DOCUMENTOS DE TRABAJO BILTOKI

D.T. 2012.02

Scenario Cluster Lagrangian Decomposition in two stage stochastic mixed 0-1 optimization

Laureano F. Escudero, M.Araceli Garín, Gloria Pérez y Aitziber Unzueta

Facultad de Ciencias Económicas. Avda. Lehendakari Aguirre, 83 48015 BILBAO.

Documento de Trabajo BILTOKI DT2012.02 Editado por el Departamento de Economía Aplicada III (Econometría y Estadística) de la Universidad del País Vasco.

ISSN: 1134-8984

Scenario Cluster Lagrangian Decomposition in two-stage stochastic mixed 0-1 optimization

Laureano F. Escudero¹, M. Araceli Garín², Gloria Pérez³ and Aitziber Unzueta⁴

¹ Dpto. Estadística e Investigación Operativa. Universidad Rey Juan Carlos, Spain. laureano.escudero@urjc.es

 2 D
pto. de Economía Aplicada III. Universidad del País Vasco, Spain. maria
araceli.garin@ehu.es $\,$

³ Dpto. de Matemática Aplicada y Estadística e I.O. Universidad del País Vasco, Spain. gloria.perez@ehu.es

⁴ Dpto. de Economía Aplicada III. Universidad del País Vasco, Spain. aitziber.unzueta@ehu.es

March 15, 2012

Abstract

In this paper we introduce four scenario Cluster based Lagrangian Decomposition (CLD) procedures for obtaining strong lower bounds to the (optimal) solution value of two-stage stochastic mixed 0-1 problems. At each iteration of the Lagrangian based procedures, the traditional aim consists of obtaining the solution value of the corresponding Lagrangian dual via solving scenario submodels once the nonanticipativity constraints have been dualized. Instead of considering a splitting variable representation over the set of scenarios, we propose to decompose the model into a set of scenario clusters. We compare the computational performance of the four Lagrange multiplier updating procedures, namely the Subgradient Method, the Volume Algorithm, the Progressive Hedging Algorithm and the Dynamic Constrained Cutting Plane scheme for different numbers of scenario clusters and different dimensions of the original problem. Our computational experience shows that the CLD bound and its computational effort depend on the number of scenario clusters to consider. In any case, our results show that the CLD procedures outperform the traditional LD scheme for single scenarios both in the quality of the bounds and computational effort. All the procedures have been implemented in a C++ experimental code. A broad computational experience is reported on a test of randomly generated instances by using the MIP solvers COIN-OR [17] and CPLEX [16] for the auxiliary mixed 0-1 cluster submodels, this last solver within the open source engine COIN-OR. We also give computational evidence of the model tightening effect that the preprocessing techniques, cut generation and appending and parallel computing tools have in stochastic integer optimization. Finally, we have observed that the plain use of both solvers does not provide the optimal solution of the instances included in the testbed with which we have experimented but for two toy instances in affordable elapsed time. On the other hand the proposed procedures provide strong lower bounds (or the same solution value) in a considerably shorter elapsed time for the quasi-optimal solution obtained by other means for the original stochastic problem.

Keywords: Two-stage stochastic integer programming, nonanticipativity constraints, Cluster Lagrangian decomposition, scenario cluster model, Subgradient Method, Volume Algorithm, Progressive Hedging Algorithm, Dynamic Constrained Cutting Plane scheme.

1 Introduction

In this work we consider a general two-stage stochastic mixed 0-1 problem. The uncertainty is modeled via a finite set of scenarios $\omega = 1, ..., |\Omega|$, each with an associated probability of occurrence w^{ω} , $\omega \in \Omega$. The traditional aim in this type of problems is to solve the so-called Deterministic Equivalent Model (DEM), which is a mixed 0-1 problem with a special structure, see e.g., [21] for a good survey of some mayor results in this area obtained during the 90s and beyond. A Branch-and-Bound algorithm for solving problems having mixed-integer variables in both stages is designed in [6], among others, by using Lagrangian relaxation for obtaining lower bounds to the optimal solution of the original problem. A Branch-and-Fix Coordination (BFC) methodology for solving such DEM in production planning under uncertainty is given in [1, 2], but the approach does not allow continuous first stage variables or 0-1 second stage variables. We propose in [7, 8] a BFC algorithmic framework for obtaining the optimal solution of the two-stage stochastic mixed 0-1 integer problem, where the uncertainty appears anywhere in the coefficients of the 0-1 and continuous variables in both stages. Recently, a general algorithm for two-stage problems has been presented in [22].

We study in [10] several solution methods for solving the dual problem corresponding to the Lagrangian Decomposition (LD) of two-stage stochastic mixed 0-1 models. At each iteration of these Lagrangian based procedures, the traditional aim consists of obtaining the solution value of the corresponding parametric mixed 0-1 Lagrangian dual problem via solving single scenario submodels once the nonanticipativity constraints (NAC) have been dualized, and the parameters (i.e., the Lagrange multipliers) are updated by using different subgradient and cutting plane based methodologies.

Instead of considering a splitting variable representation over the set of scenarios, in this paper we propose a new approach so named Cluster Lagrangian Decomposition (for short, CLD) to decompose the model into a set of scenario clusters. So, we computationally compare the performance of the Subgradient Method (SM) [15], the Volume Algorithm (VA) [4], the Progressive Hedging Algorithm (PHA) [20] and the Dynamic Constrained Cutting Plane (DCCP) scheme [18] for Lagrange multipliers updating while solving large-scale stochastic mixed 0-1 problems in an algorithmic framework based on scenario clusters decomposition. A successful result may open up the possibility for tightening the lower bounds of the solution value at the candidate Twin Node Families in the exact BFC scheme for both two-stage and multistage types of problems, see e.g., [9].

For different choices of the number of scenario clusters we report the computational experience by using CPLEX, integrated in the COIN-OR environment, to verify the effectiveness of the proposal. In this sense, we also give computational evidence of the model tightening effect and their computational cost that preprocessing, cut generation and appending and parallel computing tools have in stochastic integer optimization too, see [19]. We also computationally compare the new with the cluster singleton approach (i.e., the LD for single scenarios) outperforming it, as well as outperforming the plain use of the MIP solver of choice, CPLEX. The proposed approach provides a tight lower bound such that the quasi-optimality gap of the upper solution bound obtained by other means on large-scale instances is very small and frequently, guarantees its optimality. However, the plain use of CPLEX cannot guarantee the optimality of the incumbent solution in a somewhat large elapsed time limit, its objective function value being simply an upper bound of the solution value of the original stochastic problem in some cases. In other cases, we can prove in very much smaller elapsed time that the incumbent CPLEX solution is the optimal one, since our CLD procedures provide lower bounds identical to the value of that solution. Additionally, that incumbent solution is also frequently even worse than that which we have obtained when both the quality and the small elapsed time are good enough.

The remainder of the paper is organized as follows: Section 2 presents the two-stage stochastic mixed 0-1 problem in compact and splitting variable representations over the scenarios and scenario clusters. Section 3 summarizes the theoretical results on Lagrangian decomposition and presents the Cluster Lagrangian Decomposition approach. Section 4 presents the four procedures mentioned above for updating the Lagrange multipliers. Section 5 reports the results of the computational experiment. Section 6 concludes.

2 Two-stage stochastic mixed 0-1 problem

In many real cases a two-stage deterministic mixed 0-1 optimization model must be extended to consider the uncertainty in some of the main parameters. In our case, these are the objective function, the right and left hand-side vectors and the constraint matrix coefficients. This uncertainty is introduced by using the scenario analysis approach, such that a scenario consists of a realization of all random parameters in both stages through a scenario tree. When a finite number of scenarios is considered, a general two-stage program can be expressed in terms of the first stage decision variables being equivalent to a large, dual block-angular programming problem, introduced in [25] and known as Deterministic Equivalent Model (DEM).

Let us consider the *compact* representation of the DEM of a two-stage stochastic integer problem (MIP),

$$(MIP)^{c}: z_{MIP} = \min \quad c_{1}\delta + c_{2}x + \sum_{\omega \in \Omega} w^{\omega}[q_{1}^{\omega}\gamma^{\omega} + q_{2}^{\omega}y^{\omega}]$$

s.t.
$$b_{1} \leq A \begin{pmatrix} \delta \\ x \end{pmatrix} \leq b_{2}$$
$$h_{1}^{\omega} \leq T^{\omega} \begin{pmatrix} \delta \\ x \end{pmatrix} + W^{\omega} \begin{pmatrix} \gamma^{\omega} \\ y^{\omega} \end{pmatrix} \leq h_{2}^{\omega}, \quad \forall \omega \in \Omega$$
$$\delta, \gamma^{\omega} \in \{0, 1\}, x, y^{\omega} \geq 0, \quad \forall \omega \in \Omega,$$
$$(1)$$

where the uncertainty in the parameters is introduced by using a scenario analysis approach. c_1 and c_2 are known vectors of the objective function coefficients for the δ and x variables in the first stage, respectively, b_1 and b_2 are the known left and right hand side vectors for the first stage constraints, respectively, and A is the known matrix of coefficients for the first stage constraints. For each scenario ω , w^{ω} is the likelihood attributed to the scenario, such that $\sum_{\omega \in \Omega} w^{\omega} = 1$, h_1^{ω} and h_2^{ω} are the left and right hand side vectors for the second stage constraints, respectively, and q_1^{ω} and q_2^{ω} are the objective function coefficients for the second stage γ and y variables, respectively, while T^{ω} and W^{ω} are the technology constraint matrices under scenario ω , for $\omega \in \Omega$, where Ω is the set of scenarios to consider. Notice that there are two types of decision variables at each stage, namely, the set of δ 0-1 and x continuous variables for the first stage, and the set of γ^{ω} 0-1 and y^{ω} continuous variables for the second stage. Notice also that for the purpose of simplification, the objective function to optimize in the models dealt with in this paper is the expected value over the set of scenarios Ω , i.e., the risk neutral strategy. For a survey of coherent risk averse measures as opposed to the risk neutral strategy considered in this work, see e.g., [3].

The structure of the uncertain information can be visualized as a tree, where each root-toleaf path represents one specific scenario, ω , and corresponds to one realization of the whole set of the uncertain parameters. In the example depicted in Figure 1, there are $|\Omega| = 10$ root-to-leaf possible paths, i.e., scenarios. Following the nonanticipativity principle, stated in [25] and restated in [20], see [5] among others, all scenarios should have the same value for the related first stage variables in the two-stage problem.

Compact representation

Splitting variable representation

Figure 1: Scenario tree

The left section of Figure 1 implicitly represents the non-anticipativity constraints (NAC, for short). This is the compact representation shown in model (1). The right section of Figure 1 gives the same information as the compact representation but using a splitting variable scheme and noticing that it explicitly represents the NAC (i.e., imposing the equality) on the first stage variables $\delta^{\omega} x^{\omega}$ and for all the scenarios ω .

Let us consider the *splitting variable* representation of the DEM of the two-stage stochastic

mixed 0-1 problem.

$$(MIP)^{s}: \quad z_{MIP} = \min \sum_{\substack{\omega \in \Omega \\ \omega \in \Omega}} w^{\omega} [c_{1}\delta^{\omega} + c_{2}x^{\omega} + q_{1}^{\omega}\gamma^{\omega} + q_{2}^{\omega}y^{\omega}]$$

s.t.
$$b_{1} \leq A \begin{pmatrix} \delta^{\omega} \\ x^{\omega} \end{pmatrix} \leq b_{2} \quad \forall \omega \in \Omega$$
$$h_{1}^{\omega} \leq T^{\omega} \begin{pmatrix} \delta^{\omega} \\ x^{\omega} \end{pmatrix} + W^{\omega} \begin{pmatrix} \gamma^{\omega} \\ y^{\omega} \end{pmatrix} \leq h_{2}^{\omega} \quad \forall \omega \in \Omega$$
$$\delta^{\omega} = \delta^{\omega'} \quad \forall \omega, \omega' \in \Omega, \quad \omega \neq \omega'$$
$$x^{\omega} = x^{\omega'} \quad \forall \omega, \omega' \in \Omega, \quad \omega \neq \omega'$$
$$x^{\omega}, y^{\omega} \geq 0 \quad \forall \omega \in \Omega$$
$$\delta^{\omega}, \gamma^{\omega} \in \{0, 1\} \quad \forall \omega \in \Omega.$$
$$(2)$$

In addition to these two formulations, we propose a scenario-cluster partitioning to allow a combination of compact and splitting variable representations into and inter the scenario cluster submodels. A scenario *cluster* is a set of scenarios where the NAC are implicitly considered. By slightly abusing the notation from now on, throughout the paper the upperindex in boldface \mathbf{p} will denote the cluster of scenarios instead of the single one. Let $\hat{\mathbf{p}}$ denote the number of scenario cluster partitions to consider. As an illustrative example, let us consider again the scenario tree depicted in Figure 1.

Figure 2: Scenario cluster partitioning

Figure 2 shows the problem decomposition in $\hat{\mathbf{p}} = \mathbf{5}$ (left tree) and $\hat{\mathbf{p}} = \mathbf{2}$ (right tree) scenario clusters into which the set of scenarios is split. Observe that the NAC for the first stage vectors of variables are given by $x^1 = \cdots = x^5$ and $\delta^1 = \cdots = \delta^5$ for the left side of the figure, and they are given by $x^1 = x^2$ and $\delta^1 = \delta^2$ for the right side of the figure, where by abusing the notation $x^{\mathbf{p}}$ and $\delta^{\mathbf{p}}$ are the x and δ vectors of the first stage continuous and 0-1 variables for scenario cluster \mathbf{p} , respectively.

