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Two stage stochastic linear problems provide a suitable framework for modeling decision
problems under uncertainty arising in several applications. The flexibility of these models is
related to their dynamic nature, i.e., besides the first stage variables, representing decisions
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Abstract

The optimization of stochastic linear problems, via scenario analysis, based on Ben-
ders decomposition requires to appending feasibility and/or optimality cuts to the master
problem until the iterative procedure reaches the optimal solution. The cuts are identified
by solving the auxiliary submodels attached to the scenarios. In this work, we propose
a so-called scenario cluster decomposition approach for dealing with the feasibility cut
identification in the Benders method for solving large-scale two stage stochastic linear
problems. The scenario tree is decomposed into a set of scenario clusters and tighter fea-
sibility cuts are obtained by solving the auxiliary submodel for each cluster instead of each
individual scenario. Then, this scenario cluster based scheme allows us to define tighter
feasibility cuts that yield feasible second stage decisions in reasonable time consuming.
Some computational experience by using the free software COIN-OR is reported to show
the favorable performance of the new approach over traditional Benders decomposition.

Keywords: Benders decomposition, two stage stochastic linear problems, scenario
cluster auxiliary submodels, tight feasibility cuts.
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made in face of uncertainty, the model considers second stage decisions, i.e., recourse actions,
which can be taken once a specific realization of the random parameters is observed. For
an introduction to two stage stochastic programming models and solution procedures based
on scenario analysis, see [2, 9, 13]. See also [5, 6] for specific details, among many others.
Moreover, many applications require an excessive number of scenarios and, then, this kind of
problems become quite large. So, methods that ignore the special structure of stochastic linear
programs become quite inefficient. However, taking advantage of this structure is especially
beneficial in stochastic programs. Perhaps, the method that is most frequently used is based
on building an outer linear relaxation of the recourse cost function around a solution of the
first stage problem. One of the alternative decomposition procedures is known as the Dantzig-
Wolfe approach [3], that solves the dual of the problem. Another decomposition, so known
as Benders method [1], solves the primal problem. This last method has been widely used in
stochastic programming approaches to take care of feasibility cuts generation, see [12]. As it
is well known, when (2 is finite, the Benders decomposition method converges to an optimal
solution in a finite number of iterations, when it exists, or proves the infeasibility of problem
(1). See also [4].

The main contribution of this note consists of proposing a scenario cluster decomposition
approach for dealing with the feasibility problem in the Benders method for solving large-
scale two stage stochastic linear problems. The saving in elapsed time is remarkable in the
large-scale cases that we have experimented with.

The remainder of the note is organized as follows. Section 2 briefly outlines the Benders
decomposition method for two stage stochastic problems. Section 3 deals with an illustrative
example. Section 4 presents the innovation of the proposed scenario cluster decomposition
scheme. Section 5 introduces in detail the Cluster Benders decomposition approach that is
proposed. Section 6 reports some computational results, mainly for big cases that show the
good performance of the new approach. Section 7 concludes. The Appendix reports the detail
of the numerical results for the small instances.

2 Benders decomposition for two stage stochastic problems

Let us consider a two stage stochastic linear problem (LP) in compact representation:

(LP): zpp =min c'z+ Eyminw®(¢*Ty~)]
s.t.
b1 S Az S b2 (1)
hy <TYx+ WYy < hy, Ywe
z,y° >0 Yw e,

where ¢ is a known vector of the objective function coefficients for the = variables in the
first stage, by and by are the left and right hand side vectors for the first stage constraints,
respectively, A is the constraint matrix for the first stage variables, w* is the likelihood
attributed to scenario w, h{ and h% are the left and right hand side vectors for the second
stage constraints, respectively, and ¢“ are the vector of the objective function coefficients for
the y variables, while 7% and W% are the technology matrices under scenario w, for w € €,
where () is the set of scenarios to consider.



Piecing together the stochastic components of the problem, we have a vector ¢ =
(¢, hy,hy, T W*). Finally, Ey represents the mathematical expectation with respect to
1 over the set of scenarios ).

The two stage linear problem (1) can be decomposed and its optimal solution can be
iteratively obtained by identifying extreme points and rays based cuts from the optimization
of the so-called Auziliary Program (AP), so that they are appended to the so-called Relazed
Master Program (RMP) for its optimization, see [1]. The RMP can be expressed

Zrp = minclz+6
s.t.
b1 S Am S b2
wT h(f w w ~7Cr
0 > vy [(—h‘g +T%z|, vhed

S
Y

h¥ —
> wen w“uﬁT [( —h‘; ) + T“ﬂz] , VUHE T
x>0,0 € IR,

where 7ep C J° and 76T C J¢ are the subsets of the extreme points and extreme rays
already identified, respectively, see [12].

