AR RH B 7 (0))eF,
E E
(@

Wt+At = g(t) + Wm +owV AthGXV. (5)

Note that in both cases we start from known values, e.g. E; — f(t) or g(t), and
then add a random component ;.

Let us consider a wind farm with installed capacity C' = 50 MW (think of
a set comprising 25 turbines each 2 MW). The average load factor is W =
24.0899 % (see Table 3). Seasonality comes on top of this. Thus the expected
availability in January would be W +dy = 24.0899 + 8.7442 = 32.8341 %; or,
in absolute terms 50 x 24 x 31 x 0.328341 = 12,214.29 MWh.? In general, wind
generation over a time period At amounts to:

Eiar = f(t+A)+

C x 24 x 365.25 x At x W;.

Now, if there is a fixed feed-in tariff p in place then the present value of
production in that period is computed as:

Vi, =px C x 24 x 36525 x At x W; x ™", (6)

If, instead, the farm owner receives as a payment the market price E; then the
present value of the revenues is given by:

Vi = F; x C x 24 x 365.25 x At x W; x e™". (7)

Note that our simulations below are based on a risk-neutral drift. Consequently
future cash flows can be discounted at the risk-free rate r.

Each simulation run s (with s = 1,...,m) comprises a number of time steps
denoted by j (with j = 1,...,n). We denote the value of the wind park at any
step by Vi;. These values are aggregated over the n steps to derive the value
under simulation s, denoted Vi. Then we compute the average value over all
the m simulations:

j=n s=m
V=Y sv=_3 v (®)
j=1 s=1

5This is equivalent to saying that January generation amounts to 24x31x0.328341 = 244.28
MWh per MW of capacity installed. This figure changes from one month to another. Instead,
Boomsma et al. [1] consider a constant annual capacity factor of 35 %, which translates into
a flat generation of 255.5 MWh per MW of capacity installed every month.
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Table 4. Present value of a 50 MW wind park under a constant feed-in tariff.

Tarift p (£/MWh) | Exact V' (£) | Monte Carlo V' (£)
50 86,654,277 86,638,266
60 103,985,132 103,965,920
70 121,315,988 121,293,573
80 138,646,843 138,621,226
90 155,977,698 155,948,880

We undertake m = 1,000 simulation runs, and consider a useful time of 20 years.
The step size is At = 1/60, thus each simulation comprises n = 1,200 steps.

4.0.1 A constant feed-in tariff

The feed-in tariff is generally claimed to be the most effective method for pro-
moting renewable energy. Let p denote the tariff applied to the electricity gen-
erated. A given month z (with z = 1,...,12) comprises a number of days ;.
Since the useful life of the facility stretches over 20 years (i.e. y = 1,...,19) the
present value V of the investment under this scheme is:6

y=192=12
V= pz Z Cx24 x x; % (dm + di)e—r(12y+z)/12. (9)

y=0 z=1

Table 4 shows the present value for a range of potential tariffs when the
riskless interest rate is » = 0.0205. The second column is directly computed
from the above exact formula. These sums of money are to be set against the
investment cost and the present value of fixed costs.”

For consistency with next sections, the numerical estimates of the parameters
in wind load factor {g(t), Wi,,, ow } are also used here to simulate random paths,
month after month, over a number of years. The third column in Table 4 comes
from this Monte Carlo approach. It results from running 1,000 simulations each
comprising 1,200 time steps (i.e. five steps per month) and then taking the
average value. The amounts resemble pretty much those in the second column.

4.0.2 The market price

Assume that the unit payment to the owner of the wind park strictly amounts
to the market price of electricity; this can be thought of as the case of a genera-
tor who is ineligible for renewable energy support (or the feed-in tariff suddenly
ceases to apply). In this case we resort to simulation in order to take account

6For simplicity each cash flow is assumed to be received at the end of the month.

"Boomsma et al. [1] set the initial level of p at 50 €/MWh with an annual percentage
increase of 2%. Unlike us, they also consider vaiable costs (14.50 €/MWh on average). The
level of p in Reuter et al. [16] goes from 70 €/MWh to 110 €/MWh.

