
DOCUMENTOS DE TRABAJO

BILTOKI

Facultad de Ciencias Económicas.
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Senario Cluster Lagrangian Deomposition in two-stage stohastimixed 0-1 optimizationLaureano F. Esudero1, M. Araeli Garín2, Gloria Pérez3 and Aitziber Unzueta4
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3 Dpto. de Matemátia Apliada y Estadístia e I.O. Universidad del País Vaso, Spain. gloria.perez�ehu.es
4 Dpto. de Eonomía Apliada III. Universidad del País Vaso, Spain. aitziber.unzueta�ehu.esMarh 15, 2012 AbstratIn this paper we introdue four senario Cluster based Lagrangian Deomposition(CLD) proedures for obtaining strong lower bounds to the (optimal) solution valueof two-stage stohasti mixed 0-1 problems. At eah iteration of the Lagrangianbased proedures, the traditional aim onsists of obtaining the solution value of theorresponding Lagrangian dual via solving senario submodels one the nonantiipativityonstraints have been dualized. Instead of onsidering a splitting variable representationover the set of senarios, we propose to deompose the model into a set of senario lusters.We ompare the omputational performane of the four Lagrange multiplier updatingproedures, namely the Subgradient Method, the Volume Algorithm, the ProgressiveHedging Algorithm and the Dynami Constrained Cutting Plane sheme for di�erentnumbers of senario lusters and di�erent dimensions of the original problem. Ouromputational experiene shows that the CLD bound and its omputational e�ort dependon the number of senario lusters to onsider. In any ase, our results show that the CLDproedures outperform the traditional LD sheme for single senarios both in the qualityof the bounds and omputational e�ort. All the proedures have been implemented ina C++ experimental ode. A broad omputational experiene is reported on a test ofrandomly generated instanes by using the MIP solvers COIN-OR [17℄ and CPLEX [16℄for the auxiliary mixed 0-1 luster submodels, this last solver within the open soureengine COIN-OR. We also give omputational evidene of the model tightening e�etthat the preproessing tehniques, ut generation and appending and parallel omputingtools have in stohasti integer optimization. Finally, we have observed that the plainuse of both solvers does not provide the optimal solution of the instanes inluded in thetestbed with whih we have experimented but for two toy instanes in a�ordable elapsedtime. On the other hand the proposed proedures provide strong lower bounds (or thesame solution value) in a onsiderably shorter elapsed time for the quasi-optimal solutionobtained by other means for the original stohasti problem.Keywords: Two-stage stohasti integer programming, nonantiipativity onstraints,Cluster Lagrangian deomposition, senario luster model, Subgradient Method, VolumeAlgorithm, Progressive Hedging Algorithm, Dynami Constrained Cutting Plane sheme.
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1 IntrodutionIn this work we onsider a general two-stage stohasti mixed 0-1 problem. The unertaintyis modeled via a �nite set of senarios ω = 1, ..., |Ω|, eah with an assoiated probability ofourrene wω, ω ∈ Ω. The traditional aim in this type of problems is to solve the so-alledDeterministi Equivalent Model (DEM), whih is a mixed 0-1 problem with a speial struture,see e.g., [21℄ for a good survey of some mayor results in this area obtained during the 90s andbeyond. A Branh-and-Bound algorithm for solving problems having mixed-integer variablesin both stages is designed in [6℄, among others, by using Lagrangian relaxation for obtaininglower bounds to the optimal solution of the original problem. A Branh-and-Fix Coordination(BFC) methodology for solving suh DEM in prodution planning under unertainty is givenin [1, 2℄, but the approah does not allow ontinuous �rst stage variables or 0-1 seond stagevariables. We propose in [7, 8℄ a BFC algorithmi framework for obtaining the optimalsolution of the two-stage stohasti mixed 0-1 integer problem, where the unertainty appearsanywhere in the oe�ients of the 0-1 and ontinuous variables in both stages. Reently, ageneral algorithm for two-stage problems has been presented in [22℄.We study in [10℄ several solution methods for solving the dual problem orrespondingto the Lagrangian Deomposition (LD) of two-stage stohasti mixed 0-1 models. At eahiteration of these Lagrangian based proedures, the traditional aim onsists of obtaining thesolution value of the orresponding parametri mixed 0-1 Lagrangian dual problem via solvingsingle senario submodels one the nonantiipativity onstraints (NAC) have been dualized,and the parameters (i.e., the Lagrange multipliers) are updated by using di�erent subgradientand utting plane based methodologies.Instead of onsidering a splitting variable representation over the set of senarios, in thispaper we propose a new approah so named Cluster Lagrangian Deomposition (for short,CLD) to deompose the model into a set of senario lusters. So, we omputationally omparethe performane of the Subgradient Method (SM) [15℄, the Volume Algorithm (VA) [4℄, theProgressive Hedging Algorithm (PHA) [20℄ and the Dynami Constrained Cutting Plane(DCCP) sheme [18℄ for Lagrange multipliers updating while solving large-sale stohastimixed 0-1 problems in an algorithmi framework based on senario lusters deomposition. Asuessful result may open up the possibility for tightening the lower bounds of the solutionvalue at the andidate Twin Node Families in the exat BFC sheme for both two-stage andmultistage types of problems, see e.g., [9℄.For di�erent hoies of the number of senario lusters we report the omputationalexperiene by using CPLEX, integrated in the COIN-OR environment, to verify thee�etiveness of the proposal. In this sense, we also give omputational evidene of themodel tightening e�et and their omputational ost that preproessing, ut generation andappending and parallel omputing tools have in stohasti integer optimization too, see [19℄.We also omputationally ompare the new with the luster singleton approah (i.e., the LDfor single senarios) outperforming it, as well as outperforming the plain use of the MIPsolver of hoie, CPLEX. The proposed approah provides a tight lower bound suh thatthe quasi-optimality gap of the upper solution bound obtained by other means on large-saleinstanes is very small and frequently, guarantees its optimality. However, the plain useof CPLEX annot guarantee the optimality of the inumbent solution in a somewhat largeelapsed time limit, its objetive funtion value being simply an upper bound of the solution2



value of the original stohasti problem in some ases. In other ases, we an prove in verymuh smaller elapsed time that the inumbent CPLEX solution is the optimal one, sine ourCLD proedures provide lower bounds idential to the value of that solution. Additionally,that inumbent solution is also frequently even worse than that whih we have obtained whenboth the quality and the small elapsed time are good enough.The remainder of the paper is organized as follows: Setion 2 presents the two-stagestohasti mixed 0-1 problem in ompat and splitting variable representations over thesenarios and senario lusters. Setion 3 summarizes the theoretial results on Lagrangiandeomposition and presents the Cluster Lagrangian Deomposition approah. Setion 4presents the four proedures mentioned above for updating the Lagrange multipliers. Setion5 reports the results of the omputational experiment. Setion 6 onludes.2 Two-stage stohasti mixed 0-1 problemIn many real ases a two-stage deterministi mixed 0-1 optimization model must be extendedto onsider the unertainty in some of the main parameters. In our ase, these are the objetivefuntion, the right and left hand-side vetors and the onstraint matrix oe�ients. Thisunertainty is introdued by using the senario analysis approah, suh that a senario onsistsof a realization of all random parameters in both stages through a senario tree. When a �nitenumber of senarios is onsidered, a general two-stage program an be expressed in terms ofthe �rst stage deision variables being equivalent to a large, dual blok-angular programmingproblem, introdued in [25℄ and known as Deterministi Equivalent Model (DEM).Let us onsider the ompat representation of the DEM of a two-stage stohasti integerproblem (MIP ),
(MIP )c : zMIP = min c1δ + c2x+

∑

ω∈Ω

wω[qω1 γ
ω + qω2 y

ω]s.t. b1 ≤ A

(

δ

x

)

≤ b2
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+W ω
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yω

)

≤ hω2 , ∀ω ∈ Ω

δ, γω ∈ {0, 1}, x, yω ≥ 0, ∀ω ∈ Ω,

(1)
where the unertainty in the parameters is introdued by using a senario analysis approah.
c1 and c2 are known vetors of the objetive funtion oe�ients for the δ and x variablesin the �rst stage, respetively, b1 and b2 are the known left and right hand side vetors forthe �rst stage onstraints, respetively, and A is the known matrix of oe�ients for the �rststage onstraints. For eah senario ω, wω is the likelihood attributed to the senario, suhthat ∑ω∈Ω wω = 1, hω1 and hω2 are the left and right hand side vetors for the seond stageonstraints, respetively, and qω1 and qω2 are the objetive funtion oe�ients for the seondstage γ and y variables, respetively, while Tω and W ω are the tehnology onstraint matriesunder senario ω, for ω ∈ Ω, where Ω is the set of senarios to onsider. Notie that thereare two types of deision variables at eah stage, namely, the set of δ 0-1 and x ontinuousvariables for the �rst stage, and the set of γω 0-1 and yω ontinuous variables for the seondstage. 3



Notie also that for the purpose of simpli�ation, the objetive funtion to optimize in themodels dealt with in this paper is the expeted value over the set of senarios Ω, i.e., the riskneutral strategy. For a survey of oherent risk averse measures as opposed to the risk neutralstrategy onsidered in this work, see e.g., [3℄.The struture of the unertain information an be visualized as a tree, where eah root-to-leaf path represents one spei� senario, ω, and orresponds to one realization of the wholeset of the unertain parameters. In the example depited in Figure 1, there are |Ω| = 10root-to-leaf possible paths, i.e., senarios. Following the nonantiipativity priniple, stated in[25℄ and restated in [20℄, see [5℄ among others, all senarios should have the same value forthe related �rst stage variables in the two-stage problem.

