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Abstract

We prove that the SD-prenucleolus satis�es monotonicity in the
class of convex games. The SD-prenucleolus is thus the only known
continuous core concept that satis�es monotonicity for convex games.
We also prove that for convex games the SD-prenucleolus and the
SD-prekernel coincide.
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1 Introduction

How to divide the outcome obtained by agents that cooperate is one of the
main issues analyzed in the literature of coalitional game theory. One ap-
proach to dealing with the problem consists of proposing rules or solutions
that are used to solve the game. In this approach, the Shapley value (Shapley,
1953) and the prenucleolus (Schmeidler, 1969) stand out as the most well-
known, widely analyzed single-valued solutions for coalitional games with
transferable utility (TU games). One of the main reasons for the attractive-
ness of the Shapley value lies in the fact that it respects the principle of
monotonicity, i.e. if a new TU game w is obtained from a given TU game
v by increasing the worth of a coalition S then the members of S receive
a payo¤ in game w that is no lower than in game v. On the other hand,
the prenucleolus respects the core stability principle, i.e. the prenucleolus
selects a core allocation whenever the game is balanced. A core allocation
provides each coalition with at least the worth of the coalition, the amount
that the members of the coalition can obtain by themselves. It seems very
attractive to ask for a solution that ful�ls both principles, since they share a
kind of incentive compatibility principle that can be summarized in the fol-
lowing idea: the higher the worth of a coalition the better for its members.
However, in the class of balanced games they are not compatible (Young,
1985) and therefore the Shapley value does not respect core stability and the
prenucleolus fails to satisfy monotonicity. The two principles are compatible
in other domains or subclasses of TU games. For example, the Shapley value
satis�es core stability in the class of convex games and the SD-prenucleolus,
a lexicographic value introduced by Arin and Katsev in 2011, satis�es core
stability and monotonicity in the class of veto balanced games (in this class,
the Shapley value does not satisfy core stability). These results motivate the
question that this paper seeks to solve: Is the SD-prenucleolus monotonic in
the class of convex games? The answer is yes, so the SD-prenucleolus arises
as the only known solution that satis�es monotonicity in the class of convex
games and in the class of veto balanced games while respecting the principle
of core stability.
Another major contribution of this paper is to prove that in the class
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of convex games the SD-prekernel (Arin and Katsev, 2011) and the SD-
prenucleolus coincide. The coincidence of the prekernel and the prenucleolus
in the class of convex games was established by Maschler, Peleg and Shapley
(1971).
The rest of the paper is organized as follows:
Section 2 introduces TU games, solutions and properties. Section 3 pro-

vides a detailed introduction to the de�nition of SD-prenucleolus of a game,
the notion of �relevant coalition�and the concept of �SD-reduced game prop-
erty�. This section is based on Arin and Katsev (2011). In Section 4 we an-
alyze the monotonicity of the SD-prenucleolus when considering SD-relevant
games. Section 5 deals with the class of convex games: we show that they
are SD-relevant games. We also prove that the SD-prekernel and the SD-
prenucleolus coincide for convex games.

2 Preliminaries: TU games

A cooperative n-person game in characteristic function form is a pair (N; v),
where N is a �nite set of n elements and v : 2N ! R is a1 real-valued function
in the family 2N of all subsets of N with v(;) = 0: Elements of N are called
players and the real valued function v the characteristic function of the game.
Any subset S of N is called a coalition. Singletons are coalitions that contain
only one player. A game is monotonic if whenever T � S then v(T ) � v(S):
The number of players in S is denoted by jSj. Given S � N we denote by
NnS the set of players of N that are not in S. A distribution of v(N) among
the players, an allocation, is a real-valued vector x 2 RN where xi is the
payo¤ assigned by x to player i. A distribution satisfying

P
i2N
xi = v(N) is

called an e¢ cient allocation and the set of e¢ cient allocations is denoted by
X(v): We denote

P
i2S
xi by x(S). The core of a game is the set of allocations

that cannot be blocked by any coalition, i.e.

C(N; v) = fx 2 X(N; v) : x(S) � v(S) for all S � Ng :
1See next section for a formal de�nition of these concepts.
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It has been shown that a game with a non-empty core is balanced2 and
therefore games with non-empty core are called balanced games. Player i is
a veto player if v(S) = 0 for all S where player i is not present. A balanced
game with at least one veto player is called a veto balanced game. We denote
by �V B the class of balanced games and by �V B the class of veto balanced
games.
We say that a game (N; v) is convex if v(S)+ v(T ) � v(S [T )+ v(S \T )

for all S; T � N: We denote by �C the class of convex games.
A solution ' in a class of games �0 is a correspondence that associates a

set '(N; v) in RNwith each game (N; v) in �0 such that x(N) � v(N) for all
x 2 '(N; v). This solution is e¢ cient if this inequality holds with equality.
The solution is single-valued if the set contains a single element for each
game in the class.
We say that the vector x weakly lexicographically dominates the vector

y (denoted by x �L y) if either
�
x =

�
y or there exists k such that

�
xi =

�
yi

for all i 2 f1; 2; :::; k � 1g and �
xk >

�
yk where

�
x and

�
y are the vectors with

the same components as the vectors
�
x,

�
y, but rearranged in a non decreasing

order (i > j ) �
xi �

�
xj).

