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Introduction

0.1 Complex Dynamics in Soft Matter

0.1.1 The Problem of the Glass Transition

Let us consider a system in its liquid state. At high temperatures it can be expected

that the viscosity η is small and that the typical relaxation time τ is microscopic, i.e.

it is of the order of a typical vibrational period of the system. If the system is cooled

down it undergoes a first-order phase transition at its melting temperature Tm, i.e. it

crystallizes. However it is found that most liquids can be cooled down below Tm, in

a metastable regime. These liquids, for which crystallization has been bypassed, are

known as ‘supercooled liquids’. As a supercooled liquid is cooled down to lower tem-

peratures, its viscosity rapidly increases [1], and its molecules move and rearrange more

and more slowly. When this structural rearrangements cannot follow the cooling rate,

the liquid falls out of equilibrium [2]. Its structure therefore appears ‘frozen’ on the

laboratory time scale (for example, minutes). This phenomenon, known as the glass

transition, takes place on a temperature range which depends on the experimental cool-

ing conditions. Usually this temperature range is represented by only one temperature,

the glass transition temperature Tg. In practice Tg can be defined as the temperature

at which the viscosity reaches the value of η = 1013 poise (= 1012 Pa s), or also as that

for which the structural relaxation time is 100 seconds. From a practical point of view

glasses can be considered as ‘stable’ solids, because they can sustain static shear stress,

but on the other hand they lack the spatial long-range order that is characteristic for

crystalline solids, and the static structure factors (chapter 1) show the behaviour of a

typical dense disordered system. From looking at a single snapshot of the system one

cannot distinguish if the system is in its glassy or fluid state. Many experiments and

computer simulations have shown that the structural as well as the thermodynamical

1
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properties of supercooled liquids show only a relatively weak temperature dependence,

and that in principle this dependence can be extrapolated smoothly from the data

above Tm. No divergence of thermodynamic quantites is observed when approaching

the liquid-glass tansition. In this sense the laboratory liquid-glass transition is not

really a thermodynamic phase transition. If structural and thermodynamic properties

change weakly with temperature, this is not the case for most dynamic properties, like

viscosity or relaxation times. In figure 1 we show an example, for a canonical glass-

former (orthoterphenyl) of the strong T -dependence of the viscosity η(T ), accompanied

by just a weak T -dependence of the static structure factor [3]. We see that a small

change in temperature leads to a small change in the structure of the system, and at

the same time, to an increase of η(T ) of about 10 decades.

Let us discuss now the main features distinguishing the dynamical behaviour of a

glass-forming system and a simple liquid. In fig. 2 we show a schematic representation

of the time dependence of a typical correlation funcion φ(t) (e.g., the density-density

correlator discussed in chapter 2). The two curves correspond to two temperatures:

one at which the system is in its normal liquid state and one at which it relaxes only

slowly. At the high temperature, φ(t) decays in a single step at short time. After

the inital ‘ballistic regime’, φ(t) enters the so-called ‘microscopic regime’ governed by

the interaction between particles. For longer times the t-dependence of the correlation

function is well approximated by an exponential function. At low temperature φ(t)

shows a more complex time dependence. At short times one finds the ballistic regime

followed by the microscopic regime. At intermediate times the correlator shows a

plateau. This time window is called β-relaxation. After longer time the correlator

decays from the plateau to zero. This time window is called α-relaxation. Note that

the early part of the α-relaxation coincides with the last part of the β-relaxation. The

physical meaning of the plateau is given by the so-called ‘cage effect’. For intermediate

times each particle is trapped by its neighbours and hence the correlator is almost

constant. Only for much longer times the particles are able to leave the cage, due to

cooperative rearrangement of the particles, and hence the correlator decays to zero.

In contrast with the case at high T , the final decay of the correlation function is non-

exponential. One usually finds that the shape of the decay is described by an empirical

Kohlrausch-Williams-Watts (KWW) function, ∝ exp[−(t/τ)β], with β < 1.

It is the aim of the Mode Coupling Theory of the glass transition (MCT) [4–8] to
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Figure 1: Upper panel: temperature dependence of the viscosity for the orthoterphenyl
(OTP). The glass transition temperature, defined by the relation η(Tg) = 1013 poise
is Tg ' 243K. The melting temperature Tm = 329K and critical MCT temperature
Tc = 290K are also indicated. The dashed line represents a fit to the MCT power law
η(T ) ∼ (T − Tc)

−2.59 Lower panel: static structure factor of fully deuterated OTP at
314K (full curve) and 255K (dashed-dotted curve).

capture these nontrivial features of the dynamics of a liquid in the weakly supercooled

regime (see below). The MCT is a first-principle theory which predicts the behaviour of

dynamic correlators from the knowledge of the static correlations of the system. In the

idealized version of MCT, the liquid-glass transition is a dynamic transition induced

by the slowing down of the density fluctuations and occurs at a critical transition

temperature Tc. Approaching Tc from above MCT predicts divergence of viscosity and
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Figure 2: Time dependence of a typical correlation function φ(t). The two curves
correspond to a high temperature, corresponding to typical simple liquid relaxation
dynamics, and to a lower temperature in which the relaxation dynamics is the one of
a supercooled liquid.

relaxation times with a power law power behaviour : η ∼ τα ∼ (T − Tc)
−γ . However

the critical temperature lies above the glass transition temperature Tg determined by

thermodynamic experiments such as scanning calorimetry.

Upper panel in Fig 1 shows that the behaviour of η(T ) (or relaxation time τα(T ))

cannot be described by the MCT power law η ∼ (T − Tc)
−2.59 over the whole temper-

ature range. In particular we note a change of regime at about Tc ∼ 290K. Within

MCT this is interpreted as a cross-over from liquid-like dynamics in weakly supercooled

fluids (Tc < T < Tm), to hopping localized solid-like dynamics in strongly supercooled

fluids (Tg < T < Tc).

Thus at its present state of development, the MCT is inadequate to deal with long

time scales beyond ≈ 10 ns (note that the time scale for the laboratory glass transition

is 100 seconds!). In the deeply supercooled regime other theoretical frameworks are

invoked to account for partial dynamic features associated to the glass transition (at

present we are far from disposing of a unified theory of the glass transition!). For an

overview of the current theoretical approaches to the glass transition problem, see e.g.



INTRODUCTION 5

the extensive reviews in [9, 10].

Having noted its major drawback, the MCT is a rather exceptional theory. The

great success of MCT is to predict an amazingly huge variety (not achieved by any

other theory of the glass transition) of highly non-trivial experimental/simulation phe-

nomenologies in glass-formers of very different nature. Some theoretical predictions of

MCT confirmed by experiments or simulations include roto-translational decoupling

in asymmetric colloids [11], reentrant diffusivities in colloid-polymer mixtures [12] and

in concentrate solutions of star polymers [13–15], different types of glasses in mix-

tures of star polymers [16], and decoupling of self- and collective dynamics in colloidal

mixtures [17, 18] and alkali silicates [19].

0.1.2 Dynamics in Polymer Systems

A polymer is a macromolecule constituted of several repetead structural units called

monomers, connected through chemical covalent bonds. Monomers are small organic

molecules, typically made of hydrogens and carbons. Polymers formed by a single type

of monomers are known as homopolymers. An important feature which determines

polymer properties is the polymer architecture. The simplest one is the linear chain, in

which monomers are connected along a single backbone. Other more complex architec-

tures include for example, branched polymers, star polymers, dendrimers and combs.

The polymer architecture is extremely important for the rheological properties, which

are related to chain reorientation at large scales. The latter is strongly modified by

the presence of branch points [20, 21]. Instead, the polymer architecture has a much

weaker influence in the structural relaxation at local scales.

The different dynamic processes present in polymers in amorphous state cover a

extremely broad range of characteristic time scales, spanning from about 100 femtosec-

onds up to years. There are two main reasons for this. First, polymers are usually good

glass-formers, which inherently exhibit the universal features (see above) characteriz-

ing these materials: a dramatic increase of the viscosity and structural (α-)relaxation

times on approaching the glass transition temperature Tg. As in non-polymeric glass-

formers, localized dynamic processes are also present below Tg [22]. Second, their

macromolecular character introduces relaxation processes related to the dynamics of

the internal chain degrees of freedom. In the case of low-molecular weight, nonen-

tangled, polymer chains a sublinear increase (Rouse-like) arises in the mean squared
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displacement prior to the linear diffusive regime (see discussion in chapter 2). In the

case of high-molecular weight, strongly entangled, chains further sublinear regimes are

found between the Rouse and linear regimes, which are usually interpreted in terms of

reptation dynamics [21, 27, 28]. Such processes are inherent to chain connectivity, and

extend over more time decades on increasing chain length. This broad time window

for chain dynamics is observed even for temperatures far above Tg, when the structural

relaxation extends over just a few picoseconds.

Another particular ingredient of polymers is the presence of intramolecular barri-

ers. They are in fact responsible of partial or total crystallization [23, 24], and can

enhance reptation effects (which control the rheological properties of the system). The

dynamical properties of fully flexible linear polymers in solution or in melt have been

worked out in the fundamental works of Rouse [25] and Zimm [26] for nonentangled

polymers, as well as of Doi and Edwards [27] and de Gennes [28] for entangled poly-

mers. In contrast to fully flexible polymers, semiflexible polymer models have received

only recently substantial attention. Such models are of great interest, since they can

be applied to many important biopolymers such as proteins, DNA, rodlike viruses, or

actin filaments [29–31]. Moreover, the chain stiffness seems to play an important role

in the adsorption behaviour of polymers onto surfaces [32,33] and viscoelastic proper-

ties [34]. Thus, an understandig of the role of the intramolecular barriers on structural

and dynamic properties of polymer systems is of practical as well as of fundamental

interest in many fields of research.

0.2 Motivations of this work

0.2.1 MCT in Polymer Melts

A possible theroretical approach to the former problem is provided by the Mode Cou-

pling Theory (MCT) [6]. In the first part of this memory we investigate the role of

intramolecular barriers on the glass transition and chain dynamics in homopolymer

melts. We perform molecular dynamics simulations of a single bead-spring model for

homopolymers with intramolecular barriers of tunable strength. We analyze simulation

data in the framework of the Mode Coupling Theory and compare results of the simula-

tion data analysis with the numerical solution of the MCT equations. MCT introduces

a closed set of coupled Mori-Zwanzig equations (see chapter 3) for the time dependence
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of density correlators. Static correlations enter the memory kernel as external input.

Since the former can be related to the interaction potential through liquid state the-

ories, MCT constitutes a first-principle theory for slow dynamics in complex systems.

MCT has been developed over the last years to include systems with intramolecular

structure (see e.g., [35–37]). This includes the approach of Chong and co-workers for

simple polymer melts [38, 39], based on the polymer reference interaction site model

(PRISM) [40] for the static correlations. This approach was applied by Chong et al. to

the specific case of fully-flexible chains [38,39], i.e., without intramolecular barriers. A

major success was the derivation, from first-principles, of the scaling laws predicted by

the phenomenological Rouse model [25,27] for chain dynamics in nonentangled polymer

melts. Likewise, it provided a unified microscopic description of both chain dynamics

and the structural relaxation associated to the glass transition [38, 39].

In this thesis work we investigate, by means of molecular dynamics simulations,

the decisive role of intramolecular barriers on the glass transition of polymer melts,

by systematically tuning the barrier strength in a simple bead-spring model. We dis-

cuss the obtained results within the framework of the Mode Coupling Theory. MCT

asymptotic laws have been already tested in different polymeric systems. The values

of the associated dynamic exponents exhibit significant differences between the lim-

its of fully-flexible bead-spring chains [41] and fully-atomistic polymers [42–44]. In

particular, the so-called exponent parameter takes standard values λ ∼ 0.7 for the

former case and values approaching the upper limit λ = 1 for chemically realistic poly-

mers [42–44]. While the former λ-values are characteristic of systems dominated by

packing effects, as the archetype hard-sphere fluid, the limit λ = 1 arises at higher-

order MCT transitions [45]. The latter, or more generally transitions with λ close to

1, arise in systems with different competing mechanisms for dynamic arrest. These

systems include short-ranged attractive colloids [46–48] (competition between short-

range attraction and hard-sphere repulsion) or binary mixtures with strong dynamic

asymmetry [17, 18, 49, 50] (bulk-like caging and confinement).

Motivated by these analogies, we argue that values of λ → 1− for real polymers

also arise from the competition between two distinct mechanisms for dynamic arrest:

usual packing effects and polymer-specific intramolecular barriers. Such barriers are

not present in fully-flexible bead-spring chains, which exhibit standard λ-values [41].

In order to shed light on this question, we perform a systematic investigation of the

interplay between packing and intramolecular barriers. Starting from fully-flexible
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bead-spring chains, stiffness is introduced by implementing intramolecular bending

and torsion terms. The barrier strength is systematically tuned in order to induce

competition between the former two mechanisms. Values of λ and critical temperature

Tc are obtained by means of a consistent fitting procedure of the MCT asymptotic

laws to simulation data. In order to test the quality and limitation of the MCT theory

we compare simulation results with numerical solutions of the long-time limit of MCT

equations. We also solve the time-dependent MCT equations for density correlators,

and compare simulation and theoretical trends in α-relaxation times. We find that there

is a progressive discrepancy between simulation results and MCT numerical solutions as

the limit of stiff chains is approached. We critically discuss the limitations of the theory

by analyzing the accuracy of the several approximations assumed in the derivation of

the theory.

We also present here a systematic investigation on the effect of intramolecular bar-

riers on the internal chain dynamics of nonentangled polymers. We analyze correlators

for the chain normal modes (Rouse modes) and for bond reorientation. It is well-known

that the presence of strong intramolecular barriers violates the Rouse assumption of

gaussian behaviour for the static intrachain correlations. Indeed, simulations reveal

strong deviations from the Rouse model on increasing chain stiffness, as also observed

in [51–55]. Thus, the chains studied in this work are semiflexible in the meaning that

they can be deformed but, unlike fully-flexible chains, the static intramolecular corre-

lations are strongly non-gaussian within all the chain length scale.

In the same spirit as the Rouse model for fully-flexible chains, phenomenological

models for semiflexible polymers usually model the interactions of the tagged chain with

the surroundings by means of a friction term and random forces [56,57]. As in the Rouse

model for gaussian chains, the dynamics of the tagged chain is encoded in the assumed

form of the intramolecular interactions (e.g., worm-like chains). Memory effects induced

by slow density fluctuations of the surrounding matrix are neglected, and non-Rouse

effects are of intramolecular origin. The latter is entirely related to static contributions

and the amplitudes and relaxation times of the Rouse modes follow the same scaling

behaviour [55]. We compare the non-trivial dynamic features observed in simulations

with the solutions of the time dependent MCT equations for Rouse correlators. We

show that MCT qualitatively reproduces the trends observed in simulations for Rouse

mode correlators and Rouse relaxation times. The latter can be easily approximated

by the scaling laws proposed in [55]. This generalizes the analysis by Chong et al. of



INTRODUCTION 9

Ref. [39], which was limited to fully-flexible chains, to polymers with intramolecular

barriers of arbitrary strength.

0.2.2 Chain Dynamics in Polymer Blends

In the second part of the memory (chapter 7) we investigate, by means of simulations,

the effect of blending with a slower matrix on the dynamic scenario observed for the

semiflexible homopolymer, aiming to discriminate static and dynamic contributions to

anomalous chain dynamics in the blend.

It is well known that miscible polymer blends exhibit dynamic disparity. By starting

from two homopolymers with different mobilities, two separated structural relaxations

are still found in the blend state [58, 59]. When the two homopolymers exhibit very

different glass transition temperatures, and the concentration of the fast component is

low, the respective time scales in the blend can differ by orders of magnitude, leading to

strong dynamic asymmetry [60]. This effect is enhanced on decreasing the temperature,

and can be of even 12 decades for high dilution of poly(ethylene oxide) (PEO) in

poly(methyl methacrylate) (PMMA) [61]. In conditions of strong dynamic asymmetry,

the motion of the fast component is confined by the slowly relaxing matrix formed

by the slow component. Unusual dynamic features arise for the fast component in

this case. Neutron scattering experiments in the blend PEO/PMMA reveal decoupling

between self-motions and intrachain collective relaxation for the PEO [62]. Atomistic

simulations of the former system reveal logarithmic decays of the scattering functions

probing the segmental relaxation of the PEO [63]. Moreover, the Rouse modes of

the PEO chains exhibit anomalous behaviour [64]. All these observations have also

been found in simulations of a simple blend of bead-spring chains with strong dynamic

asymmetry [65–67], suggesting that they are generic features of real blends.

The simple bead-spring chains of the blends investigated in Refs. [65–67] are fully-

flexible. No intramolecular barriers are implemented. The chain length, N , in all

the investigated cases is smaller than the entanglement value. In such conditions,

the simulations for the homopolymer system are consistent with expectations from the

Rouse model [27,68–71]. This is also the case for the slow component in the blend state

[67]. However a rather different scenario is found for the fast component in the blend

[67], which only shows Rouse dynamics for vanishing dynamic asymmetry. Increasing

the latter (by decreasing temperature) induces a progressive deviation from Rouse-
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like behaviour for dynamic observables of the fast component. These include intrinsic

non-exponentiality of the Rouse modes and anomalous scaling of the corresponding

relaxation times, τp ∼ p−x, where p is the mode index. On increasing the dynamic

asymmetry the exponent increases from the Rouse prediction, x = 2, to values x . 3.5.

The origin of these features is dynamic. Indeed the static amplitudes of the Rouse

modes are not affected by blending, and show gaussian, Rouse-like, scaling as in the

homopolymer state [67].

The mentioned dynamic crossover, on increasing the dynamic asymmetry, from

τp ∼ p−2 to τp ∼ p−3.5 in the non-entangled fast component is strikingly similar to

that observed for entangled homopolymers on increasing the mode wavelength, N/p,

beyond the entanglement length [70, 72, 73]. The crossover for the fast component in

the blend is observed even in the limit of short chains. Thus, it was concluded that

this feature is entirely controlled by the dynamic asymmetry in the blend, and not by a

characteristic entanglement length scale [67]. Related observations have been presented

by simulations of short fully-flexible chains in matrixes of fixed obstacles [74–77]. Rouse

modes were not analyzed but a crossover, similar to the observation in homopolymers

on increasing N , was found. Thus, the diffusivities changed from D ∼ N−1 to D ∼ N−2

on increasing the concentration of obstacles. Concomitantly, the end-to-end relaxation

time changed from τe ∼ N2 to τe ∼ N3. Again, these observations are not related to

particular static intramolecular features or to characteristic entanglement length scales,

but being entirely controlled by the concentration of obstacles [76, 77].

In summary, the former results of Refs. [67,74–77] reveal a crossover to entangled-

like dynamic features in non-entangled chains. This crossover is not connected to

particular static features of the intrachain correlations. It has a entirely dynamic ori-

gin, related to the strength of the confinement effects induced by the surrounding

matrix. Theories based on generalized Langevin equations (GLE) introduce a memory

kernel accounting for the slow relaxation of density fluctuations around the tagged

chain [78]. The Rouse model, which neglects memory effects, arises from such theo-

ries in the limit of fast relaxation of the kernel [78, 79]. Memory effects are enhanced

on increasing the chain length beyond the entanglement value, and the theory re-

produces non-exponentiality and anomalous scaling of the Rouse modes in entangled

homopolymers [79]. It has been suggested that GLE methods may also account for the

analogous dynamic features exhibited by the non-entangled fast component in polymer

blends [67], through the incorporation in the kernel of the memory effects induced by
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the matrix, formed by the slow component in the blend or by the fixed obstacles in the

systems of Refs. [74–77].

As mentioned above, the simulations of Refs. [67, 74–77] were performed for fully-

flexible chains. In this memory we briefly review the results of [67] and present new

results for blends where the fast component is semiflexible, i.e., it has intramolecular

barriers. These are introduced by implementing bending and torsion potentials by

means of the same interaction model employed in the homopolymer case. We find that

results for the semiflexible component in the blend can be analyzed in terms of the

scaling laws proposed in the Markovian model of [55] for the semiflexible homopolymer.

This suggests that, unlike for fully flexible chains, memory effects are not relevant for

semiflexible chains in the blend in comparison with the role of the intramolecular

barriers. Presumably, memory effects will only be relevant, for sufficiently long chains,

at large length scales for which the semiflexible character is lost and Gaussian statistics

is recovered.



Chapter 1

Homopolymers: Model and

Simulation Details

Computer simulations constitute an excellent tool for the investigation of the proper-

ties of complex systems [80, 81]. Given a model for the interactions in the system we

are interested in, simulations provide a bridge between the model and theoretical pre-

dictions on the one hand, and between models and experimental results on the other

hand. By integrating the equations of motion of the system, molecular dynamics (MD)

simulations provide, within statistical averages, exact results for the interaction model

that can be used to test the quality of the predictions of an approximate theory applied

to the same model. If theory and simulations disagree, theory must be improved. On

the other hand, we can compare the results of the simulations of a model system with

experiments. If simulations and experiments disagree, it means that the model for the

interactions needs to be improved.

We can distinguish between three different levels to model polymer systems (Fig.

1.1). The first one is the quantum level. We can choose for example to model polymers

At a quantum level we can choose for example to model polymers via the Car-Parrinello

method [82,83]. This method is an ab initio molecular dynamics technique which com-

bines a molecular dynamics scheme with a first principle electronic structure method,

which generates the interactions ‘on the fly’ within the framework of the density func-

tional theory (DFT). The system is placed in a periodically replicated supercell and

the valence orbital are expanded into a basis set of plane waves. The effect of the ionic

core is described via ab initio pseudo-potentials. Such a method is computationally

too demanding to study dynamic properties of polymer melts. The inclusion of the

12
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Figure 1.1: Schematic representation of different levels one may utilize to model poly-
mers.

electrons in the simulations restrict the system size to about 100 nuclei and requires a

time step of 10−17s. Thus, as typically 108 time steps are performed in a simulation

run, a typical Car-Parrinello simulation can simulate a melt of 10 chains of N = 10

monomers for about 1 ns [41]. This time is far below typical time scales of relevant

processes in polymer systems, as the α−time scale in weakly supercooled regime, or

time scales probing chain dynamics which typically lie in the range between 1µs and

1s [27,84]. Simplifications can be introduced by means of a systematic coarse-graining

procedure [85–87]. At the atomistic level electronic degrees of freedom are averaged

out by means of a force field. The classical force field represents the potential energy

of an ensemble of N atoms as a sum of non-bonded interactions and contributions

due to all bonds, valence bend and dihedral interactions. The functional form of these

force fields is postulated and their parameters are determined from ab-initio quantum-

chemistry calculations or from experiments. By standard parallel simulation (with

∼ 16 processors) this coarse-graining procedure allows to simulate ∼ 104 atoms over a

time range of several 100 ns. Several atomistic force fields have been carefully designed

to provide quantitative comparison with experiments of static and dynamic proper-

ties of real polymers. The following expression represents the funtional form of the

COMPASS [88, 89] (Condensed-phase Optimized Molecular Potential for Atomistic



CHAPTER 1. HOMOPOLYMERS: MODEL AND SIMULATION DETAILS 14

Simulation Studies):

V =
∑

b

[K2(b− b0)
2 + K3(b− b0)

3 + K4(b− b0)
4] +

+
∑

θ

[H2(θ − θ0)
2 + H3(θ − θ0)

3 + H4(θ − θ0)
4] +

+
∑

φ

[
V1 [1− cos(φ− φ0

1)] + V2 [1− cos(2φ− φ0
2)] + V3 [1− cos(3φ− φ0

3)]
]

+

+
∑

χ

kχχ2 +
∑

b

∑

b′

Fbb′(b− b0)(b
′ − b′0) +

∑

θ

∑

θ′

Fθθ′(θ − θ0)(θ
′ − θ′0) +

+
∑

b

∑

θ

Fbθ(b− b0)(θ − θ0) +
∑

b

∑

φ

(b− b0)[V1 cos φ + V2 cos 2φ + V3 cos 3φ] +

+
∑

b′

∑

φ

(b′ − b′0)[V1 cos φ + V2 cos 2φ + V3 cos 3φ] +

+
∑

θ

∑

φ

(θ − θ0)[V1 cos φ + V2 cos 2φ + V3 cos 3φ] +

+
∑

θ

∑

θ′

∑

φ

Kθθ′φ(θ − θ0)(θ
′ − θ′0) cos φ +

∑

i>j

qiqj

εrij
+
∑

i>j

[
Aij

r9
ij

− Bij

r6
ij

]
(1.1)

Two main classes of terms can be distinguished: the valence terms and the nonbond in-

teraction terms. The valence terms, including diagonal and off-diagonal cross-coupling

terms, represent internal coordinates of bond b, bend angle θ, torsion angle φ and out-

of-plane angle χ. The nonbond interactions include a Lennard-Jonnes 9-6 function for

the van der Waals term and a Coulombian function for the electrostatic interaction.

