
Euskal Herriko Unibertsitatea
Universidad del País Vasco

Konputagailuen Arkitektura eta Teknologia Saila
Departamento de Arquitectura y Tecnología de Computadores

INFORMATIKA FAKULTATEA
FACULTAD DE INFORMÁTICA

The Computer Input/Output

Subsystem Education in an

undergraduate introductory course: a

Multiperspective Study

Dissertation Presented to the department of Computer Architecture and
Technology in Partial Fulfillment of the Requirements for the Degree

Doctor of Philosophy in Computer Science by
Edurne Larraza-Mendiluze

PhD Advisor
Nestor Garay-Vitoria

Donostia, December 20, 2013

Servicio Editorial de la Universidad del País Vasco (UPV/EHU)
Euskal Herriko Unibertsitateko Argitalpen Zerbitzua (UPV/EHU)
University of the Basque Country - Editorial Service (UPV/EHU)
ISBN: 978-84-9082-010-0

Laburpena

Tesi hau informatikaren irakaskuntzaren ikerkuntza lerroaren barruan ko-
katzen da. Oinarri gisa, teknologia, pedagogia eta edukien ezagutza eredua
(TPACK model, bere ingeleseko sigletatik) hartzen du. Ikerketa honetan,
aipatutako ereduaren osagai bakoitza ikuspuntu desberdin gisa erabilia izan
da konputagailuaren S/I azpisistemaren irakaskuntza aztertzeko.

Edukien ezagutza osagaiaren ikuspuntutik, testuliburuak, unibertsitatee-
tako programak eta ikerkuntza bibliografia aztertu dira eta gaia irudikatzeko
hurbilpen bat baino gehiago badaudela aurkitu da.

Teknologiaren ezagutza osagaiaren ikuspuntutik, Nintendo DS makinaren
S/I azpisistemaren funtzionamendua aztertu da.

Pedagogiaren ezagutza osagaiaren ikuspuntutik, proiektuetan oinarritutako
ikaskuntza eta beste hainbat metodologia aktibo ikasi egin dira ondoren apli-
katu ahal izateko.

Txosten honek azaltzen du nola konbinatu diren osagai horietako ezagutzak
bestelako ezagutzak sortzeko: teknologia eta edukien ezagutza, teknolo-

gia eta pedagogia ezagutza, pedagogia eta edukien ezagutza, eta azkenik,
teknologia, pedagogia eta edukien ezagutza. Ezagutza berri hauekin kon-
putagailuaren S/I azpisistemarentzako hezkuntza ingurune eraginkor bat
sortzeko asmoz. Horretarako pauso hauek jarraitu dira:

• Edukiak irudikatzeko hurbilpen bat aukeratzea,

• Nintendo DS makina eduki zehatza lantzeko prestatzea eta

• Proposatutako teknika pedagogikoen baliozkotzea.

TPACK ereduan nolabait ezkutatuta baldin badago ere, hezkuntzarako eredu
bat den neurrian, ikasleak ere hartzen ditu ikuspuntu gisa. Eta lan hau TPACK
ereduan oinarritzen den neurrian, ikasleak ere hartzen ditu ikuspuntu gisa,
eta haien ezagutza aztertu egiten du horretarako.

Lan honek informatikaren irakaskuntzaren ikerkuntza lerroan ate asko irek-
itzen ditu. Izan ere, informatikaren irakaskuntzaren ikerkuntzak konputa-
gailuen S/I aspisistemari ez baitio arreta handirik ipini.

Abstract

This dissertation is framed in the Computing Education Research area. As
background, the Technological, Pedagogical and Content Knowledge frame-
work (TPACK model) has been used. Each construct of the mentioned frame-
work serves as a different study perspective, where the topic analysed is the
computer I/O subsystem.

From the content knowledge perspective, textbooks, university syllabi and
research bibliography have been analysed and different approaches found.

From the technological knowledge perspective, the I/O subsystem of the
Nintendo DS machine has been studied.

From the pedagogical knowledge perspective, project-based learning (PBL),
and other active learning methodologies have been learned for its latter appli-
cation.

The dissertation explains how these constructs have been combined into tech-

nological content knowledge, technological pedagogical knowledge, ped-

agogical content knowledge, and finally technological, pedagogical and

content knowledge in order to define an effective educational environment
for the computer I/O subsystem topic. The following steps are followed:

• The selection of a content representation approach,

• The preparation of the Nintendo DS machine for its use this the specific
content, and

• The validation of the proposed pedagogical techniques.

Although somehow hidden, the TPACK model, as an educational framework,
includes the student as a perspective, and also does this work, with the analysis
of students’ knowledge.

This work opens many doors in the field of Computing Education Research
towards the computer I/O subsystem, which has been barely payed attention.

Eskaintza

Familiari

Zentzurik zabalenean,

zaretenoi eta izan gabe zaudetenoi,

izandakoei eta izango direnei,

tarte batzuetan egon ez banaiz ere,

egongo naizelako.

Muxu.

A la familia

En el sentido más amplio,

A quienes sois y a quienes sin serlo estáis,

A quienes fueron y a quienes serán,

Porque, aunque a veces no he estado,

Estaré.

Muxu.

Eskerrak

Azkenean ez da ba hau izango tesiko atalik zailena? Nik den denak es-
kertu nahi zaituztet. Inguruan zaudeten guztiek izan duzue nolabaiteko
eragina tesi honen garapenean, animoak emanez besterik ez bada ere,
eta hori eskertzekoa da. Hala ere, izenak jarri behar dira, eta zerrenda
ez da motza inondik inora.

Lehenik, esker mila Nestor. Zuk onartu zenuen nere tesia zuzentzea nik
planteatzen nuena bertako normatik ateratzen bazen ere. Beste askok
arazoak ikusten zituzten lekuan, zuk aurrera egiteko erabakia hartu
zenuen. Harez gero, urteak pasa dira, era guztietako gora beherak izan
dira, tesiaren proiektua erabat aldatu egin da, eta zuri esker amaitzea
lortu dut.

Eskerrik asko ere finantzio propiorik izan ez duen proiektu hau ekono-
mikoki bideratzen lagundu duzuenoi, Konputagailuen Arkitektura eta
Teknologia Saila eta Egokituz taldeari.

Eskerrik asko PIE/HBPetan parte hartu duzuen guztioi, Txelo, Natxo,
Javi, Iratxe, Nestor, Lukas, Santiago, Teresa eta Ibai. Hor egindako
lanak ere berebiziko garrantzia izan du tesi honengan.

Bazkalorduko taldetxoa ezin ahaztu. Horko tertuliak eta fotosintesi
gabe seguruenik indar falta izango nintzateke.

Ezin ahaztu tesian zehar egindako esperimentuetan parte hartu duten
guztiak. Batetik ikasleak, metodologia eta teknologia berriak probatu
behar izan dituzue eta jarraitu beharrekoa ez da beti arrosa bidea izan.
Bereziki nirekin 2010/2011, 2011/2012 eta 2012/2013 ikasturteetan
egon zaretenek sufritu behar izan duzue tesi hau, baina aurreko urtee-
tan, oraindik ere plan zaharrean nirekin izan zineten ikasleak ere ez
zaituztet ahazten. Bestetik irakasleak, zuen ezagutza kontzeptu mapen
bidez adierazteko eskatu nizuen batzuei eta jakin badakit ez zela lan
makala izan, eskerrak beraz Gonzalo, Teresa, Javi, Natxo, Iratxe, Txelo,
Clemente eta Nestor.

Roberto, eskerrik asko Latex-ekin laguntzeagatik, auskalo nolako tx-
ostena edukiko nukeen zure txantiloi eta aholkurik gabe.

Ana, zuri ere eskerrik asko bulegokide aparta izanagatik, eman didazun
laguntza eta animoengatik.

GALAN taldekoei, bereziki Iñakiri ere eskerrik asko kontzeptu mapekin
emandako laguntzagatik eta aplikazioan gauzak nire beharretara egok-
itzeagatik.

Oro har, Informatika Fakultateari ere eskertu nahi dizkiot bertan jaso
ditudan ezagutzak. Lehenik nire irakasle izan zineten asko, orain
nire lankide zarete eta behar izan dudan guztietan egon da norbait
laguntzeko eta animoak emateko prest.

Eta nola ez, eskerrak familiari zuen animo eta laguntzagatik eta
bereziki Oier, Izaro, Ander, eskerrik asko etxea alaitzeagatik eta etxean
gauzak ondo joan zitezen emandako laguntza guztiagatik. Kiki, ez naiz
kapaz tesi hau aurrera atera zedin egin duzun guztia hitzez adierazteko,
mila esker!

Acknowledgements

This work would have been impossible to accomplish without the help
of so many people. I would like to thank Maria José Santofimia for
trying our methods with her students and giving us the results.

Also all the people in the ICER doctoral consortium that helped me by
redirecting the objectives of the thesis. It was very nice to be able to
talk to people that could perceive what I was doing from a different per-
spective. And the same acknowledgement goes also for the community
of the Koli Calling conference. Thank you very much!

Capitolina, although finally it become very hard to add a gender
perspective to this work (there are so few girls in our classrooms!)
thank you for helping when you could and for understanding all the
changes.

This last acknowledgement was written also in Basque, but since some
of the people will not be able to understand, here it goes again. Thank
to the professors that accepted our request to draw concept maps for
this research. I know that it was not an easy task, thanks therefore to
Gonzalo, Teresa, Javi, Natxo, Iratxe, Txelo, Clemente and Nestor.

“If we knew what we were doing, it wouldn’t be called research.”

Like so much of what Einstein said, this quotation communicates a
very important idea in a very simple way. The path to discovery is
seldom straight. Rarely does the reader of the final research have the
opportunity to understand how the journey of discovery unfolded.

By Mark Cotteleer1

1At http://dupress.com/articles/its-called-research-the-exceptional-company-collection/

Preface

Mark Cotteleer’s previous quote gives me the opportunity to introduce
the reader to the journey of this dissertation.
Most of the people I see around me do their research within a research

group. Although a PhD dissertation is an individual work, many times
it is necessary to explain which parts out of all the things reported in
the dissertation are the PhD student’s work and which are the group’s
work.
In this case there is also a group of people supporting the work, but it

is not a research group, it is a group of teachers that have been teaching
the computer I/O subsystem in the last years.
Thanks to that group, and also to two colleagues from the school

of pedagogy, I have been able to get some funds from the Educa-
tional Counselling Service (SAE/HELAZ from its initials in Spanish
and Basque) for two Educational Innovation Projects (PIE/HBP from its
initials in Spanish and Basque) in which I have been the leader.
That group, where my PhD advisor can be found, has supported my

decisions, has brought some ideas, and has helped writing some of the
papers, but without any background on Computing Education Research,
since each of them have their own research area.
Thanks to ITICSE, but mostly ICER and Koli Calling conferences I have

been able to understand some of the intricacies of this research area,
which I am sure will still surprise me many times.
I hope this short explanation can help the reader imagine the very

twisted path of this dissertation.
Thanks again to my PIE colleagues and to the CER community.

Contents

1 Introduction 1

1.1 The computer I/O subsystem - What is it? 1
1.2 Why is it important to teach the computer I/O subsystem

to computer scientist and engineers? 2
1.3 What do the computing curricula recommendations say

about the I/O subsystem topic? 3
1.4 The computer I/O subsystem topic at the University of

the Basque Country (UPV/EHU) 6
1.5 Research questions . 7
1.6 Organization of the Document 7

2 Link to relevant theory 9

2.1 Content Knowledge (CK), Pedagogical Knowledge (PK)
and Technological Knowledge (TK), the basic constructs. 14

2.2 Technological Content Knowledge (TCK) 16
2.3 Technological Pedagogical Knowledge (TPK) 16
2.4 Pedagogical Content Knowledge (PCK) 17
2.5 Technological Pedagogical Content Knowledge (TPCK or

TPACK) . 17
2.6 Conclusions . 18

3 Background and related work 19

3.1 Different approaches to teaching the computer I/O sub-
system . 20
3.1.1 The data gathering and analysis process 20
3.1.2 The purely descriptive approach (PDA) 21

xvi CONTENTS

3.1.3 The performance approach (PeA) 22
3.1.4 The programming approach (PrA) 23
3.1.5 The datapath-signal approach (DSA) 23

3.2 How do textbooks present the I/O topic? 24
3.2.1 Computer Organization and Architecture 9th Edi-

tion . 24
3.2.2 Computer Organization and Design 4th Edition . 26
3.2.3 Computer Organization and Embedded Systems

6th Edition . 26
3.2.4 Computer System Architecture 3rd Edition 27

3.3 What is the community trying to do in order to improve
students’ understanding of the I/O topic? 28
3.3.1 Simulators . 31
3.3.2 Real Machines . 33
3.3.3 Using different educational approaches 36

3.4 The I/O topic at several Spanish universities 37
3.5 The approach taken at the University of the Basque Country 39
3.6 Conclusions . 39

4 Deciding on the educational infrastructure 41

4.1 Selection of the handheld game console 42
4.2 The NDS console . 43

4.2.1 The memory . 43
4.2.2 The double processor 46
4.2.3 The I/O registers . 47
4.2.4 The interrupt management 49

4.3 Some of the NDS peripherals 50
4.3.1 The timer . 50
4.3.2 The keyboard . 51
4.3.3 The touch screen . 52

4.4 Conclusions . 53

5 The Project Based Methodology applied to the computer I/O
subsystem education: a three year outline 55

5.1 The previous methodology 56
5.1.1 Paper problems . 56
5.1.2 PC-based lab sessions 57

CONTENTS xvii

5.1.3 The assessment . 59
5.2 The new PBL methodology 59

5.2.1 The first school year 2010-2011 61
5.2.2 The second school year 2011-2012 64
5.2.3 The third school year 2012-2013 67

5.3 The Projects . 68
5.3.1 School year 2010/2011 69
5.3.2 School year 2011/2012 71
5.3.3 School year 2012/2013 72

5.4 Conclusions . 73

6 Analysis of the data obtained during the three years 77

6.1 Analysis of the grades obtained by the students in the
computer I/O subsystem topic 77

6.2 Analysis of the satisfaction among the students while
learning the computer I/O subsystem 80
6.2.1 The satisfaction questionnaire 80
6.2.2 Data for a qualitative analysis of the satisfaction 85
6.2.3 Attraction and retention 88

6.3 Conclusions . 89

7 Students’ understanding about the computer I/O subsystem? 91

7.1 Related work . 92
7.2 The preliminary study . 94
7.3 Method used for the complete study 98

7.3.1 Subjects . 98
7.3.2 Procedure . 99

7.4 Quantitative analysis of the concept maps 105
7.4.1 The system . 108
7.4.2 Connections inside the I/O controller subtopic . 109
7.4.3 Connections inside the Synchronization subtopic 110
7.4.4 Connections inside the DMA subtopic 111
7.4.5 Links between the “I/O controller” and the “syn-

chronization” subtopics 112
7.4.6 Links between the “I/O controller” and the “DMA”

subtopics . 113

xviii CONTENTS

7.4.7 Links between “DMA” and “synchronization” sub-
topics . 113

7.5 A more qualitative reading of the concept maps 113
7.5.1 The system . 114
7.5.2 Connections inside the I/O controller subtopic . 114
7.5.3 Connections inside the Synchronization subtopic 116
7.5.4 Connections inside the DMA subtopic 118
7.5.5 Links between the I/O controller and the synchro-

nization subtopics 118
7.5.6 Links between the DMA controller and the I/O

controller . 119
7.5.7 Links between the DMA and the synchronization

subtopics . 120
7.6 Conclusions . 120

8 Overall Conclusions and Future Work 123

8.1 Conclusions . 123
8.2 Future work . 125
8.3 Publications obtained from this work 126

Bibliography 129

Appendices 139

A Notes on the theory of the computer I/O subsystem for the
students 143

A.1 Sarrera/Irteera-ko interfazearen deskribapena. 143
A.1.1 S/I-ko kontrolagailuaren ikuspegi funtzionala . . 144
A.1.2 Sarrera/irteera-ko kontrolagailuaren erregistroak 145
A.1.3 Sarrera/Irteera memorian mapeatuta 146
A.1.4 Sarrera/Irteera bereiztua edo memorian ez ma-

peatua . 149
A.1.5 S/Iko kontrolagailuen sailkapena 152

A.2 Komunikazioa eta sinkronizazioa Sarrera/Irteerako er-
agiketetan . 153
A.2.1 Inkesta bidezko Sarrera/irteera 156
A.2.2 Etenen bidezko Sarrera/Irteera 157

CONTENTS xix

A.3 Etenen kudeaketa . 158
A.3.1 Eten-eskaeraren detekzioa 159
A.3.2 Gorde etendako programaren egoera 161
A.3.3 Zerbitzu-errutina edo periferikoaren identifikazioa162
A.3.4 Zerbitzu-errutinaren exekuzioa 164
A.3.5 Etendako programaren egoera berreskuratu . . . 164
A.3.6 Maila anitzeko etenak 165
A.3.7 Etenen kontrolagailua 166

A.4 Memoriarako Atzipen Zuzena (DMA – Direct Memory
Access) . 166
A.4.1 DMA kontrolagailua 169
A.4.2 DMA bidezko transferentzia 170

B Notes on the specifics of the Nintendo DS for the students 175

B.1 Hardwarearen deskribapena 176
B.1.1 Prozesadoreak . 176
B.1.2 Memoria . 176
B.1.3 Pantailak . 177
B.1.4 Teklatua . 183
B.1.5 Denboragailuak . 185

B.2 Etenen kudeaketa . 188
B.2.1 Etenen kudeaketarako erregistroak (etenen kudeatza-

ilea) . 188
B.2.2 Eten-bektore edo eten-taula 189
B.2.3 Interrupt Dispatcher-a 191

C Source-code of one of the projects 195

C.1 The main program . 195
C.2 Defining the Interrupt-table 196
C.3 The keyboard . 196
C.4 The timer . 196

D Students’ concept maps 207

xx CONTENTS

List of Figures

2.1 The TPACK Image. Reproduced with permission of the
publisher, © 2012 by tpack.org 12

2.3 Basic constructs . 14
2.2 The TPACK model as understood and used in this disser-

tation. For the constructs, the same colours have been
used as in Figure 2.1 . 15

2.4 TCK construct . 16
2.5 TPK construct . 16
2.6 PCK construct . 17
2.7 TPACK construct . 17

4.1 Nintendo DS memory layout
Source: http://dev-scene.com/NDS/Tutorials_Day_2#Mem-
ory_Layout. Retrieved in 11/25/2013 44

4.2 Source code of the routine for initializing video memory,
from examples of Dovoto and Jaeden Ameron in the
devkitPro environment [devkitPro] 45

4.3 Definition of a sprite, (a) array containing the value of
each pixel, (b) interpretation of the information con-
tained in the array. 46

4.4 Source code for saving the sprite in memory. 47
4.5 Definition of the I/O registers. 48
4.6 Setting interrupt service routines for each interrupt . . . 49
4.7 Code in the Interrupt dispatcher that avoids multiple level

interrupts. 50
4.8 Formula to calculate the value of the timer data register 50

xxii LIST OF FIGURES

4.9 Keyboard of the Nintendo DS 51
4.10 Routine that takes the information of the touch screen

from the processor devoted to I/O 53
4.11 Definition of a variable of the t♦✉❝❤P♦s✐t✐♦♥ type. . . 53
4.12 Polling the touch-screen . 54

5.1 The SM used in the fourth laboratory session (a screen
saver) . 58

5.2 State machine for the train ticket vending machine de-
veloped for the NDS during the school year 2010-2011.
*The information shown is the destination, the ticket
price, the introduced quantity, and the quantity remain-
ing to be introduced. Letters in transitions are links for
screen-shots in Figure 5.3 69

5.3 Screen-shots for the train ticket vending machine devel-
oped for the NDS during the school year 2010-2011. . . 70

5.4 State machine for the SuperNacho game developed for
the NDS during the school year 2011-2012. Letters in
transitions are links for screen-shots in Figure 5.5 71

5.5 Screen-shots for the train ticket vending machine devel-
oped for the NDS during the school year 2011-2012. . . 73

5.6 State machine for the "Elevator door" minigame devel-
oped for the NDS during the school year 2012-2013.
Letters in transitions are links for screen-shots in Figure 5.7 74

5.7 Adapted state machine the "Elevator door" minigame
developed for the NDS during the school year 2012-2013. 75

6.1 Grades obtained by the students in the I/O subsystem topic 78
6.2 Pass rates obtained in the I/O topic in the parallel group 79
6.3 Satisfaction questionnaire, charts for items 1 – 6 81
6.4 Satisfaction questionnaire, charts for items 7 – 12 82
6.5 Satisfaction questionnaire, charts for items 13 – 18 . . . 83
6.6 Satisfaction questionnaire, charts for items 19 – 24 . . . 84

7.1 Classification of I/O subsystem concepts 95
7.2 Communication between the elements of the I/O subsystem 95
7.3 Steps that must be followed while using different I/O

techniques (polling, interrupt-driven I/O, and DMA) . . 96

LIST OF FIGURES xxiii

7.4 Concept map handed out to the students to show the
different evaluation options. 100

7.5 A student’s concept map to answer the question “What is
the Von Neumann structure”, without any linking phrase.
Translated into English from the original in Basque. . . . 101

7.6 A student’s trial concept map to answer the question
“What is the Von Neumann structure” that turned out to
be a block diagram. Translated into English from the
original in Basque. 102

7.7 Although impossible to read, this is a good example of
schema that looks like a concept map. 102

7.8 Answers to the question “Was concept mapping helpful
in your learning process?” in a Likert scale. 104

7.9 Conversions needed to adapt the concept maps for social
network analysis. 105

7.10 Graph showing all the relationships of the students’ con-
cept maps. 106

7.11 Graph showing the concept map links used by more than
three students. 107

7.12 Graph showing the links between subtopics. 108
7.13 Graph showing the links inside the I/O controller subtopic.109
7.14 Graph showing the links inside the synchronization subtopic.111
7.15 Graph showing the links inside the DMA subtopic. 112
7.16 Graph showing the links between the I/O controller and

the synchronization subtopics. 112
7.17 Graph showing the links between the I/O controller and

the DMA subtopics. 113

A.1 Sistemaren itxura periferikoaren kontrolagailua txertatu
ondoren. 144

A.2 Sistemaren itxura periferikoaren kontrolagailua txertatu
ondoren. 145

A.3 Memorian mapeatutako S/I erakusten duen memoria-
mapa. 147

A.4 Erregistroen konexioaren eskema memorian mapeatuta
daudenean . 148

A.5 S/I bereiztua duen sistema baten memoria-mapa 149

xxiv LIST OF FIGURES

A.6 Erregistroen konexioaren eskema hauek ez daudenean
memorian mapeatuta . 151

A.7 Kontrolagailu ez-multiplexatua erakusten duen eskema . 152
A.8 Kontrolagailu multiplexatua erakusten duen eskema . . 153
A.9 Etenei erantzuteko mekanismoaren eskema 159
A.10 Eten-seinale bakarra dagoen kasurako hardware eskema 160
A.11 Eten-seinale bat baino gehiago dagoen kasurako hard-

ware eskema . 161
A.12 Kontrolagailuaren identifikazioa egiten duen hardwarearen

eskema . 163
A.13 Margarita-katearen hardware eskema 164
A.14 Daisy-chain hardwarea maila-anitzeko etenak jasateko

aldaketekin . 165
A.15 Memoriako atzipena DMA gabe 167
A.16 Memoriako atzipena DMA erabiliz 167
A.17 Portu anitzeko memoria . 168
A.18 Portu bakarreko memoria 169
A.19 DMA kontrolagailuaren erregistroak 171
A.20 DMA kontrolagailuaren funtzionamendua 172

B.1 NDSaren hardwarearen eskema 177
B.2 Pantaila grafikoak VRAM bankuetan mapeatzearen adibidea.180
B.3 Sprite-n memoria hasieratzeko kodea. 181
B.4 Sprite-n koloreen paleta nola definitzen den ikusteko

adibidea. 181
B.5 Sprite baten errepresentazioa osokoen bektore baten bidez.182
B.6 Sprite baten pixelak spriten memoriara kopiatzen dituen

adibidea. 182
B.7 Ukimen pantailaren kontrola inkesta bidez. 183
B.8 NDSaren teklak . 184
B.9 Teklatuaren erregistroen helbideen definizioa 184
B.10 Tenporizadorearen erregistroen helbideen definizioa . . 186
B.11 Zein baliotatik hasi behar den kontatzen eta zein maizta-

sunekin kontatu behar den kalkulatzeko formula. 187
B.12 Etenen kudeaketarako erregistroen definizioa 189
B.13 NDSaren eten-taula . 191

LIST OF FIGURES xxv

C.1 The main program of one project. Code continues 197
C.1 The main program of one project. Code continued and

continues . 198
C.1 The main program of one project. Code continued and

continues . 199
C.1 The main program of one project. Code continued and

continues . 200
C.1 The main program of one project. Code continued 201
C.2 Code to define the interrupt-table 201
C.3 Routine that returns true if the keyboard has been pressed202
C.4 Routine that returns which key has been pressed 202
C.5 Routine that polls the keyboard and returns the pressed

key . 203
C.6 Routine to enable keyboard interrupts 203
C.7 Routine to disable keyboard interrupts 203
C.8 Routine to configure keyboard 204
C.9 ISR of the keyboard . 204
C.10 Routine to enable timer interrupts 204
C.11 Routine to disable timer interrupts 205
C.12 Routine to start timer . 205
C.13 Routine to stop timer . 205
C.14 Routine to configure timer 205
C.15 ISR of the timer . 206

D.1 Student concept map #1 208
D.2 Student concept map #2 209
D.3 Student concept map #3 210
D.4 Student concept map #4 211
D.5 Student concept map #5 212
D.6 Student concept map #6 213
D.7 Student concept map #7 214
D.8 Student concept map #8 215
D.9 Student concept map #9 216
D.10 Student concept map #10 217
D.11 Student concept map #11 218
D.12 Student concept map #12 219
D.13 Student concept map #13 220

xxvi LIST OF FIGURES

D.14 Student concept map #14 221
D.15 Student concept map #15 222
D.16 Student concept map #16 223
D.17 Student concept map #17 224
D.18 Student concept map #18 225
D.19 Student concept map #19 226
D.20 Student concept map #20 227
D.21 Student concept map #21 228
D.22 Student concept map #22 229
D.23 Student concept map #23 230
D.24 Student concept map #24 231
D.25 Student concept map #25 232
D.26 Student concept map #26 233
D.27 Student concept map #27 234
D.28 Student concept map #28 235
D.29 Student concept map #29 236
D.30 Student concept map #30 237
D.31 Student concept map #31 238
D.32 Student concept map #32 239
D.33 Student concept map #33 240

List of Tables

3.1 Universities, courses, the approach they follow, and the
book from our list that they use (PatHen refers to [Pat-
terson and Hennessy, 2009]; Others means that the text-
books they use are not in our list; No textbook means
that the syllabus specifies that there is no textbook to
be followed; Not found means we have not found in the
syllabus the textbook they follow.) 25

3.2 Where in each book appear the topics and learning out-
comes of CC2013 . 29

3.3 Where in each book appears the topics and learning
outcomes of CC2004 . 30

3.4 Approach followed by each textbook 32
3.5 How the I/O topic is taught in several Spanish universities 38

4.1 Explanation of the bits in the control register of the timer 51
4.2 Explanation of the bits in thecontrol register of the key-

board. Bit 0 to 9 are the same in the data register. 52

6.1 Items of the new questions in the questionnaire with
their average responses (Likert scale [1–5]) 85

6.2 Students following and finishing in the PBL methodology 89

7.1 Students’ concept classification relations 97
7.2 Communication relations from the point of view of the

students . 97
7.3 Is_part_of relations from the point of view of the students 98

xxviii LIST OF TABLES

7.4 Order the students gave to the steps of an interrupt, a
poll and a DMA transfer . 98

7.5 The 20 concepts given to the students to build the last
concept map. 103

B.1 VRAM memoriako bankuak eta beraien erabilera posibleak.180
B.2 Teklatuaren kontrol erregitroaren biten erabilera 185
B.3 Tenporizadoreen kontrol-erregistroaren biten erabilera . 186
B.4 eten-lerroen identifikazio eta definizioa 190

CHAPTER 1

Introduction

THIS dissertation is all about the educational process of the computer
I/O subsystem. Therefore it is important to have at least a rough

idea of the topic itself, the reasons why it is important to teach the
computer I/O subsystem to computer scientists and engineers, and what
does the computing curricula say about the computer I/O subsystem.

Next, in this chapter some changes which took place at the University
of the Basque Country (UPV/EHU) will be introduced, then the research
questions proposed for the dissertation will be outlined, and finally, the
organization of the document will be summarized.

1.1 The computer I/O subsystem - What is it?

As Stallings [2012] defines, “The computer system’s I/O architecture

(or subsystem) is its interface to the outside world”. “I/O subsystem

architecture deals with the organization of concurrent processing activities

within the devices, controllers, channels, and I/O processors that comprise

an I/O subsystem. In addition, it deals with the coordination of I/O

subsystem processing activity as a whole with respect to the activity of the

central processor”, say Buzen [1975]. A computer can not do anything

2 Chapter 1: Introduction

without data from the outside world, and serves to nothing if it can not
bring the results of its computations to the outside world.

The aim of the I/O subsystem, as an undergraduate introductory topic
is to teach the basics of the communication between the computer
system and the I/O architecture or subsystem, in order to reach the
outside world.

It is very easy to see how a mechanical typewriter converts a key press
into a letter in the paper, but most computer users will not be able to say
which actions happen between the moment a person presses a key in a
computer keyboard and the moment the letter appears in the display.

1.2 Why is it important to teach the computer I/O subsys-

tem to computer scientist and engineers?

The I/O subsystem is one of the main parts of a computer system
together with the CPU, the memory unit, and the buses which have
the responsibility of linking all the three units, CPU, memory and I/O
subsystem. The techniques used to synchronize the I/O subsystem
with the CPU and memory, and the correct functioning of it can highly
influence the performance of the computer. The ACM/IEEE-CS joint
task force [CC2004] points out that: “students must understand how

various peripheral devices interact with, and how they are interfaced to a

CPU”.

The use of interrupts to synchronize the I/O subsystem with the CPU
opens the door to introduce students to concepts such as multiprogram-
ming and concurrency in the execution of the programs that run in
computing systems.

This type of execution will increase the performance of the computer
systems with respect to monoprogramming and synchronization via
polling.

On the other hand, I/O subsystem can be considered as it forms the
lowest level in Human Computer Interaction (HCI). When designing
interfaces based on non-standard devices (those which are not the
classical keyboard, screen and mouse), developers have to know other
I/O devices and their characteristics [Garay-Vitoria, 2006].

1.3: What do the computing curricula recommendations say about the I/O subsystem

topic? 3

The use of microprocessors is becoming ubiquitous. “Almost every

electronic appliance and device today uses embedded systems. Cell phones,

automobiles, toasters, televisions, airplanes, medical equipment, and a

host of other devices, products, and applications use embedded systems”

[CC2004]. In these embedded systems, the Input/Output (I/O) sub-
system takes usually a considerable role. “The various I/O techniques

are essential to software developers designing operating systems, network

software, database systems, embedded systems, process control systems,

and real-time systems” [Krishnaprasad, 2002]. However, lecturers in
these embedded systems courses feel that in previous courses the I/O
subsystem is not treated sufficiently: “Today’s computer architecture

courses spend more time on instruction set design and pipelining and

less time on topics like I/O. As a result, before getting to the significant

examples in embedded computing, a course must first cover some basic

principles and techniques that have not been learned in other courses”

[Wolf and Madsen, 2000].

1.3 What do the computing curricula recommendations

say about the I/O subsystem topic?

The ACM/IEEE-CS Joint Task Force has been developing curriculum
recommendations for the different and emerging computing disciplines
since the 1960s. They developed a volume for Computer Science (CS)
in 2001 [CC2001], a revision of it in 2008 [CC2008], and a new draft
was published in February 2013 [CC2013].

The curricula for CS say that: “The computer lies at the heart of comput-

ing. Without it most of the computing disciplines today would be a branch

of theoretical mathematics. To be a professional in any field of computing

today, one should not regard the computer as just a black box that executes

programs by magic. All students of computing should acquire some under-

standing and appreciation of a computer system’s functional components,

their characteristics, their performance, and their interactions.” [CC2001;
CC2008]. Moreover, the ACM/IEEE-CS joint task force’s curriculum
for Computer Engineering (CE) [CC2004] remarks that: “Computer

architecture is a key component of computer engineering and the prac-

tising computer engineer should have a practical understanding of this

4 Chapter 1: Introduction

topic. It is concerned with all aspects of the design and organization of the

central processing unit and the integration of the CPU into the computer

system itself.”. But, Computer Architecture (CA) is a very wide area
covering topics such as: Digital logic and digital systems, Machine level
representation of data, Assembly level machine organization, Memory
system organization and architecture, Interfacing and communication,
Functional organization, Multiprocessing and alternative architectures,
Performance enhancements, Architecture for networks and distributed
systems, and much more. The subject that this curricula recommenda-
tions devote to the I/O topic is called “Interfacing and communication”

[CC2001; CC2013] or “Interfacing and I/O Strategies” [CC2008].

In [CC2008] the ACM/IEEE-CS Joint Task Force tried a change, but
since in the [CC2013] draft the subject comes back to be the same
as in [CC2001], we will not consider here the [CC2008] proposal.
The [CC2013] proposal has the same topics and learning outcomes as
[CC2001], but with a little more detail. It devotes a minimum coverage
time of 2 hours and states as follows:

“Topics:

• I/O fundamentals: handshaking, buffering, programmed I/O, interrupt-

driven I/O

• Interrupt structures: vectored and prioritized, interrupt acknowledge-

ment

• External storage, physical organization, and drives

• Buses: bus protocols, arbitration, direct-memory access (DMA)

• Introduction to networks: networks as another layer of access hierarchy

• Multimedia support

• RAID architectures”

“Learning outcomes:

1. Explain how interrupts are used to implement I/O control and data

transfers [Knowledge].

2. Identify various types of buses in a computer system [Knowledge].

3. Describe data access from a magnetic disk drive [Knowledge].

4. Compare common network organizations, such as ethernet/bus, ring,

switched vs. routed [Knowledge].

1.3: What do the computing curricula recommendations say about the I/O subsystem

topic? 5

5. Identify interfaces needed for multimedia support, from storage, through

network, to memory and display [Knowledge].

6. Describe the advantages and limitations of RAID architectures [Knowl-

edge].”

In 2004 the ACM/IEEE-CS Joint Task Force developed a curriculum
for CE [CC2004]. It devotes a minimum coverage time of 10 hours and
the differences with the CS curriculum can be seen in the topics and
learning outcomes as follows:

“Topics:

• I/O fundamentals: handshaking, buffering,

• I/O techniques: programmed I/O, interrupt-driven I/O, DMA

• Interrupt structures: vectored and prioritized, interrupt overhead,

interrupts and reentrant code

• Memory system design and interfacing

• Buses: bus protocols, local and geographic arbitration”

“ Learning outcomes:

1. Explain how to use interrupts to implement I/O control and data

transfers.

2. Write small interrupt service routines and I/O drivers using assembly

language.

3. Identify various types of buses in a computer system.

4. Describe data access from a magnetic disk drive.

5. Analyze and implement interfaces.”

As it can be seen, the major difference is that while the CS curriculum
[CC2013] stays at the knowledge level, the CE curriculum [CC2004] de-
mands as learning outcomes the ability to write small Interrupt Service
Routine (ISR) and I/O drivers, and the ability to analyse and implement
interfaces.

6 Chapter 1: Introduction

1.4 The computer I/O subsystem topic at the University of

the Basque Country (UPV/EHU)

At the UPV/EHU the subject called “Computer Architecture 1” was taught
in the third semester out of the ten semesters of the studies in Computer
Engineering. This subject comprised the central processing unit (CPU)
(the control unit and the arithmetic-logic unit), the memory organiza-
tion, the computer I/O subsystem, and the interconnection buses, a
detailed introduction to the Von Neumann architecture. The “Computer

Architecture 1” subject concerned the lecturers because of its high drop-
out rates (31%) and low pass rates (50% out of the taken exams, 34%
out of the enrolment). A problem area was detected in the course of
the years: the computer I/O subsystem. Students drastically left the
subject during the teaching of the computer I/O subsystem. Moreover,
the 50% pass rate previously mentioned droped to 44% considering
only the computer I/O subsystem part of the exam.

Due to the adoption of the European Higher Education Area (EHEA),
the computing degree taught at the UPV/EHU has recently undergone
several changes. Now the degree in Computer Engineering is eight
semesters long. The “Computer Architecture 1” subject has disappeared,
and the computer I/O subsystem has moved from a third semester sub-
ject “Computer Architecture 1” to a second semester subject “Computer

Structure” (CSt to make it different from Computer Science (CS)). In
this subject, the computer I/O subsystem shares centre stage with as-
sembly language and low-level programming. At that point, the concern
of the lecturers towards the computer I/O subsystem topic increased
since the difficulty in understanding a topic would be greater in the first
year.

A change was needed, and the aim of this dissertation is to report
the changes made, the data obtained empirically, and the methods
implemented in order to be able to know the real learning outcomes of
the topic.

1.5: Research questions 7

1.5 Research questions

In this chapter, the research questions that are going to be answered in
the course of the dissertation are going to be expressed.

Q1: How well can a handheld game console be adapted to the teaching
needs of the I/O subsystem topic?

Q2: How well can a PBL methodology help in the learning process of
the I/O subsystem topic?

Q3: How do students understand the I/O subsystem topic?

1.6 Organization of the Document

Chapter 1. In the first chapter we offer some hints about general
concepts of the computer I/O subsystem.

Chapter 2. In the second chapter a justification has been given for this
dissertation to be part of the Computing Education Research. Moreover,
the whole work carried out in this research is framed in the TPACK mo-
del. The dissertation considers the lecturer’s technological knowledge,
pedagogical knowledge and content knowledge, and searches for the
deficiencies on TPACK that lies in students’ knowledge.

Chapter 3. The third chapter shows the results of a survey of the
computer I/O subsystem as a topic in different universities, textbooks,
and research bibliography. Four different approaches have been found
to exist and they have been linked to the universities and textbooks that
are using them. Moreover the research literature has been analysed in
order to find more on how the computer I/O subsystem is taught.

Chapter 4. This chapter introduces the Nintendo DS as a machine to
reinforce the computer I/O subsystem learning.

8 Chapter 1: Introduction

Chapter 5. The fifth chapter reports the application of the Project-
based learning methodology during three years, explaining each years
settings. An example of the projects developed by the students each
year has also been detailed.

Chapter 6 Here, the data gathered empirically during the three years
in which the Nintendo DS has been used in the Project-based learning
methodology are analysed.

Chapter 7. The seventh chapter reports the study where the students’
knowledge is analysed in order to have a better perspective of how to
deal with the students understanding of the topic.

Chapter 8. This chapter wraps up the results presented in this work
and suggests directions for future work.

CHAPTER 2

Link to relevant theory

THIS chapter is devoted to explain in which way this dissertation
can be integrated in the emerging field of Computing Education

Research. This term often appears as Computer Science Education
Research. However, the computer I/O subsystem has a stronger con-
sideration in the field of computer engineering as can be seen in the
curricula recommendations [CC2001, CC2004, CC2008, and CC2013].
Therefore, since the term computing endorses the topic better than the
term computer science, it is the one used in this dissertation, consider-
ing that all the statements about computer science education research
are equally applicable.

Fincher and Petre [2004] identified ten broad areas that motivate
researchers in Computing Education.

• Student understanding: where students’ mental and conceptual
models, their perceptions and misconception are studied;

• Animation, visualization and simulation: where software tools
and environments are used in order to affect students’ learning;

• Teaching methods: where the studies analyse the ways in which
teachers can “build bridges” for students, the ways they can scaffold
their students’ learning, helping them to make sense of the subject,

10 Chapter 2: Link to relevant theory

or the ways teachers control the dynamics of the teaching interaction
to make it profitable;

• Assessment: where the types or validity of assessment, or how to
automate grading are studied;

• Educational technology: where the advantages that new devices
and technologies offer are harnessed, some times as assistive tech-
nology, and sometimes, applied to Computing subject matters;

• Transferring professional practice into the classroom: where
academics seek inspiration in the work of professionals;

• Incorporating new developments and new technologies: where
due to the fast industry development, the new incorporations are
often difficult to transmit;

• Transferring from campus-based teaching to distance educa-
tion: where many generic issues about Web-based learning and
appropriate transfer of educational interaction are studied;

• Recruitment and retention: where the reasons for students to
come into computing or stay there are analysed, paying special
attention to diversity and gender issues; and,

• Construction of the discipline: where as well as curricula construc-
tion, also questions concerning the nature of the discipline (whether
it is engineering, mathematics, design, business, or something else
altogether) are posed.

The work developed in this dissertation touches the following of these
areas:

• the construction of the discipline, when the curricula and different
approaches to teach the computer I/O subsystem are analysed, in
order to answer the question “How is the computer I/O subsystem

taught?”, “What different approaches are taken?”;

• animation, visualization and simulation, or incorporating new de-
velopments and new technologies, when the Nintendo DS machine
is incorporated to the teaching and the benefits and disadvantages
of using it are analysed;

11

• teaching methods, when the PBL methodology is used and the
results analysed depending on the different settings of several pa-
rameters;

• educational technology, when the technology of a specific machine
is turned into the infrastructure to support students’ understanding
of the topic;

• the student understanding area has its place here where concept
maps have been used in order to picture the understanding of the
topic and the end of its teaching.

From the educational point of view that a research project in Comput-
ing Education should have [Berglund, 2005], this dissertation is framed
by the Technological, Pedagogical and Content Knowledge (TPCK or
TPACK) model first introduced by Koehler, Mishra, Yahya, and Yadav
in [2004], as the complex interplay of content (C), pedagogy (P), and
technology (T), build upon the Pedagogical Content Knowledge model
of Shulman [1986]. In [Mishra and Koehler, 2005], the authors defined
the model as “a framework for thinking about what teachers need to know

about technology”.

The model has been defined by the image in Figure 2.1.

This model has been reported with several weaknesses [Graham,
2011], such as:

• building on an unsure foundation;

• hiding behind its simplicity, a deep underlying level of complexity,
in part because all of the constructs being integrated are broad and
ill-defined;

• imprecise definition of its constructs;

• imprecise definition of technology itself;

• imprecise definition of whether its constructs relate in an integrative
or transformative way;

• imprecise definition of its constructs boundaries;

12 Chapter 2: Link to relevant theory

Figure 2.1: The TPACK Image. Reproduced with permission of the publisher, © 2012 by

tpack.org

• the possibility of conflating TPACK with technology integration;

• insecure prescriptive value.

However Cox [2008] had already specified the constructs and its
boundaries as follows:

• Pedagogical Knowledge (PK): Knowledge of the general pedagog-
ical activities that a teacher might utilize, where general activities

13

are independent of a specific content or topic (meaning they can
be used with any content) and may include strategies for motivat-
ing students, communicating with students and parents, presenting
information to students, and classroom management among many
other things. Additionally, this category includes general activities
that could be applied across all content domains such as discovery
learning, cooperative learning, problem-based learning, etc.

• Content Knowledge (CK): Knowledge of the major facts and con-
cepts within a field and the relationships among them. Knowledge
of the possible topic-specific representations in a given subject area.
This knowledge is independent of pedagogical activities or how one
might use those representations to teach.

• Technological Knowledge (TK): Knowledge of how to use emerg-
ing technologies, considering technology any tool or collection of
tools.

• Technological Content Knowledge (TCK): Knowledge of the tech-
nology-content interaction, independent of pedagogy.

• Technological Pedagogical Knowledge (TPK): Knowledge of the
technology-pedagogy interaction independent of topic-specific rep-
resentations or content-specific instructional strategies.

• Pedagogical Content Knowledge (PCK): In order to facilitate stu-
dent learning, knowledge of activities and knowledge of representa-
tions are combined here. The knowledge of pedagogical activities
is content-specific rather than general because PCK is situated in a
particular subject area.

• Technological Pedagogical Content Knowledge (TPACK): knowl-
edge of how to coordinate the use of subject-specific activities
or topic-specific activities with topic-specific representations using
emerging technologies to facilitate student learning.

Most of the research developed using the TPACK [Koehler et al., 2004]
or the PCK [Shulman, 1986] models has taken place in the non univer-
sity teacher education context. Moreover, to our knowledge, when it has

14 Chapter 2: Link to relevant theory

been used in the field of computing, it has been applied to secondary
education [Saeli, 2011] and [Hubwieser, Magenheim, Mühling, and
Ruf, 2013].

That is not the case of this dissertation. In this case, the use of the
model has been applied to a university level computing topic where
the lecturers are struggling to get good results from their students.
Therefore, in a topic of the second semester of the undergraduate
studies, they are trying to use new pedagogical techniques and new
technologies in order to achieve better results.

The following sections will summarize how the different steps of the
research apply to the constructs of the TPACK model in Figure 2.1.
However, in order to use such a model, it has to be understood and
internalized. Figure 2.2 shows the way in which the model has been
understood to develop this research, by means of a concept map.

2.1 Content Knowledge (CK), Pedagogical Knowledge (PK)

and Technological Knowledge (TK), the basic constructs.

Figure 2.3: Basic con-

structs

The basic constructs, on their own, do not help
much with the teaching of a specific subject.
Does the lecturer know the topic she has to
teach? She is supposed to, since it is a require-
ment of her workplace. In this specific case, the
content to be taught is the computer I/O sub-
system. What it is and its importance has been
explained in Chapter 1.

However, different representations have also
been found to exist. Section 3.1 describes 4
different approaches to understand the content.

Does the lecturer know any pedagogical technique? At least in our uni-
versity this is not a requirement. However, just knowing the pedagogical
techniques is not sufficient to lead the students towards a significant
learning. This knowledge must be aligned with the content to teach. In
any case, during students’ first year studies in the university, it has been

2.1: Content Knowledge (CK), Pedagogical Knowledge (PK) and Technological

Knowledge (TK), the basic constructs. 15

Figure 2.2: The TPACK model as understood and used in this dissertation. For the constructs,

the same colours have been used as in Figure 2.1

found that teachers need to have a more pedagogical approach than in
the other years of studies in the university.

Does the lecturer know technological tools? Since we are in a very
technological environment, the faculty of computing, probably the
lecturer will know many technological tools, but in what extent are
these tools related to the topic or to the applied pedagogical techniques?

The other constructs of the model are the ones that combine the basic
constructs, and the ones that will lead the research of this dissertation.

16 Chapter 2: Link to relevant theory

2.2 Technological Content Knowledge (TCK)

Figure 2.4: TCK construct

Being the computer I/O subsystem the content,
the boundary with the technological construct is
not clear at all. The content itself is technolog-
ical. Every machine has an I/O subsystem and
the lecturers, based on their content knowledge
are able to decipher the specificities of the I/O
subsystem of each machine.

Before the changes on the subject started, the
PC was used as infrastructure, as mentioned in
Subsection 5.1. Chapter 4 explains the charac-
teristics of the Nintendo DS machine considering

the computer I/O subsystem, which is the content at hand.

2.3 Technological Pedagogical Knowledge (TPK)

Figure 2.5: TPK construct

This construct is independent of content-specific
representations. The technology analysed in this
dissertation is the Nintendo DS. Originally it is a
handheld game console devoted to play games.
However, the so called serious games have been
broadly used with pedagogical purposes as an
extensive bibliography shows (see for example
[Hanakawa, Yamamoto, Tashiro, Tagami, and
Hamada, 2008], [Shirali-Shahreza, 2008]) and
have also been proved to be more effective in
terms of learning [Wouters, van Nimwegen, van

Oostendorp, and van der Spek, 2013].

