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CONSPECTUS 

Crystallization of polymeric materials under nanoscopic confinement is highly relevant for 

nanotechnology applications. When a polymer is confined within rigid nanoporous anodic 

aluminum oxide (AAO) templates, the crystallization behavior experiences dramatic changes as 

the pore size is reduced, including nucleation mechanism, crystal orientation, crystallization 

kinetics, and polymorphic transition, etc. As an experimental prerequisite, exhaustive cleaning 

procedures after infiltrations of polymers in AAO pores must be performed to ensure producing 

an ensemble of isolated polymer-filled nanopores. Layers of residual polymers on the AAO 

surface percolate nanopores and lead to the so-called “fractionated crystallization”, i.e., multiple 

crystallization peaks during cooling. 

As the density of isolated nanopores in a typical AAO template exceeds the density of 

heterogeneities in bulk polymers, the majority of nanopores will be heterogeneity-free. This 

means that the nucleation will proceed by surface or homogeneous nucleation. As a 

consequence, a very large supercooling is necessary for crystallization, and its kinetics is reduced 

to a first-order process that is dominated by nucleation. Self-nucleation is a powerful method to 

exponentially increase nucleation density. However, when the diameter of the nanopores is lower 

than a critical value, confinement prevents the possibility to self-nucleate the material. 

Because of the anisotropic nature of AAO pores, polymer crystals inside AAO also exhibit 

anisotropy, which is determined by thermodynamic stability and kinetic selection rules. For low 

molecular weight poly(ethylene oxide) (PEO) with extended chain crystals, the orientation of 

polymer crystals changes from the “chain perpendicular to” to “chain parallel to” AAO pore axis, 

when the diameter of AAO decreases to the contour length of the PEO, indicating the effect of 
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thermodynamic stability. When the thermodynamic requirement is satisfied, the orientation is 

determined by kinetics including crystal growth, nucleation and crystal growth rate. An 

orientation diagram has been established for PEO/AAO system, considering the cooling 

condition and pore size. 

The interfacial polymer layer has different physical properties as compared to the bulk. In 

poly(L-lactic acid), the relationship between the segmental mobility of the interfacial layer and 

crystallization rate is established. For the investigation of polymorphic transition of poly(butane-

1), the results indicate that a 12 nm interfacial layer hinders the transition of Form II to Form I. 

Block and random copolymers have also been infiltrated into AAO nanopores, and their 

crystallization behavior is analogously affected as pore size is reduced. 
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1. INTRODUCTION 

Polymeric materials are ubiquitous in industry and in human life, among which 70% are 

semi-crystalline polymers. How a long flexible chain, frequently entangled with neighboring 

chains, crystallizes as crystals with three-dimensional order has been a puzzle. Till now, there is 

still a lack of a well-accepted crystallization theory that can explain all of the experimental 

phenomena.5, 6 The duality of “commercial success” and “theoretical deficiency” has coexisted in 

this field for decades. The basic building block of polymer crystals is the two-dimensional 

folded-chain lamella with a typical thickness of ca. 10 nm. On this scale, metastable states and 

kinetics play a critical role in polymer crystallization.7, 8 

With the blooming of nanoscience and nanotechnology, the physical properties of materials 

in very small dimensions have caught great attention because they deviate significantly from 

those of the bulk. How the crystallization behavior changes with decreasing size became a hot 

topic of research since the 1990s with the development of block copolymers.9-13 Meanwhile, self-

ordered porous anodic aluminum oxide templates (AAO) were fabricated to prepare organic or 

inorganic nanostructures.14-17 AAO contains hexagonal arrays of nanopores that are parallel and 

separated by boundaries. The pore diameter is in the range of 10 ~ 400 nm, and the length of the 

pore ranges from tens to hundreds of micrometers. 