The nonbond terms operate for atoms separated by two or more intervening atoms or

for those belonging to different molecules.

However, in simulations of hydrocarbon chains, further approximations can be in-

troduced in the force field. Coulomb interactions can be neglected and we can avoid

to treat the hydrogen atoms explicitly, but combine them with the carbon atoms to

which they are bonded into spherical sites, the so-called united atoms (UAs) [85],

and constrain the carbon-carbon bonds to their mechanical equilibrium values. This

approximation reduces the number of non-bonded interaction sites leading to the com-

putational advantage of allowing longer simulation times. It also removes the highest

frequency oscillations, i.e. the C − H bond length and H − C − H and H − C − C

bond angles, from the model. However this approximation is only feasible if we want to

study static and dynamic properties of polymers without any specific local interaction,
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like strong electrostatic interactions or hydrogen bonding. The functional form of UAs

force fields reads as:

VUA =
∑

i

V (bi) +
∑

j

V (θj) +
∑

k

V (Φk) +
∑

n,m

Vnb(rnm) (1.2)

where the sum extends over all bonds, bends, torsions and interacting atoms, respec-

tively. Both atomistic and united-atoms force fields have been utilized in the study

of glass-forming polymers, in order to provide a quantitative comparison between

experiment and simulations, and additional information about static and dynamic

properties which are not directly accesible from experiments. Examples include poly-

isoprene (atomistic [90, 91]), atactic polystyrene (united-atom [92, 93]), cis-trans-1,4–

polybutadiene (atomistic and united-atoms [42,43,52,85]) and polyethylene (atomistic

and united-atoms [94–97]).

However there are properties which are generally observed for several classes of

polymers, irrespective of the chemical structure. Concerning the glass transition, the

strong slowing down of the dynamics on lowering temperature or increasing density,

leading to a final dynamic arrest in an amorphous glassy state, is observed for polymer

melts, independently on the chemical details. Analogously, if we are interested in

the qualitative dynamic properties at length scales somewhat larger than the size of

the monomer (of the order of ∼ 1 nanometer), the detailed chemical structure of the

building blocks is not important. These universal properties for example include sub-

diffusive regimes in the mean square displacements, which are a direct consequence

of the presence of chain connectivity, and scaling behaviour of Rouse amplitudes and

relaxation times ( see next chapter).

Thus, if one is interested on predicting such general behaviours, it is useful to

further coarse-grain the atomistic, or UAs, force-field. A new coarse-grained model

can be obtained by retaining only the most basic features of polymers chains which

include: chain connectivity, excluded volume interactions, possibly monomer-monomer

attraction and stiffness along the chain backbone. A representative example of these

coarse-grained models is the bead-spring model. Introduced by Kremer and Grest [68,

99], it is widely used by the computational community of polymer physics in many

differents topics of research, predicting static and dynamic features of flexible polymer

melts, from the caging regime to large scale dynamics. In this model the position of a

monomer or bead, which comprises several real monomers, is described by their position
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vector rj. Chain connectivity is introduced by means of non-linear springs connecting

consecutive beads along the chain backbone. Monomers belonging to the same chain

or to differet chains interact through a simple potential, like shifted Lennard-Jones or

soft sphere repulsive potentials (see next section for further details).

The bead-spring model is the starting point of our simulation work. We carried

out MD simulations on bead-spring chains in melt conditions. Following Bulacu and

Van der Giessen [53,98], we extended the bead-spring model by introducing a bending

and torsion potential, in order to study the role of intramolecular barriers on several

dynamic aspects of nonentagled polymer melts. The investigated range extends from

the caging regime characteristic of glass-formers to the relaxation of the chain Rouse

modes.

1.1 Basic Notations

In the following ra
j (t) is the position of the ath monomer placed in the jth chain at

time t, with a = 1, ..., N and j = 1, ..., n. The total number of monomers in the cubic

box of volume V , is M = nN with N the number of monomers per chain and n the

number of chains. The chain and monomer densities are respectively defined as:

ρc ≡
n

V
and ρ ≡ M

V
(1.3)

The position of the center of mass of the jth chain at time t is defined as:

Rj(t) ≡
1

N

N∑

a=1

ra
j (t) (1.4)

The squared radius of gyration and squared end-to-end radius reads like:

〈R2
g〉 ≡

1

M
〈

n∑

j=1

N∑

a=1

(ra
j −Rj)

2〉 and 〈R2
ee〉 ≡

1

n
〈

n∑

j=1

(r1
j − rN

j )2〉 (1.5)

The explicit time dependence will be dropped for static quantities. Here and in the

following 〈·〉 denotes ensemble average for temperature T .
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1.2 Model and Simulation Details

We have performed molecular dynamics (MD) simulations on a bead-spring model very

similar to the one originally introduced by Grest and Kremer for homopolymers [68,99],

with the addition of bending and torsional intramolecular barriers.

The interaction between two monomers α and β, placed on different chains or in the

same one, is given by a corrected soft-sphere potential

Vαβ(r) = 4ε[(σαβ/r)12 − C0 + C2(r/σαβ)2], (1.6)

where ε = 1 and σαβ = 1 for each (α, β). The potential Vαβ(r) is set to zero for r ≥ cσ,

with c = 1.15.

The values C0 = 7c−12 and C2 = 6c−14 guarantee continuity of potential and forces

at the cutoff distance r = cσ. The potential V (r) is purely repulsive, it does not show

any local minima within the interaction range r < cσ. Thus, it drives dynamic arrest

only through packing effects.

Along the polymer backbone an additional FENE [68,99–101] (finitely extensible non-

linear elastic) potential was used to introduce bonds between consecutive monomers:

V FENE
αα (r) = −εKFR2

0 ln[1− (R0σαα)−2r2], (1.7)

where KF = 15 and R0 = 1.5. The superposition of potentials (1.6) and (1.7) provides

an effective bond potential for consecutive monomers with a sharp minimum at r ≈
0.985σαα, which makes bond crossing impossible (see fig. 1.2).

Intramolecular barriers have been implemented by means of a combined bending,

VB, and torsional potential VT . We used the potentials proposed in [53, 98]. The

bending potential acts on three consecutive monomers along the chain. The angle

between adjacent pairs of bonds is mantained close to the equilibrium value θ0 = 109.5o

by the cosine harmonic bending potential

VB(θi) = (εKB/2)(cos θi − cos θ0)
2, (1.8)

where θi is the bending angle between consecutive monomers i − 1, i and i + 1 (with

2 ≤ i ≤ N − 1).

The torsional potential constrains the dihedral angle φi,i+1, which is defined for the

consecutive monomers i − 1, i, i + 1 and i + 2 (with 2 ≤ i ≤ N − 2), as the angle
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Figure 1.2: Representation of the corrected soft-sphere potential V (r) and the FENE
potential VFENE as a function of the monomer-monomer distance. The superposition
V (r) + VFENE(r) provides an effective bond potential for consecutive monomers with
a sharp minimum at r ≈ 0.985σαα, which makes bond crossing impossible.

between the two planes defined by the sets (i − 1, i, i + 1) and (i, i + 1, i + 2). The

form of this potential is

VT(θi, θi+1, φi,i+1) = εKT sin3 θi sin
3 θi+1

3∑

n=0

an cosn φi,i+1. (1.9)

The third-order polynomial in cos φi,i+1 follows from ab-initio calculations for n−butane

and has the coefficients a0 = 3.00, a1 = −5.90, a2 = 2.06, a3 = 10.95 [53,98]. Note that

the potential in eq. 1.9 depends both on the dihedral angle φi,i+1 and on the bending

angles θi and θi+1. In this way the numerical instabilities arising when two consecutive

bonds align are naturally eliminated without the need of imposing rigid constraints on

the bending angles.

In the following, temperature T , time t, and length are given respectively in units

of ε/kB (with kB the Boltzmann constant), σ(m/ε)1/2, and σ. Simulation units can be
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qualitatively mapped to real units as σ ∼ 5-10 Å, σ(m/ε)1/2 ∼ 1-10 ps, and ε/kB ∼
300-500 K (see the discussion in, e.g., Refs. [41, 68]).

Simulations for this simple model of intramolecular barriers reproduce qualitative

features observed in real polymers. For example in [53,98] the authors rationalize non-

trivial trends exhibited by the exponents z for the N -dependence of the diffusivity,

D ∼ N−z, below and above the entanglement length. Thus, they find:

i) Power-law scaling of the diffusivity, with two regimes D ∼ N−x1 , D ∼ N−x2 for

respectively small and large N . Both x1 and x2 grow on increasing chain stiffness.

This effect is stronger for x1 and both exponents tend to approach a common value

x ∼ 2, for realistic values of C∞. As discussed in [53], this is apparently consistent

with the experimental observation of an almost N -independent exponent (also there

x ∼ 2).

ii) The former exponent grows on decreasing temperature towards the glass transition.

As discussed in [98], this observation is again apparently consistent with experiments.

Actually, united-atoms models (eq. 1.2) consist typically of Lennard-Jones non-bonded

interactions, bonding potentials, and intramolecular barriers are reduced to simple

bending and torsion terms. Though not aiming to describe properties of any specific

polymer, the model used here is sufficiently realistic to describe qualitatively properties

of a broad family of polymer systems.

We investigate at fixed monomer density ρ = 1, which corresponds to melt con-

ditions in bead-spring models [41, 102], the temperature dependence of the dynamics

for different values of the bending and torsion strength, (KB,KT) = (0,0), (4,0.1),

(8,0.2),(15,0.5), (25,1), (25,4), and (35,4). We investigate typically 8-10 different tem-

peratures for each set of values (KB,KT). The investigated range of barrier strength

corresponds to a strong variation of the chain stiffness. This can be quantified by the

characteristic ratio Cr
∞ ≡ limN→∞ Cr

N , where Cr
N = 〈R2

ee〉/(N〈b2〉). Here Ree and b

denote respectively the chain end-to-end radius and the bond length. Brackets denote

ensemble average. We simulated only short chains with N = 10 monomers, so we

can only provide the values of Cr
10. Fig. 1.3 displays the obtained values of Cr

10 at all

the investigated state points (KB, KT, T ). As expected, chain stiffness is enhanced by

increasing the strength of the barriers and by decreasing temperature. Moreover, the

effect of temperature is much more pronounced in chains with strong barriers than

in fully-flexible chains, for which Cr
10 is nearly T -independent. The investigated state

points cover a broad range of stiffness, with values of C r
10 varying from Cr

10 ≈ 1.3 for
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fully-flexible chains up to Cr
10 = 4.3 for the strongest barriers, (KB, KT) = (35, 4), at the

lowest investigated T . However the data of C r
10 given here are considerably smaller than

the limit Cr
∞ estimated from simulations or experiments on much longer chains. This

is clearly a finite size effect. Thus, at T = 1.0 we find C r
10 = 3.0 for (KB, KT) = (25, 1).

Data in Ref. [53] for the same model of intramolecular barriers and much longer chains

(N = 200) provide an estimation of C r
∞, with a value almost twice larger, Cr

200 = 5.8,

than Cr
10 for the former (KB, KT, T ). The value Cr

∞ & Cr
200 = 5.8 is comparable to

characteristic ratios of, e.g., polybutadiene and polypropylene [103]. The stiffest case

investigated here (not studied in [53]), will presumably yield values C r
∞ ∼ 10, similar

to that of polystyrene [103].
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Figure 1.3: Temperature dependence of the characteristic ratio C r
10 for all the investi-

gated state points.

We simulate n = 300 chains, each chain consisting of N = 10 monomers of mass

m = 1, placed in a cubic simulation box with periodic boundary conditions. The choice

of the chain length N = 10 is not unjustified. On the one hand a smaller value of N

would not allow to observe polymer specific effects, e.g. Rouse dynamics( see next
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chapter). On the other hand much larger values of N would be computationally too

demanding in order to study chain relaxation processes on decreasing temperature.

Because we are interested in comparing simulation results with the predictions of the

MCT theory for nonentangled polymers, the chain length N should be shorter than

the entanglement length of our model, which is approximately Ne ∼ 35 [68, 104].

Equations of motion are integrated by using the velocity Verlet scheme [80]:

ri(t + h) = ri(t) + hvi(t) +
h2

2
Fi(t) (1.10)

vi(t + h) = vi(t) +
h

2
[Fi(t) + Fi(t + h)] (1.11)

Here ri(t) and vi(t) are the position and the velocity of the particle i at time t, Fi is

the force acting on this particle, and h is the time step. The error in the predicted

coordinates is of the order of O(h4) and in the velocities of O(h2) [80].

We use a time step ranging from 10−4 to 5×10−3. We take larger and shorter steps

for respectively low and high values of temperatures, bending and torsional constants.

A linked-cell method [80] is used for saving computational time in the determination of

the particles within the interaction range of a given one. The basic idea of the method

is the following: the simulation box is divided into cells with a size equal or slightly

larger than the cutoff radius rc (equal to cσ in our model). Thus each particle in a

given cell can only interact with the particles in the same or in neighbouring cells.

Hence, we only need to calculate such distances for computing forces. Since the allo-

cation of a particle to a cell is an operation that scales with N (number of particles),

the linked-cell method scales with N . On the other hand, computing all the distances

between all the particles is an operation that scales like N 2, which would require much

more computational time.

The system is prepared by placing and growing the chains randomly in the simula-

tion box, with a constraint for the interparticle distance r ≥ 0.75σαβ avoiding monomer

core overlap. The initial monomer density is ρ = 0.375. Equilibration consists of a

first run where the box is rescaled periodically by a factor 0.99 < f < 1 until the

target density ρ is reached, and a second isochoric run at that ρ. Thermalization at

the target T is achieved by periodic velocity rescaling with a period τ ≤ 0.25 in simu-

lation units. After reaching equilibrium, energy, pressure, chain radii of gyration, and
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end-to-end distances show no drift. Likewise, dynamic correlators and mean squared

displacements show no aging, i.e., no time shift when being evaluated for progressively

longer time origins. Once the system is equilibrated, a microcanonical run (at constant

energy) is performed for production of configurations, from which static structure fac-

tors, dynamic correlators and mean squared displacements are computed. For each

state point, the latter two quantitites are averaged over typically 40 equispaced time

origins. The typical duration of a production run is of 40-300 million time steps for

respectively high and low temperatures. The estimated sum of the CPU time, of all

the simulation runs performed in this work, is about 4 years.

Even if a small time step is used, deviations from the true dynamics are unavoidable

and an overall, upward drift in energy develops. In order to maintain the total energy

approximately constant we periodically compute the quantity δE = E(t)− E0, where

E0 = E(t = 0) is the total energy evaluated at the starting point of the microcanonical

run. When |δE/E0| > 10−3 a rescaling of velocities, irrelevant within fluctuations

of temperature, is performed to correct the kinetic energy and recover the initial total

energy E0. This procedure avoids a long time drift in the total energy E. This rescaling

was performed, as much, only a few times during the total simulation time (less than

20 times in typically 108 time steps), which does not affect statistical averages of static

and dynamic observables.

Before addressing the static and dynamic aspects of the present system, we want

to stress that the investigated state points correspond to isotropic phases. We do

not observe signatures of global orientational order induced by chain stiffness for the

investigated state points. Thus, by measuring the quantity P2(Θ) = (3〈cos2 Θ〉− 1)/2,

where Θ is the angle between the end-to-end vectors of two chains, and averaging

it over all pairs of distinct chains, we obtain in all cases values |P2(Θ)| < 3 × 10−3.

This is illustrated in Fig. 1.4, which shows the time evolution of P2(Θ) along a typical

simulation window, both for fully-flexible chains, (KB,KT) = (0,0), and for the stiffest

investigated chains, (KB,KT) = (35,4). Data in both cases correspond to the lowest

investigated temperatures.

Local orientational order is also negligible. This is evidenced by computing a similar

correlator P2(Θ; rcm). In this case the average is performed only over pairs of distinct

chains for which the distance between their respective centers-of-mass is less than

rcm. Fig. 1.4 displays, for the former cases of fully-flexible and stiff chains, data of

P2(Θ; rcm) for several values of rcm. Negligible values of P2(Θ; rcm) are obtained for
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rcm ≥ 2.0. Thus, the time average over the simulation time window, tsim, provides

values |〈P2(Θ; rcm ≥ 2.0)〉tsim| < 0.02. By comparing both panels we conclude that

chain stiffness does not induce a significant increase, if any, of local orientational order

in the investigated systems. Weak local orientational order |〈P2(Θ; rcm)〉tsim| . 0.1 is

observed only for very small interchain distances (see data for P2(Θ; rcm = 1.4)). Again,

the introduction of chain stiffness does not induce clear changes in the orientational

order at this length scale.
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(KB,KT) = (35, 4).



Chapter 2

Homopolymers: Static and

Dynamic Features

2.1 Density Correlators: Static Properties

In this section we present the static structural and conformational properties of our

model. In particular we will discuss the case of fully flexible chains, (KB = 0, KT = 0)

and a representative case of stiff chains (KB = 25, KT = 1).

We introduce the Fourier-transformed monomer densities at wave vector q

ρa
j (q, t) ≡ exp[iq · ra

j (t)] and ρ(q, t) ≡
n∑

j=1

N∑

a=1

ρa
j (q, t) (2.1)

The static density-density correlation at the monomer level can be characterized by

the monomer-monomer static structure factor

Sab(q) =
1

n

〈 n∑

i,j=1

ρa
i (−q)ρb

j(q)
〉
, (2.2)

Since our systems are spatially homogeneous and isotropic, the static structure

factors depend only on the modulus of the wave vector q = |q|. The monomer-monomer

static structure factor Sab(q) can be splitted into an intrachain and an interchain term,

revealing static correlations between monomers belonging to a same chain or to different

chains:

24
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Sab(q) = ωab(q) + ρchab(q) (2.3)

Here ωab(q) denotes the intrachain contribution while the interchain contribution is

given by hab(q).

In the following we will discuss the structure factors averaged over all monomer

pairs (a, b). So we obtain the collective structure factor in terms of the total monomer

density distribution :

S(q) =
1

N

N∑

a,b=1

Sab(q) =
1

nN
〈ρ(−q)ρ(q)〉 (2.4)

The averaged static structure factor S(q) can also be splitted into intrachain and in-

terchain parts

S(q) = ω(q) + ρh(q) (2.5)

with ω(q) = N−1
∑

a,b wab(q) and h(q) = N−2
∑

a,b hab(q). The intrachain term ω(q) is

also known as the form factor of the chain.

Another important quantity for the description of the static properties of our sys-

tems is the site-site direct correlation function defined as the second functional deriva-

tive of the free energy of the system [105]. In the Fourier space the site-site direct

correlation function cab(q), is introduced via the generalized Ornstein-Zernike relation

for polyatomic molecules, or ‘reference interaction site model’ (RISM) [106],

hab(q) =
N∑

x,y=1

ωax(q)cxy(q)[ωyb(q) + ρchyb(q)], (2.6)

in which intramolecular contributions are accounted by the form factor terms ωab(q).

By inserting (2.3) in Eq. (2.6), cab(q) is related to Sab(q) and ωab(q) as:

ρccab(q) = ω−1
ab (q)− S−1

ab (q). (2.7)

Here ω−1
ab (q) and S−1

ab (q) are the elements of, respectively, the matrices w−1(q) and

S−1(q), which are defined as the inverses of w(q) and S(q). For later reference (see

chapter 3) we introduce the equivalent-site approximation for cab(q). In the equivalent-

site approximation (which is exact for polymer rings), chain end effects are neglected
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and all sites are treated equivalently for interchain correlations. Thus, cab is replaced

by the average over all (a, b)-pairs:

cab(q) ≈ c(q). (2.8)

By introducing this approximation in Eq. (2.6) and averaging over all (a, b)-pairs we

find h(q) = ω(q)c(q)[ω(q) + ρh(q)]. By introducing Eq. (2.5) in the latter expression

we arrive to the scalar equation

ρc(q) = 1/ω(q)− 1/S(q), (2.9)

also known as PRISM equation [40]. The PRISM equation and the equivalent-site ap-

proximation are essential ingredients in the development of the Mode Coupling Theory

for polymer melts. We will discuss these points in more detail in Chapter 3.

Another approximation (also exact for ring polymers) which is needed in the devel-

opment of MCT for polymer melts involves the site-ste static structure factor S−1
ab (q).

First of all we note that in a ring the quantity S̃a(q) ≡ ΣN
b=1Sab(q) is a-independent, and

that the relation S̃a(q) = (1/N)ΣN
a=1S̃a(q) = S(q) holds. Furthermore from the identity

Σx,bS
−1
ax (q)Sxb(q) = Σbδab = 1 we also have S̃−1

a (q) ≡ ΣN
b=1S

−1
ab (q) = 1/S(q). With these

relations in mind, we introduce the following approximations for linear chains:

S̃a(q) ≡
N∑

b=1

Sab(q) ≈ S(q), (2.10)

S̃a

−1
(q) ≡

N∑

b=1

S−1
ab (q) ≈ 1

S(q)
. (2.11)

2.1.1 Static Structure Factors

In figures 2.1 and 2.2 we show the simulation results for S(q) as a function of tem-

perature for fully flexible (KB,KT) = (0,0) and representative stiff chains (KB,KT) =

(25,1) respectively. In both cases, no signature of crystallization is present, in fact no

sharp Bragg peaks are observed. Moreover there is no orientational order as noted in

the previous chapter. The collective structure of the melt indeed follows the trends

of dense disordered systems. In the q → 0 limit, S(q) takes small values due to low

compressibility of the systems. In both cases, the static structure factor shows a max-
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imum at qmax ≈ 7.0. Since S(qmax) comes from the packing in the first shell around

a monomer, the latter corresponds to a typical distance 2π/7.0 ≈ 0.90 in the real

space between neighbouring monomers. On cooling the peak at qmax ≈ 7.0 increases

in intensity, which is a signature of increasing short-range order.
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Figure 2.1: Static structure factor S(q) as a function of temperature for the fully
flexible chains (KB,KT) = (0,0).
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Figure 2.2: Static structure factor S(q) as a function of temperature for the stiff chains
(KB,KT) = (25,1)
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2.1.2 Form Factors

In figure 2.3 we show the simulation results for the form factors w(q). We note that in

the case of fully flexible chains, the form factor is nearly independent on temperature.

On the contrary the w(q) for stiff chains shows a weak dependence on temperature,

this dependence being more clear at low q values. The way the form factor behaves

on lowering the temperature is directly connected with the values of the mean chain

end-to-end radius Ree. Thus, by decreasing temperature Ree increases from 4.8 to

5.5 for the stiff chains, leading to a stronger decay in ω(q) at low q. On the other

hand Ree mantains the value of 3.6 for the fully flexible chains, leading to an almost

T-independent ω(q).
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Figure 2.3: Form factor ω(q) as a function of temperature for fully flexible (lines) and
stiff chains (points). The inset shows the same results at low q for clarity. Different
colours correspond to different values of temperatures, following the legend in Fig 2.1
and 2.2.
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2.1.3 Equivalent-Site Approximation and Ring Approxima-

tion

In figures 2.4 and 2.5 we test the validity of the equivalent site approximation for two

representative cases here investigated of fully flexible chains (KB = 0, KT = 0) and stiff

chains (KB = 25, KT = 1). Thus, we compare cab(q) and c(q) respectively obtained

directly from Eq. (2.7) (i.e. from the RISM) and Eq. (2.9) (i.e. from the PRISM).

Data correspond to the lowest temperature investigated for both cases. Both for fully

flexible and for stiff chains, the approximation seems to be well satisfied. Only the

functions involving the chain-end monomers, a = 1 (and a = N), present significant

differences, which are just moderate in the region around qmax ≈ 7, the one giving the

dominating contribution in the calculation of the integrals defining the MCT memory

kernel (see chapter 3). Thus figures 2.4 and 2.5 suggest that Eq (2.8) is a reasonable

approximation for the derivation of more tractable MCT equations for our model (see

chapter 3).

Panels and their insets of Fig. 2.6 show a test of the ring approximation for re-

spectively Eq. (2.10) and (2.11). The comparison is done both for the fully flexible

case (KB = 0, KT = 0) and for a representative stiff case (KB = 25, KT = 1). Except

for quantities related to end chain monomers, the ring approximation is well satisfied.