Not only video games have been used as a pedagogical tool but also
video game development. Wu and Wang [2012] have done a good liter-
ature review on game development frameworks and also on how game
development-based learning has been used in different learning areas.
The laboratories explained in Setion 5.1.2, and the PBL assignments of
Section 5.2 are based on this kind of knowledge.

2.4: Pedagogical Content Knowledge (PCK) 17

2.4 Pedagogical Content Knowledge (PCK)

Figure 2.6: PCK construct

Project-based learning is a pedagogical method-
ology very popular nowadays. However, project
work has always been used in computing be-
cause “they can give insight into the sort of sys-

tems that students observe on their desktop com-

puters, and can help bridge the gap between

systems they use and systems they construct”

[Fincher, Petre, and Clark, 2001].

This assertion is also valid in the context of
computer I/O subsystem. A project in which the
students are able to manage the I/O devices can

help them overcome the abstractness of something that always happens
in that magic box inside the computer.

The TCK construct has been analysed in different ways. First, Chap-
ter 3, Sections 3.3.1 and 3.3.2 review the technology used to teach the
same topic by other lecturers. In Chapter 4, a new option is proposed
and then analysed from the point of view of the specific content of the
topic.

2.5 Technological Pedagogical Content Knowledge (TPCK

or TPACK)

Figure 2.7: TPACK con-

struct

Chapters 3 and 5 combine all the knowledge
of the previous constructs in order to analyse
the use of project-based learning with differ-
ent settings (PK) with the NDS (TK) to teach
the computer I/O subsystem (CK). Chapter 6
analyses the empirical data gathered during the
application of all that knowledge.

However in the pedagogical construct there is a
very important point that has not been touched
so far. This point is not clear in the TPACK Fig-
ure 2.1, although it appears in its definition in

18 Chapter 2: Link to relevant theory

[Mishra and Koehler, 2006]. This points considers the students’ knowl-
edge, with the following sentences in the definition of TPACK:

• knowledge of what makes concepts difficult or easy to learn and
how technology can help redress some of the problems that students
face;

• knowledge of students’ prior knowledge and theories of epistemol-
ogy;

• knowledge of how technologies can be used to build on existing
knowledge and to develop new epistemologies or strengthen old
ones.

After two years of applying the PBL methodology, the results obtained
made evident the need of analysing students’ knowledge. The third
year of the research students’ knowledge was elicited at the end of the
term, using concept maps for that objective. Chapter 7 shows the results
obtained from that study.

In the conclusions of this dissertation some changes to the methodology
will be proposed after considering the results of the analysis conducted
with the concept maps. However a door opens after this dissertation to
further analyse students’ difficulties in order to be able to propose new
techniques.

2.6 Conclusions

In this chapter, it has been explained how this dissertation is integrated
within the area of Computing Education Research (CER). This integra-
tion has been done mainly by means of the TPACK model. The different
elements that are covered in the educational process of the computer
I/O subsystem are related with the constructs of the TPACK model.

In addition, this chapter has served to relate the chapters of this
dissertation with the areas that motivate researchers in Computing
Education.

CHAPTER 3

Background and related work

AS a component of the computer system, the I/O subsystem is of-
ten identified as an introductory topic [Brylow and Ramamurthy,

2009a; Stojcev, Milentijevic, Kehagias, Drechsler, and Gusev, 2003].
However, there are at least two problems surrounding the educational
process for this topic. The first is the level of abstraction with which
students are faced. The second is the level of confidence of the people
teaching in this subject area. Cassel, Holliday, Kumar, Impagliazzo,
Bolding, Pearson, Davies, Wolffe, and Yurcik [2001] report that 82
individuals responded to a survey distributed to people teaching in the
computer architecture and organization area and found that “Fault Han-

dling & Reliability and Synchronization & Handshaking are apparently

poorly understood, but are taught by only a small percentage of instructors.

[...] Bus Systems & DMA, I/O Control Methods, Interrupts, and External

Storage [...] sub-areas are taught by about one-half of respondents and

the low self-confidence index of a large portion of them indicates this is an

area where instructors could use help.” This people could take advantage
of an up to date review of the literature for the computer I/O subsystem
as a teaching topic, as this one is. Next, the main teaching approaches
are evaluated, and the technology available for teaching, both software
and hardware, are presented.

20 Chapter 3: Background and related work

3.1 Different approaches to teaching the computer I/O sub-

system

3.1.1 The data gathering and analysis process

Three studies were conducted which led the author of this work to define
a classification of 4 different learning approaches for the computer I/O
subsystem. The first study was on exam questions, the second on course
syllabi and the last on textbooks. Next in this chapter, first the studies
and then the 4 approaches will be described.

The author of this work has previously analysed data from 6 different
Spanish universities. The data were exam questions to test students’
knowledge about the computer I/O subsystem [Larraza-Mendiluze
and Garay-Vitoria, 2013b]. This analysis showed that pure or applied
knowledge recall was needed to answer 30% of the exam questions,
some coding skills were needed to answer 30% of the questions, and
analysis of performance was required in 40% of the questions.

For the purpose of this chapter, the authors wanted to identify the ap-
proach taken by different universities around the world; but which uni-
versities and why those universities? The decision was taken to search
the syllabi of the universities ranked among the top 100 universities in
all 6 well known university rankings [Shanghai_Jiao_Tong_University,
2013; QS, 2013; Thomson_Reuters, 2013; Cybermetrics_Lab, 2013; In-
formatics_Institute_of_Middle_East_Technical_University, 2012; Hirst,
2008]. 36 universities were found to meet this requirement. Then,
undergraduate courses including the computer I/O subsystem were
searched (looking for their syllabus, assignments and exams). In 8
cases, there was either no information found or the information was
too scarce to be considered. In 9 more universities the I/O subsystem
was found to be taught in Operating Systems courses or from an operat-
ing systems point of view and these were therefore not considered for
this study, which has a clear computer architecture and organization
perspective. As a first approach, the syllabi, assignments and exams
available online from the remaining 19 universities were analysed. The
universities and names of the subject analysed can be found in Table 3.1.

3.1: Different approaches to teaching the computer I/O subsystem 21

Finally, some widely used textbooks were considered. As a starting
point, the latest editions of the textbooks presented in [Cassel et al.,
2001] as the most widely used were selected [Patterson and Hennessy,
2009; Tanenbaum and Austin, 2012; Stallings, 2012; Mano, 1993;
Scragg, 1992; Hamacher, Vranesic, Zaky, and Manjikian, 2011]. From
that starting point, it was found that [Mano, 1993] and [Scragg, 1992]
were last published in 1993 and 1992 respectively. Initially, for this
study they were considered to be too old and they were not going to
be taken into account. However, a search was carried out to determine
whether the books appeared in new syllabi and the finding was that
[Mano, 1993] is still widely used and it was therefore reconsidered. On
the other hand, [Tanenbaum and Austin, 2012] does not say much about
the computer I/O subsystem. Tanenbaum and Austin mainly describe
how certain peripherals are built, then mention the I/O techniques,
and finally talk about I/O in different operating systems. Therefore
[Tanenbaum and Austin, 2012] was not considered.

The next subsections will define each approach, mentioning the uni-
versities and textbooks that have been considered to use this approach
and giving the reasons for that consideration, based on the information
found. Please bear in mind that both universities and textbooks can
take more than one approach.

3.1.2 The purely descriptive approach (PDA)

In this approach the computer I/O subsystem is described to the stu-
dents, who are expected to be able to describe the concepts and, at best,
to identify relationships between them. This is an easy way to introduce
the topic, as required in [CC2001]. It could be used even with students
that are not majoring in Computer Science or Engineering. However,
it has to be considered that it stays at a low level in the knowledge
taxonomies (see [Bloom, 1956] or [Biggs and Collis, 1982]).

Any of the textbooks in the most widely used list [Patterson and
Hennessy, 2009; Stallings, 2012; Mano, 1993; Hamacher et al., 2011]
could be considered for this approach. All the books describe the topic
although the examples and exercises specify which of the following
approaches each book takes.

22 Chapter 3: Background and related work

With respect to the universities, some of them did not have any exer-
cises devoted to the computer I/O subsystem in their exercise list, nor
was there any assignment or exercise found that was devoted to the
computer I/O subsystem in their exams. They were therefore consid-
ered to be presenting the I/O subsystem descriptively, intending their
students’ learning outcomes to be at a knowledge level [Bloom, 1956].
The list of universities following this approach, with the corresponding
course can be seen in Table 3.1.

3.1.3 The performance approach (PeA)

The computer I/O subsystem is a bottleneck in the computer system.
Its design has a major effect on the computer’s performance. In this
approach, the students are asked to calculate the performance of a
computer system considering using different I/O techniques. This kind
of questions are considered higher order questions since they require
the application of knowledge and often the evaluation of results to
determine which technique is most appropriate for the context [Bloom,
1956].

Performance is a key feature in computing and students must be aware
of it. However, in the I/O subsystem, there is often a person at the
end of the line, and when that happens it is difficult to justify why
one or other option has been taken. In that case the bottleneck may
not be improved from the computing perspective. Moreover, there is
place enough in many other subjects in the CA branch to deal with
performance.

The textbooks best suited for this approach are [Patterson and Hen-
nessy, 2009; Stallings, 2012], since the questions and problems they
contain are of this kind.

As for the universities, only the Computation Structures course from
Massachusetts Institute of Technology (MIT) was found to follow this
approach (see Table 3.1). In their course website they propose tutorial
problems that ask the student the questions such as the time devoted
to servicing and interrupt, or the time that a program will last if some
specific interrupts are enabled. This kind of problems have not been
found in any other course information.

3.1: Different approaches to teaching the computer I/O subsystem 23

3.1.4 The programming approach (PrA)

Considering the recent trend in computing towards embedded systems,
the importance of human computer interaction (HCI), where the I/O
subsystem is very important [Garay-Vitoria, 2006], and the last Com-
puter Engineering curriculum of the ACM/IEEE-CS Joint Task Force
[CC2004], it is also important to see the functioning of the computer
I/O subsystem from a programming point of view, accessing the I/O
registers, programming the Interrupt Service Routines (ISR), etc.

This approach helps introducing very abstract concepts such as in-
terrupts or concurrency. Programming the computer I/O subsystem
can help making these concepts clear. However the problem is that
in undergraduate introductory courses the programming level of the
students can be not high enough, or low level programming is not very
appealing.

The textbook in the most widely used list that best introduces this
approach is [Hamacher et al., 2011], which treats embedded systems
directly.

Of the universities analysed, those listed in Table 3.1 have labs or
projects in which students have to program Interrupt Service Routines
(ISR) (sometimes in assembler and, sometimes in higher order lan-
guages) in order to for example print a string in the display, program
an alarm clock with Arduino, or program a game for the Game Boy
Advance (GBA).

3.1.5 The datapath-signal approach (DSA)

Although the last edition of [Mano, 1993] is from 1993, it was found
to be the fourth most widely used textbook among people teaching
computer organization and architecture in [Cassel et al., 2001] and a
quick search on the Internet showed that it is still being used in several
courses. This book presents a different approach, focusing on the path
of the data going into and out of the computer, and the signals used to
synchronize devices, CPU, and memory. This approach includes a lot of
block and timing diagrams and flowcharts.

24 Chapter 3: Background and related work

This approach can be very helpful to envision how the hardware works.
However it rests at an understanding level, since getting students to
make changes in the hardware can get really hard. This could be
something to do in a more advanced level.

It has not been found among the universities analysed, but probably
the universities that follow Mano [1993], also follow this approach.

Any of the abovementioned approaches could be taught in a classical
way, by lectures and paper exercises. However, there are authors who
claim that students need help to make the cognitive leap required to
connect their theoretical knowledge with their practical experience
[Djordjevic, Milenkovic, and Grbanovic, 2000], for which other ed-
ucational tools such as simulators or real machines could be used.
Section 3.3 will review the publications in that context.

3.2 How do textbooks present the I/O topic?

Considering the textbooks selected in section 3.1.1 we will analyse how
do they treat the topics considered in the curricula mentioned in section
1.3. At the end, tables 3.2 and 3.3 show where in each book appear
each of the topics and learning outcomes proposed in the curricula, and
Table 3.4 shows the approach of each textbook.

3.2.1 Computer Organization and Architecture 9th Edition

Stallings [2012] devotes the 7th chapter of his book to the I/O sub-
system. Indeed, he entitles the chapter “Input/Output”. It is a very
descriptive book, in which the concepts of the I/O subsystem and their
function are described, i.e.: peripheral, I/O modules, I/O registers,
Programmed I/O (a.k.a polling), interrupt-driven I/O, Direct Memory
Access (DMA), memory-mapped I/O, isolated I/O, interrupt controller,
I/O channels, I/O processors, the buses used for the communication
between a peripheral and an I/O module, and the types of buses used
for that communication.

The last section, the one devoted to the questions and problems shows
the intended outcomes of the chapter. The problems proposed are

3.2: How do textbooks present the I/O topic? 25

University Subject Approach Book

Cornell University CS 3410: Computer System Organization PDA PatHen
and Programming

Duke University CS 250: Computer Architecture PDA PatHen
National University CS 2100: Computer Organization PDA PatHen
of Singapore
New York University CSCI-UA 0436: Computer Architecture PDA PatHen
Northwestern University EECS 361: Computer Architecture 1 PDA PatHen
Swiss Federal Institute Systems programming PDA PatHen
of Technology Zurich and computer architecture
University of California CSE 141: Computer Architecture PDA PatHen
San Diego
University of Edinburgh INF2c: Computer Systems PDA PatHen
University of Michigan EECS 370: Introduction PDA Others

to computer organization
University of Texas CS 352: Computer PDA PatHen
at Austin Systems Architecture
University of Washington CSE 352: Hardware PDA Others

Design and Implementation
Massachusetts Institute Computation Structures PeA No textbook
of Technology (MIT) PrA
California institute of EECS 51: Principles PrA Others
Technology (Caltech) of Microprocessor Systems
Georgia Institute of CS 2110: Computer PrA Not found
Technology Organization and Programming
McGill University COMP 273: Introduction PrA PatHen

to Computer Systems
Purdue University CS 250: Computer Architecture PrA No textbook
University of Amsterdam Architectuur PrA Others

& Computerorganisatie BINARCO6
University of North COMP 541: Digital PrA Others
Carolina Chapel Hill Logic and Computer Design
University of British CPSC 213: Introduction PrA Others
Columbia to Computer Systems

Table 3.1: Universities, courses, the approach they follow, and the book from our list that

they use (PatHen refers to [Patterson and Hennessy, 2009]; Others means that the textbooks

they use are not in our list; No textbook means that the syllabus specifies that there is no

textbook to be followed; Not found means we have not found in the syllabus the textbook they

follow.)

26 Chapter 3: Background and related work

related to performance and data transfer rates, addressing of the I/O
registers, and use of the different I/O techniques. There is not reference
to manipulation of the I/O registers or programming ISRs.

This book chapter makes a clear introduction to the theory of the
I/O subsystem, leaving out external storage, buses, networks, memory
system design, and programming specificities.

3.2.2 Computer Organization and Design 4th Edition

This book [Patterson and Hennessy, 2009] also devotes a unique chapter
to the I/O subsystem. It is called “Storage and Other I/O Topics”. The
chapter has lost the networks part in its fourth edition, which means
that unlike the CS curricula, this book has decided to treat separately
the interfaces and the communications.

This book makes great emphasis in storage and in dependability, relia-
bility and availability, devoting four sections to it.

In section five they start talking about connecting processors, memory,
and I/O devices, i.e. section five talks about buses. Section six is the
one talking about interfacing I/O devices to the processor, memory and
Operating System (OS). For that purpose they define all the concepts
such as I/O device or peripheral, memory-mapped I/O and special I/O
instructions (used to access isolated I/O), polling, interrupt-driven I/O,
interrupt handling (what an interrupt controller does), and DMA.

As for the examples, they are all concentrated on the impact of I/O on
the system performance and latency and bandwidth constraints.

3.2.3 Computer Organization and Embedded Systems 6th
Edition

Hamacher et al. [2011] spread the I/O subsystem in different chapters
of the book. Firstly, chapter three introduces the basics of the I/O
subsystem, talking about I/O registers, memory-mapped I/O, device
interface or I/O module, polling, interrupts, enabling and disabling
them, handling multiple devices, nested interrupts and simultaneous

3.2: How do textbooks present the I/O topic? 27

requests, all of it from a very low level point of view, showing block
diagrams of the systems and programs in assembly language. Chapter
seven “Input/Output Organization” presents the need for the buses,
the protocols they use, different arbitration techniques and several
standards. Chapter ten talks about “Embedded Systems” referring also
to their I/O subsystems and relating to the concepts seen in previous
chapters. Finally, appendixes B, C, D and E present different processor
families (Altera NIOX II, Coldfire, ARM, and Intel IA-32), where the I/O
operations of their assembly languages are explained.

The exercises at the end of each chapter ask the students to make
changes in I/O registers in order to obtain an specific result or block
the interrupts of a specific device, etc.

This book does not mention external storage or networks in an specific
manner. Also DMA is treated as part of the memory, instead of as part
of the I/O subsystem. On the other hand, unlike the books reviewed so
far, its perspective is the one of the system programmer at low level.

3.2.4 Computer System Architecture 3rd Edition

Mano [1993] devotes 2 sections and a whole chapter to the computer
I/O subsystem. In chapter 5: Basic Computer Organization and Design,
section 7 talks about Input-Output and Interrupt. This first section on the
computer I/O presents the need of peripheral devices to get information
stored in the computer and get the solutions of the computations to the
users. Mano [1993] uses an example of a terminal unit with a keyboard
and a printer, to show how the information to be transferred is stored
in registers, how special instructions are needed for the I/O process,
and how the programmed control transfer is inefficient and the use of
interrupts can somehow solve this inefficiency.

The book continuously refers to signals and control bits. In chapter
6: Programming the Basic Computer, section 8 talks about Input-Output

programming. As the name of the section indicates, here Mano [1993]
introduces instructions to program the I/O and in the cases where
interrupts are used, Interrupt Service Routines (ISR) are presented.

Finally, chapter 11: Input-Output organization delves deeper into the
issue introducing synchronization for the transfer of information, and all

28 Chapter 3: Background and related work

the details of the I/O interface, interrupt controllers, interrupt priority,
DMA, etc.

3.3 What is the community trying to do in order to im-

prove students’ understanding of the I/O topic?

“Computer Science Education Research (CSER) is an emergent area and is

still giving rise to a literature.” said Fincher and Petre [2004] almost a
decade ago. After this, a lot of work has been done, and although CER
is still a young research area, several categorizations and overviews
have been published [Valentine, 2004; Pears, Seidman, Eney, Kinnunen,
and Malmi, 2005; Berglund, Daniels, and Pears, 2006; Randolph, 2007;
Simon, Carbone, De Raadt, and Lister, 2008; Simon, 2009; Malmi,
Sheard, Simon, Bednarik, Helminen, Korhonen, Myller, Sorva, and
Taherkhani, 2010; Kinnunen, Meisalo, and Malmi, 2010, among others],
and also several PhD dissertations have been presented [Berglund,
2005; Eckerdal, 2009; Boustedt, 2010; Elliot Tew, 2010; Hewner, 2011;
Seppälä, 2012; Sorva, 2012, among others].

Few of the studies performed in CER focus on CA. There is a specific
CA education workshop, the Workshop on Computer Architecture Edu-
cation (WCAE) [[WCAE]]. Most of the papers presented in the WCAE
could be classified as “Marco Polo” [Pears et al., 2005], i.e. papers
describing experiences and observations after having applied a method,
tool, etc. The journal Computer Science Education, Vol.17, Issue 2, is
devoted to the teaching of hardware/software fundamentals. Only one
paper does not focus on methods of teaching or tools for teaching or
for practical exercises for the students. Yehezkel, Ben-Ari, and Dreyfus
[2007] use a new tool, but they analyse the students’ mental models be-
fore and after using the tool and found that the students’ understanding
was better after using it.

Another issue we have found while searching for bibliography on the
I/O subsystem is that often the broad term CA or Computer Organi-
zation (CO) is used, but the paper is really about a part of what it is
considered as CA and CO within the curricula. For example, in his
paper on why and how teach computer architecture in introductory

3.3: What is the community trying to do in order to improve students’ understanding

of the I/O topic? 29

❤
❤
❤
❤

❤
❤

❤
❤
❤
❤
❤
❤

CC2013 (CS) - Topics

Book
Stallings

[2012]

Patterson and

Hennessy

[2009]

Hamacher

et al.

[2011]

Mano

[1993]

I/O fundamentals: handshak-
ing, buffering, programmed I/O,
interrupt-driven I/O

7.1; 7.2;
7.3; 7.4

6.6 3.1; 3.2 5.7; 6.8;
11.2–11.4

Interrupt structures: vectored
and prioritized, interrupt acknowl-
edgement

7.4 6.6 3.2 11.5

External storage, physical organi-
zation, and drives

6 6.3; 6.4 8.10 N/A

Buses: bus protocols, arbitration,
direct-memory access (DMA)

3.4; 7.7;
7.5

6.5; 6.6 7; 8.4 11.6

Introduction to networks: net-
works as another layer of access
hierarchy

N/A 6.11 (in CD) 12.3 N/A

Multimedia support N/A 7.6 E.10 N/A
RAID architectures 6.2 6.9 N/A N/A
Learning outcomes

Explain how interrupts are used to
implement I/O control and data
transfers [Knowledge].

7.4 6.6 3.2 11.4

Identify various types of buses in
a computer system [Knowledge].

3.4 6.5 7 4.3

Describe data access from a mag-
netic disk drive [Knowledge].

6.1 6.3 8.10 N/A

Compare common network orga-
nizations, such as ethernet/bus,
ring, switched vs. routed [Knowl-
edge].

N/A 6.11 (in CD) N/A N/A

Identify interfaces needed for mul-
timedia support, from storage,
through network, to memory and
display [Knowledge].

N/A 7.6 N/A N/A

Describe the advantages and lim-
itations of RAID architectures
[Knowledge].

6.2 6.9 N/A N/A

Note. N/A stands for Not Available, and it has been used when to topic referred has not been found
in the book.

Table 3.2: Where in each book appear the topics and learning outcomes of CC2013

30 Chapter 3: Background and related work

❤
❤
❤
❤
❤
❤
❤
❤
❤

❤
❤
❤

CC2004 (CE) - Topics

Book
Stallings

[2012]

Patterson and

Hennessy

[2009]

Hamacher

et al.

[2011]

Mano

[1993]

I/O fundamentals: handshaking,
buffering

7.1; 7.2 6.6 3.1 5.7; 6.8;
11.2

I/O techniques: programmed I/O,
interrupt-driven I/O, DMA

7.3; 7.4;
7.5

6.6 3.1; 3.2;
8.4

11.4; 11.6

Interrupt structures: vectored and
prioritized, interrupt overhead, in-
terrupts and re-entrant code

7.4 6.3; 6.4 3.2 11.5

Memory system design and inter-
facing

6 6.5; 6.6 8 12

Buses: bus protocols, local and ge-
ographic arbitration

3.4; 7.4;
7.7

6.11 (in CD) 7 4.3

Learning outcomes

Explain how to use interrupts to
implement I/O control and data
transfers.

7.4 6.6 3.2 11.4

Write small interrupt service rou-
tines and I/O drivers using assem-
bly language.

N/A 6.5 3.2 6.8

Identify various types of buses in
a computer system. data access
from a magnetic disk drive.

3.4 6.3 7 4.3

Describe data access from a mag-
netic disk drive.

6.1 6.11 (in CD) 8.10 N/A

Analyze and implement inter-
faces.

N/A 7.6 7 N/A

Note. N/A stands for Not Available, and has been used when to topic referred has not been found in
the book.

Table 3.3: Where in each book appears the topics and learning outcomes of CC2004

3.3: What is the community trying to do in order to improve students’ understanding

of the I/O topic? 31

computing, Powers [2004] gives good arguments to answer to the why
question. For the how question, he proposes “The Living CPU” in which
a human representation of the Central Processing Unit (CPU) shows the
data path and how to address memory. The I/O subsystem is not men-
tioned. Elliott Tew, Dorn, Leahy, and Guzdial [2008] present “results

of a comparative study examining student performance in a conventional

organization course and in one that has been contextualized using a per-

sonal gaming platform as the pedagogical architecture”. Although the
I/O subsystem is considered in the contextualized course, it is not in
the traditional, and therefore, the I/O subsystem stayed out of the list
of elements used to assess students (i.e. arrays, basic machine models,
bitwise operations, character strings, data-types and their hardware
representations, memory and pointers, and number base conversions).
Another example is the paper called “Bridges to computer architecture

education” [Marwedel and Sirocic, 2004], where they try to provide
bridges in order to motivate students to learn about the internals of
computers. They propose two bridges, one for the MESI multiprocessor
cache coherency protocol, and the other one for processor pipelines.

The aim of the next subsections is to present the reader with an up-to-
date review of the tools being used to teach the computer I/O subsystem
in introductory level courses. There is no intention of presenting a
comparison of tools. The information used is based solely on material
presented in the literature that reports the use of these tools and that are
currently available. Previous surveys, such as [Wolffe, Yurcik, Osborne,
and Holliday, 2002; Nikolic, Radivojevic, Djordjevic, and Milutinovic,
2009], have not been considered because they do not report the use of
the tools used to teach the computer I/O subsystem. Work prior to the
year 2000 has not been considered either, because tools for education
are expected to be attractive to the students and in that context earlier
work cannot compete with newer technology.

3.3.1 Simulators

Simulators have been widely used for teaching computer architecture
and organization because “they allow students to gain valuable hands-on

experience in design and programming, without the problems involved in

32 Chapter 3: Background and related work

approach \book [Patterson
and Hen-
nessy, 2009]

[Stallings,
2012]

[Mano,
1993]

[Hamacher
et al., 2011]

purely descriptive X X X X
performance X X
programming X
datapath-signal X

Table 3.4: Approach followed by each textbook

maintaining a hardware lab” [Donaldson, Salter, and Punch, 2011a]
and because they “give students a better appreciation for the complexity of

their own computers” [Black and Komala, 2011]. As far as the computer
I/O subsystem is concerned, the use of simulators usually lies in the

datapath-signal approach (Subsection 3.1.5 in this document. The
simulators show the signals used during the I/O process and show
how data is exchanged via registers. Some of them give the option to
program a poll or a simple ISR in assembler. It could therefore be said
that they also follow the programmming approach.

Scott [2000a] reports the use of a simulator to show the difference
between programmed and interrupt-driven I/O. The simulator is based
on the simple computer presented in [Mano, 1993]. It was written in
Borland C++ by a student for their senior project. A poll or an ISR
can be programmed in assembly language (fictitious) and the simulator
shows the changing values of the registers and memory while the
instructions are executed. The abovementioned paper does not report
usage results. The simulator can be found in [Scott, 2000b].

Far newer is [Donaldson et al., 2011a]. In this work Donaldson et al.
present an extensible, visual simulation platform that contains plug-
in components representing simulated CPUs, memory modules, I/O
devices, and other supporting chips. They also present some already
implemented circuits such as a single-bus computer with CPU, memory,
and I/O console, where the CPU uses polling to interact with the console.
Two more consoles can be controlled using interrupts and there is also
a DMA-capable disk. The platform contains several plug-ins which
simulate I/O devices that could be added to these implementations.
They also suggest some exercises. As for the I/O subsystem, they suggest
connecting several I/O devices to a single interrupt request line using
daisy chain or modifying the CPU plug-in so as to separate the I/O

3.3: What is the community trying to do in order to improve students’ understanding

of the I/O topic? 33

address space from memory address space. The platform can be found
in [Donaldson, Salter, and Punch, 2011b]. The system was not tried
out with the students at the time of publication, and the authors of this
paper could not find any later data.
Finally, Black and Komala [2011] report the building of a simulator

after finding that in existing simulators "peripherals and I/O are generally

neglected" and they do not allow students to run existing software, to
develop assembly software that can run natively on their own computers,
to observe the interplay between devices, and generally, to see how their
actual personal computer works. In contrast, the simulator reported
in [Black and Komala, 2011] "has been tested with MS-DOS, FreeDOS,

Windows 3, and Minix 1". It is written in Java and can be downloaded
as a single JAR file or run from a web-page as an applet. For the I/O
subsystem they have developed a lab where “students write a simple

graphical animation program (a moving car) in x86 assembly. This

involves configuring the interval timer, modifying the interrupt vector

table and making their own timer interrupt routine, switching the video

table and making their own timer interrupt routine, switching the video

to graphics mode, and writing to video memory. Because the simulator

accurately models a PC the students can then run the same program

on their own laptops.” Later, Black and Waggoner [2013] report the
integration of the x86 full system simulator, with a simulator to teach
CPU design, a data-path builder, a control builder and a processor
wizard. In this case the simulator was used so that the students could
learn about finite state machines by designing an elevator controller and
a traffic light controller, and then simulate their own RISC processor.
Black and Waggoner [2013] report usage experience from the point
of view of the students, but does not report learning benefits. The
simulator can be found at [Black, 2013].

3.3.2 Real Machines

Despite the extensive use of simulators, some authors argue that “stu-

dents must touch, feel and smell the real hardware in a computer orga-

nization course” [Brorsson, 2002a] and that the emulator or simulator
approach, which is the most extensive one, “fails on concreting theoreti-

cal concepts into real ones” [Santofimia and Moya, 2009]. This section

34 Chapter 3: Background and related work

will survey the use of real machines for teaching the computer I/O
subsystem.

Ellard, Holland, Murphy, and Seltzer [2002] present the Ant-32 ar-
chitecture. This is a 32-bit RISC architecture designed specifically for
educational purposes. They do not use a real architecture, arguing that
they are “too complicated and require mastery of too many arcane details

in order to accomplish anything interesting”. The implementation of the
architecture they present uses a simple (but full-featured) bus archi-
tecture that was originally designed for use with the MIPS processor
architecture, which allows the use of simulators for devices already
written for that bus. Interrupts and exceptions are enabled and disabled
via special instructions. Interrupts from external devices are treated as
a special kind of exception. Interrupts can be disabled independently of
exceptions. A tutorial for the Ant-32 assembly language can be found
in [Ellard, 2003].

Brorsson [2002a] presents the MipsIt system, which consists of a de-
velopment environment, a hardware platform and a series of simulators,
targetted at the Windows (95-XP) platform as host machine. The evalu-
ation board (containing an IDT 36100 micro controller with a MIPS32
ISA processor core) and the simulators are carefully explained in the
above-mentioned paper. As for the I/O subsystem he developed “a

simple daughter board containing one eight-bit and one 16-bit parallel

bi-directional I/O port”, which “also contains a simple interrupt unit with

three interrupt sources (two push-buttons and one adjustable pulse source)

that could also be read as a six-bit parallel input port”. There is also a
simulator of the whole system which can be found in [Brorsson, 2002c],
and the lab exercises proposed for the I/O subsystem topic can be found
in [Brorsson, 2002b].

In Teller, Nieto, and Roach’s [2003] proposal, “after acquiring some

competence at programming the 68HC11”, using the Visual 6811 simula-
tor (a simulator for the Motorola HC6811 microprocessor), “students

are challenged to program small robots that are controlled by 68HC11s”.
“The first robot lab has students use the serial communication interface to

display the contents of the robot’s memory (the 68HC11) on the monitor

of the host PC. Pressing a key on the host’s keyboard, which instructs the

68HC11 to read from or write to a memory byte or word, drives the related

program” [. . .] The first final project had students program robots to

3.3: What is the community trying to do in order to improve students’ understanding

of the I/O topic? 35

navigate a maze. [. . .] Another challenging final project was to program

two robots equipped with IR detectors: a wimp and a follower.”

In [Teller et al., 2003] the authors assessed the use of the tools via
questionnaires, where they discovered that the majority of the students
thought it was a good idea to use the robots in the course and that pro-
gramming the robots helped to reinforce the concepts they learned and
helped them to see (physically) the power of the 68HC11 architecture
in action.

Brylow and Ramamurthy [Brylow and Ramamurthy, 2009a] report the
use of the Linsys WRT54GL family of wireless routers in two different
courses. In this paper the focus will be on the sophomore level course
at Marquette University. The system “contains a little-endian embedded

MIPS 32 processor [. . .], with 16 MB of RAM, and 4MB FlashROM. [. . .]

easily accessible serial port connections on the main board that allow

direct access to the device firmware.” Among the exercises they include
in for a sophomore course on embedded systems, the two most related
to the I/O subsystem state the following: “The third laboratory exercise,

writing and testing a basic device driver, begins the experiences specifically

aimed at building embedded systems design competence. Rather than

view a device driver through the lens of a heavily abstracted operating

system layer, students work directly with the memory-mapped control and

status registers of a serial device to build input and output primitives that

they will reuse for the remaining of the term. This assignment serves not

only to practice reading and producing technical documentation for a

peripheral I/O device, but also to use C language struct pointers to manage

interaction with external devices, a common motif in embedded systems.

[. . .] The eighth exercise extends the simple, synchronous serial driver to

build a fully-buffered, asynchronous serial driver. Working directly with

I/O interrupts, hardware FIFOs and multiple devices, students confront

the genuine complexity of interaction between embedded processors and

their peripherals. A modern serial UART is itself best described by a finite

state machine with some timed transitions, and a simple teletype (TTY)

protocol on top of this adds another state machine at a different level of

abstraction.” This study again reports students’ satisfaction, but contains
nothing on learning outcomes. More information on this project can be
found in [Brylow and Ramamurthy, 2009b].

Santofimia and Moya [Santofimia and Moya, 2009] report changing

36 Chapter 3: Background and related work

the PIC16F84 for a Nintendo DS (NDS) gaming console. In this case, the
interrupt concept is introduced via timers and scrolls. “Implementation

of counters can be accomplished by using timers”. Moreover, interrupts
generated when line drawing are necessary to display new data on the
screen. Students were given the option to choose between PIC16F84
and NDS. “Over thirty percent of the students chose the NDS platform,

what provided an acceptable feedback for comparing result regarding the

acquired knowledge.” The data gathered while using the NDS showed
“an important improvement in terms of the contents understood and re-

tained by students.”

Larraza-Mendiluze, Garay-Vitoria, Martín, Muguerza, Ruiz-Vázquez,
Soraluze, Lukas, and Santiago [Larraza-Mendiluze et al., 2013] also
use NDS in their approach, in this case switching from a PC-based
laboratory to a NDS-based laboratory. The paper has a section that
“shows the extent to which the NDS I/O subsystem was used in [the] study

and explains the various elements involved in the I/O process.” The paper
shows data gathered in two subsequent years, where the experimental
group used the NDS in both years and the control group used the PC
during the first year and NDS during the second year. While in the first
year the scores obtained in the control group were lower than those in
the experimental group, the year in which both groups used the NDS
the scores were almost the same. It is noteworthy that the experimental
group also had lower drop-out ratios.

3.3.3 Using different educational approaches

Martínez-Monés, Gómez-Sánchez, Dimitriadis, Jorrín-Abellán, Rubia-
Avi, and Vega-Gorgojo [2005] propose the use of multiple case studies
to enhance PBL in a CA course. It looks like a good approach where they
carry a quantitative and qualitative evaluation of the results for four
years, concluding that “students generalize well their acquired knowledge”.
However, in regard to the I/O subsystem, they have to resort to an
analytical study “because of the lack of simulators”.

Ramachandran and Leahy Jr [2007] propose an integrated approach
to teaching computer systems architecture, teaching in the same course
CA and OS. One of the five modules they propose is devoted to the

3.4: The I/O topic at several Spanish universities 37

I/O subsystem and software concepts related to devices and device
controllers. Although they explain the project students would develop
during the I/O module, the paper does not refer much about how
students understand the topic.

Teller et al. [2003] report the implementation of a course using par-
ticipatory learning strategies. First of all students learn to program a
specific processor using a simulator and then students are challenged
to program small robots that are controlled by the learned processor.
In order to control the robot the students are required to “download

programs, via the serial communication interface, to a 68HC11 micropro-

cessor. These programs interface with the 68HC11’s I/O ports and permit

students to analyse the behaviour of, among other things: memory-mapped

I/O, the serial communication interface, motors connected to the I/O ports,

digital and analogue sensors, programmable timers and counters, and

interrupts.”. This paper has been reported in Subsection 3.3.2, however,
it has also been included here because the authors stress from the begin-
ning and during the whole paper the participatory learning strategies
used.

3.4 The I/O topic at several Spanish universities

For this section only Spanish universities have been considered because
the similarities in the syllabus of these different universities made it
easier to locate the I/O topic within the subjects. The universities
considered are University of Castilla-La Mancha (UCLM), University
of Granada (UGR), Technical University of Catalonia (UPC), Technical
University of Madrid (UPM), Polytechnic University of Valencia (UPV),
UPV/EHU, and Unizar. Table 3.5 shows, for each university that have
been considered, the subject in which the I/O subsystem is treated,
the semester in which the mentioned subject is taught, the number of
ECTS credits of the subject, the books they propose among the books
we have referred in section 3.2 (it is possible that the edition does
not concur), and the syllabi that these universities propose for the I/O
subsystem topic. The subject whole programs for each university can
be found at [UCLM, 2013; UGR, 2013; UPC, 2013; UPM, 2013; UPV,
2013; UPV/EHU, 2013; Unizar, 2013].

38 Chapter 3: Background and related work

University Subject

Name

Semes-

ter

#

of

cred-

its

References Syllabus

UCLM Computer
Struc-
ture

2 6 Patterson and
Hennessy
Stallings

Input/Output system
- I/O modules
- I/O modes: programmed, inter-
ruptions and DMA
- Buses

UGR Computer
Struc-
ture

3 6 Hamacher et al.
Stallings
Patterson and
Hennessy

Input/Output and buses
- I/O system funtions. I/O inter-
faces
- Programmed I/O
- Interrupts
- DMA (Direct Memory Access)
- Basic bus structures
- A bus specification: Transfer.
Timing. Arbitration
- Examples and standards

UPC Computer
Struc-
ture

1 or 2 7.5 Patterson and
Hennessy

Exceptions/Interruptions
- Basic concepts and hardware sup-
port for MIPS
- An exception’s detailed function-
ing and example of a generic ser-
vice routine
- Specific cases: TLB faillure. Sys-
tem requests. Interruptions

UPM Computer
Archi-
tecture

3 or 4 6 Patterson and
Hennessy

Input/Output system

UPV Computer
Struc-
ture

3 and 4 9 Patterson and
Hennessy
Stallings
Hamacher et al.

Input/Output unit
- I/O adaptors and interfaces
- I/O synchronization mechanisms
- I/O transfer techniques

UPV/EHU Computer
Struc-
ture

2 6 Hamacher et al.
Stallings
Patterson and
Hennessy

The I/O subsystem
- Description of the I/O interface
- Communication and synchroniza-
tion: polling and interrupt
- Peripheral management in the
Nintendo DS
- DMA: Direct Memory Access

Unizar Architec-
ture and
Com-
puter
Organi-
zation
1

2 6 Stallings The I/O subsystem
- Generic model of device con-
troller registers
- Basic methods of synchronization
and transfer
- Exceptions
- Integration of peripherals in mi-
crocontrollers

Table 3.5: How the I/O topic is taught in several Spanish universities

3.5: The approach taken at the University of the Basque Country 39

3.5 The approach taken at the University of the Basque

Country

At the University of the Basque Country (UPV/EHU), when the topic
was taught in the third semester, all the approaches were included. The
purely descriptive approach was overrun by the practical part. The
programming approach was used in labs and also in paper exercises.
Paper exercises were also used to work on the performance of the
computer system. Finally, a simulator was developed in a graduate
thesis that was used in lectures to show the datapath-signal approach
[Garay, Larraza, Martín, Ruiz, and Soraluze, 2010].

However, when the EHEA was introduced and the curricula changed,
the time devoted to the subject was reduced significantly. This made
impossible covering all the approaches. The programming approach was
selected because the performance of the computer systems is treated
in other subjects, and the datapath-signal approach was considered
only to help understanding the functioning of the I/O subsystem in an
undergraduate introductory course.

3.6 Conclusions

In this chapter, a survey related to the educational process for the
computer I/O subsystem at undergraduate introductory level is pre-
sented. Textbooks, course syllabi, and conference and journal papers
were surveyed. In the analysis of textbooks, course syllabi of universi-
ties classified in high positions in different university rankings and the
authors previous work, it was found that there are different educational
approaches in regard to the computer I/O subsystem at undergraduate
introductory level.

Pros and cons of the four different educational approaches have been
given in order to help future lecturers choose. The purely descriptive ap-
proach stays at a low level knowledge taxonomy stage, being accessible
for students of different majors. As for the other approaches, perfor-
mance, although an important issue in the I/O subsystem, is not unique
to this topic and can be worked in other subjects. The datapath-signal

40 Chapter 3: Background and related work

approach can help understanding the topic, but does not deepen in the
knowledge taxonomy. Finally, the programming approach can be diffi-
cult to deal with when the students are not very good at programming,
but is an approach where abstract concepts can be very well treated.

Also research literature has been analysed. In conference and journal
papers related to teaching the computer I/O subsystem, several tools
(such as simulators and real machines) are presented. In some cases
little data are provided about the use of these tools in the classroom.
However, there is a lack of references that show what students have
learned after using the aforementioned tools. Moreover, it has to be
said that most of the references found in the literature show single
experiences that generally lack continuity over several years.

The survey was limited to introductory courses that are taught at
undergraduate level. It would be interesting to analyse how the ed-
ucational process for the computer I/O subsystem evolves in more
advanced courses.

CHAPTER 4

Deciding on the educational infrastructure

DURING many years the laboratories to endorse the learning process
of the computer I/O subsystem at the UPV/EHU have been devel-

oped on PCs. In these labs students used to access registers mapped
in memory or in the I/O space, program polls to serve device requests
and control the interrupt vector for accessing their own interrupt ser-
vice routines. The laboratory sessions based on PCs are detailed in
Subsection 5.1.2 of this disseretation.

Although the opinion of the course lecturers is that these laboratory
sessions are of great help for the assimilation of the subject material, a
progressive decrease has always been observed in the attendance.

Moreover, operating systems, in the pursue of security, started making
use of the different accessing modes of the hardware such as user-mode
or kernel-mode [Nutt, 2004]. This way some of the elements that need
to be accessed for the control of peripherals stopped being directly
accessible. They were only accessible through the kernel or nucleus
of the operating system. The easiest overcome to the problem was
to use virtual machines with old operating systems, working over the
machine in full mode. However, using out of date operating systems
is not attractive for the students and we started looking for a new
infrastructure for our labs. The idea of more attractive labs brought us
to search among handheld game consoles.

42 Chapter 4: Deciding on the educational infrastructure

The rest of this chapter is devoted to show the path between this search
to the end using the Nintendo®DS (NDS) console. In the first section
of this chapter (section 4.1) the analysis of several handheld consoles
will be shown. The second section (section 4.2) will introduce the NDS
machine. The third section (section 4.3) will describe the peripherals
used in the new laboratories and how they have been adapted for their
use in the course. Finally section 4.4 will make some conclusions on
the use of the NDS handheld console during the educational process of
the computer I/O subsystem in undergraduate introductory courses.

What we present in this chapter has previously been partially published
in [Larraza-Mendiluze, Garay-Vitoria, Martín, Muguerza, Ruiz-Vázquez,
Soraluze, Lukas, and Santiago, 2012] and [Larraza-Mendiluze et al.,
2013].

4.1 Selection of the handheld game console

An extensive analysis of handheld game consoles is out of the scope
of this work. However before starting we did roughly analyse some
of the (at that moment) known handheld consoles: the PlayStation®
Portable (PSP), Nintendo® Dual Screen (NDS), PANDORA, and GP2X.
The reasons that brought us to continue working with the NDS where
the following:

• At that time, while version 5.53 of the firmware for the PSP had
been released, homebrew applications could only be run under
versions 1.0 or 1.5 of the firmware [Accarrino, 2005; Torrone, 2005].
Probably later updates have been released, but at that time it was a
problem.

• PANDORA being a console running under open source software
was a very attractive option. However, it is very difficult to obtain
[Pandora]. Although it may be possible to obtain one for the devel-
opment of the system this could generate problems when it comes
to testing the system with the students.

• GP2X also runs on open source software. The main problem with
this console at the time of making the selection for this project was

4.2: The NDS console 43

its lack of connectivity. No Wifi is incorporated to allow the consoles
to be connected (not even in the newest version at the moment-
GP2X Wiz7) [GP2Xb]. At that time there was another project of a
collaborative system for learning and this lack was a problem. A
wifi possibility has been later added to the GP2X Caanoo [GP2Xa].

• The price of the consoles was also considered and in that aspect, the
NDS was the most competitive one.

• All other consoles have been ruled out due to the lack of support
they provided.

4.2 The NDS console

Although the main objective of this study was to adapt the subject to
the use of the NDS machine, sometimes the functioning of the system
needed to be adapted to the situation (the development was to be
done by first year students). A few drawbacks needed to be solved and
therefore a template was handed out to the students with the short-cuts
and other system specifications that were not directly related to the I/O
subsystem. This subsection is intended to show the extent to which the
NDS I/O subsystem has been used in the Computer Structure course at
the UPV/EHU. The different elements involved in the I/O process will
be explained in this subsection.

It must be borne in mind that in order to program the NDS machine
the devkitPro toolchains [devkitPro] have been used and therefore,
some differences could appear when some other toolchains are used.

4.2.1 The memory

It has to be considered that the NDS machine’s objective is gaming. For
the last generation games the graphical interface is very important. It
needs 2D and 3D rendering, and many other aspects that are out of the
scope of the subject. As a result, the memory system is not as straight-
forward as it could be desirable in this context, see figure 4.1. Although

44 Chapter 4: Deciding on the educational infrastructure

Figure 4.1: Nintendo DS memory layout

Source: http://dev-scene.com/NDS/Tutorials_Day_2#Memory_Layout. Retrieved in 11/25/2013

4.2: The NDS console 45

✈♦✐❞ ✐♥✐t❱✐❞❡♦▼❡♠♦r②✭✮ ④
✴✯ ▼❛♣ ♠❡♠♦r② ✐♥ ♦r❞❡r t♦ s❤♦✇ ✐♠❛❣❡s ✐♥ ❜♦t❤ ❞✐s♣❧❛②s✳ ✯✴

✈r❛♠❙❡t▼❛✐♥❇❛♥❦s✭❱❘❆▼❴❆❴▼❆■◆❴❇●❴✵①✵✻✵✵✵✵✵✵✱
❱❘❆▼❴❇❴▼❆■◆❴❇●❴✵①✵✻✵✷✵✵✵✵✱
❱❘❆▼❴❈❴❙❯❇❴❇●❴✵①✵✻✷✵✵✵✵✵✱
❱❘❆▼❴❊❴▲❈❉✮❀

✈r❛♠❙❡t❇❛♥❦❊✭❱❘❆▼❴❊❴▼❆■◆❴❙P❘■❚❊✮❀
✈r❛♠❙❡t❇❛♥❦❉✭❱❘❆▼❴❉❴❙❯❇❴❙P❘■❚❊✮❀

✴✯ ❙❡t t✇♦ ♠♦❞❡s ❢♦r ♠❛✐♥ ♠❡♠♦r② ✯✴
✈✐❞❡♦❙❡t▼♦❞❡✭▼❖❉❊❴✺❴✷❉ ⑤ ✴✴ s❡t ✺t❤ ✈✐❞❡♦ ♠♦❞

❉■❙P▲❆❨❴❇●✷❴❆❈❚■❱❊ ⑤ ✴✴ ❛❝t✐✈❛t❡ ✷♥❞ ❜❛❝❦❣r♦✉♥❞
❉■❙P▲❆❨❴❇●✸❴❆❈❚■❱❊✮❀ ✴✴ ❛❝t✐✈❛t❡ ✸r❞ ❜❛❝❦❣r♦✉♥❞

✴✯ ❙❡t ✈✐❞❡♦ ♠♦❞❡ ❢♦r ✷✳ ❧❡✈❡❧ ❞✐s♣❧❛② ✯✴
✈✐❞❡♦❙❡t▼♦❞❡❙✉❜✭▼❖❉❊❴✺❴✷❉ ⑤ ✴✴ s❡t ✺t❤ ✈✐❞❡♦ ♠♦❞

❉■❙P▲❆❨❴❇●✸❴❆❈❚■❱❊✮❀
✴✴ ❛❝t✐✈❛t❡ ✸r❞ ❜❛❝❦❣r♦✉♥❞

⑥

Figure 4.2: Source code of the routine for initializing video memory, from examples of Dovoto

and Jaeden Ameron in the devkitPro environment [devkitPro]

46 Chapter 4: Deciding on the educational infrastructure

Figure 4.3: Definition of a sprite, (a) array containing the value of each pixel, (b) interpretation

of the information contained in the array.

the aim is to get to the systems low level, some library functions have
been used to overcome that problem (see Figure 4.2).

