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ABSTRACT

This paper explores how audio chord estimation could
improve if information about chord boundaries or beat on-
sets is revealed by an oracle. Chord estimation at the frame
level is compared with three simulations, each using an or-
acle of increasing powers. The beat and chord segments
revealed by an oracle are used to compute a chord ranking
at the segment level, and to compute the cumulative prob-
ability of finding the correct chord among the top ranked
chords. Oracle results on two different audio datasets demon-
strate the substantial potential of segment versus frame ap-
proaches for chord audio estimation. This paper also pro-
vides a comparison of the oracle results on the Beatles
dataset, the standard dataset in this area, with the new Bill-
board Hot 100 chord dataset.

Keywords: audio, music information retrieval, harmony,
chroma, chord

1. INTRODUCTION

Audio chord estimation has been a very active field for the
Music Information Retrieval community for several years.
Existing methods in this area differ in a variety of ways.
While some rely on music theory and pattern recognition [3,
10–12] others use data-driven approaches [7, 8, 13]. Most
existing methods can be described as frame-based, attempt-
ing to estimate a chord label for each frame of signal.

Methods for audio chord estimation have the opportu-
nity for comparative evaluation in the MIREX [5], an an-
nual community-based framework for the evaluation of MIR
systems and algorithms. Since 2009, the most accurate
methods for the audio chord estimation achieved similar
scores, compete at roughly the same level of frame la-
belling accuracy. Moreover, it seems that in recent years,
the accuracy of chord estimation methods has reached a
plateau of around 80% on triadic chords.

A major problem in all audio chord estimation meth-
ods is the problem of fragmentation: since labelling takes
place at the frame level, there is little to prevent chords be-
ing split apart by short segments which do not correspond
to a real chord. This problem can be addressed by subse-
quent smoothing of the estimated frame labels, and some
recent methods have considered using time segmentation
and chord duration explicitly in the audio chord estimation
process [7, 12].

This paper investigates the impact of time segmentation
on audio chord estimation in more detail, exploring the
central question: what could be achieved in terms of chord
labelling accuracy if the time segmentation of the audio
stream into beats or chords was provided? This question
is explored through a detailed oracle simulation. The re-
sults suggest a new direction for audio chord estimation,
redefining the problem as primarily one of segmentation
rather than one of frame labelling.

2. METHODS

This section presents the theoretical foundations of the or-
acle simulations, reviewing the problem of audio chord es-
timation, presenting the oracles and the different segmen-
tation informations that they can reveal, and showing how
chord labels are propagated from time segments down to
the frame level where the chord estimation accuracy can
be finally evaluated.

2.1 Audio chord estimation

To label a chroma vector with a chord triad, each chroma
is compared to 24 different triadic chord templates, 12 for
major and 12 for minor triads. In this study we use the
simplest possible triadic templates, to avoid bias in the re-
sults due to over-fitting on the corpora. Two templates T
are used, one for major and one for minor chords:

Cmaj = (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0)
Cmin = (1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0)

Chord templates for all other chord roots are readily con-
structed by rotation of the C major or C minor templates.

The Non-Negative Least Squares (NNLS) chroma [9],
widely popular in the recent chord estimation literature,
provides a pitch class description of an audio frame in the
form of a 12 dimensional vector. The influence of each
pitch-class (C, C#, D, ...) is thus described by a real-valued
number. This chroma vector is compared to the triadic
chord templates: for each of the 24 chord templates, a
scalar product with the chroma vector provides a correla-
tion score. More precisely, the correlation C between a
chord template T and a 12 dimensional chroma vector V
is defined as:

CT,V =

12∑
i=1

(T [i] · V [i]) (1)



The higher the correlation is for a particular triad according
to Equation 1, the more likely according to the model the
chord corresponding to the template is sounding for the
considered observation. The 24 different triadic chords are
thus ranked from higher correlation to lower correlation.
The first best chord for the considered observation is the
highest correlated chord with the observation, the second
best chord is the second highest correlated chord, and so
on.

