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ABSTRACT

This paper estimates a standard version of the New Keynesian monetary
(NKM) model under alternative specifications of the monetary policy rule
using U.S. and Eurozone data. The estimation procedure implemented is a
classical method based on the indirect inference principle. An unrestricted
VAR is considered as the auxiliary model. On the one hand, the estimation
method proposed overcomes some of the shortcomings of using a structural
VAR as the auxiliary model in order to identify the impulse response that
defines the minimum distance estimator implemented in the literature. On
the other hand, by following a classical approach we can further assess the
estimation results found in recent papers that follow a maximum-likelihood
Bayesian approach. The estimation results show that some structural para-
meter estimates are quite sensitive to the specification of monetary policy.
Moreover, the estimation results in the U.S. show that the fit of the NKM
under an optimal monetary plan is much worse than the fit of the NKM
model assuming a forward-looking Taylor rule. In contrast to the U.S. case,
in the Eurozone the best fit is obtained assuming a backward-looking Taylor
rule, but the improvement is rather small with respect to assuming either a
forward-looking Taylor rule or an optimal plan.
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1 INTRODUCTION

The New Keynesian monetary (NKM) model has become the workhorse for
analyzing short-run fluctuations and the effects of monetary policy. Many
papers have estimated versions of the NKM model for many purposes.1

Two general approaches have been followed in the literature for estimat-
ing dynamic stochastic general equilibrium models such as the NKM model.
Rotemberg and Woodford (1997) estimate the NKM model by minimizing a
distance function between the impulse response functions obtained from ac-
tual data and those derived from synthetic data (i.e., data generated by the
model). A similar approach is followed by Amato and Laubach (2003) and
Boivin and Giannoni (2003). Alternatively, Lubik and Schorfheide (2004),
Smets and Wouters (2003), Canova (2004) and Rabanal and Rubio-Ramírez
(2005), among others, follow a full information maximum-likelihood Bayesian
approach.
The aim of this paper is to estimate a standard version of the NKM

model under four alternative monetary policy rules. The first three monetary
rules are Taylor rules where the lagged interest rate is included and the
difference between them is whether the current interest rate reacts to current,
expected or lagged values of inflation and output gap. We call them standard,
forward-looking and backward-looking Taylor rules, respectively. We also
estimate the NKMmodel under the assumption that the Central Bank follows
an “optimal” plan where the parameters characterizing its loss function are
considered as free parameters in the estimation.
We wonder first whether structural parameter estimates are robust to

alternative specifications of monetary policy and, second, which monetary
rule provides the best fit to the data. An answer in the affirmative to the
first question implies that the evaluation of alternative monetary policies is
simpler because robust structural estimates imply lower uncertainty about
structural parameter values. The second question posited is important be-
cause we want to analyze whether monetary policy is forward-looking and
how optimal monetary policy is. In a similar vein María-Dolores and Vázquez
(2004) show that in order to reproduce the comovement between output and
inflation in the U.S., the type of Taylor rule assumed in the NKM model has

1Some examples of this rapidly growing literature follow. Rotemberg and Woodford
(1997) and Galí and Gertler (1999) analyze inflation dynamics and evaluate monetary
policy. Lubik and Schorfheide (2004) estimate the model for testing for indeterminacy.
Boivin and Giannoni (2003) and Canova (2004) estimate the model for testing the stability
of monetary policy parameters and the transmission mechanism of policy shocks. These
papers use U.S. data. See also Smets and Wouters (2003) for an expanded version of the
standard NKM model of the Eurozone.

3



to be consistent with the relative importance of forward-looking components
characterizing the private sector behavior.
We follow a classical approach based on the indirect inference principle

suggested by Gouriéroux, Monfort and Renault (1993), Smith (1993) and
Gallant and Tauchen (1996) to estimate the NKM model under alternative
specifications of monetary policy.2 As in the first approach mentioned above,
we use an (unrestricted) VAR as the auxiliary model,3 but the distance func-
tion is built upon the coefficients estimated from a three-variable VAR instead
of upon the impulse response functions. We pay attention to the VAR co-
efficients for three main reasons. First, the alternative versions of the NKM
model can be represented as a restricted VAR. Therefore, the unrestricted
VAR used as the auxiliary model nests any version of the model considered.
Second, obtaining sensible impulse response functions usually requires the
inclusion of additional variables. For instance, to solve the so called price
puzzle a commodity price index or an asset price is included in the impulse
response analysis even though the NKM model is silent about how either
the commodity price index or any asset price is determined. Finally (and
more technically), applications of the minimum distance estimator based on
impulse response functions use a diagonal weighting matrix that includes
the inverse of each impulse response’s variance on the main diagonal. This
weighting matrix delivers consistent estimates of the structural parameters,
but it is not asymptotically efficient since it does not take into account the
whole covariance matrix structure associated with the set of moments.4 We
consider the VAR coefficients as the set of moments in order to implement
the minimum distance estimator. Then, an estimator of the efficient weight-
ing matrix is found to be straightforward.5 Moreover, all parameters are
estimated in our application and the only restrictions imposed in the esti-

2See also Gouriéroux and Monfort (1996) for a monograph on simulation-based econo-
metric methods.

3Gourieroux, Monfort and Renault (1993), Smith(1993), and Gutiérrez and Vázquez
(2004) show applications of the indirect inference principle using a parametric auxiliary
model. Gallant and Tauchen (1996), Gallant, Hsieh and Tauchen (1997) consider semi-
nonparametric models as an auxiliary model. They call this latter approach the “efficient
method of moments” since the idea is to reach asymptotic efficiency by choosing a flex-
ible auxiliary model capable of providing a good approximation for any distribution by
increasing the number of auxiliary parameters.

4Boivin and Giannoni (2003) indicate this drawback, but provide no alternative.
Canova (2004) points out two additional drawbacks in some applications of the minimum
distance estimator. First, fixing parameters that are hard to estimate. Second, arbitrarily
constraining the search for the maximum.

