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ABSTRACT 
 

Obesity is the most common metabolic disease in developed nations and has become a 

global epidemic in recent years. Therefore, understanding the molecular mechanisms 

that regulate obesity-associated processes, such as cell migration, adipogenesis and 

inflammation, can be a crucial step for developing novel therapeutic strategies to control 

obesity and obesity-related pathologies. It is well known that sphingolipid content in 

tissue undergoes dramatic alterations in metabolic diseases suggesting that these lipids 

might mediate the pathology associated with metabolic disease. In this thesis, we 

demonstrate that ceramide 1-phosphate (C1P) enhances macrophage migration, an 

action that requires the activation of matrix metalloproteinase-2 and -9. We also provide 

evidence suggesting that adipogenesis of cultured mouse 3T3-L1 preadipocytes is 

associated with an increase in ceramide kinase (CERK) protein expression and activity. 

In addition, we demonstrate that exogenous C1P inhibits adipocyte differentiation of 

3T3-L1 cells, as confirmed by a reduction in triglyceride accumulation and a reduction 

in the expression of adipocyte specific genes. This action of C1P implicates the 

activation of extracellular signal-regulated kinases (ERK1/2). We have also found that 

the lack of phosphatidylethanolamine methyl transferase (PEMT), the enzyme 

responsible for phosphatidylcholine biosynthesis in liver and whose expression is 

blocked by C1P, attenuates obesity-associated inflammation. This occurs by decreasing 

both, the number of classically activated M1 “pro-inflammatory” macrophages and pro-

inflammatory cytokine levels in adipose tissue. Moreover, we also demonstrate that 

PEMT overexpression induces macrophage migration, an action that requires the 

activation of PI3K/Akt/mTOR pathway. These findings may help to develop new 

therapeutic strategies for the treatment of obesity and obesity-related diseases. 
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1. INTRODUCTION 

 
Homeostasis is the ability of a system or living organism to adjust its internal 

environment to maintain a stable equilibrium. Many diseases are a result of homeostatic 

imbalance or an inability of the body to restore a functional and stable internal 

environment. In particular, when energy homeostasis is disrupted due to an imbalance 

between food intake and food expenditure, adipose tissue suffers morphological 

changes and consequently, it exerts inflammatory effects that are linked to the most 

important health problems associated with obesity, including cardiovascular disease and 

type 2 diabetes mellitus. The endocrine impact of adipose tissue on energy homeostasis 

and inflammation highlights the critical health implications of obesity and the 

importance of effective prevention and management strategies in clinical practice. 

 
1. OBESITY 

 
1.1. Obesity and the metabolic syndrome – an epidemic 

on the rise 
In western societies, chronic diseases such as diabetes, obesity, atherosclerosis and 

cancer are responsible for most deaths. In particular, over the past twenty years there 

has been a rapid increase in the prevalence of obesity due to consumption of a high-fat 

diet (HFD), sedentary lifestyle and genetic predisposition. Nowadays, obesity is 

considered the pandemic of the 21st

 

 century and its accelerated expansion, together with 

complications associated to the disease, comprise a major public health concern 

worldwide [1]. According to World Health Organization (WHO), 1.4 billion people are 

currently overweight and 312 million are classified as obese [2, 3] and these numbers 

are estimated to increase. 

Obesity is one of the most frequent physiological disorders and is associated with a 

wide variety of conditions [4] including hypertension [5], dyslipidemia [6], type II 

diabetes (T2D) [7-9], non-alcoholic fatty liver disease [10, 11], cardiovascular diseases, 

including atherosclerosis [12-15], insulin resistance (IR) [7], and certain forms of 
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cancers [16, 17], giving rise to substantially increased cardiovascular and 

cerebrovascular morbidity and mortality. Thus, due to the immense array of health 

complications related to obesity (Figure 1.1.2), it is critical to understand the underlying 

mechanisms associated with the obese state. 

 
Figure 1.1.2. Obesity related health complications. Adipose-immune interactions during 
obesity. Obesity-related inflammation is responsible for secondary disease states of obesity, 
leading to premature death. Figure taken from [18]. 

From a biomedical perspective, obesity is the result of an energy imbalance wherein 

energy intake exceeds energy expenditure over time. This energy excess leads to fat 

accumulation, which is associated with local and systemic chronic state of low-grade 

adipose tissue inflammation. This inflammation is characterized by an increase of 

immune cell infiltration into obese adipose tissue [19, 20] and increased production and 

subsequent secretion of pro-inflammatory factors into the circulatory system. Obesity-

induced inflammation exerts profound effects on metabolic pathways, leading to the 

development of certain diseases [21-24].  

 

1.2. Adipose tissue, a major player in metabolism 

There are two different adipose tissue depots within the body: the brown adipose tissue 

(BAT) and the white adipose tissue (WAT), both of which differ in a few significant 

properties. White adipocytes contain single, large lipid droplets that appear to comprise 

the majority of cell volume while the cytoplasm and nucleus are found at the cell 
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periphery.  In contrast, brown adipocytes are characterized by multilocular lipid droplets 

and high mitochondrial content.  

In humans, WAT is the most common adipose tissue in adults, whereas BAT is mainly 

an infancy-associated fat that is specialized in thermoregulation. Although WAT is the 

main source of energy and its main function is to control energy balance by 

triacylglycerol storage and mobilization, it also plays a pivotal role as endocrine and 

paracrine organ. WAT mediates numerous physiological and pathological processes by 

secreting factors that control glucose and lipid metabolism, appetite, immunological 

responses, inflammatory responses, angiogenesis, blood pressure regulation and 

reproductive function [25, 26].  

Based on the location, the adipose tissue can be classified as subcutaneous adipose 

tissue, underneath the dermis, or visceral adipose tissue, which resides in the cavities of 

the body. It has been shown that visceral and subcutaneous adipose tissue show distinct 

gene expression patterns. Furthermore, visceral adipose tissue displays a greater risk for 

triggering metabolic complications than subcutaneous adipose tissue [27]. 

 

1.2.1. Adipose tissue function  

In the past, the role of adipose tissue (AT) in the development of obesity and its 

consequences was considered to be a passive one. Nowadays, AT is considered an 

active endocrine organ involved in numerous metabolic, hormonal, and immune 

processes, which products and reactions are able to act not only locally but also 

influence other organs and thus, it plays a crucial role in the whole body homeostasis.  

 

1.2.2. Adipose tissue composition 

From the histological point of view, AT is characterized by a marked cellular 

heterogeneity. Among its cellular components, we can find adipocytes, preadipocytes, 

fibroblasts, endothelial cells and multipotent stem cells, which are able to differentiate 

into several cell types. Overall, fat tissue is composed of approximately one-third of 

mature adipocytes, a main cellular component, surrounded by supporting connective 

tissue that is highly vascularized and innervated. The remaining two-thirds are a 

combination of small mesenchymal stem cells (MSCs), T regulatory cells, endothelial 
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precursor cells, macrophages and preadipocytes in various stages of development 

(figure 1.2.2.1) [28].  

 
Figure 1.2.2.1. Adipose tissue composition. Adipose tissue is composed of mature adipocytes, 
preadipocytes, macrophages, adipose tissue matrix and a stroma-vascular cell fraction. Picture 
taken from [29]. 

1.2.2.1. Immune cells in obesity 

The maintenance of the metabolic homeostasis requires balanced immune response and 

an integrated network of multiple cell types. AT-resident immune cells include almost 

the full spectrum of immune cell types, which play important roles in the tissue 

housekeeping, removal of detritus and apoptotic cells, and the tissue homeostasis 

maintenance under non-obese conditions [30]. However, fat accumulation leads to 

substantial changes in the amount and function of immune cells causing an increment in 

the number and activity of some of them, most notably macrophages, mast cells, 

neutrophils, and T- and B lymphocytes, while simultaneously reducing others including 

eosinophils and several subsets of T lymphocytes (T helper 2 (Th2), Treg, and NKT 

cells) [31]. This imbalance lies at the very core of the development of obesity-related 

local and systemic inflammation (Figure 1.2.2.1.1).  
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Figure 1.2.2.1.1. Immune cell types in obese adipose tissue. Figure taken from [32]. 

 

• Role of adaptative immune cells in obesity: 

Adaptative immune system is composed of various specialized cells that are able to 

recognize and eliminate pathogens efficiently. In addition, adaptative immunity 

develops memory cells for each pathogen in order to respond in a faster and stronger 

manner if the pathogen which has been erased, enters the organism again. 

Lymphocytes are central to all adaptive immune response. They originate from stem 

cells in the bone marrow and mature either in the bone marrow (B lymphocytes) or in 

the thymus (T lymphocytes), after exiting the bone marrow [33]. B lymphocytes are 

responsible for the promotion of humoral immunity by producing specific antibodies for 

malignant antigens, but they can also act as antigen-presenting cells (APCs) via major 

histocompatibility complex I (MHCI) and major histocompatibility complex II (MHCII) 

molecules. T lymphocytes are further divided into functional subsets: cytotoxic T cells, 

which generate cell-mediated immune responses, and helper T lymphocytes (Th cells), 

which regulate immune system, controlling the quality and strength of all immune 

responses.  

Recent studies have shown that T cells in adipose tissue play a role in the regulation of 

adipose tissue macrophage (ATM) numbers and activation state. In general, among T 

lymphocytes, it appears that CD8+ T cells are involved in the recruitment and activation 

of ATMs and promote a pro-inflammatory cascade associated with insulin resistance 
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[34, 35]. CD4+ T helper 1 (TH1) cells as well, produce pro-inflammatory cytokines 

associated with insulin resistance [36]. On the contrary, TH2 cells and CD4+

Also, it has been described that in obesity, B cells accumulate in the visceral fat of 

obese mice after 3 weeks of feeding on high fat diet (HFD) [37]. Feeding B-cell-

deficient mice on HFD or treating wild-type HFD-fed mice with B-cell-depleting anti-

CD20 antibody protected them from insulin resistance and glucose intolerance. This 

data suggest an important role of B cells in the maintenance of the obese phenotype.  

 regulatory 

T (Treg) cells produce anti-inflammatory cytokines.  

 

• Role of innate immune cells in obesity: 

The innate immune system responds to pathogens or damage-derived stimuli in a non-

specific manner. The innate immune cells include Natural Killer cells, mast cells, 

eosinophils, basophils, macrophages, neutrophils and dendritic cells. These phagocytic 

cells (macrophages, neutrophils and dendritic cells) are responsible of the most 

important responses of the innate immune system, which are the production of 

chemokines, activation of the complement cascade and activation of adaptative immune 

cells by antigen presentation. 

Nevertheless, concerning tissue homeostasis, the most important ones are macrophages 

due to their multiple functions in innate immunity and their capacity to activate the 

adaptive immune system. The surface of the macrophages is equipped with many 

receptors, which interact with stimuli leading to activation of macrophage functions, 

such as phagocytosis, adhesion, chemotaxis, secretion of different molecules and 

antigen processing and presentation. All these macrophage functions must be tightly 

regulated since they can be harmful for the organism. Furthermore, there are many 

illnesses related to macrophage dysregulation, most of them due to the chronic 

inflammation produced by macrophages.  

It has been shown that adipose tissue functions are regulated by these phagocytic cells 

[22, 38, 39] and the progressive infiltration of macrophages into adipose tissue leads to 

a pro-inflammatory response [19, 20]. In fact, metabolic dysfunction in obese 

individuals has been correlated with the presence of histological features in inflamed 

adipose tissue called crown-like structures (CLS), which represent an accumulation of 

macrophages around dead adipocytes [40, 41].  
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Most of the ATMs come from sources outside of the body fat, mainly from 

systemic circulation. However, it seems that a small fraction of ATMs can originate 

from local preadipocytes, since activated preadipocytes exert several antigenic 

characteristics similar to macrophages, including the expression of macrophage antigens 

F4/80, Mac1, CD80, CD86 and CD45, and phagocytosis. 

Other innate immune cells have also been suggested to participate in obesity. 

Mast cells are present in a higher numbers in the adipose tissue of obese mice and 

humans compared with their counterparts. Moreover, mast cells have been suggested to 

contribute to glucose intolerance in adipose tissue and muscle [42]. On the other hand, 

eosinophils in visceral adipose tissue (VAT) produce IL-4 and IL-13, cytokines that 

promote differentiation of ATM into a class of macrophages with a marked 

inflammatory phenotype. It has been shown that mice genetically deficient for 

eosinophils display increased adiposity and insulin resistance when placed on a HFD 

[43]. 

1.2.2.2. Adipocytes in obesity 

Adipocytes, also known as fat cells or lipocytes, are the main constituent of white 

adipose tissue. They are characterized by a large internal fat droplet, which engrosses 

the cell so that the cytoplasm is condensed into a thin layer surrounding the lipid droplet 

while the nucleus is set aside in the outer edge of the cell. Although their primary 

function is to control energy balance by storing triacylglycerol at times of energy excess 

and mobilizing it during energy deprivation, they also mediate numerous physiological 

and pathological processes by releasing a variety of proteins termed adipokines, which 

exert numerous metabolic and vascular effects [44]. Notably, obesity alters the 

production of adipokines such as adiponectin and leptin.  

 

Adiponectin: Adiponectin, also known as adipoQ or adipocyte complement-

related protein, is a 30kDa polypeptide released exclusively from adipocytes of WAT. 

In contrast to leptin, adiponectin levels decrease with obesity and are elevated during 

starvation. This hormone modulates a number of metabolic processes, including glucose 

regulation and fatty acid oxidation [45]. In particular, this adipokine enhances insulin 

sensitivity in muscle, adipose tissue and liver. In muscles it binds to Adiponectin 

Receptor 1 (AdipoR1) and promotes glucose uptake and free fatty acids (FFA) 

http://en.wikipedia.org/wiki/Glucose�
http://en.wikipedia.org/wiki/Fatty_acid�
http://en.wikipedia.org/wiki/Oxidation�
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oxidation [46]. Apart from the metabolic effects, adiponectin attenuates the 

inflammation and insulin resistance [47]. It is believed that this inverse correlation 

between obesity, insulin resistance and adiponectin is crucial to trigger their related 

pathogenesis [47].  

Leptin: Leptin (from Greek λεπτός leptos, "thin"), is the first adipocytokine 

(Greek adipo-, fat; cytos-, cell; and -kinos, movement

Alongside its role in energy homeostasis, leptin is able to modulate the immune system 

due to its structural similarity to cytokines and also due to the fact that class I cytokine 

receptors are found on immune cells, such as monocytes, lymphocytes, and neutrophils 

[54]. Therefore, it is believed that the chronic inflammatory state observed in obesity is 

attributed to the elevated leptin levels through upregulation of phagocytosis by 

macrophages, promotion of T-helper 1 cell responses, and mediating the release of 

further pro-inflammatory cytokines such as TNF-α and IL-6 [54]. 

) identified. This 16kDa 

polypeptide, once secreted from adipocytes and released into the blood, acts on many 

tissues and induces effects on muscles, bones, pancreatic beta cells, immune cells and 

also several other tissues and organs. However, the most important effect is believed to 

be on the Central Nervous System (CNS) [48]. Leptin regulates energy homeostasis by 

controlling satiety and body weight. This action is primarily mediated by three leptin-

sensitive neurons (brain neurons that express Leptin receptor, LepR) found within the 

arcuate nucleus of the hypothalamus: neuropeptide Y (NPY), γ-aminobutyric acid 

(GABA), and proopiomelanocortin (POMC) neurons [49]. In obese individuals, leptin 

secretion is increased in order to reduce food intake. Once secreted, this adipokine 

comes across the blood-brain-barrier inhibiting NPY and GABA neurons [50, 51], 

whilst simultaneously stimulating POMC neurons in the hypothalamus [52, 53]. In this 

way, energy expenditure is increased not only by the signal to the brain, but also 

directly via leptin receptors on peripheral targets and influences food intake through a 

direct effect on the hypothalamus.  

 

1.3. Adipocyte differentiation process 

Cellular differentiation is a process in which cells derived mitotically from a common 

ancestor become different from one another, both in their function and in their 

morphology. In particular, adipocytes have a remarkable capacity to differentiate and 

http://en.wikipedia.org/wiki/Ancient_Greek�
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adapt to the nutritional status of the body. During the development of obesity, 

adipocytes continue storing lipids giving rise to an increase in both adipocyte cell 

number by proliferation and differentiation of preadipocytes (hyperplasia), and 

enlargement of adipocyte volume due to increased lipogenesis of fat cells (hypertrophy) 

[55, 56].  

In order to achieve a successful transformation into mature adipocytes, preadipocytes 

undergo important changes in morphology and gene expression during the 

differentiation process (also known as adipogenesis), which is commonly divided into 2 

stages: the first stage is named “determination phase”, while the second stage is referred 

to as “terminal differentiation”. The determination phase leads undifferentiated cells to 

enter the adipogenic differentiation program becoming pre-adipocytes. Subsequently, 

growth-arrested preadipocytes re-enter cell cycle and undergo several rounds of cell 

division, known as the mitotic clonal expansion (MCE), which contributes to the 

hyperplasia of adipocytes. Following the MCE, preadipocytes enter a unique growth 

arrested stage, GD

Another important step in adipogenesis is extracellular matrix (ECM) 

remodeling [59, 60]. ECM not only functions to provide mechanical support for a fat 

pad, but also regulates the physiological and pathological events of adipose tissue 

remodeling through a variety of signaling pathways [61]. In order to decrease the effect 

of mechanical stress and to function properly, adipocytes surround themselves with a 

dynamic ECM. During the process of adipogenesis, the ECM emerges from fibrillar to a 

laminar structure as cells transfer from determination stage to differentiation stage. 

During differentiation, the fibronectin-rich matrix of preadipocyte needs to be converted 

into the typical basement membrane of a mature adipocyte, which includes laminin, 

nidogen/entacin and type- IV and –VI collagens (figure 1.3.1.). Two main systems 

involved in ECM remodeling are the plasminogen/plasmin cascade as well as the matrix 

metalloproteinases and tissue inhibitor of matrix metalloproteinases (MMP/TIMP). 

During adipogenesis plasmin is activated and degrades the fibronectin-rich preadipocyte 

 (D for differentiation), considered to be a point of no return for 

commitment to terminal differentiation. During terminal differentiation 3T3-L1 cells 

transform from a fibroblastic morphology and become mature adipocytes, with round 

shape and lipid filled vacuoles, and with their biochemical characteristics [57]. They 

also acquire the machinery that is necessary for lipid transport and synthesis, insulin 

action and the secretion of adipocyte-specific proteins [58].  
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stromal matrix [62]. The matrix metalloproteinases and their inhibitors have diverse 

effects on adipogenesis. Whereas several MMPs such as MMP2, MMP9 and MT1-

MMP promote adipogenesis, others like MMP3, MMP11and MMP19 have the inverse 

effect. 

 
Figure 1.3.1: Summary of adipocyte differentiation. a: Preadipocytes growth in stromal 
ECM rich in fibronectin and fibrillar collagens. b: Once confluent, the cells are committed to 
differentiate. c: Proteases then extensively remodel the ECM; notably fibronectin is degraded. 
d: The cytoskeleton is also remodeled and transcription factors initiate changes in gene 
expression e: The mature adipocytes produce lipogenic proteins and deposit basement 
membrane. f: At the end of differentiation, the adipocytes are round and filled with lipid. Figure 
taken from [59]. 
 

1.3.1.  Transcriptional regulation of adipocyte differentiation 

The differentiation of preadipocytes into adipocytes is a multi-step process which is 

tightly regulated by an elaborate network of adipogenic transcription factors that 

coordinate expression of hundreds of proteins responsible for establishing the mature 

fat-cell phenotype. The current model for adipocyte differentiation (figure 1.3.1.1) 

suggests that during the entire differentiation process there are several essential 

molecular interactions that occur among members of the CCAAT-enhancer-binding 

proteins (C/EBPs) and the peroxisome proliferator-activated receptor (PPAR) families.  

The adipogenic cascade can be divided into at least two waves of transcription factors 

that drive the adipogenic program. The first wave is initiated by adipogenic stimuli that 

activate several early adipogenic factors including C/EBPβ/δ, Kruppel-like factors 

(KLFs), cAMP response element binding protein (CREB), early growth response 2 
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(Krox20), and sterol regulatory element-binding protein 1c (SREBP-1c). These 

transcription factors in turn induce expression of the second wave of transcription 

factors, of which PPARγ and C/EBPα are the most important. These key adipogenic 

factors then induce expression of the gene program that leads to the mature adipocyte 

phenotype [26, 63, 64]. 

 

PPARγ

 

: The peroxisome proliferator-activated receptor (PPAR) belongs to a family 

with three members, α, δ and γ forms, and is a member of the nuclear hormone receptor 

(NHR) superfamily. PPARs must heterodimerize with another nuclear hormone 

receptor (the retinoid X receptor, or RXR) prior to bind DNA and be transcriptionally 

active. From the PPAR family, it is PPARγ which is relevant for adipogenesis since no 

factor has been discovered that promotes adipogenesis in the absence of PPARγ. 

Multiple FFA and their derivates, as well as certain eicosanoids, act as low affinity 

ligands for PPARγ, but an endogenous PPARγ ligand has not been identified. 

Nevertheless, PPARγ can be activated by synthetic compounds called 

thiazolidinediones (TZDs) [65], which are used clinically as antidiabetic agents. PPARγ 

is the dominant isoform found in fat cells [66] and it is the responsible for activating 

most of the genes involved in fatty acid binding, storage and metabolism, and 

gluconeogenesis. The action of PPARγ is mediated through two protein isoforms:  

PPARγ-1 and PPARγ-2. PPARγ-1 is constitutively expressed whereas PPARγ-2 

expression is restricted to adipose tissue. Both isoforms are strongly induced during 

preadipocyte differentiation in vitro and both are highly expressed in adipose tissue in 

animals. PPARγ-1 is induced earlier than PPARγ-2 and is maintained at high levels 

during adipocyte differentiation. 

C/EBP: C/EBPs (CCAAT/Enhancer Binding Protein) family of transcription factors 

belongs to the basic-leucine zipper class of transcription factors. Six isoforms (α, β, γ, δ, 

ε and ζ) have been described. In adipocytes, three members of the family are implicated 

as positive regulators of adipogenesis; C/EBPα, C/EBPβ and C/EBPδ [67]. C/EBPα acts 

as a promoter for many adipocyte genes such as GLUT4, Leptin and aP2 and it has been 

linked to different features of adipogenesis such as growth arrest, insulin sensitivity and 

promoting the expression of PPARγ. C/EBPβ and C/EBPδ are expressed early after 

induction of adipogenesis. Ectopic expression of C/EBPβ, but not C/EBPδ alone, has 
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proven to be sufficient to induce differentiation in vitro [68]. C/EBPs can be regulated 

at many levels, including transcription, as measured by mRNA levels in cells. Indeed, 

cAMP, a well-known inducer of adipogenesis in vitro, can enhances the expression of 

both C/EBPα and C/EBPβ. Post-translational regulation of C/EBPs, particularly 

changes in phosphorylation, can modify the activity of C/EBP proteins as well. Finally, 

the activity of C/EBPs can be modulated by the presence of other family members; 

C/EBPζ, for example, cannot bind DNA itself but does dimerize with other C/EBPs, 

thus acting as a natural dominant-negative inhibitor of C/EBP activity. 

 

Figure 1.3.1.1 Adipogenic differentiation pathways. The lineage-specific differentiation is a 
multiple-stage and well-coordinated process regulated by master regulators, such as PPARγ and 
C/EBPβ. Taken from [69]. 

 

1.3.2.  Role of phosphatidylethanolamine methyltransferase 

(PEMT) in adipogenesis 

Phosphatidylcholine (PC), which is required to maintain membrane integrity and normal 

very low density lipoprotein secretion, is the major membrane phospholipid in 

mammalian cells. The main pathway for biosynthesis of PC in all eukaryotic cells is the 

CDP-choline pathway (also known as Kennedy pathway), catalyzed by 

CTP:phosphocholine cytidylyltransferase (CT). There is an alternative pathway for PC 

biosynthesis where phosphatidylethanolamine methiltransferase (PEMT), a small 

integral membrane enzyme (~22 kDa), catalyzes the synthesis of PC by the sequential 

methylation of phosphatidylethanolamine (PE). PEMT is quantitatively important in 

liver and 30% of PC made in the liver is via PEMT reaction, whereas most of the 

remaining biosynthetic-derived PC in liver originates via CDP-choline pathway [70]. 
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Although PEMT is highly expressed in the liver, PEMT expression was also detected 

during the differentiation of 3T3-L1 cells into adipocytes and mouse white adipose 

tissue (WAT) [71]. Moreover, PEMT provides impressive protection against diet-

induced obesity and insulin resistance [72]. When Pemt−/−

1.4. Obesity-associated inflammation 

 mice were fed with a high fat 

diet, oxygen consumption was increased and weight gain was prevented. In these mice, 

triglyceride (TG) storage was shifted from adipose to liver (for storage) and muscle (for 

oxidation). The most likely explanation for these observations is that PEMT deficiency 

decreases the availability of choline. Therefore, PEMT is an important regulator of 

whole body energy metabolism.  

Inflammation is a coordinated response to any harmful stimuli, and its main goal is to 

bring the system back to a normal baseline. In response to injury, irritation, or infection, 

the body initiates a network of signals. The inflammatory response triggered by obesity 

involves many components of the classical inflammatory response to pathogens and 

includes systemic increase in circulating inflammatory cytokines and acute phase 

proteins (e.g., C-reactive protein), recruitment of immune cells to inflamed tissues and 

generation of reparative tissue response. However, the nature of obesity-induced 

inflammation is unique compared with other inflammatory paradigms in several key 

aspects.  

The chronic nature of obesity produces a low-grade activation of the innate immune 

system that affects steady-state measures of metabolic homeostasis over time. 

Therefore, obesity was shown to be associated with a slightly different type of 

inflammation referred to as chronic low-grade sterile inflammation or 

metainflammation and characterized by only a modest increase in circulating pro-

inflammatory factors and the absence of clinical signs of inflammation [73].  

1.4.1. Initiation and development of adipose tissue inflammation 

During obesity, excessive body fat accumulation, mostly due to an imbalance 

between energy intake and expenditure, leads to a marked expansion of visceral adipose 

tissue with alterations on adipocytes themselves (hypertrophy and hyperplasia), their 

supporting matrix, and immune cell infiltrates. Together, these changes lead to a myriad 

of effects, including hypoxia, adipocyte cell death, enhanced chemokine secretion, and 
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dysregulation in fatty acid fluxes. Those mechanisms will induce obesity-associated 

inflammation, which plays a pivotal role in the development of obesity-related 

complications. 

Adipocyte death:  Macrophages, as “professional” phagocytes, are able to remove 

numerous molecules, ranging from small lipids, to colonies of pathogens or to dead 

cells [74]. The necrosis of adipocytes, driven by hypertrophy and accelerated by 

obesity, is one of the phagocytic stimulus that regulates the infiltration of adipose tissue 

macrophages (ATMs) [40]. Indeed, macrophages have been shown to aggregate, 

forming crown-like structures (CLSs) surrounding necrotic adipocytes in advanced 

obesity [40, 75-77]. 

Chemotactic regulation: Chemokines are small pro-inflammatory molecules that 

promote macrophage mobilization from bone marrow into tissues. There is a 

considerable evidence for the pathophysiological role of macrophage- and/or 

hypertrophic adipocyte-derived chemotactic MCP-1 /CCR2 pathways in the regulation 

of monocyte accumulation in obese AT [78]. In particular, increased expression levels 

of monocyte chemoattractant protein-1 (MCP-1), CXCL14 (chemokine C-X-C motif 

ligand 14), macrophage inflammatory protein -1α (MIP-1α), monocyte chemoattractant 

protein -2 (MCP-2), monocyte chemoattractant protein-3 (MCP-3) and regulated on 

activation normal T cell expressed and secreted (RANTES) can be observed in AT of 

mice with genetic or diet-induced obesity [20, 79]. 

Hypoxia: Adipocyte hypertrophy creates areas of local AT microhypoxia at the earliest 

stages of expansion, which suggest that AT is poorly oxygenated in obese state [80]. 

Because of this lack of oxygen, many adipokines that are related to inflammation, such 

as macrophage migration inhibitory factor (MIF), interleukin 6 (IL-6), vascular 

endothelial growth factor (VEGF), leptin and the matrix metalloproteinases MMP2 and 

MMP9, are increased. 

Fatty acid flux: FFAs, stored in the form of triglycerides in AT, are released from 

hypertrophic adipocytes through lipolysis during fasting. Some of these FFAs are 

shunted to the liver and stored in lipid droplets, while some of them are oxidized in 

other organs. However, FFAs can also serve as ligands for TLR4 complex [81], thereby 

activating the classical inflammatory response in the context of increased local 

extracellular lipid concentrations, which ultimately drives ATM accumulation [82, 83]. 
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While these four mechanisms of macrophage recruitment and infiltration into AT may 

act independently, the metabolic and inflammatory pathways are tightly interconnected. 

In this way, unlike adipocytes, which uniquely secrete adipokines such as leptin and 

adiponectin [84-86], macrophages are a major source of pro-inflammatory cytokines 

which can function in a paracrine and endocrine fashion to cause decreased insulin 

sensitivity. Activation of these tissue macrophages leads to the release of a variety of 

chemokines, which in turn recruit additional macrophages, setting up a feed-forward 

process that further increases ATM content and propagates the chronic inflammatory 

state. 

1.4.2. Macrophage polarization in obesity 

Although the adipocyte is the key player orchestrating local changes in the 

microenvironment, much evidence also points toward a pivotal role for macrophages in 

such remodeling events. Two main sub-populations of macrophages have been 

described: the first are referred to as “classically activated” or M1 macrophages. These 

are induced by the type II class interferon, also known as interferon γ (INFγ), and 

secrete pro-inflammatory cytokines such as IL-1β, MCP-1, IL-6, TNFα and leptin. M1 

macrophages also produce high quantities of reactive oxygen species (ROS) such as 

nitric oxide (NO) through inducible nitric oxide synthase (iNOS) activity in response to 

invading pathogens which in turn induces oxidative stress. The second group of 

macrophages was first described as “alternatively activated” or M2 macrophages. 

Alternatively activated macrophages have been divided into three groups due to 

differences in the method of activation: M2a, M2b and M2c macrophages. These 

different sub-groups are involved in wound healing and immunoregulation. Wound 

healing M2a macrophages are primarily induced by IL-4 and/or IL-13. These types of 

macrophages produce anti-inflammatory cytokines such as IL-10, arginase and IL-1 

receptor antagonist [87]. M2b macrophages are regulatory macrophages that produce 

high yields of IL-10 to block the pro-inflammatory action of IL-12, thus dampening 

inflammation. M2b are induced through the combined action of TLR and another 

immune complex or stimuli. The third group of M2 macrophages are M2c 

macrophages, which are induced by IL-10 and express high levels of the cell surface 

marker mannose receptor (CD206) that has been implicated in tissue remodeling [88]. 

Both, M1 and M2 macrophages express different cell surface markers. Triple-positive 
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cells (F4/80+CD11b+CD11c+) are associated with M1-polarization state, while double-

positive cells (F4/80+CD11b+CD11c-) indicate M2 macrophages.  

In obesity, ATMs undergo a phenotypic switch from anti-inflammatory status 

(M2) in the adipose tissue of lean individuals to a pro-inflammatory (M1) status in 

adipose tissues of obese subjects [89, 90], which results in the development of tissue 

inflammation and systemic insulin resistance (figure 1.4.2.1). Therefore, in an obese 

state, where adiposity is increased, adipocytes increase in size and suffer hypertrophy 

and hypoxia, which leads to a release of some pro-inflammatory cytokines such as 

MCP-1. This cytokine makes M1 macrophages to migrate into the adipose tissue [91]. 

Once macrophages are recruited in the adipose tissue, they release pro-inflammatory 

cytokines and surround the necrotic or dead adipocytes in order to remove them and, 

thus, reshaping the adipose tissue.    

 

Figure 1.4.2.1: Macrophage polarization state in obesity. Figure taken from [92]. 

 

1.5. Molecular biology in obesity 

During the process of going from lean to obese, adipose tissue undergoes important 

changes, giving rise to chronic inflammation. This obesity-associated inflammation 

might be important from the obesity-cancer link [93]. Furthermore, the increased risk of 

obesity-related cancers could be mediated in part by different obesity-related cancer risk 

factors such as increased blood levels of insulin, IGF-1, cytokines IL-1, IL-6, TNF-α 

and leptin, and downregulation of the expression of anti-inflammatory factors like 

adiponectin, among others.  
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A unifying characteristic of all these inflammatory factors is that they could initially 

activate phosphoinositide 3-kinase (PI3K/Akt), mitogen-activated protein kinase 

(MAPK) and signal transducer and activator of transcription 3 (STAT3) pathways 

(Figure 1.5.1), which are important signaling pathways in obesity and obesity-

associated disorders [94-98]. 

 

Figure 1.5.1. Multiple signal pathways in obesity-associated cancer. Multiple cancer risk 
factors in obesity are increased including insulin/IGF-1, cytokines and leptin. These factors 
activate PI3K/Akt, MAPK and STAT3 pathways via their receptors. Both PI3K/Akt and MAPK 
activate mTOR. Activated mTOR can activate STAT3. Taken from [98]. 

 

1.5.1. Mitogen-activated protein kinase (MAPK) pathway 

Mitogen-activated protein (MAP) kinases are serine/threonine-specific protein kinases 

that respond to extracellular stimuli (mitogens, osmotic stress, head shock and pro-

inflammatory cytokines) and can regulate many cellular activities. These include gene 

expression, cell differentiation and migration, mitosis, proliferation, cell survival and, 

the wound healing process in tissues.  