We first give a presentation of the Benders decomposition method, taken from [2].

Primal Scenario based Procedure
Step 0: Set k:=¢,:=¢,:=0
Step 1: Set k := k + 1. Solve the relaxed master linear program (RMP), (with § = 0 if

ep =0).
(RPM) min c'z+6
s.t.
by < Az < by
. hY +T%x .
T 1 _
02 ;dl < —h5}+Tw.%' >’j1 —0"'-567“ (2)
hY +T%x .
~wT 1 _
0 > way;f; ( B+ TV ) ,J2=0,...,ep, (3)
weN
x>0,0 €lR,

where 7, and 7, are the corresponding dual variables (simplex multipliers) obtained
in the feasibility problem (Step 2) and auxiliary primal problem (Step 3), respectively.

Save the optimal solution values Z and 0.

Step 2: For each scenario w € €, solve the following feasibility problem

(FEAS)  2%pas = minel v +eTv® + eTvf® + eTvy*

s.t.
Wy — Tu= + [v]® — [v]¥ = hy — T¥# (4)
Wy + [ut® — [of® + Tvy® = hy — T%#

w ot —w tw ) —w W o, —w
Y u] v vy T, 0, ,ute ume > 0.



If there exists a scenario w, such that 2% 4g 7 0 (infeasible), set e, := e, +1, ¢* = +o0,
save the dual variables 7%, define the feasibility cut (2) and go to Step 1.

If 29549 = 0 (feasible) for all w € Q, go to Step 3.

Step 3: For each scenario w € €, solve the auxiliary primal problem as follows,

(OPT) ¢* = ming*Ty~

s.t.
ww he — T3 (5)
w >
< —We )y = ( —hg + T¥% )
y¥ > 0.

Save the objective function value, ¢*, and the simplex multipliers associated with the
optimal solution of problem (5), Vi, for each scenario w, and define the optimality cut.

Set ¢ ==  cquwe”. If ¢ < é, Stop, since the optimal solution has been found in k-th
iteration.

In other case, set e, := e, + 1, add the new cut to the constraint set (3) and return to
Step 1.

As it is well known, when €2 is finite, this method finitely converges to an optimal solution
when it exists or proves the infeasibility of problem (1).

However, as we will illustrate with the example shown in the next section, generating
feasibility cuts by a mere utilization of the scenario related feasibility problem to be solved
at Step 2 of the procedure, may not be efficient in large-scale instances. Indeed, we propose
a scenario cluster decomposition approach for dealing with the feasibility problem, which
generates tighter feasibility cuts to add to the master problem. This new scheme provides a
more efficient procedure for solve large-scale two stage stochastic problems as we report in
section 6.

3 Illustrative example

As it can be seen in the previous section, Step 2 of the traditional Benders decomposition
method consists of determining whether a first stage decision, x is also second stage feasible.
This step can be extremely time-consuming. It requires the solution of up to |2| phase-one
problems of the form (4). The process may have to be iteratively repeated to obtain successive
candidate first stage decisions.

To illustrate the feasibility cuts generation, consider the following example taken also from

[2]:
Q
S e (157 + 1208)

min 3x1 + 229

s.t.

0 < 21 —3y7 —2¢5, well

0 < xo—2y¢ —5y, we (6)
08-u¢ < vy <uy, we
08-us < yf<uy, we
1 >0, 222>0, y¢>0,95 >0, well,



Table 1: Feasibility cuts generated for the illustrative example by Traditional Benders De-
composition

Iteration Scenario Feasibility cut
1 1 r1 > 64
2 1 To > 6.4
3 1 0.272727x1 + 0.09090922 > 6.4
4 1 0.2x9 > 4.48
5 2 0.2z9 > 7.68
6 1 0.333333x1 > 5.333333
7 2 0.333333x1 > 7.46666
8 4 0.333333x1 > 9.06666
9 4 0.2x9 > 8.32

where, independently, u;=4 or 6 and uy= 4 or 8 and with probability % each, and u =
(u1,u2)”. Then,

{(uf, u3) : (4,4),(4,8),(6,4),(6,8)}, p* = i, w={1,2,3,4}

If at the first iteration of Step 1, as in this example, there is no system of constraints in x,
an initial feasible solution is needed. Starting from the initial solution #! = (z1,22)! = (0,0),
Table 1 shows the feasibility cuts that are generated.