5See Duffie and Singleton (1993, p.939) for a discussion on the choice of a weighting
matrix in order to obtain asymptotic efficient estimates.
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mation are those imposed by economic theory. Namely, all parameters are
non-negative and a subset of them belongs to the interval [0, 1).
By following a classical approach, we obviously depart from papers that

use a Bayesian approach. We believe that a Bayesian approach is appro-
priate for answering many questions when the main focus is, for instance,
the analysis of the effects of monetary policy and the researcher has strong
priors about certain structural parameter values (say, for instance, that the
discount factor parameter is around 0.99 with high probability when using
quarterly data). But we also think that a classical approach is useful when
a researcher’s knowledge of model specification and parameter values is less
precise and one wants to analyze the sensitivity of structural parameters
to alternative model specifications, or alternatively when one wants to ana-
lyze whether a given set of priors are confirmed by the data without imposing
them in the estimation procedure. Under this view the classical and Bayesian
methods should be viewed as complementary approaches.
The main estimation results can be summarized as follows. They show

that several parameter estimates are quite sensitive to the specification of
the monetary policy rule. For instance, the estimates of the relative risk
aversion parameter and the slope of the Phillips curve are rather sensitive
to the specification of the Taylor rule in the U.S., but not in the Eurozone.
Moreover, the estimation results in the U.S. show that the fit of the NKM
under an optimal monetary plan is worse than the fit of the NKM model
assuming a forward-looking Taylor rule. In contrast to the U.S. case, the
best fit in the Eurozone is obtained assuming a backward-looking Taylor
rule, but the improvement is rather small with respect to assuming either a
forward-looking Taylor rule or an optimal plan. Furthermore, our estimation
results suggest that the standard deviations of certain parameter estimates
are much larger than those obtained using Bayesian methods where for other
parameters (for instance, the discount factor and the inertial parameter of
the Taylor rule) they are similar under the two approaches. Diagnostic tests
also suggest that the NKM model has trouble in accounting for inflation
persistence in actual data as largely documented in the literature as well as
for output gap and interest rate persistence.
The rest of the paper is organized as follows. Section 2 introduces the

log-linearized approximation of a standard version of the NKM model and
presents four alternative specifications for the monetary rule widely used in
the literature. Section 3 describes the structural estimation method used
in this paper. Section 4 presents and discusses the estimation results, and
provides diagnostic tests to identify features of the data that the NKMmodel
does not account for. Section 5 concludes.
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2 THENEWKEYNESIANMONETARYMODEL

The model analyzed in this paper is a standard version of the NKM model,
which is given by the following set of equations:

yt = Etyt+1 − τ(it −Etπt+1) + gt, (1)

πt = βEtπt+1 + κyt + zt, (2)

it = ρit−1 + (1− ρ)(ψ1πt + ψ2yt) + �it. (3)

where y, π and i denote the log-deviations from the steady states of output,
inflation and nominal interest rate, respectively. Et denotes the conditional
expectation based on the agents’ information set at time t. g and z denote
aggregate demand and aggregate supply shocks, respectively. These two
shocks are further assumed to follow first-order autoregressive process

gt = ρggt−1 + �gt, (4)

zt = ρzzt−1 + �zt, (5)

where �gt and �zt denote i.i.d. random shocks.
Equation (1) is the log-linearized consumption first-order condition ob-

tained from the representative agent optimization plan. The parameter τ > 0
represents the intertemporal elasticity of substitution obtained when assum-
ing a standard constant relative risk aversion utility function.
Equation (2) is the new Phillips curve that is obtained in a sticky price à

la Calvo (1983) model where monopolistically competitive firms produce (a
continuum of) differentiated goods and each firm faces a downward sloping
demand curve for its produced good. The parameter β ∈ (0, 1) is the agent
discount factor and κ measures the slope of the New Phillips curve.6

Equation (3) is a standard Taylor-type monetary rule where the nomi-
nal interest rate exhibits smoothing behavior, captured by parameter ρ, for
which there are several motivating arguments in the literature. These argu-
ments range from the traditional concern of central banks for the stability of
financial markets (see Goodfriend, 1991 and Sacks, 1997) to the more psy-
chological one posed by Lowe and Ellis (1997), who argue that there might

6Early versions of the NKM models include those of Yun (1996), Goodfriend and King
(1997), Rotemberg and Woodford (1995, 1997) and McCallum and Nelson (1999). See also
Galí (2002) for a detailed analytical derivation of a standard version of the NKM model.
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be a political incentive for smoothing whenever policymakers are likely to
be embarrassed by reversals in the direction of interest-rate changes if they
believe that the public may interpret them as repudiations of previous ac-
tions. By contrast, a series of interest-rate changes in the same direction
looks like a well-designed programme, and that may give rise to the sluggish
behavior of the intervention interest rate. Moreover, Taylor rule (3) assumes
that the nominal interest rate responds to current deviations of output and
inflation from their respective steady state values. Later on, we shall con-
sider a backward-looking Taylor rule, a forward-looking Taylor rule and an
optimal monetary plan.
The system of equations (1)-(5) can be written in matrix form as follows

Γ0ξt = Γ1ξt−1 +Ψ�t +Πηt, (6)

where
ξt = (yt, πt, it, Etyt+1, Etπt+1, gt, zt)

0

�t = (�it, �gt, �zt)
0,

ηt = (yt − Et−1[yt], πt −Et−1[πt])0

Γ0 =



−1 0 −τ 1 τ 1 0
k −1 0 0 β 0 1

−(1− ρ)ψ2 −(1− ρ)ψ1 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0


,

Γ1 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 ρ 0 0 0 0
0 0 0 0 0 ρg 0
0 0 0 0 0 0 ρz
0 0 0 1 0 0 0
0 0 0 0 1 0 0


,
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Π =



0 0
0 0
0 0
0 0
0 0
1 0
0 1


,

Ψ =



0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


.

