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Abstract 

 
Strong persistence is a common phenomenon that has been documented not only in the levels but 

also in the volatility of many time series. The class of doubly fractional models is extended to 

include the possibility of long memory in cyclical (non-zero) frequencies in both the levels and the 

volatility and a new model, the GARMA-GARMASV (Gegenbauer AutoRegressive Mean Average - 

Id. Stochastic Volatility) is introduced. A sequential estimation strategy, based on the Whittle 

approximation to maximum likelihood is proposed and its finite sample performance is evaluated 

with a Monte Carlo analysis. Finally, a trifactorial in the mean and bifactorial in the volatility version 

of the model is proved to successfully fit the well-known sunspot index. 
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1. Introduction 

Among all the distinct features of a time series, cycles are one of the most complex and difficult to 

detect. First of all, in contrast with seasonality, cycles take place at an unknown period that requires to be 

estimated in order to understand the intrinsic characteristics of the phenomenon under analysis. Moreover the 

concept of cycle is usually associated with a period longer than that corresponding to a seasonal component, 

which makes difficult its detection separately from a trend. Secondly, cycles may display all the range of 

variations as any other feature of the series, for example stationarity versus nonstationarity or deterministic 

versus stochastic cycles, and in alignment different models have been historically proposed to capture a 

cyclical evolution.  

The original approach to modelling cycles relied on the Fourier or Fixed Frequency Effects regression 

that can be expressed as 

Xt = µ + α·cos(ωt) + β·sin(ωt) + εt 

where α and β are zero mean uncorrelated random variables with equal variance, εt is a stationary sequence 

of random variables independent of α and β, and ω is the frequency that corresponds to a cyclicity of period τ 

= 2π/ω. This model can be easily extended to cover a more complicated behaviour by adding more linear 

components of cosine and sine terms in different frequencies and allows to accommodate cycles that manifest 

a systematic evolution which strictly repeats every period and which can be more or less apparent depending 

on the size of the variance of α and β relative to that of εt.  

Nevertheless, the rigidity of the Fourier regression cannot fit a cyclical behaviour that slightly evolves 

with time. For that purpose stochastic cyclical models were proposed to allow for some time evolution of the 

cycle. One of the first proposals was the autoregressive AR(2) process  

( )2
1 2 t t1- L - L X = εφ φ  

for εt ∼ iid(0,σ2) and L the lag-shift operator (Lk Xt =Xt-k ). Yule (1927) showed that the AR(2) displays a quasi-

periodic behaviour when the roots of the polynomial (1-φ1y-φ2y
2) are complex, which implies φ2<-(φ1)

2/4. In 

contrast with the fixed frequency effects model, the cyclical pattern of this process fades out with time. This 

difference turns up clearly in the frequency domain. Whereas the fixed frequency effects model possesses a 

non continuous spectral distribution function with a jump at frequency ω, the autoregressive AR(2) shows a 

continuous spectral distribution function whose spectral density holds a peak at frequency ω=cos-1[- φ1(1-

φ2)/4φ2] that can be more or less acute depending on the persistence of the cyclical behaviour. The parameter 

that governs this persistence is φ2 and the model has a stronger serial dependence as φ2 approaches -1. The 

stationary complex boundary for AR(2) processes is located at φ2 = -1, where unit root cycles can be 
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generated for any value of φ1 in the range [-2,2]. In unit root cycles, as in any unit root series, the effect of a 

shock in the innovations is permanent and the variance explodes with time.  

Between these two extreme categories of stochastic cycles there is scope for a class of intermediate 

models whose periodic behaviour is more persistent than that of the AR(2) processes but at the same time 

their variance does not diverge to infinity and the effect of a stochastic shock finally dies out, although quite 

slowly. These are the cyclical or Gegenbauer long memory (GLM) models of Andel (1986) or Gray et al. 

(1989), defined as 

( )d2
t t1- 2Lcos +L X = εω  

where εt is iid(0,σ2), ω ∈ (0,π] and d is the memory parameter that can be non-integer and measures the 

degree of persistence of the cycle at the frequency ω. The GLM models are extended to GARMA(p,d,q) 

(Gegenbauer AutoRegressive Moving Average) by allowing εt to be a stationary and invertible ARMA(p,q). If 

d>0 the spectral density function diverges at ω indicating a persistent cyclical behaviour. These processes are 

stationary for d<½ if |cos(ω)|<1 or d<¼ if |cos(ω)|=1 and mean reverting for d<1 or d<½ under respectively 

identical conditions. Its spectral or pseudospectral (in the nonstationary case) density function is defined as 

( ) ( )-2d

x εf ( ) = 2 cos - cos fλ  ω λ  λ   

which behaves around ω as  

-2d

xf ( + ) ~ Cλ ω λ
 

as λ → 0, where a ~ b means that a/b→1, and for C a finite positive constant (see Chung, 1996, Arteche and 

Robinson, 2000, or Arteche, 2002). This behaviour is common in economic series due to a seasonal 

component and the business cycle, in hydrological series affected by the seasonality and the Joseph effect, 

similarly in climatology and agronomy and also in astronomy with the periodicity of the sunspots index. 

Chung (1996) shows that the autocovariance of a GLM processes with a white noise εt is 

( ) ( ){ } ( ) ( ) ( ){ }2 1 1 12d k2d 2d2 2 2
1 1k k2 2

k 1 2d 2sin P cos 1 P cos
2

− − −ε
− −

σγ = Γ − ω ω + − − ω
π

 (1) 

where ( )b
aP z  is the associated Legendre function and k indicates the lag. Figure 1 shows the behaviour of 

γ(0) as a function of d and ω. As we can see, the variance of a GLM increases together with the memory 

parameter and as ω tends to 0 or π. 
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Figure 1. γ(0) of a GLM process as a function of d and ω. 

Along with the intrinsic features of frequency and persistence, dynamic heteroskedasticity has been a 

key concept since the seminal paper by Engle (1982), who proposes an autoregressive conditional 

heteroskedasticity (ARCH) model to capture the time-varying volatility of inflation rates in the United Kingdom. 

That paper originated a vast number of extensions to conform the volatility characteristics of many economic 

and financial series. They are characterized by a conditional variance that is fully driven by past observations. 

The SV models, introduced by Taylor (1986), are a stochastic alternative to the ARCH processes and 

successive extensions in which the volatility component is driven by different innovations to those affecting the 

levels. 