1
t = 1

11109
876
543
2t = 2

ω = 10

ω = 9

ω = 8

ω = 7

ω = 6

ω = 5

ω = 4

ω = 3

ω = 2

ω = 1

111
111
111
1t = 1

11109
87x1 = x2 = · · · = x10
6δ1 = δ2 = · · · = δ10
543
2t = 2

ω = 10

ω = 9

ω = 8

ω = 7

ω = 6

ω = 5

ω = 4

ω = 3

ω = 2

ω = 1

Compat representation Splitting variable representationFigure 1: Senario treeThe left setion of Figure 1 impliitly represents the non-antiipativity onstraints (NAC,for short). This is the ompat representation shown in model (1). The right setion of Figure1 gives the same information as the ompat representation but using a splitting variablesheme and notiing that it expliitly represents the NAC (i.e., imposing the equality) on the�rst stage variables δω xω and for all the senarios ω.Let us onsider the splitting variable representation of the DEM of the two-stage stohasti4



mixed 0-1 problem.
(MIP )s : zMIP = min

∑

ω∈Ω

wω[c1δ
ω + c2x

ω + qω1 γ
ω + qω2 y
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≤ hω2 ∀ω ∈ Ω

δω = δω
′

∀ω, ω′ ∈ Ω, ω 6= ω′

xω = xω
′

∀ω, ω′ ∈ Ω, ω 6= ω′

xω, yω ≥ 0 ∀ω ∈ Ω
δω , γω ∈ {0, 1} ∀ω ∈ Ω.

(2)
In addition to these two formulations, we propose a senario-luster partitioning toallow a ombination of ompat and splitting variable representations into and inter thesenario luster submodels. A senario luster is a set of senarios where the NAC areimpliitly onsidered. By slightly abusing the notation from now on, throughout the paperthe upperindex in boldfae p will denote the luster of senarios instead of the single one. Let

p̂ denote the number of senario luster partitions to onsider. As an illustrative example, letus onsider again the senario tree depited in Figure 1.
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Figure 2 shows the problem deomposition in p̂ = 5 (left tree) and p̂ = 2 (right tree)senario lusters into whih the set of senarios is split. Observe that the NAC for the �rststage vetors of variables are given by x1 = · · · = x5 and δ1 = · · · = δ5 for the left side of the�gure, and they are given by x1 = x2 and δ1 = δ2 for the right side of the �gure, where byabusing the notation xp and δp are the x and δ vetors of the �rst stage ontinuous and 0-1variables for senario luster p, respetively.In general, given a senario tree, p̂ an be hosen as any value between 1 and |Ω|, so thatwe an represent the DEM (1) by a mixture of the splitting variable representation where theNAC are expliitly stated for the p̂ luster submodels, and a ompat representation for theset Ωp of senarios into eah luster model p, where the NAC are impliitly stated suh that
p ∈ {1, ..., p̂}, Ωp de�nes the set of senarios in luster p, and |Ωp| is its size.Without loss of generality (wlog, for short) and for omputational purposes, the numberof lusters p̂ an be alulated as a divisor of the number of senarios, |Ω| and, then, wehave that l = |Ωp| = |Ω|

p̂
de�nes the size of eah senario luster p, for p = 1, ..., p̂.The senario lusters are de�ned in terms of onseutive senarios, Ω1 = {1, ..., |Ω1|},

Ω2 = {|Ω1|+ 1, ..., |Ω1|+ |Ω2|},..., Ωp̂ = {|Ω1|+ ...+ |Ωp̂−1|+ 1, ..., |Ω|}.The mixed 0-1 submodel to onsider for eah senario luster p an be expressed by theompat representation,
(MIPp) : zp = min wp(c1δ

p + c2x
p) +

∑

ω∈Ωp

wω(qω1 γ
ω + qω2 y

ω)s.t. b1 ≤ A
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≤ hω2 ∀ω ∈ Ωp

δp ∈ {0, 1}, xp ≥ 0
γω ∈ {0, 1}, yω ≥ 0 ∀ω ∈ Ωp,

(3)
where wp =

∑

ω∈Ωp wω denotes the likelihood for senario luster p, and δp and xp are thevetors of the �rst stage δ and x variables for senario luster p. Moreover, the p̂ submodels(3) are linked by the NAC,
δp − δp

′

= 0 (4)
xp − xp

′

= 0, (5)for p,p′ = 1, . . . , p̂ : p 6= p′. Observe that the NAC (4)-(5) an been represented as a setof inequalities in order to avoid the use of non-signed vetors of Lagrange multipliers in thedualization of suh onstraints. They will be expressed as follows,
δp − δp+1 ≤ 0 ∀p = 1, ..., p̂ − 1, δp̂ ≤ δ1, (6)
xp − xp+1 ≤ 0 ∀p = 1, ..., p̂ − 1, xp̂ ≤ x1 (7)So, the mixed 0-1 DEM (1) is equivalent to the splitting-ompat variable representation
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over the set of senario lusters.
(MIP ) : zMIP = min

p̂
∑

p=1

[wp(c1δ
p + c2x
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xp ≥ 0, δp ∈ {0, 1} ∀p = 1, ..., p̂

yω ≥ 0, γω ∈ {0, 1} ∀ω ∈ Ωp,p = 1, ..., p̂.

(8)
Additionally, notie that model (8) for p̂ = 1 oinides with the mixed 0-1 DEM in theompat representation (1), and we obtain the splitting variable representation (2) for p̂ = |Ω|.3 Senario Cluster Lagrangian DeompositionThe senario Cluster Lagrangian Deomposition (CLD) of the mixed 0-1 DEM (8) fora given number of senario lusters p̂ and a given nonnegative vetor of weights (i.e.,Lagrange multipliers) µp = (µp

δ , µ
p
x), is the µ-parametri mixed 0-1 minimization model (9)in (δp, xp, γω, yω), ω ∈ Ωp, p = 1, · · · , p̂, with the objetive funtion value zLD(µ, p̂), suhthat it an be expressed as follows,

(MIP
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ω∈Ωp

wω(qω1 γ
ω + qω2 y

ω)]

+
p̂−1
∑
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≤ b2 ∀p = 1, ..., p̂

hω1 ≤ Tω

(
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(
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)

≤ hω2 ∀ω ∈ Ωp,p = 1, ..., p̂

xp ≥ 0, δp ∈ {0, 1} ∀p = 1, ..., p̂

yω ≥ 0, γω ∈ {0, 1} ∀ω ∈ Ωp,p = 1, ..., p̂.

(9)
It is well known that model (MIP

p̂

LD(µ)) is a relaxation of model (MIP ), sine (i) thefeasible set of (MIP
p̂

LD(µ)) ontains the feasible set of (MIP ), and (ii) for any (δ, x, γ, y)feasible solution for (MIP ), any µ ≥ 0 and 1 < p̂ ≤ |Ω|, it results that zLD(µ, p̂) ≤ zMIP .Notie that if p̂ = 1, for any µ ≥ 0 zLD(µ,1) = zMIP by de�nition of the ompatrepresentation. Then, it follows that the value zLD(µ, p̂), whih depends on µ is, a lowerbound on the solution value of (MIP ), zMIP for any hoie of p̂, with 1 < p̂ ≤ |Ω|.7



De�nition 1 For any hoie of p̂ suh that 1 < p̂ ≤ |Ω|, the problem of �nding the tightestLagrangian lower bound on zMIP is
(MIPLD) : zLD = maxµ≥0zLD(µ, p̂).It is alled the Lagrangian dual of (MIP ) relative to the NAC.By LP duality, zLD an be obtained by using a mixture of linear and mixed 0-1programs. (MIPLD) is a linear problem in the dual spae of the Lagrange multipliers, whereas(MIP

p̂

LD(µ)) is a µ-parametri mixed 0-1 problem in the vetor of variables (δ, x, γ, y). Let
(δ(µp̂), x(µp̂), γ(µp̂), y(µp̂)) denote an optimal solution of (MIP

p̂

LD(µ)) for some µ and p̂, i.e.,a Lagrangian solution.It is also known that, unless (MIPLD) does have the integrality property, the LD anyield an equal or stronger bound than the LP relaxation. If it has the integrality propertythen zLP = zLD ≤ zMIP . In the other ase, zLP ≤ zLD ≤ zMIP . See the seminal work [12℄,and a good survey in [13℄.Let the following proposition state that the solution values of nonsingleton senario lusterLagrangian deomposition (CLD) problems are stronger than the solution values of singletonCLD problems.Proposition 1 For all µ ≥ 0, the following inequalities are satis�ed
zLD(µ, |Ω|) ≤ zLD(µ, |Ω| − 1) ≤ .... ≤ zLD(µ, 2) ≤ zLD(µ, 1) = zMIP .Proof: Notie that the hain of the related problems only di�er on the relaxation of theNAC in some senarios. So the proof follows.Our proposal makes use of the expression of the Lagrangian dual zLD as the maximum ofthe solution values zLD(µ, p̂) in µ. Previously, we must hoose a number of senario lusters

p̂ and the senario subsets Ωp, p = 1, ..., p̂ and then, for a given value of µ, say µp̂, we mustsolve the mixed 0-1 problem (9) in (δ(µp̂), x(µp̂), γ(µp̂), y(µp̂)) to obtain the optimal solutionvalue, zLD(µp̂, p̂). It onsists of omputationally omparing the speed of onvergene withseveral iterative methods for updating the Lagrange multipliers and building the sequene
{µ0, µ1, ..., µk, ....}p̂, as well as studying the optimal senario luster deomposition.At eah iteration k and given the urrent multiplier vetor µk, the �rst step is to obtain
zLD(µ

k, p̂). The seond step is to update the Lagrange multipliers µ in a �nite number ofiterations suh that the purpose is to obtain µ∗ and zLD(µ
∗, p̂), where

µ∗ ∈ argmaxµ≥0{zLD(µ, p̂)}. (10)Note: The solution (δ(µ∗), x(µ∗), γ(µ∗), y(µ∗)) is the optimal one for DEM (1) providedthat it satis�es the NAC (6)-(7).Notie that the model MIP
p̂

LD(µ) (9) an be deomposed in p̂ smaller submodels, and itssolution value an be obtained as the sum of the related z
p

LD(µ
p) values, see [10℄,

zLD(µ, p̂) =
p̂
∑

p=1

z
p

LD(µ
p), (11)8



where z
p

LD(µ
p) is the solution value of the pth senario luster model. For p = 2, ..., p̂, themodel is expressed in ompat representation as follows,

z
p
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p) = min[wpc1 + (µp
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wω(qω1 γ
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ω)s.t
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(

δp

xp

)

+W ω

(
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)

≤ hω2 ∀ω ∈ Ωp

xp ≥ 0, δp ∈ {0, 1}
yω ≥ 0, γω ∈ {0, 1} ∀ω ∈ Ωp.