Equation (6) represents a linear rational expectations (LRE) system. It
is well known that LRE systems deliver multiple stable equilibrium solutions
for certain parameter values. Lubik and Schorfheide (2003) characterize the
complete set of LRE models with indeterminacies and provide a numerical
method for computing them that builds on Sims’ (2002) approach.7 In this
paper, we deal only with sunspot-free equilibria.8

We now extend the analysis to consider alternative monetary policy rules
studied in the literature. First, we consider a Taylor rule where the nominal
interest rate responds to expected deviations of inflation and output from
their respective steady state levels, which describes how the central bank
may react to anticipated movements in output and inflation. Formally, the
forward-looking Taylor rule is given by

it = ρit−1 + (1− ρ)(ψ1Etπt+1 + ψ2Etyt+1) + �it. (7)

Second, a backward-looking Taylor rule is considered where the nominal
interest rate responds to lagged deviations of output and inflation from their

7The GAUSS code for computing equilibria of LRE models can be found on Frank
Schorfheide’s website.

8Lubik and Schorfheide (2003) deal with multiple equilibria by assuming that agents
observe an exogenous sunspot shock ζt, in addition to the fundamental shocks, �t. Since
an LRE system such as (6) is linear, the forecast errors, ηt, can be expressed as a linear
function of �t and ζt : ηt = A1�t + A2ζt, where A1 is 2 × 3 and A2 is 2 × 1 in this
model. There are three possible scenarios: (i) No stable equilibrium. (ii) A unique stable
equilibrium in which A1 is completely determined by the structural parameters of the
model and A2 = 0. (iii) Multiple stable equilibria in which A1 is not uniquely determined
by the structural parameters of the model and A2 can be non-zero. In the latter case, one
can deal only with a stable sunspot-free equilibrium by imposing A2 = 0 and then the
corresponding equilibrium can be understood as a sunspot equilibrium without sunspots.
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respective steady state values as a way of capturing delays in information
flows. Formally,

it = ρit−1 + (1− ρ)(ψ1πt−1 + ψ2yt−1) + �it. (8)

Once the benchmark NKM model has been solved, solving the NKM
model with either of these two alternative Taylor rules only requires replacing
equation (3) by (7) or (8), which amounts only to slight modifications of
matrices Γ0 and Γ1.
Finally, we analyze the optimal plan for the Central Bank. Closely fol-

lowing Woodford (2003) and Giannoni and Woodford (2003), we assume that
the Central Bank minimizes the expected value of a loss criterion of the form

W = E0

" ∞X
t=0

βtLt

#
,

where the loss in each period is given by9

Lt =
1

2
(π2t + λyy

2
t + λii

2
t ).

In order to characterize the optimal plan it is useful to write the Lagrangian
associated with the optimal control problem for the Central Bank10

E0{
∞X
t=0

βt{Lt + µ1t [yt − yt+1 + τ(it − πt+1)− gt]

+µ2t [πt − βπt+1 − κyt − zt]}}

An optimal plan must satisfy the following F.O.C.:11

Et(πt − τβ−1µ1t−1 + µ2t − µ2t−1) = 0, (9)

Et(λyyt + µ1t − β−1µ1t−1 − κµ2t) = 0, (10)

λiit + µ1tτ = 0, (11)

9We have also investigated a loss criterion function that includes an additional term
λ∆(it − it−1)2 in order to control for explicit central bank preferences on interest rate
smoothing. The estimation results (available from the authors upon request) show that
λ∆ is not significant for the U.S. and the Eurozone.
10By the law of iterated expectations, the conditional expectation operators inside the

restrictions are removed.
11As is well known, the optimal plan obtained from these conditions will, in general, not

be time consistent as discussed by Kydland and Prescott (1977).
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obtained by differentiating the Lagrangian with respect to πt, yt and it,
respectively. Under the optimal plan these conditions must hold at each t
≥ 0 together with initial conditions

µ1,−1 = µ2,−1 = 0.

To solve the NKM model under optimal monetary policy the solution
must be found for the system formed by equations (1), (2), (4), (5), (9), (10)
and (11). This solution is derived in Appendix 1.

3 ESTIMATION PROCEDURE

In order to estimate the structural and policy parameters of the NKMmodel,
we follow the indirect inference principle proposed by Gouriéroux, Monfort
and Renault (1993), Smith (1993), and Gallant and Tauchen (1996). A VAR
representation is considered as the auxiliary model.12 More precisely, we
first estimate a three-variable VAR with four lags in order to summarize
the joint dynamics exhibited by quarterly data of output gap, inflation, and
short-term interest rate in the U.S. and the Eurozone. Second, we apply the
simulated moments estimator (SME) suggested by Lee and Ingram (1991)
and Duffie and Singleton (1993) to estimate the underlying structural and
policy parameters of the NKM model.
The use of this estimation strategy is especially appropriate in this context

for three main reasons.13 First, the NKM model is a highly stylized model of
a complex world and this model is then going to be rejected with probability
one when using a test with sufficient power. Therefore, maximum-likelihood
estimation of the restricted VAR model implied by the NKM model may not
be appropriate. In Cochrane’s (2001, p. 293) words “[maximum likelihood ]
does the “right” efficient thing if the model is true. It does not necessarily do
the “reasonable” thing for “approximate” models.” Second, macroeconomic
variables such as output gap, inflation and interest rates show a great deal
of persistence. Since VAR’s are well suited to deal with persistence an un-
restricted VAR is a good candidate as the auxiliary model in this context.
Finally, the VAR auxiliary model nests the alternative versions of the NKM

