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1 Introduction

The importance of the timing and availability of data used in the empirical eval-

uation of policy rules has now become a crucial issue. While several studies have

shown the considerable magnitude of the revision processes for key macroeconomic

variables, there is large disagreement on whether considering or not these revisions

has a significant effect on estimated monetary policy rules. However, no paper that

we are aware of considers simultaneously the dynamics of revision processes with

their impact on estimated monetary policy rules in a structural model. Therefore,

in this paper we add to the literature by proposing an extended version of the New

Keynesian monetary (NKM) model that includes revision processes of output and

inflation data to assess the importance of data revisions on the estimated monetary

policy rule parameters and the transmission of policy shocks.

One of the first studies to investigate the properties of revision process errors

is Diebold and Rudebusch (1991). They show that the index of leading indicators

does a much worse job in predicting future movements of output in real time than it

does after data are revised. More recently, Aruoba (2008) investigates the empirical

properties of revisions to major macroeconomic variables in the U.S. and finds out

that they are not well-behaved. That is, they do not satisfy simple desirable properties

such as zero mean, which indicates that the revisions of initial announcements made

by statistical agencies are biased, and they might be predictable using the information

set available at the time of the initial announcement. Moreover, Aruoba (2008) points

out that if revisions of real-time data were rational forecast errors then the arrival

of revised data would not be relevant for policy makers’ decisions, and policy rule

estimates would be rather similar regardless of whether revised or real-time data were

used.

The impact of revision processes over the empirical evaluation of monetary policy

has been largely documented in the literature.1 An early study by Maravall and Pierce
1See Croushore (2011) for an excellent survey of the importance of data revisions not only on

1



(1986) investigates how preliminary and incomplete data affect monetary policy.2

More precisely, they compare the results of a SURE system for the M1 and the

Federal funds rate targets where the set of common explanatory variables includes

the preliminary estimate of the rate of growth of seasonally adjusted M1 instead of its

final revised data. Their empirical results show that revision errors have little impact

on the setting targets if the Fed indeed ignores erratic, short term volatility in the

rate of growth of seasonally adjusted M1 that is uncorrelated with the final revised

(“true”) variable. In short, they show that even if revisions to measures of money

supply are large, monetary policy would not be much different if more accurate data

were known.3 More recently, Croushore and Evans (2006) present evidence suggesting

that the use of revised data in VAR analyses of monetary policy may not be a serious

limitation for recursively identified systems. However, their analysis also reveals that

many simultaneous VAR systems identifiable when real-time data issues are ignored

cannot be completely identified when these measures are considered.4

One of the best-known studies comparing results based on real-time data with

those obtained with revised data in the context of monetary policy analysis is Or-

phanides (2001), which examines parameter as well as model specification uncertainty

in the Taylor-rule by using data over a period of more than 20 years. The paper con-

cludes that the Taylor principle does not hold when real-time data are used. This

empirical evidence is in sharp contrast with that found in many papers that use only

revised data (for instance, Clarida, Galí and Gertler (2000)). Moreover, Ghysels,

estimated policy rules, but more generally on structural modeling and forecasting.
2Another seminal paper is Mankiw, Runkle and Shapiro (1984). They develop a theoretical

framework for analyzing initial announcements of economic data and apply that framework to the
money stock.

3Maravall and Pierce (1986) base their reduced-form econometric analysis on the assumption that
the initial release and the final revision of a variable are orthogonal (Assumption B in their paper).
This assumption implies that the initial announcement of a variable is the (rational) optimal forecast
of its final revised value and the final data revision is not predictable using the available information
at the time the initial release was made. By contrast, our analysis allows for the possibility that data
revisions are predictable.

4There are also a few articles reporting empirical evidence for the implications of using real-time
macroeconomic data for research in empirical finance (Christoffersen, Ghysels and Swanson, 2002;
Evans and Speight, 2006; Kizys and Pierdzioch, 2010).
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Swanson and Callan (2002) find that a Taylor-type rule would have been significantly

improved if policymakers had waited for data to be revised rather than reacting to

newly released data. With regard to Taylor-rule parameters, Rudebusch (2002) in-

dicates that data uncertainty potentially plays an important role in reducing the

coefficients of the rule that characterize both policy inertia and shock persistence.5

The main advantage of using real-time data in estimating policy rules is to reduce

the effects of parameter uncertainty in actual policy settings since the researcher can

estimate policy rules with data which were actually available at any given point in

time. This is particularly important with seasonally adjusted data as such those

subject to revisions based on two-sided filters.6

All the aforementioned literature on estimating policy rules with real-time data

either uses reduced-form econometric approaches or VAR structural approaches. As

an alternative, this paper adds to the literature by building on the basic New Key-

nesian monetary (NKM) model to include revision processes of output and inflation

data. To the best of our knowledge, this is the first paper to analyze revised and

real-time data together using a structural econometric approach. This approach al-

lows for (i) a joint estimation procedure of both monetary policy rule and revision

process parameters; (ii) an assessment of the interaction between these two sets of

parameters; (iii) an alternative test of the null hypothesis establishing that real-time

data are a rational forecast of revised data in the context of a dynamic structural

general equilibrium (DSGE) model; and (iv) an analysis of how the reaction of the

Fed funds rate to alternative shocks is affected by allowing for badly-behaved revision

processes.