Given x 2 RN the satisfaction of a coalition S with respect to x in a
game v is de�ned as e(S; x) := x(S) � v(S): Let �(x) be the vector of all
satisfactions at x arranged in non decreasing order. Schmeidler (1969) in-
troduced the prenucleolus of a game v; denoted by PN(v); as the unique
allocation that lexicographically maximizes the vector of non decreasingly
ordered satisfactions over the set of allocations. In formula:

PN(N; v) = fx 2 X(N; v) j�(x) �L �(y) for all y 2 X(N; v)g :

For any game v the prenucleolus is a single-valued solution, is contained in
the prekernel and lies in the core provided that the core is non-empty.
The per capita prenucleolus (Groote, 1970) is de�ned analogously by

using the concept of per capita satisfaction instead of excess. Given S and x
the per capita satisfaction of S at x is

epc(S; x) :=
x(S)� v(S)

jSj
2See Peleg and Südholter (2007).
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Other weighted prenucleoli can be de�ned in a similar way whenever a
weighted excess function is de�ned. The same solution concepts can be anal-
ogously de�ned using the notion of satisfaction instead of excess. Given
x 2 RN the excess of a coalition S with respect to x in a game (N; v) is de-
�ned as f(S; x) := x(S)�v(S): In this paper we use the notion of satisfaction
in de�ning the new solution.
Some convenient and well-known properties of a solution concept ' on �0

are the following.

� ' satis�es core stability if it selects core allocations whenever the
game is balanced.

The following properties are de�ned for single-valued solutions.

� ' satis�es coalitional monotonicity: if for all v; w 2 �0, if for all S 6=
T; v(S) = w(S) and v(T ) < w(T ); then for all i 2 T; 'i(v) � 'i(w):

� ' satis�es aggregate monotonicity: if for all v; w 2 �0, if for all
S 6= N; v(S) = w(S) and v(N) < w(N); then for all i; j 2 N; 'i(w)�
'i(v) � 0:

� ' satis�es strong aggregate monotonicity: if for all v; w 2 �0, if
for all S 6= N; v(S) = w(S) and v(N) < w(N); then for all i; j 2 N;
'i(w)� 'i(v) = 'j(w)� 'j(v) � 0:

Young (1985) proves that no solution satis�es coalitional monotonicity
and core stability. However there are solutions, including the per capita
prenucleolus and the SD-prenucleolus, that satisfy core stability and strong
aggregate monotonicity. Meggido (1974) proves that the nucleolus does not
satisfy aggregate monotonicity. Clearly, strong aggregate monotonicity im-
plies aggregate monotonicity. The prenucleolus does not satisfy aggregate-
monotonicity in the class of convex games (Hokari, 2000). The per capita
prenucleolus does not satisfy monotonicity in the class of convex games (see
Arin, 2013).
The following notation is widely used in this work. We denote by (N; uS)

the game:
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uS(T ) =

(
1 if T = S
0 otherwise.

3 The SD-Prenucleolus

3.1 De�nition and some properties

In 2011, Arin and Katsev introduced and characterized the SD-prenucleolus,
a solution concept for TU games. In this section we recall some de�nitions
and results that are needed in the present paper.
The de�nition of the SD-prenucleolus is based in the concept of satisfac-

tion of a coalition given an allocation. Given a game (N; v) and an allocation
x we calculate a satisfaction vector fF (S; x)gS(N . The components of this
vector are obtained recursively by de�ning an algorithm.
The algorithm has several steps (at most 2n � 2) and at each step we

identify the collection of coalitions that has obtained the satisfaction. This
collection of coalitions is denoted by H. In the �rst step this collection H is
empty. The algorithm ends when H = 2N .
For a collection H and a function F : H ! R the function FH : 2N ! R

is de�ned. To that end, we introduce some notation. Denote by H � 2N

�H(S) =
[

T2H;T�S
T

and also for a collection H � 2N and a function F : H ! R we denote
by fH;F (i; S) the satisfaction of player i with respect to a coalition S and a
collection H (i 2 �H(S)):

fH;F (i; S) = min
T :T2H;i2T�S

F (T )

Note that this de�nition can only be used in a situation when the function
F (S) is de�ned for all S 2 H.
Now we de�ne a function FH : 2N ! R. We consider two cases (since it

is evident that �H(S) � S):

6



1. Relevant coalitions. �H(S) 6= S. In this case the satisfaction of S is

FH(S) =

x(S)� v(S)�
P

i2�H(S)
fH;F (i; S)

jSj � j�H(S)j

Note that if the collection H is empty then the current satisfaction of the
coalition S coincides with its per capita satisfaction:

F;(S) =
x(S)� v(S)

jSj

2. Non relevant coalitions. �H(S) = S. In this case the current satisfaction
of S is

FH(S) = x(S)� v(S)�
X
i2S
fH;F (i; S) + max

i2S
fH;F (i; S)

Therefore for any function F : H ! R the value fH;F (i; S) can be calculated
for every coalition S and player i 2 �H(S). Also if a function fH;F (�; �) is
de�ned for each S ( N and i 2 �H(S) then the function FH can be de�ned.
The algorithm for the satisfaction vector is de�ned as follows:.