(12)
For p = 1, the model also in ompat representation is as follows,
z1LD(µ

1) = min[w1c1 + (µ1
δ − µ

p̂

δ )]δ
1 + [w1c2 + (µ1

x − µp̂
x)]x

1 +
∑

ω∈Ω1

wω(qω1 γ
ω + qω2 y

ω)s.t.
b1 ≤ A

(

δ1

x1

)

≤ b2

hω1 ≤ Tω

(

δ1

x1

)

+W ω

(

γω

yω

)
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x1 ≥ 0, δ1 ∈ {0, 1}
yω ≥ 0, γω ∈ {0, 1} ∀ω ∈ Ω1.

(13)
Observe in expression (11) that the bound value and the omputational e�ort to omputeit depend on how many senario luster submodels are onsidered in the deomposition, i.e.,

p̂. We omputationally study in Setion 5 the in�uene of the number of senario lustersinto the bounds tightening and the related omputational e�ort to ompute the bounds.4 Lagrange multipliers updating proedures for CLDIn this setion the speialization of di�erent Lagrange multiplier proedures for senario lusterdeomposition is presented.Let us assume in the rest of the work that the senario set is broken down into p̂ lusters.Let also zLD be an upper bound of the solution value of the original (MIP ). It an be obtainede�iently as a quasioptimal solution, z(ρ) with a given ρ% of quasi-optimality tolerane, seeSetion 5. Let µ0 be the initial multiplier vetor and, �nally, let αk be a real parameterrelated to the steplength of the Lagrange multiplier updating proedure, where αk ∈ (0, 2),see below.4.1 Subgradient methodThis is one of the most popular approahes to solve the Lagrangian dual. The subgradientproedure was proposed in [15℄. It is an iterative approah method in whih at iteration k,9



given the urrent multipliers vetor µk, a step is taken along a subgradient of zLD(µk, p̂). Theproedure for updating the Lagrange multipliers of the NAC (6)-(7) is given in Figure 3.Step 0: We start with a vetor µ0, and solve the p̂ submodels (12)-(13) to obtain
(δ(0), x(0), γ(0), y(0)) and zLD(µ

0, p̂) as the sum given in (11). Set k := 0.
Step 1: Compute the step diretion sk =

































(δ(k)1 − δ(k)2)...
(δ(k)p̂−1 − δ(k)p̂)

(δ(k)p̂ − δ(k)1)

(x(k)1 − x(k)2)...
(x(k)p̂−1 − x(k)p̂)

(x(k)p̂ − x(k)1)

































,

hek the stopping riteria given in Se. 4.5 and if they are not satis�ed, set
µk+1 := µk + αk ·

(zLD − zLD(µ
k, p̂))

||sk||2
· sk.Solve the p̂ problems (12)-(13) with µk+1, and let (δ(k+1), x(k+1), γ(k+1), y(k+1))and zLD(µ

k+1, p̂) be the optimal solution and solution value of (9), respetively.Set k := k + 1 and go to Step 1.Figure 3: Subgradient Method (SM)4.2 Volume AlgorithmWe present a version of the Volume Algorithm given in [4℄ for updating the Lagrangemultipliers of the NAC (6)-(7). This proedure only updates the multipliers when thereis an improvement in the inumbent solution value zLD(µ, p̂) of the Lagrangian problem.Additionally, the feasible solution is replaed by a onvex ombination of solutions obtainedin previous iterations. Let fk be a real parameter related to the inumbent solution updating,where fk ∈ (0, 1), see in Se. 4.6 the proedure for obtaining it. The proedure for updatingthe Lagrange multipliers of the NAC (6)-(7) is given in Figure 4.
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Step 0: We start with a multiplier vetor µ0, and solve the p̂ problems (12)-(13)to obtain (δ(0), x(0), γ(0), y(0)) and zLD(µ
0, p̂) as the sum given in (11).Set: (δ, x, γ, y) := (δ(0), x(0), γ(0), y(0)), µ := µ0, and z(µ, p̂) := zLD(µ, p̂)where zLD(µ, p̂) =

p̂
∑

p=1

z
p

LD(µ). Set k := 1.
Step 1: Compute sk =

































(δ(k)1 − δ(k)2)...
(δ(k)p̂−1 − δ(k)p̂)

(δ(k)p̂ − δ(k)1)

(x(k)1 − x(k)2)...
(x(k)p̂−1 − x(k)p̂)

(x(k)p̂ − x(k)1)

































and sk =



































(δ
1
− δ

2
)...

(δ
p̂−1

− δ
p̂
)

(δ
p̂
− δ

1
)

(x1 − x2)...
(xp̂−1 − xp̂)
(xp̂ − x1)



































,

hek the stopping riteria given in Se. 4.5 and if they are not satis�ed, set
µk := µ+ αk ·

(zLD − z(µ, p̂))

||sk||2
· sk.Solve the p̂ problems (12)-(13) with µk, and let (δ(k),x(k), γ(k), y(k)) and

zLD(µ
k, p̂) be the optimal solution and the solution value of (9), respetively.Then, update (δ, x, γ, y) : = fk · (δ

(k), x(k), γ(k), y(k)) +(1− fk) · (δ, x, γ, y)Step 2: If zLD(µk, p̂) > z(µ, p̂), update µ := µk and z(µ, p̂) := zLD(µ
k, p̂).Set k := k + 1 and go to Step 1.Figure 4: Volume Algorithm (VA)Note: The step diretions sk and sk are used for obtaining the weighting parameter fkand hosing the onvergene parameters.4.3 Progressive Hedging AlgorithmThe Progressive Hedging Algorithm for problems with ontinuous variables alone wasintrodued in [20℄, see also [24℄ for a reent innovation. Our proedure for updating theLagrange multipliers of the NAC (6)-(7) is given in Figure 5. The basi features are asfollows: Let (δ(k), x(k),γ(k), y(k)) be an optimal solution of problem (MIP

p̂

LD(µ
k)) (9) atiteration k. A new non-neessarily feasible solution an be de�ned as δ̂ =

p̂
∑

p=1

wpδ(k)p and
x̂ =

p̂
∑

p=1

wpx(k)p. These expressions represent an estimation of the expeted value over theset of senario lusters of the optimal solution obtained at iteration k.
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Step 0: Given the Lagrange multipliers vetor, µ0, solve the p̂ problems (12)-(13) toobtain (δ(0), x(0), γ(0), y(0)) and zLD(µ
0, p̂) as the sum given in (11). Set k := 0.

Step 1: Compute sk =

































(δ(k)1 − δ(k)2)...
(δ(k)p̂−1 − δ(k)p̂)

(δ(k)p̂ − δ(k)1)

(x(k)1 − x(k)2)...
(x(k)p̂−1 − x(k)p̂)

(x(k)p̂ − x(k)1)

































and ŝk =

































(δ(k)1 − δ̂(k))...
(δ(k)p̂−1 − δ̂(k))

(δ(k)p̂ − δ̂(k))

(x(k)1 − x̂(k))...
(x(k)p̂−1 − x̂(k))

(x(k)p̂ − x̂(k))

































,
hek the stopping riteria given in Se. 4.5 and if they are not satisfed, set
µk+1 := µk + αk ·

(zLD − zLD(µ
k, p̂))

||ŝk||2
· ŝk.Solve the p̂ problems (12)-(13) with µk+1, and let (δ(k+1), x(k+1), γ(k+1), y(k+1))and zLD(µ

k+1, p̂) be the optimal solution and solution value, respetively.Compute δ̂k+1 and x̂k+1.Set k := k + 1 and go to Step 1.Figure 5: Progressive Hedging Algorithm (PHA)Note: The step diretion ŝk is used for hoosing the onvergene parameters, see Se. 4.6.4.4 Dynami Constrained Cutting Plane methodThe DCCP is a Cutting Plane Method, see [18℄, in whih the Lagrange multiplier at iteration
k are updated by solving the following maximization problem

zLD(µ
k, p̂) = max

µ∈Ck(µ)
z

z ≤ zLD(µ
i, p̂) ∀i ∈ I,where Ck(µ) is the dynamially updated Lagrange multipliers feasible region and zLD(µ

i, p̂)is a trunation of Taylor series expansion of the funtion zLD(µ, p̂) around the point µi, i.e.,
zLD(µ

k) = max
µ∈Ck(µ)

z (14)s.t. z ≤ zLD(µ
i, p̂) +

p̂
∑

p=1

(µp − µi,p)si ∀i ∈ I,where I is the set of utting planes, see (16), zLD(µi, p̂) is the Langrangean bound obtainedat iteration i, and si is the subgradient vetor of zLD(µ, p̂) at µi, for i ∈ I.Notie that the number of onstraints in model (14) grows with the number of iterations.To prevent the exessive size of the problem, n̂ denotes the maximum number of uttingplanes, i.e, the maximum number of onstraints in model (14), so |I| = min{k, n̂}. Then, if12



the number of iterations is lower than or equal to the maximum number of utting planes,
k ≤ n̂, all the utting planes are onsidered in the model (14). Whereas, if the iterationnumber is larger than the maximum number of onstraints, k > n̂, the di�erene, say, dibetween the ith hyperplane zLD(µ

i, p̂) +
∑p̂

p=1(µ
k,p − µi,p)si and the Lagrangian boundobtained at iteration k is omputed as follows,

di = zLD(µ
i, p̂) +

p̂
∑

p=1

(µk,p − µi,p)si − zLD(µ
k, p̂). (15)The most distant hyperplanes are deleted from I. It should be noted that the residual diis always positive, sine the utting plane reonstrution of the dual funtion overestimatesthe atual dual funtion.The feasible region Ck(µ) has the expression