The use of real-time data in the estimation of a DSGE model may look tricky be-

5By using reduced-form estimation approaches some empirical studies, such as English, Nelson
and Sack (2003) and Gerlach-Kristen (2004) have shown that both persistent shocks and policy
inertia enter the U.S. estimated monetary policy rule. María-Dolores and Vázquez (2006, 2008)
obtain similar results for the U.S. and the Eurozone using an econometric structural approach.

6Kavajecz and Collins (1995) conclude, using Monte Carlo simulations, that irrationality in sea-
sonally adjusted data arises from the specific seasonal adjustment procedure used by the Federal
Reserve.
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cause decisions by private agents (households and firms) determine the true (revised)

values of macroeconomic variables, such as output and inflation. However, these vari-

ables are not observable without error by policymakers in real time. The problem is

easily solved by augmenting the NKM model with the revision processes of output

and inflation. In particular, these revision processes are allowed to be determined by

the information available at the time when the initial announcements of output and

inflation are released.

The availability of real-time information motivates another distinctive feature of

the augmented NKMmodel analyzed in this paper. In the model, the monetary policy

rule has both backward- and forward-looking components. Apart from the standard

policy inertia component, the backward-looking part of the policy rule captures the

fact that the initial announcements of output and inflation are available to the Fed

with a lag. The forward-looking components capture the idea that the Fed may

take into account the possibility that real-time data are not rational forecasts of

revised data and then the initial announcements may contain useful information for

predicting future revisions of actual data introduced by statistical agencies.

We follow a classical approach based on the indirect inference principle suggested

by Smith (1993, 2008) to estimate our extended version of the NKM model. In

particular, we follow Smith (1993) by using an unrestricted VAR as the auxiliary

model. More precisely, the distance function is built upon the coefficients estimated

from a five-variable VAR that considers U.S. quarterly data on revised output growth,

revised inflation, real-time output growth, real-time inflation and the Fed funds rate.

The estimates of the revision process parameters show that the initial announce-

ments of output and inflation are not rational forecasts of revised data on output and

inflation. For instance, a 1% increase in the initial announcement of inflation leads

to a downward revision in output of −1.36%. These estimation results are in line
with the empirical evidence provided by Aruoba (2008) mentioned above, who finds

that data revisions are not well-behaved (i.e. they are not white noise processes).
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However, the estimation results also provide evidence that the estimates of the mon-

etary policy rule parameters are not too sensitive to allowing for the possibility of

non-rational revision processes. Moreover, the impulse-response analysis shows that

ignoring the presence of badly-behaved revision processes is not a serious drawback

in the analysis of monetary policy. Only the responses to an inflation-push shock

are sensitive to allowing for the presence of badly-behaved revision processes. The

latter being especially true when the price stickiness parameter is not fixed in the

estimation procedure.

The rest of the paper is organized as follows. Section 2 introduces the log-

linearized approximation of an augmented version of the NKM model that includes

the revision processes for output and inflation. Section 3 describes the structural

estimation method used in this paper. Section 4 describes the data and discusses the

estimation results. Section 5 concludes.

2 ANNKMMODEL AUGMENTEDWITHDATARE-
VISION PROCESSES

The model analyzed in this paper is a basic NKMmodel augmented with data revision

processes. We focus our attention on a simple version of the NKM model instead of

a medium-scale NKM model such as in Christiano, Eichenbaum and Evans (2005)

and Smets and Wouters (2007) for two main reasons. First, our goal is to illustrate

how monetary policy analysis is affected by allowing for deviations from well-behaved

revision processes in a simple framework, i.e. without adding too much structure and

too many restrictions in the characterization of the private sector of the economy.

Second, by considering a basic NKM model we can deal with a small set of observable

(revised and real-time) variables and treat all parameters characterizing private agent

decisions as fixed in order to focus on the characterization of monetary policy and

revision process parameters.

The augmented NKM model considered in this paper is given by the following set
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of equations:

xt = Etxt+1 − τ(it −Etπt+1)− φ(1− ρχ)χt, (1)

πt = βEtπt+1 + κxt + zt, (2)

it = ρit−1 + (1− ρ)[ψ1(π
r
t−1 +Etr

π
t−1) + ψ2(x

r
t−1 +Etr

x
t−1)] + vt, (3)

xt ≡ xrt + rxt , (4)

πt ≡ πrt + rπt , (5)

rxt = bxxx
r
t + bxππ

r
t + �rxt, (6)

rπt = bπxx
r
t + bπππ

r
t + �rπt, (7)

where x denotes revised output gap (that is, the log-deviation of output with respect

to the level of output under flexible prices), π and i denote the deviations from the

steady states of revised inflation and nominal interest rate, respectively. Et denotes

the conditional expectation based on the agent information set at time t. πrt and

xrt are real-time data for inflation and output gap, respectively. rπt and rxt are the

(final) revisions associated with inflation and output gap, respectively. Notice that

the subindexes of πrt (x
r
t ) and rπt (r

x
t ) are associated with the period in which the

corresponding revised value πt (xt) is determined by private agent decisions. Thus,

as discussed below, the initial announcements πrt (x
r
t ) arrive with a lag and the

revisions rπt (r
x
t ) can take several periods to be released by statistical agencies. This

fact explains why the conditional expectation operator also applies to rπt and r
x
t in (3).