12



of the situations in which high electricity prices (due to strong demand) coin-
cide with high wind generation (owing to seasonal weather). Discretization of
equation (1) and equation (3) yields:

Eiint = Ei+ (fe(t+ At)— fet) + [kpEn — (kg + Ap)(Er — fe(t))|At +
+op(B; — f5(t)VAtug,,

Wt+At = g(t) + Wm, + owV AthLuW,t-

We use the parameter values in Table 2 for generating electricity price paths.
The (average) present value turns out to be:

V =122,196,833 £.

With a total investment cost I = 66,000,000 £ (see LGA [10]) the net present
value amounts to V — I = 56,196,833 £.

For a now-or-never investment this present value V is equivalent to a fixed
feed-in tariff of 70.52 £/MWh. Note in Table 4 that, for p = 70, the correspond-
ing values are slightly lower than present value stated here V' = 122,196,833 £.
So a small increase in the level of p suffices to reach that figure.

4.0.3 The market price plus a fixed premium

Here we assume that the farm owner gets a payment that is composed of the elec-
tricity price plus an extra premium for each megawatt-hour generated.® Again
we run 1,000 simulations with 1,200 steps. Table 5 displays the results.

Each amount in the second column consists of two parts. The first one
comes from MC simulation, namely V = 122,196,833. The second is derived as
in Table 4; thus, with p = 50 we get some 86.6 M £, so with a fraction 0.1 of that
p we would get 10 % of that amount, or 8.66 M£. In sum, for a price premium
of 5 £/MWh we derive V' = 130,860,523 £. Similarly for other premium levels.

5 Valuation and investment timing: Trinomial
lattice with mean reversion

The investment time horizon T is subdivided in n steps, each of size At = T'/n.
Starting from an initial electricity price Ep, in a trinomial lattice one of three
possibilities will take place: either the price jumps up (by a factor u to ET),

remains the same (E<), or jumps down (by a factor d to E~). At time i, after
Jj positive increments, the price is given by Fou/d'~7, where d = 1/u.

8Boomsma et al. [1] consider an initial level of the price premium of 10 €/MWh with an
annual percentage increase of 2%.
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Table 5. Present value of a wind farm under market price plus a premium.
Premium (£/MWh) Present Value V (£)
5 130,860,523
10 139,524,214
15 148,187,904
20 156,851,594
25 165,515,285
30 174,178,975
40 191,506,356
50 208,833,737
Table 6. Formulae for the probabilities in the trinomial lattice.
Case Pu Pm pd
Normal = —I— MQJFM % — M? % + MM
High X (p, < 0) 7+M+3M -+ —M?-2M 1+M+M
Low X (p4 < 0) 2M - M?+2M g+7MZ*3M

Consider an asset whose risk-neutral, seasonally-adjusted behavior follows
the differential equation:

dE; = (kg(Em — Ey) — ApEy)dt + o p E,dWE. (10)

This can also be written as:
kg(E,, — F,
dE, = (% — )\E> Edt + O'EEtthE. (11)
t

Since it is usually easier to work with the processes for the natural logarithms
of asset prices, we carry out the following transformation: X = InE. Thus
Xg=1/E, Xpgp = —1/E? and X; = 0. By Ito’s Lemma:

ke (En — i) 1

X =(—7% =g = 5ob)dt +0dZ = ppdt + opdZ,  (12)

M — g — *O'E depends at each moment on the asset price

where pp 3
E, (so strict notatlon would read pi5(t)). See Appendix B for further details on
this lattice.

In a trinomial lattice, there are three probabilities py, pm, and pg associated
with a rise, maintenance, and a fall in the (seasonally adjusted) price of electric-
ity. In comparison to a binomial lattice, we can choose the size of the time step
At so as to avoid negative probabilities. If, despite this choice, they do appear

then we adopt the formulae in Table 6.