Figure 1 shows the typical nanostructures prepared using AAO as templates, including 

platinum (Pt) arrays,14 polystyrene (PS) nanotubes,16 isotactic polypropylene (iPP) nanorods,18 

and poly(ε-caprolactone) (PCL) nanorods.2 Geometrically, AAO pores are similar to the cylinder 

phase of block copolymers. Compared with block copolymers, the pores of AAO cover a broader 

range of diameter and length. More importantly, they are physically isolated, and there are no 
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chemical bonds at the interface. Thus, AAO templates provide a convenient model system to 

study the crystallization behavior of polymers under cylindrical confinement. 

 

Figure 1. (A) Top image of Pt template prepared by using a  two-step replica method of AAO,14 

(B) PS nanotubes,16 (C) iPP rods,18 and (D) PCL rods2 prepared by AAO molding and 

subsequent dissolving the templates. Reproduced  with permission from refs 14 , 16, 18, and 2. 

Copyright 1995, 2002 AAAS, Copyright 2011, 2017 American Chemical Society. 

This account highlights the experimental results and understanding of the features of 

confined crystallization of semi-crystalline polymers in our group in a phenomenological view. 

Considering crystallization, the easiest experiment is to perform a differential scanning 

calorimetry (DSC) test, where crystallization temperature (Tc), melting temperature (Tm) and 

crystallization and melting enthalpies (∆Hc and ∆Hm) can be determined. Most frequently, the Tm 

of polymers confined within AAO shows no change or a slight decrease, and the melting 

enthalpy, corresponding to the crystallinity, decreases when the diameter of  

AAO pore decreases.13, 19 The most interesting observation is the variation in Tc. Figure 2 

summarizes the Tc of bulk and infiltrated homopolymers within AAO, plotted as a function of 

their Tm values (measured during a DSC heating scan). Data are taken from the ref.1, 2, 18, 20-37 The 
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dotted line represents the thermodynamic equilibrium condition, where Tc = Tm. Depending on 

the type of polymers, the bulk samples exhibit supercoolings (∆T = Tm − Tc) in the range of 15 ~ 

60 ºC. The red points are the Tc values of infiltrated polymers within AAO templates (only the 

lowest Tc values are shown here if multiple crystallization peaks exist). A dramatic decrease of 

Tc, as compared to the bulk, in the order of ~ 50 ºC can be observed. 

The depression of Tc is a general phenomenon in confined polymers and has been explained 

by the transition of the nucleation mechanism from heterogeneous nucleation to surface or 

homogeneous nucleation. It is well-known that under normal cooling conditions, crystallization 

of a bulk polymer is primarily nucleated by the heterogeneities that persist in the melt, such as 

impurities, catalyst residues, etc. Once nucleated, the crystallization proceeds to fill the space by 

the growth step. However, for polymers that are confined in microdomains, e.g., the case of 

AAO pores, the growth step is physically prohibited among adjacent domains. Because each 

microdomain has to nucleate inside itself, naturally, those pores free from heterogeneities must 

crystallize via surface or homogeneous nucleation, which occurs at lower Tc values to overcome 

a higher free energy barrier.38 
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Figure 2. Crystallization temperature as a function of the melting temperature of different 

homopolymers infiltrated within AAO templates. The data points are taken from iPP,2, 18, 20 

PCL,2, 21, 22 poly(vinylidene fluoride) (PVDF),23, 24 polyethylene (PE),25, 26 syndiotactic 

polystyrene (sPS),27 poly(ethylene oxide) (PEO),1, 26, 28-30 poly(butylene adipate) (PBA),31, 32 

poly(butylene succinate) (PBS),32 syndiotactic polypropylene (sPP),33 poly(3-dodecylthiophene) 

(P3DDT),34 poly(3-hydroxybutyrate) (PHB),35 polyamide 6 (PA6),36 and poly(butene-1) (PB-