12Cassou (1989) is an early application of the indirect inference principle using a VAR as
the auxiliary model in the estimation of a dynamic stochastic general equilibrium model.
13At this point, the reader may have the following three questions in mind. Why do we

not estimate the NKM model by maximun-likelihood directly? Why do we use a VAR as
the auxiliary model? What do we learn from the estimation of the NKM model based on
the indirect inference principle? This paragraph answers these three questions.
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model considered. As shown by Gallant and Tauchen (1996), if the auxiliary
model nests the structural model then the estimator is as efficient as max-
imum likelihood. Moreover, the estimation approach based on the indirect
inference principle may help to identify which structural parameter estimates
are forced to go outside of the economically reasonable support (for instance,
the prior distribution support used by Bayesian estimator applications) in
order to achieve a better fit of the NKM model.
The SME makes use of a set of statistics computed from the data set

used and from a number of different simulated data sets generated by the
model being estimated. More specifically, the statistics used to carry out the
SME are the coefficients of the four-variable VAR with four lags, which is
considered as the auxiliary model in this paper. The lag length considered
is fairly reasonable when using quarterly data. To implement the method,
we construct a p× 1 vector with the coefficients of the VAR representation
obtained from actual data, denoted by HT (θ0), where p in this application
is 45,14 T denotes the length of the time series data, and θ is a k × 1 vector
whose components are the structural parameters. The true parameter values
are denoted by θ0. In the NKM model with a Taylor rule, the structural and
policy parameters are θ = (τ , β, ρ, κ, ψ1, ψ2, ρg, ρz, σg, σz, σε, π

∗) and then
k = 12. In the NKM model under an optimal policy plan, the structural
parameters are θ = (τ , β, κ, λy, λi, ρg, ρz, σg, σz, π

∗) and then k = 10 in this
case.
Given that the real data are by assumption a realization of a stochastic

process, the randomness in the estimator can be decreased by simulating
the model m times. For each simulation a p× 1 vector of VAR coefficients,
denoted by HN,i(θ), is obtained from the simulated time series of output gap,
inflation and interest rate generated from the NKM model, where N = nT
is the length of the simulated data. Averaging the m realizations of the
simulated coefficients, i.e., HN(θ) =

1
m

Pm
i=1HNi(θ), we obtain a measure

of the expected value of these coefficients, E(HNi(θ)). Since the model is
estimated many times (we estimate the model for several specifications, four
alternative policy rules and two data sets), after checking the robustness of
the results we make n = m = 10 in this application. To generate simulated
values of output gap, inflation and interest rate we need the starting values
of these variables. For the SME to be consistent, the initial values must have
been drawn from a stationary distribution. In practice, to avoid the influence
of the starting values we follow Lee and Ingram’s suggestion of generating a
realization from the stochastic processes of the four variables of length 2N ,

14We have 39 coefficients from a four-lag, three-variable system and 6 extra coefficients
from the non-redundant elements of the variance-covariance matrix of the VAR residuals.
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discard the first N-simulated observations, and use only the remaining N
observations to carry out the estimation. After N observations have been
simulated, the influence of the initial conditions must have disappeared.
The SME of θ0 is obtained from the minimization of a distance function

of VAR coefficients from real and simulated data. Formally,

min
θ

JT = [HT (θ0)−HN(θ)]
0W [HT (θ0)−HN(θ)],

where the weighting matrix W−1 is the covariance matrix of HT (θ0).
Denoting the solution of the minimization problem by θ̂, Lee and Ingram

(1991) and Duffie and Singleton (1993) prove the following results:

√
T (θ̂ − θ0)→ N

·
0,

µ
1 +

1

n

¶
(B0WB)−1

¸
,

µ
1 +

1

n

¶
TJT → χ2(p− k),

where B is a full rank matrix given by B = E(∂HNi(θ)
∂θ

).15

The indirect inference approach followed in this paper resembles the
method suggested by Ireland (2004) for taking dynamic stochastic general
equilibrium models to data. The main difference between the two approaches
is that Ireland (2004) estimates structural parameters through the estima-
tion of a restricted VAR(1), referred to by Ireland as the hybrid model, by
maximum-likelihood. Under our indirect inference approach, however, an
unrestricted VAR(4) is estimated by ordinary least-squares (which is equiva-
lent to implementing maximum-likelihood) in order to define an appropriate
distance function in terms of VAR coefficients that is minimized to obtain the
structural parameter estimates. The advantage of the indirect inference ap-
proach is that the auxiliary model (our choice is a VAR(4)) allows for a more
flexible structure to capture persistence than the hybrid model (a VAR(1))
considered by Ireland (2004).

15The objective function JT is minimized using the optimization package OPTMUM
programmed in GAUSS language. The Broyden-Fletcher-Glodfard-Shanno algorithm is
applied. To compute the covariance matrix we need to obtain B. Computation of B
requires two steps: first, obtaining the numerical first derivatives of the coefficients of the
VAR representation with respect to the estimates of the structural parameters θ for each
of the m simulations; second, averaging the m-numerical first derivatives to get B. The
GAUSS programs for estimating the alternative versions of the NKM model studied in
this paper are available from the authors upon request.
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4 EMPIRICAL EVIDENCE

4.1 The data

We consider quarterly U.S. data for the output gap, inflation rate obtained
for the implicit GDP deflator and the Fed funds rate during the Greenspan
era.16,17 Figure 1 shows the time series plots in the U.S.

For the Eurozone, we consider quarterly data since 1994 for the output
gap (obtained by implementing the Hodrick-Prescott filter to the GDP time
series for the period 1970:1-2004:3), the inflation rate obtained for the implicit
GDP deflator and the 3-month Euribor rate.18 Figure 2 displays the time
series plots for the Eurozone.