The students are required to draw a sprite pixel by pixel and store it in
memory, so that they can see that changing the content of a memory
location changes what they get on the screen. As an example of how
to do that, the code in figure 4.3(a) (an array of 256 positions) defines
the diamond that can be seen in figure 4.3(b) (the number stored in
each position of the array defines a color of the sprite. The first 64
positions of the array define the upper left quadrant of the sprite, an so
on). Using the functions of figure 4.4 the sprite is stored in memory.

4.2.2 The double processor

Another drawback of the NDS for the purpose of this experience is that
it has two processors, one mainly devoted to the graphic processing
and the other one mainly devoted to the I/O subsystem. The conver-
sational process between the two processors is not the objective of
the subject and, therefore, the templates handed out to students make

4.2: The NDS console 47

✉✶✻✯ ❣❢①❡rr♦♥❜♦❀

✈♦✐❞ ❙♣r✐t❡❛❦▼❡♠♦r✐❛♥●♦r❞❡✭✮④

✐♥t ✐❀
❢♦r✭✐ ❂ ✵❀ ✐ ❁ ✶✻ ✯ ✶✻ ✴ ✷❀ ✐✰✰✮
④

❣❢①❡rr♦♥❜♦❬✐❪ ❂ r♦♠❜♦❬✐✯✷❪ ⑤
✭r♦♠❜♦❬✭✐✯✷✮✰✶❪❁❁✽✮❀

⑥
⑥

Figure 4.4: Source code for saving the sprite in memory.

some arrangements so that they can work as if they were using just one
processor.

Only the graphical processor (necessary to get something on the
screen) is programmed. Luckily, this processor also has access to the
timers’ and keyboards’ registers, and some code in the templates grabs
the data about the touch screen from the other processor.

4.2.3 The I/O registers

The I/O registers are means by which the peripherals and the processor
communicate with each other and are one of the main concepts to learn
in the I/O subsystem topic. I/O registers can be mapped into memory
or into the I/O space. The latter is a more secure method and is that
mainly used in PCs. However, a gaming console is less prone to attack
and I/O registers need to be easily accessible, since peripherals are
widely used. These could be the reasons why the NDS console has all
its I/O registers mapped into memory. The registers to be used in the
lab sessions are defined so that the students have no need to use the
addresses all the time (see Figure 4.5). Remember that the registers of
the touch screen are not directly accessible from the processor being
used. Section 4.3.3 will show how touch screen data is accessed.

48 Chapter 4: Deciding on the educational infrastructure

✴✴❘❡❣✐st❡rs ❢♦r ✐♥t❡rr✉♣t ❝♦♥tr♦❧

★❞❡❢✐♥❡ ■▼❊ ✭✯✭✈✉✐♥t✸✷✯✮✵①✵✹✵✵✵✷✵✽✮
✴✴■♥t❡rr✉♣t ▼❛st❡r ❊♥❛❜❧❡
★❞❡❢✐♥❡ ■❊ ✭✯✭✈✉✐♥t✸✷✯✮✵①✵✹✵✵✵✷✶✵✮
✴✴■♥t❡rr✉♣t ❊♥❛❜❧❡
★❞❡❢✐♥❡ ■❋ ✭✯✭✈✉✐♥t✸✷✯✮✵①✵✹✵✵✵✷✶✹✮
✴✴■♥t❡rr✉♣t ❋❧❛❣

✴✴❘❡❣✐st❡rs ❢♦r t❤❡ ❦❡②❜♦❛r❞
★❞❡❢✐♥❡ ❚❊❑▲❆❑❴❉❆❚ ✭✯✭✈✉✶✻✯✮✵①✹✵✵✵✶✸✵✮
✴✴❦❡②❜♦❛r❞ ❞❛t❛ r❡❣✐st❡r
★❞❡❢✐♥❡ ❚❊❑▲❆❑❴❑◆❚ ✭✯✭✈✉✶✻✯✮✵①✹✵✵✵✶✸✷✮
✴✴❦❡②❜♦❛r❞ ❝♦♥tr♦❧ r❡❣✐st❡r

✴✴❘❡❣✐st❡rs ❢♦r t✐♠❡r✵
★❞❡❢✐♥❡ ❉❊◆❇✵❴❉❆❚ ✭✯✭✈✉✐♥t✶✻✯✮✵①✵✹✵✵✵✶✵✵✮
✴✴t✐♠❡r✵ ❞❛t❛ r❡❣✐st❡r
★❞❡❢✐♥❡ ❉❊◆❇✵❴❑◆❚ ✭✯✭✈✉✐♥t✶✻✯✮✵①✵✹✵✵✵✶✵✷✮
✴✴t✐♠❡r✵ ❝♦♥tr♦❧ r❡❣✐st❡r

Figure 4.5: Definition of the I/O registers.

4.2: The NDS console 49

✈♦✐❞ ✐♥t❡rr✉♣ts✭✮
④

✐rq❙❡t✭■❘◗❴❚■▼❊❘✵✱ ❉❡♥❜❊t❡♥✮❀
✐rq❙❡t✭■❘◗❴❑❊❨❙✱ ❚❡❦❊t❡♥✮❀

⑥

Figure 4.6: Setting interrupt service routines for each interrupt

4.2.4 The interrupt management

There is a processor devoted solely to the inputs and outputs and, there-
fore, almost all the I/O is controlled by polling. In this way polling be-
comes more natural and therefore easier to understand for the students.
However, it is also possible to control some peripherals by interrupt. A
software interrupt controller called “The interrupt dispatcher” can be
found in the devkitPro toolchain [devkitPro], libnds library. This is
programmed in assembler and it is therefore worth for reviewing the
concepts explained in the first part of the subject.

In the lab sessions the interrupt controller is used as it is, although
there is always the possibility to change it. As it is:

• the programmer sets the priorities of the interrupts, which will be
the same as the order in which the ISRs for each Interrupt Request
(IRQ) are set (e.g. in figure 4.6 timer0’s interrupts will have more
priority than keyboard’s interrupts because they are defined first).

• only single-level interrupts are accepted; i.e. an interrupt cannot be
interrupted (see figure 4.7).

When coding it is also possible to use the Interrupt Master Enable
(IME) register to accept or deny interrupts in general, and the Interrupt
Enable (IE) register in order to accept or deny specific interrupts. The
Interrupt Flag (IF) register is only used by the interrupt controller or
dispatcher to know the interrupts that have been requested.

50 Chapter 4: Deciding on the educational infrastructure

♠♦✈ r✶✷✱ ★✵①✹✵✵✵✵✵✵
✴✴ ❜❛s❡ ❛❞❞r❡ss ❢♦r r❡❣✐st❡rs ❢♦r ✐♥t❡rr✉♣t ❝♦♥tr♦❧

❧❞r r✶✱ ❬r✶✷✱ ★✵①✷✵✽❪ ✴✴ r✶ ❂ ■▼❊
❝♠♣ r✶✱ ★✵
✴✴ ✐❢ ✐♥t❡rr✉♣ts ❛r❡ ❞✐s❛❜❧❡❞ ❡①❡❝✉t✐♦♥ ❡♥❞s
❜①❡q ❧r

♠♦✈ r✵✱ ★✵
str r✵✱ ❬r✶✷✱ ★✵①✷✵✽❪
✴✴ ♦t❤❡r✇✐s❡✱ ✈❛❧✉❡ ✵ ✐s st♦r❡❞ ✐♥ ■▼❊✱ ❞✐s❛❜❧✐♥❣ ✐♥t❡rr✉♣ts

Figure 4.7: Code in the Interrupt dispatcher that avoids multiple level interrupts.

latch= 65536−
1

inter rupt f requenc y
∗ counting f requenc y

Figure 4.8: Formula to calculate the value of the timer data register

4.3 Some of the NDS peripherals

4.3.1 The timer

The NDS console has four timers for each processor. These timers
are 16 bit programmable counters. These counters can be stated on
by activating bit 7 of its control register. Bit 6 is used to tell the
timer whether it has to produce an IRQ when an overflow occurs.
The counting frequency is also programmable using bits 0 to 2 and,
therefore, the interrupt frequency is controllable. It is also possible to
connect the timers with each other in order to have a bigger amount of
interrupt frequencies (see table 4.1).

The data register can be used to establish the number from which the
counter will start counting. The formula used to calculate this initial
value can be seen in figure 4.8.

In the lab sessions the students have to program at least one timer and
code the ISR that will be run when the timer interrupts.

4.3: Some of the NDS peripherals 51

Bit Value Definition

7 1 Activate timer

6 1 Generate interrupt when overflow

2 1 Connect timers. Start counting when previous timer overflows. Can not be used in
timer0

0-1 0 Frequency divider 1 (Max.F. 33554432 Hz – Min.F. 512 Hz.)

0-1 1 Frequency divider 64 (Max.F. 524288 Hz – Min.F. 8 Hz.)

0-1 2 Frequency divider 256 (Max.F. 131072 Hz – Min.F. 2 Hz.)

0-1 3 Frequency divider 1024 (Max.F. 32768 Hz – Min.F. 0.5 Hz.)

Table 4.1: Explanation of the bits in the control register of the timer

Figure 4.9: Keyboard of the Nintendo DS

4.3.2 The keyboard

The NDS has only 12 keys, as can be seen in Figure 4.9. Two of these
keys, the X and Y keys, are controlled separately (only accessible from
the processor that is not being used during the lab sessions). Therefore
only the other 10 keys are to be used.

The data register is 16 bits long, and uses the bits 0 to 9 to tell which
key or keys have been pressed. The control register is also 16 bit long.
Bit 14 can be used to tell whether the keyboard will interrupt. If not,
the data register can also be read by poll to determine the pressing of a

52 Chapter 4: Deciding on the educational infrastructure

Bit Definition

0 A key

1 B key

2 Select key

3 Start key

4 Right key (directional pad)

5 Left key (directional pad)

6 Up key (directional pad)

7 Down key (directional pad)

8 R key

9 L key

10-13 not used

14 Activate interrupts (1 active / 0 inactive)

15 Interrupt condition (1 AND / 0 OR)

Table 4.2: Explanation of the bits in thecontrol register of the keyboard. Bit 0 to 9 are the

same in the data register.

key. Bit 15 of the control register is used to tell whether the interrupt
will be caused by the pressing of a single key or whether several keys
must be pressed in order to interrupt. Bits 0 to 9 can be used to say
which keys are allowed to interrupt and finally bits 10 to 13 are not
used (See Table 4.2).

During the lab sessions the students have to control some keys by
polling and others by interrupt, setting the control register correctly for
this and coding the polling and the ISR.

4.3.3 The touch screen

This peripheral is only accessible from the processor that is not being
controlled in this context. However, it was also desirable to cover it be-
cause otherwise the work to do would be too restrictive for the students.
The way of overcoming this problem was to make an abstraction of the
communication process. The routine in the libnds library used can be
seen in figure 4.10.

The students only need to define a variable of the t♦✉❝❤P♦s✐t✐♦♥
type, as in figure 4.11. This variable is a two value datum (the x and

4.4: Conclusions 53

✴✴✲✲
✈♦✐❞ t♦✉❝❤❘❡❛❞✭t♦✉❝❤P♦s✐t✐♦♥ ✯❞❛t❛✮ ④
✴✴✲✲

✐❢ ✭ ✦❞❛t❛ ✮ r❡t✉r♥❀

❞❛t❛✲❃r❛✇① ❂ ❴❴tr❛♥s❢❡r❘❡❣✐♦♥✭✮✲❃t♦✉❝❤❳❀
❞❛t❛✲❃r❛✇② ❂ ❴❴tr❛♥s❢❡r❘❡❣✐♦♥✭✮✲❃t♦✉❝❤❨❀
❞❛t❛✲❃♣① ❂ ❴❴tr❛♥s❢❡r❘❡❣✐♦♥✭✮✲❃t♦✉❝❤❳♣①❀
❞❛t❛✲❃♣② ❂ ❴❴tr❛♥s❢❡r❘❡❣✐♦♥✭✮✲❃t♦✉❝❤❨♣①❀
❞❛t❛✲❃③✶ ❂ ❴❴tr❛♥s❢❡r❘❡❣✐♦♥✭✮✲❃t♦✉❝❤❩✶❀
❞❛t❛✲❃③✷ ❂ ❴❴tr❛♥s❢❡r❘❡❣✐♦♥✭✮✲❃t♦✉❝❤❩✷❀

⑥

Figure 4.10: Routine that takes the information of the touch screen from the processor

devoted to I/O

t♦✉❝❤P♦s✐t✐♦♥ ♣♦s❴s❝r❡❡♥❀

Figure 4.11: Definition of a variable of the t♦✉❝❤P♦s✐t✐♦♥ type.

y coordinates of where the screen was touched). If these two values
are 0, it means that the screen has not been touched and, therefore,
the polling must carry on until these values are different to 0, as in
Figure 4.12.

During the lab sessions the students have to program the above-
mentioned polling, and combine it with the polling for the keyboard.

4.4 Conclusions

The aim of this chapter has been to show the characteristics of the
Nintendo DS machine that make it useful for a computer I/O subsystem
course in an undergraduate introductory level. The Nintendo DS is
a bare machine, i.e. it has no operating system. Its I/O registers are
memory-mapped. Its devices are usually polled for I/O. However, it
offers the possibility of managing interrupts in some cases. It has an

54 Chapter 4: Deciding on the educational infrastructure

✇❤✐❧❡✭✶✮
④

t♦✉❝❤❘❡❛❞✭✫♣♦s❴s❝r❡❡♥✮❀
✇❤✐❧❡✭♣♦s❴s❝r❡❡♥✳♣①❂❂✵ ✫✫ ♣♦s❴s❝r❡❡♥✳♣②❂❂✵✮

t♦✉❝❤❘❡❛❞✭✫♣♦s❴s❝r❡❡♥✮❀
❬✳✳✳❪

⑥

Figure 4.12: Polling the touch-screen

interrupt controller called the Interrupt Dispatcher, which shows clearly
how the interrupts are controlled in ARM assembly language.

In this chapter, it has been explained how to use the timer, the key-
board, and the touch-screen. The specifics of the DMA have, for the
moment, been left out of the scope of this study, but they will be intro-
duced in the future, since it is another possibility offered by the NDS
machine.

The next chapter will explain how NDS has been used in class along
three consecutive school years.

CHAPTER 5

The Project Based Methodology applied to the

computer I/O subsystem education: a three year

outline

WHILE in chapter 4 we have analysed how to use the Nintendo
DS machine as infrastructure for the educational process of the

computer I/O subsystem in undergraduate introductory courses, this
chapter will analyse how to improve students’ learning process from a
methodological point of view.
Project-based learning (PBL) is gaining confidence as a teaching method

over more traditional methodologies in which lectures and traditional
practical exercises prevail and students passively collect the information
that the lecturer transmits. In contrast, in PBL, the students themselves
take responsibility for their learning process and become promoters of
their own learning. They have to develop a project that is relevant to
the real world. They need to obtain the relevant information and learn
all of the necessary concepts while the lecturer provides guidance and
counselling in the process (i.e., they learn the concepts by doing). Thus,
the project stimulates learning. Moreover, PBL is a learning method-
ology based on collaboration. Students have to work in teams, which
forces them to develop other skills [Thomas, 2000].
There are many literature references on PBL in engineering education
[Díaz Lantada, Lafont Morgado, Munoz-Guijosa, Muñoz Sanz, Echá-
varri Otero, Muñoz García, Chacón Tanarro, and De La Guerra Ochoa,

56
Chapter 5: The Project Based Methodology applied to the computer I/O subsystem

education: a three year outline

2013; Kali Prasad, 2013] that stress its importance and effectiveness.
Related to computer science and computer engineering, in [Ramachan-
dran and Leahy Jr, 2007] they provided a good list of possible projects
to carry out in the area of computer architecture. [Berglund and Eck-
erdal, 2006; Martínez-Monés et al., 2005; Stanley, Wong, Prigmore,
Benson, Fishler, Fife, and Colton, 2007; Urness, 2007] describe interest-
ing implementations of the PBL methodology in the area of computer
architecture and systems.
With all that in mind, we modified our teaching methods by transition-

ing from classical lecture-based passive classes to PBL active methods.
As explained in chapter 4 we also decided to use the NDS for practical
work, a machine that matches perfectly with the objective of doing
attractive projects.
Section 5.1 will be used to describe the old approach in order to make

the reader aware of the change. Section 5.2 will describe the first setting
of the PBL approach, followed by the changes applied to this setting in
the following years. Finally, Section 5.3 will show an example of project
developed by the students from each school year. The data obtained in
terms of grades and satisfaction will be described in Chapter 6.

5.1 The previous methodology

The conventional teaching methodology was based on lectures in which
several topics were explained, including: the need for I/O controllers;
how these controllers interact with the CPU via registers that may
or may not be memory mapped; different synchronization options
(polling and interrupt), DMA and how the machine performs differently
with the use of the different synchronization options. All this theory
was supported by paper problems and Personal Computer (PC)-based
laboratory sessions. These, and the related assessment method will be
explained in the next three subsections.

5.1.1 Paper problems

Paper problems in the computer I/O subsystem topic were assignments
in which a new PC-controlled system had to be developed. This system

5.1: The previous methodology 57

had several peripherals other than the standard ones explained in the
classroom (screen, keyboard and clock). Students had to design a State
Machine (SM) that would perform the requirements of the assignment.
Then they had to write the program needed to achieve a useful system.
The program should include the main program, the polling (if required)
and all the required ISRs [Garay et al., 2010].

Typically, the peripherals used in these problems were not real, and
considering that students were only in their second year, the situations
were simplified; however, they showed that peripherals can be con-
trolled in very different ways and demonstrated that a link with the real
world can be established. Several of these paper problems used to be
done and corrected in class.

However, it is not easy to understand how everything happens, such
as when an ISR is going to be executed or what a strobe sequence is
for. The lab sessions explained in the next subsection were designed to
enhance understanding of these details.

5.1.2 PC-based lab sessions

Four or five lab sessions were conducted while the computer I/O sub-
system was taught. The aim was to teach students to directly control
the standard peripheral devices of PCs (i.e. the screen, keyboard and
clock). All these labs can be found in [Garay et al., 2010].

The first lab session was used to learn the control of a text screen,
a memory mapped peripheral. Also the cursor had to be controlled,
which is not mapped in memory. Students had to program low-level
routines to:

• write a character in a specific point in the screen;

• erase the whole screen;

• read the character of a specific point in the screen;

• make a scroll;

• set the cursor in a specific point; and

58
Chapter 5: The Project Based Methodology applied to the computer I/O subsystem

education: a three year outline

Figure 5.1: The SM used in the fourth laboratory session (a screen saver)

• read the position of the cursor and to establish the shape of the
cursor.

These exercises were designed to help them understand how to work
with memory mapped devices and show text and cursor wherever they
wanted in the screen.
In the second lab session, the students would control the keyboard by

polling, considering that the keyboard on a PC does not have a status
register, and therefore is usually controlled by interrupt. In order to
control the PC keyboard by poll, interrupts from the keyboard should
be disabled and then, poll the Interrupt Request Register (IRR) of the
Interrupt Controller (IC).
Controlling the keyboard via interrupt, and the difference between

both, polling and interrupt, was addressed in the third lab session.
The fourth lab introduced the clock and the concept of real-time

processing by means of a screen-saver. This lab session put students, for
the first time, in front of a simple but real SM (see Figure 5.1). Students
had to program low-level routines to save and restore the screen, to
update the time and draw it on the screen, and to use all of them in the
clock service-routine.
The fifth session was used to put everything together, programming

another clear screen function operated by the combination of some
keys. Usually not all the students were able to finish the first four lab
sessions in time and many used the fifth session to finish the previous
lab assignments.

5.2: The new PBL methodology 59

5.1.3 The assessment

The assessment of the topic consisted of a closed book paper final exam.
The computer I/O subsystem took a 45% of the whole exam. 10% of
the score usually was devoted to theoretical questions, 5% to the lab
sessions (could be graded either in the labs, if attended, or in the exam),
and 30% a paper problem (brand new problem, but with the same
structure).

This last paper problem in the final exam became a problem on itself.
Although we were not able to prove it, we constantly felt that the
students learned the structure of the problems and were able to solve
them without understanding the basics of the computer I/O subsystem.

5.2 The new PBL methodology

The directed PC lab sessions, where all the students had to do the same
lab assignment were replaced by a project in a PBL environment. This
project must be defined by each team in a specified context.

PBL is a collaborative learning method with two important features:
positive interdependence and individual accountability [Johnson, John-
son, and Holubec, 1998].

Positive interdependence requires that all members of a working team
participate actively and contribute to the project, avoiding that a mem-
ber absent himself from the team activity. An adequate working load is
essential to reach this objective. However, in a environment that was
new for the lecturers, it has been very difficult to measure this load and
define an even work load for all the students. Subsections 5.2.1, 5.2.2,
and 5.2.3 describe, among other parameters, how the team structure
and working load has been adapted along the three years, in order to
better satisfy the project needs.

Individual accountability requires that all the team-mates learn with
the project all the topics involved. In this case this is not ensured with
an even work load because the project has a contextualization work
that could or could not be evenly distributed. For example, one of the
team-mates could be doing all the images design leaving its part of the

60
Chapter 5: The Project Based Methodology applied to the computer I/O subsystem

education: a three year outline

I/O control to someone else. For this reason we decided that all the
students had to take an examination and get a minimum mark on it, in
order the project score to be taken into account in their final evaluation.

In adhering to PBL methodology, the leadership that a lecturer takes
in the classroom is minimised and reserved only for moments where
a special explanation is necessary. The rest of the time, the students’
work is crucial and performed either individually or in teams with the
lecturer playing the roll of counsellor.

Plagiarism is another issue overcome with this kind of projects. Home-
brew games, which code could be found online are never programmed
in such low level. They always use libraries for doing what the students
in this subject are asked to do, controlling the I/O from and towards
the peripherals. The problem comes when all the teams are asked to
develop the same project, sometimes even year after year. There have
been cases in which the students have changed the code of a previous
year project, but have not recompile it. Great error. However, all this
is avoided when each team has to design their own project. Even in
such things that are the equal for every project, there are always small
subtleties that each team will have redress.

As for the assessment, the value of the computer I/O subsystem topic is
still 45% of the total. As it is natural in a PBL environment, the project
itself has its load. 20% of the grade is taken from the work devoted to
the project. However there is a minimum theoretical knowledge that
the students are required to get. This theoretical knowledge takes the
10% of the grade and is assessed with a close book multiple choice
test. Finally the 15% remaining is assessed via a closed book exam with
practical exercises very close to the work developed in the project.

This study is nowadays three years old and we think that the work
done warrants some reflection in order to get a better setting of the PBL
methodology. The context changes from year to year, and even when
the context is the same or very similar the setting of the methodology
can be changed, trying to get better results or to increase students’
motivation. It has to be beard in mind that in this scenario teachers are
learners too [Boss and Krauss, 2007].

The grades obtained each year, the students’ satisfaction questionnaires
and the lecturer’s observations have been considered in order to make

5.2: The new PBL methodology 61

changes in the PBL settings. The following subsections will tell about
each year’s setting. Please while reading bear in mind that all the data
mentioned in these subsections is reported in Chapter 6.

5.2.1 The first school year 2010-2011

The first year, the amount of students enrolled in the “Computer Struc-
ture” course was of 60. However, only 41 students got to enrol for the
project. The rest of the students, either had already drop the studies or
the subject, or had chosen the final exam option.

The 41 students enrolled in the project where divided in teams of 5
mates, and one team of 6 mates. Most of the teams managed very
well, but there were two teams where some of the team-mates were
not regularly coming to class. In a few weeks, the 11 students of these
two teams had either stopped coming to class or were reassigned to fill
vacancies that students had left available in other teams. 29 students
got to the end of the project in 5 teams of 5 mates and 1 team of 4
mates.

Once the teams were created, the students were handed out the project
definition. The teams were asked to design an emulator of vending
machine which could work on a Nintendo DS machine. At this moment,
the reader must be wondering why, using an NDS machine, the project
was not the develop a game. The fact is that using a NDS machine to
develop the project was a challenge for the lecturers because of the lack
of handbooks. For example, the management of the graphic memory
is quite complicate and therefore, during the first year students were
only allowed to use static images, which was a big handicap to design a
game.

The students were instructed on building state machines so that they
could use this tool to graphically visualize the design. Meanwhile,
during the lectures, a question was proposed: “What do we need in

order to make/solve the project?”. A lot of needs were made evident
from students, several were related to the I/O topic itself, such as
how to control the buttons or the screen, the communications between
computer components, or how to control timing, whereas others were
not, such as a programming environment. At that point they were

62
Chapter 5: The Project Based Methodology applied to the computer I/O subsystem

education: a three year outline

willing to read the course notes in order to be able to answer the
questions. However, since we were following the jigsaw technique, they
only got part of the notes, because in the jigsaw technique, each student
studies part of the topic at hand, becoming an “expert” on that part.
Then there is an “expert” meeting to get to an agreement on the studied
part, and finally the team meets again, and each “expert” explains his
or her part to the rest of the team [Aronson, Blaney, Stephin, Sikes, and
Snapp, 1978]. While they were developing the project and they started
needing more information on the others’ parts, they got the whole set
of class notes.
The five parts in which the course notes were divided in order to hand

them out to each member of the team where as follows:

• I/O controllers and I/O registers (See Section A.1 in Appendix A, in
Basque)

• Polling and touch screen (See Sections A.2 and A.2.1 in Appendix A
and Section B.1.3 in Appendix B, in Basque)

• Polling and keyboard (See Section A.2 and A.2.1 in Appendix A and
Section B.1.4 in Appendix B, in Basque)

• Interrupt and keyboard (See Section A.2 and A.2.2 in Appendix A
and Section B.1.4 in Appendix B, in Basque)

• Interrupt and timer (See Section A.2 and A.2.2 in Appendix A and
Section B.1.5 in Appendix B, in Basque)

The rest of the work, that is programming the Interrupt Controller (See
Section A.3 in Appendix A and Section B.2 in Appendix B, in Basque),
and putting it all together would be a team work. On the other hand,
some of the reading was not directly connected with the work to do in
the project and was to be done by everybody (see Sections A.4, B.1.1,
and B.1.2.
The 4 member team could choose between treating the keyboard by

polling or by interrupt.
The six teams that got to finish the project developed vending machine

emulators controlling touch screen, keyboard and timer, as explained
in [Larraza-Mendiluze et al., 2013]. In these vending machines it was
possible to buy the following items:

5.2: The new PBL methodology 63

• sandwiches,

• drinks,

• candy,

• pictures,

• train tickets,

• petrol.

With regard to the achieved results, only 6 out of the 29 students that
got to finish the project did not get the minimum score in the exam in
order to pass the topic. That makes a pass rate of 79%, which is a much
better result than the previous 44%.

However, considering satisfaction, items #7, #16, #20, and #22 of
the gathered satisfaction questionnaires show that the students felt
helpless. They are used to be said what to do every moment and having
to work it out on their own was very hard. They complained about
not knowing anything about the theory before starting with the project,
although they were working on every part of the theory while trying to
address the project. They neither liked depending too much on what
their team-mates had to say about their part of the theory. With a little
help most of them got the idea of what the computer I/O subsystem,
polling and interrupt-driven I/O are. However, the idea of how all of it
works together was not so clear.

As for the lecturer, it was hard to deal with the team size. There were
not too many teams and this was helpful, but with a bigger group in
which there will be more teams, the management of the teams could
become a problem.

Therefore, a new proposal was made in order to try to overcome the
problems detected. On the one hand, the teams will be formed by at
least one member less. This was a tricky decision because the group
was going to be bigger. However, even for a bigger group, the lecturer
thought that it would be easier to manage within team conflicts. On the
other hand, the timing to introduce the theory could also change, as will
be explained in next subsection, in order to cover students’ demands.

64
Chapter 5: The Project Based Methodology applied to the computer I/O subsystem

education: a three year outline

5.2.2 The second school year 2011-2012

The second year, the amount of students enrolled in the “Computer
Structure” course was of 80, out of which 57 students got to enrol for
the project. Again, the rest of the students, either had already drop the
studies or the subject, or had chosen the final exam option.
The 57 students enrolled in the project where mostly divided in teams

of 4 members, but there also were a few teams of 5 members, and one
team of 3. It has to be said that the students of the 3 members team
accepted on their own responsibility the fact that they would have to
work harder in order to finish the project. Two teams dropped. The first
one arguing that they wanted to devote more time to the subjects they
had drop in the first semester. The second team just stopped coming.
In the rest of the teams there were some movements because some
members also dropped. Finally there were 4 teams with 3 members, 5
teams with 4 members, and 3 teams with 5 members, that is to say 47
students in 12 teams altogether.
This time, the project definition was not handed out to the students

until after working on the theory. The method to work on the theory
was again the jigsaw puzzle, but when they finished with the last step
of the jigsaw puzzle they all got the whole set of class notes.
During the previous year the lecturers were also improving their con-

trol over the machine and its resources, and at the end we were able to
give the students some routines in order to move sprites. This opened
the door for designing games, which we thought would be more at-
tractive for the students. Therefore, we changed the definition of the
project. During 2011/2012 academic year students had to implement a
simple game using the same NDS devices of the previous year.
Since the theory was already introduced, the question to inspire will-

ingness could not be the same as in the previous year. This time the
students were asked the following: “How can this be done in the NDS”.
They got say things like “we will need the peripherals registers’ address”,
or “how are interrupts managed in the NDS?”. But this time they were
eager to start developing THEIR game.
As we had hypothesized students were very attracted by the idea of

developing a game for the NDS console. They were really engaged to
the project.

5.2: The new PBL methodology 65

The twelve teams that got to finish the project developed the twelve
games describe below:

• Anaconda, a snake game in which the snake did not grow;

• Aracno jump, a platform game in which a spider had to jump from
platform to platform;

• Arkanoid, an arcanoid game in which the ball only moved vertically
an only once in the bar could be moved horizontally;

• Bold Eye, a quick vision game;

• Mineswipper, just it;

• Chombs, a labyrinth game with enemies to avoid;

• Gravity, a platform game where the gravity changes;

• Moveblock, a labyrinth game;

• Nyan space, an obstacle avoiding game;

• Parkour King, another obstacle avoiding game;

• Super Nacho, a platform game where the avatar is a nacho;

• Total quiz, a quiz game.

It was very nice to have the students so involved in their project,
but this time there was also one problem (at least). Teams were not
very open minded as to their project definitions. Some of them were
classified as hard to develop by the lecturer, but the students would not
change their mind. Only the team that finally developed the Bold Eye
game switched from a very ambitious graphical adventure game. Not
only had some of the definitions a strong programming requirement,
but the students would not go for a graphically poor environment. They
would dedicate too much effort on these issues and much less to I/O
issues. Most of the issues related to what they have to learn in this topic
were achieved via trial and error. Of course this was reflected on the
scores they got. This time, only 54% of the students that got to finish

66
Chapter 5: The Project Based Methodology applied to the computer I/O subsystem

education: a three year outline

the project did also got the minimum grade at the exam. The value is
still above the 44% obtained with the previous methodology, but much
below the 83% of the precedent school year.

The satisfaction questionnaires also reflected a bigger dissatisfaction,
although not statistically significant. However, items #7, #15, #20,
and #22 did not get better grades. Working on the theory before telling
the students what they were supposed to do in their project did not
make them feel more secure on the theoretical concepts, neither they
felt supported during the development of the project, and they still do
not think that the project itself is enough practice to understand the
content of the subject.

From the lecturer’s point of view, that year was very demanding, the
deadline was close and most of the teams did not have the project ready
because they had spent too much time developing graphics. Also during
the theoretical part, when dealing with the jigsaw puzzle, the lecturer
felt too difficult to guide the discussion groups as the teams were too
big or too many. Moreover, the teams that finally got to have only
three members did not have much difficulties to end their projects up.
Therefore, the conclusion is that the project can be assigned to teams
of three members, where the management of the team is easier. The
decisions taken in order to overcome these problems were as follows:

• The biggest size of the teams should be of 4, however teams of 3
are preferred.

• Problems derived from the jigsaw puzzle technique could be over-
come using an inquiry-based learning technique [Kahn and O’Rourke,
2005], where questions are proposed and answered in different
ways.

• The too ambitious game designs should be avoided since the begin-
ning in the project definition.

5.2: The new PBL methodology 67

5.2.3 The third school year 2012-2013

That year, the amount of students enrolled in the “Computer Structure”
course was of 78, out of which 40 students got to enrol for the project.
As allways, the rest of the students, either had already drop the studies
or the subject, or had chosen the final exam option.

The 40 students enrolled in the project where divided in teams of 3
members. However there were 4 students that would rather work in
pairs than form a 4 member team and therefore there were 12 teams
of 3 members and 2 teams of 2 members. In this occasion only one
students dropped because he decided to go for a design degree. Whether
the reason for the teams to remain firm was that it is more difficult for
the students to leave their partners when the team is smaller, or that
the students that year were more serious, can not be extracted from the
data at hand.

In order to develop the project the tasks were divided as follows:

• Interrupt controller and I/O controllers (See Sections A.1 and A.3
in Appendix A and Section B.2 in Appendix B, in Basque)

• Polling (See Section A.2.1 in Appendix A and Sections B.1.3 and B.1.4
in Appendix B, in Basque)

• Interrupt-driven I/O (See Section A.2.2 in Appendix A and Sec-
tions B.1.4 and B.1.5 in Appendix B, in Basque)

As in the previous years, the reading that was not directly connected
with the work to do in the project was to be done by everybody (see
Sections A.4, B.1.1, and B.1.2.

In order to follow the inquiry-based learning technique, lecturers
proposed questions that students had to answer based on their own
knowledge. This opened the way to a discussion where the theoretical
concepts of the topic were outlined. Finally the students had to answer
to the questions on their own with the course-notes.

Another tool was introduced that year, the concept maps. Although
the objective was to obtain an image of what the students get to know
after studying the topic, the hypothesis was that concept maps would

68
Chapter 5: The Project Based Methodology applied to the computer I/O subsystem

education: a three year outline

help the students on their process to learn the topic. More on the study
carried out with the concept maps can be seen in Chapter 7.

Restrictions were stablish in that year’s project definition. The students
were proposed to build a meta-project. Each team would have to
develop a mini-game to open a door in a 100-doors like game. The
definition of the mini-games was carefully revised by the lecturer, so
they were not too complicated to develop. Of course, the students’
initiative must not be repressed and they were given the possibility
for improving their projects once the I/O was controlled as the project
required. Most of the games were of the kind of the one described in
Section 5.3.3, but with different puzzles to open the door.

Only one student dropped, and only four failed to get the minimum
grade in the exam. 90% of the students who followed the methodology
passed. This is the best results obtained so far. However, the satisfaction
dropped dramatically with statistical significance in 16 items. And why
would the students be so unsatisfied with the subject? They explicitly
made the lecturer know that they did not like concept mapping. It was
a new tool requiring lots of effort to which they did not think they could
take advantage of.

However, there were two items that got a better score with a significant
difference. The first one said that the methodology was useful to link
theory and practice. The second one that the methodology was useful
to relate the contents of the course and obtain and integrated view.

From the lecturer’s point of view everything worked better than in
previous years, although it has to be considered that the grades had a
centralization tendency which should be avoided, maybe defining tasks
to give the opportunity to raise grades.

5.3 The Projects

The projects proposed to the students in the three consecutive school
years have been different. The following subsections will show one of
the outcomes of each year showing images of the SMs and the final
products.

5.3: The Projects 69

5.3.1 School year 2010/2011

In the 2010/2011 school year students had to implement vending
machine simulators that would run on a NDS machine. No restrictions
were made on the type of vending machine students should design,
only on the peripheral devices that had to be used at least to implement
it on the NDS. In fact, the students designed very different machines,
including machines that dispensed train tickets, sandwiches and soft
drinks.

Figs. 5.2 and 5.3 show the revised SM designed by one of the teams and
screen-shots for each transition for the train tickets vending machine.

Figure 5.2: State machine for the train ticket vending machine developed for the NDS during

the school year 2010-2011. *The information shown is the destination, the ticket price, the

introduced quantity, and the quantity remaining to be introduced. Letters in transitions are

links for screen-shots in Figure 5.3

In the initial state the system shows a screen inviting to start the
process, which could be done either by pressing button “A” or by touch-

70
Chapter 5: The Project Based Methodology applied to the computer I/O subsystem

education: a three year outline

Figure 5.3: Screen-shots for the train ticket vending machine developed for the NDS during

the school year 2010-2011.

ing “HASI” (START in Basque) in the touch screen (Figure 5.3(a)).
Once starting the process all the possible destinations are shown (Fig-
ure 5.3(b)). It is possible to select the destination by touching the
screen, directly, or moving around with the direction keys and pushing
key A when the desired destination is highlighted (Figure 5.3(c)). Once
the destination is selected, the payment process will start. The upper
screen will show the destination, the price of the ticket, the money
introduced so far, and the difference between the price and the money
introduced. The bottom screen will be showing the money pieces with
which the payment can be done (Figure 5.3(d)). In a real vending
machine, at this point we will have to introduce the coins or bills, but
in this case we only have to select the money piece by touching the
screen, or moving around with the direction keys and pushing key A
when the desired money piece is highlighted (Figure 5.3(e)). Once
enough money has been introduced to pay the ticket, a screen will be

5.3: The Projects 71

showing the message “printing the ticket” (Figure 5.3(f)) for 10 seconds.
If the machine runs out of paper after printing the ticket, it will show a
message asking to be paper loaded (Figure 5.3(g)). Once this is done
(in this case just touching the screen in the “load paper” message is
enough) the system returns to its initial state (Figure 5.3(a)).

5.3.2 School year 2011/2012

During the school year 2011/2012, the students had to develop a game.
As we hypothesised, the students where very attracted to that idea. On
the other hand, most of the games they thought about instantly were
out of their programming skills, and therefore, the lecturers had to
make a great effort to maintain the projects at a reachable level for the
students.

Figure 5.4: State machine for the SuperNacho game developed for the NDS during the school

year 2011-2012. Letters in transitions are links for screen-shots in Figure 5.5

Figs. 5.4 and 5.5 respectively show the SM and screen-shots of one of
the projects developed during the 2011/12 school year. It is a platform
game where a nacho (the popular Mexican food) has to recollect as
much cheese as he can while running through different scenarios or

72
Chapter 5: The Project Based Methodology applied to the computer I/O subsystem

education: a three year outline

levels. The SM starts after a presentation. When the final image of
the presentation is shown, two possibilities are offered, either pushing
button Start or waiting 10 seconds (see Figure 5.5(a)) to show the game
menu (see Figure 5.5(b), which needs both NDS screens). Selection
of the options in the menu can be done either by touching the screen
or with the up and down keys. Option Ranking: students can not save
information for later games, therefore they just show an image of an
imaginary ranking (see Figure 5.5(c)). Option Credits: show an image
with the names of the team mates (see Figure 5.5(d)). Option Options:
a new menu is shown with the only options of changing language (see
Figure 5.5(e)). By selecting this option the player has the possibility
to change the language from Spanish to Basque, going back directly to
the options menu (see Figure 5.5(f)). Going back to initial menu after
selecting one of these three options is done by touching the little button
in the top left corner of the screen “menu”(see Figs. 5.5(c,d,e)). Option
Play: the first level is shown (see Figure 5.5(g), which needs both NDS
screens). The upper screen says that button A can be used to jump, that
the directional pad can be used to move around, that button B is used
to go back to the menu. Finally, it explains that to go to the next level
the player needs to catch all the cheese pieces. 15 levels are shown one
after the other (see Figure 5.5(h)) once the Nacho has taken all the
cheese pieces and gets to the right hand side of the screen. After the
15th level a winning screen is shown (see Figure 5.5(i)). The button
Start needs to be pressed to go back to the initial menu.

As it can be appreciated, all the control of the Play state has been
excluded. What has been shown should be enough to see that the
dimension of the project exceeds the scope of the project and it is not
completely devoted to the I/O subsystem.

5.3.3 School year 2012/2013

Figs. 5.6 and 5.7 respectively show the SM and screen-shots of one
of the projects developed during the 2012/13 school year adapted
for explanation in this dissertation. It is a mini-game where the player
needs to solve a puzzle to get the elevator door open (see Figure 5.7(a)).
The player at the beginning does not have any information and therefore

5.4: Conclusions 73

Figure 5.5: Screen-shots for the train ticket vending machine developed for the NDS during

the school year 2011-2012.

probably will start touching the screen. When the door is touched, a
warning is showed saying that there is no electricity, and a red light
appears (see Figure 5.7(b)). Then the fuse box need to be touched to be
able to see the fuses (see Figure 5.7(c)). The player has 20 seconds to
set the fuses correctly. If the wrong fuse is touched, it will be necessary
to press key B to start again (see Figure 5.7(d)). The same will happen
if the time gets to the limit (see Figure 5.7(e)). But, if all the fuses are
correctly set, then the player will have to press key A to go back to the
elevator room (see Figure 5.7(f)). This time the electricity will be on,
and the light in the elevator green (see Figure 5.7(g)). Touching the
door will then open it (see Figure 5.7(h)), and get to the end of the
minigame. In Appendix C, the source code of this project is shown.

5.4 Conclusions

After these three trials in which thirty-four projects were developed, the
conclusion is that as we hypothesised, the students are very attracted

74
Chapter 5: The Project Based Methodology applied to the computer I/O subsystem

education: a three year outline

Figure 5.6: State machine for the "Elevator door" minigame developed for the NDS during

the school year 2012-2013. Letters in transitions are links for screen-shots in Figure 5.7

towards programming a game for a game console. However, it is very
hard to control the programming difficulties they can have being in
their first study year. As an example, during the course 2011-2012, a
team decided to develop an “arkanoid” like game. The lecturer advised
the team to be careful with this idea since the angles and velocity of
the ball should be considered. Indeed, the students had trouble with
this, they spent to much time on it and finally their “arkanoid” ball
moved only vertically, and the horizontal move was done statically in
the bar. This led the students to discourage and to miss a lot of detail
in issues really related to the computer I/O subsystem. Therefore, we
extracted from here a recommendation to carefully delimit the scope of
each project.

5.4: Conclusions 75

Figure 5.7: Adapted state machine the "Elevator door" minigame developed for the NDS

during the school year 2012-2013.

76
Chapter 5: The Project Based Methodology applied to the computer I/O subsystem

education: a three year outline

CHAPTER 6

Analysis of the data obtained during the three years

THE experiment was conducted, each course, only in one of the two
groups in which we teach the subject “Computer Structure”. This

subject is taught in the first year of the computing engineering degree.
It is worth remembering that it is a mandatory course, so every student
in the first year must enrol in this course, but not all of them attend
it or follow it actively. Only the students who have been following it
actively have been considered in this study.
While developing the study, a few steps were followed. Once PBL had

been applied and the project had been developed using NDS machines,
some data were gathered for quantitative and qualitative analysis. On
the one hand, the grades obtained by the students in the computer I/O
subsystem topic where considered for a quantitative analysis. On the
other hand, satisfaction was analysed both quantitative and qualitatively.
This data has been partially published in [Larraza-Mendiluze et al.,
2013].

6.1 Analysis of the grades obtained by the students in the

computer I/O subsystem topic

The mark-grade system adopted in Spanish universities recognizes four
common grades. The students’ performance is assessed using a 10-point

78 Chapter 6: Analysis of the data obtained during the three years

grading scale and the grades are expressed as follows: outstanding
(mark ≥ 9), remarkable (7 ≤ mark < 9), pass (5 ≤ mark < 7), and fail
(mark < 5). Some of the students that achieve 10 points are eligible for
a special grade denoted outstanding with honours. On the other side,
some of the students enrolled do not take the exam (drop-out).
Figure 6.1 shows the grades obtained by the students in the I/O

subsystem topic along the three years where the NDS and the PBL has
been applied. Fail and drop-out rate is the inverse of overall pass rate.
Compared to the 44% pass rate of the previous years, it is obvious that
the new setting, at its last configuration is very beneficial. However,
there is still space for improvement, since most of the grades of the last
year (59%) are just pass grades and it would be convenient to displace
the grades towards remarkable.

Figure 6.1: Grades obtained by the students in the I/O subsystem topic

There is also a group in which all these changes have not been applied
in the same way. At the beginning the possibility of using that group as
an experimental group was considered. However along the three years,
in that group to many parameters (machine used as infrastructure,
methodology, lecturer, etc) have been changing and therefore the com-
parison has become too difficult. However it is also interesting to see
the pass rates obtained in that group, which can be seen in Figure 6.2.

6.1: Analysis of the grades obtained by the students in the computer I/O subsystem

topic 79

Figure 6.2: Pass rates obtained in the I/O topic in the parallel group

During school year 2010/2011, the parallel group was using the same
infrastructure and methodology than in previous years. The pass rate
that year was of 16%. This rate is much bellow the pass rate of the
previous years. This confirms our fear of passing the I/O subsystem
topic from a third semester course to a second semester course. The
students in their first year of studies need a different consideration.

The second year, 2011/2012, this group started using the NDS and
some active learning techniques. The pass rate then rose to 45%. It
has to be borne in mind that here all the students who tried the exam
were considered, an not only the ones who followed the active learning
methodologies.

The last year, 2012/2013, the lecturer changed and this fact could
have influenced the rise of the pass rate, but also using still more active
learning techniques could have influenced.

After reading this data, it is possible to conclude that using both the
NDS and the active learning methodologies is beneficial for the learning
process of the I/O subsystem.

80 Chapter 6: Analysis of the data obtained during the three years

6.2 Analysis of the satisfaction among the students while

learning the computer I/O subsystem

6.2.1 The satisfaction questionnaire

The objective of the questionnaire was to determine the level of stu-
dent satisfaction with the educational methodology. The questionnaire
contained 32 items, which were Likert-type items on a scale from 1 to
5.

The number of students that responded to the questionnaire was of 29,
42, and 48 for the school years 10/11, 11/12, and 12/13 respectively.
Figures 6.3, 6.4, 6.5, and 6.6 show the average results obtained each
year for each item.