The quality of the approximation is the same for fully flexible and stiff chains.

With all these results we conclude that the equivalent-site approximation of the

PRISM theory and the additional ring approximation, introduced in the MCT equa-

tions (see chapter 3) are fulfilled, to the same degree of agreement with simulation

results, in all the investigated systems covering the limits of fully flexible and stiff

chains.
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Figure 2.4: Test of the equivalent site approximation, Eq. (2.8), for the fully flexible
chains at T = 0.50. Averaged functions c(q) are determined from the simulation results
for S(q) and ω(q) via Eq. (2.9). The site-site direct correlation functions cab(q) are
calculated from the simulation results for Sab(q) and ωab(q) via Eq. (2.7). The insets
represent the region around the maximum qmax of the static structure factor S(q).
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Figure 2.5: Test of the equivalent site approximation, Eq. (2.8), for a representative
stiff case at T = 0.96. Averaged functions c(q) are determined from the simulation
results for S(q) and ω(q) via Eq. (2.9). The site-site direct correlation functions cab(q)
are calculated from the simulation results for Sab(q) and ωab(q) via Eq. (2.7). Insets
represent the region around the maximum qmax of the static structure factor S(q).
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structure factor S(q) (circles) with the site-dependent structure factor (lines) S̃a(q) for
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2.2 Dynamic Properties

In this section we show some phenomenological dynamic features induced by the intro-

duction of intramolecular barriers in our model, going from the fully flexible to the stiff

limit. At melt density of order of ρ ∼ 1, as in our systems, there is no free space for

large ballistic motion. The monomer is trapped in a cage and simultaneously cages its

neighbours. Any displacement over large distances requires collective spatio-temporal

fluctuations of the density around its mean value ρ on the scale of the nearest neighbour

shells. These dynamic features are addressed by the dynamic density-density correla-

tor (i.e., the intermediate coherent scattering function) f(q, t) = 〈ρ(−q, 0)ρ(q, t)〉/S(q)

normalized to its initial value S(q), the self density-density correlator (i.e., the incoher-

ent scattering function) defined as f s(q, t) = M−1〈
∑n

j=1

∑N
a=1 ρa

j (−q, t)ρa
j (q, 0)〉 and

the monomer mean squared displacement 〈(∆r)2(t)〉.

2.2.1 Mean Squared Displacements (MSD)

Panels in Fig. 2.7 show the T -dependence of the monomer mean squared displace-

ment (MSD) for fully-flexible and representative stiff chains with (KB, KT) = (25, 1).

We observe similar features in both cases, but also some differences. After the ini-

tial ballistic regime, a plateau extends over longer times with decreasing temperature.

This plateau corresponds to the caging regime — i.e., the temporary trapping of each

monomer in the shell of neighboring monomers around it — which is usually observed

when approaching a liquid-glass transition [5, 100, 107, 108]. At longer times, leaving

the plateau, a crossover to a Rouse-like sublinear regime 〈(∆r)2(t)〉 ∝ t0.65 [100,101] is

observed for the fully-flexible case (see section 2.3). Thus this subdiffusive behaviour

can be attributed to chain connectivity which determines the monomer dynamics in

the range 1 . 〈∆r2(t)〉 . R2
ee. The final crossover to linear diffusion 〈(∆r)2(t)〉 ∝ t is

reached, within the simulation time window, at long times only for the highest investi-

gated temperatures. However, for the case of stiff chains it is difficult to discriminate

power-law behaviour over significant time windows. Apparently, the linear diffusive

regime is not reached within the simulation time window.

Figure 2.8 shows mean squared displacements for a fixed value of temperature

T = 1.5, as a function of the barrier strength. We observe that increasing the strenght

of the internal barriers in our model leads to slower dynamics at fixed temperature and

density.
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2.2.2 Density-Density Correlators

Fig. 2.9 shows simulation results at several temperatures, both for fully-flexible and

stiff chains, for the normalized density-density correlator f(q, t). In both cases the

correlator is evaluated at the maximum, qmax ≈ 7, of the static structure factor S(q)

(see Fig. 2.10). As in the case of the MSD, both the fully-flexible and stiff cases exhibit

the standard behavior in the proximity of a glass transition [100,101]. After the initial

transient regime, f(q, t) shows a first decay to a plateau connected with the caging

regime, i.e., the temporary trapping of each particle by its neighbors. On lowering the

temperature this plateau extends over longer time intervals. At long times, a second

decay is observed from the plateau to zero. This second decay corresponds to the

structural α-relaxation.

Fig. 2.11a shows the self-density correlator f s(q, t) at fixed T = 1.5 and for sev-

eral values of the barrier strength. In all the cases the correlator is evaluated at the

maximum, qmax ≈ 7 of the static structure factor S(q). We observe that increasing

the strenght of the internal barriers at fixed ρ and T leads to slower dynamics. In the

fully flexible case f s(q, t) decays to zero in a single step. On increasing the strength of

the internal barriers f s(q, t) exhibits the standard behavior in the proximity of a glass

transition, with a longer caging regime for stronger barriers. However if we look at the

static structure factors S(q) at T = 1.5 in fig. 2.10 for the same values of bending and

torsion constants, they are almost indistinguishable, showing the same position and

intensity of the main peak at qmax ∼ 7 which is associated to the typical first neighbor

distance r ∼ 2π/qmax ∼ 0.9. This suggests that the physical origin of this slowing

down is mainly related to the strength of the intramolecular barriers more than to the

packing in the first neighbor shell.

To quantify the loss of memory of the initial state and the concomitant decay to

zero of the density correlators, we introduce the α-relaxation time τα. Let us define

τ0.2 as the time for which f s(qmax, τ0.2) = 0.2. This time corresponds to a significant

decay from the plateau, and therefore it can be used as an operational definition of the

α-relaxation time τα. Fig. 2.11b shows τ0.2 as a funcion of T , for different values of the

bending and torsional constants. As observed in the analysis of the self-correlators (Fig.

2.11a), increasing the chain stiffness slows down the dynamics. At fixed temperature,

the relaxation time for the stiffest investigated chains increases by several decades with

respect to the fully-flexible case.
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In this section we have demonstrated a main dynamic feature: the slowing down

of the dynamics, at fixed density and temperature, by progressively increasing the

strength of the intramolecular barriers. This feature strongly suggests that intramolec-

ular barriers constitute an additional mechanism for dynamic arrest, coexisting with

the general packing effects, present in all glass-formers, induced by density and tem-

perature. In the next chapter we will discuss these simulation dynamic features within

the framework of the Mode Coupling Theory.
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barrier strength at fixed temperature T = 1.5. Panel (b): temperature dependence of
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2.3 Chain Dynamics: Rouse Model

The phenomenological Rouse model [25,27,84] is a Markovian model for polymer chain

dynamics. It is the basic model describing dynamic features of non-entangled polymers.

The starting point of a Markovian model for polymer dynamics is to assume a specific

form for the intramolecular static correlations. In particular the starting point of the

Rouse model is the Gaussian chain [27,109]. The Gaussian chain is the simplest model

available to describe static properties of polymer chains. If we look at the conformation

of a flexible polymer chain on length scales larger than the main bond length l0, we can

coarse grain the chemical details and the chain conformation will be close to a random

walk of N steps. Several chain bonds are coarse grained onto a gaussian segment (or

bead) of vector xj = rj−rj−1, where rj is the position vector of the segment j = 1, ..., N

. The length distribution of the end-to-end vector Ree = rN − r1 is Gaussian:

Ψ(Ree) =

(
3

2πNl2

)3/2

exp

(
− 3R2

ee

2Nl2

)
(2.12)

For the segment length we have l2 = l20C∞, where the characteristic ratio C∞ accounts

for the local stiffness arising from the non-random distribution of the bond lenght l0.

In this way the average square end-to-end radius can be expressed as 〈R2
ee〉 = Nl20C∞.

In the Gaussian model, a chain is considered ideal, in the sense that every bond vector

x of the chain has a Gaussian distribution of lenghts:

Φ(x) =

(
3

2πb2

)3/2

exp

(
−3x2

2b2

)
(2.13)

with b2 = 〈x2〉. Thus for a Gaussian chain C∞ = 1. A cornerstone of polymer

physics is the ideality hypothesis formulated by Flory in the 1940s [109–111]. The

Flory’s hypothesis states that in a polymer melt chain conformations are Gaussian

on a length scale much larger than the monomer diameter. The justification of this

hypothesis is that, unlike in a good solvent, in a melt intrachain and interchain excluded

volume interactions compensate each other beyond some length scale. Thus all the

correlations are assumed to be short ranged. In chapter 1 we observed that C∞ ∼
1.3 for fully flexible bead-spring chains ( no intramolecular barriers). Hence chain

conformations provided by MD simulations on the fully-flexible bead-spring model

are almost Gaussian. Differences are related to the intrinsic stiffness of the bead-

spring chains, due to intrachain excluded volume interactions at the monomer level.
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By introducing intramolecular barriers, the value of C∞ (see Fig. 1.3) increases and

chain conformations progressively depart from Gaussian behaviour. This feature will

be discussed in the next section in the framework of the Rouse model. Let us now

introduce the basic features of the Rouse Model [25].

In the Rouse model a tagged chain is represented as a string of N beads of co-

ordinates rj connected by harmonic springs of force constant ks = 3kBT/b2, which

represents the entropic restoring force driving the dynamics. The interactions of the

tagged chain with the surroundings are given by a constant and position independent

friction coefficient ζ and by a set of stochastic forces fj(t) acting over each jth bead

and fulfilling the condition 〈fj(t)〉 = 0. The Markovian approximation enters the model

by neglecting memory effects related to slow density fluctuations of the surroundings

around the tagged chain. This means that the motion of a bead of the tagged chain is

slow compared to the stochastic surroundings. As a consequence, stochastis forces are

spatially and time uncorrelated and are related to the friction coefficient through the

fluctuation dissipation theorem:

〈fj(t) · fk(t′)〉 = 6ζkBTδjkδ(t− t′) (2.14)

With these ingredients the Langevin equation for bead motion, neglecting the in-

tertial term, reads:

ζ
∂rj(t)

∂t
= −∂U{xj}

∂rj

+ fj(t) (2.15)

The free energy U{xj} of the Gaussian chain is given by the configurational entropy:

U{xj} = −TS{xj} = −kBT ln P ({xj}) (2.16)

where P ({xj}) is the Gaussian probability of a conformation {xj}:

P ({xj}) =

(
3

2πb2

) 3

2
N

exp

[
−

N∑

j=2

3 [rj − rj−1]
2

2b2

]
(2.17)

The Rouse equation of motion now reads:

ζ
∂rj(t)

∂t
= ks[rj+1(t)− 2rj(t) + rj−1(t)] + fj(t) (2.18)
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Hydrodynamic and excluded volume interactions are neglected in the Rouse model.

Initially developed for describing the chain dynamics in solutions, where hydrodynamic

interactions are important, (indeed the Zimm model [26, 27] is used in this case), the

Rouse model turned out to be more succesful to describe chain dynamics in polymer

melts, where hydrodynamic and excluded volume interactions are screened [27].

Equation 2.18 can be solved by mapping the chain motion onto a set of normal

modes (Rouse modes) labelled by p = 0, 1, 2, ..., N− 1, of wavelength N/p, and defined

as:

Xp(t) =
N∑

j=1

Pjprj(t) with Pjp =
√

(2− δp0)/N cos[(j − 1/2)pπ/N ] (2.19)

Let us note that we will use here and in the following, definitions and notations adapted

to the scheme proposed by Chong et al. [39] for the MCT equations of the Rouse

modes. Standard definitions differ from the ones used here only by constant factors

and constant additive terms [27].

The Langevin equation for the Rouse modes now reads:

2NζẊp(t) = −kpXp(t) + gp(t) (2.20)

where kp = 24NkBTb−2 sin2[pπ/2N ] and the external force for the pth mode reads

gp(t) = 2
∑N

j=1 fj(t) cos[(j − 1/2)pπ/N ]. Integration of equation 2.20 leads to:

Xp(t) =
1

2Nζ

∫ t

−∞

dt′ exp ((t− t′)/τp)gp(t
′) (2.21)

Let us define the Rouse mode correlators as Cpp′(t) = [〈Xp(0) ·Xp′(t)〉− δ0,p×p′〈Xp(0) ·
Xp′(0)〉]/3N . From the definition it is obvious that C00(0) = 0 and C0p(0) = 0 for

p > 0. Full uncorrelation of the Rouse stochastic forces, i.e. 〈gp(t)·gp′(t
′)〉 ∼ δpp′δ(t−t′)

yields orthogonality and exponentiality of the Rouse modes, leading to the expression

for p, p′ > 0:

Cpp′(t) = Ĉpp′(0) exp[−t/τp] with Ĉpp′(0) = δpp′(b
2/24N2) sin−2[pπ/2N ].

(2.22)
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The relaxation time τp of the mode p reads:

τp = (ζb2/12kBT ) sin−2[pπ/2N ] (2.23)

Thus according to the Rouse model, for p << N , Ĉpp(0) and τp scale as ∼ p−2.

The chain center-of-mass coincides with Rcm = X0(t)/
√

N , thus the correlator

C00(t) is related to the mean squared displacement of the center of mass of the chain:

〈(Rcm(t)−Rcm(0))2〉 = −6C00(t) = 6
kBT

Nζ
t. (2.24)

The motion of the center of mass of the bead-spring chain is identical to the motion

of a particle that experiences a friction ζ. The self-diffusion coefficient can be easily

evaluated:

D = lim
t→∞

〈∆R2
cm〉

6t
=

kBT

Nζ
. (2.25)

By back transforming Eq 2.19 together with Eq. 2.22 it is possible to express the bead

mean squared displacement as:

〈∆r2(t)〉 = 〈∆R2
cm〉+ 6

N−1∑

p=1

[Cpp(0)− Cpp(t)] (2.26)

For N →∞, inserting Eq. (2.22) and taking the continuous limit for the second term

of the right side [27, 84], Eq. 2.26 is transformed into:

〈∆r2(t)〉 = 6Dt + 2b2

(
3kBT t

πζb2

)1/2

. (2.27)

In contrast to normal diffusion, the bead mean square displacement at intermediate

times shows a subdiffusive regime, growing as ∼ t1/2. The existence of such subdiffu-

sive regime is one of the fundamental predictions of the Rouse model. In the previous

section we observed this sub-diffusive regime 〈∆r2(t)〉 ∼ tβ for fully flexible chains (see

Fig. 2.7). However the exponent was found to be β ∼ 0.65, higher than the predicted

value of 0.5. This difference arises from finite size effects due to the short length of

our chains. Remember that the exponent 0.5 arises from integration in Eq. 2.26 in the

limit N →∞.
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Despite the Rouse model has been particularly successful in the description of chain

dynamics in polymer melts, it has intrinsic limitations. First of all the predictions of

the Rouse model are not valid at short lenght scales, i.e., the high p-regime. Indeed

the α−structural relaxation occurs at such length scales. Dynamics in the time win-

dow around the α−relaxation time is implicitly coarse-grained in the phenomenological

Rouse model. Moreover for sufficiently long chains topological interactions, which are a

manifestation of the chain connectivity and uncrossability of the chains, play a crucial

role. For the number of monomers N larger than the so-called entanglement lenght

Ne, chain dynamics are better described by the reptation theory [27]. Looking at the

mean squared displacement, for N > Ne after the Rouse regime new sublinear regimes

arise before the final crossover to free diffusion occurs. However this is not our case,

since for our model the Ne ∼ 35 and we are simulating chains of N = 10 monomers.

In the next sections we will test the Rouse predictions for our systems, and we will

show how these predictions are strongly altered by the introduction of intramolecular

barriers.

2.3.1 Intrachain Static Correlations

In this secion we test orthogonality and scaling behaviour for the static amplitudes

Ĉpp′(0). In order to test the orthogonality of the Rouse modes for our systems we com-

puted off-diagonal terms of the static observable Ψpp′ = 〈Xp(0) ·Xp′(0)/(Xp(0)Xp′(0))〉,
the diagonal terms are trivially Ψpp ≡ 1. Data for fully-flexible chains (not shown)

exhibit small deviations from orthogonality, indeed |Ψpp′| < 0.05 for all p 6= p′, in-

dependently of T . Instead, orthogonality is clearly violated for strong intramolecular

barriers, as shown in the contour plot of Fig. 2.12a. Moreover, deviations are enhanced

by decreasing T . Having noted this, modes p, p′ of distinct parity fulfill |Ψpp′| < 0.1, i.e.,

they are approximately orthogonal even for the stiffest investigated system. Fig. 2.12b

shows the diagonal terms Ĉpp(0) normalized by Ĉ11(0). Data for fully-flexible chains

approximately follow gaussian behaviour, Ĉpp(0) ∼ p−2.2 [69, 100]. The introduction

of chain stiffness leads to strong non-gaussian behaviour, which can be quantified at

intermediate and low p by an approximate power law Ĉpp(0) ∼ p−x, with higher x-

values for stronger barriers [52]. The exponent x ≈ 3 observed in (KB, KT) = (25, 1)

at T ≈ 1.0 (fig. 2.12b) is similar to that found in simulations of 1,4-polybutadiene [52]

with chemically realistic force fields. This is consistent with the similar values of Cr
∞
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obtained for this polymer and for the bead-spring model at the former state point (see

previous chapter). In the case (KB, KT) = (35, 4), at the lowest investigated T , we find

x = 3.8. The most local effects of intramolecular barriers are manifested by flattening

of Ĉpp(0) at large p.

The non-gaussian behaviour in the systems with intramolecular barriers is observed

for all p-values, i.e., it persists over all the length scale of the chain. Recent simula-

tions performed by Steinhauser et al. [54, 55] on the Kratky-Porod [112] worm-like

model show similar anomalous scaling, and a crossover to ideality, Ĉpp(0) ∼ (N/p)2,

at large values of the wavelength N/p. We want to stress that this feature is not an

artifact of bead-spring models. It is also observed in simulations of real polymers. See

e.g., Refs. [52] for simulations of 1,4-polybutadiene. There anomalous scaling ∼ p−3 is

observed at short and intermediate wavelengths. This exponent is in qualitative agree-

ment with our observations for (KB, KT) = (25, 1) in Fig. 2.12b, which has a Cr
∞ similar

to that of 1,4-polybutadiene (see section 1.2). The reason why we do not observe the

crossover to Gaussian scaling in our simulations is that we simulate very short chains,

N = 10, which cannot probe the corresponding value N/p for the crossover wavelength.

Gaussian statistics will be recovered at values of the mode wavelength, N/p, that can

only be probed by chains longer than those (N = 10) investigated here. In summary,

at the relevant length scales investigated here, the chains are strongly non-ideal, except

in the fully-flexible limit (KB, KT) → (0, 0).



CHAPTER 2. HOMOPOLYMERS: STATIC AND DYNAMIC FEATURES 44

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

0.1 ≤ Ψ
pp’

 < 0.2 0.2 ≤ Ψ
pp’

 < 0.3

0.3 ≤ Ψ
pp’

 < 0.4 0.4 ≤ Ψ
pp’

 < 0.5 0.5 ≤ Ψ
pp’

 < 0.6

Ψ
pp’

 =1
(K

B
, K

T
) = (35,4)

T = 1.22 T = 1.90

(a)

p

p’ p’

-0.1 ≤ Ψ
pp’

 < 0.1

1

10
-2

10
-1

10
0

(K
B
,K

T
) = (0,0)   T = 0.50

(K
B
,K

T
) = (0,0)   T = 1.50

(K
B
,K

T
) = (8,0.2)   T = 0.64

(K
B
,K

T
) = (8,0.2)   T = 1.50

(K
B
,K

T
) = (25,1)   T = 0.96

(K
B
,K

T
) = (25,1)   T = 1.75

(K
B
,K

T
) = (35,4)   T = 1.22

(K
B
,K

T
) = (35,4)   T = 1.90

∧

p

C
pp

(0
)/

C
11

(0
)

2 3 5 9(b)

∧

Figure 2.12: Static intrachain correlations computed from simulations. For each value
of (KB, KT) (see legends) results include data at the highest and lowest investigated
T . (a): for stiff chains with (KB, KT) = (35, 4), contour plot of Ψpp′ (see text). (b):

diagonal terms Ĉpp(0) (see text) normalized by Ĉ11(0) for the sake of clarity. Each data
set corresponds to a fixed value of (KB, KT) and T (see legend). Dashed lines indicate
approximate power-law behaviour ∼ p−x. From top to bottom, x = 2.2, 2.7, 3.1, and
3.8.
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2.3.2 Rouse Relaxation Times
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Figure 2.13: Relaxation time τ1 of the mode p = 1 versus the characteristic ratio C r
10

at fixed temperature T = 1.5. The respective values of (KB, KT) are indicated on top
of each symbol.

The trends observed for intrachain static correlations have their dynamic coun-

terparts. Fig. 2.13 shows results for the relaxation time τ1 of the mode p = 1 ver-

sus the characteristic ratio of the investigated systems at fixed T = 1.5. Relaxation

times τp for the different p-modes are operationally defined as Φpp(τp) = 0.3, where

Φpp(t) = Cpp(t)/Ĉpp(0) is the normalized Rouse correlator. The obtained time τ1 at

T = 1.5 increases by about two decades over the investigated range of stiffness.

Fig. 2.14 shows the relaxation times τp, of the normalized mode correlators Φpp(t)

as a function of the mode index p. We display data for several values of the bending

and torsion constants (KB, KT) and temperatures T . The relaxation times have been

operationally defined as Φpp(τp) = 0.3. Data can be again described at low-p by an

effective power-law τp ∼ p−x. The observed trends are analogous to those found for

the static correlations (Fig. 2.12b). Rouse behavior (x = 2) is observed only in the

fully-flexible limit. Again, as for the static amplitudes Ĉpp(0), x is weakly dependent

on T (for example for (KB, KT) = (25, 1) we find a variation of ≈ 7% in x for a change

in T of a factor 2) but strongly dependent on the barrier strength, taking higher values
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for stiffer chains. The x-values for Ĉpp(0) and τp at the same (KB, KT) and T are

similar. This suggests that the structural origin of the observed dynamic anomalies is

mainly controlled by intrachain static correlations.
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Figure 2.14: p-dependence of the relaxation times τp of the mode correlators. Each
data set corresponds to a fixed value of (KB, KT) and T (see legends). For clarity,
each set is rescaled by its respective τ1. Dashed lines indicate approximate power-law
behaviour ∼ p−x. From top to bottom: x = 2.0, 2.4, 2.8.

2.3.3 Rouse Correlators

Fig. 2.15 shows simulation results for the normalized Rouse correlators for the fully

flexible and stiffest investigated case for two representative values of temperature T .

Times are scaled by the relaxation time of the first mode τ1. Data for fully flexible

chains show the standard behaviour already observed in other works. After the plateau

connected with the caging regime, correlators decay to zero in a single step. On the

contrary data for stiff chains show new salient features. First, the unambiguous pres-

ence of a long-time plateau for the modes p = 3 and p = 5, followed by an ultimate slow

decay. It must be stressed that this feature is not related to the structural α-relaxation.

Indeed, the plateau arises at times far beyond the α-time scale (τα ∼ 5 × 10−3τ1 for

the considered T ). This feature is instead intimately connected to the relaxation of
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the internal torsional degrees of freedom of the chain. Indeed fig. 2.16 shows that for

fixed bending constant KB, the long-time plateau tends to vanish as the value of the

torsional constant KT is decreased.

The observed long-time plateau constitutes a clear breakdown of the Rouse model,

which predicts single, purely exponential decays of the mode correlators (see above).

Its origin can be temptatively understood as follows. The relaxation of the pth-mode is

equivalent to the relaxation of a harmonic oscillation of wavelength N/p . In the case of

strong torsional barriers, the wavelengths of some particular modes probe characteristic

lengths over which chain deformation involves a strong energetic penalty (due to the

presence of the barriers). Thus, at the time scales for which the barrier amplitudes

are probed, the relaxation of such modes becomes strongly hindered, leading to the

observed long-time plateau regime and ultimate slow relaxation. Another intriguing

feature of Fig. 2.15b, also inconsistent with the Rouse model, is the non-monotonous

p-dependence of the mode correlators at intermediate times prior to the long-time

plateau (see data for p > 4).

As we observed in Fig. 2.12 for Ψpp′, there are off-diagonal terms of the intrachain

static correlations which are non-orthogonal. This non-orthogonality persists over long

time scales, as can be seen in Fig. 2.17. The latter shows representative simulation

results for normalized Rouse cross-correlators Φpp′(t), with p = 3 and p′ = 1, 3, 5, 7, 9.