Recently, particular attention has been paid to the persistence of the volatility, since long memory in 

second order moments has become one stylized fact in financial time series (Arteche, 2004, 2006, Hurvich et 

al., 2005, Frederiksen and Nielsen, 2008, Frederiksen et al 2011). Harvey (1998) and Breidt et al. (1998) 

proposed the Long Memory SV model (LMSV) with a long memory structure of the volatility in the frequency ω 

= 0. However less attention has been paid to the persistence of cyclical or seasonal components of the 

volatility and traditionally deterministic components have been used if such behaviour is apparent. Recent 

attempts to allow for a stochastic persistent cyclical component in the volatility are Bordignon et al. (2007) and 

Arteche (2010). The GARMASV models, introduced in next section, extend this possibility by allowing long 

memory also at non-zero frequencies. Although dynamic heteroskedasticity has been extensively analyzed in 
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financial and economic time series, such behaviour has also been observed in other areas such as network 

traffic (Chang and Tsai, 2009) or astronomy (Koenig et al., 1997) where persistence and the existence of 

cycles are likely to jointly occur not only in the levels but also in higher order moments. 

The contribution of this paper is twofold. Section 2 proposes a model that allows for standard and 

cyclical long memory in levels and volatility, which are characteristics that are likely to jointly occur in some 

time series (see for example Arteche 2010 for a series of inflation or the application in Section 5), discussing 

some issues such as stationarity and the existence of moments. The complexity of these models makes 

difficult an appropriate estimation of the parameters of interest. The second main contribution is a sequential 

method of estimation of the parameters of the levels and volatility equations. This method is based on the 

Whittle approximation of maximum likelihood and is described in Section 3. Section 4 shows the finite sample 

performance of such estimation strategy via Monte Carlo. Section 5 pays particular attention to the 

persistence and cyclical behaviour of the daily sunspot series, which shows clear evidence of a persistent 

cycle in both levels and volatility. The former has been analyzed by Gil Alaña (2009) but Section 5 shows that 

a similar persistent cycle also exists in volatility. Although the sunspot series has been extensively analyzed in 

a vast number of papers, we are not aware of any literature dealing jointly with cyclical persistence in the 

levels and volatility, which, as we show below, is a prominent characteristic of the series. Finally Section 6 

concludes. 

2. GARMA-GARMASV models  

The model we propose is based on a GLM for the levels  

( )mean

meand2
t t1- 2Lcos +L x = yω , 

with yt a Stochastic Volatility (SV) process defined by 

yt = 
1

t2 h
*σ e εt 

for εt an iid(0, 2

εσ ) sequence with σ * a finite constant and the volatility component ht being also a GLM model 

of the form 

( )vol

vold2
t t1- 2Lcos +L h =ω η , 

with volatility innovations ηt that are uncorrelated at all leads and lags with εt and where the subindices mean 

and vol are self explaining. We assume that the means of xt and ht are zero. A different from zero mean, either 

in levels or in volatility, would not affect the results obtained hereafter because the estimation strategy we 

propose is implicitly mean corrected by ignoring frequency zero. If ηt are iid(0, 2

ησ ) we obtain what we call the 

GLM(dmean,ωmean)–-GLMSV(dvol,ωvol) model where only long memory effects are considered. By contrast, if εt 
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and ηt are allowed to be invertible and stationary ARMA processes we denote such a process as 

GARMA(p,q,dmean,ωmean)–GARMASV(s,r,dvol,ωvol) model, where p,q (s,r) are the orders of the AR and MA 

polynomials respectively of the mean (volatility) process. Finally, we can extend these models to include the 

possibility of more than one long memory cyclical frequency in the levels and/or the volatility and thus we get 

the (k,k*)-factor GARMAk(p,q,Dmean,Ωmean)–GARMASVk*(s,r,Dvol,Ωvol) where Dmean={dmean(1), dmean(2), …, dmean(k)} 

Ωmean={ωmean(1), ωmean(2), …, ωmean(k)}, Dvol={dvol(1), dvol(2), …, dvol(k*)} and Ωvol={ωvol(1), ωvol(2), …, ωvol(k*)}.  

In the GARMA-GARMASV model dynamic heteroskedasticity is modelled within a SV framework. 

Bordignon et al. (2007) considered a similar extension for the possibility of a persistent cycle in the volatility 

but in a GARCH framework. However, as shown by Giraitis et al. (2000), stationarity and long memory of the 

squares are incompatible in ARCH and GARCH models such that a strong persistence in the squared 

observations necessarily implies an explosive variance. The SV models we propose here allow for a much 

more flexible specification of persistence in levels and volatility and moments finiteness such that long 

memory in the levels and volatility is consistent with stationarity. As usual, the existence of more than one 

innovation complicates the estimation of SV models. To make accessible the estimation of such processes we 

propose in the next section a simple two step procedure that is easily implementable and has a good 

behaviour in finite samples.  

Under stationarity of the volatility component ht, which entails dvol<0.5 if |cos ωvol| < 1 or dvol < ¼, if 

|cos ωvol| = 1, the existence of the moments of ht are guaranteed by the finiteness of the moments of ηt and its 

covariance stationarity. Then, the finiteness of the moments of εt and its independence of ηt ensures the finite 

condition of the moments of powers of yt and of its absolute value. Consider, for an integer s>0 

2h5.0s

t

s

t rEeεEyE t π= s . 

Since  

( )∑
∞

=

=
0j

tj
5.0hs5.0 sh5.0H

!j

1
ee t  

for Hj Hermite polynomials, then  

( )∑
∞

=

=
0j

tj
5.0hs5.0 sh5.0EH

!j

1
eeE t  

which is finite under stationarity of ht with finite moments. Moreover, if εt is iid then yt is a martingale difference 

sequence. Covariance stationarity of yt is then guaranteed by the covariance stationarity of ht and the iid 

condition (with finite second moments) of εt. 
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The transformation |yt|
s for some s>0 is commonly used as an approximation to the volatility. The 

stylized fact of strong persistence in the volatility is then measured by the lag-j correlation of |yt|
s. Robinson 

(2001) and Surgailis and Viano (2002) show that the lag-j autocovariance of |yt|
s is proportional to that of the 

volatility component ht under some assumptions. Robinson required Gaussianity but Surgailis and Viano 

relaxed that condition imposing instead stationarity of ht and finiteness of E|εt|
u and Ee u|εt| for all u>0, which in 

turn holds under Gaussianity of εt.  

The martingale difference characteristic of yt ensures the covariance stationarity of xt in GLM-GLMSV 

models as long as dmean<½ for |cos ωmean|<1 and dmean<¼ for |cos ωmean|=1, and the usual restrictions for the 

roots of the AR polynomials. 

The GARMASV model can be transformed into a linear model by taking the logarithm of the squares 

of yt to obtain 

( )2
t t tlog y = +h +µ ξ  

where, if εt is standard normal, ( ) ( )2 2
t t tlog E log ξ = ε − ε   is a white noise distributed as the logarithm of χ2 with 

one degree of freedom and 2
ξσ =π2/2, ht is as before and µ is a scale parameter. Thus, the logarithm of the 

squares can be represented as a cyclical long memory process with a non-normal additive perturbation. The 

effect of the added noise in the estimation of the persistence of the signal has been analyzed in a number of 

papers, revealing the large bias caused by the noise in the estimators of the memory parameter (Arteche, 

2004, Deo and Hurvich, 2001, Haldrup and Nielsen, 2007). Some proposals for bias reduction that account for 

the added noise have been proposed (Arteche 2006, Hurvich et al., 2005, Frederiksen and Nielsen, 2008, 

Frederiksen et al 2011). 