• Items in purple background are to be considered because they show
a very low grade;

• Items in yellow background are to be considered because they show
a statistically significant difference from the first year to the last one
having the average result decreased;

• Items in green background also show a statistically significant dif-
ference but improving the results from the first year to the last
one.

The last year the questionnaire changed a little bit. Question 8. which
asked about the use of technological and multimedia resources was
converted into 5 new questions asking for each of the resources, concept
maps, project, notes, moodle diary, and moodle forums. The data
obtained in those new questions can be found in table 6.1.

These values show that the concept mapping has not been well received
by the students, and it can be the reason of the overall values decrease
of the questionnaire.

6.2: Analysis of the satisfaction among the students while learning the computer I/O

subsystem 81

2010/2011 2011/2012 2012/2013 2010/2011 2011/2012 2012/2013

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,46 3,48 3,48

Item #3
The criteria and assessment method
have been clear from the beginning

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,89
3,40 3,52

Item #1
The course syllabus was clear

from the beggining

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,62 3,19 3,42

Item #2:
The classes have been adjusted as
provided in the syllabus of the subject

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00 4,24

3,67 4,07

Item #4
The assessment has taken into account
assingments,participation in class and

other activities

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00 4,18 4,14 3,88

Item #5
The aims and schedule of support hours

have been clear from the beginning

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,24
3,80

3,13

Item #6
The contents of this subject have been

associated with other materials

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

2,55 2,66
2,11

Item #7
There have been enough practice,
problems and cases for the correct

understanding of the content

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,86 3,67

Item #8
The use of technical and multimedia

resources has been appropriate

Figure 6.3: Satisfaction questionnaire, charts for items 1 – 6

82 Chapter 6: Analysis of the data obtained during the three years

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,54 3,57
2,67

Item #9
The methodology used in the subject

has fostered students' reflexion,
synthesis and reasoning skills

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,79 3,43 3,21

Item #10
The development of the subject has
properly promoted critical and active

participation of the student body

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,86 3,79 3,58

Item #11
The methodology has fostered collaboration and

participations of students both in classroom
activities and outside

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,11 3,10 2,88

Item #12
The methodology has been good to

acquire work and study habits

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,55 3,26 2,81

Item #13
The methodology has resulted in a

pleasant climate during the developent
of classroom activities and outside

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,69 3,38 3,56

Item #14
The methodology has facilitated
communication so that students

express their concerns and problems

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,14 2,78 2,90

Item #15
The methodology has used the

strengths and weaknesses of the
students to gide them to improve

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

2,83 3,05 2,56

Item #16
The methodology has helped students

to deal with conflicts, changes,
tensions and limitations

Figure 6.4: Satisfaction questionnaire, charts for items 7 – 12

6.2: Analysis of the satisfaction among the students while learning the computer I/O

subsystem 83

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,52 3,39 3,23

Item #17
The methodology has encouraged communication

between the students and has offered effective
mechanisms to address situations that affect

them academically

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,21 3,29 2,83

Item #18
The methodology has facilitated the
evaluation results to serve as a new

learning option

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

2,97 3,19 2,81

Item #19
The evaluation system used has been

adapted to the methodology

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

2,72 2,64 2,21

Item #20
The guidance provided by the lecturer during

the process has satisfied students' needs

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

2,83 3,21
2,46

Item #21
Overall the assessment of the subject

has been adequate

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

2,28 2,63 2,47

Item #22
The methodology has been useful
to understand theoretical content

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,34 3,43 3,88

Item #23
The methodology has been useful to

link theory and practice

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,00 3,26 3,44

Item #24
The methodology has been useful to
relate the contents of the course and

obtain an integrated view

Figure 6.5: Satisfaction questionnaire, charts for items 13 – 18

84 Chapter 6: Analysis of the data obtained during the three years

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,50 3,31
2,38

Item #27
The methodology has been useful to

solve problems or offer solutions
to real situations

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,64
2,95 2,78

Item #28
The methodology has been useful to

develop your communication
skills (oral or written)

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,57 3,70
3,02

Item #29
The methodology has been useful to

develop your autonomy to learn

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,89 3,68
2,67

Item #30
The methodology has been useful to

take a participatory attitude about your learning

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

4,00 3,97
3,39

Item #31
The methodology has been useful to

improve your skills in group work

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,36 3,51
3,02

Item #32
The methodology has been useful to

develop skills needed in proffesional practice

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,50 3,23
2,60

Item #25
The methodology has been useful to

increase interest and motivation
towards the subject

2010/2011 2011/2012 2012/2013
0,00
1,00
2,00
3,00
4,00
5,00

3,61 3,44 3,48

Item #26
The methodology has been useful to
make decisions about real situations

Figure 6.6: Satisfaction questionnaire, charts for items 19 – 24

6.2: Analysis of the satisfaction among the students while learning the computer I/O

subsystem 85

2012/2013

Avg. STD N

1. Concept maps 2.47 1.18 47

2. Project 3.88 0.91 48

3. Class notes 3.44 0.92 48

4. Moodle diary 2.60 0.94 48

5. Moodle forums 3.48 1.13 48

Table 6.1: Items of the new questions in the questionnaire with their average responses

(Likert scale [1–5])

6.2.2 Data for a qualitative analysis of the satisfaction

The satisfaction questionnaire had also the following two open questions
which answers could be considered for a qualitative analysis:

1. Would you change anything? Can you think of any suggestions for
improvement?

2. Write any other opinion or aspect that you consider relevant that is
not collected on these indicators.

Besides these two questions, a discussion group was used the first
year as a qualitative tool to gather information about the satisfaction
among students with relation to the methodology and the new platform
(NDS instead of PC). In a discussion group, a group of people discusses
a topic and expresses their points of view, as well as their method of
understanding and perspective. A discussion group was formed with 7
members of the group. Each member was part of a different working
team to ensure that a more comprehensive point of view would ensue.
All of this has been very useful in appreciating the view and attitude of
each participant towards the topic.

Two colleagues from the Faculty of Education Science conducted the
discussion in which the students were asked to speak about the follow-
ing topics:

86 Chapter 6: Analysis of the data obtained during the three years

• Clarity of the program

• Achievement of objectives

• Adequacy of the practices and methodology in order to achieve the
objectives

• Adequacy of student assessment

• Adequacy of technological and other resources to the educational
process

• Quality of course notes

• Assessment of the platform (NDS)

• Individual work versus group work

• Student motivation

• Lecturer’s support

• Relationship of this course with others

• Students’ participation in the development of the subject (content,
practices, evaluation)

• Positive and negative aspects of the methodology in the subject

• Proposals for change and improvements

• Level of involvement in the subject (from the students’ point of
view)

• Any additional points to be added

The results of the discussion group did not differ much from the results
obtained in the open questions, and it required much effort. Therefore,
there was not a discussion group during the second and third years of
the experiment.

Next, data obtained from the first course’s discussion group and the
open questions of the satisfaction questionnaires are going to be ex-
plained.

6.2: Analysis of the satisfaction among the students while learning the computer I/O

subsystem 87

The process after the discussions and analysis of the questionnaires
allowed us to obtain information about needs and expectations and to
explain how the situation is perceived. The overall feeling towards the
subject has been positive, both in the questionnaire and in the discussion
group. Students were satisfied because the course development adhered
closely to the syllabus presented at the outset of the course. “...the initial
schedule was followed almost to the letter, without big changes.” “It was
pretty clear”. Regarding the assessment criteria, students thought that
the work performed was taken into account (item 4), but the assessment
used was not totally adapted to the methodology (item 19); this was
something to consider. The projects were developed in groups, and most
of the weight of the topic was assigned to the group deliveries and final
product, while there was an individual examination. Students were
very critical of the fact that their colleagues’ work would affect their
grades. This is something they are not used to; however, the positive
interdependence (i.e., a dependence on one another to reach a goal) is
a characteristic of cooperative work, and students need to learn it.

In the first year, the new methodology based on PBL was initially met
with reluctance, but the students finally said: “We feel comfortable.”,
“We learn more.” This is corroborated by the results of the question-
naire. Items 22 to 32 show different aspects that students thought this
methodology helped them to develop. Among them, only item 22 had a
score below 3; in fact, this is the aspect that students criticised most,
both in open questions and in the discussion group, with statements
such as: “With this methodology, theoretical concepts are not explained
as it should be.”, “We have missed some more theoretical explanations...
sometimes we got lost.”, and “We did not have lectures. We got the notes
and worked them by ourselves. But did we understand?” Moreover,
students thought that this was an obstacle to developing the project: “I
would explain more theory because I had many doubts with some of the
practices.”, and “We haven’t seen some examples in class to learn how
to apply them.”. The lecturers were providing guidance, support and
counselling (see item 5), and, in the discussion group, they agreed that
the questions raised in the office and via e-mail were answered properly.
Furthermore, they agreed that the evaluation process was adequate and
allowed students to improve their assignments.

88 Chapter 6: Analysis of the data obtained during the three years

In the third year, also the open questions revealed a difference from the
first year. Many students did express their distaste for the concept maps.
Just a few felt comfortable with the methodology and realized that “at
the end I had a good view of the topic”, unlike many of them who
thought that more lectures were needed and specially, “more exercises
should be revised during the lectures to better face the exams”. Are not
they asking for a recipe to pass the exam? Others do not like being the
one who has to work, and say that “the lecturer should explain more,
and not be us who have to read, who have to understand, and who
have to do everything”.
As for the motivation, there is no doubt that the used platform (i.e., the

Nintendo® DS) motivates the students: “It could be done in a PC, but it
would not be so attractive. Much better with the Nintendo.”, “To learn
everything counts.”, “This way you are more careful and you pay more
attention, it is more satisfying.”, “You see that you are learning.”, “The
motivation is kept during the whole course.” Although the last year the
satisfaction questionnaire results were not so good, and of course the
lecturers have to consider it and keep trying in order to get both good
knowledge outcomes and satisfied students, there was a comment that
is worth mentioning: “In my opinion the most important thing, not only
in CS but in every course, is the motivation, and I would like to deepen
on that. In some courses the lecturers take the lead and if you are not
interested they do not mind you. The key is: lecturers should generate
interest towards the subject and CS is exemplary on that matter, other
lecturers could learn a lot from CS, mostly the theoretical ones.”

6.2.3 Attraction and retention

Attraction and retention are two more parameters that can be used to
analyse students’ satisfaction, and raising these numbers is always one
of the objectives a lecturer should have.
In this case, interpreting the numbers of the students enrolled in the

PBL methodology (attraction) is not trivial because many variables are
influencing that number. We are not counting only on the willingness
of the students to enrol, but also in the scores they got in the previous
parts of the subject. If they do not get a minimum score then they are
not considered inside the active methodology.

6.3: Conclusions 89

Considering all the previous statements, we have analysed the reten-
tion of the students in the PBL methodology during the topic related to
the computer I/O subsystem. Table 6.2 shows the numbers obtained
during the three years:

10-11 11-12 12-13

Students enrolled in PBL 41 57 40

Students that ended the project 29 47 39

Percentage of students that ended the project with
respect to those who started it

70.73% 82.46% 97.5%

Table 6.2: Students following and finishing in the PBL methodology

What Table 6.2 shows is a progressive increase of the retention, which
means that the changes made in the settings of the project have been
beneficial.

6.3 Conclusions

The proposed methodology and platform appear to be suitable for our
purposes. This study shows that better results are obtained with this
combination of methodology and platform, although there is still space
for improvement. Grades should be displaced towards remarkable and
more students should be attracted and maintained in the active learning
methodology.

On the other hand the students are not totally satisfied with the
methodology. They consider that there is not enough practice, problems
and cases for the correct understanding of the subject, that the guidance
provided by the lecturer during the process does not satisfy students’
needs, and that the methodology is not useful to understand theoretical
content. They are used to get everything almost done, exercise exam-
ples that could be rebuilt in the exam, careful explanations of every
detail that could be asked in the exam, and most of them are thinking
in passing the exam instead of learning and therefore being able to pass
the exam. This methodology asks an extra effort from the students,
but maybe, being a subject located in the first course, some of these
requirements should be fulfilled.

90 Chapter 6: Analysis of the data obtained during the three years

On behalf the concept maps, the students did not like the effort of
having to build them, neither what they felt as being told how to learn.
They articulate this feeling both personally and by means of the satis-
faction questionnaire (see item 1 in Table 6.1, it has the fourth worst
score among all the items). Moreover, we think that this fact affected
the overall assessment, and that this is the reason of the overall score
decrease of the last year. However, the students were not aware of
the increase in the percentage of students passing the computer I/O
subsystem topic that year.

CHAPTER 7

Students’ understanding about the computer I/O

subsystem?

The point of this chapter differs from the previous ones. In the TPACK
model this chapter is devoted to cover the students’ understanding. The
aim is, in fact, to build a better TPACK of the lecturer in order to be
able to better align it with the content knowledge of the students. We
would like to identify exactly where the problem lies when students try
to understand the computer I/O subsystem. Therefore, the question we
would like to empirically answer in this chapter is: How do students
understand the I/O topic?

This chapter is intended to present to the community the work we have
carried out in order to answer the above question. Showing first the
results of a preliminary study, and then, the quantitative and qualitative
analysis of concept maps, the research point to where the preliminary
study lead. Both the preliminary study and the quantitative analysis
have been published in [Larraza-Mendiluze and Garay-Vitoria, 2012]
and [Larraza-Mendiluze and Garay-Vitoria, 2013a] respectively.

The chapter is divided into six sections. Section 7.1 will review the
bibliography on this topic. Section 7.2 will report on the preliminary
study that lead the final study on concept maps, a work published in
[Larraza-Mendiluze and Garay-Vitoria, 2012]. Section 7.3 will detail the

92 Chapter 7: Students’ understanding about the computer I/O subsystem?

investigation itself, the students we selected to participate in the inves-
tigation and the steps followed to obtain the information. Section 7.4
will report the data obtained during the study and the quantitative
analysis of that information, a work published in [Larraza-Mendiluze
and Garay-Vitoria, 2013a]. Section 7.5 will take a different look at the
data and report the qualitative analysis. Finally, Section 7.6 presents
the conclusions and outlines future work.

7.1 Related work

The literature studying the difficulties in learning programming has
grown in recent years as can be seen in conference series such as [ICER;
Koli-Calling; ITICSE]. The literature studying the issues in computer
architecture education can be found at the Workshop on Computer
Architecture Education ([WCAE]), and also in the previously mentioned
conference series. The computer I/O subsystem topic has not been
very widely treated. There are several references that include the I/O
unit within computer architecture, either in simulators such as those
presented in [Donaldson et al., 2011a] and [Black and Komala, 2011]
or integrated in new teaching approaches [Ramachandran and Leahy
Jr, 2007], but nothing was found on the understanding of the computer
I/O subsystem.

The different approaches to treating I/O topics found in the textbooks
in the literature is also reflected in the different universities. It is
possible to analyse teaching guides to validate this (see Section 3 in
this dissertation). Other approaches to identify the differences between
what is taught in different centres are by analysing exam questions and
obtaining the relevant concepts and problems to solve that are proposed
by teachers in the corresponding universities. In order to do this, the
collaboration of the teaching groups is needed, as has been stated in
[Larraza-Mendiluze and Garay-Vitoria, 2013b].

In this step of the investigation, we want to find out how the students
view the I/O topic at the end of the semester, using the teaching/learn-
ing methodology described by Larraza-Mendiluze et al. [2013]. This
will enable us to detect misconceptions that need to be addressed during
subsequent teaching/learning processes.

7.1: Related work 93

One of the tools used to depict acquired knowledge is concept mapping.
Concept maps are defined by Novak and Cañas [2008] as “graphical

tools for organizing and representing knowledge. They include concepts,

usually enclosed in circles or boxes of some type, and relationships between

concepts indicated by a connecting line linking two concepts. Words

on the line, referred to as linking words or linking phrases, specify the

relantionship between the two concepts”. As Sanders, Boustedt, Eckerdal,
McCartney, Moström, Thomas, and Zander [2008] point out, concept
maps have been used for different purposes, such as:

• helping students to learn;

• measuring changes in students understanding; and,

• what really interests us, obtaining a static picture of what students
know.

We have found some works on concept maps applied to the teaching
of Object Oriented Programming [Sanders et al., 2008] and [Hubwieser
and Mühling, 2011] and a paper on mental models in computer archi-
tecture [Yehezkel, Ben-Ari, and Dreyfus, 2005], where the researchers
study the way in which the students understand the different types of
interactions between the CPU, Memory and Input and Output units in
an assembly language course.

Concept map show individual knowledge, but in the second study we
wanted to analyse the whole students group. Therefore, software tools
for electronic concept mapping from the learner’s perspective [Mühling
and Hubwieser, 2012] were not suitable for this research.

Software that could be used to analyse all the concept maps together
was not easy to find. During the search, most of the solutions we
found were valid only for individual concept map assessment. However,
McLinden [2013] showed us the similarities between concept maps and
social networks. For social network analysis there are many tools used
to find similar patterns between users. We tried some of these software
tools; UCINET [Freeman, Everett, and Borgatti], and PAJEK [Vlado,
2005].

Since we started working with concepts maps we have used the tool
CM-ED which has been described at [Arruarte, Elorriaga, and Rueda,

94 Chapter 7: Students’ understanding about the computer I/O subsystem?

2001] and can be found at [GaLan]. Due to the similarities with the text
documents generated by the aforementioned tool, PAJEK [Vlado, 2005]
was selected as the social network analysis software for this project
and its use was learned thanks to [de Nooy, Mrvar, and Batagelj, 2005;
Batagelj and Mrvar, 2011].

7.2 The preliminary study

Previous to the step of having all the students building concept maps,
we carried out a preliminary study that would tell us whether there was
a real problem to pursue.

The tool used for this study was not a pure concept map as defined by
they creators [Novak and Cañas, 2008], but just concepts linked among
them. First of all several Computer Architecture lecturers were asked
to build three different, let us call them, “concept maps”. Each of the
“concept map” had to be built with different concepts and following the
next criteria:

• a classification of concepts,

• the communication between elements of the I/O subsystem,

• steps that must be followed when using different I/O techniques
(polling, interrupt-driven I/O, and DMA.

The results obtained from the lecturers with a big consensus after a
validation step are shown in Figures 7.1, 7.2, and 7.3. In Figure 7.1,
concepts in square boxes are classified into concepts in oval boxes. In
the case of I/O registers, there are two possible classifications, to the
right the type of register, to the left where the registers are stored.

In Figure 7.2, dashed lines reflect that the concept at the origin of
the arrow is part of the concept at the destination of the arrow, whilst
continuous lines express a communication between both concepts.

In Figure 7.3, each technique is expressed on the top in a square, while
steps are expressed in rounded squares in the same order they use to
happen.

7.2: The preliminary study 95

Figure 7.1: Classification of I/O subsystem concepts

Figure 7.2: Communication between the elements of the I/O subsystem

Twelve students were selected for participating in the study out of the
81 that had follow the subject. There were students from both, the
Basque and the Spanish groups, and within all the achieved grades
ranges. However, three of the students with lower grades either they
did not show to the appointment or their “concept map” was too poor
to be considered. Therefore we finally worked with the “concept maps”
built by 9 students.

96 Chapter 7: Students’ understanding about the computer I/O subsystem?

Figure 7.3: Steps that must be followed while using different I/O techniques (polling, interrupt-

driven I/O, and DMA)

Students got the concepts shown in Figures 7.1, 7.2, and 7.3, and they
only had to stablish the links, without linking words.

The links that the students established are shown in Tables 7.1, 7.2,
7.3, and 7.4. Relationships shown in the “concept map” belonging to
Figure 7.1 is shown in Table 7.1. The “concept map” in Figure 7.2
needed to tables in order to be analysed. Table 7.2 shows the relation-
ship of components of the I/O subsystem that communicate among
each other, while Table 7.3 shows the hierarchy among the components
of the computer I/O subsystem, i.e. which “is part of” which. Finally
the relations that appeared in the “concept map” shown in Figure 7.3
can be seen in Table 7.4.

One of the conclusion after this study (others can be found in [Larraza-
Mendiluze and Garay-Vitoria, 2012]) was that the students could not
see the whole picture of how the computer I/O subsystem works and
therefore a further study was planned for the next year. The following
sections will explain the method followed in this study, the results
obtained, and finally the conclusions derived from the study.

7.2: The preliminary study 97

The abbreviations are as follows: DR: Data Register, CR: Control Register, SR: Status Register, LR: Length Register, AR: Adress Register,
MM: Memory Mapped, M I/O: Mapped into the I/O space, O: Output, I: Input, M: multiplexed, NM: Non-Multiplexed, C: Continuous,

P: Periodic, T: Timed, UL: Unilevel, ML: Multilevel, Hw: by Hardware, Sw: by Software, Ch: by Character, B: by Burst, REG: I/O Register,
PER: Peripheral, CON: I/O Controller, POLL: Poll, INT: Interrupt, MAN: Interrupt Management, TR: Transference, L: Lecturers,

Si :Student #i, OK: Total correct answers.

Table 7.1: Students’ concept classification relations

The abbreviations are as follows: CPU: Central Processing Unit, MEM: Memory, D C: DMA Controller, I C: I/O Controller,
INT C: Interrupt Controller or Manager, PER: Peripheral, OTHER: wrong connections, L: Lecturers, Si :Student #i,

TOT: Total correct connections.

Table 7.2: Communication relations from the point of view of the students

98 Chapter 7: Students’ understanding about the computer I/O subsystem?

The abbreviations are as follows: DR: Data Register, SR: Status Register, CR: Control Register, LR: Length Register,
AR: Address Register, IRR: Interrupt Request Register, IMR: Interrupt Masc Register, I/O C: I/O Controller, D C: DMA Controller
INT C: Interrupt Controller or Manager, OTHER: wrong connections, L: Lecturers, Si :Student #i, TOT: Total correct connections.

Table 7.3: Is_part_of relations from the point of view of the students

The abbreviations are as follows: IR: Interrupt Request, IE:Interrupt Enabled, ID: Interrupt Disabled, Save: Save the context
of the program to be interrupted, Id: Identify the interrupt service routine to be executed, Exe: Execute the ISR, Ret: Return

to the interrupted program, Read: Read the status register, Ready: device is ready, Not Ready: device is not ready, Perf: Perform
the I/O operations, Prog: Initialize or program the transfer, Tr: Transfer, Int: Interrupt.

Each box shows the position where this step was situated, i stands for interrupt, P for Poll and D for DMA, a and b for the
branches in the decision points and the number reflects the order of the step.

Table 7.4: Order the students gave to the steps of an interrupt, a poll and a DMA transfer

7.3 Method used for the complete study

7.3.1 Subjects

The research was carried during 2012-2013 course. Although 78 stu-
dents were enrolled, the experiment was carried out with only the
39 students that actively completed the whole course. Out of the 39
concept maps gathered, 6 were discarded; 2 because they did not have
enough information; 3 because they were too confusing and difficult to
interpret; 1 because the writing was impossible to understand.

7.3: Method used for the complete study 99

7.3.2 Procedure

Training the students to build concept maps

It is very important to train students in the use of a new tool; in this case,
the concept maps. Even the way in which they are trained can influence
the final result [Santhanam, Leach, and Dawson, 1998]. Therefore, the
training phase was very carefully planned. Since what we wanted to
obtain was the picture of the topic the students had at the end of the
semester, the concept mapping training period was extended for the
same time devoted to teach/learn the topic.

During the presentation of the topic, the importance we were going to
give to the concept maps was emphasized. Then, as an example, the
evaluation method for this half (the computer I/O subsystem topic) of
the Computer Structure course was explained using a concept map (see
Figure 7.4). We wanted the students to be able to build a concept map
at the end of the semester and, we therefore made the delivery of the
concept maps mandatory. However, we did not want the students to
learn the concept maps by rote. This was the tricky part. We clearly
stated that concept maps would not be part of the examination. More-
over, the percentage of the score given to the concept maps delivered
was very low, 3.5%. This approach carried the risk that the student
would not take the concept maps seriously and would build them up
without paying attention. In order to avoid this, we explained that
concept maps built without any care would be taken as not delivered.

The students were asked to deliver four different concept maps all
along the ten week the computer I/O subsystem topic lasted. The
concept maps to deliver should be answering the following questions:

1. What is the Von Neumann structure? (Out of the given concepts).
(First week)

2. What is needed for I/O to occur, and how does the synchronization
work? (Second week)

3. Complete the previous concept map with what you now know.
(Fourth week)

100 Chapter 7: Students’ understanding about the computer I/O subsystem?

Figure 7.4: Concept map handed out to the students to show the different evaluation options.

4. Complete the previous concept map answering the question: How
does DMA work? (Eight week)

All the students received feedback after completing each concept map.
We did not want the partial construction of the concept maps and our
intervention to have too much effect on the final result. Indeed, it would
have been better to use another topic during the training phase, but we
had too many time restrictions. Therefore, we decided the feedback
would be almost exclusively on the construction of the map. The only
feedback statements related to the content itself were as follows:

1. You need to expand the topic further.

2. A concept such as “controller” is too broad, Please be more specific.

3. This is just a classification. You need to try to focus more on
the description and the operation level. For example, you said

7.3: Method used for the complete study 101

there are two synchronization methods, but what do you need
synchronization for?

The main feedback given to the students concerning the construction
of the map was due to the lack of linking phrases (see Figure 7.5), the
construction of block diagrams instead of concept maps (see Figure 7.6),
or the use of concepts that were not concepts but whole phrases (even
paragraphs taken from the course notes); in other words, a schema that
looks like a concept map (see Figure 7.7).

Figure 7.5: A student’s concept map to answer the question “What is the Von Neumann

structure”, without any linking phrase. Translated into English from the original in Basque.

The last concept map

For the last concept map that the students built on their own, we had to
tell them to please try to show their own knowledge, because most of
them were building the concept maps while reading the course notes.

102 Chapter 7: Students’ understanding about the computer I/O subsystem?

Figure 7.6: A student’s trial concept map to answer the question “What is the Von Neumann

structure” that turned out to be a block diagram. Translated into English from the original in

Basque.

Figure 7.7: Although impossible to read, this is a good example of schema that looks like a

concept map.

It is obvious when the concept maps are built that way, because they
contain too many specific details.

Finally, the day after the exam, all the students were called to the
classroom. They did not know they were going to be asked to build
a concept map. They were given twenty selected concepts and they
were told they could add more concepts if needed. The students were
placed in exam conditions, in order to avoid copying, and they built
their concept maps on paper.

The twenty concepts given to the students to build the last concept
map were taken from the course notes, according to the weighting they
had during the course (e.g. we talked much more about interrupts

7.3: Method used for the complete study 103

Interrupt Service Routine I/O interrupt
Enable/Disable interrupts Polled I/O
Read control instructions I/O register

Interrupt Controller DMA controller
Analyse status DMA

Interrupt identification Peripheral
Interrupt-driven I/O CPU

Nested interrupts Subroutine
Interrupt priority Memory
I/O instructions I/O controller

Table 7.5: The 20 concepts given to the students to build the last concept map.

and different kinds of interrupts than about DMA, and therefore the
percentage of the concepts about interrupts is bigger than the percent-
age of concepts about DMA). We also considered that the concepts
selected appeared in the most used text books in the area [Stallings,
2012; Patterson and Hennessy, 2009; Hamacher et al., 2011; Mano,
1993], analysed in Chaper 3, Section 3.2, although some times the term
used changed. The selected concepts can be seen in Table 7.5, in a
random order.

Students’ feedback

The students were not very happy about having to build the concept
maps. Some of them told us personally and it was also reflected in a
satisfaction survey they filled out. To average to the question “Was con-
cept mapping helpful in your learning process?”, which was delivered
in a Likert scale (1: strongly disagree to 5: strongly agree) was 2.47.
A chart with the percentage of every possible answer can be seen in
Figure 7.8. However, the data obtained with the students’ concept maps
was essential for this research.

Analysis of the concept maps

Step 1 All the concept maps built by the students in their last de-
liverable (the one in exam conditions) were digitalized with CM-ED

104 Chapter 7: Students’ understanding about the computer I/O subsystem?

Figure 7.8: Answers to the question “Was concept mapping helpful in your learning process?”

in a Likert scale.

[GaLan] software. One big difference between concept maps and social
networks is that while in concept maps it is possible to use n-ary rela-
tionships, social networks apparently only accept binary relationships.
Therefore, some of the relationships had to be changed during this
first step. Mainly two kinds of changes where made, as can be seen in
Figure 7.9.

Step 2 Once all the concept maps had been digitalized, the essential
information that defines the concept maps was extracted from the
XML document and converted to PAJEK’s format (nodes or concepts vs.
vertices, links vs. arcs(directed) or edges (non directed)).

Step 3 All the concept maps were merged. The students had the
possibility to add concepts that were not on the list (See Table 7.5).
Therefore, it was very important to bear in mind that not all the concept

7.4: Quantitative analysis of the concept maps 105

Figure 7.9: Conversions needed to adapt the concept maps for social network analysis.

maps had the same amount of concepts and that the same concept
should always be numbered the same.

Step 4 Use PAJEK to improve the readability of the graph.

7.4 Quantitative analysis of the concept maps

Figure 7.10 shows the picture of all the concept maps merged. It
is almost impossible to read all the links in that image. However it
is clear enough to see that there are some strong links and a lot of
very weak links. Moreover, most of the weak links are related to at
least one of concept that has been added by the students. These weak
relationships hamper reading, and therefore we decided to prune the
graph by removing the relationships used by three or less students. We
stopped there because if we removed the relationships used by four
students, at least one of the concepts of the given list would be left an
orphan. The resulting graph is shown in Figure 7.11, where most of the
weak connections have been pruned out and only 7 of the 39 concepts
added by the students remain connected.

106 Chapter 7: Students’ understanding about the computer I/O subsystem?

Figure 7.10: Graph showing all the relationships of the students’ concept maps.

The concepts given to build the concept map can be divided into four
subtopics; the system itself (CPU, memory, and peripheral) represented
in white; the I/O controller (I/O controller, I/O registers, read control

instructions, I/O instructions), represented in light grey; synchroniza-
tion (polled I/O, interrupt-driven I/O, sampling the status, I/O interrupts,

interrupt controller, identify interrupt, enable/disable interrupts, interrupt

priority, Interrupt Service Routine, nested interrupts, subroutine) repre-
sented in dark grey; and DMA (DMA, DMA controller), represented in
black. The concepts added by the students were also classified into
these subtopics.

We wanted to determine whether the students were able to correctly
relate these subtopics. We shrunk the subtopics in order to be able
to depict in a graph (see Figure 7.12) all the connections between
subtopics. The graph in Figure 7.12 shows that the “System” subtopic
is strongly connected to the other subtopics, but the “I/O controller”,

7.4: Quantitative analysis of the concept maps 107

Figure 7.11: Graph showing the concept map links used by more than three students.

“Synchronization”, and “DMA” subtopics are either not connected at
all or are weakly connected. For example, the CPU in the “System”
subtopic and the I/O controller in the “I/O controller” subtopic need
synchronization in order to connect, but there are only 17 links between
these two subtopics. The DMA controller in the "DMA" subtopic is in fact
an I/O controller, but there are only 7 links between these two subtopics.
Finally, the DMA controller needs to synchronize with the CPU in order
to allow data transfer between memory and a peripheral, but there is
no link between the “DMA” and the “Synchronization” subtopics.

In the following subsections, we are going to look more closely at each
of the subtopics.

108 Chapter 7: Students’ understanding about the computer I/O subsystem?

Figure 7.12: Graph showing the links between subtopics.

7.4.1 The system

The computer I/O subsystem is a part of a computer system as are the
CPU or the memory, all of them connected by the buses. A program’s
orders and data are usually stored in memory, but many times data
must be introduced by the user via a peripheral device. CPU will control
the data transfer helped by the I/O controller. Also it will be the CPU
who decides whether the input will be stored in memory or not, or the
data going to the output devices comes directly from the processing
unit or from memory. But, how do our students see this relation?

“Computer system”, “CPU”, “Memory”, “Peripheral”, and “I/O controller”

could be the concepts to define the computer I/O subsystem if we were

7.4: Quantitative analysis of the concept maps 109

considering the previous definition. The concept “Computer system” was
not among the concepts given to the students to build their concept
map, and therefore we will not consider it here neither. The concept
maps built by the students could show many different combinations of
those concepts, and indeed they do but some of the options are most
repeated and these are the ones we will talk about.

As can be seen in Figure 7.11, 11 students have linked “CPU” with
“Memory”, and 15 with “Peripheral”, while “CPU” and “Peripheral” are
linked to “I/O controller” by 12 and 21 students respectively. Other
weaker links can be found linking these concepts with the other subto-
pics, but these will be analysed in the next subsections.

7.4.2 Connections inside the I/O controller subtopic

Figure 7.13 shows the relationships inside the “I/O controller” subtopic
and the links from this subtopic to the others.

Figure 7.13: Graph showing the links inside the I/O controller subtopic.

Inside the subtopic we find four very strong connections the link
between the I/O controller and the I/O registers. 24 students used this
connection in their concept maps (almost 73% of the students). Also,
although these concepts were not in the given concept list, 19 (57.5%),
17 (51.5%), and 20 (60.6%) students linked the I/O registers to the
control register, data register and status register respectively.

While most of the students correctly link the I/O controller to its I/O

registers and even specify that these are the control, data, and status

110 Chapter 7: Students’ understanding about the computer I/O subsystem?

registers, only 6 (18%) said that the control instructions are read from
the control register, and 4 (12%) that the I/O controller is what performs
this operation.

Moreover, at least 4 (12%) students used the concept memory mapped

but did not link it to any of the concepts in its own subtopic, they only
linked it to the concept memory in the “System” subtopic.

7.4.3 Connections inside the Synchronization subtopic

Figure 7.14 shows the relationships inside the “Synchronization” subtopic.
Two I/O synchronization methods clearly appear in this graph; polled

I/O and interrupt-driven I/O. Figure 7.14 shows only 7 links (21.2%)
to Polled I/O and interrupt-driven I/O. This is because the graph only
shows direct links inside the subtopic. However, when we also consider
also the links from the “System” subtopic (see Figure 7.11), the total
number of links to Polled I/O is 20 (60.6%), and to interrupt-driven

I/O is 18 (54.5%). Therefore, more than half of the students have
distinguished the two synchronization methods.

Polled I/O was linked by 14 students (42.4%) to Sampling the status,
which, remember, was linked to I/O registers by 5 students (15.1%)
and to status register by 8 students (24.2%); i.e. 13 students in total
(39.4%). There are no other significant links to or from these nodes.

The net formed around the interrupt-driven I/O concept is much bigger.
It has 10 nodes in total, where only one of them was inserted by the
students; Daisy chain. This makes it difficult to quantitatively analyze,
just the direct links between concepts, because two concepts could
very well be connected by indirect links that are not considered in
this case. However, considering the strongest links (those used by at
least 8 students (24.2%)), the graph can be read as follows: interrupt-

driven I/O needs I/O interrupts. The interrupts can be nested interrupts.
Both kind of interrupts (nested and simple) are controlled by interrupt

controllers. Interrupt controllers can enable/disable interrupts and identify

interrupts, and according to interrupt priority, execute ISRs. ISRs are in
fact subroutines.

This reading seems good, but, a deeper analysis of the linking words is
needed, because, for example, the previous sentence states that ISRs are

7.4: Quantitative analysis of the concept maps 111

subroutines, but the CPU executes them directly without a subroutine

call. Is that what the linking words imply or is it something else?
The qualitative analysis needed to be able to say that is detailed in
Section 7.5.

Figure 7.14: Graph showing the links inside the synchronization subtopic.

7.4.4 Connections inside the DMA subtopic

Figure 7.15 shows the relationships inside the “DMA” subtopic, where
23 students (69.7%) link DMA to DMA controller. A concept added by
the students appears in Figure 7.15 (transfer). DMA is indeed used for
large and continuous transfers of data from a peripheral to the CPU,
but only 4 students (12%) used this link.

The following subsections are going to look more closely at these
connections between subtopics.

112 Chapter 7: Students’ understanding about the computer I/O subsystem?

Figure 7.15: Graph showing the links inside the DMA subtopic.

7.4.5 Links between the “I/O controller” and the “synchro-
nization” subtopics

Figure 7.16: Graph showing the links between the I/O controller and the synchronization

subtopics.

Figure 7.16 shows that although there are 17 links between the “I/O
controller” and the “Synchronization” subtopics these links are divided
into the two synchronization methods presented in the subject; Polled

I/O and interrupt-driven I/O. Only 4 students (12%) linked the I/O

controller to the interrupt-driven I/O, while 13 (39.4%) see the relation-
ship the I/O controller has with sampling the status of the peripheral.
Moreover these students see that this has been done via I/O registers,
and 8 students (24.2%) know that the I/O register used for that purpose
is the status register.

7.5: A more qualitative reading of the concept maps 113

7.4.6 Links between the “I/O controller” and the “DMA”
subtopics

Figure 7.17: Graph showing the links between the I/O controller and the DMA subtopics.

Figure 7.17 shows that 7 students (21.2%) know that the DMA con-

troller is in fact an I/O controller.

7.4.7 Links between “DMA” and “synchronization” subto-
pics

Nobody linked the “DMA” subtopic with the “synchronization” subtopic.
The DMA controller needs to synchronize with the CPU once the transfer
is finished. This synchronization is usually done by interrupt-driven I/O

because of the ability of the DMA controller to generate I/O interrupts.
However the students’ concept maps show that this mental model [Gen-
tner and Stevens, 1983] has not been created in the students’ minds.

7.5 A more qualitative reading of the concept maps

Now, we would like to look closer at the concept map links. It is
important to see not only whether the concepts are linked, but also
whether the links are correct. It is difficult to analyse and compare
the whole concept maps, and therefore we did it in chunks, as in the
quantitative analysis in Section 7.4. All the explanations in the next
subsections will be referring to the images of the concept maps built by
the students and that can be seen in Apendix D.

114 Chapter 7: Students’ understanding about the computer I/O subsystem?

7.5.1 The system

We have found several different concept grouping in the analysis of the
elements of a computer system.

First of all, the triangle that links the CPU, the peripherals and the I/O
controllers. When this option is used, the students tend to specify that
the I/O controller is needed in order to manage the communication
between the CPU and the peripherals. See Figures D.1, D.4, D.16,
D.17, D.18, D.20, D.21, D.22, D.23, D.27, D.31, D.33.

When this option is not used, most of the concept maps do not connect
the concepts, or connect them in a disordered way. See Figures, D.2,
D.3, D.5, D.6, D.7, D.8, D.12, D.29.

As for the memory, it can be found connected to the CPU, but is mainly
found connected only to the I/O registers (see Figures D.1, D.10, D.11,
D.14, D.16, D.20, D.22, D.23, D.26, D.31), as the place where to
find them, or connected only to the DMA (see Figures D.4, D.9, D.11,
D.13, D.17, D.18, D.24, D.27, D.28, D.30). This case will be further
analysed in section 7.5.4 where connections inside the DMA subtopic
are explained.

Now, let us take a look at the different subtopics and then we will look
at the connections between subtopics.

7.5.2 Connections inside the I/O controller subtopic

We have seen that several students know that the CPU and the periph-
erals communicate with each other helped by the I/O controller. But,
what is exactly the I/O controller? An I/O controller can control one or
more peripherals and it is composed of several I/O registers that could
be mapped into memory or not. Do the students know that?

Most of the students do correctly relate the “I/O controller” with the
“I/O registers”, either directly and saying that the “I/O controller” is
composed of “I/O registers” (see Figures D.2, D.4, D.5, D.6, D.8, D.9,
D.12, D.14, D.16, D.17, D.18, D.19, D.20, D.21, D.24, D.25, D.27,
D.28, D.30, D.31, D.32, D.33) or that the “I/O controller” uses or
controls the “I/O registers” (see Figures D.1, D.11) or indirectly saying

7.5: A more qualitative reading of the concept maps 115

that the I/O controller controls the peripherals by means of the I/O
registers (see Figures D.7, D.22). Therefore, it is possible to conclude
that most of the students got a correct idea of the “I/O controller”.
Moreover, most of them also correctly specified the number of the usual
“I/O registers”, the “control register”, the “data register”, and the “status

register”.

The remaining students, do not show a pattern in order to say that
there could be a misconception. Only in one case I/O controller and
I/O registers are somehow connected, but just because I/O controller
reads control instructions in the control register, which is an I/O register
(see Figure D.29). For the rest of the students, I/O controller and I/O
registers are just not related (see Figures D.3, D.13, D.15, D.23).
Some only say that I/O registers are in memory, without saying what
they do at all (see Figures D.10, D.26).

Two more concepts, these ones very specific, where related with the
I/O controller subtopic. The first one, the “I/O instructions”. The
I/O instructions were defined as the instructions needed to access I/O
registers not mapped into memory. Most of the students did not put
this concept into the concept map (see Figures D.2, D.4, D.5, D.6,
D.7, D.8, D.11, D.12, D.13, D.17, D.18, D.19, D.20, D.21, D.23,
D.24, D.27, D.28, D.30, D.31, D.32). As for the other students, no
one used the concept properly (see Figures D.1, D.3, D.9, D.10, D.14,
D.15, D.16, D.22, D.25, D.26, D.29, D.33). Therefore it has to be
considered that this concept was not understood at all.

The second concept was “read control instructions”. This concept was
introduced in the concept list in order to see whether the students knew
who gives or writes control instructions into the control register, and
who reads those instructions. Once again, many students did not use
this concept in their concept maps (see Figures D.1, D.5, D.6, D.8,
D.11, D.13, D.15, D.16, D.18, D.19, D.21, D.23, D.25, D.27, D.30,
D.31). However in this case there was at least one student who did say
that it is the peripheral who reads control instructions from the CPU
in the control register (see Figure D.20). Two more students said that
it is the I/O controller who reads control instructions from the control
register in order to know what should the peripheral be doing (see
Figure D.22, D.29). Being the control register who reads the control
instructions has a few followers (see Figures D.3, D.4, D.9, D.28), as

116 Chapter 7: Students’ understanding about the computer I/O subsystem?

does the option of being the CPU who reads the control instructions
(see Figures D.2, D.10, D.17, D.32).

7.5.3 Connections inside the Synchronization subtopic

The synchronization between the CPU and the peripheral, in order the
information exchange to be performed correctly, can be done in at least
two ways, by polling and by interrupt. Let us then consider each of
them separately in the following subsections.

Polled I/O

Considering polled I/O, we could be asking three different questions:
What is it for? How is it done? Who does it?

Answering to the first question, what is polled I/O for?, we would
say that it is a way to synchronize the communication between the CPU
and the peripherals, as has been graphically expressed in Figures D.13,
D.17, D.20, D.22, D.24, D.27, and D.28. Some other students say that
it is a way of synchronizing the I/O subsystem (see Figures D.1, D.3,
D.9, D.32, D.14, D.15, D.31), which would be a good answer with
a clear idea of what the computer I/O subsystem is. Another option
has been saying that it is a way to control or synchronize peripherals
(see Figures D.11, D.19, D.25). This option misses who needs the
peripheral to be synchronized with.

A surprising option is the one that says the “polled I/O” is a kind of I/O
interrupt (see Figures D.16, D.23, D.29). This is something that needs
to be cleared up. The difference between interrupts and polls should be
stressed.

And, how is this synchronization be done?. Analysing the periph-
eral’s status, by continuously reading the I/O registers (more specifically
the status register) (see Figures D.2, D.19, D.24, D.30, D.31). Many
students know that it is necessary to analyse the status, but what the
concept maps do not reflect is whether they know what does this mean.
Analysing the status of whom? (see Figures D.1, D.6, D.12). Where is
this analysis performed? (See Figures D.22, D.25). However again the

7.5: A more qualitative reading of the concept maps 117

biggest problem encountered here is the mixing up of interrupts and
polling (see Figures D.16, D.18, D.29).

Finally, it is also important to know who performs the analysis of
the status of the peripheral, and this is something that most of the
students just do not mention (see Figures D.3, D.5, D.6, D.7, D.8,
D.9, D.10, D.11, D.13, D.14, D.15, D.16, D.17, D.18, D.20, D.22,
D.23, D.24, D.25, D.27, D.28, D.29, D.32, D.33), and only a few
ones get to say that it is the CPU the responsible of that action (see
Figures D.2, D.12, D.19, D.21, D.30, D.31).

Interrupt-driven I/O

For interrupt-driven I/O we could formulate the same questions as for
polled I/O: What is it for? How is it done? Who does it?

For the first question, we get more or less the same answers as in the
same question of the previous section (Section 7.5.3), since, as a way of
synchronizing the communication between the CPU and the peripherals,
polled I/O and interrupt-driven I/O are parallel.

We will now first look at the who, which, in this case is double question.
Who interrupts and who is interrupted. This is something that has not
been expressed in the students’ concept maps. The majority of the
students did not answer any of the questions and just a few said that it
is the peripherals who interrupt (see Figures D.1, D.2, D.11, D.19).

As for the how, the steps to be followed after an interrupt request are
not clear for the students. Figure 7.14 shows that there is not a specific
organization and looking to the linking phrases does not improve the
situation.

The interrupt controller should be analysing whether interrupts are
enabled or disabled, identify the interrupt request, if multiple interrupts
have been requested the interrupt controller should analyse their prior-
ity, and if everything is permitting the interrupt, then execute the ISR
corresponding to the request, disabling interrupts if nested interrupts
are not allowed. However for some students the only task of the inter-
rupt controller is to enable/disable interrupts (see Figures D.4, D.13,
D.16, D.33). Some others state that together with the DMA controller,

118 Chapter 7: Students’ understanding about the computer I/O subsystem?

the interrupt controller is a kind of I/O controller (see Figures D.3,
D.12, D.15).

The ISR is a subroutine executed asynchronously, triggered by the CPU
and not by the program. The nearest to that, what we can find in the
concept maps is ISRs operate similar to subroutines (see Figure D.12).
Then some students say that ISRs are subroutines (see Figures D.2, D.7,
D.15, D.22, D.29, D.33).

7.5.4 Connections inside the DMA subtopic

DMA is used for big transfers. When using DMA, peripherals and
memory get connected directly so that the CPU does not need to take
care of the transfer of each little bit of information. The CPU programs
the peripheral’s I/O controller and the DMA controller, and continues
working until at the end of the transfer, the DMA controller triggers an
interrupt request. Therefore, inside the subtopic, as shows Figure 7.15
the only substantial link is between the DMA and the DMA controller.
However, many students missed that link (see Figures D.1, D.2, D.7,
D.12, D.16, D.21, D.24, D.31).

Most of the links of the DMA subtopic should be with other subto-
pics, mainly with the synchronization subtopic and with the system.
These links between subtopics will be considered in subsections 7.5.6
and 7.5.7.

7.5.5 Links between the I/O controller and the synchro-
nization subtopics

These two subsections should be linked. Indeed as the synchronization
subtopic encompasses the polled I/O and the interrupt-driven I/O, the
link between the two subtopics will be considered also in two parts, the
link between the I/O controller and the polled I/O on the one hand,
and the I/O controller and the interrupt-driven I/O on the other hand.

7.5: A more qualitative reading of the concept maps 119

Links between the I/O controller and the polled I/O

The links between the I/O controller and the polled I/O have already
been analysed in section 7.5.3, when talking about the how question,
since how polled I/O is performed is what links it with the I/O con-
troller; the CPU samples the status of the peripheral by asking the status
register whether the peripheral is ready or not to perform the I/O action.
The analysis shows that many students do not know what sampling the
status is, since they do not link it with polled I/O (see Figures D.3, D.4,
D.7, D.8, D.17, D.20, D.28, D.32), neither do they say the status of
whom should be sampled. Some of those who know it, do not know
how to do it (see Figures D.10, D.12, D.16, D.22, D.25).