1).37 

2. FEATURES OF CONFINED CRYSTALLIZATION 

2.1. Nature of Fractionated Crystallization 

A frequently reported observation of polymer crystallization under confinement in AAO is 

the “fractionated crystallization”, where “multiple crystallization peaks” were observed in a DSC 

cooling curve. Fractionated crystallization behavior has been reported in homopolymers, 

including PE,25 iPP,18, 20 sPS,39 PCL,21, 22 PEO,28, 30 PVDF,24 and copolymers such as PEO-b-

PCL.40 By intentionally placing a surface layer of PEO on top of the AAO template filled with 

PEO, we successfully observed an extra crystallization peak at a higher temperature, indicating a 

potential relationship between the surface layer and fractionated crystallization behavior.41 

Motivated by the above peculiar experimental phenomenon, we systematically reexamined 

the crystallization behavior of PCL and iPP to clarify the nature of fractionated crystallization 

under confinement. By testing different cleaning procedures, the polymers were infiltrated into 

AAO templates without surface residue. Different from the previous results,18, 20, 21 only one 

crystallization peak was observed for all the samples (Figures 3A, 3B). To elucidate the 

relationship between surface residue and fractionated crystallization, we studied the effect of the 
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surface cleaning procedure. Figures 3C, 3D show four DSC curves of samples that were cleaned 

with different methods. From sample 1 to sample 4, with increasing the cleaning effectiveness, 

the high-temperature exothermic peak vanished gradually. This proves unambiguously that the 

surface residue is the reason for the observed fractionated crystallization behavior in the 

investigated two polymers, and can be a general reason for other polymers. 
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Figure 3. DSC cooling curves of bulk and infiltrated samples: (A) and (C) PCL, (B) and (D) iPP. 

For samples with different surface cleaning procedures, DSC cooling scans are shown in (C) and 

(D). The curves labeled with “sample 4” had no surface residue and showed only one exothermic 
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peak during cooling. Reproduced with permission from ref. 2. Copyright 2017 American 

Chemical Society. 

In fact, the origin of fractionated crystallization is already known in polymer blends.42, 43 In 

an immiscible crystalline/amorphous blend, the crystalline polymer is dispersed in the 

amorphous matrix as microdomains if the crystalline polymer is the minor component. The 

heterogeneities that act as nuclei are also included in those microdomains (Figure 4, left-hand 

side). Here, “A” and “B” mean two different types of heterogeneities with different activities. 

Because the domains are physically isolated, a nucleus can only nucleate the microdomain that 

contains it. When a sample is cooled from the melt, the bulk sample is nucleated by “A” nuclei 

first, and the crystal spreads over to fill the space. On the other hand, if a blend with crystalline 

microdomains is cooled, the domains that contain “A” heterogeneities will crystallize first, 

resulting in the highest exothermic peak in DSC. The domains that contain “B” heterogeneities 

crystallize at a lower temperature. Finally, those heterogeneity-free domains crystallize at the 

lowest temperature via homogeneous nucleation or surface nucleation. 

The key condition for fractionated crystallization is that the density of microdomains is in the 

same order of magnitude as the density of heterogeneities of the crystallizable polymer in the 

bulk, which is true in polymer blends. The typical heterogeneous nucleation density of a bulk 

polymer is 105 ~ 109 cm-3.2 The size of the domain of a blend is typically 5 ~ 100 μm, 

corresponding to a number density of 106 ~ 1010 cm-3. However, the typical density of AAO 

pores is in the range of 1011 ~ 1014 cm-3, which is several orders of magnitude larger than that of 

heterogeneities in a polymer. Statistically, the majority of the AAO pores are heterogeneity-free. 

Therefore, fractionated crystallization in AAO must have other origins. A schematic is shown on 

the left-hand side of Figure 4. The highest crystallization peak that usually locates at a similar 
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temperature as that of the bulk is most probably caused by a large grain of residue that contains 

highly active heterogeneities and percolates a certain population of nanopores. The middle peak 

may be caused by the percolation of another group of nanopores by a thin surface layer. The 

lowest peak may be attributed to the heterogeneity-free pores. If the surface residue is cleaned by 

a proper method, only the lowest peak survives. The importance of surface cleaning must be 

emphasized because the presence of a surface layer may influence many aspects of 

crystallization. 