By appeding these nine cuts to the RMP, the first stage solution is:
210 = (27.2,41.6),

which is feasible for the second stage decisions.

4 Scenario cluster decomposition scheme innovation

A scenario cluster, P, is a set of p scenarios. The criterion for scenario clustering in the
sets, say, Q',...,QP, where p is the number of clusters to consider, is instance dependent.
Given the scenario cluster partitoning, the initial model (1) can be decomposed into p smaller
problems. By slightly abusing the notation, the problem to consider for scenario cluster p can
be expressed as follows:

(LPP): 2fp =min 2P+ Y w?(¢*Ty")
wenNP
s.t.
by < AzP < by (7)
hY < T9xP + W@y < h§, VYw e QP
xpayw 207 VWGQP7



where p = 1,...,p. The p problems (7) are linked by the non-anticipativity constraints for the
first stage variables:

af =P (8)

for all p # 9/, p,p’ = 1,...,p, and for all ¢ = 1,...,n,, where n, denotes the number of first
stage variables in the original model (1). See [7].

For simplicity and without loss of generality, we can select the number of scenario clusters,
p, as a divisor of the number of scenarios, |Q2]. In this case, |QP| = % = [, where |7
defines the size of each scenario cluster p, i.e., the number of scenarios that belong to the
corresponding cluster, for p = 1,...,p. This choice forces that all the scenario clusters have
the same size, [. Then, the scenario clusters are defined in terms of blocks of I-consecutive
scenarios, Q' = {1,...,1}, Q®> = {I+1,...,2-1},..., ® = {(p—1)-1+1, ..., (p—1)-1+I}. In a more
general case, the number of scenario clusters can be chosen as any value 1 < p < |Q]|, such
that the total number of the scenarios in each cluster along the set of clusters, must be equal

D
to the total number of scenarios, i.e., Y |QP| =|€|. And, again, the scenario clusters can be
p=1

chosen in terms of consecutive scenarios, Q! = {1,..., |}, Q2 = {|QY + 1, ..., |Q +]Q?|},...,
QF = {|Q + ..+ [P+ 1, ., Q)

A simple look at the feasibility problem (4) reveals that its objective function coefficients
do not depend of any specific scenario, so, we can consider a cluster of scenarios instead of
one scenario alone. The objective function in problem (4) depends on the set of artificial
variables v+, v~, whose dimension is the total number of second stage constraints. Then, this
feasibility model can be globally formulated for a set of scenarios as a minimization problem in
the variables v, v;“ and v3“, vy “, for w € OP. Then, we can define the following feasibility
scenario cluster model at each iteration:

Hpase = minel v + el + el v + elvy® (9)
s.t.
Wy — Iu™ + [vf% — Tv]* = h{ — T2, weQPF
WYy + Iu™ — [vf% + Tvy® = h§ — T2, w e QF

yw7vii>w7v;w7v;w7v5w7u+w7u_w 2 07 w 6 Qp7

where the dimension of ¢/ = (1,...,1) is the number of constraints for scenario cluster p,
and v ¥ “ are the artificial variables for the left and right hand side second
stage constraints. These variables are introduced to generate a problem which detects the
infeasibility in model (1), given a fixed value of the variable vector Z. Additionally, notice
that in the feasibility model (9), the slack and excess variables for the second stage inequality
constraints, u™ and 4™, respectively, can take any value different to zero. However, to
ensure the feasibility of problem (1), given a fixed value for vector Z, the solution value of
problem (9), i.e., variables vf JUT v; and v, for each scenario cluster must be equal to zero.

+w -
and vy ¥, v,

Let us consider again the above example, with p = 2 scenario clusters, where the first
cluster is formed by the two first scenarios, Q' = {1,2}, and the second cluster by the two
last ones, Q2 = {3,4}. Starting again from the initial solution #! = (21, z2)* = (0,0), Table
2 shows the feasibility cuts that are generated. In this case, eight cuts are generated, six cuts



to satisfy the feasibility of the second stage constraints in the first cluster, scenarios 1 an 2,
and two cuts to satisfy the feasibility of the second stage constraints in the second cluster,
scenarios 3 and 4.