Links between the I/O controller and the interrupt-driven I/O

Should there exist a link between the I/O controller and the interrupt-
driven I/O? Of course there should, but maybe not a direct link as the
one shown in Figure 7.16. These links say that the I/O controller is a
kind of interrupt-driven I/O (see Figures D.6, D.33) or that interrupt-
driven I/O is a way of synchronizing the I/O controller (with whom?)
(see Figure D.21).

The I/O controller should be linked with the ISR, since once the
interrupt has been accepted, the ISR that is executed is the one accessing
the I/O registers of the I/O controller in order to be able to decide what
the peripheral should be doing or to get the data the peripheral and
the CPU are interchanging. This link has been shown only in one
concept map, and this link says that the I/O controller reads the ISR
(see Figure D.23).

7.5.6 Links between the DMA controller and the I/O con-
troller

The DMA controller is indeed an I/O controller that connects directly
memory and peripheral’s I/O controllers and it has its own I/O registers.
Some students get this idea partially, saying that DMA controller is
connected to I/O controllers (see Figures D.2, D.12). Some others get

120 Chapter 7: Students’ understanding about the computer I/O subsystem?

to say that the DMA controller controls direct communication between
DMA and peripherals (see Figures D.24, D.30), and some other say
that DMA controller has its I/O registers (see Figures D.5, D.9, D.32).
The rest of the connections between DMA controller and I/O controller
are either wrong (see Figures D.3, D.6, D.7, D.23), or non-existent
(see Figures D.1, D.4, D.8, D.10, D.11, D.13, D.14, D.15, D.16,
D.17, D.18, D.19, D.20, D.21, D.22, D.25, D.26, D.27, D.28, D.29,
D.31, D.33).

7.5.7 Links between the DMA and the synchronization sub-
topics

As seen in Figure 7.12, there is no connection between the DMA and the
synchronization subtopics used by more than three students. However
one student correctly pointed that the DMA controller, at the end of the
data transfer, synchronizes by interrupt- driven I/O (see Figure D.6),
and another students that DMA controller controls DMA either by polled
I/O or interrupt-driven I/O (see Figures D.26).

7.6 Conclusions

In this research we used concept maps to identify strengths and weak-
nesses in students’ understanding of the computer I/O subsystem. Tools
from social network analysis were used for the quantitative analysis of
the merged concept maps, and the results are shown.

Those results show that in the students’ minds there are three mostly
unconnected subtopics: the “I/O controller”, the “Synchronization”, and
the “DMA”. The qualitative analysis brought a deeper insight showing
that there is mostly one clear idea, which is that the I/O controller has
I/O registers. The rest is overall not clear:

• system’s concepts are connected disorderedly, and sometimes mem-
ory is only connected to I/O registers or DMA;

• I/O instruction is an unknown concept;

7.6: Conclusions 121

• I/O registers or I/O controller being the readers of the control
instructions is an spread misconception;

• Polling and interrupts are often mixed up;

• The processes in order to poll the I/O or to manage interrupts are
not clear;

• DMA and its management have not been understood at all.

The quantitative picture that the merged network reveals can be very
helpful when individual concept maps have to be analysed in order to
give feedback to the students. However, this process should be somehow
automatized in order to be able to give that feedback in a reasonable
amount of time.

It was a shame that concept mapping was so badly taken by the
students. At least, the data obtained were very descriptive about the
knowledge of the students about the topic, and will be very useful
to improve the teaching. Achieved data will be used in subsequent
academic years in order to better clarify the worst understood concepts
and then reinforce I/O subsystem learning.

In Chapter 6 the dissatisfaction of the students towards this tool has
been made evident. However it has been very useful to see what do
they get to understand, and the year where they were used, the passing
rate raised. Therefore, although some adaptations could be required in
the use of the concept maps, we will probably continue using it, until
more evidence is gathered.

122 Chapter 7: Students’ understanding about the computer I/O subsystem?

CHAPTER 8

Overall Conclusions and Future Work

8.1 Conclusions

THE TPACK model described in Chapter 2 draws a whole picture of the
work carried out for this dissertation. Technological, pedagogical,

and content knowledge have been studied and grouped in order to be
able to perceive the needs of the computer I/O subsystem as a teaching
topic.

In order to strengthen the content knowledge I searched the bibliogra-
phy (both textbooks and research literature) and different universities’
syllabi for the topic (see Chapter 3). In this dissertation I found that
four different approaches are being used in order to teach the computer
I/O subsystem.

• The first one is purely descriptive, and it does not expect a deep
knowledge from the students.

• The second one lies in the fact that the computer I/O subsystem
is a bottleneck in the computer system, and it wants the student
to be able to calculate the performance of the system while using
different settings of the I/O subsystem.

124 Chapter 8: Overall Conclusions and Future Work

• The third approach intends the students to be able to control the
peripherals of a computer system by configuring and using their
controllers’ registers.

• The fourth approach places a great emphasis on the hardware level
control signals needed for the I/O subsystem to work correctly.

The technological and pedagogical constructs of the TPACK model
are too large to be considered without the limits of the content to be
taught. The research literature in this context has been analysed and
found that several simulators and real machines are being used to teach
the computer I/O subsystem. As with the pedagogical construct, the
literature found makes a commitment towards participatory learning
strategies and project-based learning.

I chose the Nintendo DS machine to move forward with the research.
From a technological content knowledge perspective I analysed the
system and prepared it for its use in the subject (see Chapter 4).

All this technological, pedagogical and content knowledge was com-
bined and empirically tried out during a period of three school years,
using the NDS machine, following the programming approach and a
PBL methodology. Chapter 5 describes the development and changes in
the course of the years, while in Chapter 6 the data gathered is analysed.
The data show that the combination of game-design and project-based
learning approach is attractive to the students and make pass rates
improve, answering to the two first research questions:

Q1: How well can a handheld game console be adapted to the teaching
needs of the I/O subsystem topic?

Q2: How well can a PBL methodology help in the learning process of
the I/O subsystem topic?

However, the model revealed a very important hole in the knowledge
to teach the topic effectively. This hole centres in students’ knowledge.

I then chose to follow this path and analyse the students’ knowledge
at the end of the subject. A combination of concept maps and social
network analysis was used to first to elicit students’ knowledge on the
relationships among the concepts studied in the topic, and then analyse
the concept maps gathered.

8.2: Future work 125

This study revealed a very interesting knowledge. The students were
unable to make relationships between different subtopics in the subject.
This gives us some ideas about what is missed in the educational process
of the I/O subsystem and which are the concepts that have to be
reinforced next years, and answers to the third research question:
Q3: How do students understand the I/O subsystem topic?

8.2 Future work

In an almost untouched field as the educational process of the computer
I/O subsystem is, this dissertation is no more than a door opened to a
corridor full of new doors asking to be opened.
The programming approach has been selected for this research. One

of the doors in the corridor is looking forward for someone to deeper
study the other approaches.
During the dissertation I have remarked on the fact that the study was

carried out in an undergraduate introductory level. Behind one of the
doors the computer I/O topic spreads towards more advanced subjects
such as operating systems, embedded systems, real time systems, etc.
How does the approach selected affect the understanding and learning
process in these subjects? This is another path to go through.
When opening these first mentioned doors a wide open area is found.

However, there is a whole set of doors that open towards the same
computer I/O subsystem at the undergraduate introductory level in
which this dissertation has been working on. There are still questions
to answer there. For example:

• How to triangulate the pre and post subject students’ knowledge
and the work they have been doing?

• How to set the subject so that a progressive learning is ensured?

• How well can serious games (since we are already using a game
console) help in that endeavour? In order to start the path to give
an answer to that question, the design of a question and answer
collaborative game have been presented in [Larraza-Mendiluze and
Garay-Vitoria, 2009] and [Larraza-Mendiluze and Garay-Vitoria,
2010].

126 Chapter 8: Overall Conclusions and Future Work

• How can this progressive knowledge be assessed? The path to
answer this last question has already been started in [Larraza-
Mendiluze and Garay-Vitoria, 2013b]. However, this is no more
than a starting point. To be able to answer the question, more than
the analysis of the questions used in the exam of a few universities
will be needed.

There is still another much more technical door that opens towards
a study on how to combine in one the concept mapping tool and the
social network analysis tool, and then spread away in order to be able
to compare knowledge in different universities and even in different
subjects.
Another door opens towards widening the technological knowledge,

by studying whether mobile devices can be used to teach the computer
I/O subsystem as we use the Nintendo DS.

8.3 Publications obtained from this work

1. E. Larraza-Mendiluze, N. Garay-Vitoria, J. Martín, J. Muguerza, T.
Ruiz-Vázquez, I. Soraluze, J. Lukas, and K. Santiago. Nintendo DS

projects to learn computer input-output. In Proceedings of the 17th
ACM annual conference on Innovation and technology in computer
science education, ITiCSE ’12, pages 373–373, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1246-2.
doi: 10.1145/2325296.2325388. (Classified in category A in the
CORE 2013 ranking).

2. E. Larraza-Mendiluze and N. Garay-Vitoria. A comparison between

lecturers’ and students’ concept maps related to the input/output topic

in computer architecture. In Proceedings of the 12th Koli Calling
International Conference on Computing Education Research, Koli
Calling ’12, pages 57–66, New York, NY, USA, 2012. ACM Press.
doi: 10.1145/2401796.2401803. (Classified in category B in the
ERA 2010 ranking).

3. E. Larraza-Mendiluze and N. Garay-Vitoria. The Learning Outcomes

of the Exam Question in the Input/Output Topic in Computer Ar-

chitecture, pages 212–215. LaTiCE ’13. Institute of Electrical and

8.3: Publications obtained from this work 127

Electronics Engineers, IEEE, 2013b. ISBN 978-1-4673-5627-5. doi:
10.1109/LaTiCE.2013.13.

4. E. Larraza-Mendiluze and N. Garay-Vitoria. Use of concept maps to

analyze students’ understanding of the I/O subsystem. In Proceedings
of the 13th Koli Calling International Conference on Computing Ed-
ucation Research, Koli Calling ’13, pages 67–76, New York, NY, USA,
2013a. ACM Press. doi: 10.1145/2401796.2401803. (Classified as
category B in the ERA 2010 ranking).

5. E. Larraza-Mendiluze, N. Garay-Vitoria, J. Martín, J. Muguerza, T.
Ruiz-Vázquez, I. Soraluze, J. Lukas, and K. Santiago. Game-Console-

Based Projects for Learning the Computer Input/Output Subsystem.
IEEE Transactions on Education, 56(4):453–458, Nov. 2013. ISSN
0018-9359. doi: 10.1109/TE.2013.2255877. (Classified as Q2 in
the category Education, Scientific disciplines in the 2012 ISI/JCR
Science Edition with an impact factor of 0.950 and 5-years impact
factor of 1.177).

6. E. Larraza-Mendiluze, N. Garay-Vitoria. Approaches and Tools used

to Teach the Computer Input/Output Subsystem at Undergraduate

Introductory Computer Architecture and Organization Courses. IEEE
Transactions on Education, –Under review, minor changes needed–
(Classified as Q2 in the category Education, Scientific disciplines in
the 2012 ISI/JCR Science Edition with an impact factor of 0.950
and 5-years impact factor of 1.177).

128 Chapter 8: Overall Conclusions and Future Work

Bibliography

J. Accarrino. Install Homebrew Games on Your Sony PSP, 2005. URL ❤tt♣✿✴✴✇✇✇✳
♠❡t❤♦❞s❤♦♣✳❝♦♠✴❣❛❞❣❡ts✴t✉t♦r✐❛❧s✴♣s♣✐♥st❛❧❧❣❛♠❡s✴✐♥❞❡①✳s❤t♠❧. [Re-
trieved 10/18/2013].

E. Aronson, N. Blaney, C. Stephin, J. Sikes, and M. Snapp. The jigsaw classroom. Sage Publishing
Company, 1978.

A. Arruarte, J. Elorriaga, and U. Rueda. A template-based concept mapping tool for computer-
aided learning. In Advanced Learning Technologies, 2001. Proceedings. IEEE International

Conference on, pages 309–312, 2001. doi: 10.1109/ICALT.2001.943931.

V. Batagelj and A. Mrvar. Pajek, Program for Analysis and Visualization of Large Networks, Ref-
erence Manual, 2011. URL ❤tt♣✿✴✴✈❧❛❞♦✳❢♠❢✳✉♥✐✲❧❥✳s✐✴♣✉❜✴♥❡t✇♦r❦s✴♣❛❥❡❦✴
❞♦❝✴♣❛❥❡❦♠❛♥✳♣❞❢. [Retrieved 07/03/2013].

A. Berglund. Learning computer systems in a distributed project course: The what, why, how and

where. PhD thesis, Uppsala University, 2005.

A. Berglund and A. Eckerdal. What do CS Students Try to Learn? Insights from a Distributed,
Project-based Course in Computer Systems. Computer Science Education, 16(3):185–195,
2006.

A. Berglund, M. Daniels, and A. Pears. Qualitative research projects in computing education
research: an overview. In Proceedings of the 8th Australasian Conference on Computing

Education - Volume 52, ACE ’06, pages 25–33, Darlinghurst, Australia, 2006. Australian
Computer Society, Inc. ISBN 1-920682-34-1.

J. Biggs and K. Collis. Evaluating the quality of learning: The SOLO Taxonomy, volume 1. Wiley
Online Library, 1982.

M. Black. EmuMaker 86, 2013. URL ❤tt♣✿✴✴❤tt♣✿✴✴✇✇✇✳❡♠✉♠❛❦❡r✽✻✳♦r❣✴. [Retrieved
09/23/2013].

M. Black and P. Komala. A full system x86 simulator for teaching computer organization. In
Proceedings of the 42nd ACM technical symposium on Computer science education, SIGCSE
’11, pages 365–370, Dallas, TX, USA, 2011. ACM. ISBN 978-1-4503-0500-6. doi: 10.1145/
1953163.1953272.

http://www.methodshop.com/gadgets/tutorials/pspinstallgames/index.shtml
http://www.methodshop.com/gadgets/tutorials/pspinstallgames/index.shtml
http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/pajekman.pdf
http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/pajekman.pdf
http://http://www.emumaker86.org/

130 BIBLIOGRAPHY

M. Black and N. Waggoner. Emumaker86: a hardware simulator for teaching cpu design. In
Proceeding of the 44th ACM technical symposium on Computer science education, SIGCSE
’13, pages 323–328, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1868-6. doi:
10.1145/2445196.2445294.

B. Bloom. Taxonomy of educational objectives: the classification of educational goals. Number v. 1
in Taxonomy of Educational Objectives: The Classification of Educational Goals. D. McKay,
1956.

S. Boss and J. Krauss. Reinventing Project-Based Learning. International Society for Technology
in Education, 2007.

J. Boustedt. On the road to a software profession: Students’ experiences of concepts and thresholds.
PhD thesis, Umeå University, 2010. URL ❤tt♣✿✴✴✉✉✳❞✐✈❛✲♣♦rt❛❧✳♦r❣✴s♠❛s❤✴r❡❝♦r❞✳
❥s❢❄♣✐❞❂❞✐✈❛✷✿✸✵✾✻✹✼. [Retrieved 06/28/2013].

M. Brorsson. Mipsit: a simulation and development environment using animation for computer
architecture education. In Proceedings of the 2002 workshop on Computer architecture educa-

tion: Held in conjunction with the 29th International Symposium on Computer Architecture,
WCAE ’02, New York, NY, USA, 2002a. ACM. doi: 10.1145/1275462.1275479.

M. Brorsson. MipsIt Laboratory Exercise 3, 2002b. URL ❤tt♣✿✴✴✇✇✇✳❡❧s❡✈✐❡r❞✐r❡❝t✳
❝♦♠✴❝♦♠♣❛♥✐♦♥s✴✾✼✽✵✶✷✸✼✹✹✾✸✼✴❡①❡r❝✐s❡s✴✵✸⑦✸❴❆ss❡♠❜❧②❴▲❛♥❣✉❛❣❡❴
Pr♦❣r❛♠♠✐♥❣❴■♥t❡rr✉♣ts❴❛♥❞❴t❤❡❴❖❙❴■♥t❡r❢❛❝❡✳♣❞❢. [Retrieved 09/25/2013].

M. Brorsson. MipsIt simulator, 2002c. URL ❤tt♣✿✴✴✇✇✇✳❡❧s❡✈✐❡r❞✐r❡❝t✳❝♦♠✴
❝♦♠♣❛♥✐♦♥s✴✾✼✽✵✶✷✸✼✹✹✾✸✼✴▼✐♣s✐t✳③✐♣. [Retrieved 09/25/2013].

D. Brylow and B. Ramamurthy. Nexos: a next generation embedded systems laboratory. SIGBED

Review, 6(1):7, 2009a.

D. Brylow and B. Ramamurthy. Nexos: a next generation embedded systems laboratory., 2009b.
URL ❤tt♣✿✴✴✇✇✇✳❝s❡✳❜✉❢❢❛❧♦✳❡❞✉✴♥❡①♦s✴✐♥❞❡①✳❤t♠❧. [Retrieved 09/25/2013].

J. Buzen. I/O subsystem architecture. Proceedings of the IEEE, 63(6):871–879, 1975. ISSN
0018-9219. doi: 10.1109/PROC.1975.9852.

L. B. Cassel, M. Holliday, D. Kumar, J. Impagliazzo, K. Bolding, M. Pearson, J. Davies, G. S.
Wolffe, and W. Yurcik. Distributed expertise for teaching computer organization & archi-
tecture. In Working group reports from ITiCSE on Innovation and technology in computer

science education, ITiCSE-WGR ’00, pages 111–126, New York, NY, USA, 2001. ACM. doi:
10.1145/571968.571973.

CC2001. Computing Curricula 2001 Computer Science, Final Report. The Joint Task
Force on Computing Curricula (IEEE Computer Society and Association for Computing
Machinery), 2001. URL ❤tt♣✿✴✴✇✇✇✳❛❝♠✳♦r❣✴❡❞✉❝❛t✐♦♥✴❡❞✉❝❛t✐♦♥✴❡❞✉❝❛t✐♦♥✴
❝✉rr✐❝❴✈♦❧s✴❝❝✷✵✵✶✳♣❞❢. [Retrieved 06/28/2013].

http://uu.diva-portal.org/smash/record.jsf?pid=diva2:309647
http://uu.diva-portal.org/smash/record.jsf?pid=diva2:309647
http://www.elsevierdirect.com/companions/9780123744937/exercises/03~3_Assembly_Language_Programming_Interrupts_and_the_OS_Interface.pdf
http://www.elsevierdirect.com/companions/9780123744937/exercises/03~3_Assembly_Language_Programming_Interrupts_and_the_OS_Interface.pdf
http://www.elsevierdirect.com/companions/9780123744937/exercises/03~3_Assembly_Language_Programming_Interrupts_and_the_OS_Interface.pdf
http://www.elsevierdirect.com/companions/9780123744937/Mipsit.zip
http://www.elsevierdirect.com/companions/9780123744937/Mipsit.zip
http://www.cse.buffalo.edu/nexos/index.html
http://www.acm.org/education/education/education/curric_vols/cc2001.pdf
http://www.acm.org/education/education/education/curric_vols/cc2001.pdf

BIBLIOGRAPHY 131

CC2004. Computer Engineering 2004: Curriculum Guidelines for Undergraduate Degree Pro-

grams in Computer Engineering. The Joint Task Force on Computing Curricula (IEEE
Computer Society and Association for Computing Machinery), 2004. URL ❤tt♣✿✴✴
✇✇✇✳❛❝♠✳♦r❣✴❡❞✉❝❛t✐♦♥✴❡❞✉❝❛t✐♦♥✴❝✉rr✐❝❴✈♦❧s✴❈❊✲❋✐♥❛❧✲❘❡♣♦rt✳♣❞❢. [Re-
trieved 06/28/2013].

CC2008. Computer Science Curriculum 2008: An Interim Revision of CS 2001. The
Joint Task Force on Computing Curricula (IEEE Computer Society and Association for
Computing Machinery), 2008. URL ❤tt♣✿✴✴✇✇✇✳❛❝♠✳♦r❣✴❡❞✉❝❛t✐♦♥✴❝✉rr✐❝✉❧❛✴
❈♦♠♣✉t❡r❙❝✐❡♥❝❡✷✵✵✽✳♣❞❢. [Retrieved 06/28/2013].

CC2013. Computer science curricula 2013 (ironman draft v.0.8), 2013. URL ❤tt♣✿✴✴❛✐✳
st❛♥❢♦r❞✳❡❞✉✴✉s❡rs✴s❛❤❛♠✐✴❈❙✷✵✶✸✴✴✐r♦♥♠❛♥✲❞r❛❢t✴❝s✷✵✶✸✲✐r♦♥♠❛♥✲✈✵✳
✽✳♣❞❢. [Retrieved 06/28/2013].

S. Cox. A conceptual analysis of technological pedagogical content knowledge. PhD thesis,
2008. URL ❤tt♣✿✴✴❝♦♥t❡♥t❞♠✳❧✐❜✳❜②✉✳❡❞✉✴❝❞♠✴r❡❢✴❝♦❧❧❡❝t✐♦♥✴❊❚❉✴✐❞✴✶✹✽✻.
[Retrieved 02/12/2013].

Cybermetrics_Lab. Ranking Web of Universities, 2013. URL ❤tt♣✿✴✴✇✇✇✳✇❡❜♦♠❡tr✐❝s✳
✐♥❢♦✴❡♥✴✇♦r❧❞. [Retrieved 09/24/2013].

W. de Nooy, A. Mrvar, and V. Batagelj. Exploratory Social Network Analysis with Pajek. Structural
Analysis in the Social Sciences. Cambridge University Press, 2005. ISBN 9780521602624.
URL ❤tt♣✿✴✴❜♦♦❦s✳❣♦♦❣❧❡✳❡s✴❜♦♦❦s❄✐❞❂❜❡❘❘▼❴●❍✶❨❦❈. [Retrieved 07/03/2013].

devkitPro. URL ❤tt♣✿✴✴❞❡✈❦✐t♣r♦✳♦r❣. [Retrieved 07/19/2013].

A. Díaz Lantada, P. Lafont Morgado, J. Munoz-Guijosa, J. Muñoz Sanz, J. Echávarri Otero,
J. Muñoz García, E. Chacón Tanarro, and E. De La Guerra Ochoa. Towards Successful Project-
Based Teaching-Learning Experiences in Engineering Education. International Journal of

Engineering Education, 29(2):476–490, 2013.

J. Djordjevic, A. Milenkovic, and N. Grbanovic. An integrated environment for teaching
computer architecture. Micro, IEEE, 20(3):66–74, 2000.

J. Donaldson, R. Salter, and R. Punch. DLSys: A Toolkit for Design and Simulation of Computer
System Architecture. In Proceedings of the 2011 workshop on Computer architecture education,
WCAE’11, pages 0–6, San Antonio, TX, USA, 2011a.

J. Donaldson, R. Salter, and R. Punch. DLsim, 2011b. URL ❤tt♣✿✴✴✇✇✇✳❝s✳♦❜❡r❧✐♥✳❡❞✉✴
⑦r♠s✴❞❧s✐♠✳❝♦♠. [Retrieved 09/23/2013].

A. Eckerdal. Novice programming students’ learning of concepts and practise. PhD thesis, Uppsala
University, 2009. URL ❤tt♣✿✴✴✉s❡r✳✐t✳✉✉✳s❡✴⑦❛♥♥❛❡✴❋✉❧❧❆✈❤✲❙♣✐❦❡♥❤❡t❡♥✳♣❞❢.
[Retrieved 06/28/2013].

D. Ellard. Ant-32 Assembly Language Tutorial, 2003. URL ❤tt♣✿✴✴❡❧❧❛r❞✳♦r❣✴❞❛♥✴✇✇✇✴
♣✉❜s✴❛♥t✸✷❴t✉t♦r✐❛❧✳♣❞❢. [Retrieved 09/25/2013].

http://www.acm.org/education/education/curric_vols/CE-Final-Report.pdf
http://www.acm.org/education/education/curric_vols/CE-Final-Report.pdf
http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://ai.stanford.edu/users/sahami/CS2013//ironman-draft/cs2013-ironman-v0.8.pdf
http://ai.stanford.edu/users/sahami/CS2013//ironman-draft/cs2013-ironman-v0.8.pdf
http://ai.stanford.edu/users/sahami/CS2013//ironman-draft/cs2013-ironman-v0.8.pdf
http://contentdm.lib.byu.edu/cdm/ref/collection/ETD/id/1486
http://www.webometrics.info/en/world
http://www.webometrics.info/en/world
http://books.google.es/books?id=beRRM_GH1YkC
http://devkitpro.org
http://www.cs.oberlin.edu/~rms/dlsim.com
http://www.cs.oberlin.edu/~rms/dlsim.com
http://user.it.uu.se/~annae/FullAvh-Spikenheten.pdf
http://ellard.org/dan/www/pubs/ant32_tutorial.pdf
http://ellard.org/dan/www/pubs/ant32_tutorial.pdf

132 BIBLIOGRAPHY

D. Ellard, D. Holland, N. Murphy, and M. Seltzer. On the design of a new CPU architecture for
pedagogical purposes. In Proceedings of the 2002 workshop on Computer architecture educa-

tion: Held in conjunction with the 29th International Symposium on Computer Architecture,
WCAE ’02, New York, NY, USA, 2002. ACM. doi: 10.1145/1275462.1275471.

A. Elliot Tew. Assessing fundamental introductory computing concept knowledge in a language

independent manner. PhD thesis, Georgia Institute of Technology, 2010. URL ❤tt♣✿✴✴❤❞❧✳
❤❛♥❞❧❡✳♥❡t✴✶✽✺✸✴✸✼✵✾✵. [Retrieved 06/28/2013].

A. Elliott Tew, B. Dorn, W. Leahy, Jr., and M. Guzdial. Context as support for learning computer
organization. J. on Educational Resoures in Computing, 8(3):8:1–8:18, Oct. 2008. ISSN
1531-4278. doi: 10.1145/1404935.1404937.

S. Fincher and M. Petre. Computer Science Education Research. Taylor & Francis, 2004. ISBN
9789026519697.

S. Fincher, M. Petre, and M. Clark, editors. Computer Science Project Work: Principles and

Pragmatics. Springer-Verlag, London, UK, UK, 2001. ISBN 1-85233-357-X.

L. Freeman, M. Everett, and S. Borgatti. UCINET software. URL ❤tt♣s✿✴✴s✐t❡s✳❣♦♦❣❧❡✳
❝♦♠✴s✐t❡✴✉❝✐♥❡ts♦❢t✇❛r❡✴❤♦♠❡. [Retrieved 07/03/2013].

GaLan. CM-ED (Concept Maps EDitor). URL ❤tt♣✿✴✴❣❛❧❛♥✳❡❤✉✳❡s✴●❛❧❛♥✴♥♦❞❡✴✸✹.
[Retrieved 07/03/2013].

N. Garay, E. Larraza, J. Martín, T. Ruiz, and I. Soraluze. Arquitectura de computadores. Open

Course Ware - Universidad del País Vasco (UPV/EHU), 2010. URL ❤tt♣✿✴✴♦❝✇✷✵✶✵✳❡❤✉✳
❡s✴❢✐❧❡✳♣❤♣✴✶✵✸✴❛rq✉✐t❡❝t✉r❛✴❛rq✉✐t❡❝t✉r❛❴❝♦♠✴❈♦✉rs❡❴❧✐st✐♥❣✳❤t♠❧.
[Retrieved 07/19/2013].

N. Garay-Vitoria. Hci design is not only software design. In Proceedings CONVIVIO Faculty

Forum: Teaching Design for HCI, 2006.

D. Gentner and A. Stevens. Mental Models. Cognitive Science - Lawrence Erlbaum Associates.
Lawrence Erlbaum Associates, 1983. ISBN 9780898592429. URL ❤tt♣✿✴✴❜♦♦❦s✳❣♦♦❣❧❡✳
❡s✴❜♦♦❦s❄✐❞❂◗❋■✵❙✈❜✐❡❖❝❈. [Retrieved 07/03/2013].

GP2Xa. GP2X Caanoo. URL ❤tt♣✿✴✴❣♣✷①✇✐③✳✐♥❢♦✴❝❛❛♥♦♦✳❛s♣. [Retrieved 10/18/2013].

GP2Xb. GP2X Wiz Portable Arcade & Console Emulator! URL ❤tt♣✿✴✴❣♣✷①✇✐③✳✐♥❢♦.
[Retrieved 10/18/2013].

C. R. Graham. Theoretical considerations for understanding technological pedagogical content
knowledge (TPACK). Computers & Education, 57(3):1953 – 1960, 2011. ISSN 0360-1315.
doi: 10.1016/j.compedu.2011.04.010.

C. Hamacher, Z. Vranesic, S. Zaky, and N. Manjikian. Computer organization and embedded

systems. McGraw-Hill Science/Engineering/Math, 6th edition, 2011. ISBN 9780073380650.
URL ❤tt♣✿✴✴❤✐❣❤❡r❡❞✳♠❝❣r❛✇✲❤✐❧❧✳❝♦♠✴s✐t❡s✴✵✵✼✸✸✽✵✻✺✷✴.

http://hdl.handle.net/1853/37090
http://hdl.handle.net/1853/37090
https://sites.google.com/site/ucinetsoftware/home
https://sites.google.com/site/ucinetsoftware/home
http://galan.ehu.es/Galan/node/34
http://ocw2010.ehu.es/file.php/103/arquitectura/arquitectura_com/Course_listing.html
http://ocw2010.ehu.es/file.php/103/arquitectura/arquitectura_com/Course_listing.html
http://books.google.es/books?id=QFI0SvbieOcC
http://books.google.es/books?id=QFI0SvbieOcC
http://gp2xwiz.info/caanoo.asp
http://gp2xwiz.info
http://highered.mcgraw-hill.com/sites/0073380652/

BIBLIOGRAPHY 133

N. Hanakawa, G. Yamamoto, K. Tashiro, H. Tagami, and S. Hamada. p-HInT: Interactive
Educational environment for improving large-scale lecture with mobile game terminals. In
Proceedings of the 16th International Conference on Computers in Education, pages 629–634,
2008.

M. Hewner. Student conceptions about the field of computer science. PhD thesis, Georgia
Institute of Technology, 2011. URL ❤tt♣✿✴✴❤❞❧✳❤❛♥❞❧❡✳♥❡t✴✶✽✺✸✴✹✺✽✾✵. [Retrieved
06/28/2013].

P. Hirst. The G-Factor International University Ranking, 2008. URL ❤tt♣✿
✴✴✇❡❜✳❛r❝❤✐✈❡✳♦r❣✴✇❡❜✴✷✵✵✾✵✷✷✻✵✹✹✷✸✼✴❤tt♣✿✴✴✉♥✐✈❡rs✐t②♠❡tr✐❝s✳❝♦♠✴
❣❢❛❝t♦r✷✵✵✻t♦♣✸✵✵. [Retrieved 09/24/2013].

P. Hubwieser and A. Mühling. What students (should) know about object oriented programming.
In Proceedings of the Seventh International Workshop on Computing Education Research,
ICER ’11, pages 77–84, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0829-8. doi:
10.1145/2016911.2016929.

P. Hubwieser, J. Magenheim, A. Mühling, and A. Ruf. Towards a conceptualization of pedagogical
content knowledge for computer science. In Proceedings of the Ninth Annual International

ACM Conference on International Computing Education Research, ICER ’13, pages 1–8, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-2243-0. doi: 10.1145/2493394.2493395.

ICER. ICER Conference. ❤tt♣✿✴✴✐❝❡r✳❤♦st✐♥❣✳❛❝♠✳♦r❣✴. [Retrieved 07/09/2013].

Informatics_Institute_of_Middle_East_Technical_University. University Ranking by Aca-
demic Performance, 2012. URL ❤tt♣✿✴✴✇✇✇✳✉r❛♣❝❡♥t❡r✳♦r❣✴✷✵✶✷✴✇♦r❧❞✳♣❤♣❄q❂
▼❙✵②◆❚❆❂. [Retrieved 09/24/2013].

ITICSE. ITICSE Conferences. ❤tt♣✿✴✴✇✇✇✳s✐❣❝s❡✳♦r❣✴❡✈❡♥ts✴✐t✐❝s❡. [Retrieved
07/09/2013].

D. Johnson, R. Johnson, and E. Holubec. Cooperation in the classroom. Edina, Minn : Interaction
Book, Co., Upper Saddle River, NJ, USA, 1998.

P. Kahn and K. O’Rourke. Understanding enquiry-based learning. 2005.

N. Kali Prasad. Towards Successful Project-Based Teaching-Learning Experiences in Engineering
Education. International Journal of Engineering Education, 29(1):17–22, 2013.

P. Kinnunen, V. Meisalo, and L. Malmi. Have we missed something?: identifying missing types
of research in computing education. In Proceedings of the Sixth international workshop on

Computing education research, ICER ’10, pages 13–22, New York, NY, USA, 2010. ACM. ISBN
978-1-4503-0257-9. doi: 10.1145/1839594.1839598.

M. Koehler, P. Mishra, K. Yahya, and A. Yadav. Successful teaching with technology: The complex
interplay of content, pedagogy, and technology. In Society for Information Technology &

Teacher Education International Conference, volume 2004, pages 2347–2354, 2004.

http://hdl.handle.net/1853/45890
http://web.archive.org/web/20090226044237/http://universitymetrics.com/gfactor2006top300
http://web.archive.org/web/20090226044237/http://universitymetrics.com/gfactor2006top300
http://web.archive.org/web/20090226044237/http://universitymetrics.com/gfactor2006top300
http://icer.hosting.acm.org/
http://www.urapcenter.org/2012/world.php?q=MS0yNTA=
http://www.urapcenter.org/2012/world.php?q=MS0yNTA=
http://www.sigcse.org/events/iticse

134 BIBLIOGRAPHY

Koli-Calling. Koli Calling international conference on computing education research. ❤tt♣✿
✴✴❝s✳❥♦❡♥s✉✉✳❢✐✴❦♦❧✐st❡❧✉t✴. [Retrieved 07/09/2013].

S. Krishnaprasad. Relevance of computer hardware topics in computer science curriculum. J.

Comput. Sci. Coll., 18(2):328–336, Dec. 2002. ISSN 1937-4771.

E. Larraza-Mendiluze and N. Garay-Vitoria. Una propuesta de impartición de competencias
asociadas a la entrada/salida del computador desde el punto de vista colaborativo. In Actas

del congreso Fomento e Innovación con Nuevas Tecnologías en la Docencia de la Ingeniería,
FINTDI 2009, pages 193–198. IEEE, Sociedad de Educación: Capítulos Español y Portugués,
2009. ISBN 978-84-8158-463-9.

E. Larraza-Mendiluze and N. Garay-Vitoria. Changing the learning process of the input/output
topic using a game in a portable console. In Proceedings of the Fifteenth Annual Conference on

Innovation and Technology in Computer Science Education, ITiCSE ’10, pages 316–316, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-820-9. doi: 10.1145/1822090.1822193. URL
❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✶✽✷✷✵✾✵✳✶✽✷✷✶✾✸.

E. Larraza-Mendiluze and N. Garay-Vitoria. A comparison between lecturers’ and students’
concept maps related to the input/output topic in computer architecture. In Proceedings of

the 12th Koli Calling International Conference on Computing Education Research, Koli Calling
’12, pages 57–66, New York, NY, USA, 2012. ACM Press. doi: 10.1145/2401796.2401803.

E. Larraza-Mendiluze and N. Garay-Vitoria. Use of concept maps to analyze students’ under-
standing of the I/O subsystem. In Proceedings of the 13th Koli Calling International Conference

on Computing Education Research, Koli Calling ’13, pages 67–76, New York, NY, USA, 2013a.
ACM Press. doi: 10.1145/2401796.2401803.

E. Larraza-Mendiluze and N. Garay-Vitoria. The Learning Outcomes of the Exam Question in

the Input/Output Topic in Computer Architecture, pages 212–215. LaTiCE ’13. Institute of
Electrical and Electronics Engineers, IEEE, 2013b. ISBN 978-1-4673-5627-5. doi: 10.1109/
LaTiCE.2013.13.

E. Larraza-Mendiluze, N. Garay-Vitoria, J. Martín, J. Muguerza, T. Ruiz-Vázquez, I. Soraluze,
J. Lukas, and K. Santiago. Nintendo DS projects to learn computer input-output. In
Proceedings of the 17th ACM annual conference on Innovation and technology in computer

science education, ITiCSE ’12, pages 373–373, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1246-2. doi: 10.1145/2325296.2325388.

E. Larraza-Mendiluze, N. Garay-Vitoria, J. Martín, J. Muguerza, T. Ruiz-Vázquez, I. Soraluze,
J. Lukas, and K. Santiago. Game-Console-Based Projects for Learning the Computer In-
put/Output Subsystem. IEEE Transactions on Education, 56(4):453–458, Nov. 2013. ISSN
0018-9359. doi: 10.1109/TE.2013.2255877.

L. Malmi, J. Sheard, Simon, R. Bednarik, J. Helminen, A. Korhonen, N. Myller, J. Sorva, and
A. Taherkhani. Characterizing research in computing education: a preliminary analysis of
the literature. In Proceedings of the Sixth international workshop on Computing education

research, ICER ’10, pages 3–12, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0257-9.
doi: 10.1145/1839594.1839597.

http://cs.joensuu.fi/kolistelut/
http://cs.joensuu.fi/kolistelut/
http://doi.acm.org/10.1145/1822090.1822193

BIBLIOGRAPHY 135

M. M. Mano. Computer System Architecture. Prentice Hall PTR, Englewood Cliffs, NJ, USA, 3rd
edition, 1993. ISBN 0131755633.

A. Martínez-Monés, E. Gómez-Sánchez, Y. Dimitriadis, I. Jorrín-Abellán, B. Rubia-Avi, and
G. Vega-Gorgojo. Multiple case studies to enhance project-based learning in a computer
architecture course. Education, IEEE Transactions on, 48(3):482–489, 2005.

P. Marwedel and B. Sirocic. Bridges to computer architecture education. In Proceedings of

the 2004 workshop on Computer architecture education: held in conjunction with the 31st

International Symposium on Computer Architecture, WCAE’10, page 12. ACM, 2004.

D. McLinden. Concept maps as network data: Analysis of a concept map using the methods of
social network analysis. Evaluation and Program Planning, 36(1):40 – 48, 2013. ISSN 0149-
7189. doi: 10.1016/j.evalprogplan.2012.05.001. <ce:title>Special Section: Rethinking
Evaluation of Health Equity Initiatives</ce:title>.

P. Mishra and M. Koehler. Educational technology by design: Results from a survey assessing
its effectiveness. In Proceedings of Society for information Technolgy and Teacher Education

International Conference. C. Crawford, et al. (Eds.), 2005.

P. Mishra and M. Koehler. Technological pedagogical content knowledge: A framework for
teacher knowledge. The Teachers College Record, 108(6):1017–1054, 2006.

A. Mühling and P. Hubwieser. Towards software-supported large scale assessment of knowledge
development. In Proceedings of the 12th Koli Calling International Conference on Computing

Education Research, Koli Calling ’12, pages 145–146, New York, NY, USA, 2012. ACM Press.
ISBN 978-1-4503-1795-5. doi: 10.1145/2401796.2401818.

B. Nikolic, Z. Radivojevic, J. Djordjevic, and V. Milutinovic. A survey and evaluation of simulators
suitable for teaching courses in computer architecture and organization. Education, IEEE

Transactions on, 52(4):449–458, 2009.

J. Novak and A. Cañas. The theory underlying concept maps and how to construct them. Tech-

nical Report IHMC CmapTools 2006-01 Rev 01-2008, Florida Institute for Human and Machine

Cognition, 2008. URL ❤tt♣✿✴✴❝♠❛♣✳✐❤♠❝✳✉s✴P✉❜❧✐❝❛t✐♦♥s✴❘❡s❡❛r❝❤P❛♣❡rs✴
❚❤❡♦r②❯♥❞❡r❧②✐♥❣❈♦♥❝❡♣t▼❛♣s✳♣❞❢. [Online; accessed 28/06/2013].

G. J. Nutt. Operating systems, volume 3. Pearson Education, 2004.

Pandora. Pandora official boards. URL ❤tt♣✿✴✴✇✇✇✳♦♣❡♥♣❛♥❞♦r❛✳♦r❣. [Retrieved
10/18/2013].

D. Patterson and J. Hennessy. Computer Organization and Design. Morgan Kaufmann, 4th
edition, 2009. ISBN 0123744938.

A. Pears, S. Seidman, C. Eney, P. Kinnunen, and L. Malmi. Constructing a core literature for
computing education research. SIGCSE Bull., 37(4):152–161, Dec. 2005. ISSN 0097-8418.
doi: 10.1145/1113847.1113893.

http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf
http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf
http://www.openpandora.org

136 BIBLIOGRAPHY

K. Powers. Teaching computer architecture in introductory computing: why? and how? In
Proceedings of the Sixth Australasian Conference on Computing Education - Volume 30, ACE
’04, pages 255–260, Darlinghurst, Australia, Australia, 2004. Australian Computer Society,
Inc.

QS. QS World University Rankings, 2013. URL ❤tt♣✿✴✴✇✇✇✳t♦♣✉♥✐✈❡rs✐t✐❡s✳❝♦♠✴
✉♥✐✈❡rs✐t②✲r❛♥❦✐♥❣s✴✇♦r❧❞✲✉♥✐✈❡rs✐t②✲r❛♥❦✐♥❣s✴✷✵✶✸★s♦rt✐♥❣❂r❛♥❦✰
r❡❣✐♦♥❂✰❝♦✉♥tr②❂✰❢❛❝✉❧t②❂✰st❛rs❂❢❛❧s❡✰s❡❛r❝❤❂. [Retrieved 09/24/2013].

U. Ramachandran and W. Leahy Jr. An integrated approach to teaching computer systems
architecture. In Proceedings of the 2007 workshop on Computer architecture education,
WCAE’07, pages 38–43, New York, NY, USA, 2007. ACM.

J. Randolph. Computer science education research at the crossroads: a methodological review

of computer science education research, 2000–2005. PhD thesis, Logan, UT, USA, 2007.
AAI3270886.

M. Saeli. Pedagogical content knowledge in programming education for secondary school. In
Proceedings of the Seventh International Workshop on Computing Education Research, ICER
’11, pages 145–146, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0829-8. doi:
10.1145/2016911.2016943.

K. Sanders, J. Boustedt, A. Eckerdal, R. McCartney, J. E. Moström, L. Thomas, and C. Zander.
Student understanding of object-oriented programming as expressed in concept maps. ACM

SIGCSE Bulletin, 40(1):332, Feb 2008. doi: 10.1145/1352322.1352251.

E. Santhanam, C. Leach, and C. Dawson. Concept mapping: How should it be introduced,
and is there evidence for long term benefit? Higher Education, 35(3):317–328, 1998. doi:
10.1023/A:1003028902215.

M. Santofimia and F. Moya. Nintendo DS: A Pedagogical Approach to Teach Computer Architec-
ture. In H. R. Arabnia and A. M. G. Solo, editors, ESA, pages 269–273, Las Vegas, Nevada,
USA, 2009. CSREA Press. ISBN 1-60132-102-3.

T. A. Scott. Illustrating programmed and interrupt driven I/O. J. Comput. Sci. Coll., 16(1):
230–238, Oct. 2000a. ISSN 1937-4771.

T. A. Scott. Mano Computer Simulator, 2000b. URL ❤tt♣✿✴✴❤♦♣♣❡r✳✉♥❝♦✳❡❞✉✴❝♦✉rs❡✴
❈❙✷✷✷✴❈❙✷✷✷❙✷✵✵✵✴❧❛❜✼✳❤t♠❧. [Retrieved 09/19/2013].

G. W. Scragg. Computer organization: a top-down approach. McGraw-Hill, Inc., New York, NY,
USA, 1992. ISBN 0-07-055843-4.

O. Seppälä. Advances in assessment of programming skills. PhD thesis, 2012. URL ❤tt♣s✿
✴✴❛❛❧t♦❞♦❝✳❛❛❧t♦✳❢✐✴❤❛♥❞❧❡✴✶✷✸✹✺✻✼✽✾✴✹✹✹✻. [Retrieved 07/22/2013].

Shanghai_Jiao_Tong_University. Academic Ranking of World Universities: Computer Science,
2013. URL ❤tt♣✿✴✴✇✇✇✳s❤❛♥❣❤❛✐r❛♥❦✐♥❣✳❝♦♠✴❙✉❜❥❡❝t❈❙✷✵✶✸✳❤t♠❧. [Retrieved
09/24/2013].

http://www.topuniversities.com/university-rankings/world-university-rankings/2013#sorting=rank+region=+country=+faculty=+stars=false+search=
http://www.topuniversities.com/university-rankings/world-university-rankings/2013#sorting=rank+region=+country=+faculty=+stars=false+search=
http://www.topuniversities.com/university-rankings/world-university-rankings/2013#sorting=rank+region=+country=+faculty=+stars=false+search=
http://hopper.unco.edu/course/CS222/CS222S2000/lab7.html
http://hopper.unco.edu/course/CS222/CS222S2000/lab7.html
https://aaltodoc.aalto.fi/handle/123456789/4446
https://aaltodoc.aalto.fi/handle/123456789/4446
http://www.shanghairanking.com/SubjectCS2013.html

BIBLIOGRAPHY 137

M. Shirali-Shahreza. Aiding speech-impaired people using nintendo ds game console. In
Proceedings of the 1st International Conference on PErvasive Technologies Related to Assistive

Environments, PETRA ’08, pages 83:1–83:3, New York, NY, USA, 2008. ACM. ISBN 978-1-
60558-067-8. doi: 10.1145/1389586.1389681.

L. S. Shulman. Those who understand: Knowledge growth in teaching. Educational researcher,
15(2):4–14, 1986.

Simon. Ten years of the Australasian Computing Education Conference. In Proceedings of

the Eleventh Australasian Conference on Computing Education - Volume 95, ACE ’09, pages
157–164, Darlinghurst, Australia, Australia, 2009. Australian Computer Society, Inc. ISBN
978-1-920682-76-7.

Simon, A. Carbone, M. De Raadt, and R. Lister. Classifying computing education papers: process
and results. In Proceedings of the Fourth international Workshop on Computing Education

Research, ICER ’08, pages 161–171, 2008. ISBN 9781605582160.

J. Sorva. Visual Program Simulation in Introductory Programming Education. PhD thesis, 2012.
URL ❤tt♣✿✴✴❧✐❜✳t❦❦✳❢✐✴❉✐ss✴✷✵✶✷✴✐s❜♥✾✼✽✾✺✷✻✵✹✻✷✻✻✴✐s❜♥✾✼✽✾✺✷✻✵✹✻✷✻✻✳
♣❞❢. [Retrieved 07/22/2013].

W. Stallings. Computer Organization and Architecture: Designing for Performance. Prentice Hall
Press, Upper Saddle River, NJ, USA, 9th edition, 2012. ISBN 978-0132936330.

T. D. Stanley, L. K. Wong, D. Prigmore, J. Benson, N. Fishler, L. Fife, and D. Colton. From archi
torture to architecture: Undergraduate students design and implement computers using the
multimedia logic emulator. Computer Science Education, 17(2):141–152, 2007.