In general, given a scenario tree, $\hat{\mathbf{p}}$ can be chosen as any value between 1 and $|\Omega|$, so that we can represent the DEM (1) by a mixture of the splitting variable representation where the NAC are explicitly stated for the $\hat{\mathbf{p}}$ cluster submodels, and a compact representation for the set $\Omega^{\mathbf{p}}$ of scenarios into each cluster model \mathbf{p} , where the NAC are implicitly stated such that $p \in \{1, ..., \hat{\mathbf{p}}\}, \Omega^{\mathbf{p}}$ defines the set of scenarios in cluster \mathbf{p} , and $|\Omega^{\mathbf{p}}|$ is its size.

Without loss of generality (wlog, for short) and for computational purposes, the number of clusters $\hat{\mathbf{p}}$ can be calculated as a divisor of the number of scenarios, $|\Omega|$ and, then, we have that $l = |\Omega^{\mathbf{p}}| = \frac{|\Omega|}{\hat{\mathbf{p}}}$ defines the size of each scenario cluster \mathbf{p} , for $\mathbf{p} = \mathbf{1}, ..., \hat{\mathbf{p}}$. The scenario clusters are defined in terms of consecutive scenarios, $\Omega^{\mathbf{1}} = \{1, ..., |\Omega^{1}|\}, \Omega^{\mathbf{2}} = \{|\Omega^{1}| + 1, ..., |\Omega^{1}| + |\Omega^{2}|\}, ..., \Omega^{\hat{\mathbf{p}}} = \{|\Omega^{1}| + ... + |\Omega^{\hat{\mathbf{p}}-\mathbf{1}}| + 1, ..., |\Omega|\}.$

The mixed 0-1 submodel to consider for each scenario cluster \mathbf{p} can be expressed by the *compact* representation,

$$(MIP^{\mathbf{p}}): z^{\mathbf{p}} = \min \quad \mathbf{w}^{\mathbf{p}}(c_{1}\delta^{\mathbf{p}} + c_{2}x^{\mathbf{p}}) + \sum_{\omega \in \Omega^{\mathbf{p}}} w^{\omega}(q_{1}^{\omega}\gamma^{\omega} + q_{2}^{\omega}y^{\omega})$$

s.t.
$$b_{1} \leq A \left(\frac{\delta^{\mathbf{p}}}{x^{\mathbf{p}}}\right) \leq b_{2}$$

$$h_{1}^{\omega} \leq T^{\omega} \left(\frac{\delta^{\mathbf{p}}}{x^{\mathbf{p}}}\right) + W^{\omega} \left(\frac{\gamma^{\omega}}{y^{\omega}}\right) \leq h_{2}^{\omega} \quad \forall \omega \in \Omega^{\mathbf{p}}$$

$$\delta^{\mathbf{p}} \in \{0, 1\}, x^{\mathbf{p}} \geq 0$$

$$\gamma^{\omega} \in \{0, 1\}, y^{\omega} \geq 0 \quad \forall \omega \in \Omega^{\mathbf{p}},$$

$$(3)$$

where $\mathbf{w}^{\mathbf{p}} = \sum_{\omega \in \Omega^{\mathbf{p}}} w^{\omega}$ denotes the likelihood for scenario cluster \mathbf{p} , and $\delta^{\mathbf{p}}$ and $x^{\mathbf{p}}$ are the vectors of the first stage δ and x variables for scenario cluster \mathbf{p} . Moreover, the $\hat{\mathbf{p}}$ submodels (3) are linked by the NAC,

$$\delta^{\mathbf{p}} - \delta^{\mathbf{p}'} = 0 \tag{4}$$

$$x^{\mathbf{p}} - x^{\mathbf{p}'} = 0, \tag{5}$$

for $\mathbf{p}, \mathbf{p}' = \mathbf{1}, \dots, \hat{\mathbf{p}} : \mathbf{p} \neq \mathbf{p}'$. Observe that the NAC (4)-(5) can been represented as a set of inequalities in order to avoid the use of non-signed vectors of Lagrange multipliers in the dualization of such constraints. They will be expressed as follows,

$$\delta^{\mathbf{p}} - \delta^{\mathbf{p+1}} \le 0 \quad \forall \mathbf{p} = \mathbf{1}, ..., \hat{\mathbf{p}} - \mathbf{1}, \quad \delta^{\hat{\mathbf{p}}} \le \delta^{\mathbf{1}}, \tag{6}$$

$$x^{\mathbf{p}} - x^{\mathbf{p}+1} \le 0 \quad \forall \mathbf{p} = 1, ..., \hat{\mathbf{p}} - 1, \quad x^{\hat{\mathbf{p}}} \le x^{\mathbf{1}}$$

$$\tag{7}$$

So, the mixed 0-1 DEM (1) is equivalent to the splitting-compact variable representation

over the set of scenario clusters.

$$(MIP): \quad z_{MIP} = \min \sum_{\mathbf{p}=1}^{\hat{\mathbf{p}}} [\mathbf{w}^{\mathbf{p}}(c_{1}\delta^{\mathbf{p}} + c_{2}x^{\mathbf{p}}) + \sum_{\omega \in \Omega^{\mathbf{p}}} w^{\omega}(q_{1}^{\omega}\gamma^{\omega} + q_{2}^{\omega}y^{\omega})]$$

s.t.
$$b_{1} \leq A \begin{pmatrix} \delta^{\mathbf{p}} \\ x^{\mathbf{p}} \end{pmatrix} \leq b_{2} \quad \forall \mathbf{p} = \mathbf{1}, ..., \hat{\mathbf{p}}$$
$$h_{1}^{\omega} \leq T^{\omega} \begin{pmatrix} \delta^{\mathbf{p}} \\ x^{\mathbf{p}} \end{pmatrix} + W^{\omega} \begin{pmatrix} \gamma^{\omega} \\ y^{\omega} \end{pmatrix} \leq h_{2}^{\omega} \quad \forall \omega \in \Omega^{\mathbf{p}}, \mathbf{p} = \mathbf{1}, ..., \hat{\mathbf{p}}$$
$$\delta^{\mathbf{p}} - \delta^{\mathbf{p}+1} \leq 0 \quad \forall \mathbf{p} = \mathbf{1}, ..., \hat{\mathbf{p}} - \mathbf{1}$$
$$\delta^{\hat{\mathbf{p}}} \leq \delta^{\mathbf{1}}, \qquad x^{\mathbf{p}} - x^{\mathbf{p}+1} \leq 0 \quad \forall \mathbf{p} = \mathbf{1}, ..., \hat{\mathbf{p}} - \mathbf{1}, \\ x^{\hat{\mathbf{p}}} \leq x^{\mathbf{1}} \qquad x^{\mathbf{p}} \geq 0, \delta^{\mathbf{p}} \in \{0, 1\} \quad \forall \mathbf{p} = \mathbf{1}, ..., \hat{\mathbf{p}}.$$
$$(8)$$

Additionally, notice that model (8) for $\hat{\mathbf{p}} = \mathbf{1}$ coincides with the mixed 0-1 DEM in the compact representation (1), and we obtain the splitting variable representation (2) for $\hat{\mathbf{p}} = |\mathbf{\Omega}|$.

3 Scenario Cluster Lagrangian Decomposition

The scenario Cluster Lagrangian Decomposition (CLD) of the mixed 0-1 DEM (8) for a given number of scenario clusters $\hat{\mathbf{p}}$ and a given nonnegative vector of weights (i.e., Lagrange multipliers) $\mu^{\mathbf{p}} = (\mu_{\delta}^{\mathbf{p}}, \mu_{x}^{\mathbf{p}})$, is the μ -parametric mixed 0-1 minimization model (9) in $(\delta^{\mathbf{p}}, x^{\mathbf{p}}, \gamma^{\omega}, y^{\omega}), \omega \in \Omega^{\mathbf{p}}, \mathbf{p} = \mathbf{1}, \cdots, \hat{\mathbf{p}}$, with the objective function value $z_{LD}(\mu, \hat{\mathbf{p}})$, such that it can be expressed as follows,

$$(MIP_{LD}^{\hat{\mathbf{p}}}(\mu)): z_{LD}(\mu, \hat{\mathbf{p}}) = \min \sum_{\mathbf{p}=1}^{\mathbf{p}} [\mathbf{w}^{\mathbf{p}}(c_{1}\delta^{\mathbf{p}} + c_{2}\mathbf{x}^{\mathbf{p}}) + \sum_{\omega \in \Omega^{\mathbf{p}}} w^{\omega}(q_{1}^{\omega}\gamma^{\omega} + q_{2}^{\omega}y^{\omega})] + \sum_{\mathbf{p}=1}^{\hat{\mathbf{p}}-1} \mu_{\delta}^{\mathbf{p}}(\delta^{\mathbf{p}} - \delta^{\mathbf{p}+1}) + \mu_{\delta}^{\hat{\mathbf{p}}}(\delta^{\hat{\mathbf{p}}} - \delta^{1}) + + \sum_{\mathbf{p}=1}^{\hat{\mathbf{p}}-1} \mu_{x}^{\mathbf{p}}(x^{\mathbf{p}} - x^{\mathbf{p}+1}) + \mu_{x}^{\hat{\mathbf{p}}}(x^{\hat{\mathbf{p}}} - x^{1}) \text{s.t.} \quad b_{1} \leq A\left(\frac{\delta^{\mathbf{p}}}{x^{\mathbf{p}}}\right) \leq b_{2} \quad \forall \mathbf{p} = \mathbf{1}, ..., \hat{\mathbf{p}} h_{1}^{\omega} \leq T^{\omega}\left(\frac{\delta^{\mathbf{p}}}{x^{\mathbf{p}}}\right) + W^{\omega}\left(\frac{\gamma^{\omega}}{y^{\omega}}\right) \leq h_{2}^{\omega} \quad \forall \omega \in \Omega^{\mathbf{p}}, \mathbf{p} = \mathbf{1}, ..., \hat{\mathbf{p}} x^{\mathbf{p}} \geq 0, \delta^{\mathbf{p}} \in \{0, 1\} \quad \forall \mathbf{p} = \mathbf{1}, ..., \hat{\mathbf{p}}, y^{\omega} \geq 0, \gamma^{\omega} \in \{0, 1\} \quad \forall \omega \in \Omega^{\mathbf{p}}, \mathbf{p} = \mathbf{1}, ..., \hat{\mathbf{p}}.$$

It is well known that model $(MIP_{LD}^{\hat{\mathbf{p}}}(\mu))$ is a relaxation of model (MIP), since (i) the feasible set of $(MIP_{LD}^{\hat{\mathbf{p}}}(\mu))$ contains the feasible set of (MIP), and (ii) for any (δ, x, γ, y) feasible solution for (MIP), any $\mu \geq 0$ and $\mathbf{1} < \hat{\mathbf{p}} \leq |\Omega|$, it results that $z_{LD}(\mu, \hat{\mathbf{p}}) \leq z_{MIP}$. Notice that if $\hat{\mathbf{p}} = \mathbf{1}$, for any $\mu \geq 0$ $z_{LD}(\mu, \mathbf{1}) = z_{MIP}$ by definition of the compact representation. Then, it follows that the value $z_{LD}(\mu, \hat{\mathbf{p}})$, which depends on μ is, a lower bound on the solution value of (MIP), z_{MIP} for any choice of $\hat{\mathbf{p}}$, with $\mathbf{1} < \hat{\mathbf{p}} \leq |\Omega|$. **Definition 1** For any choice of $\hat{\mathbf{p}}$ such that $\mathbf{1} < \hat{\mathbf{p}} \le |\Omega|$, the problem of finding the tightest Lagrangian lower bound on z_{MIP} is

$$(MIP_{LD}): \quad z_{LD} = max_{\mu>0}z_{LD}(\mu, \hat{\mathbf{p}}).$$

It is called the Lagrangian dual of (MIP) relative to the NAC.

By LP duality, z_{LD} can be obtained by using a mixture of linear and mixed 0-1 programs. (MIP_{LD}) is a linear problem in the dual space of the Lagrange multipliers, whereas $(MIP_{LD}^{\hat{\mathbf{p}}}(\mu))$ is a μ -parametric mixed 0-1 problem in the vector of variables (δ, x, γ, y) . Let $(\delta(\mu^{\hat{\mathbf{p}}}), x(\mu^{\hat{\mathbf{p}}}), \gamma(\mu^{\hat{\mathbf{p}}}), y(\mu^{\hat{\mathbf{p}}}))$ denote an optimal solution of $(MIP_{LD}^{\hat{\mathbf{p}}}(\mu))$ for some μ and $\hat{\mathbf{p}}$, i.e., a Lagrangian solution.

It is also known that, unless (MIP_{LD}) does have the integrality property, the LD can yield an equal or stronger bound than the LP relaxation. If it has the integrality property then $z_{LP} = z_{LD} \leq z_{MIP}$. In the other case, $z_{LP} \leq z_{LD} \leq z_{MIP}$. See the seminal work [12], and a good survey in [13].

Let the following proposition state that the solution values of nonsingleton scenario cluster Lagrangian decomposition (CLD) problems are stronger than the solution values of singleton CLD problems.

Proposition 1 For all $\mu \geq 0$, the following inequalities are satisfied

$$z_{LD}(\mu, |\Omega|) \le z_{LD}(\mu, |\Omega| - 1) \le \dots \le z_{LD}(\mu, 2) \le z_{LD}(\mu, 1) = z_{MIP}.$$

Proof: Notice that the chain of the related problems only differ on the relaxation of the NAC in some scenarios. So the proof follows.