 

Figure 4. Schematic illustrating the origin of fractionated crystallization in blends and the effect 

of surface residue on the fractionated crystallization in AAO system. Adapted with permission 

from ref. 2, Copyright 2017 American Chemical Society. 

2.2. Suppression of the Self-Nucleation Effect 

Since the fractionated crystallization is decided by the relative numbers of nuclei and 

microdomains, in principle, introducing more nuclei will have an impact. Theoretically, the most 

effective way of enhancing nucleation is by self-nucleation.44-46 Typically, the peak 
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crystallization temperature upon cooling from the melt, Tc, is independent of the temperature 

where the melt is cooled from (termed as Ts), if Ts is high enough to remove all the crystalline 

thermal history (in this case, the polymer is under Domain I, or full melting Domain, or isotropic 

melt Domain). By decreasing Ts, the crystallization will enter a Domain where the Tc shows an 

increase, while the Tm is essentially the same (Domain II, self-nucleation Domain). Further 

decreasing Ts will move the material into Domain III, the self-nucleation and annealing domain, 

where Tc increases, and there is an increase of Tm or a new melting peak characteristic of the 

annealed crystals. Domain II can be further divided into Domain IIa, where all the crystals are 

melted, and Domain IIb, where there are residual crystal fragments that can act as crystalline 

self-seeds. The typical concentration of self-nuclei at the lowest Ts of Domain II is in the order of 

109 ~ 1012 cm-3,44, 47 which is close to the density of AAO nanopores. 

We studied the self-nucleation of PBS and PCL within AAO pores.48 Figure 5 shows the 

temperature range of Domain II (and sub-domains) as a function of the density/diameter of AAO 

pores. Clearly, with decreasing the pore size, the width of Domain II decreases. Domain IIa 

disappears first, while Domain IIb vanishes within the smallest pores, indicating a total 

suppression of the self-nucleation effect. This suggests that the number of self-nuclei is still 

below the number of AAO pores in the high limit of AAO pore density. Interestingly, 

fractionated crystallization appears in self-nucleated infiltrated polymers. In Domain II, the pores 

can be divided by whether they contain self-nuclei or not. The pores that contain self-nuclei 

crystallize at a higher temperature, though the self-nuclei-free pores crystallize at a lower 

temperature as expected for homogeneous or surface nucleation mechanisms. 
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Figure 5. The effect of confinement on the self-nucleation Domain or Domain II (DII) for PBS 

and PCL. Reproduced with permission from ref. 48, Copyright 2021 American Chemical Society. 

2.3. First Order Crystallization Kinetics 

The overall crystallization kinetics of polymers (comprising both nucleation and growth) can 

be described by the Avrami equation:49, 50 

1 − 𝑉𝑉𝑐𝑐(𝑡𝑡) = 𝑒𝑒−𝑘𝑘(𝑡𝑡−𝑡𝑡0)𝑛𝑛  

where Vc is the volume fraction of crystals, and t is the crystallization time, t0 the induction time, 

k the rate constant of overall crystallization, and n the Avrami index. The Avrami index, n, can 

be further expressed by the addition of two terms:12, 51 

𝑛𝑛 = 𝑛𝑛n + 𝑛𝑛gd 

where nn is the nucleation term, and ngd is related to the growth dimensionality. The nn varies 

from 0 to 1, where 0 represents instantaneous nucleation and 1 corresponds to sporadic 

nucleation. Between these two extremes, nn can be fractional values. 
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Figure 6 plots the n values of different polymers. A general observation of the crystallization 

kinetics of polymers within AAO pores is the reduction of n.43 An approximate n value of 1 (i.e., 

in the range between 0.5 and 1.4), i.e., first-order kinetics, has been observed for infiltrated PEO 

and sPP.29, 41, 52 The reason is that, in AAO pores, because of the small volume, the time needed 

for crystal grow is negligible as compared to the time needed for nucleation. Thus, the growth 

term, ngd, becomes 0 independent of the geometry. Taking the sporadic nucleation term that is 

typical for homogeneous nucleation of confined polymers, the overall Avrami index becomes 1. 