MAP kinase cascades are activated by several growth factors but also by inflammatory 

cytokines. The signal is propagated by sequential phosphorylation and activation of the 

sequential kinases, eventually leading to the phosphorylation of target regulatory 

proteins. At present, four different mammalian MAPK cascades have been identified 

and named according to their MAPK components: extracellular signal-regulated kinase 

1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38, and ERK5. 
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The ERK1/2 cascade was the first MAPK pathway elucidated and is considered a 

prototype of these kinase cascades [99]. In most cases, the activation of the membrane 

receptors is transmitted by several mechanisms to the small GTPase Ras, which is 

activated mainly at the plasma membrane. The extracellular signal-Regulated Kinases 

(ERK) 1/2 (also known as p44 and p42 MAP kinase, respectively) recruit the MAP3K, 

also known as Raf. Thereafter, the signal is transmitted to the MAPKKs, called MEK1 

and MEK2 (MEK1/2) and finally these two transmit their signal to ERK1 and ERK2 

(ERK1/2) (Figure 1.5.1). When ERK1/2 is activated it can phosphorylate hundreds of 

substrates in many cellular locations, and these are responsible for the induction of 

ERK1/2-dependent cellular processes. 

 

Figure 1.5.1.1. MAPK signal transduction pathway. The major classic MAPK pathway is the 
Ras-Raf-Mek-ERK1/2 pathway, in which Ras phosphorylates Raf, Raf phosphorylates MEK 
and MEK phosphorylates ERK1/2. Other pathways include p38 MAPK pathway and the JNK 
pathway in which MKK-4 or 7 phosphorylates JNK and MKK-3or 6 phosphorylates the p38 
MAPK. Figure taken from [95]. 

It is known that the ERK pathway is involved in adipocyte differentiation and obesity 

displaying both positive and negative effects [95, 100, 101]. Besides, activated ERK1/2 

can activate STAT3, mTOR and other kinases and transcriptional factors, resulting in 

carcinogenesis and metastasis [102, 103].  
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1.5.2. Phosphatidylinositol 3-kinase (PI3K)/protein kinase B 

(PKB, also known as Akt) pathway 

Phosphatidylinositol 3-kinases (PI3Ks) are a family of enzymes involved in cellular 

functions such as cell growth, proliferation, differentiation, motility, survival and 

intracellular trafficking.  

PI3K is able to phosphorylate certain membrane-bound lipids known as 

phosphoinositides. The three steps that grant Akt recruitment into the cell membrane 

are: Phosphatidylinositol 3-phosphate (PIP), Phosphatidylinositol (3,4)-biphosphate 

(PIP2), Phosphatidylinositol (3,4,5)-triphosphate (PIP3). Once Akt1 is attracted to the 

membrane through PIP3

 

, its kinase activity is promoted. This kinase can further activate 

other kinases such as Mammalian Target of Rapamycin (mTOR), which activates 

specific transcription factors (Figure 1.5.2.1). 

Figure 1.5.2.1. MAPK and PI3K/Akt signaling pathways 

In obesity, insulin, insulin-like growth factor, leptin, TNF-α and IL-6 levels are 

increased whereas adiponectin levels are reduced. These obesity-induced factors have 

been shown to increase the PI3K/Akt pathway activity, which, in turn, regulates 

downstream targets leading to increased cell survival. Inhibition of this pathway could 

be helpful in the prevention of obesity-associated colon cancer (Figure 1.5.2.2) [104]. 
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Figure 1.5.2.2 Links between obesity, PI3K/Akt and cancer. Several factors, altered in 
obesity, increase the activity of the PI3K/Akt signal pathway. The PI3K/Akt signal pathway in 
turn activates signals for cell survival, cell growth and cell cycle leading to carcinogenesis. 
Picture taken from [104]. 

 

1.5.3.  JAK/STAT/SOCS pathway 

The Janus Kinase (JAK)-signaling pathway can be activated by a variety of cytokines, 

hormones and growth factors to regulate numerous developmental and homeostatic 

processes, including hematopoiesis, immune cell development, stem cell maintenance 

and organism growth. However, chronic activation of JAK-STAT underlies various 

diseases such as cancer and obesity [105, 106].  

Four members of the JAK family have been identified to date, namely JAK 1, 2, 3 and 

TYK2. Upon binding of the ligand to its receptor, two or more receptor-associated 

JAKs are recruited close to the receptor and thereby cause its oligomerization, which 

leads to their autophosphorylation. Once phosphorylated, activated JAKs phosphorylate 

signature tyrosine residues in the cytoplasmic region of receptors to create docking sites 

for STATs.  

The suppressor of cytokine signaling (SOCS) molecules are induced by several 

inflammatory cytokines and act as a negative feedback signal by inhibiting JAK and 

STAT activation and phosphorylation. SOCS protein family includes eight members 

(SOCS1-7 and CIS), which possess a SH2 domain, and a SOCS-box domain controlling 
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the degradation of interacting proteins. At the molecular level, the SOCS proteins 

interact with the tyrosine kinases JAKs or directly with the receptor of some cytokines, 

thus blocking the tyrosine phosphorylation of the transcription factor STAT. Several 

cellular studies have demonstrated that SOCS negatively regulate signaling pathways of 

some hormones including leptin and insulin. In this regard, SOCS3 is induced by leptin 

and insulin and is involved in a negative feedback loop of the JAK/STAT signaling 

pathway. 

In obesity, circulating levels of leptin and IL-6 are increased. These molecules are able 

to activate the JAK-STAT3 signaling pathway (Figure 1.5.3.1). While Leptin (Lep) acts 

predominantly in the central nervous system, IL-6 has been reported to act in peripheral 

organs. Activation of the JAK-STAT3 signaling pathway induced by Leptin and IL-6 

leads to an increase in the expression of the negative regulator SOCS3. SOCS3 in turn 

not only blocks leptin and IL-6 signaling but also impairs insulin (INS) action leading to 

obesity and insulin resistance.  

Figure 1.5.3.1. Chronic JAK/STAT/SOCS3 signaling in obesity. Obesity increases 
circulating levels of leptin and IL-6 that in turn chronically activate intracellular JAK-STAT3 
signaling

 

 

. Picture taken from [97]. 

2. SPHINGOLIPIDS 

Sphingolipids have been considered for many years as simple structural components of 

cells. Nevertheless, in the past few decades they have emerged as potent bioactive lipids 
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able to regulate many essential cell functions. In particular, Ceramide (Cer), 

Sphingosine (Sph), Sphingosine 1-phosphate (S1P) and Ceramide 1-phosphate (C1P), 

were discovered to act as bioactive molecules, playing very divergent roles, from 

regulation of signal transduction pathways, through direction of protein sorting to the 

mediation of cell-to-cell interactions and recognition.  

Sphingolipids can be defined by the presence of a backbone called a sphingoid base 

(Figure 2.1.). Sphingoids, also known as Long Chain Bases (LCB), are long-chain 

aliphatic amines, containing two or three hydroxyl groups, and often a distinctive trans-

double bond in position 4. The most regular type of sphingoid bases in animal tissues 

and humans are Sphingosine (Sph) and its saturated analogue dihydrosphingosine or 

Sphinganine (Spa). There are some patterns which define the association between 

specific components of these sphingoid bases, but the potential number of combinations 

gives an idea of the complexity that these lipids can reach. 

 

Figure 2.1 Structure of four different s

 

phingoid bases. Taken from AOCS Lipid Library 

2.1. Metabolism of sphingolipids 

Ceramide (Cer) is the central core in sphingolipid metabolism. Apart from being 

essential part of the cell membrane structure it is also an important signaling molecule 

capable of regulating cell proliferation, differentiation, adhesion, migration and 

apoptosis. There is a great variety of ceramides with differences in the length of their 
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fatty acids and in the number of unsaturations. Furthermore, each organism or tissue can 

synthesize different ceramide species. 

Cer can be generated by at least three major mechanisms: the de novo pathway, through 

hydrolysis of complex lipids, especially sphingomyelin, and through the salvage 

pathway (Figure 2.1.1.).  

 

Figure 2.1.1. General metabolism of sphingolipids 

A. The de novo synthesis pathway: 

This anabolic pathway takes place in the endoplasmic reticulum and starts with the 

condensation of serine and palmitoyl-CoA catalayzed by Serine Palmitoyl Transferase 

(SPT) to generate the transient intermediate 3-ketodihydrosphingosine, which 

undergoes rapid reduction to dyhidrosphingosine, also known as Sphinganine, through 

the action of 3-keto-sphingosine reductase. Upon the N-acylation by ceramide synthase 

(CerS), sphinganine is then transformed into dihydroceramide (dhCer). The last step of 

this pathway is catalyzed by a desaturase (DES) through introduction of a trans-4,5 

double bond in the dihydroceramide molecule to generate ceramide (Figure 2.1.1.). 
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B. Sphingomyelin hydrolysis: 

The second major mechanism for Ceramide formation occurs through the hydrolysis of 

complex lipids, especially sphingomyelin (SM). In this hydrolytic pathway, which takes 

place in the plasma membrane, lysosomes or mitochondria SM is cleaved by one of 

several sphingomyelinases (SMases) releasing phosphocholine and Cer. The opposite 

reaction is catalyzed by SM synthase (SMS) which is an important enzyme due to its 

capacity of controlling ceramide and sphingomielin levels in cells. Specifically, SMS 

catalyzes the transfer of phosphocholine from Phosphatidylcholine (PC) to Cer, thereby 

releasing Diacylglycerol (DAG) and lowering the levels of ceramide to produce SM. 

C. The salvage pathway. 

The third most important mechanism for generating ceramide is the sphingosine salvage 

pathway, in which Sph produced from the metabolism of complex sphingolipids, is 

recycled to form Cer through the action of Ceramide Synthase (CerS). 

Once formed, ceramides can undergo further processing to generate more complex 

sphingolipids, such as glycosylceramides or complex glycosphingolipids, which in turn, 

upon their breakdown by specific glucosidases and galactosidases, can once again 

generate Cer. Ceramides can also be metabolized by Ceramidases (CDases), which 

remove the amide-linked fatty acid to give rise to Sph, and thus Sph can be available 

either for recycling into Cer or phosphorylation by one of the two Sph kinase enzymes 

(SphK). The product for this reaction, Sphingosine 1-phosphate (S1P), can lose the 

phosphate group through the action of Sphingosine Phosphatases (SPPases) or be 

metabolized by S1P lyase for further conversion into other lipids. Finally, Cer can 

undergo phosphorylation by the action of Ceramide Kinase (CERK) to generate 

Ceramide 1-phophate (C1P), and this last molecule can be transformed back into Cer by 

the action of Ceramide 1-phosphate Phosphatase (C1PP) (Figure 2.1.1.). 

 

2.2. Bioactive sphingolipids 

Bioactive sphingolipids can be activated by different types of agonists and once their 

production is increased, sphingolipid species can regulate several downstream targets 
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and thus, mediate their diverse effects on cells. It has been described that internal levels 

of various sphingolipids differ according to a common pattern. The concentration of Cer 

is one order of magnitude above Sph and S1P, but it is also known that a small change 

in Cer can drastically increase levels in Sph or S1P. This balance between Cer/S1P 

species is known as the “sphingolipid rheostat”  [107]. 

2.2.1. Ceramides 

Ceramides (Cer) consist of a sphingosine backbone covalently linked to a fatty acid via 

an amide bond (Figure 2.2.1.1.). Unlike the sphingoid precursors, ceramides are not 

soluble in water and are located in membrane compartments, including the plasma 

membrane, where they participate in raft formation. 

It has been reported that ceramides are able to induce cell cycle arrest and promote 

apoptosis [108, 109]. Besides, ceramides also play an important role in the regulation of 

autophagy, cell differentiation, survival, and inflammatory response [110-118]. Cer can 

function through direct activation of protein phosphatases PP1A and PP2A, which can 

perform critical responses, such as cell apoptosis through inactivation of the anti-

apoptotic targets Akt and Bcl2, and activating pro-apoptotic proteins Bad and Bax 

[119]. It has also been shown that Cer can regulate the activity of many members of the 

protein kinase C (PKC) family of proteins. For instance it activates PKCξ, which has 

been described as a regulator of gene expression through nuclear factor-κ B (NFκB). 

Another binding target for Cer is the cellular protease cathepsin D, which may regulate 

the actions of lysosomally generated ceramides [120].  

The process of ceramide production appears to be an important research area that could 

help to elucidate the subsequent bioactive sphingolipids derived from this molecule and 

their cellular functions. Cer and its downstream metabolites have been suggested to play 

a decisive role in a number of pathological states, including obesity, cancer, 

neurodegeneration, diabetes, microbial pathogenesis, and inflammation. 

 

Figure 2.2.1.1. C-16 Ceramide 
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2.2.2. Sphingosine 

Sphingosine (Sph) is an 18-carbon amino alcohol with an unsaturated hydrocarbon 

chain (Figure 2.2.2.1). Sph has been connected with cellular processes such as inducing 

cell cycle arrest and apoptosis by modulation of protein kinases and other signalling 

pathways. It has roles in regulating the actin cytoskeleton and endocytosis and has been 

shown to inhibit PKC [121]. Kinase targets for sphingoid bases have been found in 

yeast, indicating functions in regulating endocytosis, cell cycle arrest and protein 

synthesis [119]. 

 

Figure 2.2.2.1. Sphingosine 

 

2.2.3. Sphingosine 1-phosphate 

Phosphorylation of sphingosine by Sphingosine Kinases 1 and 2 (SphK1 and SphK2) 

produces sphingosine 1-phosphate (S1P) [120, 122] (Figure 2.2.3.1.), which can 

regulate a variety of cellular functions including cell growth and survival, 

differentiation, and angiogenesis [123-126]. S1P can be produced intracellularly, and it 

is also present in serum at relatively high concentrations where it can be found attached 

to lipoproteins or albumin [127]. S1P and Sph are readily inter-convertible by specific 

intracellular S1P phosphatases [128, 129]. Although many of S1P’s effects are exerted 

by intracellular action, a family of specific G-protein coupled receptors, S1P receptors 

(S1PR), have been described (Reviewed in [130]).  

 

Figure 2.2.3.1. Sphingosine 1-phosphate 
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2.2.4.  Ceramide 1-phosphate and Ceramide kinase (CERK) 

Ceramide -1-phosphate (C1P) is a major metabolite of ceramide. C1P was thought to be 

not biologically active until 1995, when it was first described as a stimulator of DNA 

synthesis in rat fibroblast [131, 132]. Later, C1P has been described as a pro-survival 

agent capable of stimulating proliferation in different cell types, including fibroblasts 

macrophages and myoblasts [131, 133-136], as well as inhibiting apoptosis [137-142]. 

Moreover, C1P has been shown to affect cell proliferation and inflammation through 

activation of PLA2 and increases in production of arachidonic acid [143, 144]. In fact 

C1P in concordance with S1P studies, is able to stimulate the formation of PGE2 and 

promote the inflammatory process [123]. Our group has recently established that C1P 

can induce cell migration in Raw 264.7 macrophages [145] and we have also described 

the association between cell migration and Monocyte Chemoattractant Protein 1 (MCP-

1) release in macrophages [146]. More recently, it has been demonstrated that C1P is a 

negative regulator of TNF-α production induced by Lipopolysaccharide (LPS) [147]. In 

this connection, C1P has also been described to have anti-inflammatory effects in HEK-

293 cells, as it can block LPS-induced cytokine expression [148].  

Ceramide-1-phosphate is synthesized in mammalian cells by the direct phosphorylation 

of ceramide by ceramide kinase (CERK). At present, CERK is the only enzyme known 

to produce C1P in mammalian cells [149]. This enzyme was first observed in brain 

synaptic vesicles [150] as a calcium stimulated lipid kinase. After this initial finding, 

CERK was later found in human leukemia HL-60 cells [151]. 

The CERK protein sequence has 537 amino acids with two protein sequence motifs: an 

N-terminus that encompasses a sequence motif known as a pleckstrin homology (PH) 

domain (amino acids 32–121); and a C-terminal region containing a Ca2+

It has been postulated that a transport protein (ceramide transport protein or CERT) is 

required for CERK to phosphorylate ceramide. This protein utilizes ceramide 

transported to the trans-Golgi apparatus. This fact was discovered by silencing of CERT 

/calmodulin 

binding domain (amino acids 124–433). Using site-directed mutagenesis, it was found 

that leucine 10 in the PH domain is essential for its catalytic activity [152], and it was 

also reported that the interaction between this PH domain of CERK and 4,5-

bisphosphate regulates plasma membrane targeting and C1P levels [153]. 
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with specific siRNA resulting in strong inhibition of newly synthesized C1P [144]. 

However, this hypothesis is controversial because it was also reported that transport of 

ceramides to the vicinity of CERK was not dependent on CERT [154]. Hence, there are 

still some questions concerning this concept that require further investigation. 

However, it has been reported that bone marrow-derived macrophages from CERK null 

mice (CERK-/- mice) still have significant levels of C1P, which suggests that there 

could be other metabolic pathways for generating C1P [154]. We have previously 

speculated that two alternative pathways for the generation of C1P in cells might be the 

transfer of a long acyl-CoA chain to S1P by a putative acyl transferase, or cleavage of 

SM by a PLD-like activity, similar to the existing arthropod or bacterial SMase D. 

However, at the present time, CERK is considered to be the only C1P source in 

mammalian cells. Concerning enzyme regulation it has been clearly established that 

CERK is absolutely dependent on Ca 2+

 

 ions for activity, and more recently it has been 

proposed to be regulated by phosphorylation/dephosphorylation processes [155]. 

Figure 2.2.4. Conversion of ceramide in C1P by Ceramide Kinase enzymatic action (taken 

from [156]). 
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2.2.5. Putative receptor of C1P 

It has recently been shown that not all of C1P’s effects can be reproduced by increasing 

intracellular C1P levels. For instance, C1P can induce cell migration in Raw 264.7 cells 

but it is not possible to stimulate chemotaxis by increasing intracellular C1P levels (i.e, 

with IL-1β or with the calcium ionophore A23187) [145]. This result suggests that there 

may be some kind of interaction between C1P and the plasma membrane that cannot be 

achieved intracellularly. In order to elucidate the existence of a possible C1P receptor 

binding experiments between C1P and cell membranes were performed. The receptor 

turned out to be a Gi protein-coupled receptor (GPCR) with low affinity for its substrate 

(Kd=7.8 µM) [145]. Activation of the this receptor may be physiologically possible 

since the concentration of C1P in serum is about 20 µM [157].  

 

3. SPHINGOLIPIDS AND OBESITY 

3.1. Bioactive sphingolipids in obesity 

The contribution of aberrant production of bioactive lipids to pathophysiological 

changes associated with obesity has risen to the forefront of lipid research. Increased 

diacylglycerol has been appreciated as a cause of insulin resistance, but emerging data 

support a role for sphingolipids, such as ceramides, sphingosine and ceramide 1-

phosphate  in other metabolic diseases. 

3.1.1. Ceramides in obesity 

Ceramide, a lipid signaling molecule, is not only involved in cellular processes such as 

differentiation, cell proliferation and cell death [158-160], but also in the pathogenesis 

of a variety of diseases including obesity, diabetes, atherosclerosis and cardiovascular 

disease [161-168]. It has been demonstrated that ceramide and sphingosine inhibit 

insulin action and signaling in cultured cells [167], and it is also shown that inhibition 

of ceramide synthesis by using the specific serine palmitoyltransferase (SPT) inhibitor 

myriocin ameliorated obesity-induced insulin resistance [168]. Furthermore, ceramide 

and sphingosine content in adipocytes during adipogenesis are decreased compared to 

those of preadipocytes, while the number of lipid droplets and the triglyceride content, 
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which are differentiation biomarkers, gradually increase [169]. These data are consistent 

with the observation of a significant decrease in both, the sphingomielyn and ceramide 

levels in adipose tissue of obese mice compared with a lean mice [170]. Given the 

diverse signaling properties of sphingolipids, it can be hypothesized that these lipids 

might mediate the pathology associated with metabolic disease.  

3.1.2.  Possible role of C1P in obesity 

It is known that C1P has emerged as a crucial bioactive sphingolipid. Specifically, C1P 

was shown to potently stimulate cell migration [145, 146], and promote inflammation 

[123, 156, 171, 172]. Since chronic inflammation and cell migration are key events in 

obesity, C1P may contribute to obesity development.  

3.1.2.1. C1P and the control of inflammation 

Inflammation is one of the major components of the pathogenesis of Type 2 diabetes 

mellitus (T2DM), which is closely related to obesity. Sphingolipids acts as a potential 

players in the process of inflammation and clinical data suggest a correlation between 

ceramide, inflammation, and insulin resistance [173, 174]. However, our group have 

demonstrated that many of the pro-inflammatory effects of ceramide can be attributed to 

its phosphorylated form ceramide 1-phosphate  [175]. C1P can bind directly to 

phospholipase A2 (PLA2) [176] and allosterically activate the enzyme leading to 

release of arachidonic acid (AA) and subsequent prostaglandin formation [177]. AA is a 

polyunsaturated fatty acid that is present in phospholipids and can act as a second 

messenger in inflammatory pathways. AA can be also secreted to the extracellular 

medium and activate other cells in paracrine manner. AA can be generated by the action 

of phospholipase A2 (PLA2) activity, which cleaves the fatty acid in the second 

position within the phospholipid molecule. AA can also be generated from 

diacylglycerol (DAG) through cleavage by diacylglycerol lipase. Besides, AA is a 

precursor of other pro-inflammatory molecules, such as, prostaglandins, leukotrienes or 

epoxyeicosatrienoic acid. It has been reported that C1P can activate group IV cPLA2 

[178] by increasing the enzyme affinity for its substrate, mainly phosphatidylcholine 

[179]. 
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In addition to that, Ceramide kinase (CERK), a key enzyme involved in the generation 

of C1P, is upregulated in type 2 diabetes mellitus (T2DM). Since obesity-associated 

T2DM is an inflammatory disease, increased CERK activity would serve to execute a 

pro-inflammatory scenario contributing towards pathology.  

3.1.2.2. C1P and cell migration. 

Macrophage populations in tissues are determined by the rates of recruitment of 

monocytes from the bloodstream into the tissue, the rates of macrophage proliferation 

and apoptosis, and the rate of macrophage migration or efflux. Recently, our group 

demonstrated that C1P potently stimulates macrophage migration, which has also been 

associated to inflammatory responses [145, 146]. In addition, our recent work indicates 

that phosphatidic acid (PA), which is a lipid precursor for phospholipid and 

triacylglycerol biosynthesis, and is also a signaling metabolite, can also bind to the C1P 

receptor to counteract C1P-stimulated cell migration [180]. This action could only be 

observed when C1P was added exogenously, which suggested that C1P could interact 

with a putative membrane receptor in order to induce macrophage chemotaxis [145]. 

This receptor, located in the plasma membrane, is specific for C1P and is coupled to Gi 

proteins. Ligation of this receptor with C1P causes phosphorylation of ERK1-2, and 

PKB, and inhibition of these pathways completely abolished C1P-stimulated 

macrophage migration. Moreover, blockade of the transcription factor NF-κB resulted 

in a full inhibition of macrophage migration. These observations suggest that 

MEK/ERK1-2, PI3-K/PKB (or Akt) and NF-κB are crucial signalling pathways for 

regulation of cell migration by C1P.  

An understanding of the molecular regulation of obesity-associated processes is of key 

interest for developing therapeutic strategies to control obesity and related pathologies, 

as well as cardiovascular diseases and cancer.This particular research area could help to 

clarify whether C1P or the activity of the enzymes that control their metabolism, could 

serve as targets for developing new pharmacological strategies for treatment of illnesses 

such as obesity, in which cell migration and chronic inflammation play a key role.  
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3. OBJECTIVES 
It is well established that ceramide 1-phosphate (C1P) regulates important biological 

functions, including cell growth, and survival, and it is also implicated in inflammatory 

responses. Since sphingolipid metabolism is altered in obesity, we hypothesized that 

C1P and CERK could be implicated in obesity-associated processes such as 

inflammation, macrophage migration and adipogenesis. In this connection, the activity 

of phosphatidylethanolamine methyl transferase (PEMT) has recently been implicated 

in adipogenesis and obesity. Therefore, the present thesis was undertaken to examine 

the possible participation of C1P and CERK in these processes. Accordingly, the 

objectives proposed in this thesis are as follows: 

1. To study the possible implication of MMPs and actin polymerization in C1P-

induced macrophage migration and to elucidate the pathways implicated in this 

process.  

 
2. To study the role of Cerk and C1P in adipocyte differentiation. 

 
3. To determine whether PEMT deficiency affects pro-inflammatory and/or anti-

inflammatory cytokine production in WAT from pemt -/- and pemt +/+ mice.  

 
4. To evaluate the possible implication of PEMT in macrophage polarization in WAT 

from pemt -/- and pemt+/+ mice. 

 
5. To determine whether PEMT could regulate macrophage migration and to elucidate 

the pathways implicated in this process. 

 

 

 

 

 



   Objectives 

68 
 

 

 

 



Materials and Methods 

69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Materials and 

Methods 



Materials and Methods 

70 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Materials and Methods 

71 

 

3. MATERIALS AND METHODS 

1. MATERIALS 

1.1.  Reagents  

Supplier Reactives 

Abnova Adipogenesis assay kit 

Applied Biosystems 

(Ambion) 

MAPK2 siRNA 

PI3K siRNA 

FRAP1 (mTOR) siRNA 

MMP-2 siRNA 

MMP-9 siRNA 

Paxillin siRNA 

Negative siRNA 

Avanti Polar Lipids C16 Ceramide 1-phosphate 

BIO RAD BCA protein assay kit 

Nitrocellulose membranes 

Protein markers 

BIO-SERV High fat diet (HFD) #F3282 

Calbiochem-

Novabiochem 

Corporation 

 (3-(4,5-dimethylthiazole-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium (MTS) 

Phenazine methosulfate (PMS) 

(2R)-2-[(4-Biphenylylsulfonyl)amino]-3-

phenylpropionic Acid (MMP-2/9 inhibitor I) 

Cayman Chemical NBD-C6 Ceramide 

Cell Signaling 

Technology 

Ab Akt1 

Ab p-Akt (Ser 473) 

Ab p42/p44 (ERK1/2) 

Ab p-p42/44 (Thr 202/Tyr 204) (p-ERK1/2) 

Ab p-C/EBPβ 

Ab mTOR1 
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Ab MMP-2  

Ab MMP-9 

Ab p-mTOR1 (Ser2448)  

Ab p-paxillin 

Ab paxillin 

Ab p85 subunit of PI3K 

Ab PPARγ 

Rabbit secondary Ab 

eBioscience Mouse CCL2 (MCP-1) ELISA Ready-SET-Go! 

Mouse TNFalpha ELISA Ready-SET-Go! 

Mouse IL-10 ELISA Ready-SET-Go! 

Mouse IL-6 Elisa Ready-SET-Go! 

Anti-mouse CD11c-A488 Ab 

Anti-mouse CD68-PE Ab 

Gibco (Invitrogen) Fetal Bovine Serum (FBS) 

Newborn calf serum (NCS) 

Opti-MEM 

Life Technologies  Phalloidin – Alexa Fluor 488 

SYBR Green RT-PCR Master Mix 

Lonza DMEM 

LSBio Ab PEMT 

Matreya, LLC N-Hexadecanoyl-D-erythro-sphingosine-1-

phosphate  

(N-Palmitoyl-Ceramide 1-phosphate) (C1P) 

Molecular Probes 

(Invitrogen) 

Oligofectamine™ 

Peprotech Mouse IL-4 ELISA Development Kit 

Mouse IL-1α ELISA Development Kit 

Mouse IL-1β ELISA Development Kit 

Mouse Leptin ELISA Development Kit 

Mouse VEGF ELISA Development Kit 

Mouse RANTES ELISA Development Kit 

Promega CellTiter96® AQueous One Solution (MTS) 



Materials and Methods 

73 

 

RaybioTech Mouse inflammation antibody array (AAM-INF-1) 

Santa Cruz 

Biotechnology, Inc. 

Ab CERK 

Ab GAPDH 

Ab IL-1β 

siRNA Akt1 

siRNA CERK 

siRNA IL-1β 

Sigma-Aldrich Acrylamide/bisacrylamide 

Ammonium persulfate 

Bovine Serum Albumin (BSA) 

Coomassie Blue 

Dexamethasone 

Eosin 

Fibronectin  

Gentamicin 

Hematoxylin 

Insulin 

3-Isobutyl-1-methylxanthine (IBMX) 

L-glutamine 

LY294002 

Oil Red O  

PD98059 

Pertussis toxin 

Protease Inhibitor Cocktail (PIC) 

Rosiglitazone 

SB239063 

Scott’s Tap Water substitute Concentrate (Blueing 

Agent) 

SP600126 

Tween-20 

TOCRIS 10-DEBC 

Cytochalasin D 

Rapamycin 
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Stattic 

Universal 

ProbeLibrary- Assay 

desing center - Roche 

qmht CD11c-F         qmht CD11c -R 

qmht CD64-F           qmht CD64-R 

qmht CD206-F         qmht-CD206-R 

qmht CD163-F         qmht CD163-R 

qmht MCP-1-F        qmht MCP-1-R 

qmht IL-10-F           qmht IL-10-R 

qmht CD68-F          qmht CD68-R 

qmht F4/80-F          qmht F4/80-R 

 

pC1 empty vector and pC1-PEMT plasmid were kindly provided by Prof. Dennis Vance 

(Heritage Medical Research Centre, University of Alberta (Edmonton), Canada). 

1.2.  Cell lines 

1.2.1. J774A.1 cell line 

The J774A.1 cell line is a monocyte/macrophage cell line obtained from BALB/c mice 

with reticulum cell sarcoma. This cell line was purchased from American Type Culture 

Collection (ATCC) (Manassas, VA, USA) and cultured following the manufacturer´s 

indications. Cells were grown in 175 cm
2
 flask in DMEM supplemented with 10% heat-

inactivated FBS, 50 mg/l gentamicin, 200 µM L-glutamine and 1 g/l glucose. Cells were 

incubated in a humidified 5% CO2 incubator at 37 °C and subcultured every 2-3 days, 

maintaining the cell concentration between 0.5-2 x 10
6
 cells/ml.  

 

Figure 1.2.1.1. Micrograph of J774A.1 cells taken from the ATCC website 
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1.2.2. 3T3-L1 cell line 

The 3T3-L1 cell line is a fibroblast cell line purchased from American Type Culture 

Collection (ATCC) (Manassas, VA, USA) and cultured following the manufacturer’s 

indications. Cells were grown in 175 cm
2
 flask in DMEM supplemented with 10% heat-

inactivated bovine calf serum (NCS), 50 mg/l gentamicin, 200 µM L-glutamine and 4.5 

g/l glucose. Cells were incubated in a humidified 5% CO2 incubator at 37 °C and 

subcultured every 3-4 days, before the culture reached 70% to 80% confluence.  

These cells undergo a pre-adipose to adipose- like phenotype conversion, characterized 

by rapid proliferation which can be inhibited by contact. High levels of serum in the 

medium enhanced fat accumulation.   

 

Figure 1.2.2.1 Micrograph of 3T3-L1 cells taken from the ATCC website 

 

2. ANIMAL HANDLING AND DIETS  

All procedures were approved by the University of Alberta’s Institutional Animal Care 

Committee in accordance with guidelines of the Canadian Council on Animal Care. 8-9 

weeks old Pemt
+/+

 and Pemt
-/-

 mice (backcrossed >7 generations) were housed with free 

access to water and high fat diet (HFD) for 10 weeks. Tissues were collected in the 

morning and stored at -80 °C until analysis. 
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3. METHODS 

3.1.  Delivery of C1P to cells in culture  

An aqueous dispersion (in the form of liposomes) of C1P was added to cultured cells as 

previously described [1-3]. Specifically, stock solutions were prepared by sonicating 

C1P (5 mg) in sterile nanopure water (3 ml) on ice using a probe sonicator until a clear 

dispersion was obtained. The final concentration of C1P in the stock solution was ~2.62 

mM. This procedure is considered preferable to dispersions prepared by adding C1P in 

organic solvents, because droplet formation is minimized and there are no organic 

solvent effects on the cells.  

C1P was then added to the culture medium in the micromolar range (10-20 µM). These 

concentrations of C1P are within the physiological range, as previously reported by 

Mietla and co-workers for mouse serum [4].  

3.2.  Determination of cell migration. Boyden chamber assay 

Macrophage migration was measured using a Boyden chamber-based cell migration 

assay, also called transwell migration assay. Twenty four-well chemotaxis chambers 

(Transwell, Corning Costar) were used for the experiments. Before starting the 

migration experiments, transwell chambers were precoated with 30 µl of fibronectin 

(0.2 g/ l) to allow cell attachment. Cell suspensions (100 l, 5 x 10
4
 cells) were then 

added to the upper wells of the 24-well chemotaxis chambers. Agonists diluted in 300 

µL medium supplemented with 0.2% fatty-acid free Bovine Serum Albumin (BSA) 

were then added to the lower wells. The cells were incubated in the upper chamber for 1 

hour inside the incubator in order to ensure cell adhesion. When used, inhibitors were 

added to the upper wells and pre-incubated 1 hour prior to agonist addition. Then 

inhibitors and agonists were added to the lower wells and next, chambers holding the 

cells were moved into agonist containing lower compartments (Figure 3.2.1). 
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Figure 3.2.1. Schematic representation of a Boyden-chamber based cell migration assay.  

After the indicated incubation time, non-migrated cells were removed with a cotton 

swab, and the filters were fixed with Formaldehyde (5% in PBS) for 30 minutes. Then, 

formaldehyde was removed and the filters were stained with hematoxylin for 2 hours. 

After removing hematoxylin with water, the filters were immersed in an acid alcohol 

solution (70% ethanol:HCL acid 50:1, v/v) for a few seconds, and they were then 

submerged in blueing agent for 2 minutes. Next, filters were rehydrated with ethanol 

and further stained with eosin for another 2 minutes. After hematoxilyn-eosin staining, 

the filters were placed on microscopy slides using mineral oil, avoiding bubbles 

between slides and coverslips. Cell migration was measured by counting the number of 

migrated cells in a Nikon Elipse 90i microscope equipped with the NIS-Elements 3.0 

software. J774A.1 cells were counted in 8 randomly selected microscopy fields per 

well, at 20× magnification. The number of migrated cells was normalized by the 

number of migrated cells in the control chambers. 

