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Selectivity, pulse fishing and
endogenous lifespan in Beverton-Holt models
Abstract

Optimal management in a multi-cohort Beverton-Holt model with any number of age classes

and imperfect selectivity is equivalent to finding the optimal fish lifespan by chosen fallow

cycles. Optimal policy differs in two main ways from the optimal lifespan rule with perfect

selectivity. First, weight gain is valued in terms of the whole population structure. Second,

the cost of waiting is the interest rate adjusted for the increase in the pulse length. This

point is especially relevant for assessing the role of selectivity. Imperfect selectivity reduces

the optimal lifespan and the optimal pulse length. We illustrate our theoretical findings

with a numerical example. Results obtained using global numerical methods select the

optimal pulse length predicted by the optimal lifespan rule.

JEL classification: O1, AMS 91B76, 92D25.

Keywords: optimisation in age-structured models, pulse fishing.
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1 Introduction

Clark et al. (1973) and Hanneson’s pioneering article (1975) show that optimal fish-

ing mortality trajectories that maximises net present profits in Beverton-Holt multi-

cohort models may lead to pulse fishing. That is, the optimal solution of the man-

agement problem is a periodic cycle of fishing followed by fallow periods to enable

stocks to recover.

Although after Hannesson and Clark et al. many other papers have found, by using

numerical methods, that pulse fishing is the optimal policy in some fisheries modelled

with Beverton-Holt models (Horwood, 1987; Bjørndal and Brasão, 2006; Bjørndal et

al. 2004a, 2004b; Stage, 2006; Da Rocha et al., 2012), the first analytical results were

only recently derived. Tahvonen (2009), proves that in a 2-age structured fisheries

model with endogenous recruitment and harvesting costs, optimal harvesting consists

of pulse fishing under specific conditions such as nonselective gear. Steinshamn (2011)

extends Beverton-Holt models by incorporating density dependence growth. Skonhoft

et al. (2012), derive the optimal harvesting when the fleet can choose different fishing

gear with different fishing selectivity by paying different costs. Moreover, Tahvonen

(2008) shows how fishery management based on age structured models diverges from

surplus production models.1

In this article we apply Tahvonen´s (2009) analysis to the Hanneson’s multi-cohort

Beverton-Holt model with any number of age classes. We show that in this context

managers faces a fishing delay problem whose solution is a policy that endogenously

characterises the optimal resource lifespan as a function of the growth rate, discount

factor and fishing technology. As a result optimal management in age structured

models with nonselective gear is found to be closely related to the pioneering Clark

and Hanneson of the optimal harvesting of a single year class fishery.

Suppose, as in Hanneson (1975), that one fish, with a lifespan of A, is “impounded

in a bay in order to be raised to an optimal size and age at which it will be fished. No

more fish enter the ’pound’ until those now present have been fished.” This assumption

is equivalent to considering a perfect selectivity gear that allows users to discriminate

perfectly which fish are harvested and which ones are not. With this technology in

each period, there are A cohorts of different ages and it is possible to harvest only

those individuals of the maximum age.

However this reasoning is not valid when there is nonselective gear. In this case,

harvesting the maximum number of fish of age A implies also harvesting fish younger

1For a very useful survey of bioeconomic age-structured optimisation models, see Tahvonen

(2010).
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than A. So, in this context of imperfect selectivity it is not clear that harvesting only

fish of maximum age is optimal.

In particular, we show that under imperfect selectivity optimal management is

equivalent to selecting the optimal pulse length. We also show that to calculate the

optimal fish lifespan it suffices to compare the value of harvesting under different

pulses. Our findings differ in two main ways from the optimal age rule under perfect

selectivity. First, with imperfect selectivity, weight gain is valued in terms of the

whole population structure while with perfect selectivity it is valued in terms of the

population of the previous age. Second, under imperfect selectivity the cost of waiting

is given by the interest rate adjusted for the increase in the pulse length. This point

is specially relevant for assessing the role of selectivity. We prove that if the value of

weight gain is decreasing with age, imperfect selectivity reduces the optimal lifespan

and the optimal pulse length.

We also show that there is a relationship between the non-concavity of the man-

ager’s objective function and the non-continuity of the optimal solution. In particular,

by focusing on the second order conditions we find sufficient conditions that guarantee

that pulse fishing is the optimal solution to the problem.

Finally, we illustrate our theoretical findings with a numerical example. We apply

our theoretical algorithm to the Northern Stock of Hake (NSH) (Merluccius merluc-

cius) and compare the result with that obtained using global numerical methods.

The same optimal pulse length is selected in both cases.

The rest of the paper is organised as follows. We start out by solving a very simple

2-age class model in Section 2. In Section 3 we extend the results to any number of

age classes to show that lifespan is endogenously determined. Section 4 presents a

numerical application of our findings to the European Northern Hake Stock. We end

with some concluding remarks.

2 The simplest fishery with two age classes

Consider the Hannesson’s 1975 fishery based in the Beverton-Holt model with two

age classes, juveniles and adults. Let N1
t , and N2

t be the populations of juveniles and

adults in period t, respectively. The population dynamic is very simple. Each year, t,

an exogenous number of juvenile fish are born; without loss of generality we consider

that N1
t = 1. Only some of these juveniles become adults in the next period; formally

N2
t = e−p1Ft−1−m,
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Table 1: Population dynamic in a 2 age-class model

Period t-1 Period t Period t+1

age 1 N1
t−1 = 1 N1

t = 1 N1
t+1 = 1

age 2 N2
t = e−(p1Ft−1+m) N2

t+1 = e−(p1Ft+m)

where m is the natural mortality and p1 is the selectivity parameter that indicates

how the fishing mortality rate F affects juveniles. Figure 1 illustrates the dynamic

evolution of this fishery population. The yield in value for year t, is given by Baranov’s

equation (1918)

Y a
t = yat (Ft)N

a
t ,

where,

yat (Ft) = praωa paFt

m+ paFt

[

1− e−(paFt+m)
]

,

is the yield in value per unit of fish and pra and ωa
are the price and weight of the

a-age class, respectively. Therefore, the net present value of the fishery’s yield is

∞
∑

t=0

βt
[

y1t (Ft) + y2t (Ft)N
2
t (Ft−1)

]

,

where 0 < β < 1 is the discount factor.2

First, consider that there is perfect selectivity and p1, p2 and Ft can be selected

by the regulator. If the value of adults, pr2ω2, is greater than the value of juveniles

pr1ω1
, the optimal policy consists of letting all juveniles become adults and catching

only adults3. Formally we set p2 = 1, p1 = 0 and Ft = Ft+1 = ∞. Therefore, each

year we harvest e−m adults, and the net present value is

V PS
=

1

1− β
pr2ω2e−m,

2This is the discrete version of a model where fishing mortality is continuous throughout the

season and weights are non density dependent. In such cases, the dynamics follow the McKendrick-

von Foerster partial differential equation (Von Forester, 1959; McKendrick, 1926). In general terms
∂n(a,t)

∂t
= −∂n(a,t)

∂a
− [m(a) + p(a)F (t)]n(a, t), where n(a, t) is the number of fish of age a at time t.

This equation shows that the rate of change of the number of fish in a given age interval, ∂n(a, t)/∂t,

is equal to the net rate of departure, ∂n(a, t)/∂a, less the rate of deaths. [m(a) + p(a)F (t)]n(a, t).

For more details about the continuous version of the model see Da Rocha and Gutiérrez (2012). For

the density dependence model, see Steinshamn (2011).
3Reed (1980) and Skonhoft et al. (2012) show that with endogenous recruitment and harvesting

costs it may not be optimal to harvest only one age group.
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where superscript
PS

stands for perfect selectivity.

Now consider that there is imperfect selectivity. That is p1, p2 are given by the

fishing technology. This means that is not technically possible to catch adults without

catching juveniles. Moreover, like Tahvonen (2009), assume that there is “growth

overfishing”, that is pr1 = 0. The optimal policy is the solution to the problem

max
{Ft}

∞

t=0

∞
∑

t=0

βty2t (Ft)N
2
t (Ft−1), (1)

s.t. 0 ≤ Ft.

The first order conditions of this maximization problem are given by

∂y2t (Ft)

∂Ft

N2
t (Ft−1) + βy2t+1(Ft+1)

∂N2
t+1(Ft)

∂Ft

+ µt = 0, (2)

µtFt = 0 (3)

where µt ≥ 0 is the Lagrange multiplier associated with the inequality restriction

Ft ≥ 0.