χ, z and v denote aggregate productivity, cost-push inflation and monetary policy

shocks, respectively. Each of these shocks is further assumed to follow a first-order

autoregressive process as follows:

χt = ρχχt−1 + �χt, (8)

zt = ρzzt−1 + �zt, (9)

vt = ρvvt−1 + �vt, (10)
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where �χt, �zt and �vt denote i.i.d. random innovations associated with these shocks

and their standard deviations are denoted by σχ, σz and σv, respectively.

Equation (1) is the log-linearized consumption first-order condition obtained from

the representative agent optimization plan. The parameter τ > 0 represents the

intertemporal elasticity of substitution obtained when assuming a standard constant

relative risk aversion utility function. φ = (1 + η)/(τ−1 + η), where η denotes the

Frisch elasticity.

Equation (2) is the standard New Phillips curve that is obtained in a sticky

price model à la Calvo (1983) where monopolistically competitive firms produce (a

continuum of) differentiated goods and each firm faces a downward sloping demand

curve for its produced good. The parameter β ∈ (0, 1) is the agent discount factor,
and κmeasures the slope of the New Phillips curve, which is related to other structural

parameters as follows:

κ =
[(1/τ) + η](1− ω)(1− ωβ)

ω
,

where ω denotes Calvo’s probability. In particular, κ is a decreasing function of ω.

The parameter ω is a measure of the degree of nominal rigidity. A larger ω implies

that fewer firms adjust prices in each period and that the expected time between price

changes is longer.7 At this point, it is worthwhile emphasizing that the IS and Phillips

curve equations are described in terms of the revised output and inflation data since

they are indeed determined by the optimal choices of private agents (households and

firms).

Equation (3) describes a Taylor-type monetary policy rule (Taylor, 1993). In

contrast to Equations (1) and (2), Equation (3) only considers real-time data on

output and inflation actually available at the time of implementation of monetary

policy. As pointed out by Aruoba (2008), the initial announcement of quarterly

7See, for instance, Walsh (2003, chapter 5.4) for a detailed analytical derivation of the New Phillips
curve and the flexible-price level of output considered below.

7



(monthly) macroeconomic variables corresponding to a particular quarter (month)

appears in the vintage of the next quarter (month), roughly 45 (at least 15) days

after the end of the quarter (month). Since the initial announcements might not be

rational forecasts of revised data, the Fed may take into account this feature to predict

the actual revisions of these announcements. Notice that according to equation (3)

and taking into account equations (4) and (5) described below, the Fed is assumed

to react to expected revised values of inflation (Etπt−1 ≡ πrt−1 +Etr
π
t−1) and output

(Etxt−1 ≡ xrt−1 + Etr
x
t−1). Moreover, the nominal interest rate exhibits smoothing

behavior captured by the size of ρ.

The NKM model is extended to incorporate the revision processes of output and

inflation data, respectively. Equations (4) and (5) are identities showing how revised

data of output (xt) and inflation (πt) are related to the initial announcements of

output (xrt ) and inflation (π
r
t ), respectively. Then, r

x
t (r

π
t ) denotes the revision of

output (inflation). By adding the log of potential output (i.e. the level of output

under flexible prices) on both sides of (4), we have that rxt also denotes the revision

of the log of output. Equations (6) and (7) describe the revision processes associated

with output and inflation, respectively. These processes allow for the existence of non-

zero correlations between output and inflation revisions and the initial announcements

of these variables.8 �rxt and �rπt denote i.i.d. random innovations associated with the

revision processes where the corresponding standard deviations are denoted by σrx

and σrπ, respectively. Furthermore, notice that equations (6) and (7) imply that

rxt = Et+1r
x
t + �rxt = bxxx

r
t + bxππ

r
t + �rxt,

rπt = Et+1r
π
t + �rπt = bπxx

r
t + bπππ

r
t + �rπt.

These two equations further motivate the timing assumption used in the forward-

looking components of the monetary policy rule (3). That is, the initial announce-

ments of the variables determined at time t will be released at time t+ 1.
8The two revision processes assumed are not intended to provide a structural characterization of

the revision processes followed by statistical agencies, but to provide a simple framework to assess
whether the nature of the revision processes might affect the estimated monetary policy rule.
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Finally, the model is completed by the following identities involving forecast er-

rors:

xt = Et−1xt + (xt −Et−1xt),

πt = Et−1πt + (πt −Et−1πt).

The system of equations (1)-(10) together with the latter four identities can be

written in matrix form as follows:

Γ0Yt = Γ1Yt−1 +Ψ�t +Πηt, (11)

Yt = (xt, πt, it, Etxt+1, Etπt+1, χt, zt, vt, x
r
t , π

r
t , r

x
t , r

π
t , Et+1r

x
t , Et+1r

π
t )
0,

�t = (�χt, �zt, �vt, �
r
xt, �

r
πt)

0,

ηt = (xt −Et−1xt, πt −Et−1πt)0.