The GARMA-GARMASV models show a cyclical persistent evolution where the variance of the series 

also evolves periodically. The most visually identifiable example corresponds to a cyclical series where the 

variability of the consecutive waves varies in a repetitive manner, which becomes very apparent as it usually 

affects the amplitude of the cycle (but not necessarily), and at the same time the period remains mostly stable.  

3. Estimation of GARMA-GARMASV models 

Parametric maximum likelihood estimation of SV models in the time domain is of considerably difficult 

implementation due to the presence of two different innovations and the nonlinearity of the model, which is 

aggravated by the complexity of the GARMA-GARMASV models. Substantially simpler implementation is 

achieved in the frequency domain by the asymptotic approximation to maximum likelihood based on the so 

called Whittle function as proposed by Breidt et al. (1998) and Harvey (1998) for an ARFIMA volatility 
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component with no linear correlation in the levels. We extend here this strategy in two directions. First we 

consider the case of cyclical long memory, extending the possibility of spectral poles to any frequency in the 

Nyquist band. Second we allow for a richer structure in the linear dependence of the levels, permitting in 

particular the possibility of first order cyclical long memory.  

Fitting a GARMA-GARMASV model to an observed series can be accomplished by extracting the 

conditional mean dependence components prior to facing the estimation of the volatility structure. When we 

move far from economic and financial time series, where the periodicity usually turns up in the form of 

seasonality, and consequently with known frequencies, the first challenge resides in the identification of the 

cyclical frequency or frequencies. This can be made by inspection of the periodogram and considering its 

consecutive maxima as point estimators of potential long memory frequencies, as suggested by Yajima (1996) 

and Hidalgo and Soulier (2004). Note that consistency of this estimator has only been proved under iid 

innovations with finite eighth moment ruling out the possibility of a dynamic volatility. Based on the martingale 

difference characteristic of yt we believe that the maximizer of the periodogram remains a consistent estimator 

of the spectral pole in a general GARMA-GARMASV context. Once we have identified the frequency or 

frequencies with spectral poles we proceed to estimate the GARMA model proposed for the levels by means 

of the Whittle approach, usually known as Quasi Maximum Likelihood (QML) in the frequency domain. 

Specifically, in order to estimate the memory parameter in the levels of the series, we will use the discrete 

version by Graf (1983), simplified for linear models, that can be written as  

( )
( )

ˆ
;Θ

λπΘ =
λ Θ

∑′ x j

QML
j

I2
arg min

T h
  

where Σ’ runs for all Fourier frequencies of the form λj = 2πj/T, j=1,...,[T/2], (with a finite spectral density 

function, the omission of the zero frequency in the estimation implies mean correction such that the estimation 

of an unknown mean is not needed), T is the sample size, Ix(λj) is the periodogram of xt, t = 1,...T, defined as 

( ) j

2T
i t

x j t
t 1

1
I x e

2 T
− λ

=

λ =
π ∑ , 

h(λj;Θ) is the power transfer function of the process we intend to fit and Θ is the set of parameters to be 

estimated; in the case of GLM models Θ = dmean and 

( )
mean-2d

j mean j mean
j mean

+ -
h ;d = 4sin sin

2 2

λ ω λ ω   
λ    

   
. 

Such strategy has been proved to be valid by Zaffaroni (2003) for the estimation of the ARMA 

parameters in the levels when the volatility has the form of a nonlinear moving average, closely related with 

SV models, that allows for a wide range of forms of strong persistence in the volatility. Shao (2010) extended 
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this result to cover standard long memory in levels but only short memory in volatility. Similarly Diongue and 

Guegan (2004) show the asymptotic properties of Whittle estimation for k-factor GARMA models in the levels 

with GARCH innovations that do not allow for long memory in volatility. All of them show consistency and 

asymptotic normality with a √T rate of convergence. We are not aware of any work dealing with the asymptotic 

properties of the Whittle estimator when both levels and volatility have long memory. The simulation results in 

next section shed some light on this issue, showing at least its good finite sample properties although further 

research in this area seems necessary. 

In order to estimate the parameters of the structure of the volatility, we first calculate the residuals of 

the first order model estimated in the previous step and work on the transformed series ( )ˆ 2
tlog y , which, as we 

have seen, takes the form of a perturbed long memory model. Therefore, the linear version of the QML 

estimator cannot be used in this second stage of the estimation process. In this case, we will use the complete 

discrete QML estimator defined as  

( ) ( )
( ) ( )

Ψ

 λπ  Ψ = + λ Ψ
 λ Ψ
  

∑ ∑′ ′
2
t

jˆlog y

QML j

j

I2ˆ argmin log f ;
T f ;

 

where the sum runs for all Fourier frequencies where ht (and consequently ( )ˆ 2
tlog y ) has a finite spectral 

density function, ( )2 2
vol, ,dη ξΨ = σ σ  and  

( )
vol2d2 2

j vol j vol2 2
j volf ; , ,d 4sin sin

2 2 2 2

−

η ξ
η ξ

λ + ω λ − ωσ σ   
λ σ σ = +   π π   

. 

Again, the need to estimate an unknown mean for the volatility equation is eluded by omitting the 

zero frequency. If such estimation is required, the sample mean, which remains consistent but looses 

efficiency with respect to the short memory case, could be used In GLMSV models. As in the analysis of the 

mean levels, ωvol can be selected by any of the techniques existing in the literature, such as the maximizer of 

the periodogram of the transformed series. In a sense we follow here the strategy suggested by Breidt et al. 

(1998), Harvey (1998) and Perez and Ruiz (2001) but extended to the cyclical case. The validity of such a 

procedure has been recently proved by Zaffaroni (2009) for a wide class of stochastic volatility and EGARCH 

related models which allow for short and long memory, including the cyclical GLMSV model defined for yt. 

Under some moment restrictions on log ε2
t and ηt Zaffaroni shows consistency and asymptotic normality of 

ΨQMLE with a √T rate of convergence. Note that Gaussianity neither of εt nor of ηt are required. We work 

however with residuals instead of observed series and no asymptotic results are yet available in this case. The 

√T-consistency of estimators of the parameters in the levels indicates that the consistency of the estimators of 

the volatility parameters will probably hold, but the asymptotic distribution will surely be affected, at least in the 
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asymptotic covariance matrix, by the use of residuals instead of observables. However, the results of the 

Monte Carlo in next section suggest that this two step strategy can remain valid in this more complex 

framework. 

Alternatively, semiparametric estimates of the memory parameter can also be obtained by means of 

a local version of the Whittle function. However, although this estimator remains consistent in a large number 

of situations, it is subject to a large bias caused by the added noise in the log of squares equation (e.g. 