 

Figure 3.2.2. Micrographs of the migrated cells in the 8 m pore filters. Cells were 

incubated with vehicle (left panel) or 20 M C1P (right panel). 
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3.3.  Cell viability assay (MTS-Formazan method) 

Cell viability and proliferation can be determined using the MTS-formazan colorimetric 

assay. This assay is based on the rate of reduction of the tetrazolium dye, the (3-(4,5 

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium 

or MTS. MTS in the presence of phenazine methosulfate (PMS) (5% v/v diluted in 

Phosphate-buffered Saline (PBS) containing Mg
2+

 and Ca
2+

), reacts with mitochondrial 

dehydrogenases producing a formazan product that has a maximum absorbance at 490-

500 nm in PBS. Generated formazan is proportional to the number of viable cells in 

culture for up to 15000 cells. (Figure 3.3.1, taken from Gangoiti P. et al, unpublished 

work). 

 

Figure 3.3.1. Generated formazan is proportional to the number of viable cells in culture. 

The indicated cell number was seeded in 96-wells plates in RPMI 1640 supplemented with 10% 

FBS and 20% L-cell conditioned medium. 20 l MTS/PMS was added into each well and after 

2 hours absorbance was measured at 490nm. Absorbance of the medium (without cells) was 

subtracted from each absorbance value and results are the mean ± SEM of three independent 

experiments. R
2
= 0.998 indicates the linearity between cell number and absorbance values.  

 

- J774A.1 cells were seeded at 5 x 10
3
 cells/well in 96-well plates and 

incubated overnight in DMEM supplemented with 10% FBS. The next day, 

the medium was replaced with fresh FBS-starving media in the presence or 

in the absence of agonists and/or inhibitors and cells were incubated for 24 

hours. 

 

- 3T3-L1 cells were seeded at 9 x 10
3 

cells/well in 96-well plates and 

incubated in DMEM 10% NCS until confluence. Post-confluent cells were 
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then cultured in the adipogenic induction medium (AIM) in the presence or 

in the absence of agonist and/or inhibitors and cells were incubated for the 

indicated periods of time. 

 

After the indicated incubation time, 20 μl of a mixture of MTS and PMS was added to 

the wells and incubated under the same conditions for 2 hours. Absorbance of the plates 

was read at 490 nm and absorbance of the medium (without cells) was subtracted from 

all absorbance values.  

 

3.4.  Western blotting 

Each cell type was seeded under different conditions in order to obtain the desired 

confluency and protein concentration: 

- J774A.1 cells were incubated in 60 mm diameter dishes at 2.5 x 10
5
 

cells/dish and were grown in DMEM containing 10% FBS overnight.  

 

- 3T3-L1 cells were incubated in 6-well plates at 1.2 x 10
5
 cells/well and were 

grown in DMEM containing 10% NCS until they were about 90-100% 

confluent. Cells were then cultured in adipogenenic induction media (AIM). 

Then, all cell types were incubated with or without agonists for the indicated incubation 

times. Cells were then washed with PBS and harvested with ice-cold homogenization 

buffer (50 mM HEPES, 137 mM NaCl, 1 mM MgCl2, 1mM CaCl2, 1% (v/v) NP-40, 

10% (v/v) glycerol, 2.5 mM EDTA, 10 mM Na4P2O7, 1 µg/ml protease inhibitor 

cocktail), as described [5]. Samples were lysed by sonication and protein concentration 

was determined by a protein concentration commercial kit (BioRad). 

Samples (20-40 µg protein/sample) were mixed with 4x loading buffer (125 mM Tris 

pH 6.8, 50% (v/v) glycerol, 4% SDS, 0.08% (p/v) bromophenol and 50 µl/ml β-

mercaptoethanol). Samples were then heated at 90ºC for 10 minutes and loaded into 

polyacrilamide gels (15%, 12% or 7.5% acrylamide) to perform protein separation by 

SDS-PAGE. Electrophoresis was run (120 V for 2 hours aprox.) in electrophoresis 

buffer (1.92 M Glycin, 0.25 M Tris-HCl and 1% SDS).  

Proteins were then transferred into nitrocellulose membranes. Transference was run at 

400 mA for 1 hour and 15 minutes in ice-cold transfer buffer (14.4 g/l glycin, 3 g/l Tris 
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and 20% Methanol). In order to avoid unspecific antibody binding, nitrocellulose 

membrane was blocked for 1 hour with 5% skim milk in Tris-buffered saline (TBS) 

containing 0.01% NaN3 and 0.1% Tween 20, pH 7.6. The skim milk was then removed 

and nitrocellulose membranes were incubated overnight with primary antibody diluted 

in TBS/0.1%Tween (1:1000) at 4 ºC. After three washes with TBS/0.1% Tween 20, 

membranes were incubated with Horseradish Peroxidase (HRP) -conjugated secondary 

antibody at 1:4000 dilution in TBS/0.1% Tween 20 for 1 hour. Bands were visualized 

by enhanced chemiluminescence and exposed films were analyzed with ImageJ 

software in order to measure arbitrary intensity.  

3.5.  Gelatin zymography 

MMP-2 and MMP-9 enzymatic activities were determined by SDS-PAGE gelatin 

zymography. Cells (5 x 10
5
 cells/plate) were seeded in 60-mm diameter plates in 

DMEM containing 10% FBS and incubated for 3-4 hours in order to allow cell 

attachment. Then, cells were washed and medium was replaced by serum-free DMEM. 

After 2 hours, agonists were added, and cells were further incubated for the indicated 

time. After incubation, supernatants were collected and centrifuged 5 minutes at 10000 

 g to remove any particulate material. Then, supernatants were centrifuged again at 

3200 x g for 10 minutes in 30K centrifugal filters devices in order to concentrate the 

sample. Samples were mixed (3:1) with sample buffer. Then, 50 μl (40-50 g) 

supernatant was loaded and separated in 12% SDS-PAGE containing 0.1% (w/v) 

gelatin. Gels were incubated in the presence of 2.5% Triton X-100 at room temperature 

for 2 hours with shaking. Cells were then incubated overnight at 37°C in a buffer 

containing 5 mM CaCl2, 150 mM NaCl, and 50 mM Tris (pH 7.5). Thereafter, gels were 

stained with 0.5% Coomassie Blue for 1 hour, with shaking. Then, gels were submerged 

in a buffer containing 45% methanol, 10% acetic acid and 45% H2O. Proteolysis was 

detected as a white band against a blue background. The activity of MMP-2 and MMP-9 

was determined by scanning of the bands and densitometry was quantified with ImageJ 

software. The gelatinolytic activity of MMP-2 and MMP-9 is given in arbitrary units. 
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3.6.  Measurement of actin polymerization by flow cytometry 

J774A.1 cells were seeded in 60 mm plates (2.5 x 10
5
 cells/well) and incubated in 

DMEM containing 10% FBS overnight. Then, medium was replaced with free-serum 

DMEM and further incubated for 2 hours. Agonists and/or inhibitors were then added 

and after the indicated incubation time, cells were washed and scrapped in 0.5 ml PBS 

containing 1% BSA. Cells were then collected and centrifuged at 2200 rpm for 5 

minutes at 4ºC. Then, supernatant was discarded and cells were fixed in 200 l 

paraformaldehide 4% (in PBS) solution for 15 minutes at room temperature. After 

fixation, cells were washed with PBS containing 1% BSA and resuspended in 200 l of 

0.005% digitonin solution in PBS for 20 minutes in order to permeabilize cell 

membranes. Cells were then blocked with 1% BSA in PBS for 30 minutes in order to 

avoid unspecific antibody binding. Finally, cells were washed with PBS and incubated 

with fluorescent phalloidin (stock solution 6.6 M) diluted (1:40) in PBS-1% BSA for 

30 minutes at room temperature and in dark conditions. Cells were then washed with 

PBS and resuspended in 0.5 ml PBS with 1% BSA. Cell suspensions were transferred 

into cytometry tubes. Alexa Fluor 488-fluorescence was measured by flow cytometry 

using an air-cooled 488 nm argon-ion laser (FACSCalibur, BD Biosciences) and data 

were analyzed using the CellQuest software (Becton Dickinson), according to the 

manufacturer´s instructions. 

3.7.  Quantitative Enzyme-Linked Immunosorbent Assays (ELISA) 

3.7.1. Determination of IL-1β concentration in J774A.1 cell culture 

medium 

J774A.1 cells (1.5 x 10
5
 cells/well) were seeded in 6-well plates and incubated 

overnight in DMEM containing 10% FBS. The next day, cells were washed twice with 

PBS and the medium was replaced by serum-free DMEM. Cells were further incubated 

in serum deprivation conditions for 2 hours. After 2 hours of incubation, agonists and/or 

inhibitors were added and cells were incubated for the indicated periods of time. Cell 

medium was then collected into microcentrifuge tubes and cells were counted for later 

normalization of the results. The medium was centrifuged at 10000 × g for 5 minutes at 

4ºC and the supernatant was used for performing the ELISA assay. 
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The IL-1β concentration in the medium was determined using a “Mouse Standard 

ELISA Development Kit” (PeproTech) and the manufacturer’s protocol was followed. 

Briefly, a 96-well high reactivity plate was precoated with a specific cytokine antibody 

to IL-1β and incubated overnight at room temperature. Once the capture antibody was 

adhered to the plate, the wells were washed and blocked with 1% Bovine Serum 

Albumin (BSA) in PBS for 1 hour. After blocking, 100 µl of each sample was added in 

duplicate to the wells. Along with the samples, serial dilutions of a standard solution of 

IL-1β were also added to the plate. Samples were incubated for 2.5 hours at room 

temperature and after incubation, wells were washed again and the biotinylated-

detection antibody was added. This antibody binds to the IL-1β capture antibody 

complexes. After 2 hours of incubation at room temperature and the subsequent washes, 

an Avidin-HRP solution was added to the wells and reactions with biotinylated-

detection antibody were allowed to proceed for 30 minutes. Finally after the last wash 

step, a 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) 

solution was added as the substrate. The reaction catalyzed by the enzyme in the 

presence of the ABTS substrate generates a chromophoric product that enables a 

colorimetric change (Figure 3.7.1.1.). The absorbance was then read at 405 and 650 nm 

using a PowerWave™ XS (BioTek) microplate reader provided with Gen5 software. To 

process the data correctly, absorbance values obtained at 650 nm were subtracted from 

the values obtained at 405 nm in order to avoid any possible interference, and the 

standard solutions were used to perform a calibration curve. Sample concentration 

values (pg/ml) obtained by the calibration curve were normalized considering the total 

volume of the supernatants collected and the number of cells counted in each well 

(pg/10
6
 cells). 

 

Figure 3.7.1.1. Schematic representation of sandwich ELISA format experiment. 
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3.7.2.  Determination of MCP-1, TNFα, IL-4, IL-10, RANTES, Leptin and 

IL-1α concentration in White adipose tissue 

White adipose tissue was thawed and homogenized with 1ml ice-cold homogenization 

buffer (50 mM HEPES, 137 mM NaCl, 1 mM MgCl2, 1mM CaCl2, 1% (v/v) NP-40, 

10% (v/v) glycerol, 2.5 mM EDTA, 10 mM Na4P2O7, 1 µg/ml protease inhibitor 

cocktail). Then, homogenates were sonicated and centrifuged at 10000  g for 10 

minutes at 4 ºC and the supernatant was then used for the ELISA assay. In order to 

determine the protein concentration of each sample, the BCA protein assay kit (Bio-

Rad) was used. 

3.7.2.1. Determination of MCP-1, TNFα and IL-10 concentration in 

white adipose tissue. 

MCP-1, TNF-α and IL-10 concentration was determined using a ¨Mouse ELISA Ready-

Set-Go! Kit “(eBioscience) for each cytokine according to the protocol provided by the 

manufacturer. Briefly, a 96-well high reactivity plate was precoated with a specific 

cytokine antibody for MCP-1, TNF-α or IL-10 and incubated overnight at 4 ºC. The 

next day, wells were washed and blocked with 1% BSA in PBS for 1 hour. Samples 

were diluted at a 1:3 dilution rate and 100 µl of each diluted sample was then added in 

duplicate to the wells. Along with the samples, serial dilutions of a standard solution for 

each cytokine were also added to the plate. Samples were incubated for 2.5 hours. After 

incubation, wells were washed again and the biotinylated-detection antibody was added. 

This antibody binds to the MCP-1, TNF-α or IL-10 capture antibody complexes. After 1 

hour of incubation at room temperature and subsequent washes, an Avidin-HRP 

solution was added to the wells and reactions with biotinylated-detection antibody were 

allowed to proceed for 30 minutes. Finally after the last wash steps, a 3’,3’,5,5’-

tetramethylbenzidine (TMB) solution was added as a substrate and the reaction 

produced a chromophoric product that prompted a colorimetric change (Figure 3.7.1.1.). 

The reaction was then stopped with 2N H2SO4
 
and the absorbance was read at 450 and 

570 nm using a PowerWave™ XS (BioTek) microplate reader provided with Gen5 

software. To process the data correctly, the absorbance values obtained at 570 nm were 

subtracted from the values obtained at 450 nm so as to avoid possible interferences, and 

the standard solutions were used to perform a calibration curve. Sample concentration 

values (pg/ml) obtained by the calibration curve were normalized considering the total 
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volume of the supernatants collected and the protein quantity in each sample (pg/mg 

protein). 

3.7.2.2. Determination of RANTES, IL1-α, IL-4 and Leptin 

concentration in white adipose tissue.  

RANTES, IL1-α, IL-4 and Leptin concentration was determined using a “Mouse 

Standard ELISA Development Kit” (PeproTech) for each cytokine according to the 

manufacturer’s protocol.  

Briefly, a 96-well high reactivity plates were precoated with a specific cytokine 

antibody for RANTES, IL1-α, IL-4 and Leptin, and incubated overnight. The next day, 

wells were washed and blocked with 1% Bovine Serum Albumin (BSA) in PBS for 1 

hour. Samples were diluted at a 1:3 dilution rate and 100 µl of each diluted  sample was 

then added in duplicate to the wells. Along with the samples, serial dilutions of a 

standard solution for each cytokine were also added to the plate. Samples were 

incubated for 2.5 hours and after incubation, wells were washed again and the 

biotinylated-detection antibody was added. This antibody binds to the RANTES, IL1-α, 

IL-4 and Leptin capture antibody complexes. After 2 hour incubation at room 

temperature and subsequent washes, an Avidin-HRP solution was added to the wells 

and reactions with biotinylated-detection antibody were allowed to proceed for 30 

minutes. Finally, after the last wash steps, a 2,2′-Azino-bis(3-ethylbenzothiazoline-6-

sulfonic acid) diammonium salt (ABTS) solution was added as a substrate. The reaction 

catalyzed by the enzyme in the presence of the ABTS substrate produces a 

chromophoric product that enables a colorimetric change (Figure 3.7.1.1.). The 

absorbance was then read at 405 and 650 nm using a PowerWave™ XS (BioTek) 

microplate reader provided with Gen5 software. To process the data correctly, the 

absorbance values obtained at 650 nm were subtracted from the values obtained at 405 

nm so as to avoid possible interference, and the standard solutions were used to perform 

a calibration curve. Sample concentration values (pg/ml) obtained by the calibration 

curve were normalized considering the total volume of the supernatants collected and 

the protein quantity in each sample (pg/mg protein).  
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3.7.3. Determination of cytokine release in 3T3-L1 differentiated cells. 

3T3-L1 preadipocytes were seeded in 6-well plates (1.2 x 10
5
 cells/well) and grown to 

confluence in DMEM supplemented with 10% newborn calf serum. Confluent cells 

(day 0) were treated with adipogenic induction medium (DMEM 10% FBS + 0.5 mM 

IBMX + 1 g/ml insulin + 0.25 M Dexametasone + 2 M Rosiglitazone) in the presence 

or in the absence of 20 M of C1P. After 2 days, the medium was removed and cells 

were further incubated in maintenance medium (DMEM 10% FBS + 1 g/ml insulin) 

with or without 20 M of C1P for another 2 days. Cells were then fed every two days 

with DMEM supplemented with 10% FBS and 1 g/ml insulin, in the presence or in the 

absence of 20 M of C1P until the 10
th

 day of the differentiation process. Cell medium 

was then collected, centrifuged at 10000 × g for 5 minutes at 4 ºC and the supernatant 

was used for the ELISA assay. 

3.7.3.1. Determination of Leptin, IL-4 and VEGF concentration in 3T3-

L1 differentiated cells. 

Leptin, IL-4 and VEGF concentration was determined using a “Mouse Standard ELISA 

Development Kit” (PeproTech) for each cytokine and the manufacturer’s protocol was 

followed as described in 3.7.2.2 section. Sample concentration values (pg/ml) obtained 

by the calibration curve were normalized considering the total volume of the collected 

supernatants and the protein quantity in each sample (pg/mg protein).  

3.7.3.2. Determination of MCP-1, IL-10, IL-6 and TNF-α concentration 

in 3T3-L1 differentiated cells. 

MCP-1, TNF-α, IL-6 and IL-10 concentration was determined using a ¨Mouse ELISA 

Ready-Set-Go! Kit “(eBioscience) for each cytokine according to the manufacturer’s 

protocol as described in 3.7.2.1 section. Sample concentration values (pg/ml) obtained 

by the calibration curve were normalized considering the total volume of the 

supernatants collected and the protein quantity in each sample (pg/mg protein). 

3.8.  3T3-L1 preadipocytes differentiation protocol 

3T3-L1 cells (20000-30000 cells/ cm
2
 of the plate) were cultured and grown in DMEM 

supplemented with 10% newborn calf serum (NCS) until they were about 90-100% 

confluent. Confluent cells were further incubated for 2 days. Then, confluent cells (day 
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0) were treated with adipogenic induction medium (DMEM %10FBS + 0.5mM IBMX + 

1 g/ml insulin + 0.25 M Dexametasone + 2 M Rosiglitazone) with or without agonists 

or inhibitors. After 2 days, medium was removed and cells were further incubated in 

maintenance medium (DMEM %10 FBS + 1 g/ml insulin) with or without agonists or 

inhibitors for another 2 days. Cells were then fed every two days with DMEM 

supplemented with 10% FBS and 1 g/ml insulin, with or without agonists or inhibitors. 

Agonists and/or inhibitors were added every time the medium was changed. 

3.9.   Oil Red staining protocol 

3T3-L1 preadipocytes were seeded (6 x 10
4 

cells/well) in 24-well plates and grown in 

DMEM supplemented with 10% newborn calf serum (NCS) until they were about 90-

100% confluent. Confluent cells were further incubated for 2 days. Then, confluent cells 

(day 0) were treated with adipogenic induction medium (AIM) in the presence or in the 

absence of agonists or inhibitors and differentiated following the above described 3T3-

L1 preadipocyte differentiation protocol (section 3.8). Thereafter, in order to quantify 

accumulation of intracellular lipid droplets at any time during adipogenesis process, oil 

red stock solution (150 mg oil red was dissolved in 50 ml isopropanol, 3 mg/ml) was 

prepared. After that, cells were washed with PBS and 0.5 ml of previously diluted Oil 

Red solution (3 parts of 3mg/ml Oil Red solution were mixed with 2 parts of H2O) was 

added to each well, including control without cells. Cells were then incubated with oil 

red solution for 15-20 minutes at room temperature. Cells were then washed with water 

and after removal of the last wash, stained plates were photographed in a Nikon Eclipse 

TS100 microscope. Finally, 200 μl isopropanol (dye extraction solution) was added per 

well and incubated for 30 minutes in a plate shaker. Then, 50 μl of extracted dye was 

transferred into a 96-well plate and quantified by reading absorbance in a plate reader at 

510 nm. The dye extracted from the controls (wells without cells) represents non-

specific binding of the dye to the plate. Thus, this value must be subtracted from the 

absorbance of experimental wells to obtain more accurate assessment of specific 

staining. 

3.10. Triacylglycerol assay kit 

3T3-L1 preadipocytes were cultured in 96-well plates (9 x 10
3
 cells/well) and grown in 

DMEM supplemented with 10% newborn calf serum (NCS) until they were about 90-
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100% confluent. Confluent cells were further incubated for 2 days. Then, confluent cells 

(day 0) were treated with adipogenic induction medium (AIM) in the presence or in the 

absence of agonists and/or inhibitors and differentiated following the above described 

3T3-L1 preadipocyte differentiation protocol (section 3.8). For triglyceride (TG) testing, 

the manufacturer´s instructions were followed. Briefly, after treating cells with the 

desired agonists and/or inhibitors, cells were washed with PBS and 100 μl lipid 

extraction solution per well was added. Then, the plates were cover with an adhesive 

film to prevent evaporation and incubated in a heating block at 90-100ºC for 30 

minutes. In order to ensure that triglycerides were completely dissolved in the lipid 

extraction buffer, plates were cooled while shaking. After this, 50 l/well of standard 

dilutions and 5-50 μl of the lipid extracts were transferred to the 96-well plate and assay 

buffer was added in order to bring the volume to 50 μl. Then, 2 μl of lipase was added 

to each well containing either sample or standard, mixed and incubated 10 minutes at 

room temperature so that TG will be converted to glycerol and fatty acids. Then, 50 μl 

of the reaction mix (46 μl adipogenesis assay buffer + 2 μl Probe + 2 μl Enzyme mix) 

was added to each well and incubated at 37 ºC for 30 minutes in the dark. Finally, the 

absorbance values were read at 570 nm in a plate reader. Protein concentration of the 

lipid extract was determined by a protein concentration commercial kit (BCA, BioRad) 

and it was used as an internal control to normalize the lipid concentration in the sample.  

3.11. Semi-quantitative detection of inflammation-related 

cytokines. 

White adipose tissue was thawed and homogenized in 1ml raybio cell lysis buffer 

(diluted 1:2 in water) with 1 l protease inhibitor cocktail (PIC). Then, homogenates 

were sonicated and centrifuged at 10000  g for 10 minutes at 4 ºC. After that, protein 

concentration was determined using a protein concentration commercial kit (Bio-Rad) 

and supernatant was used for performing the cytokine array following manufacturer’s 

indications. 

The semi-quantitative detection of the cytokines was performed using RayBio Mouse 

cytokine antibody array (RayBiotech). First, membranes were blocked for 30 minutes 

with blocking buffer at room temperature. After subsequent washes, 1ml of 10 fold 

diluted samples (250 g-500 g protein) was added to the membrane and incubated 
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overnight at 4 ºC. In order to ensure maximum reactivity, different wash steps were 

performed at room temperature. Then, biotinylated antibody cocktail was added and 

membranes were incubated for 2 hours at room temperature. After the detection 

antibody, HRP-Streptavidin was added and membranes were further incubated for 2 

hours. Finally, detection solutions were added and cytokine dots were visualized by 

enhanced chemiluminescence. Exposed films were analyzed by ImageJ software in 

order to measure arbitrary intensity (Figure 3.11.1.). 

  

Figure 3.11.1. Schematic representation of the semi-quantitative multichemokine detection  

Table 3.11.2 shows the membrane conformation of the chemokines detected with 

RayBio mouse inflammation antibody array  



Materials and Methods 

89 

 

 

Table 3.11.2. Membrane conformation of the chemokines detected with RayBio mouse 

inflammation antibody array. 

 

3.12. Small interfering RNA (siRNA) transfection protocol 

Small interfering RNAs (siRNAs) assemble into endoribonuclease-containing 

complexes known as RNA-induced silencing complexes (RISCs). RISC is a 

multiprotein complex that incorporates one strand of a siRNA to be used it as a template 

for recognizing complementary mRNA. When the RISC complex finds a 

complementary strand, it activates a ribonuclease and cleaves the RNA. Cleavage of 

cognate RNA takes place near the middle of the bounded region by the siRNA strand. 

After the cleavage of the target mRNA, translation of the protein is inhibited so that the 

expression of the targeted protein is silenced. siRNA protocols were performed 

following the manufacturer’s instructions. 
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Figure 3.12.1 The mechanism of RNA interference (iRNA) 

 

3.12.1.  siRNA transfection protocol for IL-1β release experiments in 

J774A.1 macrophages 

J774A.1 cells were seeded in 60 mm diameter dishes (2 x 10
5 

cells/plate) in DMEM 

containing 10%  FBS. Four hours later, medium was removed and cells were washed 

twice with sterile PBS. Cells were incubated during 24 hours in 1600 l opti-MEM and 

siRNA was added following the procedure below: 
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Solution A: 8 l of Oligofectamine + 30 µl of opti-MEM (mixed and incubated for 5-10 

minutes) 

Solution B: 20 µl of siRNA (from 20 µM siRNA stock) + 350 µl of opti-MEM 

Solution A was added to Solution B and mixed gently by pipetting. The mixture was 

incubated at room temperature for 15 minutes and 400 µl of the siRNA mixture was 

then added into each plate. Cells were then incubated for 5 hours and after that 2 ml of 

opti-MEM supplemented with 20% FBS was added into the plates, without removing 

the transfection mixture. This culture was further incubated for 24 hours and the 

medium was replaced by fresh DMEM containing 10% FBS. 

After 24 hours incubation in 10% supplemented DMEM, the cells were scrapped and 

counted in order to be seeded (1.5 x 10
5
 cells) in 6-well plates and further incubated for 

24 hours. After 24 hours, the medium was replaced by serum-free DMEM and 

incubated for 2 hours. After 2 hour of incubation, 20 M of C1P was added and cells 

were incubated for the indicated periods of time. Cell medium was then collected into 

microcentrifuge tubes and cells were counted for later normalization of the results. The 

medium was centrifuged at 10000 × g for 5 minutes at 4 ºC and the supernatant was 

used for performing the ELISA assay following “Quantitative Enzyme-Linked 

Immunosorbent Assays (ELISA)” protocol (section 3.7.1). Remaining cells were lysed 

and analyzed through Western blotting experiments in order to determine the silencing 

efficiency of the siRNA treatment.  

3.12.2. siRNA transfection protocol for migration experiments in J774A.1 

macrophages 

Macrophages were seeded in 60 mm diameter dishes (2.0 x 10
5
 cells/well) in DMEM 

containing 10% FBS. The medium was replaced by 1.6 ml opti-MEM and cells were 

then incubated for 24 hours. The siRNA was added following the procedure below: 

 Solution A: 8 µl of Oligofectamine + 30 µl of opti-MEM (mixed and incubated for 5-10 

minutes) 

Solution B: 20 µl of siRNA (from 20 µM siRNA stock) + 350 µl of opti-MEM 
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Solution A was added into solution B and mixed gently by pipetting. The mixture was 

incubated at room temperature for 15 minutes and 400 l of the siRNA mixture was 

added into each plate. Cells were then incubated for 5 hours and, after that period of 

time, 2 ml of opti-MEM containing 10% FBS was added into the plates, without 

removing transfection mixture. This culture was further incubated for 24 hours and the 

medium was replaced by fresh DMEM containing 10% FBS. 

24 hours after medium replacement, cells were scrapped and counted in order to be 

seeded (5 x 10
4
 cells/well) in upper wells of 24-well chambers coated with fibronectin. 

Migration assays were performed following “Determination of cell migration. Boyden 

chamber assay” protocol (section 3.2). Remaining cells were lysed and analyzed by 

Western blotting in order to determine the efficiency of the siRNA treatment.  

 

3.12.3.  siRNA transfection protocol for gelatin zymography experiments in 

J774A.1macrophages 

J774A.1 cells were seeded in 60 mm diameter dishes (2 x 10
5 

cells/plate) in DMEM 

containing 10% FBS. Four hours later, medium was removed and cells were washed 

twice with sterile PBS. Cells were incubated during 24 hours in 1600 l opti-MEM 

(without antibiotics) and siRNA was added following the procedure below: 

Solution A: 8 µl of Oligofectamine + 30 µl of opti-MEM (mixed and incubated for 5-10 

minutes) 

Solution B: 20 µl of siRNA (from 20 µM siRNA stock) + 350 µl of opti-MEM 

Solution A was added to Solution B and mixed gently by pipetting. The mixture was 

incubated at room temperature for 15 minutes and 400 µl of the siRNA mixture was 

then added into each plate. Cells were then incubated for 5 hours and, after that, 2 ml of 

opti-MEM supplemented with 20% FBS was added into the plates, without removing 

the transfection mixture. This culture was further incubated for 24 hours and the 

medium was replaced by fresh DMEM containing 10% FBS. 

 After 24 hours incubation in 10% FBS supplemented DMEM, the cells were scrapped, 

counted and seeded (5 x 10
5
 cells/plate) in 60 mm diameter dishes and further incubated 

for 3-4 hours in order to allow cell attachment. Then, the medium was replaced by 
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serum-free DMEM and incubated for 2 hours. After 2 hours of incubation, 20 M C1P 

was added and cells were incubated for the indicated periods of time. Cell supernatant 

was then collected into microcentrifuge tubes and cells were counted for later 

normalization of the results. The medium was centrifuged at 10000 × g for 5 minutes at 

4 ºC and the supernatant was used for performing gelatin zymography following 

“Gelatin zymography” protocol (section 3.5). Cells were lysed and analyzed through 

Western blotting experiments in order to determine the silencing efficiency of the 

siRNA treatment.  

3.12.4.   siRNA transfection protocol for Western blot experiments in 

J774A.1 macrophages. 

J774A.1 cells were seeded in 60 mm diameter dishes (2.5 x 10
5 

cells/plate) in DMEM 

containing 10% FBS. Four hours later, medium was removed and cells were washed 

twice with sterile PBS. Cells were incubated during 24 hours in 1600 l opti-MEM and 

siRNA was added following the procedure below: 

Solution A: 8 µl of Oligofectamine + 30 µl of opti-MEM (mixed and incubated for 5-10 

minutes) 

Solution B: 20 µl of siRNA (from 20 µM siRNA stock) + 350 µl of opti-MEM 

Solution A was added to Solution B and mixed gently by pipetting. The mixture was 

incubated at room temperature for 15 minutes and 400 µl of the plasmid mixture was 

then added into each plate. Cells were then incubated for 5 hours and after that, 2 ml of 

opti-MEM supplemented with 20% FBS was added into the plates, without removing 

the transfection mixture. This culture was further incubated for 16-24 hours. After 16-

24 hours of incubation in 10% FBS supplemented DMEM, cells were scrapped and 

counted in order to be seeded (2.5 x 10
5
 cells/well) in 60 mm dishes and further used for 

Western blotting assays. Remaining cells were lysed and analyzed by Western blotting 

in order to determine the efficiency of the siRNA treatment.  

3.12.5.   siRNA transfection protocol for flow cytometry analysis in J774A.1 

macrophages. 

J774A.1 cells were seeded in 60 mm diameter dishes (2 x 10
5 

cells/plate) in DMEM 

containing 10% FBS. Four hours later, medium was removed and cells were washed 



Materials and Methods 

94 
 

twice with sterile PBS. Cells were incubated during 24 hours in 1600 l opti-MEM 

(without antibiotics) and siRNA was added following the procedure below: 

Solution A: 8 µl of Oligofectamine + 30 µl of opti-MEM (mixed and incubated for 5-10 

minutes) 

Solution B: 20 µl of siRNA (from 20 µM siRNA stock) + 350 µl of opti-MEM 

Solution A was added to Solution B and mixed gently by pipetting. The mixture was 

incubated at room temperature for 15 minutes and 400 µl of the siRNA mixture was 

then added into each plate. Cells were then incubated for 5 hours and after that 2 ml of 

opti-MEM supplemented with 20% FBS was added into the plates, without removing 

the transfection mixture. This culture was further incubated for 24 hours and the 

medium was replaced by fresh DMEM containing 10% FBS.  

After 24 hours of incubation in 10% FBS supplemented DMEM, the cells were 

scrapped and counted in order to be seeded (2.5 x 10
5
 cells/plate) in 60 mm diameter 

dishes and further incubated for 24 hours. Then, the medium was replaced by serum-

free DMEM and incubated for 2 hours. After 2 hours, 20 M of C1P was added and 

cells were incubated for the indicated periods of time. Cells were collected into 

microcentrifuge tubes and flow cytometry assays were performed following 

“Measurement of actin polymerization by flow cytometry” protocol (section 3.6). 

Remaining cells were lysed and analyzed through Western blotting in order to 

determine the silencing efficiency of the siRNA treatment.  

3.12.6. siRNA transfection (by electroporation) protocol for adipogenesis 

assays in 3T3-L1 cells 

3T3-L1 cells were seeded in 100 mm diameter dishes (5 x 10
5 

cells/plate) and incubated  

in DMEM containing 10% NCS until confluence. 48 hours after confluence, medium 

was removed and cells were washed with sterile PBS and 500 μl trypsin-EDTA was 

added in order to detach cells. Cells were then centrifuged at 130  g for 7 minutes and 

resuspended in 500 μl free-serum DMEM. Cell suspension was transferred into an 

electroporation cuvette and 20 μl of siRNA (from 20 M siRNA stock) was added. 

Then, after gently shaking the cuvette for few seconds, cells were electroporated using 
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the Electro Square Porator (ECM 830) following the conditions shown in Figure 

3.12.6.1.  

Voltage Pulse length # pulses Interval Polarity 

1000V 30 S 1 100ms Unipolar 

Figure 3.12.6.1 Optimal conditions for 3T3-L1 electroporation 

After electroporation, the cell suspension was transferred into 15 ml tubes containing 

3T3-L1 adipogenic induction medium and cells were counted. Finally, cells were 

seeded to confluence (2 x 10
4 

cells/well in 96-well plate; 1,2 x 10
5 

cells/well in 24-well 

plate; 5 x 10
5 

cells/well in 6-well plate) and differentiated until day 4 of the 

differentiation process. Then, cells were used for Oil red experiments and Triglyceride 

assay kit, in order to measure lipid and triglyceride content, respectively. Cell lysates 

were also analyzed through Western blot analysis in order to determine the silencing 

efficiency of the siRNA treatment. 