Ck(µ) = {µ, µk ≤ µ ≤ µk}, (16)where µk and µk denote the lower and the upper bound of the Lagrange multipliers vetor atiteration k, respetively, suh that they are updated at eah iteration and an be expressed
µk+1
j

= µk
j − αk · β

k · |skj | and µk+1
j = µk

j + αk · β
k · |skj |, (17)where µk

j is the jth omponent of the multipliers vetor obtained as optimal solution of model
(14) at iteration k and βk =

(zLD − zLD(µ
k, p̂))

||sk||2
. Therefore, at iteration k + 1 the feasibleregion Ck+1(µ) is de�ned around the optimal multipliers vetor obtained in the previousiteration. The proedure for updating the Lagrange multipliers of the NAC (6)-(7) is givenin Figure 6.Step 0: Given the Lagrange multipliers vetor, µ0, solve the p̂ problems (12)-(13) toobtain (δ(0), x(0), γ(0), y(0)) and zLD(µ
0, p̂) as the sum given in (11). Set k := 0.

Step 1: Compute sk =

































(δ(k)1 − δ(k)2)...
(δ(k)p̂−1 − δ(k)p̂)

(δ(k)p̂ − δ(k)1)

(x(k)1 − x(k)2)...
(x(k)p̂−1 − x(k)p̂)

(x(k)p̂ − x(k)1)































hek the stopping riteria given in Se. 4.5 and if they are not satisfed, set
µk+1
j

and µk+1
j as (17) where βk =

(zLD − zLD(µ
k, p̂))

||sk||2
.Solve the model (14) to obtain the new Lagrangian multiplier vetor, µk+1.If k > n̂, ompute di as (15) and delete ι ∈ argmaxi∈I{di} from I.Step 2: Solve the p̂ problems (12)-(13) with µk+1, and let (δ(k+1), x(k+1), γ(k+1), y(k+1))and zLD(µ

k+1, p̂) be the optimal solution and solution value, respetively.Set k := k + 1 and go to Step 1.Figure 6: Dynami Constrained Cutting Plane method (DC-CP)13



4.5 Stopping riteriaIn this setion we present the stopping riteria that are ommon to the four proeduresdesribed above. At Step 1 of eah proedure, and after omputing the subgradient vetor sk(SM) and (DC-CP), sk (VA), or ŝk (PHA), respetively, we ompute its norm.The stopping riterion 1, requires that the norm of the subgradient vetor is near to zero(say, less than ǫs = 0.01). We have used the ℓ2 norm, but it ould be possible to omputethe ℓ∞, with a little more omputational e�ort and the solution would perhaps have beenmore aurate. If this riterion is satis�ed, then the NAC (6)-(7) are satis�ed as well and theoptimal solution to the MIP model has been obtained. So, the Lagrangian bound oinideswith the optimal solution value of the original stohasti integer problem.The stopping riterion 2 ommon to the four proedures has two parts. The �rst is asfollows,
|
∑p̂

p=1[w
p(c1δ̃

(k)p + c2x̃
(k)p) +

∑

ω∈Ωp
wω[qω1 γ̃

(k)ω + qω2 ỹ
(k)ω]]− zLD(µ

k, p̂)|

|zLD(µk, p̂)|
< ǫz (18)where (δ̃(k)p, x̃(k)p, γ̃(k)ω , ỹ(k)ω) denotes the inumbent solution, being (δ(k)p, x(k)p, γ(k)ω, y(k)ω)for SM, PHA and DCCP and (δ, x, γ, y) for VA, and ǫz is a given tolerane. In partiular, weuse ǫz = 0.008.The seond part is given by

∑p̂
p=1 |s̃pδ|

p̂ · nδ
< ǫδ and ∑p̂

p=1 |s̃px|

p̂ · nx
< ǫx, (19)where p̂ ·nδ and p̂ ·nx are the number of NAC for the δ and x variables, respetively, s̃pδ and

|s̃px| for luster p denote the absolute deviations for the orresponding δ and x rows of vetor
sk for SM and DCCP, sk for VA and ŝk for PHA, whereas ǫδ and ǫx are given toleranes. Inpartiular, we use ǫδ = 0.01 and ǫx = 0.1.Finally, the stopping riterion 3 requires that the inumbent solution value, zLD(µk, p̂)does not improve (given a tolerane, say ǫ = 0.0001) after a sequene of ten onseutiveiterations.When any of the stopping riteria is satis�ed, the possible situations are as follow relatedto the CLD bound zLD(µ

k, p̂):1. Stopping riterion 1. The bound is the solution value of the original problem and,additionally, the solution is feasible and then, it is the optimal one. We denote theorresponding results in green in Tables 3-24.2. Stopping riterion 2. The (strong) bound is the objetive funtion value of a quasi-feasible solution given the optimality toleranes that have been established. We denotethe orresponding results in blue in Tables 3-24.3. Stopping riterion 3. The bound is the strongest bound that an be obtained giventhe set of toleranes and parameters that have been established. We denote theorresponding results in red in Tables 3-24.14



4.6 Choie of the onvergene parametersThe performane of the proedures given above is very sensitive to the hoie of the givenparameters: the initial upper bound zLD, the initial step size parameter α0 and moreover theproedure for updating this step size parameter at eah iteration αk; some implementationdetails are given in [4℄. In this sense, and following the notation given in that paper, we haveonsidered three types of iterations for setting the value of αk. The iteration at whih thereis no improvement in the value of funtion zLD(µ, p̂), suh that zLD(µ
k, p̂) ≤ zLD(µ

k−1, p̂)is alled red. Otherwise, i.e., zLD(µk, p̂) > zLD(µ
k−1, p̂), let the vetor hk be omputed asfollows: hk = (sk)t·sk−1 in the Subgradient and Dynami Constrained Cutting Plane methods;

hk = (sk)t · sk in the Volume Algorithm, and hk = (sk)t · ŝk in the Progressive HedgingAlgorithm, where sk, sk and ŝk denote, respetively, the subgradient vetor alulated in Step1 of the orresponding proedure. Notie that hk < 0 means that a longer step in the diretionof sk would produe a smaller value for zLD(µk, p̂). In this ase, the iteration is alled yellow.If hk ≥ 0 then the iteration is alled green. At eah green iteration we multiply αk by 1.1.After eah sequene of #red onseutive red iterations we multiply αk by 0.66.Note that there is no relationship between the olor of the iterations, yellow, red or greenolor, introdued in [4℄, to desribe the proedure for updating the value of the step sizeparameter αk, and that shows the di�erent CLD bounds in the Tables 3-24 showing thestopping riterion has oured.The optimal values for #red and α0 must be adequately tested for eah instane and arelearly dependent on the initial upper bound zLD onsidered, see [10℄. However, we observedin our omputational experimentation (see Se. 5) that, in general, and for any hoie ofthese parameters, the lustering partition provides stronger lower bounds when omputingthe Lagrangian bound at iteration zero, i.e., zLD(µ
0, p̂). Note: The initial vetor of theLagrange multipliers has been taked as a vetor of zeros, µ0 = ~0, given the good results thatwe have reported in [10℄ for singleton senario lusters by omputationally omparing thishoie with some other alternative.For eah lustering partition, we obtain an interval for the solution value of the originalproblem, given by [zLD(µ

0, p̂), zLD]. As we will show, the tightness of the Lagrangian boundat iteration zero, zLD(µ0, p̂), depends upon the luster partitioning i.e., p̂ that is onsidered;while in the ase of the upper bound zLD(ρ), its goodness depends on the quasi-optimalitytolerane ρ% onsidered when the MIP solver obtains it. When using the preproessingand parallel omputing tools available by default in CPLEX, stronger bounds are e�ientlyomputed, see Table 2.In order to homogenize the performane of the two solvers to be used, namely CPLEXwithin COIN-OR [17℄ and the LP/MIP funtions of it as well as the di�erent lusterpartitionings, we have onsidered #red = 1 in all the instanes in the testbed. We haveexperimented as well as the same initial steplength value α0, although diminishing it for bothsolvers in some instanes, depending on the extension of the interval that ontains the solutionvalue, see Se. 5.The parameter fk in the Volume Algorithm is set to a �xed value for a number of iterationsand is dereased afterwards. Let sk and sk be de�ned as in Step 1 of the proedure. Let also
fmax be an upper bound of fk. Then, we an ompute fopt as the value that minimizes15



||fk · s
k + (1− fk) · s

k||. It is easy to verify that this value is fopt = ∑2p̂
i=1 s

k
i (s

k
i − ski )

∑2p̂
i=1(s

k
i − ski )(s

k
i − ski )