Our proposal makes use of the expression of the Lagrangian dual z_{LD} as the maximum of the solution values $z_{LD}(\mu, \hat{\mathbf{p}})$ in μ . Previously, we must choose a number of scenario clusters $\hat{\mathbf{p}}$ and the scenario subsets Ω^p , $p = 1, ..., \hat{\mathbf{p}}$ and then, for a given value of μ , say $\mu^{\hat{\mathbf{p}}}$, we must solve the mixed 0-1 problem (9) in $(\delta(\mu^{\hat{\mathbf{p}}}), x(\mu^{\hat{\mathbf{p}}}), \gamma(\mu^{\hat{\mathbf{p}}}))$ to obtain the optimal solution value, $z_{LD}(\mu^{\hat{\mathbf{p}}}, \hat{\mathbf{p}})$. It consists of computationally comparing the speed of convergence with several iterative methods for updating the Lagrange multipliers and building the sequence $\{\mu^0, \mu^1, ..., \mu^k,\}^{\hat{\mathbf{p}}}$, as well as studying the optimal scenario cluster decomposition.

At each iteration k and given the current multiplier vector μ^k , the first step is to obtain $z_{LD}(\mu^k, \hat{\mathbf{p}})$. The second step is to update the Lagrange multipliers μ in a finite number of iterations such that the purpose is to obtain μ^* and $z_{LD}(\mu^*, \hat{\mathbf{p}})$, where

$$\mu^* \in \operatorname{argmax}_{\mu \ge 0} \{ z_{LD}(\mu, \hat{\mathbf{p}}) \}.$$
(10)

Note: The solution $(\delta(\mu^*), x(\mu^*), \gamma(\mu^*), y(\mu^*))$ is the optimal one for DEM (1) provided that it satisfies the NAC (6)-(7).

Notice that the model $MIP_{LD}^{\hat{\mathbf{p}}}(\mu)$ (9) can be decomposed in $\hat{\mathbf{p}}$ smaller submodels, and its solution value can be obtained as the sum of the related $z_{LD}^{\mathbf{p}}(\mu^{\mathbf{p}})$ values, see [10],

$$z_{LD}(\mu, \hat{\mathbf{p}}) = \sum_{\mathbf{p}=1}^{\hat{\mathbf{p}}} z_{LD}^{\mathbf{p}}(\mu^{\mathbf{p}}), \qquad (11)$$

where $z_{LD}^{\mathbf{p}}(\mu^{\mathbf{p}})$ is the solution value of the **p**th scenario cluster model. For $\mathbf{p} = \mathbf{2}, ..., \hat{\mathbf{p}}$, the model is expressed in compact representation as follows,

$$z_{LD}^{\mathbf{p}}(\mu^{\mathbf{p}}) = \min[\mathbf{w}^{\mathbf{p}}c_{1} + (\mu_{\delta}^{\mathbf{p}} - \mu_{\delta}^{\mathbf{p}-1})]\delta^{\mathbf{p}} + [\mathbf{w}^{\mathbf{p}}c_{2} + (\mu_{x}^{\mathbf{p}} - \mu_{x}^{\mathbf{p}-1})]x^{\mathbf{p}} + \sum_{\omega \in \Omega^{\mathbf{p}}} w^{\omega}(q_{1}^{\omega}\gamma^{\omega} + q_{2}^{\omega}y^{\omega})$$

s.t

$$b_{1} \leq A\left(\frac{\delta^{\mathbf{p}}}{x^{\mathbf{p}}}\right) \leq b_{2}$$

$$h_{1}^{\omega} \leq T^{\omega}\left(\frac{\delta^{\mathbf{p}}}{x^{\mathbf{p}}}\right) + W^{\omega}\left(\frac{\gamma^{\omega}}{y^{\omega}}\right) \leq h_{2}^{\omega} \quad \forall \omega \in \Omega^{\mathbf{p}}$$

$$x^{\mathbf{p}} \geq 0, \delta^{\mathbf{p}} \in \{0, 1\}$$

$$y^{\omega} \geq 0, \gamma^{\omega} \in \{0, 1\} \quad \forall \omega \in \Omega^{\mathbf{p}}.$$
(12)

For $\mathbf{p} = \mathbf{1}$, the model also in compact representation is as follows,

$$z_{LD}^{1}(\mu^{1}) = \min[\mathbf{w}^{1}c_{1} + (\mu_{\delta}^{1} - \mu_{\delta}^{\hat{\mathbf{p}}})]\delta^{1} + [\mathbf{w}^{1}c_{2} + (\mu_{x}^{1} - \mu_{x}^{\hat{\mathbf{p}}})]x^{1} + \sum_{\omega \in \Omega^{1}} w^{\omega}(q_{1}^{\omega}\gamma^{\omega} + q_{2}^{\omega}y^{\omega})$$

s.t.

$$b_{1} \leq A \begin{pmatrix} \delta^{1} \\ x^{1} \end{pmatrix} \leq b_{2}$$

$$h_{1}^{\omega} \leq T^{\omega} \begin{pmatrix} \delta^{1} \\ x^{1} \end{pmatrix} + W^{\omega} \begin{pmatrix} \gamma^{\omega} \\ y^{\omega} \end{pmatrix} \leq h_{2}^{\omega} \quad \forall \omega \in \Omega^{1}$$

$$x^{1} \geq 0, \delta^{1} \in \{0, 1\}$$

$$y^{\omega} \geq 0, \gamma^{\omega} \in \{0, 1\} \quad \forall \omega \in \Omega^{1}.$$

$$(13)$$

Observe in expression (11) that the bound value and the computational effort to compute it depend on how many scenario cluster submodels are considered in the decomposition, i.e., $\hat{\mathbf{p}}$. We computationally study in Section 5 the influence of the number of scenario clusters into the bounds tightening and the related computational effort to compute the bounds.

4 Lagrange multipliers updating procedures for CLD

In this section the specialization of different Lagrange multiplier procedures for scenario cluster decomposition is presented.

Let us assume in the rest of the work that the scenario set is broken down into $\hat{\mathbf{p}}$ clusters. Let also \overline{z}_{LD} be an upper bound of the solution value of the original (MIP). It can be obtained efficiently as a quasioptimal solution, $\overline{z}(\rho)$ with a given $\rho\%$ of quasi-optimality tolerance, see Section 5. Let μ^0 be the initial multiplier vector and, finally, let α_k be a real parameter related to the steplength of the Lagrange multiplier updating procedure, where $\alpha_k \in (0, 2)$, see below.

4.1 Subgradient method

This is one of the most popular approaches to solve the Lagrangian dual. The subgradient procedure was proposed in [15]. It is an iterative approach method in which at iteration k,

given the current multipliers vector μ^k , a step is taken along a subgradient of $z_{LD}(\mu^k, \hat{\mathbf{p}})$. The procedure for updating the Lagrange multipliers of the NAC (6)-(7) is given in Figure 3.

Figure 3: Subgradient Method (SM)

4.2 Volume Algorithm

We present a version of the Volume Algorithm given in [4] for updating the Lagrange multipliers of the NAC (6)-(7). This procedure only updates the multipliers when there is an improvement in the incumbent solution value $z_{LD}(\mu, \hat{\mathbf{p}})$ of the Lagrangian problem. Additionally, the feasible solution is replaced by a convex combination of solutions obtained in previous iterations. Let f_k be a real parameter related to the incumbent solution updating, where $f_k \in (0, 1)$, see in Sec. 4.6 the procedure for obtaining it. The procedure for updating the Lagrange multipliers of the NAC (6)-(7) is given in Figure 4.

Note: The step directions s^k and \overline{s}^k are used for obtaining the weighting parameter f_k and chosing the convergence parameters.

4.3 Progressive Hedging Algorithm

The Progressive Hedging Algorithm for problems with continuous variables alone was introduced in [20], see also [24] for a recent innovation. Our procedure for updating the Lagrange multipliers of the NAC (6)-(7) is given in Figure 5. The basic features are as follows: Let $(\delta^{(k)}, x^{(k)}, \gamma^{(k)}, y^{(k)})$ be an optimal solution of problem $(MIP_{LD}^{\hat{\mathbf{p}}}(\mu^k))$ (9) at iteration k. A new non-necessarily feasible solution can be defined as $\hat{\delta} = \sum_{\mathbf{p}=1}^{\hat{\mathbf{p}}} \mathbf{w}^{\mathbf{p}} \delta^{(k)\mathbf{p}}$ and $\hat{\mathbf{p}}$

 $\hat{x} = \sum_{\mathbf{p}=1}^{\mathbf{P}} \mathbf{w}^{\mathbf{p}} x^{(k)\mathbf{p}}$. These expressions represent an estimation of the expected value over the set of scenario clusters of the optimal solution obtained at iteration k.

 $\begin{array}{lll} \textbf{Step 0:} & \text{Given the Lagrange multipliers vector, } \mu^{0}, \text{ solve the } \hat{\textbf{p}} \text{ problems (12)-(13) to} \\ & \text{obtain } (\delta^{(0)}, x^{(0)}, \gamma^{(0)}, y^{(0)}) \text{ and } z_{LD}(\mu^{0}, \hat{\textbf{p}}) \text{ as the sum given in (11). Set } k := 0. \\ & \begin{pmatrix} \delta^{(k)1} - \delta^{(k)2} \\ \vdots \\ (\delta^{(k)\hat{\textbf{p}}-1} - \delta^{(k)\hat{\textbf{p}}}) \\ (\delta^{(k)\hat{\textbf{p}}} - \delta^{(k)1}) \\ (x^{(k)1} - x^{(k)2}) \\ \vdots \\ (x^{(k)\hat{\textbf{p}}-1} - x^{(k)\hat{\textbf{p}}}) \\ (x^{(k)\hat{\textbf{p}}-1} - x^{(k)\hat{\textbf{p}}}) \end{pmatrix} \text{ and } \hat{s}^{k} = \begin{pmatrix} \delta^{(k)1} - \hat{\delta}^{(k)} \\ (\delta^{(k)\hat{\textbf{p}}-1} - \hat{\delta}^{(k)}) \\ (\delta^{(k)\hat{\textbf{p}}-1} - \hat{\delta}^{(k)}) \\ (x^{(k)\hat{\textbf{p}}-1} - \hat{s}^{(k)}) \\ (x^{(k)\hat{\textbf{p}}-1} - \hat{s}^{(k)}) \\ (x^{(k)\hat{\textbf{p}}-1} - \hat{x}^{(k)}) \end{pmatrix}, \\ \text{ check the stopping criteria given in Sec. 4.5 and if they are not satisfed, set} \\ & \mu^{k+1} := \mu^{k} + \alpha_{k} \cdot \frac{(\overline{z}_{LD} - z_{LD}(\mu^{k}, \hat{\textbf{p}}))}{||\hat{s}^{k}||^{2}} \cdot \hat{s}^{k}. \\ \text{ Solve the } \hat{\textbf{p}} \text{ problems (12)-(13) with } \mu^{k+1}, \text{ and let } (\delta^{(k+1)}, x^{(k+1)}, \gamma^{(k+1)}, y^{(k+1)}) \\ \text{ and } z_{LD}(\mu^{k+1}, \hat{\textbf{p}}) \text{ be the optimal solution and solution value, respectively.} \\ \text{ Compute } \hat{\delta}^{k+1} \text{ and } \hat{x}^{k+1}. \\ \text{ Set } k := k+1 \text{ and go to Step 1.} \\ \end{array} \right$

Figure 5: Progressive Hedging Algorithm (PHA)

Note: The step direction \hat{s}^k is used for choosing the convergence parameters, see Sec. 4.6.

4.4 Dynamic Constrained Cutting Plane method

The DCCP is a Cutting Plane Method, see [18], in which the Lagrange multiplier at iteration k are updated by solving the following maximization problem

$$\begin{aligned} \overline{z}_{LD}(\mu^k, \hat{\mathbf{p}}) &= \max_{\mu \in C^k(\mu)} z \\ z &\leq \overline{z}_{LD}(\mu^i, \hat{\mathbf{p}}) \quad \forall i \in I, \end{aligned}$$

where $C^k(\mu)$ is the dynamically updated Lagrange multipliers feasible region and $\overline{z}_{LD}(\mu^i, \hat{\mathbf{p}})$ is a truncation of Taylor series expansion of the function $z_{LD}(\mu, \hat{\mathbf{p}})$ around the point μ^i , i.e.,

$$\overline{z}_{LD}(\mu^k) = \max_{\mu \in C^k(\mu)} z$$
s.t. $z \leq z_{LD}(\mu^i, \hat{\mathbf{p}}) + \sum_{\mathbf{p}=1}^{\hat{\mathbf{p}}} (\mu^{\mathbf{p}} - \mu^{i,\mathbf{p}}) s^i \quad \forall i \in I,$

$$(14)$$

where I is the set of cutting planes, see (16), $z_{LD}(\mu^i, \hat{\mathbf{p}})$ is the Langrangean bound obtained at iteration i, and s^i is the subgradient vector of $z_{LD}(\mu, \hat{\mathbf{p}})$ at μ^i , for $i \in I$.