2.2 The oracles

Oracles provide partial information about time segmenta-
tion. Here we consider oracles with three different levels
of power, each revealing partial ground truth data to an au-
dio chord estimation method. An oracle knows the exact
triadic chord structure of songs, and reveals one of three
types of information for every song:

• beat oracle: the onset time of every beat,

• beat segmentation oracle: the same information as
above and additionally, if every new beat belongs to
same chord as the beat before (thereby, it gives the
number of beats in every chord),

• chord oracle: the onset time and duration of every
chord.

Figure 1 illustrates the information revealed by an oracle.
Each of the temporal segment defined by an oracle must
then be labelled by a chord.

2.3 Segment labelling

At the frame level, the V in Equation 1 are the simply
chroma vectors computed for each frame. When using the
oracle, the different chroma vectors at the frame level must
be combined to take into account the segmentation to form
a metachroma, which is the global chroma vector for the
considered time segment. This metachroma forms the V
in Equation 1. The remainder of this section describes how
the different metachromas are computed from the frame
chroma vectors.

2.3.1 Chord

To label a chord, we consider all the frames located be-
tween the starting and ending times of the chord. If i is
the first frame of the chord H and j is its last frame, we
construct the metachroma VH so that:

VH [i] =

j∑
k=i

Vk[i]

with Vk the chroma vector describing the k-th frame. We
then substitute V with VH in Equation 1.

2.3.2 Beat

To label a beat, we consider all the frames located between
the beat onset and the next beat onset. If i is the first

Dataset Beatles Billboard
number of songs 180 649

total number of frames ∼620,000 ∼3,000,000
total number of beats ∼52,000 -

chord changes per song 69 89

Table 1. Properties of the two datasets.

full chord Billboard mapping evaluation mapping
maj maj maj

min7 min7 min
aug NA N

maj6 maj maj
7 7 maj

sus2 NA N
5 5 N

Table 2. Examples of chord mappings to maj/min triads as
proposed by the Billboard dataset.

frame of the beat B and j is its last frame, we construct
the metachroma VB so that:

VB [i] =

j∑
k=i

Vk[i]

We then substitute V with VB in Equation 1.

2.3.3 Beat segmentation

To label a beat segment, we consider all the beats of the
chord. If i is the first beat belonging to the chord H , and j
its last beat, we construct the metachroma VS so that:

VS [i] =

j∑
k=i

VBk
[i]

with VBk
the metachroma of the k-th beat of the H chord.

We then substitute V with VS in Equation 1.

2.3.4 Propagation to the frame level

Once every metachroma is labelled, the ranking of the 24
chords is propagated to every frame belonging to the con-
sidered time segment. This propagation permits the final
evaluation of accuracy at the frame level. Figure 2 illus-
trates the propagation of the chord rankings at the frame
level, using the chord oracle. This figure presents a chord
lasting for five frames. The corresponding chromas are
summed to form a metachroma which length equals five
frame lengths. The ranking of candidates according to this
metachroma is then propagated to each of the five frames.
The baseline accuracy is obtained at the frame level, using
the raw Vk chroma vectors.

2.4 Mapping to major and minor triads

In audio chord transcriptions, chords have a root note and
a chord quality which typically belongs to a large dictio-
nary [6]. In this paper, as with the triadic MIREX audio



Frames (over time)

Chords

Beats

X Y Z

X Y Z

Beat segmentation

Figure 1. Different information revealed by a oracle: chord oracle, revealing the starting and ending times of the chords;
beat oracle, revealing the beat onsets; and beat segmentation oracle, preserving the number of beats for each chord.

chord estimation evaluation [5], we only focus on the root
note (C, C#, D, ..., B) and the mode (major or minor) of
chords. All of the ground truth chords of the database
have thus been mapped to major and minor triads using
the mapping proposed by the Billboard annotations. Ta-
ble 2 shows different examples of mappings according to
the chord quality. When a chord cannot be mapped to a
major or minor triad, the chord is not considered, and is
subject to no evaluation. Silences and N-chords (part of a
song in which no chord is played) are also ignored.