When the nucleation becomes less sporadic, the n value can even become lower than 1 (see 

Figure 6). 
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Figure 6. Avrami index of polymers plotted as a function of supercooling (ΔT). The bulk 

polymer is plotted as filled symbols and the infiltrated sample is plotted as hollow symbols. The 

data were taken from ref. 25 for PE, ref. 18 (blue circle) and 20 (blue diamond) for iPP, ref. 41 (red 

left triangle), 29 (red up triangle), and 52 (red down triangle) for PEO, ref. 33 (pink star) for sPP, 

ref. 53 for poly(methyl methacrylate) stereocomplex (sc-PMMA). The ΔT was calculated by the 
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difference of crystallization temperature and equilibrium melting temperature (Tm
o, values can be 

found in ref. 43). For sc-PMMA, the highest melting temperature was used as Tm
o (510 K54). 

2.4. Crystal Orientation 

Controlling the orientation of crystallites provides an opportunity to tailor the physical 

properties of polymer materials for functional applications. Let’s first focus on the 

thermodynamic effects. It is well known that polymer crystallizes into extended chain crystals 

when the molecular weight is below a critical value.55 We chose a monodisperse PEO with a 

number average molecular weight of 2000 g/mol and a polydispersity index of 1.1. The PEO has 

a contour length of 12.6 nm, and only extended chain crystals are stable for this sample in bulk.56 

As shown in Figure 7, it was found that when the diameter of AAO is above the contour length 

of PEO, the chain in the crystal is perpendicular to the pore axis. On the other hand, when the 

diameter of AAO is 10 nm, the PEO chain aligns parallel to the AAO axis.1 The results indicate 

that to maintain a thermodynamically stable conformation (extended chain crystal), the low 

molecular weight PEO adopts different orientations in the vicinity of a critical AAO diameter. 

 

Figure 7. 2D WAXS patterns and orientation modes of monodisperse PEO within AAO 

tempaltes. Adapted with permission from ref. 1. Copyright 2013 American Chemical Society. 
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The cylindrical geometry plays an essential role in selecting crystals that have the right 

orientation inside AAO pores. Steinhart et al.23 proposed a “kinetic selection” model based on 

the study of PVDF/AAO. The core idea is shown in Figure 8A. The homogeneous nuclei inside 

the AAO pores are expected to be randomly oriented. If the growing direction of the crystals is 

parallel to the pore axis, the crystal will fill the space easily. However, if the growing direction is 

inclined to the pore axis, the crystal growth will be “blocked” by the AAO wall. Because 

polymer lamella grows perpendicular to the chain axis (c-axis), statistically, the final oriented 

structure of polymer crystals in separated AAO pores is one with the c axis perpendicular to the 

pore axis. On the other hand, if a surface reservoir is connected with the AAO, crystallization 

will start in the bulk and “grow into” the pore, resulting in the fastest growth direction (<020> 

for PVDF) parallel to the pore axis (Figure 8B). This indicates that the existence of a surface 

layer may alter the orientation of crystals inside the AAO pores. 
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Figure 8. Schematic illustrating the kinetic selection of crystals: (A) without surface layer; (B) in 

connection with bulk reservoir. (C) Orientation diagram of PEO within AAO templates showing 

the effect of cooling rate and pore volume. Reproduced with permission from ref. 23 and 3. 