Algorithm 1 Consider a game (N; v) and an allocation x 2 X(N; v).
Step 1: Set k = 0, H0 = ;. Go to Step 2.
Step 2: Set

Hk+1 = Hk [ fS 62 Hk : FHk
(S) = min

T 62Hk

FHk
(T )g

Step 3: De�ne for each S 2 Hk+1 n Hk:

F (S) = FHk
(S)

Step 4: If Hk+1 6= 2N n fNg then let k = k+ 1 and go to Step 2, else go
to Step 5.
Step 5: Stop. Return the vector

fF (S); S ( Ng
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For the sake of simplicity we use the notation F (S) instead of F (S; x):
Note that for a relevant coalition (�H(S) 6= S) it holds that

x(S)� v(S) = (jSj � j�H(S)j)FH(S) +
X

i2�H(S)

fH;F (i; S) =
X
i2S
fH;F (i; S)

which can be interpreted as a distribution of the total surplus of coalition S
among its members.
We de�ne the SD-prenucleolus as a lexicographic value in the set of vectors

of satisfactions. We denote the SD-prenucleolus of game (N; v) by SD(N; v):
We say that the vector x belongs to the SD-prenucleolus if its satisfaction

vector dominates (or weakly dominates) every other satisfaction vector.

De�nition 2 (Arin and Katsev, 2011) Let (N; v) be a TU game. Then
x 2 SD(N; v) if and only if for any y 2 X(N; v) it holds that F x �L F y:

The SD-prenucleolus satis�es nonemptiness and single-valuedness in the
class of all TU games.
Let (N; v) be a TU game and x be an allocation. Denote by B(x) the set

of coalitions with minimal satisfaction at x:Given an allocation x and a real
number � we de�ne the following set of coalitions

B� = fS ( N : F (S; x) � �g:

Next theoremmay be used to check whether an allocation is the SD-prenucleolus
of a game or not.

Theorem 3 (Arin and Katsev, 2011) Let (N; v) be a TU game and x be
an allocation. Then x = SD(N; v) if and only if the collection of sets B� is
empty or balanced3 for every �.

The notion of �relevant coalition�plays a central role in this paper. The
following 3-person game is used to illustrate this concept. Let (N; v) be a

3See Peleg and Sudholter (2007) for the de�nition of a balanced collection of sets.
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game where N = f1; 2; 3g and

v(S) =

8>>><>>>:
0 if jSj = 1
4 if S 2 ff1; 3g ; f1; 2gg
�10 if S = f2; 3g
6 if S = N:

Consider the allocation x = (5; 1; 0): Applying the algorithm the following is
obtained:

Coalition Satisfaction
f3g 0

f2g f1; 2g f1; 3g 1

f1g 5

f2; 3g 11:

Coalition f2; 3g is a non relevant coalition. The rest of the coalitions are
relevant coalitions. Consider the satisfaction of coalition f1; 3g : This coali-
tion has a subset (coalition f3g) that has already obtained its satisfaction.
This fact is incorporated into the computation of the satisfaction of coalition
f1; 3g since �H(f1; 3g) = f3g. Therefore

FH(f1; 3g ; x) =
x(f1; 3g)� v(f1; 3g)�

P
i2�H(f1;3g)

fH;F (i; f1; 3g)

j f1; 3g j � j�H(f1; 3g)j
=
5� 4� 0
2� 1 :

The total surplus of the coalition is divided as follows: player 1 gets 1
and player 3 gets 0.
The case of non relevant coalitions is di¤erent. If a coalition is non rele-

vant for any player in the coalition there exists a subset of the coalition with
a lower satisfaction and that subset determines the individual satisfaction of
the player in the non relevant coalition. Note that

x(f2; 3g)� v(f2; 3g) = 11 >
X

i2�H(f2;3g)

fH;F (i; f2; 3g) = 1 + 0:

Theorem 3 may be used to check that SD(N; v) 6= x since the collection
of sets with minimal satisfaction with respect to x is not balanced. Theorem
3 may be used to check that SD(N; v) = (14

3
; 2
3
; 2
3
):
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In the proof of the main theorem we need to use the fact that in the
class of all TU games the SD-prenucleolus satis�es the SD-reduced game
property4. Arin and Katsev (2011) introduce the SD-reduced game.

De�nition 4 Let (N; v) be a TU game, S � N and x 2 X(N). A game
(S; vxS) is the SD-reduced game with respect to S and x if
1. vxS(S) = v(N)� x(N n S)
2. for every T ( S

F (S;v
x
S)(T; xS) = min

U2NnS
F (N;v)(U [ T; x):

For any game (N; v) and any allocation x the SD-reduced game exists
and is unique.
We say that a solution � satis�es the SD-reduced game property5 on �,

SD-RGP , if for every game v 2 �, for all nonempty coalitions S and for all
x 2 �(v), xS 2 �((S; vxS)).
This property plays a determinant role in the proof of the main theorem

(the monotonicity of the SD-prenucleolus in the class of convex games).
The SD-prenucleolus satis�es the SD-reduced game property.

3.2 Antipartitions

The notion of antipartition (Arin and Inarra, 1998) also plays a central role
in the main results of this paper.
A collection of sets C=

n
_S : S � N

o
is called antipartition if the collection

of sets fNnS : S 2 Cg is a partition of N . Note that in order to balance an
antipartition Q each coalition receives the same weight, i.e. 1

jCj�1 .
For any game (N; v) the satisfaction of an antipartition C with weights

( 1
jCj�1)S2C is de�ned by

F (C) :=
v(N)�

P
S2C

1
jCj�1v(S)

jN j :

4The SD-prekernel also satis�es the SD-reduced game property.
5This property states that if x is an element in the multi-valued function � of a game

v 2 �, then for any non-trivial coalition T the projection of x into N n T belongs to the
multi-valued function � of the reduced game v for coalition N n T with respect to x.
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Theorem 5 Given a game (N; v ) and an allocation x; if the collection of
sets with minimal satisfaction B(x) contains an antipartition C then F (S; x) =
F (C) for all S belonging to B(x).