3.13. PEMT plasmid overexpression for migration assays in 

J774A.1 macrophages  

J774A.1 cells were seeded in 60 mm diameter dishes (2 x 10
5 

cells/plate) in DMEM 

containing 10% FBS. Four hours later, the medium was removed and cells were washed 

twice with sterile PBS. Cells were incubated for 24 hours in 1600 l opti-MEM 

(without antibiotics) and the pC1 (empty vector) or pC1-PEMT plasmid were added 

following the procedure below: 

Solution A: 8 µl of Oligofectamine + 30 µl of opti-MEM (mixed and incubated for 5-10 

minutes) 

Solution B: 2.9 μl plasmid (from 1.35μg/μl stock) + 370 µl of opti-MEM 

Solution A was added to Solution B and mixed gently by pipetting. The mixture was 

incubated at room temperature for 15 minutes and 400 µl of the plasmid mixture was 

then added into each plate. Cells were then incubated for 5 hours and after that 2 ml of 

opti-MEM supplemented with 20% FBS was added into the plates, without removing 

the transfection mixture. This culture was further incubated for 16-24 hours. After 16-

24 hours, cells were scrapped and counted in order to be seeded (5 x 10
4
 cells/well) in 
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upper wells of 24-well chambers coated with fibronectin. The cell migration protocol 

was performed as mentioned before (section 3.2). Remaining cells were lysed and 

analyzed by Western blotting in order to determine the PEMT transfection efficiency. 

3.14. PEMT plasmid overexpression for Western blot analysis in 

J774A.1 macrophages 

J774A.1 cells were seeded in 60 mm diameter dishes (2 x 10
5 

cells/plate) in DMEM 

containing 10% FBS. Four hours later, the medium was removed and cells were washed 

twice with sterile PBS. Cells were incubated for 24 hours in 1600 l opti-MEM 

(without antibiotics) and pC1 (empty vector) or pC1-PEMT plasmid were added 

following the procedure below: 

Solution A: 8 µl of Oligofectamine + 30 µl of opti-MEM (mixed and incubated for 5-10 

minutes) 

Solution B: 2.9 μl plasmid (from 1.35μg/μl stock) + 370 µl of opti-MEM 

Solution A was added to Solution B and mixed gently by pipetting. The mixture was 

incubated at room temperature for 15 minutes and 400 µl of the plasmid mixture was 

then added into each plate. Cells were then incubated for 5 hours and after that 2 ml of 

opti-MEM supplemented with 20% FBS was added into the plates, without removing 

the transfection mixture. 

 After 16-24 hours incubation in 10% FBS supplemented DMEM, cells were scrapped 

and counted in order to be seeded (2.5 x 10
5
 cells/well) in 60 mm dishes and further 

used for western blot assays. Remaining cells were lysed and analyzed by Western 

blotting in order to determine the PEMT transfection efficiency.  

3.15. Determination of CERK activity using NBD-Ceramide as 

the enzyme substrate in cell homogenates 

3T3-L1 preadipocytes were seeded in 6-well plates (1.2 x 10
5
 cells/well) and grown to 

confluence with DMEM supplemeted with 10% NCS. 48 hours after confluence, cells 

were treated with adipogenic induction medium (AIM: DMEM 10% FBS + 0.5 mM 

IBMX + 1 g/ml insulin + 0.25 M Dexametasone + 2 M Rosiglitazone) or growth 

medium (GM). After 2 days, adipogenicinduction medium was removed and cells were 
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further incubated in maintenance medium (DMEM 10% FBS + 1 g/ml insulin).  Cells 

were then fed every two days with DMEM supplemented with 10% FBS and 1 g/ml 

insulin until day 10 after induction of differentiation. Cells were then washed, scrapped 

in 100 μl of PBS:PIC (1000:1) solution, and sonicated. Again, a fluorescent CERK 

assay, adapted for a microplate reader, was performed using the method described by 

Don and Rosen [6]. Briefly, cell lysates (50-100 μg total protein) were mixed with 

reaction buffer (100 μl, 20 mM Hepes (pH 7.4), 10 mM KCl, 15 mM MgCl2, 15 mM 

CaCl2, 10% glycerol, 1 mM DTT, 1 mM ATP) containing 10 μM NBD-ceramide. 

Reactions were allowed to proceed for 30 minutes in the dark before the lipid extraction 

was performed. Then, 250 μl chloroform:methanol (2:1) was added and samples were 

vortexed and centrifuged at 10000 × g for 1.5 minutes. 100 μl of the upper aqueous 

phase was transferred to a 96-well plate and measured with a Synergy HT (Biotek) plate 

reader equipped with Gen5 software. NBD fluorescence was quantified with a 495 nm 

excitation filter and a 520 nm emission filter. 

3.16. RT-PCR for M1 and M2 macrophage markers in white 

adipose tissue 

This technique was performed in Dr. Dennis Vance´s laboratory at the Heritage Medical 

Research Centre, University of Alberta (Edmonton, Canada). 

3.16.1.  RNA isolation from tissue by Trizol 

RNA was isolated from mouse white adipose tissue using tryzol. Briefly, after mice 

were euthanized, tissue was harvested and treated with trizol. Then, the tissue lysates 

were splited into 1 ml aliquots in RNAse-free microfuge tubes, placed at room 

temperature for 5 minutes to ensure disruption of nucleoprotein complexes and spin at 

13000  g for 10 minutes at 4 ºC, to remove fibrous material. Supernatant was then 

transferred to a clean nuclease-free microfuge tube and 200 μl of chloroform was added 

for each ml of lysate. Lysates were then vortexed and incubated at room temperature for 

5 minutes. After that, samples were centrifuged again at 13000  g for 15 minutes at 4 

ºC. The upper (aqueous) phase was transferred to an RNAse-free tube and an equal 

volume of isopropanol was added to the collected aqueous phase. Then, tubes were 

vortexed and kept on ice for at least 15 minutes to allow RNA precipitation. The 

samples were then centrifuged at 13000  g for 15 minutes at 4 ºC. Supernatant was 
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then carefully removed by pipetting, 1ml of 75% ethanol prepared in nuclease-free 

water was added and samples were then gently mixed by pipetting. Samples were then 

centrifuged again at 13000  g for 10 minutes at 4ºC. Supernatant was then removed 

and tubes were left to air dry for 5 minutes. Finally, 50 μl of nuclease-free water was 

added, vortexed and kept on ice for 10 minutes. Isolated RNA was quantified using the 

ND-1000 spectrophotometer (NanoDrop) and samples were then stored at -80 ºC until 

used.   

3.16.2.  DNAse 1 treatment of RNA for RT-PCR and qPCR protocols 

2 µg of isolated RNA were taken from each sample and DEPC water was added to RNA 

to obtain a final volume of 8 μl. In a separate tube, enough DNAse 1 (amplification 

grade, invitrogen) and DNAse buffer (10x, supplied) were mixed in 1:1 proportion. 

Then, DNAse and buffer (total of 2 μl) was added to each RNA sample and samples 

were gently mixed by pipetting at room temperature for 15 minutes. Then, samples were 

put on ice and 1 μl of 25 mM EDTA solution was added, vortexed and centrifuged. 

Finally, samples were heated at 65 ºC for 10 minutes in order to kill the enzyme 

activity. After that, RNA samples were ready to perform Reverse Transcription-

Polymerase Chain Reaction (RT-PCR) in order to obtain cDNA.  

Briefly, 1 μl oligo (Dt) was added to each sample, mixed and kept at 65-70 ºC for 10 

minutes and placed on ice for 5 minutes. Each RNA sample was then mixed in PCR 

tubes with a Reverse Transcription Master Mix solution, containing 4 μL 5X First 

Strand Buffer, RT Buffer, 0.4 μl dNTPs Mix (25 mM), 2 μl DTT, 0.6 μl DEPC-treated 

dH2O and 1 μl SuperScript II Reverse Transcriptase. As a control, a master mix solution 

was prepared without reverse transcriptase. Instead of reverse transcriptase 1.6 μl of 

nuclease-free water was added. The plate was then carried to a Mastercycler Gradient 

thermal cycler with the following thermal profile: an initial step at 42 ºC for 50 minutes, 

a second step of 94 ºC for 15 minutes and a final step at 4 ºC for 60 minutes. Reactions 

were then allowed to happen and cDNA obtained was then stored at -80 ºC until used. 

3.16.3.  q-PCR 

For q-PCR, cDNA template was diluted (1/100) in sterile dH2O so that it can be added 

in a volume of 4 μl to each tube to reach a final reaction volume of 20 l per tube. Then, 

16 μl master mix reaction was added to each tube. This master mix reaction contained 
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for 1 reaction: 0.8 l forward and 0.8 l reverse primers (from 10 M stock), 10 l 

qPCR Supermix containing SYBR Green, and 4.4 l of sterile dH2O. The master mix 

was vortexed and 16 l of this was dispensed into the wells of the PCR plate, which was 

placed in the aluminium PCR set up block, chilled on ice. Next, 4 l of diluted cDNA 

template was added into each well and a clear adhesive cover was positioned over the 

PCR plate so that it covered all wells. The plate was then mixed using Eppendorf 

MixMate plate mixer set for 1000 rpm for 1 minute. After mixing, the plates were 

centrifuged at 1000 rpm for 30 seconds in the Eppendorf desktop centrifuge using the 

plate spinner buckets. Finally, quantitative real-time PCR (qPCR) was performed using 

Step One Plus qPCR system following a 3 step cycling protocol, which consists on an 

initial step at 94 ºC for 4 minutes, a cycling step of 94 ºC for 30 seconds 

(desnaturalization), 60 ºC for 30 seconds (annealing) and 72 ºC for 30 seconds 

(extension) and a final step at 72 ºC. The last cycle was followed by a melting curve 

analysis to ensure that a reaction free of products has been performed. Diluted standard 

curves were used as external standards. The level of fluorescence emitted from SYBR 

green dye when incorporated to double-stranded DNA was detected. 

The mRNA expression of the samples was normalized to CD68 mRNA, which is a 

generic macrophage marker, and qPCR data were directly exported from Step One Plus 

qPCR machine. 

The following genes were measured: 

Target 

template 
SEQUENCE 

Melting 

temperature 

Tm (ºC) 

Amplicon 

(bp) 

Reference 

sequence 

CD11c 
F: 5´- tctgctgctgctggctatc - 3´ 

R: 5´- gtcccgtctgagacaaactgt -3´ 

60 

59 

111 

111 
NM_0213342 

MCP-1 
F: 5´- cagcaagatgatcccaatga - 3´ 

R: 5´- cctctctcttgagcttggtga -3´ 

59 

59 

104 

104 
NM_011333 

CD206 
F: 5´- catgttccgaaatgttgaagg- 3´ 

R: 5´- gcccgaagatgaagctagaa -3´ 

60 

59 

127 

127 
NM_008625.2 

CD163 
F: 5´- tggggaaagcattactgtca- 3´ 

R: 5´- aatctccacctccacaatgc -3´ 

59 

59 

123 

123 
NM_053094.2 

IL-10 
F: 5´- cgactccttaatgcaggacttt- 3´ 

R: 5´- ttgatttctgggccatgc -3´ 

59 

60 

117 

117 
NM_010548.2 
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F4/80 
F: 5´- ccctcgggctgtgagattgtg- 3´ 

R: 5´- tggccaaggcaagacataccag -3´ 

60.1 

60.1 

172 

172 
NM_090708 

CD68 
F: 5´- gcggctccctgtgtgtctgat- 3´ 

R: 5´- gggcctgtggctggtcgtag -3´ 

61.5 

61.5 

157 

157 
NM_009853 

 

Table 3.15.3.1. Primers used in qPCR 

 

3.17. M1 macrophage phenotype detection by 

immunofluorescence staining of white adipose tissue (WAT)  

Mouse white adipose tissue was collected and fixed in 10% buffered formalin and 

processed overnight. Tissue samples were then embedded in paraffin wax and sectioned 

at 5 m.  Slides were then dried out overnight and were stored until analysis. For tissue 

staining, tissue sections were deparafinnized in xylene for three 5-minute incubation 

periods. Then, sections were rehydrated by washing them twice with 100% ethanol for 

10 minutes each, then with 95% ethanol for another 10 minutes each and finally, the 

tissue sections were washed in deionized water for 1 minute with stirring. After 

removing the liquid excess from the slides, they were blocked with 20% normal goat 

serum for 60 minutes to suppress non-specific binding. Tissue sections were then 

incubated with CD11c- Alexa Flour 488-conjugated antibody or CD68- PE-conjugated 

antibody (1/80 dilution) for 60 minutes at room temperature. Slides were then rinsed 

with PBS (x3), sealed and imaged on a Leika DM IRE2 microscope. This protocol was 

carried out at the HistoCore service of the Heritage Medical Research Centre 

(University of Alberta). 

 

 

3.18. Statistical analyses 

Statystical analyses were performed using two-tailed Student’s t-test, with the level of 

significance set at p<0.05. 
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Significancy and used symbols: 

Symbol Significance 

n.s. p>0.05, not significant 

* p<0.05, significant 

** p<0.01, significant 

*** p<0.001, significant 

 

# symbol has been used instead of * symbol to compare inhibitor-treated cells versus 

C1P-treated cells 
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4. CHAPTER 1:  Matrix metalloproteinase -2 and -9 (MMP-2 
and MMP-9) are implicated in C1P-induced macrophage 
migration. 

 

1. INTRODUCTION 

The concept of adipose tissue remodeling refers to a combination of matrix synthesis 

and degradation, with the deposition of specific proteins in response to physiological 

requirements for growth, expansion or tissue repair, and pathological processes such as 

inflammation, aging or disease [1]. In particular, the development of obesity is 

associated with a variety of modifications of the adipose tissue, including adipogenesis, 

angiogenesis and proteolysis of the extracellular matrix (ECM) [2]. In an obese state, 

adipose tissue responds dynamically to alterations in nutrient excess through adipocyte 

hypertrophy and hyperplasia, giving rise to an accelerated adipose tissue remodeling, 

where expression of ECM components and fragments derived from tissue-remodeling 

processes can influence ECM overproduction and immune cell recruitment and 

activation. These changes actively contribute to obesity-associated chronic 

inflammation.  

1.1.  Extracellular matrix (ECM) 

The extracellular matrix (ECM) is a three-dimensional, non cellular structure that is 

present in all tissues and is essential for the maintenance of tissue integrity. It is 

composed of around 300 proteins, known as core matrisome, which includes proteins 

such as collagen, proteoglicans (PGs) and glycoproteins. The ECM forms a milieu 

surrounding cells that reciprocally influences cellular functions and thereby modulate 

cell biology [3]. The ECM is extremely versatile and performs many functions in 

addition to its structural role. As a major component of the microenvironment of the 

cell, the ECM takes part in most basic cell behaviors, from cell proliferation, adhesion 

and migration, to cell differentiation and cell death [3]. ECM dynamics can result from 

changes in the ECM composition or in the ECM arrangement. In addition, ECM is also 

subject to sustained remodeling, which is mediated by reciprocal interactions between 

the ECM and its resident cellular components [4]. Consistent with the numerous cell 

biological functions in which ECM participates, ECM remodeling needs to be tightly 
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regulated and the most significant enzymes in ECM remodeling are metalloproteinases 

(MMPs) [5], which are able to degrade or modify all the protein components outside or 

inside the cell. Despite multiple regulatory mechanisms, ECM dynamics can go awry 

when activities of ECM remodeling proteins are deregulated, resulting in devastating 

consequences manifested in various human diseases [6].   

1.2.  Matrix metalloproteinases (MMPs) 

MMPs comprise a large family of structurally related Zn2+

MMPs are expressed in several cell types. In particular, gelatinases A and B (MMP-2 

and  -9) are secreted by several vascular cell types, including endothelial cells, pericytes 

and podocytes, fibroblasts and myofibroblasts, monocyte derived macrophages and 

local tissue macrophages [8]. MMP-2 is constitutively expressed on cell surface, while 

MMP-9 is stored in secretory granules in different cell types and it is inducible by 

exogenous stimuli, such as cytokines, growth factors or altered cell-matrix contacts [8, 

9]. 

-dependent proteolytic 

enzymes. Each MMP has a specific target substrate that defines its denomination, such 

as collagenases (MMP-1, MMP-13, MMP-8, MMP-18) that are active against fibrillar 

collagen; gelatinases (MMP-2 and MMP-9), which are responsible for IV type collagen 

degradation, vasculature remodeling, angiogenesis, inflammation and atherosclerotic 

plaque rupture [7]; stromelysins (MMP-3, MMP-10, MMP-11) that degrade 

noncollagen components of the ECM; matrilysins (MMP-7 and MMP-26); membrane-

type MMPs (MT-MMPs) that are transmembrane molecules, and other less 

characterized members.  

The main activity of these enzymes is to degrade ECM proteins (collagen, gelatins, 

fibronectin and laminin) by cleavage of internal peptide bonds. Generally, MMPs are 

expressed at low levels but are rapidly induced at times of active tissue remodeling. 

Most MMPs are secreted as inactive proenzymes and require proteolytic processing to 

become active. Their activity is modulated through interactions with tissue inhibitors of 

MMPs (TIMPs). Consequently, the net MMP activity in tissues is locally determined by 

the balance between the levels of activated MMPs and TIMPs [10]. 
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1.2.1. Biological roles of MMPs  

Extracellular proteases are required for numerous developmental and disease-related 

processes including migration, invasion, proliferation, apoptosis, differentiation, 

inflammation, angiogenesis, and host defense. The ability to degrade extracellular 

proteins is essential for any individual cell to interact properly with its immediate 

surrounding and for multicellular organisms to develop and function normally. 

MMPs can act at different levels during development and normal physiology (Figure 

1.2.1.1). Concerning cell migration, ECM needs to be degraded [11] and MMPs are the 

main enzymes involved in this action. In addition to ECM remodeling, MMPs also 

promote the activation of the cytoskeleton to provide cell movement, and they also 

modulate cell-surface adhesive molecules to provide traction. All these processes, which 

are regulated by MMPs, are required for cells to change from an adhesive phenotype to 

a migratory phenotype in order to move. Moreover, these enzymes can change ECM 

microenvironment, which results in an alteration in cellular behavior. Besides, they also 

modulate the activity of biologically active molecules such as growth factors or growth 

factor receptors, by cleaving or by releasing them from the ECM. MMPs are also 

responsible for the activation or inactivation of chemokines and cytokines [12] and they 

may alter the balance of protease activity by cleaving the enzymes or their inhibitors.  

 

Figure 1.2.1.1. Diverse functions of matrix metalloproteinases. (A) MMPs may affect cell 
migration by turning cells from an adhesive to non-adhesive phenotype and by degrading the 
ECM. (B) MMPs may alter ECM microenvironment leading to cell proliferation, apoptosis, or 
morphogenesis. (C) MMPs may modulate the activity of biologically active molecules such as 

https://en.wikipedia.org/wiki/Cellular_differentiation�
https://en.wikipedia.org/wiki/Angiogenesis�
https://en.wikipedia.org/wiki/Immune_system�
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growth factors or growth factor receptors by cleaving or by releasing them from the ECM. (D) 
MMPs may alter the balance of protease activity by cleaving the enzymes or their inhibitors. 
This figure was taken from [13]. 

1.2.2. MMPs in obesity 

Several studies have suggested that MMPs play important roles in obesity-mediated 

adipose tissue remodeling [14-18]. MMP-9 expression is increased in adipose tissue 

with obesity and insulin resistance [15]. Moreover, MMP-9 expression is increased in 

adipocytes in response to co-culture with macrophages. In addition, upregulation of the 

expression of MMP-2, MMP-3, MMP-12, MMP-19 and MMP-14 in adipose tissue 

from genetically obese mice and diet-induced obesity mice has been found [16]. 

Reportedly, circulating levels of MMP-2 and MMP-9 are increased in obese patients, 

suggesting an abnormal extracellular matrix metabolism present in these subjects [19]. 

Therefore, it can be concluded that these enzymes play a key role in ECM degradation, 

which is an essential step in both physiological and pathological processes like obesity. 

1.3.  Macrophage migration 

Macrophages are present in almost all tissues of the organism where they play a central 

role in clearance of microorganisms, initiation and mediation of immune and 

inflammatory responses, and tissue repair. Nevertheless, tissue infiltration of 

macrophages also exacerbates pathological processes, such as chronic inflammation, 

neurodegenerative disorders, cancer development, and obesity [20-23]. For a successful 

migration, cells have to trespass many barriers, in particular the dense meshwork of 

interconnected fibers that conforms the extracellular matrix (ECM). Although ECM is a 

physical barrier that impedes cell migration, macrophages are able to go through most, 

if not all, tissues of the body. To reach their final destination, transmigration through the 

endothelial wall must be followed by migration through basal membranes and within 

interstitial tissues [24]. Although macrophage migration in two dimensions has been 

thoroughly studied [25, 26], recent evidence indicates that macrophages can also 

migrate in a three-dimensional (3D) environment.  

2D migration is characterized by a series of events, which begin with cell polarization in 

response to extracellular signals. Cell polarization is accompanied by cytoskeleton 

modifications such as actin polymerization, which triggers the formation of a 

lamellipodium at the leading edge of the cell rear (Figure 1.3.1). Since actin 
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polymerization is largely responsible for the dynamic nature of the cytoskeleton, many 

cellular movements are driven by the cytoskeletal actin reorganization.  The efficacy of 

2D cell motility relies on highly coordinated dynamic assembly and disassembly cycles 

of adhesion sites from the front to the rear part of the cell [27, 28]. Most of the cell 

surface receptors for cell adhesion to ECM structures belong to the integrin family. 

Furthermore, the majority of proteases that are known to be involved in 2D macrophage 

migration act directly or indirectly on integrin deactivation. This can occur either by 

direct cleavage of the integrin extracellular domains or by proteolysis of the integrin 

ligands.  

 

Figure 1.3.1: Cell migration and membrane protrusions in different environments. Cell 
migrating on 2D substrates form membrane protrusions called fillopodia and lamellipodia at the 
leading edge. Cells entering into the migrating in a dense rigid ECM in 3D need to form 
membrane protrusions at the invading front, such as invadopodia and podosomes that have an 
ECM remodeling activity. Formation of these structures is driven by localized actin 
polymerization. Taken from [29]. 

3D cell migration involves two main classes of movement: amoeboid (protease-

independent) and mesenchymal migration (protease-dependent) [11]. Cells that perform 

the amoeboid migration are characterized by a rounded cell shape and a lack of both 

strong adhesive interactions and proteolytic matrix degradation. Mesenchymal 

migration is much slower and its cells are characterized by an elongated cell shape with 

long membrane protrusions, the presence of strong adhesion sites and proteolytic 

degradation of the ECM [22]. Recent 3D migration studies indicate that macrophages 

use the amoeboid mode to migrate into fibrillar collagen I and the protease-dependent 

mesenchymal mode to migrate inside dense ECMs [30, 31]. Contrary to other cell types, 
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macrophages are able to form podosomes at the tip of cell protrusions, which are cell-

matrix contacts with an inherent ability to lyse extracellular matrix (figure 1.3.1) [32-

34]. This is achieved by localized release of matrix-lytic factors, especially proteases of 

the matrix metalloproteinase family [35]. Podosomes show a typical architecture: a core 

structure consisting of F-actin and actin-associated proteins, and a ring structure of 

plaque proteins such as paxillin. 

The fact that proteases could be dispensable for macrophages to migrate is not 

completely clear. A recent report shows that macrophages from matrix 

metalloproteinase (MMP) Mmp-9-/-

Cell migration is also regulated by chemokines, a family of small cytokines or signaling 

proteins secreted by cells in response to signals such as proinflammatory cytokines, 

which play an important role in selectively recruiting monocytes, neutrophils, and 

lymphocytes toward the chemokine source. These chemokines act as intercellular 

messengers to control cell migration and activation of specific subsets of leukocytes. In 

addition, chemokines contribute to the regulation of gene expression in target cells and 

they also regulate cell proliferation and apoptosis. It has been described that the levels 

of these proteins are elevated in several inflammatory diseases. Although it is not clear 

whether excessive chemokine production might be the cause or the consequence of 

these diseases, it has been reported that neutralizing endogenous chemokines reduces 

symptoms in autoimmune diseases, chronic inflammation and cancer treatment 

(reviewed in [40]). 

 mice exhibit transmatrix migrating activity similar 

to that of wild-type cells [36] and, in vivo, macrophage tissue infiltration is not affected 

in experimental atherosclerosis performed in Mmp13-/- or Mmp-14-/- (MT1-MMP) 

mice [37, 38]. However, other recent work indicates that in vivo macrophage migration 

during embryonic development is MMP dependent in frog and zebrafish and also that 

macrophages from MT1-MMP-deficient mice have defective tissue infiltration capacity 

[39]. Therefore, it is rather difficult to conclude the specific role of proteases in 

macrophage migration. 

1.3.1. C1P and cell migration 

Within the sphingolipid family, there are some sphingolipids that have been shown to 

behave as bioactive lipids. Some of the most important ones are considered to be 

phosphorylated species such as sphingosine 1-phosphate (S1P) and ceramide 1-
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phosphate (C1P), which play an important role in intracellular signaling and in cell-to-

cell communication [41, 42]. While most of the research work over the past decades has 

been focused on the role of S1P in trafficking and migration over several cell types, the 

role of C1P has been more recently discovered. Our group demonstrated the potent 

chemotactic effect of C1P in macrophages, an action that requires interaction of C1P 

with a Pertussis toxin (Ptx)-sensitive receptor [43]. Also, we established for the first 

time that C1P induces release of Monocyte Chemoattractant Protein-1 (MCP-1) in 

J774A.1 macrophages, human THP-1 monocytes and 3T3-L1 preadipocytes [44].  

In this thesis, we wanted to examine whether C1P was able to conduct macrophage 

migration through MMP activation, actin polymerization and cytokine release, which 

are key events in cell migration.  

 

2. RESULTS 

2.1.  C1P induces MMP-2 and MMP-9 protein expression and activity in 

J774A.1 macrophages.  

In a previous work we had established that C1P can induce cell migration in 

macrophages through activation of a putative plasma membrane receptor [43]. It is also 

known that MMPs are the main enzymes involved in extracellular matrix remodeling, 

which plays an essential role in cell migration. Since C1P induces J774A.1 macrophage 

migration and the role of MMPs in this process is crucial, it was important to find 

whether C1P was able to induce MMP-2 and MMP-9 protein expression and activation 

in the macrophages. 

To test the effect of C1P on MMP-2 and MMP-9, we incubated J774A.1 macrophages 

with C1P at 20 µM, which according to our previous work is the optimal concentration 

of C1P to induce cell migration in these cells [44]. We observed that C1P was able to 

induce MMP-2 and MMP-9 expression in a time-dependent manner, with a maximum 

effect at 24 hours and 8 hours, respectively (Figure 2.1.1). 



                                     Chapter 1: MMPs are implicated in C1P-induced macrophage migration 

112 
 

 

 

Figure 2.1.1 C1P induces MMP-2 and MMP-9 expression in J774A.1 macrophages. Cells 
were seeded in 60 mm dishes (2.5 x 105 

 

cells/dish) and incubated overnight in DMEM 
supplemented with 10% FBS. The next day, the cells were washed with PBS and the medium 
was replaced with medium without serum. After 2 hours in medium without serum, 20 µΜ of 
C1P was added. Cells were then harvested at the indicated time points. A. MMP-2 was detected 
by Western blotting using specific antibody to MMP-2. Equal loading of protein was monitored 
using a specific antibody to GAPDH. Similar results were obtained in each of 4 replicate 
experiments. B. Results of scanning densitometry of the exposed film. Data are expressed as 
arbitrary units of intensity relative to control values and are the mean ± SEM of 4 independent 
experiments (*p<0.05). C. MMP-9 was detected by Western blotting using specific antibody to 
MMP-9 and equal loading of protein was monitored using a specific antibody to GAPDH. 
Similar results were obtained in each of 5 replicate experiments. D. Results of scanning 
densitometry of the exposed film. Data are expressed as arbitrary units of intensity relative to 
control values and are the mean ± SEM of 5 independent experiments (**p<0.01).  

In addition to studying the possible role of C1P in MMP-2 and MMP-9 expression, we 

also wanted to test whether C1P induces MMP-2 and MMP-9 activation. For this, 

gelatin zymographic analyses were performed. These experiments revealed that C1P 

also induces MMP-2 and MMP-9 activation in a time-dependent manner with a 

maximum effect at 24 hours (Figure 2.1.2A and B). In order to ensure that these MMP 

activations were not just increments in their basal activity but rather activations caused 

by C1P, similar experiments with control samples and C1P-treated samples were carried 
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out. It was observed that C1P induced MMP-2 and MMP-9 activation (Figure 2.1.2 C 

and D). 

 

 

 

Figure 2.1.2. C1P induces MMP-2 and MMP-9 activity. A. Cells were seeded in 60 mm 
dishes (5 x 105 
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cells/dish) and incubated in DMEM supplemented with 10% FBS for 3-4 hours 
in order to allow cell attachment. Cells were then washed and serum-free DMEM was added. 
After 2 hours, 20 μM of C1P was added and the supernatant was collected and concentrated 
after the indicated time points. A. MMP-2 and MMP-9 activity was determined by gelatin 
zymography, as described in Materials and Methods. B. Results of scanning densitometry of the 
gel. Data are expressed as arbitrary units of intensity and are the mean ± SEM of 4 independent 
experiments (*p< 0.05,**p<0.01). C. Cells were incubated and treated as in A, except that cells 
were treated with vehicle or 20 µM of C1P for 24 hours. Then, MMP-2 and MMP-9 activities 
were determined by gelatin zymography. D. Results of scanning densitometry of the gel. Data 
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are expressed as arbitrary units of intensity and are the mean ± SEM of 3 independent 
experiments (*p< 0.05, ** p<0.01). 

 

2.2. PI3K and ERK kinases are implicated in C1P-induced MMP-2 and MMP-

9 activation.  

Some of the best characterized pathways linked to cell motility functions are the 

Phosphoinositide 3-kinase (PI3K)/Protein kinase B (PKB) and the Mitogen activated 

protein kinase (MAPK)/Extracellular signal-regulated kinase (ERK) pathways [41-44]. 

To test if these pathways were involved in C1P-induced MMP-2 and MMP-9 activities 

we performed gelatin zymography assays using siRNA technology in order to silence 

the corresponding genes encoding these kinases.  

We observed that silencing of PI3K and ERK in J774A.1 macrophages completely 

blocked C1P-induced gelatinase activity (Figure 2.2.1). These results suggest that both 

PI3K and ERK kinases are important downstream effectors of C1P, which promotes 

MMP-9 and MMP-2 activation.  
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Figure 2.2.1. PI3K and ERK pathways are involved in C1P-induced MMP-2 and MMP-9 
activation. Cells were seeded in 60 mm dishes (2 x 105 cells/dish) and treated with vehicle 
(open bars, line 1 and 5), negative siRNA (black bars, line 2 and 6), PI3K siRNA (dark green 
bars, line 3 and 7), or ERK siRNA (light green bars, line 4 and 8), as described in Materials and 
Methods. Cells were then scrapped and counted in order to be seeded in 60 mm dishes (5 x 105 

 

cells/dish). Cells were further incubated for 3-4 hours in DMEM supplemented with 10% FBS 
in order to allow cell attachment. Cells were then washed and the medium was changed to 
serum-free DMEM. After 2 hours of incubation, the cells were further incubated with vehicle 
(1.- Ctrl, 2.- Negative siRNA, 3.- PI3K siRNA and 4.- ERK siRNA) or 20 μΜ of C1P ( 5.- C1P 
20µM, 6.- C1P + negative siRNA, 7.- C1P + PI3K siRNA  and 8.- C1P + ERK siRNA) for 24 
hours. The culture medium was collected and concentrated. A. MMP-2 and MMP-9 activity was 
determined by gelatin zymography. B. Results of scanning densitometry of MMP-9 in the gel. 
Data are expressed as arbitrary units of intensity and are the mean ± SEM of 5 independent 
experiments (** p< 0.01, ## p<0.01, #p<0.05). C. Results of scanning densitometry of MMP-2 
in the gel. Data are expressed as arbitrary units of intensity and are the mean ± SEM of 5 
independent experiments (* p< 0.05, #  p< 0.05). D. After treatment with PI3K siRNA, cells 
were collected and the PI3K siRNA inhibitory efficiency was confirmed by Western blotting 
using specific antibody to PI3K. Equal loading of protein was monitored using specific antibody 
to GAPDH. Similar results were obtained in each of 2 independent experiments. E. After 
treatment with ERK siRNA, cells were collected and the ERK siRNA inhibitory efficiency was 
confirmed by Western blotting using specific antibody to ERK. Equal loading of protein was 
monitored using a specific antibody to GAPDH. Similar results were obtained in each of 2 
independent experiments. 

As mentioned before, our group previously demonstrated that C1P stimulates cell 

migration through interaction with a putative specific C1P receptor which was found to 

be a Gi protein-coupled receptor (GPCR) [43]. To test if C1P-induced Akt and ERK 

phosphorylation is dependent on the activation of a GPCR, we used Pertussis toxin 

(Ptx), a widely used toxin secreted by Bordetella pertussis, which upon addition to 

eukaryotic cells causes inhibition of GPCRs on the cell surface. Therefore, all of the 

signaling pathways that are dependent on this kind of interaction will be consequently 

blocked. It was observed that C1P-stimulated Akt and ERK phosphorylation were 

highly sensitive to Ptx treatment (Figure 2.2.2). 
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Figure 2.2.2. Pertussis toxin (Ptx) inhibits C1P-induced Akt and ERK phosphorylation in 
J774A.1 macrophages. Cells were seeded in 60 mm plates (2.5 x 105 

 

cells/dish) and incubated 
overnight in DMEM supplemented with 10% FBS. Cells were then washed and the medium was 
replaced by serum-free DMEM. After 2 hours, cells were incubated with 10 pg/ml Ptx for 16 
hours and then 20 μM of C1P or vehicle was added for 10 minutes. Cells were then harvested in 
lysis buffer and samples were analyzed by Western blotting. A. The presence of phosphorylated 
protein was detected using a specific antibody to each phosphorylated kinase, p-Akt and p-ERK, 
respectively. Equal loading of protein was monitored using specific antibody to total protein of 
each kinase and to GAPDH. B. Results of scanning densitometry of the exposed film. Data are 
expressed as arbitrary units of intensity and are the mean ± SEM of 3 independent experiments 
(*p< 0.05, # p< 0.05). 