Now, at the end of the investment horizon (time T') the value of the in-
vestment option in each of the final nodes is given by the maximum of two
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Table 7. Option value (M£) as a function of the investment cost I (M£).
I=75|1=100 | I=125 I =150

Investment value 47.2 22.2 -2.8 -27.8

Continuation value 58.9 37.5 18.2 7.7

Option value 58.9 37.5 18.2 7.7

quantities, namely the value of an immediate investment (which presumes that
we have not invested yet) and zero. As before, the present value of investing
immediately is determined through MC simulation. This means that we run
1,000 simulations of 1,200 steps at each final node. Since the option to invest is
akin to a "call" option we denote its value by C:

Cr = max [V (i,7),0]

At earlier times, however, the option to invest is worth the maximum of two
other values: that of investing immediately and that of waiting to invest for one
more period (thus keeping the option alive):

C =max [V(i,5), (pu.CT + pmC~ +pd07)efrm} .

V(i,7) is derived by simulation at each node. Here the symbols +, =, and —
stand for a rise, no change, and a fall in the price of the asset.

6 Valuation of the option to invest: Case studies

All the cases that follow rest on the same starting values of the underlying
variables; see Table 2. We assume that the investment option expires 10 years
from now. When building the lattice we take a time step At = 1/4. From
Section 3.1 the price change volatility is g = 0.255045.

6.1 A constant tariff

The argument here is straightforward: all the relevant information is available
at the very outset. The (gross) values in Table 4 outweigh the continuation
value.

6.2 The market price

Let I denote the present value of all the costs (fixed and variable) incurred
by the investment owner over the whole useful life of the wind farm. Table 7
shows the value of investing immediately (NPV) alongside that of investing at
the optimal time. The former can take on negative values (it decreases linearly
as I increases), while the latter is bounded from below at zero. As usual, the
value of the option to invest is the maximum of both amounts (bottom row).
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Table 8. Trigger cost I* (M£) as a function of the subsidy S (M£).
S=5]5=10| S=15 S =20
I 19.4 61.9 98.1 122.4

For low investment costs (I = 75 and I = 100) the net present value of the
immediate investment is positive (NPV > 0). Indeed it remains positive as
long as I < 122.2 M£. Therefore, if there is no option to wait the right decision
is to rush for the investment provided I does not surpass that threshold. Yet, if
the investment can be delayed, investing immediately is far from optimal. For
all the investment costs considered in the table, waiting for the optimal time
to invest increases the value of the project. In fact, as suggested by the last
two columns (I = 125 and I = 150), the value of waiting can be so high as to
turn an otherwise uninteresting project (NPV < 0) into an attractive one. Of
course, I might rise so high that it renders the option to invest worthless. And
conversely, it could be so low that the NPV is higher than the continuation value
in which case delay makes no sense. We can resort to continuity arguments and
claim that there is some threshold or "trigger" investment cost I* below which
immediate investment becomes optimal. Clearly this I* is lower than any of the
values considered in Table 7.

6.3 The effect of an initial subsidy

Sometimes policy makers grant different subsidies to developers of renewable
energy (e.g. to help pay for the capital costs of offshore wind farms). They are
meant to enhance the appeal of investments which in their absence would not
seem to pay off. The impact of these measures depends on their specific terms
and the institutional environment in place. Now we check how the decision
to invest reacts to a public subsidy S ranging from 5 M£ to 20 M£ which is
only available at the initial time; in other words, if the decision maker opts
for postponing the investment the subsidy is foregone. Specifically, we look at
the threshold I* that triggers immediate investment under different values of
S. Table 8 displays the numerical results. A subsidy S = 10 M£ prompts the
option holder to invest immediately whenever the investment cost falls below
61.9 M£. Note, though, that this would not be the case if the subsidy were
available at any time over the whole 10-year investment horizon; though not
shown in Table 7, even for values of I as low as 25 M£ it is better to wait.