Notice that the number of constraints in model (14) grows with the number of iterations. To prevent the excessive size of the problem, \hat{n} denotes the maximum number of cutting planes, i.e., the maximum number of constraints in model (14), so $|I| = \min\{k, \hat{n}\}$. Then, if

the number of iterations is lower than or equal to the maximum number of cutting planes, $k \leq \hat{n}$, all the cutting planes are considered in the model (14). Whereas, if the iteration number is larger than the maximum number of constraints, $k > \hat{n}$, the difference, say, d_i between the *i*th hyperplane $z_{LD}(\mu^i, \hat{\mathbf{p}}) + \sum_{\mathbf{p}=1}^{\hat{\mathbf{p}}} (\mu^{k,\mathbf{p}} - \mu^{i,\mathbf{p}})s^i$ and the Lagrangian bound obtained at iteration k is computed as follows,

$$d_{i} = z_{LD}(\mu^{i}, \hat{\mathbf{p}}) + \sum_{\mathbf{p}=1}^{\hat{\mathbf{p}}} (\mu^{k, \mathbf{p}} - \mu^{i, \mathbf{p}}) s^{i} - z_{LD}(\mu^{k}, \hat{\mathbf{p}}).$$
(15)

The most distant hyperplanes are deleted from I. It should be noted that the residual d_i is always positive, since the cutting plane reconstruction of the dual function overestimates the actual dual function.

The feasible region $C^k(\mu)$ has the expression

$$C^{k}(\mu) = \{\mu, \underline{\mu}^{k} \le \mu \le \overline{\mu}^{k}\},\tag{16}$$

where $\underline{\mu}^k$ and $\overline{\mu}^k$ denote the lower and the upper bound of the Lagrange multipliers vector at iteration k, respectively, such that they are updated at each iteration and can be expressed

$$\underline{\mu}_{j}^{k+1} = \mu_{j}^{k} - \alpha_{k} \cdot \beta^{k} \cdot |s_{j}^{k}| \quad \text{and} \quad \overline{\mu}_{j}^{k+1} = \mu_{j}^{k} + \alpha_{k} \cdot \beta^{k} \cdot |s_{j}^{k}|, \tag{17}$$

where μ_j^k is the *j*th component of the multipliers vector obtained as optimal solution of model (14) at iteration *k* and $\beta^k = \frac{(\overline{z}_{LD} - z_{LD}(\mu^k, \hat{\mathbf{p}}))}{||s^k||^2}$. Therefore, at iteration k + 1 the feasible region $C^{k+1}(\mu)$ is defined around the optimal multipliers vector obtained in the previous iteration. The procedure for updating the Lagrange multipliers of the NAC (6)-(7) is given in Figure 6.

Step 0: Given the Lagrange multipliers vector, μ^0 , solve the $\hat{\mathbf{p}}$ problems (12)-(13) to obtain $(\delta^{(0)}, x^{(0)}, \gamma^{(0)}, y^{(0)})$ and $z_{LD}(\mu^0, \hat{\mathbf{p}})$ as the sum given in (11). Set k := 0.

Step 1: Compute $s^k = \begin{pmatrix} (\delta^{(k)\mathbf{i}} - \delta^{(k)\mathbf{j}}) \\ \vdots \\ (\delta^{(k)\hat{\mathbf{p}}-1} - \delta^{(k)\hat{\mathbf{p}}}) \\ (\delta^{(k)\hat{\mathbf{p}}} - \delta^{(k)\mathbf{1}}) \\ (x^{(k)\mathbf{1}} - x^{(k)\mathbf{2}}) \\ \vdots \\ (x^{(k)\hat{\mathbf{p}}-1} - x^{(k)\hat{\mathbf{p}}}) \\ (x^{(k)\hat{\mathbf{p}}} - x^{(k)\mathbf{1}}) \end{pmatrix}$

check the stopping criteria given in Sec. 4.5 and if they are not satisfed, set $\underline{\mu}_{j}^{k+1}$ and $\overline{\mu}_{j}^{k+1}$ as (17) where $\beta^{k} = \frac{(\overline{z}_{LD} - z_{LD}(\mu^{k}, \hat{\mathbf{p}}))}{||s^{k}||^{2}}$. Solve the model (14) to obtain the new Lagrangian multiplier vector, μ^{k+1} . If $k > \hat{n}$, compute d_{i} as (15) and delete $\iota \in argmax_{i \in I}\{d_{i}\}$ from I.

Step 2: Solve the $\hat{\mathbf{p}}$ problems (12)-(13) with μ^{k+1} , and let $(\delta^{(k+1)}, x^{(k+1)}, \gamma^{(k+1)}, y^{(k+1)})$ and $z_{LD}(\mu^{k+1}, \hat{\mathbf{p}})$ be the optimal solution and solution value, respectively. Set k := k + 1 and go to Step 1.

Figure 6: Dynamic Constrained Cutting Plane method (DC-CP)

4.5 Stopping criteria

In this section we present the stopping criteria that are common to the four procedures described above. At Step 1 of each procedure, and after computing the subgradient vector s^k (SM) and (DC-CP), \overline{s}^k (VA), or \hat{s}^k (PHA), respectively, we compute its norm.

The stopping criterion 1, requires that the norm of the subgradient vector is near to zero (say, less than $\epsilon_s = 0.01$). We have used the ℓ_2 norm, but it could be possible to compute the ℓ_{∞} , with a little more computational effort and the solution would perhaps have been more accurate. If this criterion is satisfied, then the NAC (6)-(7) are satisfied as well and the optimal solution to the MIP model has been obtained. So, the Lagrangian bound coincides with the optimal solution value of the original stochastic integer problem.

The stopping criterion 2 common to the four procedures has two parts. The first is as follows,

$$\frac{|\sum_{\mathbf{p}=1}^{\hat{\mathbf{p}}} [\mathbf{w}^{\mathbf{p}}(c_1 \tilde{\delta}^{(k)\mathbf{p}} + c_2 \tilde{x}^{(k)\mathbf{p}}) + \sum_{\omega \in \Omega_{\mathbf{p}}} w^{\omega} [q_1^{\omega} \tilde{\gamma}^{(k)\omega} + q_2^{\omega} \tilde{y}^{(k)\omega}]] - z_{LD}(\mu^k, \hat{\mathbf{p}})|}{|z_{LD}(\mu^k, \hat{\mathbf{p}})|} < \epsilon_z \qquad (18)$$

where $(\tilde{\delta}^{(k)\mathbf{p}}, \tilde{x}^{(k)\mathbf{p}}, \tilde{\gamma}^{(k)\omega}, \tilde{y}^{(k)\omega})$ denotes the incumbent solution, being $(\delta^{(k)\mathbf{p}}, x^{(k)\mathbf{p}}, \gamma^{(k)\omega}, y^{(k)\omega})$ for SM, PHA and DCCP and $(\overline{\delta}, \overline{x}, \overline{\gamma}, \overline{y})$ for VA, and ϵ_z is a given tolerance. In particular, we use $\epsilon_z = 0.008$.

The second part is given by

$$\frac{\sum_{\mathbf{p}=\mathbf{1}}^{\hat{\mathbf{p}}} |\tilde{s}_{\mathbf{p}\delta}|}{\hat{\mathbf{p}} \cdot n_{\delta}} < \epsilon_{\delta} \quad \text{and} \quad \frac{\sum_{\mathbf{p}=\mathbf{1}}^{\hat{\mathbf{p}}} |\tilde{s}_{\mathbf{p}x}|}{\hat{\mathbf{p}} \cdot n_{x}} < \epsilon_{x}, \tag{19}$$

where $\hat{\mathbf{p}} \cdot n_{\delta}$ and $\hat{\mathbf{p}} \cdot n_x$ are the number of NAC for the δ and x variables, respectively, $\tilde{s}_{\mathbf{p}\delta}$ and $|\tilde{s}_{\mathbf{p}x}|$ for cluster \mathbf{p} denote the absolute deviations for the corresponding δ and x rows of vector s^k for SM and DCCP, \overline{s}^k for VA and \hat{s}^k for PHA, whereas ϵ_{δ} and ϵ_x are given tolerances. In particular, we use $\epsilon_{\delta} = 0.01$ and $\epsilon_x = 0.1$.

Finally, the stopping criterion 3 requires that the incumbent solution value, $z_{LD}(\mu^k, \hat{\mathbf{p}})$ does not improve (given a tolerance, say $\epsilon = 0.0001$) after a sequence of ten consecutive iterations.

When any of the stopping criteria is satisfied, the possible situations are as follow related to the CLD bound $z_{LD}(\mu^k, \hat{\mathbf{p}})$:

- 1. Stopping criterion 1. The bound is the solution value of the original problem and, additionally, the solution is feasible and then, it is the optimal one. We denote the corresponding results in green in Tables 3-24.
- 2. Stopping criterion 2. The (strong) bound is the objective function value of a quasifeasible solution given the optimality tolerances that have been established. We denote the corresponding results in blue in Tables 3-24.
- 3. Stopping criterion 3. The bound is the strongest bound that can be obtained given the set of tolerances and parameters that have been established. We denote the corresponding results in red in Tables 3-24.

4.6 Choice of the convergence parameters

The performance of the procedures given above is very sensitive to the choice of the given parameters: the initial upper bound \overline{z}_{LD} , the initial step size parameter α_0 and moreover the procedure for updating this step size parameter at each iteration α_k ; some implementation details are given in [4]. In this sense, and following the notation given in that paper, we have considered three types of iterations for setting the value of α_k . The iteration at which there is no improvement in the value of function $z_{LD}(\mu, \hat{\mathbf{p}})$, such that $z_{LD}(\mu^k, \hat{\mathbf{p}}) \leq z_{LD}(\mu^{k-1}, \hat{\mathbf{p}})$ is called *red*. Otherwise, i.e., $z_{LD}(\mu^k, \hat{\mathbf{p}}) > z_{LD}(\mu^{k-1}, \hat{\mathbf{p}})$, let the vector h^k be computed as follows: $h^k = (s^k)^t \cdot s^{k-1}$ in the Subgradient and Dynamic Constrained Cutting Plane methods; $h^k = (s^k)^t \cdot \overline{s}^k$ in the Volume Algorithm, and $h^k = (s^k)^t \cdot \hat{s}^k$ in the Progressive Hedging Algorithm, where s^k, \overline{s}^k and \hat{s}^k denote, respectively, the subgradient vector calculated in Step 1 of the corresponding procedure. Notice that $h^k < 0$ means that a longer step in the direction of s^k would produce a smaller value for $z_{LD}(\mu^k, \hat{\mathbf{p}})$. In this case, the iteration is called *yellow*. If $h^k \geq 0$ then the iteration is called *green*. At each green iteration we multiply α_k by 1.1. After each sequence of #red consecutive red iterations we multiply α_k by 0.66.

Note that there is no relationship between the color of the iterations, yellow, red or green color, introduced in [4], to describe the procedure for updating the value of the step size parameter α_k , and that shows the different CLD bounds in the Tables 3-24 showing the stopping criterion has occured.

The optimal values for #red and α_0 must be adequately tested for each instance and are clearly dependent on the initial upper bound \overline{z}_{LD} considered, see [10]. However, we observed in our computational experimentation (see Sec. 5) that, in general, and for any choice of these parameters, the clustering partition provides stronger lower bounds when computing the Lagrangian bound at iteration zero, i.e., $z_{LD}(\mu^0, \hat{\mathbf{p}})$. Note: The initial vector of the Lagrange multipliers has been taked as a vector of zeros, $\mu^0 = \vec{0}$, given the good results that we have reported in [10] for singleton scenario clusters by computationally comparing this choice with some other alternative.

For each clustering partition, we obtain an interval for the solution value of the original problem, given by $[z_{LD}(\mu^0, \hat{\mathbf{p}}), \overline{z}_{LD}]$. As we will show, the tightness of the Lagrangian bound at iteration zero, $z_{LD}(\mu^0, \hat{\mathbf{p}})$, depends upon the cluster partitioning i.e., $\hat{\mathbf{p}}$ that is considered; while in the case of the upper bound $\overline{z}_{LD}(\rho)$, its goodness depends on the quasi-optimality tolerance $\rho\%$ considered when the MIP solver obtains it. When using the preprocessing and parallel computing tools available by default in CPLEX, stronger bounds are efficiently computed, see Table 2.

In order to homogenize the performance of the two solvers to be used, namely CPLEX within COIN-OR [17] and the LP/MIP functions of it as well as the different cluster partitionings, we have considered #red = 1 in all the instances in the testbed. We have experimented as well as the same initial steplength value α_0 , although diminishing it for both solvers in some instances, depending on the extension of the interval that contains the solution value, see Sec. 5.

The parameter f_k in the Volume Algorithm is set to a fixed value for a number of iterations and is decreased afterwards. Let s^k and \overline{s}^k be defined as in Step 1 of the procedure. Let also f_{max} be an upper bound of f_k . Then, we can compute f_{opt} as the value that minimizes $\begin{aligned} ||f_k \cdot s^k + (1 - f_k) \cdot \overline{s}^k||. \text{ It is easy to verify that this value is } f_{opt} &= \frac{\sum_{i=1}^{2\hat{\mathbf{p}}} \overline{s}_i^k (s_i^k - \overline{s}_i^k)}{\sum_{i=1}^{2\hat{\mathbf{p}}} (\overline{s}_i^k - s_i^k) (s_i^k - \overline{s}_i^k)}. \end{aligned}$ If $f_{opt} < 0$, set $f_k = \frac{1}{10} \cdot f_{max}$. Otherwise, set $f_k = \min\{f_{max}, f_{opt}\}$. In our computational experimentation we have used $f_{max} = f_0 = 0.1$ and we have decreased its value near to the end.

Finally, the maximum number of cutting planes, \hat{n} , in the Dynamic Constrained Cutting Plane method has been fixed to $\hat{n} = 30$.

5 Computational experience

We report the results of the computational experience obtained while optimizing the twostage MIP model (1) over some randomly generated instances. The first two instances of the testbed are small-medium sized, while the other instances are larger, significantly bigger than those normally reported in the literature, e.g., [23].