.If fopt < 0, set fk = 1
10 · fmax. Otherwise, set fk = min{fmax, fopt}. In our omputationalexperimentation we have used fmax = f0 = 0.1 and we have dereased its value near to theend.Finally, the maximum number of utting planes, n̂, in the Dynami Constrained CuttingPlane method has been �xed to n̂ = 30.5 Computational experieneWe report the results of the omputational experiene obtained while optimizing the two-stage MIP model (1) over some randomly generated instanes. The �rst two instanes of thetestbed are small-medium sized, while the other instanes are larger, signi�antly bigger thanthose normally reported in the literature, e.g., [23℄.The omputational experiments were onduted in a Workstation Debian Linux (kernelv2.6.32 with 64 bits), 2 proessors Xeon 5355 (Quad Core with 2x4 ores), 2.664 Ghz and 16Gb of RAM.The four proedures given above have been implemented in a C++ experimental ode. Ituses alternatively two of the state-of-the-art optimization engines, in partiular CPLEX v12.2within the open soure engine COIN-OR and the LP/MIP default funtions Clp and Cb ofthe same COIN-OR system. Both optimizers are used by the CLD algorithm for solving theLP relaxation of the whole model and the related mixed 0-1 luster submodels.We will ompare the results obtained by using both optimizers, COIN-OR and CPLEX.The use of the latter is denoted with the upperindex ppc, sine this solver uses (by default)the state-of-the-art preproessing and parallel omputing (in our ase with a parallel shemeof eight threads, one per ore). The four Lagrange multipliers updating proedures presentedabove an be enrihed by providing a variety of speialized preproessing, ut generationand appending, probing and parallel omputation tools, see [19℄, that an ustomize theexperimental ode to ahieve maximum e�ieny.The struture of the DEM in ompat representation for the instanes, whih is inspiredin model (38) of [23℄, an be expressed

min c1δ + c2x+

|Ω|
∑

ω=1

wω(qω1 γ
ω + qω2 y

ω)s.t. b1 ≤ A

(

δ

x

)

≤ b2

hω1 ≤ Tω

(

δ

x

)

+W ω

(

γω

yω

)

≤ hω2 ∀ω ∈ Ω

x, yω ∈ [0, 1] ∀ω ∈ Ω
δ, γω ∈ {0, 1} ∀ω ∈ Ω,

(20)
Note that the variables in both stages are bounded. The vetors of variables δ and

γ are integer, moreover they are binary, whereas the vetors of ontinuous variables, x16



Table 1: Model dimensionsCompat representation Splitting variable representationInstane mc nc
δ nc

x nγ ny nelc densc ms ns
δ ns

x nels denss |Ω|P1 136 4 4 128 128 2112 5.88 640 128 128 4608 1.41 32P2 148 10 10 128 128 3984 9.75 1408 320 320 17664 1.40 32P3 288 5 10 280 420 70120 3.40 4410 350 700 80500 1.04 70P4 1290 30 15 1280 256 73410 3.59 8320 3840 1920 142080 0.23 128P5 1935 25 10 2560 1920 134925 1.54 8320 3200 1280 210560 0.28 128P6 2010 20 20 2000 2000 120400 1.48 12000 4000 4000 216000 0.15 200P7 2010 20 40 3000 2000 170600 1.68 16000 4000 8000 314000 0.11 200P8 2005 12 15 6000 4000 104135 0.52 14800 4800 6000 179600 0.06 400P9 2005 10 15 3600 3600 86125 0.59 14000 4000 6000 156000 0.06 400P10 2520 30 40 5000 2500 213900 2.76 47500 15000 20000 982500 0.05 500P11 2520 50 50 5000 2500 289500 1.51 62500 25000 25000 1387500 0.04 500and y, are saled onto [0,1℄. The likelihood attributed to the senarios is equal undereah senario, i.e, wω = 1
|Ω| ∀ω ∈ Ω, being Ω the set of senarios. The vetors of theobjetive funtion oe�ients, c1, c2, (qω1 ), (qω2 ) are generated using the uniform distributionover [−2.5,−1.5], [−2.5,−1.5], [−30+ ω

|Ω| ,−10+ ω
|Ω| ] and [−30+ ω

|Ω| ,−10+ ω
|Ω| ], respetively. Theleft-hand-side vetors, b1, (hω1 ) are �xed to 1

2 ·k1 and 1
2 ·k1+

ω
|Ω| , respetively. The right-hand-side vetors, b2, (hω2 ), are generated using the uniform distribution over [k2, k2+k1 · (nδ +nx)]and [k3 +

ω
|Ω| , k3 +

ω
|Ω| + k1 · (nδ + nx + nγ + ny)], respetively, where k1 ∈ [0, 1], k2 ∈ [0, 41.5]and k3 ∈ [0, 30.5]. nδ and nx are the number of 0-1 and ontinuous �rst stage variables,and nγ and ny are the orresponding number of 0-1 and ontinuous seond stage variables.

A is the matrix of oe�ients for the �rst stage onstraints, and the tehnology matries
Tω and W ω for the seond stage variables are generated using the uniform distribution over
[0, 2], [−0.1 · ω

|Ω| ,−0.1 · ω
|Ω| + 0.3] and [1.5 · ω

|Ω| , 1.5 ·
ω
|Ω| + 8.0], respetively.Table 1 gives the dimensions of the mixed 0-1 DEM for the 11 instanes of the testbedthat we have experimented with in ompat and splitting variable representations. Theheadings are as follows: mc, ms, number of onstraints; nc

δ, n
s
δ, number of 0-1 �rst stagevariables; and nc

x, n
s
x number of ontinuous �rst stage variables in ompat and splittingvariable respresentation, respetively. nγ , number of 0-1 seond stage variables; ny, number ofontinuous seond stage variables. nelc, nels, number of nonzero oe�ients in the onstraintmatrix; and densc, denss, onstraint matrix density (in %) in ompat and splitting variablerepresentation, respetively. Finally, |Ω| denotes number of senarios. Notie that the numbersof seond stage variables nγ and ny, are the same under both representations. It is worthpointing out that the testbed has 4 types of instanes from the DEM dimensions point ofview, namely the instanes P1 and P2 are toy ones, P3 up to P7 are medium sized instanes,P8 and P9 are large-sale instanes, and P10 and P11 are very large-sale instanes given thestate-of-the art of general MIP solvers.Table 2 shows some of the main results obtained by plain use of the two optimizers COIN-OR and CPLEX for solving the original problem (20). The headings are as follows: zppcLP , LPsolution value; zppcMIP , objetive funtion value of the CPLEX inumbent solution (but it isthe solution value for the toy instanes P1 and P2) of problem (20); T ppc

LP and T
ppc
MIP , elapsedtimes (in ses.) to obtain the z

ppc
LP and z

ppc
MIP values, respetively, by plain use of CPLEX inthe ompat representation of problem (20). Upper bounds z(ρ) and zppc(ρ) of the solution17



Table 2: LP relaxation lower bound and upper bound for the optimal MIP solution valueCase z
ppc
LP z

ppc
MIP T

ppc
LP T

ppc
MIP z(ρ) Tz(ρ) zppc(ρ) T

ppc

z(ρ)P1 -81.14 -80.4820 0.01 1 -80.1945(1) 0.27 -80.3516(1) 0P2 -100.42 -99.8996 0.01 2 -99.3327(1) 0.25 -99.6225(1) 0P3 -61.40 -59.4645(*) 0.28 � -58.6387(10) 70 -59.46(0.1) 28P4 -76.05 -70.7906(*) 0.09 � -68.5212(10) 24 -70.7906(1) 40P5 -86.70 -84.2161(*) 0.21 � -82.3986(5) 20 -84.1637(0.5) 156P6 -69.30 -66.0478(*) 0.29 � -65.955(5) 125 -66.0315(0.5) 49P7 -83.50 -79.8772(*) 0.41 � -77.326(10) 111 -79.8045(1) 87P8 -116.32 -114.318(*) 0.28 � -113.235(5) 61 -114.044(0.5) 37P9 -95.81 -94.1302(*) 0.26 � -92.9241(5) 37 -94.1227(0.1) 89P10 -301.54 -300.456(*) 0.62 � -300.166(0.5) 114 300.425(0.05) 27P11 -321.29 -320.283(*) 0.80 � -317.724(5) 54 -320.249(0.05) 61�: Time limit exeeded (3 hours = 10800 ses.)(*): Inumbent solution value at the time limitvalue of the original problem that have been obtained as quasi-optimal solution values witha ρ% tolerane omputed by plain use of COIN-OR and CPLEX, respetively; and, �nally,
Tz(ρ) and T

ppc
z(ρ), elapsed times (in ses.) for obtaining the orresponding upper bounds.Table 2 shows relevant information onerning the di�ulty of the instanes we wereexperimenting with, in partiular the larger ones (i.e., from P3 to P11). None of them aresolved up to optimality by plain use of solvers COIN-OR and CPLEX within the three hourselapsed time limit. Therefore, the objetive funtion value of the inumbent solution providedby CPLEX, is in some instanes just an upper bound of the solution value of the originalstohasti instane, i.e., P4. In some other instanes (i.e., P6, P7, P8, P10 and P11) theinumbent solution oinides with the optimal one. However, this fat is not known by thesolver, but we an guarantee this after having obtained a green solution with our proedures,evidently requiring a total elapsed time muh less than three hours. Finally, there some otherinstanes (i.e., P3, P5 and P9) for whih the plain use of CPLEX provides an inumbentsolution with an objetive funtion value slightly higher than the CLD bound provided byour proedures, but with a muh greater omputational e�ort. Note: In these situationsthe quasi-optimality gap between the CPLEX inumbent solution and the best CLD bound,de�ned as |
z
ppc
MIP

−zLD

zLD
|, is for instane P3, |−59.4645+59.4647

−59.4647 | = 3.36 · 10−6, for instane P5,
|−84.2161+84.2243

−84.2243 | = 9.73 ·10−5, and for instane P9, |−94.1302+94.1407
−94.1407 | = 1.11 ·10−4. Very smallin both of them. However, the traditional optimality gap de�ned as |

z
ppc
MIP

−z
ppc
LP

z
ppc
LP

|, of value
0.031, 0.028 and 0.017 for instanes P3, P5 and P9, respetively, is substantially greater. Thedetails of this onlusion are shown in the results presented in the rest of the setion.Tables 3-4 until 23-24 show in detail the main results of our omputational experiene foreah of the instanes P1 until P11, without and with sophistiated preproessing and parallelomputation tools (i.e., by using COIN-OR funtions and CPLEX, respetively). In all ofthem, the heading p̂ denotes the luster partition i.e., the number of senario lusters that areonsidered. In all the instanes we have onsidered four senario luster partitions. For eahluster partition (i.e., at eah olumn in the tables) we present the interval of the solutionvalue (i.e., the objetive funtion value of the optimal solution of the original stohastimixed 0-1 instane) given by [zLD(µ