4.2 Estimation results in the U.S.

Table 1 and second column in Table 3 show the estimation results for the U.S.
The value of the goodness-of-fit statistic, which is distributed as a χ2(33),19

confirms the hypothesis stated above that the NKM model under any speci-
fication of the policy rule considered is too stylized to be supported by actual

16We focus on the Greenspan period for several reasons. First, it allows a more straight-
forward comparison of the monetary policies implemented in the U.S. and the Eurozone.
Second, the Taylor rule seems to fit better in this period than in the pre-Greenspan era.
Third, considering the pre-Greenspan era opens the door to many issues studied in the lit-
erature, including the presence of macroeconomic switching regimes and the existence of
switches in monetary policy (Sims and Zha, 2004, Cogley and Sargent, 2001, and Canova,
2004) and the presence of multiple equilibria and indeterminacy (Lubik and Schorfheide,
2004). These issues are beyond the scope of this paper.
17U.S. output gap is measured as the percentage deviation of GDP from the real po-

tential GDP time series constructed by the U.S. Congressional Budget Office. Appendix
2 describes the sources and sample periods studied for the U.S. and the Eurozone.
18When analyzing monetary policy in the Eurozone two issues emerge. First, we cannot

go back too far in time because it is then hard to justify a common policy rule in the
Eurozone. Second, we have to rely on a market interest rate, such as the Euribor rate,
since the length of the interest rate time series sets by the European Central Bank is too
short.
19When estimating the NKM model under the optimal monetary plan the goodness-of-

fit statistic is distributed as a χ2(31) since the number of parameters being estimated is
10 instead of 12.
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Figure 1: U.S. time series
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Figure 2: Eurozone time series
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data. Nevertheless, the estimation results show that the NKM model assum-
ing a forward-looking Taylor rule improves the fit by 30% with respect to
the NKM under a backward-looking Taylor rule and by roughly 40% with
respect to the NKM model assuming either a standard optimal rule or an
optimal monetary plan.
Among papers using Bayesian methods, slightly different estimation re-

sults are obtained for certain parameters due to differences in model spec-
ification, sample periods considered and so on. For ease of comparison
with Bayesian estimation results, in our discussion we consider Lubik and
Schorfheide (2004) (from now on LS) estimates obtained for the Post-1982
period (and displayed in their Table 3) as representative estimates of the
Bayesian approach. We focus on LS estimates because they estimate a sim-
ilar NKM model, although they only consider the NKM model under the
standard Taylor rule.
Paying attention to the estimates of the NKM under the forward-looking

Taylor rule (the rule that exhibits the best fit) displayed in Table 1, we
observe that the estimate of the discount factor, β, is similar to the estimate
obtained in LS (that is, close to one but statistically different from one).
The estimates for the structural parameters τ and κ are higher than those
obtained by LS and their standard deviations are large, which means that
neither of them is statistically different from one. Moreover, looking at the
estimates of these parameters under alternative policy rules, we observe that
they are highly sensitive to the money rule specification. These results then
suggest that a robustness analysis using alternative values for the structural
parameters is required when studying the implications of different monetary
policies.
As in LS, the policy parameter measuring the inertia in the Taylor rule,

ρ, is close to one but statistically different from one. Moreover, the estimate
of the parameter that captures the reaction of interest rate to the output
gap, ψ2, is significant and lies in the confidence interval estimated by LS. In
contrast to LS, the policy parameter that monitors the response of interest
rates to inflation, ψ1, is less than one and is statistically different from zero
and from one. By looking at the estimates of this parameter under alternative
money rules, we observe that the estimate is also quite sensitive to the money
rule specification. Interestingly, a point estimate for ψ1 larger than one
(although not statistically different from one) is obtained when a standard
Taylor rule is assumed as in LS.
Looking at the parameters characterizing the shocks of the model, we

observe that the estimated persistence of the IS-shock measured by ρg is
large and we cannot reject the presence of a unit root process (that is, ρg
is not statistically different from one and then g follows a random walk).
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An explanation for this result is that the NKM model, a restricted VAR(1),
needs a shock to be forced to follow a random walk process in order to
match the highly persistent dynamics characterized by the auxiliary model,
an unrestricted VAR(4), as described below. However, as in LS this result
does not hold when assuming a standard Taylor rule. The Phillips curve
shock also shows great deal of persistence as in LS (that is, ρz is large), but
we can reject the unit root hypothesis at the 10% significance level in this
case. The size of the Phillips curve shock (measured by σz) is large and
similar to that obtained by LS. Moreover, σz is much larger than σg and σ�
as obtained in LS.
The random walk process identified in the IS-shock suggests that there is

an omitted variable problem. For this reason, we further estimate a gener-
alized version of the NKM model that includes habit formation à la Fuhrer
(2000). The estimation results for this generalized version (not shown in this
paper, but available from the authors upon request) show that the persis-
tence of the IS-shock is substantially reduced by considering habit formation
in consumption, but the estimate of the parameter measuring habit forma-
tion is poorly identified, showing a large standard deviation. Moreover, the
model’s fit, measured by the goodness-of-fit statistic, does not improve sig-
nificantly when habit formation is included.
Finally, the estimate of the steady-state inflation rate, π∗, is much smaller

than that of LS. The low value of π∗ may be capturing the decreasing trend of
the inflation rate during most of the sample period considered. Interestingly,
assuming a standard Taylor rule the point estimate is much closer to the
point estimate obtained by LS than the one obtained with a forward-looking
Taylor rule. This result suggests that by including expectational terms in
the Taylor rule we may be capturing the decreasing inflation trend better.