Copyright 2006American Physical Society and Copyright 2018American Chemical Society. 

One question of this model is whether the population of crystallites with <hk0> parallel to 

the pore axis is the same as that in the bulk. By noticing that the (020) reflection has a higher 

relative intensity in PVDF nanotubes within 400 nm AAO, Steinhart et al.23 hypothesized that 

there could be several nuclei with different orientation coexisting within one pore, all of which 

are compatible with the kinetic selection rule (<hk0> parallel to the pore axis). In this case, 

crystal planes with a faster growth rate will dominate. Similar observations have also been 

reported in the crystallization of PEO blocks in the cylindrical phase of block copolymers, where 

the maximum growth direction ([120]) preferentially aligns along the pore axis.57 

A survey of the literature indicates that PVDF is a unique example that shows all the (hk0) 

reflections with a similar intensity ratio as that of the bulk sample. Most frequently, one or two 

dominant crystal planes preferentially grow along the pore axis.3 To elucidate the orientation of 

PEO within AAO pores and under different crystallization conditions, we measured the pole 

figure of PEO. The results lead to an orientation diagram. As shown in Figure 8C, the crystals in 

a quenched sample are isotropic, independent of the pore size. For relatively fast cooling in small 

pores (blue region), the (120) plane grows along the pore axis. However, mixed orientations are 

observed for larger pores under lower cooling (yellow region). This indicates that the crystal 

orientation of PEO in AAO is more complicated than the “kinetic selection” model. According to 

the single crystal growth studies,58-60 the (010) plane becomes the fastest growth plane in PEO at 

higher crystallization temperature. 
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The orientation of polymer crystals within AAO was simulated by a 1D lattice model.52, 61 

The effect of growth rate and nucleation rate was considered. The results indicate three 

characteristic zones. When the nucleation rate is very high (corresponding to high supercooling), 

a large number of nuclei form simultaneously within a single AAO pore via homogeneous 

nucleation. The dimension of crystal growth is very limited. As the nuclei are isotropic, the 

overall orientation of polymer crystals is isotropic as well. In another limit, when the nucleation 

rate is very low, and the growth rate is high, statistically, any nucleus that matches the selection 

rule (Figure 8A) is able to grow and fill the pore rapidly before another nucleus can form. In the 

middle zone, where the nucleation rate and growth rate are both intermediate, several nuclei will 

form in a pore, and the growth rates of the various planes determine the populations of crystal 

orientations. 

2.5. Surface/Interface Effect 

We have so far only considered the size effect and geometrical effect on polymer 

crystallization inside AAO. Polymer chains are in contact with the inorganic AAO wall. The 

interactions should influence the crystallization of polymers on nucleation and/or chain mobility. 

However, the studies on the impact of the interface on the crystallization behavior of polymers 

within AAO are rare, and it is often difficult to disentangle the impact of interface and the impact 

of lack of nucleation sites.62-64 Surface nucleation has been argued in infiltrated PE26 and PBS32, 

based on the idea that homogeneous nucleation only occurs at a temperature close to Tg, and the 

Tcs of the two polymers are well above their Tgs. 

An unusual acceleration of cold crystallization was observed in poly(L-lactic acid) (PLLA).65 

As shown in Figure 9A, the crystallization rate increases significantly with decreasing pore size. 
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This indicates that there must be a different mechanism for crystal nucleation in PLLA. To reveal 

the possible interactions, an amorphous PDLLA was used instead of PLLA to eliminate the 

influence of crystallization on the dielectric signal. Two Tgs were observed in the heating run of 

quenched PDLLA, as shown in Figure 9B, one of which is located at a similar temperature as the 

bulk sample, while a low-temperature peak appears. This indicates that there is a fraction of 

chains with higher mobility. Indeed, the segmental relaxation time of the infiltrated samples 

deviates from the bulk sample at the lower temperature side, where the segmental relaxation time 

decreases with decreasing pore diameter. According to the classical nucleation theory,66 the 

nucleation rate can be expressed as: 