Table 2: Feasibility cuts generated for the illustrative example by Cluster Benders Decompo-
sition

Iteration Scenario cluster Feasibility cut
1 1 I Z 8
2 1 T2 > 8
3 1 0.272727x1 + 0.09090922 > 8
4 1 0.2z9 > 6.08
5 1 0.2x9 > 7.68
6 1 0.333333x1 > 7.46666
7 2 0.333333x1 > 9.06666
8 2 0.2x9 > 8.32

Finally, let us consider, p = 1 scenario cluster, it is included by the four scenarios, Q' =
{1,2,3,4}. By using the same initial solution #! = (z1,29)! = (0,0), Table 3 shows the set
of feasibility cuts that are generated.

Table 3: Feasibility cuts generated for the illustrative example by cluster Benders decompo-
sition for all scenario cluster

Iteration Scenario cluster Feasibility cut

1 x1 > 8.8

T2 Z 8.8

0.272727x1 + 0.090909z2 > 8.8
0.2x9 > 4.48

0.2x9 > 7.04

0.878787x1 + 0.181818x9 > 27.7333
0.272727x1 + 0.29090922 > 18.8888
0.333333x1 > 9.06666

0.2x9 > 8.32

[a—y

© 00 ~ O U i W N
e e e

5 Cluster Benders decomposition procedure

In order to gain computational efficiency, we present our proposed scenario cluster based
scheme to be used in Benders decomposition. Then, the feasibility model is solved at Step 2
for each scenario cluster, p, i.e., the set of scenarios in {2, such that the new feasibility model
is to be optimized for a given scenario cluster instead of a particular scenario. Moreover, once
the feasibility cut has been identified and appended, the procedure goes back to Step 1 in
order to solve the new relaxed master program.



Primal Scenario Cluster based Procedure

Step 0: Set k:=¢, :=¢, :=0

Step 1: Solve the relaxed master program RMP, (with § =0 if e, = 0).
Set w:=0,p:=0and k:=k+ 1.

minclx + 0

s.t.
by < Ax < by
6}1§T6A}x§h6}2, Yw € Q
B
_ﬁ‘;jTwa 2 V]l _hé} , W € Qpajl = 0) <y Cp (].0)
B
_ Z w® AwTwa +0 > Z WD AwT _hiﬂ ,jo =0, e €p (11)
we weQ 2

x>0,0€lR

Save the primal variables & and 0.

Step 2: Set p:= p+ 1. Solve the feasibility problem in scenario cluster p,

(FEASC) : zFEASC—mlneTv+“+e v+ eTof® + eTvy ¥
s.t.
Wy — [u™ + Tvf* — Tv]% = by — T2, w € QP (12)

Wey + [ute — Tof% + Tvy® = h§ — T*%, w € QP
Y@, o T vl oyt ume >0, w e QP

If 25 paso # O (infeasible): Set e, := e, +1, ¢* = +o0, Yw € QF, save the dual variables
¥, w € QP and define the feasibility cut (10). Go to Step 1.

If 20 agc = 0 (feasible) and p < p, go to Step 2.
Step 3: Solve the auxiliary primal problem in scenario w € €Q,

(OPT) ¢* = ming“Ty~

s.t.
W hy — T3 (13)
w >
( W )y = ( —hg +T¥% )
y* > 0.

Set e, := e,+1, save ¢ and the dual variables 7, reset 6 := 0 and define the optimality
cut (11).

Step 4: Set ¢ := ) cqw“¢®. If ¢ < 60, then Stop, since the optimal solution has been found
in k-th iteration.

Save 6 := 0 + c& and go to Step 1.



The dimensions of the cluster-based dual vector to be used for identifying the feasibility
cut, problem FEASC (12), are greater than the dimensions for one scenario based scheme,
problem (4). In effect, problem (12) has 2-|QP| constraints for each scenario cluster p, and two
sets of constraints for each scenario feasibility problem (4), since there are two inequalities
at each constraint type in model (1). However, notice that the solution to this problem for
each scenario cluster forces the feasibility in more scenarios than by using the scheme for
each individual scenario. Then, the scenario cluster based scheme allows us to identify tighter
feasibility cuts than when using a scenario based procedure.

6 Cluster partitioning. Computational results

Our testbed of instances has a similar structure as example (6) used in Section 3, but we
have added some additional variables and constraints and increased as well the number of
scenarios. So, we have generated a set of large scale problems that require a big number of
feasibility cuts.