Equation (11) represents a linear rational expectations system that can be solved

using standard routines.9 ,10 The model’s solution yields the output gap, xt. This

measure is not observable. In order to estimate the model by simulation, the output

gap must be transformed into a measure that has an observable counterpart such

as output growth. This is a quite straightforward exercise since the log-deviation of

output from its steady state can be defined as the output gap plus the (log of the)

flexible-price equilibrium level of output, yft , and the latter can be expressed as a

linear function of the productivity shock:

yft = φχt.

9Alternatively, the matrix system (11) can be expressed by eliminating variables Et+1r
x
t and

Et+1r
π
t from Yt and the associated identities rxt = Et+1r

x
t +�

r
txt and r

π
t = Et+1r

π
t +�

r
πt by substituting

the identities Etr
x
t−1 = bxxx

r
t−1 + bxππ

r
t−1 and Etr

π
t−1 = bπxx

r
t−1 + bπππ

r
t−1 into the policy rule (3).

10We use the solution algorithm suggested by Lubik and Schorfheide (2003). The matrices in
equation (11) are described in detail in the Appendix.
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The log-deviation of output from its steady state is also unobservable. However,

the growth rate of output is observable and its model counterpart is obtained from

the first-difference of the log-deviation of output from its steady state.

Similarly, the solution of the model yields the deviations in inflation and interest

rate from their respective steady states. In order to obtain the levels of inflation

and nominal interest rate, we first calibrate the steady-state value of inflation as the

sample mean of the inflation rate. Second, using the calibrated value of steady-state

inflation and the definition of the steady-state value of real interest rate, the steady-

state value of the nominal interest rate can be easily computed. Third, the level of

the nominal interest rate is obtained by adding the deviation (from its steady-state

value) of the nominal rate to its steady-state value computed in the previous step.

Finally, since a period is identified with a quarter and the nominal interest rate is

then measured in quarterly values, the quarterly interest rate is transformed into an

annualized value as in the actual data.

3 ESTIMATION PROCEDURE

In order to carry out a joint estimation of the NKM model augmented with the revi-

sion processes using both revised and real-time data, we follow a classical approach

based on the indirect inference principle suggested by Smith (1993, 2008). In par-

ticular, we follow Smith (1993) by first using an unrestricted VAR as the auxiliary

model. More precisely, the distance function is built upon the coefficients estimated

from a five-variable VAR with four lags that considers U.S. quarterly data on revised

output growth, revised inflation, real-time output growth, real-time inflation and the

Fed funds rate. The lag length considered is fairly reasonable when using quarterly

data. Second, we apply the simulated moments estimator (SME) suggested by Lee

and Ingram (1991) and Duffie and Singleton (1993) to estimate the parameters of the

10



model. In this context, we believe that it is useful to consider an unrestricted VAR

(which imposes mild restrictions) as the auxiliary model, which lets the data speak

more freely than other estimation approaches such as maximum-likelihood.11

This estimation procedure starts by constructing a p×1 vector with the coefficients
of the VAR representation obtained from actual data, denoted by HT (θ0) where p in

this application is 120. We have 105 coefficients from a four-lag, five-variable system

and 15 extra coefficients from the non-redundant elements of the variance-covariance

matrix of the VAR residuals. T denotes the length of the time series data, and θ

is a k × 1 vector whose components are the model parameters. The true parameter
values are denoted by θ0. Since our main goal is to estimate the policy rule and

revision process parameters, we split the model parameters into two groups prior to

estimation. The first group is formed by the pre-assigned structural parameters β,

τ , η and ω. We set β = 0.995, τ = 0.5, η = 2.0 and ω = 0.75, corresponding to stan-

dard values assumed in the relevant literature for the discount factor, intertemporal

elasticity of consumption, the Frisch elasticity and Calvo’s probability, respectively.12

The second group, formed by policy, shock and revision process parameters, is the

one being estimated. In the augmented NKM model, the estimated parameters are

θ = (ρ, ψ1, ψ2, ρχ, ρz, ρv, bxx, bxπ, bπx, bππ, σχ, σz, σv, σ
r
x, σ

r
π) and then k = 15.

As pointed out by Lee and Ingram (1991), the randomness in the estimator is

derived from two sources: the randomness in the actual data and the simulation.

The importance of the randomness in the simulation to the covariance matrix of

the estimator is decreased by simulating the model a large number of times. For

each simulation a p × 1 vector of VAR coefficients, denoted by HN,i(θ), is obtained

from the simulated time series of output growth, inflation and the Fed funds interest

rate generated from the NKM model, where N = nT is the length of the simulated

data. By averaging the m realizations of the simulated coefficients, i.e. HN(θ) =

11For a detailed description of this estimation procedure see María-Dolores and Vázquez (2006,
2008).
12We also run our estimation procedure by considering Calvo’s probability, ω, as a free parameter.
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1
m

Pm
i=1HNi(θ), we obtain a measure of the expected value of these coefficients,

E(HNi(θ)). The choice of values for n and m deserves some attention. Gouriéroux,

Renault and Touzi (2000) suggest that it is important for the sample size of synthetic

data to be identical to T (that is, n = 1) to get a finite sample bias of identical size

in estimators of the auxiliary parameters computed from actual and synthetic data.