2.5 Recall score computation

The effect of the oracle on audio chord estimation is eval-
uated as follows. For each frame, we consider the random
variable X as the rank of the correct chord in the frame
rankings. Therefore P (X = k) is the probability of find-
ing the correct chord at rank k, and

r(k) = P (X ≤ k) =

k∑
i=1

P (X = k)

is the cumulative probability of finding the correct chord
within the top k triadic chords. The r(k) recall score for a
dataset is thus the number of frames for which the correct
chord belongs to the top k correlated chords, divided by
the number of total frames in the dataset.

2.6 Datasets

Two different audio chord transcription datasets, the Bea-
tles discography and the Billboard Hot 100 dataset, were
used to evaluate the effect of the oracle on audio chord esti-
mation. These datasets are described in more detail below.
For both datasets we apply the same settings for computing
the chroma vectors:

• a frame length of 16384 samples (∼ 0.37 sec),

• a hopsize of 2048 samples (∼ 0.05 sec),

• a rolloff of 1%, as recommended for pop songs [1].

thereby mapping the standard Beatles dataset parameters
to those used in the new Billboard dataset. The main prop-
erties of the two datasets are summarised in Table 1.

2.6.1 Beatles discography

The Beatles audio discography contains 180 songs with a
44kHz sampling rate. In this dataset, the average number
of chord changes per song is 69, with an average of 7.7 dis-
tinct chords per song. Chord transcriptions were checked
by Harte [6] and the MIR community, and are available
online [2]. The corpus also includes the beat onsets within
every song, for a total of 52,000 beats.

On the Beatles dataset, ∼ 41,000 out of ∼ 620,000
frames were discarded as silences or N-chords.

2.6.2 Billboard Hot 100

The Billboard Hot 100 is a weekly list of popular songs,
ranked by radio airplay audience. The transcriptions of
the chord progressions of 649 songs that appeared at some
point in this list have recently been published [1,4]. In this
dataset, there is an average of 96 chords changes per song,
with an average of 11.8 distinct chords per song. No beat
information is provided in this dataset.

On the Billboard dataset, ∼ 285,000 out of more than
3 million frames were discarded as silences or N-chords.
Note that this represents a higher proportion of discarded
chords than in the Beatles dataset, mainly because complex
chords are more frequent in this dataset.

3. RESULTS AND DISCUSSION

This section presents the results obtained using the oracle
approach outlined in Section 2, by simulation on the two
audio chord transcription datasets.
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Figure 3. r(k) recall scores on the Beatles dataset (left) and on the Billboard dataset (right).
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Figure 4. Comparison of the r(k) recall scores on the frame (left) and chord (right) levels for the Beatles and Billboard
datasets.
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Figure 2. Illustration of the propagation of information
provided by the oracle (here, the chord boundaries oracle)
at the frame level, for a chord lasting for five frames.

Figure 3 shows the r(k) recall scores on the frame level,
for the three oracle segmentations presented in section 2.
As the beat onsets were not provided in the Billboard dataset,
it was not possible to compute the beat oracle nor the beat
segmentation oracle scores for this dataset. Only the r(k)
for k ≤ 12 were plotted on the figure, as r(k) flatten out to
1 for 13 ≤ k ≤ 24. The most notable results are presented
in Table 3 and summarised as follows:

• frame: on both the Beatles and Billboard datasets,
the r(1) recall scores are lower than any r(1) oracle
score. The r(3) scores are higher than r(1) with the
beat oracle, but lower than r(1) with the chord and
beat segmentation oracles.

• chord oracle: the most powerful oracle, with r(1)
scores higher than any other oracle, and r(3) scores
around 95% both on the Beatles and Billboard datasets,

• beat oracle: the least powerful oracle, but with r(k)
scores still notably higher than the frame level for
1 ≤ k ≤ 10,

• beat segmentation oracle: less powerful than the chord
oracle, but only for r(k) scores with k ≤ 6.