6.4 Sensitivity to changes in the maturity of the option to
invest

Intuitively, if the investment option is available over a shorter time frame there
is less to be gained from waiting to invest. As a consequence the continuation
value will fall and investment will take place earlier. Table 9 shows the impact
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Table 9. Option value (M£) as a function of the option’s maturity 7" (years).
T=5 I=75|1=100 | I=125 I =150
Investment Value 47.2 22.2 -2.8 -27.8
Continuation Value 54.7 31.8 11.8 3.3
Option Value 54.7 31.8 11.8 3.3
T=25 I=75|1=100|1=125 I =150
Investment Value 47.2 22.2 -2.8 -27.8
Continuation Value 51.5 27.7 7.3 1.0
Option Value 51.5 27.7 7.3 1.0
T=1 I=75|1=100|1=125 I =150
Investment Value 47.2 22.2 -2.8 -27.8
Continuation Value 49.1 24.6 3.7 0.1
Option Value 49.1 24.6 3.7 0.1

Table 10. Trigger investment cost I* for different subsidies S (M£) with 7" = 1.

S=1[855=2]55=3|5=4|5=5|85=10|S5=15|85=20

I (M£) | 26.0 7.8 114.9 | 119.1 | 1225 130.7 136.4 142.0

of a shorter maturity 7" on the option value for different levels of investment
cost 1.

As the time that the option is available shortens, the difference between the
continuation value (always positive) and the investment value falls. Consider,
for example, I = 100. With 7" = 5 the difference amounts to 31.8 - 22.2 = 9.6.
Instead, with 7" = 1 it drops to 24.6 - 22.2 = 2.4.

A combination of short option maturities and transitory public subsidies
only available at ¢ = 0 can bring forward investments in wind energy. See Table
10, where expiration of the option is assumed to take place at T" = 1. Initial
subsidies of certain amount are very effective in that they raise the investment
threshold below which it is optimal to invest. Note, however, that the marginal
effect of each additional monetary unit decreases significantly.

On the other hand, potential improvements in wind technology with their
ensuing drops in facilities’ costs would lead to delaying investments. Yet this
effect could be offset by other factors such as rising financial or personnel costs,
or prior occupation of the best sites for wind farms.

6.5 Sensitivity to changes in electricity volatility

Again we consider 7' = 10 and At = 1/4; price volatility in the base case is 0 =
0.255045. To the extent that investments in wind energy are highly irreversible
the volatility of electricity prices can be anticipated to play a major role. Thus,
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Table 11. Option value (M£) as a function of price volatility og.
o =0.20 I=75|1=100 | =125 I =150
Investment Value 47.2 22.2 -2.8 -27.8
Continuation Value 57.6 36.3 16.2 5.1
Option Value 57.6 36.3 16.2 5.1

o =0.10 I=75|1=100 | 1=125 I =150
Investment Value 47.4 22.4 -2.6 -27.6
Continuation Value 55.6 34.4 13.6 1.2
Option Value 55.6 34.4 13.6 1.2

a low volatility pushes in favor of deploying wind turbines while the opposite is
true for high volatilities. Unless there are good reasons for assuming that future
volatility will deviate significantly from past volatility (e.g. owing to regulatory
or structural changes), an initial assessment based on historical volatility seems
reasonable.’

Volatility can be caused by a number of reasons many of them falling beyond
the realm of policy makers. One such example is the price of natural gas in
the international markets, as long as it serves sometimes as a reference for
establishing the price of electricity (in conjunction with other factors like the
emission allowance price in those countries where electric utilities are subject to
carbon restrictions).

Regarding the numerical results in Table 11, whatever the value of I as-
sumed, the NPV rises when volatility falls. Thus, for I = 100 the NPV goes
from 22.2 (o = 0.20) to 22.4 (o = 0.10). This effect, however, is not strong
enough to offset the incentive to wait: the value of investing immediately falls
short of the continuation value in all the cases considered. The reason is that
the value of waiting is quite significant. This being clear for o = 0.10 and
op = 0.20, it is easy to anticipate the results with op = 0.255045 or even
higher volatilities.

Unlike the NPV, the continuation value rises with volatility. Take, for ex-
ample, I = 100; it goes from 34.4 (o = 0.10) to 36.3 (0 = 0.20). This effect
becomes stronger as the investment cost increases. With I = 150, it goes from
1.2 (o5 = 0.10) to 5.1 (0 = 0.20).

6.6 The market price plus a fixed premium

Consider the case in which the owner of the wind farm receives the market price
of electricity augmented by a fixed premium. Table 12 shows the value of the
option to invest for two different levels, namely 10 £/MWh and 20 £/MWh.