We make n = 1 and m = 500 in this application. To generate simulated values of

(revised and real-time) output growth, (revised and real-time) inflation and interest

rate time series we need the starting values of these five variables. For the SME to

be consistent, the initial values must have been drawn from a stationary distribution.

In practice, to avoid the influence of starting values, we generate a realization from

the stochastic processes of the five variables of length 200 + T , discard the first 200

simulated observations, and use only the remaining T observations to carry out the

estimation. After 200 observations have been simulated, the influence of the initial

conditions must have disappeared.

The SME of θ0 is obtained from the minimization of a distance function of VAR

coefficients from actual and synthetic data. Formally,

min
θ

JT (θ) = [HT (θ0)−HN (θ)]
0W [HT (θ0)−HN(θ)],

where W is the optimal weighting matrix containing the inverse of the covariance

matrix associated with the VAR coefficients and the non-redundant elements of the

covariance matrix of the VAR residuals.

Denoting the solution of the minimization problem by θ̂, Lee and Ingram (1991)

and Duffie and Singleton (1993) prove the following asymptotic results:

√
T (θ̂ − θ0)→ N

∙
0,

µ
1 +

1

m

¶
(B0WB)−1

¸
,

µ
1 +

1

m

¶
TJT (θ̂)→ χ2(p− k), (12)

where B is a full rank matrix given by B = E(∂HNi(θ)
∂θ ).
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The objective function JT is minimized using the optimization package OPTMUM

programmed in GAUSS language. We apply the Broyden-Fletcher-Goldfard-Shanno

algorithm. To compute the covariance matrix we need to obtain B. Computation of

B requires two steps: first, obtaining the numerical first derivatives of the coefficients

of the VAR representation with respect to the estimates of the structural parameters

θ for each of the m simulations; second, averaging the m-numerical first derivatives

to get B.

4 DATA AND ESTIMATION RESULTS

We consider quarterly U.S. data for the growth rate of output, the inflation rate

obtained from the first-difference of the log of the implicit GDP deflator and the Fed

funds rate during the post-Volcker period (1983:1-2008:1). In addition, we consider

real-time data on output growth and inflation as reported by the Federal Reserve

Bank of Philadelphia.13 ,14 Figure 1 shows the five-time series considered in the paper.

We focus on the post-Volcker period for two main reasons. First, the Taylor rule

seems to fit better in this period than in the pre-Volcker era. Second, considering the

pre-Volcker era opens the door to many issues studied in the relevant literature, such

as the presence of macroeconomic switching regimes and the existence of switches in

monetary policy (see, for instance, Sims and Zha, 2006), which are beyond the scope

of this paper.

In this section we first motivate the inclusion of real-time data in the estimated

policy rule. In particular, we first use a reduced form approach to analyze whether
13See Croushore and Stark (2001) for the details of the real-time data set.
14We follow Aruoba (2008) by considering the growth rates of the initial announcement of real GDP

and GDP deflator in order to isolate our analysis from the presence of benchmark revisions, which
are defined as the changes introduced by statistical agencies when they change their methodologies or
make statistical changes such as change of base years or seasonal weights. As pointed out by Arouba
(2008), benchmark revisions are problematic for the users of the data because they contaminate real
time information available at each point of time. More precisely, the benchmark revisions for GDP
and GDP deflator take place about every five years. Given our 25-year sample, the GDP growth and
the inflation rates are contaminated each one with only five jumps due to benchmark revisions. We
eliminate each of these jumps by substituting the jumping value of the corresponding variable with
the average value obtained from the two observations released just before and after the jump.
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real-time data are rational forecasts of revised data. In the second subsection, we

use our structural estimation approach to study the augmented NKM model using

both revised and real-time data. Related to the evidence of non-rational forecast

found in the first subsection, we analyze the effects of ignoring the presence of badly-

behaved revisions on estimated policy parameters and the transmission of policy

shocks. Finally, in the third subsection, we explore the robustness of the results by

leaving Calvo’s probability parameter free in the estimation procedure.

(Insert Figure 1)

Figure 1: U.S. Time Series
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4.1 Preliminary Evidence for the Revision Processes

As a preliminary step, we investigate whether real-time data are a rational forecast of

revised data. Following Aruoba (2008), Panel A of Table 1 shows a set of summary

statistics as well as some tests that allow us to assess whether revision processes

for output growth and inflation are well-behaved. For both revision processes, we

cannot reject the null hypothesis that the unconditional mean is zero. However, the

standard deviation for the two revision processes is quite large, although in both

cases not larger than that for the revised data (i.e. the noise/signal parameter). The

evidence that revisions are not rational forecast errors is further supported by the

statistics displayed in Panel B. Either output growth or inflation revision processes

are not orthogonal to the initial announcements and their conditional means are

not null. In particular, the estimated coefficient of the variable being forecasted in

each case is negative and significant suggesting that the two variables tend to be

revised back towards their respective means in line with the intuition in Dynan and

Elmendorf (2001).15 In sum, these preliminary estimation results are in line with the

empirical evidence provided by Aruoba (2008) who also finds that data revisions for

these variables are not white noise.