Arteche, 2004, 2006; Haldrup and Nielsen, 2007). Moreover its performance relies heavily on a user chosen 

bandwidth parameter and it is not clear how to optimally select such quantity. With these considerations we 

focus here on more efficient parametric estimation techniques, acknowledging the risk of inconsistencies 

caused by misspecification of the models. 

4. Finite sample performance 

We have explored the following combinations of the four parameters ωmean, ωvol, dmean and dvol. On 

one hand, the frequencies range from π/10 to 9π/10, incrementing by π/10; on the other, the memory 

parameters range from 0.05 to 0.5, incrementing by 0.05. We have included this last case of non-stationarity 

as a natural boundary of our parametrical space. Therefore 8100 combinations were tested in two different 

scenarios of known and unknown frequencies with 500 replications in each, obtaining an overall amount of 

8.100.000 estimations of the parameters dmean and dvol. The chosen sample size, T = 3500, is in coherence 

with the huge availability of astronomical data, that have been registered regularly over four centuries 

(Ballmoos et al., 2009; Vaquero, 2007) and of financial data where SV models are especially useful. The GLM 

structures of the samples were generated following the simulating method described by Arteche and Robinson 

(2000) with ηt and εt both standard Gaussian and independent.  

In order to assess the performance of the two step QML method proposed in the previous section the 

following indicators were calculated in the 500 replications of every parametrical combination. We provide 

below the formulae regarding the estimation of dmean, the corresponding expressions for dvol are similarly 

defined. The legend is: i = 1 … 9 refer to the different levels of ωmean = π/10 … 9π/10, j = 1 … 9 to ωvol, k = 1 … 

10 to dmean = 0.05 … 0.5 and finally l = 1 … 10 to dvol.  

( ) ( )∑
=

=
500

1rep

rep,l,k,j,id̂
500

1
l,k,j,id̂ , 

( ) ( ) ( )
2500

1rep

l,k,j,id̂rep,l,k,j,id̂
500

1
l,k,j,ivar ∑

=




 −=   and 

( ) ( ) ( )ˆ
mean 0

bias i, j,k,l = d i, j,k,l - d k  
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The estimations were carried out using MATLAB 7.0´s Optimization toolbox, more specifically the 

minimization rutines use a trust region method. Next tables show a selection of the results. All the remaining 

results are available upon request. 

Tables 1 and 2 display the results of estimation of dmean for binary combinations of parameters and 

Table 3 the corresponding results for dvol. The figures in the tables are calculated as averages of the values 

obtained with the parameters not indexed in the tables. For example, in Table 1 the bias is obtained as  

( )
( )

l

∑∑
j

bias i, j,k,l

bias i,k =
90

. 

In all these results the frequency of the cycle is assumed to be known. In order to asses if a normal 

distribution can be a good approximation of the distribution of the QML estimator, we also checked 

Gaussianity of the distribution of the estimates in every set of 500 replications using a standard Pearson´s χ2 

test at 5% significance level. The proportion of rejections for the combinations of parametrical values in each 

level of the process is included in Tables 1 and 3.  

Some of the conclusions that can be drawn from Table 1 are the following: 

• The bias of estimation of dmean seems consistently positive for memories dmean > 0.40 and negative below. 

It is larger in absolute terms for central frequencies and, as can be expected, for less persistent 

memories.  

• The standard error (SE) of estimation shows no dependence on the parametric value of the memory and 

increases for central frequencies. Central frequencies, therefore, are determinant to worsen the 

performance of the QML estimator with both higher bias and higher SE. 

• Inference based on the Gaussian distribution seems reliable for any parametric combination. 

Table 2 shows the results of estimation of dmean for the combinations of values of the volatility 

parameters, which are neccesary to understand some of the results displayed in Table 3. They can be 

summarized as follows: 

• No combination of the volatility parameters seems to affect the bias of the QML estimator of dmean except 

for the non-stationary value of dvol = 0.50 where a dependence on ωvol also takes place as the bias tends 

to be smaller for low frequencies and larger in absolute value for high frequencies. 

• The standard error of estimation of dmean shows a clear dependence on the variance of the volatility 

process ht and so it increases for non central ωvol and the more persistent values of dvol, which correspond 

to a larger variance of ht. 
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 ωmean 

dmean  π/10 2π/10 3π/10 4π/10 5π/10 6π/10 7π/10 8π/10 9π/10 

0.05 -0,0013 -0,0016 -0,002 -0,0026 -0,0031 -0,0024 -0,0017 -0,0013 -0,0011 
 (0,0116) (0,0136) (0,0151) (0,0169) (0,0176) (0,017) (0,0155) (0,0133) (0,0114) 

Rejection 
proportion 

0,1222 0,1 0,0444 0,0444 0,1222 0,0778 0,0667 0,0778 0,0667 

0.10 -0,0013 -0,0014 -0,0018 -0,0025 -0,0026 -0,0024 -0,0016 -0,0014 -0,001 
 (0,0115) (0,0132) (0,0152) (0,0168) (0,0173) (0,0166) (0,0154) (0,0137) (0,0114) 

Rejection 
proportion 

0,0889 0,1 0,0556 0,1 0,0444 0,0556 0,0778 0,0778 0,1 

0.15 -0,0012 -0,0014 -0,0018 -0,0022 -0,0025 -0,0021 -0,0015 -0,0012 -0,001 
 (0,0114) (0,0134) (0,0149) (0,0166) (0,0177) (0,0168) (0,0153) (0,0136) (0,0114) 

Rejection 
proportion 

0,0667 0,0667 0,0889 0,1111 0,0778 0,0778 0,0778 0,1222 0,0778 

0.20 -0,0011 -0,0013 -0,0016 -0,0019 -0,0023 -0,0019 -0,0012 -0,0009 -0,0009 
 (0,0114) (0,0129) (0,0154) (0,0167) (0,0175) (0,0165) (0,0151) (0,0134) (0,0114) 

Rejection 
proportion 

0,1111 0,1 0,1 0,0444 0,0667 0,0444 0,1111 0,0889 0,1111 

0.25 -0,0008 -0,0010 -0,0014 -0,0017 -0,002 -0,0016 -0,0012 -0,0007 -0,0006 
 (0,0116) (0,0136) (0,0157) (0,0169) (0,0174) (0,0168) (0,0155) (0,0139) (0,0116) 

Rejection 
proportion 

0,0889 0,0778 0,0556 0,0667 0,1 0,1111 0,0444 0,0667 0,0889 

0.30 -0,0008 -0,0007 -0,0010 -0,0012 -0,0015 -0,0013 -0,0007 -0,0006 -0,0004 
 (0,0116) (0,0135) (0,0152) (0,0168) (0,0173) (0,0169) (0,0156) (0,0138) (0,0114) 