M. Stojcev, I. Milentijevic, D. Kehagias, R. Drechsler, and M. Gusev. Computer architecture core
of knowledge for computer science studies. Cyprus Computer Society Journal, 5(4):39–42,
2003.

A. S. Tanenbaum and T. Austin. Structured Computer Organization. Prentice Hall Press, Upper
Saddle River, NJ, USA, 6th edition, 2012. ISBN 9780132916523.

P. Teller, M. Nieto, and S. Roach. Combining learning strategies and tools in a first course in
computer architecture. Symposium on Computer Architecture, 2003.

J. W. Thomas. A review of research on project-based learning. San Rafael, CA: Autodesk

Foundation, 2000. URL ❤tt♣✿✴✴✇✇✇✳r✐✳♥❡t✴♠✐❞❞❧❡t♦✇♥✴♠❡❢✴❧✐♥❦sr❡s♦✉r❝❡s✴
❞♦❝✉♠❡♥ts✴r❡s❡❛r❝❤r❡✈✐❡✇P❇▲❴✵✼✵✷✷✻✳♣❞❢. [Retrieved 29/11/2013].

Thomson_Reuters. Times Higher Education World University Rankings, 2013. URL
❤tt♣✿✴✴✇✇✇✳t✐♠❡s❤✐❣❤❡r❡❞✉❝❛t✐♦♥✳❝♦✳✉❦✴✇♦r❧❞✲✉♥✐✈❡rs✐t②✲r❛♥❦✐♥❣s✴
✷✵✶✷✲✶✸✴s✉❜❥❡❝t✲r❛♥❦✐♥❣✴s✉❜❥❡❝t✴❡♥❣✐♥❡❡r✐♥❣✲❛♥❞✲■❚. [Retrieved
09/24/2013].

P. Torrone. Run Homebrew Apps on Your PlayStation Portable (PSP), 2005. URL ❤tt♣✿
✴✴❛❞♠✐♥✳♠❛❦❡③✐♥❡✳❝♦♠✴❡①tr❛s✴✹✵✳❤t♠❧. [Retrieved 10/18/2013].

http://lib.tkk.fi/Diss/2012/isbn9789526046266/isbn9789526046266.pdf
http://lib.tkk.fi/Diss/2012/isbn9789526046266/isbn9789526046266.pdf
http://www.ri.net/middletown/mef/linksresources/documents/researchreviewPBL_070226.pdf
http://www.ri.net/middletown/mef/linksresources/documents/researchreviewPBL_070226.pdf
http://www.timeshighereducation.co.uk/world-university-rankings/2012-13/subject-ranking/subject/engineering-and-IT
http://www.timeshighereducation.co.uk/world-university-rankings/2012-13/subject-ranking/subject/engineering-and-IT
http://admin.makezine.com/extras/40.html
http://admin.makezine.com/extras/40.html

138 BIBLIOGRAPHY

UCLM. Computer Structure, 2013. URL ❤tt♣s✿✴✴❣✉✐❛❡✳✉❝❧♠✳❡s✴✈✐st❛Pr❡✈✐❛✴✻✸✽✾✴
✾✾✾. [Retrieved 07/22/2013].

UGR. Computer Structure, 2013. URL ❤tt♣✿✴✴❣r❛❞♦s✳✉❣r✳❡s✴
✐♥❢♦r♠❛t✐❝❛②♠❛t❡♠❛t✐❝❛s✴♣❛❣❡s✴✐♥❢♦❛❝❛❞❡♠✐❝❛✴❣✉✐❛s❞♦❝❡♥t❡s✴✷✵✶✷✶✸✴
s❡❣✉♥❞♦✴❡str✉❝t✉r❛❴❝♦♠♣✉t❛❞♦r❡s✴✦ [Retrieved 07/22/2013].

Unizar. Architecture and Computer Organization 1, 2013. URL ❤tt♣✿✴✴t✐t✉❧❛❝✐♦♥❡s✳
✉♥✐③❛r✳❡s✴❛s✐❣♥❛t✉r❛s✴✸✵✷✵✺✴❛❝t✐✈✐❞❛❞❡s✶✸✳❤t♠❧. [Retrieved 07/22/2013].

UPC. Computer Structure, 2013. URL ❤tt♣✿✴✴✇✇✇✳❢✐❜✳✉♣❝✳❡❞✉✴❢✐❜✴
❡st✉❞✐❛r✲❡♥❣✐♥②❡r✐❛✲✐♥❢♦r♠❛t✐❝❛✴❛ss✐❣♥❛t✉r❡s✴❊❈✳❤t♠❧. [Retrieved
07/22/2013].

UPM. Computer Architecture, 2013. URL ❤tt♣✿✴✴✇✇✇✳❞✐❛✳❡✉✐✳✉♣♠✳❡s✴❆s✐❣♥❛t✉✴
❈✉rs♦✶✷✲✶✸✴■❈❛rq❴❝♦♠✳❤t♠★♣r♦❣r❛♠❛. [Retrieved 07/22/2013].

UPV. Computer Structure, 2013. URL ❤tt♣✿✴✴✇✇✇✳✉♣✈✳❡s✴♣❧s✴♦❛❧✉✴s✐❝❴❛s✐✳❇✉s❝❛❴
❆s✐❄♣❴❝♦❞✐❂✶✶✺✺✷✫♣❴❝❛❝❛❂✷✵✶✷✫P❴■❉■❖▼❆❂❝✫♣❴✈✐st❛❂. [Retrieved 07/22/2013].

UPV/EHU. Computer Structure, 2013. URL ❤tt♣✿✴✴✇✇✇✳✐❦❛s❦❡t❛❦✳❡❤✉✳❡s✴
♣✷✻✻✲s❤♠❛st❝t✴❡✉✴♣❧s✴❡♥tr❛❞❛✴♣❧❡✇✵✵✹✵✳❤t♠❴❛s✐❣♥❛t✉r❛❴♥❡①t❄♣❴
s❡s✐♦♥❂✫♣❴❝♦❞❴✐❞✐♦♠❛❂❈❆❙✫♣❴❡♥❴♣♦rt❛❧❂❙✫♣❴❝♦❞❴❝❡♥tr♦❂✷✷✻✫♣❴❝♦❞❴
♣❧❛♥❂●■◆❋❖❘✷✵✫♣❴❛♥②♦❆❝❛❞❂❛❝t✫♣❴♣❡st❛♥②❛❂✸✫♣❴♠❡♥✉❂❣✉✐❛✫♣❴❝♦❞❴❛s✐❣❂
✷✻✵✶✺✫♣❴❝✐❝❧♦❂❳✫♣❴❝✉rs♦❂✶✫♣❴❞♣t♦❂✫♣❴✈❡♥❣♦❴❞❡❂❛s✐❣❴❝✉rs♦s✫♣❴❝❡♥tr♦❴
♦r✐❂✷✷✻✫♣❴♣❧❛♥❴♦r✐❂●■◆❋❖❘✷✵. [Retrieved 07/22/2013].

T. Urness. Teaching computer organization/architecture by building a computer. In Proceedings

of the 2007 workshop on Computer architecture education, WCAE’07, pages 72–76. ACM,
2007. ISBN 9781595937971.

D. Valentine. Cs educational research: a meta-analysis of sigcse technical symposium proceed-
ings. SIGCSE Bull., 36(1):255–259, Mar. 2004. ISSN 0097-8418. doi: 10.1145/1028174.
971391.

A. Vlado. Networks / Pajek: Program for Large Network Analysis, 2005. URL ❤tt♣✿✴✴✈❧❛❞♦✳
❢♠❢✳✉♥✐✲❧❥✳s✐✴♣✉❜✴♥❡t✇♦r❦s✴♣❛❥❡❦✴. [Retrieved 07/03/2013].

WCAE. Workshop on Computer Architecture Education. ❤tt♣✿✴✴✇✇✇✹✳♥❝s✉✳❡❞✉✴⑦❡❢❣✴
✇❝❛❡s✳❤t♠❧. [Retrieved 07/11/2013].

W. Wolf and J. Madsen. Embedded Systems Education for the Future. Proceedings of the IEEE,
88(1), 2000. ISSN 0018-9219. doi: 10.1109/5.811598.

G. S. Wolffe, W. Yurcik, H. Osborne, and M. A. Holliday. Teaching computer organization/archi-
tecture with limited resources using simulators. SIGCSE Bull., 34(1):176–180, Feb. 2002.
ISSN 0097-8418. doi: 10.1145/563517.563408.

P. Wouters, C. van Nimwegen, H. van Oostendorp, and E. D. van der Spek. A meta-analysis of
the cognitive and motivational effects of serious games. Journal of Educational Psychology,
105(2):249, 2013.

https://guiae.uclm.es/vistaPrevia/6389/999
https://guiae.uclm.es/vistaPrevia/6389/999
http://grados.ugr.es/informaticaymatematicas/pages/infoacademica/guiasdocentes/201213/segundo/estructura_computadores/!
http://grados.ugr.es/informaticaymatematicas/pages/infoacademica/guiasdocentes/201213/segundo/estructura_computadores/!
http://grados.ugr.es/informaticaymatematicas/pages/infoacademica/guiasdocentes/201213/segundo/estructura_computadores/!
http://titulaciones.unizar.es/asignaturas/30205/actividades13.html
http://titulaciones.unizar.es/asignaturas/30205/actividades13.html
http://www.fib.upc.edu/fib/estudiar-enginyeria-informatica/assignatures/EC.html
http://www.fib.upc.edu/fib/estudiar-enginyeria-informatica/assignatures/EC.html
http://www.dia.eui.upm.es/Asignatu/Curso12-13/ICarq_com.htm#programa
http://www.dia.eui.upm.es/Asignatu/Curso12-13/ICarq_com.htm#programa
http://www.upv.es/pls/oalu/sic_asi.Busca_Asi?p_codi=11552&p_caca=2012&P_IDIOMA=c&p_vista=
http://www.upv.es/pls/oalu/sic_asi.Busca_Asi?p_codi=11552&p_caca=2012&P_IDIOMA=c&p_vista=
http://www.ikasketak.ehu.es/p266-shmastct/eu/pls/entrada/plew0040.htm_asignatura_next?p_sesion=&p_cod_idioma=CAS&p_en_portal=S&p_cod_centro=226&p_cod_plan=GINFOR20&p_anyoAcad=act&p_pestanya=3&p_menu=guia&p_cod_asig=26015&p_ciclo=X&p_curso=1&p_dpto=&p_vengo_de=asig_cursos&p_centro_ori=226&p_plan_ori=GINFOR20
http://www.ikasketak.ehu.es/p266-shmastct/eu/pls/entrada/plew0040.htm_asignatura_next?p_sesion=&p_cod_idioma=CAS&p_en_portal=S&p_cod_centro=226&p_cod_plan=GINFOR20&p_anyoAcad=act&p_pestanya=3&p_menu=guia&p_cod_asig=26015&p_ciclo=X&p_curso=1&p_dpto=&p_vengo_de=asig_cursos&p_centro_ori=226&p_plan_ori=GINFOR20
http://www.ikasketak.ehu.es/p266-shmastct/eu/pls/entrada/plew0040.htm_asignatura_next?p_sesion=&p_cod_idioma=CAS&p_en_portal=S&p_cod_centro=226&p_cod_plan=GINFOR20&p_anyoAcad=act&p_pestanya=3&p_menu=guia&p_cod_asig=26015&p_ciclo=X&p_curso=1&p_dpto=&p_vengo_de=asig_cursos&p_centro_ori=226&p_plan_ori=GINFOR20
http://www.ikasketak.ehu.es/p266-shmastct/eu/pls/entrada/plew0040.htm_asignatura_next?p_sesion=&p_cod_idioma=CAS&p_en_portal=S&p_cod_centro=226&p_cod_plan=GINFOR20&p_anyoAcad=act&p_pestanya=3&p_menu=guia&p_cod_asig=26015&p_ciclo=X&p_curso=1&p_dpto=&p_vengo_de=asig_cursos&p_centro_ori=226&p_plan_ori=GINFOR20
http://www.ikasketak.ehu.es/p266-shmastct/eu/pls/entrada/plew0040.htm_asignatura_next?p_sesion=&p_cod_idioma=CAS&p_en_portal=S&p_cod_centro=226&p_cod_plan=GINFOR20&p_anyoAcad=act&p_pestanya=3&p_menu=guia&p_cod_asig=26015&p_ciclo=X&p_curso=1&p_dpto=&p_vengo_de=asig_cursos&p_centro_ori=226&p_plan_ori=GINFOR20
http://www.ikasketak.ehu.es/p266-shmastct/eu/pls/entrada/plew0040.htm_asignatura_next?p_sesion=&p_cod_idioma=CAS&p_en_portal=S&p_cod_centro=226&p_cod_plan=GINFOR20&p_anyoAcad=act&p_pestanya=3&p_menu=guia&p_cod_asig=26015&p_ciclo=X&p_curso=1&p_dpto=&p_vengo_de=asig_cursos&p_centro_ori=226&p_plan_ori=GINFOR20
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://www4.ncsu.edu/~efg/wcaes.html
http://www4.ncsu.edu/~efg/wcaes.html

BIBLIOGRAPHY 139

B. Wu and A. I. Wang. A guideline for game development-based learning: A literature review.
Int. J. Comput. Games Technol., 2012:8:8–8:8, Jan. 2012. ISSN 1687-7047. doi: 10.1155/
2012/103710. URL ❤tt♣✿✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✶✶✺✺✴✷✵✶✷✴✶✵✸✼✶✵.

C. Yehezkel, M. Ben-Ari, and T. Dreyfus. Computer architecture and mental models. SIGCSE

Bull., 37(1):101–105, Feb. 2005. ISSN 0097-8418. doi: 10.1145/1047124.1047390. URL
❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✶✵✹✼✶✷✹✳✶✵✹✼✸✾✵.

C. Yehezkel, M. Ben-Ari, and T. Dreyfus. The contribution of visualization to learning computer
architecture. Computer Science Education, 17(2):117–127, June 2007. ISSN 0899-3408. doi:
10.1080/08993400601165545.

http://dx.doi.org/10.1155/2012/103710
http://doi.acm.org/10.1145/1047124.1047390

140 BIBLIOGRAPHY

Appendices

142

APPENDIX A

Notes on the theory of the computer I/O subsystem for

the students

This appendix shows the lecture notes on the theory of the computer
I/O subsystem, that students are handed out. The appendix is in Basque,
one of the languages used in the course.

A.1 Sarrera/Irteera-ko interfazearen deskribapena.

Gai honetan, CPU edo prozesadorea kanpoaldearekiko nola komu-
nikatzen den aztertuko dugu. Era berean, komunikazio hori makina
lengoaia mailan nola kontrolatzen den ikusiko dugu. Komunikazio hori
lortu ahal izateko periferikoen laguntza behar du prozesadoreak.

Periferikoak mota askotakoak izan daitezke:

• Datuak aurkezteko: pantaila, inprimagailua...

• Datuak hartzeko: teklatua, sentsoreak,...

• Informazioa metatzeko: diskoak, zintak,..

• Ingurunea aldatzeko: motoreak, balbulak, ...

144 Chapter A: Notes on the theory of the computer I/O subsystem for the students

Periferikoak elektronikoki oso era desberdinetan kontrolatzen dira. Ho-
nengatik CPU-k zuzenean kontrolatu beharko balitu, kontrol-programak
eta periferikoen konexioak hiru busekin konplexuegiak izango lirateke.
Beraz, bitarteko zirkuitu berezi bat sartzen da: Sarrera/Irteerako kon-

trolagailua. Sistemak A.1 Irudikoaren itxura hartuko du.

Figure A.1: Sistemaren itxura periferikoaren kontrolagailua txertatu ondoren.

Kontrolagailua periferiko eta sistemako busen artean konektatzen den
gailu elektronikoa baino ez da eta makina-mailan erregistro-multzo bat
bezala ikusten du programatzaileak. Prozesadorea erregistro horien
bitartez komunikatzen da periferikoarekin.

A.1.1 S/I-ko kontrolagailuaren ikuspegi funtzionala

Hauexek dira S/I-ko kontrolagailuaaren betebeharrak:

• CPU-rekin komunikazioa (sarrera/irteerako eragiketak burutzeko
CPU-k egindako eskaerak hartzen ditu).

• Periferikoaren kontrola, honek CPU-k eskatutakoa bete dezan.

A.1: Sarrera/Irteera-ko interfazearen deskribapena. 145

• Periferiko eta CPU-ren arteko informazioaren transferentzia er-
raztea.

Eskematikoki kontrolagailua zer den A.2 Irudian ikus daiteke.

Figure A.2: Sistemaren itxura periferikoaren kontrolagailua txertatu ondoren.

A.1.2 Sarrera/irteera-ko kontrolagailuaren erregistroak

Kontrolagailuak dituen erregistroak prozesadoreak makina-lengoaiaren
aginduen bidez atzitzen ditu, helburu orokorreko erregistroak edota
memoria-posizioak atzitzen dituen era berean. Kontrolagailuaren erreg-
istroak hauexek izan ohi dira:

146 Chapter A: Notes on the theory of the computer I/O subsystem for the students

Egoera-Erregistroa:

Periferikoaren egoerari buruzko informazioa gordetzen du. Adibidez,
tekla bat sakatu den edo informazio konkretu bat inprimatu den. CPU-k
informazio hori behar duenean erregistro honen edukia irakurtzen du.

Kontrol-Erregistroa:

Erregistro honetan CPU-k idatzi egiten du ekintza konkretu bat aurrera
eraman ahal izateko kontrolagailuak behar duen informazioa; adibidez,
nola egin behar duen lana periferikoak edo zein den burutu behar den
eragiketa.

Datu-Erregistroa:

Kontrolagailuak periferikotik jasotako informazioa hemen metatzen
du CPU-k hortik har dezan edo alderantziz. Adibidez, tekleatutako
karakterea edo diskoan idatzi nahi den karakterea.

Bi aukera desberdin daude prozesadoreak kontrolagailuaren erreg-
istroak atzi ditzan, erregistro hauen “kokapenaren” arabera:

• Erregistroak memorian mapeatuta.

• Erregistroak memorian ez-mapeatuta edo S/I bereiztua.

A.1.3 Sarrera/Irteera memorian mapeatuta

Kontrolagailuaren erregistro bakoitzari memoria-mapako helbide fisiko
bat dagokio, memoria fisikoaren posizioekin gertatzen den bezala. Hau
da, kontrolagailuaren erregistroak memoria-posizioak bezalaxe irakurri
eta idazten dira, A.3 irudian ikus daitekeen moduan.

Ikus dezagun adibide bat non, 26 hitzeko RAM memoria bat eta 3
erre-gistrodun teklatua konektatu nahi ditugun makina batean. Helbide
fisikoak honakoak izango dira:

❅ ❞❛t✉✲❡rr❡❣✐str♦❛ ❂ ✶❳❳❳❳✶✶ ✭✐r❛❦✉r❦❡t❛✮
❅ ❦♦♥tr♦❧✲❡rr❡❣✐str♦❛ ❂ ✶❳❳❳❳✶✶ ✭✐❞❛③❦❡t❛✮
❅ ❡❣♦❡r❛✲❡rr❡❣✐str♦❛ ❂ ✶❳❳❳❳✶✵
❅ ❘❆▼ ❂ ✵❳❳❳❳❳❳

A.1: Sarrera/Irteera-ko interfazearen deskribapena. 147

Figure A.3: Memorian mapeatutako S/I erakusten duen memoria-mapa.

Makina honen memoriako helbideak 7 bitekoak dira, beraz makinaren
helbide-ratze-espazioa 27 posiziokoa da. Zeroz hasten den memoria-
helbide bat atzitzen denean (nahiz irakurtzeko nahiz idazteko) RAM
memoria atzitzen da (beraz, helbideratzeko 7 bit erabili arren, pisu
altuenekoa beti 0 izango da eta horregatik memoriaren tamaina 26

= 64
hitzetakoa da). 1XXXX01 helbidean egindako irakurketa batean datu-
erregistroa irakurtzen da. 1XXXX11 helbidean idazten bada, orduan
kontrol-erregistroan idazten da. 1XXXX10 helbidean irakurtzen denean
kontrolagailuaren egoera-erregistroa irakurtzen da.

Diseinua egin den moduan, aurreikusi da teklatua sarrerako periferikoa
dela eta inoiz ez dugula datu-erregistroan, hau da 1XXXX11 helbidean
idatziko. Era berean kontrol-erregistroan burutuko den eragiketa irakur-
keta izango denez, posiblea da bi erregistro hauek helbide berean ma-
peatzea. Beste aukera bat izango litzateke bi erregistro horiek helbide
desberdinetan egotea, horrela bietan idatzi eta irakurri ahal izango
litzateke. Helbideak honela geratuko lirateke:

• datu-erregistroa 1XXXX01 helbidean mapeatuta,

• kontrol-erregistroa 1XXXX11helbidean mapeatuta,

148 Chapter A: Notes on the theory of the computer I/O subsystem for the students

• egoera-erregistroa 1XXXX10 helbidean mapeatuta.

A.4 Irudian, erregistroen konexioa nola gauzatzen den ikus dezakegu.

Figure A.4: Erregistroen konexioaren eskema memorian mapeatuta daudenean

Ondoren, S/Iko erregistroak memorian mapeatzearen abantaila eta
desabantailak aurkeztuko ditugu:

Abantailak:

S/I-ko erregistroak memoria posizioak bezalaxe atzitzen dira, hots,
edozein agindu eta edozein helbideratze-modu erabil daitezke. Izan
ere, memorian mapeatutako erregistroak memoria fisikoaren posizioak
bailira maneiatzen dira eta CPUa ez da enteratzen erregistro ala memoria-
posizioa den.

Desabantailak:

Espazioa galtzen da memoria fisikorako.

Oso zaila da erabiltzaileak S/Iko erregistroak atzitu ditzan galaraztea.
Eta normalean Sistema-Eragilea (SE) da horretaz arduratu behar dena.
Nolabait erabiltzailearen atzipena galarazi behar da ezjakintasunagatik
zerbait hondatu dezakeelako. Kasu honetan hardware bitartez detek-
tatu behar da programa zein motakoa den: erabiltzaile arrunt batena
edo SEarena eta lehenengo motakoa bada transferentzia galarazi. Nor-
malean prozesadoreek seinale berezi bat izaten dute kontrol-busean

A.1: Sarrera/Irteera-ko interfazearen deskribapena. 149

exekutatzen ari den programa mota adierazteko: erabiltzaile arrunta
edo berezia. Hori horrela bada aginduak beharrezkoak dira mota hori
aldatu ahal izateko eta egoera-hitzean (PSW) gorde beharko da exeku-
tatzen ari den programa mota.

A.1.4 Sarrera/Irteera bereiztua edo memorian ez mapea-
tua

Prozesadoreak sortzen duen helbidea memoria-posizio bati edo S/I-ko
erregistroetariko bati dagokion adierazten duen seinale berezi bat dago.
Seinale hau IO/M da (InputOutput/Memory). A.5 irudian ikus daitekeen
moduan, seinale honi esker, memoria-mapa bat eta S/I-ko mapa bat
desberdindu daitezke.

Figure A.5: S/I bereiztua duen sistema baten memoria-mapa

Memoria atzitzen duen agindu bat exekutatzen denean, MOV, ADD eta
INC bezalakoak, IO/M seinalea desaktibatuta dago (IO/M = 0); era
honetan, prozesadoreak sortutako helbidea memoria fisikoari dagokiola
jakin daiteke.

150 Chapter A: Notes on the theory of the computer I/O subsystem for the students

Programak S/Iko portuak (erregistroak) atzitu nahi baditu, agindu
berezi bat exekutatu behar du. Sarrera/irteerako agindu bereziak
hauexek izan ohi dira:

■◆ ❜❛r♥❡❴❡rr❡❣✐str♦❴❦♦❞❡❛✱ ♣♦rt✉❴❦♦❞❡❛
❖❯❚ ♣♦rt✉❴❦♦❞❡❛✱ ❜❛r♥❡❴❡rr❡❣✐str♦❴❦♦❞❡❛

Bi agindu hauek exekutatzen direnean IO/M seinalea aktibatzen da
(IO/M = 1). Bi parametro dituzte: alde batetik, prozesadorearen
erregistro bat eta beste aldetik, S/Iko portu edo erregistro bat. Agindua
IN edo OUT izatearen arabera, portu horretan irakurri edo idatzi egiten
da. Laburbilduz, aurreko teknikarekiko desberdintasuna hauxe da: bi
espazio desberdin daude, memoria-mapa eta sarrera/irteerako mapa,
eta hauek atzitzeko agindu desberdinak erabiltzen dira.

Lehen erakutsitako adibidearekin jarraiki, orain, helbide-espazioko
7 bitak erabil daitezke memoria bera helbideratzeko, beraz, memo-
riaren tamaina 27 posiziokoa izan daiteke. IO/M seinaleak 0 balioa
hartu beharko du RAM memoria atzitzeko eta 1 balioa sarrera/irteera
erregistroak atzitzeko, A.6 irudian ikus daitekeen bezala.

Jarraian, lehen egin den moduan aukera honen abantaila eta desaban-
taila nagusiak aipatuko dira:

A.1: Sarrera/Irteera-ko interfazearen deskribapena. 151

Figure A.6: Erregistroen konexioaren eskema hauek ez daudenean memorian mapeatuta

Abantailak:

Ez da memoria fisikoaren espazioa galtzen bi espazioak bereiztuta
daudelako.
Erraza da programatzaileak erregistroak atzitu ditzan galaraztea, IN

eta OUT aginduak SEak bakarrik erabiltzen baditu.
Desabantailak:

2 agindu gehiago behar dira agindu-multzoan eta kontrol-seinale bat
gehiago (IO/M). Hauek direla eta, CPU-ren diseinua pixka bat konplex-
uagoa suertatzen da.
Zenbait makinetan bi metodoak nahasten dira: adibidez, i8086-an

oinarritutako ordenadore pertsonaletan pantaila memorian mapeatuta
dago baina teklatua, inprimagailua, eta bestelako periferikoak ez. Hau
da, pantailan karaktere bat idazteko nahikoa da memoria-posizio batean
idaztea (pantailako puntu edo "pixel" bakoitzari memoria-espazioko
posizio bat dagokio), baina beste periferikoen erregistroak atzitzeko IN
eta OUT aginduak erabili behar dira.

152 Chapter A: Notes on the theory of the computer I/O subsystem for the students

A.1.5 S/Iko kontrolagailuen sailkapena

Kontrolagailuak honelaxe sailka daitezke:
Ez-multiplexatuak: Kontrolagailuak periferiko bakar bat hartzen du

bere gain, A.7 Irudian ikus daitekeen bezala.

Figure A.7: Kontrolagailu ez-multiplexatua erakusten duen eskema

Hau periferikoa azkarra denean erabiltzen da, honela kontrolagailua
nahiko lanpetuta mantenduko delarik. Adibidez: disko azkarrak, pan-
taila grafikoak,...
Multiplexatuak: Kontrolagailu batek periferiko batzuk hartzen ditu

bere gain (A.8 Irudia).
Kasu honetan multiplexazioa karakterez edo blokez egin daiteke:

• Karakterez multiplexatua: Kontrolagailuak periferiko bati kasu
egiten dio karaktere baten transferentziak dirauen bitartean. Per-
iferiko motelekin erabiltzen da. Adibidez, oso normala da kontrola-
gailu bakar batek teklatua eta pantaila, biak batera, kontrolatzea,
teklatuak atentzioa noizbehinka baino eskatzen ez baitu, tekla bat
(karaktere bat) sakatzen denean, alegia.

• Blokez multiplexatua: Kontrolagailuak periferiko bati kasu egiten
dio karaktere-bloke baten transferentziak dirauen bitartean. Per-
iferiko azkarragoekin erabiltzen da. Adibidez, kontrolagailu bat eta
zenbait zinta-unitate.

A.2: Komunikazioa eta sinkronizazioa Sarrera/Irteerako eragiketetan 153

Figure A.8: Kontrolagailu multiplexatua erakusten duen eskema

A.2 Komunikazioa eta sinkronizazioa Sarrera/Irteerako er-

agiketetan

Konputagailu-sitema batetan S/Iko eragiketak nola burutzen diren ongi
ulertzeko ondoko hiru galderak erantzun behar ditugu:

• Nola burutzen da informazioaren transferentzia?

• Nork burutzen du transferentzia?

• Noiz burutzen da transferentzia?

Nola burutzen da informazioaren transferentzia?

Hau erantzun ahal izateko zein periferiko erabiltzen ari den jakitea
guztiz beharrezkoa da, informazio-transferentzia burutzeko jarraitu
behar diren urratsak periferikoaren menpekoak baitira.

Adibidez, i8086 makinan oinarritutako konputagailu batetik inprima-
gailu batetara datu transferentzia nola egiten den ikusiko dugu. In-
primagailuaren kontrolagailuak memorian ez mapeatutako 3 erregistro
ditu. Erregistro hauen helbideak honakoak izan daitezke (hau inprima-
gailuarekin bateragarria den konputagailuaren fabrikatzailearen araber-
akoa izan daiteke):

154 Chapter A: Notes on the theory of the computer I/O subsystem for the students

Erregistroa Helbidea

datuak 378H
egoera 379H
kontrol 37AH

Erregistro hauek 8 bitekoak dira. Egoera-erregistroko 7. bita 1ekoa iza-
teak adierazten du inprimagailua inprimatzeko prest dagoela. Egoera
horretan, karaktere bat inprimatu nahi izanez gero, karaktere hor-
ren ASCII-kodea datu-erregistroan idatzi eta STROBE sekuentzia bat
egin behar da. STROBE sekuentziak egiten duena zera da: kontrol-
erregistroaren n bitean 1ekoa idatzi ondoren, bit beraren gainean 0koa
idazten da. Eragiketa hau beharrezkoa da konputagailuak datua onar
dezan. Edozein modutan, kontrolagailuak jasotako informazio hau ez
da inprimatuko, <CR> eta <LF> karaktereak bidali arte. Bitartean,
kontrolagailuak barne buffer batean gordeko du.

Erabat desberdina den beste kontrolagailu baten adibidea, pantailaren
kontrolagailuarena da. Kasu honetan, pantailaren posizio bakoitzari
(80x25 karaktereentzako lekua du testuzko pantaila arrunt batek) hitz
bat dagokio bufferrean. Hitz horretan, posizio horretan erakutsiko
den karakterearen ASCII-kodea eta karakterea nola erakutsiko den
adierazten duen atributua gordetzen dira. Atributua adierazteko bytean
balio desberdinak sar daitezke. Adibidez:

07H normala
70H alderantzikatua
87H aldizkakoa

Pantailaren kontrolagailu hau memorian mapeatuta egoten da, 0B0000H
edo 0B8000H helbidetik aurrera (txartel-grafikoaren arabera).

Pantaila horren (i,j) posizioan karaktere bat erakutsi nahi badugu
ondorengo posizioetan karakterearen ASCII-kodea eta atributua idatzi
beharko dira:

✭✐✱❥✮ ❦❛r❛❦t❡r❡❛r❡♥ ❅ ❂ ♦✐♥❛rr✐ ❅ ✰ ✷✭✽✵✐✰❥✮
✭✐✱❥✮ ❛tr✐❜✉t✉❛r❡♥ ❅ ❂ ♦✐♥❛rr✐ ❅ ✰ ✷✭✽✵✐✰❥✮ ✰ ✶

A.2: Komunikazioa eta sinkronizazioa Sarrera/Irteerako eragiketetan 155

Pantailan esaldi bat idazteko, nahikoa litzateke karaktere eta atributu
bakoitza dagokion memoriako posizioan idaztea.
Noiz burutzen da transferentzia?

Galdera honi erantzuna eman ahal izateko hauxe da jakin behar dena:
nola sinkronizatzen da CPU S/Iko gailuekin? Hau da, nola daki proze-
sadoreak S/Iko eragiketa berri bat has daitekeela?
Kasu batzuetan erantzuna oso erraza da:CPU-k transferentzia berri bati

hasiera ematen dio berak nahi duenean. Adibidez: pantailan karaktere
berri bat aurkezteko ez du zertan egoera berezi baten zain egon behar-
rik, nahi duenean karaktere berria memoria-posizio batean uzten du.
Beste kasu limitea hauxe da: CPU-k erabiltzaileak tekleatutako karak-
tere bat irakurri behar duenean. Kasu honetan CPU-k erabiltzaileak
tekla sakatu arte itxaron behar du.
Kasurik orokorrenean, CPU-k gailua transferentzia burutzeko prest

dagoen detektatu beharko du nola edo hala. Detekzio hau bi eratan
egin daiteke. Hau da, badaude bi metodo CPU eta S/I-ko gailuak
sinkronizatzeko:

• Inkesta bidezko sinkronizazioa: CPU-k gailua prest dagoen detek-
tatzeko galdetu egiten dio inkesta moduko batez, bere erregistroak
aztertuz.

• Etenen bidezko sinkronizazioa: Kasu honetan kontrolagailua da
CPU-ri periferikoa prest dagoela esaten diona. Hau egiteko etena
izeneko seinale bat aktibatzen du.

Nork burutzen du transferentzia?

Nork burutzen du kontrolagailu eta memoriaren arteko informazio-
transferentzia? (orokorrean periferiko batetik etorritako informazioa
memorian metatzen da eta alderantziz).
Bi aukera daude:

a) CPU-k S/Iko ekintza guztiak burutzen ditu.

b) CPU-k ekintza batzuk baino ez ditu burutzen, beste guztiak kanpo
zirkuitu berezi batek burutzen dituelarik. Bi zirkuitu espezializatu
mota daude:

• DMA kontrolagailua (memoriarako atzipen zuzena).
• S/Iko prozesadorea (kanala).

156 Chapter A: Notes on the theory of the computer I/O subsystem for the students

A.2.1 Inkesta bidezko Sarrera/irteera

Kasu honetan, S/I-ko transferentzia prozesadoreak kontrolatzen du;
hau da, prozesadoreak ematen dio hasiera transferentziari periferikoa
prest dagoela detektatu ondoren. Hau egoera-erregistroaren bitartez
jakiten da: egoeraren inkesta edo egoeraren azterketa.
Egoera bidezko bi inkesta mota daude:
Etengabeko inkesta (edo inkesta jarraitua): S/Iko eragiketa bat

burutzeko programa nagusiak exekutatu behar duen algoritmoa hauxe
da:

✐r❛❦✉rr✐ ❡❣♦❡r❛✲❡rr❡❣✐str♦❛
❜✐t❛rt❡❛♥ ❡③✲♣r❡st ❡❣✐♥

✐r❛❦✉rr✐ ❡❣♦❡r❛✲❡rr❡❣✐str♦❛
❛♠❜✐t❛rt❡❛♥
❜✉r✉t✉ ❙✴■✲❦♦ tr❛♥s❢❡r❡♥t③✐❛

Prozesadoreak inkesta besterik ez du egiten gailu edo periferikoa prest
egon arte.
Inkesta periodikoa (edo aldizkako inkesta): Egoera-erregistroa irakurtzen

denean periferikoa ez badago prest, orduan programa nagusiak beste er-
agiketa edo kalkulu batzuk burutu ditzake eta hauek bukatzean berriro
aztertu egoera-erregistroa periferikoa prest dagoen ikusteko. Programa
nagusian exekutatu behar den algoritmoa:

✐r❛❦✉rr✐ ❡❣♦❡r❛✲❡rr❡❣✐str♦❛
❜✐t❛rt❡❛♥ ❡③✲♣r❡st ❡❣✐♥

❜✉r✉t✉ ❜❡st❡ ❡r❛❣✐❦❡t❛ ❜❛t③✉❦
✴✯❡❞♦ ✐t①❛r♦♥ ❞❡♥❜♦r❛✲t❛rt❡ ❜❛t ✯✴
✐r❛❦✉rr✐ ❡❣♦❡r❛✲❡rr❡❣✐str♦❛

❛♠❜✐t❛rt❡❛♥
❜✉r✉t✉ ❙✴■✲❦♦ tr❛♥s❢❡r❡♥t③✐❛

Kasu honetan arazo bat sor daiteke: programa nagusiak beranduegi
detektatzea transferentzia burutu daitekeela. Adibidez, programa
itxaroten ari den bitartean edo beste kalkuluak egiten ari diren bitartean,
erabiltzaileak bi tekla sakatzen ditu eta lehenengoa galdu egiten da.
Egoera bidezko inkestaz gain beste aukera bat ere badago inkesta

burutzeko: inkesta denborizatua. Honetarako periferikoak trans-
ferentzia bat burutzeko zenbat denbora behar duen jakin behar da.

A.2: Komunikazioa eta sinkronizazioa Sarrera/Irteerako eragiketetan 157

Denbora-tarte hau igaro ondoren suposatzen da periferikoa prest da-
goela beste transferentzia berri bat burutzeko. Kasu honetan, beraz, ez
da beharrezkoa kontrolagailuak egoera-erregistro bat edukitzea (hone-
tarako baino erabiltzen ez bada, behintzat). Garbi dago teknika hau
ezin dela erabili erantzun-denbora ezezaguna duten periferikoekin.
Adibidez, teklatua: erabiltzailea da bi tekla-sakatze kontsekutiboren
arteko denbora finkatzen duena eta hau ez da konstantea!

A.2.2 Etenen bidezko Sarrera/Irteera

Etena, prozesadorearen aditasuna behar duen ez-ohiko gertaera bat
baino ez da. Gertaera hauek honela sailkatzen dira:

Sinkronoak (Softwarezkoak): Etena agindu baten exekuzioaren on-
dorioa da. Honengatik programaren fluxuarekiko sinkronoa da. Mota
batzuk daude:

• TRAP-ak: Eten-mota hau sortzen duen agindua oso-osorik exeku-
tatzen da eta ondoren prozesadoreak etenaren zerbitzu-azpirrutina
exekutatuko du. Adibidez, koma higikorreko eragiketa batean OVF
sortzen denean, edo zerorekin zatiketa egiten denean, eta abar.

• Agindua ez da osorik exekutatzen baina prozesadorea egoera ezagun
batetan gelditzen da. Honela, hutsa ebatzi ondoren, etena sortu
duen aginduaren exekuzioa hasten da berriro. Adibidez: paritate-
errorea memoria-irakurketa batetan.

• Agindua ez da osorik exekutatzen eta prozesadorea egoera ezeza-
gun batean gelditzen da. Honela guztiz ezinezkoa da programa
berreskuratzea. Adibidez, memoria-posizio pribilegiatu bat atzitu
nahi denean.

Asinkronoak (Hardwarezkoak): Eten hauek programaren exekuzioaren
fluxuarekiko guztiz independenteak dira, prozesadoretik at gertatutako
ekintza baten ondorioak direlarik. Bi mota:

• HARDWAREAREN HUTSAK: Tentsio-erorketa, bus-apurketa,...

158 Chapter A: Notes on the theory of the computer I/O subsystem for the students

• SARRERA/IRTEERAKOAK: Sarrera/irteerako gailuek sortzen di-
tuzte eten hauek. Hauek dira guri interesatzen zaizkigunak.

Prozesadoreak eten-sarrera batzuk izaten ditu periferikoen eten-eskaerak
jasotzeko. Periferikoa transferentzia bat burutzeko prest dagoenean,
bere kontrolagailuaren egoera-erregistroko bit bat aktibatzen da (inkesta
bidezko sinkronizazioan aztertzen dena hain zuzen); une berean INT
irteera (eten-eskaera) aktibatzen da, irteera hau CPU-ren sarreretariko
batekin konektatuta dagoelarik. Hardwarearen eskema A.9 irudikoa da.

CPU-k sarrera hauetariko bat aktibatu dela detektatzen duenean (eten-
eskaera) eten hori momentu horretan bertan zerbitzatuko duen ala
ez erabakitzen du (etena galarazita ala baimenduta dagoen aztertu
behar da edo une horretan burutzen ari den lana S/I-ko eragiketa baino
garrantzitsuagoa den). Baiezkoan programaren exekuzioa gelditzen da
eta etenaren zerbitzu-azpirrutinara jauzten da. Etenaren tratamen-
dua bukatzen denean prozesadoreak etendako programaren exekuzioa
berreskuratzen du.

Beraz, etenaren zerbitzu-errutina kanpo gertaera batek aktibatutako
errutina baino ez da. Errutina honek prozesadorea eta periferikoaren
arteko informazio-transferentzia burutzen du eta S/I-ko eragiketa es-
katu zuen programari transferentziaren emaitzari buruzko informazioa
pasatzen dio. Guzti honen eskema A.9 irudian ikus daiteke.

Lehentxeago aipatu denez, metodo honen abantaila hauxe da: proze-
sadoreak ez du denborarik galtzen inkesta egiten eta beste ekintza
batzuk burutu ditzake. Desabantaila, makinaren hardwarea pixka bat
konplexuagoa dela INT kontrol-unitatearen sarrera-berria dela eta, bere
egoera algoritmoa konplexuagoa izanik.

A.3 Etenen kudeaketa

Eten bat sortzen denean burutzen diren ekintzak hauexek dira:

• Eten-eskaeraren detekzioa.

• Gorde etendako programaren egoera.

A.3: Etenen kudeaketa 159

Figure A.9: Etenei erantzuteko mekanismoaren eskema

• Exekutatu behar den zerbitzu-errutinaren identifikazioa (periferikoaren
menpekoa).

• Zerbitzu-errutinaren exekuzioa.

• Etendako programaren egoera berreskuratu.

Azter ditzagun orain banan banan.

A.3.1 Eten-eskaeraren detekzioa

Eten-eskaera CPU-ren sarrera baten aktibazioa da. CPU-k sarrera bat
edo gehiago izan dezake. Normalean etenak sor ditzaketen periferikoen
kopurua CPU-ren sarreren kopurua baino handiagoa izan ohi da. Ho-
nengatik periferikoak sarrera horien artean banatu behar dira.

CPU-k sarrera hori aztertu beharko du periodikoki. Normalean agindu
baten exekuzioa bukatzen denean aztertzen du, hurrengo aginduaren
bilaketari ekin baino lehen. Aginduak luzeak direnean, karaktere-kateen
tratamenduak kasu, karaktere baten gaineko eragiketa burutu ondoren
aztertu ohi da. Normalean eten-eskaerek berehala behar dute aditasuna.

160 Chapter A: Notes on the theory of the computer I/O subsystem for the students

Honengatik ez da oso egokia eten-seinalearen azterketa luzeegia izan
daitekeen agindu baten exekuzioaren ondoren egitea.

Oso normala da CPU-k etenen kontra babesteko baliabideren bat izatea,
adibidez: oso programa garrantzitsua exekutatzen ari denean. Oroko-
rrean egoera-hitzaren bit batzuk etenak baimenduta ala galarazita
dauden adierazi ohi dute. Eten-seinale bakarraren kasuan, hardwarea
nolakoa izan daitekeen erakusten duen eskema ikus daiteke A.10 iru-
dian.

Figure A.10: Eten-seinale bakarra dagoen kasurako hardware eskema

IF etenaren adierazlea (Interrupt Flag) da. Kontrol-unitateak aztertzen
duen seinalea INT* da, periferikoetatik heltzen den INT eten-eskaeraren
seinalea "maskaratuz" lortua. IF=0 denean etenak galarazita (disabled)
daudela esaten da. IF=1 denean, aldiz, etenak baimenduta daude
(enabled). Eten-eskaera ez-maskaragarriak existitu ohi dira (NMI =
Non Maskable Interrupt).

Eten-seinale batzuk daudenean posible da bakar batzuk baino ez
galaraztea, A.11 irudian ikus daitekeen bezala.

Makina-lengoaietan IF bita eta maskara maneiatzeko agindu bereziak
existitu ohi dira; Horrela, programatzaileak uneoro hainbat etenetaz
babesteko aukera izango du.

Suposatuko dugu, etenaren zerbitzu-errutinaren exekuzioa hasten
denetik amaitu arte beste eten-eskaerak galarazita daudela. Hau da,
CPU-k eten bat zerbitzatuko duela erabakitzen duenean, IF bita au-
tomatikoki 0ra jarriko du eta ez da berriro aktibatuko zerbitzu-errutina
amaitu arte.

A.3: Etenen kudeaketa 161

Figure A.11: Eten-seinale bat baino gehiago dagoen kasurako hardware eskema

A.3.2 Gorde etendako programaren egoera

Teorikoki etenaren zerbitzu-errutinaren exekuzioa amaitzen denean
etendako programaren exekuzioa berreskuratu behar da. Hau egin ahal
izateko beharrezkoa da programaren egoera gordetzea etena onartzen
denean.
Automatikoki gorde behar den gutxienezko informazioa hauxe da:

• PC: zerbitzu-errutinatik bueltatzerakoan exekutatu behar den hur-
rengo agindua zein den jakiteko.

• PSW (baldintza-bitak edo egoera-bitak): zerbitzu-errutinatik bueltatzer-
akoan, hau exekutatzen hasi aurretik zegoen egoera berean jarraitu
dezan.

Zerbitzu-errutinak, bere aldetik, berak erabiltzen dituen erregistroen
edukia gorde beharko du. Zerbitzu-errutina ezin dela eten esan dugunez
(maila bakarreko etenak), prozesadorearen egoera posizio finkotan
gorde daiteke. Geroxeago ikusiko dugu prozesadore gehienetan maila
anitzeko etenak onartzen direla, eta horrexegatik prozesadorearen
egoera pilan gorde beharko dela.

162 Chapter A: Notes on the theory of the computer I/O subsystem for the students

A.3.3 Zerbitzu-errutina edo periferikoaren identifikazioa

Etenak sor ditzaketen periferikoak desberdinak direnez eta bakoitzak
tratamendu egokitua behar duenez, etena detektatu (eta onartu) on-
doren beharrezkoa da periferiko eten-sortzailea identifikatzea berari
dagokion zerbitzu-errutinara jauzteko. Arazo hau agertzen da periferiko
batzuk eten-sarrera bakarra erabiltzen dutenean. Arazo hau ebazteko
ondoko galderak egin behar dizkiogu gure buruari:

• nork sortu du etena? Identifikazioa hardware bidez zein software
bidez egin daiteke.

• etena periferiko batek baino gehiagok eskatzen badu une berean,
zeini egingo zaio kasu lehenik? Lehentasunak ezarri behar dira.

Software bidezko identifikazioa:

Etenak baimenduta daudela, INT seinalea aktibatzen den bakoitzean,
CPU zerbitzu-errutina konkretu batetara jauzten da (zerbitzu-errutina
bana eten-sarrerarako): zerbitzu-errutina orokorra. Errutina honen
lehenengo aginduen helburua hauxe da: eten-eskaera sortu duen per-
iferikoaren identifikazioa egitea, inkesta baten bidez, kontrolagailuen
egoera-erregistroak aztertuz. Inkestaren ordenak periferikoen lehen-
tasuna adierazten du. Periferikoa identifikatua izan denean, berari
dagokion zerbitzu-errutinara jauzten da.

Ebazpen hau oso sinplea da baina motelegia izan daiteke. Hau er-
abiltzen duen makina bat: Nintendo DS.

Hardware bidezko identifikazioa:

Kasu honetan periferikoa bera identifikatzen da prozesadorearen aur-
rean. Horretarako, CPU-k irteera bereziak baditu eten eskaerak onartzeko,
INTA hain zuzen (etenaren onarpena), A.12 irudian ikus daitekeen
bezala. Irteera hauen kopurua INT sarreren kopuru bera da [INT1,...,K
====> INTA1,...,K].