Data correspond to the same temperatures and barrier strength (the stiffest investi-

gated case) of the diagonal correlators of Fig. 2.15b.
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Figure 2.15: Panel (a): Normalized mode correlators Φpp(t) for fully-flexible chains with
(KB, KT) = (0, 0) at T = 0.55. Panel (b): Φpp(t) for stiff chains with (KB, KT) = (35, 4)
at T = 1.48. In both panels, the absolute time is rescaled by the relaxation time τ1 of
the p = 1 mode.
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Figure 2.16: Normalized mode correlators Φpp(t) for stiff chains with (KB, KT) = (25, 1)
at T = 1.06 [panel (a)] and (KB, KT) = (25, 4) at T = 1.50 [panel (b)]. In both panels,
the absolute time is rescaled by the relaxation time τ1 of the p = 1 mode
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Chapter 3

Mode Coupling Theory for Polymer

Melts

Introduced in the early 80’s by Götze and co-workers, the Mode Coupling Theory

(MCT) of the glass transition is a theory aimed to describe the behaviour of density

correlators as F (q, t) = N−1
∑

i,j exp[iq · (rj(t) − ri(0))] in deeply supercooled liquids

or dense colloids [4–8].

The important initial step in the theory is the fact that supercooled liquids show a

separation of time scales, as we observed from the analysis of the MSD and the scat-

tering functions computed from our simulation data in chapter 2. There are dynamical

processes, such as vibrations, that occur on a microscopic time scale and others, such

as the structural relaxation, that are observed on a time scale which is orders of mag-

nitude longer than the former one. MCT makes use of this property of supercooled

liquids by choosing the density distribution of the particle as the relevant slowly vary-

ing observable and by deriving equations of motion to describe the glass transition as

a feedback mechanism driven by the slow density fluctuations.

The derivation of the MCT equations of motion from first principles is a rather

complex and tedious mathematical task. A detailed exposition of it would require an

unnecessary large space in this memory. Thus, here we just summarize the main steps

and approximations involved in the former derivation. Complete expositions can be

found in the extensive reviews of Refs. [4–8].

By starting from the fundamental Liouville equation of motion and using the Mori-

Zwanzig projection operator formalism we arrive to an integro-differential equation for

the density correlator:

51
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F̈ (q, t) +
q2kBT

mS(q)
F (q, t) +

m

NkBT

∫ t

0

dt′〈R−q(0)Rq(t− t′)〉Ḟ (q, t′) = 0 (3.1)

See appendix A for a schematic derivation of equation 3.1. This equation has been

obtained by using projectors over the subspace spanned by the variables Aq = (ρq, Υ
L
q),

with ρq =
∑

i exp(iq · ri) the total density fluctuation and ΥL
q =

∑
i q̂ · vi exp(iq · ri)

the so-called longitudinal current. Here q̂ = q/q, and vi is the particle velocity.

Equation 3.1 is equivalent to the equation of motion of a damped harmonic oscillator.

The friction coefficient 〈R−q(0)Rq(t − t′)〉 of the damping term depends on the full

history of the motion, so we refer to it as the MCT memory kernel. Equation 3.1

is exact, but however it is not solvable. This is because it contains a memory term

〈R−q(0)Rq(t− t′)〉 that cannot be exactly expressed in terms of the density correlators.

This memory term is the correlator of the so-called fluctuating forces Rq(t) = R0
q(t) +

R1
q(t). The latter terms are given by:

R0
q(t) = iq

∑

i

(q̂ · vi(t))
2eiq·ri(t) − iqkBT

mS(q)
ρq(t) (3.2)

and

R1
q(t) =

i(2π)3

m

∑

k

(q̂ · k)Vkρq−k(t)ρk(t) (3.3)

where Vk are the Fourier components of the interaction potential between particles.

A closed set of solvable equations can only be achieved from (3.1) through the three

MCT approximations:

i) We said above that the memory kernel can be regarded as a force-force correla-

tion function. Interaction forces involve pairs of densities, for pair potentials. Thus

we assume that the slow contribution to the fluctuating forces, which leads to the

dynamic arrest in an amorphous phase, can be expressed in terms of the average of

the product of four density fluctuations, schematically 〈ρ−k1
(0)ρ−k2

(0)ρk3
(t)ρk4

(t)〉.
From Eqs. (3.2) and (3.3) it can be seen that the slow relaxation of the memory term

〈R−q(0)Rq(t − t′)〉 is dominated by 〈R1
−q(0)R1

q(t− t′)〉. Thus, the first MCT approx-

imation consists of reducing the (fast) regular part of the kernel (contributions from

R0
q(t)) to a q-independent friction term (for Brownian dynamics), or dropping it (for

Newtonian dynamics, as in the present case). This introduces an undertermined con-
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stant factor in the absolute time scale of the equations.

ii) Convolution approximation [105]: static three-point correlations (ensemble aver-

ages of products of three densities in q-space) are approximated in terms of products

of static two-point correlations (i.e., products of static structure factors).

〈ρk1
(0)ρk2

(0)ρk3
(0)〉 ≈ Nδ−k3,k1+k2

S(k1)S(k2)S(k3) (3.4)

This approximation works well for isotropic interactions, not so much for directional

ones (silica, systems with hydrogen bonds, patchy colloids...) [113].

iii)Kawasaki approximation: dynamic four-point correlations (two densities in q-space

at t = 0 and other two at t > 0) are factorized in terms of products of dynamic

two-point correlations (i.e., products of scattering functions).

〈ρ−k1
(0)ρ−k2

(0)ρk3
(t)ρk4

(t)〉 ≈ 〈ρ−k1
(0)ρk3

(t)〉〈ρ−k2
(0)ρk4

(t)〉
+ 〈ρ−k1

(0)ρk4
(t)〉〈ρ−k2

(0)ρk3
(t)〉 (3.5)

If we are too close to the glass transition the system becomes dynamically hetero-

geneous. We have coexistence of fast and slow regions which are not randomly dis-

tributed, but organized into clusters [114, 115]. This makes this third approximation

no more valid around the time scale of the α−relaxation. Indeed the so-called χ4(t)

functions [116–119], which quantify the breakdown of (3.5), exhibit a maximum around

the α−regime. This maximum grows in intensity on approaching the glass transition.

Thus, if we are very close to the glass transition, MCT predictions for the α−time scale

break down.

After applying these three approximations, Eq. (3.1) is reduced to the following

equation of motion for the normalized density-density correlator f(q, t) = F (q, t)/S(q):

f̈(q, t) +
q2kBT

mS(q)
f(q, t) +

q2kBT

mS(q)

∫ t

0

dt′m(q, t− t′)ḟ(q, t′) = 0 (3.6)

The long time behaviour of f(q, t) is governed by the memory function m(q, t). This

kernel is now a bilinear form in f(q, t):
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m(q, t− t′) =

∫
d3k

(2π)3
V(q− k,k)f(k, t− t′)f(|q− k|, t− t′) (3.7)

where the vertex V(q− k,k) is given by:

V(q− k,k) =
ρ

2q4
S(q)S(k)S(|q− k|) [q · kc(k) + q · (q− k)c(|q− k|)]2 (3.8)

Here c(q) is the so-called direct correlation function that, in a monoatomic fluid, is

related to the static structure factor via the (exact) Ornstein-Zernike relation c(q) =

ρ−1(1− 1/S(q)) [105]. Equation 3.8 shows that the memory kernel contains the factor

S(q)S(k)S(|q− k|). This means that the slow dynamics are mainly driven by fluctua-

tions of pair densities on the length scale of the maximum qmax of the static structure

factor S(q).

Following a procedure analogous to the case of the density-density correlator, it is

possible to derive a MCT equation of motion for the self-correlator:

f̈s(q, t) +
ρkBT

m
fs(q, t) +

ρkBT

m

∫ t

0

dt′ms(q, t− t′)ḟs(q, t
′) = 0 (3.9)

where the memory kernel is given by

ms(q, t− t′) =

∫
d3k

(2π)3
Vs(q− k,k)fs(|q− k|, t− t′)f(k, t− t′) (3.10)

with the following expression for the vertex

Vs(q− k,k) =
ρ

q4
S(k)c2(k)(q · k)2 (3.11)

Thus the memory function for the dynamics of the self correlator fs(q, t) contains the

normalized density correlator f(q, t) and hence we see that in order to obtain the time

dependence of fs(q, t) [122] we need first to solve the MCT equations for the collective

dynamics [6, 121].

According to Eqs. (3.6-3.8) and (3.9-3.11) the time evolution of density-density and

self-correlators is fully determinated by the static structure of the system. Liquid state

theories [105] provide a direct connection between the static structural information,

given by S(q) and c(q), and the interaction potential of the system V (r), as e.g., the

Percus-Yevick (PY) theory: c(r) = [1 − exp(V (r)/kBT )](1 + h(r)). PY works well
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when the potential is strongly repulsive and short ranged [105]. Another well-known

theory is the hypernetted-chain (HNC) theory: c(r) = h(r)− ln[1 + h(r)]−V (r)/kBT ,

which works better with soft-core potentials [120]. Thus MCT is, at least formally,

a first-principle theory: if we know V (r), we calculate the static quantities S(q) and

c(q) through a good liquid state theory, insert these inputs in the MCT equations and

obtain the dynamic correlators f(q, t) and fs(q, t). If a priori we do not have a good

theory for describing the S(q) of our investigated system, we can provide S(q) from

experimental measurements or from simulations [19,113]. Equations (3.6-3.8) and (3.9-

3.11) form a closed set of equations for the time dependece of f(q, t) and fs(q, t). Thus

the solutions of this set of equations are the correlation functions that can in principle

be directly compared with experimental or simulation data.

So far we have discussed MCT equations for one-component monoatomic liquids.

The archetype of them is the hard-sphere (HS) system [121–123]. Other examples,

for which MCT equations have been solved, include effective ultrasoft potentials for

highly penetrable colloids, as logarithmic interactions between star-polymers of high

functionality (i.e., high number of arms) [13–15]. Another well-know case is the hard-

sphere + square well (SW) model for the interaction between colloids in mixtures

of colloids and polymers [47, 48]. The short-ranged SW comes out as an effective

attraction between the colloids, which originates from the (entropic) depletion effect

induced by the presence of the small polymers. Recently, a monoatomic model for

effective interactions between fullerenes has been solved within MCT [124,125].

Having said this, there are several universal predictions concerning the MCT-liquid-

glass dynamics which follow as mathematical consequences of the general structure of

the MCT equations and that are not restriced only to monoatomic liquids. Some of

these universal predictions will be briefly summarized in the next section.

3.1 Universal MCT Predictions

One of the central predictions of MCT is the existence of a critical temperature Tc where

the system shows structural arrest driven by the mutual blocking of each particle by

its neighbours [4–8]. The non-ergodicity parameter, fq, for wave vector q is defined as

the long-time limit of f(q, t), fq = limt→∞f(q, t), and obeys the implicit equation
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fq

1− fq
= Fq({f}) (3.12)

where we have introduced the mode-coupling functional Fq({f}) = limt→∞ m(q, t), as

the long time limit of the memory function. Using the definition of the memory kernel

given in Eq. (3.7), Eq. (3.12) can be rewritten as

fq

1− fq
=

∫
d3k

(2π)3
V(q− k,k)f|q−k|fk (3.13)

Analogously, we get the corresponding equations for the self non-ergodicity parameter

f s
q = limt→∞ fs(q, t)

f s
q

1− f s
q

= F s
q ({f s}, {f}) (3.14)

f s
q

1− f s
q

=

∫
d3k

(2π)3
Vs(q− k,k)f s

|q−k|fk (3.15)

The equations (3.13) and (3.15) can be solved by means of an iterative procedure.

We observe that for all q, fq = 0 (f s
q = 0) is always a trivial solution. However if

the vertices are sufficiently large there exist also solutions fq > 0 (f s
q > 0) and it can

be shown that the physical nonergodicity parameter is the largest of these solutions.

If such non-zero solutions exist, this implies that the system is no longer ergodic,

since density fluctuations do not decay to zero even for long times. This means that

cooperative rearrangements of the particles are inhibited and each particle becomes

trapped in its cage because their neighbours are trapped. The highest temperature at

which these positive solutions occur defines the critical temperature Tc of the mode-

coupling theory. Fig. 3.1 illustrates the scenario predicted by MCT on approaching

Tc.

This ergodic-to-nonergodic transition at Tc is called the idealized glass transition

of the MCT and fq (f s
q ) at Tc is referred to as the critical nonergodicity parameter f c

q

(f sc
q ) [6]. The latter quantifies the stability of the density fluctuations in the reciprocal

space. Thus a higher value of f c
q (f sc

q ) implies a stiffer character of the respective

density fluctuations of wavelength 2π/q. As we will see in the following, f c
q (f sc

q ) has

also the meaning of the plateau height in the two step relaxation of f(q, t) (fs(q, t))

(see also Fig. 3.1), and provides a measure of the localization length of the system (the
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dimension of the cage in which the particles are trapped).
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Figure 3.1: Schematic representation of the T-dependence of the density correlator
f(q, t) for a glass-forming system. For T > Tc f(q, t) exhibits a two step relaxation.
On lowering the temperature, the long time limit of f(q, t) jumps from zero to a finite
value f c

q when the critical temperature Tc is reached.

In reality, it is known that hopping events restore the ergodicity below Tc, and

this transition is not really observed, i.e., the correlator does decay to zero at Tc [4–

8, 107, 108, 126, 127]. Indeed Tc is higher than the real glass transition temperature

Tg, typically Tc ≈ 1.2Tg. Having said this, MCT is still a good theory for temperature

higher but close to Tc. The existence of a critical temperature Tc allows us to introduce

the separation parameter |ε| = |T − Tc|/Tc (it can also be |ρ− ρc|/ρc, and analogously

for any other control parameter). The following results are valid only in the limit

of small ε. This is why these predictions are often referred to as MCT asymptotic

laws. MCT predicts that for temperature close to but above Tc, the dynamics of

any time-dependent correlator φ(q, t), coupled to density fluctuations, exhibits a two

step relaxation: the relaxation towards the plateau, and the final relaxation from the

plateau to zero. These relaxations are respectively characterized by two different time

scales defined by:

tσ = t0|σ|−
1

2a (3.16)

τσ = t0B
−1/b|σ|−γ (3.17)
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where σ = Cσε and t0 denotes some microscopic time scale [128]. The constants Cσ

and B are q- and |ε|-independent, and are evaluated from the MCT functional Fq({f})
with the knowledge of the critical nonergodicity parameter f c

q . Thus, such constants

are just system-dependent. The time scales tσ and τσ are usually known as the time

scales of, respectively, the β- and α-process.

According to MCT the dynamics slows down by approaching Tc from above, since

the time scales diverge at T = Tc with a power law dependence. The dynamics around

the plateau, with |φ(q, t) − f c
φq| � 1, is referred to as the β-process. The height of

the plateau is given by the critical nonergodicity paramater f c
φq = φ(q, t → ∞) of

the correlator φ(q, t) and can be determined from the corresponding MCT-functional

solving an equation analogous to Eq. (3.12). MCT predicts that for T → T +
c the

correlator φ(q, t) follows the asymptotic law:

φ(q, t) ≈ f c
φq + hqG(t) (3.18)

with G(t) =
√
|σ|g(t/tσ).

Eq. (3.18) is called the factorization theorem or first universality. It means

that deviations from f c
φq at intermediate times factorize in a q-dependent term and

a t-dependent term. The function g(t/tσ) gives the whole temperature (through tσ)

and time dependence of φ(q, t) in the β-relaxation regime and it is referred to as the

β-correlator. Since it is independent of the wave vector q, g is identical for all the

correlators. The dependence on q and on the specific correlator enters only via f c
φq and

the critical amplitude hq. The function G(t) is found to obey the equation:

σ − z2G̃2(z) = λzL[G2(t)], (3.19)

where G̃(z) and L[G2(t)] are the Laplace transform of respectively G(t) and G2(t). In

this equation σ = c|ε|, with c a constant (see [121] for its explicit expression), and λ is

so-called exponent parameter of the theory given by

λ =
∑

qk

eT
q Cc(q, k, |q− k|)eke|q−k|. (3.20)

The quantities eq and eT
q are respectively the eigenvectors of the so-called stability

matrix Cc (see below) and its traspose, with the normalization conditions
∑

q eT
q eq = 1
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and
∑

q eT
q (1− f c

q )e2
q = 1. The elements of the stability matrix are given by

(Cc)q,k = (1− f c
k)

2

(
∂Fq

∂fk

)

{f=fc}

. (3.21)

The terms Cc(q, k, |q− k|) in Eq. (3.20) are given by:

Cc(q, k, |q− k|) =

1

2
(1− f c

k)
2(1− f c

|q−k|)
2

(
∂2Fq

∂fk∂f|q−k|

)

{f=fc}

. (3.22)

Eq. (3.19) for the β-correlator does not have an analytical solution. However it can

be shown that it has the following asymptotic forms:

g(t/tσ) =

(
t

tσ

)−a

for t � tσ. (3.23)

This functional form is called ‘critical decay’. For times much longer than tσ we have:

g(t/tσ) = −B

(
t

tσ

)b

for tσ � t � τσ. (3.24)

This functional form is called ‘von Schweidler law’.

The results discussed so far concerned the β-relaxation, i.e. the dynamics of the

system on the time scale around the plateau. We turn now our attention to the α-

relaxation, i.e. the time scale on which the correlators fall below the plateau. MCT

predicts that in this regime the so-called ‘time-temperature superposition principle’

(TTSP) or second universality holds. This means that the correlator φ(q, t) at

temperature T can be written as :

φ(q, t, T ) = φ̃(q, t/τσ) (3.25)

where φ̃ is a T -independent master function that follows as a scaling property of the

MCT equations, and the temperature dependence is given by the time τσ introduced

in Eq. (3.17). The superposition principle implies that the α-relaxation time, defined

in this work as the time τφ,x where the correlator φ(q, t) evaluated at the maximum of

the static structure factor takes a value x well below the plateau, is proportional to τσ,
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i.e. it follows the asymptotic power law:

τφ,x(T ) = Cφ(T − Tc)
−γ (3.26)

The initial part of the α-process, the von Schweidler regime, is given by the power

law expansion:

φ(q, t) = f c
q − hq(t/τ)b + h(2)

q (t/τ)2b (3.27)

which extends the von Schweidler law Eq. (3.24), including corrections up to next-to-

leading order.

The dynamical universal exponents of the theory, a, b, and γ, are univocally related

to the so-called exponent parameter λ ≤ 1, through the following relation:

λ =
Γ2(1− a)

Γ(1− 2a)
=

Γ2(1 + b)

Γ(1 + 2b)
(3.28)

with Γ the Euler’s Gamma function, Γ(x) =
∫∞
0

dye−yyx−1 and

γ =
1

2a
+

1

2b
(3.29)

The explicit expression of λ is controlled by the static correlations (S(q), c(q)) evaluated

at the point of the MCT glass transition (i.e., at |ε| = 0). This means that MCT

exponents are q- and |ε|-independent, but are system-dependent.

Coming back to the master function φ̃, its shape is often well described by an

empirical Kohlrausch-Williams-Watts (KWW) function:

φKWW (q, t) = A(q) exp

[
−
(

t

τK(q)

)β(q)
]

(3.30)

Note that the KWW-law does not come out as an analytical solution of the MCT

equations. However in the limit q → ∞ of the relaxation time τK(q), MCT predicts

that [129]:

τK(q →∞) ∼ q−1/b (3.31)

where b is the system-dependent von Schweidler exponent (see above).
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3.2 MCT for Nonentangled Polymer Melts

In a recent work [38,39], Chong and co-workers have proposed an extension of the MCT

to a fully flexible bead-spring model of polymer systems (corresponding to the case

KB = 0, KT = 0 in our model) in the framework of the site formalism [40,102,130,131].

In this formalism polymer chains are divided into interaction sites (monomers), and the

dynamics as well as the static structure (see section 2.1.1 of chapter 2) of the system

are characterized by site-site correlation functions.

3.2.1 Collective Structural Dynamics

Collective structural dynamics are described by site-site density correlators

Fab(q, t) =
1

n

〈 n∑

i,j=1

ρa
i (−q, 0)ρb

j(q, t)
〉

(a, b = 1, .....N) (3.32)

whose initial values are the site-site static structure factors Sab(q) = Fab(q, t = 0). N

and n are respectively the number of monomers per chain and the number of chains in

the system.

Following a derivation analogous to the monoatomic case, the Mori-Zwanzig exact

equation of motion for Fab(q, t) reads [39]:

F̈ab(q, t) +

N∑

x=1

q2v2S−1
ax (q)Fxb(q, t) +

N∑

x=1

∫ t

0

dt′Max(q, t− t′)Ḟxb(q, t
′) = 0 (3.33)

Here v2 = kBT/m denotes the monomer thermal velocity and S−1
ab (q) denotes the

element (a, b) of the inverse of the matrix Sab(q). With the use of the approximations

introduced above, the MCT expression for the kernel Mab(q, t) reads:

Mab(q, t) =
ρcv

2

(2π)3

N∑

x,y=1

∫
dk[(q̂ · k)2cax(k)cby(k)Fxy(k, t)Fab(p, t)

+(q̂ · k)(q̂ · p)cax(k)cby(p)Fxb(k, t)Fay(p, t)] (3.34)

in which q̂ = q/q and p = q− k. ρc = n/V is the density of chains.

Equations (3.33) and (3.34) constitute a set of coupled equations for the determination
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of the site-site density correlators Fab(q, t), once the static input quantites Sab(q) and

cab(q) are known.

From a computational point of view, however, it is quite demanding to solve this

N×N matrix set of equations, especially in the case of long polymer chains. Indeed, in

order to do it more tractable, some approximations have to be introduced in the theory.

The key assumption is the replacement of the site-specific intermolecular surroundings

of a monomer by an averaged one, while keeping the full intramolecular site dependence.

This is the essence of the equivalent-site approximation [40, 102], which involves the

site-site direct correlation function. Assuming that chain end effects on interchain

correlations are small, all sites of polymer chains can be treated equivalently. Another

approximation, involving the site-site structure factor Sab(q) is the ring approximation

[39, 40], which is also needed to further simplify the treatment of the MCT equations.

We have already discussed the equivalent site and ring approximation in chapter 2,

where we concluded that both approximations, introduced in the MCT equations, are

fulfilled to the same degree of agreement with simulation results, in all the investigated

systems covering the limits of fully flexible and stiff chains.

With the use of the equivalent-site and ring approximations, we can obtain a more

tractable expression for the MCT kernel which does not depend on the site indices

(a, b). Indeed, by taking the sum (1/N)Σa,b on Eq. (3.32) we can derive a set of closed

MCT equations for the normalized density-density correlator f(q, t) ≡ F (q, t)/S(q),

with F (q, t) = N−1Σa,bFab(q, t) [39]:

f̈(q, t) +
q2kBT

mS(q)
f(q, t) +

q2kBT

mS(q)

∫ t

0

dt′m(q, t− t′)ḟ(q, t′) = 0 (3.35)

m(q, t− t′) =

∫
d3k

(2π)3
V(q− k,k)f(k, t− t′)f(|q− k|, t− t′) (3.36)

V(q− k,k) =
ρ

2q4
S(q)S(k)S(|q− k|) [q · kc(k) + q · (q− k)c(|q− k|)]2 (3.37)

We note that these equations are formally identical to the MCT equations for monoatomic

liquids that we discussed above (see Eqs. 3.6-3.8). Polymer-specific effects are ac-

counted through the relation between the direct correlation function c(q) and the static

structure factor S(q) given by the PRISM equation, ρc(q) = 1/ω(q) − 1/S(q), which
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is different from the Ornstein-Zernike relation, ρc(q) = 1 − 1/S(q), for monoatomic

liquids.