Proof. Let x be an allocation and let C be an antipartition in B(x). Note
that for S 2 C it results that F (S; x) = x(S)�v(S)

jSj = �:

Since C is balanced X
S2C

�sx(S) =
X
i2N

xi = v(N):

From the de�nition above the following emerges:

jN jF (C) = v(N)�
X
S2C

1

jCj � 1v(S):

From the balancedness of C it holds that

v(N)�
X
S2C

1

jCj � 1v(S) =
X
S2C

1

jCj � 1 (x(S)� v(S)) =

X
S2C

1

jCj � 1 jSjF (S; x) = �
X
S2C

1

jCj � 1 jSj = � jN j :

Last equality is a direct consequence of the fact that each player is present
in all coalitions of the antipartition but one.
Note that if the set of coalitions with minimal satisfaction with respect

to the SD-prenucleolus of the game contains an antipartition then the satis-
faction of these coalitions only depends on the characteristic function of the
game.

4 SD-relevant games: Monotonicity of the
SD-prenucleolus

In this section we introduce and study the class of SD-relevant TU games.
We show that convex games are SD-relevant games and by following Arin
and Katsev (2011) it is not di¢ cult to prove that monotonic games with
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veto players are also SD-relevant games. These two facts make this new
class6 of games interesting.
A TU game is SD-relevant if given the SD-prenucleolus of the game all

its coalitions are relevant.

De�nition 6 We say that a TU game (N; v) is SD-relevant if any S; S � N;
is relevant with respect to SD(N; v):

The game (N; v) where N = f1; 2; 3g and

v(S) =

8>>><>>>:
0 if jSj = 1
4 if S 2 ff1; 3g ; f1; 2gg
�10 if S = f2; 3g
6 if S = N

is not SD-relevant. Recall that SD(N; v) = (14
3
; 2
3
; 2
3
) and clearly, coalition

f2; 3g is non relevant.
In what follows we provide an alternative way of computing the SD-

reduced games of an SD-relevant game which bears strong similarities to the
well known Davis Maschler reduced game.
The lemma below proves that the surplus of relevant coalitions is fully

divided among the members of the coalitions. This is not the case with non
relevant coalitions, where the surplus of the coalition is higher than the sum
of the surpluses of the members of the coalition.

Lemma 7 For every game (N; v) and allocation x 2 X(v) it holds that
1. For every relevant coalition S � NX

i2S
f(i; S) = x(S)� v(S):

2. For every non relevant coalition S � NX
i2S
f(i; S) < x(S)� v(S):

6The linear convex combination of two SD-relevant games is not necessarily a SD-
relevant game.
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3. For every coalition S � T � N

f(i; S) � f(i; T ) for any i 2 S:

Proof. 1. By the de�nition of satisfaction of a relevant coalition it holds
that

FH(S) =

x(S)� v(S)�
P

i2�H(S)
fH;F (i; S)

jSj � j�H(S)j
:

Therefore

x(S)� v(S) = FH(S)(jSj � j�H(S)j) +
X

i2�H(S)

fH;F (i; S) =

=
X

i2Sn�H(S)

f(i; S) +
X

i2�H(S)

f(i; S) =
X
i2S
f(i; S)

2. By the de�nition of satisfaction of a non relevant coalition it holds
that

FH(S) = x(S)� v(S)�
X
i2S
fH;F (i; S) + max

i2S
fH;F (i; S):

By Lemma 3 from Arin and Katsev (2011) FH(S) > max
i2S

fH;F (i; S) and

therefore X
i2S
f(i; S) < x(S)� v(S):

3. It is immediately apparent.
If a game is SD-relevant then any SD-reduced game with respect to the

SD-prenucleolus of the game is also SD-relevant. Therefore in the class of SD-
relevant games all the SD-reduced games with respect to the SD-prenucleolus
belong to this class.

Lemma 8 Let (N; v) be an SD-relevant TU game. Let (S; vSD) be an SD-
reduced game with respect to the SD-prenucleolus of (N; v). Then (S; vSD) is
an SD-relevant TU game.
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Proof. Let P and M two subsets of S such that F (M;SD(S; vSD)) �
F (P; SD(S; vSD)) and M [ P 6= N: We seek to prove that

F (M [ P; SD(S; vSD)) � max
�
F (M;SD(S; vSD)); F (P; SD(S; vSD))

	
:

Let F (M;SD(S; vSD)) = F (M [Q;SD(N; vSD)) for some Q � NnS and
let F (P; SD(S; vSD)) = F (P [ T; SD(N; vSD)) for some T � NnS: Clearly,
(M [Q) [ (P [ T ) 6= N:
Since all coalitions in the game (N; v) are relevant It holds that

F ((M [Q) [ (P [ T ); SD(N; vSD)) �

max
�
F (M [Q;SD(N; vSD)); F (P [ T; SD(N; vSD))

	
=

F (M [Q;SD(N; vSD)):

Note that (M [Q) [ (P [ T ) = (M [ P ) [ (Q [ T ) and therefore

F (M [ P; SD(S; vSD)) � F ((M [Q) [ (P [ T ); SD(N; vSD)) �

� F (M [Q;SD(N; vSD)):

Therefore the SD-reduced game of an SD-relevant game is SD-relevant.