The computational experiments were conducted in a Workstation Debian Linux (kernel v2.6.32 with 64 bits), 2 processors Xeon 5355 (Quad Core with 2x4 cores), 2.664 Ghz and 16 Gb of RAM.

The four procedures given above have been implemented in a C++ experimental code. It uses alternatively two of the state-of-the-art optimization engines, in particular CPLEX v12.2 within the open source engine COIN-OR and the LP/MIP default functions Clp and Cbc of the same COIN-OR system. Both optimizers are used by the CLD algorithm for solving the LP relaxation of the whole model and the related mixed 0-1 cluster submodels.

We will compare the results obtained by using both optimizers, COIN-OR and CPLEX. The use of the latter is denoted with the upperindex ppc, since this solver uses (by default) the state-of-the-art preprocessing and parallel computing (in our case with a parallel scheme of eight threads, one per core). The four Lagrange multipliers updating procedures presented above can be enriched by providing a variety of specialized preprocessing, cut generation and appending, probing and parallel computation tools, see [19], that can customize the experimental code to achieve maximum efficiency.

The structure of the DEM in compact representation for the instances, which is inspired in model (38) of [23], can be expressed

$$\min \quad c_1 \delta + c_2 x + \sum_{\omega=1}^{|\Omega|} w^{\omega} (q_1^{\omega} \gamma^{\omega} + q_2^{\omega} y^{\omega})$$
s.t.
$$b_1 \leq A \begin{pmatrix} \delta \\ x \end{pmatrix} \leq b_2$$

$$h_1^{\omega} \leq T^{\omega} \begin{pmatrix} \delta \\ x \end{pmatrix} + W^{\omega} \begin{pmatrix} \gamma^{\omega} \\ y^{\omega} \end{pmatrix} \leq h_2^{\omega} \quad \forall \omega \in \Omega$$

$$x, y^{\omega} \in [0, 1] \quad \forall \omega \in \Omega$$

$$\delta, \gamma^{\omega} \in \{0, 1\} \quad \forall \omega \in \Omega,$$

$$(20)$$

Note that the variables in both stages are bounded. The vectors of variables δ and γ are integer, moreover they are binary, whereas the vectors of continuous variables, x

			Con	npact re	present	ation		S	plitting v	ariable r	epresentati	on	
Instance	m^{c}	n_{δ}^{c}	n_x^c	n_{γ}	n_y	nel^c	$dens^c$	m^s	n^s_δ	n_x^s	nel^s	$dens^s$	$ \Omega $
P1	136	4	4	128	128	2112	5.88	640	128	128	4608	1.41	32
P2	148	10	10	128	128	3984	9.75	1408	320	320	17664	1.40	32
P3	288	5	10	280	420	70120	3.40	4410	350	700	80500	1.04	70
P4	1290	30	15	1280	256	73410	3.59	8320	3840	1920	142080	0.23	128
P5	1935	25	10	2560	1920	134925	1.54	8320	3200	1280	210560	0.28	128
P6	2010	20	20	2000	2000	120400	1.48	12000	4000	4000	216000	0.15	200
P7	2010	20	40	3000	2000	170600	1.68	16000	4000	8000	314000	0.11	200
P8	2005	12	15	6000	4000	104135	0.52	14800	4800	6000	179600	0.06	400
P9	2005	10	15	3600	3600	86125	0.59	14000	4000	6000	156000	0.06	400
P10	2520	30	40	5000	2500	213900	2.76	47500	15000	20000	982500	0.05	500
P11	2520	50	50	5000	2500	289500	1.51	62500	25000	25000	1387500	0.04	500

Table 1: Model dimensions

and y, are scaled onto [0,1]. The likelihood attributed to the scenarios is equal under each scenario, i.e, $w^{\omega} = \frac{1}{|\Omega|} \forall \omega \in \Omega$, being Ω the set of scenarios. The vectors of the objective function coefficients, $c_1, c_2, (q_1^{\omega}), (q_2^{\omega})$ are generated using the uniform distribution over $[-2.5, -1.5], [-2.5, -1.5], [-30 + \frac{\omega}{|\Omega|}, -10 + \frac{\omega}{|\Omega|}]$ and $[-30 + \frac{\omega}{|\Omega|}, -10 + \frac{\omega}{|\Omega|}]$, respectively. The left-hand-side vectors, $b_1, (h_1^{\omega})$ are fixed to $\frac{1}{2} \cdot k_1$ and $\frac{1}{2} \cdot k_1 + \frac{\omega}{|\Omega|}$, respectively. The right-handside vectors, $b_2, (h_2^{\omega})$, are generated using the uniform distribution over $[k_2, k_2 + k_1 \cdot (n_{\delta} + n_x)]$ and $[k_3 + \frac{\omega}{|\Omega|}, k_3 + \frac{\omega}{|\Omega|} + k_1 \cdot (n_{\delta} + n_x + n_{\gamma} + n_y)]$, respectively, where $k_1 \in [0, 1], k_2 \in [0, 41.5]$ and $k_3 \in [0, 30.5]$. n_{δ} and n_x are the number of 0-1 and continuous first stage variables, and n_{γ} and n_y are the corresponding number of 0-1 and continuous second stage variables. A is the matrix of coefficients for the first stage constraints, and the technology matrices T^{ω} and W^{ω} for the second stage variables are generated using the uniform distribution over $[0, 2], [-0.1 \cdot \frac{\omega}{|\Omega|}, -0.1 \cdot \frac{\omega}{|\Omega|} + 0.3]$ and $[1.5 \cdot \frac{\omega}{|\Omega|}, 1.5 \cdot \frac{\omega}{|\Omega|} + 8.0]$, respectively.

Table 1 gives the dimensions of the mixed 0-1 DEM for the 11 instances of the testbed that we have experimented with in compact and splitting variable representations. The headings are as follows: m^c , m^s , number of constraints; n^c_{δ} , n^s_{δ} , number of 0-1 first stage variables; and n^c_x , n^s_x number of continuous first stage variables in compact and splitting variable respresentation, respectively. n_{γ} , number of 0-1 second stage variables; n_y , number of continuous second stage variables. nel^c , nel^s , number of nonzero coefficients in the constraint matrix; and $dens^c$, $dens^s$, constraint matrix density (in %) in compact and splitting variable representation, respectively. Finally, $|\Omega|$ denotes number of scenarios. Notice that the numbers of second stage variables n_{γ} and n_y , are the same under both representations. It is worth pointing out that the testbed has 4 types of instances from the DEM dimensions point of view, namely the instances P1 and P2 are toy ones, P3 up to P7 are medium sized instances, P8 and P9 are large-scale instances, and P10 and P11 are very large-scale instances given the state-of-the art of general MIP solvers.

Table 2 shows some of the main results obtained by plain use of the two optimizers COIN-OR and CPLEX for solving the original problem (20). The headings are as follows: z_{LP}^{ppc} , LPsolution value; z_{MIP}^{ppc} , objective function value of the CPLEX incumbent solution (but it is the solution value for the toy instances P1 and P2) of problem (20); T_{LP}^{ppc} and T_{MIP}^{ppc} , elapsed times (in secs.) to obtain the z_{LP}^{ppc} and z_{MIP}^{ppc} values, respectively, by plain use of CPLEX in the compact representation of problem (20). Upper bounds $\overline{z}(\rho)$ and $\overline{z}^{ppc}(\rho)$ of the solution

Case	z_{LP}^{ppc}	z^{ppc}_{MIP}	T_{LP}^{ppc}	T^{ppc}_{MIP}	$\overline{z}(ho)$	$T_{\overline{z}(\rho)}$	$\overline{z}^{ppc}(ho)$	$T^{ppc}_{\overline{z}(\rho)}$
P1	-81.14	-80.4820	0.01	1	-80.1945(1)	0.27	-80.3516(1)	0
P2	-100.42	-99.8996	0.01	2	-99.3327(1)	0.25	-99.6225(1)	0
P3	-61.40	-59.4645(*)	0.28	-	-58.6387(10)	70	-59.46(0.1)	28
P4	-76.05	-70.7906(*)	0.09	-	-68.5212(10)	24	-70.7906(1)	40
P5	-86.70	-84.2161(*)	0.21	-	-82.3986(5)	20	-84.1637(0.5)	156
P6	-69.30	-66.0478(*)	0.29	_	-65.955(5)	125	-66.0315(0.5)	49
$\mathbf{P7}$	-83.50	-79.8772(*)	0.41	-	-77.326(10)	111	-79.8045(1)	87
P8	-116.32	-114.318(*)	0.28	-	-113.235(5)	61	-114.044(0.5)	37
P9	-95.81	-94.1302(*)	0.26	-	-92.9241(5)	37	-94.1227(0.1)	89
P10	-301.54	-300.456(*)	0.62	-	-300.166(0.5)	114	300.425(0.05)	27
P11	-321.29	-320.283(*)	0.80	-	-317.724(5)	54	-320.249(0.05)	61

Table 2: LP relaxation lower bound and upper bound for the optimal MIP solution value

-: Time limit exceeded (3 hours = 10800 secs.) (*): Incumbent solution value at the time limit

value of the original problem that have been obtained as quasi-optimal solution values with a $\rho\%$ tolerance computed by plain use of COIN-OR and CPLEX, respectively; and, finally, $T_{\overline{z}(\rho)}$ and $T_{\overline{z}(\rho)}^{ppc}$, elapsed times (in secs.) for obtaining the corresponding upper bounds.

Table 2 shows relevant information concerning the difficulty of the instances we were experimenting with, in particular the larger ones (i.e., from P3 to P11). None of them are solved up to optimality by plain use of solvers COIN-OR and CPLEX within the three hours elapsed time limit. Therefore, the objective function value of the incumbent solution provided by CPLEX, is in some instances just an upper bound of the solution value of the original stochastic instance, i.e., P4. In some other instances (i.e., P6, P7, P8, P10 and P11) the incumbent solution coincides with the optimal one. However, this fact is not known by the solver, but we can guarantee this after having obtained a green solution with our procedures, evidently requiring a total elapsed time much less than three hours. Finally, there some other instances (i.e., P3, P5 and P9) for which the plain use of CPLEX provides an incumbent solution with an objective function value slightly higher than the CLD bound provided by our procedures, but with a much greater computational effort. Note: In these situations the quasi-optimality gap between the CPLEX incumbent solution and the best CLD bound, defined as $\left|\frac{z_{MIP}^{ppc} - z_{LD}}{z_{LD}}\right|$, is for instance P3, $\left|\frac{-59.4645 + 59.4647}{-59.4647}\right| = 3.36 \cdot 10^{-6}$, for instance P5, $\left|\frac{-84.2161 + 84.2243}{-84.2243}\right| = 9.73 \cdot 10^{-5}$, and for instance P9, $\left|\frac{-94.1302 + 94.1407}{-94.1407}\right| = 1.11 \cdot 10^{-4}$. Very small in both of them. However, the traditional optimality gap defined as $\left|\frac{z_{MIP}^{ppc} - z_{LP}^{ppc}}{z_{LP}^{pp}}\right|$, of value 0.031, 0.028 and 0.017 for instances P3, P5 and P9, respectively, is substantially greater. The details of this conclusion are shown in the results presented in the rest of the section.

Tables 3-4 until 23-24 show in detail the main results of our computational experience for each of the instances P1 until P11, without and with sophisticated preprocessing and parallel computation tools (i.e., by using COIN-OR functions and CPLEX, respectively). In all of them, the heading $\hat{\mathbf{p}}$ denotes the cluster partition i.e., the number of scenario clusters that are considered. In all the instances we have considered four scenario cluster partitions. For each cluster partition (i.e., at each column in the tables) we present the interval of the solution value (i.e., the objective function value of the optimal solution of the original stochastic mixed 0-1 instance) given by $[z_{LD}(\mu^0, \hat{\mathbf{p}}), \overline{z}(\rho)]$. Additionally, α_0 denotes the initial step size parameter; $z_{SM}[ite]$, $z_{VA}[ite]$, $z_{PHA}[ite]$ and $z_{DCCP}[ite]$ denote the CLD bounds obtained in [ite], the corresponding number of iterations required by using the procedures SM, VA, PHA and DCCP, respectively; T_S , T_V , T_P and T_D denote the related elapsed times (in secs.) by using the COIN-OR functions. Finally, the upperindex ppc in these headings indicate the case of using CPLEX.