2.3. MMP-2 and MMP-9 gelatinases are implicated in C1P-induced 

macrophage migration. 

Although in a previous work we had established that C1P induced cell migration in 

macrophages, the mechanisms involved in this process were poorly described. 

Considering that C1P stimulates MMP-2 and MMP-9 activities, we wanted to assess 

whether MMP-2 and MMP-9 would be implicated in C1P-induced cell migration. We 

performed cell migration assays using a selective MMP-2/9 inhibitor and, as shown in 

Figure 2.3.1, this inhibitor was able to reduce C1P-promoted cell migration potently. 

p-Akt

- +            - +           Ptx (10 pg/ml)  
- - +              +          C1P (20 µM) 

Akt total

p-ERK

ERK total

GAPDH

A. B.

Vehicle Ptx Vehicle Ptx
0

1

2

3

4

5

6

7
p-Akt
p-ERK

Ctrl C1P 20 µM

#

#

*

*

R
el

at
iv

e 
in

te
ns

it
y



Chapter 1: MMPs are implicated in C1P-induced macrophage migration 
  

117 
 

 

Figure 2.3.1. Inhibition of MMP-2 and MMP-9 almost completely blocks C1P-induced cell 
migration. Macrophage migration was measured using a Boyden chamber-based cell migration 
assay. Cells (5 x104

 

 cells/well) were seeded in the upper wells of 24-well chambers coated with 
fibronectin, and pre-incubated for 1 hour with vehicle (open bars) or with either 0.5, 1 or 10 μM 
of MMP-2/9 inhibitor (filled bars). After 1 hour of incubation, either vehicle or 20 μΜ of C1P 
were added. Cells were further incubated for 24 hours and cell migration was determined as 
indicated in Materials and Methods. Data are expressed as the number of migrated cells relative 
to the number of cells migrated in the control chamber and are the mean ± SEM of 4 
independent experiments performed in duplicate (***p>0.001, # p<0.05, ## p<0.01). 

 
The implication of MMP-2 and MMP-9 on C1P-induced cell migration was also studied 

using siRNA in order to silence the corresponding genes encoding these enzymes. It 

was observed that silencing of MMP-2 and MMP-9 completely blocked C1P-induced 

macrophage migration (Figure 2.3.2). 
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Figure 2.3.2. MMP-2 and MMP-9 siRNA inhibit C1P-stimulated cell migration in J774A.1 
macrophages. Cells were seeded in 60 mm dishes (2 x 105 cells/dish) and siRNA treatment was 
performed as indicated in Materials and Methods. Cells were treated with MMP-9 siRNA 
(panel A and B) or MMP-2 siRNA (panel C and D) as well as with the negative siRNA or 
vehicle, as indicated. After treatment with siRNA, cells were incubated with fresh DMEM 
supplemented with 10% FBS for 24 hours. Cells were then scrapped and counted. A. Cells (5 x 
104 cells/well) were seeded in the upper wells of 24-well chambers coated with fibronectin. 
After 1 hour of preincubation, either vehicle (control) or 20 μΜ of C1P were added in the lower 
chambers. Cells were then incubated for 24 hours and cell migration was determined as 
indicated in Materials and Methods. Data are expressed as the number of migrated cells relative 
to the number of cells migrated in the control chamber and are the mean ± SEM of 4 
independent experiments performed in duplicate (* p<0.05, # p<0.05). B. MMP-9 siRNA 
inhibitory efficiency was confirmed by Western blotting using specific antibody to MMP-9. 
Equal loading of protein was monitored using a specific antibody to GAPDH. Similar results 
were obtained in each of 2 independent experiments. C. Cells (5 x 104

 

 cells/well) were seeded in 
the upper wells of 24-well chambers coated with fibronectin. After 1 hour of preincubation, 
either vehicle (control) or 20 μΜ of C1P were added in the lower chambers. Cells were then 
incubated for 24 hours and cell migration was determined as indicated in Materials and 
Methods. Data are expressed as the number of migrated cells relative to the number of cells 
migrated in the control chamber and are the mean ± SEM of 3 independent experiments 
performed in duplicate (* p<0.05, # p<0.05). D. MMP-2 siRNA inhibitory efficiency was 
confirmed by Western blotting using specific antibody to MMP-2. Equal loading of protein was 
monitored using a specific antibody to GAPDH. Similar results were obtained in each of 2 
independent experiments.  

All these data suggest a different pathway for C1P to induce cell migration, in which the 

gelatinases MMP-2 and MMP-9 are the main enzymes involved and their activation is 

regulated by PI3K and ERK kinases.  

 

2.4. Actin polymerization is implicated in C1P-induced macrophage migration 

Due to their ability to degrade ECM, MMPs are important enzymes involved in cell 

migration. However, the ECM degradation mechanism by itself does not grant cell 

migration. Furthermore, cell migration is a complex process in which cell shape 
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undergoes morphological changes, mainly due to actin polymerization. Actin is a 

globular multi-functional protein that forms microfilaments. It is found in almost all 

eukaryotic cells and it can be present as either a free monomer called G-actin (globular) 

or as part of a linear polymer microfilament called F-actin (filamentous), both of which 

are essential for vital cellular functions, such as cell mobility or cell contraction 

processes during cell division.  

Since actin polymerization is largely responsible for the dynamic nature of the 

cytoskeleton, we wanted to study whether the polymerization of cytoskeletal actin 

filaments was implicated in C1P-induced macrophage migration. Noteworthy, we 

observed that disturbances of actin cytoskeleton organization promoted by Cytochalasin 

D blocked C1P-induced macrophage migration (Figure 2.4.1). 

 
 

Figure 2.4.1. Cytochalasin D blocks C1P-induced macrophage migration. Macrophage 
migration was measured using a Boyden chamber-based cell migration assay. Cells (5 x 104

 

 
cells/well) were seeded in the upper wells of 24-well chambers coated with fibronectin, and pre-
incubated for 1 hour with vehicle (filled bars) or with 1 μM of Cytochalasin D, an actin 
polymerization inhibitor (open bars). After 1 hour of incubation, either vehicle or 20 μΜ of C1P 
was added. Cells were further incubated for 24 hours and cell migration was measured as 
described in Materials and Methods. Results are expressed as the number of migrated cells 
relative to the number of cells migrated in the control chamber and are the mean ± SEM of 3 
independent experiments performed in duplicate (** p<0.01, # p<0.05).  

Due to the importance of actin polymerization in the process of cell migration, and 

taking into consideration that C1P-induced macrophage migration was blocked with a 

specific actin polymerization inhibitor, we next decided to study whether C1P was able 

to induce actin polymerization in J774A.1 macrophages. In order to visualize F-actin by 

flow cytometry we used Phalloidin, a class of toxins that belongs to the Phallotoxins 
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family. Due to their selective binding to F-actin, phalloidin-derived molecules 

containing fluorescent tags were used in our experiments to visualize actin filaments. As 

shown in Figure 2.4.2, we observed that C1P stimulates polymerization of cytoskeletal 

actin filaments. However, we found that C1P-induced actin polymerization was not 

MMP-2/9 dependent. 

 

Figure 2.4.2. C1P induces actin polymerization in J774A.1 cells, an action that is not 
MMP-2/9 dependent. J774A.1 cells were seeded in 60 mm plates (2.5 x 105

 

 cells/well) and 
incubated in DMEM containing 10% FBS, overnight. The medium was then changed to serum-
free DMEM and further incubated for 2 hours. After 2 hours, cells were pretreated with vehicle 
or 1 μΜ of MMP-2/9 inhibitor for 30 minutes. After 30 minutes of preincubation, either vehicle 
or 20 μΜ of C1P were added to the cells. Cells were incubated for 24 hours and actin 
polymerization was determined as indicated in Materials and Methods. Samples were then 
analyzed by flow cytometry. A. A representative histogram obtained after the treatment with 
vehicle (solid purple area), 20 µM C1P (green line), or C1P 20 µM with 1 μM of MMP-2/ 9 
inhibitor (pink line). Similar results were obtained in 3 independent experiments B. Results are 
expressed as the phalloidin- Alexa Flour 488 GeoMean of fluorescence intensity (GM) ± SEM 
of 3 independent experiments (*p< 0.05). 
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Since C1P-induced actin polymerization is not MMPs-dependent, we hypothetized that 

MMP-2 and MMP-9 might be downstream effectors of actin polymerization. To 

understand the role of actin polymerization on MMP-2 and MMP-9 expression in 

J774A.1 macrophages, we treated macrophages with Cytochalasin D, and we found that 

actin polymerization is required for C1P-stimulated MMP-2 and MMP-9 expression 

(Figure 2.4.3), suggesting that C1P induces actin polymerization before inducing MMP-

2 and MMP-9 expression.  

 

 

Figure 2.4.3. Cytochalasin D blocks C1P-induced MMP-2 and MMP-9 expression. Cells 
were seeded in 60 mm dishes (2.5 x 105 
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cells/dish) and incubated overnight in DMEM 
supplemented with 10% FBS. The next day, the cells were washed and the medium was 
replaced with medium without serum. After 2 hours, cells were incubated with either vehicle or 
1 μΜ cytochalasin D for 30 minutes prior to 20 μΜ of C1P addition. A. After 24 hours of 
incubation with 20 μΜ of C1P, cells were harvested and the presence of MMP-2 protein was 
detected by Western blotting using specific antibody to MMP-2. Equal loading of protein was 
monitored using a specific antibody to GAPDH. B. Results of scanning densitometry of exposed 
film. Data are expressed as arbitrary units of intensity of the MMP-2 protein and are the mean ± 
SEM of 5 independent experiments (*p< 0.05, #p< 0.05). C. After 8 hours of incubation with 20 
μΜ of C1P, cells were harvested and the presence of MMP-9 was detected by Western blotting 
using specific antibody to MMP-9 protein. Equal loading of protein was monitored using a 
specific antibody to GAPDH. D. Results of scanning densitometry of exposed film. Data are 
expressed as arbitrary units of intensity of the MMP-9 protein and are the mean ± SEM of 5 
independent experiments (*< 0.05, #p< 0.05). 
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2.5. Paxillin is involved in C1P-induced actin polymerization in J774A.1 cells 

Focal adhesions form a structural link between the ECM and the actin cytoskeleton, 

thus, they involve important signaling pathways in cell growth and migration. Their 

components, which are focal adhesion proteins, propagate cell signals that start with the 

activation of integrins. This is followed by the junction to ECM proteins, such as 

fibronectin, collagen and laminin. Importantly, focal adhesion proteins, including 

paxillin, bind to many proteins that are involved in promoting changes in the actin 

cytoskeleton organization, which are necessary for cell motility events. 

Since, C1P induces actin polymerization, we hypothesized that paxillin could be 

involved in this action. Therefore, to investigate the signaling processes involved in 

C1P-induced actin polymerization, we initially examined the ability of C1P to induce 

paxillin phosphorylation. We found that C1P was able to induce paxillin 

phosphorylation in a time-dependent manner, with a maximum effect at 1 hour of 

incubation (Figure 2.5.1). 

 

                      

Figure 2.5.1. C1P induces paxillin phosphorylation. Cells were seeded in 60 mm dishes (2.5 
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scanning densitometry of exposed film. Data are expressed as arbitrary units of intensity of 
phosphorylated paxillin and are the mean ± SEM of 4 independent experiments (*p< 0.05). 

 

To further demonstrate the implication of paxillin in C1P-induced actin polymerization, 

we performed siRNA experiments to block the expression of paxillin. After siRNA 

treatment, F-actin content was measured by flow cytometry. We found that paxillin 

silencing was able to inhibit C1P-induced actin polymerization in J774A.1 cells (Figure 

2.5.2.), suggesting a possible role of paxillin in C1P-induced actin polymerization.  

 

 

Figure 2.5.2. Paxillin is involved in C1P-induced actin polymerization. Cells were seeded in 
60 mm dishes (2 x 105 cells/dish) and treated with vehicle, negative siRNA or paxillin siRNA, 
as described in Materials and Methods. Cells were then scrapped, counted and seeded in 60 mm 
dishes (2.5 x 105 
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measured, as described in Materials and Methods A. Representative histogram obtained after 
the treatment with vehicle (solid purple area), 20 µM of C1P (green line), or with 20 µM of C1P 
with paxillin siRNA (pink line) for 24 hours. Similar results were obtained in 5 independent 
experiments. B. Results of relative actin polymerization. Data are expressed as the phalloidin-
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Alexa Flour 488 GeoMean of fluorescence intensity (GM) ± SEM of 5 independent experiments 
(#p< 0.05, **p<0.01). C. After siRNA treatment, cells were collected and the paxillin siRNA 
inhibitory efficiency was confirmed by Western blotting using specific antibody against 
paxillin. Equal loading of protein was monitored using a specific antibody to GAPDH. Similar 
results were obtained in each of 2 independent experiments. 

 

To evaluate whether C1P induces paxillin phosphorylation through prior intreraction 

with its putative receptor, the macrophages were pre-treated with Ptx. We found that Ptx 

at a concentration as low as 10 pg/ml completely blocked C1P-induced paxillin 

phosphorylation (Figure 2.5.3). Therefore, it is quite possible that C1P action on 

paxillin phosphorylation requires the interaction of C1P with its Ptx-sensitive GPCR. 

 

Figure 2.5.3. Pertussis toxin inhibits C1P-induced paxillin phosphorylation. Cells were 
seeded in 60 mm dishes (2.5 x 105 

 

cells/dish) and incubated overnight in DMEM supplemented 
with 10% FBS. Cells were then treated with 10 pg/ml Ptx for 16 hours. After 16 hours, cells 
were treated with either vehicle or 20 μΜ of C1P for 1 hour. After 1 hour, cells were harvested. 
A. The presence of phosphorylated paxillin protein (p-paxillin) was detected by Western 
blotting using specific antibody to p-paxillin. Equal loading of protein was monitored using 
specific antibody to GAPDH and total paxillin. B. Results of scanning densitometry of exposed 
film. Data are expressed as arbitrary units of intensity of p-paxillin and are the mean ± SEM of 
6 independent experiments (#p< 0.05, **p<0.01). 

The next step was to investigate the signaling pathways involved in paxillin 

phosphorylation. Our group previously demonstrated the implication of MAPK in C1P-

induced antiapoptotic, cell proliferation and cell migration effects in different cell types 

[44-46]. MEK1 and MEK2, also known as MAPKK or MAPK2, are important kinases 

that participate in this pathway. Once activated, they are able to stimulate ERK1/2 
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through direct phosphorylation of loop residues Thr202/Tyr204 and Thr185/Tyr187, 

respectively.  

Since, paxillin is involved in C1P-induced actin polymerization, which is a key 

mechanism for the cell migration process, and C1P-induced cell migration is dependent 

on MAPK pathway, we hypothesized that paxillin may be a target protein of ERK. 

Therefore, to determine if this pathway is implicated in C1P-induced paxillin 

phosphorylation, siRNA technology was used to silence ERK1/2 protein expression. 

We found that ERK1/2 silencing caused a marked reduction in C1P-induced paxillin 

phosphorylation (Figure 2.5.4), suggesting that ERK1/2 are involved in this process. 

 

Figure 2.5.4. ERK is implicated in C1P-induced paxillin phosphorylation. Cells were 
seeded in 60 mm dishes (2 x 105 cells/dish) and the siRNA treatment was performed as 
indicated in Materials and Methods. Cells were treated with vehicle (open bars), negative 
siRNA (dark green bars) or ERK siRNA (light green bars). After treatment with siRNA, cells 
were incubated with fresh DMEM supplemented with 10% FBS for 24 hours. After 24 hours, 
cells were scrapped and counted. Cells were then seeded in 60 mm dishes (2.5 x 105
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and incubated overnight in DMEM supplemented with 10% FBS. The next day, the medium 
was replaced with serum-free DMEM for 2 hours. After 2 hours, cells were treated with either 
vehicle or 20 μΜ of C1P for 1 hour. Cells were then harvested. A. The presence of p-paxillin 
protein was detected by Western blotting using specific antibody to phosphorylated paxillin. 
Equal loading of protein was monitored using specific antibody to GAPDH. B. Results of 
scanning densitometry of exposed film. Data are expressed as arbitrary units of intensity of 
phosphorylated paxillin and are the mean ± SEM of 3 independent experiments (*p< 0.05, #p< 
0.05). 
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Altogether, these data suggest that actin polymerization is a new important event 

implicated in C1P-induced MMP-2 and MMP-9 expression and, consequently in C1P-

induced macrophage migration. In addition, paxillin, a focal adhesion protein which is a 

target protein for ERK kinase, plays a key role in this migration-associated signaling 

pathway.  

2.6. C1P induces IL-1β release in J774A.1 macrophages. 

We have previously reported that C1P is a potent chemoattractant agent for 

macrophages and that C1P exerts this action through interaction with a putative receptor 

for C1P [43]. Also, we established for the first time that C1P induces release of 

Monocyte Chemoattractant Protein-1 (MCP-1) in J774A.1 macrophages, human THP-1 

monocytes and 3T3-L1 preadipocytes [44].  In addition to C1P, the production of MCP-

1 can be induced in response to inflammatory cytokines, such as interleukin-1 (IL-1), 

IL-4, tumor necrosis factor (TNF-α), or interferon-γ. 

Since cell migration and inflammation are closely related events in both pathological 

and physiological processes, and because of the importance of interleukin-1β (IL-1β) in 

inflammatory responses and immunity, it was important to know whether C1P was able 

to induce IL-1β release in macrophages. Therefore, we cultured J774A.1 macrophages 

in the presence or absence of C1P and measured IL-1β concentration in the culture 

medium after incubation with different C1P concentrations (Figure 2.6.1a) and after 

different incubation times (Figure 2.6.1b). We observed that C1P significantly 

stimulated IL-1β release in a concentration- and time-dependent manner. 

 

Figure 2.6.1. C1P induces IL-1β release in J774A.1 macrophages. Cells were seeded in 6-
well plates (1.5 x 105 
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cells/dish) and incubated overnight in DMEM supplemented with 10% 
FBS. The next day, the cells were washed and the medium was replaced by serum-free DMEM 
for 2 hours. A. After 2 hours of incubation, cells were further incubated with the indicated 
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concentrations of C1P for 2 hours. Then, the medium was collected and centrifuged. IL-1β 
concentrations were measured using ELISA kits, as indicated in Materials and Methods. Results 
are normalized to total cell number and are the mean ± SEM of 3 independent experiments 
performed in duplicate (*p<0.05). B. After 2 hours, cells were incubated with 20 µM of C1P for 
the indicated time periods and the IL-1β concentration in the medium was determined. IL-1β 
values were normalized to the total cell number and the results are expressed as the mean ± 
SEM of 3 independent experiments (*p< 0.05, **p<0.01).    

 

2.7. ERK and PI3K are implicated in C1P-induced IL-1β release.  

Some of the best characterized kinases linked to cell motility functions are PI3K and 

ERK. Both kinases can be activated by many different stimuli, including growth factors, 

cytokines, virus infection, ligands for heterotrimeric G protein-coupled receptors, 

transforming agents and carcinogens. The PI3K/PKB and MEK/ERK pathways have 

been described to lead to activation of transcription factors, such as nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB). NF-κB signaling plays an 

important role in inflammation. This transcription factor is present in cells in an inactive 

state and does not require new protein transcription to exert its action. Therefore, it 

participates in a variety of cell responses such as cell proliferation, protection of 

apoptosis, immune system regulation, inflammation and cell migration.  

Although PI3K and ERK are some of the most important kinases related to 

inflammation, we wanted to study the possible implication of other signaling kinases 

and transcription factors in C1P-induced IL-1β release. To determine which signaling 

pathways are involved in this C1P-induced IL-1β release, we performed ELISA 

experiments using selective inhibitors for these kinases and transcription factors:  

PD98059 for the MEK1 protein, Ly294002 for PI3K, SP600125 for JNK, SB202190 for 

p38, and Stattic for STAT3. We observed that ERK and PI3K kinases were the only 

kinases implicated in C1P-induced IL-1β release (Figure 2.7.1). 
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Figure 2.7.1. ERK and PI3K are implicated in C1P-induced IL-1β release.  Cells were 
seeded in 6-well plates (1.5 x 105 

 

cells/dish) and incubated overnight in DMEM supplemented 
with 10% FBS. The next day, the cells were washed and the medium was replaced by serum-
free DMEM for 2 hours. After 2 hours of incubation, cells were pre-incubated with the indicated 
concentrations of inhibitor for 30 minutes before 20 µM C1P addition, and cells were further 
incubated for 2 hours. Then, the medium was collected and centrifuged. IL-1β concentrations 
were measured using an ELISA kit, as indicated in Materials and Methods. IL-1β values were 
normalized to the total protein amount and the results are expressed as the mean ± SEM of 4 
independent experiments performed in duplicate (*p< 0.05, ##p<0.01).    

In order to confirm the results obtained with the pharmacological inhibitors PD98059 

and Ly294002, siRNA technology experiments were performed to silence the 

corresponding genes encoding these kinases. We observed that silencing of ERK and 

PI3K significantly blocked C1P-induced IL-1β release (Figure 2.7.2). 

 

Figure 2.7.2. PI3K and ERK are implicated in C1P-induced IL-1β release in J774A.1 
macrophages. Cells were seeded in 60 mm dishes (2 x 105 cells/dish) and the siRNA treatment 
was performed as indicated in Materials and Methods. Cells were then scrapped and counted in 
order to be seeded (1.5 x 105 
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cells/dish) in 6-well plates. The next day, cells were washed and 
the medium was replaced by serum-free DMEM. After 2 hours of incubation, cells were further 
incubated with or without 20 μM of C1P for 2 hours. A. The culture medium was collected and 
the IL-1β content was determined by ELISA, as described in Materials and Methods. IL-1β 
concentration was normalized to the total protein content and data are expressed as the mean ± 
SEM of 4 independent experiments performed in duplicate (***p<0.001, ##p<0.01, #p< 0.05). 
B. After siRNA treatment, cells were collected and the ERK siRNA inhibitory efficiency was 
confirmed by Western blotting using specific antibody against ERK. Equal loading of protein 
was monitored using a specific antibody to GAPDH. Similar results were obtained in each of 2 
independent experiments. C. After siRNA treatment, cells were collected and the PI3K siRNA 
inhibitory efficiency was confirmed by Western blotting using specific antibody against p85. 
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Equal loading of protein was monitored using a specific antibody to GAPDH. Similar results 
were obtained in each of 2 independent experiments. 

 

In order to test the implication of IL1-β in C1P-induced cell migration, we performed 

migration experiments using siRNA technology to silence the corresponding gene 

encoding this cytokine. We found that silencing of IL-1β in J774A.1 macrophages does 

not block C1P-induced macrophage migration. These data suggest that IL-1β release is 

not required for C1P-induced cell migration (Figure 2.7.3). 

Figure 2.7.3. IL-1β  siRNA does not block  C1P-stimulated cell migration in J774A.1 cells. 
Cells were seeded in 60 mm dishes (2 x 105 cells/dish) and the siRNA treatment was performed 
as indicated in Materials and Methods. Cells were treated with IL-1β siRNA as well as with the 
negative siRNA and the vehicle. After treatment with siRNA, cells were incubated with fresh 
DMEM supplemented with 10% FBS for 24 h. Cells were then scrapped and counted. A. Cells 
(5 x 104

 

 cells/well) were seeded in the upper wells of 24-well chambers coated with fibronectin. 
After 1 hour of preincubation, either vehicle or 20 μΜ of C1P were added in the lower 
chambers. Cells were then incubated for 24 h and cell migration was determined as described in 
Materials and Methods. Data are expressed as the number of migrated cells relative to the 
number of cells migrated in the control chamber and are the mean ± SEM of 4 independent 
experiments (**p<0.01). B. IL-1β siRNA inhibitory efficiency was confirmed by Western 
blotting using a specific antibody to IL-1β. Equal loading of protein was monitored using a 
specific antibody to GAPDH. Similar results were obtained in each of 2 independent 
experiments.  

2.8. Lack of toxicity of the inhibitors used in this work 

All commonly used chemical inhibitors in cell signaling studies have been described to 

be toxic for cells at certain concentrations or incubation times. To test if any of the 

above used inhibitors were toxic for the J774A.1 macrophages at the indicated times 

and concentrations we performed cell viability assays. We observed that none of these 
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pharmacological inhibitors caused a significant decrease in cell viability of 

macrophages (Figure 2.8.1). PD98059, Ly294002, SP600125, SB202190, and Stattic 

were previously tested and none of these inhibitors were toxic for J774A.1 cells. Fig. 

2.8.1 shows that cytochalasin and the MMP-2/9 inhibitor were also not toxic at the 

concentrations and time points used in these studies. 

 

Figure 2.8.1. Cell viability after treatment with various chemical inhibitors. Cells were 
seeded in 96-well plates (5 x 103

 

 cells/well) and incubated overnight in DMEM supplemented 
with 10% FBS. The next day, the cells were washed and the medium was replaced with medium 
without serum. After 2 hours of incubation, cells were treated with the chemical inhibitors at the 
indicated concentrations and cell viability was measured after 24 hours of incubation. Cell 
viability was determined using the MTS-formazan assay as indicated in Materials and Methods. 
Results are the mean ± SEM of 3 independent experiments performed in triplicate.  

Altogether, these data demonstrate that C1P promotes MMP-2 and MMP-9 expression 

and activation as well as actin polymerization, which act as mediators of C1P-

stimulated cell migration. Based on our data, paxillin is implicated in C1P-induced actin 

polymerization. Besides, actin polymerization is necessary for C1P  to  induce MMP-2 

and MMP-9 expression, suggesting an interconection between actin polimerization and 

MMPs. In this connection, PI3K/Akt and MEK/ERK are important upstream effectors 

of these action, since after the blockade of both ERK and PI3K kinases, C1P-induced 

MMPs activity was attenuated and ERK inhibition also diminished paxillin 

phosphorylation. On the other hand, despite the fact that C1P induces IL-1β release, this 

cytokine is not implicated in C1P-induced J774A.1 macrophage migration.  
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3. DISCUSSION 

Inflammation is a set of cellular and humoral reactions, which defends the organism 

from infection and tissue damage, leading ultimately to the restoration of functional and 

morphological integrity of affected tissues [47, 48]. Inflammation can be classified as 

either acute or chronic. Acute inflammation, can be defined as a physiological process 

generated by the body in response to injury, infection, or irritation, and is vital for the 

healing process. However, when this process becomes chronic it may contribute to a 

variety of diseases, including obesity or even cancer.  

Cell migration is a key event in the inflammatory response and it requires strict 

coordination. Macrophages are one of the most important immune cells involved in this 

protective response due to their migratory ability. Moreover, these highly motile cells 

are able to migrate and enter various tissues under inflammatory and non-inflammatory 

conditions and assume different functions and phenotypes according to the cues they 

receive from the environment. In inflammatory diseases, such as obesity or cancer, 

immune cells need to remodel and degrade ECM in order to migrate from the blood 

vessels into the damaged tissue, where they activate and differentiate into mature 

macrophages. Once activated, macrophages actively secrete and cause an imbalance of 

cytokines, chemokines, and mediators of inflammation. Hence, macrophages play a 

critical role in the initiation, maintenance, and resolution of inflammation and mediate 

many inflammatory diseases, such as atherosclerosis [49], obesity [50] and cancer [51]. 

There are some bioactive lipids that can exert biological functions as signaling 

molecules. One of these bioactive sphingolipid is ceramide 1-phosphate (C1P), whose 

implication in the regulation of cell biology has extensively been studied by our group. 

C1P was described as a mitogenic and pro-survival agent capable of stimulating 

proliferation in different cell types, including fibroblasts, macrophages and myoblasts 

[45, 46, 52-55]. Also, our group has recently demonstrated that C1P can act as a 

chemoattractant molecule for J774A.1 macrophages. This effect required the interaction 

of C1P with a Pertussis Toxin (Ptx)- sensitive receptor [43].  

Due to the importance of the cell migration process in physiological and pathological 

settings, its regulation needs to be further studied. Much evidence accumulated recently 

has established that cell-matrix and cell-cell interactions are also important in regulating 

this process. Interestingly, in the remodeling of the cell-matrix and cell-cell interactions, 



                                     Chapter 1: MMPs are implicated in C1P-induced macrophage migration 

132 
 

matrix metalloproteinases (MMPs) play key regulatory roles. Previous reviews have 

focused on the physiological and pathological roles of MMPs in blood vessels [56, 57]. 

In this thesis we have shown that C1P is able to induce MMP-2 and MMP-9 expression 

in a time-dependent manner. In addition, gelatin zymography showed that MMP-9 and 

MMP-2 activity was induced by C1P. Moreover, experiments using MMP-2/MMP-9 

selective inhibitor and siRNA to silence MMP-2 and MMP-9 demonstrated that these 

proteins take part in the signaling cascade that leads to C1P-induced macrophage 

migration. These results suggest that MMP-2 and MMP-9 play a key role in the 

activation of cell migration by C1P.  

Migration of cells is shown to be influenced by ERK since inhibition of ERK by MEK 

inhibitor U0126 or PD98059 reduces cell migration in various cell types [58]. Also, 

PI3K/Akt/mTOR signaling axis has emerged as a pivotal node of many cell growth and 

proliferation processes [59-61]. Concerning signaling pathways, gelatin zymographic 

analysis of medium from the C1P-treated J774A.1 macrophages revealed that C1P-

induced MMP-2 and MMP-9 activity requires the activation of ERK and PI3K, which 

are key kinases located in the Mitogen activated protein kinase (MAPK) pathway and 

the PI3K/Akt (PKB) pathway, respectively. Here, we found that gelatinases are 

downstream targets of ERK1/2 and PI3K, which are involved in C1P-induced 

macrophage migration.  

The linkage of the actin cytoskeleton to extracellular matrix (ECM) through focal 

adhesion sites provides a physical path for cells to exert traction forces on substrates 

during cellular processes such as migration. Cell migration involves two processes: first, 

the contact with external (chemoattractants) cues, and second a controlled generation of 

mechanical forces that will lead to conspicuous deformation of the cell body. This 

second process relies on the protrusion of the leading edge of the cell, its adhesion to the 

underlying substratum, retraction of the rear and de-adhesion [28]. The advancing of the 

leading edge is driven by actin polymerization under the plasma membrane which 

supports extension of the plasma membrane in the form of lamellipodia and filopodia 

[62]. In this work, we found for the first time that C1P significantly increases actin 

polymerization in J774A.1 macrophages. Also, we demonstrated that disturbances of 

actin cytoskeleton organization induced by Cytochalasin D abolished C1P-induced 

macrophage migration. Moreover, alterations in the cytoskeletal architecture that are 
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reflected in some cell shape changes are well known to accompany modifications in the 

gene expression of different cell types: mammary epithelium cells, chondrocytes, 

adipocyte precursors, and cells from synovial tissues. Unemori and Werb reported that 

disruption of the actin cytoskeleton stimulated procollagenase and stromelysin secretion 

in rabbit synovial fibroblasts. These results led to the speculation that perturbation of 

the actin microfilaments might be linked to the expression of genes involved in the 

initiation of extracellular matrix degradation [63]. In the current study, we performed 

experiments to discover whether changes in cytoskeleton polymerization modulate the 

expression of MMPs in J774A.1 macrophages. We observed that treatment of the cells 

with Cytochalasin D, which causes disruption of actin stress fibers, resulted in loss of 

C1P-induced MMP-2 and MMP-9 expression. All these data suggest that alterations in 

the cytoskeleton and subsequent cell shape changes, such as actin polymerization, exert 

specific effects on the expression of MMP-2 (also known as gelatinase-A) and MMP-9 

(also known as gelatinase –B), whose activation is crucial for C1P-induced macrophage 

migration. These results can be correlated with different works that have established a 

connection between actin polymerization and MMPs expression. These studies showed 

that MMP-9 was suppressed by an alteration in cell shape in melanoma cells [64] and 

that MMP-2 activation was regulated by the reorganization of the polymerized actin in 

human palmar fascial fibroblasts [65], which demonstrate that an alteration in cell shape 

influences MMP-9 as well as MMP-2 in different cell types.  

 

We next evaluated the proteins involved in C1P-induced actin polymerization. 

Polymerization of actin filaments and their interaction with the plasma membrane is 

mediated, among others, by paxillin. Paxillin is an adaptor protein involved in multiple 

protein-protein interactions. These protein-protein interactions are important for 

protrusion of the leading edge and the formation/disassembly of focal adhesions in 

moving cells [66, 67]. Moreover, paxillin  phosphorylation was found to be required for 

migration of rat bladder carcinoma NBT-II cells [66]. Therefore, we wanted to 

demonstrate whether this adhesion-protein was implicated in C1P-stimulated actin 

polymerization. We observed that C1P rapidly increases paxillin phosphorylation in a 

time-dependent manner. In addition, C1P-induced actin polymerization was decreased 

after silencing paxillin with specific siRNA, suggesting that paxillin plays a key role in 

C1P- induced actin polymerization, which is a key event on the cell migration process.  
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Concerning signaling pathways, our group previously demonstrated the ability of C1P 

to activate both Akt and ERK kinases in J774A.1 macrophages, minutes after the  

stimulation takes place [44]. Our studies revealed that this activation was blocked after 

Ptx-treatment, suggesting that C1P action on Akt and ERK phosphorylation requires the 

interaction of C1P with the Ptx-sensitive GPCR. In connection with these observations, 

we found that Ptx was able to decrease C1P-induced paxillin phosphorylation and 

furthermore, ERK inhibition also attenuated C1P-induced paxillin phosphorylation, 

suggesting that C1P-induced paxillin phosphorylation was regulated by ERK.  