Let us use the following notation in order to differentiate between the blocks of variables
and constraints, where Z is the set of block indicators, x1; and x9; are the set of first stage
variables that belong to block ¢ and, similarly, y7’; and y3; are the second stage variables
under each scenario for block i. Now, our problem could be written as follows,

. T Y
2Lp =min ) 76 ( o ) + 2 iz 2wen WG ( ’

) yg,@
s.t.
0.8 h¥ < (é ?)(Z;:)ghw weQiel
T, Y5 = 0, YVwoeQiel, j=1,2,

where w* denotes the probability of occurrence of scenario w, which we will consider equiprob-

able, i.e., w* = ﬁ The parameter vectors ¢; and ¢;, and the matrix H; were generated using

a random parameter b which is uniformly distributed over [0,2]. For block ¢, the data is
generated as follows,

o 34i—1+b
A= 2.4 . b1
—15—7-(i—1+1b)|
qi = .
—2-(6—i+1+0b)

—3—i+14+b 2471 . b+1)4+5—-14+0b
—2-371.(b+1) —[5—4-(i—1+0)]



The right hand side for the last constraints in the model (i.e., vectors hY') were generated
using a parameter ¢ which has an uniform distributions over [0,9]. Accordingly, vector h¥ is
calculated as follows,

B — <u°f7i+a-(i—1)> (14)

v u‘il—i—a(z—l)

The parameters uf; and ug; take values from the sets {4,6} and {4,8}, respectively.
Taking two randomly generated observations for each value of uy; and u3;, respectively, and
combining them, we have generated problems with 2% scenarios, where i represents the number
of blocks and i € {1,...,7}. Specifically, example (6) is an instantiation of the model that we
are considering, where there is just one block of constraints and both a and b parameters have
their value equal to zero.

We report the results of the computational experience obtained while optimizing some
randomly generated instances. Our algorithmic approach has been implemented in a c++
experimental code (Visual C++ 2008 Express Edition), which uses the optimization engine
COIN-OR, see [8, 10], to solve the linear relaxed master problem and the auxiliary submodels.
The computations were carried out on a HP PAVILLION DV3 computer, having cpu speed
of 2.26GHz and 4Gb of RAM.

Tables 4 shows the dimensions of the instances in compact representation. The headings
are as follows: m, number of constraints; n, number of variables; n,, number of first stage
variables; n,, number of second stage variables per scenario; nel, number of nonzero coeffi-
cients in the constraint matrix; and dens, constraint matrix density. We have considered a
different number of scenarios from 4 until 24 = 16384 scenarios.

Table 4: Model dimensions. Compact representation

Instance m noNg Ny nel dens |2
P1 16 10 2 2 32 0.2 4
P2 128 68 4 4 256 0.029 16
P3 768 390 6 6 1536 5.0e-03 64
P4 4096 2006 8 8 8192 9.7e-04 256
P5 20480 10250 10 10 40960 1.9e-04 1024
P6 98304 49164 12 12 196608 4.0e-05 4096
p7 458752 229390 14 14 917504 8.7e-06 16384

Next, we report the main results obtained in our computational experimentation with the
instances shown in Table 4 in two flavors, namely, tables and Figure 1. The tables are Table
5 given below for the biggest instance, P7, and Table 6 given in the Appendix, for instances
P1 to P6. Figure 1 shows the results for the whole testbed of instances P1 to P7. For this
purpose, we have generated four replicas of each instance, given different random observations
of parameters a € [0,9] and b € [0,2], with the same dimensions. The headings of Tables 5
and 6 are as follows: p, number of clusters into which the set of scenarios is partitioned; |QP|,
number of scenarios per cluster (which is the same for each cluster p in our instances); # fc,
number of feasibility cuts that have been identified; #it, number of iterations that are needed

10



to reach the optimal solution; T', total elapsed time (sec.) for obtaining the optimal solution
to the original problem, for each instance and choice of the number of clusters that we have
been experimented with; Tcorn, total elapsed time (sec.) to obtain the optimal solution to
the original problem by plain use of the LP COIN-OR functions; —, means that the results
are not available due to running out of memory or exceeding the time limit (2 hours). Notice
that the traditional Benders decomposition is used when the number of clusters, p, is equal
to the number of scenarios, |Q].

We can observe in Figure 1 and Table 6 that the performance of the plain use of COIN-OR
for the small cases is better than the performance of the Traditional Benders Decomposition
(TBD) approach, as expected. However, we are interested in testing the elapsed time for
obtaining the optimal solution by using the Cluster Benders Decomposition (CBD) when
choosing different scenario cluster partitioning for the biggest instance, P7.