The non-rational features of revision processes suggest that analyzing policymak-

ers’ decisions based only on revised data could be misleading. Next, we explore the

implications of this issue by estimating the extended version of the NKM model using

both revised and real-time data together.

4.2 Data Revisions and Monetary Policy

We now analyze the importance of data revisions on the estimated monetary policy

rule parameters and the transmission of policy shocks. Table 2 shows the estimation

results obtained using both revised and real-time data. The estimate of the inflation

parameter, ψ1, is one, which suggests that the Taylor principle may not hold during

15A more comprehensive analysis of the relation between revision processes and the business cycle
can be found in Croushore (2011) and papers cited therein.
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Table 1: Reduced-form analysis for revision processes.

Panel A: Summary Statistics
ryt rπt

Mean 0.077 −0.055
Median 0.033 0.034
Min −7.286 −3.694
Max 6.164 3.357

St. dev. 2.202 1.046
Noise/Signal 0.996 0.388

corr. with initial 0.612 0.653
AC(1) −0.147 −0.017

t-stat. (E(rt) = 0) 0.379 −0.537
Panel B: Conditional Mean

ryt rπt
Coef. Coef.

constant 0.906∗∗ 1.196∗∗∗

(yrt−yrt−1) ∗ 400 −0.470∗∗∗ 0.033
(πrt ) ∗ 400 0.243∗∗ −0.521∗∗∗

F3,90 31.305∗∗∗ 118.596∗∗∗

Note: Revisions are calculated over (annualized) quarterly GDP growth and inflation respec-
tively. Since revisions are likely to have a first-order autocorrelation pattern, t-statistics for
testing whether the conditional or unconditional mean is null are calculated based on Newey-
West corrected standard deviations (1 lag). ∗,∗∗ ,∗∗∗ represent significance at the standard
1, 5 and 10% confidence levels. The noise/signal statistic is calculated as the standard de-
viation of the revision over the standard deviation of the revised data. The null hypothesis
for computing the F -test in Panel B or conditional mean hypothesis is that all coefficients
associated with real-time information are null.
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the post-Volcker period, somewhat in line with the evidence provided by Orphanides

(2001) using a reduced-form estimation approach and only real time data.16 The

output gap parameter is small (ψ2 = 0.31) in line with the estimated values reported

in previous papers. Moreover, our estimation results show that the policy inertia

parameter estimate (ρ = 0.90) is larger than in previous studies mentioned above

whereas the policy shock persistence parameter is large (ρv = 0.77). The estimates

of the remaining shock parameters all display high levels of persistence. The high

persistence estimates of supply and demand shocks are in line with the estimation

results found in Smets and Wouters (2007).

Our estimation results also show that many revision process parameters are sig-

nificant, suggesting that real-time data are not rational forecasts, in line with the

evidence from reduced-form approaches in Dynan and Elmendorf (2001), Aruoba

(2008), and that shown in Table 1 (Panel B). In particular, the initial announce-

ments of inflation are the most important piece of information for predicting the

actual revisions of the two variables (bxπ = −1.36, bππ = −0.07). The inflation

coefficients are negative and significant suggesting that a higher-than-average initial

announcement anticipates a downward revision in both output and inflation.17

In order to investigate whether the characteristics of revision processes have an

effect on estimated policy rule parameters, we next estimate the system under the

null hypothesis that rxt and rπt are rational forecast errors. r
x
t and rπt are viewed as

rational forecast errors under the null hypothesis, H0 : bxx = bxπ = bπx = bππ = 0.

This hypothesis implies that the two revision processes rxt and rπt are characterized

by two white noise processes: �rxt and �rπt, respectively.
16By using the methodology suggested by Lubik and Schorfheide (2003), we also tried to estimate

the model by assuming that the Taylor principle did not hold (i.e. ψ1 < 1.0) and allowing for the
existence of sunspots. The estimation algorithm did not reach convergence in this case and the
associated distance function value, JT (θ), was always larger than the value obtained when ψ1 ≥ 1.0.
17 It is important to emphasize that the results from our structural estimation are not directly

comparable with those from reduced-form approaches. On the one hand, the output gap is the
explanatory variable in Equations (6)-(7), whereas the output growth is the explanatory variable for
the regressions in panel B of Table 1. On the other hand, the revision coefficients become harder
to interpret as they interact with the parameters in the structural model. Moreover, as mentioned
above, analyzing the actual method used by statistical agencies goes beyond the scope of this paper.
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Table 2: Joint estimation of the NKM model and the revision processes using both
revised and real-time data.