	$\hat{\mathbf{p}} = 32 \text{ clusters}$		$\hat{\mathbf{p}} = 16 \text{ cluster}$	s	$\hat{\mathbf{p}} = 8 \text{ clusters}$		$\hat{\mathbf{p}} = 4 \text{ clusters}$	
$z_{MIP} \in$	[-81.0529, -80.19]	45]	[-80.7393, -80.1945]		[-80.6329, -80.19]	45]	[-80.553, -80.19]	45]
	$ \alpha_0 = 1.9 $		$\alpha_0 = 1.9$	$\alpha_0 = 1.9$			$\alpha_0 = 1.9$	
SM	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S
	z[63] = -80.5098	6	z[60] = -80.4873	5	z[29] = -80.4834	4	z[34] = -80.4825	6
							z[52] = -80.482	10
VA	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V
	z[104] = -80.494	12	z[58] = -80.4843	5	z[61] = -80.4845	6	z[45] = -80.482	10
PHA	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P
	z[213] = -80.4861	21	z[89] = -80.4886	7	z[108] = -80.4827	10	z[60] = -80.482	12
DC-CP	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D
	z[82] = -80.5033	9	z[68] = -80.4857	7	z[32] = -80.4836	3	z[14] = -80.4827	3
							z[23] = -80.482	5

Table 3: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P1

Table 4: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P1

	$\hat{\mathbf{p}} = 32 \text{ cluster}$	s	$\hat{\mathbf{p}} = 16 \text{ cluster}$	s	$\hat{\mathbf{p}} = 8 \text{ cluster}$	s	$\hat{\mathbf{p}} = 4$ cluster	ſs
$z_{MIP} \in$	[-81.0529, -80.3]	516]	[-80.7393, -80.3516]		[-80.6329, -80.3]	8516]	[-80.553, -80.3]	5516]
	$\alpha_0 = 1.9$		$\alpha_0 = 1.9$		$\alpha_0 = 1.9$		$ \alpha_0 = 1.9 $	
SM	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}
	z[62] = -80.5113	16	z[63] = -80.4917	10	z[29] = -80.4843	4	z[33] = -80.482	3
VA	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}
	z[133] = -80.4952	34	z[58] = -80.4847	10	z[69] = -80.4842	6	z[37] = -80.482	4
							z[56] = -80.482	11
PHA	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}
	z[180] = -80.4857	48	z[105] = -80.4852	17	z[115] = -80.482	12	z[63] = -80.482	7
DC-CP	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{\overline{ppc}}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}
	z[80] = -80.5137	25	z[49] = -80.4863	19	z[21] = -80.4839	6	z[17] = -80.482	2

Tables 3-4 show the results reported for instance P1. The CLD bounds obtained by using both solvers are very similar, but with a higher computational effort in case of using CPLEX, perhaps due to the small dimensions of the instance. Notice that this happens for all the four procedures and the four cluster partitions that we have experimented with, but for the column corresponding to the partition in $\hat{\mathbf{p}} = 4$ clusters, where each cluster submodel has 8 scenarios and the four procedures are more efficient when using CPLEX. The first column in both tables corresponds to the traditional LD, where the number of clusters is the number of scenarios. Notice that in this column the color of the solutions is red (i.e., the third stopping criterion has been satisfied) or blue (second stopping criterion), which indicates that the CLD bound is, at least, the strongest bound that can be obtained for the given tolerances. The color of the solutions in both tables is green (first stopping criterion), which means that the CLD bound is the solution value of the original problem. Notice also that for some cases, although the CLD bound is equal to the solution value of the original problem, the color of the results is not green, see VA for $\hat{\mathbf{p}} = 4$ in both tables. This is due to the fact that the CLD bound does not satisfy the NAC, i.e., the norm of the corresponding subgradient vector \overline{s}^k is higher than the given tolerance.

	$\hat{\mathbf{p}} = 32 \text{ cluster}$	s	$\hat{\mathbf{p}} = 16 \text{ cluster}$	s	$\hat{\mathbf{p}} = 8 \text{ clusters}$;	$\hat{\mathbf{p}} = 4 \text{ clusters}$	
$z_{MIP} \in$	[-100.289, -99.33]	327]	[-100.15, -99.33]	27]	[-99.9725, -99.33]	327]	[-99.944, -99.3327]	
	$ \alpha_0 = 1.9 $		$ \alpha_0 = 1.9 $		$\alpha_0 = 1.5$		$\alpha_0 = 1.5$	
SM	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S
	z[51] = -99.9233	3	z[31] = -99.9017	2	z[28] = -99.8997	2	z[8] = -99.9002	1
							z[59] = -99.8996	10
VA	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V
	z[30] = -99.9436	2	z[17] = -99.9578	1	z[7] = -99.9537	0	z[5] = -99.944	1
							z[48] = -99.8996	8
PHA	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P
	z[39] = -99.9003	7	z[73] = -99.8996	4	z[55] = -99.8996	4	z[27] = -99.9009	5
							z[89] = -99.8996	16
DC-CP	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D
	z[24] = -99.9504	2	z[35] = -99.9091	3	z[21] = -99.9002	2	z[8] = -99.9122	2
							z[38] = -99.8996	7

Table 5: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P2

It can be observed in the results for the larger instances that sometimes the optimal cluster partitioning is not the smallest. In these situations, it may be more efficient to consider a great number of clusters and then, more manageable sized cluster submodels.

Tables 5-6 show the results obtained for instance P2. In order to eliminate the oscillatory behavior of the iterative procedures for narrow solution value intervals, we have reduced the initial step size parameter for the cases with partitions in $\hat{\mathbf{p}} = 8$ and 4 clusters. Again the optimal partition is the one shown in the last column of both tables where the solution value is found. The quality of the CLD bounds obtained for the small instances P1 and P2 is very similar, but the elapsed time is smaller for the procedures SM and DCCP, followed by VA and PHA. SM is even more efficient than the plain use of CPLEX for instance P2.

	$\hat{\mathbf{p}} = 32 \text{ cluster}$	s	$\hat{\mathbf{p}} = 16 \text{ clusters}$		$\hat{\mathbf{p}} = 8 \text{ cluster}$	s	$\hat{\mathbf{p}} = 4 \text{ cluster}$	s
$z_{MIP} \in$	[-100.289, -99.62]	225]	[-100.15, -99.6225]		[-99.9725, -99.6]	[225]	[-99.944, -99.62]	225]
	$ \alpha_0 = 1.9 $		$ \alpha_0 = 1.9 $		$\alpha_0 = 1.5$		$\alpha_0 = 1.5$	
SM	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}
	z[28] = -99.9378	11	z[32] = -99.9023	8	z[21] = -99.8996	10	z[8] = -89.8996	1
VA	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}
	z[31] = -99.9397	13	z[18] = -99.9348	3	z[9] = -99.9663	2	z[5] = -99.944	1
							z[55] = -99.8996	5
PHA	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}
	z[116] = -99.9014	51	z[101] = -99.8996	23	z[50] = -99.8996	6	z[32] = -99.8996	3
DC-CP	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}
	z[41] = -99.9346	17	z[30] = -99.9057	7	z[20] = -99.9013	3	z[11] = -99.9010	2
							z[29] = -99.8996	3

Table 6: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P2

P3 is one of the most difficult instances in our testbed, in spite of the dimensions of its model. Tables 7-8 report the main results. The COIN-OR functions (see Table 7) require more than three hours to obtain the CLD bounds in case of considering cluster partitions in

 $\hat{\mathbf{p}} = 10$ or less clusters and then, we cannot provide the interval of the solution value, due to exceeding the time limit . However, this is obtained at the first iteration when using CPLEX (see Table 8). After the blue solution is obtained at the first iteration, the procedures continue iterating until obtaining the strongest CLD bound by satisfying the third stopping criterion, i.e., a red solution.

	$\hat{\mathbf{p}} = 70 \text{ cluster}$	s	$\hat{\mathbf{p}} = 35$ cluster	s	$\hat{\mathbf{p}} = 10 \text{ clus}$	ters	$\hat{\mathbf{p}} = 5 \text{ clust}$	ers
$z_{MIP} \in$	[-59.5529, -58.63]	387]	[-59.5142, -58.6]	387]	[-, -58.63	87]	[-, -58.633]	87]
	$\alpha_0 = 0.5$		$\alpha_0 = 0.5$		$\alpha_0 = -$		$\alpha_0 = -$	
SM	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S
	z[18] = -59.487	117	z[4] = -59.4902	107	-	-	-	-
VA	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V
	z[29] = -59.481	180	z[17] = -59.4858	367	-	-	-	-
PHA	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P
	z[53] = -59.4955	329	z[60] = -59.4815	1233	-	-	_	-
DC-CP	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D
	z[18] = -59.4863	116	z[20] = -59.4798	423	-	-	-	-

Table 7: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P3

Table 8: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P3

	$\hat{\mathbf{p}} = 70 \mathrm{cluster}$	rs	$\hat{\mathbf{p}} = 35 \mathrm{cluster}$	rs	$\hat{\mathbf{p}} = 10 \text{ cluste}$	\mathbf{rs}	$\hat{\mathbf{p}} = 5 \text{ clusters}$	3
$z_{MIP} \in$	[-59.5529, -59.	.46]	[-59.5142, -59.5142]	.46]	[-59.4821, -59	.46]	[-59.4763, -59.4763]	46]
	$\alpha_0 = 0.5$		$\alpha_0 = 0.5$		$\alpha_0 = 0.5$		$\alpha_0 = 0.1$	
SM	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}
	z[10] = -59.4925	$2\tilde{9}$	z[11] = -59.4863	$3 ilde{4}$	z[0] = -59.4821	6	z[0] = -59.4763	$1\widetilde{0}$
							z[54] = -59.4669	457
VA	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}
	z[26] = -59.4847	71	z[23] = -59.4828	68	z[0] = -59.4821	6	z[0] = -59.4763	10
							z[50] = -59.4649	432
PHA	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}
	z[24] = -59.483	64	z[9] = -59.4888	28	z[0] = -59.4821	6	z[0] = -59.4763	10
							z[117] = -59.4647	967
DC-CP	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}
	z[13] = -59.4934	35	z[12] = -59.4848	37	z[0] = -59.4821	5	z[0] = -59.4763	10
							z[62] = -59.4647	489

Tables 9-10 and 11-12 show the results for the instances P4 and P5, respectively, being very similar for both instances. As in instance P3, more than three hours are required to obtain the CLD bounds by using COIN-OR in case of considering cluster partitions in $\hat{\mathbf{p}} = 8$ or less clusters (see Tables 9 and 11). In both instances, the strongest CLD bounds are obtained by using CPLEX in case of considering a partition in $\hat{\mathbf{p}} = 4$ clusters (see Tables 10 and 12).

	$\hat{\mathbf{p}} = 128 \text{ cluster}$	s	$\hat{\mathbf{p}} = 32 \text{ clusters}$	3	$\hat{\mathbf{p}} = 8 \text{ clust}$	ers	$\hat{\mathbf{p}} = 4 \text{ clust}$	ers
$z_{MIP} \in$	[-73.9588, -68.52]	212]	[-70.108, -68.52]	[-, -68.52]	12]	[-, -68.5212]		
	$ \alpha_0 = 1.9 $		$ \alpha_0 = 1.9 $		$\alpha_0 = -$		$\alpha_0 = -$	
SM	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S
	z[104] = -71.5568	207	z[90] = -71.0946	539	-	-	-	-
VA	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V
	z[101] = -71.3968	206	z[63] = -71.0582	386	-	-	-	-
PHA	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P
	z[213] = -71.3772	438	z[154] = -71.0031	954	-	-	-	-
DC-CP	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D
	z[135] = -71.4846	285	z[108] = -71.1141	669	-	-	-	-

Table 9: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P4

Table 10: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P4

	$\hat{\mathbf{p}} = 128 \text{ cluster}$	ſS	$\hat{\mathbf{p}} = 32 \text{ cluster}$	s	$\hat{\mathbf{p}} = 8 \text{ cluster}$	s	$\hat{\mathbf{p}} = 4 \text{ cluster}$	s
$z_{MIP} \in$	[-73.9588, -70.79]	906]	[-70.108, -70.7906]		[-71.3013, -70.7]	'906]	[-71.0679, -70.7]	906]
	$ \alpha_0 = 1.9 $		$ \alpha_0 = 1.9 $		$\alpha_0 = 1.9$		$\alpha_0 = 1.9$	
SM	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}
	z[106] = -71.5566	310	z[75] = -71.1511	204	z[21] = -70.911	345	z[7] = -70.8615	346
VA	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}
	z[142] = -71.4157	440	z[57] = -71.0701	161	z[30] = -70.897	483	z[29] = -70.8533	872
PHA	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}
	z[188] = -71.3789	606	z[149] = -71.0235	442	z[16] = -71.0144	218	z[14] = -70.895	484
DC-CP	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}
	z[150] = -71.584	486	z[97] = -71.1523	268	z[20] = -70.9028	328	z[14] = -70.895	484

Table 11: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P5

	$\hat{\mathbf{p}} = 128 \text{ cluster}$	s	$\hat{\mathbf{p}} = 32 \text{ cluster}$	s	$\hat{\mathbf{p}} = 8 \text{ clust}$	ers	$\hat{\mathbf{p}} = 4 \text{ clust}$	ers
$z_{MIP} \in$	[-89.1014, -82.39]	986]	[-86.7169, -82.39]	[-, -82.39]	86]	[-, -82.3986]		
	$\alpha_0 = 1.9$		$\alpha_0 = 1.9$		$\alpha_0 = 1.9$)	$\alpha_0 = -$	
SM	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S
	z[99] = -85.4933	170	z[99] = -84.7134	583	-	-	-	-
VA	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V
	z[228] = -85.2149	512	z[156] = -84.5161	997	-	-	-	-
PHA	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P
	z[240] = -84.9909	403	z[193] = -84.4516	1076	-	-	-	-
DC-CP	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D
	z[163] = -85.5784	296	z[107] = -84.785	651	-	_		-

	$\hat{\mathbf{p}} = 128$ cluster	rs	$\hat{\mathbf{p}} = 32 \text{ cluster}$	s	$\hat{\mathbf{p}} = 8 \text{ clusters}$	3	$\hat{\mathbf{p}} = 4 \text{ cluster}$	s
$z_{MIP} \in$	[-89.1014, -84.1]	637]	[-86.7169, -84.1]	637]	[-85.4198, -84.1]	637]	[-85.1652, -84.1]	.637]
	$\alpha_0 = 1.9$		$ \alpha_0 = 1.9 $		$ \alpha_0 = 1.9 $		$\alpha_0 = 1.9$	
SM	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}
	z[123] = -85.5389	546	z[88] = -84.7792	247	z[70] = -84.2606	1151	z[21] = -84.2370	1069
VA	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}
	z[228] = -85.2448	941	z[189] = -84.5286	593	z[65] = -84.2433	1148	z[47] = -84.2243	1487
PHA	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}
	z[291] = -84.9872	1241	z[220] = -84.4464	949	z[107] = -84.2429	1881	z[46] = -84.2259	1383
DC-CP	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}
	z[145] = -85.576	578	z[110] = -84.9279	313	z[92] = -84.3066	1511	z[28] = -84.2349	1730

Table 12: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P5

P6 and P7 are instances with similar dimensions and the results are also similar to those obtained for the instances P4 and P5 in the sense that the behavior of the four procedures is analogous when using COIN-OR for partitions in $\hat{\mathbf{p}} = 8$ and 4 clusters (see Tables 13 and 15). However when using CPLEX the optimal partition is $\hat{\mathbf{p}} = 4$ clusters for P6 and $\hat{\mathbf{p}} = 8$ clusters for P7 (see Tables 14 and 16), i.e., the smallest and then, reaching the optimal solution in a more efficient way for the four procedures. Notice that for instance P7 with $\hat{\mathbf{p}} = 8$ and 4 clusters, a feasible CLD bound is obtained at iteration zero for all the procedures by using CPLEX. The efficiency of the four procedures is lower for $\hat{\mathbf{p}} = 4$ clusters and, in particular, PHA requires more than 15000 secs. to reach the optimal solution.