CPU-k eten-eskaera onartzen duenean aktibatu den sarrerari dagokion
INTA irteera aktibatzen du. Seinale hau kontrolagailuen sarrera izango
da. Etena eskatu duen periferikoak seinale hau aktibatu dela detek-
tatzean, CPU-ri informazioa bidaliko dio honek jakin dezan zein den
exekutatu behar duen zerbitzu-errutina.

A.3: Etenen kudeaketa 163

Figure A.12: Kontrolagailuaren identifikazioa egiten duen hardwarearen eskema

Kontrolagailuak prozesadoreari bidaltzen dion informazioa ondokoetako
bat izan daiteke:

• Zerbitzu-errutinaren helbidea (SIGNETICS 2650).

• Prozesadoreak exekutatu behar duen aginduaren eragiketa-kodea;
agindu hau, logikoki, zerbitzu-errutinarako jauzia da (i8080).

• Prozesadoreak exekutatu behar den zerbitzu-errutinaren helbidea
gordetzen duen taula bat atzitzeko erabiliko duen identifikadorea.
Teknika honi “eten bektorizatua” izena ematen zaio (i8086).

Edozein kasutan ere, bigarren arazoa ebazteke daukagu, hots: zer
egin une berean periferiko batek baino gehiagok eten-eskaera sortzen
badu? Aurreko eskemari ez badiogu ezer gehitzen, etena eskatu zuten
periferiko guztiek, INTA seinalea detektatzean, dagokien informazioa
bidali nahi izango liokete prozesadoreari, guztiek batera! Arazo hau
ebazteko erabiltzen den aukeretako bat ikusiko dugu, Daisy-chain edo
margarita-katea (ikusi A.13 Irudia).

CPU-k eten-eskaera hartu ondoren onartzea erabakitzen duenean INTA
irteera aktibatzen du. Kontrolagailu bakoitzak INTA sarrera eta irteera
bana baditu. Kontrolagaily batek bere INTA sarrera aktibatuta detek-
tatzen duenean, berak ez badu eten-eskaera luzatu, orduan bere INTA

164 Chapter A: Notes on the theory of the computer I/O subsystem for the students

Figure A.13: Margarita-katearen hardware eskema

irteera aktibatzen du hurrengo kontrolagailuak azter dezan; prozesu
hau errepikatzen da etena eskatu duen kontrolagailuraino heldu arte.
Honek ez du bere INTA irteera aktibatzen eta prozesadoreari errutina
egokia exekuta dezan behar duen informazioa bidaltzen dio.

Teknika honen bitartez, prozesadoretik hurbilen dauden periferikoak
dira lehentasun gorenekoak (INTA seinalea lehenago hartzen baitute).
Ikusi A.13 Irudia.

A.3.4 Zerbitzu-errutinaren exekuzioa

Exekutatu behar den zerbitzu-errutina zein den aztertu ondoren, burutu
behar diren eragiketak periferikoaren eta lortu nahi den emaitzaren
menpekoak dira.

A.3.5 Etendako programaren egoera berreskuratu

Zerbitzu-errutinaren azken agindua itzuliarena da. Itzulera aginduak
etendako programaren egoera (PC eta PSW) berreskuratzen du bere
exekuzioa berriro has dadin.

A.3: Etenen kudeaketa 165

A.3.6 Maila anitzeko etenak

Konputagailu gehienetan CPU eten daiteke aurreko eten baten tratamen-
durako zerbitzu-errutina exekutatzen ari den bitartean. Kasu honetan,
zerbitzu-errutina berrira jauzten da eten berria aurrekoa baino lehen-
tasun handiagokoa bada. Beraz, n lehentasuna duen etena sortzen
denean, kasu egingo zaio etenak baimenduta badaude eta momentu
horretan lehentasun handiagoko zerbitzu-errutinaren bat exekutatzen
ari ez bada. Hau da, lehentasun mailak ezartzen dira. Kasu honetan IF
ez da 0-ra jarriko automatikoki.

A.14 Irudian, lehen ikusitako Daisy-Chain hardwarearen eskeman,
maila anitzeko etenekin lan egin ahal izateko egin beharreko aldaketak
zeintzuk diren ikus daiteke.

Figure A.14: Daisy-chain hardwarea maila-anitzeko etenak jasateko aldaketekin

Ki kontrolagailuak, etena eskatu duenak hain zuzen, INTA seinalea
hartzen duenean CPU-ri zerbitzu-errutina identifikatzeko behar duen
informazioa bidaltzen dio eta Si seinalea desaktibatzen du; honela
adierazten du berari dagokion zerbitzu-errutina exekutatzen ari dela.
Orain Ki+1 kontrolagailuak etena eskatzen badu INTA seinalea ez zaio
iritsiko Si seinalea desaktibatuta dagoenez prozesadorera iristen den
INT seinalea ez baita aktibatuko; beraz, lehentasuna errespetatzen
da. Etena Ki−1 kontrolagailuak eskatzen badu berriz zerbitzatuko da.
Zerbitzu-errutinaren exekuzioa amaitzen denean Si seinalea aktibatu
beharko da.

166 Chapter A: Notes on the theory of the computer I/O subsystem for the students

A.3.7 Etenen kontrolagailua

Etenen kontrolagailua CPU eta S/I-ko kontrolagailuen arteko bitartekaria
da, bera dela medio etenen kudeaketa eraginkorra lortzen delarik. Eten-
eskaerak hartzen ditu eta lehentasunaren arabera erabaki behar du
heldutako eskaera CPU-ri luzatu behar zaion ala ez. Eten-eskaera CPU-
k onartzen duenean, etenen kontrolagailuak zerbitzu-errutina identi-
fikatzeko behar den informazioa bidaltzen dio CPU-ri.

Etenen kontrolagailuaren beste aukerak hauexek dira:

• etenak bereiztuta maskaratzea,

• lehentasunak programatzea (dinamikoki),

• etenen kontrolagailuak kateatzea.

A.4 Memoriarako Atzipen Zuzena (DMA – Direct Memory

Access)

Memoria eta periferikoen artean datu-kopuru itzela transferitu behar
denean edo abiadura handiko transferentzia bat egin behar denean orain
arte ikusitako metodoa ez da batere egokia. Datu guztiek prozesadoretik
pasa behar badute, denbora asko erabiliko da S/I eragiketetan.

Demagun disko eta memoriaren arteko transferentzia bat egin nahi
dugula (ad. sektore bat memoriara pasa nahi dugula):

• Datu asko idatzi behar dugunez gero, prozesadoreak denbora luzea
emango du lan hau betetzen, beste gauzarik egin gabe.

• Datu guztiek prozesadoretik pasa behar dutenez gero, transferentzia
ez da "oso azkarra" izango eta, ondorioz, ez ditugu periferiko eta
memoriaren abiadura-ezaugarriak aprobetxatuko.

Daukagun eskema A.15 Irudian ikus daitekeena da.

Transferentzia hori azkarragoa izan dadin, hardware berezi bat sartuko
dugu sisteman horrelako datu-mugimenduez arduratzeko (kontuan

A.4: Memoriarako Atzipen Zuzena (DMA – Direct Memory Access) 167

Figure A.15: Memoriako atzipena DMA gabe

Figure A.16: Memoriako atzipena DMA erabiliz

hartu oso lan erraza dela). Zirkuitu hau DMA (memoriarako atzipen
zuzena) kontrolagailua da. Aurreko eskema A.16 irudian ikusten den
bezala geratuko litzateke:

DMA-ren bidezko sarrera/irteera bakarrik erabiltzen da memoria-
posizio kontsekutiboetan dauden datuak transferitu behar direnean.
Tipikoenak adibidez, kanpoko memoria-biltegi bat eta memoria nagu-
siaren arteko datu-mugimenduak dira.

DMA moduko idazketa/irakurketa prozesuaren hasieran prozesadoreak

168 Chapter A: Notes on the theory of the computer I/O subsystem for the students

DMA kontrolagailua (KDMA) programatuko du lan horretaz ardura
dadin. Sarrera/irteera kontrolatzeko egin behar dena, normalean, bi
gauza dira: helbidea helbide-busean jarri eta RD/WR seinalea aktibatu
kontrol-busean. Ondoren, helbidea eta bidali behar den datu-kopurua
gaurkotzen dira eta datu berri bat bidaltzen da, guztiekin bukatu arte.

Hala izanik, busak kontrolatzen dituzten bi gailu daude orain:
alde batetik prozesadorea, normalean busak kontrolatzen dituena, eta
bestaldetik, KDMA, S/I-ko prozesu hauetan busen kontrola bere gain
hartzen duena. Biek batera, prozesadoreak eta DMA kontrolagailuak,
memoria atzitzea ezinezkoa denez gero, soluzio bat aurkitu behar da.

Aukera bat portu anitzeko memoria bat erabiltzea da. Ikusi A.17
irudia.

Figure A.17: Portu anitzeko memoria

Kasu honetan bi bus daude eta CPUk bat kontrolatzen duen bitartean,
KDMA-k bestea kontrolatzen du. Horrela, P3 (irudian) eta memoriaren
arteko transferentzia bat egiten ari den bitartean, prozesadoreak, bere
aldetik, bere lanarekin jarraitzen du. Transferentzia osoa bukatuta
dagoenean, DMA kontrolagailuak abisatuko dio prozesadoreari eta kito!
Sinkronizazio hau, beti bezala, inkestaren bidezkoa (CPU-k burutzen
duena) edo etenen bidezkoa (KDMA-k burutzen duena) izan daiteke.
Azken hau erabiltzen bada, CPUa behin bakarrik eteten da.

A.4: Memoriarako Atzipen Zuzena (DMA – Direct Memory Access) 169

Portu anitzeko memoriak garestiak dira. Horregatik, prozesadoreak eta
KDMA-k bus bera erabiltzen dute askotan memoria atzitzeko. Ondorioa
hauxe da, batek busak erabiltzen dituenean besteak deskonektatuta
egon behar du, inpedantzia altuko egoeran. Bigarren eskema A.18
Irudian ikus daiteke.

Figure A.18: Portu bakarreko memoria

Jakina, paralelotasuna askoz txikiagoa da orain, bata lana egiten ari
denean (memoria irakurri edo idatzi) bestea lanik egin gabe (memori-
arekin behintzat) geratuko baita.

A.4.1 DMA kontrolagailua

DMAko kontrolagailu arrunt batean erregistro batzuk agertzen dira
normalean. Haien bidez zirkuituaren funtzionamendua programatzen
da. Hauen artean daude:

• Helbide erregistroa: erregistro honetan transferentziaren hurrengo
datuaren helbidea daukagu.

• Luzera erregistroa: transferitzeko geratzen diren datu kopurua
gordetzen du.

• Kontrol erregistroa: prozesua kontrolatzeko informazioa gordet-
zen du, hala nola:

170 Chapter A: Notes on the theory of the computer I/O subsystem for the students

– sarrera- ala irteera-prozesua den (rd - wr)

– inkrementatu/dekrementatu: helbideak kontrolatzeko, hau da,
datu bat bidali eta gero helbidea inkrementatu edo dekrementatu
behar ote den.

– sinkronizazio-modua: prozesua bukatu dela adierazteko etenak
bai ala ez.

– prozesu-mota: ziklo-lapurketa, blokeka, . . .

• Egoera erregistroa: prozesua ondo bukatu ote den jakiteko.

DMA kontrolagailuaren eskema A.19 Irudian ikus daiteke.

A.4.2 DMA bidezko transferentzia

DMA bidezko sarrera/irteera bat egiteko hauek dira jarraitu behar diren
pausuak:

• Transferentziaren hasieraketa.

• Transferentzia.

• Transferentziaren amaiera.

Ikus ditzagun hiru pauso hauek zehatzago:

Transferentziaren hasieraketa

Prozesadoreak kontrolagailuak programatu behar ditu. Horretarako,
lehenik kontrolagailu hauek prest dauden jakin beharko du sarrera/ir-
teerako beste eragiketetan bezala.

• Aztertu KDMA eta KPER prest ote dauden

• Programatu KDMA

– hasierako memoria-helbidea bidali.

– datu-kopurua adierazi

– kontrol-informazioa idatzi (norantza, etenak, transferentzia mota)

A.4: Memoriarako Atzipen Zuzena (DMA – Direct Memory Access) 171

Figure A.19: DMA kontrolagailuaren erregistroak

• Programatu KPER (periferikoaren araberakoa).

Transferentzia

Transferitu behar den datu bakoitzeko honako pausoak jarraitu be-
harko dira (ikusi zenbakiak A.20 Irudian):

1. KPER kontrolagailuak DMAR (DMA Request) seinalea aktibatzen
du transferentzia bat egiteko prest dagoela adierazteko: datu bat
dauka edo datu bat hartzeko prest dago.

2. KDMA kontrolagailuak BR (Bus Request) seinalea aktibatzen du
CPU-ri busen kontrola eskatzeko. erikoaren araberakoa).

3. CPU-k bus zikloa amaitzen du eta BG (Bus Grant) seinalea ak-
tibatzen du, busen kontrola KDMA-ri emanez eta bere irteera ler-
roak inpedantzia altuko egoeran jarriz.

4. KDMA kontrolagailuak helbidea kokatzen du helbide busean, R/W
seinalea aktibatzen du eta DMAG (DMA Grant) seinalea bidaltzen
dio KPER-eri datu bat irakur edo idatz dezan datu busean.

172 Chapter A: Notes on the theory of the computer I/O subsystem for the students

5. Eragiketa amaitzerakoan, KDMA-k BR seinalea desaktibatzen du
CPUri busen kontrola emateko.

Figure A.20: DMA kontrolagailuaren funtzionamendua

Pausu hauek transferitu behar den datu bakoitzeko errepikatzen di-
renean transferentzia ziklo-lapurketa (cycle stealing) motakoa dela
esaten da, noizbehinka DMA-k ziklo bat lapurtzen diolako CPU-ri. Per-
iferikoaren abiadura handia bada, KDMA-k etengabe eskatuko dio proze-
sadoreari ziklo bat datu-transferentzia bat egiteko eta teknika hau ez
da oso eraginkorra izango.

Orduan beste teknika bat erabil daiteke: blokekako transferentzia
(burst). Prozedura honen bidez KDMA-k busen kontrola lortzen due-
nean datu-bloke oso bat bidali ondoren bueltatzen dio busen kontrola
prozesadoreari.

Transferentziaren amaiera (sinkronizazioa)

Blokearen transferentzia amaitzen denean, CPU eta KDMA sinkro-
nizatu egin behar dira. Normalean etenen bidez egiten da sinkronizazio
hau (baina hau ere programa daiteke). KDMA-ren zerbitzu-errutinak

A.4: Memoriarako Atzipen Zuzena (DMA – Direct Memory Access) 173

egoera-erregistroa aztertzen du KDMA transferentzia ondo joan den
egiaztatzeko. Eten-eskaera sortzen duena bai KDMA bai KPER izan
daiteke.

• Inkestaren bidezko sinkronizazioa:

Periferikoari eragiketa-ordena bidali ondoren programa nagusiak
KDMA-ren egoera-erregistroan inkesta egiten du honek eragiketa
bukatu dela (datu guztiak transferitu dituela) adierazten dion arte.

Garbi dagoenez aukera hau ez da oso logikoa CPU-k ez baitu lanik
egiten informazio- transferentziak dirauen bitartean. Beraz, ez da
ezer irabazten lan guztia CPU-k burutzen duen kasuarekin kon-
paratuta. Zerbait irabaztekotan abiaduraren aldetik izango litzateke
KDMA-ren abiadura handiagoa baita CPUrena baino.

• Etenen bidezko sinkronizazioa:

Programa nagusiak kontrolagailuak programatzen ditu hasieran
informazio-transferentziari hasiera emateko baina gero transfer-
entziak dirauen bitartean beste kalkulu batzuk (memoria erabiltzen
ez dutenak noski) egin ditzake. KDMA-k datu guztiak transfer-
itu direla detektatzen duenean CPUri eten-eskaera bidaltzen dio
transferentziaren bukaera adierazteko.

KDMA-ak CPU etengo transferentzia bukatzean. Etena sortzen de-
nean exekutatu behar den errutina honelakoxea izango da:

✐r❛❦✉rr✐ ❡❣♦❡r❛✲❡rr❡❣✐str♦❛
❜❛❧❞✐♥ ❡rr♦r❡❛ ♦r❞✉❛♥

♣r♦❣r❛♠❛t✉ ❑❉▼❆ ❜❡rr✐r♦
♣r♦❣r❛♠❛t✉ ❑❉■❙❑❖ ❜❡rr✐r♦

❜❡st❡❧❛ ❜✉❦❛t✉
❛♠❜❛❧❞✐♥

Honela CPU-ri S/I-ko lan astunaren zati bat kentzen zaio, orain
beste zirkuitu batek (KDMA) burutzen duelarik lan hori.

174 Chapter A: Notes on the theory of the computer I/O subsystem for the students

APPENDIX B

Notes on the specifics of the Nintendo DS for the

students

This appendix shows the lecture notes on the functioning of the NDS
devices, that students are handed out. The appendix is in Basque, one
of the languages used in the course.

SARRERA/IRTEERA NDS-AN

Aurreko gaian NDS makinarekin lan egin dugu, mihiztadura lengoaian
programatuz. Konpiladoreak egiten duen lana aztertu dugu, eta goi
mailako lengoaia batean idatzitako programa bat nola itzultzen den
mihiztadura lengoaiara edo makina lengoaiara ere. Orain arte ordea,
ez dugu sarrera/irteerako azpisistemarekin zerikusia duen ezer landu.

Gai honetan, sarrera/irteerako funtzionamenduaren teoria orokorra
ezagutzen dugunez, Nintendo DS-aren sarrera/irteera aztertuko dugu.
Horretarako, garrantzitsuak iruditzen zaizkigun makina honen hard-
warearen atalak deskribatuko ditugu, alde batetara utziz ikasturte aur-
reratuago batean landu daitezkeen zehaztasunak.

176 Chapter B: Notes on the specifics of the Nintendo DS for the students

B.1 Hardwarearen deskribapena

B.1.1 Prozesadoreak

Dakigun bezala, NDSak bi prozesadore ditu, ARM9 (66 MHz) bata eta
ARM7 (33 Mhz) bestea. Nintendok NDSrako diseinu batean integratu
ditu biak. ARM9 prozesadorea batez ere grafikoen kontrolaz arduratzen
da eta ARM7 prozesadorea periferikoen kontrolaz.

Bi prozesadore izateak hainbat zailtasun dakartza berarekin, bi proze-
sadoreek elkarrekin lan bat burutzen dutenean beraien arteko komu-
nikazioa ezinbestekoa delako. Gure lanerako sinplifikazio bat egingo
dugu prozesadore bakarrarekin lan egiten dugula suposatuz. ARM7
prozesadoreak ezin ditu grafikoak tratatu. ARM9 prozesadorea ordea,
periferiko garrantzitsuenen informazioa atzitu dezake. Beraz, azken hau
izango da gure proiektuan zehar erabiliko duguna. Hala ere, badago
periferikoren bat bakarrik ARM7ak kontrolatzen duena. Horrelako
periferiko bat atzitzea nahi dugunean liburutegiko funtzioak erabiliko
ditugu, prozesadoreen arteko komunikazioa nola burutzen den aztertu
gabe.

Gaur egun gure inguruan aurkitu ditzakegun beste hainbat sistema tx-
ertatutan gertatzen den bezala, makina honek ez du sistema eragilerik.
NDSa PCtik desberdintzen duen ezaugarri honek makina behe mailan
kontrolatzeko aukera ematen digu, sarrera/irteerako erregistroak, ete-
nen kudeatzailearen erregistroak eta eten-taula atzituz.

B.1.2 Memoria

B.1 Irudian ikus daitekeen bezala NDSaren memoria-sistema konplexua
da. Guzti honetatik guk jakin behar duguna da sarrera/irteerako kon-
troladoreen erregistroak eta etenen kudeaketarako erregistroak beti
memorian mapeatuta daudela, eta beraz, ez dugula agindu berezirik
behar erregistro horiek atzitzeko.

Ondoren ikusiko dugu klasean erabiliko dugun periferiko bakoitzaren
kontrolagailuen erregistroak zein memoriako helbidetan mapeatzen
diren eta nola konfiguratu dezakegun memoria, fondo grafikoak eta
sprite-ak erabiltzeko.

B.1: Hardwarearen deskribapena 177

Figure B.1: NDSaren hardwarearen eskema

B.1.3 Pantailak

NDS makinek badaukate jolasteko beste makina eramangarrietatik
bereizten dituen ezaugarri bat; bi pantaila dituela. Beheko pantaila

178 Chapter B: Notes on the specifics of the Nintendo DS for the students

gainera, ukimen pantaila bat da. Kontrolatzeko moduari dagokionez,
pantaila grafikoa eta ukimen pantaila periferiko desberdinak balira
bezala kontrolatzen dira. Horregatik dokumentu honetan bananduta
aztertuko ditugu.

Pantaila grafikoak

Bi pantaila grafikoak LCD (Liquid Crystal Display) motakoak dira. Biak
tamaina berekoak dira, 256x192 pixel, eta trukatu ditzaketen bi motor
grafiko erabiltzen dituzte. Bi motorretako batek hiru dimentsiotako
irudiak tratatu ditzake.
Irudiak bitarrera itzultzen dira eta programarekin batera gordetzen

dira. Irudi bitar hauek pantailan atera daitezen pantaila mapeatzeko
erabiltzen den VRAM (Video RAM) memoriako bankuan kopiatu behar
dira.
Baina, zer nahi dugu esatea pantaila memoriako banku batean ma-

peatzen dela diogunean? bada, pantailari memoriako banku hori
esleitzen ziola, eta beraz, banku horretan idazten dena izango dela
pantailan aterako dena.
Pantailan erakutsi daitezkeen irudiak gutxienez bi motatakoak izan

daitezke: fondoak eta sprite-ak. Fondoak, desplazatu, biratu, eraldatu
eta dimentsioz alda daitezkeen arren, mugimendu gaitasun gutxiago
dute sprite-ak baino. Azken hauek, pantaila guztian zehar mugitzen
diren animazioak izan daitezke.
Grafikoak maneiatzea oso lan konplexua denez, nahiz eta grafikoekin

lan egiteko ezagutu behar den memoria helbideratzea ikasgairako in-
teresgarria izan, grafikoen tratamendurako kode gehiena praktikarako
txantiloi batean emango da.

FONDOAK B.1 Taulan ikus dezakegu ze banku dauzkan VRAM memo-
riak. Banku hauek, pantailak mapeatu eta fondoak erakusteko erabil
daitezke. B.2 Irudian ikusten da nola mapeatu daitezkeen pantailak
memoriako bankuetan, klasean erabiliko dugun txantiloian agertzen
den bezala.

B.2 Irudian ikus daitekeen bezala, pantaila nagusia A eta B bankuetan
mapeatzen da eta bigarren pantaila C bankuan. E bankua beste kontu
batzuetarako erabiliko da.

B.1: Hardwarearen deskribapena 179

bankua kontrol tamaina erabilerak

erregistroa

VRAM_A VRAM_A_CR 128 KB VRAM_A_LCD
VRAM_A_MAIN_BG_0x6000000 = VRAM_A_MAIN_BG
VRAM_A_MAIN_BG_0x6020000
VRAM_A_MAIN_BG_0x6040000
VRAM_A_MAIN_BG_0x6060000
VRAM_A_MAIN_SPRITE
VRAM_A_TEXTURE_SLOT0 = VRAM_A_TEXTURE
VRAM_A_TEXTURE_SLOT1
VRAM_A_TEXTURE_SLOT2
VRAM_A_TEXTURE_SLOT3

VRAM_B VRAM_B_CR 128 KB VRAM_B_LCD
VRAM_B_MAIN_BG_0x6000000
VRAM_B_MAIN_BG_0x6020000 = VRAM_B_MAIN_BG
VRAM_B_MAIN_BG_0x6040000
VRAM_B_MAIN_BG_0x6060000
VRAM_B_MAIN_SPRITE
VRAM_B_TEXTURE_SLOT0
VRAM_B_TEXTURE_SLOT1 = VRAM_B_TEXTURE
VRAM_B_TEXTURE_SLOT2
VRAM_B_TEXTURE_SLOT3

VRAM_C VRAM_C_CR 128 KB VRAM_C_LCD
VRAM_C_MAIN_BG_0x6000000
VRAM_C_MAIN_BG_0x6020000
VRAM_C_MAIN_BG_0x6040000 = VRAM_C_MAIN_BG
VRAM_C_MAIN_BG_0x6060000
VRAM_C_ARM7
VRAM_C_SUB_BG_0x6200000 = VRAM_C_SUB_BG
VRAM_C_SUB_BG_0x6220000
VRAM_C_SUB_BG_0x6240000
VRAM_C_SUB_BG_0x6260000
VRAM_C_TEXTURE_SLOT0
VRAM_C_TEXTURE_SLOT1
VRAM_C_TEXTURE_SLOT2 = VRAM_C_TEXTURE
VRAM_C_TEXTURE_SLOT3

VRAM_D VRAM_D_CR 128 KB VRAM_D_LCD
VRAM_D_MAIN_BG_0x6000000
VRAM_D_MAIN_BG_0x6020000
VRAM_D_MAIN_BG_0x6040000
VRAM_D_MAIN_BG_0x6060000 = VRAM_D_MAIN_BG
VRAM_D_ARM7
VRAM_D_SUB_SPRITE
VRAM_D_TEXTURE_SLOT0
VRAM_D_TEXTURE_SLOT1
VRAM_D_TEXTURE_SLOT2
VRAM_D_TEXTURE_SLOT3 = VRAM_D_TEXTURE

VRAM_E VRAM_E_CR 64 KB VRAM_E_LCD
VRAM_E_MAIN_BG
VRAM_E_MAIN_SPRITE
VRAM_E_TEX_PALETTE
VRAM_E_BG_EXT_PALETTE
VRAM_E_OBJ_EXT_PALETTE

continued on next page

180 Chapter B: Notes on the specifics of the Nintendo DS for the students

continued from previous page

bankua kontrol tamaina erabilerak

erregistroa

VRAM_F VRAM_F_CR 16 KB VRAM_F_LCD
VRAM_F_MAIN_BG
VRAM_F_MAIN_SPRITE
VRAM_F_TEX_PALETTE
VRAM_F_BG_EXT_PALETTE
VRAM_F_OBJ_EXT_PALETTE

VRAM_G VRAM_G_CR 16 KB VRAM_G_LCD
VRAM_G_MAIN_BG
VRAM_G_MAIN_SPRITE
VRAM_G_TEX_PALETTE
VRAM_G_BG_EXT_PALETTE
VRAM_G_OBJ_EXT_PALETTE

VRAM_H VRAM_H_CR 32 KB VRAM_H_LCD
VRAM_H_SUB_BG
VRAM_H_SUB_BG_EXT_PALETTE

VRAM_I VRAM_I_CR 16 KB VRAM_I_LCD
VRAM_I_SUB_BG
VRAM_I_SUB_SPRITE
VRAM_I_SUB_SPRITE_EXT_PALETTE

Table B.1: VRAM memoriako bankuak eta beraien erabilera posibleak.

✈r❛♠❙❡t▼❛✐♥❇❛♥❦s✭❱❘❆▼❭❴❆❭❴▼❆■◆❭❴❇●❭❴✵①✵✻✵✵✵✵✵✵✱ ❭❭
❱❘❆▼❭❴❇❭❴▼❆■◆❭❴❇●❭❴✵①✵✻✵✷✵✵✵✵✱ ❭❭
❱❘❆▼❭❴❈❭❴❙❯❇❭❴❇●❭❴✵①✵✻✷✵✵✵✵✵✱ ❭❭
❱❘❆▼❭❴❊❭❴▲❈❉✮❀ ❭❭

Figure B.2: Pantaila grafikoak VRAM bankuetan mapeatzearen adibidea.

SPRITEAK B.1 Irudiko eskuineko goiko partean, 3D grafikoetarako
memoriaren azpian, spriten koloreen paletarako memoria dago eta
honen azpian OAM memoria ikus daiteke, sprite-ak gordetzen dituen
memoria. Memoria honen hasieratzea B.3 Irudian ikus daiteke.

Hasieratze honetan koloreen formatua 256 koloretakoa izatea auk-
eratu da, eta horregatik 8 bit beharko dira kolorea identifikatzeko.
Koloreen paletan 0 eta 255 arteko balio bakoitzari kolore bat esleitzen
zaio. Kolore hori RGB-15 formatuan adierazten da, 15 bit erabiltzen
dituena kolore bat adierazteko, 5 bit osagai (gorria, berdea, urdina)
bakoitzaren intentsitaterako, 31 balioa izanik intentsitate handienekoa.
Adibidez proiekturako erabiliko den txantiloian, paletako 1 balioari
kolore gorria esleitu zaio eta 2 balioari urdina, B.4 Irudian ikusten den

B.1: Hardwarearen deskribapena 181

✈♦✐❞ ✐♥✐t❙♣r✐t❡▼❡♠✭✮ ④
♦❛♠■♥✐t✭✫♦❛♠▼❛✐♥✱ ❙♣r✐t❡▼❛♣♣✐♥❣❴✶❉❴✸✷✱ ❢❛❧s❡✮❀
♦❛♠■♥✐t✭✫♦❛♠❙✉❜✱ ❙♣r✐t❡▼❛♣♣✐♥❣❴✶❉❴✸✷✱ ❢❛❧s❡✮❀
❣❢①❂♦❛♠❆❧❧♦❝❛t❡●❢①✭✫♦❛♠▼❛✐♥✱❙♣r✐t❡❙✐③❡❴✶✻①✶✻✱

❙♣r✐t❡❈♦❧♦r❋♦r♠❛t❴✷✺✻❈♦❧♦r✮❀
❣❢①❙✉❜❂♦❛♠❆❧❧♦❝❛t❡●❢①✭✫♦❛♠❙✉❜✱❙♣r✐t❡❙✐③❡❴✶✻①✶✻✱

❙♣r✐t❡❈♦❧♦r❋♦r♠❛t❴✷✺✻❈♦❧♦r✮❀
⑥

Figure B.3: Sprite-n memoria hasieratzeko kodea.

bezala. Paletako 0 balioari esleitutako kolorea beti gardena da.

✈♦✐❞ ❡st❛❜❧❡❝❡rP❛❧❡t❛Pr✐♥❝✐♣❛❧✭✮ ④

❙P❘■❚❊❴P❆▲❊❚❚❊❬✶❪ ❂ ❘●❇✶✺✭✸✶✱✵✱✵✮❀
✴✴✶ ❜❛❧✐♦❞✉♥ ♣✐①❡❧❛❦ ❣♦rr✐❛❦ ❞✐r❛

❙P❘■❚❊❴P❆▲❊❚❚❊❬✷❪ ❂ ❘●❇✶✺✭✵✱✵✱✸✶✮❀
✴✴✷ ❜❛❧✐♦❞✉♥ ♣✐①❡❧❛❦ ✉r❞✐♥❛❦ ❞✐r❛
⑥
⑥

Figure B.4: Sprite-n koloreen paleta nola definitzen den ikusteko adibidea.

Beste aukera bat 16 koloretako paleta bat erabiltzea da. Modu hone-
tara, 16 paleta desberdin erabil daitezke. Lehenengo aukera erabiliko
dugu bere tratamendua sinpleagoa delako.

Kontuan hartu behar den beste gauza bat ondokoa da: memoriako
bankuko byten lehen laurdena irudiko goiko ezkerreko koadrantean
erakusten dela, byten bigarren laurdena goiko eskuineko koadrantean,
byten hirugarren laurdena beheko ezkerreko koadrantean eta byten
laugarren laurdena beheko eskuineko koadrantean. B.5b Irudian ikus
dezakegu nola erakutsiko liratekeen NDSaren pantailan B.5a Irudiko
bektorearen bidez adierazitako datuak.

Pixel bakoitza byte baten bidez adierazten den arren, bideo memoriako
posizio bakoitza 2 bytekoa da, eta horregatik, bideo memorian idazketak
aldiko 16 bit idatziz egin behar dira. B.6 Irudian ikusten da nola idatziko
litzatekeen bideo memorian B.5 Irudiko erronbo bektorea. Kontuan izan,

182 Chapter B: Notes on the specifics of the Nintendo DS for the students

Figure B.5: Sprite baten errepresentazioa osokoen bektore baten bidez.

makina little-endian izanik, biteak alderantzizko ordenean kopiatzen
direla memorian.

❢♦r✭✐ ❂ ✵❀ ✐ ❁ ✶✻ ✯ ✶✻ ✴ ✷❀ ✐✰✰✮
❣❢①❬✐✰✭✶✻✯✶✻✴✷✮❪ ❂ ❡rr♦♥❜♦❬✐✯✷❪ ⑤ ✭❡rr♦♥❜♦❬✭✐✯✷✮✰✶❪❁❁✽✮❀

⑥

Figure B.6: Sprite baten pixelak spriten memoriara kopiatzen dituen adibidea.

Ukimen pantaila

Ukimen pantaila, lehen azaldu den bezala, bakarrik AMR7 proze-
sadoretik atzi daiteke. Hala ere, libnds liburutegiak hainbat funtzio
eskaintzen ditu ukimen pantaila zein posiziotan sakatu den jakiteke
balio dutenak. B.7 Irudian ikus daiteke nola egin dezakegun ukimen
pantailari buruzko inkesta bat nahiz eta bere erregistroak ezin ditugun
zuzenean atzitu.

B.1: Hardwarearen deskribapena 183

t♦✉❝❤P♦s✐t✐♦♥ ♣♦s❴♣❛♥t❛❧❧❛❀ ✴✴ ❛❧❞❛❣❛✐❛r❡♥ ❞❡❢✐♥✐③✐♦❛

t♦✉❝❤❘❡❛❞✭✫♣♦s❴♣❛♥t❛❧❧❛✮❀ ✴✴ ♣♦s✐③✐♦❛r❡♥ ✐r❛❦✉r❦❡t❛
✇❤✐❧❡✭♣♦s❴♣❛♥t❛❧❧❛✳♣①❂❂✵ ✫✫ ♣♦s❴♣❛♥t❛❧❧❛✳♣②❂❂✵✮

✴✴ ✐♥❦❡st❛
t♦✉❝❤❘❡❛❞✭✫♣♦s❴♣❛♥t❛❧❧❛✮❀ ✴✴ ♣♦s✐③✐♦❛r❡♥ ✐r❛❦✉r❦❡t❛

Figure B.7: Ukimen pantailaren kontrola inkesta bidez.

Pantaila programen arazketarako

Pantailak aurreko ataletan azaldu den bezala definitzen baditugu, bakar-
rik balio dute grafikoak erakusteko. Hori horrela izanda, pantailan testu
bat erakustsi nahi badugu, testu horrek grafikoetan idatzita egon be-
harko du, horrela fondo moduan erakutsiko delarik.

Programazio inguruneak eskaintzen digun araztailea oso erabilgarria
izan daiteke zenbait kasutan, baina kontutan hartu behar da erabilitako
programazio modua gertaerei zuzendutakoa dela eta programan jartzen
ditugun geldiune puntuak sortzen diren gertaeretan eragina izan deza-
ketela (gertaerak izateko aukerak murriztu ditzakete). Horregatik, hain-
bat kasutan oso erabilgarria suerta daiteke pantailan zuzenean zerbait
idatzi ahal izatea. Horretarako, libnds liburutegiak consoleDemoInit()

prozedura eskaintze du. Prozedura hau erabiliz bigarren pantailan
idatzi ahal izango da printf() funtzioa erabiliz. Kasu horretan, pantaila
horretako fondoa erakutsiko ez delarik.

B.1.4 Teklatua

NDSaren teklatua nahiko berezia da, oso tekla gutxi ditu, B.8 Irudian
ikus daitekeen bezala.

X eta Y teklen erregistroak, ukimen pantaila bezala, bakarrik ARM7
prozesadoretik atzi daitezke. Hau dela eta, eta gainerako teklak atzi-
garri ditugunez, X eta Y teklak ez ditugu erabiliko. NDSak tekla gutxi
dituenez, PCak ez bezala, ez da ASCII taularik behar sakatutako tekla
eta bere esanahiaren arteko itzulpena egiteko. NDSan, tekla bakoitzari
bit bat esleitzen zaio teklatuaren datu-erregistroan, eta horrela, zein

184 Chapter B: Notes on the specifics of the Nintendo DS for the students

Figure B.8: NDSaren teklak

tekla sakatu den jakin daiteke. Teklatuak datu-erregistro bat eta kontrol-
erregistro bat ditu. Erregistro hauek, praktikan erabiliko diren gain-
erako erregistroak bezala, “defineak.h” fitxategian definituta daude.
Definizio hauek B.9 Irudian ikus daitezke.

✴✴ ❚❡❦❧❛t✉❛r❡♥ ❡rr❡❣✐str♦❡♥ ❞❡❢✐♥✐③✐♦❛
★❞❡❢✐♥❡ ❚❊❈▲❆❙❴❉❆❚ ✭✯✭✈✉✶✻✯✮✵①✹✵✵✵✶✸✵✮ ✴✴❞❛t✉ ❡rr❡❣✐str♦❛
★❞❡❢✐♥❡ ❚❊❈▲❆❙❴❈◆❚ ✭✯✭✈✉✶✻✯✮✵①✹✵✵✵✶✸✷✮ ✴✴❦♦♥tr♦❧

❡rr❡❣✐str♦❛

Figure B.9: Teklatuaren erregistroen helbideen definizioa

Teklatuaren sinkronizazioa inkesta bidez edo etenen bidez egin daiteke.
Are gehiago, tekla batzuk etenen bidez kudeatu daitezke eta beste
batzuk inkesta bidez. Konfigurazio hau kontrol-erregistroaren bidez
egiten da. Etenen bidez tratatu nahi dugunean tekla bat kontrol-
erregistroan tekla horri dagokion bitari 1 balioa eman behar zaio. B.2
Taulan ikus dezakegu tekla bakoitzari teklatuaren kontrol-erregistroko
zein bit esleitzen zaion.

Tekla bakoitzari esleitzen zaion bitaz gain, kontrol-erregistroak baditu
erabiliko ditugun beste bi bit. 14 bitari 1 balioa eman behar zaio

B.1: Hardwarearen deskribapena 185

Bita Deskribapena

0 A tekla
1 B tekla
2 Select tekla
3 Start tekla
4 Eskuinerako norabidea
5 Ezkerrerako norabidea
6 Goranzko norabidea
7 Beheranzko norabidea
8 R tekla
9 L tekla

10-13 ez dira erabiltzen
14 Etena aktibatu (1 aktibatuta / 0 desaktibatuta)
15 Etenaren baldintza (1 AND / 0 OR)

Table B.2: Teklatuaren kontrol erregitroaren biten erabilera

teklatuak etenak sortu ahal izateko. Bit honek 0 balioa hartzen badu,
teklei dagozkien gainerako bitetan 1ekoak egon arren, ez da inolako
etenik sortuko tekla horiek sakatzean. 15 bita berriz ondoko aukeraketa
egiteko erabiltzen da: 0 balioa ematen bazaio tekla bakar bat sakatzean
eten bat sortuko da; 1 balioa badu berriz, etena sortuko da hainbat
tekla batera sakatzen direnean. Etena sor dadin batera sakatu behar
diren teklak kontrol-erregistroan 1 balio hartzen duten guztiak dira.

Teklaren bat sakatzen denean (bai teklatua inkesta bidez eta bai ete-
nen bidez sinkronizatzen denean), datu-erregistroak adieraziko du
zein den sakatu den tekla, teklari dagokion bitean 0 balioa erakutsiz.
Datu-erregistroan tekla bakoitzari esleitzen zaion bit zenbakia kontrol-
erregistroan esleitzen zaion bera da.

B.1.5 Denboragailuak

Denboragailuak maiztasun zehatz batean lan egiten duten kontagailuak
dira eta denbora kontrolatzeko balio digute. NDSko prozesadore
bakoitzak 4 denboragailu ditu (Timer0, Timer1, Timer2 eta Timer3)
eta beraien artean seriean konektatu daitezke (Timer0-tik Timer3-ra,
ordenean) kontrolatu nahi den denbora handiagotzeko. Hauetako kon-
tagailu bakoitza 16 bitekoa da, eta beraz, 65536 arte kontatu dezakete.
Beraien maiztasun handiena 33 Mhz da, zehazkiago 33554432 Hz.

Denboragailuek kontrol-erregistro bat izaten dute (beraien helbideak
3.4.11 irudian ikus daitezke). Kontrol-erregistro hauen bidez ondoko

186 Chapter B: Notes on the specifics of the Nintendo DS for the students

Bita Balioa Deskribapena

7 1 Tenporizadorea aktibatu
6 1 Etenak sortu kontaketa bukatzean (gainezkatzean)
2 1 Tenporizadoreak lotu, aurrekoak kontaketa bukatzean hasi kontaketa.

Ezin da erabili 0 tenporizadorean.
0-1 0 Maiztasuna zati 1 (M.Max. 33554432 Hz – M.Min. 512 Hz)
0-1 1 Maiztasuna zati 64 (M .Max. 524288 Hz – M.Min. 8 Hz)
0-1 2 Maiztasuna zati 256 (M .Max. 131072 Hz – M.Min. 2 Hz)
0-1 3 Maiztasuna zati 1024 (M .Max. 32768 Hz – M.Min. 0,5 Hz)

Table B.3: Tenporizadoreen kontrol-erregistroaren biten erabilera

konfigurazio lanak burutu daitezke: kontagailuak martxan jartzea,
kontagailuak seriean lotzea, kontaketa bukatzean eten bat sor deza-
tela adieraztea, eta kontagailuen kontaketarako maiztasuna murriztea
(ikusi B.3 Taula).

★❞❡❢✐♥❡ ❚■▼❊❘✵❴❈◆❚ ✭✯✭✈✉✐♥t✶✻✯✮✵①✵✹✵✵✵✶✵✷✮
★❞❡❢✐♥❡ ❚■▼❊❘✶❴❈◆❚ ✭✯✭✈✉✐♥t✶✻✯✮✵①✵✹✵✵✵✶✵✻✮
★❞❡❢✐♥❡ ❚■▼❊❘✷❴❈◆❚ ✭✯✭✈✉✐♥t✶✻✯✮✵①✵✹✵✵✵✶✵❆✮
★❞❡❢✐♥❡ ❚■▼❊❘✸❴❈◆❚ ✭✯✭✈✉✐♥t✶✻✯✮✵①✵✹✵✵✵✶✵❊✮

★❞❡❢✐♥❡ ❚■▼❊❘✵❴❉❆❚ ✭✯✭✈✉✐♥t✶✻✯✮✵①✵✹✵✵✵✶✵✵✮
★❞❡❢✐♥❡ ❚■▼❊❘✶❴❉❆❚ ✭✯✭✈✉✐♥t✶✻✯✮✵①✵✹✵✵✵✶✵✹✮
★❞❡❢✐♥❡ ❚■▼❊❘✷❴❉❆❚ ✭✯✭✈✉✐♥t✶✻✯✮✵①✵✹✵✵✵✶✵✽✮
★❞❡❢✐♥❡ ❚■▼❊❘✸❴❉❆❚ ✭✯✭✈✉✐♥t✶✻✯✮✵①✵✹✵✵✵✶✵❈✮

Figure B.10: Tenporizadorearen erregistroen helbideen definizioa

Tenporizadoreen datu-erregistroek ere badituzte beraien helbideak
3.4.11 Irudian ikus daitezke. Datu-erregistroen bidez, kontagailuek zein
baliotik aurrera hasiko duten kontaketa adierazten da (latch), beti ere
16 biteko balioak ditugula kontuan hartuta.

B.11 Irudiko formula erabilita kalkulatu dezakegu datu-erregistroa
zein baliorekin hasieratu behar dugun (kontaketaren hasiera, latch)
eta zein maiztasunekin kontatu behar duen kontagailuak lortzea nahi
dugun eten maiztasunaren arabera (segundoko zenbat aldiz nahi dugun
etetea da eten maiztasuna).

Suposatu adibidez segundoko 5 aldiz nahi dugula kontagailu edo
denboragailuek etetea. Maiztasun maximoa utzita (33554432 lehenago
esan dugun bezala) ondokoa izango genuke:

B.1: Hardwarearen deskribapena 187

latch= 65532−
1

etenmaiztasuna
∗ kontaketamaiztasuna

Figure B.11: Zein baliotatik hasi behar den kontatzen eta zein maiztasunekin kontatu behar

den kalkulatzeko formula.

latch= 65532−
1

5
∗ 33554432= −6645354, 4

Kontaketa maiztasuna altuegia da, zatitu dezakegu.

latch= 65532−
1

5
∗ 33554432/64= −39325, 6

Oraindik ere altuegia da, beste zatitzaile handiago bat erabiliko dugu.

latch= 65532−
1

5
∗ 33554432/256= 39317,6

Beraz, denboragailuaren datu erregistroan gorde behar dugun balioa
39318 da. Balio horretatik hasiko da kontatzen kontagailua eta 65536-
39322=26214 kontaketa egiten dituen bakoitzean eten bat sortuko du.
Bestetik finkatu behar duguna da zein azkar egingo duen kontaketa hori.
Segundoko 5 aldiz etetea nahi badugu, segundo batean bost aldiz egin
behar ditu 26214 kontaketa, beraz, 26214*5 = 131070 kontaketa egin
behar ditu segundoko. Kontaketa maiztasun hori maiztasun maximoari
256 zatitzailea jarrita lortzen da 33554432 / 256= 131070 Hz. Beraz,
kontrol-erregistroko 0-1 bitetan 2 balioa idatzi beharko da.

188 Chapter B: Notes on the specifics of the Nintendo DS for the students

B.2 Etenen kudeaketa

PC-an etenen kudeaketa osoa hardware bidez egiten da, eta lan hori
burutzen duen zirkuitua etenen-kontroladorea deitzen da. NDSan
berriz, etenen kudeaketaren parte handi bat software bidez burutzen
da, eta lan hori egiten duen software edo programa textbfInterrupt

Dispatcher izenarekin ezagutzen da. Etenen kudeaketarekin lotutako
hainbat erregistro aurkituko ditugu, baina etenen kontrol logika guz-
tia Interrupt Dispatcherrak burutuko du. Bera arduratuko da adibidez
etenen kudeaketarekin lotutako erregistroak irakurtzeaz etenak baimen-
duta dauden edo ez aztertzeko. Etenak baimenduta daudenean eta eten
bat sortzen denean Interrupt Dispatcherrak atzituko du eten bektorea
exekutatu behar den zerbitzu errutinaren helbidea lortzeko, makinako
egoera erregistroa gordeko du zerbitzu errutinaren exekuzioa bukatzean
makinaren egoera berreskuratzeko eta zerbitzu errutinaren exekuzioa
abiaraziko du bere helbidea PCan kargatuz.

B.2.1 Etenen kudeaketarako erregistroak (etenen kudeatza-
ilea)

DevkitPro inguruneko [devkitPro] libnds liburutegian Interrupt Dis-

patcherraren inplementazioa aurki dezakezue (mihiztadura lengoaian
dago). Kode horretan ikus daiteke eten-kudeaketarako erregistroez
Interrupt Dispatcherrak egiten duen erabilera. Ikus daiteke ere, etenen
kudeaketarako erregistro guztiak, sarrera/irteerako beste erregistroak
bezala, memorian mapeatuta daudela.

Ondokoak dira etenen kudeaketarako aurkitzen ditugun erregistroak:

• IME (Interrupt Master Enable) erregistroa: etenak orokorrean
baimenduta dauden edo ez adierazten du. 1 balioa badu erregistro
honek etenak baimenduta egongo dira eta 0 balioa eman beharko
zaio etenak galaraztea nahi ditugunean.