As in the perfect selectivity context, the optimal solution to (1) may be expected

to consist of harvesting the maximum number of fish of the highest value. However,

the imperfectness of the selectivity does not allow adults to be caught continuously

without catching juveniles. Nevertheless this aim can be achieved indirectly if fishing

is carried out in a cyclical manner. In this 2 age-class model, the natural periodic

solution consists of one fallow cycle. First, the fishery is allowed to lie fallow for

one year -by closing it- and then in the next year the whole population is harvested.

Formally we are describing pulse fishing characterised by Ft = Ft+2 = ... = 0 and

Ft+1 = Ft+3 = .... = ∞. The following proposition proves that this periodic pulse is a

solution that satisfies the first order conditions (2)-(3). The superscript IS stands for

imperfect selectivity.

Proposition 1. In a 2 age-class model, a periodic pulse two periods long such that

Ft = Ft+2 = ... = 0 and Ft+1 = Ft+3 = .... = ∞, is a local optimum for problem (1).

Moreover, its net present value is

V IS
pulse =

β

1− β2
pr2ω2e−m. (4)

Proof : See Appendix.
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Comparing V PS
and V IS

pulse, it is clear that the net present value of the IS solution

is lower than that of the PS solution. The intuition is straightforward: with perfect

selectivity it is possible to harvest adults continuously without catching juveniles.

However with imperfect selectivity, the impossibility of keeping the population struc-

ture that exits under the perfect selectivity makes it necessary to close of the fishery

for one year so as to maximise the stock in the next period. This closure implies a

lower value for the fishery. This result is in line with Skonhoft et al. (2012, result 4)

Is periodic fishing (one fallow cycle) the optimal harvesting rule? Tahvonen (2009)

shows in a similar context that there is also a stationary solution to maximise problem

(1). Let Fss be the stationary solution such that Ft = Ft+1 = Fss associated with

µt = 0. For this case, the optimal condition (2) can be expressed as the following

Lerner rule

εss = βp1Fss, (5)

where εass =
∂yass
∂Fss

Fss

yass
is the fishing effort elasticity of the yield in the stationary solution

and βp1 is the future marginal cost per unit of adult fish

−p1 =
∂N2

ss

∂Fss

1

N2
.

The economic interpretation of the Lerner rule (5) is high intuitive. In the optimal

stationary solution, an increase in the mortality rate leads to an increase in the

current yield per unit of fish (left hand side, in percentage terms) that is offset by

the decrease in adult population per unit of fish in the next period (right hand side).

The net present value associated with Fss is

V IS
ss =

1

1− β
y2sse

−(p1Fss+m), (6)

where y2ss = pr2ω2 p2Fss

p2Fss+m

[

1− e−(p2Fss+m)
]

.

Notice that the stationary solution implies a distortion of the population struc-

ture generated with perfect selectivity. As a result the value of the fishery with the

statioanary solution is lower than with perfect selectivity, V IS
ss < V PS.4

However, comparing (6) and (4) it is not clear whether or not the pulse solution is

better than the stationary solution, V IS
ss ≶ V IS

pulse. Nevertheless, it can be proved that

the more imperfect the selectivity technology is, the lower the fishing effort applied

in the stationary solution Fss is. This means that, given the adult selectivity, if the

juvenile selectivity parameter is high enough, pulse fishing dominates the smooth

4Notice that p2Fss

m+p2Fss

[

1− e−(p2Fss+m)
]

e−p1Fss < 1.
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stationary solution. Formally, a lower threshold is found for the juvenile selectivity

parameter. When it is exceeded the periodic pulse provides a higher net present value

than the interior stationary solution. The following proposition states this result.

Proposition 2. Normalise p2 to one. Then the pulse solution (stationary solution)

is the optimal solution to the maximization problem (1) if p1 is higher (lower) than p1,

with p1 being the value of the juvenile selectivity parameter that satisfies the following

equality

y2sse
−p1Fss(p1) =

β

1 + β
pr2ω2.

Proof: See Appendix.

Figure 1 shows the optimal solutions for a benchmark 2-age fishery. For each juve-

nile selectivity parameter, p1, and stationary fishing mortality, the net present value of

the fishery,V IS
ss , is calculated. The blue-red bell surface represents this function. The

figure also represents the value of the fishery for the pulse solution, V IS
pulse, through

the yellow horizontal hyperplane. Comparing the bell function with the horizontal

hyperplane it can be seen that for values of p1 - 0.26 the stationary solution dom-

inates the pulse solution. However for values of p1 & 0.26 the hyperplane is higher

than the bell function, so the pulse solution is better than the stationary solution.

Figure 2 shows the net present value of the fishery for any combination of (Ft, Ft+1)

for two values of the juvenile selectivity parameter, low p1 (left plot) and high p1

(right plot). A point on the horizontal diagonal represents the value of the fishery

for a stationary path {Fss} . It is clear that the stationary solution and the pulse

solution are always local optimums. However while the stationary solution is the

global maximum when p1 is low, the pulse fishing is the global maximum when p1

is high. Moreover when the pulse fishing is the global maximum, the function is not

concave and the stationary solution is a saddle path rather than a local maximum.

The role of the discount factor

Pulse fishing literature claims that higher discounting rates (factors) decrease

(increase) the advantage of pulse fishing (Hannesson, 1975). This claim is based on

the impact of the discount factor on the pulse solution. Because the value of the

fishery is the present value of a constant yield, pr2ω2e−m, increasing the discount

factor raises the net present value of pulse fishing.

However, increasing the discount factor also increases the net present value of the

stationary solution. First, it is well known that as β → 1, Fss → Fmax (Da Rocha

and Gutiérrez, 2011). That is, the stationary solution without discounting is equal to
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Figure 1: Simulation of the net present value of the fishery under the stationary and

pulse solutions. Benchmark 2-ages fishery (p2 = 1,m = 0.2, pr2 = 0, and pr2ω2 = 1).

The blue-red shape bell represents the net present value of the fishery for each pair

of juvenile selectivity parameters and stationary fishing rate. The yellow horizontal

hyperplane illustrates the value of the fishery for the pulse solution.

the Fmax. Second, it is easy to prove that ∂Fss/∂β < 0. Therefore, as β increases, Fss

decreases and the stationary yield rises. At first glance it is not clear whether or not

this increase in the value of the stationary fishery is lower than the increase in value of

the pulse fishery. However the following proposition shows that if the discount factor

is high enough then any increase in it raises the advantages of the periodic solution.

Proposition 3. In a 2-age class model, if for a discount factor β such that 1 <

β
(

2− β2
)

periodic fishing and stationary fishing yield the same present value of the

fishery, a slight increase (decrease) in the discount factor leads the present value of

periodic fishing to higher (lower) values than the present value of stationary fishing.

Proof: See Appendix.
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Figure 2: Net present value of the fishery for any combination of (Ft, Ft+1) for two

values of the juvenile selectivity parameter, p1: left hand side, low p1;right hand side,

high p1. Benchmark 2-age fishery (p2 = 1,m = 0.2, pr2 = 0, and pr2ω2 = 1)

3 Endogenous Lifespan

In the previous section it was not possible to choose the fish lifespan. In both the

pulse and stationary solutions the fish lifespan is two years. We now extend the 2-ages

model of the previous section to a more realistic framework with n-ages, to show that

the fish lifespan is an endogenous variable.

Note, first, that if there were perfect selectivity optimal management would consist

of finding the most profitable age at which to catch fish, let them grow until they

reach taht optimal age and harvest them all at that age. Formally, assume that

fish are allowed to grow to age L. Then the value of the biomass if it is harvested is

prLwLe−(L−1)m. It is worth waiting one period before harvesting if βprL+1wL+1e−Lm >

prLwLe−(L−1)m
.

Define the value of weight gain for waiting from period L to period L + 1 as

∆
L+1
L = prL+1wL+1e−Lm − prLwLe−(L−1)m. The condition under which it is worth

waiting one more period in terms of returns can then be describe as follows:

Perfect selectivity:
∆

L+1
L

prLwLe−(L−1)m
≥

1− β

β
, (7)

where (1− β)/β represents the return. In this perfect selectivity context, the fish are
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harvested in a period LPS
such that

∆
LPS

LPS−1

prLPS−1wLPS−1e−(LPS−2)m
≥

1− β

β
≥

∆
LPS+1
LPS

prLPSwLPSe−(LPS−1)m
.