	$\hat{\mathbf{p}} = 200 \text{ cluster}$	S	$\hat{\mathbf{p}} = 50$ clusters	2	$\hat{\mathbf{n}} = 8 \text{ clust}$	ers	$\hat{\mathbf{n}} = 4$ clust	ers
	p = 200 cluster	5	$\mathbf{p} = 00$ endster	, [E]		rel		erb El
$z_{MIP} \in$	[-08.0455, -05.95]	59]	[-00.039, -05.955]		[-, -05.95]	00]	[-, -05.95]	50]
	$\alpha_0 = 1.9$		$\alpha_0 = 1.9$	$= 1.9 \qquad \qquad \alpha_0 = -$			$\alpha_0 = -$	
SM	$z_{SM}[ite]$ T_S		$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S
	z[101] = -66.2772	281	z[30] = -66.1435	176	-	-	-	-
VA	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V
	z[110] = -66.205	309	z[73] = -66.0966	444	-	-	-	-
PHA	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P
	z[189] = -66.1759	498	z[95] = -66.088	543	-	-	-	-
DC-CP	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D
	z[149] = -66.2739	443	z[104] = -66.1349	602	-	_	-	_ !

Table 13: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P6

Table 15: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P7

	$\hat{\mathbf{p}} = 200 \text{ cluster}$	s	$\hat{\mathbf{p}} = 50 \text{ cluster}$	s	$\hat{\mathbf{p}} = 8 \text{ clust}$	\mathbf{ers}	$\hat{\mathbf{p}} = 4 \text{ clust}$	ers
$z_{MIP} \in$	[-81.934, -77.32]	6]	[-80.5159, -77.326]		[-, -77.326]		[-, -77.326]	
	$ \alpha_0 = 1.9 $		$ \alpha_0 = 1.9 $		$\alpha_0 = 1.9$)	$\alpha_0 = -$	
SM	$z_{SM}[ite] T_S$		$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S
	z[37] = -80.1946	128	z[26] = -79.9765	256	-	-	-	-
VA	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V
	z[55] = -80.1311	128	z[32] = -79.969	384	-	-	-	-
PHA	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P
	z[213] = -80.0999	502	z[198] = -79.9803	1623	-	-	-	-
DC-CP	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D
	z[126] = -80.1823	312	z[34] = -79.9836	328	-	_	-	-

	$\hat{\mathbf{p}} = 200 \text{ cluster}$	rs	$\hat{\mathbf{p}} = 50 \text{ cluster}$	s	$\hat{\mathbf{p}} = 8 \text{ cluster}$	s	$\hat{\mathbf{p}} = 4 \text{ cluster}$	s
$z_{MIP} \in$	[-68.0453, -66.0]	315]	[-66.639, -66.0315]		[-66.1605, -66.0315]		[-66.1153, -66.0315]	
	$ \alpha_0 = 1.9 $		$\alpha_0 = 1.9$		$\alpha_0 = 1.9$		$\alpha_0 = 1.9$	
SM	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}
	z[107] = -66.2753	558	z[63] = -66.1358	177	z[18] = -66.0601	302	z[8] = -66.0503	315
							z[31] = -66.0478	935
VA	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}
	z[88] = -66.2136	461	z[65] = -66.094	178	z[25] = -66.0615	421	z[7] = -66.106	194
							z[48] = -66.0478	1282
PHA	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}
	z[181] = -66.1928	963	z[106] = -66.0885	279	z[37] = -66.0582	582	z[16] = -66.0488	437
							z[51] = -66.0478	1468
DC-CP	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}
	z[51] = -66.9962	227	z[46] = -66.5703	111	z[9] = -66.062	160	z[6] = -66.0519	188
							z[18] = -66.0478	491

Table 14: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P6

Table 16: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P7

	$\hat{\mathbf{p}} = 200 \text{ cluster}$	rs	$\hat{\mathbf{p}} = 50 \text{ cluster}$	rs	$\hat{\mathbf{p}} = 8 \text{ clusters}$	3	$\hat{\mathbf{p}} = 4 \text{ cluster}$	s
$z_{MIP} \in$	[-81.934, -79.80]	945]	[-80.5159, -79.8]	8045]	[-79.9739, -79.8]	045]	$\left[-79.917, -79.8045 ight]$	
	$\alpha_0 = 1.9$		$\alpha_0 = 1.9$		$\alpha_0 = 1.9$		$\alpha_0 = 1.9$	
SM	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}
	z[45] = -80.2291	201	z[36] = -79.9984	143	z[0] = -79.9739	33	z[0] = -79.917	130
					z[62]=-79.8772	1848	z[40] = -79.8772	6319
VA	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}
	z[51] = -80.157	237	z[36] = -79.9837	145	z[0] = -79.9739	33	z[0] = -79.917	130
					z[73] = -79.8772	2293	z[45] = -79.8772	6689
PHA	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}
	z[131] = -80.0797	602	z[45] = -79.949	180	z[0] = -79.9739	33	z[0] = -79.917	129
					z[150] = -79.8772	4435	_	-
DC-CP	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}
	z[117] = -80.1835	566	z[54] = -80.0096	219	z[0] = -79.9739	33	z[0] = -79.917	129
					z[134] = -79.8772	4262	z[45] = -79.8772	8419

P8 and P9 are large instances both with 400 scenarios. Again, when the procedures are implemented by using COIN-OR for partitions in a small number of clusters, say $\hat{\mathbf{p}} = 20$ and 8 in instance P8 (see Table 17) and $\hat{\mathbf{p}} = 8$ in instance P9 (see Table 19), no CLD bounds have been obtained within the elapsed time limit, 10800 secs. However, the optimal partition is obtained by using CPLEX for partitions in $\hat{\mathbf{p}} = 8$ clusters in both instances (see Tables 18 and 20), i.e., the smallest. The optimal CLD bound is obtained by all the four procedures in instance P8 for partitions in $\hat{\mathbf{p}} = 8$ clusters by using CPLEX.

	$\hat{\mathbf{p}} = 400 \text{ cluster}$	s	$\hat{\mathbf{p}} = 50 \text{ cluster}$	s	$\hat{\mathbf{p}} = 20 \text{ clus}$	ters	$\hat{\mathbf{p}} = 8 \text{ clust}$	ers
$z_{MIP} \in$	[-116.043, -113.2]	[35]	[-114.531, -113.5]	[-, -113.235]		[-, -113.235]		
	$\alpha_0 = 1.9$		$\alpha_0 = 1.9$		$\alpha_0 = -$		$\alpha_0 = -$	
SM	$z_{SM}[ite] T_S$		$z_{SM}[ite]$	$z_{SM}[ite]$ T_S $z_{SM}[ite]$ T_S		T_S	$z_{SM}[ite]$	T_S
	z[73] = -114.622	128	z[74] = -114.371	1152	-	-	-	-
VA	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V
	z[57] = -114.568	68	z[39] = -114.361	538	-	-	-	-
PHA	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P
	z[217] = -114.457	296	z[153] = -114.362	2437	-	-	-	-
DC-CP	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D
	z[123] = -114.6	165	z[106] = -114.367	1560	-	-	-	-

Table 17: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P8

Table 18: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P8

	$\hat{\mathbf{p}} = 400 \text{ cluster}$	rs	$\hat{\mathbf{p}} = 50 \text{ cluster}$	ſS	$\hat{\mathbf{p}} = 20$ cluster	ſS	$\hat{\mathbf{p}} = 8 \text{ cluster}$	s
$z_{MIP} \in$	[-116.043, -114.	044]	[-114.689, -114.	044]	[-114, 531, -114]	.044]	[-114.427, -114.044]	
	$ \alpha_0 = 1.9 $		$ \alpha_0 = 1.9 $		$ \alpha_0 = 1.9 $		$ \alpha_0 = 1.9 $	
SM	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}
	z[126] = -114.626	795	z[72] = -114.382	340	z[22] = -114.342	303	z[16] = -114.324	362
							z[33] = -114.318	910
VA	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}
	z[55] = -114.573	346	z[43] = -114.368	198	z[28] = -114.34	406	z[24] = -114.325	560
							z[61] = -114.318	1411
PHA	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}
	z[191] = -114.457	1236	z[99] = -114.345	460	z[58] = -114.333	760	z[57] = -114.318	1127
DC-CP	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}
	z[156] = -114.623	1026	z[91] = -114.387	440	z[24] = -114.486	312	z[15] = -114.318	325
							z[37] = -114.318	958

Table 19: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P9

	$\hat{\mathbf{p}} = 400 \text{ cluster}$	s	$\hat{\mathbf{p}} = 50 \text{ clusters}$;	$\hat{\mathbf{p}} = 20 \text{ cluster}$	rs	$\hat{\mathbf{p}} = 8 \text{ clust}$	ers
$z_{MIP} \in$	[-95.8124, -92.92]	[41]	[-94.4468, -92.9241]		[-94.2895, -92.9]	241]	[-, -92.92]	41]
	$\alpha_0 = 1.9 \qquad \alpha_0 = 1.9 \qquad \alpha_0 = 1.9$			$\alpha_0 = -$	-			
SM	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S
	z[79] = -94.3658	69	z[32] = -94.1975	176	z[41] = -94.1482	1278	-	-
VA	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V
	z[53] = -94.3311	47	z[31] = -94.2037	175	z[21] = -94.1799	601	-	-
PHA	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P
	z[247] = -94.2356	238	z[142] = -94.1893	805	z[88] = -94.1646	2546	-	—
DC-CP	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D
	z[134] = -94.2895	139	z[60] = -94.1901	351	z[56] = -94.1478	1720	-	—

	$\hat{\mathbf{p}} = 400 \text{ cluster}$	rs	$\hat{\mathbf{p}} = 50 \text{ cluster}$	s	$\hat{\mathbf{p}} = 20$ cluster	rs	$\hat{\mathbf{p}} = 8 \text{ cluster}$	s	
$z_{MIP} \in$	[-95.8124, -94.1]	227]	[-94.4468, -94.1227]		[-94.2895, -94.1]	227]	[-94.22, -94.1227]		
	$\alpha_0 = 1.9$		$ \alpha_0 = 1.9 $		$\alpha_0 = 1.9$		$\alpha_0 = 1.9$		
SM	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	
	z[79] = -94.3964	436	z[14] = -94.2129	44	z[52] = -94.1726	176	z[11] = -94.1461	81	
VA	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	
	z[56] = -94.3434	302	z[33] = -94.2048	100	z[29] = -94.1675	92	z[17] = -94.1634	115	
PHA	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	
	z[181] = -94.2522	997	z[107] = -94.1595	474	z[49] = -94.1535	158	z[30] = -94.1407	192	
DC-CP	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	
	z[129] = -94.3973	755	z[30] = -94.209	93	z[73] = -94.1793	226	z[12] = -94.1502	90	

Table 20: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P9

P10 and P11 are the largest instances both with 500 scenarios. Tables 21-22 and 23-24 report the results. As in previous situations, when the procedures are implemented by using COIN-OR for partitions in a small number of clusters, say $\hat{\mathbf{p}} = 10$ for all procedures, but $\hat{\mathbf{p}} = 50$ for PHA in instance P11, no CLD bounds have been obtained within the elapsed time limit, 10800 secs (see Tables 21 and 23). However when using CPLEX (see Tables 22 and 24), the results are slightly different in both instances. By considering the partition in $\hat{\mathbf{p}} = 5$ clusters, the four procedures obtain the optimal solution in both instances, but VA and DCCP require more than three hours of elapsed time for instance P11. Notice that the best results for P11 are obtained for partitions in $\hat{\mathbf{p}} = 10$ clusters (see Tables 24).

By considering the partition in $\hat{\mathbf{p}} = 5$ clusters, the four procedures obtain the optimal solution for instance P10 when using CPLEX (see Table 22). The optimal solution is obtained more efficiently in procedures SM, PHA and DCCP for partitions in $\hat{\mathbf{p}} = 10$ clusters, but VA stops in a red solution given just the strongest CLD bound since it coincides with the solution value of the original problem. Notice that the norm of the subgradient vector for this CLD bound is 0.015 which is slightly greater than the given tolerance $\epsilon_s = 0.01$ for the stopping criterion 1.