3.2.2 Self Dynamics

The MCT approximations discussed above, with the use of the equivalent-site approx-

imation, permit also to derive MCT equations of motion for the single-chain site-site

density correlator defined by:

F s
ab(q, t) =

1

n

〈 n∑

i=1

ρa
i (−q, 0)ρb

i(q, t)
〉

(a, b = 1, .....N) (3.38)

For the derivation of the MCT equations for F s
ab(q, t) we refer to [39]. The resulting

matrix equation can be summarized as [39]:

F̈ s
ab(q, t) +

N∑

x=1

q2v2ω−1
ax (q)F s

xb(q, t) +
N∑

x,y=1

q2v2ω−1
ax (q)

∫ t

0

dt′ms
xy(q, t− t′)Ḟ s

yb(q, t
′) = 0

(3.39)

Here the expression of the kernel ms
ab(q, t− t′), by using the equivalent-site approxima-

tion, reads

ms
ab(q, t) =

N∑

x=1

ωax(q)

∫
d3k

(2π)3
Vs(q− k,k)F s

xb(k, t)f(|q− k|, t), (3.40)

with the following expression for the vertex:

Vs(q− k,k) =
ρ

q4
S(|q− k|)[q · (q− k)]2c(|q− k|)2 (3.41)

Equation 3.39 can be solved by providing the static quantities S(q), c(q), ω−1
ab (q) and

the density-density correlator f(q, t). Having said this, the self-correlator, introduced

as fs(q, t) = (nN)−1
∑n

i=1

∑N
a=1〈exp[iq · (ra

i (t)− ra
i (0))]〉, is obtained by solving before

the matrix equations (3.39)-(3.41) for F s
ab(q, t) and then taking the summation over

the diagonal terms fs(q, t) = N−1
∑N

a=1 F s
aa(q, t).
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3.2.3 Rouse Dynamics

In this section we derive the MCT equations for the Rouse mode correlators (see

Ref. [39] for details) introduced in chapter 2. First of all we have to consider how the

Rouse correlators Cpp′(t) are related to the site-site self density correlators F s
ab(q, t).

Since the density fluctuations of a tagged chain at large lenght scales (small q values)

are given by ρa
j (q, t) ∼ 1 + iq · ra

j (t), Rouse correlators can be expressed as linear

combinations of F s
ab(q, t) in the limit q → 0 . Indeed it can be shown that [39]:

1

N

N∑

a,b=1

PapF
s
ab(q → 0, t)Pbp′ =





1 + q2[C00(t)− A] + O(q4) p = p′ = 0,

q2[C0p′(t)−Bp′ ] p = p′, p′ > 0,

q2Cpp′(t) + O(q4) p, p′ > 0,

(3.42)

where A = R2
g/3 and Bp = (1/3

√
2N2)

∑N
a,b=1 n−1

∑n
j=1〈(ra

j − rb
j)

2〉 cos[(b− 1/2)pπ/N ]

Using these relations, MCT equations for Rouse mode correlators can be obtained as

the q → 0 limit of eq 3.39:

C̈pp‘(t) +
kBT

mN
δ0pδ0p′ +

kBT

m

N−1∑

k=0

EpkCkp′(t) +

kBT

m

N−1∑

k=0

∫ t

0

dt′mpk(t− t′)Ċkp′(t
′) = 0, (3.43)

with Ĉ−1
pp′ (0) the inverse matrix of Ĉpp′(0), and Epp′ = (1− δ0,p×p′)Ĉ

−1
pp′(0)/N .

The memory kernel is given by

mpp′(t) = (ρ/6π2)

∫
dkk4S(k)c2(k)

N∑

a,b=1

PapF
s
ab(k, t)Pbp′f(k, t). (3.44)

Thus, prior to solve Eq. (3.43), we obtained the density-density correlators f(q, t)

and self site-site density correlators F s
ab(q, t) from their respective MCT equations (see

above). The static quantities S(q), c(q), ωab(q) and Ĉ−1
pp′ (0) enter the equations as ex-

ternal inputs.

In their work Chong and co-workers showed that the MCT for polymers dynamics

reduces to the Rouse model in the asymptotic limit of large degree of polymerization
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N → ∞ [39]. By performing a Markovian approximation for the memory kernel,

and assuming Gaussian chain statistics they obtained the subdiffusive regime for the

monomer mean-square displacements Eq. (2.27) and the exponential decay of the Rouse

correlators Eq. (2.22). Having noted this, MCT provides a unified and continuous

microscopic description of both chain and glassy dynamics, down to time scales around

and before the α−process. This part of the dynamic window is just ‘coarse-grained’ in

the phenomenological Rouse model.



Chapter 4

MCT vs Simulations: Data Analysis

In Chapter 3 we discussed several universal results which originate from the structure of

the MCT equations of motion, in particular from the the fact that the memory kernel

is bilinear in the density fluctuations. As mentioned above those predictions where

initially derived for hard sphere systems [6, 121, 122]. On the other hand we observed

that, following the derivation of Chong and co-workers [39], the MCT equations for

polymer melts become formally identical to the ones initially derived for simple liquids.

Having said this, the asymptotic scaling laws exposed in chapter 3 will also hold in the

MCT for polymer melts. Thus a phenomenological analysis of our simulation data in

terms of the MCT is justified. This kind of analysis, based on data fits to the MCT

asymptotic laws, is usually performed when numerical solutions of the corresponding

MCT equations are not available. It must be noted that the temperature and time

intervals where these asymptotic laws can be applied, is a priori unknown. There is

some freedom in the choice of these intervals and the choice can affect the numerical

values of the fit parameters. Thus, a good strategy for the fitting procedure should

ensure that the results are free of internal inconsistencies. In the following we will

present our strategy based on our experience.

First we present a test of the factorization theorem and of the time temperature

superposition principle (TTSP). Then we present a consistent fitting procedure of our

simulation data to the MCT asymptotic power laws predicted for the α−relaxation

regime, in order to obtain information about the critical nonergodicity parameters,

the critical temperature Tc and the dynamic exponents of the theory (a, b, γ, λ). We

organize our discussion around the density-density and self-density correlators.
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4.1 First Universality: Factorization Theorem
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Figure 4.1: Test of the factorization theorem for self- and density-density correlators
at T=0.96, KB = 25, and KT = 1 by plotting the time dependence of Rq(t) defined by
equation (4.1). Top and bottom panels show results for respectively self- and density-
density correlators. In the β−regime all curves collapse into a single master curve. By
definition Rq(t = t′ = 100) = 0 and Rq(t = t′′ = 0.8) = 1

In order to test the factorization theorem, Eq.(3.18), we computed the ratio:

Rφ
q (t) =

φ(q, t)− φ(q, t′)

φ(q, t′′)− φ(q, t′)
=

G(t)−G(t′)

G(t′′)−G(t′)
(4.1)

where φ(q, t) is an arbitrary density correlator and t′ and t′′ are arbitrary times in

the β-regime (where |φ(q, t) − f c
φq| � 1). If the factorization property holds, the

second equality of Eq. (4.1) also holds, and Rφ
q (t) depends only on the fixed times

t′ and t′′ and on the temperature (via tσ), but not on the correlator φ or on the

wave vector q. Thus equation 4.1 will reveal whether the analysis of the observed
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Figure 4.2: Time dependence of Rq(t) for both self- (lines) and density-density (points)
correlators, for a few values of the wave vector q. In the β−regime all curves collapse
into a single master curve independently of the correlator.

two step relaxation of simulation data in terms of MCT is justified or not. Since the

factorization theorem is predicted to hold close to Tc for small values of the separation

paramater ε = (T − Tc)/T , we can define a range of temperatures Tc . T . Tmax

where the asymptotic power laws can be applied to fit simulation data. Tmax is some

high temperature for which the density correlator still exhibits a two step relaxation.

Figure 4.1 shows Rφ
q (t) computed from the density-density and self-density correlators

for KB = 25 and KT = 1 over a range of 20 values of the wave vector q, from 2 to 16.5

and at the lowest temperature investigated T = 0.96. The fixed times t′′ and t′ take the

values of 0.8 and 100, corresponding to the beginning and the end of the plateau. We

observe that there is an intermediate time window of about two decades where the data

for the self and density-density correlator collapse onto a q-independent master-curve,

while they split at both short and late times. Figure 4.2 demonstrates that the master

curve is, moreover, the same for both correlators.



CHAPTER 4. MCT VS SIMULATIONS: DATA ANALYSIS 69

4.2 Second Universality: TTSP

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
10

0.2

0.4

0.6

0.8

1

T=0.96
T=1.0
T=1.06
T=1.12
T=1.2
T=1.35
T=1.5
T=1.75
T=2.0

K
B
 = 25  K

T
 = 1

f(
q,

t)

t/τ0.2

Figure 4.3: Test of the time-temperature superposition principle for the density-density
correlators at qmax ≈ 7 , for the case KB = 25, and KT = 1. In the α-regime all curves
collapse into a single master curve.

Figure 4.3 shows a test of the TTSP for the density-density correlators evaluated

at qmax (maximum of the static structure factor S(q)), for the case KB = 25, KT = 1.

The rescaling time is the α−relaxation time τ0.2 defined in chapter 2. The TTSP

breaks down in the proximity of Tc and for T < Tc. Indeed we find deviations from the

TTSP at T = 0.96. Within the framework of MCT, these deviations at low T from the

ideal behaviour are connected with the presence of additional relaxation mechanisms

ignored by the ideal MCT, the so-called ‘hopping processes‘, which become dominant

on approaching Tc from above, and restore ergodicity below Tc. Thus the TTSP breaks

down in the proximity of Tc, whose value will be determined in the next section, while

equation 4.1 still holds. Thus the TTSP allows us to determine the lowest temperature

Tmin for which ideal MCT can be applied. In the following we will focus our data

analysis on the lowest temperature simulated for which the TTSP holds.
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4.3 MCT Asymptotic Power Laws: Simulation Data

Analysis

In this section, density correlators and relaxation times, computed from our simulation

data, will be analyzed within the framework of MCT.
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Figure 4.4: Symbols: simulation results for density correlators. Top panel: f(q, t) for
(KB, KT) = (15, 0.5), at T = 0.80. Bottom panel: f s(q, t) for (KB, KT) = (35, 4), at
T = 1.33. Identical symbols in both panels correspond to identical wave vectors q
[values are given in the top panel ]. Lines are fits to the von Schweidler expansion, Eq.
(3.27) (up to second-order terms), with b = 0.50 (top) and 0.37 (bottom).

Consistency of the analysis requires that dynamic correlators and relaxation times

are described by a common set of exponents, univocally related through Eqs. (3.28,

3.29). This consistency test has been done for all the systems here investigated, with
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different strength of the intramolecular barriers. Figs. 4.4, 4.6 and 4.7 display some

representative examples. Fig. 4.4 shows for a broad q-range, fits to Eq. (3.27) of

density correlators for the state points KB = 15, KT = 0.5, T = 0.80 (S1) and KB = 35,

KT = 4, T = 1.33 (S2). A good description is achieved, for all the q-values and over

several time decades, with a fixed b-exponent (b = 0.50 and 0.37 for respectively S1 and

S2). Fig. 4.5 displays, for the former barrier strength, the q-dependence of the critical

non-ergodicity parameters. The fully flexible case KB = KT = 0 is also included. As

deduced from the stronger decay of f c
q and f sc

q for stronger barriers, chain stiffness

induces a weaker localization at fixed density. By making an approximate fit of f sc
q

to Gaussian behavior, exp(−q2l2c/6), we estimate, a localization length lc = 0.19, 0.21,

and 0.23 for respectively (KB, KT) = (0,0), (15,0.5), and (35,4).

Data of self-correlators from the plateau to the limit of the simulation window have

been fitted to KWW functions, Eq. (3.30). Fig. 4.6 shows the q-dependence of the

so-obtained KWW relaxation times τK
q for the former values of the barrier strength,

at their respective lowest investigated temperatures. The lines represent tests of the

MCT prediction τK
q ∝ q−1/b for large q. A good description of the data is obtained

with the same b-exponents used for the independently obtained von Schweidler fits of

Fig. 4.4.

The increase of the barrier strength also induces a higher critical temperature Tc,

and a longer relaxation time for fixed T . This is demonstrated in Fig. 4.7. The

latter shows, for the same values of (KB, KT) in Fig. 4.6, a test of the power law τ0.2 ∝
(T−Tc)

−γ for the temperature dependence of the estimated α-relaxation times. The fit

covers about three time decades. By representing the data in terms of the separation

parameter εT = T/Tc − 1, clearly different γ-exponents are evidenced for different

barrier strength. A good description of the data is obtained with the γ-values derived,

through Eqs. (3.28, 3.29), from the b-values used in Figs. 4.4 and 4.6. This result

demonstrates the consistency of the MCT analysis for the representative examples

showed here, which cover all the range of investigated barrier strength between fully-

flexible and stiff chains.
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ρ KB KT Crc
10 Tc a b γ λ

1 0 0 1.3 0.48 0.299 0.54 2.60 0.761
1 4 0.1 2.0 0.54 0.296 0.53 2.63 0.767
1 8 0.2 2.3 0.67 0.293 0.52 2.67 0.773
1 15 0.5 2.8 0.75 0.287 0.50 2.74 0.785
1 25 1 3.2 0.82 0.263 0.43 3.06 0.827
1 25 4 4.2 1.02 0.251 0.40 3.24 0.845
1 35 4 4.4 1.23 0.240 0.37 3.43 0.862

Table 4.1: Values of the MCT exponents and critical temperature Tc for different
barrier strength. Also included are the values of the characteristic ratio C rc

10 at Tc.

System a b γ λ

Hard spheres 0.31 0.58 2.5 0.74
Orthoterphenyl 0.30 0.54 2.6 0.76
Polyethylene (UA) 0.27 0.46 2.9 0.81
Poly(vinyl methyl ether) (FA) 0.23 0.35 3.6 0.87
1,4-Polybutadiene (UA) 0.21 0.30 4.1 0.90
1,4-Polybutadiene (FA) 0.18 0.24 4.9 0.93
Poly(vinyl ethylene) (FA) 0.18 0.24 4.9 0.93

Table 4.2: MCT exponents for different glass-formers. Data are taken from [42–44]
and references therein. UA and FA denote respectively coarse-grained united atom
and fully-atomistic models.

Table 4.1 displays the results of the MCT analysis (dynamic exponents and Tc)

for all the investigated cases. It also includes the characteristic ratio at Tc, Crc
10, as

computed from the simulations. As already discussed in chapter 1, C rc
10 provides a

quantitative characterization of chain stiffness. From numerical values in Table 4.1

a clear correlation between the exponent parameter λ and chain stiffness is unam-

biguously demonstrated. The competition between packing effects and intramolecular

barriers induces a progressive increase of λ from the value λ = 0.761 for fully-flexible

chains to λ = 0.862 for the stiffest investigated chains.

This observation rationalizes the large difference observed between MCT exponents

for fully-flexible bead-spring chains and chemically realistic polymers. Table 4.2 shows

a representative compilation of exponents for glass-formers of very different nature.
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Exponents for fully-flexible bead-spring chains are similar to those of non-polymeric

glass-formers, including the hard-sphere fluid, i.e., the archetype glass-former domi-

nated by packing effects. Chemically realistic polymers of increasing complexity ex-

hibit instead values approaching the limit λ = 1 characteristic of higher-order MCT

transitions. The latter, or more generally transitions with λ ' 1, arise in systems

with different competing mechanisms for dynamic arrest. These systems include short-

ranged attractive colloids [46–48] in which the competing mechanisms are short-range

attraction and hard-sphere repulsion or binary mixtures with strong dynamic asymme-

try [17, 18, 49, 50] in which the mechanisms are bulk-like caging and confinement. The

systematic study presented here strongly suggests a competition between general pack-

ing effects and polymer-specific intramolecular barriers as the origin of the mentioned

difference between fully flexible bead-spring chains and real polymers.

In this chapter we have analyzed the simulation results within the framework of

MCT. In the next chapter the observed phenomenological trends are compared with

numerical solutions of the MCT equations of nonentangled polymer melts.



Chapter 5

MCT vs Simulations: Numerical

Solutions

5.1 Structural Relaxation

The long-time coherent and self dynamics of the system are determined by solving the

equations (3.35) and (3.39), provided the static quantities are given as initial inputs.

By taking the long-time limit of Eq (3.35) we obtain an implicit equation for the

nonergodicity parameter fq = limt→∞ f(q, t),

fq

1− fq
=

∫
d3k

(2π)3
V(q− k,k)f|q−k|fk = Fq({f}) (5.1)

Let us remind that by approaching the MCT transition point at Tc from above, the

solution of Eq. (5.1) jumps from fq = 0 to a finite value f c
q named the critical noner-

godicity parameter.

Analogously, by taking the long-time limit in Eq. (3.39), we obtain a N×N -matrix

equation for the single-chain site-site nonergodicity parameters f s
ab(q) = limt→∞ F s

ab(q, t),

f s
ab(q) =

N∑

x,y=1

F s
ax(q)[I + F s

q ]−1
xy ωyb(q) (5.2)

with the following expression for the MCT functional F s
ab(q):

F s
ab(q) =

N∑

x=1

ωax(q)

∫
dk

(2π)3
Vs(q− k,k)f s

xb(k)f(|q− k|) (5.3)
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The self nonergodicity parameters, defined as the long time limit of f s
q (q, t), can be

obtained by solving Eqs. (5.2) and taking the summation over the diagonal terms, f s
q =

N−1
∑N

a=1 f s
aa(q). We solved Eqs. (5.1-5.2) for our systems. The three-dimensional

integrals over k appearing in these equations are transformed to bipolar coordinates.

Due to the isotropy of the system a rotation around the q-vector can be integrated

out, and we can transform dk → 2πρdρdz where ρ and z are the projections of k onto

and orthogonal to q respectively. From these variables we transform further to k = |k|
and p = |q− k|. Noting that ρ|∂(ρz)/∂(kp)| = (kp/q), we finally obtain:

∫
d3k

(2π)3
≡ 1

q

∫
kdk

2π

pdp

2π
, (5.4)

with both integrals on the right-hand side over [0,∞[ and with the restriction p ∈
[|q−k|, q +k]. These integrals are discretised to an equidistant grid of M = 600 points

with grid spacing ∆q = 0.1 and evaluated as Riemann sums [121, 122]. Using the

following relations

q · k = (q2 + k2 − p2)/2 (5.5)

q · p = (q2 + p2 − k2)/2 (5.6)

we obtain the discretised expression for the right-side of Eq. (5.1). This equation now

reads:

fq

1− fq
=

ρ(∆q)3

32π2

∑

xk

′∑

xp

xkxp

x5
q

S(q)S(k)S(p)

×[(x2
q + x2

k − x2
p)c(k) + (x2

q + x2
p − x2

k)c(p)]2fkfp (5.7)

Here q = ∆qxq, k = ∆qxk, p = ∆qxp and xq, xk, xp = 1/2, 3/2, ..., 1199/2. The prime

at the sum means that the summation is restricted to xp ∈ [|xq−xk|+1/2, xq+xk−1/2].

The solutions were found by a standard iterative procedure f j+1
q = [1 − f j

q ]Fq({f j}),
with j the iteration step and with the initial condition f 0

q = 1. It can be demonstrated

that the stability matrix in Eq. (3.21) has always a maximum non-degenerate eigen-

value E ≤ 1, which takes the upper value Ec = 1 at the critical point [121]. Thus, by

following the drift of E with changing temperature it is possible to bracket the values

of the critical nonergodicity parameters f c
q , and the critical temperature Tc, with very
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high precision. Once the values of f c
q are obtained, the exponet paramater λ can be

evaluated throug equation 3.20. The corresponding discretised expression for the self

MCT functional in Eq. (5.3) can be obtained by following the same arguments and

reads as:

F s
ab(q) =

ρ(∆q)3

16π2

N∑

x=1

ωax(q)
∑

xk

′∑

xp

xkxp

x5
q

S(p)[(x2
q + x2

p − x2
k)c(p)]2f s

xb(k)fp (5.8)

The site-site nonergodicity parameters f s
ab(q) can be found by the same standard it-

erative procedure, provided the static quantities (S(q), c(q), ωab(q)) and the coherent

nonergodicity parameters fq are given.

Following the procedure exposed above, we solved Eq. (5.7) by inserting as ex-

ternal inputs the structural quantities, S(q) and c(q), as directly computed from the

simulations. However, as previously reported in Ref. [39] for fully-flexible chains, a

MCT transition was not observed for any of the investigated barrier strength. This

means that the theoretical critical temperature Tc lies below the lowest simulation tem-

perature for which equilibration was possible. This result is different from the usual

observation in non-polymeric systems, for which the theoretical critical point is acces-

sible in simulation time scales. The reason of this difference is, in some way, related

with the unability to crystallize of bead-spring models, which avoids a fast growing of

peaks under cooling in the static structure factor S(q), leading to MCT kernels which

are not sufficiently strong to provide nonzero solutions of fq.

Since static correlations computed from our equilibrium simulations do not induce

a MCT transition, we are forced to use a structural theory for estimating S(q) and c(q)

at lower temperatures, which will allow us to insert them in the MCT equations and to

search for the critical temperature. Thus, we solve numerically the PRISM equation

ρc(q) = 1/ω(q)− 1/S(q), (5.9)

with the Percus-Yevick (PY) closure relation [105] for the non-bonded potential V (r)

of Eq. (1.6). The PY relation is given by:

c(r) = [1− exp(V (r)/kBT )](h(r) + 1), (5.10)

The PY relation is most successful in describing the packing structure induced by
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interaction potentials of short-range and with a quickly divergent core [105]. Such

potentials include hard sphere-like repulsions or soft-sphere potentials ∼ r−n with n

larger than about 10, as the one used in this work for monomer-monomer interactions,

Eq. (1.6). The coupled set of nonlinear equations (5.9) and (5.10) can be solved by the

Picard iteration method for the function Γ(r) = h(r)− c(r). The reason why we work

with Γ(r) instead of c(r) or h(r) is that Γ(r) is a smooth function over all the range

of r, in contrast to c(r) and h(r), which exhibit strong rises and drops over a narrow

range of r when entering the core of the potential V (r) [105]. We solved equation (5.9)

in the reciprocal q-space and equation (5.10) in the real r-space. We used fast Fourier

tranforms to switch back and forth between the r- and q-space representation of the

functions. The functions h(r), c(r) and Γ(r) were discretized on a grid of Gr = 6000

points from r = 0 to rmax = 40 with a grid spacing δr = rmax/Gr. Their Fourier

transformed quantities where discretized on a grid of Gq = 800 points from q = 0

to qmax = 65 with a grid spacing δq = π/rmax. We used the following criterion for

convergence of the Picard iteration:

Err =

[
1

Gr

Gr∑

i=1

(Γ(ri)
(j+1) − Γ(ri)

(j))2

]1/2

< 10−7 (5.11)

To achieve convergence, the iteration was performed by mixing the old solution Γ(j)

with the current solution Γ in order to obtain the new solution Γ(j+1),

Γ(j+1) = αΓ + (1− α)Γ(j) (5.12)

where α is a real number between 0 and 1 (α = 0.2 in this work).

The form factor ω(q) in Eq. (5.9) is an external input in the PRISM theory. Since

we have observed in Chapter 2 that ω(q) shows a very weak temperature dependence

in comparison to the global static structure factor S(q), we just used, for each system,

the ω(q) of the lowest temperature simulated.

In figure 5.1 we show a comparison of the critical nonergodicity parameters f c
q

(top panel) and f sc
q (bottom panel) as obtained from numerical solution of the MCT

equations, with the results of the fitting procedure of simulation data . The theoretical

results qualitatively reproduce the simulation trends, and in particular the observation

that at fixed density the intramolecular barriers induce a weaker localization length.

Quantitatively, the MCT solutions overstimate the amplitude of the nonergodicity
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parameters, except in the low-q region of f c
q , for which MCT clearly understimates the

results.
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Figure 5.1: Comparison of the critical nonergodicity parameters f c
q and f sc

q obtained
from MCT calculations (solid lines) with those obtained from the MCT analysis of the
simulation data (symbols, dashed lines are guides for the eyes). Results are shown both
for fully flexible chains and for representative stiff chains.

In Fig. 5.2 we show a representation of the critical temperature Tc and the expo-

nent parameter λ as a function of the characteristic ratio C rc
10, which quantifies chain

stiffness. Superscripts ‘MD’ and ‘MCT’ are used respectively for simulation and theo-

retical values. A clear correlation between the barrier strength and the values of T MD
c

and λMD is unambiguously demonstrated (see section 4.3). The interplay between
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monomer packing effects and intramolecular barriers induces a progressive increase of

TMD
c . This trend is well reproduced by the theory for low and moderate values of the

internal barriers. Thus, for values of bending and torsional constants KB < 15 and

KT < 0.5, the dependence of T MCT
c on Crc

10 roughly displays the same slope as for T MD
c ,

with a shift factor T MD
c /TMCT

c ≈ 1.25. Similar shifts between simulation and theory,

which have their origin in the mean-field character of the MCT [6], are observed in

other systems [48, 132, 133]. The range of barrier strength for which T MCT
c and TMD

c

are roughly parallel is significant. Indeed, for (KB, KT) = (8, 0.2) the characteristic

ratio Crc
10 is a 70% larger than for fully-flexible chains. However, a strong discrepancy

between simulation and theory becomes evident on increasing the barrier strength from

(KB, KT) = (15, 0.5). While beyond this point T MCT
c seems to approach an asymptotic

limit, TMD
c increases up to 1.23 for the stiffest investigated chains.