Rejection 
proportion 

0,0444 0,0667 0,0778 0,0333 0,0667 0,0889 0,0444 0,0778 0,0778 

0.35 -0,0005 -0,0004 -0,0006 -0,0007 -0,0008 -0,0007 -0,0003 -0,0002 -0,0001 
 (0,0115) (0,0138) (0,0151) (0,0168) (0,0178) (0,017) (0,0151) (0,0134) (0,0114) 

Rejection 
proportion 

0,0667 0,0556 0,0556 0,0667 0,0667 0,0667 0,0667 0,0444 0,0222 

0.40 -0,0002 -0,0002 -0,00003 -0,0002 -0,0002 0,00005 0,0003 0,0003 0,0003 
 (0,0119) (0,0132) (0,0154) (0,0172) (0,018) (0,0169) (0,0159) (0,0136) (0,0116) 

Rejection 
proportion 

0,0889 0,0889 0,1 0,0556 0,0667 0,0889 0,0889 0,0556 0,1222 

0.45 0,0002 0,0004 0,0005 0,0008 0,001 0,0012 0,0009 0,0009 0,0007 
 (0,0115) (0,0137) (0,0152) (0,0173) (0,0178) (0,0172) (0,0153) (0,0137) (0,0119) 

Rejection 
proportion 

0,1444 0,0667 0,1 0,1 0,0444 0,0778 0,0889 0,0667 0,1222 

0.50 0,0004 0,0009 0,0013 0,0019 0,0022 0,0023 0,0022 0,0017 0,0013 
 (0,0117) (0,0136) (0,0156) (0,0174) (0,0181) (0,0176) (0,0157) (0,014) (0,0118) 

Rejection 
proportion 

0,0667 0,0333 0,0889 0,1 0,0667 0,1111 0,0889 0,0778 0,0444 

Table 1. Biases (standard errors) of estimation of dmean. Known frequencies (1). 

 ωvol 

dvol  π/10 2π/10 3π/10 4π/10 5π/10 6π/10 7π/10 8π/10 9π/10 

0.05 -0.0008 -0.0006 -0.0007 -0.0007 -0.0007 -0.0008 -0.0006 -0.0007 -0.0007 
 (0.0113) (0.011) (0.0109) (0.0109) (0.0109) (0.0108) (0.0106) (0.0108) (0.0107) 

0.10 -0.0007 -0.0007 -0.0008 -0.0007 -0.0007 -0.0007 -0.0007 -0.0007 -0.0008 
 (0.0116) (0.0112) (0.011) (0.0109) (0.0108) (0.0107) (0.0106) (0.0105) (0.0106) 

0.15 -0.0006 -0.0007 -0.0007 -0.0007 -0.0008 -0.0007 -0.0007 -0.0007 -0.0007 
 (0.0121) (0.0115) (0.0112) (0.0109) (0.0108) (0.0106) (0.0105) (0.0105) (0.0104) 

0.20 -0.0007 -0.0007 -0.0006 -0.0007 -0.0006 -0.0007 -0.0007 -0.0007 -0.0007 
 (0.0131) (0.0119) (0.0113) (0.0108) (0.0106) (0.0103) (0.0103) (0.0104) (0.0105) 

0.25 -0.0007 -0.0007 -0.0007 -0.0007 -0.0008 -0.0007 -0.0007 -0. 0008 -0.0007 
 (0.0144) (0.0125) (0.0114) (0.0109) (0.0105) (0.0103) (0.0102) (0.0103) (0.0105) 

0.30 -0. 0007 -0.0006 -0.0006 -0.0007 -0.0006 -0.0008 -0.0007 -0.0008 -0.0007 
 (0.0166) (0.0134) (0.0117) (0.011) (0.0105) (0.0102) (0.01) (0.0102) (0.0109) 

0.35 -0.0006 -0.0006 -0.0007 -0.0007 -0.0008 -0.0007 -0.0008 -0.0008 -0.0007 
 (0.0209) (0.015) (0.0124) (0.0111) (0.0104) (0.0101) (0.01) (0.0104) (0.0126) 

0.40 -0.0008 -0.0006 -0.0007 -0.0007 -0.0007 -0.0008 -0.0007 -0.0008 -0.0008 
 (0.029) (0.0171) (0.0131) (0.0114) (0.0104) (0.0101) (0.01) (0.0108) (0.0158) 

0.45 -0.0003 -0.0005 -0.0006 -0.0008 -0.0008 -0.0008 -0.0008 -0.0009 -0.0009 
 (0.041) (0.0213) (0.0146) (0.0119) (0.0106) (0.0104) (0.0106) (0.0118) (0.0213) 

0.50 0.0001 -0.0004 -0.0007 -0.0008 -0.0009 -0.0009 -0.0009 -0.0010 -0.0009 
 (0.0588) (0.0279) (0.0171) (0.0131) (0.0113) (0.0113) (0.0123) (0.0138) (0.0295) 

Table 2. Biases (standard errors) of estimation of dmean. Known frequencies (2). 
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 ωvol 

dvol  π/10 2π/10 3π/10 4π/10 5π/10 6π/10 7π/10 8π/10 9π/10 

0.05 -0.0023 -0.0037 -0.0059 -0.015 -0.0201 -0.0161 -0.0114 -0.0062 -0.0052 
 (0.059) (0.0782) (0.0822) (0.1059) (0.1286) (0.1103) (0.0954) (0.078) (0.0655) 

Rejection 
proportion 

0.4778 0.5667 0.7333 0.9778 0.9889 0.9778 0.8222 0.5889 0.6667 

0.10 0.0019 0.0001 -0.0038 -0.0077 -0.0135 -0.0108 -0.0054 -0.0025 -0.0005 
 (0.0472) (0.0594) (0.0696) (0.0833) (0.1012) (0.0949) (0.0745) (0.0676) (0.0549) 

Rejection 
proportion 

0.1222 0.1778 0.3556 0.6778 0.9333 0.7556 0.4667 0.3 0.2778 

0.15 0.0032 0.0015 -0.0008 -0.004 -0.0043 -0.0044 -0.0023 0.0002 0.0016 
 (0.0443) (0.0534) (0.0606) (0.0677) (0.0767) (0.0715) (0.0679) (0.0617) (0.0469) 

Rejection 
proportion 

0.1889 0.1222 0.1333 0.2667 0.4 0.4111 0.1889 0.1667 0.3 

0.20 0.0041 0.0026 0.0015 0.0002 -0.0013 -0.0007 0.0008 0.001 0.0022 
 (0.0426) (0.0499) (0.0556) (0.0597) (0.0674) (0.0613) (0.0591) (0.0577) (0.0473) 

Rejection 
proportion 

0.3 0.1556 0.0889 0.0778 0.1667 0.1444 0.1556 0.2111 0.2556 

0.25 0.0044 0.0034 0.0023 0.0018 0.0023 0.0023 0.0021 0.0028 0.0028 
 (0.0414) (0.0482) (0.0526) (0.056) (0.0576) (0.0555) (0.0566) (0.0514) (0.0475) 