In all the instances of the testbed that we have experimented with, the results are very
similar in the four replicas of each instance. The optimal choice of the cluster partitioning is
instance dependent but, in the ideal development, there must be a balance between the number
of clusters into which to partitioning the scenarios and the size of the clusters. Moreover, the
results obtained in our computational experience can help us to get that balance. We have
observed in all the instances that the optimal choice of the number of clusters, p, is the
smallest one, such that the related cluster submodels are very efficiently stored and solved. In
effect, if we observe the graph of the replicas of instance P1 shown in Figure 1 whose numerical
results are shown in Table 6, the optimal choice is p = 1, i.e., considering one cluster with
the four scenarios. In instance P2, the optimal choice is p = 2, i.e., considering two clusters,
each one with eight scenarios. In instance P3, the optimal choice is p = 16 clusters, each
one with four scenarios. In instance P4, the optimal choice is p = 32 clusters, each one with
eight scenarios. In instances P5 and P6, the optimal choices are p = 64 and p = 256 clusters,
respectively, each one with 16 scenarios in both cases. Finally, in instance P7, the optimal
choice is p = 256 clusters, each one with 64 scenarios. So, we can observe in each of the
graphs in Figure 1 (and Tables 5 and 6) that the different choices of the number of clusters
from the ideal one until up to the biggest one, i.e., p = ||, are such that the total elapsed
time grows managing to double even. Notice also that this last choice, p = ||, corresponds
to the TBD scheme.

Figure 1: Performance of the CBD for different choices of the number of clusters

Instance P1. || = 4 scenarios
0,4
0,3
0,2
0,1

o
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Instance P2. || = 16 scenarios

0+ T T T T T T T T
0 2 4 6 8 10 12 14 16

Instance P3. || = 64 scenarios

2
15
1
05
0 + T T T T T
0 10 20 30 40 50 60
Instance P4. || = 256 scenarios
25 4
20
15 4
10 -
5
0 T T T T
0 50 100 150 200 250
Instance P5. |©2] = 1024 scenarios
60
50 -
40 -
30
20
10 4
0 T T T T T
0 200 400 600 800 1000
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Instance P6. || = 4096 scenarios

300 -
250
200

150

100 ——

0 500 1000 1500 2000 2500 3000 3500 4000

Instance P7. || = 16386 scenarios

1600
1400
1200 -
1000
800
600

400
—

200

0 2000 4000 6000 8000 10000 12000 14000 16000

We can observe in Table 5 that an appropriate partitioning of the set of scenarios into
clusters can produce much tighter feasibility cuts identification and, then, smaller elapsed time
to obtain the optimal solution to the original problem in the 4 replicas of the biggest instance
from our testbed, instance P7. This advantage is very remarkable, since we have obtained
elapsed times smaller in one order of magnitude, at least, than the required elapsed time by
using the TBD scheme. (Notice that the LP COIN-OR optimization has been interrupted
after 2 hours of computation without getting the solution of the problem).

13



Table 5: Performance of the TBD and CBD schemes for instance P7

|| = 16384 scenarios P71 Tcorn: — P72 TcoIn : —
P 7] Ffc it T #fc it T
1 16384 — — — — — —
2 8192 — — — — — —
4 4096 — — — — — —
8 2048 445 447 3257.84 413 415 2764.80
16 1024 358 360 1164.69 417 419 1251.65
32 512 354 356 659.04 432 435 661.06
64 256 384 386 479.54 318 320 424.70
128 128 362 364 354.85 365 367 297.94
256 64 349 351 297.57 375 377 276.80
512 32 310 312 301.95 385 387 280.77
1024 16 352 354 318.64 367 369 270.34
2048 8 327 329 296.80 349 351 267.54
4096 4 313 315 320.27 386 388 286.48
8192 2 326 328 381.21 356 358 369.51
16384 1 299 301 573.95 276 278 583.34
P73 Tcory : - P74 Tcory : -

#fc #it T #fc #it T

411 413 3146.12 401 403 2995.13

398 400 1339.04 363 365 1156.97

387 389 603.91 388 390 631.81

363 365 352.38 408 310 439.87

390 392 302.05 318 320 304.74

310 312 225.48 306 308 250.19

446 448 279.41 296 398 291.33

322 324 255.20 323 325 296.96

342 344 256.90 372 374 263.42

299 301 307.02 327 329 322.97

297 299 328.87 325 327 387.25

287 389 479.66 273 275 569.50

7 Conclusions
We have proposed in this note an efficient cluster decomposition approach for identifying

tighter feasibility cuts in Benders decomposition for solving large-scale two stage stochastic
linear problems. Some computational experience is presented, where we observe the favorable
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performance of the proposed approach versus the performance of traditional Benders decom-
position. Although more computational experience is required, the new approach seems very
promising based on our provisional results.