Similar trends are observed for the λ-exponent. Simulation values increase from

λMD = 0.76 for fully-flexible chains to λMD = 0.86 for the stiffest investigated chains.

The first ones are typical of simple glass-formers as the archetype hard-sphere fluid

(λ = 0.74 [121]), where dynamic arrest is driven by packing effects. The largest ones

are similar to those observed in realistic models of polymer melts which incorporate

the full chemical structure of the chains [42–44] (see tables 4.1-4.2). On the contrary,

the theoretical exponent exhibits a very weak variation, 0.71 ≤ λMCT ≤ 0.72, over

the investigated range of barrier strength. These discrepancies in the case of strong

intramolecular barriers are also reflected in the q-dependence of density correlators com-

puted from simulations and from solution of the MCT equations eq. 3.35 and eq. 3.39.

See Appendix B for numerical details. In both cases we fitted the corresponding α-

decay to a KWW function. Fig. 5.3 compares the q-dependence, at fixed T , of the

KWW time τK
q for the self-correlators f s(q, t), as obtained from simulations and from

theory. Results are presented for the fully-flexible case and for the stiffest investigated

chains.

Before discussing such results, some points must be clarified. As mentioned above,

the mean-field character of MCT usually yields a temperature shift between simulation

and theory (see Fig. 5.2a). Moreover, MCT times are affected by an undetermined

constant factor [6,128]. Thus, a proper comparison between theory and simulation for

time-dependent correlators can be done by rescaling t by some characteristic relaxation

time, and using a common separation parameter εT = (T −Tc)/Tc [39]. This is the case

for the data of Fig. 5.3. Thus, each data set is rescaled by the respective KWW time
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τqmax
corresponding to f s(qmax, t). Temperatures of both panels correspond to εT ≈ 0.04

and 0.08 for respectively fully-flexible and stiff chains. In the rest of the memory we will

present several comparisons between simulation data and MCT solutions for dynamic

observables. It will be understood that the times and temperatures of the compared

data obey the former criteria.

A clear disagreement between simulation and theoretical trends becomes evident

in Fig. 5.3. The two sets of KWW times obtained from simulations show a rather

different q-dependence for q > qmax, which is more pronounced for the stiff chains. On

the contrary, after rescaling by τqmax
, the theoretical sets become essentially identical. In

the low q < qmax range, simulation data do not show the crossover to the hydrodynamic

limit τq ∼ q−2 The slope at q ≈ 2 is consistent with exponents greater than 2.5. We

remind that the asymptote τq ∼ q−2 is a manifestation of the ultimate diffusive regime

〈∆r2(t)〉 ∼ t. As discussed in the chapter 2 polymer systems exhibit, as a consequence

of chain connectivity and even if they are non-entangled, subdiffusive dynamics over

several time decades between the α-time scale and the final onset of diffusion. This is

not the case, within a limited simulation time window, at temperatures close to Tc as

those of Fig. 5.3. Thus, the low-q behavior in this figure actually reflects the beginning

of the subdiffusive regime in the MSD (see fig. 2.7).

Fig 5.4 shows a similar comparison between simulation and theory for the rescaled

KWW times of the density-density correlators, f(q, t). For q ≥ qmax the theory re-

produces qualitatively the shape of the relaxation times, which are modulated by the

respective static structure factor S(q). However, MCT fails at reproducing the broad

peak at intermediate qC ≈ 4 which is present in the simulation data. This failure

was already noted for fully-flexible chains in Ref. [39], and is confirmed here for the

general case with intramolecular barriers. Apparently (note the error bars), the peak

does not shift significantly and decreases its intensity as chains become stiffer, leading

to a shoulder. In previous works [101] on similar fully-flexible bead-spring chains of

N = 10, the value of qC has been identified with 2π/Rg, where Rg is the chain radius of

gyration. Data of Fig. 5.4a do not seem compatible with this assignment. Appart from

results for fully-flexible and stiffest investigated chains of N = 10, we include data for

(KB, KT) = (15, 0.5) of additional simulations with N = 21. With this, the data sets

of Fig. 5.4a cover a significant variation in Rg. Namely, for (KB, KT) = (0, 0), (35,4),

and (15,0.5) we respectively find 2π/Rg = 4.2, 2.8, and 2.0. Thus, the observation

qC ≈ 2π/Rg for fully-flexible chains is apparently fortuitous. The associated length
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scale 2π/qC ≈ 1.6σ rather seems to be a characteristic feature which does not depend

significantly on the barrier strength. We will come back to these points in the next

chapter.
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Figure 5.3: For fully-flexible and stiffest investigated chains, q-dependence of the KWW
times for self-density correlators f s(q, t). Data are rescaled by the respective KWW
times at qmax. Data in panels (a) and (b) correspond respectively to simulation results
and MCT solutions at selected temperatures (see legend).
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5.2 Chain Dynamics

All the highly non-trivial dynamic features we discussed in chapter 2, concerning the

large scale chain dynamics in our systems, can be rationalized in terms of the MCT

for polymer melts.

We solved the equation 3.43 for the normalized mode correlators Φpp(t) for fully

flexible and stiffest chains investigated. The static quantities S(q), c(q) and Ĉ−1
pp′(0)

enter the equations as external inputs. S(q) and c(q) have been estimated as described

in the previous section and Ĉ−1
pp′(0) were directly computed from simulations at the

respective lowest investigated temperatures.

Fig. 5.5 shows a comparison, at εT ≈ 0.2, of the MCT solutions of equation 3.43 for

the normalized mode correlators Φpp(t) [panel (b)] of the stiffest investigated chains,

with the respective simulation results discussed in chapter 2 [panel (a)]. A full corre-

spondence between MCT solutions and simulation trends is obtained. These include

the long-time plateaux for p = 3 and p = 5, as well as the sequence in the complex,

non-monotonous p-dependence for p > 4 at intermediate times. As previously done

for the simulation data, we can obtain the theoretical relaxation times τp from the

condition Φpp(τp) = 0.3 in the theoretical correlators. The p-dependence of the simu-

lation and theoretical times are compared in Fig. 5.6, at common εT ≈ 0.2, for several

values of (KB, KT). Again, MCT solutions are in semiquantitative agreement with the

anomalous trends of simulations, with similar exponents for the effective power-laws.

As we observed in Fig.2.12 for Ψpp′(0), there are off-diagonal terms of the intrachain

static correlations which are non-orthogonal. We observed (see Fig. 2.17) that this non-

orthogonality persists over long time scales. Fig. 5.7 shows simulation and theoretical

results for normalized Rouse cross-correlators Φpp′(t), with p = 3 and p′ = 1, 3, 5, 7, 9.

Data correspond to the same temperatures and barrier strength (the stiffest investi-

gated case) of the diagonal correlators of Fig. 5.5. Again, MCT qualitatively reproduces

simulations trends for the case of the off-diagonal terms.



CHAPTER 5. MCT VS SIMULATIONS: NUMERICAL SOLUTIONS 87

10
-4

10
-3

10
-2

10
-1

10
0

0

0.2

0.4

0.6

0.8

1

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8
p = 9

10
-4

10
-3

10
-2

10
-1

10
0

0

0.2

0.4

0.6

0.8

1

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8
p = 9

t/τ1

MCT

MD

φ pp
(t

)

(a)

(b)

φ pp
(t

)

t/τ1
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Figure 5.7: Normalized cross-correlators Φpp′(t) (for fixed p = 3) of stiff chains with
(KB, KT) = (35, 4). Panel (a): simulation results at T = 1.48. Panel (b): MCT
numerical solutions at T = 0.63. In both panels, the absolute time is rescaled by the
relaxation time τ1 of the p = 1 mode.
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Finally, it is worth noting that the good agreement between simulations and MCT

for the Rouse correlators is similar for other observables probing chain dynamics. The

reason is that, through the transformation Xp(t) =
∑N

j=1 Pjprj(t) , such observables

can be expressed in terms of the Rouse diagonal and cross-correlators [27]. An example

is given by the orientational bond correlator

Pb(t) = 〈b(0) · b(t)〉/〈b2(0)〉 (5.13)

where b(t) is the bond vector joining two consecutive monomers. Following the former

transformation we find

〈b(0) · b(t)〉 ≡
N−1∑

j=1

N−1∑

p,p′=0

[P−1
p,j+1 − P−1

p,j ][P−1
p′,j+1 − P−1

p′,j]〈Xp(t) ·Xp′(0)〉 (5.14)

where P−1 is the inverse of the matrix of coefficients Pjp we defined in chapter 2. Note

that the expression (5.14) is exact . Since MCT solutions provide the Rouse correlators

for all (p, p′), insertion of these in the former exact expression directly provides Pb(t).

Fig. 5.8 shows simulation and MCT results of Pb(t) for several values of (KB, KT) from

the fully-flexible limit to the stiffest investigated chains. As in previous figures, times

are rescaled by the respective τ1, and data in both panels correspond to a common

separation parameter εT ≈ 0.2. MCT reproduces semiquantitatively the observed

simulation trends. These include, on increasing barrier strength, a relative speed up

and slowing down (in terms of the scaled time t/τ1) of respectively the short-time and

long-time dynamics. MCT also accounts for the emergence, for strong barriers, of a

plateau at t/τ1 ∼ 10−2 and a change in the concavity of the decay.
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Figure 5.8: Normalized bond correlators Pb(t) for several values of the barrier strength
at selected temperatures (see legend). Panel (a): simulation results. Panel (b): MCT
numerical solutions. In both panels the absolute time is rescaled by the relaxation time
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Let us come back to the expression of the memory kernel of the MCT equations

for the Rouse mode correlators (Eq. (3.44)). We remind that this kernel is dominated

by contributions around the maximum of S(q) which fully decay at times longer than

the α−relaxation time t >> τα. Thus in this long time limit, a Markovian model, like

the Rouse model for fully-flexible chains, can be invoked. In their work Chong and co-

workers [39] showed that the MCT for polymer dynamics in fully-flexible chains reduces

to the Rouse model in the aymptotic limit of large degree of polymerization N → ∞.

By imposing Gaussian statistics for intrachain static correlations and performing a

Markovian approximation for the memory kernel, they obtained the subdiffusive regime

〈∆r2(t)〉 ∼ t0.5 for the monomer mean-square displacements and the exponential decay

of the Rouse correlators. Concerning stiff chains, we can invoke other Markovian models

for semiflexible chains [54–56, 134, 135], based on the worm-like model [103, 112]. As

we discussed in chapter 2, the starting point of the mentioned Markovian models is to

assume a specific form for the intramolecular static correlations, e.g., the gaussian chain

in the Rouse model or the worm-like model in [54–56, 134, 135]. In our work, all the

correct correlations Ĉpp′(0) have been used from simulations (through the matrix Epp′ in

Eq. (3.43)). Thus, a quantitative confrontation of MCT with these specific Markovian

models (based on the worm-like model for the intramolecular structure) is not possible.

Still, we can state that the effective power laws τp ∼ p−x at intermediate and low p

can be easily approximated, due to the short length of the chains (N = 10), by tuning

γ in the expression τp ∼ [p2 + γp4]−1 proposed in [54, 55], where γ is a parameter

quantifying stiffness. Still a proper discrimination between different phenomenological

models would require information over a wide range of chain lengths (N & 100),

in order to discriminate the crossover proposed by such models from the Rouse-like

behaviour at small p−values (large lenght scale) characterized by τp ∼ p−2, to the

bending regime at larger p−values, where the intramolecular barriers play a crucial

role and τp ∼ p−x with x > 2. Having said this, we can create a Markovian model

with the correct static correlations by using the MCT equation 3.43, but with δ(t)-like

functions in the kernel instead of the slow functions F s
ab(k, t) and f(k, t). In this way

the integral is reduced to an effective friction term, where the intermolecular structure

(S(k), c(k)) is encoded. By solving the equations in this Markovian limit, we obtain

the same qualitative features of Fig. 5.5. Obviously, the obtained absolute time scale

is different from the solutions with the correct kernel. In Markovian models the time

scale is proportional to the phenomenological friction, which is a fit parameter in such
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models. Therefore such models do not make predictions for, e.g., the temperature

dependence of the times. This, as well as the friction, is however provided by MCT

from a microscopic basis:

ζ

kBT
=

ρ

6π2

∫ ∞

0

dt

∫
dkk4S(k)c2(k)

(
1

N

N∑

i,j=1

F s
ij(k, t)

)
f(k, t) (5.15)

Moreover MCT provides a unified and continuous description of both chain and

glassy dynamics, down to time scales around and before the α-process. This part of the

dynamic window is just ‘coarse-grained’ in the phenomenological Markovian models.

Note that, e.g., the observed (and reproduced by MCT) nonmonotonous behavior of

Rouse correlators (Fig. 5.5) indeed occurs in that time window.



Chapter 6

Discussion

In chapter 3 we have shown that, concerning the critical temperature Tc, MCT repro-

duces qualitative simulation trends for low and moderate barriers. However a strong

disagreement is found on approaching the limit of stiff chains. We have also found a

clear discrepancy in the trends of the λ-exponent, with a nearly constant value from

theory and strongly barrier-dependent values from simulations. In this chapter we

discuss possible origins of these discrepancies.

6.1 Three-Point Static Correlations

The observed disagreement between theory and simulation for strong barriers does not

seem to be related with the failure of the equivalent-site approximation and ring ap-

proximation for stiff chains, which are invoked in the derivation of the MCT equations

for polymers. Indeed we have shown in chapter 2 that the quality of such approxima-

tions appeared to be the same for all the range of barrier strength here investigated by

simulation and MCT.

Having said this, it might be argued that the theory is simply wrong: the phe-

nomenological MCT analysis is apparently successful, but one finds that it does not

agree with the theory, for stiff chains, when solving the MCT equations. However, we

remind that the phenomenological analysis has shown for all the investigated range of

barrier strength: i) the validity of the two MCT universalities, i.e., the factorization

theorem (Figs. 4.1 and 4.2) and the TTSP (Fig. 4.3) ii) the possibility of a good

description of different dynamic observables (Figs. 4.4, 4.6 and 4.7) with a set of dy-

namic exponents which are consistently related, through Eqs. (3.28,3.29), to a single

94
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λ-exponent.

We believe that all these observations, for all the investigated cases, are not fortu-

itous. At this point it must be noted that the predictions referred to in points i) and

ii) arise, within MCT, as a consequence of the mathematical structure of the equations

of motion, more precisely they originate from the bilinear form of the memory kernel,

expressed as a linear combination of pair density fluctuations (see Eqs. 3.7-3.8). The

specific values of the numerical solutions clearly depend on the coefficients of the bi-

linear products (which enter through the vertices of the kernel), but the factorization

theorem, the TTSP, and the asymptotic scaling laws are universal properties provided

the kernel is bilinear. Thus, the results of the phenomenological analysis suggest that

the underlying physics may be connected to a bilinear memory kernel, though for high

barriers the actual coefficients strongly differ from those introduced by MCT through

the vertices, thus leading to theoretical results which strongly differ from simulations.

In other words, the present results suggest that there may be relevant static con-

tributions for the case of stiff chains which are missing in the MCT vertices. Thus,

the inclusion of such contributions might increase the strength of the kernel and might

induce the theoretical transition at higher values of Tc, which might improve the com-

parison between T MCT
c and TMD

c of Fig. 5.2a. Recalling the three main approximations

of MCT, we suggest that the convolution approximation, Eq. (3.4), might break for

stiff chains. Though possibly it is not the case for intermolecular contributions, its

breakdown for intramolecular contributions in stiff chains is, in principle, plausible.

Thus, we suggest that intrachain three-point static correlations should be explicitly

included in the MCT vertex. Chain stiffness induces a strong directionality in the in-

trachain static correlations, at least at near-neighbor distances. It has been shown that

directionality in static correlations can break the static convolution approximation of

MCT, Eq. (3.4). A well-known example is given by silica, a network-forming system.

For the latter the inclusion of three-point static correlations in the MCT vertex signif-

icantly improves the comparison between theory and simulation, with respect to the

solutions obtained under the convolution approximation [113].

The calculation of the three-point static correlations involved in Eq. (3.4) is very

demanding. This is because most of the computational time is consumed by the inter-

chain three-point correlations. For intrachain three-point correlations the computation

is not demanding. Fortunately, in the present case only the latter is necessary, since

the directionality of correlations is only relevant along the chain. Thus, the convolution
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approximation is retained for interchain correlations, and it is modified only to include

the intrachain three-point correlations. With this, the new MCT vertex reads [136]

V(q,q− k) =
ρ

2q4
S(q)S(k)S(|q− k|)[q · kc(k)

+q · (q− k)c(|q− k|) + ρq2c3(q,q− k)]2, (6.1)

where c3(q,q − k) is the three-point intramolecular direct correlation function, given

by

ρ2c3(q,q− k) = 1− ω3(q,q− k)

ω(q)ω(k)ω(|q− k|) , (6.2)

and ω3(q,q− k) is the three-point intramolecular structure factor

ω3(q,q− k) =
1

nN

n∑

j=1

N∑

a,b,c=1

×

exp{i[−q · ra
j + k · rb

j + (q− k) · rc
j]}. (6.3)

The convolution approximation for intrachain correlations assumes ω3(q,q − k) =

ω(q)ω(k)ω(|q− k|), or equivalently c3(q,q − k) = 0, reducing the vertex (6.1) to the

original Eq. (3.8).

Figs. 6.1 and 6.2 show representative tests of the convolution approximation for

respectively fully-flexible and stiffest investigated chains. Following the scheme pro-

posed in Ref. [39], the vectors q, k and p = q − k define the sides of a triangle, the

first two enclosing an angle φ given by cos φ = (q2 + k2 − p2)/2qk. Panels (a) and

(b) in Fig. 6.1 show a test of the corresponding expression for an equilateral triangle,

ω3(q, q, q) = ω3(q). Panels (a) and (b) in Fig. 6.2 show a similar test for equal moduli

k = q and all the relative orientations (given by cos φ) of q and k. In other words, we

test the approximation ω3(q, q, p = q
√

2(1− cos φ)) = ω2(q)ω(p). Data in Fig. 6.2 are

represented as a function of cos φ for two characteristic wave vectors, corresponding to

the first minimum and second maximum of the respective ω3(q, q, q) (see Fig. 6.1).

As already noted in Ref. [102], the convolution approximation for intrachain static

correlations provides a good description of ω3 in the fully-flexible limit. As expected,

the quality of the approximation decreases by introducing intramolecular barriers. Still

it constitutes a good approximation for all the investigated barrier strength. In the
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case of wave vectors around the first peak of S(q), qmax ≈ 7, the quality is almost

unaffected by the barrier strength, i.e., the terms c3(qmax,qmax− k) will be small even

for the stiffest investigated chains. It must be noted that the MCT kernel is usually

dominated by the contributions around qmax. Thus, the former observations suggest

that the inclusion of the three-point static correlations will modify weakly the MCT

solutions obtained under the convolution approximation. We confirm this by obtaining

numerical solutions with the vertex (6.1), for which we compute the input quantities

involved in Eqs. (6.2, 6.3) directly from the simulations. The so-obtained values of the

critical temperature Tc and λ-exponents raise by ≈ 1% as much, even for the stiffest

chains, with respect to the previous values (Fig. 5.2) found under the assumption

c3 = 0. With all this, we conclude that the observed discrepancies between simulation

and theoretical trends of Tc and λ are not related to the breakdown of the convolution

approximation for static three-point correlations. The latter indeed retains its validity

for all the investigated range of barrier strength.

6.2 Dynamic Heterogeneities

As we discussed previously, the main weakness of the MCT is that it predicts dynamic

arrest at the critical temperature Tc while the expected power-law divergences of the

α−relaxation times are not observed in practice (see chapter 3). This is connected with

the quality of the Kawasaki approximation for dynamic correlations (see chapter 3)

which breaks down on decreasing temperature. This feature is specially critical around

the α-time scale [116–119, 137], leading to the complete failure of the MCT predic-

tions associated to it, as the time-temperature superposition of density correlators, or

the same power law behaviour for the monomer diffusion coefficient and α−relaxation

times D, τ−1
α ∼ (T −Tc)

γ, namely the Stokes-Einstein (S-E) relation for transport coef-

ficients D ∼ τ−1
α . In chapter 4 we have shown that the time-temperature-superposition-

principle fails for temperatures close to the critical temperature Tc. In order to test

the S-E relation for our systems, we should be able to estimate the monomer diffusion

coefficient D from simulation data through the relation D = limt→∞〈∆r2(t)〉/6t, where

〈∆r2(t)〉 is the monomer mean squared displacement (MSD). In chapter 2 (see Fig. 2.7)

we observed that after the caging plateau, monomers go through a subdiffusive regime

in the range 1 . 〈∆r2(t)〉 . R2
ee. The linear diffusive regime 〈∆r2(t)〉 ∼ t is reached,

within the simulation time window, only for low barriers and at the highest investigated
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for fully flexible and stiff chains.

temperatures. However the monomer diffusion coefficient D is equal to the diffusion

coefficient DCM of the chain center of mass, which indeed reaches the diffusive regime in

the simulation time window and that can be estimated as DCM = limt→∞〈∆r2
CM(t)〉/6t.

Fig.6.3 shows a test of the S-E relation for fully flexible and stiff chains. We

represent the monomer diffusion coefficient D = DCM as a function of τα/T . Let

us remember that the α-relaxation time has been evaluated as f(qmax, τα) = 0.2. We

note that D and τα scale differently with temperature, violating the prediction of MCT.

We note that D ∼ (τ0.2/T )−0.75 for fully flexible and stiff chains.

The decoupling of diffusion and relaxation, which is observed experimentally for

temperatures close to the Tg, is usually assigned to the emergence of strong dynamic

heterogeneities on approaching the glass transition [116–119,137]. The basic idea is that

the system near the glass transition contain different fluctuating domains of particles

possesing an enhanced or reduced mobility relative to the average. Domains with the

slowest particles dominate structural relaxation and domains with the fast particles

dominate diffusion. Having noted this we may speculate that, for some reason to be

understood, increasing the barrier strength strongly enhances dynamic heterogeneity.

This might result in a lower quality of the MCT and might be the reason for the

observed discrepancies between theory and simulation trends for Tc.

Now we show that this is not actually the case, and that there is no correlation
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between barrier strength and enhanced dynamic heterogeneity. In order to probe dy-

namical heterogeneity in our systems, and elucidate the connection between this hetero-

geneity and the decoupling of transport coefficients, we should point out two different

characteristic time scales connected with the domains of fast and slow particles, and

that scale respectively as the inverse of the diffusion coefficient and the α−relaxation

time. To do this we introduce the concept of non-Gaussian parameters. The self-density

correlator f s(q, t) can be written as the spatial Fourier transform of the Van-Hove self

correlation function:

f s(q, t) =

∫
4πr2Gs(r, t)

sin(qr)

qr
dr (6.4)

The van Hove function Gs(r, t) is proportional to the probability that a particle placed

at the origin at time t = 0, can be found at distance r at time t. It can be easily

demonstrated that the Van-Hove function is a Gaussian function of r in the ballistic

limit t → 0 and in the Brownian diffusion limit t →∞. If we suppose that Gs(r, t) is

Gaussian at all times we have:

Gs(r, t) =

[
3

2π〈∆r2(t)〉

]3/2

exp

[
− 3r2

2〈∆r2(t)〉

]
(6.5)

where 〈∆r2〉 is the mean square displacement (MSD) of a particle. If we insert eq. 6.5

in eq. 6.4 the self-density correlator takes the form:

f s(q, t) = exp

(
−q2

6
〈∆r2(t)〉

)
(6.6)

Systematic corrections to the Gaussian approximation for f s(q, t) can be obtained in

terms of its expansion in powers of q2:

f s(q, t) = exp

(
−q2

6
〈∆r2(t)〉+

α2(t)〈∆r2(t)〉2
72

q4 + ...