JT (θ̂) 7.5998

Policy Estimate Shock Estimate Revision Estimate
parameter parameter parameter

ρ 0.9042 ρχ 0.9845 bxx 0.1083
(0.0131) (0.0325) (0.0339)

ψ1 1.0000 ρz 0.8834 bxπ −1.3563
(0.0511) (0.0137) (0.1681)

ψ2 0.3070 ρv 0.7707 bπx 0.0159
(0.0816) (0.0405) (0.0070)

σχ 2.1e− 04 bππ −0.0712
(1.2e− 04) (0.0382)

σz 3.3e− 04 σrx 2.7e− 04
(5.6e− 05) (7.8e− 05)

σv 7.2e− 05 σrπ 1.7e− 03
(1.4e− 05) (1.5e− 05)

Table 3 shows the estimation results when H0 is imposed. It is well known that

the null hypothesis H0 can be tested using the following Wald statistic:

F1 =

µ
1 +

1

m

¶
T
h
JT (θ̂

0
)− JT (θ̂)

i
→ χ2(4),

where JT (θ̂
0
) denotes the value of the distance function under H0. The F1-statistic

takes the value 162.59. Therefore, we can reject the joint hypothesis that the revision

processes of output and inflation are both white noise processes at any standard level

of significance. Nevertheless, by comparing the estimation results of Tables 2 and

3, it is interesting to observe that monetary policy rule parameter estimates (ρ, ψ1,

ψ2, σv) are similar regardless of whether or not the restriction that the two revision

processes are well-behaved, i.e. when H0, is imposed. The exception is the estimate

of ρv, which is less than one third as large when H0 is imposed.

The relative unimportance of imposing H0 is further revealed by carrying out an

impulse-response analysis. Figures 2-4 show the impulse responses of the endogenous
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Table 3: Joint estimation of the NKM model assuming that the revision processes
are well-behaved.

JT (θ̂
0
) 9.2901

Policy Estimate Shock Estimate Revision Estimate
parameter parameter parameter

ρ 0.9036 ρχ 0.9346 σrx 3.9e− 03
(0.0107) (0.0124) (2.8e− 04)

ψ1 1.0851 ρz 0.9900 σrπ 1.4e− 03
(0.0755) (0.0308) (2.3e− 04)

ψ2 0.0000 ρv 0.1997
(0.0207) (0.0464)

σχ 0.0030
(5.2e− 04)

σz 2.2e− 04
(1.8e− 04)

σv 2.9e− 04
(4.2e− 05)

variables of the extended NKM model (11) to a productivity shock, an inflation

shock and a monetary policy shock, respectively, using the estimates displayed in

Table 2. In these figures, the solid line represents the impulse response implied by

the NKM model augmented with revision processes, whereas the dashed lines are

the corresponding 95% confidence bands. The diamond-dashed lines represent the

impulse responses implied by the model under H0 (i.e. using the estimates displayed

in Table 3). The size of the shock in each case is determined by its estimated standard

deviation obtained when H0 is not imposed. We observe that the impulse-responses

of the three endogenous variables to all three shocks are not so different whether H0

is imposed or not. There are two exceptions. First, the response of nominal interest

rate to a monetary policy shock is smoother when H0 is imposed (Figure 4). Second,

the responses of the inflation and interest rates to a positive inflation shock (Figure

3) are significantly more persistent when H0 is imposed, which is due to the high

estimated persistence of inflation shocks (i.e. the estimated value of ρz is very close

to one when H0 is imposed). In short, we can conclude that the empirical evidence
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suggests that ignoring the presence of deviations from well-behaved revision processes

may not be an important limitation in the analysis of monetary policy in simple NKM

frameworks.

(Insert Figure 2)

(Insert Figure 3)

(Insert Figure 4)

20



Figure 2: Impulse responses to a productivity shock

Notes to Figures 2-4: The solid line represents the impulse response implied by the NKM

model augmented with revision processes, whereas the dashed lines are the corresponding

95% confidence bands obtained using Monte Carlo methods (Hamilton (1994, p.337)). The

diamond-dashed line represents the impulse response implied by the model under H0 (i.e.

using the estimates displayed in Table 3).
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Figure 3: Impulse responses to an inflation-push shock
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Figure 4: Impulse responses to a monetary policy shock

4.3 Estimating the Nominal Stickiness Parameter

Arguably, Calvo’s probability parameter, ω, may not be considered a deeper para-

meter because it is likely to depend on macroeconomic outcomes such as inflation

stability. In this subsection, we also estimate Calvo’s parameter to analyze (i) how

sensitive policy rule parameter estimates are when this parameter is left free in the

estimation procedure; (ii) how sensitive the ω estimate is to ignoring the fact that the

initial announcements of output growth and inflation are not rational forecast of re-
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Table 4: Joint estimation of the NKM model and the revision processes when esti-
mating Calvo’s probability parameter.

JT (θ̂) 7.5458

Policy Estimate Shock Estimate Revision Estimate
parameter parameter parameter

ω 0.6501 ρχ 0.9845 bxx 0.1285
(0.0458) (0.0180) (0.0446)

ρ 0.8938 ρz 0.8904 bxπ −1.4166
(0.0109) (0.0116) (0.1667)

ψ1 1.0000 ρv 0.7544 bπx 0.0212
(0.0278) (0.0350) (0.0049)

ψ2 0.2116 σχ 2.1e− 04 bππ −0.1510
(0.0465) (8.5e− 05) (0.0571)

σz 5.7e− 04 σrx 3.0e− 04
(1.3e− 04) (8.8e− 05)

σv 5.4e− 05 σrπ 1.6e− 03
(1.3e− 05) (1.4e− 04)

vised data; and (iii) whether the sensitiveness of ω has an impact on the transmission

of shocks.