9Nonetheless, Pérez-Arriaga [14] anticipates the volatility of marginal prices to increase in
deregulated electricity markets with substantial penetration of renewables.
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Table 12. Option value (M£) as a function of the premium (£/MWh).
premium = 20 I=75|1=100| I =125 I =150
Investment Value 81.8 56.8 31.8 6.8
Continuation Value 89.1 67.3 45.7 24.8
Option Value 89.1 67.3 45.7 24.8
premium = 10 I=75|1=100| I =125 I =150
Investment Value 64.5 39.5 14.5 -10.5
Continuation Value 74.0 52.3 31.0 14.0
Option Value 74.0 52.3 31.0 14.0

For I = 75, the presence of a premium raises the value of investing immedi-
ately in 64.5 - 47.2 = 17.3 M£ (p = 10) and 81.8 - 47.2 = 34.6 M£ (p = 20),
respectively. However, this does not lead to bringing forward the decision to
invest in the wind farm since the continuation values is higher in both cases. In
other words, a subsidy granted over the whole useful life with a present value of
17.3 M£ (i.e. more than 25 % of the total disbursement) falls short of triggering
the immediate investment when I = 75. Note, though, that with a subsidy
S = 15 M£ which is available only initially the trigger investment cost I* goes
as high as 98.4 M£ (see Table 8). Thus we infer that a subsidy per generated
MWh which is spread over the farm’s life (20 years) and is available up to the
investment option’s maturity (10 years) is less effective than a subsidy at t = 0
available only at the initial time.

7 Conclusions

We have developed a valuation model for investments in wind energy in dereg-
ulated electricity markets when there are futures markets with long maturities.
The results are thus focused on developed electricity markets where short- and
long-term transactions take place regularly and it is possible to reward wind
generation through a 'pure’ scheme (i.e. at market rates) or a ‘mixed’ scheme
(with some subsidies).

Looking at the UK futures market we find that contracts on electricity dis-
play mean reversion; this in turn has some implications for the valuation model.
The parameters underlying the stochastic behavior of prices have been estimated
from actual data, including the seasonal effect. We have also estimated another
stochastic model (with seasonality) for electricity wind generation at any time
as a function of the availability of wind.

The option to invest in a wind farm can be exercised up to some point into
the future; thus it is an American-type option. Maximizing its value calls for
exercising it at the optimal time. To assess this option we have built a trinomial
lattice which supports mean reversion in prices. A new feature (to our knowl-
edge) here is that the values involved in the decision to invest at each node are
derived from Monte Carlo simulations where stochastic realizations of electricity
price are combined with those of wind availability (and thus generation level)
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at any time.

Our numerical results show the impact of a number of factors involved in
the decision to invest in a wind farm. Among them we have: the investment op-
tion’s maturity, the initial lump-sum subsidy, the subsidy per unit of electricity
generated (feed-in tariff or premium), and price volatility. Different combina-
tions of variables can have an influence in bringing forward the investments in
wind generation. One such example is a short decision time frame and an ini-
tial subsidy available only for limited time. The results also show the stronger
impact of one-time policies, e.g. the t = 0 subsidy with respect to a premium
per unit produced.
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Formal test of the GBM hypothesis for the
electricity price

As already mentioned, we have estimated the parameters underlying the sto-
chastic model using all the futures prices on each day by non-linear least-squares.
Table 2 shows the results. All the estimates are statistically significant. We get
a coefficient of determination R? = 0.8579; the log-likelihood of this (alterna-
tive) model is -64,707.64. We have also estimated a geometric Brownian model
(GBM), which is a special case of the above mean-reverting model (i.e., it is
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the null model where k’“f_&f; = 0). In this case we get an R? = 0.7803 and a
log-likelihood of -70,386.18.
Availability of the log likelihoods from both models allows us to perform a

likelihood ratio test. We compute a likelihood-ratio

LR = —2(LL GBM Model — LL Mean Reverting Model).