After some manipulation this condition can be rewritten as

prL
PS

wLPS

prLPS−1wLPS−1
≥

em

β
≥

prL
PS+1wLPS+1

prLPSwLPS
.

Notice that selecting LPS is equivalent to choosing the lifespan of fish endoge-

nously. In fact to guarantee that LPS
exists some conditions have to be imposed.

The left panel in Figure 3 shows a case for A = 6 in which LPS exists and is unique.

The step function represents the increase percentage of the value of weight from wait-

ing one period before harvesting. If this function is decreasing in L, the intersection

with em/β represents the optimal size of the pulse (LPS = 5 in the case of Figure

3). It seems clear that the following are sufficient conditions to guarantee the ex-

istence of LPS : i) the function prL+1wL+1/prLwL is a decreasing function on L; ii)

pr2w2/pr1w1 ≥ em/β; and iii) em/β ≥ prnwn/prn−1wn−1. Conditions ii) and iii)

are satisfied in most cases since pr1w1 represents the weight value of the eggs and

prnwn/prn−1wn−1 = 1 < em/β because for most species the weight value remains

constant in old age.

-

6

LPS

5

1−β

β

∆5
4

pr5w5e−3m

∆6
5

pr5w6e−4m

∆2
1

pr1w1

∆3
2

pr1w1+pr2w2e−m

-

6

2
LIS

1−β

β(1−βn)

Figure 3: An example with A = 6 for determining pulses under perfect selectivity (left

panel) and under imperfect selectivity (right panel). In this case there is a unique

pulse in both scenarios. LPS = 5 because
∆5

4

pr4w4e−3m ≥ 1−β

β
≥

∆6
5

pr5w5e−4m and LIS = 2

because
∆2

1

pr1w1 ≥ 1−β

β
1

1−β2 ≥
∆3

2

pr1w1+pr2w2e−m
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However, in a context of imperfect selectivity, harvesting fish of age L implies

waiting L− 1 periods and as a collateral result fish of age L− 1, L− 2, ..... are also

harvested. Therefore to calculate the optimal fish lifespan the value of harvesting

under different pulses must be compared.

Assume that fish are harvested with a pulse of length L. This means that Ft =

Ft+1 = .... = Ft+L−1 = 0 and Ft+L = ∞. So the value of the harvest is given by

V IS
L =

βL−1

1− βL

L
∑

a=1

prawae−(a−1)m. (8)

It will be worth harvesting every L + 1 periods if V IS
L+1 > V IS

L . In this imperfect

selectivity context the condition under which it is worth waiting from period L to

period L+ 1 can be expressed in terms of the returns as

Imperfect selectivity:
∆

L+1
L

∑L

a=1 pr
awae−(a−1)m

≥
1− β

β

1

1− βL
. (9)

Therefore, fish are harvested in a period LIS such that

∆LIS

LIS−1
∑LIS−1

a=1 prawae−(a−1)m
≥

1− β

β

1

1− βLIS
≥

∆
LIS+1
LIS

∑LIS

a=1 pr
awae−(a−1)m

.

The right panel in Figure 3 shows a case for N = 6 in which LIS exists and is unique.

The step continuous line represents the function ∆L
L−1/

∑L−1
a=1 pr

awae−(a−1)m. The step

discontinuous line represents the function
1−β

β
1

1−βL which is decreasing on L and is

bounded,
1−β

β
1

1−βL ∈ [1/β, (1−β)/β]. The intersection between the two functions rep-

resents the optimal size of the pulse (LPS
= 2 in the case of Figure 3). Given the prop-

erties of the function, it seems clear that the following are sufficient conditions to guar-

antee the existence of LIS: i) the function ∆L
L−1/

∑L−1
a=1 pr

awae−(a−1)m is an decreasing

function on L; ii) ∆2
1/pr

1w1 ≥ β−1; and iii) 1−β

β
≤ ∆n

n−1/
∑n−1

a=1 pr
awae−(a−1)m.

Formally LIS
can be selected as the result of

V IS
L = max

L

βL−1

1− βL

[

L
∑

a=1

prawae−(a−1)m

]

.

A comparison of condition (9) with condition (7) obtained under perfect selectivity

shows two main differences. First, with imperfect selectivity, the value of weight

gain, ∆
L+1
L , is valued in terms of the whole population structure while with perfect

selectivity it is valued in terms of the population of the previous age. In terms of

Figure 3, this means that function ∆L
L−1/

∑L−1
a=1 pr

awae−(a−1)m is always lower than

10



function prL+1wL+1/prLwL
and coincide for L = 1. Second, the cost of waiting is the

interest rate adjusted for the increase in the pulse length. This point is especially

relevant for assessing the role of selectivity. In terms of Figure 3, this means that

function
1−β

β
1

1−βL is always greater than 1 − β/β and tends to be equal for L →

∞. Therefore, imperfect selectivity gives a shorther optimal lifespan than perfect

selectivity.5 The following proposition formalizes this finding.

Proposition 4. If i) ∆
L+1
L /prLwL and ∆

L+1
L /

∑L

a=1 pr
awae−(a−1)m are decreasing

functions on L; ii) ∆2
1/pr

1w1 ≥ β−1; and iii) prnwn < (1−β)/β then the optimal fish

lifespan and the pulse length under imperfect selectivity are lower than under perfect

selectivity.

Proof: See Appendix.

Finally, notice that with both perfect and imperfect selectivity, an increase in the

discount factor results in an increase in the optimal lifespan of the resource because

is more profitable to wait longer before harvesting.

Proposition 5. If prL+1wL+1/prLwL and ∆
L+1
L /

∑L

a=1 pr
awae−(a−1)m are decreasing

functions on L then any increase in the discount factor β either increases or leaves

unchanged the optimal fish lifespan and the pulse length under perfect and imperfect

selectivity, respectively.

Proof: See Appendix.

It is worth mentioning that harvesting under a pulse of length L is a local optimum

of the fishery management problem that maximizes the net present value of the fishery.

In a framework with n-ages the optimal management problem can be expressed as

max
{Ft}

∞

t=0

∞
∑

t=0

βt

n
∑

a=1

yat (Ft)φ
a
t , (10)

s.t. 0 ≤ Ft,

where

φa
t = φ(Ft−1, Ft−2, ...Ft−(a−1)) =

{

1 for a = 1,

Π
a−1
i=1 e

−pa−iFt−i−m for a = 2, .....n,

5We thank the anonymous referee for opening our eyes to this relevant point, which has helped

us to realize the role played by the monotonicity of ∆L+1
L /

∑L

a=1 pr
awae−(a−1)m in the analysis.
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is obtained by backward substitution of the population, Na
t = φa

tN
1
t−(a−1) = φa

t , and

can be understood as the survival function that shows the probability of a recruit

born in period t − (a − 1) reaching age a > 1 for a given fishing mortality path.

The following proposition proves that under sufficient conditions any periodic pulse

of length L is a solution that satisfies the first order condition of the maximisation

problem (10).

Proposition 6. In an n age-class model, a periodic pulse with a length of L ≤ n

such that Ft+kL = ∞ ∀k ∈ Z and Fj = 0 for any other period is a local optimum for

problem (10) if the following qualifying condition holds

prjωj

priωi
>

(1− e−m)

m

(

em

β

)j−i

, (11)

for all j > i ∈ {1, 2, ..n}.

Proof : See Appendix.

It is worth mentioning that the qualifying conditions (11) are sufficient conditions

to guarantee that the pulse satisfies the first order condition of the maximisation

problem (10). Nevertheless, there may be cases in which the pulse does not satisfy

the qualifying conditions but does satisfy the optimal conditions.

There is also a stationary solution, Ft = Ft+1 = Fss, that satisfies the first order

condition of maximisation problem (10). As in the case of the 2-age model, the

stationary solution can be expressed in terms of a Lerner rule. Specifically,

n
∑

a=1

εasss
a
= Fss

∑n

a=1 y
a
ssφ

a
ss

(

∑a−1
j=1 β

a−jpi
)

∑n

a=1 y
a
ssφ

a
ss

, (12)

where sa = yassφ
a
ss/
∑n

a=1 y
a
ssφ

a
ss is the share of yield in value of age a in the total value

for all age classes and εass =
∂yass
∂Fss

Fss

yass
is the fishing effort elasticity of the yield of age

a. The following proposition characterizes an interior stationary candidate for global

optimum, Fss.