Tables 4-5 show the estimation results obtained by estimating Calvo’s probabil-

ity parameter, ω, in addition to policy, revision process and shock parameters when

allowing for deviations from well-behaved revision errors and imposing H0, respec-

tively. When comparing the estimation results displayed in these two tables with

those obtained by fixing ω = 0.75 shown in Tables 2-3, two main conclusions emerge.

First, Calvo’s probability estimate is much larger when H0 is imposed. Therefore,

allowing for the presence of badly-behaved revision errors decreases substantially the

estimated expected time between firm price changes from (1− 0.899)−1 = 9.92 quar-
ters to (1 − 0.650)−1 = 2.86 quarters. Second, policy rule parameter estimates (ρ,

ψ1, ψ2, ρv, σv) are quantitatively similar regardless of whether or not the Calvo

parameter is estimated.

By looking at the impulse-response functions displayed in Figures 5-7, it is ob-
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Table 5: Estimation results assuming that the revision processes are well-behaved
and estimating Calvo’s probability parameter.

JT (θ̂
0
) 9.1407

Policy Estimate Shock Estimate Revision Estimate
parameter parameter parameter

ω 0.8992 ρχ 0.9338 σrx 3.9e− 03
(0.0269) (0.0185) (2.9e− 04)

ρ 0.9149 ρz 0.9900 σrπ 1.6e− 03
(0.0103) (0.0470) (2.1e− 04)

ψ1 1.0509 ρv 0.2086
(0.0796) (0.0516)

ψ2 0.0000 σχ 0.0100
(0.0167) (3.9e− 03)

σz 6.2e− 05
(8.5e− 04)

σv 3.7e− 04
(4.8e− 05)

served that the sensitivity of Calvo’s parameter estimates depending on whetherH0 is

imposed does not lead to much different responses of the endogenous variables to pro-

ductivity and monetary policy innovations. However, the analysis of the transmission

of inflation-push shocks is largely affected by ignoring the possibility of deviations

from well-behaved revision processes when the Calvo parameter is estimated.

(Insert Figure 5)

(Insert Figure 6)

(Insert Figure 7)
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Figure 5: Impulse responses to a productivity shock (estimating ω)

Notes to Figures 5-7: The solid line represents the impulse response implied by the NKM

model augmented with revision processes, whereas the dashed lines are the corresponding

95% confidence bands. The diamond-dashed line represents the impulse response implied by

the model under H0 (i.e. using the estimates displayed in Table 5).
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Figure 6: Impulse responses to an inflation-push shock (estimating ω)
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Figure 7: Impulse responses to a monetary policy shock (estimating ω)
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5 CONCLUSIONS

This paper suggests an augmented version of the basic New Keynesian monetary

(NKM) model which contemplates revision processes of output and inflation data in

order to assess the influence of deviations in real time data from being a rational

forecast of revised data on the estimated monetary policy rule parameters and the

transmission of shocks.

Empirical evidence based on a structural econometric approach suggests that the

estimated policy rule parameters are not too sensitive to allowing for the possibility of

non-rational revision processes. Moreover, our empirical analysis shows that ignoring

the presence of badly-behaved revision processes may not be a serious drawback in

the analysis of monetary policy in this framework. However, the responses of the

three endogenous variables (output, inflation and nominal interest rate) to inflation-

push innovations are rather sensitive to allow for the presence of non-rational revision

processes. The latter being especially true when the nominal stickiness parameter is

estimated.

In this paper, we have assumed that decisions by private agents (consumers and

firms) are not affected by real-time data issues. This would not be the case in more

general versions of the NKM model. For instance, when there are price and wage

indexation rules that force firms, which are not able to choose their prices (wages)

optimally, to take into account real-time lagged inflation to adjust their prices (wages)

instead of revised lagged inflation. The results of this paper can be viewed as initial

step to understand the implications of extending a medium-scale NKM model of

the type analyzed by Smets and Wouters (2007) with revision processes. This more

challenging exercise is left for future research.
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APPENDIX

This appendix shows the matrices in equation (11).

Γ0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 τ −1 −τ φ(1− ρχ) 0 0 0 0 0 0 0 0
−κ 1 0 0 −β 0 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 −1 0 −1 0 0 0
0 1 0 0 0 0 0 0 0 −1 0 −1 0 0
0 0 0 0 0 0 0 0 −bxx −bxπ 1 0 0 0
0 0 0 0 0 0 0 0 −bπx −bππ 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 −1
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Γ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ρ 0 0 0 0 0 Γ3,91 Γ3,101 0 0 Γ3,91 Γ3,101

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 ρχ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ρz 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ρv 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

Γ3,90 = (1− ρ)ψ2, Γ
3,10
0 = (1− ρ)ψ1.
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Ψ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Π =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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