𝐼𝐼 = 𝐼𝐼0exp �−
∆𝐺𝐺∗ + ∆𝐸𝐸

𝑘𝑘𝑘𝑘
� 

where ΔG* is the free energy barrier of forming a critical nucleus, and ΔE is the activation 

energy of diffusion of segments across the phase boundary. The accelerated nucleation of PLLA 

within AAO is most probably induced by a reduced diffusion barrier ΔE. This is physically 

similar to the case of amorphous thin films, where a free surface layer exhibits faster dynamics, 

i.e., a lower Tg.67 A high mobility interfacial layer was also observed in PMMA/AAO system.68, 

69 Further experiments showed that the mobility of the interfacial layer decreased during 

annealing just above Tg, indicating that the interfacial layer is in a non-equilibrium state. As a 

result, the nucleation of PLLA decreases during annealing. 
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Figure 9. (A) Crystallization half time of PLLA at 75 °C as a function of the inverse diameter of 

AAO pores; (B) dielectric loss of melt quenched PDLLA during heating; (C) Arrhenius plot of 

PDLLA within AAO pores measured during heating of quenched samples; (D) schematic 

illustrating the existence of interfacial layer with segmental mobility depending on the thermal 

history. Reproduced with permission from ref. 65 and 4. Copyright 2015 and 2019American 

Chemical Society. 

Another example of the interfacial effect on crystalline polymers is the polymorphic phase 

transition in polybutene-1 (PB-1).37 Under melt crystallization conditions, PB-1 crystallizes into 

a metastable phase (Form II), characterized by a 113 helical conformation in a tetragonal unit cell. 
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During annealing, Form II transforms instantaneously into the stable Form I phase. As shown in 

WAXS results (Figure 10A), it is obvious that the intensity of Form II reflections decreases with 

annealing at room temperature. The reflections of Form I gradually appear as a function of time. 

The change of the Form I fraction of bulk and infiltrated PB-1 is plotted in Figure 10B. Two 

features are visible: (a) the rate change is different among different samples; (b) the saturation 

fraction of Form I, XI∞, decreases with confinement. Surprisingly, the PB-1 infiltrated within 30 

nm AAO does not show any transition. To account for the reduced transition degree, the XI∞ can 

be fitted by a simple formula: 

𝑋𝑋𝐼𝐼∞ = �1 −
2𝑙𝑙
𝑑𝑑
�
2

 

This formula agrees with a two-layer model with a 12 nm interfacial layer that does not 

transform to Form I. 
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Figure 10. (A) WAXS curves of PB-1 during annealing at room temperature indicating the 

transition of Form II to Form I. (B) The degree of transition XI as a function of annealing time. 

(C) The maximum transition degree (XI∞) as a function of the inverse pore diameter. Reproduced 

with permission from ref. 37. Copyright 2020 American Chemical Society. 
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The crystallization or crystal transition rate of polymer is determined by factors that originate 

from finite size and interfacial effects. Prediction of the crystallization rates has been challenging. 

For polymers under 1D confinement (thin films), an analytical model was proposed to estimate 

the time scale for crystallization, by assuming the crystallization rate can be expressed by a 

product of the probabilities involving nucleation and chain diffusion.70 

2.6. From Homopolymers to Copolymers 

Confined crystallization of polymers has been extended to more complicated systems such as 

block copolymers and random copolymers. In strongly segregated PE-b-PS diblock copolymers, 

the PE crystalline phase experienced double confinement.26 The Tc shifts to lower temperatures. 