Arin and Inarra (1998) prove that, given a convex game, the collection of
coalitions with minimal satisfaction with respect to the prenucleolus of the
game contains either a partition or an antipartition. In the case of the SD-
prenucleolus of an SD-relevant game only antipartitions should be considered,
as the following theorem shows.

Lemma 9 Let (N; v) be an SD-relevant TU game. Then the collection of sets
with minimal satisfactions with respect to SD(N; v) contains an antipartition.

Proof. Let x = SD(N; v) and let B(x) be the set of coalitions with
minimal satisfaction with respect to x. Let S be a maximal coalition in
B(x), that is, there is no coalition T in B(x) such that S � T: Since B(x)
is balanced for each i 2 S there exists a coalition, T i; such that i =2 T iand
T i 2 B(x). Since (N; v) is SD-relevant the maximality of S implies that
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NnS � T i: Let fT i : i 2 Sg be the set of maximal coalitions for each i in
S ((perhaps the case in which for two players i; j it holds that T i = T j):

Then fT i : i 2 Sg [ fSg is an antipartition. It is immediately apparent that
(NnT i) \ (NnS) is empty. If for any i; j 2 S it holds that (NnT i) \ (NnT j)
is nonempty it is clear that T i [ T j 6= N which contradicts the maximality
of T I and T j since the fact that (N; v) is SD-relevant implies that T i [ T j is
an element of the set B(x).
The above results allow for a di¤erent interpretation of the SD-reduced

game of an SD-relevant game. The SD-reduced games with respect to the
SD-prenucleolus can be easily computed according to the result established
by the following lemma.

Lemma 10 Let (N; v) be an SD-relevant TU game, S � N and x = SD(N; v).
Consider the SD-reduced game (S; vxS): Then

vxS(T ) = v(T [ (N n S))�
X
i2NnS

zi(T [ (N n S)) =
X
i2T

zi(T [ (N n S)):

where zi(T [ (N n S)) = xi � fi(T [ (N n S))

Proof. By Lemma 8 (S; vxS) is SD-relevant. We denote by f
x
S the analog

of function f for the game (S; vxS).
By de�nition of fxS (i; T ) it holds that

fxS (i; T ) = min
i2U�T

F (S;v
x
S)(U) = min

i2U�T
min
R�NnS

F (U [R) =

= min
i2M�T[(NnS)

F (M) = f(i; T [ (N n S)):

Therefore

vxS(T ) = x(T )�
X
i2T

fxS (i; T ) = x(T )�
X
i2T

f(i; T [ (N n S)) =

=
X
i2T

zi(T [ (N n S)) = v(T [ (N n S))�
X
i2NnS

zi(T [ (N n S)):

Here we use the fact that the coalition T [ (N n S) is relevant in the game
(N; v).
The corollary below presents a simple formula for computing some SD-

reduced games. This result is used in the proof of the main theorem.
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Corollary 11 Let (N; v) be an SD-relevant TU game, x = SD(N; v) and
S 2 B(x). Consider the SD-reduced game (NnS; vx) and assume that coali-
tion T � NnS is relevant in game (NnS; vx) at x: Then

vxS(T ) = v(T [ S)�
X
i2S
zi(T [ S) = v(T [ S)� v(S):

Proof. Since S 2 B(x) it holds that f(i; S) = x(S)�v(S)
jSj : Since (N; v)

is SD-relevant, for any T such that S � T it holds that f(i; T ) = f(i; S):

Therefore, X
i2S
zi(T [ S) =

X
i2S
xi(T [ S)�

X
i2S
f(i; T [ S) =

X
i2S
(xi(S)� f(i; S) = x(S)� jSj

x(S)� v(S)
jSj == v(S):

The notion of SD-equivalent games is also needed in the proof of the main
results of the paper. We say that two TU games are SD-equivalents if the
two games have in the set of coalitions of minimal satisfaction with respect
to the SD-prenucleolus the same antipartition.

De�nition 12 Let x = SD(N; v) and let y = SD(N;w): We say that TU
games (N; v) and (N;w) are SD-equivalent if there exists an antipartition Q
such that Q � B(x) and Q � B(y):

Next lemma allows us to consider only SD-relevant and SD-equivalent
game while analyzing the monotonicity of the SD-prenucleolus in the class
of SD-relevant games.

Lemma 13 For some S � N and any 
 2 [0; �], let (N; v + 
uS) be an
SD-relevant TU game. Then, there exists �; 0 < � � � such that:
1 (N; v) and (N; v + �uS) are SD-equivalent TU games.
2 (N; v + �uS) and (N; v + �uS) are SD-equivalent TU games.
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Proof. Let y = SD(N; v + �uS) = SD(N;w) and x = SD(N; v): Let
Q be an antipartition contained in B(x). If Q is contained in B(y) then it
is evident that � = �: If Q is not contained in B(y) then it must be the
case that S 2 B(y) and F (Q; v) >F (S; y; w) and any antipartition in B(y)
must include S: Let M be an antipartition in B(y). If M is an antipar-
tition in B(y) the proof is completed and � = �: If not, it is clear that
F (M; v) >F (Q; v) >F (Q; w) >F (M; w). Therefore by decreasing � we can
�nd a new game (N; q) = (N; v + �uS) such that

F (M; q) =F (Q; v) =F (Q; q) >F (M; w)

Therefore with the game (N; q) the statement of the lemma is proved for
this last case.
Now we are in a position to prove the main theorem of this section.