Proposition 7. In an n age-class model, the stationary solution Fss satisfies the

Lerner rule (12). Moreover, Fss decreases as the selectivity parameter pa and/or the

discount factor β increases whenever yassφ
a
ss is an increasing function on Fss ∀a =

1, ...n. Furthermore, the net present value associated with Fss is

V IS
ss =

1

1− β

n
∑

a=1

yassφ
a
ss,

where
∑n

a=1 y
a
ssφ

a
ss =

∑n

a=1 pr
aωa paFss

paFss+m
(1− e−paFss−m)Π

a−1
i=1 e

−(piFss+m).
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Proof: See Appendix.

It is well known that there is a relationship between the non-concavity of the

objective function and the non-continuity of the optimal solution (Scarf, 1959, Stokey,

Lucas and Prescott, 1989). For biomass fishery models this link was established by

Dawid and Kopel (1997, 1999), who show that the optimal pulse length is related to

the non-concavity of the return function.
6

We prove that this link also exists for age-structured fishery models. In order to

find this link, we analyse the (non-)concavity properties of the objective function of

problem (10). In particular, by focusing on the second order conditions, we are able

to find sufficient conditions that guarantee that the stationary solution is not the

optimal solution to problem (10). The following proposition summarises this result.

Proposition 8. A stationary solution is not the optimal solution to maximisation

problem (10) whenever the following inequality holds

H =

n
∑

a=1

[

∂2yass
∂F 2

ss

+ yass

(

a−1
∑

j=1

βa−j
(

−pj
)2

)]

φa
ss ≥ 0. (13)

Proof: See Appendix.

H corresponds to the order one minor in the Hessian matriz associated with the

second order conditions of the maximisation problem (10). Notice that ∂2yass/∂F
2
ss < 0

because the yield per unit of fish is a concave function. Moreover as β → 1, inequality

(13) is more likely that be positive. Notice that when β → 1, Fss = Fmax (Da Rocha

and Gutiérrez, 2011).

As in the 2-age model, we seek to determine the conditions under which an increase

in the discount factor can promote pulse fishing compared to the stationary smooth

solution. In particular, we find that a sufficient condition to guarantee that an increase

in the discount factor promotes pulse fishing is for the stationary yield, yassφ
a
ss, to be

an increasing function with respect to Fss. We state this result in the following

proposition.

Proposition 9. In an n age-class model, if for a discount factor β periodic fishing

and stationary fishing yield the same present value of the fishery, a slight increase

6Maroto and Moran (2008) also show that concavity plays a relevant role in the appearance of

resource extinction which can be considered a non continuous solution.
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(decrease) in the discount factor leads the present value of periodic fishing to higher

(lower) values than the present value of stationary fishing whenever yassφ
a
ss is an in-

creasing function on Fss ∀a = 1, ...n.

Proof: See Appendix.

Finally, it can be concluded that to find the optimal fishing path with imperfect

selectivity it suffices to compare the value of a fishery for a small number of possibil-

ities. In particular, the value of the fishery for the pulses V IS
L for L = 2, 3...n and for

the stationary solution V IS
ss need to be calculated. The optimal solution will be the

one that results in the maximum value of the fishery. In the next section we illustrate

this numerically.

4 A numerical illustration

In this section we apply the results obtained in the previous section to the Northern

Stock of Hake (NSH) (Merluccius merluccius) in order to select the optimal fishing

path, i.e. we calculate the value of the fishery for the pulses V IS
L for L = 2, 3...n and

the stationary solution V IS
ss .We also compare this result with the result obtained using

global numerical methods to solve the management problem (10). Similar results are

obtained.

The NSH includes all fisheries in International Council for Exploitation for of the

Sea (ICES) subareas VII and VIII and also some fisheries in Subareas IV and VI.

Landings in 2008 were 47,800 tones, below the regulated TAC of 54,000 tones. Spain

accounts for 53% of the total captures. France for 30%, the UK for 7%, Denmark

for 3%, Ireland for 3% and other countries (Norway, Belgium, Netherlands, Germany,

and Sweden) for smaller amounts (ICES 2009).

A recovery plan was drawn up in 2004 (EC 811/2004) for this stock. Its aim was to

achieve a spawning stock biomass (SSB) of 140,000 tones by limiting fishing mortality

to 0.25 and by allowing a maximum change in harvest between consecutive years of

15%. According to the ICES, the northern hake SSB for 2009 is estimated to be above

the recovery plan target. Article 3 of the recovery plan prescribes that a management

plan should be implemented when the target is reached in two consecutive years and

the ICES considers SSB to have been approximately 140,000 tones in the last two

years. Such a plan is now under development by the European Commission (ICES

2010).
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Table 2: Biological Parameters for the Northern Stock of Hake.

Age Abundance Mortality Maturity Weight Selectivity Price

(N)(1) (m) µ (ω)(2) (p) (pr)(3)

Northern Hake

1 186,213 0.20 0.00 0.06 0.00 2.34

2 152,458 0.20 0.00 0.13 0.01 2.90

3 123,457 0.20 0.00 0.22 0.10 3.39

4 100,213 0.20 0.23 0.34 0.22 3.82

5 67,409 0.20 0.60 0.66 0.20 4.51

6 35,551 0.20 0.90 0.99 0.30 5.18

7 19,674 0.20 1.00 1.44 0.40 5.76

8 10,206 0.20 1.00 1.83 0.47 6.17

9 9,1503 0.20 1.00 2.68 0.47 6.86

10 4,080 0.20 1.00 2.68 0.47 6.86

11 1,821 0.20 1.00 2.68 0.47 6.86

Source: Meeting on Northern Hake Long-Term Management Plans

(STECF/SGBRE-07-03). (1) Thousand;(2) kg; (3) euro per kg

To calibrate the age structured model for this fishery two data sources have been

used. Information regarding the biological parameters of the fishery comes from the

Expert Working Group (STECF, 2008a). Most of the parameters emanate from the

summary of XSA results from the 2006 update (ICES, 2007). Secondly, as the Spanish

fleet accounts for most northern hake landings (59% of the total in 2006; ICES, 2007),

we use 2007 daily sale prices for the Spanish fleet.

Table 2 shows, for each age, the number of fish at the initial conditions, the

parameters of the population dynamics (selection pattern, weight and maturity) and

the prices.

Using this data calibration and assuming β = 0.95 (equivalent to a 5% interest

rate), we calculate the value of the fishery, V IS
L , for L = 2, 3, ...., 11 defined in (8) for

the NHS. Table 3 shows the results. Observe that the fishery reaches the maximum

value when a pulse of 9 periods is applied, that is the fishery is allowed to lie fallow

for eight years -by closing it- and the whole population is harvested in the ninth year.

This numerical solution has been validated by obtaining the optimal harvest-
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Table 3: Fishery value under pulse fishing with imperfect selectivity for the Northern

Stock of Hake.

L (periods) 2 3 4 5 6 7 8 9 10 11

V IS
L (∈ million) 2.39 2.57 2.65 3.61 4.48 4.98 4.72 5.45 3.90 2.82

Source: Own calculations

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

year

P
e

ri
o

d
d

ic
 

0 10 20 30 40 50 60 70 80
0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

S
ta

ti
o

n
a

ry
 

36 38 40 42 44 46 48 50 52 54 56
0

1

2

3

4

5

year

P
e

ri
o

d
ic

36 38 40 42 44 46 48 50 52 54 56
0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

S
ta

ti
o

n
a

ry

Figure 4: Optimal pulse fishing policy for the NSH obtained by solving (10) with

global numerical methods

ing policy for this NSH stock that solves the management problem (10). Since the

Beverton-Holt multi-cohort models used to assess the stock are not globally con-

cave, the stationary solution described may be a local rather than a global optimum

(Tahvonen, 2009). Because of this, standard global maximisation algorithms are used

to determine the trajectory that drives the NSH fishery for the initial conditions to

the global optimal solution of (10). Our main finding is that the global optimal so-

lution consists in a pulse fishing every 9 years by applying a fishing rate F = 5 in

the harvesting years and 8 consecutive fallow years.7 Figure 4 shows the evolution

and magnitude of cited pulses. Moreover we have checked also that the stationary

solution is not a global maximum by checking that condition (13) from Proposition

8 is satisfied; we find that H = 16.7344 > 0.