0, p̂), z(ρ)]. Additionally, α0 denotes the initial step size18



parameter; zSM [ite], zV A[ite], zPHA[ite] and zDCCP [ite] denote the CLD bounds obtained in
[ite], the orresponding number of iterations required by using the proedures SM, VA, PHAand DCCP, respetively; TS , TV , TP and TD denote the related elapsed times (in ses.) byusing the COIN-OR funtions. Finally, the upperindex ppc in these headings indiate the aseof using CPLEX.Table 3: CLD bounds without preproessing and parallel omputation tools (COIN-OR). Instane P1

p̂ = 32 lusters p̂ = 16 lusters p̂ = 8 lusters p̂ = 4 lusters
zMIP ∈ [−81.0529,−80.1945] [−80.7393,−80.1945] [−80.6329,−80.1945] [−80.553,−80.1945]

α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[63] = −80.5098 6 z[60] = −80.4873 5 z[29] = −80.4834 4 z[34] = −80.4825 6
z[52] = −80.482 10VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[104] = −80.494 12 z[58] = −80.4843 5 z[61] = −80.4845 6 z[45] = −80.482 10PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[213] = −80.4861 21 z[89] = −80.4886 7 z[108] = −80.4827 10 z[60] = −80.482 12DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[82] = −80.5033 9 z[68] = −80.4857 7 z[32] = −80.4836 3 z[14] = −80.4827 3
z[23] = −80.482 5Table 4: CLD bounds with preproessing and parallel omputation tools (CPLEX). Instane P1

p̂ = 32 lusters p̂ = 16 lusters p̂ = 8 lusters p̂ = 4 lusters
zMIP ∈ [−81.0529,−80.3516] [−80.7393,−80.3516] [−80.6329,−80.3516] [−80.553,−80.3516]

α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z
ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[62] = −80.5113 16 z[63] = −80.4917 10 z[29] = −80.4843 4 z[33] = −80.482 3VA z
ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[133] = −80.4952 34 z[58] = −80.4847 10 z[69] = −80.4842 6 z[37] = −80.482 4
z[56] = −80.482 11PHA z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[180] = −80.4857 48 z[105] = −80.4852 17 z[115] = −80.482 12 z[63] = −80.482 7DC-CP z
ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[80] = −80.5137 25 z[49] = −80.4863 19 z[21] = −80.4839 6 z[17] = −80.482 2Tables 3-4 show the results reported for instane P1. The CLD bounds obtained by usingboth solvers are very similar, but with a higher omputational e�ort in ase of using CPLEX,perhaps due to the small dimensions of the instane. Notie that this happens for all thefour proedures and the four luster partitions that we have experimented with, but for theolumn orresponding to the partition in p̂ = 4 lusters, where eah luster submodel has 8senarios and the four proedures are more e�ient when using CPLEX. The �rst olumn inboth tables orresponds to the traditional LD, where the number of lusters is the number ofsenarios. Notie that in this olumn the olor of the solutions is red (i.e., the third stoppingriterion has been satis�ed) or blue (seond stopping riterion), whih indiates that the CLDbound is, at least, the strongest bound that an be obtained for the given toleranes. Theolor of the solutions in both tables is green (�rst stopping riterion), whih means that theCLD bound is the solution value of the original problem. Notie also that for some ases,although the CLD bound is equal to the solution value of the original problem, the olor of19



the results is not green, see VA for p̂ =4 in both tables. This is due to the fat that the CLDbound does not satisfy the NAC, i.e., the norm of the orresponding subgradient vetor sk ishigher than the given tolerane.Table 5: CLD bounds without preproessing and parallel omputation tools (COIN-OR). Instane P2
p̂ = 32 lusters p̂ = 16 lusters p̂ = 8 lusters p̂ = 4 lusters

zMIP ∈ [−100.289,−99.3327] [−100.15,−99.3327] [−99.9725,−99.3327] [−99.944,−99.3327]
α0 = 1.9 α0 = 1.9 α0 = 1.5 α0 = 1.5SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[51] = −99.9233 3 z[31] = −99.9017 2 z[28] = −99.8997 2 z[8] = −99.9002 1
z[59] = −99.8996 10VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[30] = −99.9436 2 z[17] = −99.9578 1 z[7] = −99.9537 0 z[5] = −99.944 1
z[48] = −99.8996 8PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[39] = −99.9003 7 z[73] = −99.8996 4 z[55] = −99.8996 4 z[27] = −99.9009 5
z[89] = −99.8996 16DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[24] = −99.9504 2 z[35] = −99.9091 3 z[21] = −99.9002 2 z[8] = −99.9122 2
z[38] = −99.8996 7It an be observed in the results for the larger instanes that sometimes the optimal lusterpartitioning is not the smallest. In these situations, it may be more e�ient to onsider agreat number of lusters and then, more manageable sized luster submodels.Tables 5-6 show the results obtained for instane P2. In order to eliminate the osillatorybehavior of the iterative proedures for narrow solution value intervals, we have redued theinitial step size parameter for the ases with partitions in p̂ =8 and 4 lusters. Again theoptimal partition is the one shown in the last olumn of both tables where the solution valueis found. The quality of the CLD bounds obtained for the small instanes P1 and P2 is verysimilar, but the elapsed time is smaller for the proedures SM and DCCP, followed by VAand PHA. SM is even more e�ient than the plain use of CPLEX for instane P2.Table 6: CLD bounds with preproessing and parallel omputation tools (CPLEX). Instane P2

p̂ = 32 lusters p̂ = 16 lusters p̂ = 8 lusters p̂ = 4 lusters
zMIP ∈ [−100.289,−99.6225] [−100.15,−99.6225] [−99.9725,−99.6225] [−99.944,−99.6225]

α0 = 1.9 α0 = 1.9 α0 = 1.5 α0 = 1.5SM z
ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[28] = −99.9378 11 z[32] = −99.9023 8 z[21] = −99.8996 10 z[8] = −89.8996 1VA z
ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[31] = −99.9397 13 z[18] = −99.9348 3 z[9] = −99.9663 2 z[5] = −99.944 1
z[55] = −99.8996 5PHA z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[116] = −99.9014 51 z[101] = −99.8996 23 z[50] = −99.8996 6 z[32] = −99.8996 3DC-CP z
ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[41] = −99.9346 17 z[30] = −99.9057 7 z[20] = −99.9013 3 z[11] = −99.9010 2
z[29] = −99.8996 3P3 is one of the most di�ult instanes in our testbed, in spite of the dimensions of itsmodel. Tables 7-8 report the main results. The COIN-OR funtions (see Table 7) requiremore than three hours to obtain the CLD bounds in ase of onsidering luster partitions in20



p̂ =10 or less lusters and then, we annot provide the interval of the solution value, due toexeeding the time limit . However, this is obtained at the �rst iteration when using CPLEX(see Table 8). After the blue solution is obtained at the �rst iteration, the proedures ontinueiterating until obtaining the strongest CLD bound by satisfying the third stopping riterion,i.e., a red solution.Table 7: CLD bounds without preproessing and parallel omputation tools (COIN-OR). Instane P3
p̂ = 70 lusters p̂ = 35 lusters p̂ = 10 lusters p̂ = 5 lusters

zMIP ∈ [−59.5529,−58.6387] [−59.5142,−58.6387] [−,−58.6387] [−,−58.6387]
α0 = 0.5 α0 = 0.5 α0 = − α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[18] = −59.487 117 z[4] = −59.4902 107 � � � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[29] = −59.481 180 z[17] = −59.4858 367 � � � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[53] = −59.4955 329 z[60] = −59.4815 1233 � � � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[18] = −59.4863 116 z[20] = −59.4798 423 � � � �Table 8: CLD bounds with preproessing and parallel omputation tools (CPLEX). Instane P3
p̂ = 70 lusters p̂ = 35 lusters p̂ = 10 lusters p̂ = 5 lusters

zMIP ∈ [−59.5529,−59.46] [−59.5142,−59.46] [−59.4821,−59.46] [−59.4763,−59.46]
α0 = 0.5 α0 = 0.5 α0 = 0.5 α0 = 0.1SM z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[10] = −59.4925 29 z[11] = −59.4863 34 z[0] = −59.4821 6 z[0] = −59.4763 10
z[54] = −59.4669 457VA z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[26] = −59.4847 71 z[23] = −59.4828 68 z[0] = −59.4821 6 z[0] = −59.4763 10
z[50] = −59.4649 432PHA z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[24] = −59.483 64 z[9] = −59.4888 28 z[0] = −59.4821 6 z[0] = −59.4763 10
z[117] = −59.4647 967DC-CP z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[13] = −59.4934 35 z[12] = −59.4848 37 z[0] = −59.4821 5 z[0] = −59.4763 10
z[62] = −59.4647 489Tables 9-10 and 11-12 show the results for the instanes P4 and P5, respetively, beingvery similar for both instanes. As in instane P3, more than three hours are required toobtain the CLD bounds by using COIN-OR in ase of onsidering luster partitions in p̂ =8 or less lusters (see Tables 9 and 11). In both instanes, the strongest CLD bounds areobtained by using CPLEX in ase of onsidering a partition in p̂ = 4 lusters (see Tables 10and 12).
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Table 9: CLD bounds without preproessing and parallel omputation tools (COIN-OR). Instane P4
p̂ = 128 lusters p̂ = 32 lusters p̂ = 8 lusters p̂ = 4 lusters