4.3 Estimation results in the Eurozone

Table 2 and the second column in Table 3 show the estimation results for the
Eurozone. As in the U.S., the value of the goodness-of-fit statistic clearly
shows that the NKM model is not supported by the Eurozone data under
any specification of the policy rule considered. The NKM model assuming a
backward-looking Taylor rule provides the best fit. However, this fit is quite
similar to the one obtained assuming either a forward-looking Taylor rule
or an optimal monetary plan. More precisely, the fit improves by roughly
4.5% moving from either of these two money rules to the backward-looking
Taylor rule. The fit is reduced further (around 12%) when moving from the
standard Taylor rule to the backward-looking Taylor rule.
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Focusing on the estimates under the backward-looking Taylor rule dis-
played in Table 2, we observe that the estimate for β is larger than that for
the U.S. and is not statistically different from one. Moreover, in contrast to
the U.S. case, the estimate of τ is small but statistically significant. As in
the U.S., the estimate of κ is large and not statistically different from one.
In contrast to the U.S. case, the estimates of τ and κ are quite robust to
alternative specifications of the Taylor rule.
Looking at the policy parameters, we observe that the inertial parameter,

ρ, is larger than in the U.S. and statistically different from one. In contrast
with the U.S. empirical results, ψ1 is statistically larger than one and ψ2 is
not statistically significant.
Looking at the parameters characterizing the shocks of the model, we

observe that ρg is not statistically different from one. Therefore, as occurs in
the U.S., we cannot reject the hypothesis that the IS-shock follows a random
walk (unit root) process. Moreover, the Phillips curve shock also shows great
deal of persistence, but we can reject the unit root hypothesis as in the U.S.
The estimates of the standard deviations of shocks are much smaller in the
Eurozone than in the U.S. As in the U.S. case, the Phillips curve shock is
larger than the IS-shock.
Finally, the estimate of the steady-state inflation rate is rather low but

statistically significant and higher than that of the U.S.
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Table 1. Estimation results of NKM model for U.S.
m = 10 Standard Forw-Look Backw-Look
p = 45 Taylor Rule Taylor Rule Taylor Rule
JT 2.15847 1.29572 1.85772
τ 0.34172 0.99869 0.00458

(0.1394) (0.6317) (0.0202)
β 0.99334 0.99314 1.00000

(0.9309) (0.0018) (0.0338)
ρ 0.87310 0.80673 0.98511

(0.0284) (0.0713) (0.0134)
κ 0.99834 0.91662 0.14428

(1.1818) (0.3295) (0.0478)
ψ1 1.08420 0.21300 11.9360

(0.2283) (0.1041) (15.995)
ψ2 0.36170 0.38530 1.14800

(0.0696) (0.1128) (3.0223)
ρg 0.94959 0.98541 0.89094

(0.0176) (0.0197) (0.1082)
ρz 0.91817 0.90870 1.00000

(0.0274) (0.0533) (0.0058)
σg 0.00850 0.17394 0.02822

(0.0037) (0.1255) (0.0164)
σz 0.06447 0.63255 0.00193

(0.0897) (0.1348) (0.0264)
σ� 0.06543 0.05947 0.04066

(0.0087) (0.0138) (0.0115)
π∗ 1.87880 0.24310 2.01900

(0.2028) (0.1624) (0.3223)

Note: Standard errors in parentheses.
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Table 2. Estimation results of NKM model for the Eurozone
m = 10 Standard Forw-Look Backw-Look
p = 45 Taylor Rule Taylor Rule Taylor Rule
JT 2.55083 2.34517 2.23672
τ 0.29274 0.31769 0.12427

(0.1339) (0.2011) (0.0638)
β 0.99978 0.99916 0.99996

(0.3055) (1.9649) (0.1001)
ρ 0.95514 0.87520 0.94219

(0.0180) (0.0104) (0.0126)
κ 0.99812 0.99705 0.99914

(0.5766) (2.4740) (0.5012)
ψ1 2.33140 2.20110 1.80650

(0.6948) (0.7917) (0.2438)
ψ2 0.37890 0.05960 0.58790

(0.5435) (0.1110) (0.3901)
ρg 0.99963 0.97628 0.99999

(0.0016) (0.0119) (0.0003)
ρz 0.88040 0.99943 0.91242

(0.0450) (0.0035) (0.0357)
σg 0.00706 0.01876 0.00328

(0.0038) (0.0105) (0.0019)
σz 0.04527 0.20318 0.01554

(0.0307) (0.5201) (0.0107)
σ� 0.04396 0.00000 0.01325

(0.0172) (0.0037) (0.0037)
π∗ 1.31990 1.29970 0.77640

(0.4038) (0.4165) (0.2669)

Note: Standard errors in parentheses.
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Table 3. Estimation results of the NKM model under “optimal” monetary
policy rule

p = 45 U.S. Eurozone
m = 10
JT 2.19170 2.34265
τ 0.32741 0.99996

(0.2160) (0.5520)
β 1.00000 0.99908

(0.0053) (0.0025)
κ 1.00000 0.61109

(0.5725) (0.3911)
λy 0.00000 0.99978

(0.0365) (0.8055)
λi 0.20300 0.15605

(0.1363) (0.1092)
ρg 0.99069 0.98701

(0.0076) (0.0094)
ρz 0.96515 0.72794

(0.0274) (0.0967)
σg 0.04514 0.08803

(0.0288) (0.0562)
σz 0.40175 0.15353

(0.2263) (0.0513)
π∗ 2.30140 1.83340

(0.5217) (0.2236)

Note: Standard errors in parentheses.

4.4 Diagnostic tests

Since the VAR residuals are orthogonal to the VAR dependent variables,
the goodness-of-fit statistic can be decomposed into two terms: JT (θ) =
J1T (θ) + J2T (θ), where J

1
T (θ) measures the distance associated with the sys-

tematic part of the VAR and J2T (θ)measures the distance associated with the
residual features of the VAR. The estimation results obtained with the NKM
model under a forward-looking Taylor rule using U.S data results in J1T (θ) =
1.2286 and J2T (θ) = 0.0671. Therefore, the NKM model has more trouble in
accounting for the systematic part than for the non-systematic part of the
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VAR in the U.S.20 For the Eurozone, J1T (θ) = 1.8014 and J2T (θ) = 0.4354 is
obtained under the backward-looking Taylor rule, which indicates that the
NKMmodel has relatively more trouble in accounting for the non-systematic
part than for the systematic part of the VAR.
The components of the vector [HT (θ0) −HN(θ)] contain information on

how well the NKM model accounts for the estimates of the VAR (auxiliary)
model. Larger components point to the estimates of the auxiliary model that
the NKM has trouble accounting for. As suggested by Gallant, Hsieh and
Tauchen (1997) the following quasi-t-ratios statistics can identify sources for
model failure:r
1 +