)
(6.7)

where the leading correction to the Gaussian behaviour is expressed in terms of the

so-called non-Gaussian parameter α2(t) :

α2 =
3〈∆r4〉
5〈∆r2〉2 − 1 (6.8)

In the following we will refer to α2(t) as the ’fast’ non-Gaussian parameter. Recently

a new function which quantifies deviations from Gaussian behaviour have been intro-
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duced by Flenner and Szamel [137]. This new ’slow’ non-Gaussian paramater is defined

as:

γ2 =
1

3
〈∆r2(t)〉〈 1

∆r2(t)
〉 − 1 (6.9)

In eq. 6.8 α2(t) compares the mean quartic displacement of a monomer to the square of

the MSD. Negative values of α2(t) imply that a particle moves less far than expected

from diffusion motion. On the other hand, positive valuse of α2(t) indicate that a

particle moves faster than a particle in the diffusive regime at the same time t. Thus,

high values of α2(t) are good indicators of enhanced mobility relative to free diffusion.

This effect is generally maximum at the time t∗ around the end of the caging regime.

Thus, non-Gaussianity of α2(t) arises because of caging and the resulted correlated

motion necessary for a fraction of particles to escape from the cages formed by their

neighbors. Thus, α2(t) increases from zero at t = 0 up to a maximum at t∗, and

decays to zero at longer times. The observed increase of the maximum α2(t
∗) on

decreasing temperature reflects a progressive enhancement of dynamic heterogeneity,

at the decaging process, on approaching the glass transition.
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The slow parameter γ2(t) exhibits analogous trends for the temperature and time-

dependence. However the γ2(t) parameter, differently from α2(t), weights very strongly

particles which have moved less than expected from Gaussian behaviour through the

term 〈1/∆r2(t)〉 in eq. 6.9. Indeed, the maximum of γ2(t) takes place at t∗∗ greater

than t∗, namely around the α-relaxation time τα. Thus, this effect originates from

a significant population of particles which at t∗∗ ∼ τα have performed much smaller

displacements than the average [137].

Fig. 6.4 compares simulation results of α2(t) and γ2(t), for the fully-flexible case

and for very stiff chains. For a fair comparison we have selected temperatures at which

the respective α-relaxation times are similar. These are T = 0.50 and T = 1.05, for

respectively fully-flexible and stiff chains, and correspond to a separation parameter

εT ∼ 0.04. In Fig. 6.5 we display f(qmax, t) for both systems at the former temperatures,

showing that the respective α-time scales are roughly the same, τα ∼ 104. The decaging

times, which can be estimated from the start of the decay from the plateau in f(qmax, t),

are also roughly the same, t∗ ∼ 500. This equivalence is indeed reflected in the trends

of the non-gaussian parameters in Fig. 6.4. Thus, in both systems α2(t) is peaked at

t∗ ∼ 500 and γ2(t) is peaked at t∗∗ ∼ 104.

Fig 6.6 shows (t∗)−1 as a function of t∗∗/T . In both fully flexible and stiff chains,
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we observe power law behaviour with the same exponent that we have found for the

diffusion coefficient D as a function of τα/T (see Fig. 6.3). Therefore these results

confirm the proposed interpretation for the violation of the S-E relation as due to the

presence of dynamic heterogeneities (see above).

Having noted the equivalence for fully flexible and stiff chains of the time scales

t∗, t∗∗, τα in Figs. (6.4) and (6.5), the data do not reflect any enhancement of dy-

namic heterogeneity on increasing the barrier strength. Actually, the opposite effect

is suggested by the lower values of α2(t) and γ2(t) for stiff chains with respect to the

fully-flexible case. With this, we discard a major role of dynamic heterogeneities as

the reason for the observed discrepancies between simulations and MCT solutions for

very stiff chains.

6.3 Chain Packing

As mentioned in Chapter 5 and shown in Fig. 5.4, MCT fails at reproducing the peak

around qC ∼ 4 for the q-dependence of the KWW times of density-density correlators.

As noted in Ref. [39] for the fully-flexible case, the origin of this peak may be related

to dynamic correlations between centers-of-mass of the chains. The latter might arise

from the effective packing between the polymer coils, interacting as fully penetrable
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spheres of size Rg. This interpretation is not clear in view of the results of Fig. 5.4,

since the value of qC does not seem to be related with 2π/Rg. Having noted this,

Chong et al. [39] found that the incorporation of the static correlations between the

centers-of-mass in the MCT equations did not improve the description of the simulation

results. As shown in [39], this is not unexpected due to the almost featureless form of

the static structure factor of the centers-of-mass SCM(q). The inset of Fig. 5.4a shows

simulation results of SCM(q), for the same barrier strength and temperatures of the

KWW times in the main panel. The introduction of chain stiffness does not induce

significant features in SCM(q), apart from a stronger signal at low q. The latter indeed

suggests that packing effects between the polymer coils are even weaker than for the

fully-flexible case. Within the former interpretation, this would be consistent with the

lower intensity of the mentioned peak of τK
q /τqmax

at qC ∼ 4. All these results suggest

that discrepancies between simulations and MCT on increasing chain stiffness are not

related to a dynamic coupling, not accounted for within the theory, to the slow modes

at qC ∼ 4. Indeed, this coupling seems to be weaker for stiff chains.

6.4 Outlook

In summary, in this chapter we have discussed possible origins for the discrepancies,

concerning the structural relaxation, between simulations and MCT on increasing bar-

rier strength. We discard a major role, in comparison with the fully-flexible case, of

three-point static correlations, dynamic heterogeneities and chain packing. These ef-

fects become even weaker on increasing chain stiffness. We remind that such effects are

indeed neglected in the derivation of the MCT equations used here (see Chapter 3).

Results in this section suggest that this is not less justified for very stiff chains than

for fully-flexible ones.

How to improve the theory to account for dynamic trends in stiff chains is an open

question. A way might be the reformulation or extension of the MCT equations, re-

taining the bilinear form of the kernel, in terms of new dynamic observables coupled

to density fluctuations. Such observables can be adequate for describing particular dy-

namic features which are not captured by the usual observables, i.e., the number density

fluctuations ρ(q, t). Some examples are roto-translational site fluctuations adapted to

the molecular symmetry, as has been shown, e.g., for dumbbell-like molecules [36,138]

or for a simple model of orthoterphenyl [37]. The inclusion of density fluctuations of
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centers-of-mass improve results for rigid molecules [37] concerning a peak in τK
q /τqmax

at intermediate q [139], similar to that observed here at qC ∼ 4. As discussed above,

this is not the case for polymer chains. Though there is no characteristic symmetry

in polymer chains, roto-translational density fluctuations can also be defined over sites

a, b at some characteristic distance |a − b|, perhaps probing the relevant length scale

2π/qC, which according to the data of Fig. 5.4 seems to depend weakly on the bar-

rier strength. Whether this procedure may improve the agreement between MCT and

simulations remains to be solved.



Chapter 7

Polymer Blends

7.1 Model and Simulation Details

We simulate a binary mixture of bead-spring chains. Monomers in the same chain are

identical, i.e, of the same species (A or B). Each chain consists of N = 21 monomers,

which is below the entanglement lenght [68, 104]. All monomers have identical mass

m = 1. The model for the intermolecular and intramolecular interactions is the same

discussed fot the homopolymer case in chapter 1. Non-bonded interactions between

monomers are given by the potential in Eq. 1.6 with α, β ∈ {A, B}. The interaction

diameters are σAA = 1.6, σAB = 1.3, and σBB = 1. Chain connectivity is introduced

by a FENE potential Eq. (1.7). Intramolecular barriers are implemented by means of

the bending and torsional potentials Eqs. (1.8) and (1.9)

In all the investigated systems the A-chains are fully-flexible, i.e., KB = KT = 0.

We investigate two models (I and II) for the B-chains. In the model I all the B-chains

are fully-flexible. In the model II all the B-chains are semiflexible, with KB = 15 and

KT = 0.5.

The blend composition is xB = NB/(NA + NB), with Nα the total number of α-

monomers in the system. All simulations are performed at fixed composition xB = 0.3.

Most of the simulated systems have 105 A-chains and 45 B-chains. At the lowest

investigated temperatures we have used smaller systems of 49 A-chains and 21 B-chains.

We have performed additional simulations for B-homopolymers of N = 21, with a

system size ranging from 200 to 500 chains according to the simulated temperature. All

the simulated systems have a packing fraction φ = [π/(6V )](NAσ3
AA + NBσ3

BB) = 0.53,

with V the volume of the cubic simulation box. We implement periodic boundary

107
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conditions. Equations of motion are integrated in the velocity Verlet scheme [80], with

a time step ranging from 10−4 to 4×10−3 according to the simulated temperature. The

procedures for the preparation of the samples in the simulation box, the thermalization

and the equilibration are the same employed for the homopolymer case (see section

1.1). After equilibration at each state point, the corresponding production run is

performed in the microcanonical ensemble. The longest production runs are of about

400 million time steps. Averages are performed over up to four independent boxes,

with 20 equispaced time origins per simulated box.

7.2 Chain Size and Mean Squared Displacements
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Figure 7.1: Temperature dependence of the characteristic ratio of the fully-flexible and
semiflexible B-chains, both in the homopolymer and in the blend.

The selected values of the bending and torsion constants (KB, KT) considerably

stretch the semiflexible B-chains in comparison with the fully-flexible case. As we

already discussed in section 1.1, this can be quantified by the characteristic ratio,

CN = 〈R2
ee〉/(N〈b2〉), where 〈R2

ee〉 and 〈b2〉 are respectively the average squared end-

to-end radius and bond length of the B-chains. Figure 7.1 shows results of CN for the

fully-flexible and semiflexible B-chains. The fully-flexible B-chains exhibit an almost

T -independent value CN . 1.5, both in the homopolymer and in the blend. On
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the contrary, for the semiflexible B-chains decreasing temperature yields effectively

higher intramolecular barriers. Thus, the chains become stiffer, and CN shows a strong

increase on decreasing temperature. In the blend we find a variation of an 80 %, from

CN = 2.45 to CN = 4.40, over the investigated T -range.

Figure 7.2a shows results for the mean squared displacement (MSD) of both species

A and B in the model II, at all the investigated temperatures. After the initial ballistic

regime, a plateau arises for both components at T < 1.5, and extends over longer time

scales on decreasing temperature. This reflects the usual caging regime observed in

glass-forming systems when approaching a glass transition. In analogy with previous

observations for the model I [65,66], there is a progressive separation, on decreasing T ,

of the time scales of the A- and B-monomers. We quantify the dynamic asymmetry in

the blend as the ratio χ = τA/τB, where τα is the time at which the MSD reaches the
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value 〈∆r2
α(τα)〉 = 0.45. This roughly corresponds to the time scale of the structural α-

relaxation (segmental relaxation). Figure 7.2b shows the T -dependence of the dynamic

asymmetry, both for models I and II. In both cases the dynamic asymmetry becomes

stronger on decreasing T . However, this effect is less pronounced in the model II, which

shows a lower χ than the model I at the same temperature, blend composition and

packing fraction. This is not surprising since the only difference between both models

is the strength of the intramolecular barriers in the B-chains. Thus, dynamics of the

B-monomers in the semiflexible homopolymer are strongly slowed down respect to the

fully-flexible case (see discussion in section 2.2 and [98]), and blending with the same

A-homopolymer leads to a weaker dynamic asymmetry in the model II.

For times longer than τα, the MSD of both species exhibits subdiffusive behaviour

over several time decades, prior to the final crossover to diffusive behaviour at much

longer times. The subdiffusive regime can be described by an effective power law

〈∆r2(t)〉 ∼ tx, with x < 1. This is a consequence of chain connectivity and a charac-

teristic feature of polymer systems. In the case of fully-flexible homopolymers it reflects

Rouse dynamics. Figure 7.2c shows the temperature dependence of the x-exponents for

the two species in both models I and II. Within statistics, the (fully-flexible) A-chains

show the same temperature independent exponent, x ≈ 0.64, in both models. This is

also the value observed for the fully-flexible A- and B-homopolymers (not shown), and

can be easily understood in terms of Rouse dynamics. The value x ≈ 0.64 is higher

than the Rouse exponent x = 0.5, which is the effective value predicted by the Rouse

model in the limit N → ∞ [27]. Thus, the former difference is mostly due to the

finite size, N = 21, of the chains [69]. We obtain a similar, almost T -independent,

exponent x ∼ 0.64 for the semiflexible B-homopolymer. This coincidence is probably

fortuitous, since the x-value for the semiflexible homopolymer cannot be assigned to

Rouse dynamics, which does not incorporate semiflexibility.

Concerning the exponents for the B-chains in the blend they exhibit a rather differ-

ent behaviour in the models I and II (see Figure 7.2c). In the model I, the exponent

x decreases monotonically, taking values much smaller than the T -independent value

x = 0.64 found for the fully-flexible B-homopolymer.

This trend reflects the breakdown of the Rouse model for the fully-flexible B-chains

in the blend, as discussed in [67]. This breakdown is also reflected in the anomalous

scaling observed for the relaxation times of the Rouse modes on decreasing T (see

below). The lowest investigated temperature in the model II at which x can be solved
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state (a) and in the blend (b), at respectively T = 0.8 and T = 0.5. Lines are fits to
stretched exponentials (see text).

is T = 0.5. The dynamic asymmetry at this T is the same that in the model I at

T & 0.6, for which x has decreased by about a 15% from its value at T = 1.5. On the

contrary, in the model II it remains, within statistics, constant with a value x ∼ 0.64,

as observed for the semiflexible B-homopolymer (see above).

7.3 Rouse Modes

The latter observations suggest that, unlike for fully-flexible polymers, scaling prop-

erties for chain dynamics in semiflexible polymers may be unaltered by blending. We

confirm this point by analyzing the relaxation of the internal chain degrees of freedom.

This can be quantified by computing the correlators of the Rouse modes. Definitions of

the Rouse modes Xp(t).and Rouse correlators Φp(t) have been already given in section

2.3.

Let us recall that according to the Rouse model, the correlators decay exponentially

Φp(t) = exp(−t/τp), and the relaxation times scale as τp ∼ (N/p)2. This is also the
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scaling behaviour of the static amplitudes of the modes, 〈X2
p(0)〉 ∼ (N/p)2, which

follows from the assumed gaussian model for the static intrachain correlations. In

summary, according to the Rouse model τp ∼ 〈X2
p(0)〉 ∼ (N/p)2.

Figure 7.3 shows results of Φp(t) for semiflexible B-chains in the homopolymer

state and in the blend (model II) at two selected low temperatures. The first decay, at

short times, to the plateau reflects the onset of the caging regime already observed in

the MSD. The second decay at long times reflects the relaxation of the corresponding

p-mode. We analyze the latter by fitting the decay to a stretched exponential or

Kohlrausch-Williams-Watts (KWW) function Φp(t) = Ap exp[−(t/τp)
βp], with Ap, βp <

1. The KWW time τp provides an estimation of the relaxation time of the p-mode.

Figure 7.4 shows, at several temperatures, the stretching exponents βp for the fully-

flexible and semiflexible B-chains, both in the homopolymer and in the blend. The

general trend displayed by the four panels is that stretching is enhanced both by the

presence of intramolecular barriers and by blending. The data for the fully-flexible B-

homopolymer (Figure 7.4a) are roughly T -independent and take values close to Rouse-

like exponential behaviour βp = 1 (see above). This is in agreement with observations in

similar fully-flexible models [69]. A rather different behaviour is observed for the fully-

flexible B-chains in the blend (Figure 7.4b). Exponential behaviour is only approached

at high temperatures, in the limit of vanishing dynamic asymmetry. On decreasing

temperature and increasing the dynamic asymmetry, the correlators exhibit stronger

stretching, reaching values of even βp ∼ 0.4.

In principle, the observed non-exponentiality may be related to a distribution of

intrinsically exponential processes originating from structural and/or dynamic hetero-

geneity. It is well-known that a KWW function can be, at least formally, expressed as

a sum of pure exponential functions weighted by an adequate distribution G, though

the latter does not necessarily have a physical meaning. Hence, we express the KWW

function for the pth-mode as
∫

dτ 0
p G(τ 0

p ) exp[−t/τ 0
p ], where the distributed values τ 0

p are

the relaxation times of the different exponential Rouse modes. According to the Rouse

model, these follow the p-scaling τ 0
p = ξ〈X2

p(0)〉, where the prefactor ξ is proportional to

the p-independent friction constant [27]. Thus, if the observed stretching in the Rouse

correlators essentially arises from a distribution of exponential Rouse-like processes,

this reflects a distribution of friction terms g(ξ). By simple mathematical transforma-

tion it is found [67] that the KWW time τp must follow the same scaling behaviour

as the distributed Rouse times τ 0
p , i.e., τp ∼ 〈X2

p(0)〉. Therefore, if this condition is
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fulfilled, stretching essentially arises from a distribution of exponential Rouse-like pro-

cesses. Otherwise, though distribution effects can also be present, strong deviations

from the scaling τp ∼ 〈X2
p(0)〉 are the signature of a strong intrinsic non-exponential

character of the mode relaxation. Analogous arguments have been applied, based on

the scaling of the corresponding KWW times with the wave vector of the scattering

functions, to solve the intrinsic non-exponential character of the α-relaxation associated

to the glass transition [140].
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Figure 7.5: Squares and circles are respectively the relaxation times τp and the static
amplitudes 〈X2

p(0)〉 of the Rouse correlators for the fully-flexible B-chains. Panel (a):
data for the fully-flexible B-homopolymer at T = 0.6 (empty symbols) and T = 1.5
(filled symbols). Panel (b): data for the fully-flexible B-chains in the blend, at T = 0.4
(small empty symbols), T = 0.6 (big empty symbols) and T = 1.5 (filled symbols).
Units in the vertical axis are arbitrary. Each data set has been rescaled by a factor to
facilitate comparison of τp and 〈X2

p(0)〉 at common T . Solid lines in both panels are
power laws with x = 2.2. Dashed lines are power laws with x = 2.0 in panel (a) and
x = 2.1 in panel (b). The dotted (T = 0.6) and dashed-dotted (T = 0.4) lines in panel
(b) are power laws with respectively x = 2.7 and x = 3.3.

Figure 7.5 shows results for the p-dependence of τp for the fully-flexible B-chains

in the homopolymer and in the blend (Model I). The selected temperatures cover all
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the investigated range. We also include the amplitudes of the modes 〈X2
p(0)〉, and

rescale the data sets by arbitrary factors to facilitate comparison between dynamic

and static quantities at the different temperatures. In agreement with similar fully-

flexible models [69], relaxation times for the homopolymer are consistent with Rouse

scaling, τp ∼ p−2, and therefore the Rouse modes are essentially exponential. The

observed dynamic Rouse scaling is consistent with the static scaling displayed by the

amplitudes of the modes, 〈X2
p(0)〉 ∼ p−2.2, again in agreement with previous works [69]

and very close to the ideal gaussian behaviour 〈X2
p(0)〉 ∼ p−2 expected within the

Rouse model [27]. Thus, Rouse relaxation times and amplitudes for the homopolymer

are roughly proportional, τp ∼ 〈X2
p(0)〉, as already found in section 2.3 for the fully

flexible homopolymer with N = 10.

The static scaling 〈X2
p(0)〉 ∼ p−2.2 observed in the fully-flexible B-homopolymer is

not altered by blending at any investigated temperature (Figure 7.5b). On the contrary,

dynamic Rouse scaling is observed in the blend only at high temperature. On decreasing

temperature and increasing the dynamic asymmetry, a progressive deviation from the

relation τp ∼ 〈X2
p(0)〉 is observed. We describe the behaviour of the relaxation times

by an effective power law τp ∼ p−x, with x increasing on decreasing temperature, up

to x = 3.3 for T = 0.4. Thus, dynamic asymmetry in the blend leads to an intrinsic

strongly non-exponential character of the Rouse modes for the fully-flexible B-chains.

Intrinsic non-exponentiality and the observed anomalous scaling for the relaxation

times are not related to particular static features of the modes, which indeed are not

affected by blending. The origin of the stretching of the Rouse correlators for the

semiflexible B-chains [see panels (c) and (d) of Figure 7.4] will be discussed below.

Figure 7.6 shows results of τp and 〈X2
p(0)〉 for the semiflexible B-chains in the ho-

mopolymer and in the blend (Model II), at temperatures covering all the investigated

range. In analogy with the representation of Figure 7.5, we rescale the different data

sets to facilitate comparison between times and amplitudes. This procedure yields a

nice overlap of the latter for the B-homopolymer, and as in the fully-flexible case, the

data follow the approximate relation τp ∼ 〈X2
p(0)〉. These results are in agreement with

those found for the semiflexible homopolymers with N = 10 discussed in section 2.3.

The relation τp ∼ 〈X2
p(0)〉 is also mantained for the semiflexible B-chains in the blend

at high T and at the lowest T = 0.4 except for modes p > 9, corresponding to small

wavelengths N/p . 2.3. However, it is noteworthy that the static data of Figure 7.6

follow a rather different p-dependence from the gaussian behaviour 〈X2
p(0)〉 ∼ p−2,
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p(0)〉 of the Rouse correlators for the semiflexible B-chains. Panel (a):
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which is only approached in the large scale limit p → 1 at high T . This confirms the

non-gaussian character of the semiflexible chains within all their length scale. Obvi-

ously, also the p-dependence of the times is very different from the scaling τp ∼ p−2

predicted by the Rouse model. Let us recall that in chapter 2, we observed that the

increase of the strength of the intramolecular barriers in semiflexible homopolymers,

leads to progressive deviations from the Rouse scaling for 〈X2
p(0)〉 and τp. However

chains were too short, N = 10 monomers per chain, for recovering of the gaussian

behaviour at large N/p.

As already discussed at the end of the section 5.2, deviations from the Rouse scaling

observed for semiflexible polymers can be discussed in terms of a phenomenological

Markovian model different from the Rouse model. Indeed, in the same spirit of the

Rouse model for fully-flexible chains, other phenomenological models for semiflexible

polymers, i.e. with intramolecular barriers, model the interactions of the tagged chain

with the surroundings through a friction coefficient and random forces. Thus memory

effects related to the slow fluctuation of the surrounding chains are neglected. Non-

Rouse effects are of intramolecular origin, and amplitudes and relaxation times of the

Rouse modes follow the same scaling behaviour. The behaviour of relaxation times τp

and static amplitudes 〈X2
p(0)〉 observed in Fig. 7.6 can be discussed in terms of the

framework proposed in [54–56, 134, 135]. In this approach, the worm-like model [112]

is assumed for the intramolecular correlations. In the worm-like model, positional

fluctuations of the chain are not purely entropic like in the gaussian chain, but are

governed by a bending energy Ubend and characterized by a persistence length Lp. The

correspondig elastic energy takes the form:

Ubend =
k

2

∫ L

0

ds

(
∂2r

∂s2

)2

(7.1)

where L is the contour length, and depends on the local curvature of the contour s.

In our model L = Nb where b is the bond lenght. r(s) is the position vector of a

monomer on the chain and k is the elastic constant. By applying the Hamiltonian

principle together with constraints on the contour length L and on the curvature of

the chain, Harnau and co-workers obtained the following Langevin equation for the

worm-like chain:

ζ
∂r(s, t)

∂t
=

3kBT

2Lp

∂2r(s, t)

∂s2
− 3kBTLp

2

∂4r(s, t)

∂s4
+ f s(s, t) (7.2)
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with a friction coefficient ζ and Gaussian stochastic forces f s(s, t). Eq.7.2 is essentially

based on the Rouse model for Gaussian flexible chains and the introduced bending

term can be considered as a small and local perturbation to the system. Therefore, in

the limit of Lp << L, Rouse modes (Eq. 2.19) still represent a good base of orthogonal

modes, to solve eq. 7.2. The Langevin equation for the normal modes now reads:

ζp
∂Xp(t)

∂t
= ksemi

p Xp(t) + gs
p(t) (7.3)

where ζp = 2Lζ and the effective force constant is the sum of the bending and entropic

tension contribution:

ksemi
p = kb

p + kp =
3kBTLpπ

4

L3
+

3kBTπ2p2

LLp

(7.4)

Solutions of eq. 7.3 lead to a modified p-dependence of the amplitudes and relaxation

times of the normal modes, but as in the case of the Rouse modes, they are still

proportional:

τp ∼ 〈X2
p(0)〉 ∼

[
p2 + γp4

]
(7.5)

where γ = π2Lp/N
2b2 is a parameter quantifying chain stiffness and Lp is the persis-

tence length of the chain. Recent simulation results by Steinhauser and co-workers

[54, 55] on semiflexible homopolymers are in good agreement with Equation (7.5). On

the basis of this result, we use it for describing the data sets of Figure 7.6. Instead

of using different definitions of the persistence length proposed in the literature (see

e.g., Ref. [141]) as input, we just obtain Lp as a fit parameter. At each temperature,

this is forced to be identical for 〈X2
p(0)〉 and τp, to be consistent with the relation

τp ∼ 〈X2
p(0)〉. The obtained values of the persistence length change from Lp ∼ 1.2

at high temperatures to Lp ∼ 3 at the lowest investigated T in the blend. Equation

(7.5) provides a good description of the data of Figure 7.6 in the region p < 9, both

for the B-homopolymer and for the B-chains in the blend. The behaviour at smaller

wavelengths (p ≥ 9, N/p . 2.3) cannot be captured. Presumably this is mostly due

to the influence of the torsional terms. The latter are not accounted for within the

approach of Refs. [54–56,134,135] based on the worm-like model for the intramolecular

interactions, which only includes bending terms.
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7.4 Discussion

As shown in the previous section, the results presented in Figures 7.5 and 7.6 for the

B-homopolymers are consistent with the approximate relation τp ∼ 〈X2
p(0)〉, the spe-

cific p-dependence being distinct for fully-flexible and semiflexible chains. The latter is

Rouse-like for fully-flexible chains, τp ∼ p−2, and is well described by Equation (7.5) for

semiflexible chains. Since the relation τp ∼ 〈X2
p(0)〉 is fulfilled, the anomalous (in the

meaning of non-Rouse) scaling of the relaxation times for the semiflexible homopoly-

mers is essentially of static origin. More specifically, it is a direct consequence of the

non-gaussian nature of the static intramolecular correlations. This is also the case for

the semiflexible B-chains in the blend (Model II), for which τp ∼ 〈X2
p(0)〉 is maintained,

except for short wavelengths (N/p . 2.3, see Figure 7.6b) at low temperatures.