zMIP ∈ [−73.9588,−68.5212] [−70.108,−68.5212] [−,−68.5212] [−,−68.5212]
α0 = 1.9 α0 = 1.9 α0 = − α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[104] = −71.5568 207 z[90] = −71.0946 539 � � � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[101] = −71.3968 206 z[63] = −71.0582 386 � � � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[213] = −71.3772 438 z[154] = −71.0031 954 � � � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[135] = −71.4846 285 z[108] = −71.1141 669 � � � �Table 10: CLD bounds with preproessing and parallel omputation tools (CPLEX). Instane P4
p̂ = 128 lusters p̂ = 32 lusters p̂ = 8 lusters p̂ = 4 lusters

zMIP ∈ [−73.9588,−70.7906] [−70.108,−70.7906] [−71.3013,−70.7906] [−71.0679,−70.7906]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z
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ppc
S z

ppc
SM [ite] T
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S z

ppc
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ppc
S z

ppc
SM [ite] T

ppc
S

z[106] = −71.5566 310 z[75] = −71.1511 204 z[21] = −70.911 345 z[7] = −70.8615 346VA z
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V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[142] = −71.4157 440 z[57] = −71.0701 161 z[30] = −70.897 483 z[29] = −70.8533 872PHA z
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PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[188] = −71.3789 606 z[149] = −71.0235 442 z[16] = −71.0144 218 z[14] = −70.895 484DC-CP z
ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[150] = −71.584 486 z[97] = −71.1523 268 z[20] = −70.9028 328 z[14] = −70.895 484Table 11: CLD bounds without preproessing and parallel omputation tools (COIN-OR). Instane P5
p̂ = 128 lusters p̂ = 32 lusters p̂ = 8 lusters p̂ = 4 lusters

zMIP ∈ [−89.1014,−82.3986] [−86.7169,−82.3986] [−,−82.3986] [−,−82.3986]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[99] = −85.4933 170 z[99] = −84.7134 583 � � � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[228] = −85.2149 512 z[156] = −84.5161 997 � � � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[240] = −84.9909 403 z[193] = −84.4516 1076 � � � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[163] = −85.5784 296 z[107] = −84.785 651 � � � �
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Table 12: CLD bounds with preproessing and parallel omputation tools (CPLEX). Instane P5
p̂ = 128 lusters p̂ = 32 lusters p̂ = 8 lusters p̂ = 4 lusters

zMIP ∈ [−89.1014,−84.1637] [−86.7169,−84.1637] [−85.4198,−84.1637] [−85.1652,−84.1637]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z
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S z

ppc
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S z

ppc
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S z

ppc
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ppc
S

z[123] = −85.5389 546 z[88] = −84.7792 247 z[70] = −84.2606 1151 z[21] = −84.2370 1069VA z
ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z
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V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[228] = −85.2448 941 z[189] = −84.5286 593 z[65] = −84.2433 1148 z[47] = −84.2243 1487PHA z
ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[291] = −84.9872 1241 z[220] = −84.4464 949 z[107] = −84.2429 1881 z[46] = −84.2259 1383DC-CP z
ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[145] = −85.576 578 z[110] = −84.9279 313 z[92] = −84.3066 1511 z[28] = −84.2349 1730P6 and P7 are instanes with similar dimensions and the results are also similar to thoseobtained for the instanes P4 and P5 in the sense that the behavior of the four proedures isanalogous when using COIN-OR for partitions in p̂ =8 and 4 lusters (see Tables 13 and 15).However when using CPLEX the optimal partition is p̂ =4 lusters for P6 and p̂ =8 lustersfor P7 (see Tables 14 and 16), i.e., the smallest and then, reahing the optimal solution ina more e�ient way for the four proedures. Notie that for instane P7 with p̂ =8 and 4lusters, a feasible CLD bound is obtained at iteration zero for all the proedures by usingCPLEX. The e�ieny of the four proedures is lower for p̂ =4 lusters and, in partiular,PHA requires more than 15000 ses. to reah the optimal solution.Table 13: CLD bounds without preproessing and parallel omputation tools (COIN-OR). Instane P6
p̂ = 200 lusters p̂ = 50 lusters p̂ = 8 lusters p̂ = 4 lusters

zMIP ∈ [−68.0453,−65.955] [−66.639,−65.955] [−,−65.955] [−,−65.955]
α0 = 1.9 α0 = 1.9 α0 = − α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[101] = −66.2772 281 z[30] = −66.1435 176 � � � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[110] = −66.205 309 z[73] = −66.0966 444 � � � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[189] = −66.1759 498 z[95] = −66.088 543 � � � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[149] = −66.2739 443 z[104] = −66.1349 602 � � � �Table 15: CLD bounds without preproessing and parallel omputation tools (COIN-OR). Instane P7
p̂ = 200 lusters p̂ = 50 lusters p̂ = 8 lusters p̂ = 4 lusters

zMIP ∈ [−81.934,−77.326] [−80.5159,−77.326] [−,−77.326] [−,−77.326]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[37] = −80.1946 128 z[26] = −79.9765 256 � � � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[55] = −80.1311 128 z[32] = −79.969 384 � � � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[213] = −80.0999 502 z[198] = −79.9803 1623 � � � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[126] = −80.1823 312 z[34] = −79.9836 328 � � � �23



Table 14: CLD bounds with preproessing and parallel omputation tools (CPLEX). Instane P6
p̂ = 200 lusters p̂ = 50 lusters p̂ = 8 lusters p̂ = 4 lusters

zMIP ∈ [−68.0453,−66.0315] [−66.639,−66.0315] [−66.1605,−66.0315] [−66.1153,−66.0315]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S
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z[31] = −66.0478 935VA z
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z[88] = −66.2136 461 z[65] = −66.094 178 z[25] = −66.0615 421 z[7] = −66.106 194
z[48] = −66.0478 1282PHA z
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z[181] = −66.1928 963 z[106] = −66.0885 279 z[37] = −66.0582 582 z[16] = −66.0488 437
z[51] = −66.0478 1468DC-CP z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[51] = −66.9962 227 z[46] = −66.5703 111 z[9] = −66.062 160 z[6] = −66.0519 188
z[18] = −66.0478 491Table 16: CLD bounds with preproessing and parallel omputation tools (CPLEX). Instane P7

p̂ = 200 lusters p̂ = 50 lusters p̂ = 8 lusters p̂ = 4 lusters
zMIP ∈ [−81.934,−79.8045] [−80.5159,−79.8045] [−79.9739,−79.8045] [−79.917,−79.8045]

α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z
ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[45] = −80.2291 201 z[36] = −79.9984 143 z[0] = −79.9739 33 z[0] = −79.917 130z[62℄=-79.8772 1848 z[40] = −79.8772 6319VA z
ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[51] = −80.157 237 z[36] = −79.9837 145 z[0] = −79.9739 33 z[0] = −79.917 130
z[73] = −79.8772 2293 z[45] = −79.8772 6689PHA z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[131] = −80.0797 602 z[45] = −79.949 180 z[0] = −79.9739 33 z[0] = −79.917 129
z[150] = −79.8772 4435 � �DC-CP z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[117] = −80.1835 566 z[54] = −80.0096 219 z[0] = −79.9739 33 z[0] = −79.917 129
z[134] = −79.8772 4262 z[45] = −79.8772 8419P8 and P9 are large instanes both with 400 senarios. Again, when the proedures areimplemented by using COIN-OR for partitions in a small number of lusters, say p̂ =20 and8 in instane P8 (see Table 17) and p̂ = 8 in instane P9 (see Table 19), no CLD boundshave been obtained within the elapsed time limit, 10800 ses. However, the optimal partitionis obtained by using CPLEX for partitions in p̂ =8 lusters in both instanes (see Tables 18and 20), i.e., the smallest. The optimal CLD bound is obtained by all the four proedures ininstane P8 for partitions in p̂ =8 lusters by using CPLEX.
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Table 17: CLD bounds without preproessing and parallel omputation tools (COIN-OR). Instane P8
p̂ = 400 lusters p̂ = 50 lusters p̂ = 20 lusters p̂ = 8 lusters

zMIP ∈ [−116.043,−113.235] [−114.531,−113.235] [−,−113.235] [−,−113.235]
α0 = 1.9 α0 = 1.9 α0 = − α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[73] = −114.622 128 z[74] = −114.371 1152 � � � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[57] = −114.568 68 z[39] = −114.361 538 � � � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[217] = −114.457 296 z[153] = −114.362 2437 � � � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[123] = −114.6 165 z[106] = −114.367 1560 � � � �Table 18: CLD bounds with preproessing and parallel omputation tools (CPLEX). Instane P8
p̂ = 400 lusters p̂ = 50 lusters p̂ = 20 lusters p̂ = 8 lusters

zMIP ∈ [−116.043,−114.044] [−114.689,−114.044] [−114, 531,−114.044] [−114.427,−114.044]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[126] = −114.626 795 z[72] = −114.382 340 z[22] = −114.342 303 z[16] = −114.324 362
z[33] = −114.318 910VA z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[55] = −114.573 346 z[43] = −114.368 198 z[28] = −114.34 406 z[24] = −114.325 560
z[61] = −114.318 1411PHA z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[191] = −114.457 1236 z[99] = −114.345 460 z[58] = −114.333 760 z[57] = −114.318 1127DC-CP z
ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[156] = −114.623 1026 z[91] = −114.387 440 z[24] = −114.486 312 z[15] = −114.318 325
z[37] = −114.318 958Table 19: CLD bounds without preproessing and parallel omputation tools (COIN-OR). Instane P9

p̂ = 400 lusters p̂ = 50 lusters p̂ = 20 lusters p̂ = 8 lusters
zMIP ∈ [−95.8124,−92.9241] [−94.4468,−92.9241] [−94.2895,−92.9241] [−,−92.9241]