Theorem 14 For some S � N and any 
 2 [0; �], let (N; v + 
uS) be an
SD-relevant TU game. Then SDi(N; v + �uS) � SDi(N; v) for any l 2 S:

Proof. The fact can be proved by induction for jN j. If jN j � 2 then the
monotonicity holds. Assume that it holds for all games with no more than k
players. Now we show that it also holds for each game with k + 1 players.
Consider the game (N; v) with jN j = k+ 1 and a game (N;w) � (N; v+

�uS) for S � N and � > 0. We will show that for each i 2 S it holds that
SDi(N; v) � SDi(N;w). Assume that (N;w) and (N; v) are SD-equivalent.
From Lemma 9 for the two games there is an antipartition, Q; in the

set of coalitions with minimal satisfaction. Consider a coalition T of this
antipartition Q. We seek to compare the SD-prenucleolus of the two SD-
reduced games (NnT; vSD(v)) and (NnT;wSD(w)): We distinguish 3 cases:
1. S =2 Q and T is not a subset of S: By applying Corollary 11, the

two SD-reduced games must coincide. Therefore players in S \NnT receive
the same payo¤ in both games. Since the SD-prenucleolus satis�es the SD-
reduced game property it must be the case that in games (N; v) and (N;w)
players in S \NnT also must receive the same payo¤.
2. S 2 Q. Note that this implies that S must be in the same antipartition

with T since otherwise the two games cannot be SD-equivalent.
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If jNnT j = 1 then it is clear that SD(T; v) = SD(T;w) and consequently
SDi(N; v) = SDiN;w) for i 2 NnT: Therefore we only consider the case
jNnT j > 1:
Let F (S; SD(N; v); v) = F1 and F (S; SD(N;w); w) = F2: Since S is in

the same antipartition in both games by applying Theorem 5 it is quite
immediately apparent that F2 = F1 � � 1

jN j(jQj�1) and

SD(S;w) = w(S) + jSjF2 = v(S) + �+ jSj (F1 � �
1

jN j (jQj � 1)) =

SD(S; v) + �(1� jSj
jN j (jQj � 1)) > SD(S; v):

In this case the characteristic function wS for relevant coalitions in the re-
duced game (S;wSD) with respect to the SD-prenucleolus of the game (N;w)
results

wSD(U) =

(
vSD(S) + �(1� jSj

jN j(jQj�1)) U = NnT
vSD(U) otherwise

This means that (by strong aggregate monotonicity of the SD-prenucleolus)
for each i 2 S \ (NnT ) it holds that

SDi(NnT;wSD(w)) > SDi(NnT; vSD(V )), SDi(N;w) > SDi(N; v):

3 S =2 Q and T � S:
In this case by applying Corollary 11,

wSD(U) =

(
vSD(S) + � U = SnT
vSD(U) otherwise.

In this case the TU game (NnT;wSD(w)) can be written as (NnT; vSD(v)+
auSnT _): From Lemma 8 the SD-reduced games (NnT; vSD(v) _) and (NnT; vSD(v)+
auSnT _) are SD-relevant. Note also that for any 
 2 [0; �] it also holds that
(NnT; vSD(v) + 
uSnT _) is an SD-relevant game7. We distinguish two cases;

7This is so because (NnT; vSD(v)+auSnT _) is the SD-reduced game of (N; v+
uS _) with
respect to the SD-prenucleolus of (N; v+ 
uS _): Recall that (N; v+ 
uS _) is by assumption
SD-relevant.
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3a) (NnT; vSD(v) _) and (NnT; vSD(v) + auSnT _) are SD-equivalent. The
analysis can be repeated for these two TU games. If the analysis ends in
case 1 or 2 the proof is complete. Otherwise the analysis is repeated for the
resulting two new SD-reduced games. In this last case the new TU games
have fewer players. Since the result is true when the number of players is 2
it can be asserted that at some stage the procedure will end in case 1 or 2.
3b) (NnT; vSD(v) _) and (NnT; vSD(v) + auSnT _) are not SD-equivalent. By

Lemma 13 there exists �; � < �; such that (NnT; vSD(v) _) and (NnT; vSD(v)+
�uSnT _) are SD-equivalent and (NnT; vSD(v) + �uSnT _) and (NnT; vSD(v) +
�uSnT ) are SD-equivalent and SD-relevant. The analysis can be repeated for
these two pairs of TU games. If the analysis ends in case 1 or 2 the proof
is complete. Otherwise the analysis is repeated for the resulting two new
SD-reduced games. In this last case the new TU games have fewer players.
Since the result is true when the number of players is 2 it can be asserted that
at some stage the procedure will end in case 1 or 2. It is thus proved that for
any player i in S \ (NnT ) it holds that SDi(N;w) � SDi(N; v): Since this
is true for any coalition T in the antipartition Q it must be concluded that
for any player i in S it holds that SDi(N;w) � SDi(N; v):

Assume that (N;w) and (N; v) are not SD-equivalent. By Lemma 13 there
exists �; � < �; such that (N; v) and (N; v + �uS) are SD-equivalent and
(N;w) and (N; v + �uS) are SD-equivalent. Therefore the above arguments
can be used to conclude that for any player i in S it holds that SDi(N; v) �
SDi(N; v+ �uS):Similarly, it must be concluded that for any player i in S it
holds that SDi(N;w) � SDi(N; v + �uS):

Therefore, SD-relevant games and monotonicity of the SD-prenucleolus
are strongly related.