8 Appendix

In the Appendix we report the detail of the numerical results for each of the small instances, P1
to P6, represented graphically in Figure 1. For each one, we have generated four replicas, Px.1
until Px.4. The corresponding elapsed time for each cluster partitioning is also graphically
represented in Figure 1.

Table 6: Performance of the TBD and CBD schemes for instances P1 to P6

P1. | =4 scenarios P1.1 Tcorn: 0 P12 Tecoin: 0
P ] #fc  #it T #le_ #it T
1 4 9 11 0.11 8 10 0.16
2 2 8 10 0.14 10 12 0.22
4 1 9 11 0.31 9 11 0.24

P13 Tcorn: 0.078 P14 Tcoin: 0
#fc it T #fc it T
7 9 0.16 9 11 0.18
9 11 0.21 8 10 0.20
7 9 0.24 10 12 0.26

P2. || =16 scen. P21 Tcoin : 0 P22 Tcoin : 0
P ] #fc  #it T #le_ #it T
1 16 23 25 0.33 19 21 0.42
2 8 23 25 0.30 22 24 0.39
4 4 25 27 0.36 21 23 0.44
8 2 26 28 0.41 26 28 0.56
16 1 24 26 0.45 21 23 0.63

P23 Tcorn: 0.015 P24 Tcorn: 0.015
#fc it T #fc it T
18 20 0.39 25 27 0.38
23 25 0.41 25 27 0.40
23 25 0.38 23 25 0.44
23 25 0.58 24 26 0.51
19 21 0.51 22 24 0.61
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P3. |Q| = 64

scen.

p |27
1 64
2 32
4 16
8 8
16 4
32 2
64 1
P4. |Q] =256 scen.
p 1€2°]
1 256
2 128
4 64
8 32
16 16
32 8
64 4
128 2
256 1

P3.1 Tcorn: 0.016
#fc  #it T
45 47 1.48
47 49 0.98
50 52 0.89
50 52 0.80
46 48 0.76
47 49 1.09
43 45 1.20
P3.3 TCOIN : 0
#fc  #it T
58 60 1.76
56 58 1.34
50 52 1.10
53 55 1.08
44 46 0.97
45 47 1.07
43 45 1.56
P4.1 Tecorn: 0.046
#fc it T
105 107 17.00
91 93 7.33
91 93 4.31
93 95 3.28
79 81 2.64
89 91 2.56
82 84 3.17
74 76 3.40
87 89 4.99
P43 Tcorn: 0.062
#fc it T
86 88 14.67
103 105 8.58
94 96 7.05
88 90 5.11
86 88 4.35
82 84 4.43
94 96 5.21
95 97 6.16
86 88 8.29
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P3.2 Tcorn: 0.015
#fc it T
48 50 1.56
52 54 1.35
49 51 1.13
48 50 1.29
49 51 1.04
50 52 1.33
42 44 1.78
P3.4 Tcorn: 0.031
#fc it T
48 50 1.62
48 50 1.24
48 50 1.07
51 53 1.11
53 55 1.09
54 56 1.56
47 49 1.70
P4.2 Tcorn: 0.047
#fc it T
100 102 23.03
100 102 12.70
87 89 7.79
85 87 5.61
88 90 3.96
88 90 3.97
87 89 4.28
88 90 5.21
80 82 6.64
P44 Tecorn: 0.062
#fc it T
85 87 13.77
85 87 7.58
91 93 4.63
93 95 4.04
89 91 4.83
90 92 5.10
77 79 3.45
78 80 4.60
74 76 6.27




P5. |Q| = 1024

scenarios

D |27
1 1024
2 512
4 256
8 128
1 64
32 32
64 16
128 8
256 4
512 2
1024 1
P6. |©2] = 4096 scenarios
b 127
1 4096
2 2048
4 1024
8 512
16 256
32 128
64 64
128 32
256 16
512 8
1024 4
2048 2
4096 1