Rejection 
proportion 

0.2111 0.0778 0.0444 0.0333 0.0889 0.0778 0.1111 0.1889 0.2778 

0.30 0.0047 0.0037 0.0035 0.0033 0.0037 0.0047 0.0038 0.0041 0.0031 
 (0.0409) (0.047) (0.0513) (0.053) (0.0537) (0.0539) (0.051) (0.049) (0.0424) 

Rejection 
proportion 

0.1333 0.0444 0.0889 0.0667 0.0889 0.1111 0.0889 0.1111 0.2111 

0.35 0.0047 0.0043 0.0048 0.0052 0.007 0.0057 0.0057 0.0053 0.0034 
 (0.0401) (0.0457) (0.0493) (0.0521) (0.0528) (0.0523) (0.053) (0.05) (0.0462) 

Rejection 
proportion 

0.1111 0.1 0.0778 0.1111 0.1222 0.0556 0.0889 0.0778 0.1222 

0.40 0.0032 0.0041 0.0059 0.0065 0.0085 0.0082 0.0082 0.0071 0.0004 
 (0.0396) (0.0453) (0.0485) (0.0506) (0.0524) (0.0567) (0.0497) (0.049) (0.0459) 

Rejection 
proportion 

0.1333 0.0667 0.1 0.0444 0.0556 0.1222 0.0444 0.1111 0.1556 

0.45 -0.0055 0.0005 0.0056 0.0087 0.0094 0.0106 0.0099 0.0068 -0.015 
 (0.0383) (0.0449) (0.0488) (0.051) (0.0521) (0.0515) (0.0502) (0.0509) (0.0609) 

Rejection 
proportion 

0.0778 0.0111 0.0667 0.1222 0.1333 0.0889 0.0333 0.1556 0.3667 

0.50 -0.0328 -0.0171 -0.0012 0.0069 0.0092 0.011 0.0087 0.0013 -0.0755 
 (0.0376) (0.0498) (0.0507) (0.053) (0.0542) (0.0544) (0.0519) (0.0594) (0.1025) 

Rejection 
proportion 0,1111 0,1889 0,1222 0,1 0,1333 0,1111 0,1889 0,3333 0,6444 

Table 3. Biases (standard errors) of estimation of dvol. Known frequencies. 

In our sequential procedure of estimation, the memory parameter of the volatility is estimated on the 

log of the squared residuals obtained filtering the original series with the estimated value of dmean. Hence, the 

properties of the estimation of dvol will be affected not only by the presence of a non normal additive noise term 

but also by the properties of the previous estimation of dmean. Hereafter we assume for simplicity that the εt are 

standard Gaussian, which is a usual assumption in the SV literature, and therefore the contribution of the 

perturbation to the spectral density of ( )ˆ 2
tlog y  is expressed as 

2

2 4
ξσ π=
π

 

leaving the parameters dvol and 2
ησ  as the arguments of minimization. 

In Table 3 we can see the results of the estimation of the memory parameter of the volatility. The 

main conclusions are: 
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 ωmean 

dmean  π/10 2π/10 3π/10 4π/10 5π/10 6π/10 7π/10 8π/10 9π/10 

0.05 -0,0158 -0,0216 -0,0256 -0,0284 -0,0296 -0,0286 -0,0256 -0,0211 -0,0156 

 (0,0292) (0,03) (0,0291) (0,027) (0,0263) (0,027) (0,0291) (0,0298) (0,0292) 

0.10 -0,0053 -0,0099 -0,0149 -0,0194 -0,0211 -0,0193 -0,0148 -0,0096 -0,005 

 (0,0159) (0,0234) (0,0296) (0,0335) (0,0347) (0,0335) (0,03) (0,0235) (0,0163) 

0.15 -0,0031 -0,0042 -0,006 -0,0079 -0,009 -0,0075 -0,0058 -0,004 -0,0028 

 (0,0117) (0,0153) (0,019) (0,0218) (0,0234) (0,0215) (0,0189) (0,0153) (0,0118) 

0.20 -0,0021 -0,0025 -0,0035 -0,0046 -0,0051 -0,0044 -0,0033 -0,0024 -0,0019 

 (0,0117) (0,0135) (0,0155) (0,017) (0,0179) (0,0172) (0,0154) (0,0133) (0,0116) 

0.25 -0,0016 -0,002 -0,0025 -0,0033 -0,0039 -0,0034 -0,0024 -0,0018 -0,0013 

 (0,0114) (0,0134) (0,0149) (0,0168) (0,0174) (0,0168) (0,0152) (0,013) (0,0114) 

0.30 -0,0013 -0,0016 -0,0019 -0,0026 -0,003 -0,0025 -0,0016 -0,0012 -0,0009 

 (0,0111) (0,0134) (0,015) (0,0166) (0,0174) (0,0166) (0,0154) (0,0131) (0,0112) 

0.35 -0,001 -0,0011 -0,0014 -0,0017 -0,0019 -0,0015 -0,0012 -0,0007 -0,0005 

 (0,0113) (0,0133) (0,0149) (0,0168) (0,0175) (0,0167) (0,0149) (0,0134) (0,0111) 

0.40 -0,0006 -0,0006 -0,0006 -0,0009 -0,0009 -0,0007 -0,0003 0 0 

 (0,0111) (0,0131) (0,0148) (0,0168) (0,0173) (0,0167) (0,015) (0,0134) (0,0113) 

0.45 -0,0001 -0,0001 -0,0001 0,0003 0,0003 0,0006 0,0007 0,0006 0,0006 

 (0,0113) (0,0136) (0,0151) (0,0168) (0,0178) (0,0169) (0,015) (0,0134) (0,0112) 

0.50 0,0002 0,0005 0,001 0,0013 0,0017 0,0021 0,002 0,0017 0,0012 

 (0,0114) (0,0131) (0,0152) (0,0171) (0,0181) (0,0172) (0,0154) (0,0135) (0,0117) 

Table 4. Biases (standard errors) of estimation of dmean. Unknown frequencies (1) 

• The dependence of the bias of estimation of dvol on the parametrical values of dvol and ωvol resembles 

what we have already said in the case of the estimation of dmean on dmean and ωmean and so it is larger in 

absolute terms for central frequencies and increases in real terms with dvol, making it positive for the most 

persistent memories. 

• The large negative biases that appear in the non-stationary value of dvol and extreme values of the 

frequency ωvol are related to the poor properties of estimation of dmean in these parametrical combinations. 

• The size of the bias ranges from twice as big to around 10 times bigger for the most extreme cases than 

its dmean counterpart as a clear consequence of the presence of the noise and the effects of the estimation 

of dmean. The standard errors are also larger than what we obtained in the estimation of dmean. 