According to the approach of Refs. [54–56, 134, 135] for semiflexible chains, the

Rouse correlators Φp(t) decay, as in the Rouse model, exponentially. Following the

same argumentation as for the fully-flexible case (see Section 7.3), stretching in Φp(t)

arises from a distribution of the predicted exponential processes if the KWW times

fulfill the relation τp ∼ 〈X2
p(0)〉. Otherwise non-exponentiality is intrinsic. Thus, from

data in Figure 7.6, we conclude that non-exponentiality of the Rouse modes of the

semiflexible chains is intrinsinc only for short wavelengths, in the blend state and at

low temperature.

As shown by the data in Figure 7.2b, the dynamic asymmetry (χ ≈ 68) at the lowest

investigated T = 0.4 of the Model II, is slightly higher than that of the Model I at T =

0.6 (χ ≈ 63). Though the strength of the confinement is essentially the same in both

cases, the origin of anomalous chain dynamics seems to be very different. As discussed

above, this is of intramolecular and static nature for the semiflexible B-chains of Model

II. On the contrary, the origin is essentially dynamic for the fully-flexible B-chains of

Model I, as indicated by the clear breakdown of the relation τp ∼ 〈X2
p(0)〉. As shown in

Figure 7.5b, we find strongly non-Rouse scaling for the times, τp ∼ p−x with x = 2.7,

considerably larger than the exponent x = 2.2, close to gaussian behaviour, found

for the amplitudes. Note that for the homopolymer we find a, Rouse-like, dynamic

exponent x = 2.0 similar but smaller than the static x = 2.2 (Figure 7.5a).

As mentioned in the Section 2.3, within the Rouse model memory effects, related

to slow density fluctuations of the matrix around the tagged chain, are neglected. The

interactions of the tagged (gaussian) chain with the surroundings are simply mod-
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elled by a friction term and random forces [27]. This Markovian approximation is

also followed by the approach of Harnau and co-workers [54–56, 134, 135], which just

incorporates bending forces in the Rouse equations of motion to account for chain stiff-

ness. The predicted scaling behaviour [Equation (7.5)] is observed for the semiflexible

B-homopolymer and is not signifficantly affected by blending with a slower matrix,

suggesting that memory effects are not relevant and the Markovian approximation can

still be applied in the blend. As discussed above, the observed stretching of the Rouse

correlators for the semiflexible B-chains in the blend essentially reflects a distribution

of elementary exponential processes. It remains to be understood, from a microscopic

basis, why memory effects induced by the matrix are apparently much weaker than

intramolecular effects induced by the presence of the barriers. On the contrary, mem-

ory effects are crucial in the case of the fully-flexible B-chains in the blend [67], for

which predictions of the Rouse model are strongly violated, and non-exponentiality is

intrinsic.

Finally, we want to make a last remark on the dynamics of the semiflexible chains in

the blend. As discussed above, the semiflexible chains considered here are strongly non-

gaussian within all chain length scales. If longer chains were considered, with the same

torsional and bending contributions, the semiflexible character would be lost beyond

some mode wavelength, and gaussian statistics would be recovered for intrachain static

correlations at large length scales (small p-values). We expect that in such length scales,

as observed for the fast fully-flexible chains in blends with strong dynamic asymmetry,

anomalous dynamic scaling will arise for the Rouse modes, distinct from the static

gaussian scaling, and memory effects will be relevant. In fact this seems to be the

case for the results reported in Ref. [64] from atomistic simulations of the dynamically

asymmetric blend PEO/PMMA. There the relaxation times τp of the Rouse mode

correlators of the fast component (PEO) still exhibit anomalous, non-Rouse, p-scaling

at large mode wavelengths N/p for which gaussian behaviour, 〈X2
p(0)〉 ∼ (N/p)2, is

recovered in the mode amplitudes (see Figure 11 in Ref. [64]). This would be the

general expected behaviour in real blends with strong dynamic asymmetry.
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Conclusions

By means of simulations and solution of the equations of the Mode Coupling Theory,

we have studied the role of intramolecular barriers, of arbitrary strength, on several

aspects of polymer dynamics. The investigated dynamic range extends from the caging

regime characteristic of glass-formers to the relaxation of the chain Rouse modes. In

order to investigate the decisive role of intramolecular barriers on the glass transition

of polymer melts, density-density correlators and relaxation times have been computed

from simulations and analyzed in the framework of the Mode Coupling Theory (MCT)

of the glass transition. This is justified, since the quality of the specific static approxi-

mations invoked by MCT for polymer melts, based on the polymer reference interaction

site model (PRISM), are not affected by the introduction of the intramolecular barriers.

Critical nonergodicity parameters, critical temperatures and dynamical exponents

of the theory have been obtained from consistent fits of the simulation data to the

MCT asymptotic laws. From the analysis of the critical nonergodicity parameters we

deduce that the presence of the barriers induces a weaker localization length in the

system at fixed density. The increase of the barrier strength at fixed density induces

also a higher critical temperature Tc, as well as a longer relaxation time for fixed density

and temperature. The values of the dynamical exponents, as obtained from the MCT

analysis of the simulation data, exhibit significant differences between the limit of fully

flexible (with zero values of the internal barriers) and stiff chains. In particular the

so-called exponent parameter λ takes standard values λ ∼ 0.7 for the fully-flexible

case and values approaching the upper limit λ = 1 for high values of the internal

barriers. While the former λ-values are characteristic of systems dominated by packing

effects, transitions with λ ≈ 1 arise in systems with different competing mechanisms
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for dynamic arrest. In our systems these large values of λ suggest competition between

two distinct mechanisms: general packing effects and polymer-specific intramolecular

barriers.

The results of the simulation data analysis have been compared with the numerical

solutions of the MCT equations for polymer melts. We observed that solutions of MCT

for the structural relaxation reproduce qualitative trends of simulations for weak and

moderate barriers. However, a progressive discrepancy between MCT and simulations

is revealed as the limit of stiff chains is approached. We have tested the validity of

several assumptions inherent to the theory. Deviations from the theoretical predictions

do not seem related with dynamic heterogenities, which indeed are not enhanced by

increasing the barrier strength. Moreover, the convolution approximation for three-

point static correlations retains its validity for stiff chains. Even the role of slow modes

at intermediate length scales, not accounted for by MCT, becomes less significant

on increasing chain stiffness. At this point it is not clear how to improve the MCT

equations in order to remove the mentioned discrepancies for the case of stiff chains.

We have suggested the possibility of formulating the MCT equations in terms of roto-

translational density fluctuations over specific length scales.

Concerning the relaxation of the chain degrees of freedom, we have analyzed sim-

ulation data in the framework of the Rouse model. We found that simulation data

showed progressive deviations from the Rouse predictions. These include anomalous

scaling of Rouse relaxation times, long-time plateaux, and non-monotonous wavelength

dependence of the Rouse mode correlators. We solved the MCT equations of motion

for the Rouse mode correlators and found that MCT solutions are in semiquantitative

agreement with anomalous trends of simulations, with similar exponents for the effec-

tive power laws. Thus MCT provides a microscopic basis for the observed deviations

from the Rouse model on increasing the barrier strength. Beyond usual phenomeno-

logical models for chain dynamics (the Rouse model being the corresponding one for

fully-flexible chains), MCT provides a unified microscopic picture down to time scales

around and before the α-process, which is not accounted for within the mentioned

models.

We have also performed simulations of the bead-spring model with tunable in-
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tramolecular barriers blended with a slower component. Extending previous investi-

gations for fully-flexible chains, we investigate the effect of the dynamic asymmetry

in the blend on the relaxation of the semiflexible chains. We find the same anoma-

lous scaling behaviour for the relaxation times and the static amplitudes of the Rouse

modes, in agreement with Markovian models which extend the Rouse equations by the

introduction of bending forces. Thus, anomalous dynamic features for the semiflexible

chains essentially have a static and intramolecular origin. This is very different from

the case of fully-flexible chains in blends with similar dynamic asymmetry. For the

latter anomalous dynamic scaling is strongly correlated with the dynamic asymmetry,

and not to features of the static amplitudes, which indeed still follow gaussian scaling.

The former results suggest that memory effects induced by the surrounding slow ma-

trix in the blend are not relevant for non-entangled semiflexible polymers, and Marko-

vian models can still be applied. However, if the chains are long enough, we expect

that the influence of the memory effects will be recovered at large length scales where

intrachain static correlations recover gaussian statistics.
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Appendix A

MCT: Schematic Derivation

In this appendix we schematically summarize the derivation of the equations of motion

of the Mode Coupling Theory within the Mori-Zwanzig formalism. Detailed expositions

can be found in extensive reviews in Refs. [4–8]

Le us consider a classical observable A = A(r1, r2, ..., rN ,p1,p2, ...,pN ), being a

function of the coordinates and momenta of an N -particle system. The equation of

motion for A is given by:

iLA(t) = Ȧ(t) (A.1)

where L is the hermitian Liouville operator, defined by:

iL =
∑

i

(
pi

m
· ∂

∂ri
−
∑

j

∂V (rij)

∂rj
· ∂

∂pi

)
(A.2)

and V (rij) = V (ri − rj) is the interaction potential between the particles. The set of

all possible observables form a vector space and one can define a scalar product on the

phase space via

(A|B) ≡ 〈A∗B〉 (A.3)

where 〈...〉 denotes ensemble average. Now consider the projection operator P

P ≡ (A|...)(A|A)−1A (A.4)

If A is a vector itself, (A|A)−1 is its inverse modulus. In geometrical terms the projec-
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tion operator projects and arbitrary observable B on the space spanned by A. If we

define the operator Q = 1− P, it is easy to see that Q projetcs B on to the subspace

orthogonal to A. From equation (A.1) it follows that the time dependence of A is given

by A(t) = exp(iLt)A(0). Inserting the identity operator P + Q after the propagator

exp(iLt) and differentiating with respect to t we find

Ȧ(t) = iΩA(t) + eiLt(1− P)Ȧ(0) (A.5)

with iΩ = 〈A∗(0)Ȧ(0)〉
〈A∗(0)A(0)〉

. The last term in (A.5) can be written as

eiLt(1− P)Ȧ(0) = f(t) +

∫ t

0

dt′eiLt′PiLf(t− t′) (A.6)

with f(t) = ei(1−P)Lt(1 − P)Ȧ(0). The function f(t) is the result of projecting Ȧ(0)

onto the subspace orthogonal to A(0) and propagating the result within that subspace.

By construction 〈A∗(0)f(t)〉 = 0 and (1−P)f(t) = f(t), i.e., f(t) is always orthogonal

to A(0). The function f(t) is called the fluctuating force.

Using in Eq. (A.6) the relations PLf(t) = (A|Lf(t))(A|A)−1A and 〈A∗(0)iLf(t−
t′)〉 = −〈f ∗(0)f(t − t′)〉 , we obtain for the equation of motion (A.5) the following

expression

Ȧ(t) = iΩA(t) + f(t)−
∫ t

0

dt′K(t− t′)A(t′) (A.7)

where we have introduced the memory function

K(t− t′) =
〈f ∗(0)f(t− t′)〉
〈A∗(0)A(0)〉 (A.8)

Thus the equation of motion for A has been trasformed into a generalized Langevin

equation with f(t) playing the role of the fluctuating force and the relation (A.8) is

just the expression for the fluctuation-dissipation theorem.

To obtain an equation of motion for the time correlation function C(t) = 〈A∗(0)A(t)〉 =

(A|A(t)), we take the scalar product of Eq. (A.7) with A and use the fact that

(A|f(t)) = 0:

Ċ(t) = iΩC(t)−
∫ t

0

dt′K(t− t′)C(t′) (A.9)

This is the so-called ”memory equation”. It is exact since no approximations have been
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made till now. The problem with solving equation A.9 is embodied in the difficulty

of determining the memory function K(t). Let us now turn our attention to the case

of supercooled liquids. For this type of systems the observables of interest are ρq(t) ,

the fluctuations in density for wave vector q, and hence the mode-coupling equations

are equations of motion for the corresponding correlation function, the density-density

correlator F (q, t):

ρq(t) =
∑

i

eiq·ri(t) and F (q, t) =
1

N
〈ρ−q(0)ρq(t)〉 (A.10)

Let us introduce the current related to the fluctuations of density by the continuity

equation:

ρ̇q(t) = q ·
∑

i

pi

m
eiq·ri(t) = iq ·Υq = iqΥL

q (A.11)

where ΥL
q is the longitudinal current (the projection of the current onto q).

We introduce the observable A =


 ρq

ΥL
q




The correlation function C(t), is now a correlation matrix Cij(t) = 〈A∗
i (0)Aj(t)〉:

C(t) =


 〈ρ−q(0)ρq(t)〉 〈ρ−q(0)ΥL

q(t)〉

−〈ΥL
−q(0)ρq(t)〉 −〈ΥL

−q(0)ΥL
q(t)〉




We now evaluate the frequency matrix iΩ = 〈A∗(0)Ȧ(0)〉
〈A∗(0)A(0)〉

= Ċ(0)C−1(0). First of all we

note that the first element in the diagonal of the correlation matrix evalutated at t = 0

is C11(0) = NS(q), where S(q) = 1
N
〈ρ−q(0)ρq(0)〉 = F (q, t = 0) is the static struc-

ture factor. The off-diagonal elements of the correlation matrix C(0) are zero. This

easily demonstrated. From Eq. (A.11) we have that C12(0) = −(i/q)〈ρ−q(0)ρ̇q(0)〉 =

−(i/q)Ḟ (q, 0). Since F (q, t) must be time-reversible, C12(0) = 0. Analogously C21(0) =

0. By using Eq. (A.11) and the equipartition theorem 〈∑i p
2
i (0)〉 = 3mNkBT we find

that the second diagonal element of the matrix C(0) is C22(0) = NkBT/m. With a

similar procedure we find that the derivative of the correlation matrix evalutated at

time t = 0 is:
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Ċ(0) = 〈A∗(0)Ȧ(0)〉 =




0 iNkBT/m

iNkBT/m 0




The frequencies matrix now reads:

iΩ =




0 iq

iqkBT
mS(q)

0




The fluctuating force can now be expressed as a vector f(t) =


 0

Rq(t)




where Rq(t) = Υ̇L
q(t)− iqkBT

mS(q)
ρq(t).

The memory matrix is therefore K(t− t′) =


0 0

0 m〈R−q(0)Rq(t)〉

NkBT




For the time derivative of the correlation matrix we have the following expression:

Ċ(t) =




〈ρ−q(0)ρ̇q(t)〉 〈ρ−q(0)Υ̇L
q(t)〉

−〈ΥL
−q(0)ρ̇q(t)〉 −〈ΥL

−q(0)Υ̇L
q(t)〉




We concentrate on the term Ċ21(t) = −〈ΥL
−q(0)ρ̇q(t)〉. From Eq. (A.11) and re-

calling that ρ∗q = ρ−q and (ΥL
q)∗ = −ΥL

−q we find that Ċ21(t) = (i/q)〈ρ̇−q(0)ρ̇q(t)〉 =

q−1〈[Lρ−q(0)]∗ρ̇q(t)〉 Recalling that the Liouville operator L is Hermitian we have that

Ċ21(t) = −(i/q)〈ρ−q(0)iLρ̇q(t)〉 = −(i/q)〈ρ−q(0)ρ̈q(t)〉. Therefore the element Ċ21(t)

of the correlation matrix can be expressend in terms of the density-density correlator:

Ċ21(t) =
N

iq
F̈ (q, t) (A.12)

Now we can determine the explicit form of the integro-differential equation for Ċ21(t).

Recalling Eq. (A.9) we have:

Ċ21(t) = [iΩC(t)]21 −
∫ t

0

dt′[K(t− t′)C(t′)]21 (A.13)

By using the explicit expression for the frequency, correlation, and memory matrix that

we have previously determined, we have :
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[iΩC(t)]21 =
iqNKBT

mS(q)
F (q, t) and [K(t−t′)C(t′)]21 = K22(t−t′)C21(t

′) (A.14)

By following argumets as those used for determining Eq. (A.12), we find:

C21(t) =
N

iq
Ḟ (q, t) and [K(t− t′)C(t′)]21 =

m

iqKBT
〈R−q(0)Rq(t− t′)〉Ḟ (q, t′)

(A.15)

Finally inserting Eq.(A.12), Eq. (A.14), Eq. (A.15) in Eq. (A.13) we arrive at the

following integro-differential equation for the density-density correlator:

F̈ (q, t) +
q2kBT

mS(q)
F (q, t) +

m

NkBT

∫ t

0

dt′〈R−q(0)Rq(t− t′)〉Ḟ (q, t′) = 0 (A.16)

This equation is exact, but however is not yet solvable and we need to introduce ap-

proximations for the memory term 〈R−q(0)Rq(t− t′)〉.

Let us rewrite the term R−q of the memory function in terms of the Fourier com-

ponents of the potential V (rij). From Eq. (A.11)we have:

Rq(t) = Υ̇L
q(t)− iqkBT

mS(q)
ρq(t) =

∑

i

q̂ · ṗi(t)

m
eiq·ri(t)+

iq

m2

∑

i

(q̂·pi(t))
2eiq·ri(t)− iqkBT

mS(q)
ρq(t)

(A.17)

Recalling that ṗi(t) = −
∑

j
∂V (rij(t))

∂rj(t)
and ρq =

∑
i e

iq·ri(t), and expressing the potential

V (r) in Fourier components: V (r) = (2π)−3
∑

k Vke
−ik·r, we obtain: Rq(t) = R0

q(t) +

R1
q(t) with:

R0
q(t) =

iq

m2

∑

i

(q̂·pi(t))
2eiq·ri(t)− iqkBT

mS(q)
ρq(t) and R1

q(t) =
i(2π)3

m

∑

k

(q̂·k)Vkρq−kρk

(A.18)

Near the transition point, the term R1
q(t) is much slower than R0

q(t). Thus the memory

function 〈R−q(0)Rq(t− t′)〉 will be dominated by the correlation functions of the mode

pairs ρq−kρk: 〈ρk−q(0)ρ−k(0)ρq−k(t− t′)ρk(t− t′)〉.



Appendix B

MCT: Solution of the Equations of

Motion

The MCT equations of motion for the normalized density-density correlator f(q, t)

read:

f̈(q, t) + Ω2(q)f(q, t) + Ω2(q)

∫ t

0

dt′m(q, t− t′)ḟ(q, t′) = 0 (B.1)

where Ω2(q) = (mS(q))−1q2kBT . Let us rewrite the memory kernel m(q, t − t′) as

M(q, t− t′) = Ω2(q)m(q, t− t′). Eq. B.1 represents a set N coupled integro-differential

equations, with wave vectors discretized to N values. The equations were numerically

solved by following the scheme of [142]. We solved the problem with N = 300 values

of q in the range 0 ≤ q ≤ 60. Equation B.1 can be discretized in the time domain

with ti = i ∗ δt, i ∈ N and integrals are estimated as Rienmann sums. We will use the

notation f(q, ti) = fqi and M(q, ti) = Mqi in the following.

Time-domain integrals , involving the memory kernel in eq. B.1 are discretized using

the following approximation: we split the integral at some intermediate time t ∈ δ ·N,

0 < t = iδt < t, and use partial integration in the first term to get:

∫ ti

0

M(q, t− t′)ḟ(q, t′)dt′ =
i∑

k=1

∫ tk

tk−1

[∂tM(q, t− t′)] f(q, t′)dt′

+
i−i∑

k=1

∫ tk

tk−1

M(q, t′) [∂tf(q, t− t′)] dt′ + M(q, t− t)f(q, t)−M(q, t)f(q, 0) (B.2)

130
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Time derivatives in eq. B.2 can be estimated by means of the mean value theorem of

calculus:

∫ ti

0

M(q, t− t′)ḟ(q, t′)dt′ =
i∑

k=1

(Mq,i−k+1 −Mq,i−k)dfk

+
i−i∑

k=1

dMk(fq,i−k+1 − fq,i−k) + Mq,i−ifq,i −Mq,ifq,0 (B.3)

where we have introduced the so-called moments

dfk =
1

δt

∫ tk

tk−1

f(q, t′)dt′ (B.4)

The second order derivative in Eq. B.1 is approximated by a differentiation of an

interpolation polynomial [143]:

f̈q,ti =
2fq,i − 5fq,i−1 + 4fq,i−2 − fq,i−3

δt2
(B.5)

With all these ingredients we can now write down the discrete version of Eq. B.1. The

value of fq,i can be obtained knowing the values of fq,j, Mq,j, dfj and dMj at all j < i.

Rearranging all the terms, we can rewrite Eq. B.1 as:

Aqfq,i = Cq,i (B.6)

where Aq and Cq,i read like:

Aq =
2

δt2
+ Ω2(q) + dM1 (B.7)

Cqi = Mq,i(fq,0 − df1) +
5fq,i−1 − 4fq,i−2 + fq,i−3

δt2
+ dM1fq,i−1 + Mq,i−1df1

+Mq,i−ifq,i −
i−i∑

k=2

dMk (fq,i−k+1 − fq,i−k)

−
i∑

k=2

dfk (Mq,i−k+1 −Mq,i−k) (B.8)
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Finally from Eq. B.6 we can obtain the solution of the MCT equations B.1 at time ti

as:

fq,i = A−1
q Cq,i (B.9)

Eq. B.6 is solved by an iterative procedure with the following criterion for convergence

|fq,i − fq,i−1| < 10−10. Once the solution for the normalized density-density correlator

f(q, t) has been determined with numerical accuracy it can be used to calculate the

self-density correlator f s(q, t) and the Rouse mode correlators Cpq(t) (see Chapter 3)

with an analog iterative procedure.
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[104] M. Pütz, K. Kremer, and G. S. Grest, Europhys. Lett. 49, 735 (2000).

[105] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic

Press, London, 1986).



BIBLIOGRAPHY 139

[106] D. Chandler and H. C. Andersen, J. Chem. Phys. 57, 1 (1997).

[107] W. Kob and H.C. Andersen, Phys. Rev. E 51, 4626 (1995).

[108] J. Horbach and W. Kob, Phys. Rev. B 60, 3169 (1999).

[109] P. J. Flory, Statistical Mechanics of Chain Molecules, (Oxford University Press,

New York, 1988).

[110] P. J. Flory, J. Chem. Phys 13, 453 (1945).

[111] P. J. Flory, J. Chem. Phys 17, 303 (1949).

[112] O. Kratky and G. Porod, Recl. Trav. Chim. Pays-Bas 68, 1106 (1949).

[113] F. Sciortino and W. Kob, Phys. Rev. Lett. 86, 648 (2001).

[114] C. Donati, S. C. Glotzer, P.H. Poole, W. Kob, and S.J. Plimpton, Phys. Rev. E

60, 3107 (1999).

[115] Y. Gebremichael, T.B. Schroder, F.W. Starr, and S. C. Glotzer, Phys. Rev. E

64, 051503 (2001).

[116] S. C. Glotzer, J. Non-Cryst. Solids 274, 342 (2000).
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