The r(1) scores are especially important, because they
represent what is immediately achievable in term of accu-

racy given the oracle. On the Beatles dataset, the r(1) score
on the frame level is 60%, while with the beat and beat
segmentation oracles, it is 66% and 78%. The most no-
table jump is achieved with the chord oracle, which reaches
85%. This surprising result is confirmed on the Billboard
dataset, where the r(1) score jumps from 52% to 80%.
This is to say that if the chord boundaries are known, a
very naive chord estimation method (without any parame-
ter or musical consideration of any kind) would probably
outperform every automatic method, including the ones us-
ing pre-trained algorithms.

Also surprising is the jump between the r(1) and r(2)
scores, notable on all four methods (frame, chord, beat and
beat segmentation). This score increase is at least 8% (with
the chord oracle on the Beatles dataset), and reaches more
than 14% (with the beat oracle on the Beatles dataset). If
we consider the difference between r(1) and r(3) scores,
the difference becomes important, as presented in Table 3.
The frame level jump (which is more than 20% on both
datasets) can be explained by the relatively low r(1) score.
But with the chord oracle, the improvement from r(1) to
r(3) is still more than 10% on both datasets, reaching even
95% on the Beatles dataset. These numbers show that we
do not need to consider more than the top three chords,
with the chord oracle, to reach a remarkably high potential
accuracy in audio chord estimation.

Audio chord estimation systems, for example based on
hidden Markov models, cannot profit directly from the or-
acle results as long as they work on the frame level. These
systems must assign high probability to self transitions (re-
maining in the same chord), as it is likely that a chord lasts
longer than a single frame. If they could be adapted to
work at the chord level, the probability space would be di-
vided between on chord changes, and results could then
potentially reach the r(3) recall scores.

4. CONCLUSION AND FUTURE WORK

This paper investigated the possible impact of time seg-
mentation information for audio chord segmentation. By
considering three oracles, we proposed a way to taking into
account beats, beat segmentation and chord segmentation,
by using a very simple average chroma computation. Re-
sults show that the information provided by those oracles
could be highly beneficial to audio chord estimation meth-
ods.

A very naive method, using the chord oracle and with-
out any chord transition consideration, post-smoothing al-
gorithm or training process can outperform any existing
method. This leads to the interesting problem of estimat-
ing the chord segmentation of the audio texture. The po-
tential impact of segmentation on the audio chord estima-
tion problem has not yet been fully considered by practical
methods. Our results suggest an alternative view of audio
chord estimation as first a segmentation problem, and then
a labelling problem.

Another important remark is that it is possible for a lis-



Beatles Billboard
frame chord beat beat seg. frame chord
r(1)=60 r(1)=85 r(1)=66 r(1)=79 r(1)=52 r(1)=80
r(3)=81 r(3)=95 r(2)=79 r(2)=91 r(3)=72 r(3)=92

Table 3. Notable recall scores (%) using oracles.

tener to detect some chord boundaries, as it may be easier
for a listener to locate a chord change than to identify the
chord label. This could lead to an informed chord estima-
tion method, where the user provides the chord onsets (by
indicating during listening when the chord changes) and
a system could estimate in real time the label of the last
chord. For the beat or beat segmentation oracles the r(1)
score may not be high enough to admit the above strategy,
and to make use of the oracle a method must jointly esti-
mate the number of beats in a segment in addition to the
label of the segment.

This paper also compares the standard Beatles dataset
for audio chord estimation with the new Billboard dataset.
The Billboard dataset seems more difficult in terms of chord
label estimation, and provides an interesting alternative to
the Beatles corpus, especially with a larger number of songs
along with a wider genre diversity. Both datasets validate
the hypothesis that the oracles reveal valuable information,
and that this information should be consider to improve
audio chord estimation methods.

Future work will deal with ways to integrate of the or-
acle results into practical systems. Sophisticated statistical
methods such as explicit duration models can jointly esti-
mate the segmentation and labelling. Research on replac-
ing the oracles with estimated information is also planned,
to explore how well a fully automatic method can perform
on audio chord estimation using estimated segmentation
information.
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