Finally, Table 4 shows the quantitative results associated with the stationary and

pulse solutions using the global methods. Note that average price per kilo is higher

7We have checked that increasing this value does not change the results.
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Table 4: Pulse fishing and stationary solution for the NSH using global numerical

methods

Stationary Pulse

Yield

weight (’000 t.) 53.6 567.2 (every 9 years)

value (’000 ∈) 299.1 3,325.1 (every 9 years)

Average price per kilo (∈) 5.5802 5.8623

Profits

net present value (∈ millions) 5,799.1 6,734.2

in the pulse fishing solution than in the stationary solution. That is due to the

fact that age distribution is biased towards higher ages in the pulse solution. It can

be concluded that numerical global methods support the optimal pulse selected by

comparing the valuation of the different pulses V IS
L .

5 Conclusions

We apply the analysis of Tahvonen (2009) to Hanneson’s multi-cohort Beverton-Holt

model with any number of age classes. We show that under imperfect selectivity,

when optimal age cannot be chosen, optimal management is equivalent to choosing

the pulse length that induces the optimal average fish lifespan. Therefore, with imper-

fect selectivity optimal lifespan is valued in terms of the whole population structure.

Moreover, imperfect selectivity, reduces the optimal lifespan and the optimal pulse

length. Finally, as in biomass models we show that pulse fishing is related to the non

concavity of the return function.

In seeking simplification, unlike Tahvonen (2009) and Skonhoft et al. (2012),

our analysis considers neither endogenous recruitment nor harvesting costs. Likewise

our analysis avoids the presence of density dependence growth. Steinshamn (2011)

shows that pulse fishing seems to become less and less economically profitable as

one moves from uniformly distributed fish to schooling species. Moreover, the idea

of considering the size of the fish instead of the age as the criterion for harvesting

has not been developed in the relevant literature. All these considerations can be

analyzed in future research.

On the other hand, most of the literature on fisheries assessment is focused on

stationary policies. See Gröger et al. (2007), Grafton et al. (2007, 2010), Dichmont

et al. (2010), Kompas et al. (2010), Da Rocha et al. (2010), Diekert et al.(2010) for
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recent examples. This prevalence of stationary policies is due to practical reasons.

As Hannesson (2011) points out “The pulse fishing approach is not very practical.

What it means is that a stock of fish is fished down heavily for a short period of time

and then left to replenish itself for a longer period. But what does the industry do

in the meantime?....The way I envisaged for making pulse fishing practical was that

the fishing fleets could rotate between stocks of the same or similar species, a little bit

like when timber is harvested from different lots at different times”. Including this

possibility of rotation in the analysis is one of the most important challenge for the

researchers.
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A Appendix

A.1 Proof of Proposition 1

Valuing the optimal condition (2) in t and t+ 1 and taking into account that Ft = Ft+2 =

... = 0 and Ft+1 = Ft+3 = .... = ∞, the following is obtained

µt = − lim
Ft−1=Ft+1→∞

Ft=0

[

∂y2t (Ft)

∂Ft

N2
t (Ft−1) + βy2t+1(Ft+1)

∂N2
t+1(Ft)

∂Ft

]

= − lim
Ft−1=Ft+1→∞

Ft=0

{

pr2ω2e−p1Ft−1−m

[

p2m

(p2Ft +m)2

(

1− e−p2Ft−m
)

+
p2

2
Ft

p2Ft +m
e−p2Ft−m

]

+ βpr2ω2 p2Ft+1

p2Ft+1 +m
(1− e−p2Ft+1−m)

(

−p1
)

e−p1Ft−m

}

= p1βpr2ω2e−m > 0,

µt+1 = − lim
Ft+1→∞

Ft=Ft+2=0

[

∂y2t+1(Ft+1)

∂Ft+1
N2

t+1(Ft) + βy2t+2(Ft+2)
∂N2

t+2(Ft+1)

∂Ft+1

]

=

− lim
Ft+1→∞

Ft=Ft+2=0

{

pr2ω2e−p1Ft−m

[

p2m

(p2Ft+1 +m)2

(

1− e−p2Ft+1−m
)

+
p2

2
Ft+1

p2Ft+1 +m
e−p2Ft+1−m

]

+ βpr2ω2 p2Ft+2

p2Ft+2 +m
(1− e−p2Ft+2−m)

(

−p1
)

e−p1Ft+1−m

}

= 0.

Therefore a stationary pulse with Ft = Ft+2 = ... = 0 and Ft+1 = Ft+3 = .... = ∞ satisfies

the optimal conditions (2)-(3). Taking into account that in periods 0, 2, 4, ... the yield is

zero and in periods 1, 3, 5, ... the fishing mortality tends to infinity, then the net present

value of yield in value for the cycle is given by

V IS
pulse =

∞
∑

t=0

βty2t (Ft)N
2(Ft) =

=

∞
∑

t=0

β2t+1pr2ω2 lim
F2t+1→∞

p2F2t+1

p2F2t+1 +m
(1− e−p2F2t+1−m)e−m1

= pr2ω2e−m1 [

β + β3 + β5 + ....
]

= pr2ω2e−m1 β

1− β2
. �

A.2 Proof of Proposition 2

Let p1 be the value that satisfies the following equality

y2sse
−p1Fss(p1) =

β

1 + β
pr2ω2.
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First we prove that Fss decreases as the selectivity parameter p1 increases. Notice that if

Fss is an interior stationary solution then µt = 0 and the optimal condition (2) valued in

Fss can be expressed as
∂y2ss
∂Fss

− βy2ssp
1 = 0.

Total differentiation of this optimal condition implies

∂Fss

∂p1
=

βy2ss
∂2y2ss
∂Fss

− βp1 ∂y2ss
∂Fss

< 0.

So if p1 > p1, then y2sse
−p1Fss(p1) < y2sse

−p1Fss(p1). This implies that y2sse
−p1Fss(p1) <

β
1+β

pr2ω2. Therefore V IS
ss = 1

1−β
y2ss(p

1)e−p1Fss(p1)−m < β
1−β2 pr

2ω2e−m = V IS
pulse. �

A.3 Proof of Proposition 3

Taking the partial derivative in V IS
pulse defined in Proposition 1

∂V IS
pulse

∂β
=

1 + β2

(1− β2)2
pr2ω2e−m > 0. (14)

Doing the same over V IS
ss defined in (6)

∂V IS
ss

∂β
=

1

(1− β)2
y2sse

−(p1Fss+m)

+
1

1− β

∂y2ss
∂Fss

∂Fss

∂β
e−(p1Fss+m) − p1

∂Fss

∂β

1

1− β
y2sse

−(p1Fss+m)

=
1

(1− β)2
y2sse

−(p1Fss+m) +
1

1− β

∂Fss

∂β
e−(p1Fss+m)

[

∂y2ss
∂F

− p1y2ss

]

.

Given that Fss satisfies the Lerner rule (5), this expression can be written as

∂V IS
ss

∂β
=

1

(1− β)2
y2sse

−(p1Fss+m) −
∂F

∂β
e−(p

1Fss+m)p1y2ss =

= y2sse
−(p1Fss+m)

[

1

(1− β)2
−

∂F

∂β
p1
]

= y2sse
−(p1Fss+m)





1

(1− β)2
−

(

p1
)2

y2ss
∂2y2ss
∂F 2

ss
− βp1 y2ss

∂Fsst





= y2sse
−(p1Fss+m)





1

(1− β)2
+

1

β2 − ∂2y2ss
∂F 2

ss

1
(p1)2y2ss



 .

Given that y2 is convex,

∂V IS
ss

∂β
< y2sse

−(p1Fss+m)

[

1

(1− β)2
+

1

β2

]

. (15)
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Now assume that for a given β, the two solutions are equivalent, V IS
pulse = V IS

ss . This implies

that

y2sse
−(p1Fss+m) =

β

1 + β
pr2ω2e−m.

Taking this into account this and (14), (15) can be expressed as

∂V IS
ss

∂β
< y2sse

−(p1Fss+m)

[

1

(1− β)2
+

1

β2

]

=

[

1

(1− β)2
+

1

β2

]

β

1 + β
pr2ω2e−m

=

[

1

(1− β)2
+

1

β2

]

β

1 + β

(

1− β2
)2

1 + β2

∂V IS
pulse

∂β

=
[1− 2β (1− β)] (1 + β)

β (1 + β2)

∂V IS
pulse

∂β
.