1

n

√
T
h¡
diag(W−1

T )
¢1/2
i

i−1
[HT (θ0)−HN(θ)]i for i = 1, ..., p, (12)

where WT is a consistent estimate of W ,
¡
diag(W−1

T )
¢
i
denotes the i-th ele-

ment of the diagonal of matrixW−1
T and [HT (θ0)−HN(θ)]i is the i-th element

of [HT (θ0)−HN(θ)]. In particular, a large i-th diagnostic statistic points to
the fact that the NKM model does a poor job of fitting the i-th coefficient
of the VAR model.
The second and third columns in Tables 4-5 show the VAR estimates

and the corresponding standard errors using U.S. and Eurozone data sets,
respectively. The last columns in Tables 4-5 show the corresponding quasi-
t-ratio diagnostic statistic (12) based on the version of the Taylor rule that
provides the best fit in terms of the goodness-of-fit statistic. Looking at Table
4, we observe that the NKMmodel has trouble in accounting for output gap,
inflation and interest rate persistence in the U.S. since for each equation
some dependent variable lags are significant and the associated diagnostic
statistic is large. Similarly, Table 5 shows that the NKM model has trouble
in accounting for inflation and interest rate persistence in the Eurozone.

20Notice that J1T (θ) is computed based on 39 coefficients whereas J
2
T (θ) is based on 6.

Our conclusion is then based on the fact that the ratio J1T (θ)/J
2
T (θ) = 18.31 is almost

three times larger than the ratio 39/6.
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Table 4. VAR estimates and diagnostic tests. U.S data
Variable Estimate Standard Diagnostic

error statistic

Output gap equation
constant 0.02822 0.21597 0.17167
outputgap(1) 1.08298∗∗∗ 0.13812 −1.03583
outputgap(2) 0.12278 0.20806 2.06817
outputgap(3) −0.43018∗∗ 0.20532 −2.14141
outputgap(4) 0.06394 0.14888 0.23319
inflation(1) −0.00607 0.08223 −0.14368
inflation(2) −0.09515 0.08626 −1.44200
inflation(3) −0.08597 0.09239 −0.85738
inflation(4) −0.02695 0.09422 −0.35944
interest(1) 0.20005 0.19672 0.63862
interest(2) −0.27044 0.33066 −0.55849
interest(3) 0.25979 0.31978 0.96650
interest(4) −0.11359 0.16827 −0.94982

Inflation equation
constant 0.44256 0.32386 2.63917
outputgap(1) 0.34772∗ 0.20712 1.37843
outputgap(2) −0.14552 0.31200 0.13163
outputgap(3) 0.17554 0.30789 0.44681
outputgap(4) −0.20745 0.22326 −0.69702
inflation(1) 0.28204∗∗ 0.12331 −3.02670
inflation(2) 0.07340 0.12935 0.30619
inflation(3) 0.24108∗ 0.13854 0.94262
inflation(4) 0.50003∗∗∗ 0.14129 3.90901
interest(1) −0.27236 0.29500 −2.59664
interest(2) 0.12274 0.49586 0.43598
interest(3) 0.38606 0.47953 1.40528
interest(4) −0.35242 0.25233 −1.57486
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Table 4. (Continued)
Variable Estimate Standard Diagnostic

error statistic

Interest rate equation
constant 0.12225 0.13924 −0.46812
outputgap(1) 0.31897∗∗∗ 0.08905 1.32905
outputgap(2) −0.08477 0.13414 0.19928
outputgap(3) −0.10315 0.13238 −0.69668
outputgap(4) −0.03305 0.09599 −0.18412
inflation(1) 0.04188 0.05302 1.37250
inflation(2) 0.12533∗∗ 0.05561 1.58431
inflation(3) 0.04564 0.05957 0.88942
inflation(4) −0.00885 0.06075 −0.36930
interest(1) 1.40855∗∗∗ 0.12684 2.59077
interest(2) −0.67016∗∗ 0.21319 −3.45561
interest(3) 0.31650 0.20618 2.22761
interest(4) −0.16920 0.10849 −1.06919

VAR residuals variance matrix
s11 0.18560 0.25340 1.18205
s21 −0.07479 0.26022 −0.21099
s31 0.00980 0.11946 −1.63557
s22 0.41737 0.57359 0.54705
s23 0.00231 0.18032 0.59025
s33 0.07715 0.11352 −0.93918

Note: ***,**,* denote that the corresponding coefficient is statistically significant
at the 1%, 5% and 10% levels, respectively.
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Table 5. VAR estimates and diagnostic tests. Eurozone data
Variable Estimate Standard Diagnostic

error statistic

Output gap equation
constant 0.55970∗∗ 0.22093 3.01980
outputgap(1) 0.94915∗∗∗ 0.21459 0.72121
outputgap(2) −0.00584 0.27354 −0.15816
outputgap(3) −0.41740 0.28017 −1.71858
outputgap(4) 0.31488 0.20974 1.99002
inflation(1) −0.04318 0.09813 0.23204
inflation(2) −0.03606 0.08801 −0.30057
inflation(3) −0.16344∗ 0.08870 −2.69943
inflation(4) −0.04970 0.09608 −0.40461
interest(1) 0.02741 0.22171 −0.11723
interest(2) 0.10111 0.31599 0.42930
interest(3) 0.01670 0.31420 −0.58612
interest(4) −0.13808 0.20025 0.29865