5 Convex games

5.1 The SD-prenucleolus

In the class of convex games (Shapley, 1971) core stability and coalitional
monotonicity are compatible. In convex games, the Shapley value satis�es
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the two properties. In general, the Shapley value is not a core concept, even
in the class of veto balanced games. Therefore the issue of whether a core
concept satisfying monotonicity in the class of convex games and in the class
of veto balanced games exists has been an open question8. The following
theorem answers the question in the a¢ rmative.

Theorem 15 In the class of convex games the SD-prenucleolus satis�es coali-
tional monotonicity.

The proof of this theorem results immediately from the facts that convex
games are SD-relevant games (see lemma below) and the fact that if (N; v)
and (N; v + �uS) are convex then (N; v + 
uS) is convex for any 
 2 [0; �].

Lemma 16 Let (N; v) be a convex game and x be an allocation. Then all
coalitions are relevant with respect to x. Therefore convex games are SD-
relevant games.

Proof. The lemma is obviously true for coalitions with minimal satis-
faction, coalitions in B(x): We seek to prove that given any two relevant
coalitions, S and T , S [ T is relevant.
Assume that S and T are relevant coalitions, S [ T 6= N and S [ T is

non relevant. By convexity

x(S [ T )� v(S [ T ) + x(S \ T )� v(S \ T ) � x(S)� v(S) + x(T )� v(T ):

Since S and T are relevant:

x(S)� v(S) =
X
i2S
fH;F (i; S)

x(T )� v(T ) =
X
i2T

fH;F (i; T ):

Since S [ T is non relevant:

x(S[T )�v(S[T ) =
X
i2S[T

fH;F (i; S[T )+(F (x; S[T )�max
i2S

fH;F (i; S[T )):

8See Arin (2012) for a discussion on this issue.
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We consider two cases.
a) There is no relevant coalition Q � S [ T such that Q " S; Q " T and

F (Q; x) < max(F (S; x); F (T; x)):

In this case it holds thatX
i2S[T

fH;F (i; S [ T ) =

=
X
i2SnT

fH;F (i; S) +
X
i2TnS

fH;F (i; T ) +
X
i2T\S

min(fH;F (i; T ); fH;F (i; S)) + �

where � > 0 since S [ T is non relevant: Therefore

�+ x(S \ T )� v(S \ T ) �
X
i2T\S

max(fH;F (i; T ); fH;F (i; S))

or (since � > 0)

x(S \ T )� v(S \ T ) <
X
i2T\S

max(fH;F (i; T ); fH;F (i; S))

or (assuming S \ T is relevant9)X
i2T\S

fH;F (i; T \ S) <
X
i2T\S

max(fH;F (i; T ); fH;F (i; S))

Since (S \ T ) � S for any i 2 S \ T it holds that

fH;F (i; S) � fH;F (i; T \ S)

and similarly, since (S \ T ) � T for any i 2 S \ T it holds that

fH;F (i; T ) � fH;F (i; T \ S):

Consequently, for any i 2 S \ T it holds that

fH;F (i; T \ S) � max(fH;F (i; T ); fH;F (i; S))
9If it is non relevant the proof is identical: a strictly positive number � just needs to

be added on the right-hand side of the inequality. Since � is positive the arguments do
not change.
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which contradicts the fact that

x(S\T )�v(S\T ) =
X
i2T\S

fH;F (i; T \S) <
X
i2T\S

max(fH;F (i; T ); fH;F (i; S)):

b) There is a relevant coalition Q � S [ T such that Q " S; Q " T and
F (x;Q) < max(F (S; x); F (T; x)): Among the relevant coalitions satisfying
these conditions Q has the minimal satisfaction.
Consider the following coalitions S1 and T 1 de�ned as follows:

S1 =

(
S if F (Q; x) � F (S; x)

S [Q if F (Q; x) < F (S; x)
and

T 1 =

(
T if F (Q; x) � F (T; x)

T [Q if F (Q; x) < F (T; x)
:

We consider two cases:
b1) Coalitions S1 and T 1 are relevant.
Using coalitions S1 and T 1 , repeat the arguments used for coalitions S

and T . Note that since Q has been chosen with minimal satisfaction then for
these two coalitions (S1and T 1) case b) does not occur and it is concluded
that S1 [ T 1 = S [ T is relevant.
b2) Assume, without loss of generality, that S1 is non relevant. Note that

S1 � S [ T and the set of players is �nite. Repeat the proof with coalitions
S and Q: This ends up either in a contradiction (cases a) and b1)) or in case
b2) with two coalitions S and P (or Q and P ) such that S [P (or Q[P ) is
non relevant. Repeat the proof again for coalitions S and P (or Q and P ). If
the proof ends in case a) or b1) the contradiction is found. If not, repeat the
proof with another two coalitions. Note that at the end two coalitions need
to be found for which case b2) does not occur since the number of players
is �nite and the size of the coalitions is reduced at each step whenever the
proof ends in case b2).
In general, it is not necessarily true that if a game (N; v) is SD-relevant

then for a given allocation x, x 6= SD(N; v); all coalitions are relevant. Con-
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sider the following 4-person balanced game:

v(S) =

8>>>>><>>>>>:

4 if S 2 ff1; 2g ; f1; 3g ; f1; 4gg
7 if S 2 ff1; 2; 3g ; f1; 2; 4g ; f1; 3; 4gg
9 if S = f2; 3; 4g
18 if S = N
0 otherwise.