Note that [1− 2β (1− β)] (1 + β) < β
(

1 + β2
)

implies 1−2β+β3 < 0. Therefore, whenever

1 < β
(

2− β2
)

is satisfied ∂V IS
ss

∂β
<

∂V IS
pulse

∂β
. �

A.4 Proof of Proposition 4

Under i), ii) and iii) LPS exists and is unique. Since ∆
L+1
L /

∑L

a=1 pr
awae−(a−1)m <

∆
L+1
L /prLwL for all L and

1−β

β
1

1−βL > 1−β

β
then ∆

L+1
L /

∑L

a=1 pr
awae−(a−1)m =

1−β

β
1

1−βL

always happens for a lower LIS than LPS .

A.5 Proof of Proposition 5

The optimal lifespan of the resource is given by an age LPS and LIS such that (7) and (9)

hold, under perfect and imperfect selectivity, respectively. Since prL+1wL+1/prLwL and

∆L+1
L /

∑L
a=1 pr

awae−(a−1)m are increasing functions on L, to prove how the pulse length

varies when the discount factor changes it suffices to analyse what happens to the right

hand side of (7) and (9) (see right panel of Figure 3).

Since
∂

∂β

[

em

β

]

= −
em

β2
< 0,

and

∂

∂β

[(

1

β
− 1

)

1

1− βLIS

]

=
1

β

(

1

1− βLIS

)

[

LISβLIS−1(1− β)

1− βLIS
−

1

β

]

< 0

for LIS > 1 and 0 < β < 1 then any increase in the discount factor β either reduces or

leaves unchanged the optimal fish lifespan and the pulse length under perfect and imperfect

selectivity.�
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A.6 Proof of Proposition 6

The Lagrangian associated with the maximisation problem (10) is given by

L =

∞
∑

t=0

βt

{

n
∑

a=1

yat (Ft)N
a
t + µtFt

}

.

The first order conditions of this maximisation problem can be written as

∂L

∂Ft
= 0,=⇒

n
∑

a=1

∂yat (Ft)

∂Ft
φa
t −

n−1
∑

a=1

pa







n−a
∑

j=1

βjya+j
t+j (Ft+j)φ

a+j
t+j







+ µt = 0, (16)

µtFt = 0, (17)

where we have taken into account that

∂φa
t+j

∂Ft
=

{

0 for j = 0,

−paφa
t+j(Ft+j−1, Ft+j−2, ...Ft+j−(a−1)) for j = 1, ..., n − 1.

In order to prove that a pulse of length L ≤ n satisfies the optimal conditions (16)-(17),

we build a constructive proof. First, we prove that a pulse of length L = n is optimal under

the qualifying conditions (11). Then we prove that a pulse of length L = n− 1, L = n− 2

and so on are also optimal. Without loss of generality, consider the case of n = 4 and L = n.

Condition (16) can be expressed as

µt = −
∂y1t (Ft)

∂Ft

−
∂y2t (Ft)

∂Ft

φ2
t (Ft−1)−

∂y3t (Ft)

∂Ft

φ3
t (Ft−1, Ft−2)−

∂y4t (Ft)

∂Ft

φ4
t (Ft−1, Ft−2, Ft−3)

+p1
[

βy2t+1(Ft+1)φ
2
t+1(Ft) + β2y3t+2(Ft+2)φ

3
t+2(Ft+1, Ft)

+β3y4t+3(Ft+3)φ
4
t+3(Ft+2, Ft+1, Ft)

]

+p2
[

βy3t+1(Ft+1)φ
3
t+1(Ft, Ft−1) + β2y4t+2(Ft+2)φ

4
t+2(Ft+1, Ft, Ft−1)

]

+p3
[

βy4t+1(Ft+1)φ
4
t+1(Ft, Ft−1, Ft−2)

]

.

Assume a pulse length L = n = 4 such that
−→
F (4) = (Ft+kL, Ft+kL+1, Ft+kL+2, Ft+kL+3)

= (0, 0, 0,∞) ∀k ∈ Z. Notice that for this case yat+j(Ft+j) = 0 whenever j = 0, 1, 2 and

φa
t = 0 ∀a > 1. Therefore valuing the optimal qualifying (16) in

−→
F (4) the following is

obtained

µt|L=n = lim
F→

−→
F (4)

{

−
∂y1t (Ft)

∂Ft

+ β3
[

p1y4t+3(Ft+3)φ
4
t+3(Ft+2, Ft+1, Ft)

]

}

=

= −
∂y1t (0)

∂Ft

+ β3p1y4t+3(∞)φ4
t+3(0, 0, 0) =

= −p1pr1ω1 (1− e−m)

m
+ p1pr4ω4β3e−3m

=

= p1
[

pr4ω4β3e−3m − pr1ω1 (1− e−m)

m

]

. (18)
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Notice that (18) is positive under the qualifying condition (11) for the case of j − i = 3.

Valuing the optimal condition (16) in t+ 1

µt+1 = −
∂y1t+1(Ft+1)

∂Ft+1
−

∂y2t+1(Ft+1)

∂Ft+1
φ2
t+1(Ft)

−
∂y3t+1(Ft+1)

∂Ft+1
φ3
t+1(Ft, Ft−1)−

∂y4t+1(Ft+1)

∂Ft+1
φ4
t+1(Ft, Ft−1, Ft−2)

+p1
[

βy2t+2(Ft+2)φ
2
t+2(Ft+1) + β2y3t+3(Ft+3)φ

3
t+3(Ft+2, Ft+1)

+β3y4t+4(Ft+4)φ
4
t+4(Ft+3, Ft+2, Ft+1)

]

+p2
[

βy3t+2(Ft+2)φ
3
t+2(Ft+1, Ft) + β2y4t+3(Ft+3)φ

4
t+3(Ft+2, Ft+1, Ft)

]

+p3
[

βy4t+2(Ft+2)φ
4
t+2(Ft+1, Ft, Ft−1)

]

And for the case of
−→
F (4) = (Ft+kL, Ft+kL+1, Ft+kL+2, Ft+kL+3) = (0, 0, 0,∞) ∀k ∈ Z

µt+1|L=n = lim
F→

−→
F (4)

{

−
∂y1t+1(Ft+1)

∂Ft+1
−

∂y2t+1(Ft+1)

∂Ft+1
φ2
t+1(Ft)+

β2
[

p1y3t+3(Ft+3)φ
3
t+3(Ft+2, Ft+1) + p2y4t+3(Ft+3)φ

4
t+3(Ft+2, Ft+1, Ft)

]

}

= −
∂y1t+1(0)

∂Ft+1

−
∂y2t+1(0)

∂Ft+1

φ2
t+1(0) + β2

[

p1y3t+3(∞)φ3
t+3(0, 0) + p2y4t+3(∞)φ4

t+3(0, 0, 0)
]

= −p1pr1ω1 (1− e−m)

m
− p2pr2ω2 (1− e−m)

m
e−m

+ β2
[

p1pr3ω3e−2m
+ p2pr4ω4e−3m

]

= p1
[

pr3ω3β2e−2m − pr1ω1 (1− e−m)

m

]

+ p2e−m

[

pr4ω4β2e−2m − pr2ω2 (1− e−m)

m

]

(19)

Notice that (19) is positive under the qualifying condition (11) for the cases of j − i = 2.