Inflation equation
constant 0.69354 0.46858 1.19984
outputgap(1) 0.57352 0.45514 0.40695
outputgap(2) −0.67613 0.58016 −1.19103
outputgap(3) 0.12720 0.59422 0.34153
outputgap(4) 0.49732 0.44484 1.05568
inflation(1) −0.01081 0.20812 −3.56385
inflation(2) 0.04488 0.18667 0.17114
inflation(3) 0.43319∗∗ 0.18812 2.36198
inflation(4) 0.17112 0.20377 1.10941
interest(1) 0.05784 0.47023 −0.25923
interest(2) 0.71580 0.67019 1.48859
interest(3) −0.47347 0.66640 −1.87885
interest(4) −0.28758 0.42472 0.58386

25



Table 5. (Continued)
Variable Estimate Standard Diagnostic

error statistic

Interest rate equation
constant 0.20628 0.21218 2.55026
outputgap(1) 0.35453∗ 0.20609 −0.18566
outputgap(2) −0.19802 0.26271 0.46764
outputgap(3) −0.00729 0.26907 −0.30755
outputgap(4) −0.10663 0.20143 0.26037
inflation(1) 1.33993 0.09424 −0.22536
inflation(2) −0.00845 0.08453 −0.21021
inflation(3) 0.19109 0.08518 −2.83734
inflation(4) −0.01318 0.09227 −0.29179
interest(1) 1.06230∗∗∗ 0.21293 0.21782
interest(2) −0.04207 0.30347 0.06829
interest(3) −0.29029 0.30175 −1.10468
interest(4) 0.22715 0.19232 1.46998

VAR residuals variance matrix
s11 0.05143 0.07273 4.30576
s21 0.01572 0.11020 0.02496
s31 0.02367 0.05477 2.91087
s22 0.23135 0.32717 0.20730
s23 −0.00523 0.10489 0.62778
s33 0.04744 0.06708 0.89745

Note: ***,**,* denote that the corresponding coefficient is statistically significant
at the 1%, 5% and 10% levels, respectively.

5 CONCLUSIONS

We estimate a standard New Keynesian monetary (NKM) model under alter-
native specifications of the monetary policy rule using a classical economet-
ric method based on the indirect inference principle. The estimation results
show that several structural parameter estimates are quite sensitive to the
specification of the monetary policy rule in the U.S. Furthermore, the esti-
mation results in the U.S. show that the fit of the NKM under an optimal
monetary plan is much worse than the fit of the NKM model assuming a
forward-looking Taylor rule. In contrast to the U.S. case, the best fit in the

26



Eurozone is obtained assuming a backward-looking Taylor rule, but the im-
provement is rather small with respect to assuming either a forward-looking
Taylor rule or an optimal plan. Moreover, our estimation results show that
the standard deviations of some structural parameter estimates are larger
than those obtained using maximum-likelihood Bayesian methods. These es-
timation results may help to reconsider some of the prior distributions used
in Bayesian estimation of NKM models.
Finally, our estimation results also point to a common finding obtained in

the literature using alternative econometric approaches. Namely, the basic
NKM model has trouble in accounting for the persistence observed in actual
data.

APPENDIX 1

This appendix describes how to obtain the solution for the NKMmodel under
the optimal monetary plan. The solution is found by solving the following
matrix system:

Γo0ξ
o
t = Γo1ξ

o
t−1 +Ψo�ot +Πoηot (A.1)

where the superscript “o” stands for the NKM model under the optimal
monetary plan and

ξot = (yt, πt, it, Etyt+1, Etπt+1, Etµ1t+1, Etµ2t+1, µ1t, µ2t, gt, zt)
0,

�ot = (�gt, �zt)
0,

ηot = (yt −Et−1[yt], πt −Et−1[πt], µ2t −Et−1[µ2t], µ1t − Et−1[µ1t])
0.

Γo0 =



−1 0 −τ 1 τ 0 0 0 0 1 0
κ −1 0 0 β 0 0 0 0 0 1
0 −1 0 0 0 0 0 0 −1 0 0
−λy 0 0 0 0 0 0 −1 κ 0 0
0 0 1 0 0 0 0 τ

λi
0 0 0

0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0


,
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Γo1 =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −τβ−1 −1 0 0
0 0 0 0 0 0 0 −β−1 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ρg 0
0 0 0 0 0 0 0 0 0 0 ρz
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0


,

Πo =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


,

Ψo =



0 0
0 0
0 0
0 0
0 0
1 0
0 1
0 0
0 0
0 0
0 0


.

Notice that the system (A.1) is composed of equations (1), (2), (9), (10),
(11), (4), (5) and the following appended identities:

yt = Et−1yt + (yt −Et−1yt),

πt = Et−1πt + (πt − Et−1πt),
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µ2t = Et−1µ2t + (µ2t −Et−1µ2t),

µ1t = Et−1µ1t + (µ1t −Et−1µ1t).

These identities show up when implementing the simple rule suggested
by Sims (2002): when terms of the form Etxt+s appear, we simply make a
sequence of those variables and equation creations that involve one period
forecast errors.

APPENDIX 2

This appendix describes the time series considered.

Economic activity indexes:

• GDP: quarterly, seasonally adjusted data. Period: 1987:3-2004:3. Source:
U.S. Department of Commerce, Bureau of Economic Analysis.

• Real potential GDP: quarterly data. Period: 1987:3-2004:3. Source:
U.S. Congress, Congressional Budget Office.

• GDP: quarterly, seasonally adjusted data. Period: 1994:1-2004:3. Source:
OECD statistics.

Price level indexes:

• U.S. implicit price deflator of GDP: quarterly, seasonally adjusted data.
Period: 1987:3-2004:3. Source: U.S. Department of Commerce, Bureau
of Economic Analysis

• Eurozone implicit price deflator of GDP: quarterly, seasonally adjusted
data. Period: 1994:1-2004:3. Source: OECD statistics.

Interest rates:

• Federal funds rate: quarterly data. Period: 1987:3-2004:3. Source:
Board of Governors of the Federal Reserve System.

• 3-month Euribor interbank rate: quarterly data. Period: 1994:1-2004:3.
Source: OECD statistics.
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