In our case we have LR = +2(70,386.18 - 64,707.64) = 11,357.08. The proba-
bility of this difference is approximately that of a chi-squared distribution with
one degree of freedom. Upon computation of the test statistic and the associ-
ated p-value we reject the null hypothesis that kk;f;; = 0. In sum, the mean
reverting model represents a significant improvement with respect to the GBM

process.

B Setting up the trinomial lattice

In a trinomial lattice, there are three probabilities p,, pm, and pg associated
with a rise, maintenance, and a fall in the (seasonally adjusted) price of electric-
ity. Following Euler-Maruyama’s discretization, these probabilities must satisfy
three conditions:

a) Pu + Pm +Pad = 1.

b) E(AX) = p,AX + py, x 0 — pgAX = ppAt. The aim is to equate the
first moment of the binomial lattice (p, AX — pgAX) to the first moment of the
risk-neutral underlying variable (ugAt).

¢) B(AX?) = p,AX? + pp X 04+ pgAX? = 0L At + p%(At)2. In this case
the equality refers to the second moments. For small values of At, we have
E(AX?) ~ o4 At.

Solving the system for the three probabilities (Hull and White [7]) we get:

oy = 1 [op At + pp(A)?  ppAt]
“ 2| (AX)? AX |’
o = 1- o2 At + p2(At)?
pa = 1[0 AL+ pg(A)?  ppAt]
2|7 (Ax)? AX |

The particular values depend on jiy, which changes from one node to the next.
Specifically:

pp(i,j) = W — A — %0%. (13)

So the three probabilities also change from one node to the next.
In a trinomial lattice after n periods we have 2n + 1 final nodes. This
holds true irrespective of the initial (deseasonalised) electricity price. In case of
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investing in the wind farm, we would compute its value over the 20-year period
of life. The present value V (7,7) of immediate investment (i.e. we are in the
now-or-never setting) will be derived by Monte Carlo simulation following the
above approach starting from the electricity price in place E(7,j) and calendar
time ¢ = 4A¢. Thus we run 1,000 simulations with 1,200 steps at each node (3, j)
throughout the lattice.

In a trinomial lattice, as compared to a binomial one, there is an additional
degree of freedom (there is a third possibility -the price to stay the same- while
the three conditions remain unchanged). Thus we can choose the size of the
time step At; it is particularly convenient to choose its value in such a way that
negative probabilities are avoided. Given that a trinomial lattice is basically
an explicit difference scheme (Clewlow and Strickland [3]), convergence and
stability reasons suggest to adopt AX = ogv3At (Hull and White [7]). In this

case:

1 M*+M At
Dy = 7+7+, whereMzuEi7
6 2 O'E\/?)At
2
'm - 7_M27
Prm 3
_ 1 Mom
pPa = 6 B

When, in principle, p, < 0, the three possibilities that we choose for the
asset price are: stay unchanged, fall by —A X, and fall by —2A X in which case:

a) Du + Pm +Pd = 1.

b) E(AX) =py X 0—pp X AX — 2pgAX = ppAt.

c) BE(AX?) =p, x 0+ pp x AX2 +4pgAX2 = 0L At + p2(At)2.

The solution is then:

B Z+M2+3M
Pu = gt
1
Pm = _g—MQ—QM,
1 M?>+M
pa = gt

If, instead, we have pg < 0, then the price can either remain the same, rise
by AX, and rise by 2AX. In this case:

a) Du+ Pm +Dd = 1.

b) E(AX) = py X 2AX + pm X AX +pg x 0 = ppAt.

c) BE(AX?) = 4p, AX% + pp x AX? 4+ pg x 0= 0L At + % (At)2.

The probabilities that solve this system are:
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Table 6. Formulae for the probabilities in the trinomial lattice.

Table 6 summarizes the above formulae.
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Case Du D Da
Normal % w %,]\42 %JrM;M
High X (p, < 0) %+w 7%7]\/[272]\/[ %+MzT+M
Low X (pg <0) | 24 MM | _1_jp2yopy | T4 MsM

_ 1, M-u
Pu = 6 5 ,
1
Pm = —g—MQ—FQM,
_ T, MPo3M
Pd = 6 3 .
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