	$\hat{\mathbf{p}} = 500 \text{ cluster}$	s	$\hat{\mathbf{p}} = 50 \text{ cluster}$	s	$\hat{\mathbf{p}} = 10 \text{ clus}$	ters	$\hat{\mathbf{p}} = 5 \text{ clust}$	ers
$z_{MIP} \in$	[-301.865, -300.1]	.66]	[-300.546, -300.546]	[-, -300.1]	66]	[-, -300.166]		
	$\alpha_0 = 1.9$		$\alpha_0 = 1.9$		$\alpha_0 = -$		$\alpha_0 = -$	
SM	$z_{SM}[ite] = T_S$		$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	$z_{SM}[ite]$ T_S $z_{SM}[$		T_S
	z[50] = -300.506	342	z[18] = -300.462	801	-	-	-	-
VA	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V
	z[52] = -300.494	290	z[36] = -300.464	1528	-	-	-	-
PHA	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P
	z[126] = -300.479	912	z[65] = -300.462	2811	-	-	-	-
DC-CP	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D
	z[89] = -300.535	624	z[20] = -300.468	906	_	-	_	-

Table 21: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P10

	$\hat{\mathbf{p}} = 500 \text{ cluster}$	rs	$\hat{\mathbf{p}} = 50 \text{ cluster}$	rs	$\hat{\mathbf{p}} = 10 \text{ cluster}$	rs	$\hat{\mathbf{p}} = 5 \text{ cluster}$	s
$z_{MIP} \in$	[-301.865, -300.	425]	[-300.546, -300.425]		[-300.468, -300]	.425]	[-300.461, -300.425]	
	$ \alpha_0 = 1.9 $		$ \alpha_0 = 1.9 $		$ \alpha_0 = 1.9 $		$ \alpha_0 = 1.9 $	
SM	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}
	z[63] = -300.5	724	z[13] = -300.465	151	z[3] = -300.459	63	z[0] = -300.461	24
					z[88] = -300.456	1238	z[61] = -300.456	1249
VA	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}
	z[56] = -300.508	669	z[20] = -300.473	238	z[6] = -300.465	107	z[0] = -300.461	24
					z[55] = -300.456	804	z[37] = -300.456	780
PHA	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}
	z[117] = -300.48	1358	z[25] = -300.467	292	z[21] = -300.458	295	z[0] = -300.461	24
					z[77] = -300.456	1065	z[69] = -300.456	1412
DC-CP	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}
	z[101] = -300.512	1223	z[10] = -300.474	113	z[3] = -300.463	63	z[0] = -300.461	23
					z[42] = -300.456	618	z[38] = -300.456	817

Table 22: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P10

Table 23: CLD bounds without preprocessing and parallel computation tools (COIN-OR). Instance P11

	$\hat{\mathbf{p}} = 500 \mathrm{cluster}$	s	$\hat{\mathbf{p}} = 50 \text{ clust}$	ers	$\hat{\mathbf{p}} = 10 \text{ clus}$	ters	$\hat{\mathbf{p}} = 5 \text{ clust}$	ers
$z_{MIP} \in$	[-322.35, -317.7]	[24]	[-320.479, -31]	[-, -317.724]		[-, -317.724]		
	$\alpha_0 = 1.9$		$\alpha_0 = 1.9$	$\alpha_0 = -$		$\alpha_0 = -$		
SM	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S	$z_{SM}[ite]$	T_S
	z[84] = -320.416	2324	z[46] = -320.297	3035.31	1	-	-	-
VA	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V	$z_{VA}[ite]$	T_V
	z[87] = -320.391	2562	z[26] = -320.309	1644.04	_	-	-	-
PHA	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P	$z_{PHA}[ite]$	T_P
	z[186] = -320.383	5302	-	-	1	-	-	-
DC-CP	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D	$z_{DCCP}[ite]$	T_D
	z[107] = -320.453	3043	z[52] = -320.299	3652	_	-	_	-

Table 24: CLD bounds with preprocessing and parallel computation tools (CPLEX). Instance P11

	$\hat{\mathbf{p}} = 500 \text{ cluster}$	rs	$\hat{\mathbf{p}} = 50 \text{ cluster}$	s	$\hat{\mathbf{p}} = 10 \text{ cluster}$	s	$\hat{\mathbf{p}} = 5$ cluster	s
$z_{MIP} \in$	[-322.35, -320.2]	249]	[-320.479, -320.249]		[-320.326, -320.	249]	[-320.31, -320.249]	
	$\alpha_0 = 1.9$		$ \alpha_0 = 1.9 $		$ \alpha_0 = 1.9 $		$ \alpha_0 = 1.9 $	
SM	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}	$z_{SM}^{ppc}[ite]$	T_S^{ppc}
	z[81] = -320.4	1920	z[38] = -320.301	1100	z[25] = -320.283	702	z[18] = -320.283	2294
					z[26] = -320.283	732		
VA	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}	$z_{VA}^{ppc}[ite]$	T_V^{ppc}
	z[137] = -320.393	3528	z[33] = -320.305	983	z[11] = -320.32	307	z[12] = -320.297	2159
					z[73] = -320.283	2375	-	-
PHA	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}	$z_{PHA}^{ppc}[ite]$	T_P^{ppc}
	z[170] = -320.361	4519	z[168] = -320.284	5115	z[59] = -320.283	1520	z[47] = -320.283	5032
DC-CP	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}	$z_{DCCP}^{ppc}[ite]$	T_D^{ppc}
	z[42] = -320.313	773	z[58] = -320.301	1783	z[27] = -320.283	752	z[8] = -320.283	1343
					z[81] = -320.283	2806	-	—

6 Conclusions

In this paper we have presented four scenario Cluster based Lagrangian Decomposition (CLD) procedures for obtaining strong lower bounds to the solution value of two-stage stochastic mixed 0-1 problems, where the uncertainty appears anywhere in the coefficients of the 0-1 and continuous variables in the objective function and constraints in both stages. For obtaining the CLD bounds we have used three popular subgradient based procedures, namely, the traditional Subgradient Method (SM), the Volume Algorithm (VA) and the Progressive Hedging Algorithm (PHA). Additionally, we have also used the procedure Dynamic Constrained Cutting Plane (DCCP). We have used the same scheme in all of them. Two new main ideas have been incorporated in the implementation of the procedures. The first consists of the scenario cluster partitioning that allows us to compute at iteration zero of each Lagrange multiplier updating procedure, a strong lower bound for tightening the interval of the solution value of the original problem. The second idea consists of obtaining a good upper bound of this interval that is efficiently computed by the MIP solver of choice as a quasi-optimal solution for a given tolerance in relation to the best LP relaxation value in its branch-and-cut phase.

Moreover, we have given computational evidence of the model tightening effect that sophisticated preprocessing, cut generating and appending and parallel computation tools have in stochastic integer programming, by using, in this case, the MIP solver CPLEX versus the tools implemented in the COIN-OR LP/MIP functions.

The extensive computational experience reported in the paper has used small, medium, large and very large sized instances in the testbed we have experimented with (in total, 11 instances), by considering four sizes of cluster partitions. The instances are so difficult that the plain use of CPLEX cannot guarantee the optimality of the incumbent solution within the three-hour time limit, but for two toy instances. We can draw the following conclusions: (1) Very frequently the four procedures for obtaining the CLD bound give the solution value of the original stochastic mixed 0-1 problem and, in the other situations they provide a narrow interval of its solution value; (2) The performance of the CLD procedures outperforms the traditional LD scheme based on single scenarios in both the quality of the bounds and computational effort; (3) The CLD bounds obtained by both solvers (being used as auxiliary tools for solving LP/MIP submodels) are very similar for small problems, but with a higher computational effort in case of using a more sophisticated preprocessing, cut generation and appending tools, i.e., using CPLEX (where parallel computing tools are also used); (4) CPLEX outperforms COIN-OR for medium, large and very large instances, both by plain use for problem solving and as auxiliary solvers of submodels, mainly for partitions in a small number of clusters (and, then, larger MIP submodels); and (5) The efficiency of the four procedures, as contrasted in the testbed we have experimented with, is very similar in quality (i.e., tightness) to the CLD bound, but the elapsed time for obtaining it is smaller for the procedures SM and DCCP followed by VA and PHA.

As a future work, we are studying how to extend these CLD procedures to the multistage case for tightening the lower bound of the solution value of the submodels attached to a subset of the set of active Twin Node Families (TNFs) in the Branch-and-Fix phase of our Branch-and-Fix Coordination algorithm, see [9], for solving large-scale multi-stage stochastic mixed 0-1 problems. So, the LP relaxation bound (usually, a non very strong one) is to be replaced

by the CLD bound in the subset of active TNFs so-called super candidate TNFs (á là super node concept in Branch-and-Bound terminology for solving deterministic MIP problems).

Acknowledgments

This research has been partially supported by the projects PLANIN MTM2009-14087-C04-01 from Ministry of Science and Innovation, Grupo de Investigación IT-347-10 from the Basque Government, RIESGOS CM from Comunidad de Madrid and grant FPU ECO-2006 from the Ministry of Education, Spain.

We would like to express our gratitude to Prof. Dr. Fernando Tusell for making it easier to access the Laboratory of Quantitative Economics from the University of the Basque Country (UPV/EHU, Bilbao, Spain) to perform and check the computational experience reported in the paper.

References

- A. Alonso-Ayuso, L.F.Escudero and M.T.Ortuño. BFC, a Branch-and-Fix Coordination algorithmic framework for solving some types of stochastic pure and mixed 0-1 programs. *European Journal of Operational Research*, 151:503-519, 2003.
- [2] A. Alonso-Ayuso, L.F. Escudero, A.Garín, M.T. Ortuño and G. Pérez. An approach for strategic supply chain planning based on stochastic 0–1 programming. *Journal of Global Optimization*, 26:97-124, 2003.
- [3] L. Aranburu, L.F. Escudero, A. Garín and G. Pérez. Risk management for mathematical optimization under uncertainty. Part I: Multistage mixed 0-1 modeling schemes. In preparation.
- [4] F. Barahona and R. Anbil. The volume algorithm: Producing primal solutions with a subgradient methhod. *Mathematical Programming*, 87:385–399, 2000.
- [5] J.R. Birge and F.V. Louveaux. Introduction to Stochastic Programming. Springer, 1997.
- [6] C.C. Carøe and R. Schultz. Dual decomposition in stochastic integer programming. Operations Research Letters, 24:37-45, 1999.
- [7] L.F. Escudero, A. Garín, M. Merino and G. Pérez. A general algorithm for solving twostage stochastic mixed 0-1 first stage problems. *Computers and Operations Research*, 36:2590-2600, 2009.
- [8] L.F. Escudero, A. Garín, M. Merino and G. Pérez. An exact algorithm for solving largescale two-stage stochastic mixed integer problems: some theoretical and experimental aspects *European Journal of Operational Research*, 204:105-116, 2010.
- [9] L.F. Escudero, A. Garín, M. Merino and G. Pérez. An algorithmic framework for solving large scale stochastic mixed 0-1 problems with nonsymmetric scenario trees. *Computers* and Operations Research, 39:1133-1144, 2012.

- [10] L.F. Escudero, A. Garín, G. Pérez and A. Unzueta. Lagrangian decomposition for largescale two-stage stochastic mixed 0-1 problems *TOP*, doi: 10.1007/s11750-011.0237-1, 2012.
- [11] L.F. Escudero, M. Landete and A. Rodriguez-Chia. Stochastic Set Packing Problem. European Journal of Operational Research, 211:232-240, 2011.
- [12] A.M. Geoffrion. Lagrangean relaxation for integer programming. Mathematical Programming Studies, 2:82-114, 1974.
- [13] M. Guignard, Lagrangian relaxation. TOP, 11:151-228, 2003.
- [14] M. Guignard and S. Kim. Lagrangean decomposition. A model yielding stronger Lagrangean bounds. *Mathematical Programming*, 39:215-228, 1987.
- [15] M. Held and R.M. Karp. The traveling salesman problem and minimum spanning trees: part II. *Mathematical Programming*, 1:6-25, 1971.
- [16] IBM ILOG. CPLEX v12.2. http://www.ilog.com/products/cplex; 2009.
- [17] INFORMS. COIN-OR. www.coin-or.org, 2010.
- [18] N. Jimenez Redondo and A.J. Conejo. Short-term hydro-thermal coordination by Lagrangean relaxation: solution of the dual problem. *IEEE Transactions on Power* Systems, 14:89–95, 1997.
- [19] M. Jünger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi and L. Wolsey (eds.). 50 years of Integer Programming 1958-2008. Springer, 2010.
- [20] R.T. Rockafellar and R.J-B Wets. Scenario and policy aggregation in optimisation under uncertainty. *Mathematics of Operations Research*, 16:119-147, 1991.
- [21] R. Schultz. Stochastic programming with integer variables. Mathematical Programming S. B, 97:285-309, 2003.
- [22] H.D. Sherali and J.C. Smith. Two-stage hierarchical multiple risk problems: Models and algorithms. *Mathematical Programming S. A*, 120:403-427, 2009.
- [23] H.D. Sherali and X. Zhu. On solving discrete two stage stochastic programs having mixed-integer first and second stage variables. *Mathematical Programming*, Series A 108:597-611, 2006.
- [24] J.P. Watson and D. Woodruff. Progressive hedging innovations for a class os stochastic mixed-integer resource allocation problems. *Computational Management Science*, doi:10.1007/s10287-010-0125-4, 2012.
- [25] R. Wets. Programming under uncertainty: the equivalent convex program. SIAM Journal on Applied Mathematics, 14:89-105, 1966.