Valuing the optimal condition (16) in t+ 2

µt+2 = −
∂y1t+2(Ft+2)

∂Ft+2
−

∂y2t+2(Ft+2)

∂Ft+2
φ2
t+2(Ft+1)

−
∂y3t+2(Ft+2)

∂Ft+2
φ3
t+2(Ft+1, Ft)−

∂y4t+2(Ft+2)

∂Ft+2
φ4
t+2(Ft+1, Ft, Ft−1)

+p1
[

βy2t+3(Ft+3)φ
2
t+3(Ft+2) + β2y3t+4(Ft+4)φ

3
t+4(Ft+3, Ft+2)

+β3y4t+5(Ft+5)φ
4
t+5(Ft+4, Ft+3, Ft+2)

]

+p2
[

βy3t+3(Ft+3)φ
3
t+3(Ft+2, Ft+1) + β2y4t+4(Ft+4)φ

4
t+4(Ft+3, Ft+2, Ft+1)

]

+p3
[

βy4t+3(Ft+3)φ
4
t+3(Ft+2, Ft+1, Ft)

]

.
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And for the case of
−→
F (4) = (Ft+kL, Ft+kL+1, Ft+kL+2, Ft+kL+3) = (0, 0, 0,∞) ∀k ∈ Z

µt+2|L=n = lim
F→

−→
F (4)

{

−
∂y1t+2(Ft+2)

∂Ft+2
−

∂y2t+2(Ft+2)

∂Ft+2
φ2
t+2(Ft+1)−

∂y3t+2(Ft+2)

∂Ft+2
φ3
t+2(Ft+1, Ft)

+β
[

p1y3t+3(Ft+3)φ
3
t+3(Ft+2, Ft+1) + p2y4t+3(Ft+3)φ

4
t+3(Ft+2, Ft+1, Ft)

]

}

=

= −
∂y1t+2(0)

∂Ft+2
−

∂y2t+2(0)

∂Ft+2
φ2
t+2(0)−

∂y3t+2(0)

∂Ft+2
φ3
t+2(0, 0)

+β2
[

p1y2t+3(∞)φ2
t+3(0) + p2y3t+3(∞)φ3

t+3(0, 0) + y4t+3(∞)φ4
t+3(0, 0, 0)

]

= −p1pr1ω1 (1− e−m)

m
− p2pr2ω2 (1− e−m)

m
e−m − p3pr3ω3 (1− e−m)

m
e−2m

+β
[

p1pr2ω2e−m
+ p2pr3ω3e−2m

+ p3pr4ω4e−3m
]

= p1
[

pr2ω2βe−m − pr1ω1 (1− e−m)

m

]

+ p2e−m

[

pr3ω3βe−m − pr2ω2 (1− e−m)

m

]

+p3e−2m

[

pr4ω4βe−m − pr3ω3 (1− e−m)

m

]

. (20)

Notice that (20) is positive under the qualifying condition (11) for the case of j − i = 1.

Valuing the optimal condition (16) in t+ 3

µt+3 = −
∂y1t+3(Ft+3)

∂Ft+3
−

∂y2t+3(Ft+3)

∂Ft+3
φ2
t+3(Ft+2)

−
∂y3t+3(Ft+3)

∂Ft+3
φ3
t+3(Ft+2, Ft+1)−

∂y4t+3(Ft+3)

∂Ft+3
φ4
t+3(Ft+2, Ft+1, Ft)

+p1
[

βy2t+4(Ft+4)φ
2
t+4(Ft+3) + β2y3t+5(Ft+5)φ

3
t+5(Ft+4, Ft+3)

+β3y4t+6(Ft+6)φ
4
t+6(Ft+5, Ft+4, Ft+3)

]

+p2
[

βy3t+4(Ft+4)φ
3
t+4(Ft+3, Ft+2) + β2y4t+5(Ft+5)φ

4
t+5(Ft+4, Ft+3, Ft+2)

]

+p3
[

βy4t+4(Ft+4)φ
4
t+4(Ft+3, Ft+2, Ft+1)

]

And for the case of
−→
F (4) = (Ft+kL, Ft+kL+1, Ft+kL+2, Ft+kL+3) = (0, 0, 0,∞) ∀k ∈ Z

µt+3|L=n = lim
F→

−→
F (4)

{

−
∂y1t+3

(Ft+3)

∂Ft+3
−

∂y2t+3
(Ft+3)

∂Ft+3
φ2
t+3(Ft+2)

−
∂y3t+3(Ft+3)

∂Ft+3
φ3
t+3(Ft+2, Ft+1)−

∂y4t+3(Ft+3)

∂Ft+3
φ4
t+3(Ft+2, Ft+1, Ft)

}

= −
∂y1t+3(∞)

∂Ft+3

−
∂y2t+3(∞)

∂Ft+3

φ2
t+3(0)−

∂y3t+3(∞)

∂Ft+3

φ3
t+3(0, 0)−

∂y4t+3(∞)

∂Ft+3

φ4
t+3(0, 0, 0) = 0.

Without loss of generality it can be said that for any age n the Lagrange multipliers µt,

µt+1,..µt+(n−2) are positive whenever the qualifying conditions (11) hold. Furthermore,

µt+(n−1) = 0 in any case. So any pulse of length L = n satisfies the optimal conditions

(16)-(17). Now consider the case of a pulse of length L = n− 1. Continuing with the case

of age n = 4, this pulse is such that
−→
F (3) = (Ft+kL, Ft+kL+1, Ft+kL+2) = (0, 0,∞) ∀k ∈ Z.
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For this case µt in optimal condition (18) can be expressed as

µt|L=n−1 = lim
F→

−→
F (3)

{

−
∂y1t (Ft)

∂Ft

+ β2
[

p1y3t+2(Ft+2)φ
3
t+2(Ft+1, Ft)

]

}

= −
∂y1t (0)

∂Ft

+ β2p1y3t+2(∞)φ3
t+3(0, 0)

= −p1pr1ω1 (1− e−m)

m
+ p1pr3ω3β2e−2m

= p1
[

pr3ω3β2e−2m − pr1ω1 (1− e−m)

m

]

.

And µt+1 in the optimal condition (19) can be expressed as

µt+1|L=n−1 = lim
F→

−→
F (3)

[

−
∂y1t+1

(Ft+1)

∂Ft+1
−

∂y2t+1
(Ft+1)

∂Ft+1
φ2
t+1(Ft)

+β2
[

p1y3t+3(Ft+3)φ
3
t+3(Ft+2, Ft+1) + p2y4t+3(Ft+3)φ

4
t+3(Ft+2, Ft+1, Ft)

]

]

= −
∂y1t+1(0)

∂Ft+1

−
∂y2t+1(0)

∂Ft+1

φ2
t+1(0) + β

[

p1y2t+2(∞)φ2
t+2(0) + p2y3t+3(∞)φ3

t+2(0, 0)
]

= −p1pr1ω1 (1− e−m)

m
− p2pr2ω2 (1− e−m)

m
e−m

+ β
[

p1pr2ω2e−m
+ p2pr3ω3e−2m

]

= p1
[

pr2ω2βe−m − pr1ω1 (1− e−m)

m

]

+ p2e−m

[

pr3ω3βe−m − pr2ω2 (1− e−m)

m

]

.

Finally, µt+2 in the optimal condition (20) can be expressed as

µt+2|L=n−1 = lim
F→

−→
F (3)

{

−
∂y1t+2

(Ft+2)

∂Ft+2
−

∂y2t+2
(Ft+2)

∂Ft+2
φ2
t+2(Ft+1)

−
∂y3t+2(Ft+2)

∂Ft+2
φ3
t+2(Ft+1, Ft)−

∂y4t+2(Ft+2)

∂Ft+2
φ4
t+2(Ft+1, Ft, Ft−1)

}

= −
∂y1t+3(∞)

∂Ft+3

−
∂y2t+3(∞)

∂Ft+3

φ2
t+3(0)−

∂y3t+3(∞)

∂Ft+3

φ3
t+3(0, 0)−

∂y4t+3(∞)

∂Ft+3

φ4
t+3(0, 0,∞) = 0.

So under the qualifying conditions (11), µt|L=n−1 and µt+1|L=n−1 are positive. So without

loss of generality it can be said that for any age n any pulse of length L = n − 1 satisfies

the optimal conditions (16)-(17).

In the same way it can be proved that any pulse of length L ≤ 4 is optimal in the case

of age n = 4. So without loss of generality it can be said that for any age n any pulse of

length L ≤ n satisfies the optimal conditions (16)-(17).

A.7 Proof of Proposition 7

If Fss is an interior stationary smooth solution then µt = 0 and the optimal condition (16)

valued in Fss can be expressed as

n
∑

a=1

∂yass
∂Fss

φa
ss =

n−1
∑

a=1

pa







n−a
∑

j=1

βjya+j
ss φa+j

ss







. (21)
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Notice that

n−1
∑

a=1

pa

(

n−a
∑

j=1

βjya+j
ss φa,j

ss

)

= p1
[

βy2,jss φ
2,j
ss + β2y3,jss φ

3,j
ss + ......+ βn−1ynssφ

n
ss

]

+p2
[

βy3ssφ
3
ss + β2y4ssφ

4
ss + ...... + βn−2ynssφ

n
ss

]

+ ....