 

On the other hand, we also demonstrated the role of C1P in cytokine release since 

inflammation and cell migration are closely related processes. It is known that C1P 

induces MCP-1 release in J774A.1 cell line [44], which is a potent chemoattractant for 

macrophages. In this thesis we found that C1P is able to induce IL-1β release in 

J774A.1 macrophages in a time- and concentration-dependent manner. In addition, 

using selective inhibitors and siRNA technology to silence gene encoding different 

kinases, we established that PI3K and ERK are key regulators of C1P-induced IL-1β 

release. However, although IL-1β induces neutrophil migration [68], IL-1β was not 

required for C1P-induced J774A.1 macrophage migration, since the blockade of  IL-1β 

with siRNA did not abolish C1P-induced macrophage migration. Therefore, it can be 

concluded that MCP-1, but not IL-1β, acts as chemoattractant for macrophages [44]. 

 

Overall, in this thesis we found for the first time that C1P was able to induce MMP-2 

and MMP9 activation and actin polymerization in J774A.1 macrophages, two distinct 

processes which are interconnected and very closely implicated in cell migration 

process. In addition, C1P-induced actin polymerization was accompanied by paxillin 

phosphorylation, an important focal adhesion protein which facilitates actin cytoskeletal 

reorganization and therefore, takes part in cell migration process. On the other hand, 

C1P also stimulates IL-1β release, although this cytokine is not required for C1P-

induced cell migration. Unlike MCP-1, IL-1β may not act as a chemoattractant for 

macrophages. Concerning signaling pathways, C1P-induced paxillin phosphorylation 

was ERK-dependent while C1P-induced MMPs activity was ERK- and PI3K-

dependent, both of which are key kinases in cell motility. The scheme shown below 

emphasizes the new signaling pathways involved in C1P- stimulated migration.  
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Figure 3.1. Working model for the implication of C1P in cell migration in J774A.1 

macrophages. 
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5. CHAPTER 2:  Implication of C1P and CERK in 

adipogenesis. 

 

1. INTRODUCTION 

1.1.  Adipogenesis in obesity 

The development of obesity is associated with extensive modifications in adipose tissue 

including adipogenesis, angiogenesis, and proteolysis of the extracellular matrix (ECM) 

[1]. In particular, adipogenesis is a highly controlled biological process that is divided in 

two different phases: the first stage is named “determination phase”, while the second 

stage is referred to as “terminal differentiation”. The determination phase leads 

undifferentiated cells to enter the adipogenic differentiation program becoming pre-

adipocytes. Subsequently, after a phase of mitotic clonal expansion, which is a 

necessary step for the terminal adipocyte differentiation, preadipocytes differentiate and 

exhibit the phenotypical and molecular characteristics of mature adipocytes. They also 

acquire the machinery that is necessary for lipid transport and synthesis, insulin action 

and the secretion of adipocyte-specific proteins [2]. The aberrant increase in fat mass 

that is observed in obesity is due to a dysregulation of both phases of the differentiation 

process resulting in an increase in the number of adipocytes (hyperplasia) and/or 

adipocyte size (hypertrophy). 

1.1.1. 3T3-L1 cell differentiation process 

Two different kinds of in vitro experimental models, essential for the determination of 

the mechanisms involved in adipocyte proliferation, differentiation and adipokine 

secretion, are currently available: preadipocyte cell lines, which are already committed 

to the adipocyte lineage, and multipotent stem cell lines, that are able to transform into 

different cell lineages including adipose, bone and muscle lineages. Many of the 

findings on adipocytes and adipogenesis come from in vitro studies based on murine 

immortalized preadipocyte cell lines such as 3T3-L1 and 3T3-F442A, which are derived 

from disaggregated 17-19-day-old Swiss 3T3 mouse embryos.  
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Most available models of murine preadipocytes, once they reach confluence and thereby 

growth arrest, can be induced into a differentiation process using an adipogenic cocktail 

of inducers, which consists of insulin, dexamethasone, rosiglitazone and 3-isobutyl-1-

methylxanthine (IBMX). Dexamethasone is a synthetic glucocorticoid (GC) agonist that 

is traditionally used to stimulate the GC receptor, whereas rosiglitazone is an insulin 

sensitizer that makes the cells more responsive to insulin. IBMX is a potent inhibitor of 

cyclic nucleotide phosphodiesterases that increases intracellular cAMP levels 

considerably [3]. These proadipogenic compounds initiate a series of events that 

regulate staging of the differentiation program. Immediately after induction of 

differentiation, cyclic AMP response element-binding protein (CREB) becomes 

phosphorylated and activates the expression of CCAAT/Enhancer Binding Protein beta 

(C/EBPβ). After that, C/EBPβ acquires DNA- binding activity as the preadipocytes 

reenter the cell cycle. Following a delay of 16–20 h after induction, preadipocytes 

synchronously reenter the cell cycle [3, 4] and undergo several rounds of postconfluent 

mitosis, referred to as mitotic clonal expansion (MCE). The cells then exit the cell 

cycle, lose their fibroblastic morphology, accumulate cytoplasmic triglyceride, and 

acquire the appearance and metabolic features of adipocytes [3]. Triglyceride 

accumulation is closely correlated with an increased rate of de novo lipogenesis and a 

coordinate rise in the expression of the enzymes of fatty acid and triacylglycerol 

biosynthesis [5, 6]. 

1.1.2.  Transcriptional control of adipocyte outcome 

The differentiation of preadipocytes into adipocytes is regulated by an elaborate 

network of transcription factors, which are responsible for the coordinated induction and 

silencing of more than 2000 genes related to the regulation of adipocyte in both 

morphology and physiology (Figure 1.1.2.1) [7]. The adipogenic cascade can be divided 

into at least two waves of transcription factors that drive the adipogenic program. The 

first stage of adipogenesis consists of the transient induction of C/EBP-β and C/EBP-δ, 

which can be stimulated in vitro by a hormonal differentiation cocktail [8]. C/EBP-β 

and C/EBP-δ begin to accumulate within 24 h of adipogenesis induction and the cells 

re-take the cell cycle and execute MCE synchronously [9] (Figure 1.1.2.1A). In the 

conversion from G1 to S stage, C/EBP-β is hyperphosphorylated and sequentially 

activated by glycogen synthase kinase-3β and mitogen-activated protein kinase 
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(MAPK). Then, both C/EBP-β and C/EBP-δ induce expression of PPARγ and C/EBPα, 

the key transcriptional regulators of adipocyte differentiation. PPARγ and C/EBPα 

initiate positive feedback to induce their own expression and also activate a large 

number of downstream target genes whose expression determines the adipocyte. By day 

2 of the differentiation course, C/EBP-α protein is phosphorylated by the cyclin D3, 

inducing a proliferation inhibition effect on the cells, which allows to begin the final 

differentiation phase of adipogenesis [10] (Figure 1.1.2.1B). By day 8 after 

differentiation induction, more than 90% of the adipocytes are already mature.  

In addition to PPARγ and C/EBPs, several other transcription factors are likely to play 

an important role in the molecular control of adipogenesis. These proteins include 

Kruppel-like factors (KLFs), cAMP response element binding protein (CREB), early 

growth response 2 (Krox20), and sterol regulatory element-binding protein 1c (SREBP-

1c).  

 

Figure 1.1.2.1. Transcriptional regulation of adipocyte differentiation. A. At the early stage 
of 3T3-L1 adipocyte differentiation, C/EBPβ transactivates the expression of multiple cell 
cycle-related genes to facilitate MCE, a required step for terminal differentiation. Moreover, 
C/EBPβ activates the expression of G9a, which delays the expression of C/EBPα and PPARγ, 
two anti-proliferation factors, so as to ensure MCE. In addition, C/EBPβ activates de expression 

A.

B.
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of some other transcriptional factors and inhibits the expression of Wnt10b, an anti-adipogenic 
factor. B. Together, these effects ultimately lead to the activation or up-regulation of C/EBP-α 
and PPARγ, thereby promoting terminal differentiation. Taken from [11]. 

1.1.3. MAPK signaling pathway in adipogenesis 

The commitment of an undifferentiated cell to the adipogenic lineage requires the fine 

regulation of a complex network of transcription factors, cofactors, and signaling 

intermediates from numerous pathways [12, 13]. The mitogen-activated protein kinases 

(MAPKs) are a superfamily of serine/threonine kinases that regulate both cytoplasmic 

events and gene expression [14, 15] and they are involved in many cellular processes 

such as proliferation, differentiation, and stress response [16]. A primary role of the 

MAPKs in adipogenesis has been proposed [17, 18], although the significance of the 

involvement of these kinases is not clear. In fact, some authors suggest that MAPKs, in 

particular the extracellular signal-regulated kinases 1 and 2 (ERK1/2) are required in the 

proliferative phase of differentiation, and blockade of ERK activity in 3T3-L1 cells or in 

mice inhibited adipogenesis [17, 19, 20]. In addition, other works found that either in 

3T3-L1 cells [21] or in other cellular models [22], ERK activity is necessary for the 

expression of the crucial adipogenic regulators C/EBPα, β and δ, and PPARγ. 

Conversely, other groups have proposed an inhibitory role for ERK1/2 in adipogenesis 

[23, 24]. It has been reported that ERK1 activity leads to activation of PPARγ in the 

terminal differentiation phase, which inhibits differentiation [18]. Therefore, the ERK 

pathway can display both positive and negative effects throughout adipogenesis. 

1.2.  Sphingolipids in obesity  

The contribution of aberrant production of bioactive lipids to pathophysiological 

changes associated with obesity has risen to the forefront of lipid research. In particular, 

ceramide, a lipid signaling molecule, is not only involved in diverse cellular processes 

such as differentiation, cell proliferation and cell death [25-27], but also in the 

pathogenesis of a variety of diseases such as obesity, diabetes, and cardiovascular 

diseases including atherosclerosis [28-35]. It was demonstrated that ceramide and 

sphingosine inhibited insulin action and signaling in cultured cells [34] and that 

inhibition of ceramide synthesis using the specific serine palmitoyltransferase (SPT) 

inhibitor myriocin ameliorated obesity-induced insulin resistance [35]. Furthermore, 

ceramide and sphingosine levels of adipocytes during adipogenesis were decreased 
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compared to those of preadipocytes, while the number of lipid droplets and the 

triglyceride content, which are differentiation biomarkers, gradually increased [36]. 

These data are consistent with the observation of a significant decrease in both the 

sphingomielyn and ceramide levels in adipose tissue of obese mice compared with a 

lean mice [37]. Therefore, sphingolipid content in tissue undergoes dramatic alterations 

in metabolic diseases. Given the diverse signaling properties of sphingolipids, it can be 

considered that these lipids might mediate the pathology associated with metabolic 

disease.  

Understanding the molecular mechanisms that regulate adipogenesis can be a crucial 

step for developing novel therapeutic strategies to control obesity and obesity-related 

pathologies. For this reason, the purpose of this study was to assess whether ceramide 

kinase (CERK) and ceramide 1-phosphate (C1P) might be able to regulate adipocyte 

cell differentiation.  

 

2. RESULTS 

2.1. Adipogenic induction medium (AIM) induces 3T3-L1 cell differentiation. 

Due to their potential ability to differentiate from fibroblast to adipocytes, 3T3-L1 cells 

are widely used for studying adipogenesis and the biochemistry of adipocytes. Although 

it has been described that rosiglitazone, insulin, 3-isobutylmethylxanthine (IBMX), 

dexamethasone and FBS are potent prodifferentiative agents [38], we wanted to 

examine whether adipogenic induction medium (AIM), which is a medium consisting of 

DMEM 10% FBS and an adipogenic cocktail (0.5 mM IBMX, 1µg/ml insulin, 0.25 µM 

dexamethasone and 2µM Rosiglitazone) induces 3T3-L1 cell differentiation.  

Induction of 3T3-L1 cell differentiation triggers deep phenotypical changes of 

preadipocytes that become spherical and filled with lipid droplets, displaying many 

morphological and biochemical characteristics of adipocytes differentiated in vivo. To 

confirm that adipogenesis was accompanied by a phenotypical change, we treated 3T3-

L1 cells with AIM and then took some time-lapse micrographs of 3T3-L1 cells after 

AIM treatment. Oil Red O staining was used to visualize fat droplets within the 
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differentiated adipocytes, according to the methods described in a previous report [39]. 

As shown in Figure 2.1.1, AIM induces 3T3-L1 cell differentiation. 

 

Figure 2.1.1. Adipogenic induction medium (AIM) promotes 3T3-L1 cell differentiation. 
3T3-L1 cells were seeded in 6-well plates (1.2 x 105 cells/well) and they were grown in DMEM 
containing 10% NCS until they were about 90-100% confluent. Cells were further incubated for 
2 days before inducing cell differentiation. After two days, cells were subjected to adipogenic 
induction media (AIM) in order to induce cell differentiation, as described in Materials and 
Methods. At the indicated time points, cells were treated with or without Oil Red and fat 
droplets were visualized with a Nikon Eclipse TS100 microscope at 20x magnification.  

In addition to fat droplets, other adipogenic biomarkers were tested to confirm whether 

AIM induces differentiation in 3T3-L1 cells. It has already been described that during 

adipogenesis cells start gaining some adipogenic markers, including CCAAT-enhancer-

binding protein beta (C/EBPβ) and peroxisome proliferator-activated receptor gamma 

(PPARγ). Therefore, we examined those adipogenic markers. We observed that AIM 

caused upregulation of both p-C/EBPβ and PPARγ expression in a time dependent 

manner. The maximum grade of expression was attained at 4th day for C/EBPβ and 7th 

day for PPARγ (Figure 2.1.2). 
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Figure 2.1.2 PPARγ expression and C/EBPβ phosphorylation increase during 
differentiation of 3T3-L1 cells. 3T3-L1 cells were seeded in 6-well plates (1.2 x 105 cells/well) 
and they were grown in DMEM containing 10% NCS until they were about 90-100% confluent. 
Confluent cells were further incubated for 2 days before induction of cell differentiation. After 
two days, cells were treated with adipogenic induction media (AIM) in order to induce cell 
differentiation, as described in Materials and Methods. Cells were then harvested after indicated 
periods of time. A. PPARγ and p-C/EBPβ were detected by Western blotting using specific 
antibodies and equal loading of protein was assessed with an antibody against GAPDH. Similar 
results were obtained in each of 3 replicate experiments. B. Results of scanning densitometry of 
the exposed film. Data are expressed as arbitrary units of intensity relative to control value and 
are the mean ± SEM of 3 independent experiments (*p<0.05).  
 
 

2.2. CERK activity is required during 3T3-L1 cell differentiation process. 

Sphingolipid metabolism has been previously described to be implicated in the 

pathogenesis of a variety of diseases including obesity, diabetes, and cardiovascular 

diseases [28-35]. Due to the importance of this group of lipids in obesity-associated 

diseases and taking into consideration that the ceramide content is decreased in 

differentiated 3T3-L1 adipocytes [36], we hypothesized that Ceramide Kinase (CERK), 

the enzyme that converts ceramide to ceramide 1-phosphate, might be implicated in this 

process. To address this question, we induced 3T3-L1 cell differentiation with AIM and 

CERK expression and activity were measured. As shown in Figure 2.2.1, CERK 

expression gradually increased during adipogenesis.  

 

Figure 2.2.1. CERK expression increases during adipogenesis. 3T3-L1 cells were seeded in 
6-well plates (1.2 x 105 cells/well) and they were grown in DMEM containing 10% NCS until 
they were about 90-100% confluent. Cells were then further incubated for 2 days before 
inducing cell differentiation. After two days, cells were cultured in AIM in order to induce cell 
differentiation, as described in Materials and Methods. A. Cells were then harvested at the 
indicated times after differentiation and prepared for Western blot analysis. CERK expression 
was detected by Western blotting using a specific antibody to CERK and equal loading of 

Cerk

GAPDH

0      2      4     7     10  12

Adipogenesis (days)

0 2 4 7 10 12
0

1

2

3

* *

R
el

at
iv

e 
in

te
ns

ity

Adipogenesis (days)

A. B.



Chapter 2: Implication of C1P and CERK in adipogenesis 

150 

 

protein was assessed with an antibody against GAPDH. Similar results were obtained in each of 
4 replicate experiments. B. Results of the scanning densitometry of exposed film. Data are 
expressed as arbitrary units of intensity and are the mean ± SEM of 4 independent experiments  
(*p<0.05).  
 
The implication of CERK in adipogenesis was also tested with a direct enzyme assay. 

We observed that CERK activity was higher in differentiated adipocytes, whereas 

preadipocytes showed less enzyme activity (Figure 2.2.2). 

 

Figure 2.2.2. CERK activity is increased in differentiated 3T3-L1 adipocytes. 3T3-L1 cells 
were seeded in 6-well plates (1.2 x 105 cells/well) and they were grown in DMEM containing 
10% NCS until they were about 90-100% confluent. Confluent cells were further incubated for  
2 days before inducing cell differentiation. After two days, cells were cultured in either GM or 
AIM. GM-treated cells were maintained in DMEM 10% NCS whereas AIM-treated cells were 
induced to differentiation until day 10, as described in Materials and Methods. On day 10 after 
induction of differentiation, cells were harvested and CERK activity assay was performed as 
described in Materials and Methods. Data are expressed as the mean ± SEM of 5 independent 
experiments  (**p<0.01).  
 

To further confirm the implication of CERK in adipogenesis, siRNA technology was 

used in order to silence the gene encoding CERK. Undifferentiated 3T3-L1 cells were 

transfected with CERK siRNA by electroporation and after that, the differentiation 

process was induced. On day 4 of induction of differentiation, adipocyte differentiation 

was assessed by staining lipid droplets with Oil Red O, and the absorbance of extracted 

Oil Red O was quantified. As shown in Figure 2.2.3a, the more intense staining value 

was found in non-transfected cells (control), while the less intense staining value was 

found in CERK siRNA-treated cells. In addition, a TG assay kit was used to quantify 

triglyceride content and we found that CERK silencing caused a marked reduction in 
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TG concentration in differentiated cells (Figure 2.2.3b). These data suggest that CERK 

is involved in 3T3-L1 cell differentiation. 

 

Figure 2.2.3. CERK siRNA inhibits 3T3-L1 cell differentiation. 3T3-L1 cells were seeded in 
100 mm diameter dishes (5 x 105 cells/plate) in DMEM containing 10% NCS until they were 
confluent. 48h after confluence, medium was removed and cells were washed with sterile PBS 
and 500μl trypsin-EDTA was added in order to detach cells. Cells were then electroporated as 
described in Materials and Methods. A. Electroporated cells were seeded in confluence (1,2 x 
105 cells/well ) in 24-well plate and differentiated until day 4. On day 4 after induction of 
differentiation, cells were stained with Oil Red O, as indicated in Materials and Methods. Lipid 
droplets were quantified by measuring absorbance of each well. Absorbance of empty wells 
(without cells) was subtracted to the rest of values. Data are expressed as the mean ± SEM of 5 
independent experiments  (*p<0.05). B. Electroporated cells were seeded in confluence (2 x 104 

cells/well) in 96-well plate and differentiated until day 4. On day 4, TG amount was measured 
using TG assay as described in Materials and Methods. Results are normalized to the protein 
concentration and are the mean ± SEM of 4 independent experiments performed in triplicate 
(*p<0.05).  

 

To demonstrate the knock-down ability of specific CERK siRNA, we tested CERK 

expression and found that it was efficiently silenced by CERK siRNA (Figure 2.2.4). 
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Figure 2.2.4. CERK siRNA efficiently silences CERK protein expression in 3T3-L1 cells. 
Cells were seeded in 60 mm dishes and electroporated with CERK siRNA, as described in 
Materials and Methods. Electroporated cells were seeded in confluence (5 x 105 cells/well) in 6-
well plate and differentiated until day 4. On day 4 after induction of differentiation, cells were 
harvested and CERK expression was detected by Western blotting using specific antibody to 
CERK. Equal loading of protein was assessed with an antibody against GAPDH. Similar results 
were obtained in other 2 experiments.  
 
 
It has been demonstrated that ceramide concentration in differentiated adipocytes is 

decreased during adipogenesis, whereas the ceramide content is increased in non-

differentiated preadipocytes [36]. Consistent with this observation, we found that CERK 

activation is a key event in adipocyte differentiation, which leads to an increase of 

intracellular C1P levels, and subsequently decrease of ceramide amount. To further 

study the implication of the CERK/C1P axis in adipogenesis, we wanted to examine 

whether extracellular C1P was involved in this process. 
 

2.3. Exogenous ceramide 1-phosphate (C1P) decreases adipogenesis. 

To examine the effects of exogenous C1P on adipocyte differentiation, confluent 3T3-

L1 cells were grown in growth medium (GM) or in AIM for 10 days, both in the 

absence or in the presence of different concentrations of C1P.  

As mentioned above, one of the main features of adipogenesis is the lipid accumulation 

inside the cell. Since morphological changes notably illustrate the consequences of all 

these internal modifications induced by AIM, some micrographs of cells were taken in 

the presence or absence of C1P in the 10th day after inducing the differentiation process, 

with or without Oil Red staining, which was used to detect intracellular lipid droplets. 

We observed that cells grown in GM did not accumulate lipid droplets. By contrast, 

cells exposed to AIM accumulated lipid droplets. Surprisingly, C1P significantly 

decreased the formation of lipid droplets, in a dose-dependent manner (Figure 2.3.1a). 

In addition to micrographs, the Oil Red O dye that cells incorporated was also 

quantified every 2-3 days. As shown in Figure 2.3.1b, after treatment with 20 µM of 

C1P, the absorbance of Oil Red decreased, meaning that less lipid droplets were 

detected inside those cells. However, cells that were differentiated in the absence of 

C1P showed much more lipid accumulation. Therefore, it seems that exogenous C1P 
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decreases cell differentiation, at 20 µM of C1P (Figure 2.3.1), a concentration that is 

within physiological levels, at least in mice [40]. 

 

 
Figure 2.3.1 Ceramide 1-phosphate decreases adipogenesis in 3T3-L1 cells. 3T3-L1 cells 
were seeded in 24-well plates (6 x 104 cells/well) and they were grown in DMEM containing 
10% NCS until they were about 90-100% confluent. Confluent cells were further incubated for 
2 days before inducing cell differentiation. After two days, cells were subjected to growth 
medium (GM) or Adipogenic Induction Medium (AIM) with or without C1P. The medium was 
changed every 2 days and C1P was added each time. Cells were stained with Oil Red O at the 
indicated time points after differentiation, as described in Material and Methods. A. On day 10 
after differentiation, micrographs of the stained and non-stained cells were taken. All 
micrographs shown were obtained with a Nikon Eclipse TS100 microscope. B. For quantitative 
analysis of Oil Red staining, the Oil Red O was dissolved in isopropanol and absorbance of the 
dye was measured in order to quantify lipid droplets. The absorbance of empty wells (without 
cells) was subtracted from the absorbance of experimental wells. Results are the mean ± SEM of 
5 independent experiments performed in triplicate (*p<0.05).  
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Accumulation of fat droplets is not the only feature of differentiated cells. Adipogenesis 

is accompanied by increased expression of adipogenic transcription factors and 

adipocyte-specific genes. As mentioned above, there is a wide range of adipogenic 

markers that can be used to define the change of state between fibroblast and adipocyte 

phenotype. Some of the adipogenic markers that have been used are C/EBPβ, PPARγ, 

triglyceride (TG) content and leptin release.  

To further characterize the effect of C1P on adipocyte differentiation, we analyzed the 

TG content in the cells. Confluent 3T3-L1 cells were differentiated with AIM in the 

presence or absence of C1P until the 10th day after induction of differentiation. At this 

time, triglyceride assay was performed. This TG assay indicated that the TG content 

was increased in differentiated cells compared to preadipocytes, and treatment with C1P 

reduced TG content in 3T3-L1 differentiated cells (Figure 2.3.2). These data are 

consistent with the results shown above. 

 
Figure 2.3.2. Exogenous ceramide 1-phosphate decreases TG concentration in 3T3-L1 
cells. 3T3-L1 cells were seeded in 96-well plates (9 x 103 cells/well) and they were grown in  
DMEM containing 10% NCS until they were about 90-100% confluent. Cells were then further 
incubated for 2 days before inducing cell differentiation. After two days, cells were cultured in 
growth medium (GM) or Adipogenic Induction Medium (AIM) with or without 20 µM of C1P. 
The medium was changed every 2 days and C1P was added each time. On the 10th day after 
inducing cell differentiation, TG concentration was measured using the TG assay as described in 
Materials and Methods. Results are normalized to protein concentration of each sample and are 
the mean ± SEM of 4 independent experiments performed in triplicate (***p<0.001, ##p<0.01).  
 
 
As mentioned above cell differentiation is related to important changes in the cell 

pattern of protein expression. In particular, during this process C/EBPβ is 

phosphorylated and this leads to an increase in PPARγ expression. Therefore, in order 
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to ensure that C1P attenuates the differentiation process, 3T3-L1 cells were 

differentiated in the presence or absence of C1P and the phosphorylation of C/EBPβ and 

PPARγ expression were measured, at 4th and 7th day after induction of differentiation, 

respectively. Under these conditions, we found that C/EBPβ phosphorylation as well as 

PPARγ expression were decreased in differentiated cells treated with C1P (Figure 

2.3.3), which suggests that C1P promotes antiadipogenic activity in 3T3-L1 cells by 

downregulating the adipogenic markers C/EBPβ and PPARγ .  

 

 

 
Figure 2.3.3. Ceramide 1-phosphate decreases PPARγ expression and C/EBPβ 
phosphorylation in 3T3-L1 differentiated cells. 3T3-L1 cells were seeded in 6-well plates 
(1.2 x 105 cells/well) and grown in DMEM containing 10% NCS until they were about 90-100% 
confluent. Confluent cells were further incubated for 2 days before inducing cell differentiation. 
After two days, cells were cultured in growth medium (GM) or Adipogenic Induction Medium 
(AIM), with or without 20 µM of C1P. The medium was changed every 2 days and agonist was 
added each time. A. On day 7, cell lysates were prepared and PPARγ expression was detected 
by Western blotting using specific antibody to PPARγ and equal loading of protein was 
assessed with an antibody against GAPDH. Similar results were obtained in each of 6 replicate 
experiments. B. Results of the scanning densitometry of exposed film. Data are expressed as 
arbitrary units of intensity and are the mean ± SEM of 6 independent experiments (***p<0.001, 
##p<0.01). C. On day 4, cell lysates were prepared and C/EBPβ phosphorylation was detected 
by Western blotting using specific antibody to p-C/EBPβ and equal loading of protein was 
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assessed with an antibody against GAPDH. Similar results were obtained in other 2 
experiments. D. Results of the scanning densitometry of exposed film. Data are expressed as 
arbitrary units of intensity and are the mean ± SEM of 3 independent experiments  (*p<0.05, 
#p<0.05).  
 
 
In order to ensure that C1P acted as an antiadipogenic agent in 3T3-L1 cells, we also 

examined whether C1P was able to reduce leptin secretion in 3T3-L1. Leptin is a 

hormone secreted by adipocytes in the obese state and its role is to regulate fat storage. 

Firstly, leptin levels were measured after induction of differentiation with AIM. We 

observed that 10 days after induction of differentiation, when most of cells are already 

differentiated, leptin secretion was significantly increased (Figure 2.3.4a). However, 10 

days after induction of differentiation, C1P-treated cells showed a reduction in leptin 

release (Figure 2.3.4b), which is also consistent with our previous data shown above. 

 

 
 
Figure 2.3.4. C1P decreases adipogenic induction medium (AIM)–induced leptin release.  
3T3-L1 cells were seeded in 6-well plates (1.2 x 105 cells/well) and they were grown in DMEM 
containing 10% NCS until they were about 90-100% confluent. Confluent cells were further 
incubated for 2 days before inducing cell differentiation. A. After two days, cells were subjected 
to adipogenic induction media (AIM) in order to induce cell differentiation, as described in 
Materials and Methods. Then, culture medium was collected at indicated time points, 
centrifuged and the cells were harvested in lysis buffer in order to measure protein 
concentration. The leptin concentration in supernatant was measured using an ELISA kit, as 
indicated in Materials and Methods. Results are normalized to the protein concentration and are 
the mean ± SEM of 4 independent experiments perfomed in duplicate (*p<0.05). B. After two 
days, cells were subjected to adipogenic induction media (AIM) in presence or absence of 20 
µM of C1P. The medium was changed every 2 days and C1P was added each time. On day 10, 
the culture medium was collected, centrifuged and the cells were harvested in lysis buffer in 
order to measure protein concentration. Leptin concentration in supernatant was measured using 
an ELISA kit. Results are normalized to the protein concentration and are the mean ± SEM of 5 
independent experiments performed in duplicate (*p<0.05). 
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Since obesity is associated with low grade chronic inflammation, we tested to see 

whether cells induced to differentiate in presence of C1P would affect the levels of pro 

or anti-inflammatory cytokines. However, C1P had no significant effect either on pro-

inflammatory or anti-inflammatory cytokine release in differentiated adipocytes (Figure 

2.3.5). 
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Figure 2.3.5. C1P affected neither pro-inflammatory nor anti-inflammatory cytokine 
release in differentiated adipocytes. A-F. 3T3-L1 cells were seeded in 6-well plates (1.2 x 105 

cells/well) and they were grown in DMEM containing 10% NCS until they were about 90-100% 
confluent. Confluent cells were further incubated for 2 days before inducing cell differentiation. 
After two days, cells were cultured in adipogenic induction media (AIM), with or without 20  
µM of C1P. The medium was changed every 2 days and C1P was added each time, as described 
in Material and Methods. On day 10, the medium was collected and centrifuged and the cells 
were harvested in lysis buffer in order to measure protein concentration. Cytokine levels were 
measured using ELISA kits, as indicated in the Materials and Methods. Results were 
normalized to the protein concentration and are the mean ± SEM of 4 independent experiments 
performed in duplicate. 
 
The above results demonstrate that some adipogenic markers such as lipid droplet 

accumulation, TG content, leptin release, C/EBPβ phosphorylation and PPARγ 

expression are downregulated by C1P, which suggest an antiadipogenic role of C1P in 

3T3-L1 cells. 

 
2.4. Ceramide 1-phosphate induces sustained ERK phosphorylation under 

AIM conditions. 
 
Once the antiadipogenic potential of  C1P was established, the next step was to examine 

which signaling pathways might be involved in the ability of C1P to inhibit 

adipogenesis. Recent studies have shown that several agonists can modulate adipogenic 

differentiation by regulating MAPK activity, thereby highlighting the important roles of 

MAPKs in adipocyte differentiation [41, 42]. In particular, ERK seems to be necessary 

in the early stage of adipocyte differentiation, but not in the terminal stage of cell 

differentiation. This kinase could be involved in the whole process of adipogenesis 

displaying both positive and negative effects. We first established the implication of 

ERK during the differentiation process of 3T3-L1. To this aim, we induced 3T3-L1 cell 

differentiation by treating the cells with AIM and then ERK phosphorylation was 

measured every 2-3 days until the 10th day after induction of differentiation. We 

observed that ERK phosphorylation in undifferentiated cells (day 0) was higher than in 

differentiated cells, indicating that ERK activity decreases during adipogenesis (Figure 

2.4.1).  
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Figure 2.4.1 ERK phosphorylation decreases during adipogenesis in 3T3-L1 cells. 3T3-L1 
cells were seeded in 6-well plates (1.2 x 105 cells/well) and they were grown in DMEM 
containing 10% NCS until they were about 90-100% confluent. Confluent cells were further 
incubated for 2 days. After two days, cells were treated with adipogenic induction media (AIM) 
in order to induce cell differentiation, as described in Materials and Methods. Cells were then 
harvested after the indicated periods of time. A. ERK phosphorylation was detected by Western 
blotting using a specific antibody to p-ERK and equal loading of protein was assessed with an 
antibody against GAPDH or total ERK expression. Similar results were obtained in each of 3 
replicate experiments. B. Results of scanning densitometry of the exposed film. Data are 
expressed as arbitrary units of intensity relative to control value and are the mean ± SEM of 3 
independent experiments (**p<0.01).  
 
To evaluate whether C1P could induce ERK phosphorylation during 3T3-L1 cell 

differentiation process, confluent cells were treated with AIM in the presence or 

absence of 20 µM of C1P and ERK phosphorylation was measured by western blotting. 

We observed that C1P successfully promoted prolonged ERK phosphorylation, which 

reached maximum values at 1-4 h and was still potently elevated after 16 h of treatment 

with C1P. It was also observed that phosphorylation of ERK was higher at the early 

stages of the differentiation process (Figure 2.4.2). These results suggest that C1P could 

inhibit adipogenesis via sustained activation of ERK. 
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Figure 2.4.2. Ceramide 1-phosphate induces sustained ERK phosphorylation under AIM 
conditions. 3T3-L1 cells were seeded in 6-well plates (1.2 x 105 cells/well) and grown in 
DMEM containing 10% NCS until they were about 90-100% confluent. Cells were then further 
incubated for 2 days before inducing cell differentiation. After two days, cells were treated with 
AIM in the presence or in the absence of 20 µM of C1P. The media was changed every 2 days 
and C1P was added each time. Cell lysates were prepared at the indicated times after 
differentiation, as indicated. A. The phosphorylation of ERK1/2 and total ERK expression were 
detected by Western blotting using specific antibodies to p-ERK and ERK, respectively. Equal 
loading of protein was assessed with an antibody against GAPDH. Similar results were obtained 
in other 4 independent experiments. B. Results of the scanning densitometry of exposed film. 
Data are expressed as arbitrary units of intensity and are the mean ± SEM of 5 independent 
experiments  (*p<0.05, **p<0.01).  

 
Our group previously demonstrated the existence of a specific membrane binding site, 

possibly a receptor, for C1P. Ligation of C1P to this receptor stimulated cell migration, 

and this effect was completely abolished by pretreatment of the cells with pertussis 

toxin (the toxin secreted by Bordetella pertussis) [43], suggesting that the receptor 

belongs to the family of Gi protein-coupled receptors (GPCR). Therefore, we tested to 

see whether the inhibitory effect of C1P on adipogenesis was a receptor mediated effect. 