It can be checked that SD(N; v) = (3; 5; 5; 5) and the game is SD-
relevant. Considering the allocation x = (0; 6; 6; 6) it can be checked that
F (f1; 2; 3g ; x) > F (f1; 2g ; x) = F (f1; 3g ; x) and therefore coalition f1; 2; 3g
is not relevant at x:

5.2 The SD-prekernel

In what follows we prove that in the class of convex games the SD-prekernel
(Arin and Katsev, 2011) and the SD-prenucleolus coincide.
Given a TU game (N; v) and an allocation x 2 X(N; v) the complaint of

player i against player j is de�ned as follows:

sij(x) = min
S:i2S;j 62S

F (S; x):

The SD-prekernel of a TU game (N; v) is:

SDPK(N; v) = fx 2 X(N; v) : sij(x) = sji(x) for all i 6= jg

The SD-prenucleolus belongs to the SD-prekernel but, in general, do not
coincide. Consider a 4-person game (N; v) de�ned as follows:

v(S) =

8><>:
4 if S = N
0 if jSj = 1 or S 2 ff1; 2g ; f3; 4gg
2 otherwise.

It is immediately apparent that (2; 2; 0; 0) is an element of the SD-prekernel
of the game and that the SD-prenucleolus of (N; v) is (1; 1; 1; 1):
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Theorem 17 Let (N; v) be a convex game. Then SDPK(N; v) = fSD(N; v)g :
Proof. Let x = SD(N; v) and assume that there exists y; y 6= x; such

that y 2 SDPK(N; v): First of all we seek to prove that B(y) contains an
antipartition. Let S be a maximal coalition in B(y), that is, there is no
coalition T in B(y) such that S � T: B(y) must contain for each i 2 S

a coalition, T i; such that i =2 T i. Since (N; v) is convex (and therefore all
coalitions are relevant for any allocation) the maximality of S implies that
NnS � T i: Let fT i : i 2 Sg be the set of maximal coalitions for each i in
S (maybe the case that for two players i; j it holds that T i = T j): Then
fT i : i 2 NnSg [ fSg is an antipartition. It is immediately apparent that
(NnT i)\(NnT j) is empty. If for some i; j 2 S it holds that (NnT i)\(NnT j)
is nonempty it is clear that T i [T j 6= N and that contradicts the maximality
of T I and T j since the fact that (N; v) is convex implies that T i [ T j is
an element of the set B(y). Since the satisfaction of an antipartition only
depends on the characteristic function B(x) and B(y) should contain the same
antipartition. And for any coalition S in the antipartition it must hold that
y(S) = x(S): Finally, the SD-reduced games (S; vy) and (S; vx) are identical
and since the SD-prekernel satis�es SD-reduced game property it must be
concluded that xi = yi for all i 2 S:

6 Concluding remarks

This paper follows up the research started by Arin and Katsev in 2011.
Considering the results included in the two papers the SD-prenucleolus stands
out as the only known core concept that satis�es monotonicity in the class
of convex games and in the class of veto balanced games. Convex games10

and games with veto players have been widely used to model many di¤erent
economic situations. In both classes the compatibility between core stability
and monotonicity was known. However the existence of a continuous core
concept satisfying monotonicity in those two classes was an open question
that has been answered with the study of the SD-prenucleolus.

10This research opens up several questions concerning the study of the SD-prenucleolus
for subclasses of convex games such as bankruptcy games and airport games.

24



References

[1] Arin J (2013) Monotonic core solutions: Beyond Young´s theorem. Int
J of Game Theory (forthcoming)

[2] Arin J and Feltkamp V (2005) Monotonicity properties of the nucleolus
on the domain of veto balanced games. TOP 13, 2:331-342

[3] Arin J and Katsev I (2011) Yhe SD-prenucleolus for TU games. Mimeo

[4] Kleppe J (2010) Modeling Interactive Behavior, and Solution Concepts.
Ph. D. thesis, Tilburg University

[5] Kolhberg E (1971) On the nucleolus of a characteristic function game.
SIAM J. Appl. Math. 20, 62-66

[6] Grotte J (1970) Computation of and observations on the nucleolus, the
normalised nucleolus and the central games. Ph. D. thesis, Cornell Uni-
versity, Ithaca

[7] Hokari T, (2000) The nucleolus is not aggregate-monotonic on the do-
main of convex games. Int J of Game Theory 29:133-137

[8] Maschler M, Peleg, B and Shapley LS (1972) The kernel and the bar-
gaining set for convex games. Int J of Game Theory 15: 73-93.

[9] Meggido N (1974) On the monotonicity of the bargaining set, the kernel
and the nucleolus of a game. SIAM J of Applied Mathematics 27:355-358

[10] Peleg B (1986) On the reduced game property and its converse. Int J of
Game Theory 15:187-200

[11] Peleg B and Sudholter P (2007) Introduction to the theory of cooperative
games. Berlin, Springer Verlag

[12] Schmeidler D (1969) The nucleolus of a characteristic function game.
SIAM J on Applied Mathematics 17:1163-1170

25



[13] Shapley LS (1971). �Cores and convex games�. Int. J. of Game Theory
1, 11-26

[14] Sobolev A (1975) The characterization of optimality principles in coop-
erative games by functional equations. In: N Vorobiev (ed.) Mathemat-
ical Methods in the Social Sciences, pp: 95-151. Vilnius. Academy of
Science of the Lithuanian SSR

[15] Young HP (1985) Monotonic solutions of cooperative games. Int J of
Game Theory 14:65-72

26


	6913
	SDRelevant