• IE (Interrupt Enable) erregistroa: maskara erregistroa da, eten
zenbaki bakoitzeko bit bat izango du, eta beraz, periferiko zehatz
bakoitzerako etenak baimenduta dauden edo ez adieraziko du: i

B.2: Etenen kudeaketa 189

bitak 1 balio badu i etena baimenduta dago. 32 biteko erregistroa
da.

• IF (Interrupt Flag erregistroa: eten eskaeren erregistroa da, zein
periferikok egin duten eten eskaera bat adierazten du. Dituen 32
bitetatik 25 erabiltzen dira, B.4 Taulan ikus daitekeen eten-lerroen
taularen arabera.

B.12 Irudian ikus ditzakegu erregistro hauen definizioak eta esleitzen
zaizkien memoria helbideak.

★❞❡❢✐♥❡ ■▼❊ ✭✯✭✈✉✐♥t✶✻✯✮✵①✵✹✵✵✵✷✵✽✮
★❞❡❢✐♥❡ ■❊ ✭✯✭✈✉✐♥t✶✻✯✮✵①✵✹✵✵✵✷✶✵✮
★❞❡❢✐♥❡ ■❋ ✭✯✭✈✉✐♥t✶✻✯✮✵①✵✹✵✵✵✷✶✹✮

Figure B.12: Etenen kudeaketarako erregistroen definizioa

Adierazi den bezala IE eta IF erregistroek bitez bit eten lerro des-
berdinak identifikatzen dituzte. B.4 Taulan ikus daiteke bit bakoitzak
ze eten-lerro identifikatzen duen eta zein izenekin definitu den libnds

liburutegian (praktikan erabili ahal izateko).

B.2.2 Eten-bektore edo eten-taula

Eten-taulak, etenen tratamendurako erabiltzen diren zerbitzu-errutinen
helbideak gordetzen ditu. Taula hau memorian gordeta egoten da,
baina ez helbide finko batean. Eten-taula gordetzeko memoriako hasier-
ako helbidea dinamikoa da eta programa memorian kargatzen denean
esleitzen zaio hasierako helbide hori.

Eten-taulako posizio bakoitza 4 bytekoa da: 2 byte erabiltzen dira zerb-
itzu errutinaren helbidea gordetzeko eta beste bi byte eten maskararako.
Eten-maskarak eten zenbakia identifikatzen du. Hau guztia C.2 Irudian
ikus daiteka.

Zerbitzu errutina bat idazten dugunean gure programan, eten taulan
gorde beharko dugu bere helbidea. Eten-taulan informazioa idazteko
libnds liburutegian funtzio bat aurkitu dezakegu lan hori errazten di-
guna, irqSet funtzioa. Funtzio honek bi parametro jasotzen ditu, gure

190 Chapter B: Notes on the specifics of the Nintendo DS for the students

Bita Maskara – libnds-ko definizioa Deskribapena

0 IRQ_VBLANC(PANTALLA) Pantailaren freskatze bertikalaren etena
1 IRQ_HBLANC (PANTALLA) Pantailaren freskatze horizontalaren etena
2 IRQ_VCOUNT (PANTALLA) VCOUNT-ekin parekatzeagatik sortutako etena
3 IRQ_TIMER0 0 tenporizadorearen etena
4 IRQ_TIMER1 1 tenporizadorearen etena
5 IRQ_TIMER2 2 tenporizadorearen etena
6 IRQ_TIMER3 3 tenporizadorearen etena
7 IRQ_NETWORK Serie atakaren etena
8 IRQ_DMA0 DMA0ren etena
9 IRQ_DMA1 DMA1ren etena
10 IRQ_DMA2 DMA2ren etena
11 IRQ_DMA3 DMA3ren etena
12 IRQ_KEYS Teklatuaren etena
13 IRQ_CART GBA kartutxoaren etena
14 —
15 —
16 IRQ_IPC_SYNC IPCarekin sinkronizatzeko etena
17 IRQ_FIFO_EMPTY Bidaltze FIFOa hutsik dagoen etena
18 IRQ_FIFO_NOT_EMPTY Bidaltze FIFOa hutsik ez dagoen etena
19 IRQ_CARD DS kartutxoaren etena
20 IRQ_CARD_LINE eten lerroa
21 IRQ_GEOMETRY_FIFO Geometria FIFOaren etena
22 IRQ_LID Estalkiaren bandaren etena
23 IRQ_SPI SPIaren etena
24 IRQ_WIFI WIFIaren etena

Table B.4: eten-lerroen identifikazio eta definizioa

B.2: Etenen kudeaketa 191

etenaren maskara eta gure zerbitzu errutinaren izena (izenetik bere
helbidea lortuko du eta hori da eten-taulan gordeko duena). Adibidez,
teklaturako:

Figure B.13: NDSaren eten-taula

IrqSet(IRQ_KEY, Teklatuaren_ZE_izena)

B.2.3 Interrupt Dispatcher-a

Etenen kudeaketaren barruan, esan dugun bezala, Interrupt Dispatcher

softwarea da etenen kudeaketarekin lotutako lan guztia egiteaz ardu-
ratzen dena.
DevkitPro inguruneko [devkitPro] libnds liburutegian aurki dezakegu

Interrup Dispatcheraren kodea mihiztadura lengoaian. Kodea hori azter-
tuta Interrupt Dispatcherrak etenen kudeaketarako jarraitzen dituen

192 Chapter B: Notes on the specifics of the Nintendo DS for the students

pausoak ikus daitezke. Orokorrean hauek dira etenen kudeaketarako
jarraitzen diren pausoak:

1. CPUak exekutatzen duen agindu bakoitzeko, exekuzio faseren
batean, Interrupt Dispatcherra exekutatzen du.

2. Interrupt Dispatcherrak bere exekuzioan:

(a) IME erregistroa erabiliz eten guztiak galarazten ditu,

(b) IE eta IF erregistroak konparatzen ditu egiaztatzeko onartu-
tako eten eskaeraren bat dagoen,

(c) Ez badago onartutako eten eskaerarik programaren exekuzioarekin
jarraitzen da,

(d) Onartutako eten eskaeraren bat badago, eten-taulan exeku-
tatu behar den zerbitzu errutinaren helbidea bilatzen du eta
CPUko PC errerregistroan kargatzen du. Aldi berean egoera
erregistroa gordetzen da zerbitzu errutinaren exekuzioaren
bukaeran aurreko egoera berreskuratu ahal izateko.

3. Zerbitzu errutina exekutatzen da,

4. Zerbitzu errutinaren exekuzioa bukatzean aurreko programaren
egoera berreskuratzen da.

Ondoko ondorioak atera ditzakegu aurreko azalpenetatik:

• etenen kudeaketa modu honek ez ditu maila anitzeko etenak
onartzen Hau ondorioztatzeko Interrupt Dispatcherraren kodea be-
giratu behar da, eta ikusiko dugu, bere exekuzioaren hasieran, eten
guztiak galarazten dituela. Hau dela eta, zerbitzu errutina bat ex-
ekutatzen ari den bitartean ez zaie kasurik egingo sortzen diren
etenei.

• Etenen lehentasunak programatzaileak ezarriko ditu. Tratatu behar-
reko etenen bat dagoenean, exekutatu behar den zerbitzu-errutina
bilatzen da eten-taulan. Bilaketa hori eten-taulako 0 posizioan
hasten da, modu sekuentzialean aztertuz bere posizioak, eskaera

B.2: Etenen kudeaketa 193

batekin bat datorren sarrera bat aurkitu arte. Beraz, eten-taulan in-
formazioa (zerbitzu-errutinen helbideak beraien identifikazioarekin)
idazteko erabili den ordenak finkatzen ditu lehentasunak, eta in-
formazioa programatzaileak idazten du eten-taulan irqSet funtzioa
erabiliz; irqSet-en ordenak ezartzen ditu etenen arteko lehenta-
sunak.

Ezaugarri hauek desberdinak izateko nahikoa da Interrupt Dispatcherra
beste modu batean idaztea.

194 Chapter B: Notes on the specifics of the Nintendo DS for the students

APPENDIX C

Source-code of one of the projects

This appendix shows the source-code of the project explained in sec-
tion 5.3.3. It was developped by Asier Santos, Markel Sanz, and Alejan-
dro Reyes.

In order to develop the project, students got a folder with all the code
and header files they would need. This code they get can be directly
compiled. It is a small version of the project they have to develop. A
closed door that opens when touching the screen at any point. Any
further control of the touch screen or any other peripheral is what the
students have to program. What they have to do is already stablished
because they get the names and specification of all the routines they
have to code, but they are all empty, and this is the work they have to
do.

Next in this appendix, figures will be showing different parts of the
project, while text will be explaining what was given and what was the
students work.

C.1 The main program

Figure C.1 shows only the part that students had to code, the main
loop of the program. Previous to that, the code would have shown

196 Chapter C: Source-code of one of the projects

all the definitions needed to have the graphics work correctly. These
definitions are given to the students.
As for the routines they have to use to show backgrounds on the screen,

they are called ❡r❛❦✉ts✐❳❳❳✭✮❀. For example, ❡r❛❦✉ts✐❆t❡❛●♦rr✐✭✮
shows the door with a red light, while ❡r❦✉ts✐❆t❡❛■t①✐t❛✭✮ shows
the door closed. They get an example and they build the rest.
In that main loop it is easy to distinguish the states of the state machine

they have designed and that can be seen in Figure 5.6 (translated
into English). The state named Correct in Figure 5.6, comprises the
states “BatOndo”, “BiOndo”, and “HiruOndo” of the code, since the only
difference between them is the amount of correct fuses.
In every state except in “LauOndo” (win), the touch screen is controlled

and do different things when different parts of the screen are touched.
In state “LauOndo” (win) the keyboard is controlled by polling.

C.2 Defining the Interrupt-table

Students get the routine in Figure C.2 empty and they fill it with the IRQ
settings needed. In this case, the IRQ lines and ISR names for Timer0
and the keyboard.

C.3 The keyboard

In order to control the keyboard students get a set of routines, all of
them empty, with a simple explanation of the aim of the routine. For
example the routine in Figure C.3 is to detect whether a key has been
pressed, and the on in Figure C.8 is to configure the functioning of the
keyboard.

C.4 The timer

The same way as for the keyboard, also for the timer students get a
set of empty routines with its definition. For example the routine in
Figure C.10 should enable the timer’s interrupts. In this case students
have add a few routines that were not required (see code in Figures C.12
and C.13, in order to start and stop the timer).

C.4: The timer 197

❜♦♦❧ ❛♠❛✐t✉❛ ❂ ❢❛❧s❡❀

✇❤✐❧❡✭❛♠❛✐t✉❛ ❂❂ ❢❛❧s❡✮ ④✴✴❈❧♦s❡❞ ❞♦♦r ✐♥ ❋✐❣✉r❡ ✺✳✻
✐❢✭❡❣♦❡r❛ ❂❂ ■t①✐t❛✮ ④

❡r❛❦✉ts✐❆t❡❛■t①✐t❛✭✮❀
t♦✉❝❤❘❡❛❞✭✫♣♦s❴♣❛♥t❛✐❧❛✮❀
✇❤✐❧❡✭♣♦s❴♣❛♥t❛✐❧❛✳♣①❂❂✵ ✫✫

♣♦s❴♣❛♥t❛✐❧❛✳♣②❂❂✵✮
t♦✉❝❤❘❡❛❞✭✫♣♦s❴♣❛♥t❛✐❧❛✮❀

✐❢ ✭♣♦s❴♣❛♥t❛✐❧❛✳♣① ❁ ✷✶✷ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣① ❃ ✶✸✻ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ❁ ✶✾✷ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ❃ ✹✷✮ ④

❡❣♦❡r❛ ❂ ■t①✐t❛●♦rr✐❀
✴✴❘❡❞ ❧✐❣❤t ✐♥ ❋✐❣✉r❡ ✺✳✻

❡r❛❦✉ts✐❆t❡❛●♦rr✐✭✮❀
❝♦♥s♦❧❡❈❧❡❛r✭✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✶✵❀✹❍❊③ ❞❛❣♦

❡❧❡❦tr✐③✐t❛t❡r✐❦✦✧✮❀
⑥

⑥
✐❢✭❡❣♦❡r❛ ❂❂ ■t①✐t❛●♦rr✐✮ ④

✴✴❘❡❞ ❧✐❣❤t ✐♥ ❋✐❣✉r❡ ✺✳✻
t♦✉❝❤❘❡❛❞✭✫♣♦s❴♣❛♥t❛✐❧❛✮❀
✐❢ ✭♣♦s❴♣❛♥t❛✐❧❛✳♣① ❁ ✾✼ ✫✫

♣♦s❴♣❛♥t❛✐❧❛✳♣① ❃ ✹✻ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ❁ ✶✶✽ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ❃ ✼✷✮ ④

✇❤✐❧❡ ✭♣♦s❴♣❛♥t❛✐❧❛✳♣① ✦❂ ✵ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ✦❂ ✵✮ ④

t♦✉❝❤❘❡❛❞✭✫♣♦s❴♣❛♥t❛✐❧❛✮❀
⑥
❡r❛❦✉ts✐❩❡r♦❖♥❞♦✭✮❀
❡❣♦❡r❛ ❂ ❩❡r♦❖♥❞♦❀
✴✴❋✉s❡s ✐♥ ❋✐❣✉r❡ ✺✳✻
❞❡♥❜ ❂ ✷✵❀
❝♦♥s♦❧❡❈❧❡❛r✭✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✾❀✸❍●❡❧❞✐t③❡♥

③❛✐③✉♥ ❞❡♥❜♦r❛✿✧✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✶✶❀✶✵❍ ✪✐

s❡❣✉♥❞♦✧✱ ❞❡♥❜✮❀
t❡♥♣♦r✐③❛❞♦r❡❛❍❛s✐✭✮❀

⑥
⑥

Figure C.1: The main program of one project. Code continues

198 Chapter C: Source-code of one of the projects

✐❢✭❡❣♦❡r❛ ❂❂ ❩❡r♦❖♥❞♦✮ ④✴✴❋✉s❡s ✐♥ ❋✐❣✉r❡ ✺✳✻
✇❤✐❧❡ ✭♣♦s❴♣❛♥t❛✐❧❛✳♣① ❂❂ ✵ ✫✫

♣♦s❴♣❛♥t❛✐❧❛✳♣② ❂❂ ✵ ✫✫ ❡❣♦❡r❛ ❂❂
❩❡r♦❖♥❞♦✮

t♦✉❝❤❘❡❛❞✭✫♣♦s❴♣❛♥t❛✐❧❛✮❀
✐❢ ✭♣♦s❴♣❛♥t❛✐❧❛✳♣① ❁ ✷✹✻ ✫✫

♣♦s❴♣❛♥t❛✐❧❛✳♣① ❃ ✶✾✸ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ❁ ✶✺✼ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ❃ ✾✵ ✫✫ ❡❣♦❡r❛ ❂❂
❩❡r♦❖♥❞♦✮ ④

✇❤✐❧❡ ✭♣♦s❴♣❛♥t❛✐❧❛✳♣① ✦❂ ✵ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ✦❂ ✵✮

t♦✉❝❤❘❡❛❞✭✫♣♦s❴♣❛♥t❛✐❧❛✮❀
❡❣♦❡r❛ ❂ ❇❛t❖♥❞♦❀

✴✴❈♦rr❡❝t ✐♥ ❋✐❣✉r❡ ✺✳✻
❡r❛❦✉ts✐❇❛t❖♥❞♦✭✮❀

⑥❡❧s❡ ✐❢ ✭❡❣♦❡r❛ ❂❂ ❩❡r♦❖♥❞♦✮④
❡❣♦❡r❛ ❂ ❚r❛♥ts✐③✐♦❛❀

✴✴❲r♦♥❣ ✐♥ ❋✐❣✉r❡ ✺✳✻
t❡♥♣♦r✐③❛❞♦r❡❛●❡❧❞✐t✉✭✮❀
❝♦♥s♦❧❡❈❧❡❛r✭✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✾❀✽❍❊t❡♥❣❛✐❧✉

♦❦❡rr❛✦✧✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✶✶❀✷❍❙❛❦❛t✉ ✬❇✬

❛t❡r❛ ❜✉❡❧t❛t③❡❦♦✧✮❀
⑥

⑥
✐❢✭❡❣♦❡r❛ ❂❂ ❇❛t❖♥❞♦✮ ④✴✴❈♦rr❡❝t ✐♥ ❋✐❣✉r❡ ✺✳✻

✇❤✐❧❡ ✭♣♦s❴♣❛♥t❛✐❧❛✳♣① ❂❂ ✵ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ❂❂ ✵ ✫✫ ❡❣♦❡r❛ ❂❂
❇❛t❖♥❞♦✮

t♦✉❝❤❘❡❛❞✭✫♣♦s❴♣❛♥t❛✐❧❛✮❀
✐❢ ✭♣♦s❴♣❛♥t❛✐❧❛✳♣① ❁ ✶✽✺ ✫✫

♣♦s❴♣❛♥t❛✐❧❛✳♣① ❃ ✶✸✸ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ❁ ✶✺✼ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ❃ ✾✵ ✫✫ ❡❣♦❡r❛ ❂❂
❇❛t❖♥❞♦✮ ④

✇❤✐❧❡ ✭♣♦s❴♣❛♥t❛✐❧❛✳♣① ✦❂ ✵ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ✦❂ ✵✮

t♦✉❝❤❘❡❛❞✭✫♣♦s❴♣❛♥t❛✐❧❛✮❀
❡❣♦❡r❛ ❂ ❇✐❖♥❞♦❀
✴✴❈♦rr❡❝t ✐♥ ❋✐❣✉r❡ ✺✳✻
❡r❛❦✉ts✐❇✐❖♥❞♦✭✮❀

Figure C.1: The main program of one project. Code continued and continues

C.4: The timer 199

⑥❡❧s❡ ✐❢ ✭❡❣♦❡r❛ ❂❂ ❇❛t❖♥❞♦✮④
✴✴❈♦rr❡❝t ✐♥ ❋✐❣✉r❡ ✺✳✻
❡❣♦❡r❛ ❂ ❚r❛♥ts✐③✐♦❛❀
✴✴ ❲r♦♥❣ ✐♥ ❋✐❣✉r❡ ✺✳✻
t❡♥♣♦r✐③❛❞♦r❡❛●❡❧❞✐t✉✭✮❀
❝♦♥s♦❧❡❈❧❡❛r✭✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✾❀✽❍❊t❡♥❣❛✐❧✉

♦❦❡rr❛✦✧✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✶✶❀✷❍❙❛❦❛t✉ ✬❇✬

❛t❡r❛ ❜✉❡❧t❛t③❡❦♦✧✮❀
⑥

⑥
✐❢✭❡❣♦❡r❛ ❂❂ ❇✐❖♥❞♦✮ ④ ✴✴❈♦rr❡❝t ✐♥ ❋✐❣✉r❡ ✺✳✻

✇❤✐❧❡ ✭♣♦s❴♣❛♥t❛✐❧❛✳♣① ❂❂ ✵ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ❂❂ ✵ ✫✫ ❡❣♦❡r❛ ❂❂
❇✐❖♥❞♦✮

t♦✉❝❤❘❡❛❞✭✫♣♦s❴♣❛♥t❛✐❧❛✮❀
✐❢ ✭♣♦s❴♣❛♥t❛✐❧❛✳♣① ❁ ✺✾ ✫✫

♣♦s❴♣❛♥t❛✐❧❛✳♣① ❃ ✻ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ❁ ✶✺✼ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ❃ ✾✵ ✫✫ ❡❣♦❡r❛ ❂❂
❇✐❖♥❞♦✮ ④

✇❤✐❧❡ ✭♣♦s❴♣❛♥t❛✐❧❛✳♣① ✦❂ ✵ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ✦❂ ✵✮

t♦✉❝❤❘❡❛❞✭✫♣♦s❴♣❛♥t❛✐❧❛✮❀
❡❣♦❡r❛ ❂ ❍✐r✉❖♥❞♦❀

✴✴❈♦rr❡❝t ✐♥ ❋✐❣✉r❡ ✺✳✻
❡r❛❦✉ts✐❍✐r✉❖♥❞♦✭✮❀

⑥❡❧s❡ ✐❢ ✭❡❣♦❡r❛ ❂❂ ❇✐❖♥❞♦✮④
❡❣♦❡r❛ ❂ ❚r❛♥ts✐③✐♦❛❀

✴✴❲r♦♥❣ ✐♥ ❋✐❣✉r❡ ✺✳✻
t❡♥♣♦r✐③❛❞♦r❡❛●❡❧❞✐t✉✭✮❀
❝♦♥s♦❧❡❈❧❡❛r✭✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✾❀✽❍❊t❡♥❣❛✐❧✉

♦❦❡rr❛✦✧✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✶✶❀✷❍❙❛❦❛t✉ ✬❇✬

❛t❡r❛ ❜✉❡❧t❛t③❡❦♦✧✮❀
⑥

⑥

Figure C.1: The main program of one project. Code continued and continues

200 Chapter C: Source-code of one of the projects

✐❢✭❡❣♦❡r❛ ❂❂ ❍✐r✉❖♥❞♦✮ ④
✴✴❈♦rr❡❝t ✐♥ ❋✐❣✉r❡ ✺✳✻
✇❤✐❧❡ ✭♣♦s❴♣❛♥t❛✐❧❛✳♣① ❂❂ ✵ ✫✫

♣♦s❴♣❛♥t❛✐❧❛✳♣② ❂❂ ✵ ✫✫ ❡❣♦❡r❛ ❂❂
❍✐r✉❖♥❞♦✮

t♦✉❝❤❘❡❛❞✭✫♣♦s❴♣❛♥t❛✐❧❛✮❀
✐❢ ✭♣♦s❴♣❛♥t❛✐❧❛✳♣① ❁ ✶✷✷ ✫✫

♣♦s❴♣❛♥t❛✐❧❛✳♣① ❃ ✻✾ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ❁ ✶✺✼ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣② ❃ ✾✵ ✫✫ ❡❣♦❡r❛ ❂❂
❍✐r✉❖♥❞♦✮ ④

t❡♥♣♦r✐③❛❞♦r❡❛●❡❧❞✐t✉✭✮❀
✇❤✐❧❡ ✭♣♦s❴♣❛♥t❛✐❧❛✳♣① ✦❂ ✵ ✫✫

♣♦s❴♣❛♥t❛✐❧❛✳♣② ✦❂ ✵✮
t♦✉❝❤❘❡❛❞✭✫♣♦s❴♣❛♥t❛✐❧❛✮❀

❡❣♦❡r❛ ❂ ▲❛✉❖♥❞♦❀
✴✴❲✐♥ ✐♥ ❋✐❣✉r❡ ✺✳✻

❝♦♥s♦❧❡❈❧❡❛r✭✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✾❀✶✵❍▲♦rt✉ ❞✉③✉✦✧✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✶✶❀✷❍❙❛❦❛t✉ ✬❆✬

❛t❡r❛ ❜✉❡❧t❛t③❡❦♦✧✮❀
❡r❛❦✉ts✐▲❛✉❖♥❞♦✭✮❀

⑥❡❧s❡ ✐❢ ✭❡❣♦❡r❛ ❂❂ ❍✐r✉❖♥❞♦✮④
❡❣♦❡r❛ ❂ ❚r❛♥ts✐③✐♦❛❀

✴✴❲r♦♥❣ ✐♥ ❋✐❣✉r❡ ✺✳✻
t❡♥♣♦r✐③❛❞♦r❡❛●❡❧❞✐t✉✭✮❀
❝♦♥s♦❧❡❈❧❡❛r✭✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✾❀✾❍❊t❡♥❣❛✐❧✉

♦❦❡rr❛✦✧✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✶✶❀✷❍❙❛❦❛t✉ ✬❇✬

❛t❡r❛ ❜✉❡❧t❛t③❡❦♦✧✮❀
⑥

⑥

✐❢✭❡❣♦❡r❛ ❂❂ ▲❛✉❖♥❞♦✮ ④ ✴✴❲✐♥ ✐♥ ❋✐❣✉r❡ ✺✳✻
✐❢ ✭■r❛❦✉rr✐❚❡❦❧❛t✉■♥❦❡st❛✭✮ ❂❂ ❆✮ ④

❝♦♥s♦❧❡❈❧❡❛r✭✮❀
❡❣♦❡r❛ ❂ ■t①✐t❛❇❡r❞❡❀
✴✴●r❡❡♥ ❧✐❣❤t ✐♥ ❋✐❣✉r❡ ✺✳✻
❡r❛❦✉ts✐❆t❡❛❇❡r❞❡✭✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✶✵❀✸❍❊❧❡❦tr✐③✐t❛t❡❛

❜✉❡❧t❛t✉ ❞❛✳✧✮❀
⑥

⑥

Figure C.1: The main program of one project. Code continued and continues

C.4: The timer 201

✐❢✭❡❣♦❡r❛ ❂❂ ■t①✐t❛❇❡r❞❡✮ ④
✴✴●r❡❡♥ ❧✐❣❤t ✐♥ ❋✐❣✉r❡ ✺✳✻
t♦✉❝❤❘❡❛❞✭✫♣♦s❴♣❛♥t❛✐❧❛✮❀
✇❤✐❧❡✭♣♦s❴♣❛♥t❛✐❧❛✳♣①❂❂✵ ✫✫

♣♦s❴♣❛♥t❛✐❧❛✳♣②❂❂✵✮
t♦✉❝❤❘❡❛❞✭✫♣♦s❴♣❛♥t❛✐❧❛✮❀

✐❢ ✭♣♦s❴♣❛♥t❛✐❧❛✳♣① ❁ ✷✶✷ ✫✫
♣♦s❴♣❛♥t❛✐❧❛✳♣① ❃ ✶✸✻

✫✫ ♣♦s❴♣❛♥t❛✐❧❛✳♣② ❁ ✶✾✷
✫✫ ♣♦s❴♣❛♥t❛✐❧❛✳♣② ❃
✹✷✮ ④

❡r❛❦✉ts✐❆t❡❛■r❡❦✐t❛✭✮❀
❝♦♥s♦❧❡❈❧❡❛r✭✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✶✵❀✶✵❍▲♦rt✉

❞✉③✉✦✧✮❀
❡❣♦❡r❛ ❂ ■r❡❦✐t❛❀

✴✴❖♣❡♥ ❞♦♦r ✐♥ ❋✐❣✉r❡ ✺✳✻
⑥

⑥

✐❢✭❡❣♦❡r❛ ❂❂ ■r❡❦✐t❛✮ ④
✴✴❖♣❡♥ ❞♦♦r ✐♥ ❋✐❣✉r❡ ✺✳✻
❛♠❛✐t✉❛ ❂ tr✉❡❀

⑥

✐❢✭❡❣♦❡r❛ ❂❂ ❚r❛♥ts✐③✐♦❛✮ ④
✴✴❲r♦♥❣ ✐♥ ❋✐❣✉r❡ ✺✳✻
⑥

⑥

Figure C.1: The main program of one project. Code continued

✈♦✐❞ ❡t❡♥❛❦✭✮
④

✐rq❙❡t✭■❘◗❴❚■▼❊❘✵✱ ❉❡♥❜❊t❡♥✮❀
✐rq❙❡t✭■❘◗❴❑❊❨❙✱ ❚❡❦❊t❡♥✮❀

⑥

Figure C.2: Code to define the interrupt-table

202 Chapter C: Source-code of one of the projects

✐♥t ❚❡❦❧❛❉❡t❡❦t❛t✉✭✮
④

✴✴❚❘❯❊ ✐t③✉❧t③❡♥ ❞✉ t❡❦❧❛r❡♥ ❜❛t s❛❦❛t✉ ❞❡❧❛
✴✴❞❡t❡❦t❛t③❡♥ ❜❛❞✉
✐♥t t❡❦❧❛❂❚❊❑▲❆❑❴❉❆❚❀
❜♦♦❧ ❛✉r❦✐t✉❛❂❢❛❧s❡❀
✇❤✐❧❡✭t❡❦❧❛❃❂✵ ✫✫ ❛✉r❦✐t✉❛❂❂❢❛❧s❡✮④

✐❢✭✭t❡❦❧❛ ✪ ✷✮❂❂✵✮
④
❛✉r❦✐t✉❛❂tr✉❡❀
⑥
t❡❦❧❛❂t❡❦❧❛✴✷❀

⑥
r❡t✉r♥ ❛✉r❦✐t✉❛❀

⑥

Figure C.3: Routine that returns true if the keyboard has been pressed

✐♥t ❙❛❦❛t✉t❛❦♦❚❡❦❧❛✭✮
④

✴✴❙❛❦❛t✉t❛❦♦ t❡❦❧❛r❡♥ ❜❛❧✐♦❛ ✐t③✉❧t③❡♥ ❞✉✿
✴✴❆❂✵❀❇❂✶❀❙❡❧❡❝t❂✷❀❙t❛rt❂✸❀❊s❦❂✹❀❊③❦❂✺❀
✴✴●♦r❛❂✻❀❇❡❤❡r❛❂✼❀❘❂✽❀▲❂✾❀
✐♥t t❡❦❧❛❂❚❊❑▲❆❑❴❉❆❚❀
❜♦♦❧ ❛✉r❦✐t✉❛❂❢❛❧s❡❀
✐♥t ✐❂✲✶❀
✇❤✐❧❡✭t❡❦❧❛❃❂✵ ✫✫ ❛✉r❦✐t✉❛❂❂❢❛❧s❡✮
④

✐❢✭✭t❡❦❧❛ ✪ ✷✮❂❂✵✮
④
❛✉r❦✐t✉❛❂tr✉❡❀
⑥
t❡❦❧❛❂t❡❦❧❛✴✷❀
✐✰✰❀

⑥
r❡t✉r♥ ✐❀

⑥

Figure C.4: Routine that returns which key has been pressed

C.4: The timer 203

✐♥t ■r❛❦✉rr✐❚❡❦❧❛t✉■♥❦❡st❛✭✮
④

✴✴✐♥❦❡st❛ t❡❦❧❛ ❜❛t s❛❦❛t✉ ❞❡❧❛ ❞❡t❡❦t❛t✉ ❛rt❡
✴✴t❡❦❧❛r❡♥ ❜❛❧✐♦❛ ✐t③✉❧✐
✇❤✐❧❡✭❚❡❦❧❛❉❡t❡❦t❛t✉✭✮❂❂❢❛❧s❡✮
④

❚❡❦❧❛❉❡t❡❦t❛t✉✭✮❀
⑥
r❡t✉r♥ ❙❛❦❛t✉t❛❦♦❚❡❦❧❛✭✮❀

⑥

Figure C.5: Routine that polls the keyboard and returns the pressed key

✈♦✐❞ ❚❡❦❊t❡♥❇❛✐♠❡♥❞✉✭✮
④

✴✴❚❡❦❧❛t✉❛r❡♥ ❡t❡♥❛❦ ❜❛✐♠❡♥❞✉
✴✴▲❛♥ ❤❛✉ ❜✉r✉t③❡❦♦ ❧❡❤❡♥❡♥❣♦ ❡t❡♥ ❣✉③t✐❛❦ ❣❛❧❛r❛③✐
✴✴❜❡❤❛r ❞✐r❛ ❡t❛ ❜✉❦❛❡r❛♥ ❜❛✐♠❡♥❞✉
❊t❡♥❛❦●❛❧❛r❛③✐✭✮❀
■❊❂■❊⑤✵①✶✵✵✵❀
❊t❡♥❛❦❇❛✐♠❡♥❞✉✭✮❀

⑥

Figure C.6: Routine to enable keyboard interrupts

✈♦✐❞ ❚❡❦❊t❡♥●❛❧❛r❛③✐✭✮
④

✴✴❚❡❦❧❛t✉❛r❡♥ ❡t❡♥❛❦ ❣❛❧❛r❛③✐
✴✴▲❛♥ ❤❛✉ ❜✉r✉t③❡❦♦ ❧❡❤❡♥❡♥❣♦ ❡t❡♥ ❣✉③t✐❛❦ ❣❛❧❛r❛③✐
✴✴❜❡❤❛r ❞✐r❛ ❡t❛ ❜✉❦❛❡r❛♥ ❜❛✐♠❡♥❞✉
❊t❡♥❛❦●❛❧❛r❛③✐✭✮❀
■❊❂■❊✫✵①❊❋❋❋❀
❊t❡♥❛❦❇❛✐♠❡♥❞✉✭✮❀

⑥

Figure C.7: Routine to disable keyboard interrupts

204 Chapter C: Source-code of one of the projects

✈♦✐❞ ❦♦♥❢✐❣✉r❛t✉❚❡❦❧❛t✉❛✭✮
④

✴✴ ❚❡❦❧❛t✉❛r❡♥ ❦♦♥❢✐❣✉r❛③✐♦❛ ❜❡r❡ ❙✴■ ❡rr❡❣✐str♦❛❦
✴✴ ❛❧❞❛t✉③✳
❚❊❑▲❆❑❴❑◆❚❂✵①✹✵✵✷❀
❚❡❦❊t❡♥❇❛✐♠❡♥❞✉✭✮❀

⑥

Figure C.8: Routine to configure keyboard

✈♦✐❞ ❚❡❦❊t❡♥✭✮
④

✴✴❚❡❦❧❛t✉❛r❡♥ ③❡r❜✐t③✉ ❡rr✉t✐♥❛✱ t❡❦❧❛t✉❛r❡♥ ❡t❡♥❛❦
✴✴tr❛t❛t③❡❦♦✳
t❡❦❧❛❂❙❛❦❛t✉t❛❦♦❚❡❦❧❛✭✮❀
✐❢ ✭t❡❦❧❛❂❂❇ ✫✫ ❡❣♦❡r❛ ❂❂ ❚r❛♥ts✐③✐♦❛✮
✴✴❲r♦♥❣ ✐♥ ❋✐❣✉r❡ ✺✳✻
④

❝♦♥s♦❧❡❈❧❡❛r✭✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✶✵❀✼❍❙❛✐❛ ③❛✐t❡③ ❜❡rr✐③✧✮❀
❡❣♦❡r❛❂■t①✐t❛❀ ✴✴❈❧♦s❡❞ ❞♦♦r ✐♥ ❋✐❣✉r❡

✺✳✻
❡r❛❦✉ts✐❆t❡❛■t①✐t❛✭✮❀

⑥
⑥

Figure C.9: ISR of the keyboard

✈♦✐❞ ❉❡♥❜❊t❡♥❇❛✐♠❡♥❞✉✭✮
④
✴✴❉❡♥❜♦r❛❣❛✐❧✉ ❜❛t❡♥ ❡t❡♥❛❦ ❜❛✐♠❡♥❞✉ ✭❚✐♠❡r✵✮
✴✴❍♦rr❡t❛r❛❦♦ ❧❡❤❡♥❡♥❣♦ ❡t❡♥ ❣✉③t✐❛❦ ❣❛❧❛r❛③✐ ❡t❛ ❜✉❦❛❡r❛♥
✴✴❜❡rr✐r♦ ❜❛✐♠❡♥❞✉

❊t❡♥❛❦●❛❧❛r❛③✐✭✮❀
■❊❂■❊⑤✵①✵✵✵✽❀
❊t❡♥❛❦❇❛✐♠❡♥❞✉✭✮❀

⑥

Figure C.10: Routine to enable timer interrupts

C.4: The timer 205

✈♦✐❞ ❉❡♥❜❊t❡♥●❛❧❛r❛③✐✭✮
④
✴✴❉❡♥❜♦r❛❣❛✐❧✉ ❜❛t❡♥ ❡t❡♥❛❦ ❣❛❧❛r❛③✐ ✭❚✐♠❡r✵✮
✴✴❍♦rr❡t❛r❛❦♦ ❧❡❤❡♥❡♥❣♦ ❡t❡♥ ❣✉③t✐❛❦ ❣❛❧❛r❛③✐ ❡t❛ ❜✉❦❛❡r❛♥
✴✴❜❡rr✐r♦ ❜❛✐♠❡♥❞✉

❊t❡♥❛❦●❛❧❛r❛③✐✭✮❀
■❊❂■❊✫✵①❋❋❋✼❀
❊t❡♥❛❦❇❛✐♠❡♥❞✉✭✮❀

⑥

Figure C.11: Routine to disable timer interrupts

✈♦✐❞ t❡♥♣♦r✐③❛❞♦r❡❛❍❛s✐✭✮
④

✴✴❉❡♥❜♦r❛❣❛✐❧✉❛ ❛❦t✐❜❛t✉ ❦♦♥t❛t③❡♥ ❤❛s ❞❛❞✐♥
❉❊◆❇✵❴❑◆❚ ❂ ❉❊◆❇✵❴❑◆❚ ⑤ ✵①✵✵✽✵❀

⑥

Figure C.12: Routine to start timer

✈♦✐❞ t❡♥♣♦r✐③❛❞♦r❡❛●❡❧❞✐t✉✭✮
④

✴✴❉❡♥❜♦r❛❣❛✐❧✉❛ ❞❡s❛❦t✐❜❛t✉ ❦♦♥t❛t③❡♥ ❣❡❧❞✐ ❞❛❞✐♥
❉❊◆❇✵❴❑◆❚ ❂ ❉❊◆❇✵❴❑◆❚ ✫ ✵①❋❋✼❋❀

⑥

Figure C.13: Routine to stop timer

✈♦✐❞ ❦♦♥❢✐❣✉r❛t✉❚❡♥♣♦r✐③❛❞♦r❡❛✭✮
④

✴✯ ❚❡♥♣♦r✐③❛❞♦r❡❛r❡♥ ❦♦♥❢✐❣✉r❛③✐♦❛ ❜❡r❡ ❙✴■
❡rr❡❣✐str♦❛❦ ❛❧❞❛t✉③ ✯✴

❉❊◆❇✵❴❑◆❚ ❂ ✵①✵✵✹✸❀
❉❊◆❇✵❴❉❆❚ ❂ ✸✷✼✻✹❀
❉❡♥❜❊t❡♥❇❛✐♠❡♥❞✉✭✮❀

⑥

Figure C.14: Routine to configure timer

206 Chapter C: Source-code of one of the projects

✈♦✐❞ ❉❡♥❜❊t❡♥✭✮
④

✴✴❉❡♥❜♦r❛❣❛✐❧✉❛r❡♥ ✭❚✐♠❡r✵✮ ❡t❡♥❛r❡♥ tr❛t❛♠❡♥❞✉r❛❦♦
✴✴③❡r❜✐t③✉ ❡rr✉t✐♥❛
✐❢ ✭❞❡♥❜ ❃ ✵✮ ④

❞❡♥❜✲✲❀
❝♦♥s♦❧❡❈❧❡❛r✭✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✾❀✸❍●❡❧❞✐t③❡♥ ③❛✐③✉♥ ❞❡♥❜♦r❛✿✧✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✶✶❀✶✵❍ ✪✐ s❡❣✉♥❞♦✧✱ ❞❡♥❜✮❀

⑥
❡❧s❡④

❡❣♦❡r❛❂❚r❛♥ts✐③✐♦❛❀
✴✴❚✐♠❡♦✉t ✐♥ ❋✐❣✉r❡ ✺✳✻
t❡♥♣♦r✐③❛❞♦r❡❛●❡❧❞✐t✉✭✮❀
❝♦♥s♦❧❡❈❧❡❛r✭✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✾❀✼❍❉❡♥❜♦r❛ ❛❣♦rt✉ ❞❛✦✧✮❀
✐♣r✐♥t❢✭✧❭①✶❜❬✶✶❀✷❍❙❛❦❛t✉ ✬❇✬ ❛t❡r❛

❜✉❡❧t❛t③❡❦♦✧✮❀
⑥

⑥

Figure C.15: ISR of the timer

APPENDIX D

Students’ concept maps

This appendix shows the concept maps generated after the concept maps
that the students last built at the end of course 2012/2013, with the
adaptations needed for their use with the social network analysis tools.
Images are in Basque, the language in which lectures are given. The
process followed to analyse the concept maps is detailed in Chapter 7.

208 Chapter D: Students’ concept maps

F
ig
u
r
e
D
.1
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
1

209

F
ig
u
r
e
D
.2
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
2

210 Chapter D: Students’ concept maps

F
ig
u
r
e
D
.3
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
3

211

F
ig
u
r
e
D
.4
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
4

212 Chapter D: Students’ concept maps

F
ig
u
r
e
D
.5
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
5

213

F
ig
u
r
e
D
.6
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
6

214 Chapter D: Students’ concept maps

F
ig
u
r
e
D
.7
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
7

215

F
ig
u
r
e
D
.8
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
8

216 Chapter D: Students’ concept maps

F
ig
u
r
e
D
.9
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
9

217

F
ig
u
r
e
D
.1
0
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
1
0

218 Chapter D: Students’ concept maps

F
ig
u
r
e
D
.1
1
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
1
1

219

F
ig
u
r
e
D
.1
2
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
1
2

220 Chapter D: Students’ concept maps

F
ig
u
r
e
D
.1
3
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
1
3

221

F
ig
u
r
e
D
.1
4
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
1
4

222 Chapter D: Students’ concept maps

F
ig
u
r
e
D
.1
5
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
1
5

223

F
ig
u
r
e
D
.1
6
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
1
6

224 Chapter D: Students’ concept maps

F
ig
u
r
e
D
.1
7
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
1
7

225

F
ig
u
r
e
D
.1
8
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
1
8

226 Chapter D: Students’ concept maps

F
ig
u
r
e
D
.1
9
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
1
9

227

F
ig
u
r
e
D
.2
0
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
2
0

228 Chapter D: Students’ concept maps

F
ig
u
r
e
D
.2
1
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
2
1

229

F
ig
u
r
e
D
.2
2
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
2
2

230 Chapter D: Students’ concept maps

F
ig
u
r
e
D
.2
3
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
2
3

231

F
ig
u
r
e
D
.2
4
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
2
4

232 Chapter D: Students’ concept maps

F
ig
u
r
e
D
.2
5
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
2
5

233

F
ig
u
r
e
D
.2
6
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
2
6

234 Chapter D: Students’ concept maps

F
ig
u
r
e
D
.2
7
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
2
7

235

F
ig
u
r
e
D
.2
8
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
2
8

236 Chapter D: Students’ concept maps

F
ig
u
r
e
D
.2
9
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
2
9

237

F
ig
u
r
e
D
.3
0
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
3
0

238 Chapter D: Students’ concept maps

F
ig
u
r
e
D
.3
1
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
3
1

239

F
ig
u
r
e
D
.3
2
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
3
2

240 Chapter D: Students’ concept maps

F
ig
u
r
e
D
.3
3
:
S
tu
d
e
n
t
c
o
n
c
e
p
t
m
a
p
#
3
3

Servicio Editorial de la Universidad del País Vasco (UPV/EHU)
Euskal Herriko Unibertsitateko Argitalpen Zerbitzua (UPV/EHU)
University of the Basque Country - Editorial Service (UPV/EHU)
ISBN: 978-84-9082-010-0

	Introduction
	The computer I/O subsystem - What is it?
	Why is it important to teach the computer I/O subsystem to computer scientist and engineers?
	What do the computing curricula recommendations say about the I/O subsystem topic?
	The computer I/O subsystem topic at the University of the Basque Country (UPV/EHU)
	Research questions
	Organization of the Document

	Link to relevant theory
	Content Knowledge (CK), Pedagogical Knowledge (PK) and Technological Knowledge (TK), the basic constructs.
	Technological Content Knowledge (TCK)
	Technological Pedagogical Knowledge (TPK)
	Pedagogical Content Knowledge (PCK)
	Technological Pedagogical Content Knowledge (TPCK or TPACK)
	Conclusions

	Background and related work
	Different approaches to teaching the computer I/O subsystem
	The data gathering and analysis process
	The purely descriptive approach (PDA)
	The performance approach (PeA)
	The programming approach (PrA)
	The datapath-signal approach (DSA)

	How do textbooks present the I/O topic?
	Computer Organization and Architecture 9th Edition
	Computer Organization and Design 4th Edition
	Computer Organization and Embedded Systems 6th Edition
	Computer System Architecture 3rd Edition

	What is the community trying to do in order to improve students' understanding of the I/O topic?
	Simulators
	Real Machines
	Using different educational approaches

	The I/O topic at several Spanish universities
	The approach taken at the University of the Basque Country
	Conclusions

	Deciding on the educational infrastructure
	Selection of the handheld game console
	The NDS console
	The memory
	The double processor
	The I/O registers
	The interrupt management

	Some of the NDS peripherals
	The timer
	The keyboard
	The touch screen

	Conclusions

	The Project Based Methodology applied to the computer I/O subsystem education: a three year outline
	The previous methodology
	Paper problems
	PC-based lab sessions
	The assessment

	The new PBL methodology
	The first school year 2010-2011
	The second school year 2011-2012
	The third school year 2012-2013

	The Projects
	School year 2010/2011
	School year 2011/2012
	School year 2012/2013

	Conclusions

	Analysis of the data obtained during the three years
	Analysis of the grades obtained by the students in the computer I/O subsystem topic
	Analysis of the satisfaction among the students while learning the computer I/O subsystem
	The satisfaction questionnaire
	Data for a qualitative analysis of the satisfaction
	Attraction and retention

	Conclusions

	Students' understanding about the computer I/O subsystem?
	Related work
	The preliminary study
	Method used for the complete study
	Subjects
	Procedure

	Quantitative analysis of the concept maps
	The system
	Connections inside the I/O controller subtopic
	Connections inside the Synchronization subtopic
	Connections inside the DMA subtopic
	Links between the ``I/O controller'' and the ``synchronization'' subtopics
	Links between the ``I/O controller'' and the ``DMA'' subtopics
	Links between ``DMA'' and ``synchronization'' subtopics

	A more qualitative reading of the concept maps
	The system
	Connections inside the I/O controller subtopic
	Connections inside the Synchronization subtopic
	Connections inside the DMA subtopic
	Links between the I/O controller and the synchronization subtopics
	Links between the DMA controller and the I/O controller
	Links between the DMA and the synchronization subtopics

	Conclusions

	Overall Conclusions and Future Work
	Conclusions
	Future work
	Publications obtained from this work

	Bibliography
	Appendices
	Notes on the theory of the computer I/O subsystem for the students
	Sarrera/Irteera-ko interfazearen deskribapena.
	S/I-ko kontrolagailuaren ikuspegi funtzionala
	Sarrera/irteera-ko kontrolagailuaren erregistroak
	Sarrera/Irteera memorian mapeatuta
	Sarrera/Irteera bereiztua edo memorian ez mapeatua
	S/Iko kontrolagailuen sailkapena

	Komunikazioa eta sinkronizazioa Sarrera/Irteerako eragiketetan
	Inkesta bidezko Sarrera/irteera
	Etenen bidezko Sarrera/Irteera

	Etenen kudeaketa
	Eten-eskaeraren detekzioa
	Gorde etendako programaren egoera
	Zerbitzu-errutina edo periferikoaren identifikazioa
	Zerbitzu-errutinaren exekuzioa
	Etendako programaren egoera berreskuratu
	Maila anitzeko etenak
	Etenen kontrolagailua

	Memoriarako Atzipen Zuzena (DMA – Direct Memory Access)
	DMA kontrolagailua
	DMA bidezko transferentzia

	Notes on the specifics of the Nintendo DS for the students
	Hardwarearen deskribapena
	Prozesadoreak
	Memoria
	Pantailak
	Teklatua
	Denboragailuak

	Etenen kudeaketa
	Etenen kudeaketarako erregistroak (etenen kudeatzailea)
	Eten-bektore edo eten-taula
	Interrupt Dispatcher-a

	Source-code of one of the projects
	The main program
	Defining the Interrupt-table
	The keyboard
	The timer

	Students' concept maps