P5.1 Tcorn: 0.592
#fc it T
144 146 194.05
154 156 81.71
149 151 39.17
166 168 22.23
148 150 14.63
160 162 10.94
144 146 9.35
161 163 9.86
141 143 10.64
137 139 13.92
141 143 19.64
P53 Tcoin : 0.796
#fc it T
173 175 252.80
183 185 106.37
173 175 48.43
156 158 23.34
152 154 15.51
146 148 12.69
139 141 11.73
154 156 12.71
153 155 14.37
152 154 16.90
120 122 22.40
P6.1 Tcorn: 4.992
#fc it T
289 291 3846.32
290 292 1297.47
261 263 472.74
302 304 257.88
246 248 112.94
253 255 71.43
250 252 53.13
231 233 44.13
247 249 43.09
258 260 47.54
217 219 52.21
232 234 62.20
182 184 116.56
P6.3 Tcorn: 16.499
#fc it T
277 279 7086.46
285 287 1432.47
277 279 551.19
276 378 255.34
281 283 133.61
276 278 84.89
247 249 57.39
308 310 58.65
234 236 51.47
219 221 51.10
216 218 59.71
210 212 79.31
232 234 103.37
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P5.2 Tcoin: 0.749
#fe it T
158 160 219.44
152 154 88.55
184 186 49.31
154 156 23.27
159 161 16.58
144 146 12.86
141 143 12.53
139 141 13.10
139 141 14.85
153 155 18.90
119 121 25.23
P54 Tcorn: 0.762
#fc it T
172 174 263.08
162 164 96.79
155 157 46.35
150 152 25.84
163 165 18.77
168 170 15.79
150 152 14.31
161 163 15.73
145 147 17.67
148 150 21.35
143 145 30.45
P6.2 Tcoin: 16.592
#fc it T
293 295 3971.66
265 264 1344.07
266 268 585.88
276 278 251.72
254 256 143.63
225 227 83.36
223 225 57.25
240 242 60.54
252 254 54.21
260 262 65.46
227 229 76.47
235 237 92.23
205 207 137.92
P64 Tcorn:  21.230
#fc it T
243 245 3229.13
269 271 1387.23
252 254 537.40
276 278 262.32
247 248 126.45
212 214 80.05
199 201 62.74
194 196 58.05
241 243 58.79
245 247 63.52
214 216 69.30
213 215 91.89
170 172 148.15




References

1]

2]
3]

[4]

[5]

6]

7]

8]

9]

[10]

[11]

[12]

[13]

J. Benders. Partitioning procedures for solving mixed variables programming problems.
Numerische Mathematik 4:238-252, 1962.

J. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer, 1997.

G.B. Dantzig and P. Wolfe. The decomposition principle for linear programs. Operations
Research 8:101-111, 1960.

L.F. Escudero, M.A. Garin, M. Merino and G. Pérez. A two-stage stochastic integer
programming approach as a mixture of Branch-and-Fix Coordination and Benders De-
composition schemes. Annals of Operations Research 152:395-420, 2007.

L.F. Escudero, M.A. Garin, M. Merino and G. Pérez. A general algorithm for solving
two-stage stochastic mixed 0-1 first stage problems. Computers and Operations Research
36:2590-2600, 2009.

L.F. Escudero, M.A. Garin, M. Merino and G. Pérez. On BFC-MSMIP strategies for
scenario cluster partitioning, Twin Node Family branching selection and bounding for
multistage stochastic mixed integer programming. Computers and Operations Research

37:738-753, 2010.

L.F. Escudero, M.A. Garin, M. Merino and G. Pérez. An exact algorithm for solving large-
scale two-stage stochastic mixed integer problems: some theoretical and experimental
aspects Furopean Journal of Operational Research 204:105-116, 2010.

INFORMS. COIN-OR: COmputational INfrastructure for Operations Research.
www.coin-or.org, 2010.

P. Kall and S.W. Wallace. Stochastic Programming. John Wiley and Sons, Chichester,
UK, 1994.

G. Pérez and M.A. Garin. On downloading and using COIN — OR for
solving linear/integer optimization problems. Working paper series Biltoki.
DT.2010.05,http:/ /econpapers.repec.org/paper/ehubiltok /201005.htm. Basque Country
University UPV/EHU, Bilbao, Spain, 2010.

R.T. Rockafellar and R.J-B Wets. Scenario and policy aggregation in optimisation under
uncertainty. Mathematics of Operations Research 16:119-147, 1991.

R. Van Slyke and R-B. Wets. L-shaped linear programs with application to optimal
control and stochastic programming. SIAM Journal on Applied Mathematics 17:638—
663, 1969.

R-B. Wets. Programming under uncertainty: the equivalent convex program. SIAM
Journal on Applied Mathematics 14:89-105, 1966.

18



	caratula_dt201008
	dt201008_sincaratula