• Again the standard error behaves similarly as in the estimation of dmean (larger SE for central frequencies) 

but in the case of small values of dvol, the effect of the noise is able to eclipse the long memory process 

producing strongly antipersistent estimations of the memory parameter that eventually cause a heavily 

asymmetric distribution and a recurring rejection of Gaussianity. 

Tables 4, 5 and 6 show the bias and SE of estimation of dmean and dvol under the empirically more 

relevant situation of unknown frequencies. In these cases the cyclical frequencies were chosen, following 

Yajima (1996) and Hidalgo and Soulier (2004), as the values that maximize first the periodogram of xt for the 

estimation of dmean and then the periodogram of ( )ˆ 2
tlog y  for the estimation of dvol. In general the two step 

strategy is quite robust to an unknown frequency, especially with the larger memory parameters. However, the  
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 ωvol 

dvol  π/10 2π/10 3π/10 4π/10 5π/10 6π/10 7π/10 8π/10 9π/10 

0.05 -0,0049 -0,005 -0,005 -0,0048 -0,005 -0,0049 -0,0048 -0,0049 -0,0049 

 (0,0159) (0,0158) (0,0158) (0,0155) (0,0155) (0,0154) (0,0154) (0,0156) (0,0156) 

0.10 -0,0047 -0,0048 -0,0048 -0,0049 -0,0048 -0,0049 -0,005 -0,0049 -0,0049 

 (0,0158) (0,0157) (0,0155) (0,0156) (0,0155) (0,0156) (0,0152) (0,0154) (0,0152) 

0.15 -0,0048 -0,0049 -0,0049 -0,0048 -0,005 -0,005 -0,0049 -0,0049 -0,0049 

 (0,0163) (0,0161) (0,0157) (0,0155) (0,0156) (0,0154) (0,0152) (0,0152) (0,0156) 

0.20 -0,0046 -0,0048 -0,0049 -0,005 -0,0049 -0,0048 -0,005 -0,0051 -0,005 

 (0,017) (0,0162) (0,0158) (0,0157) (0,0153) (0,0152) (0,0151) (0,0156) (0,0151) 

0.25 -0,0046 -0,0048 -0,0049 -0,0049 -0,0049 -0,0051 -0,005 -0,0049 -0,0048 

 (0,0181) (0,0167) (0,0162) (0,0156) (0,0151) (0,0155) (0,0149) (0,0149) (0,0153) 

0.30 -0,0044 -0,0048 -0,0047 -0,0049 -0,005 -0,0051 -0,0049 -0,005 -0,0047 

 (0,0198) (0,0173) (0,0162) (0,0156) (0,0152) (0,0151) (0,015) (0,0151) (0,0155) 

0.35 -0,0039 -0,0046 -0,0047 -0,0049 -0,0049 -0,005 -0,005 -0,005 -0,0046 

 (0,0236) (0,0183) (0,0166) (0,0155) (0,0149) (0,0151) (0,0149) (0,0152) (0,0165) 

0.40 -0,0026 -0,0042 -0,0044 -0,0048 -0,0049 -0,005 -0,0049 -0,0048 -0,0042 

 (0,0303) (0,0203) (0,0169) (0,0159) (0,0151) (0,015) (0,0148) (0,0154) (0,019) 

0.45 -0,0001 -0,0037 -0,0044 -0,0046 -0,0047 -0,0048 -0,0048 -0,0045 -0,0033 

 (0,0412) (0,0237) (0,0181) (0,0163) (0,0152) (0,0151) (0,0154) (0,0156) (0,0236) 

0.50 0,0036 -0,0026 -0,0039 -0,0044 -0,0046 -0,0047 -0,0043 -0,0041 -0,0017 

 (0,0571) (0,0292) (0,02) (0,0168) (0,0156) (0,0157) (0,0162) (0,0174) (0,0304) 

Table 5. Biases (standard errors) of estimation of dmean. Unknown frequencies (2). 

 ωvol 

dvol  π/10 2π/10 3π/10 4π/10 5π/10 6π/10 7π/10 8π/10 9π/10 

0.05 -0,0167 -0,0164 -0,0172 -0,0174 -0,0165 -0,0166 -0,0161 -0,0159 -0,0176 

 (0,1471) (0,1279) (0,1534) (0,1454) (0,141) (0,143) (0,1484) (0,1303) (0,1581) 

0.10 -0,0809 -0,0695 -0,0622 -0,0583 -0,0557 -0,0581 -0,0623 -0,0699 -0,0775 

 (0,2182) (0,1532) (0,125) (0,1141) (0,1064) (0,1391) (0,1306) (0,1497) (0,2063) 

0.15 -0,1488 -0,1193 -0,1039 -0,094 -0,0904 -0,0945 -0,1031 -0,1207 -0,1477 

 (0,3592) (0,1973) (0,1325) (0,1088) (0,0965) (0,1009) (0,1312) (0,2) (0,3385) 

0.20 -0,2004 -0,1504 -0,1295 -0,1181 -0,1154 -0,119 -0,1293 -0,1508 -0,1958 

 (0,4925) (0,2351) (0,1502) (0,1092) (0,099) (0,1094) (0,1472) (0,2284) (0,4737) 

0.25 -0,1441 -0,1344 -0,1233 -0,1175 -0,1159 -0,1169 -0,1243 -0,1358 -0,1486 

 (0,496) (0,2536) (0,1633) (0,1266) (0,1153) (0,1262) (0,1659) (0,252) (0,5016) 

0.30 -0,0429 -0,0684 -0,0769 -0,0801 -0,0812 -0,0809 -0,0765 -0,0705 -0,0449 

 (0,287) (0,2021) (0,1533) (0,1307) (0,1235) (0,1312) (0,1514) (0,2067) (0,292) 

0.35 -0,0067 -0,0183 -0,0285 -0,0339 -0,0349 -0,0338 -0,0279 -0,019 -0,006 

 (0,1025) (0,103) (0,1038) (0,1011) (0,1012) (0,1025) (0,1053) (0,1093) (0,0861) 

0.40 -0,0012 -0,0042 -0,0073 -0,0087 -0,0091 -0,0073 -0,0051 -0,0029 -0,0016 

 (0,0404) (0,055) (0,064) (0,0668) (0,0689) (0,067) (0,063) (0,0555) (0,0433) 

0.45 -0,0006 -0,0009 -0,0003 0,0004 0,0012 0,0021 0,0023 0,0023 -0,0019 

 (0,0393) (0,0456) (0,0497) (0,0529) (0,0544) (0,0534) (0,0504) (0,0472) (0,0435) 

0.50 -0,0081 -0,003 0,0022 0,0039 0,006 0,0066 0,0069 0,0047 -0,0164 

 (0,0378) (0,0447) (0,0487) (0,0515) (0,0523) (0,0519) (0,0501) (0,048) (0,0626) 

Table 6. Biases (standard errors) of estimation of dvol. Unknown frequencies. 

difficulty to obtain accurate estimates of the frequency of the spectral pole with low memory deteriorates the 

estimation of the memory parameters, mainly of dvol, because the inaccurate estimation of the frequency adds 

to the fact that the estimation is based on residuals.  
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a) Sunspot series 
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c) Periodogram 
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d) Detailed periodogram 
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Figure 2. Dynamic features of the Sunspot Index. 