α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[79] = −94.3658 69 z[32] = −94.1975 176 z[41] = −94.1482 1278 � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[53] = −94.3311 47 z[31] = −94.2037 175 z[21] = −94.1799 601 � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[247] = −94.2356 238 z[142] = −94.1893 805 z[88] = −94.1646 2546 � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[134] = −94.2895 139 z[60] = −94.1901 351 z[56] = −94.1478 1720 � �
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Table 20: CLD bounds with preproessing and parallel omputation tools (CPLEX). Instane P9
p̂ = 400 lusters p̂ = 50 lusters p̂ = 20 lusters p̂ = 8 lusters

zMIP ∈ [−95.8124,−94.1227] [−94.4468,−94.1227] [−94.2895,−94.1227] [−94.22,−94.1227]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[79] = −94.3964 436 z[14] = −94.2129 44 z[52] = −94.1726 176 z[11] = −94.1461 81VA z
ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[56] = −94.3434 302 z[33] = −94.2048 100 z[29] = −94.1675 92 z[17] = −94.1634 115PHA z
ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[181] = −94.2522 997 z[107] = −94.1595 474 z[49] = −94.1535 158 z[30] = −94.1407 192DC-CP z
ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[129] = −94.3973 755 z[30] = −94.209 93 z[73] = −94.1793 226 z[12] = −94.1502 90P10 and P11 are the largest instanes both with 500 senarios. Tables 21-22 and 23-24report the results. As in previous situations, when the proedures are implemented by usingCOIN-OR for partitions in a small number of lusters, say p̂ =10 for all proedures, but p̂ =50for PHA in instane P11, no CLD bounds have been obtained within the elapsed time limit,10800 ses (see Tables 21 and 23). However when using CPLEX (see Tables 22 and 24), theresults are slightly di�erent in both instanes. By onsidering the partition in p̂ =5 lusters,the four proedures obtain the optimal solution in both instanes, but VA and DCCP requiremore than three hours of elapsed time for instane P11. Notie that the best results for P11are obtained for partitions in p̂ =10 lusters (see Table 24).By onsidering the partition in p̂ =5 lusters, the four proedures obtain the optimalsolution for instane P10 when using CPLEX (see Table 22). The optimal solution is obtainedmore e�iently in proedures SM, PHA and DCCP for partitions in p̂ =10 lusters, but VAstops in a red solution given just the strongest CLD bound sine it oinides with the solutionvalue of the original problem. Notie that the norm of the subgradient vetor for this CLDbound is 0.015 whih is slightly greater than the given tolerane ǫs =0.01 for the stoppingriterion 1.Table 21: CLD bounds without preproessing and parallel omputation tools (COIN-OR). Instane P10
p̂ = 500 lusters p̂ = 50 lusters p̂ = 10 lusters p̂ = 5 lusters

zMIP ∈ [−301.865,−300.166] [−300.546,−300.166] [−,−300.166] [−,−300.166]
α0 = 1.9 α0 = 1.9 α0 = − α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[50] = −300.506 342 z[18] = −300.462 801 � � � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[52] = −300.494 290 z[36] = −300.464 1528 � � � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[126] = −300.479 912 z[65] = −300.462 2811 � � � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[89] = −300.535 624 z[20] = −300.468 906 � � � �
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Table 22: CLD bounds with preproessing and parallel omputation tools (CPLEX). Instane P10
p̂ = 500 lusters p̂ = 50 lusters p̂ = 10 lusters p̂ = 5 lusters

zMIP ∈ [−301.865,−300.425] [−300.546,−300.425] [−300.468,−300.425] [−300.461,−300.425]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[63] = −300.5 724 z[13] = −300.465 151 z[3] = −300.459 63 z[0] = −300.461 24
z[88] = −300.456 1238 z[61] = −300.456 1249VA z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[56] = −300.508 669 z[20] = −300.473 238 z[6] = −300.465 107 z[0] = −300.461 24
z[55] = −300.456 804 z[37] = −300.456 780PHA z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[117] = −300.48 1358 z[25] = −300.467 292 z[21] = −300.458 295 z[0] = −300.461 24
z[77] = −300.456 1065 z[69] = −300.456 1412DC-CP z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[101] = −300.512 1223 z[10] = −300.474 113 z[3] = −300.463 63 z[0] = −300.461 23
z[42] = −300.456 618 z[38] = −300.456 817Table 23: CLD bounds without preproessing and parallel omputation tools (COIN-OR). Instane P11

p̂ = 500 lusters p̂ = 50 lusters p̂ = 10 lusters p̂ = 5 lusters
zMIP ∈ [−322.35,−317.724] [−320.479,−317.724] [−,−317.724] [−,−317.724]

α0 = 1.9 α0 = 1.9 α0 = − α0 = −SM zSM [ite] TS zSM [ite] TS zSM [ite] TS zSM [ite] TS

z[84] = −320.416 2324 z[46] = −320.297 3035.31 � � � �VA zV A[ite] TV zV A[ite] TV zV A[ite] TV zV A[ite] TV

z[87] = −320.391 2562 z[26] = −320.309 1644.04 � � � �PHA zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP zPHA[ite] TP

z[186] = −320.383 5302 � � � � � �DC-CP zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD zDCCP [ite] TD

z[107] = −320.453 3043 z[52] = −320.299 3652 � � � �Table 24: CLD bounds with preproessing and parallel omputation tools (CPLEX). Instane P11
p̂ = 500 lusters p̂ = 50 lusters p̂ = 10 lusters p̂ = 5 lusters

zMIP ∈ [−322.35,−320.249] [−320.479,−320.249] [−320.326,−320.249] [−320.31,−320.249]
α0 = 1.9 α0 = 1.9 α0 = 1.9 α0 = 1.9SM z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S z

ppc
SM [ite] T

ppc
S

z[81] = −320.4 1920 z[38] = −320.301 1100 z[25] = −320.283 702 z[18] = −320.283 2294
z[26] = −320.283 732VA z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V z

ppc
V A[ite] T

ppc
V

z[137] = −320.393 3528 z[33] = −320.305 983 z[11] = −320.32 307 z[12] = −320.297 2159
z[73] = −320.283 2375 � �PHA z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P z

ppc
PHA[ite] T

ppc
P

z[170] = −320.361 4519 z[168] = −320.284 5115 z[59] = −320.283 1520 z[47] = −320.283 5032DC-CP z
ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D z

ppc
DCCP [ite] T

ppc
D

z[42] = −320.313 773 z[58] = −320.301 1783 z[27] = −320.283 752 z[8] = −320.283 1343
z[81] = −320.283 2806 � �
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6 ConlusionsIn this paper we have presented four senario Cluster based Lagrangian Deomposition(CLD) proedures for obtaining strong lower bounds to the solution value of two-stagestohasti mixed 0-1 problems, where the unertainty appears anywhere in the oe�ientsof the 0-1 and ontinuous variables in the objetive funtion and onstraints in bothstages. For obtaining the CLD bounds we have used three popular subgradient basedproedures, namely, the traditional Subgradient Method (SM), the Volume Algorithm (VA)and the Progressive Hedging Algorithm (PHA). Additionally, we have also used the proedureDynami Constrained Cutting Plane (DCCP). We have used the same sheme in all of them.Two new main ideas have been inorporated in the implementation of the proedures. The�rst onsists of the senario luster partitioning that allows us to ompute at iteration zero ofeah Lagrange multiplier updating proedure, a strong lower bound for tightening the intervalof the solution value of the original problem. The seond idea onsists of obtaining a goodupper bound of this interval that is e�iently omputed by the MIP solver of hoie as aquasi-optimal solution for a given tolerane in relation to the best LP relaxation value in itsbranh-and-ut phase.Moreover, we have given omputational evidene of the model tightening e�et thatsophistiated preproessing, ut generating and appending and parallel omputation toolshave in stohasti integer programming, by using, in this ase, the MIP solver CPLEX versusthe tools implemented in the COIN-OR LP/MIP funtions.The extensive omputational experiene reported in the paper has used small, medium,large and very large sized instanes in the testbed we have experimented with (in total,11 instanes), by onsidering four sizes of luster partitions. The instanes are so di�ultthat the plain use of CPLEX annot guarantee the optimality of the inumbent solutionwithin the three-hour time limit, but for two toy instanes. We an draw the followingonlusions: (1) Very frequently the four proedures for obtaining the CLD bound give thesolution value of the original stohasti mixed 0-1 problem and, in the other situations theyprovide a narrow interval of its solution value; (2) The performane of the CLD proeduresoutperforms the traditional LD sheme based on single senarios in both the quality of thebounds and omputational e�ort; (3) The CLD bounds obtained by both solvers (being usedas auxiliary tools for solving LP/MIP submodels) are very similar for small problems, butwith a higher omputational e�ort in ase of using a more sophistiated preproessing, utgeneration and appending tools, i.e., using CPLEX (where parallel omputing tools are alsoused); (4) CPLEX outperforms COIN-OR for medium, large and very large instanes, bothby plain use for problem solving and as auxiliary solvers of submodels, mainly for partitionsin a small number of lusters (and, then, larger MIP submodels); and (5) The e�ieny ofthe four proedures, as ontrasted in the testbed we have experimented with, is very similarin quality (i.e., tightness) to the CLD bound, but the elapsed time for obtaining it is smallerfor the proedures SM and DCCP followed by VA and PHA.As a future work, we are studying how to extend these CLD proedures to the multistagease for tightening the lower bound of the solution value of the submodels attahed to a subsetof the set of ative Twin Node Families (TNFs) in the Branh-and-Fix phase of our Branh-and-Fix Coordination algorithm, see [9℄, for solving large-sale multi-stage stohasti mixed0-1 problems. So, the LP relaxation bound (usually, a non very strong one) is to be replaed28
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