All the copolymers show a core-shell morphology, where PE block forms the shell in contact 

with the AAO wall.71 Similar to the infiltrated homopolymer, the nucleation mechanism of the 

PE component of PE-b-PS is assigned to surface nucleation. In crystalline-crystalline PCL-b-

PEO diblock copolymer, the crystallization of PEO was suppressed by the double confinement of 

AAO and crystalline PCL.40 
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Figure 11. (A) DSC cooling curves of PBS-ran-PCL with different compositions. (B) Summary 

of the Tc of the bulk and infiltrated copolymers together with the Tg. Reproduced with permission 

from ref. 72 and 73. Copyright 2018 and 2020 American Chemical Society. 

Random copolymers show interesting comonomer inclusion or comonomer exclusion 

behavior depending on the miscibility of comonomers in the crystalline phase. Figure 11A shows 

the DSC cooling curves of random copolymers of butylene succinate and caprolactone (PBS-

ran-PCL, BSxCL100-x).72 For most of the copolymers, only one crystallization peak was observed. 

The crystallization and melting temperatures decrease with comonomer contents and go through 

a pseudo-eutectic point that is characteristic of isodimorphic random copolymers. In these 

isodimorphic copolymers, the PBS-rich compositions exhibit a similar crystalline structure as 

PBS homopolymer but with small inclusions of CL comonomer units, and conversely, the PCL-

rich compositions exhibit a similar crystalline structure as PCL homopolymer but with small 

inclusions of BS comonomer units.72, 74 For BS45CL55, two crystallization peaks were observed 

(at the pseudoeutectic point), indicating two crystalline phases, one PBS-rich and another PCL-

rich. A series of isodimorphic PBS-ran-PCL polymers were infiltrated into AAO templates with 

a diameter of 100 nm.73 Figure 11B summarizes the crystallization temperatures of the bulk and 

infiltrated PBS-ran-PCL. Only one Tg was observed (as the amorphous phases are miscible in the 

random copolymers), which changed linearly with composition. After infiltration, a very large 

reduction in crystallization temperature can be observed for all the copolymers, which is in 

accordance to that observed in homopolymers. Interestingly, the isodimorphic behavior of the 

copolyesters is maintained for the infiltrated copolymers. 

3. CONCLUSIONS AND OUTLOOK 
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In summary, AAO nanopores provide an ideal 1D cylindrical environment to explore the 

basic mechanism of confined crystallization of polymers. We have shown that infiltrated 

polymers crystallize distinctly different from the bulk. A message from the experimental point of 

view is the importance of surface residue, which is the origin of fractionated crystallization and 

also influences the orientation of the crystals. Because the number of heterogeneities in a bulk 

polymer is several orders of magnitude lower than the number of nanopores within theAAO, the 

nucleation mechanism changes from heterogeneous nucleation to homogeneous/surface 

nucleation. By introducing self-nuclei, the nuclei density can be comparable to the pore density 

of AAO. The self-nucleation effect is completely suppressed in AAO pores with the lowest 

diameter (below 60 nm). Fractionated crystallization “reappears” in self-nucleated polymer 

inside AAO due to the co-existence of self-nuclei and surface or homogeneous nuclei. Polymer 

crystals inside AAO exhibit anisotropic structures, which are determined by thermodynamic 

stability and kinetic selection rules, including chain conformation, nucleation rate, and growth 

rates of different crystal planes. The interface between polymer and AAO has an impact on the 

nucleation of PLLA and polymorphic transition in PB-1. The confinement study in AAO 

nanopores was extended to block and random copolymers. 

There are open questions that remain unsolved. First, the usual diameter of AAO nanopores 

(ranging between 400 and 20 nm) is above the radius of gyration, critical nucleus size, and 

lamellar thickness of typical polymers. Therefore, the confinement effect does not reach the 

smallest length scale of polymeric crystals. Developing templates with smaller pores will be 

interesting to push the limit to even smaller dimensions. Secondly, there is still a lack of general 

understanding of how the interfacial interaction affects the nucleation of polymers. The 
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development of surface modification techniques and the study of the impact of specific 

interactions may provide crucial evidence of the factors affecting surface nucleation. 
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