5. Empirical application 

In this section we will estimate a doubly fractional model for the well-known sunspot index. In 

particular, we are dealing with a daily version of the index from 1848 December 23th to 2009 September 30th 

with a sample size T=58721. The data are the sunspot numbers compiled by the US National Oceanic and 

Atmospheric Administration (NOAA). The series is displayed in Figure 2a and we can clearly observe the 

evolution of a very stable cycle that completes its period around 15 times. 

The periodogram (Figures 2c and 2d) exposes this clear presence of a cycle in the series with a peak 

at frequency ωmean(1)ˆ = 0.001605, which corresponds to a period of approximately 10 years and 8.6 months. 

The ACF (Figure 2b) shows a sinusoidal wave that decays hyperbolically, so we can conclude that there is a 

persistent stochastic cycle of frequency ωmean(1)ˆ .  

We estimated the GLM for the levels by QML as described in the preceding sections and obtained 

meand̂ = 0.4726, for the memory parameter at ωmean(1)ˆ , very close to the non-stationary region. The periodogram 

and ACF of the filtered series zt = [1-Lcos(0.001605)+L2]0.4726xt are shown in Figure 3 where it turns clearly 

outstanding that there still remains a cyclical pattern.  
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a) Periodogram 
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b) ACF 
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Figure 3. Periodogram and ACF of the residuals of the GLM(dmean = 0.4726, ωmean = 0.001605) process. 
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c) Periodogram 
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d) Histogram 
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Figure 4. Residuals ŷt of the trifactorial GARMA3(0,1,Dmean,Ωmean) process. 

Taking into account the ACF and periodogram displayed in Figure 3, we considered a second GLM 

factor in ( )ωmean 2ˆ = 0.2286 which corresponds to a period of around 27 days that matches the Equator rotation 

of the sun as seen from the Earth (Beck, 2000). In order to obtain a proper estimation of the memory 

parameter in ( )ωmean 2ˆ , we estimated jointly both memory parameters in the two spectral peaks in the original 

series. The filtered series of residuals of this bifactorial approach revealed the necessity of a third cyclical long  
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a) Detailed Periodogram 
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Figure 5. Periodogram and ACF of ( )ˆ 2
tlog y . 

memory component at frequency ( )ωmean 3ˆ = 0.5099 ( ( )τmean 3ˆ  ≈ 12.3 days) and also a MA(1) process for the 

remaining weak dependence. The joint estimation of all these parameters were ( )
ˆ

mean 1d = 0.3601, 

( )
ˆ

mean 2d =0.4332, ( )
ˆ

mean 3d = 0.1107 and θ̂  = 0.8464. Therefore, our results show that the 27-day cycle has a 

stronger persistence than the 11-year periodicity, although it accounts for a smaller proportion of the variability 

of the series due to the dependence of the variance of GLM processes on the frequency ω. Specifically, using 

Eq. (1), the estimated ratio of variances of the cycle at ωmean(1)ˆ over ( )ωmean 2ˆ  is 3.8276.  

The residuals ŷt of the whole 3-factor GARMA process are displayed in Figure 4. They are 

characterized by an evolving dispersion as the alternance of periods of high volatility with periods of low 

volatility is very recurrent and stable (Figure 4a). Their ACF and periodogram (Figures 4b and 4c) show no 

more sustainable signs of dependence and their histogram (Figure 4d) shows a large kurtosis (6.7658), which 

is common to the models of dynamic heteroskedasticity. 

The periodogram and ACF of the logarithm of the squares of ŷt (Figure 5) show again a strong 

cyclical persistence at frequency ωvolˆ = 0.001605. After a prior estimation of the memory parameter at ωvolˆ  a 

second cyclical long memory factor were found appropriate at frequency ( )ωvol 2ˆ = 0.2347. The estimated 

memory parameters and variance of innovations for the whole bifactorial model of volatility are ˆ
vol(1)d = 0.2063, 

ˆ
vol(2)d = 0.1103 and 2ˆ ησ = 0.7764.  

The estimation of the volatility process ht can be achieved by means of the smoothing method 

proposed by Harvey (1998). In this case, the Variance-Covariance Matrix of the process ht was truncated to a 

size of 5001×5001. The standardized residuals tε̂  of the complete GARMA3-GLMSV2 model can be obtained  
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c) Periodogram 
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Figure 6. Dynamic features of the residuals tε̂  of the GARMA3(0,1,Dmean,Ωmean)-GLMSV2(Dvol,Ωvol) process. 

from this estimated volatility and, assuming 2

εσ =1, the scale parameter is ˆ *σ  = 2.2595. Therefore the sunspot 

index is coherent with the GARMA3(0,1,Dmean,Ωmean)-GLMSV2(Dvol,Ωvol) process (where Dmean={0.3601, 

0.4332, 0.1107}, Ωmean={0.001605, 0.2286, 0.5099}, Dvol={0.2063, 0.1103} and Ωvol={0.001605, 0.2347}) 

expressed by the equations 

( )( ) ( )( ) ( )( )
( )( ) ( )( )− − − + − + η  

− + − + − + = Θ

⋅ ε
0.2063 0.11032 21

t2

0.3601 0.4332 0.11072 2 2
t t

1 2L cos 0.001605 L 1 2Lcos 0.2347 L

t t

ˆ ˆ1 2Lcos 0.001605 L 1 2Lcos 0.2286 L 1 2Lcos 0.5099 L x (L)y

ˆ ˆy =2.2595 e

 

with ( )Θ = −ˆ (L) 1 0.8464L . 

The residuals tε̂ , together with their ACF and periodogram displayed in Figure 6, show that our 

model captures most of the information contained in the original series.  

6. Conclusions 

In this paper we have introduced a doubly fractional model that presents a cyclical dependence in 

both first and second order moments that fairly explains the persistent behaviour of the daily sunspot index. Its 



 20 

main innovation consists in allowing a persistent but evolving cyclical behaviour both in levels and volatility, 

which can become very apparent as it usually affects the amplitude of the consecutive waves.  

We have also proposed a sequential strategy of estimation using QML in the frequency domain and 

checked its finite sample performance in an extensive grid of parameters of the model. Central frequencies 

have turned out to be determinant to worsen the properties of estimation in both the levels and volatility 

models and Gaussianity seems a plausible distribution for the QML estimator in any parameter combinations 

for the levels but is rejected in the volatility model for persistent cycles at low frequencies as the presence of 

the noise eclipses the long memory process causing recurring antipersistent estimations that can eventually 

produce a very asymmetric distribution. 
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