It was observed that C1P-induced ERK phosphorylation during 3T3-L1 cell 

differentiation was highly sensitive to inhibition by treatment with Ptx, suggesting that 

C1P- induced ERK phosphorylation is GPCR-dependent (Figure 2.4.3). 
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Figure 2.4.3. Pertussis toxin inhibits ceramide 1-phosphate-induced ERK phosphorylation. 
3T3-L1 cells were seeded in 6-well plates (1.2 x 105 cells/well) and they were grown in DMEM 
containing 10% NCS until they were about 90-100% confluent. Confluent cells were further 
incubated for 2 days before inducing cell differentiation. After two days, cells were incubated 
overnight (for about 16h) with 0.1 µg/ml of Ptx. After treatment with Ptx, cells were cultured in 
AIM, with or without 20 µM of C1P for 1 h. A. Cells were then harvested and prepared for 
Western blot analysis. p-ERK1/2 and ERK were detected by Western blotting using specific 
antibodies to p-ERK and ERK, respectively. Equal loading of protein was assessed with an 
antibody against GAPDH. Similar results were obtained in each of 5 replicate experiments. B. 
Results of the scanning densitometry of exposed film. Data are expressed as arbitrary units of 
intensity and are the mean ± SEM of 5 independent experiments  (**p<0.01, ##p<0.01).  
 
 

2.5. Ceramide 1-phosphate prevents adipogenic differentiation through the 
ERK pathway.  

 
 

Since activation of ERK was implicated in the suppression of adipogenesis, we 

hypothesized that C1P could inhibit adipogenesis through the ERK pathway. It is 

known that mitogen-activated protein kinase kinase (MEK) is an upstream kinase of 

ERK, and so activation of ERK is prevented by blocking MEK activity. To determine 

whether C1P was able to inhibit adipocyte differentiation via ERK, experiments were 

performed using the selective MEK inhibitor PD98059.  

Confluent cells were induced to differentiate in the presence or in the absence of C1P 

with or without PD98059. Subsequently, fat droplets were stained with Oil Red O and 

quantified. As shown in Figure 2.5.1, the absorbance of extracted Oil Red O, in the 

presence of PD98059 (20 µM) was restored, and therefore co-treatment with PD98059 

significantly reversed C1P-mediated inhibition of lipid accumulation in a dose-
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dependent manner. To further confirm the essential roles of ERK in C1P-mediated 

suppression of adipogenic differentiation, we assessed the TG amount in the cells. 

Consistently, we observed that co-treatment with PD98059 also reverted C1P-

attenuated TG amount (Figure 2.5.1) in 3T3-L1 cells. Taken together, these data show 

that ERK plays an essential role in inhibiting adipogenesis by C1P.  

 

Figure 2.5.1. MEK/ERK pathway is implicated in C1P-promoted antiadipogenic activity. 
3T3-L1 cells were seeded in 24-well plates (6 x 104 cells/well) and they were grown in DMEM 
containing 10% NCS until they were about 90-100% confluent. Confluent cells were further 
incubated for 2 days before inducing cell differentiation. After two days, cells were pre-treated 
with either vehicle or the indicated concentrations of PD98059 for 1h prior to adipogenic 
induction. After 1h, cells were cultured in GM or AIM with or without 20 µM of C1P, and in 
the presence or absence of PD98059 at the indicated concentrations for 10 days. The medium 
was changed every 2 days and agonists and inhibitors were added each time A. On day 10 after 
induction of differentiation, cells were stained with Oil Red O, as indicated in Materials and 
Methods. For quantitative analysis of the Oil Red staining, the dye was dissolved in isopropanol 
and the absorbance of Oil Red O was measured in order to quantify lipid droplets. Results are 
expressed relative to control (AIM) values and the absorbance of the dye of the empty wells 
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(without cells) was subtracted from the absorbance of the dye of the sample wells. Results are 
the mean ± SEM of 5 independent experiments performed in triplicate (*p<0.05, **p<0.01, 
***p<0.001, ###p<0.001). B. On day 10 after induction of differentiation, TG amount was 
measured using TG assay as described in Materials and Methods. Results are normalized to the 
protein concentration and are the mean ± SEM of 3 independent experiments performed in 
triplicate (*p<0.05, #p<0.05, **p<0.01).  
 
 

2.6. C1P suppresses adipocyte differentiation in a Gi protein-coupled receptor 

(GPCR)-dependent manner. 

 

As mentioned above, C1P-induced ERK phosphorylation during cell differentiation is 

GiPCR-dependent, which suggest the possible involvement of a putative specific C1P 

receptor. From the above results, we hipothesized that C1P might be able to block 

adipogenesis by phosphorylation of ERK via GPCR. To test this, we induced cell 

diferentiation in the presence or absence of C1P with or without Ptx, which causes 

inhibition of GPCRs on the cell surface. To examine whether Ptx was able to revert C1P 

action, fat droplets were stained with Oil Red O and micrographs of differentiated 3T3-

L1 cells were taken. This allowed quatification of internalized oil red dye by 

differentiated cells. We observed that co-treatment with Ptx reversed C1P-attenuated 

lipid droplets accumulation (Figure 2.6.1.a and Figure 2.6.1b). In addition, C1P-reduced 

TG amount was also increased after treatment with Ptx (Figure 2.6.1c). Therefore, Ptx, 

as well as PD98059, significantly restores C1P-attenuated adipogenesis, which suggest 

that blockade of GiPCR avoid the inhibitory action of C1P in adipogenesis (Figure 

2.6.1). 
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Figure 2.6.1. Ptx restores C1P-induced reduction of TG concentration in 3T3-L1 cells. 
3T3-L1 cells were seeded in 24-well plates (6 x 104 cells/well) in order to quantify lipid 
accumulation and cells were seeded in 96-well plates (9 x 103 cells/well) for measurement of TG 
concentration. Cells were grown in DMEM containing 10% NCS until they were about 90-
100% confluent. Confluent cells were further incubated for 2 days before inducing cell 
differentiation. After two days, cells were incubated overnight (for about 16h) with 0.1 µg/ml of 
Ptx. The cells were then cultured in AIM, with or without 20 µM of C1P in the presence or 
absence of Ptx for 10 days. The medium was changed every 2 days and agonists and inhibitors 
were added each time A. On day 10 after induction of differentiation, cells were stained with Oil 
Red O, as indicated in Materials and Methods. Micrographs of randomly selected fields were 
taken with a Nikon Eclipse TS100 microscope at 20x magnification. B. On day 10, cells were 
stained with Oil Red O, as indicated in Materials and Methods. For quantitative analysis of Oil 
Red staining, the Oil Red O was dissolved in isopropanol and absorbance of the dye was 
measured in order to quantify lipid droplets. Results are expressed relative to control (AIM) 
value and the absorbance of the dye of the empty wells (without cells) was subtracted from the 
absorbance of sample wells. Results are the mean ± SEM of 5 independent experiments 
performed in triplicate (*p<0.05, ***p<0.001, ###p<0.001). C. On day 10 after induction of 
differentiation, TG amount was measured using a TG assay kit as described in Materials and 
Methods. Results are normalized to the protein amount and are the mean ± SEM of 3 
independent experiments performed in triplicate (*p<0.05, #p<0.05).  
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To ensure that C1P-attenuated 3T3-L1 cell differentiation was GPCR-dependent, we 

determined the role of Ptx on the expression of PPARγ, which is one of the most 

important adipogenic markers. We found that Ptx restores C1P-reduced PPARγ 

expression (Figure 2.6.2), which is consistent with the data shown above.  
 

 

Figure 2.6.2. Ptx blocks the inhibitory effect of C1P on PPARγ expression in differentiated 
cells. 3T3-L1 cells were seeded in 6-well plates (1.2 x 105 cells/well) and they were grown in 
DMEM containing 10% NCS until they were about 90-100% confluent. Cells were then further 
incubated for 2 days before inducing cell differentiation. After two days, cells were pretreated 
with Ptx at 0.1µg/ml concentration for 16 h. After treatment with Ptx, cells were cultured in 
AIM, with or without 20 µM of C1P and in the presence or in the absence of Ptx for 7 days. The 
medium was changed every 2 days and agonists or inhibitors were added each time. A. On day 
7 after induction of differentiation, cells were harvested and prepared for Western blot analysis. 
The PPARγ expression was detected by Western blotting using a specific antibody to PPARγ 
and equal loading of protein was assessed with an antibody against GAPDH. Similar results 
were obtained in other 4 independent experiments. B. Results of the scanning densitometry of 
exposed film. Data are expressed as arbitrary units of intensity and are the mean ± SEM of 5 
independent experiments  (*p<0.05, ##p<0.01).  
 
 

Altogether, these thata suggest that C1P induces ERK phosphorylation through 

interaction with a GPCR. This action resulted in an antiadipogenic effect of C1P in 3T3-

L1 cell differentiation. 
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2.7. Lack of toxicity of the inhibitors and agonists used in this work 

All commonly used chemical inhibitors in cell signaling studies have been described to 

be toxic for cells at certain concentrations or times of incubation. To test if any of the 

inhibitors or agonists used in this Thesis were toxic for the cells at the indicated times 

and concentrations, we performed cell viability assays. We observed that neither 

PD98059 nor C1P caused a significant decrease in cell viability of 3T3-L1 cells at the 

indicated concentrations (Figure 2.7.1). However, Ptx decreased the proliferative 

capacity of cells, although this was not statistically significant. Also Ptx, can be used at 

concentrations higher than 0.1µg/ml (usually 0.5 µg/ml or even higher) to inhibit GPCR 

with no side effects been reported at those concentrations. 
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Figure 2.7.1. Cell viability after treatment with various chemical inhibitors and C1P. Cells 
were seeded in 96-well plate (9 x 103 cells/well) and incubated in DMEM supplemented 
with 10% NCS until they were 90-100% confluent. A. Two days post-confluent cells 
were cultured in the adipogenic induction medium (AIM), with or without 20 µM C1P 
and cell viability was measured at the indicated periods of time. Cell viability was 
determined using the MTS-formazan assay as indicated in Materials and Methods. 
Results are the mean ± SEM of 2 independent experiments performed in triplicate. B. 
Two days post-confluent cells were cultured in the adipogenic induction medium 
(AIM), with or without PD98059 at the indicated concentrations and cell viability was 
measured at the indicated periods of time. Cell viability was determined using the MTS-
formazan assay as indicated in Materials and Methods. Results are the mean ± SEM of 
2 independent experiments performed in triplicate. C. Two days post-confluent cells 
were cultured in the adipogenic induction medium (AIM), with or without 0.1 μg/ml Ptx 
and cell viability was measured at the indicated periods of time. Cell viability was 
determined using the MTS-formazan assay as indicated in Materials and Methods. 
Results are the mean ± SEM of 3 independent experiments performed in triplicate. 
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3. DISCUSSION 

Adipocytes are the major cellular component of the adipose tissue and excessive 

growth, differentiation and hypertrophy of adipocytes are fundamental processes that 

trigger obesity. In particular, adipocyte differentiation is a multi-step process that allows 

a fibroblast-like preadipocyte to undergo molecular changes that facilitate its 

transformation into mature adipocyte [44]. In order to achieve a successful 

transformation into mature adipocytes, the first hallmark of the adipogenesis process is 

the dramatic alteration in cell shape as the cells convert from fibroblastic to spherical 

shape. These morphological modifications are paralleled by changes in the level and 

type of extracellular matrix (ECM) components and the level of cytoskeletal 

components [45]. Besides, the current model for adipocyte differentiation suggests that 

during the entire differentiation process there are several essential molecular 

interactions that occur among members of the CCAAT-enhancer-binding proteins 

(C/EBPs) and the peroxisome proliferator-activated receptor (PPAR) families. Given 

that adipogenesis is a key event in the development of obesity, the suppression of 

adipocyte differentiation is an attractive strategy for obesity therapy, and identifying 

molecules that regulate fat cell differentiation is crucial for the treatment of obesity and 

obesity-related diseases.  

Sphingolipid metabolism is controlled by a complex network of highly regulated 

interconnected pathways leading to the production of bioactive molecules including 

ceramide, sphingosine, S1P and C1P. Although sphingolipids constitute a family of 

lipids that play important roles as structural components of biologic membranes, 

emerging data support a role for these bioactive sphingolipids in multiple signaling 

pathways regulating a variety of physiological and pathological events including cell 

growth and survival, differentiation, apoptosis and inflammation [25-27, 46, 47]. It is 

now well established that sphingolipid metabolism can be activated by a variety of 

conditions such as pro inflammatory cytokines (e.g., TNF-α), growth factors, oxidative 

stress and increased availability of FFAs. All of these conditions characterize the local 

milieu of the obese adipose tissue, suggesting that sphingolipid metabolism may be 

altered in adipose tissue in obesity.   
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During adipocyte differentiation, the undifferentiated fibroblast-like preadipocytes 

initiate expression of differentiation-related transcription factors such as PPARγ and 

C/EBPβ, followed by growth arrest, thereafter, they become spherical fat cells with 

accumulated lipid droplets [48-51]. Therefore, the population of adipocytes with lipid 

droplets stained with Oil Red O, a biomarker for adipocyte differentiation, is increased 

during adipogenesis, and this has been associated to dysregulation of sphingolipid 

metabolism.  

Because of the significance in the regulation of sphingolipid metabolism and 

sphingolipid content during the cell differentiation process, general sphingolipid levels 

could be markedly different after the adipogenesis process is completed as a 

consequence of the phenotypical change from fibroblastic phenotype to spherical 

phenotype. During this process, the flux between the various sphingolipid metabolites is 

tightly controlled by several enzymes that are critical in regulating the levels and 

function of these bioactive molecules. In this thesis, we demonstrate that CERK, an 

enzyme that phosphorylates ceramide to produce ceramide 1-phosphate, plays a key role 

in 3T3-L1 cell differentiation. During the 3T3-L1 cell differentiation process induced by 

adipogenic inducers, CERK expression increased, and was higher at the late stages of 

adipocyte differentiation. In addition, CERK activity was also higher in differentiated 

adipocytes than undifferentiated 3T3-L1 preadipocytes, which did not show CERK 

activation. Therefore, these results suggest that during adipocyte differentiation, 

ceramide is phosphorylated leading to the formation of C1P. These results can be 

correlated with different works that have established an inverse relationship between 

adipocyte differentiation and ceramide levels in adipose tissue of obese mice [37] and in 

3T3-L1 cells [36]. In the latter study, the authors showed that ceramide concentration in 

adipocytes decreased during adipogenesis compared to that in preadipocytes. Moreover, 

using siRNA technology, we demonstrate here that inhibition of CERK leads to 

significant attenuation of lipid droplets accumulation and TG content, which are 

adipogenic markers. The fact that CERK inhibition blocks 3T3-L1 cell differentiation 

may suggest a deceleration in the acquisition of the mature adipocyte phenotype. Thus, 

CERK activity is indeed required for adipocyte differentiation. Consistently with the 

results obtained in this Thesis, CERK null mice have been shown to be resistant to diet-

induced obesity [52]. Interestingly, it was recently demonstrated that sphingosine kinase 

is also induced in 3T3-L1 cells and promotes adipogenesis by generating S1P [53]. 
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Overall, it can be concluded that CERK may contribute to adipocyte differentiation 

through the production of C1P and the subsequent decrease in ceramide levels. This 

conclusion is supported by accumulating evidence indicating that elevation of ceramide 

levels is sufficient to block adipogenesis. In addition to, ceramides, other lipid 

metabolites including retinoic acid [54] and prostaglandin F2α [55] were also able to 

inhibit adipogenesis. 

The scheme shown below (Figure 3.1) suggests a possible implication of CERK in 

adipogenesis. During this process, CERK expression and activity increase and 

inhibition of CERK blocks 3T3-L1 cell differentiation, probably by means of 

intracellular ceramide accumulation. 

 

Figure 3.1. Representation of the contribution of CERK to adipocyte differentiation 

 

Several studies have established that various secondary signaling intermediates 

produced by further conversion of ceramide can participate in opposite cellular 

processes. Certainly, ceramide and sphingosine have proapoptotic actions while the 

phosphorylated species, C1P and S1P, are involved in survival activities [56]. 

Therefore, while ceramide is regarded as antiadipogenic lipid, C1P could have the 

opposite effect. However, in this thesis, we demonstrate for the first time that C1P 
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attenuates adipogenesis in 3T3-L1 cells. Treatment with C1P during cell differentiation 

blocked the characteristic lipid droplets accumulation in differentiated cells. Consistent 

with the decrease in the amount of lipid droplets, TG content was also inhibited by C1P. 

Several transcription factors, including C/EBPβ and PPARγ, need to be activated during 

3T3-L1 cell differentiation [9]. However, during cell differentiation C1P was able to 

reduce both PPARγ expression and C/EBPβ phosphorylation, which are upregulated in 

differentiated adipocytes.  

Adipocyte differentiation is also regulated by a large number of hormones, growth 

factors, and cytokines. In fact, 3T3-L1 cell differentiation can be characterized by 

changes in the expression of numerous genes including leptin, which is produced during 

different stages of differentiation, leading to the characteristic changes in morphology 

and the accumulation of TG in the cytoplasm. Leptin is primarily secreted by adipocytes 

in order to regulate central and peripheral signaling pathways that ultimately lead to 

decreased food intake and/or increased metabolism and energy expenditure. In 

agreement with the data shown above, we observed that leptin secretion increased 

during 3T3-L1 cell differentiation, reaching maximum release value at the late stage of 

the differentiation process. Interestingly, treatment of 3T3-L1 cells with C1P attenuated 

leptin release. However, although obesity is considered a chronic inflammatory disease 

and thus, proinflammatory cytokine levels are increased in an obese state, C1P showed 

no effect on 3T3-L1 differentiated cells-induced cytokine release. These data suggest 

that a major antiadipogenic action of C1P is based on inhibition of leptin release.  

Taken together, the data presented in this thesis establish that C1P is a potent 

antiadipogenic agent, being able to decrease lipid accumulation, TG concentration, 

adipogenic markers expression and leptin levels during the differentiation process.  

The next step was to investigate into the mechanisms involved in the antiadipogenic 

activity of C1P. Interestingly, recent reports showed that several compounds modulate 

adipogenic differentiation by regulating MAPK activity [41, 42]. In particular, the ERK 

pathway could be involved in adipogenesis by displaying both positive and negative 

effects. For example, in preadipocyte cells derived from human omental adipose tissue 

ERK is involved in the anti-adipogenic effect of angiotensin II [57]. In addition, 

evodiamine, a major alkaloid compound found in Evodia fructus, was found to prevent 

adipocyte differentiation by sustaining the activation of ERK in 3T3-L1 [58]. 
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Conversely, in the terminal differentiation phase ERK1 activity led to phosphorylation 

of PPARγ, which inhibits differentiation [18]. These contradictory data suggest that the 

role of ERK in adipogenesis needs to be timely regulated. Early on, ERK had to be 

turned on to initiate preadipocytes into the differentiation process and, thereafter, the 

signal transduction pathway needs to be shut-off to proceed with adipocyte maturation. 

In this connection, we have found that ERK phosphorylation was higher in the early 

stages of differentiation whereas in the late stages of the process, when adipocytes are 

totally differentiated, ERK phosphorylation was decreased. Based on previous work by 

our group, we hypothesized that C1P could regulate adipocyte differentiation via the 

ERK signaling pathway. We have demonstrated in this Thesis that treatment of cells 

with C1P at the early stages of the differentiation process increased ERK 

phosphorylation up to about 30 hour after induction of cell differentiation, whereas in 

the absence of C1P, ERK phosphorylation reached maximum value at 4 hours after 

induction of the differentiation process. Because of the prolonged activation of ERK by 

C1P, it could be speculated that activation of this kinase is essential for C1P-mediated 

suppression of adipogenesis. In this regard, we observed that treatment of 3T3-L1 with 

PD98059, an ERK inhibitor, restored C1P-mediated suppression of adipogenesis in a 

dose-dependent manner. This ERK inhibitor was able to also rescue the formation of 

lipid droplets and the content of TG in 3T3-L1 cells, even in the presence of C1P. 

Therefore, these results strongly suggest that the ERK pathway is responsible for the 

inhibition of adipogenic differentiation by extracellular C1P. However, the generation 

of intracellular C1P is a key event in the process of adipogenesis and unlike 

extracellular C1P, endogenous C1P does not inhibit adipogenesis, as intracellular C1P is 

unable of activating the MAPK pathway. 

Our group previously demonstrated that C1P is able to stimulate cell migration through 

interaction with a putative specific C1P receptor which was found to be coupled to a Gi 

protein-coupled receptor (a GPCR, as previously mentioned) [43, 59]. Therefore, based 

on that work, it was hypothesized that this GPCR could be involved in C1P-induced 

ERK1/2 activation. To characterize this type of interaction we used Pertussis Toxin 

(Ptx), which upon addition to eukaryotic cells causes inhibition of GPCRs by blocking 

the activation of Gi proteins and therefore, all the signaling pathways that are dependent 

on this kind of interaction would be blocked. In this thesis, we demonstrated that C1P 

action on ERK phosphorylation in 3T3-L1 cells requires the interaction of C1P with a 
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Ptx-sensitive GPCR, as Ptx blocked C1P-estimulated ERK phosphorylation. In addition, 

we also observed that C1P-attenuated adipocyte differentiation was highly sensitive to 

treatment with Ptx. C1P-attenuated lipid droplet accumulation and TG content were 

increased by treatment with Ptx. 

In this Thesis, we show for the first time that C1P decreases adipogenesis and we have 

elucidated part of the mechanism by which C1P exerts this action. The results obtained 

in this work indicate the CERK/C1P signaling axis appear to have an important role in 

the process of adipocyte differentiation. These findings may help to develop new 

therapeutic strategies against obesity and obesity-related diseases. The scheme shown 

below describes the role played by C1P in adipocyte differentiation. 

 

 

Figure 3.2. Working model for the implication of exogenous C1P in blocking adipogenesis 

We propose that fluctuations in intracellular C1P levels may initially switch 

adipogenesis, and later provide an antiadipogenic feed-back mechanism led by 

exogenous C1P to reset the system to homeostasis after enhancement of CerK 

expression. 
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6. CHAPTER 3: Phosphatidylethanolamine N-

metyltransferase (PEMT) is implicated in obesity-associated 

inflammation and cell migration. 

 

1.  INTRODUCTION 

Several studies have demonstrated that obesity is closely related to inflammation [1-5]. 

In fact, obesity is now considered a chronic low-grade inflammation state, which starts 

in adipose tissue as it expands with excess fat and caloric intake, and involves the 

activation of inflammatory pathways in cells by nutrient-sensing and cytokine signaling. 

In particular, pro-inflammatory cytokines have been found to play a role in 

orchestrating the signaling mechanisms that take place in obesity-associated 

inflammatory responses. Consequently, obesity-associated inflammation can be 

regarded as a crucial factor in the development of obesity. 

1.1.  Obesity-associated inflammation 

The inflammatory response is characterized by increased local and systemic cytokine 

levels along with increased number of infiltrated immune cells, with neutrophils 

dominating mainly in acute phases while macrophages are the main cells in chronic 

conditions [6]. However, obesity was shown to be associated with a slightly different 

type of inflammation referred to as chronic low-grade sterile inflammation or 

metainflammation. The chronic nature of obesity exerts a profound effect on metabolic 

pathways, playing one of the central roles in the development of insulin resistance (IR) 

[7, 8], and the interaction between immune and metabolic cells initiates and propagates 

the inflammatory response. In addition, inflammation results in secretion of cytokines 

and an enhanced production of leptin, which will activate adipose tissue T-lymphocytes 

and resident adipose tissue macrophages. This then leads to secretion of pro-

inflammatory cytokines and chemokines from these cells, which attract immune cells 

including other T-lymphocytes, neutrophils, and monocytes [9-14]. Once in adipose 

tissue, monocytes differentiate to macrophages, and start secreting cytokines which act 

as an autocrine, paracrine or endocrine fashion [15-19] leading to the propagation of 

local inflammation in adipose tissue.  
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1.1.1. Macrophage infiltration into white adipose tissue (WAT) 

Obesity promotes an intricate inflammatory response that involves the infiltration of 

immune cells to metabolic organs including adipose tissue. In an obese state, adipose-

tissue-derived adipokine release and immune-cell derived cytokine release [20] 

increase, leading to a progressive immune cell infiltration into obese adipose tissue [9, 

21], and also giving rise to an inflammatory state. Adipose tissue macrophages (ATMs), 

originally identified in murine fat depots by the expression of the macrophage protein 

F4/80, are the most abundant immune cells in adipose tissue. Although the majority of 

ATMs are thought to be recruited from the blood, macrophages can also proliferate 

within tissues in a process independent of monocytes and regulated by IL-4 [22, 23]. 

1.1.2. Macrophage polarization 

In the present decade a new model has been developed that describes the complex 

mechanism of macrophage polarization [24, 25]. Due to the polarization state, 

macrophages configure a heterogeneous population with different functional roles [26]. 

In particular, adipose tissue macrophages consist of at least two different polarization 

states, which are classically activated “M1” pro-inflammatory macrophages and 

alternatively activated “M2” anti-inflammatory macrophages. Both M1 and M2 

macrophages express F4/80 and CD68 surface markers, as they are generic macrophage 

markers. However, M1 and M2 macrophages exhibit completely different marker 

expression. These markers are transmembrane glycoproteins, scavenger receptors, 

enzymes, growth factors, hormones, cytokines and cytokine receptors with diverse 

functions. 

1.1.2.1. Classically activated M1 pro-inflammatory macrophages. 

The M1 activation is induced by intracellular pathogens, bacterial cell wall components, 

lipoproteins, and cytokines such as interferon gamma (IFN-γ). The M1 macrophages are 

characterized by a high production of nitric oxide (NO), resulting in an effective 

pathogen killing mechanism [24, 25, 27, 28]. In addition, M1 macrophages induce 

inflammatory cytokine secretion (TNF-α, IL-6, MCP-1) and therefore, they contribute 

to the induction of insulin resistance [29-31]. Furthermore, mice with targeted deletions 

in the genes for monocyte chemoattractant protein-1 (MCP-1/ccl2) and its receptor C-C 

motif chemokine receptor 2 (Ccr2) both have decreased ATM content, decreased 

inflammation in fat, and protection from high-fat diet-induced (HFD-induced) insulin 

resistance [32, 33]. 
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M1 macrophages are identified based on the gene transcription or protein expression of 

a set of M1 markers. In fact, CD11c (integrin, alpha X) surface molecule is considered a 

M1 marker and its expression in ATM is considerably increased upon high-fat diet 

feeding [34].  

1.1.2.2. Alternatively activated M2 anti-inflammatory macrophages 

The alternatively activated or M2 macrophages are immune cells present in almost all 

organs in the body as resident cells under physiological conditions, where they act to 

maintain tissue homeostasis [31, 35, 36]. Based on the applied stimuli and the achieved 

transcriptional changes, the M2 macrophages have been classified into subdivisions [24, 

27]. These are M2a, M2b, and M2c subdivisions. IL-4 and IL-13 activate M2a 

macrophages, immune complexes activate the M2b macrophages, and glucocorticoids 

and TGF-β activate the M2c. 

The M2 macrophages have high phagocytosis capacity, producing extracellular matrix 

(ECM) components, angiogenic and chemotactic factors, and IL-10. In addition to the 

pathogen defense, M2 macrophages clear apoptotic cells, they can mitigate 

inflammatory responses, and they promote wound healing [37]. Although they are 

widely termed as anti-inflammatory macrophages, M2 macrophages can cause allergic 

inflammation, aid the growth of tumor tissues, and can act as cellular reservoirs for 

various pathogens [25]. Also, M2 macrophages have complex roles outside the context 

of inflammation, such as organ morphogenesis, tissue turnover, and endocrine signaling 

[24, 38-42]. 

M2 macrophages are reported to have a different gene expression profile, characterized 

by the relatively high expression of CD206 and CD163 surface markers and an 

increased IL-10 anti-inflammatory cytokine secretion. 

 CD206: C-type mannose receptor, which is a 175-kDa type I transmembrane 

glycoprotein, is considered a M2 macrophage marker in both mouse and human [27, 

43]. Several types of tissue resident macrophages, such as cardiac resident 

macrophages, peritoneal macrophages, adipose tissue macrophages, placental 

macrophages (also known as Hofbauer cells), and macrophages of the skin express 

CD206 [44-49]. Lack of CD206 increases random migration of macrophages and results 

in the upregulation of proinflammatory cytokine production during endotoxemic lung 

inflammation in mouse [50]. CD206 deficiency also results in the elevated serum level 

of inflammatory proteins, suggesting that it has a role in the resolution of inflammation 

by clearing inflammatory molecules from the blood [51]. 
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 CD163: haptoglobin-hemoglobin scavenger receptor is expressed in some 

CD206-expressing tissue resident macrophages, such as mouse and human adipose 

tissue macrophages and placental macrophages [44, 45, 52, 53]. Its expression is 

amplified also by M-CSF, IL-6, IL-10, and glucocorticoids, while TNF-α, TGF-β, IFN-

γ, and LPS reduce its expression [43, 54-56]. Macrophages coexpressing CD206 and 

CD163 are high IL-10, IL-1 receptor antagonist (IL-1ra), and CCL18 producers [48]. 

 

Under normal physiological conditions, 5-10% of adipose tissue cells are resident M2 

macrophages. However, in obese adipose tissue, there is an imbalance in the ratio of 

M1/M2 macrophages, with M1 “pro-inflammatory” macrophages being enhanced and 

M2 “anti-inflammatory” macrophages being down-regulated, which leads to chronic 

inflammation and the propagation of metabolic dysfunction. Several studies reported 

that ATM from lean mice express many characteristic genes of M2 macrophages, which 

may protect adipocytes from inflammation, whereas diet-induced obesity led to a shift 

in the activation state to an M1 pro-inflammatory state that contributes to insulin 

resistance [34, 57, 58]. Therefore, sustaining the M2-like state of some tissue resident 

macrophages, such as Kupffer cells and adipose tissue macrophages, would diminish 

the production of inflammatory mediators and thus may be a therapeutic approach to 

treat metabolic diseases [41, 59]. 

 

1.2. Phosphatydilethanolamine N-methyltransferase (PEMT) 

Phosphatidylcholine (PC) is the quantitatively major phospholipid of hepatic 

endoplasmic reticulum (ER) membranes in mammalian cells. The major pathway for 

biosynthesis of PC is the CDP-choline pathway, which is present in all eukaryotic cells. 

However, an alternative pathway for PC biosynthesis is the conversion of 

phosphatidylethanolamine (PE) to PC by PE-methyltransferase (PEMT) [60, 61]. Under 

normal conditions, the CDP-choline pathway accounts for 70% hepatic PC biosynthesis, 

and the remaining 30% is synthetized via the PEMT pathway [61].  

In mice and rats the major enzymatic activity and immunoreactivity for PEMT is in the 

liver. In contrast, a minor activity was detected in adipose tissue, although it might also 

have important functions in this tissue. PEMT activity can be regulated by substrate 

availability, by the regulation of the enzyme expression or by transcriptional regulation. 
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1.2.1.  Physiological functions of PEMT  

PEMT is important for the biosynthesis of PC, which is a critical and essential 

component for membrane structure. In addition, PEMT also plays an important role in 

the secretion of hepatic very low density lipoproteins, since PC is quantitatively the 

most important phospholipid in this plasma lipoproteins [62, 63]. In order to determine 

whether PEMT has other function in mammalian cells, mice lacking PEMT were 

constructed (pemt-/- mice) [64]. The availability of pemt-/- mice permitted to determine 

the implication of this enzyme in atherosclerosis [65]. Moreover, it has recently been 

demonstrated that the lack of PEMT alters plasma VLDL levels [66] and decreases  

homocysteine (Hcy) levels in the plasma, suggesting that lack of PEMT protects mice 

from atherosclerosis [67]. Recently, it has been discovered that mice lacking PEMT are 

strikingly protected from high fat diet-induced obesity and insulin resistance [68]. 

Unlike pemt+/+ mice, the PEMT-deficient mice held their weight constant [69], although 

the pemt-/- mice developed steatosis. 

In 3T3-L1 fibroblasts PEMT expression/activity is not detected, however four days after 

the cells were differentiated into adipocytes, PEMT was expressed. These studies in 

3T3-L1 cells demonstrated that PEMT has an important role in the stabilization of lipid 

droplets in 3T3-L1 adipocytes [70].  

 

The role of PEMT in obesity and obesity-associated disorders has been firmly 

established based on in vivo and in vitro studies. Inflammation and cell migration are 

key events in obesity development, thus for a better understanding of how the lack of 

PEMT protects against obesity, we wanted to examine whether PEMT is implicated in 

obesity-associated processes such as inflammation and macrophage migration and 

signaling pathways involved in this action.   
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2. RESULTS 

2.1. C1P decreases PEMT expression in 3T3-L1 differentiated cells 

Recent studies have demonstrated that the lack of PEMT protects mice from the HFD-

induced obesity [68]. On the other hand, we have found that C1P inhibits adipogenesis 

(chapter 2). As shown in Figure 2.1.1, C1P inhibits PEMT expression in 3T3-L1 

differentiated adipocytes, suggesting that PEMT could be a target of C1P. Therefore, 

C1P could block adipogenesis not only via ERK phosphorylation, as we show in this 

Thesis (see chapter 2), but also by the inhibition of PEMT expression.  

 
Figure 2.1.1. C1P inhibits PEMT expression in 3T3-L1 differentiated cells. 3T3-L1 cells 
were seeded in 6-well plates (1.2 x 105 cells/well) and they were grown in DMEM containing 
10% NCS until they were about 90-100% confluent. Confluent cells were further incubated for 
2 days before inducing cell differentiation. After two days, cells were cultured in growth 
medium (GM) or Adipogenic Induction Medium (AIM) with or without 20 µM of C1P. The 
medium was changed every 2 days and C1P was added each time. A. On the 7th day of the 
differentiation process, cell lysates were prepared and PEMT expression was detected by 
Western blotting using a specific antibody to PEMT, and equal loading of protein was assessed 
with an antibody against GAPDH. Similar results were obtained in each of 5 replicate 
experiments. B. Results of the scanning densitometry of exposed film. Data are expressed as 
arbitrary units of intensity and are the mean ± SEM of 5 independent experiments (*p<0.05, 
#p<0.05).  