+pn−2
[

βyn−1
ss φn−1

ss + β2ynssφ
n
ss

]

+ pn−1βynssφ
n
ss

= ynssφ
n
ss

[

p1βn−1
+ p2βn−2

+ ......+ pn−1β
]

+yn−1
ss φn−1

ss

[

p1βn−2
+ p2βn−3

+ ......+ pn−2β
]

+ .....

+y3ssφ
3
ss

[

p1β2
+ p2β

]

+ y2ssφ
2
ssp

1β

=

n
∑

a=1

yassφ
a
ss

(

a−1
∑

j=1

βa−jpj

)

.

Therefore, the first order condition valued in the stationary solution, (21), can be expressed

as
n
∑

a=1

∂yass
∂Fss

φa
ss =

n
∑

a=1

yassφ
a
ss





a−1
∑

j=1

βa−jpj



 .

Defining εass =
∂yass
∂Fss

Fss

yass
as the fishing effort elasticity of the yield of age a in the stationary

solution, the above expression can be written as

n
∑

a=1

εasss
a = Fss

∑n
a=1 y

a
ssφ

a
ss

(

∑a−1
j=1 β

a−jpj
)

∑n
a=1 y

a
ssφ

a
ss

,

where

sa =
yassφ

a
ss

∑n
a=1 y

a
ssφ

a
ss

.

Moreover, total differentiation of (21) implies

∂Fss

∂β
=

∑n
a=1 y

a
ssφ

a
ss

(

∑a−1
j=1 (a− j) βa−j−1pj

)

∑n
a=1

[

∂2yass
∂F 2

ss
φa
ss +

∂yass
∂Fss

∂φa
ss

∂Fss
− ∂yassφ

a
ss

∂Fss

(

∑a−1
j=1 β

a−jpj
)] ,

∂Fss

∂pa
=

∑n
a=1 y

a
ssφ

a
ss

(

∑a−1
j=1 β

a−j
)

∑n
a=1

[

∂2yass
∂F 2

ss
φa
ss +

∂yass
∂Fss

∂φa
ss

∂Fss
− ∂yassφ

a
ss

∂Fss

(

∑a−1
j=1 β

a−jpj
)] .

Since yass is a concave function and the survival function φa
ss is a decreasing function, both

expressions are negative if yassφ
a
ss is an increasing function.

Therefore, the net present value of yield for Fss in the imperfect selectivity n-age model
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is given by

V IS
ss =

∞
∑

t=0

βt
n
∑

a=1

yassφ
a
ss =

=

[

n
∑

a=1

praωa paFss

paFss +m
(1− e−paFss−m)Πa−1

i=1 e
−pa−iFss−m

]

[

1 + β + β2 + β3 + ....
]

=
1

1− β

n
∑

a=1

yassΠ
a−1
i=1 e

−pa−iFss−m

A.8 Proof of Proposition 8

The first order conditions of maximisation problem (10) are given by equations (16)-(17).

Notice that the first condition can be understood as a difference equation on Ft of order

2(A − 1) + 1 because
{

Ft−(n−1), ..., Ft−1, Ft, Ft+1, ...Ft+(n−1)

}

appear in it. For interior

solution this condition can be written as the following difference equation system, ∀t

Ψt =

n
∑

a=1

pra
∂yat (Ft)

∂Ft
φa
t (Ft−1, Ft−2, ...Ft−(a−1))

−

n−1
∑

a=1

pa







n−a
∑

j=1

βjya+j
t+j (Ft+j)φ

a+j
t+j (Ft+j−1, Ft+j−2, ...Ft+j−(a−1))







= 0.

So second order conditions associated with maximisation problem (10) can be analysed

using the Hessian matrix given by





















∂Ψt

∂Ft

∂Ψt

∂Ft+1
...

∂Ψt

∂Ft+(n−1)
∂Ψt+1

∂Ft

∂Ψt+1

∂Ft+1
...

∂Ψt+1

∂Ft+(n−1)

.... ... ... ...
∂Ψt+(n−1)

∂Ft

∂Ψt+(n−1)

∂Ft+1
...

∂Ψt+(n−1)

∂Ft+(n−1)





















.

It is known that any solution satisfying first order condition (16) and for which the Hessian

is not a negative definite cannot be a maximum.

In the stationary solution all the elements in the diagonal are given by

∂Ψt+k

∂Ft+k

∣

∣

∣

∣

Fss

= βk ∂Ψt

∂Ft

∣

∣

∣

∣

Fss

∀k = − (A− 1) , ...., 0, ..... (A− 1)
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where

∂ϕt

∂Ft

∣

∣

∣

∣

Fss

= βt





n
∑

a=1

∂2yass
∂F 2

ss

φa
ss +

n−1
∑

j=1

βj
n
∑

a=j+1

yass
(

−pa−j
)2

φa
ss





= βt





n
∑

a=1

∂2yass
∂F 2

ss

φa
ss +

n
∑

a=1

yassφ
a
ss

a−1
∑

j=1

βa−j
(

−pj
)2





= βt
n
∑

a=1





∂2yass
∂F 2

ss

+ yass

a−1
∑

j=1

βa−j
(

−pj
)2



φa
ss

Notice that if
∑n

a=1

[

∂2yass
∂F 2

ss
+ yass

∑a−1
j=1 β

a−j
(

−pj
)2
]

φa
ss ≥ 0, then the principal minor of

order one in the Hessian is not negative and it can be stated that the stationary solution is

not optimal.�

A.9 Proof of Proposition 9

The value of the fishery harvested with a pulse of length L under imperfect selectivity is

given by (8). Taking the partial derivative the following is obtained:

∂V IS
L

∂β
=

(L− 1) βL−2 + β2(L−1)

(1− βL)2

L
∑

a=1

prawae−(a−1)m > 0.

Doing the same for V IS
ss defined in Proposition 7 results in

∂V IS
ss

∂β
=

1

(1− β)2

n
∑

a=1

yassφ
a
ss +

1

1− β

∂Fss

∂β

n
∑

a=1

[

∂yass
∂Fss

φa
ss + yass

∂φa
ss

∂Fss

]

=
1

(1− β)2

n
∑

a=1

yassφ
a
ss +

1

1− β

∂Fss

∂β

n
∑

a=1

[

∂yass
∂Fss

φa
ss − payassφ

a
ss

]

=
1

(1− β)2

n
∑

a=1

yassφ
a
ss +

1

1− β

∂Fss

∂β

n
∑

a=1

∂yassφ
a
ss

∂Fss
.

Assuming that yassφ
a
ss is an increasing function, proposition (5) shows that ∂Fss/∂β < 0.

This implies

∂V IS
ss

∂β
=

1

(1− β)2

n
∑

a=1

yassφ
a
ss +

1

1− β

∂Fss

∂β

n
∑

a=1

∂yassφ
a
ss

∂Fss

<
1

(1− β)2

n
∑

a=1

yassφ
a
ss. (22)

Now, let us assume that for a given β, the two solutions are equivalent, V IS
pulse = V IS

ss . This

implies that

1

1− β

n
∑

a=1

yassφ
a
ss =

βL−1

1− βL

L
∑

a=1

prawae−(a−1)m.
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Taking this into account (22) can be expressed as

∂V IS
ss

∂β
<

1

(1− β)2

n
∑

a=1

yassφ
a
ss =

1

(1− β)2
(1− β) βL−1

1− βL

L
∑

a=1

prawae−(a−1)m

=
1

(1 + β)

βL−1

1− βL

(

1− βL
)2

(L− 1) βL−2 + β2(L−1)

∂V IS
L

∂β

=
βL−1

(

1− βL
)

(1 + β)
[

(L− 1) βL−2 + β2(L−1)
]

∂V IS
L

∂β
.

It can be proved that the factor multiplying ∂V IS
L /∂β is lower than 1 by contradiction.

Assume that it is greater than 1; in that case it should hold that

βL−1
(

1− βL
)

> (1 + β)
[

(L− 1) βL−2 + β2(L−1)
]

,

βL−1 − β2L−1 > (L− 1) βL−2 + β2(L−1) + (L− 1) βL−1 + β2L−1,

(2− L) βL−1 − 2β2L−1 − β2(L−1) − (L− 1) βL−2 > 0.

But this is not true because 1 < L < n.

Therefore, whenever yassφ
a
ss is an increasing function ∂V IS

ss

∂β
<

∂V IS
pulse

∂β
. �
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