 

Due to the importance of this enzyme, in this chapter we have focused on PEMT and its 

functions in obesity-associated processes. 
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2.2. Deficiency of PEMT protects mice from obesity-induced multi-cytokine 

release in white adipose tissue. 

Obesity is considered a chronic low-grade inflammation and a wide range of different 

cytokines have been described to be increased in the obese state [2, 71]. In addition to 

demonstrating that PEMT-deficiency protects against diet-induced obesity, Vance and 

coworkers in collaboration with our group wanted to evaluate the effect of PEMT on 

cytokine release, since PEMT could also protect mice from obesity-induced 

inflammation. In order to test whether the lack of PEMT protects mice from obesity-

induced inflammation, pemt-/- (PEMT-KO) and pemt+/+ (WT) mice were fed with high 

fat diet for 10 weeks. After this, white adipose tissue (WAT) was used in order to 

perform a mouse cytokine antibody array. This array allows analysis of a variety of 

cytokines, chemokines and adipokines using a conventional ELISA kit. As shown in 

Figure 2.2.1, the expression of the adipokine leptin, some proinflammatory cytokines, 

including IL-1α, IL-4, and TNFα receptor I and II, and the chemokines MCP-1 and 

RANTES were lower in WAT from PEMT-deficient mice compared to WT mice. In 

addition, expression of the anti-inflammatory cytokine IL-10 was also studied and we 

found that its expression was slightly increased in PEMT-KO mice. These data suggest 

that the lack of PEMT not only protects mice from obesity, but also protects mice from 

obesity-associated inflammation. 
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Figure 2.2.1. Lack of PEMT protects mice from HFD-induced proinflammatory cytokine 
release and increases anti-inflammatory cytokine release. White adipose tissue was 
homogenized in 1ml homogenization buffer. Adipose tissue was then centrifuged and 
supernatant was collected and used for the inflammation-related cytokine array. A. Multi-
cytokine inflammatory array analysis was performed as indicated in Materials and Methods. B. 
Results of the scanning densitometry of the exposed film. Data are expressed as arbitrary units 
of intensity normalized to the protein content and are the mean ± range of 2 independent 
experiments. 

 

2.3.  Quantification of IL-1α, RANTES, MCP-1, IL-4, TNF-α, Leptin and IL-10 
levels in WAT after HFD-feeding 

Next, we tried to quantify some of the pro-inflammatory cytokines and chemokines that 

appeared to be more significantly decreased in PEMT-deficient mice and we also 

quantified the anti-inflammatory cytokine IL-10, which seems to be increased in 

PEMT-deficient mice. We found that after 10 weeks under a HFD, leptin levels were 

dramatically decreased in pemt-/- mice. In addition, WAT from pemt-/- mice had lower 

levels of the inflammatory cytokine TNF-α and the chemokines MCP-1 and RANTES. 

By contrast these mice had significantly higher levels of the anti-inflammatory cytokine 

IL-10 than pemt+/+  (Figure 2.3.1) [72]. These data suggest that after 10 weeks of the 

HFD, pemt-/- mice showed an anti-inflammatory pattern of cytokines and chemokines in 

WAT, which is consistent with the results obtained in the mouse inflammation array. 

Altogether, the present data demonstrate that PEMT deficiency protects mice from 

obesity-induced inflammation. 
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Figure 2.3.1 The lack of PEMT protects mice from HFD-induced proinflammatory 
cytokine release and increases the anti-inflammatory cytokine IL-10 release. White adipose 
tissue was homogenized in 1ml homogenization buffer. Adipose tissue was then centrifuged and 
supernatant was collected. Diluted (1:3) supernatants were used for ELISA experiments. A-G 
Tissue levels of proinflammatory cytokines (IL-1α, MCP-1, RANTES, TNF-α and IL-4), 
adipokine (Leptin) and IL-10 were quantified using ELISA kits, as indicated in Materials and 
Methods. Results are normalized to the protein concentration and are the mean ± SEM of 3 to 4 
independent experiments perfomed in duplicate (*p<0.05, **p<0.01).  
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2.4. Deficiency of PEMT alters the phenotype of adipose tissue macrophages.  

Adipose tissue inflammation, which is closely related to obesity, induces cytokine and 

chemokine production in order to promote recruitment of circulating monocytes, which 

differentiate into an M1 “pro-inflammatory” macrophage phenotype and their 

accumulation leads to an imbalance between M1 and M2 macrophages. Consequently, 

an increased cytokine production from M1 macrophages and/or reduced anti-

inflammatory signals from the M2 macrophages promote adipose tissue dysfunction. 

Therefore, ATMs play important roles in obesity and obesity-associated disorders [9, 

21, 32, 33]. Since deletion of PEMT protects mice from high fat diet-induced obesity, 

we hypothesized that the lack of PEMT would also reduce obesity-induced chronic 

inflammation. Accumulation of increased numbers of tissue macrophages is a key event 

in obesity-induced inflammation. Therefore, we wanted to examine whether PEMT 

deletion protects mice from macrophage infiltration into adipose tissue. In order to 

quantify macrophage numbers in adipose tissue, the mRNA expression of F4/80, which 

is a generic macrophage marker, was measured. It was found that WAT from PEMT-

deficient mice exhibited a marked reduction in adipose tissue macrophage number, 

since F4/80 expression was significantly lower in WAT from pemt-/- mice (PEMT-KO). 

These data suggest that the lack of PEMT attenuates macrophage infiltration into 

adipose tissue (Figure 2.4.1).  

 

Figure 2.4.1. Relative mRNA expression for F4/80, a specific macrophage marker, is 
decreased in pemt-/- mice. 10 weeks after feeding mice with a high fat diet, total RNA was 
isolated from snap-frozen white adipose tissue using TRIzol reagent. Total RNA was treated 
with DNase I, then reverse-transcribed using oligo (Dt) and Superscript II reverse transcriptase. 
mRNA levels were determined by RT-qPCR using a Step One Plus system, as described in 
Materials and Methods. The F4/80 macrophage marker was detected using specific RNA 
primers. mRNA levels of specific F4/80 macrophage marker were normalized to the total CD68 
mRNA. mRNA values were directly taken from Step One Plus machine. Data are the mean ± 
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SEM of 6 independent experiments. These results were obtained in Dr. Dennis Vance´s 
laboratory, at the Heritage Medical Research Centre of the University of Alberta (Edmonton, 
Canada). 

Next, we wanted to study whether PEMT deficiency could attenuate obesity-associated 

inflammation by decreasing the number of classically activated M1 “proinflammatory” 

macrophages in adipose tissue. In order to quantify M1 and M2 macrophages, the 

expression of several genes characteristic of M1 and M2 were measured in WAT after 

10 week of HFD.  

A recent report [34] proposed that classically activated M1 macrophages or alternatively 

activated M2 ATMs are distinguished by the presence or the absence of CD11c. M1 

ATMs produce proinflammatory cytokines, such as TNF-α, IL-6, and MCP-1, thus 

contributing to the induction of insulin resistance. As shown in Figure 2.4.2, CD11c and 

MCP-1 mRNA levels, which are M1 macrophage markers, are decreased in PEMT-KO 

mice, suggesting that deletion of PEMT downregulates M1 macrophage phenotype and 

thus, protects mice from obesity-induced inflammatory state. 
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Figure 2.4.2. Assessment of M1 macrophages in WAT from HFD-fed wildtype and PEMT-
KO mice.Ten weeks after feeding mice with high fat diet, total RNA was isolated from snap-
frozen white adipose tissue using TRIzol reagent. Total RNA was treated with DNase I, then 
reverse-transcribed using oligo (Dt) and Superscript II reverse transcriptase. mRNA levels were 
determined by RT-qPCR using a Step One Plus system, as described in Materials and Methods. 
A. The CD11c M1 macrophage marker was detected using specific RNA primers. mRNA levels 
were normalized to the total CD68 mRNA, which is a generic macrophage marker. mRNA 
values were directly taken from Step One Plus machine. Data are the mean ± SEM of 6 
independent experiments (***p<0.001). B. The MCP-1 M1 macrophage marker was detected 
with specific RNA primers. mRNA levels were normalized to the total CD68 mRNA, which is a 
generic macrophage marker. mRNA values were directly taken from Step One Plus machine. 
Data are the mean ± SEM of 6 independent experiments (**p<0.01). These results were 
obtained in Dr. Dennis Vance´s laboratory, at the Heritage Medical Research Centre of the 
University of Alberta (Edmonton, Canada). 

 

On the other hand, M2 ATMs, which are the major resident macrophages in lean 

adipose tissue, are reported to have a different gene expression profile, characterized by 

the relatively high expression of CD206, CD163 and IL-10, which are involved in the 

repair or remodeling of tissues. In connection with the reduction of obesity-associated 

inflammation by PEMT, we hypothesized that M2 macrophage markers could be 

increased in pemt-/- mice. However, no difference was observed in the mRNA 

expression of CD206 and CD163 between pemt+/+ mice and pemt-/- mice. Unlike CD206 

and CD163, the mRNA expression of IL-10 cytokine of the HFD-fed PEMT-deficient 

mice tended to be reduced compared with those of pemt+/+ mice, although the changes 

are not significant (Figure 2.4.3). 
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Figure 2.4.3. Assessment of M2 macrophages in WAT from HFD-fed wildtype and PEMT-
KO mice. Ten weeks after feeding mice with a high fat diet, total RNA was isolated from snap-
frozen white adipose tissue using TRIzol reagent. Total RNA was treated with DNase I, then 
reverse-transcribed using oligo (Dt) and Superscript II reverse transcriptase. mRNA levels were 
determined by RT-qPCR using a Step One Plus system, as described in Materials and Methods. 
A. The CD206 M2 macrophage marker was detected with specific RNA primers. mRNA levels 
were normalized to the total CD68 mRNA, which is a generic macrophage marker. mRNA 
values were directly taken from Step One Plus machine. Data are the mean ± SEM of 6 
independent experiments. B. CD163 M2 macrophage marker was detected with specific RNA 
primers. mRNA levels were normalized to the total CD68, which is a generic macrophage 
marker. mRNA values were directly taken from Step One Plus machine. Data are the mean ± 
SEM of 6 independent experiments. C. The IL-10 M2 macrophage marker was detected with 
specific RNA primers. mRNA levels were normalized to the total CD68 mRNA. mRNA values 
were directly taken from Step One Plus machine. Data are the mean ± SEM of 6 independent 
experiments. These results were obtained in Dr. Dennis Vance´s laboratory, at the Heritage 
Medical Research Centre of the University of Alberta (Edmonton, Canada). 

To further study whether PEMT deficiency modifies macrophage polarization, we 

characterized the activation state of WAT macrophages from HFD-fed pemt+/+ and 

pemt-/- mice. In order to determine macrophage phenotype double immunofluorescence 

stainning was performed, first with a CD68 antibody in order to identify all 

macrophages, and second with a CD11c antibody to identify M1-like macrophages 

(Figure 2.4.4).  
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Figure 2.4.4. Immunofluorescence analysis of macrophage phenotype in WAT from HFD-
fed pemt +/+ and pemt -/- mice.  Mouse white adipose tissue was collected and fixed in 10% 
formalin buffered. Fixed adipose tissue samples were immunoreacted with CD68-PE 
fluorescent antibody to identify all macrophages and CD11c-A488 fluorescent antibody to 
identify M1 (inflammatory) macrophages, following the protocol described in Materials and 
Methods. Photomicrographs of a representative field that includes white adipose tissue 
surrounded by macrophages. A. Bright-field overlay showing immunofluorescence reactivity to 
antibodies recognizing a general macrophage marker (CD68, red). B. Bright-field overlay 
showing a marker preferentially expressed in M1 macrophages (CD11c, green). C. Bright-field 
showing double-immunofluorescence reactivity to antibodies recognizing general macrophage 
marker (CD68, red), and a marker preferentially expressed in M1 macrophages (CD11c, green). 
This protocol was carried out at the HistoCore service of the Heritage Medical Research Centre 
(University of Alberta). Micrographs of white adipose tissue from wildtype and pemt-knockout 
mice were taken with a Leica DM IRE2 microscope. 
 
Figure 2.4.4 shows a representative image of macrophage infiltration into WAT from 

pemt-/- and pemt+/+ mice. There are clear differences between WAT from pemt-/- mice 

and WAT from pemt +/+ mice after 10 week under a HFD. First, macrophage infiltration 

was decreased in WAT from PEMT-KO mice. Second, PEMT-deficient mice exhibited 

a marked reduction in accumulation of classically activated M1 “pro-inflammatory” 

macrophages in white adipose tissue (CD11c, a M1 “inflammatory” macrophage 

marker, was less expressed in WAT from PEMT-deficient mice). Third, compared to 

wildtype mice, PEMT-deficient mice are resistant to diet-induced hypertrophy of 

adipocytes in white adipose tissue, thus PEMT deficiency could hinder adipocyte 
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differentiation, resulting in lack of adipose hypertrophy in HFD-fed Pemt-/- mice (Figure 

2.4.4). Taken together, these data suggest that PEMT deficiency attenuates the 

accumulation of M1 macrophages in HFD-fed WAT and it also protects from adipocyte 

hypertrophy, which are key events in the development of obesity and obesity-induced 

inflammation.  

Altogether, these data demonstrate that the lack of PEMT not only protects mice from 

HFD-induced obesity, but also from obesity-induced inflammation, since accumulation 

of M1 “proinflammatory“ macrophages and pro-inflammatory cytokines/chemokines 

levels were decreased in HFD-fed PEMT deficient mice, whereas anti-inflammatory IL-

10 cytokine was increased. Therefore, the anti-inflammatory effect of PEMT deficiency 

would attenuate the development of obesity and obesity-associated disorders. 

2.5. PEMT overexpression induces J774A.1 macrophage migration in a time-
dependent manner 

We have already demonstrated that the lack of PEMT modulates macrophage phenotype 

in adipose tissue, giving rise to a less inflammatory state. Given that the lack of PEMT 

decreases macrophage infiltration into adipose tissue, it was decided to examine the 

effect of PEMT overexpression in J774A.1 macrophages. In order to determine whether 

PEMT was able to promote cell migration in macrophages, we first tested the efficiency 

of PEMT transfection. The cells were transfected with a PEMT plasmid and then we 

determined PEMT expression by Western blotting. Figure 2.5.1b shows that J774A.1 

macrophages were efficiently transfected. Subsequently, cell migration was assessed 

and we observed that transfection of PEMT in macrophages caused a significant 

increase in cell migration in a time dependent manner (Figure 2.5.1a). In addition, for 

better visualization of PEMT-induced cell migration, micrographs of the migration 

assay chambers were taken (Figure 2.5.1c). 
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Figure 2.5.1. PEMT overexpression induces J774A.1 macrophage migration in a time-
dependent manner. Cells were seeded in 60 mm dishes (2 x 105 cells/dish) and transfected 
with either pC1-PEMT plasmid, pC1 empty vector or vehicle, as described in Materials and 
Methods. Cells were then scrapped and counted. A. Cells (5 x 104 cells/well) were seeded in the 
upper wells of 24-well chambers coated with fibronectin and incubated for the indicated times. 
Cell migration was determined as indicated in Materials and Methods. Results are the mean ± 
SEM of 3 independent experiments performed in duplicate (**p<0.01). B. Overexpression of 
PEMT was confirmed by Western blotting using a specific antibody to PEMT. Equal loading of 
protein was monitored using a specific antibody to GAPDH. Similar results were obtained in 
each of 3 independent experiments. C. Micrographs of migrated J774A.1 cells in chambers after 
PEMT overexpression. Pictures were taken with a Nikon Eclipse 90i microscope. 

 

2.6.  PEMT overexpression induces ERK, Akt and mTOR phosphorylation in 

J774A.1 macrophages 

We next studied the implication of PI3K/Akt/mTOR pathway, which is one of the best 

characterized pathways linked to cell motility functions, in PEMT-induced J774A.1 

macrophage migration. First, we studied whether PEMT overexpression was able to 

induce phosphorylation of ERK, Akt and mTOR in these cells. We observed that after 

transfection with the PEMT plasmid, Akt1, ERK and mTOR phosphorylation was 

increased in J774A.1 macrophages (Figure 2.6.1), suggesting that the PI3K/Akt/mTOR 

pathway might be a downstream target of PEMT. 
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Figure 2.6.1. PEMT overexpression induces ERK, Akt and mTOR phosphorylation in 
J774A.1 macrophages. Cells were seeded in 60 mm dishes (2 x 105 cells/dish) and transfected 
with either pC1-PEMT plasmid, pC1 empty vector or vehicle, as described in Materials and 
Methods. A. Cells were then harvested and PEMT, p-ERK, p-Akt and p-mTOR were detected 
by Western blotting using specific antibodies. Equal loading of protein was assessed with an 
antibody against GAPDH. Similar results were obtained in 4 different experiments. B. Results 
of scanning densitometry of exposed film. Data are expressed as arbitrary units of intensity and 
are the mean ± SEM of the 4 independent experiments (*p<0.05, **p<0.01).  

 

2.7. The PI3K/Akt1/mTOR pathway is implicated in PEMT overexpression-

induced macrophage migration. 

To determine the implication of the PI3K/Akt/mTOR pathway in PEMT-induced 

macrophage migration, cells were transfected with the PEMT plasmid and then, cell 

migration was performed using selective inhibitors of these three kinases: LY294002 

for PI3K, 10-DEBC for Akt1 and rapamycin for mTOR. All of these reagents potently 

reduced PEMT-induced cell migration (Figure 2.7.1). 
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Figure 2.7.1. The PI3K/Akt1/mTOR pathway is implicated in PEMT-induced J774A.1 
macrophage migration. Cells were seeded in 60 mm dishes (2 x 105 cells/dish) and transfected 
with either pC1-PEMT plasmid, pC1 empty vector or vehicle, as described in Materials and 
Methods. Cells were then seeded in the upper wells of 24-well fibronectin precoated chambers 
(5 x 104 cells/well). After 1 hour of preincubation, cells were incubated with different inhibitors, 
as indicated. A. Cells were preincubated for 1 hour with LY294002 at the indicated 
concentrations. Then, either vehicle or LY294002 inhibitor was added in the lower chambers at 
the indicated concentrations. Cells were then incubated for 24 hours and macrophage migration 
was determined as indicated in Materials and Methods. Data are expressed as the number of 
migrated cells relative to the number of cells migrated in the control chamber and are the mean 
± SEM of 3 independent experiments performed in duplicate (*p<0.05, #p<0.05). B. Cells were 
preincubated for 1 hour with 10-DEBC at the indicated concentrations. Then, either vehicle or 
LY294002 inhibitor was added in the lower chambers at the indicated concentrations. Cells 
were then incubated for 24 hours and cell migration was determined as indicated in Materials 
and Methods. Data are expressed as the number of migrated cells relative to the number of cells 
migrated in the control chamber and are the mean ± SEM of 4 independent experiments 
performed in duplicate (*p<0.05, #p<0.05). C. Cells were preincubated for 1 hour with 
Rapamycin at the indicated concentrations. Then, either vehicle or Rapamycin was added in the 
lower chambers at the indicated concentrations. Cells were then incubated for 24 hours and cell 
migration was determined as indicated in Materials and Methods. Data are expressed as the 
number of migrated cells relative to the number of cells migrated in the control chamber and are 
the mean ± SEM of 4 independent experiments performed in duplicate (*p<0.05, #p<0.05).  

 

The implication of PI3K, Akt and mTOR in PEMT-stimulated cell migration was also 

studied using siRNA to silence the corresponding genes encoding these kinases. 

Silencing of Akt1 in J774A.1 cells completely blocked PEMT-induced cell migration 

(Figure 2.7.2). 
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Figure 2.7.2. Akt1 siRNA blocks PEMT overexpression-induced cell migration in J774A.1 
cells. Cells were seeded in 60 mm dishes (2 x 105 cells/dish) and siRNA transfection was 
performed as described in Materials and Methods. After siRNA treatment, cells were 
transfected with either pC1-PEMT plasmid, pC1 empty vector or vehicle, as indicated in 
Materials and Methods. Cells were then scrapped and counted. A. Cells were seeded in the 
upper wells of 24-well fibronectin precoated chambers (5 x 104 cells/well). Cells were then  
incubated for 24 hours and cell migration was determined as indicated in Materials and 
Methods. Data are expressed as the number of migrated cells relative to the number of cells 
migrated in the control chamber and are the mean ± SEM of 3 independent experiments 
performed in duplicate (*p<0.05, ##p<0.01). B. After treatment, cells were collected and the 
Akt1 siRNA inhibitory efficiency was confirmed by Western blotting using a specific antibody 
against Akt1. Equal loading of protein was monitored using a specific antibody to GAPDH. 
Similar results were obtained in each of 2 independent experiments.  

We also found that PI3K gene silencing resulted in inhibition of PEMT overexpression-

induced cell migration in J774A.1 macrophages (Figure 2.7.3) 

 

Figure 2.7.3. PI3K siRNA blocks PEMT overexpression-induced cell migration in J774A.1 
cells. Cells were seeded in 60 mm dishes (2 x 105 cells/dish) and siRNA transfection was 
performed as described in Materials and Methods. After siRNA treatment, cells were 
transfected with either pC1-PEMT plasmid, pC1 empty vector or vehicle, as indicated in 
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Materials and Methods. Cells were then scrapped and counted. A. Macrophages were seeded in 
the upper wells of 24-well fibronectin precoated chambers (5 x 104 cells/well). Cells were then 
incubated for 24 hours and cell migration was determined as indicated in Materials and 
Methods. Data are expressed as the number of migrated cells relative to the number of cells 
migrated in the control chamber and are the mean ± SEM of 3 independent experiments 
performed in duplicate (*p<0.05, ##p<0.01). B. After treatment, cells were collected and the 
PI3K siRNA inhibitory efficiency was assessed by Western blotting using a specific antibody 
against PI3K. Equal loading of protein was monitored using a specific antibody to GAPDH. 
Similar results were obtained in each of 2 independent experiments.  

Likewise, siRNA technology was used for mTOR gene silencing. We observed that 

mTOR1 was also required for PEMT-stimulated cell migration (Figure 2.7.4). 

 

Figure 2.7.4. mTOR siRNA blocks PEMT overexpression-induced cell migration in 
J774A.1 cells. Cells were seeded in 60 mm dishes (2 x 105 cells/dish) and the siRNA treatment 
was performed as described in Materials and Methods. After siRNA treatment, cells were 
transfected with pC1-PEMT plasmid, pC1 empty vector or vehicle, as indicated in Materials 
and Methods. Cells were then scrapped and counted. A. Macrophages were seeded in the upper 
wells of 24-well fibronectin precoated chambers (5 x 104 cells/well). Cells were then incubated 
for 24 hours and cell migration was determined as indicated in Materials and Methods. Data are 
expressed as the number of migrated cells relative to the number of cells migrated in the control 
chamber and are the mean ± SEM of 3 independent experiments performed in duplicate 
(*p<0.05, ##p<0.01). B. After treatment, cells were collected and the mTOR siRNA inhibitory 
efficiency was confirmed by Western blotting using specific antibody against mTOR. Equal 
loading of protein was monitored using a specific antibody to GAPDH. Similar results were 
obtained in each of 2 independent experiments.  

Altogether, these data demonstrate that upregulation of the PI3K/Akt1/mTOR1 pathway 

is one of the key signaling pathways to trigger PEMT-induced cell migration in 

macrophages. 

Several lines of evidence indicate that cell migration is associated to receptor-mediated 

effects, and some of these receptors are coupled to Gi proteins. Although the 

mechanism by which PEMT induces macrophage migration is unknown, we tested the 
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possible involvement GPCRs in this process. For this, cells were transfected with the 

PEMT-plasmid and then cell migration experiments were performed in the presence or 

in the absence of Ptx, a well-known inhibitor of GPCRs, as previously mentioned. We 

found that Ptx was able to completely block PEMT-induced J774A.1 cell migration at a 

concentration as low as 10 pg/ml (Figure 2.7.5).  

 

Figure 2.7.5. PEMT overexpression-induced cell migration in J774A.1 cells was GiPCR-
dependent. Cells were seeded in 60 mm dishes (2 x 105 cells/dish) and transfected with either 
pC1-PEMT plasmid, pC1 empty vector or vehicle, as described in Materials and Methods. Cells 
were then counted and seeded in the upper wells of 24-well fibronectin precoated chambers (5 x 
104 cells/well). After 1 hour of preincubation, cells were incubated with 10 pg/ml of Ptx for 4 
hours in the upper chambers. Then, either vehicle or 10 pg/ml of Ptx were added in the lower 
chambers. Cells were then incubated for 24 hours and cell migration was determined as 
indicated in Materials and Methods. Data are expressed as the number of migrated cells relative 
to the number of cells migrated in the control chamber and are the mean ± SEM of 4 
independent experiments performed in duplicate (*p<0.05, ##p<0.01).  

 

2.8. Lack of toxicity of the inhibitors used in this work 

All commonly used chemical inhibitors in cell signaling studies have been described to 

be toxic for cells at certain concentrations or incubation times. Therefore, we performed 

cell viability assays and showed that none of the pharmacological inhibitors used in this 

Thesis caused any significant decrease in cell viability (see chapter 1). 
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3. DISCUSSION 

Chronic inflammation is an important factor linking obesity with obesity-related 

disorders including insulin resistance, and atherosclerosis [20, 73, 74]. Some studies 

suggest that a key mechanism underlying obesity-induced inflammation is the 

macrophage infiltration into adipose tissue, particularly in obese adipose tissue [9, 21]. 

These adipose tissue macrophages (ATMs) can span de spectrum from the most pro-

inflammatory, M1-like, cells to anti-inflammatory, M2-like macrophages [34, 57, 75]. 

In obesity, the balance is tilted toward the M1-like macrophage polarization state [34], 

and these cells secrete a number of different proinflammatory cytokines, such as TNF-α 

and MCP-1. However, inflammation is not the only mechanism involved in the 

development of obesity-associated disorders. In fact, various abnormalities in lipid 

metabolism have been described, which can also impair insulin resistance [76, 77]. 

Therefore, chronic tissue inflammation and lipid abnormalities are not completely 

unrelated processes. In fact, these two systems are closely intertwined, and each of them 

can amplify the other in an in vivo pathophysiologic setting. 

As mentioned above, PEMT is a major enzyme implicated in lipid metabolism. This 

enzyme catalyzes the methylation of phosphatidylethanolamine (PE) to 

phosphatidylcholine (PC). Although PC is mainly produced via the CDP-choline 

pathway, 30% of the PC synthesis is catalyzed by PEMT [61, 69]. Pemt mRNA and 

activity are predominantly expressed in the liver. However, PEMT activity has also 

been demonstrated in other tissues, including adipose tissue [69], in which pemt 

expression is induced by a HFD [70]. Furthermore, using pemt−/− mice fed a HFD, it 

was shown that PEMT plays a critical role in obesity and insulin resistance [68]. 

Consistent with these studies using animal models, it was demonstrated that human 

obese subjects show transcriptional upregulation of the pemt gene [78]. Therefore, it 

was hypothesized that pemt deficiency might protect against obesity-induced chronic 

inflammation.  

Taking into consideration that WAT is an important endocrine organ for the secretion of 

cytokines and chemokines [79], we firstly examined endocrine function of white 

adipose tissue by comparing, both qualitatively and quantitatively, the tissue levels of 

cytokines and chemokines from pemt-/- and pemt+/+ mice after 10 weeks of HFD 

feeding. We found that pemt-/- mice fed a HFD for 10 weeks displayed lower levels of 



     Chapter 3: PEMT is implicated in obesity-associated inflammation and cell migration 

203 
 

the inflammatory cytokine TNF-α and chemokines MCP-1 and RANTES, but 

significantly higher levels of the anti-inflammatory cytokine IL-10 than pemt+/+ mice. 

Consequently, it could be concluded that PEMT deficiency protected against obesity-

induced inflammation. However, these differences of cytokines and chemokines 

between pemt-/- and pemt+/+ mice were not seen after 2 weeks of HFD feeding [72], and 

we recently suggested that the resistance to diet-induced obesity phenotype is 

subsequent to the fatty liver phenotype.  

On another hand, adipose hypoxia and adipose hypertrophy are closely related to 

obesity-induced inflammation. Interestingly, adipose tissue hypertrophy leads to a 

release of cytokines that are responsible for macrophage recruitment into adipose tissue. 

Several studies suggest that adipose tissue from lean mice contains resident M2 

macrophages that serve a homeostatic role and it is now widely accepted that 

macrophages that infiltrate into the expanded adipose tissue in obesity are derived from 

circulating monocytes and assume an M1 “pro-inflammatory” phenotype [53, 80]. In 

this thesis we show that macrophage infiltration was decreased in WAT of pemt-/- mice, 

and that the lack of PEMT reduced the mRNA expression of M1 macrophage markers, 

suggesting that PEMT deficiency markedly decreased the population of M1 pro-

inflammatory ATMs. However, the mRNA expression of M2 “anti-inflammatory” 

markers, and the levels of IL-10 were not affected by PEMT deficiency. Rather than 

distinct macrophage populations, M1 and M2 signatures do not necessarily exclude 

each other and often they coexist. The resultant mixed phenotype then depends on the 

balance of activating and inhibitory activities as well as the tissue environment [81, 82]. 

Interestingly, the lack of PEMT prevented accumulation of M1 ATMs in obese adipose 

tissue, thereby altering the balance between inflammatory M1 and M2 ATMs.  

We also found that M1 macrophage accumulation was decreased in pemt-/- mice, and 

that adipocytes were smaller in WAT from mice lacking PEMT than in wildtype mice, 

suggesting that PEMT deficiency protects these animals from adipocyte hypertrophy. 

So, it could be concluded that the lack of PEMT protects mice from macrophage 

infiltration and counteracts obesity-induced inflammation. 

Macrophage polarization toward a classically activated (M1) or alternatively activated 

(M2) state depends largely on soluble factors, such as cytokines and lipid mediators [83, 

84]. Interestingly, obesity promotes the mobilization of monocytes from the bone 
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marrow in part by activating the chemokine receptor CCR2 [32, 85, 86]. Global 

deficiency of ccr2 or its ligand, Ccl2 (MCP-1) in mice results in a failure of monocyte 

mobilization and is associated with protection from monocyte infiltration into adipose 

tissue and insulin resistance [32, 86]. The present study demonstrates that PEMT 

deficiency also led to a decrease in adipose tissue expression of MCP-1, suggesting that 

activation of the PEMT pathway may be important for subsequent production of 

chemokine-driven amplification loops in obesity.  

Also, our data provide clear evidence that elimination of PC biosynthesis via 

elimination of the pemt gene strikingly attenuated obesity-induced inflammation. This 

beneficial effect is likely attributable, at least in part, to a reduction of adipocyte 

hypertrophy. This protection against adipocyte hypertrophy causes a reduction of 

macrophage infiltration into adipose tissue, where accumulation of M1 

“proinflammatory” macrophages is decreased, and therefore, pro-inflammatory cytokine 

levels are also diminished. These findings suggest that the proinflammatory response of 

adipose tissue to high fat diet results in PEMT production or activation, which could 

serve to induce macrophage migration into adipose tissue.  

The present studies also revealed that PEMT overexpression promoted macrophage 

migration, which we associated to significant increases in the phosphorylation of 

ERK1/2, Akt1 and mTOR. However, other showed that overexpression of PEMT 

downregulated the PI3K/Akt signaling pathway in rat hepatoma cells [87], suggesting a 

different role of this pathway in hepatic cancer. Of interest, we also observed that this 

pathway plays a key role in PEMT-induced macrophage migration. Moreover, PEMT-

induced macrophage migration required participation of a Ptx-sensitive GPCR, but the 

mechanism by which PEMT leads to stimulation of this receptor remains unknown. 

Nonetheless, one might speculate that PEMT overexpression could induce release of 

specific cytokines that might be able to interact with GPCRs, thereby inducing cell 

migration. On the other hand, PEMT could also be released and somehow interact with 

a putative GPCR in an autocrine manner thereby leading to macrophage migration. 

However, this possibility is at the moment also speculative. Therefore, further studies 

are necessary to elucidate the mechanism by which PEMT overexpression induces cell 

migration. 
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In this Thesis, it is proposed that blockade of macrophage infiltration is one of the 

mechanisms by which PEMT deficiency protects against high-fat diet-induced obesity 

and obesity-induced inflammation, and that activation of the PI3K/Akt/mTOR pathway 

is, at least partially responsible for increasing macrophage migration.  

 

Figure 3.1. Working model for the implication of PEMT in J774A.1 macrophage 

migration 
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9.  CONCLUSIONS 

 
From the results obtained in this thesis, the following conclusions may be drawn. 

1. C1P induces activation of MMPs and promotes actin polymerization, which are 

important processes in C1P-induced macrophage migration. These actions require 

activation of the PI3K and ERK pathways. 

 

2. Ceramide kinase (CerK) participates in adipocyte cell differentiation. 

 
3. C1P attenuates adipogenesis through a mechanism involving activation of ERK1/2 

kinases. 

 
4. Pemt knock-out mice are protected against obesity-induced inflammation through 

processes involving the reduction of leptin adipokine, downregulation of pro-

inflammatory cytokines TNFα, IL-4, MCP-1, RANTES and upregulation of anti-

inflammatory IL-10. 

 
5. PEMT deficiency reduces M1 “pro-inflammatory” macrophage markers in mice fed 

a HFD for 10 weeks. 

 
6. Overexpression of PEMT in J774A.1 macrophages induces cell migration. This 

action involves activation of the PI3K/Akt/mTOR pathway. 
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